
Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York

Don Mills, Ontario Wokingham, England Amsterdam Bonn

Sydney Singapore Tokyo Madrid San Juan

Paris Seoul Milan Mexico City Taipei

I N S I D E M A C I N T O S H

QuickTime Components

Apple Computer, Inc.

© 1993, Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, LaserWriter, Macintosh,
MPW, and MultiFinder are trademarks
of Apple Computer, Inc., registered in
the United States and other countries.

Balloon Help, QuickDraw, QuickTime,
and System 7 are trademarks of Apple
Computer, Inc.

Adobe Illustrator and PostScript are
trademarks of Adobe Systems
Incorporated, which may be registered
in certain jurisdictions.

AGFA is a trademark of Agfa-Gevaert.

America Online is a service mark of
Quantum Computer Services, Inc.

Classic is a registered trademark
licensed to Apple Computer, Inc.

CompuServe is a registered service
mark of CompuServe, Inc.

FrameMaker is a registered trademark
of Frame Technology Corporation.

Helvetica and Palatino are registered
trademarks of Linotype Company.

Internet is a trademark of Digital
Equipment Corporation.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Windows is a registered trademark of
Microsoft.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

ISBN 0-201-62202-5
1 2 3 4 5 6 7 8 9-MU-9796959493
First Printing, May 1993

iii

Contents

Figures and Listings xiii

Preface About This Book xvii

Format of a Typical Chapter xviii

Conventions Used in This Book xix

Special Fonts xix

Types of Notes xix

Development Environment xx

For More Information xx

Chapter 1 Overview 1-1

Providing Movie Playback 1-3

Capturing Sequences of Images 1-6

Compressing and Decompressing Still Images 1-8

Converting Data for Use in QuickTime Movies 1-11

Creating Previews of QuickTime Movies 1-11

Chapter 2 Movie Controller Components 2-1

About Movie Controller Components 2-4

The Elements of a Movie Controller 2-4

Badges 2-6

Spatial Properties 2-6

Using Movie Controller Components 2-10

Playing Movies 2-10

Customizing Movie Controllers 2-13

Movie Controller Components Reference 2-14

Movie Controller Actions 2-15

Movie Controller Functions 2-28

Associating Movies With Controllers 2-28

Managing Controller Attributes 2-33

Handling Movie Events 2-44

Editing Movies 2-50

Getting and Setting Movie Controller Time 2-56

Customizing Event Processing 2-58

Application-Defined Function 2-61

iv

Summary of Movie Controller Components 2-63

C Summary 2-63

Constants 2-63

Data Types 2-66

Movie Controller Functions 2-67

Application-Defined Function 2-69

Pascal Summary 2-69

Constants 2-69

Data Types 2-73

Movie Controller Routines 2-73

Application-Defined Routine 2-75

Result Codes 2-75

Chapter 3 Standard Image-Compression Dialog Components 3-1

About Standard Image-Compression Dialog Components 3-4

Using Standard Image-Compression Dialog Components 3-6

Opening a Connection to a Standard Image-Compression Dialog

Component 3-8

Displaying the Dialog Box to the User 3-8

Setting Default Parameters 3-8

Designating a Test Image 3-9

Displaying the Dialog Box and Retrieving Parameters 3-10

Extending the Basic Dialog Box 3-11

Creating a Standard Image-Compression Dialog Component 3-14

Standard Image-Compression Dialog Components Reference 3-15

Request Types 3-15

The Spatial Settings Request Type 3-15

The Temporal Settings Request Type 3-17

The Data-Rate Settings Request Type 3-19

The Color Table Settings Request Type 3-20

The Progress Function Request Type 3-20

The Extended Functions Request Type 3-21

The Preference Flags Request Type 3-22

The Settings State Request Type 3-24

The Sequence ID Request Type 3-24

The Window Position Request Type 3-25

The Control Flags Request Type 3-25

Standard Image-Compression Dialog Component Functions 3-25

Getting Default Settings for an Image or a Sequence 3-26

Displaying the Standard Image-Compression Dialog Box 3-28

Compressing Still Images 3-29

Compressing Image Sequences 3-31

Working With Image or Sequence Settings 3-34

Specifying a Test Image 3-37

v

Positioning Dialog Boxes and Rectangles 3-42

Utility Function 3-44

Application-Defined Function 3-45

Summary of Standard Image-Compression Dialog Components 3-47

C Summary 3-47

Constants 3-47

Data Types 3-49

Standard Image-Compression Dialog Component Functions 3-50

Application-Defined Function 3-52

Pascal Summary 3-52

Constants 3-52

Data Types 3-54

Standard Image-Compression Dialog Component Routines 3-55

Application-Defined Routine 3-57

Result Codes 3-57

Chapter 4 Image Compressor Components 4-1

About Image Compressor Components 4-3

Banding and Extending Images 4-4

Spooling of Compressed Data 4-6

Data Loading 4-6

Data Unloading 4-7

Compressing or Decompressing Images Asynchronously 4-8

Progress Functions 4-9

Using Image Compressor Components 4-10

Performing Image Compression 4-10

Choosing a Compressor 4-10

Compressing a Horizontal Band of an Image 4-13

Decompressing an Image 4-16

Choosing a Decompressor 4-17

Decompressing a Horizontal Band of an Image 4-21

Image Compressor Components Reference 4-26

Constants 4-26

Image Compressor Component Capabilities 4-26

Format of Compressed Data and Files 4-32

Data Types 4-35

The Compressor Capability Structure 4-35

The Compression Parameters Structure 4-40

The Decompression Parameters Structure 4-46

Functions 4-53

Direct Functions 4-54

Indirect Functions 4-62

Image Compression Manager Utility Functions 4-65

vi

Summary of Image Compressor Components 4-69

C Summary 4-69

Constants 4-69

Data Types 4-72

Functions 4-76

Image Compression Manager Utility Functions 4-77

Pascal Summary 4-77

Constants 4-77

Data Types 4-80

Routines 4-83

Image Compression Manager Utility Functions 4-84

Result Codes 4-84

Chapter 5 Sequence Grabber Components 5-1

About Sequence Grabber Components 5-3

Using Sequence Grabber Components 5-5

Previewing and Recording Captured Data 5-9

Previewing 5-9

Recording 5-10

Playing Captured Data and Saving It in a QuickTime Movie 5-11

Initializing a Sequence Grabber Component 5-11

Creating a Sound Channel and a Video Channel 5-12

Previewing Sound and Video Sequences in a Window 5-14

Capturing Sound and Video Data 5-18

Setting Up the Video Bottleneck Functions 5-19

Drawing Information Over Video Frames During Capture 5-20

Sequence Grabber Components Reference 5-22

Data Types 5-22

The Compression Information Structure 5-22

The Frame Information Structure 5-23

Sequence Grabber Component Functions 5-24

Configuring Sequence Grabber Components 5-24

Controlling Sequence Grabber Components 5-36

Working With Sequence Grabber Settings 5-47

Working With Sequence Grabber Characteristics 5-53

Working With Channel Characteristics 5-58

Working With Channel Devices 5-72

Working With Video Channels 5-77

Working With Sound Channels 5-92

Video Channel Callback Functions 5-99

Utility Functions for Video Channel Callback Functions 5-102

Application-Defined Functions 5-111

Summary of Sequence Grabber Components 5-123

C Summary 5-123

Constants 5-123

vii

Data Types 5-127

Sequence Grabber Component Functions 5-129

Application-Defined Functions 5-135

Pascal Summary 5-136

Constants 5-136

Data Types 5-140

Sequence Grabber Component Routines 5-141

Application-Defined Routines 5-148

Result Codes 5-149

Chapter 6 Sequence Grabber Channel Components 6-1

About Sequence Grabber Channel Components 6-3

Creating Sequence Grabber Channel Components 6-5

Component Type and Subtype Values 6-6

Required Functions 6-6

Component Manager Request Codes 6-7

A Sample Sequence Grabber Channel Component 6-10

Implementing the Required Component Functions 6-10

Initializing the Sequence Grabber Channel Component 6-15

Setting and Retrieving the Channel State 6-16

Managing Spatial Properties 6-17

Controlling Previewing and Recording Operations 6-20

Managing Channel Devices 6-24

Utility Functions for Recording Image Data 6-24

Providing Media-Specific Functions 6-28

Managing the Settings Dialog Box 6-29

Displaying Channel Information in the Settings Dialog Box 6-31

Using Sequence Grabber Channel Components 6-33

Previewing 6-33

Recording 6-34

Working With Callback Functions 6-35

Using Callback Functions for Video Channel Components 6-35

Using Utility Functions for Video Channel Component Callback

Functions 6-36

Sequence Grabber Channel Components Reference 6-37

Functions 6-37

Configuring Sequence Grabber Channel Components 6-38

Controlling Sequence Grabber Channel Components 6-39

Configuration Functions for All Channel Components 6-46

Working With Channel Devices 6-58

Configuration Functions for Video Channel Components 6-61

Configuration Functions for Sound Channel Components 6-77

Utility Functions for Sequence Grabber Channel Components 6-84

viii

Summary of Sequence Grabber Channel Components 6-91

C Summary 6-91

Constants 6-91

Data Types 6-94

Functions 6-94

Pascal Summary 6-99

Constants 6-99

Data Types 6-101

Routines 6-102

Result Codes 6-107

Chapter 7 Sequence Grabber Panel Components 7-1

About Sequence Grabber Panel Components 7-4

Creating Sequence Grabber Panel Components 7-7

Implementing the Required Component Functions 7-9

Managing the Dialog Box 7-11

Managing Your Panel’s Settings 7-13

Sequence Grabber Panel Components Reference 7-14

Component Flags for Sequence Grabber Panel Components 7-15

Functions 7-15

Managing Your Panel Component 7-15

Processing Your Panel’s Events 7-21

Managing Your Panel’s Settings 7-24

Summary of Sequence Grabber Panel Components 7-27

C Summary 7-27

Constants 7-27

Functions 7-28

Pascal Summary 7-29

Constants 7-29

Routines 7-29

Result Codes 7-30

Chapter 8 Video Digitizer Components 8-1

About Video Digitizer Components 8-3

Types of Video Digitizer Components 8-5

Source Coordinate Systems 8-6

Using Video Digitizer Components 8-7

Specifying Destinations 8-7

Starting and Stopping the Digitizer 8-7

Multiple Buffering 8-8

ix

Obtaining an Accurate Time of Frame Capture 8-8

Creating Video Digitizer Components 8-8

Component Type and Subtype Values 8-11

Required Functions 8-11

Optional Functions 8-12

Frame Grabbers Without Playthrough 8-12

Frame Grabbers With Hardware Playthrough 8-12

Key Color and Alpha Channel Devices 8-13

Compressed Source Devices 8-13

Video Digitizer Components Reference 8-14

Constants 8-14

Capability Flags 8-14

Current Flags 8-19

Data Types 8-20

The Digitizer Information Structure 8-20

The Buffer List Structure 8-22

The Buffer Structure 8-23

Video Digitizer Component Functions 8-23

Getting Information About Video Digitizer Components 8-24

Setting Source Characteristics 8-26

Selecting an Input Source 8-30

Setting Video Destinations 8-34

Controlling Compressed Source Devices 8-42

Controlling Digitization 8-52

Controlling Color 8-60

Controlling Analog Video 8-65

Selectively Displaying Video 8-81

Clipping 8-89

Utility Functions 8-92

Application-Defined Function 8-98

Summary of Video Digitizer Components 8-99

C Summary 8-99

Constants 8-99

Data Types 8-104

Video Digitizer Component Functions 8-105

Application-Defined Function 8-111

Pascal Summary 8-111

Constants 8-111

Data Types 8-116

Video Digitizer Component Routines 8-117

Application-Defined Routine 8-123

Result Codes 8-124

x

Chapter 9 Movie Data Exchange Components 9-1

About Movie Data Exchange Components 9-3

Using Movie Data Exchange Components 9-5

Importing and Exporting Movie Data 9-6

Configuring a Movie Data Exchange Component 9-6

Finding a Specific Movie Data Exchange Component 9-6

Creating a Movie Data Exchange Component 9-8

A Sample Movie Import Component 9-9

Implementing the Required Import Component Functions 9-10

Importing a Scrapbook File 9-12

A Sample Movie Export Component 9-15

Implementing the Required Export Component Functions 9-16

Exporting Data to a PICS File 9-18

Movie Data Exchange Components Reference 9-20

Importing Movie Data 9-20

Configuring Movie Data Import Components 9-26

Exporting Movie Data 9-34

Configuring Movie Data Export Components 9-37

Summary of Movie Data Exchange Components 9-41

C Summary 9-41

Constants 9-41

Data Type 9-42

Functions 9-42

Pascal Summary 9-44

Constants 9-44

Data Type 9-45

Routines 9-45

Result Codes 9-47

Chapter 10 Derived Media Handler Components 10-1

About Derived Media Handler Components 10-4

Media Handler Components 10-4

Derived Media Handler Components 10-6

Creating a Derived Media Handler Component 10-7

Component Flags for Derived Media Handlers 10-8

Request Processing 10-8

A Sample Derived Media Handler Component 10-9

Implementing the Required Component Functions 10-9

Initializing a Derived Media Handler Component 10-12

Drawing the Media Sample 10-13

Derived Media Handler Components Reference 10-15

Data Type 10-15

xi

Functions 10-18

Managing Your Media Handler Component 10-18

General Data Management 10-23

Graphics Data Management 10-31

Sound Data Management 10-37

Base Media Handler Utility Function 10-38

Summary of Derived Media Handler Components 10-41

C Summary 10-41

Constants 10-41

Data Type 10-43

Functions 10-43

Pascal Summary 10-45

Constants 10-45

Data Type 10-46

Routines 10-47

Chapter 11 Clock Components 11-1

About Clock Components 11-3

Clock Components Reference 11-5

Component Capability Flags for Clocks 11-5

Component Types for Clocks 11-6

Data Type 11-6

Clock Component Functions 11-7

Getting the Current Time 11-9

Using the Callback Functions 11-9

Managing the Time 11-15

Movie Toolbox Clock Support Functions 11-18

Summary of Clock Components 11-22

C Summary 11-22

Constants 11-22

Data Type 11-24

Clock Component Functions 11-24

Movie Toolbox Clock Support Functions 11-25

Pascal Summary 11-25

Constants 11-25

Data Type 11-27

Clock Component Routines 11-27

Movie Toolbox Clock Support Routines 11-28

xii

Chapter 12 Preview Components 12-1

About Preview Components 12-3

Obtaining Preview Data 12-3

Storing Preview Data in Files 12-5

Using the Preview Data 12-5

Creating Preview Components 12-6

Implementing Required Component Functions 12-7

Displaying Image Data as a Preview 12-8

Preview Components Reference 12-10

Functions 12-10

Displaying Previews 12-10

Handling Events 12-11

Creating Previews 12-11

Resources 12-13

The Preview Resource 12-14

The Preview Resource Item Structure 12-15

Summary of Preview Components 12-16

C Summary 12-16

Constants 12-16

Data Types 12-16

Functions 12-17

Pascal Summary 12-17

Constants 12-17

Data Types 12-18

Routines 12-19

Glossary GL-1

Index IN-1

xiii

Figures and Listings

Chapter 1 Overview 1-1

Figure 1-1 QuickTime components for movie playback 1-5
Figure 1-2 QuickTime components for image capture 1-7
Figure 1-3 QuickTime components for compressing still images 1-9
Figure 1-4 QuickTime components for decompressing still images 1-10

Chapter 2 Movie Controller Components 2-1

Figure 2-1 The standard movie controller 2-5
Figure 2-2 A movie with a badge 2-6
Figure 2-3 Movie controller spatial elements for attached controllers 2-7
Figure 2-4 Movie controller spatial elements for detached controllers 2-8
Figure 2-5 Clipping the controller window region with the controller clipping

region 2-9

Listing 2-1 Playing a movie with a movie controller component 2-10
Listing 2-2 Using a movie controller filter function 2-13

Chapter 3 Standard Image-Compression Dialog Components 3-1

Figure 3-1 Dialog box for single-frame compression 3-4
Figure 3-2 Dialog box for image-sequence compression 3-5
Figure 3-3 Elements of the standard image-compression dialog box 3-7

Listing 3-1 Specifying a test image 3-9
Listing 3-2 Displaying the dialog box to the user and compressing an

image 3-11
Listing 3-3 Defining a custom button in the dialog box 3-12
Listing 3-4 A sample hook function 3-12
Listing 3-5 Positioning related dialog boxes 3-13

Chapter 4 Image Compressor Components 4-1

Figure 4-1 Image bands and their measurements 4-7

Listing 4-1 Preparing for simple compression operations 4-12
Listing 4-2 Performing simple compression on a horizontal band of an

image 4-13
Listing 4-3 Preparing for simple decompression 4-20
Listing 4-4 Performing a decompression operation 4-21

xiv

Chapter 5 Sequence Grabber Components 5-1

Figure 5-1 Relationships among your application, a sequence grabber
component, and channel components 5-4

Figure 5-2 The effect of the SGSetCompressBuffer function 5-88

Listing 5-1 Initializing a sequence grabber component 5-11
Listing 5-2 Creating a sound channel and a video channel 5-12
Listing 5-3 Previewing sound and video sequences in a window 5-14
Listing 5-4 Capturing sound and video 5-18
Listing 5-5 Setting up the video bottleneck functions 5-19
Listing 5-6 Drawing information over video frames during capture 5-20

Chapter 6 Sequence Grabber Channel Components 6-1

Figure 6-1 Relationships of an application, a sequence grabber component,
and channel components 6-4

Listing 6-1 Setting up global variables and implementing required
functions 6-10

Listing 6-2 Initializing the sequence grabber channel component 6-15
Listing 6-3 Determining usage parameters and getting usage data 6-16
Listing 6-4 Managing spatial characteristics 6-17
Listing 6-5 Controlling previewing and recording operations 6-20
Listing 6-6 Coordinating devices for the channel component 6-24
Listing 6-7 Recording image data 6-25
Listing 6-8 Showing the tick count 6-28
Listing 6-9 Including a tick count checkbox in a dialog box in the panel

component 6-29
Listing 6-10 Displaying channel settings 6-31

Chapter 7 Sequence Grabber Panel Components 7-1

Figure 7-1 Sequence grabbers, channel components, and panel
components 7-5

Figure 7-2 A sample sequence grabber settings dialog box 7-6

Listing 7-1 Implementing the required functions 7-9
Listing 7-2 Managing the settings dialog box 7-12
Listing 7-3 Managing the settings for a panel component 7-13

Chapter 8 Video Digitizer Components 8-1

Figure 8-1 Basic tasks of a video digitizer 8-4
Figure 8-2 Video digitizer rectangles 8-6

xv

Chapter 9 Movie Data Exchange Components 9-1

Figure 9-1 The Movie Toolbox, movie data import components, and your
application 9-4

Figure 9-2 The Movie Toolbox, movie data export components, and your
application 9-5

Listing 9-1 Implementing the required import functions 9-10
Listing 9-2 Importing a Scrapbook file 9-12
Listing 9-3 Implementing the required export functions 9-16
Listing 9-4 Exporting a frame of movie data to a PICS file 9-18

Chapter 10 Derived Media Handler Components 10-1

Figure 10-1 Logical relationships between the Movie Toolbox and media
handlers 10-5

Figure 10-2 Relationship between the base media handler component and
derived media handlers 10-6

Listing 10-1 Implementing the required functions 10-9
Listing 10-2 Initializing a derived media handler 10-13
Listing 10-3 Drawing the media sample 10-13

Chapter 11 Clock Components 11-1

Figure 11-1 Relationships of an application, the movie controller component,
the Movie Toolbox, and a clock component 11-4

Chapter 12 Preview Components 12-1

Figure 12-1 Relationships of a preview component, the Image Compression
Manager, and an application 12-5

Listing 12-1 Implementing the required Component Manager functions 12-7
Listing 12-2 Converting data into a form that can be displayed as a

preview 12-9
Listing 12-3 The preview resource 12-14
Listing 12-4 The preview resource item structure 12-15

xvii

P R E F A C E

About This Book

This book describes the components supplied by Apple Computer, Inc.,

with QuickTime. A component is a code resource that is registered by the

Component Manager. To understand components fully, you should be

familiar with the material in the chapter “Component Manager” in Inside
Macintosh: More Macintosh Toolbox, which describes how to build a component.

This book provides a complete technical reference to movie controller

components, standard image-compression dialog components, image

compressor components, sequence grabber components, sequence

grabber channel components, sequence grabber panel components, video

digitizer components, movie data exchange components, derived media

handler components, clock components, and preview components.

You should read this book if you are developing an application that uses

QuickTime components, or if you are developing a component that will be

managed by the Component Manager. Whether you are developing a

component or an application that uses components, you need to know how to

call component functions. See the chapter “Component Manager” in Inside
Macintosh: More Macintosh Toolbox for information on using components. If

you are developing a component, you should also read the material in that

chapter that describes how to build a component.

Each of these chapters discusses the features provided by a component type

as well as the interface supported by components of that type. The interfaces

are formatted for use by application developers. If you are developing a

component, you must design and implement your component in a way that

satisfies this interface.

If you are developing an application that can play movies, you should

consider using movie controller components to manage your movie user

interface. To learn about the capabilities of movie controllers, read the chapter

“Movie Controller Components.” If you are developing a movie controller

component, the chapter also describes the interfaces that your component

must support.

If you want to use a standard image-compression dialog component in your

application, you should read the chapter “Standard Image-Compression

Dialog Components.” If you want to create your own standard

image-compression dialog component, you should be familiar with all of the

information in that chapter.

If you are developing an image compressor component, you should read all

the material in the chapter “Image Compressor Components.”

If you are writing an application that needs to acquire data from sources

external to the Macintosh computer, or if you are developing a sequence

xviii

P R E F A C E

grabber channel component, you should read the chapter “Sequence Grabber

Components.”

If you are developing a sequence grabber channel component, you should

also read the chapter “Sequence Grabber Channel Components.”

If you plan to create a sequence grabber panel component, you should read

the chapter “Sequence Grabber Panel Components.”

If you want to develop or use a video digitizer component, you should read

the chapter “Video Digitizer Components.”

If you plan to create either movie data import or movie data export

components, or if you are writing an application that uses components of this

type, you should read the chapter “Movie Data Exchange Components.”

If you plan to develop a derived media handler component, you should read

the chapter “Derived Media Handler Components.”

If you want to develop your own clock component for use by the Movie

Toolbox, you should read the chapter “Clock Components,” which describes

what you must do to create a clock component.

If you want to develop your own preview component, you should read the

chapter “Preview Components,” which tells what to do to create a preview

component.

If you are going to play movies or compress images, you should

be familiar with QuickDraw and Color QuickDraw, described in

Inside Macintosh: Imaging. If you are going to create QuickTime movies,

you should be familiar with the Sound Manager, described in

Inside Macintosh: More Macintosh Toolbox, and with the human interface

guidelines, described in Macintosh Human Interface Guidelines.

The companion to this book, Inside Macintosh: QuickTime, describes

QuickTime, an extension of the Macintosh system software that enables you

to integrate time-based data into mainstream Macintosh applications. That

book also provides a complete technical reference to the Movie Toolbox, the

Image Compression Manager, and the movie resource formats.

Format of a Typical Chapter

Almost all chapters in this book follow a standard structure. For example, the

chapter “Movie Controller Components” contains these sections:

■ “About Movie Controller Components.” This section provides an overview
of the features provided by movie controller components.

■ “Using Movie Controller Components.” This section describes the tasks
you can accomplish using movie controller components. It describes how
to use the most common functions, gives related user interface information,
provides code samples, and supplies additional information.

xix

P R E F A C E

■ “Movie Controller Components Reference.” This section provides a
complete reference to movie controller components by describing the
constants, data structures, and functions that they use. Each function
description also follows a standard format, which gives the function
declaration and description of every parameter of the function. Some
function descriptions also give additional descriptive information, such as
result codes.

■ “Summary of Movie Controller Components.” This section provides the
 C interface, as well as the Pascal interface, for the constants, data
structures, functions, and result codes associated with movie controller
components.

Conventions Used in This Book

Inside Macintosh uses various conventions to present information. Words that

require special treatment appear in specific fonts or font styles. Certain

information, such as parameter blocks, uses special formats so that you can

scan it quickly.

Special Fonts
All code listings, reserved words, and the names of actual data structures,

constants, fields, parameters, and functions are shown in Courier (this is
Courier).

Words that appear in boldface are key terms or concepts and are defined in

the glossary.

Types of Notes
There are several types of notes used in this book.

Note

A note like this contains information that is interesting but possibly not
essential to an understanding of the main text. (An example appears on
page 2-24.) ◆

IMPORTANT

A note like this contains information that is essential for an
understanding of the main text. (An example appears on page 5-87.) ▲

▲ W A R N I N G

Warnings like this indicate potential problems that you should be aware
of as you design your application. Failure to heed these warnings could
result in system crashes or loss of data. (An example appears on
page 5-39.) ▲

xx

P R E F A C E

Development Environment

The system software functions described in this book are available using C,

Pascal, or assembly-language interfaces. How you access these functions

depends on the development environment you are using. This book shows

system software functions in their C interface using the Macintosh

Programmer’s Workshop (MPW) version 3.2.

All code listings in this book are shown in C. They show methods of using

various functions and illustrate techniques for accomplishing particular tasks.

All code listings have been compiled and, in most cases, tested. However,

Apple does not intend that you use these code samples in your application.

For More Information

APDA is Apple’s worldwide source for over three hundred development

tools, technical resources, training products, and information for anyone

interested in developing applications on Apple platforms. Customers receive

the quarterly APDA Tools Catalog featuring all current versions of Apple

development tools and the most popular third-party development tools.

Ordering is easy; there are no membership fees, and application forms are not

required for most of our products. APDA offers convenient payment and

shipping options, including site licensing.

To order products or to request a complimentary copy of the APDA Tools
Catalog, contact

APDA

Apple Computer, Inc.

P.O. Box 319

Buffalo, NY 14207-0319

Telephone 800-282-2732 (United States)

800-637-0029 (Canada)

716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDA

CompuServe 76666,2405

Internet APDA@applelink.apple.com

xxi

P R E F A C E

If you provide commercial products and services, call 408-974-4897 for

information on the developer support programs available from Apple.

For information on registering signatures, file types, Apple events, and other

technical information, contact

Macintosh Developer Technical Support

Apple Computer, Inc.

20525 Mariani Avenue, M/S 75-3T

Cupertino, CA 95014-6299

Contents 1-1

C H A P T E R 1

Contents

Overview

Providing Movie Playback 1-3

Capturing Sequences of Images 1-6

Compressing and Decompressing Still Images 1-8

Converting Data for Use in QuickTime Movies 1-11

Creating Previews of QuickTime Movies 1-11

C H A P T E R 1

Providing Movie Playback 1-3

Overview

Each QuickTime component provides an interface to a general class of features

associated with the manipulation of time-based data. QuickTime provides components

so that developers may use a component—for example, one that provides image

compression services—without extensive knowledge of all the possible services that

that component might provide. Developers are therefore isolated from the details of

implementing and managing a given technology.

Since each QuickTime component is registered by the Component Manager, the

component’s code can be available systemwide or in a resource that is local to a

particular application.

QuickTime components supply these services:

■ movie playback (including the provision of basic time information and the
interpretation of the data to be played)

■ image capture

■ compression and decompression of still images

■ exchange of movie data

■ creation and display of movie previews

This book addresses two audiences—developers who communicate directly with

existing components and developers who want to create their own components.

Providing Movie Playback

Figure 1-1 shows the QuickTime components that allow your application to provide

movie playback.

■ Your application calls the movie controller component in order to play movies. Movie
controller components implement movie controllers, which present a user interface
for playing and editing movies. For details on the features of movie controller
components and the interfaces they must support, see the chapter “Movie
Controller Components” in this book.

■ The movie controller component communicates with the Movie Toolbox’s functions in
order to obtain and receive time-based information from the clock component. Clock
components supply basic time information to their clients. For details, see the chapter
“Clock Components” in this book.

C H A P T E R 1

Overview

1-4 Providing Movie Playback

■ The Movie Toolbox passes control to media handler components, which actually
interpret the data that will be played. Media handlers allow the Movie Toolbox to
access the data in a media. They isolate the Movie Toolbox from the details of how or
where a particular media is stored. This makes QuickTime extensible to new data
formats and storage devices. If you want to develop a media handler component, read
the chapter “Derived Media Handler Components” in this book.

■ The media handler component passes control to the Image Compression Manager’s
decompression functions, which send the movie data to a decompressor component.
A decompressor component is one kind of image compressor component, a code
resource that may provide either compression or decompression services. For details
on decompressor components, see the chapter “Image Compressor Components” in
this book.

■ The decompressor component actually decompresses the movie data so that it can be
played on the screen of the Macintosh computer.

C H A P T E R 1

Overview

Providing Movie Playback 1-5

Figure 1-1 QuickTime components for movie playback

C H A P T E R 1

Overview

1-6 Capturing Sequences of Images

Capturing Sequences of Images

Figure 1-2 shows the QuickTime components that allow your application to capture

image data for storage or for further processing by video equipment.

■ Your application calls the sequence grabber component to digitize data. Sequence
grabber components allow applications to obtain digitized data from sources that are
external to a Macintosh computer. For more information on how to use these
components to acquire images, read the chapter “Sequence Grabber Components” in
this book.

■ The sequence grabber component uses both sequence grabber panel components and
sequence grabber channel components.

■ The sequence grabber panel component obtains configuration information before
it calls the sequence grabber channel component to manipulate the captured data.
For details on creating sequence grabber panel components, see the chapter
“Sequence Grabber Panel Components” in this book.

■ The sequence grabber channel component manipulates the captured data. For
details on sequence grabber channel components, see the chapter “Sequence
Grabber Channel Components” in this book.

■ Image compressor components are used by the sequence grabber channel
component, if necessary.

■ The sequence grabber channel component calls either a video digitizer component or
the Image Compression Manager.

■ The video digitizer component obtains the digitized data from an analog video
source. To understand how to use or create a video digitizer component, see the
chapter “Video Digitizer Components” in this book.

■ The Image Compression Manager’s compression functions store the image in a
storage media—for example, in a data pack.

C H A P T E R 1

Overview

Capturing Sequences of Images 1-7

Figure 1-2 QuickTime components for image capture

C H A P T E R 1

Overview

1-8 Compressing and Decompressing Still Images

Compressing and Decompressing Still Images

QuickTime components allow your application to compress and decompress still images.

Figure 1-3 provides an overview of QuickTime components for the compression and

decompression of still images.

■ Your application calls the standard image-compression dialog component to select
parameters for governing the compression of an image and for managing the
compression operation.

■ The standard image-compression dialog component calls the Image Compression
Manager.

■ The Image Compression Manager may commence the compression operation in one
of two ways:

■ It may send the image directly to an image compressor component and then to a
storage media, such as a data pack.

■ It may send the image to the Apple-supplied decompressor, the 'raw '
decompressor, and then through a band buffer (for conversion to the image depth
required by the compressor component) before sending it to the image compressor
component.

■ The compressor component compresses the image and sends it to the storage media.

C H A P T E R 1

Overview

Compressing and Decompressing Still Images 1-9

Figure 1-3 QuickTime components for compressing still images

C H A P T E R 1

Overview

1-10 Compressing and Decompressing Still Images

Figure 1-4 shows the relationships of the components that allow your application to take

an image from a storage media and decompress it so that it may be displayed on the

Macintosh screen.

■ Your application calls the QuickDraw DrawPicture routine, which the Image
Compression Manager intercepts. The Image Compressor decompresses the image.
Alternatively, your application may communicate directly with the Image
Compression Manager, which sends the compressed image to the decompressor
component.

■ The decompressor component sends the image directly to the Macintosh screen or to a
band buffer that meets the requirements of the decompressor (in features such as pixel
depth and dimension). The contents of the band buffer are then copied to the screen
by the 'raw ' decompressor, which performs any necessary conversion.

Figure 1-4 QuickTime components for decompressing still images

C H A P T E R 1

Overview

Converting Data for Use in QuickTime Movies 1-11

Converting Data for Use in QuickTime Movies

Movie data exchange components allow your application to convert data in various

formats so that it can be imported to or exported from a QuickTime movie. For

information on using or creating these components, see the chapter “Movie Data

Exchange Components” in this book.

Creating Previews of QuickTime Movies

Preview components let your application create and display previews of QuickTime

movies. The Image Compression Manager is the primary client of movie preview

components. For details on developing preview components, see the chapter

“Preview Components” in this book.

Contents 2-1

C H A P T E R 2

Movie Controller

Contents

Components

About Movie Controller Components 2-4

The Elements of a Movie Controller 2-4

Badges 2-6

Spatial Properties 2-6

Using Movie Controller Components 2-10

Playing Movies 2-10

Customizing Movie Controllers 2-13

Movie Controller Components Reference 2-14

Movie Controller Actions 2-15

Movie Controller Functions 2-28

Associating Movies With Controllers 2-28

Managing Controller Attributes 2-33

Handling Movie Events 2-44

Editing Movies 2-50

Getting and Setting Movie Controller Time 2-56

Customizing Event Processing 2-58

Application-Defined Function 2-61

Summary of Movie Controller Components 2-63

C Summary 2-63

Constants 2-63

Data Types 2-66

Movie Controller Functions 2-67

Application-Defined Function 2-69

Pascal Summary 2-69

Constants 2-69

Data Types 2-73

C H A P T E R 2

2-2 Contents

Movie Controller Routines 2-73

Application-Defined Routine 2-75

Result Codes 2-75

C H A P T E R 2

2-3

Movie Controller Components

This chapter describes movie controller components. Movie controller components

provide a high-level interface that allows your application to present movies to users

quickly and easily. Movie controllers, the controls managed by movie controller

components, present a user interface for playing and editing movies. Movie

controller components eliminate much of the complexity of working with movies by

assuming primary responsibility for the movie, freeing your application to focus on the

unique services it offers to users.

This chapter has been divided into the following sections:

■ “About Movie Controller Components” describes the capabilities of movie controller
components in general and discusses the movie controller component supplied
by Apple.

■ “Spatial Properties” discusses the display regions that are supported by movie
controller components—your application can manipulate these regions to control how
the controller is displayed.

■ “Using Movie Controller Components” provides sample code that shows you how to
play, edit, and customize movies with movie controller components.

■ “Movie Controller Components Reference” describes the functions provided to your
application by movie controller components.

■ “Summary of Movie Controller Components” provides a condensed listing of the
constants, data structures, and functions supported by these components.

If you are developing an application that can play movies, you should consider using

movie controller components to manage your movie user interface. They provide a

consistent user interface that shields you from the details of using the Movie Toolbox. To

learn about the capabilities of movie controllers, read “About Movie Controller

Components.” If your application allows the user to play movies, read “Spatial

Properties.” If you anticipate doing event management, read “Customizing Movie

Controllers” beginning on page 2-13 and “Application-Defined Function” beginning on

page 2-61 as well. All movie controller functions are described in “Movie Controller

Components Reference”—you should read the portions that are relevant to

your application.

If you are developing a movie controller component, the information in this chapter

describes the interface that your component must support. In addition, you should be

familiar with the material in the chapter “Component Manager” in Inside Macintosh:
More Macintosh Toolbox, which describes how to build a component.

C H A P T E R 2

Movie Controller Components

2-4 About Movie Controller Components

About Movie Controller Components

Movie controller components provide movie playback and editing capabilities to

applications. In so doing, movie controller components remove from your application

much of the burden of presenting an interface for movie playback and editing. It is

possible to have the controller do nearly all the work involved with playing movies,

including updating and idling. Alternatively, your application can take care of some or

all of these tasks.

You can think of movie controller components in terms of more familiar Macintosh

controls. Movie controller components, in addition to handling update, activate, and

mouse-down events, also know how to interact with the data that they control.

Consequently, the movie controller components can actually perform the commands

requested by users (the controls handled by the Control Manager merely report user

actions to your application). In this way, your application is relieved of much of the work

of controlling movies. Furthermore, movie controller components can be updated to

provide improved functionality with no impact on your application.

Movie controller components have a component type value of 'play'. You can use the

following constant to specify this value.

#define MovieControllerComponentType 'play'

Apple has defined the functional interface that is supported by movie controller

components so that you can create a wide variety of movie controls. For example, you

could create a control that is separate from the movie image. Consequently, the interface

is a bit more complex than might seem necessary for simple controls that support only

playback. For details on the functions that your component must support, see “Movie

Controller Components Reference,” which begins on page 2-14.

The Elements of a Movie Controller
The movie controller component provided with QuickTime by Apple provides control

elements for regulating sound, starting, stopping, pausing, single-stepping (forward and

backward), and moving to a specified time. Figure 2-1 shows the controls supported by

Apple’s movie controller component. If the user resizes the controller so that there is not

enough space to display all the individual control elements, the movie controller

component eliminates elements from the display. Note that this controller allows the

user to start and stop the movie by clicking the movie image itself. This is an important

feature, because it allows the user to control the movie even in circumstances where no

control elements are visible.

C H A P T E R 2

Movie Controller Components

About Movie Controller Components 2-5

Figure 2-1 The standard movie controller

The movie controller presented by Apple’s movie controller component contains a

number of individual controls, as shown in Figure 2-1. These controls include:

■ A volume control. This control allows the user to adjust the sound volume—holding
down the mouse button while the cursor is on this control causes the controller to
display a slider that allows the user to change the sound volume while the movie is
playing (if a movie does not have any sound, the movie controller component disables
the volume control).

■ A play button. This control allows the user to start and stop the movie. Clicking the
play button causes the movie to start playing; in addition, the movie controller
component changes the play button into a pause button. Clicking the pause button
causes the movie to stop playing. If the user starts the movie and does not stop it, the
movie controller plays the movie once and then stops the movie.

■ A slider. This control allows the user to quickly navigate through a movie’s contents.
Dragging the indicator within the slider displays a single frame of the movie that
corresponds to the position of the indicator. Clicking within the slider causes the
indicator to jump to the location of the mouse click and causes the movie controller
component to display the corresponding movie data.

■ Step buttons. These controls allow the user to move through the movie frame by
frame, either forward or backward. Holding the mouse button down while the cursor
is on a step button causes the movie controller to step through the movie, frame by
frame, in the appropriate direction.

C H A P T E R 2

Movie Controller Components

2-6 Spatial Properties

Badges
The movie controller component supplied by Apple allows your application to

distinguish movies from static graphics in documents by the use of a badge. A badge is a

visual element that the movie controller can display as part of a movie when the

other controls are not visible and the movie is not playing. Figure 2-2 shows a movie

with a badge.

Figure 2-2 A movie with a badge

The badge lets the user know that the image represents a movie rather than a static

image. A badge appears under the following conditions:

■ the movie is in badge mode—that is, the mcActionSetUseBadge movie controller
action was called with a value of true

■ the movie is not playing

■ the movie controller is hidden

When the user double-clicks the movie, the movie starts playing and the badge

disappears; a single click stops the movie, and the badge reappears. When the user clicks

the badge itself, the movie controller component displays the controls, as shown in

Figure 2-1.

Your application can control whether the movie controller component displays a badge

with a movie. Use the NewMovieController function (described on page 2-29) to

create a new controller.

Spatial Properties

Movie controller components define several display regions that govern how a controller

and its movie are displayed. In addition, movie controller components support a number

C H A P T E R 2

Movie Controller Components

Spatial Properties 2-7

of functions that allow your application to manipulate these regions and thereby control

the display of a controller and its associated movie. This section discusses each of these

regions and the movie controller component functions that your application can use to

work with these regions.

The displayed representation of a movie controller consists of two parts: the movie

and the controller itself. The movie consists of the QuickTime movie image. The

controller consists of the visual elements that allow the user to control the movie.

Figure 2-1 on page 2-5 shows a sample controller. In this figure, note that the movie is

attached to the controller—that is, the movie and the controller are contiguous. Movie

controller components also allow you to create controllers that are separate from, or

detached from, their associated movies. You use the MCSetControllerAttached

function (described on page 2-35) to control this attribute. This gives you the freedom to

position the movie and the controller.

Movie controller components define several spatial elements that allow your application

to control the display of a movie and its controller. Figure 2-3 shows the relationships

between these spatial elements for attached controllers, whereas Figure 2-4 shows the

relationships between these spatial elements for detached controllers.

Figure 2-3 Movie controller spatial elements for attached controllers

C H A P T E R 2

Movie Controller Components

2-8 Spatial Properties

The controller boundary rectangle is a rectangle that completely encloses the controller.

If the controller is attached to its movie, the controller boundary rectangle also encloses

the movie. The width of this rectangle corresponds to the widest part of the displayed

representation of the controller (and its attached movie). Similarly, its height is derived

from the highest part of the controller (and its attached movie). You can use the

MCSetControllerBoundsRect function to modify the controller boundary rectangle

to define display transformations to be applied to a controller and its movie.

You can retrieve a controller’s boundary rectangle by calling the

MCGetControllerBoundsRect function (described on page 2-39).

The controller boundary region defines the region occupied by the controller.

If the movie is attached to the controller, the controller boundary region also includes the

movie. The controller boundary region corresponds exactly to the display footprint of

the controller (and its attached movie). You can retrieve the boundary region of a

controller by calling the MCGetControllerBoundsRgn function (described on

page 2-40).

Figure 2-4 Movie controller spatial elements for detached controllers

C H A P T E R 2

Movie Controller Components

Spatial Properties 2-9

The controller boundary rectangle and controller boundary region both work with the

unclipped display representation of the controller and its movie. The controller window
region represents the portion of the controller and its movie that is actually displayed on

the computer screen, after clipping by the controller clipping region. The controller

window region always includes both the controller and its movie, whether the controller

is attached or detached. You can retrieve a controller’s window region by calling the

MCGetWindowRgn function (described on page 2-41). You can manipulate a controller’s

clipping region by calling the MCSetClip and MCGetClip functions (described on

page 2-42 and page 2-43, respectively). Figure 2-5 shows how the controller clipping

region affects the controller window region.

Figure 2-5 Clipping the controller window region with the controller clipping region

C H A P T E R 2

Movie Controller Components

2-10 Using Movie Controller Components

Using Movie Controller Components

This section supplies examples of how to use the standard movie controller to play

movies. It also provides sample code for customizing movie controller components.

Playing Movies
The following sample code demonstrates how to use the standard movie controller

component to play a movie. The GetMovie function prompts the user to select a movie

file and then get a movie out of it. It then opens the movie and allows the user to play it.

Listing 2-1 Playing a movie with a movie controller component

MovieController gController;

WindowPtr gWindow;

Rect windowRect;

Movie gMovie;

Boolean gDone;

OSErr gErr;

ComponentResult gCErr;

Boolean gResult;

EventRecord gTheEvent;

WindowPtr whichWindow;

short part;

pascal Movie GetMovie(void);

pascal Movie GetMovie(void)

{

OSErr err;

SFTypeList typeList;

StandardFileReply reply;

Movie aMovie;

short movieResFile;

short movieResID;

Str255 movieName;

Boolean wasChanged;

aMovie = nil;

typeList[0] = MovieFileType;

StandardGetFilePreview ((FileFilterProcPtr)nil, 1,

typeList, &reply);

C H A P T E R 2

Movie Controller Components

Using Movie Controller Components 2-11

if (reply.sfGood) {

err = OpenMovieFile (&reply.sfFile, &movieResFile,

 fsRdPerm);

if (err == noErr) {

movieResID = 0;

err = NewMovieFromFile (&aMovie, movieResFile,

 &movieResID,

 movieName,

 newMovieActive,

 &wasChanged);

err = CloseMovieFile (movieResFile);

}

}

return aMovie;

}

void main(void);

void main(void)

{

InitGraf(&qd.thePort);

InitFonts();

InitWindows();

InitMenus();

TEInit();

InitDialogs(nil);

gErr = EnterMovies();

SetRect (&windowRect, 100, 100, 200, 200);

gWindow = NewCWindow (nil,

&windowRect,

"\pMovie",

false,

noGrowDocProc,

(WindowPtr)-1,

true,

0);

SetPort (gWindow);

gMovie = GetMovie();

if (gMovie != nil) {

SetRect(&windowRect, 0, 0, 100, 100);

gController = NewMovieController (gMovie, &windowRect,

 mcTopLeftMovie);

C H A P T E R 2

Movie Controller Components

2-12 Using Movie Controller Components

if (gController != nil) {

gCErr = MCGetControllerBoundsRect (gController,

 &windowRect);

SizeWindow (gWindow, windowRect.right, windowRect.bottom,

 true);

ShowWindow (gWindow);

gCErr = MCDoAction (gController, mcActionSetKeysEnabled,

(Ptr)true);

gDone = false;

while (! gDone) {

gResult = GetNextEvent (everyEvent, &gTheEvent);

if (MCIsPlayerEvent (gController, &gTheEvent) == 0) {

switch (gTheEvent.what) {

case updateEvt:

whichWindow = (WindowPtr)gTheEvent.message;

BeginUpdate (whichWindow);

EraseRect (&(*whichWindow).portRect);

EndUpdate (whichWindow);

break;

case mouseDown:

part = FindWindow (gTheEvent.where,

 &whichWindow);

if (whichWindow == gWindow) {

switch (part) {

case inGoAway:

gDone = TrackGoAway (whichWindow,

gTheEvent.where);

break;

case inDrag:

DragWindow (whichWindow,

gTheEvent.where,

&(qd.screenBits.bounds));

break;

}

}

}

}

}

DisposeMovieController(gController);

}

DisposeMovie(gMovie);

C H A P T E R 2

Movie Controller Components

Using Movie Controller Components 2-13

}

DisposeWindow(gWindow);

}

Customizing Movie Controllers
Movie controller components allow you to create an action filter function in your

application. The component calls your action filter function whenever an action occurs in

the control. (An action is an integer constant used by the movie controller component.)

You can then customize the behavior of the control or simply monitor user actions. You

establish an action filter function by calling the MCSetActionFilterWithRefCon

function, which is described on page 2-47.

The sample code in Listing 2-2 demonstrates the use of an action filter function. This

filter function resizes the window whenever the user hides the controller. Therefore, this

sample function handles the mcActionControllerSizeChanged action. Your

application should include a similar action filter function so that you can determine

when the user resizes the controller. This function supports only attached controllers.

Listing 2-2 Using a movie controller filter function

pascal Boolean myMCActionFilter (MovieController mc,

short* Action, long* params);

{

RgnHandle controllerRgn;

Rect controllerBox;

WindowPtr movieWindow;

switch (*Action) {

case mcActionControllerSizeChanged:

/* size of controller/movie has changed */

movieWindow = (WindowPtr)MCGetControllerPort(mc);

controllerRgn = MCGetWindowRgn(mc, movieWindow);

if (controllerRgn != nil) {

controllerBox = (**controllerRgn).rgnBBox;

DisposeRgn (controllerRgn);

SizeWindow (movieWindow, controllerBox.right,

 controllerBox.bottom, true);

}

break;

}

return false;

}

C H A P T E R 2

Movie Controller Components

2-14 Movie Controller Components Reference

Movie Controller Components Reference

This section describes some of the constants and functions associated with movie

controller components.

You can use the following constants to refer to the request codes for each of the functions

that your movie controller component must support.

enum {

kMCSetMovieSelect = 2, /* MCSetMovie */

kMCRemoveMovieSelect = 3, /* MCRemoveMovie */

kMCIsPlayerEventSelect = 7, /* MCIsPlayerEvent */

kMCSetActionFilterSelect = 8, /* MCSetActionFilter */

kMCDoActionSelect = 9, /* MCDoAction */

kMCSetControllerAttachedSelect = 10,

/* MCSetControllerAttached */

kMCIsControllerAttachedSelect = 11,

/* MCIsControllerAttached */

kMCSetControllerPortSelect = 12, /* MCSetControllerPort */

kMCGetControllerPortSelect = 13, /* MCGetControllerPort */

kMCGetVisibleSelect = 14, /* MCGetVisible */

kMCSetVisibleSelect = 15, /* MCSetVisible */

kMCGetControllerBoundsRectSelect

= 16,

/* MCGetControllerBoundsRect */

kMCSetControllerBoundsRectSelect

= 17,

/* MCSetControllerBoundsRect */

kMCGetControllerBoundsRgnSelect = 18,

/* MCGetControllerBoundsRgn */

kMCGetWindowRgnSelect = 19, /* MCGetWindowRgn */

kMCMovieChangedSelect = 20, /* MCMovieChanged */

kMCSetDurationSelect = 21, /* MCSetDuration*/

kMCGetCurrentTimeSelect = 22, /* MCGetCurrentTime */

kMCNewAttachedControllerSelect = 23,

/* MCNewAttachedController */

kMCDrawSelect = 24, /* MCDraw */

kMCActivateSelect = 25, /* MCActivate */

kMCIdleSelect = 26, /* MCIdle */

kMCKeySelect = 27, /* MCKey */

kMCClickSelect = 28, /* MCClick */

kMCEnableEditingSelect = 29, /* MCEnableEditing */

C H A P T E R 2

Movie Controller Components

Movie Controller Components Reference 2-15

kMCIsEditingEnabledSelect = 30, /* MCIsEditingEnabled */

kMCCopySelect = 31, /* MCCopy */

kMCCutSelect = 32, /* MCCut */

kMCPasteSelect = 33, /* MCPaste */

kMCClearSelect = 34, /* MCClear */

kMCUndoSelect = 35, /* MCUndo */

kMCPositionControllerSelect = 36,

/* MCPositionController */

kMCGetControllerInfoSelect = 37,

/* MCGetControllerInfo */

kMCSetClipSelect = 40, /* MCSetClip */

kMCGetClipSelect = 41, /* MCGetClip */

kMCDrawBadgeSelect = 42 /* MCDrawBadge */

kMCSetUpEditMenuSelect = 43, /* MCSetUpEditMenu */,

kMCGetMenuStringSelect = 44, /* MCGetMenuString */

kMCSetActionFilterWithRefConSelect = 45

/* MCSetActionFilterWithRefCon */

};

Movie Controller Actions

This section discusses actions, which are integer constants (defined by the mcAction

data type) used by movie controller components. Applications that use movie controller

components can invoke these actions by calling the MCDoAction function,

which is described on page 2-46. If your application includes an action filter function,

that function may receive any of these actions (see the discussion of the

MCSetActionFilterWithRefCon function on page 2-47 for more information about

action filter functions).

Your action filter function should refer any actions that you do not want to handle back

to the calling movie controller component. Your function refers actions back to the movie

controller component by returning a value of false. If your function returns a value of

true, the movie controller component performs no further processing for the action.

If you use any Movie Toolbox functions that modify the movie in your action filter

function, be sure to call the MCMovieChanged function (described on page 2-49).

enum {

mcActionIdle = 1, /* give event-processing time to

movie controller */

mcActionDraw = 2, /* send update event to movie

controller */

mcActionActivate = 3, /* activate movie controller */

mcActionDeactivate = 4, /* deactivate controller */

mcActionMouseDown = 5, /* pass mouse-down event */

C H A P T E R 2

Movie Controller Components

2-16 Movie Controller Components Reference

mcActionKey = 6, /* pass key-down or auto-key event */

mcActionPlay = 8, /* start playing movie */

mcActionGoToTime = 12, /* move to specific time in a movie */

mcActionSetVolume = 14, /* set a movie's volume */

mcActionGetVolume = 15, /* retrieve a movie's volume */

mcActionStep = 18, /* play a movie a specified number

of frames at a time */

mcActionSetLooping = 21, /* enable or disable looping */

mcActionGetLooping = 22, /* find out if movie is looping */

mcActionSetLoopIsPalindrome = 23, /* enable palindrome looping */

mcActionGetLoopIsPalindrome = 24, /* find out if palindrome looping

is on */

mcActionSetGrowBoxBounds = 25, /* set limits for resizing a movie */

mcActionControllerSizeChanged = 26, /* user has resized movie

controller */

mcActionSetSelectionBegin = 29, /* start time of movie's current

selection */

mcActionSetSelectionDuration = 30, /* set duration of movie's current

 selection */

mcActionSetKeysEnabled = 32, /* enable or disable keystrokes for

movie */

mcActionGetKeysEnabled = 33, /* find out if keystrokes are

enabled */

mcActionSetPlaySelection = 34, /* constrain playing to the current

selection */

mcActionGetPlaySelection = 35, /* find out if movie is constrained to

 playing within selection */

mcActionSetUseBadge = 36, /* enable or disable movie's

 playback badge */

mcActionGetUseBadge = 37, /* find out if movie controller is

using playback badge */

mcActionSetFlags = 38, /* set movie's control flags */

mcActionGetFlags = 39, /* retrieve movie's control flags */

mcActionSetPlayEveryFrame = 40, /* instruct controller to play all

frames in movie */

mcActionGetPlayEveryFrame = 41, /* find out if controller is playing

every frame in movie */

mcActionGetPlayRate = 42, /* determine playback rate */

mcActionShowBalloon = 43, /* find out if controller wants to

display Balloon Help */

C H A P T E R 2

Movie Controller Components

Movie Controller Components Reference 2-17

mcActionBadgeClick = 44, /* user clicked movie's badge */

mcActionMovieClick = 45, /* user clicked in movie *

mcActionSuspend = 46, /* suspend event received */

mcActionResume = 47 /* resume event received */

typedef short mcAction;

};

The action descriptions that follow are divided into those used by your application and

those received by your action filter.

Actions for Use by Applications

mcActionIdle
Your application can use this action to grant event-processing time to a
movie controller.

There are no parameters for this action.

mcActionDraw
Your application can use this action to send an update event to a movie
controller.

The parameter for this action is a pointer to a window.

mcActionActivate
Your application can use this action to activate a movie controller.

There are no parameters for this action.

mcActionDeactivate
Your application can use this action to deactivate a movie controller.

There are no parameters for this action.

mcActionMouseDown
Your application can use this action to pass a mouse-down event to a
movie controller.

The parameter data must contain a pointer to an event structure—the
message field in the event structure must specify the window in which
the user clicked.

mcActionKey
Your application can use this action to pass a key-down or auto-key event
to a movie controller.

The parameter data must contain a pointer to an event structure that
describes the key event.

Your action filter function receives this action when the movie controller
has received a key-down or auto-key event.

mcActionPlay
Your application can use this action to start or stop playing a movie.

The parameter data must contain a fixed value that indicates the rate
of play. Values greater than 0 correspond to forward rates; values less
than 0 play the movie backward. A value of 0 stops the movie.

C H A P T E R 2

Movie Controller Components

2-18 Movie Controller Components Reference

mcActionGotoTime
Your application can use this action to move to a specific time in a movie.

The parameter data must contain a pointer to a time structure that
specifies the target position in the movie.

mcActionSetVolume
Your application can use this action to set a movie’s volume.

The parameter data must contain a pointer to a 16-bit, fixed-point number
that indicates the relative volume of the movie. Volume values range
from –1.0 to 1.0. Negative values play no sound but preserve the absolute
value of the volume setting.

mcActionGetVolume
Your application can use this action to determine a movie’s volume.

The parameter data must contain a pointer to a 16-bit, fixed-point number
that indicates the relative volume of the movie. Volume values range
from –1.0 to 1.0. Negative values play no sound but preserve the absolute
value of the volume setting.

mcActionStep
Your application can use this action to play a movie while skipping a
specified number of frames at a time.

The parameter data must contain a long integer value that specifies the
number of steps (that is, the frames and the play direction). Positive
values step the movie forward the specified number of frames;
negative values step the movie backward. A value of 0 steps the movie
forward one frame.

mcActionSetLooping
Your application can use this action to enable or disable looping for
a movie.

The parameter data must contain a Boolean value—a value of true
indicates that looping is to be enabled.

mcActionGetLooping
Your application can use this action to determine whether a movie is
looping.

The parameter data must contain a pointer to a Boolean value. The movie
controller sets this value to true if looping is enabled for the movie that
is assigned to this controller. Otherwise, it sets the value to false.

mcActionSetLoopIsPalindrome
Your application can use this action to enable palindrome looping.
Palindrome looping causes a movie to play alternately forward and
backward. Looping must also be enabled for palindrome looping to
take effect.

The parameter data must contain a Boolean value—a value of true
indicates that palindrome looping is to be enabled.

mcActionGetLoopIsPalindrome
Your application can use this action to determine whether palindrome
looping is enabled for a movie. Looping must also be enabled for
palindrome looping to take effect.

C H A P T E R 2

Movie Controller Components

Movie Controller Components Reference 2-19

The parameter data must contain a pointer to a Boolean value. The movie
controller sets this value to true if palindrome looping is enabled for the
movie that is assigned to this controller. Otherwise, it sets the value
to false.

mcActionSetGrowBoxBounds
Your application can use this action to set the limits for resizing a movie.

The parameter data consists of a rect structure.

mcActionSetSelectionBegin
Your application can use this action to set the start time of a
movie’s current selection. After using this action, you must use the
mcActionSetSelectionDuration action to set the duration of
the selection.

The parameter data must contain a pointer to a time structure specifying
the starting time of the movie’s current selection.

mcActionSetSelectionDuration
Your application can use this action to set the duration of a movie’s
current selection. You can only use this action immediately after the
mcActionSetSelectionBegin action.

The parameter data must contain a pointer to a time structure
specifying the ending time of the movie’s current selection.

Your action filter function receives this action when the movie controller
has received a request to set the movie’s current selection duration.

mcActionSetKeysEnabled
Your application can use this action to enable or disable keystrokes
for a movie.

The parameter data must contain a Boolean value—a value of true
indicates that keystrokes are to be enabled. By default, this value is
set to false.

mcActionGetKeysEnabled
Your application can use this action to determine whether keystrokes are
enabled for a movie controller.

The parameter data must contain a pointer to a Boolean value. The movie
controller sets this value to true if keystrokes are enabled for the movie
that is assigned to this controller. Otherwise, it sets the value to false.

mcActionSetPlaySelection
Your application can use this action to constrain playing to the current
selection.

The parameter data must contain a Boolean value—a value of true
indicates that playing within the current selection is to be enabled.

mcActionGetPlaySelection
Your application can use this action to determine whether a movie has
been constrained to playing within its selection.

The parameter data must contain a pointer to a Boolean value. The movie
controller sets this value to true if playing is constrained to the current
selection. Otherwise, it sets the value to false.

C H A P T E R 2

Movie Controller Components

2-20 Movie Controller Components Reference

mcActionSetUseBadge
Your application can use this action to enable or disable a movie’s
playback badge. If a controller’s badge is enabled, then the badge is
displayed whenever the controller is not visible. When the controller is
visible, the badge is not displayed. If the badge is disabled, the badge is
never displayed.

The parameter data must contain a Boolean value—a value of true
indicates that the playback badge is to be enabled.

mcActionGetUseBadge
Your application can use this action to determine whether a controller is
using a badge. If a controller’s badge is enabled, then the badge is
displayed whenever the controller is not visible. When the controller is
visible, the badge is not displayed. If the badge is disabled, the badge is
never displayed.

The parameter data must contain a pointer to a Boolean value. The movie
controller sets this value to true if the controller is using a badge.
Otherwise, it sets the value to false.

mcActionSetFlags
Your application can use this action to set a movie’s control flags.

The parameter data must contain a long integer that contains the new
control flag values. The following flags are defined:

mcFlagSuppressMovieFrame
Controls whether the controller displays a frame around
the movie. If this flag is set to 1, the controller does not
display a frame around the movie. By default, this flag is
set to 0.

mcFlagSuppressStepButtons
Controls whether the controller displays the step buttons.
The step buttons allow the user to step the movie forward
or backward a frame at a time. If this flag is set to 1, the
controller does not display the step buttons. By default, this
flag is set to 0.

mcFlagSuppressSpeakerButton
Controls whether the controller displays the speaker
button. The speaker button allows the user to control the
movie’s sound. If this flag is set to 1, the controller does not
display the speaker button. By default, this flag is set to 0.

mcActionGetFlags
Your application can use this action to retrieve a movie’s control flags.

The parameter data must contain a pointer to a long integer. The movie
controller places the movie’s control flags into that long integer. The
following movie control flags are defined:

mcFlagSuppressMovieFrame
Controls whether the controller displays a frame around
the movie. If this flag is set to 1, the controller does not
display a frame around the movie. By default, this flag is
set to 0.

C H A P T E R 2

Movie Controller Components

Movie Controller Components Reference 2-21

mcFlagSuppressStepButtons
Controls whether the controller displays the step buttons.
The step buttons allow the user to step the movie forward
or backward a frame at a time. If this flag is set to 1, the
movie controller does not display the step buttons. By
default, this flag is set to 0.

mcFlagSuppressSpeakerButton
Controls whether the controller displays the speaker
button. The speaker button allows the user to control the
movie’s sound. If this flag is set to 1, the movie controller
does not display the speaker button. By default, this flag is
set to 0.

mcFlagsUseWindowPalette
Controls whether the controller manages the palette for the
window containing the movie. This ensures that a movie’s
colors are reproduced as accurately as possible. This flag is
particularly useful for movies with custom color tables. If
this flag is set to 1, the movie controller does not manage
the window palette. By default, this flag is set to 0.

mcActionSetPlayEveryFrame
Your application can use this action to instruct the movie controller to
play every frame in a movie. In this case, the movie controller may play
the movie at a slower rate than you specify with the mcActionPlay
action. However, the controller does not play the movie faster than the
movie rate. In addition, the controller does not play the movie’s sound
tracks.

The parameter data must contain a Boolean value—a value of true
instructs the controller to play every frame in the movie, even if that
means playing the movie at a slower rate than you previously specified.

mcActionGetPlayEveryFrame
Your application can use this action to determine whether the
movie controller has been instructed to play every frame in a movie.
You tell the controller to play every frame by using the
mcActionSetPlayEveryFrame action, which is described earlier in this
section.

The parameter data must contain a pointer to a Boolean value—the movie
controller sets this value to true if the controller has been instructed to
play every frame in the movie, even if that means playing the movie at a
slower rate than you previously specified. Otherwise, the controller sets
the value to false.

C H A P T E R 2

Movie Controller Components

2-22 Movie Controller Components Reference

mcActionSetGrowBoundsBox
The parameter data must contain a pointer to a rectangle—set the
rectangle to the boundary coordinates for the movie. If you want to
prevent the movie from being resized, supply an empty rectangle (note
that enabling or disabling the size box may change the appearance of
some movie controllers). By default, movie controllers do not have size
boxes. You must use this action to establish a size box for a movie
controller.

If the movie controller’s boundary rectangle intersects the lower-right
corner of your window, your window cannot have a size box.

mcActionGetPlayRate
Your application can use this action to determine a movie’s playback
rate. You set the playback rate when you start a movie playing by using
the mcActionPlay action.

The parameter data must contain a pointer to a fixed value. The movie
controller returns the movie’s playback rate in that fixed value. Values
greater than 0 correspond to forward rates; values less than 0 play the
movie backward. A value of 0 indicates that the movie is stopped.

mcActionBadgeClick
Indicates that the badge was clicked. The parameter is a pointer to a
Boolean value. On entry, the Boolean is set to true. Set the Boolean to
false if you want the controller to ignore the click in the badge.

mcActionMovieClick
Indicates that the movie was clicked. The parameter is a pointer to an
event structure containing the mouse-down event. If you want the
controller to ignore the mouse-down event, change the what field of the
event structure to a null event.

mcActionSuspend
Indicates that a suspend event has been received. There is no parameter.

mcActionResume
Indicates that a resume event has been received. There is no parameter.

Actions for Use by Action-Filter Functions

mcActionIdle
Your action filter function receives this action when the application has
granted null event-processing time to the movie controller.

There are no parameters for this action.

mcActionDraw
Your filter function receives this action when the controller has received
an update event.

The parameter for this action is a pointer to a window.

mcActionActivate
Your filter function receives this action when the controller has received
an activate or resume event.

There are no parameters for this action.

C H A P T E R 2

Movie Controller Components

Movie Controller Components Reference 2-23

mcActionDeactivate
Your filter function receives this action when the controller has received a
deactivate or suspend event.

There are no parameters for this action.

mcActionMouseDown
Your action filter function receives this action when the movie controller
has received a mouse-down event.

The parameter data must contain a pointer to an event structure—the
message field in the event structure must specify the window in which
the user clicked.

mcActionKey
Your action filter function receives this action when the movie controller
has received a key-down or auto-key event.

The parameter data must contain a pointer to an event structure that
describes the key event.

mcActionPlay
Your action filter receives this action when the movie controller has
received a request to start or stop playing a movie.

The parameter data must contain a fixed value that indicates the rate
of play. Values greater than 0 correspond to forward rates; values less
than 0 play the movie backward. A value of 0 stops the movie.

mcActionGotoTime
Your action filter function receives this action when the movie controller
has received a request to go to a specified time in the movie.

The parameter data must contain a pointer to a time structure that
specifies the target position in the movie.

mcActionSetVolume
Your action filter function receives this action when the movie controller
has received a request to set the movie’s volume.

The parameter data must contain a pointer to a 16-bit, fixed-point number
that indicates the relative volume of the movie. Volume values range
from –1.0 to 1.0. Negative values play no sound but preserve the absolute
value of the volume setting.

mcActionGetVolume
Your action filter function receives this action when the movie controller
has received a request to retrieve the movie’s volume.

The parameter data must contain a pointer to a 16-bit, fixed-point number
that indicates the relative volume of the movie. Volume values range
from –1.0 to 1.0. Negative values play no sound but preserve the absolute
value of the volume setting.

C H A P T E R 2

Movie Controller Components

2-24 Movie Controller Components Reference

mcActionStep
Your action filter function receives this action when the movie controller
has received a request to play a movie while advancing a specified
number of frames at a time.

The parameter data must contain a long integer value that specifies the
number of steps (that is, the frames and the play direction). Positive
values step the movie forward the specified number of frames;
negative values step the movie backward. A value of 0 steps the movie
forward one frame.

mcActionSetLooping
Your action filter function receives this action when the movie controller
has received a request to turn looping on or off.

The parameter data must contain a Boolean value—a value of true
indicates that looping is to be enabled.

mcActionGetLooping
Your action filter function receives this action when the controller has
received a request to indicate whether looping is enabled for its movie.

The parameter data must contain a pointer to a Boolean value. The movie
controller sets this value to true if looping is enabled for the movie that
is assigned to this controller. Otherwise, it sets the value to false.

mcActionSetLoopIsPalindrome
Your action filter function receives this action when the movie controller
has received a request to turn palindrome looping on or off. Palindrome
looping causes a movie to play alternately forward and backward.
Looping must also be enabled for palindrome looping to take effect.

The parameter data must contain a Boolean value—a value of true
indicates that palindrome looping is to be enabled.

mcActionGetLoopIsPalindrome
Your action filter function receives this action when the controller has
received a request to indicate whether palindrome looping is enabled for
its movie.

The parameter data must contain a pointer to a Boolean value. The
movie controller sets this value to true if palindrome looping is enabled
for the movie that is assigned to this controller. Otherwise, it sets the
value to false.

mcActionControllerSizeChanged
Your filter function receives this action when the user has resized the
movie controller—the controller component issues this action before it
updates the screen, allowing your application to change the controller’s
location or appearance before the user sees the resized controller.

There are no parameters for this action.

Note

Your application should never use this action. ◆

C H A P T E R 2

Movie Controller Components

Movie Controller Components Reference 2-25

mcActionSetSelectionBegin
Your action filter function receives this action when the movie controller
has received a request to set the movie’s current selection start time.

The parameter data must contain a pointer to a time structure specifying
the starting time of the movie’s current selection.

mcActionSetSelectionDuration
Your action filter function receives this action when the movie controller
has received a request to set the movie’s current selection duration.

The parameter data must contain a pointer to a time structure
specifying the ending time of the movie’s current selection.

mcActionSetKeysEnabled
Your action filter function receives this action when the movie controller
has received a request to enable or disable keystrokes.

The parameter data must contain a Boolean value—a value of true
indicates that keystrokes are to be enabled. By default, this value is
set to false.

mcActionGetKeysEnabled
Your filter function receives this action when the controller has received a
request to indicate whether keystrokes are enabled for its movie.

The parameter data must contain a pointer to a Boolean value. The movie
controller sets this value to true if keystrokes are enabled for the movie
that is assigned to this controller. Otherwise, it sets the value to false.

mcActionSetPlaySelection
Your action filter function receives this action when the movie controller
has received a request to constrain playing to the current selection.

The parameter data must contain a Boolean value—a value of true
indicates that playing within the current selection is to be enabled.

mcActionGetPlaySelection
Your action filter function receives this action when the movie controller
has received a request to indicate whether playing is constrained to the
current selection.

The parameter data must contain a pointer to a Boolean value. The movie
controller sets this value to true if playing is constrained to the current
selection. Otherwise, it sets the value to false.

mcActionSetUseBadge
Your action filter function receives this action when the movie controller
has received a request to turn the playback badge on or off.

The parameter data must contain a Boolean value—a value of true
indicates that the playback badge is to be enabled.

mcActionGetUseBadge
Your action filter function receives this action when the controller has
received a request to indicate whether it is using a badge during playback.

The parameter data must contain a pointer to a Boolean value. The movie
controller sets this value to true if the controller is using a badge.
Otherwise, it sets the value to false.

C H A P T E R 2

Movie Controller Components

2-26 Movie Controller Components Reference

mcActionSetFlags
Your action filter function receives this action when the movie controller
has received a request to set the movie’s control flags.

The parameter data must contain a long integer that contains the new
control flag values. The following flags are defined:

mcFlagSuppressMovieFrame
Controls whether the controller displays a frame around
the movie. If this flag is set to 1, the controller does not
display a frame around the movie. By default, this flag is
set to 0.

mcFlagSuppressStepButtons
Controls whether the controller displays the step buttons.
The step buttons allow the user to step the movie forward
or backward a frame at a time. If this flag is set to 1, the
controller does not display the step buttons. By default, this
flag is set to 0.

mcFlagSuppressSpeakerButton
Controls whether the controller displays the speaker
button. The speaker button allows the user to control the
movie’s sound. If this flag is set to 1, the controller does not
display the speaker button. By default, this flag is set to 0.

mcActionGetFlags
Your action filter function receives this action when the movie controller
has received a request to retrieve the movie’s control flags.

The parameter data must contain a pointer to a long integer. The movie
controller places the movie’s control flags into that long integer. The
following movie control flags are defined:

mcFlagSuppressMovieFrame
Controls whether the controller displays a frame around
the movie. If this flag is set to 1, the controller does not
display a frame around the movie. By default, this flag is
set to 0.

mcFlagSuppressStepButtons
Controls whether the controller displays the step buttons.
The step buttons allow the user to step the movie forward
or backward a frame at a time. If this flag is set to 1, the
movie controller does not display the step buttons. By
default, this flag is set to 0.

mcFlagSuppressSpeakerButton
Controls whether the controller displays the speaker
button. The speaker button allows the user to control the
movie’s sound. If this flag is set to 1, the movie controller
does not display the speaker button. By default, this flag is
set to 0.

C H A P T E R 2

Movie Controller Components

Movie Controller Components Reference 2-27

mcFlagsUseWindowPalette
Controls whether the controller manages the palette for the
window containing the movie. This ensures that a movie’s
colors are reproduced as accurately as possible. This flag is
particularly useful for movies with custom color tables. If
this flag is set to 1, the movie controller does not manage
the window palette. By default, this flag is set to 0.

mcActionSetPlayEveryFrame
Your action filter function receives this action when the movie controller
has received a request to play every frame in a movie.

The parameter data must contain a Boolean value—a value of true
instructs the controller to play every frame in the movie, even if that
means playing the movie at a slower rate than you previously specified.

mcActionGetPlayEveryFrame
Your action filter function receives this action when the movie controller
has received a request to indicate whether it has been instructed to play
every frame in a movie.

The parameter data must contain a pointer to a Boolean value—the movie
controller sets this value to true if the controller has been instructed to
play every frame in the movie, even if that means playing the movie at a
slower rate than you previously specified. Otherwise, the controller sets
the value to false.

mcActionSetGrowBoundsBox
Your action filter function receives this action when the movie controller
has received a request to set the limits for resizing the movie.

The parameter data contains a pointer to a rectangle—the rectangle
defines the boundary coordinates for the movie. If the rectangle is empty,
the application wants to disable the size box. You may change the
appearance of your controller in response to such a request.

mcActionShowBalloon
Your action filter function receives this action when the controller wants
to display Balloon Help. Your filter function instructs the controller
whether to display the Balloon Help. This action allows you to override
the movie controller’s default Balloon Help behavior.

The parameter data contains a pointer to a Boolean value. Set the value to
true to display the appropriate Balloon Help. Otherwise, set the value to
false.

Note

Your application should never use this action. ◆

C H A P T E R 2

Movie Controller Components

2-28 Movie Controller Components Reference

Movie Controller Functions

This section describes the functions that are supported by movie controller components.

It is divided into the following topics:

■ “Associating Movies With Controllers,” which describes the movie controller
component functions that allow applications to assign movies to controllers

■ “Managing Controller Attributes,” which discusses the movie controller component
functions that allow applications to alter the display characteristics of the controller

■ “Handling Movie Events,” which discusses the movie controller component functions
that applications use to handle movie actions

■ “Editing Movies,” which describes the movie controller component functions that
help applications edit movies

■ “Getting and Setting Movie Controller Time,” which discusses the movie component
controller functions that allow applications to get and set movie controller time
information

■ “Customizing Event Processing,” which describes movie controller component
functions that allow applications to perform customized event processing

These functions are discussed from the perspective of the developer of an application

that uses movie controllers. If you are developing a movie controller component, your

component must behave as described here.

Associating Movies With Controllers

Once your application has established a connection to a movie controller component,

you may associate one movie with a movie controller. By default, the new controller has

editing and keystroke processing turned off.

You create a new movie controller and assign it to a movie by calling the

NewMovieController function. This is the easiest way to use a movie controller

component.

If you want to exert more control over the assignment of movies to controllers, you can

use other movie controller functions. If you want to assign a movie to an existing

controller, you can use the MCNewAttachedController function. Use the

MCSetMovie function to assign a movie to or remove a movie from a controller. You can

use the MCGetMovie function to retrieve a reference to the movie that is assigned to a

controller.

When you are done with a controller, use the DisposeMovieController function to

dispose of the controller.

C H A P T E R 2

Movie Controller Components

Movie Controller Components Reference 2-29

NewMovieController

The NewMovieController function locates a movie controller component for you and

assigns a movie to that controller. This function always creates a controller that is

attached to a movie.

This function is actually implemented by the Movie Toolbox, not by movie controller

components. If you are creating your own movie controller component, you do not need

to support this function.

pascal MovieController NewMovieController (Movie theMovie,

const Rect *movieRect,

long someFlags);

theMovie Identifies the movie to be associated with the movie controller.

movieRect Points to the display rectangle that is to contain the movie and its
controller.

someFlags Contains flags that control the operation. If you set these flags to 0, the
movie controller component centers the movie in the rectangle specified
by the movieRect parameter and scales the movie to fit in that rectangle.
The control portion of the controller is also placed within that rectangle.
You may control how the movie and the control are drawn by setting one
or more of the following flags to 1:

mcTopLeftMovie
If this flag is set to 1, the movie controller component
places the movie into the upper-left corner of the display
rectangle specified by the movieRect parameter. The
component scales the movie to fit into the rectangle. Note
that the control portion of the controller may fall outside of
the rectangle, depending upon the results of the scaling
operation.

mcScaleMovieToFit
If this flag is set to 1, the movie controller component
resizes the movie to fit into the display rectangle specified
by the movieRect parameter after it places the control
portion of the controller into the rectangle.

If you set this flag and the mcScaleMovieToFit flag to 1,
the movie controller component resizes the movie to fit
into the specified rectangle and places the control portion
of the controller outside of the rectangle.

mcWithBadge
Controls whether the movie controller uses a badge (see
“Badges,” which begins on page 2-6, for more information
about movie badges). If you set this flag to 1, the movie
controller component displays the movie with a badge
whenever the controller portion is not displayed. If you set
this flag to 0, the movie controller component does not use
a badge.

C H A P T E R 2

Movie Controller Components

2-30 Movie Controller Components Reference

mcNotVisible
Controls whether the controller portion is visible. If you set
this flag to 0, the movie controller component displays the
controller along with the movie. If you set this flag to 1, the
component does not display the controller. If you have set
the mcWithBadge flag to 1, specifying that the component
uses a badge, the component displays a badge whenever
the controller is not visible.

mcWithFrame
Specifies whether the component displays a frame
around the movie as part of the controller. If you set this
flag to 1, the component displays a frame around the
movie, including the movie’s name. If you set this flag to 0,
the component does not display a frame as part of the
controller.

DESCRIPTION

The NewMovieController function returns a movie controller identifier value. This

value identifies a connection to a movie controller component, and it is a component

instance.

MCNewAttachedController

The MCNewAttachedController function associates a specified movie with a movie

controller.

pascal ComponentResult MCNewAttachedController (MovieController

 mc, Movie theMovie,

 WindowPtr w,

 Point where);

mc Specifies the movie controller for the operation. You obtain this
identifier from the Component Manager’s OpenComponent or
OpenDefaultComponent function.

theMovie Identifies the movie to be associated with the movie controller.

w Identifies the window in which the movie is to be displayed. The movie
controller component sets the movie’s graphics world to match this
window. If you set the w parameter to nil, the component uses the
current window.

where Specifies the upper-left corner of the movie within the window specified
by the w parameter. The movie controller component uses the movie’s
boundary rectangle to determine the size of the movie (the Movie
Toolbox’s GetMovieBox function returns this rectangle).

C H A P T E R 2

Movie Controller Components

Movie Controller Components Reference 2-31

DESCRIPTION

The MCNewAttachedController function forces the controller to be attached to the

movie and sets the controller to be visible.

MCSetMovie

The MCSetMovie function associates a movie with a specified movie controller.

pascal ComponentResult MCSetMovie (MovieController mc,

Movie theMovie,

WindowPtr movieWindow,

Point where);

mc Specifies the movie controller for the operation. You obtain this
identifier from the Component Manager’s OpenComponent or
OpenDefaultComponent function, or from the NewMovieController
function (described on page 2-29).

theMovie Identifies the movie to be associated with the movie controller. Set this
value to nil to remove the movie from the controller.

movieWindow
Identifies the window in which the movie is to be displayed. The movie
controller component sets the movie’s graphics world to match this
window. If you set the w parameter to nil, the component uses the
current window.

where Specifies the upper-left corner of the movie within the window specified
by the movieWindow parameter. The movie controller component uses
the movie’s boundary rectangle to determine the size of the movie (the
Movie Toolbox’s GetMovieBox function returns this rectangle).

DESCRIPTION

You can also use the MCSetMovie function to remove a movie from its controller.

SEE ALSO

If you want to scale the movie, call the Movie Toolbox’s SetMovieBox function

(described in Inside Macintosh: QuickTime) before calling MCSetMovie.

C H A P T E R 2

Movie Controller Components

2-32 Movie Controller Components Reference

MCGetMovie

The MCGetMovie function allows your application to retrieve the movie reference for a

movie that is associated with a movie controller. The movie controller component

returns the movie’s identifier value.

pascal Movie MCGetMovie (MovieController mc);

mc Specifies the movie controller for the operation. You obtain this identifier
from the Component Manager’s OpenComponent or
OpenDefaultComponent function, or from the NewMovieController
function (described on page 2-29).

DESCRIPTION

The MCGetMovie function returns the movie identifier for the movie that is assigned to

the specified controller. If there is no movie assigned to the controller, the returned

movie identifier is set to nil.

DisposeMovieController

The DisposeMovieController function disposes of a movie controller. Your

application is responsible for disposing of the movie that is associated with the movie

controller. Do not dispose of the movie before disposing of the controller.

pascal void DisposeMovieController (MovieController mc);

mc Specifies the movie controller for the operation. You obtain this
identifier from the Component Manager’s OpenComponent or
OpenDefaultComponent function, or from the NewMovieController
function (described on page 2-29).

DESCRIPTION

The DisposeMovieController function is implemented by the Movie Toolbox, not by

movie controller components. If you are creating your own movie controller component,

you do not have to support this function.

C H A P T E R 2

Movie Controller Components

Movie Controller Components Reference 2-33

Managing Controller Attributes

Movie controller components provide a number of functions that allow your application

to control the display attributes of a movie controller. For example, you can detach the

controller from its movie, so that the controller and movie can be managed as separate

graphics entities. In addition, movie controller components provide a number of

functions that allow you to work with a controller’s boundary rectangles and regions.

For a complete discussion of these rectangles and regions, see “Spatial Properties,”

which begins on page 2-6.

The MCSetControllerAttached function lets you control whether the movie

controller is attached to its movie. The MCIsControllerAttached function allows

you to determine if a controller is attached to its movie.

You can use the MCSetControllerPort and MCGetControllerPort functions to

work a movie controller’s graphics port.

The MCSetVisible and MCGetVisible functions enable you to control the visibility

of the movie controller.

The MCSetControllerBoundsRect and MCGetControllerBoundsRect functions

help you work with a movie controller’s boundary rectangle. You can use the

MCGetControllerBoundsRgn and MCGetControllerWindowRgn functions if the

controller is not rectangular. You can position a controller and its movie separately by

calling the MCPositionController function.

MCPositionController

The MCPositionController function allows you to control the position of a movie

and its controller on the computer display.

pascal ComponentResult MCPositionController (MovieController mc,

const Rect *movieRect,

const Rect *controllerRect,

long someFlags);

mc Specifies the movie controller for the operation. You obtain this
identifier from the Component Manager’s OpenComponent or
OpenDefaultComponent function, or from the NewMovieController
function (described on page 2-29).

movieRect Points to a Rect structure that specifies the coordinates of the movie’s
boundary rectangle. (For details on the Rect structure, see the chapter
“Basic QuickDraw” in Inside Macintosh: Imaging.)

C H A P T E R 2

Movie Controller Components

2-34 Movie Controller Components Reference

controllerRect
Points to a Rect structure that specifies the coordinates of the controller’s
boundary rectangle. The movie controller component always centers the
control portion of the controller inside this rectangle. The movie controller
component only uses this parameter when the control portion of the
controller is detached from the movie. If you are working with an
attached controller, you can set this parameter to nil.

someFlags If you set these flags to 0, the movie controller component centers the
movie in the rectangle specified by movieRect and scales the movie to fit
in that rectangle. You may control how the movie is drawn by setting one
or more of the following flags to 1:

mcTopLeftMovie
If this flag is set to 1, the movie controller component
places the movie into the upper-left corner of the display
rectangle specified by the movieRect parameter. The
component scales the movie to fit into the rectangle. Note
that the control portion of the controller may fall outside of
the rectangle, depending upon the results of the scaling
operation.

mcScaleMovieToFit
If this flag is set to 1, the movie controller component
resizes the movie to fit into the display rectangle specified
by the movieRect parameter after it places the control
portion of the controller into the rectangle.

If you set this flag and the mcTopLeftMovie flag to 1, the
movie controller component resizes the movie to fit into the
specified rectangle and places the control portion of the
controller outside of the rectangle.

mcPositionDontInvalidate
If this flag is set to 1, the movie controller component is
requested not to invalidate areas of the window that are
changed as a result of repositioning the movie or the
controller. This flag is useful for applications that use the
movie controller as part of a larger document. In particular,
if the document is scrolled using QuickDraw’s
ScrollRect routine, optimal redrawing occurs
(that is, scrolled areas are not redrawn) if this flag is set. For
details on ScrollRect, see the chapter “Basic
QuickDraw” in Inside Macintosh: Imaging.

DESCRIPTION

The MCPositionController function works with controllers that are attached to

movies and controllers that are not attached to movies.

C H A P T E R 2

Movie Controller Components

Movie Controller Components Reference 2-35

MCSetControllerAttached

The MCSetControllerAttached function allows your application to control whether

a movie controller is attached to its movie or detached from it. “About Movie Controller

Components,” which begins on page 2-4, discusses the differences between attached and

detached movie controllers.

pascal ComponentResult MCSetControllerAttached

(MovieController mc,

 Boolean attach);

mc Specifies the movie controller for the operation. You obtain this identifier
from the Component Manager’s OpenComponent or
OpenDefaultComponent function, or from the NewMovieController
function (described on page 2-29).

attach Specifies the action for this function. Set the attach parameter to true
to cause the controller to be attached to its movie. Set this parameter to
false to detach the controller from its movie.

DESCRIPTION

By default, a new movie controller is attached to its movie.

SPECIAL CONSIDERATIONS

Your application should not make any assumptions about the location of an attached

movie controller with respect to its movie. The controller may be above, below, or

surrounding the movie image.

SEE ALSO

If you need to know the location of the controller, you can use the

MCGetControllerBoundsRect function, described on page 2-39, to obtain its

boundary rectangle.

MCIsControllerAttached

The MCIsControllerAttached function returns a value that indicates whether a

movie controller is attached to its movie.

pascal ComponentResult MCIsControllerAttached

(MovieController mc);

C H A P T E R 2

Movie Controller Components

2-36 Movie Controller Components Reference

mc Specifies the movie controller for the operation. You obtain this
identifier from the Component Manager’s OpenComponent or
OpenDefaultComponent function, or from the NewMovieController
function (described on page 2-29).

DESCRIPTION

The MCIsControllerAttached function returns a ComponentResult value

that indicates whether a movie controller is attached to its movie. If the controller is

attached, the returned value is set to 1. If the controller is not attached, the returned

value is set to 0.

SEE ALSO

You can use the MCSetControllerAttached function, described in the previous

section, to attach or detach a movie controller.

MCSetVisible

The MCSetVisible function allows your application to control the visibility of a movie

controller.

pascal ComponentResult MCSetVisible (MovieController mc,

 Boolean visible);

mc Specifies the movie controller for the operation. You obtain this identifier
from the Component Manager’s OpenComponent or
OpenDefaultComponent function, or from the NewMovieController
function (described on page 2-29).

visible Specifies the action for this function. Set the visible parameter to true
to cause the controller to be visible. Set this parameter to false to make
the controller invisible.

DESCRIPTION

Movie controller components support badges, which allow you to create a visual

cue that helps the user distinguish between static images and images that represent

movies. The movie controller component displays a badge in the movie image whenever

the movie is visible but the control portion of the controller is not visible. To work with

movie controller badges, you must use the mcActionSetUseBadge action, which is

described in “Movie Controller Actions” beginning on page 2-15.

C H A P T E R 2

Movie Controller Components

Movie Controller Components Reference 2-37

SPECIAL CONSIDERATIONS

By default, a new controller is hidden so that your application can freely set the display

attributes before showing the controller to the user. You should note, however, that the

MCNewAttachedController function (described on page 2-30) automatically sets the

movie controller to be visible. Your application must make the controller visible before

the user can work with its associated movie.

SEE ALSO

You can use the MCGetVisible function, described in the next section, to determine the

visibility of a movie controller.

MCGetVisible

The MCGetVisible function returns a value that indicates whether a movie controller is

visible.

pascal ComponentResult MCGetVisible (MovieController mc);

mc Specifies the movie controller for the operation. You obtain this
identifier from the Component Manager’s OpenComponent or
OpenDefaultComponent function, or from the NewMovieController
function (described on page 2-29).

DESCRIPTION

The MCGetVisible function returns a ComponentResult value that indicates whether

a movie controller is visible. If the controller is visible, the returned value is set to 1. If

the controller is not showing, the returned value is set to 0.

SEE ALSO

Use the MCSetVisible function, described in the previous section, to change the

visibility of a movie controller.

C H A P T E R 2

Movie Controller Components

2-38 Movie Controller Components Reference

MCDrawBadge

The MCDrawBadge function allows you to display a controller’s badge. This function

places the badge in an appropriate location based on the location of the controller’s

movie.

pascal ComponentResult MCDrawBadge (MovieController mc,

RgnHandle movieRgn,

RgnHandle *badgeRgn);

mc Specifies the movie controller for the operation. You obtain this
identifier from the Component Manager’s OpenComponent or
OpenDefaultComponent function, or from the NewMovieController
function (described on page 2-29).

movieRgn Specifies the boundary region of the controller’s movie.

badgeRgn Points to a region that is to receive information about the location of the
badge—your application must dispose of this handle. The movie
controller returns the region where the badge is displayed. If you are not
interested in this information, you may set this parameter to nil.

DESCRIPTION

The MCDrawBadge function can be useful in circumstances where you are using a movie

controller component but do not want to incur the overhead of having the QuickTime

movie in memory all the time. This function allows you to display the badge without

having to display the movie. In addition, you can use the badge region to perform

mouse-down event testing.

MCSetControllerBoundsRect

The MCSetControllerBoundsRect function lets you change the position and size of a

movie controller. A controller’s boundary rectangle encloses the control portion of the

controller. In addition, in cases where the movie is attached to the controller, the

boundary rectangle also encloses the movie. Note that changing the size of the boundary

rectangle may result in the movie being resized as well, if the movie is attached to the

controller.

pascal ComponentResult MCSetControllerBoundsRect

 (MovieController mc,

const Rect *bounds);

mc Specifies the movie controller for the operation. You obtain this
identifier from the Component Manager’s OpenComponent or
OpenDefaultComponent function, or from the NewMovieController
function (described on page 2-29).

C H A P T E R 2

Movie Controller Components

Movie Controller Components Reference 2-39

bounds Points to a rectangle structure that contains the new boundary rectangle
for the movie controller.

DESCRIPTION

Movie controller components can reject your request for a number of reasons. For

example, some movie controller components may support only fixed-size controllers or

controllers whose size is fixed in one dimension. Also, note that your application cannot

change the location of an attached controller.

The movie controller component returns a value of controllerBoundsNotExact if

the boundary rectangle has been changed but does not correspond to the rectangle you

specified. In this case, the new boundary rectangle is always smaller than the requested

rectangle.

RESULT CODES

SEE ALSO

To find the dimensions of the new boundary rectangle, call the

MCGetControllerBoundsRect function, described in the next section.

MCGetControllerBoundsRect

The MCGetControllerBoundsRect function returns a movie controller’s boundary

rectangle. This rectangle reflects the size and location of the controller even if the

controller is currently hidden. If the controller is detached from its movie, the rectangle

encompasses only the controller, not the movie. If the controller is attached to its movie,

the rectangle encompasses both the controller and the movie.

pascal ComponentResult MCGetControllerBoundsRect

 (MovieController mc,

 Rect *bounds);

mc Specifies the movie controller for the operation. You obtain this
identifier from the Component Manager’s OpenComponent or
OpenDefaultComponent function, or from the NewMovieController
function (described on page 2-29).

controllerBoundsNotExact –9996 Controller has altered the bounds
you supplied

controllerHasFixedHeight –9998 You cannot change the height of this
controller

cannotMoveAttachedController –9999 You cannot move an attached
controller

C H A P T E R 2

Movie Controller Components

2-40 Movie Controller Components Reference

bounds Contains a pointer to a rect structure that is to receive the coordinates of
the movie controller’s boundary rectangle. If there is insufficient screen
space to display the controller, the function may return an empty
rectangle.

DESCRIPTION

The returned rectangle is the boundary rectangle for the region occupied by the

controller and its movie (if the movie is attached to the controller), even if the controller

is not rectangular.

SPECIAL CONSIDERATIONS

Note that if the controller cannot obtain enough screen space, the movie controller

component may return an empty rectangle.

SEE ALSO

You can use the MCGetControllerBoundsRgn function, described in the next section,

to obtain the boundary region for a controller. You can use the MCGetWindowRgn

function, described on page 2-41, to determine the portion of the window that is

currently in use by the controller.

MCGetControllerBoundsRgn

Some movie controllers may not be rectangular in shape. The

MCGetControllerBoundsRgn function returns the actual region occupied by the

controller and its movie, if the movie is attached to the controller. If the movie is not

attached to its controller, the boundary region encloses only the control portion of the

controller. The rectangle returned by the MCGetControllerBoundsRect function

(described in the previous section) bounds the region returned by

MCGetControllerBoundsRgn.

pascal RgnHandle MCGetControllerBoundsRgn (MovieController mc);

mc Specifies the movie controller for the operation. You obtain this
identifier from the Component Manager’s OpenComponent or
OpenDefaultComponent function, or from the NewMovieController
function.

C H A P T E R 2

Movie Controller Components

Movie Controller Components Reference 2-41

DESCRIPTION

As with the MCGetControllerBoundsRect function, the

MCGetControllerBoundsRgn function returns a region that reflects the size, shape,

and location of the controller, even if the controller is hidden. Your application must

dispose of the returned region.

The MCGetControllerBoundsRgn function returns a handle to the boundary region.

Your application must dispose of this region.

RESULT CODES

Memory Manager errors

SEE ALSO

You can use the MCGetWindowRgn function, described in the next section, to determine

the portion of the window that is currently in use by the controller.

MCGetWindowRgn

The MCGetWindowRgn function allows your application to determine the window

region that is actually in use by a controller and its movie. The region returned by this

function contains only the visible portions of the controller and its movie.

pascal RgnHandle MCGetWindowRgn (MovieController mc, WindowPtr w);

mc Specifies the movie controller for the operation. You obtain this identifier
from the Component Manager’s OpenComponent or
OpenDefaultComponent function, or from the NewMovieController
function (described on page 2-29).

w Identifies the window in which the movie controller and its movie are
displayed, if the control portion of the controller is attached to the movie.
If the controller is detached and in a separate window from the movie,
specify one of the windows.

DESCRIPTION

The returned region may consist of several discontiguous areas. For example, if a

controller is detached from its movie, the window region may define separate areas for

the movie and the controller. If you want to consider just the controller, you must

subtract the movie from the returned region.

Your application must dispose of the returned region.

The MCGetWindowRgn function returns a handle to the window region. Your

application must dispose of this region.

C H A P T E R 2

Movie Controller Components

2-42 Movie Controller Components Reference

RESULT CODES

Memory Manager errors

SEE ALSO

You can control the clipping region that is applied to the controller by calling the

MCSetClip function, which is described in the next section.

MCSetClip

The MCSetClip function allows you to set a movie controller’s clipping region. This

clipping region is equivalent to the movie display clipping region supported by the

Movie Toolbox.

pascal ComponentResult MCSetClip (MovieController mc,

 RgnHandle theClip,

 RgnHandle movieClip);

mc Specifies the movie controller for the operation. You obtain this
identifier from the Component Manager’s OpenComponent or
OpenDefaultComponent function, or from the NewMovieController
function (described on page 2-29).

theClip Contains a handle to a region that defines the controller’s clipping region.
This clipping region affects the entire movie controller and its movie,
including the controller’s badge and associated controls. Set this
parameter to nil to clear the controller’s clipping region.

movieClip Contains a handle to a region that defines the clipping region of the
controller’s movie. This clipping region affects only the movie and the
badge, not the movie controller. Set this parameter to nil to clear the
movie clipping region.

DESCRIPTION

Your application must dispose of the regions you supply to the MCSetClip function.

SPECIAL CONSIDERATIONS

Do not use the Movie Toolbox’s SetMovieDisplayClipRgn function to modify

movies that are associated with movie controllers.

RESULT CODES

Memory Manager errors

C H A P T E R 2

Movie Controller Components

Movie Controller Components Reference 2-43

SEE ALSO

You can retrieve information about a controller’s clipping information by calling the

MCGetClip function, which is described in the next section.

MCGetClip

The MCGetClip function allows you to obtain information describing a movie

controller’s clipping regions.

pascal ComponentResult MCGetClip (MovieController mc,

 RgnHandle *theClip,

 RgnHandle *movieClip);

mc Specifies the movie controller for the operation. You obtain this
identifier from the Component Manager’s OpenComponent or
OpenDefaultComponent function, or from the NewMovieController
function (described on page 2-29).

theClip Contains a pointer to a field that is to receive a handle to the clipping
region of the entire movie controller. You must dispose of this region
when you are done with it. If you are not interested in this information,
you may set this parameter to nil.

movieClip Contains a pointer to a field that is to receive a handle to the clipping
region of the controller’s movie. You must dispose of this region when
you are done with it. If you are not interested in this information, you
may set this parameter to nil.

RESULT CODES

Memory Manager errors

SEE ALSO

You can set a controller’s clipping information by calling the MCSetClip function,

which is described in the previous section.

MCSetControllerPort

The MCSetControllerPort function allows your application to set the graphics port

for a movie controller. You can use this function to place a movie and its associated

movie controller in different graphics ports. If you are using an attached controller, both

the controller and the movie’s graphics ports are changed. If you are using a detached

C H A P T E R 2

Movie Controller Components

2-44 Movie Controller Components Reference

controller, this function changes only the graphics port of the control portion of

the controller. You must use the Movie Toolbox’s SetMovieGWorld function followed

by the MCMovieChanged function to change other portions.

pascal ComponentResult MCSetControllerPort (MovieController mc,

 CGrafPtr gp);

mc Specifies the movie controller for the operation. You obtain this
identifier from the Component Manager’s OpenComponent or
OpenDefaultComponent function, or from the NewMovieController
function (described on page 2-29).

gp Points to the new graphics port for the movie controller. Set this
parameter to nil to use the current graphics port.

DESCRIPTION

The movie controller component may use the foreground and background colors

from the graphics port at the time the MCSetController function is called to colorize

the movie controller.

Movie controller components use the MCSetControllerPort function each time

you create a new movie controller. Hence, your component must be set to a valid port

before creating a new movie controller.

MCGetControllerPort

The MCGetControllerPort function returns a movie controller’s color graphics port.

pascal CGrafPtr MCGetControllerPort (MovieController mc);

mc Specifies the movie controller for the operation. You obtain this
identifier from the Component Manager’s OpenComponent or
OpenDefaultComponent function, or from the NewMovieController
function (described on page 2-29).

Handling Movie Events

Movie controller components provide functions that handle movie controller actions.

Your application must call these functions whenever an event occurs. Consider this

event loop:

#if whatIsHandleEvent

while (! gDoneFlag) {

gResult = GetNextEvent (everyEvent, &gEventRec);

if ((MCIsPlayerEvent(gMCPlay, &gEventRec) == 0)) {

if (gResult) {

C H A P T E R 2

Movie Controller Components

Movie Controller Components Reference 2-45

/* player didn't handle the event */

HandleEvent(gEventRec);

}

}

}

#endif

#if 0

/* interface for application-defined routine: */

pascal Boolean MyPlayerFilter (MovieController mc,

short* action, long* params);

#endif

If the movie controller component handles the event, your application can loop to wait

for the next event. Otherwise, your application must take care of the event as part of its

normal event handling.

Movie controller components support an action filter. You can instruct the filter to invoke

a function in your application whenever actions occur. This action filter function can

then perform specialized processing or refer the action back to the movie controller

component. The actions supported by movie controller components are discussed in

“Movie Controller Actions,” which begins on page 2-15.

The MCIsPlayerEvent function lets you pass events to a movie controller component.

The MCSetActionFilterWithRefCon function allows you to specify your action filter

function for a movie controller.

You can use the MCDoAction function to request action processing from a movie

controller.

If you use any Movie Toolbox functions to change the characteristics of a movie that is

associated with a movie controller, you must inform the movie controller—use the

MCMovieChanged function.

You can obtain information about the current state of the movie controller and its movie

by calling the MCGetControllerInfo function.

MCIsPlayerEvent

The MCIsPlayerEvent function handles all events for a movie controller. Your

application should call this function in its main event loop. Call MCIsPlayerEvent for

each active movie controller until the event is handled.

This function returns a long integer indicating whether the movie controller component

handled the event. The component sets this long integer to 1 if it handled the event. Your

application should then skip the rest of its event loop and wait for the next event. The

return value is 0 otherwise. Your application must then handle the event as part of its

normal event processing.

C H A P T E R 2

Movie Controller Components

2-46 Movie Controller Components Reference

The movie controller component does everything necessary to support the movie

controller and its associated movie. For example, the component calls the Movie

Toolbox’s MoviesTask function for each movie. The movie controller component also

handles suspend and resume events. It treats suspend events as deactivate requests and

resume events as activate requests.

You can provide an action filter function that is called by the movie controller

component. See “Application-Defined Function,” which begins on page 2-61, for details.

The component calls your filter function after it decides to process a particular action,

but before it actually does so. In this manner, your application can perform custom

action processing for a movie controller. Set your action filter function with the

MCSetActionFilterWithRefCon function, described on page 2-47.

pascal ComponentResult MCIsPlayerEvent (MovieController mc,

 const EventRecord *e);

mc Specifies the movie controller for the operation. You obtain this
identifier from the Component Manager’s OpenComponent or
OpenDefaultComponent function, or from the NewMovieController
function (described on page 2-29).

e Points to the current event structure.

DESCRIPTION

The MCIsPlayerEvent function returns a long integer indicating whether it handled

the event. If the movie controller component handled the event, this function sets the

returned value to 1. Your application should then skip the rest of its event loop and wait

for the next event. If the component did not handle the event, the MCIsPlayerEvent

function returns a value of 0. Your application must then handle the event.

MCDoAction

Your application can use the MCDoAction function to invoke a movie controller

component and have it perform a specified action.

pascal ComponentResult MCDoAction (MovieController mc,

short action, void *params;

mc Specifies the movie controller for the operation. You obtain this
identifier from the Component Manager’s OpenComponent or
OpenDefaultComponent function, or from the NewMovieController
function.

action Specifies the action to be taken. See “Movie Controller Actions,” which
begins on page 2-15, for descriptions of the actions supported by movie
controller components.

C H A P T E R 2

Movie Controller Components

Movie Controller Components Reference 2-47

params Points to the parameter data appropriate to the action. See the individual
action descriptions in “Movie Controller Actions,” which begins on
page 2-15, for information about the parameters required for each
supported action.

DESCRIPTION

For example, your application might define a menu item that stops all currently playing

movies. When the user selects this menu item, your application could use the

MCDoAction function to instruct each controller to stop playing. You would do so by

specifying an mcActionPlay action with the parameters set to 0 to indicate that the

controller should stop playing the movie.

MCSetActionFilterWithRefCon

The MCSetActionFilterWithRefCon function allows your application to establish

an action filter function for a movie controller. The movie controller component calls

your action filter function each time the component receives an action for its movie

controller. Your filter function is then free to handle the action or to refer it back to the

movie controller component. If you refer it back to the movie controller component, the

component handles the action. See “Movie Controller Actions,” which begins on

page 2-15, for a description of the actions supported by movie controller components.

pascal ComponentResult MCSetActionFilterWithRefCon

(MovieController mc,

 MCActionFilter filter,

 long refCon);

mc Specifies the movie controller for the operation. You obtain this
identifier from the Component Manager’s OpenComponent or
OpenDefaultComponent function, or from the NewMovieController
function (described on page 2-29).

filter Points to your action filter function. Set this parameter to nil to remove
your action filter function.

refCon Contains a reference constant value. The movie controller component
passes this reference constant to your action filter function each time it
calls your function.

DESCRIPTION

Movie controller components allow your application to field movie controller actions.

You define an action filter function in your application and assign it to a controller by

calling the MCSetActionFilterWithRefCon function.

You can use the constants described in “Movie Controller Actions,” which begins on

page 2-15, to refer to movie controller actions.

C H A P T E R 2

Movie Controller Components

2-48 Movie Controller Components Reference

If your filter function handles an action, you can handle the action in any way you

desire. For example, your filter function could change the operation of movie controller

buttons. More commonly, applications use the action filter function to monitor actions of

the controller. For instance, your filter function might enable you to find out when the

user clicks the play button, so that your application can enable appropriate menu

selections. Alternatively, you can use the filter function to detect when the user resizes

the movie.

SEE ALSO

If you use any Movie Toolbox functions that modify the movie in your action filter

function, be sure to call the MCMovieChanged function (described on page 2-49).

MCGetControllerInfo

Your application can use the MCGetControllerInfo function to determine the current

status of a movie controller and its associated movie. You can use this information to

control your application’s menu highlighting.

pascal ComponentResult MCGetControllerInfo (MovieController mc,

 long *someFlags);

mc Specifies the movie controller for the operation. You obtain this
identifier from the Component Manager’s OpenComponent or
OpenDefaultComponent function, or from the NewMovieController
function (described on page 2-29).

someFlags Contains a pointer to flags that specify the current status and capabilities
of the controller. The following flags are defined (more than one flag may
be set to 1):

mcInfoUndoAvailable
The user has edited the movie. If this flag is set to 1, you
can call the MCUndo function (described on page 2-54).

mcInfoCutAvailable
The user has selected some material in the movie and
editing is enabled. If this flag is set to 1, you can call the
MCCut function (described on page 2-52).

mcInfoCopyAvailable
The user has selected some material in the movie. If this
flag is set to 1, you can call the MCCopy function (described
on page 2-52).

C H A P T E R 2

Movie Controller Components

Movie Controller Components Reference 2-49

mcInfoPasteAvailable
There is movie data in the scrap and editing is enabled. If
this flag is set to 1, you can call the MCPaste function
(described on page 2-53).

If your application maintains a private scrap, this flag does
not reflect the state of that scrap.

mcInfoClearAvailable
The user has selected some material in the movie and
editing is enabled. If this flag is set to 1, you can call the
MCClear function (described on page 2-54).

mcInfoHasSound
The movie has sound. If this flag is set to 1, the controller
can play a movie’s sound.

mcInfoIsPlaying
If this flag is set to 1, the movie is playing.

mcInfoIsLooping
The controller is currently set to play its movie repeatedly.
If this flag is set to 1, the movie is looping.

mcInfoIsInPalindrome
The controller is currently set to play its movie
repeatedly, alternating between forward and backward
playback. If this flag is set to 1, the movie is in palindrome
looping mode.

mcInfoEditingEnabled
The user can edit the movie associated with this controller.
If this flag is set to 1, you have enabled editing by calling
the MCEnableEditing function (described on page 2-50).

MCMovieChanged

The MCMovieChanged function lets you inform a movie controller component that your

application has used the Movie Toolbox to change the characteristics of its associated

movie.

pascal ComponentResult MCMovieChanged (MovieController mc,

Movie theMovie);

mc Specifies the movie controller for the operation. You obtain this
identifier from the Component Manager’s OpenComponent or
OpenDefaultComponent function, or from the NewMovieController
function (described on page 2-29).

theMovie Identifies the movie that has been changed.

C H A P T E R 2

Movie Controller Components

2-50 Movie Controller Components Reference

DESCRIPTION

Your application should be able to make most movie changes using the MCDoAction

function (described on page 2-46). However, if your application uses Movie

Toolbox functions to change the characteristics of a movie that is associated with a movie

controller, you must inform the controller so that it can update itself accordingly. For

instance, if your application changes the size of the movie without informing the movie

controller component, the control portion of the controller may no longer be the proper

size for the movie.

RESULT CODES

Memory Manager errors

Editing Movies

Movie controller components can provide editing capabilities. This section describes the

functions that your application can use to alter movies that are associated with movie

controllers.

Your application can use the MCEnableEditing function to enable editing for a

specified movie controller. Movie controller components may return an error code

indicating that editing is not supported. Use the MCIsEditingEnabled function to find

out if editing is enabled for a specified controller.

The MCCopy, MCCut, MCPaste, MCClear, and MCUndo functions support normal editing

operations on movies associated with movie controllers. These functions operate on the

current movie selection.

Two functions are also provided that facilitate work with Edit menus. You can use the

MCSetUpEditMenu function to highlight and name the items in the Edit menu for your

application. The MCGetMenuString function is provided for you to use with a

non-standard Edit menu.

MCEnableEditing

The MCEnableEditing function allows your application to enable and disable editing

for a movie controller. Once editing is enabled for a controller, the user may edit the

movie associated with the controller.

pascal ComponentResult MCEnableEditing (MovieController mc,

 Boolean enabled);

C H A P T E R 2

Movie Controller Components

Movie Controller Components Reference 2-51

mc Specifies the movie controller for the operation. You obtain this
identifier from the Component Manager’s OpenComponent or
OpenDefaultComponent function, or from the NewMovieController
function (described on page 2-29).

enabled Specifies whether to enable or disable editing for the controller. Set this
parameter to true to enable editing; set the enabled parameter to
false to disable editing.

DESCRIPTION

By default, editing is turned off when you create a new movie controller. If you want to

allow the user to edit, you must use the MCEnableEditing function to enable editing.

SPECIAL CONSIDERATIONS

Note that a movie controller component may not support editing. Therefore, your

application should check the component result from this function before continuing with

other movie-editing operations.

MCIsEditingEnabled

The MCIsEditingEnabled function allows your application to determine whether

editing is currently enabled for a movie controller. The movie controller component

returns a long value reflecting the edit state of the controller. Once editing is enabled for

a controller, the user may edit the movie associated with the controller.

pascal long MCIsEditingEnabled (MovieController mc);

mc Specifies the movie controller for the operation. You obtain this
identifier from the Component Manager’s OpenComponent or
OpenDefaultComponent function, or from the NewMovieController
function (described on page 2-29).

DESCRIPTION

The MCIsEditingEnabled function returns a long integer that contains a value

indicating the current edit state of the controller. This returned value is set to 1 if editing

is enabled. This returned value is set to 0 if editing is disabled or if the controller

component does not support editing.

C H A P T E R 2

Movie Controller Components

2-52 Movie Controller Components Reference

MCCut

The MCCut function returns a copy of the current movie selection from the movie

associated with a specified controller and then removes the current movie selection from

the source movie. Your application is responsible for the returned movie. If you want to

allow the user to paste the movie selection, use the Movie Toolbox’s PutMovieOnScrap

function to place the movie selection onto the scrap. Be sure to dispose of the movie

afterward, using the Movie Toolbox’s DisposeMovie function.

pascal Movie MCCut (MovieController mc);

mc Specifies the movie controller for the operation. You obtain this identifier
from the Component Manager’s OpenComponent or
OpenDefaultComponent function, or from the NewMovieController
function (described on page 2-29).

DESCRIPTION

The MCCut function returns a movie containing the current selection from the movie

associated with the specified controller. If the user has not made a selection, the returned

movie reference is set to nil.

SEE ALSO

The MCCut function is analogous to the Movie Toolbox’s CutMovieSelection
function.

MCCopy

The MCCopy function returns a copy of the current movie selection from the movie

associated with a specified controller. The selection remains active after this operation.

Your application is responsible for the returned movie.

If you want to allow the user to paste the movie selection, use the Movie Toolbox’s

PutMovieOnScrap function to place the movie selection onto the scrap. Be sure to

dispose of the movie afterward, using the Movie Toolbox’s DisposeMovie function.

pascal Movie MCCopy (MovieController mc);

mc Specifies the movie controller for the operation. You obtain this identifier
from the Component Manager’s OpenComponent or
OpenDefaultComponent function, or from the NewMovieController
function (described on page 2-29).

C H A P T E R 2

Movie Controller Components

Movie Controller Components Reference 2-53

DESCRIPTION

The MCCopy function returns a movie containing the current selection from the movie

associated with the specified controller. If the user has not made a selection, the returned

movie reference is set to nil.

SEE ALSO

This function is analogous to the Movie Toolbox’s CopyMovieSelection function.

MCPaste

The MCPaste function inserts a specified movie at the current movie time in the movie

associated with a specified controller.

pascal ComponentResult MCPaste (MovieController mc,

Movie srcMovie);

mc Specifies the movie controller for the operation. You obtain this identifier
from the Component Manager’s OpenComponent or
OpenDefaultComponent function, or from the NewMovieController
function (described on page 2-29).

srcMovie Specifies the movie to be inserted into the current selection in the movie
associated with the movie controller specified by the mc parameter. If you
set this parameter to nil, the movie controller component retrieves the
source movie from the scrap.

DESCRIPTION

All of the tracks from the source movie are placed in the destination movie. If the

duration of the destination movie’s current selection is 0, the source movie is inserted at

the starting time of the current selection. If the current selection duration is nonzero, the

function clears the current selection and then inserts the tracks from the source movie.

After the paste operation, the current selection time is set to the start of the tracks that

were inserted and the duration is set to the source movie’s duration.

SEE ALSO

This function is analogous to the Movie Toolbox’s PasteMovieSelection function.

SPECIAL CONSIDERATIONS

The preferred way to use the MCPaste function is to set the srcMovie parameter to

nil. This causes the movie controller to use movie import components to paste other

types of data than movies.

C H A P T E R 2

Movie Controller Components

2-54 Movie Controller Components Reference

MCClear

The MCClear function removes the current movie selection from the movie associated

with a specified controller.

pascal ComponentResult MCClear (MovieController mc);

mc Specifies the movie controller for the operation. You obtain this identifier
from the Component Manager’s OpenComponent or
OpenDefaultComponent function, or from the NewMovieController
function.

DESCRIPTION

After removing the segment, the duration of the movie’s current selection is set to 0. This

function removes empty tracks from the resulting movie.

SEE ALSO

This function is analogous to the Movie Toolbox’s ClearMovieSelection function.

MCUndo

The MCUndo function allows your application to discard the effects of the most recent

edit operation.

pascal ComponentResult MCUndo (MovieController mc);

mc Specifies the movie controller for the operation. You obtain this identifier
from the Component Manager’s OpenComponent or
OpenDefaultComponent function, or from the NewMovieController
function (described on page 2-29).

SEE ALSO

Your movie controller component could use the Movie Toolbox’s edit state functions to

implement this function. (See the chapter “Movie Toolbox” in Inside Macintosh: QuickTime
for more information about the edit state functions.)

C H A P T E R 2

Movie Controller Components

Movie Controller Components Reference 2-55

MCSetUpEditMenu

The MCSetUpEditMenu function correctly highlights and names the items in your

application’s Edit menu.

pascal ComponentResult MCSetUpEditMenu (MovieController mc,

long modifiers,

MenuHandle mh);

mc Specifies the movie controller for this operation. You obtain this identifier
from the Component Manager’s OpenComponent or
OpenDefaultComponent function, or from the NewMovieController
function.

modifiers Indicates the current modifiers from the mouse-down or key-down event
to which you are responding.

mh Specifies a menu handler to your current Edit menu. The first six items in
your Edit menu should be the standard editing commands: Undo, a blank
line, Cut, Copy, Paste, and Clear.

DESCRIPTION

When your application is highlighting its menus, you should call MCSetUpEditMenu

immediately before you use the Menu Manager’s MenuSelect or MenuKey functions.

For details on MenuSelect and MenuKey, see Inside Macintosh: Macintosh Toolbox
Essentials.

MCGetMenuString

If your application has a non-standard Edit menu, you can use the MCGetMenuString

function together with the MCGetControllerInfo function to assign names correctly

to the items in your application’s Edit menu.

pascal ComponentResult MCGetMenuString (MovieController mc,

long modifiers,

short item,

Str255 aString);

mc Specifies the movie controller for this operation. You obtain this identifier
from the Component Manager’s OpenComponent or
OpenDefaultComponent function, or from the NewMovieController
function.

modifiers Indicates the current modifiers from the mouse-down or key-down event
to which you are responding.

C H A P T E R 2

Movie Controller Components

2-56 Movie Controller Components Reference

item Contains one of the appropriate movie controller Edit menu constants
returned in the aString parameter.

aString Contains (on return) an appropriate string to set the menu item text. The
following flags are available:

mcMenuUndo
Contains the string to set the menu item text to the Undo
command.

mcMenuCut Contains the string to set the menu item text to the Cut
command.

mcMenuCopy
Contains the string to set the menu item text to the Copy
command.

mcMenuPaste
Contains the string to set the menu item text to the Paste
command.

mcMenuClear
Contains the string to set the menu item text to the Clear
command.

DESCRIPTION

The MCGetMenuString function is used by the MCSetUpEditMenu function, which is

described in the previous section.

SEE ALSO

To highlight menu items, use the MCGetControllerInfo function, which is described

on page 2-48, to determine which items should be enabled.

Getting and Setting Movie Controller Time

Movie controller components provide functions that allow your application to work

with temporal aspects of movie controllers. You can use the MCSetDuration function to

set the duration of a movie controller to some arbitrary value. The MCGetCurrentTime

function lets you retrieve the time value represented by the indicator on the movie

controller’s slider.

C H A P T E R 2

Movie Controller Components

Movie Controller Components Reference 2-57

MCSetDuration

The MCSetDuration function allows your application to set a controller’s duration in

the case where a controller does not have a movie associated with it.

pascal ComponentResult MCSetDuration (MovieController mc,

 TimeValue duration);

mc Specifies the movie controller for the operation. You obtain this
identifier from the Component Manager’s OpenComponent or
OpenDefaultComponent function, or from the NewMovieController
function (described on page 2-29).

duration Specifies the new duration for the movie. This duration value must be in
the controller’s time scale.

DESCRIPTION

The controller’s duration remains at this new value until you assign a movie to the

controller.

SEE ALSO

You can use the MCGetCurrentTime function, which is described in the next section, to

obtain the time scale for the controller.

MCGetCurrentTime

Your application can use the MCGetCurrentTime function to obtain the time value

represented by the indicator on the movie controller’s slider. This time value is

appropriate to the movie currently being affected by the movie controller. You can also

obtain the time scale for this time value.

pascal TimeValue MCGetCurrentTime (MovieController mc,

 TimeScale *scale);

mc Specifies the movie controller for the operation. You obtain this
identifier from the Component Manager’s OpenComponent or
OpenDefaultComponent function, or from the NewMovieController
function (described on page 2-29).

scale Contains a pointer to a field that is to receive the time scale for the
controller.

C H A P T E R 2

Movie Controller Components

2-58 Movie Controller Components Reference

DESCRIPTION

The MCGetCurrentTime function returns the time value that corresponds to the current

setting of the indicator on the movie controller’s slider.

Customizing Event Processing

Movie controller components provide a number of functions that allow your application

to customize event processing. If your application does not use the MCIsPlayerEvent

function (described on page 2-45), you can use these functions to direct movie controller

events to the appropriate movie controller component. The component then attempts to

handle the event.

Your application obtains the values for many of the function parameters from the

appropriate event structure.

Each function returns a value that indicates whether it handled the event. If the

controller component completely handles the event, the function sets the return value

to 1. If the controller component does not handle the event, the function sets the return

value to 0. Your application must then handle the event.

MCActivate

Your application can use the MCActivate function in response to activate, deactivate,

suspend, and resume events.

pascal ComponentResult MCActivate (MovieController mc,

 WindowPtr w,

 Boolean activate);

mc Specifies the movie controller for the operation. You obtain this
identifier from the Component Manager’s OpenComponent or
OpenDefaultComponent function, or from the NewMovieController
function (described on page 2-29).

w Specifies the window in which the event has occurred.

activate Indicates the nature of the event. Set this parameter to true for activate
and resume events. Set it to false for deactivate and suspend events.

DESCRIPTION

The MCActivate function returns a value indicating whether it handled the event. The

function sets the returned value to 1 if it handles the event. The function sets the

returned value to 0 if it does not handle the event. In this case, your application is

responsible for the event.

C H A P T E R 2

Movie Controller Components

Movie Controller Components Reference 2-59

MCClick

Your application should call the MCClick function when the user clicks in a movie

controller window.

pascal ComponentResult MCClick (MovieController mc, WindowPtr w,

 Point where, long when,

long modifiers);

mc Specifies the movie controller for the operation. You obtain this identifier
from the Component Manager’s OpenComponent or
OpenDefaultComponent function, or from the NewMovieController
function (described on page 2-29).

w Specifies the window in which the event has occurred.

where Indicates the location of the click. This value is expressed in the local
coordinates of the window specified by the w parameter. Your application
must convert this value from the global coordinates returned in the event
structure.

when Indicates when the user pressed the mouse button. You obtain this value
from the event structure.

modifiers Specifies modifier flags for the event. You obtain this value from the event
structure.

DESCRIPTION

The MCClick function returns a value indicating whether it handled the event. The

function sets the returned value to 1 if it handles the event. The function sets the

returned value to 0 if it does not handle the event. In this case, your application is

responsible for the event.

MCDraw

Your application should call the MCDraw function in response to an update event. The

movie controller component updates the movie controller if the controller is in the

window that received the update event. The controller component updates the movie

associated with the controller only if the movie is contained in the window that received

the event.

pascal ComponentResult MCDraw (MovieController mc, WindowPtr w);

C H A P T E R 2

Movie Controller Components

2-60 Movie Controller Components Reference

mc Specifies the movie controller for the operation. You obtain this
identifier from the Component Manager’s OpenComponent or
OpenDefaultComponent function, or from the NewMovieController
function (described on page 2-29).

w Points to the window in which the update event has occurred.

DESCRIPTION

The MCDraw function returns a value indicating whether it handled the event. The

function sets the returned value to 1 if it handles the event. The function sets the

returned value to 0 if it does not handle the event. In this case, your application is

responsible for the event.

MCIdle

The MCIdle function performs idle processing for a movie controller. This idle

processing includes calling the Movie Toolbox’s MoviesTask function for each movie

that is associated with the controller. Your application should call the MCIdle function

as often as possible, in order to ensure consistent movie play behavior.

pascal ComponentResult MCIdle (MovieController mc);

mc Specifies the movie controller for the operation. You obtain this
identifier from the Component Manager’s OpenComponent or
OpenDefaultComponent function, or from the NewMovieController
function (described on page 2-29).

DESCRIPTION

The MCIdle function returns a value indicating whether it handled the event. The

function sets the returned value to 1 if it handles the event. The function sets the

returned value to 0 if it does not handle the event. In this case, your application is

responsible for the event.

C H A P T E R 2

Movie Controller Components

Movie Controller Components Reference 2-61

MCKey

The MCKey function handles keyboard events for a movie controller. You can call this

function only if you have enabled keystroke processing in the controller. By default,

keystroke processing is turned off when you create a movie controller. You can enable

and disable keystroke processing using the mcActionSetKeysEnabled action with the

MCDoAction function (described on page 2-46).

pascal ComponentResult MCKey (MovieController mc, char key,

long modifiers);

mc Specifies the movie controller for the operation. You obtain this
identifier from the Component Manager’s OpenComponent or
OpenDefaultComponent function, or from the NewMovieController
function (described on page 2-29).

key Specifies the keystroke. You obtain this value from the event structure.

modifiers Specifies modifier flags for the event. You obtain this value from the event
structure.

DESCRIPTION

The MCKey function returns a value indicating whether it handled the event. The

function sets the returned value to 1 if it handles the event. The function sets the

returned value to 0 if it does not handle the event. In this case, your application is

responsible for the event.

Application-Defined Function

Movie controller components provide an action filter function that you establish with the

MCSetActionFilterWithRefCon function (described on page 2-47).

MyPlayerFilterWithRefCon

Your action filter function, MyPlayerFilterWithRefCon, should be in this form:

Boolean MyPlayerFilterWithRefCon (MovieController mc,

 short action,

 void *params, long refCon);

mc Specifies the movie controller for the operation.

C H A P T E R 2

Movie Controller Components

2-62 Movie Controller Components Reference

action A short integer containing the action code. The movie controller
component sets this parameter to point to the what field in the
appropriate action structure. (Although this action is passed as a variable,
it should not be changed by the filter.) See “Movie Controller Actions,”
which begins on page 2-15, for a description of the actions supported by
movie controller components.

params Contains a pointer to the parameter data appropriate to the action—for
example, setting the playback rate. See the individual descriptions of the
actions beginning on page 2-15 for information about the parameters
supplied for each supported action.

refCon Contains a reference constant value. The movie controller component
passes this reference constant to your action filter function each time it
calls your function.

DESCRIPTION

Your filter function must return a Boolean value indicating whether it handled

the action. Set the returned Boolean value to true if your function completely

handles the action. In this case, the movie controller component performs no additional

processing for the action. Set the returned value to false if your function does not

handle the action. The movie controller component then performs the appropriate

processing for the action.

C H A P T E R 2

Movie Controller Components

Summary of Movie Controller Components 2-63

Summary of Movie Controller Components

C Summary

Constants

enum {

kMCSetMovieSelect = 2, /* MCSetMovie */

kMCRemoveMovieSelect = 3, /* MCRemoveMovie */

kMCIsPlayerEventSelect = 7, /* MCIsPlayerEvent */

kMCSetActionFilterSelect = 8, /* MCSetActionFilter */

kMCDoActionSelect = 9, /* MCDoAction */

kMCSetControllerAttachedSelect= 10, /* MCSetControllerAttached */

kMCIsControllerAttachedSelect = 11, /* MCIsControllerAttached */

kMCSetControllerPortSelect = 12, /* MCSetControllerPort */

kMCGetControllerPortSelect = 13, /* MCGetControllerPort */

kMCGetVisibleSelect = 14, /* MCGetVisible */

kMCSetVisibleSelect = 15, /* MCSetVisible */

kMCGetControllerBoundsRectSelect

= 16, /* MCGetControllerBoundsRect */

kMCSetControllerBoundsRectSelect

= 17, /* MCSetControllerBoundsRect */

kMCGetControllerBoundsRgnSelect

= 18, /* MCGetControllerBoundsRgn */

kMCGetWindowRgnSelect = 19, /* MCGetWindowRgn */

kMCMovieChangedSelect = 20, /* MCMovieChanged */

kMCSetDurationSelect = 21, /* MCSetDuration */

kMCGetCurrentTimeSelect = 22, /* MCGetCurrentTime */

kMCNewAttachedControllerSelect= 23, /* MCNewAttachedController */

kMCDrawSelect = 24, /* MCDraw */

kMCActivateSelect = 25, /* MCActivate */

kMCIdleSelect = 26, /* MCIdle */

kMCKeySelect = 27, /* MCKey */

kMCClickSelect = 28, /* MCClick */

kMCEnableEditingSelect = 29, /* MCEnableEditing */

kMCIsEditingEnabledSelect = 30, /* MCIsEditingEnabled*/

kMCCopySelect = 31, /* MCCopy */

kMCCutSelect = 32, /* MCCut */

C H A P T E R 2

Movie Controller Components

2-64 Summary of Movie Controller Components

kMCPasteSelect = 33, /* MCPaste */

kMCClearSelect = 34, /* MCClear */

kMCUndoSelect = 35, /* MCUndo */

kMCPositionControllerSelect = 36, /* MCPositionController */

kMCGetControllerInfoSelect = 37, /* MCGetControllerInfo */

kMCSetClipSelect = 40, /* MCSetClip */

kMCGetClipSelect = 41, /* MCGetClip */

kMCDrawBadgeSelect = 42, /* MCDrawBadge */

kMCSetUpEditMenuSelect = 43, /* MCSetUpEditMenu */

kMCGetMenuStringSelect = 44, /* MCGetMenuString */

kMCSetActionFilterWithRefConSelect

= 45

/* SetActionFilterWithRefConSelect */

};

enum {

mcActionIdle = 1, /* give event-processing time to

movie controller */

mcActionDraw = 2, /* send update event to movie

controller */

mcActionActivate = 3, /* activate movie controller */

mcActionDeactivate = 4, /* deactivate controller */

mcActionMouseDown = 5, /* pass mouse-down event */

mcActionKey = 6, /* pass key-down or auto-key event */

mcActionPlay = 8, /* start playing movie */

mcActionGoToTime = 12, /* move to specific time in a movie */

mcActionSetVolume = 14, /* set a movie's volume */

mcActionGetVolume = 15, /* retrieve a movie's volume */

mcActionStep = 18, /* play a movie a specified number

of frames at a time */

mcActionSetLooping = 21, /* enable or disable looping */

mcActionGetLooping = 22, /* find out if movie is looping */

mcActionSetLoopIsPalindrome = 23, /* enable palindrome looping */

mcActionGetLoopIsPalindrome = 24, /* find out if palindrome looping

is on */

mcActionSetGrowBoxBounds = 25, /* set limits for resizing a movie */

mcActionControllerSizeChanged = 26, /* user has resized movie

controller */

mcActionSetSelectionBegin = 29, /* start time of movie's current

selection */

mcActionSetSelectionDuration = 30, /* set duration of movie's current

 selection */

mcActionSetKeysEnabled = 32, /* enable or disable keystrokes for

movie */

C H A P T E R 2

Movie Controller Components

Summary of Movie Controller Components 2-65

mcActionGetKeysEnabled = 33, /* find out if keystrokes are

enabled */

mcActionSetPlaySelection = 34, /* constrain playing to the current

selection */

mcActionGetPlaySelection = 35, /* find out if movie is constrained to

playing within selection */

mcActionSetUseBadge = 36, /* enable or disable movie's

playback badge */

mcActionGetUseBadge = 37, /* find out if movie controller is

using playback badge */

mcActionSetFlags = 38, /* set movie's control flags */

mcActionGetFlags = 39, /* retrieve movie's control flags */

mcActionSetPlayEveryFrame = 40, /* instruct controller to play all

frames in movie */

mcActionGetPlayEveryFrame = 41, /* find out if controller is playing

every frame in movie */

mcActionGetPlayRate = 42, /* determine playback rate */

mcActionShowBalloon = 43, /* find out if controller wants to

display Balloon Help */

mcActionBadgeClick = 44, /* user clicked movie's badge */

mcActionMovieClick = 45, /* user clicked movie */

mcActionSuspend = 46, /* suspend action */

mcActionResume = 47 /* resume action */

};

enum {

mcTopLeftMovie = 1<<0, /* places movie in upper-left corner of

display rectangle */

mcScaleMovieToFit ` = 1<<1, /* resizes movie to fit into display

rectangle */

mcWithBadge = 1<<2, /* controls whether badge is displayed */

mcNotVisible = 1<<3, /* controls whether controller portion

is visible */

mcWithFrame = 1<<4 /* specifies whether component shows

frame around movie */

};

enum {

mcFlagSuppressMovieFrame = 1<<0, /* controls display of frame */

mcFlagSuppressStepButtons = 1<<1, /* controls display of step

buttons */

C H A P T E R 2

Movie Controller Components

2-66 Summary of Movie Controller Components

mcFlagSuppressSpeakerButton = 1<<2, /* controls display of speaker

button */

mcFlagsUseWindowPalette = 1<<3 /* controls display of window

 palette */

};

enum {

mcInfoUndoAvailable = 1<<0, /* MCUndo function available */

mcInfoCutAvailable = 1<<1, /* MCCut function available */

mcInfoCopyAvailable = 1<<2, /* MCCopy function available */

mcInfoPasteAvailable = 1<<3, /* MCPaste function available */

mcInfoClearAvailable = 1<<4, /* MCClear function available */

mcInfoHasSound = 1<<5, /* controller can play movie's

sound */

mcInfoIsPlaying = 1<<6, /* movie is playing */

mcInfoIsLooping = 1<<7, /* movie is looping */

mcInfoIsInPalindrome = 1<<8, /* movie is alternating between

forward and backward playback */

mcInfoEditingEnabled = 1<<9 /* MCEnableEditing function

available */

};

enum {

mcMenuUndo = 1, /* Undo command */

mcMenuCut = 3, /* Cut command */

mcMenuCopy = 4, /* Copy command */

mcMenuPaste = 5, /* Paste command */

mcMenuClear = 6 /* Clear command */

};

enum {

mcPositionDontInvalidate = 1<<5 /* do not invalidate areas of window

changed due to repositioning of movie

or controller */

};

Data Types

typedef short mcAction;

typedef unsigned long MCFlags;

C H A P T E R 2

Movie Controller Components

Summary of Movie Controller Components 2-67

Movie Controller Functions

Associating Movies With Controllers

pascal MovieController NewMovieController
(Movie theMovie, const Rect *movieRect,
long someFlags);

pascal ComponentResult MCNewAttachedController
(MovieController mc, Movie theMovie,
WindowPtr w, Point where);

pascal ComponentResult MCSetMovie
(MovieController mc, Movie theMovie,
WindowPtr movieWindow, Point where);

pascal Movie MCGetMovie (MovieController mc);

pascal void DisposeMovieController
(MovieController mc);

Managing Controller Attributes

pascal ComponentResult MCPositionController
(MovieController mc, const Rect *movieRect,
const Rect *controllerRect, long someFlags);

pascal ComponentResult MCSetControllerAttached
(MovieController mc, Boolean attach);

pascal ComponentResult MCIsControllerAttached
(MovieController mc);

pascal ComponentResult MCSetVisible
(MovieController mc, Boolean visible);

pascal ComponentResult MCGetVisible
(MovieController mc);

pascal ComponentResult MCDrawBadge
(MovieController mc, RgnHandle movieRgn,
RgnHandle *badgeRgn);

pascal ComponentResult MCSetControllerBoundsRect
(MovieController mc, const Rect *bounds);

pascal ComponentResult MCGetControllerBoundsRect
(MovieController mc, Rect *bounds);

pascal RgnHandle MCGetControllerBoundsRgn
(MovieController mc);

pascal RgnHandle MCGetWindowRgn
(MovieController mc, WindowPtr w);

pascal ComponentResult MCSetClip
(MovieController mc, RgnHandle theClip,
RgnHandle movieClip);

C H A P T E R 2

Movie Controller Components

2-68 Summary of Movie Controller Components

pascal ComponentResult MCGetClip
(MovieController mc, RgnHandle *theClip,
RgnHandle *movieClip);

pascal ComponentResult MCSetControllerPort
(MovieController mc, CGrafPtr gp);

pascal CGrafPtr MCGetControllerPort
(MovieController mc);

Handling Movie Events

pascal ComponentResult MCIsPlayerEvent
(MovieController mc, const EventRecord *e);

pascal ComponentResult MCDoAction
(MovieController mc, short action,
void *params);

pascal ComponentResult MCSetActionFilterWithRefCon
(MovieController mc, MCActionFilter filter,
long refCon);

pascal ComponentResult MCGetControllerInfo
(MovieController mc, long *someFlags);

pascal ComponentResult MCMovieChanged
(MovieController mc, Movie theMovie);

Editing Movies

pascal ComponentResult MCEnableEditing
(MovieController mc, Boolean enabled);

pascal long MCIsEditingEnabled
(MovieController mc);

pascal Movie MCCut (MovieController mc);

pascal Movie MCCopy (MovieController mc);

pascal ComponentResult MCPaste
(MovieController mc, Movie srcMovie);

pascal ComponentResult MCClear
(MovieController mc);

pascal ComponentResult MCUndo
(MovieController mc);

pascal ComponentResult MCSetUpEditMenu
(MovieController mc, long modifiers,
MenuHandle mh);

pascal ComponentResult MCGetMenuString
(MovieController mc, long modifiers, short item,
Str255 aString);

C H A P T E R 2

Movie Controller Components

Summary of Movie Controller Components 2-69

Getting and Setting Movie Controller Time

pascal ComponentResult MCSetDuration
(MovieController mc, TimeValue duration);

pascal TimeValue MCGetCurrentTime
(MovieController mc, TimeScale *scale);

Customizing Event Processing

pascal ComponentResult MCActivate
(MovieController mc, WindowPtr w,
Boolean activate);

pascal ComponentResult MCClick
(MovieController mc, WindowPtr w, Point where,
long when, long modifiers);

pascal ComponentResult MCDraw
(MovieController mc, WindowPtr w);

pascal ComponentResult MCIdle
(MovieController mc);

pascal ComponentResult MCKey
(MovieController mc, char key, long modifiers);

Application-Defined Function

Boolean MyPlayerFilterWithRefCon
(MovieController mc, short *action,
void *params, long refCon);

Pascal Summary

Constants

CONST

MovieControllerComponentType = 'play';

{movie controller selectors}

kMCSetMovieSelect = 2; {MCSetMovie}

kMCGetMovie = 5; {MCGetMovie}

kMCIsPlayerEventSelect = 7; {MCIsPlayerEvent}

kMCSetActionFilterSelect = 8; {MCSetActionFilter}

kMCDoActionSelect = 9; {MCDoAction}

kMCSetControllerAttachedSelect = $A; {MCSetControllerAttached}

C H A P T E R 2

Movie Controller Components

2-70 Summary of Movie Controller Components

kMCIsControllerAttachedSelect = $B; {MCIsControllerAttached}

kMCSetControllerPortSelect = $C; {MCSetControllerPort}

kMCGetControllerPortSelect = $D; {MCGetControllerPort}

kMCGetVisibleSelect = $E; {MCGetVisible}

kMCSetVisibleSelect = $F; {MCSetVisible}

kMCGetControllerBoundsRectSelect = $10;{MCGetControllerBoundsRect}

kMCSetControllerBoundsRectSelect = $11;{MCSetControllerBoundsRect}

kMCGetControllerBoundsRgnSelect = $12;{MCGetControllerBoundsRgn}

kMCGetWindowRgnSelect = $13;{MCGetWindowRgn}

kMCMovieChangedSelect = $14;{MCMovieChanged}

kMCSetDurationSelect = $15;{MCSetDuration}

kMCGetCurrentTimeSelect = $16;{MCGetCurrentTime}

kMCNewAttachedControllerSelect = $17;{MCNewAttachedController}

kMCDrawSelect = $18;{MCDraw}

kMCActivateSelect = $19;{MCActivate}

kMCIdleSelect = $1A;{MCIdle}

kMCKeySelect = $1B;{MCKey}

kMCClickSelect = $1C;{MCClick}

kMCEnableEditingSelect = $1D;{MCEnableEditing}

kMCIsEditingEnabledSelect = $1E;{MCIsEditingEnabled}

kMCCopySelect = $1F;{MCCopy}

kMCCutSelect = $20;{MCCut}

kMCPasteSelect = $21;{MCPaste}

kMCClearSelect = $22;{MCClear}

kMCUndoSelect = $23;{MCUndo}

kMCPositionControllerSelect = $24;{MCPositionController}

kMCGetControllerInfoSelect = $25;{MCGetControllerInfo}

kMCSetClipSelect = $28;{MCSetClip}

kMCGetClipSelect = $29;{MCGetClip}

kMCDrawBadgeSelect = $2A;{MCDrawBadge}

kMCSetUpEditMenuSelect = $2B;{MCSetUpEditMenu}

kMCGetMenuStringSelect = $2C;{MCGetMenuString}

kMCSetActionFilterWithRefConSelect

= $2D;{MCSetActionFilterWithRefConSelect}

{movie controller actions}

mcActionIdle = 1; {give event-processing }

{ time to movie controller}

mcActionDraw = 2; {send update event to movie }

{ controller}

mcActionActivate = 3; {activate controller}

mcActionDeactivate = 4; {deactivate controller}

mcActionMouseDown = 5; {pass mouse-down event}

mcActionKey = 6; {pass key-down or auto-key event}

C H A P T E R 2

Movie Controller Components

Summary of Movie Controller Components 2-71

mcActionPlay = 8; {start playing movie}

mcActionGoToTime = 12; {move to specific time in }

{ a movie}

mcActionSetVolume = 14; {set a movie's volume}

mcActionGetVolume = 15; {retrieve a movie's volume}

mcActionStep = 18; {play movie skipping specified }

{ number of frames at a time}

mcActionSetLooping = 21; {enable/disable looping }

{ for a movie}

mcActionGetLooping = 22; {determine whether a }

{ movie is looping}

mcActionSetLoopIsPalindrome = 23; {enable palindrome looping}

mcActionGetLoopIsPalindrome = 24; {is palindrome looping on?}

mcActionSetGrowBoxBounds = 25; {set limits for resizing a movie}

mcActionControllerSizeChanged = 26; {user has resized movie controller}

mcActionSetSelectionBegin = 29; {start time of movie's }

{ current selection}

mcActionSetSelectionDuration = 30; {set duration of movie's }

{ current selection}

mcActionSetKeysEnabled = 32; {enable/disable }

{ keystrokes for movie}

mcActionGetKeysEnabled = 33; {are keystrokes enabled?}

mcActionSetPlaySelection = 34; {constrain playing to the }

{ current selection}

mcActionGetPlaySelection = 35; {is movie constrained to }

{ playing within selection}

mcActionSetUseBadge = 36; {enable/disable movie's }

{ playback badge}

mcActionGetUseBadge = 37; {is movie controller }

{ using playback badge?}

mcActionSetFlags = 38; {set movie's control flags}

mcActionGetFlags = 39; {get movie's control flags}

mcActionSetPlayEveryFrame = 40; {instruct controller to }

{ play all frames in movie}

mcActionGetPlayEveryFrame = 41; {is controller playing }

{ every frame in movie?}

mcActionGetPlayRate = 42; {determine playback rate}

mcActionShowBalloon = 43; {controller wants to }

{ display balloon help}

mcActionBadgeClick = 44; {user clicked movie's badge}

mcActionMovieClick = 45; {user clicked movie}

mcActionSuspend = 46; {suspend action}

mcActionResume = 47; {resume action}

C H A P T E R 2

Movie Controller Components

2-72 Summary of Movie Controller Components

{controller creation flags}

mcTopLeftMovie = $1; {places movie in upper-left }

{ corner of display rectangle}

mcScaleMovieToFit = $2; {resizes movie to fit into }

{ display rectangle}

mcWithBadge = $4; {controls whether badge }

{ is displayed}

mcNotVisible = $8; {controls whether controller }

{ portion is visible}

mcWithFrame = $10;{specifies whether component }

{ shows frame around movie}

{movie control flags}

mcFlagSuppressMovieFrame = $1; {controls display of frame}

mcFlagSuppressStepButtons = $2; {controls display of step buttons}

mcFlagSuppressSpeakerButton = $4; {controls display of speaker }

{ button}

mcFlagsUseWindowPalette = $5; {controls display of window }

{ palette}

(movie controller information flags}

mcInfoUndoAvailable = $1; {MCUndo function available}

mcInfoCutAvailable = $2; {MCCut function available}

mcInfoCopyAvailable = $4; {MCCopy function available}

mcInfoPasteAvailable = $8; {MCPaste function available}

mcInfoClearAvailable = $10; {MCClear function available}

mcInfoHasSound = $20; {controller can play movie's }

{ sound}

mcInfoIsPlaying = $40; {movie is playing}

mcInfoIsLooping = $80; {movie is looping}

mcInfoIsInPalindrome = $100; {movie is alternating between }

{ forward and backward playback}

mcInfoEditingEnabled = $200; {MCEnableEditing function }

{ available}

mcMenuUndo = 1; {Undo command}

mcMenuCut = 3; {Cut command}

mcMenuCopy = 4; {Copy command}

mcMenuPaste = 5; {Paste command}

mcMenuClear = 6; {Clear commmand}

C H A P T E R 2

Movie Controller Components

Summary of Movie Controller Components 2-73

mcPositionDontInvalidate = 32; {do not invalidate areas of window }

{ changed due to repositioning of }

{ movie or controller}

Data Types

TYPE

mcAction = Integer;

mcFlags = LongInt;

Movie Controller Routines

Associating Movies With Controllers

FUNCTION NewMovieController (theMovie: Movie; movieRect: Rect;
someFlags: LongInt): MovieController;

FUNCTION MCNewAttachedController
(mc: MovieController; theMovie: theMovie;
w: WindowPtr; where: Point): ComponentResult;

FUNCTION MCSetMovie (mc: MovieController; theMovie: Movie;
movieWindow: WindowPtr; where: Point):
ComponentResult;

FUNCTION MCGetMovie (mc: MovieController): Movie;

PROCEDURE DisposeMovieController
(mc: MovieController);

Managing Controller Attributes

FUNCTION MCPositionController
(mc: MovieController; VAR movieRect: Rect;
VAR controllerRect: Rect; someFlags: LongInt):
ComponentResult;

FUNCTION MCSetControllerAttached
(mc: MovieController;
attach: Boolean): ComponentResult;

FUNCTION MCIsControllerAttached
(mc: MovieController): ComponentResult;

FUNCTION MCSetVisible (mc: MovieController; visible: Boolean):
ComponentResult;

FUNCTION MCGetVisible (mc: MovieController): ComponentResult;

FUNCTION MCDrawBadge (mc: MovieController; movieRgn: RgnHandle;
VAR badgeRgn: RgnHandle): ComponentResult;

C H A P T E R 2

Movie Controller Components

2-74 Summary of Movie Controller Components

FUNCTION MCSetControllerBoundsRect
(mc: MovieController; bounds: Rect):
ComponentResult;

FUNCTION MCGetControllerBoundsRect
(mc: MovieController; VAR bounds: Rect):
ComponentResult;

FUNCTION MCGetControllerBoundsRgn
(mc: MovieController): RgnHandle;

FUNCTION MCGetWindowRgn (mc: MovieController; w: WindowPtr): RgnHandle;

FUNCTION MCSetClip (mc: MovieController; theClip: RgnHandle;
movieClip: RgnHandle): ComponentResult;

FUNCTION MCGetClip (mc: MovieController; VAR theClip: RgnHandle;
VAR movieClip: RgnHandle): ComponentResult;

FUNCTION MCSetControllerPort
(mc: MovieController; gp: CGrafPtr):
ComponentResult;

FUNCTION MCGetControllerPort
(mc: MovieController): CGrafPtr;

Handling Movie Events

FUNCTION MCIsPlayerEvent (mc: MovieController; e: EventRecord):
ComponentResult;

FUNCTION MCDoAction (mc: MovieController; action: Integer;
params: Ptr): ComponentResult;

PROCEDURE MCSetActionFilterWithRefCon
(mc: MovieController; filter: MCActionFilter;
refCon: LongInt);

FUNCTION MCGetControllerInfo
(mc: MovieController; VAR someFlags: LongInt):
ComponentResult;

FUNCTION MCMovieChanged (mc: MovieController; theMovie: Movie):
ComponentResult;

Editing Movies

FUNCTION MCEnableEditing (mc: MovieController; enabled: Boolean):
ComponentResult;

FUNCTION MCIsEditingEnabled
(mc: MovieController): LongInt;

FUNCTION MCCut (mc: MovieController): Movie;

FUNCTION MCCopy (mc: MovieController): Movie;

FUNCTION MCPaste (mc: MovieController; srcMovie: Movie):
ComponentResult;

C H A P T E R 2

Movie Controller Components

Summary of Movie Controller Components 2-75

FUNCTION MCClear (mc: MovieController): ComponentResult;

FUNCTION MCUndo (mc: MovieController): ComponentResult;

FUNCTION MCSetUpEditMenu (mc: MovieController; modifiers: LongInt;
mh: MenuHandle): ComponentResult;

FUNCTION MCGetMenuString (mc: MovieController; modifiers: LongInt;
item: Integer; VAR aString: Str255):
ComponentResult;

Getting and Setting Movie Controller Time

FUNCTION MCSetDuration (mc: MovieController; duration: TimeValue):
ComponentResult;

FUNCTION MCGetCurrentTime (mc: MovieController; VAR scale: TimeScale):
TimeValue;

Customizing Event Processing

FUNCTION MCActivate (mc: MovieController; w: WindowPtr;
activate: Boolean): ComponentResult;

FUNCTION MCClick (mc: MovieController; w: WindowPtr;
where: Point; when: LongInt;
modifiers: LongInt): ComponentResult;

FUNCTION MCDraw (mc: MovieController; w: WindowPtr):
ComponentResult;

FUNCTION MCIdle (mc: MovieController): ComponentResult;

FUNCTION MCKey (mc: MovieController; key: Byte;
modifiers: LongInt): ComponentResult;

Application-Defined Routine

FUNCTION MyPlayerFilterWithRefCon
(mc: MovieController; VAR action: Integer;
VAR params: LongInt; refCon: LongInt): Boolean;

Result Codes
badControllerHeight –9994 Invalid height
editingNotAllowed –9995 Controller does not support editing
controllerBoundsNotExact –9996 Boundary rectangle not exact
cannotSetWidthOfAttachedController –9997 Cannot change controller width
controllerHasFixedHeight –9998 Cannot change controller height
cannotMoveAttachedController –9999 Cannot move attached controllers

Contents 3-1

C H A P T E R 3

Standard
Image-Compression Dialog

Contents

Components

About Standard Image-Compression Dialog Components 3-4

Using Standard Image-Compression Dialog Components 3-6

Opening a Connection to a Standard Image-Compression Dialog
Component 3-8

Displaying the Dialog Box to the User 3-8

Setting Default Parameters 3-8

Designating a Test Image 3-9

Displaying the Dialog Box and Retrieving Parameters 3-10

Extending the Basic Dialog Box 3-11

Creating a Standard Image-Compression Dialog Component 3-14

Standard Image-Compression Dialog Components Reference 3-15

Request Types 3-15

The Spatial Settings Request Type 3-15

The Temporal Settings Request Type 3-17

The Data-Rate Settings Request Type 3-19

The Color Table Settings Request Type 3-20

The Progress Function Request Type 3-20

The Extended Functions Request Type 3-21

The Preference Flags Request Type 3-22

The Settings State Request Type 3-24

The Sequence ID Request Type 3-24

The Window Position Request Type 3-25

The Control Flags Request Type 3-25

C H A P T E R 3

3-2 Contents

Standard Image-Compression Dialog Component Functions 3-25

Getting Default Settings for an Image or a Sequence 3-26

Displaying the Standard Image-Compression Dialog Box 3-28

Compressing Still Images 3-29

Compressing Image Sequences 3-31

Working With Image or Sequence Settings 3-34

Specifying a Test Image 3-37

Positioning Dialog Boxes and Rectangles 3-42

Utility Function 3-44

Application-Defined Function 3-45

Summary of Standard Image-Compression Dialog Components 3-47

C Summary 3-47

Constants 3-47

Data Types 3-49

Standard Image-Compression Dialog Component Functions 3-50

Application-Defined Function 3-52

Pascal Summary 3-52

Constants 3-52

Data Types 3-54

Standard Image-Compression Dialog Component Routines 3-55

Application-Defined Routine 3-57

Result Codes 3-57

C H A P T E R 3

3-3

Standard Image-Compression Dialog Components

This chapter discusses standard image-compression dialog components. Standard
image-compression dialog components provide a consistent user interface for selecting

parameters that govern the compression of an image or image sequence and the

management of the compression operation. Applications that use these components are

freed from many of the details of obtaining and validating image-compression

parameters and interacting with the Image Compression Manager to compress an image

or sequence.

This chapter is divided into the following sections:

■ “About Standard Image-Compression Dialog Components” provides a general
introduction to components of this type.

■ “Using Standard Image-Compression Dialog Components” discusses the facilities
provided to applications by these components.

■ “Creating a Standard Image-Compression Dialog Component” describes how to
create one of these components.

■ “Standard Image-Compression Dialog Components Reference” presents detailed
information about the functions that are supported by these components.

■ “Summary of Standard Image-Compression Dialog Components” contains a
condensed listing of the constants, data structures, and functions supported by these
components in C and in Pascal.

If you want to use a standard image-compression dialog component in your application,

you should read the first two sections of this chapter, and then use the reference section

as appropriate. If you want to create your own standard image-compression dialog

component, you should be familiar with all of the information in this chapter.

As components, standard image-compression dialog components rely on the facilities

of the Component Manager. In order to use any component, your application must also

use the Component Manager. If you are not familiar with this manager, see the chapter

“Component Manager” in Inside Macintosh: More Macintosh Toolbox. In addition, you

should be familiar with image compression in general and the Image Compression

Manager in particular. See the chapter “Image Compression Manager” in Inside
Macintosh: QuickTime for more information.

Note

Throughout this chapter, the term standard dialog component refers to the
standard image-compression dialog component. The term standard dialog
box refers to one or both of the two dialog boxes presented by the
standard image-compression dialog component. These dialog boxes are
shown in Figure 3-1 and Figure 3-2. ◆

C H A P T E R 3

Standard Image-Compression Dialog Components

3-4 About Standard Image-Compression Dialog Components

About Standard Image-Compression Dialog Components

Standard image-compression dialog components provide a consistent user interface for

specifying the parameters that control the compression of an image or image sequence.

Your application specifies a test image for the dialog box and then calls the

standard-image compression component. The component then presents a dialog box

to the user, manages the dialog box, validates the user’s settings, and stores those

settings for your application. The standard dialog component also provides numerous

facilities for determining reasonable default settings for a given image or sequence.

Finally, this component manages the process of compressing the image or image

sequence, using the parameter settings provided by the user or your application.

By using a standard image-compression dialog component, you can reduce the amount

of work you need to do in your application in order to compress an image or an image

sequence. For example, you can eliminate the need to manage interactions with the user

and to validate the image-compression parameters specified by the user. Furthermore,

the standard dialog component simplifies the process of compressing images or

sequences. This, in turn, allows you to focus on the problem at hand, rather than on the

details of image-compression parameters. In addition, the standard image-compression

dialog component supplied by Apple supports many features that are helpful to the user,

including Balloon Help and a test image. Finally, Apple’s component will be localized by

Apple, so that you need not worry about international issues relating to this dialog box.

Standard image-compression dialog components support two basic dialog boxes. One

dialog box provides a minimal interface and is suitable for compressing single images.

Figure 3-1 shows an example of this dialog box. Using this dialog box, the user can select

a compressor component, the pixel depth for the operation, and the desired spatial

quality.

Figure 3-1 Dialog box for single-frame compression

C H A P T E R 3

Standard Image-Compression Dialog Components

About Standard Image-Compression Dialog Components 3-5

The other dialog box allows the user to set compression parameters for image sequences.

In addition to the parameters supported by the single-frame dialog box, this dialog box

supports frame rate, key frame rate, spatial and temporal quality settings, and data rate

settings (for more information about these aspects of image compression, see the chapter

“Image Compression Manager” in Inside Macintosh: QuickTime). Figure 3-2 shows an

example of this dialog box.

Figure 3-2 Dialog box for image-sequence compression

Your application can control which dialog box is presented to the user.

By using standard dialog components, you can avoid many of the details of obtaining,

validating, and using image-compression parameters. The process of validating

image-compression parameters can be very involved, depending upon the capabilities of

the selected compressor component. Apple’s standard image-compression dialog

component verifies that the user’s settings are valid for the selected compressor. In

addition, this component uses a test image to demonstrate the effects of the user’s

compression settings.

C H A P T E R 3

Standard Image-Compression Dialog Components

3-6 Using Standard Image-Compression Dialog Components

Using Standard Image-Compression Dialog Components

You can use the standard image-compression dialog component to obtain image or

image sequence compression parameters from the user and to manage the process of

compressing the image or sequence. This component presents a consistent interface to

the user and eliminates the need for you to worry about the details of managing this

dialog box. Once you have collected the parameter information from the user, you can

use the component to instruct the Image Compression Manager to perform the image or

sequence compression. Again, the component manages the details for you.

Because the standard image-compression dialog component is a component, you use

the Component Manager to open and close your connection. If you are unfamiliar with

components or the Component Manager, see the chapter “Component Manager” in

Inside Macintosh: More Macintosh Toolbox.

Before you can open a connection to a standard image-compression dialog component,

be sure that the Component Manager, Image Compression Manager, and 32-bit Color

QuickDraw are available. You can use the Gestalt Manager to determine if these facilities

are available. For more information about the Gestalt Manager, see the chapter “Gestalt

Manager” in Inside Macintosh: Operating System Utilities. For details on 32-bit Color

QuickDraw, see the chapter “Color QuickDraw” in Inside Macintosh: Imaging.

Once you have established a connection to a standard image-compression dialog

component, your application can present the dialog box to the user. The user selects the

desired compression parameters and clicks the OK button. The component then stores

these parameters for your application, using them, when appropriate, to work with the

Image Compression Manager to compress the image or sequence. Figure 3-1 on page 3-4

shows one of the dialog boxes that is supported by the standard image-compression

dialog component provided by Apple.

Every standard image-compression dialog box has its own set of parameter information.

This information identifies the compressor component to be used, determines which

dialog box is used, and specifies the parameters to be used during the compression

operation. This information is stored by the component. You can use functions provided

by the component to examine or modify these parameters.

The standard image-compression dialog component provided by Apple allows you to

augment or extend the interface provided by its dialog boxes. This component supports

a single custom button. Your application enables this button when it instructs the

component to display the dialog box to the user. You provide the code that supports this

C H A P T E R 3

Standard Image-Compression Dialog Components

Using Standard Image-Compression Dialog Components 3-7

button in a hook function in your application. In addition, this component allows you to

define a filter function—you can use this function to process dialog box events before the

component. Figure 3-3 identifies the parts of the dialog box supported by Apple’s

standard dialog component.

Figure 3-3 Elements of the standard image-compression dialog box

The following sections provide more detailed information about using the standard

image-compression dialog component.

■ “Opening a Connection to a Standard Image-Compression Dialog Component” tells
you how to establish a connection between your application and the standard dialog
component.

■ “Displaying the Dialog Box to the User” describes the steps you must follow to
display the standard dialog box to the user, retrieve the user’s settings, and compress
an image or sequence.

■ “Extending the Basic Dialog Box” discusses several ways your application can
customize the basic dialog box.

C H A P T E R 3

Standard Image-Compression Dialog Components

3-8 Using Standard Image-Compression Dialog Components

Opening a Connection to a Standard Image-Compression
Dialog Component
As is the case with all components, your application must establish a connection to a

standard image-compression dialog component before you can use its services. As with

other components, you use the Component Manager’s OpenDefaultComponent

functions to connect to a component. You must use the Component Manager’s

CloseComponent function to close your application’s connection when you are done.

Apple provides constants that define the component type and subtype values for

standard image-compression dialog components. All of these components have a type

value of 'scdi'; you can use the StandardCompressionType constant to specify this

value. These components have a subtype value of 'imag'; the

StandardCompressionSubType constant defines this value.

Displaying the Dialog Box to the User
Once you have opened a connection to a standard image-compression dialog

component, you can proceed to display the dialog box to the user. In preparation, you

might establish default parameter settings and specify a test image. Your application

may then instruct the component to display the dialog box to the user. The following

sections discuss each of these steps in more detail.

Setting Default Parameters

The standard dialog component stores and manages a set of compression parameters for

your application. Before presenting the dialog box to the user, you may want to set

default values for these parameters. The standard dialog component provides a number

of options for establishing these default values:

1. You may supply an image to the component from which it can derive default settings.
The component examines the characteristics of the image and sets appropriate default
values. The SCDefaultPictHandleSettings function works with images stored
in picture handles; the SCDefaultPictFileSettings function works with images
stored in picture files; and the SCDefaultPixMapSettings function works with
pixel maps. These functions are discussed in “Getting Default Settings for an Image or
a Sequence” beginning on page 3-26.

2. If you have not set any defaults, but you do supply a test image for the dialog, the
component examines the test image and derives appropriate default values based
upon its characteristics. The next section discusses how to assign a test image to the
user dialog box.

3. If you have not set any defaults and do not supply a test image, the component uses
its own default values.

4. You may modify the settings by using the SCSetInfo function, which is described on
page 3-36. This function gives you a great deal of freedom—you can use it to modify
any of the parameters stored by the component.

C H A P T E R 3

Standard Image-Compression Dialog Components

Using Standard Image-Compression Dialog Components 3-9

If you supply either a test or a default image, the standard dialog component extracts

default compression settings from that image, including color table, grayscale

information (if appropriate), and compression defaults (if the source image is already

compressed). If any of these default values differ from your needs, use the SCSetInfo

function to modify the value.

Designating a Test Image

The standard image-compression dialog component provided by Apple supports a test

image in its dialog box. The component uses this test image to show the user the effect of

the current set of compression parameters. Whenever the user changes the dialog box

settings, the component applies those parameters to the test image and displays the

results in its dialog box. In addition, the standard dialog component may sometimes use

the test image to obtain hints about the type of compression operation you expect to

perform. In some cases, the component may derive default parameter values by

examining the test image.

The component provides three functions that allow you to specify a dialog box’s test

image. Each of these functions uses a different image source—a handle, a picture file, or

a pixel map. Your application is responsible for obtaining the image and for disposing of

it after you are done.

The test image portion of the dialog box supported by Apple’s standard

image-compression dialog component is a square measuring 80 pixels by 80 pixels. In

order to deal with test images that are larger than this area, Apple’s component allows

you to specify a part of the image to display. You can specify an area of interest, which

indicates a portion of the test image that is to be displayed in the dialog box. If the area

of interest is still larger than the display area in the dialog box, the component may

shrink the image or crop it (or both) until the image fits.

Listing 3-1 shows one way to specify a test image. This code fragment uses an image that

is stored in a picture file. The program asks the user to specify the file, using the

SFGetFilePreview function. The program then opens the image file and instructs the

standard image-compression dialog component to use the picture that is stored in the file.

Listing 3-1 Specifying a test image

Point where;

ComponentInstance ci;

SFTypeList typeList;

SFReply inReply;

short srcPictFRef;

where.h = where.v = -2; /* center dialog box on the

 best screen */

typeList[0] = 'PICT'; /* set file type */

C H A P T E R 3

Standard Image-Compression Dialog Components

3-10 Using Standard Image-Compression Dialog Components

SFGetFilePreview (where, "\p", nil, 1, typeList, nil,

&inReply);

if (!inReply.good) { /* handle error */

}

result = FSOpen (inReply.fName, inReply.vRefNum, &srcPictFRef);

if (result) { /* handle error */

}

result = SCSetTestImagePictFile

(ci, /* component connection */

srcPictFRef, /* source picture file */

nil, /* use the entire image */

scPreferScalingAndCropping);

/* shrink image and crop it */

if (result) { /* handle error */

}

Displaying the Dialog Box and Retrieving Parameters

Standard image-compression dialog components provide two functions that display the

dialog box to the user and retrieve the user’s compression settings:

SCRequestImageSettings and SCRequestSequenceSettings. Both of these

functions start with your default parameter settings. Any changes made by the user are

stored by the component. You may use the SCGetInfo function to examine these

settings.

The SCRequestImageSettings function obtains image-compression parameters from

the user and displays the dialog box that is shown in Figure 3-1 on page 3-4. The

SCRequestSequenceSettings function works with sequence-compression

parameters, using the dialog box shown in Figure 3-2 on page 3-5. Both of these

functions allow you to augment or extend the interface in the dialog box—see

“Extending the Basic Dialog Box,” which begins on page 3-11, for more information

about extending the basic dialog boxes.

Listing 3-2 shows how to use the SCRequestImageSettings function to display the

dialog box to the user and obtain the resulting image-compression settings. This code

fragment obtains the compression parameters from the user and then uses those

parameters to compress the image that is stored in the file the user selected in Listing 3-1.

The program then stores the compressed image in a different file—this fragment

assumes that the destination file has already been selected.

C H A P T E R 3

Standard Image-Compression Dialog Components

Using Standard Image-Compression Dialog Components 3-11

Listing 3-2 Displaying the dialog box to the user and compressing an image

ComponentInstance ci; /* component connection */

short srcPictFRef; /* source file */

short dstPictFRef; /* destination file */

result = SCRequestImageSettings(ci);

if (result < 0) { /* handle error */

}

if (result == scUserCancelled) { /* user clicked Cancel

button */

}

result = SCCompressPictureFile

(ci, /* component connection */

srcPictFRef, /* source picture file */

dstPictFRef); /* dest picture file */

if (result < 0) { /* handle error */

}

Note that, because the standard dialog component stores the compression parameters for

you, the new user settings become the default values the next time your application

interacts with the user. If this is inappropriate, use one of the mechanisms discussed in

“Setting Default Parameters” on page 3-8 to modify those defaults.

Extending the Basic Dialog Box
Apple’s standard image-compression dialog component allows you to customize the

operation of the user dialog box in a number of ways. First, you can define a filter

function. This function, which is a modal-dialog filter function, can process dialog box

events before the component does. Your filter function can then perform custom

processing that is appropriate to your application. Because the compression dialog box is

a movable modal dialog box, you must provide a filter to process update events for your

application windows.

Second, you can define a hook function. This function receives item hits before the

standard image-compression dialog component does, and can therefore augment the

basic dialog box. For example, your hook function can provide additional validation of

the user’s selections.

Finally, you can define a custom button in the dialog box. You can then use your hook

function to detect when the user clicks this button. Your hook function can then extend

the dialog box interface by displaying additional dialog boxes, for example.

C H A P T E R 3

Standard Image-Compression Dialog Components

3-12 Using Standard Image-Compression Dialog Components

You use the scExtendedProcsType request type with the SCSetInfo function to take

advantage of these mechanisms for customizing the user dialog box. Listing 3-3 contains

code that uses this function to define a custom button in the dialog box. Listing 3-4

contains this application’s hook function.

Listing 3-3 Defining a custom button in the dialog box

SCExtendedProcs ep;

ep.filterProc = MyFilter; /* custom filter function */

ep.hookProc = MyHook; /* custom hook function */

ep.refcon = 0; /* reference constant for filter

and hook functions */

BlockMove("\pDefaults",ep.customName,32);

/* custom button name */

SCSetInfo(ci,scExtendedProcsType,&ep);

/* set new extended functions */

Listing 3-4 shows a hook function that returns the dialog box to its default settings

whenever the user clicks the custom button. The standard dialog component calls this

function each time the user selects an item in the dialog box. On entry, the hook function

receives information about the current dialog box, a pointer to the appropriate standard

image-compression dialog parameter block, and a reference constant that is supplied by

your application.

This hook function first checks to see whether the user clicked the custom button. If so,

the function changes the current compression settings.

Listing 3-4 A sample hook function

pascal short MyHook(DialogPtr theDialog,short itemHit,

void *params,long refcon)

{

SCSpatialSettings ss;

if (itemHit == scCustomItem) { /* check for custom item */

ss.codecType = 'jpeg'; /* create new settings */

ss.codec = anyCodec;

ss.depth = 32;

ss.spatialQuality = codecNormalQuality;

C H A P T E R 3

Standard Image-Compression Dialog Components

Using Standard Image-Compression Dialog Components 3-13

SCSetInfo(params, /* component connection */

scSpatialSettingsType, /* set spatial settings */

&ss); /* new spatial settings */

}

return (itemHit);

}

In your hook function, you may want to display additional user dialog boxes.

Apple’s standard image-compression dialog component provides two functions that

help you position your dialog box on the screen. The SCPositionDialog function

places a dialog box in a specified location; the SCPositionRect function positions a

rectangle. By using these functions you can position your dialog boxes near the standard

dialog box.

Listing 3-5 contains code that uses the SCPositionDialog function to place a Standard

File Package dialog box onto the same screen as the standard image-compression

dialog box.

Listing 3-5 Positioning related dialog boxes

Point where; /* positions dialog boxes */

ComponentInstance ci; /* component connection */

where.h = where.v = -2; /* center dialog box on the

best screen */

result = SCPositionDialog (ci, /* component connection */

-3999, /* resource number of dialog box */

&where); /* returns upper-left point */

SFPutFile (where, /* positions the dialog box */

"\pSave compressed picture as:",

"\pUntitled",

nil,

&outReply);

C H A P T E R 3

Standard Image-Compression Dialog Components

3-14 Creating a Standard Image-Compression Dialog Component

Creating a Standard Image-Compression Dialog Component

Apple’s standard image-compression dialog component fully implements the functional

interface for components of this type. As a result, this component allows you to

customize the dialog box by enabling the custom button or by defining a filter function.

In most cases your application should be able to use the component that is supplied by

Apple. However, if you want to create your own standard image-compression dialog

component, you should read this section.

Apple has defined a component type value for standard image-compression dialog

components. All components of this type have the same type and subtype values. You

can use the following constants to specify the type and subtype.

#define StandardCompressionType 'scdi'

#define StandardCompressionSubType 'imag'

Apple has defined a functional interface for standard image-compression dialog

components. For information about the functions your component must support, see the

next section, “Standard Image-Compression Dialog Components Reference.” You can

use the following constants to refer to the request codes for each of the functions your

component must support.

#define scPositionRect 2 /* SCPositionRect */

#define scPositionDialog 3 /* SCPositionDialog */

#define scSetTestImagePictHandle 4 /* SCSetTestImagePictHandle */

#define scSetTestImagePictFile 5 /* SCSetTestImagePictFile */

#define scSetTestImagePixMap 6 /* SCSetTestImagePixMap */

#define scGetBestDeviceRect 7 /* SCGetBestDeviceRect */

#define scRequestImageSettings 10 /* SCRequestImageSettings */

#define scCompressImage 11 /* SCCompressImage */

#define scCompressPicture 12 /* SCCompressPicture */

#define scCompressPictureFile 13 /* SCCompressPictureFile */

#define scRequestSequenceSettings 14 /* SCRequestSequenceSettings */

#define scCompressSequenceBegin 15 /* SCCompressSequenceBegin */

#define scCompressSequenceFrame 16 /* SCCompressSequenceFrame */

#define scCompressSequenceEnd 17 /* SCCompressSequenceEnd */

#define scDefaultPictHandleSettings18 /* SCDefaultPictHandleSettings */

#define scDefaultPictFileSettings 19 /* SCDefaultPictFileSettings */

#define scDefaultPixMapSettings 20 /* SCDefaultPixMapSettings */

#define scGetInfo 21 /* SCGetInfo */

#define scSetInfo 22 /* SCSetInfo */

#define scNewGWorld 23 /* SCNewGWorld */

C H A P T E R 3

Standard Image-Compression Dialog Components

Standard Image-Compression Dialog Components Reference 3-15

Standard Image-Compression Dialog Components Reference

This section describes the request types and functions associated with the standard

image-compression dialog components and an application-defined function.

Request Types

This section describes the request types used by two standard dialog component

functions that allow you to work with the current compression settings for an image or a

sequence of images. (You can establish these settings in a number of ways; see “Setting

Default Parameters” on page 3-8 for more information about your options.)

You use the SCGetInfo function (described on page 3-34) to retrieve settings

information. The SCSetInfo function (described on page 3-36) enables you to modify

the settings.

These functions can work with a number of different types of settings information. When

you call either function, you specify the type of data you want to work with. The

following request types are defined:

#define scSpatialSettingsType 'sptl' /* spatial options */

#define scTemporalSettingsType 'tprl' /* temporal options */

#define scDataRateSettingsType 'drat' /* data rate */

#define scColorTableType 'clut' /* color table */

#define scProgressProcType 'prog' /* progress function */

#define scExtendedProcsType 'xprc' /* extended dialog */

#define scPreferenceFlagsType 'pref' /* preferences */

#define scSettingsStateType 'ssta' /* all settings */

#define scSequenceIDType 'sequ' /* sequence ID */

#define scWindowPositionType 'wndw' /* window position */

#define scCodecFlagsType 'cflg' /* compression flags */

Each of these request types requires different parameter data. The following sections

discuss each of these request types and their data requirements.

The Spatial Settings Request Type

Use the spatial settings request to retrieve or modify the current spatial compression

parameters. These parameters control how each image is compressed.

You supply a pointer to a spatial settings structure. If you are retrieving these settings,

the standard dialog component places the current settings into the specified structure; if

you are changing the settings, place the new values into the structure—the component

uses those values to update its settings.

C H A P T E R 3

Standard Image-Compression Dialog Components

3-16 Standard Image-Compression Dialog Components Reference

The SCSpatialSettings data type defines the format and content of the spatial

settings structure:

typedef struct {

CodecType codecType; /* compressor type */

CodecComponent codec; /* compressor */

short depth; /* pixel depth */

CodecQ spatialQuality; /* desired quality */

} SCSpatialSettings;

Field descriptions

codecType Specifies the default compressor type that is displayed in the
pop-up menu of compressors in the dialog box. The standard
image-compression dialog component uses this field to return the
compressor type that was selected by the user.

You must set this parameter to one of the compressor types
supported by the Image Compression Manager, or to nil.

If you set the field to nil, the standard image-compression dialog
component uses as the default value the first compressor or
compressor type that it retrieves from the Image Compression
Manager.

codec Provides additional information about the default compressor that
is displayed in the pop-up menu of compressors in the dialog box.
If the user selects a specific compressor component, the standard
image-compression dialog component returns the appropriate
compressor identifier in this field.

The scListEveryCodec bit in the flag in the
scPreferenceFlagsType request influences the operation of the
compressor list in the dialog box and, therefore, the way the
component uses this field.

Set the flag to 1 to have the list contain an entry for each compressor
component in the system. If the flag is set to 1, the standard
image-compression dialog component uses this field along with the
codecType field to select the default compressor that appears in
the dialog box. To specify a default image compressor component,
set this field to the appropriate compressor identifier. When the user
clicks OK in the dialog box, the standard image-compression dialog
component returns the compressor identifier that corresponds to
the selected image compressor component.

If you set the field to nil, the standard image-compression dialog
component uses as the default value the first compressor of the
specified type that it retrieves from the Image Compression
Manager.

C H A P T E R 3

Standard Image-Compression Dialog Components

Standard Image-Compression Dialog Components Reference 3-17

If you have set the flag to 0, the list contains only one entry for each
type of compressor in the system. The standard image-compression
dialog component ignores this field when creating the list of
compressor types. In this case, the standard image-compression
dialog component does not change the value of this field when the
user clicks OK.

However, you may use this field to specify additional selection
criteria by setting this field to one of the special compressor
identifiers supported by the Image Compression Manager (see the
chapter “Image Compression Manager” in Inside Macintosh:
QuickTime for these special values). The standard
image-compression dialog component may use this value when it
validates the compression parameters selected by the user.

depth Specifies the default value of the pixel depth pop-up menu in the
dialog box. This menu allows the user to select the color or gray
scale resolution value to be used when compressing the image or
image sequence. If you set this field to 0, the component chooses an
appropriate depth for the default compressor you specified with the
theCodec field. See the chapter “Image Compression Manager” in
Inside Macintosh: QuickTime for other valid pixel depth values.

When the user clicks OK, the standard image-compression dialog
component sets this field to the pixel depth value selected by the
user. Note that the standard image-compression dialog component
may adjust the depth value so that it corresponds to a value that is
supported by the compressor that has been selected by the user.

The depth returned could be 0 if the scShowBestDepth flag is set.

spatialQuality
Specifies the default setting of the quality slider in the dialog box.
This slider controls the spatial quality of the compressed image
sequence, which influences the amount of spatial compression that
can be achieved. Spatial compression eliminates redundant
information within each frame in a sequence. See the chapter
“Image Compression Manager” in Inside Macintosh: QuickTime for
valid compression quality values.

When the user clicks OK, the standard image-compression dialog
component sets this field to the spatial quality value selected by the
user. Note that the standard image-compression dialog component
may adjust the quality value so that it corresponds to a value that is
supported by the compressor that has been selected by the user.

The Temporal Settings Request Type

Use the temporal settings request to retrieve or modify the current temporal

compression parameters. These parameters govern sequence-compression operations.

You supply a pointer to a temporal settings structure. If you are retrieving these settings,

the standard dialog component places the current settings into the specified structure; if

you are changing the settings, place the new values into the structure—the component

uses those values to update its settings.

C H A P T E R 3

Standard Image-Compression Dialog Components

3-18 Standard Image-Compression Dialog Components Reference

The SCTemporalSettings data type defines the format and content of the temporal

settings structure:

typedef struct {

CodecQ temporalQuality; /* desired quality */

Fixed frameRate; /* frame rate */

long keyFrameRate; /* key frame rate */

} SCTemporalSettings;

Field descriptions

temporalQuality
Specifies the default setting of the motion quality slider in the
dialog box. This slider controls the temporal quality of
the compressed image, which influences the amount of temporal
compression that can be achieved (note that Apple’s component
uses the same slider for both spatial and temporal quality).
Temporal compression eliminates redundant information between
frames in an image sequence. See the chapter “Image Compression
Manager” in Inside Macintosh: QuickTime for valid compression
quality values.

When the user clicks OK, the standard image-compression dialog
component sets this field to the temporal quality value selected by
the user. Note that the standard image-compression dialog
component may adjust the quality value so that it corresponds to a
value that is supported by the compressor that has been selected by
the user.

frameRate Specifies the default value of the text-edit box that controls the
number of frames per second in the image sequence to be
compressed. This dialog item allows the user to select the frame rate
to be used when compressing the image sequence. Note that this
field is stored as a fixed-point number, allowing the user to specify
fractional frame rates.

When the user clicks OK, the standard image-compression dialog
component sets this field to the frame rate value specified by the
user. If you have set the scAllowZeroFrameRate flag to 1 in the
scPreferenceFlagsType request, and the user specifies nothing
or 0, the component sets this field to 0.

This dialog item can be useful in cases where your application
cannot determine the frame rate of the source movie. For example,
movies stored in PICT files do not include frame rate information.
Therefore, the user must specify a frame rate for you. Alternatively,
some users may want to create movies with different frame rates.
This item allows the user to specify a rate for the compressed
sequence.

C H A P T E R 3

Standard Image-Compression Dialog Components

Standard Image-Compression Dialog Components Reference 3-19

keyFrameRate Specifies the default value of the text-edit box that controls the
frequency with which key frames are inserted into the compressed
image sequence. Key frames provide points from which a
temporally compressed sequence may be decompressed. For a more
complete discussion of key frames, see the chapter “Image
Compression Manager” in Inside Macintosh: QuickTime.

When the user clicks OK, the standard image-compression dialog
component sets this field to the key frame rate value specified by
the user. If you have set the scAllowZeroKeyFrameRate flag to 1
in the scPreferenceFlagsType request, and the user specifies
nothing or 0, the component sets this field to 0.

The Data-Rate Settings Request Type

Use the data-rate settings request to retrieve or modify the current temporal compression

parameters that govern the data rate. These parameters affect sequence-compression

operations.

You supply a pointer to a data-rate settings structure. If you are retrieving these settings,

the standard dialog component places the current settings into the specified structure; if

you are changing the settings, place the new values into the structure—the component

uses those values to update its settings.

The SCDataRateSettings data type defines the format and content of the data-rate

settings structure:

typedef struct {

long dataRate; /* desired data rate */

long frameDuration; /* frame duration */

CodecQ minSpatialQuality; /* minimum value */

CodecQ minTemporalQuality; /* minimum value */

} SCDataRateSettings;

Field descriptions

dataRate Specifies the maximum number of bytes of compressed data your
application wants to receive per second. Use this parameter to
modulate the rate at which the component passes compressed data
to your application. This can be useful to account for hardware
limitations during sequence playback.

frameDuration Indicates the duration of each frame, in milliseconds. Set this
parameter to 0 to allow the standard dialog component to calculate
the duration based upon the frame rate you specify in an
scTemporalSettingsType request. However, if you allow
the user to specify a 0 frame rate (that is, you set the
scAllowZeroFrameRate flag to 1 in your
scPreferenceFlagsType request), you must set the frame
duration each time you compress a frame, because the component
does not have sufficient information to determine an appropriate
rate.

C H A P T E R 3

Standard Image-Compression Dialog Components

3-20 Standard Image-Compression Dialog Components Reference

minSpatialQuality
Specifies the minimum acceptable spatial quality. In order to meet
your specified data rate, the standard dialog component may have
to adjust the spatial quality setting. Use this parameter to set a
minimum level, which the component may not exceed. See the
chapter “Image Compression Manager” in Inside Macintosh:
QuickTime for values for both this parameter and the
minTemporalQuality parameter.

minTemporalQuality
Specifies the minimum acceptable temporal quality. As with spatial
quality, in order to meet your specified data rate, the standard
dialog component may have to adjust the temporal quality setting.
Use this parameter to set a minimum level, which the component
may not exceed.

The Color Table Settings Request Type

Use the color table settings request to retrieve or modify the color table that the standard

dialog component uses with all compression operations. Unless you specify otherwise,

the component extracts the color table from the source image or sequence.

You supply a pointer to a color table handle (CTabHandle data type). Your application

is responsible for disposing of this handle when you are done with it. Set the pointer to

nil to clear the current color table; this may be useful if the current color table is

inappropriate for the image or sequence you are working with.

The Progress Function Request Type

Use the progress function request to assign a progress function for use by the standard

dialog component. The progress function is a part of your application. The

standard dialog component calls this function during time-consuming operations, and

reports its progress. Your progress function can use the information it receives from the

standard dialog component to keep the user informed about the progress of the

operation.

You supply a pointer to an Image Compression Manager progress function

structure (see the chapter “Image Compression Manager” in Inside Macintosh: QuickTime
for information about the format and content of this structure, as well as complete

information about progress functions). Set the pointer to nil to clear the current

progress function; in this case, the standard dialog component does not report

its progress to the user. Set the pointer to –1 to use the component’s default progress

function.

C H A P T E R 3

Standard Image-Compression Dialog Components

Standard Image-Compression Dialog Components Reference 3-21

The Extended Functions Request Type

Use the extended functions request to extend the interface provided in the standard

image or sequence dialog boxes. You may specify a filter function, a hook function, and a

custom button; you may retrieve the current settings for these options using the

SCGetInfo function.

You supply a pointer to an extended functions structure. If you are retrieving these

settings, the standard dialog component places the current settings into the specified

structure; if you are changing the settings, place the new values into the structure—the

component uses those values to update its settings. Set this pointer to nil to remove the

current functions.

By default, none of these extended interface elements are used.

The SCExtendedProcs data type defines the format and content of the extended

functions structure:

typedef struct {

SCModalFilterProcPtr filterProc; /* filter function */

SCModalHookProcPtr hookProc; /* hook function */

long refcon; /* reference constant */

Str31 customName; /* custom button name */

} SCExtendedProcs;

Field descriptions

filterProc Contains a pointer to a modal-dialog filter function in your
application. Because the compression dialog box is a movable
modal dialog box, you must provide a filter to process update
events for your application windows. The standard component calls
your filter function before it processes the event. You can use this
function to control events in the dialog box. For example, you might
use the filter function to release processing time to other windows
displayed by your application while the standard
image-compression dialog box is being displayed.

This is how to declare a filter function named MyFilter:

pascal Boolean MyFilter (DialogPtr theDialog,

EventRecord *theEvent, short *itemHit,

long refcon);

The operation of modal-dialog filter functions is described in the
chapter “Dialog Manager” in Inside Macintosh: Macintosh Toolbox
Essentials. The refcon parameter contains the reference constant
you supply in the refcon field of this structure.

If you do not want to specify a filter function, set this parameter
to nil.

C H A P T E R 3

Standard Image-Compression Dialog Components

3-22 Standard Image-Compression Dialog Components Reference

hookProc Contains a pointer to a dialog hook function in your application.
The standard component calls your hook function whenever the
user selects an item in the dialog box. You can use this function to
customize the operation of the standard image-compression dialog
box. For example, you might want to support a custom button that
activates a secondary dialog box. Another possibility would be to
provide additional validation support when the user clicks OK. For
an example of defining a custom button, see “Extending the Basic
Dialog Box” beginning on page 3-11.

This is how to declare a hook function named MyHook:

pascal short MyHook (DialogPtr theDialog,

short *itemHit, SCParams *params,

long refcon);

The operation of this dialog hook function is described in
“Application-Defined Function,” beginning on page 3-45.

If you do not want to specify a hook function, set this parameter
to nil.

refcon Specifies a reference constant that is to be passed to the dialog hook
function and the modal-dialog filter function.

customName Specifies the string to be displayed in the custom button in the
dialog box.

If you are not using a custom button, set this parameter to nil.

The Preference Flags Request Type

Use the preference flags request to specify or retrieve the standard dialog component’s

preference flags. These flags govern some of the details of the dialog box that are

presented to the user.

You supply a pointer to a long integer. If you are retrieving these flags, the standard

dialog component places the current settings into the specified field; if you are changing

the flags, set the field with your desired flag values—the component uses those values to

update its settings.

By default, the SCRequestImageSettings function operates with the

scShowBestDepth and scUseMovableModal flags set to 1. The

SCRequestSequenceSettings function operates with the scUseMovableModal flag

set to 1. You should never need to change the values of the scListEveryCodec or

scUseMovableModal flags.

C H A P T E R 3

Standard Image-Compression Dialog Components

Standard Image-Compression Dialog Components Reference 3-23

The following flags are defined:

#define scListEveryCodec (1L<<1) /* list every component */

#define scAllowZeroFrameRate (1L<<2) /* allow 0 frame rate */

#define scAllowZeroKeyFrameRate

(1L<<3) /* 0 key frame rate OK */

#define scShowBestDepth (1L<<4) /* use best image depth */

#define scUseMovableModal (1L<<5) /* use movable dialog */

Flag descriptions

scListEveryCodec
Controls the contents of the pop-up menu of compressors. If you set
this flag to 1, the standard image-compression dialog component
lists every compressor component that is present in the system.
Each entry in the list contains the name of a compressor component.
The user may then select a specific component from the list.

If you set this flag to 0, the list contains one entry for each type of
compressor component that is present in the system. Each list entry
contains the name of a compressor type (for example, a list entry
might contain “Animation” for the animation compressor). The user
may then select a type of compressor—it is your application’s
responsibility to select an appropriate compressor of that type.

scAllowZeroFrameRate
Determines whether the component allows the user to specify a
value of 0 for the frame rate. If you set this flag to 1, the component
allows the user to specify either 0 or nothing for the frame rate. The
component then includes a “best rate” entry in the pop-up menu. If
the user specifies 0, the component sets the frameRate field in the
SCTemporalSettings structure to 0. Your application must then
determine the best frame rate for the movie.

If you set this flag to 0, the component does not allow the user to
enter 0 for the frame rate. In this case, the user must select a specific
frame rate.

scAllowZeroKeyFrameRate
Similar to the scAllowZeroFrameRate flag, this flag determines
whether the component allows the user to specify a value of 0
for the key frame rate. If you set this flag to 1, the component allows
the user to specify 0 for the frame rate. If the user specifies 0, the
component sets the keyFrameRate field in the
SCTemporalSettings structure to 0. Your application must then
determine the best key frame rate for the movie.

If you set this flag to 0, the component does not allow the user to
specify 0 for the frame rate. In this case, if the user has enabled
temporal compression by checking the key frame checkbox, the user
must also select a specific key frame rate.

C H A P T E R 3

Standard Image-Compression Dialog Components

3-24 Standard Image-Compression Dialog Components Reference

scShowBestDepth
Determines whether the component includes a “best depth” entry
in the pop-up menu for pixel depth. If you set this flag to 1, the
component includes a “best depth” entry in the pop-up menu. If the
user selects “best depth,” the component sets the depth to 0. Your
application must then determine the best pixel depth for the movie.

If you set this flag to 0, the component does not include a “best
depth” entry in the pop-up menu. The user must select a depth
from among the other available choices.

scUseMovableModal
Determines whether the standard compression dialog is a movable
or a stationary dialog. Set this flag to 1 to create a movable dialog.
In this case, you should provide an event filter function to handle
update events (use the scExtendedProcsType request).

The Settings State Request Type

Use the settings state request to set or retrieve the configuration of the standard dialog

component. You may use this request to retrieve the configuration information so that

you can save it for later use, or to reconfigure the component based on a saved

configuration.

Your application is not concerned with the content of the configuration information that

is returned. The standard dialog component saves its configuration in a format that it

understands. This request affects only those settings that are valid across system restarts,

such as the spatial and temporal compression parameters and the data-rate settings.

You supply a pointer to a handle. When you retrieve the settings, the standard dialog

component creates an appropriately-sized handle and places its current configuration

information into the handle. Your application is responsible for disposing of the handle

when you are done with it.

When you modify the settings, you supply the configuration information in the handle.

The component copies the data out of this handle. Your application is responsible for

disposing of the handle when you are done with it. Set the pointer to nil to reset the

component to its default configuration.

The Sequence ID Request Type

Use the sequence ID request type to retrieve the sequence identifier being used by the

component’s SCCompressSequenceFrame function. You may not use this request to

set the sequence identifier.

You supply a pointer to a field of type ImageSequence (this is an Image Compression

Manager data type). The standard dialog component returns the current sequence

identifier in that field.

C H A P T E R 3

Standard Image-Compression Dialog Components

Standard Image-Compression Dialog Components Reference 3-25

The Window Position Request Type

Use the window position request to position the user’s dialog box.

You supply a pointer to a point. If you are retrieving this information, the standard

dialog component places the coordinates of the upper-left corner of the dialog box into

this point; if you are changing the dialog box’s position, place the new coordinates into

the point structure—the component uses those coordinates to position the dialog box.

Normally you should not need to use this request. By default, the standard dialog

component centers the dialog box on the screen that is best-suited to display your test

image. The component also saves the last window position for movable modal dialogs.

The Control Flags Request Type

Use the control flags request to retrieve or modify the control flags used by the standard

dialog component. The standard dialog component passes these flags through to the

image compressor it uses to compress your image or sequence. These flags are Image

Compression Manager control flags, as described in the chapter “Image Compression

Manager” in Inside Macintosh: QuickTime.

You supply a pointer to a flags field of data type CodecFlags (this is an Image

Compression Manager data type). If you are retrieving the flags, the standard dialog

component places the current flags into this field. If you are setting new flag values,

place your desired settings into the field—the component uses these new flag settings.

By default, the standard dialog component sets all flags to 0 when it compresses still

images. When it is compressing sequences, the component sets the

codecFlagsPreviousUpdate and codecFlagsUpdatePreviousComp flags to 1.

Typically, you should not need to change these flag settings.

Standard Image-Compression Dialog Component Functions

This section describes the functions that are supported by standard image-compression

dialog components. It is divided into the following topics:

■ “Getting Default Settings for an Image or a Sequence” discusses how you can use the
standard dialog component to derive default compression settings for an image or a
sequence.

■ “Displaying the Standard Image-Compression Dialog Box” tells you how to present
the standard dialog box to the user.

■ “Compressing Still Images” discusses functions that allow you to compress still
images.

■ “Compressing Image Sequences” discusses functions that allow you to compress
image sequences.

■ “Working With Image or Sequence Settings” describes the functions and data
structures you can use to modify the compression settings stored by the standard
dialog component.

C H A P T E R 3

Standard Image-Compression Dialog Components

3-26 Standard Image-Compression Dialog Components Reference

■ “Specifying a Test Image” tells you how you can specify the image that is displayed to
the user in the standard dialog box.

■ “Positioning Dialog Boxes and Rectangles” provides information about a number of
functions that allow you to position dialog boxes and rectangles that may be related to
the standard dialog box.

■ “Utility Function” discusses a utility function that the standard dialog component
provides to your application.

Getting Default Settings for an Image or a Sequence

This section describes the functions that allow you to derive sensible default

compression settings for an image or a sequence. The standard dialog component

examines an image you provide and selects appropriate default settings based on the

image’s characteristics. The component stores those settings for you and uses them with

other functions, including not only functions governing image or sequence compression,

but also utility functions such as SCNewGWorld. If you choose to display a dialog box to

the user, the component uses these settings as the default dialog box settings.

Any of these functions may be used with a single image or an image that is part of

a sequence. You tell the standard dialog component whether the image is part of a

sequence when you call the function.

If there is a custom color table associated with the image or the sequence, these functions

retrieve and store it. You can use the color table settings request (described on page 3-20)

to retrieve the custom color table and obtain as much color and depth information as

possible from the image or sequence of images.

You can retrieve these settings using the SCGetInfo function, or modify them using the

SCSetInfo function, which are described on page 3-34 and page 3-36, respectively.

There are three functions available: SCDefaultPictHandleSettings works with

pictures, SCDefaultPictFileSettings works with picture files, and

SCDefaultPixMapSettings works with pixel maps.

SCDefaultPixMapSettings

The SCDefaultPixMapSettings function allows you to derive default compression

settings for an image that is stored in a pixel map.

pascal ComponentResult SCDefaultPixMapSettings

(ComponentInstance ci, PixMapHandle src,

 short motion);

ci Identifies your application’s connection to a standard image-compression
dialog component. You obtain this identifier from the Component
Manager’s OpenDefaultComponent function.

C H A P T E R 3

Standard Image-Compression Dialog Components

Standard Image-Compression Dialog Components Reference 3-27

src Contains a handle to the pixel map to be analyzed.

motion Specifies whether the image is part of a sequence. Set this parameter to
true if the image is part of a sequence; set it to false if you are working
with a single still image.

SCDefaultPictHandleSettings

The SCDefaultPictHandleSettings function allows you to derive default

compression settings for a picture that is stored in a handle.

pascal ComponentResult SCDefaultPictHandleSettings

 (ComponentInstance ci,

PicHandle srcPicture,

short motion);

ci Identifies your application’s connection to a standard image-compression
dialog component. You obtain this identifier from the Component
Manager’s OpenDefaultComponent function.

srcPicture
Contains a handle to the picture to be analyzed.

motion Specifies whether the image is part of a sequence. Set this parameter to
true if the image is part of a sequence; set it to false if you are working
with a single still image.

SCDefaultPictFileSettings

The SCDefaultPictFileSettings function allows you to derive default

compression settings for a picture that is stored in a file.

pascal ComponentResult SCDefaultPictFileSettings

(ComponentInstance ci, short srcRef,

 short motion);

ci Identifies your application’s connection to a standard image-compression
dialog component. You obtain this identifier from the Component
Manager’s OpenDefaultComponent function.

srcRef Contains a reference to the file to be analyzed.

motion Specifies whether the image is part of a sequence. Set this parameter to
true if the image is part of a sequence; set it to false if you are working
with a single still image.

C H A P T E R 3

Standard Image-Compression Dialog Components

3-28 Standard Image-Compression Dialog Components Reference

RESULT CODES

File Manager errors

Displaying the Standard Image-Compression Dialog Box

Standard image-compression dialog components provide two functions that allow you

to display the standard dialog box to the user and retrieve the compression parameters

specified by the user.

Use the SCRequestImageSettings function to retrieve the user’s preferences for

compressing a single image; use the SCRequestSequenceSettings functions when

you are working with an image sequence.

Both of these functions manipulate the compression settings that the component stores

for you. The component may derive the current settings from a number of different

sources:

■ You may supply an image to the component from which it can derive default
settings. You do this by using one of the functions discussed in
“Getting Default Settings for an Image or a Sequence” beginning on page 3-26.

■ If you have not set any defaults, but you do supply a test image for the dialog, the
component examines the test image and derives appropriate default values based
upon its characteristics.

■ If you have not set any defaults and do not supply a test image, the component uses
its own default values.

■ You may modify the settings by using the SCSetInfo function, which is described on
page 3-36.

■ You may allow the user to modify those settings by calling one of the functions
discussed in this section.

You may customize the dialog boxes by specifying a modal-dialog hook function or a

custom button. You may use the custom button to invoke an ancillary dialog box that is

specific to your application. See “Request Types” beginning on page 3-15 for more

information.

SCRequestImageSettings

The SCRequestImageSettings function displays the standard image dialog box

to the user; the dialog box is populated with the default settings you have established.

pascal ComponentResult SCRequestImageSettings

(ComponentInstance ci);

ci Identifies your application’s connection to a standard image-compression
dialog component.

C H A P T E R 3

Standard Image-Compression Dialog Components

Standard Image-Compression Dialog Components Reference 3-29

DESCRIPTION

The standard dialog component retrieves and validates the user’s selections, and

saves the resulting settings for use later.

Use this function when you are working with a single still image.

RESULT CODES

SCRequestSequenceSettings

The SCRequestSequenceSettings function displays the standard sequence dialog

box to the user; the dialog box uses the default settings you have established.

pascal ComponentResult SCRequestSequenceSettings

(ComponentInstance ci);

ci Identifies your application’s connection to a standard image-compression
dialog component.

DESCRIPTION

The standard dialog component retrieves and validates the user’s selections, and

saves the resulting settings for use later.

Use this function when you are working with an image sequence.

RESULT CODES

Compressing Still Images

The standard dialog component provides three functions you may use to compress a still

image. These functions differ based on how the image is stored: SCCompressImage

works with pixel maps; SCCompressPicture compresses a picture that is stored in a

handle; and SCCompressPictureFile works with pictures stored in files.

All of these functions use the current compression settings. See “Displaying the Standard

Image-Compression Dialog Box” beginning on page 3-28 for detailed information about

establishing these current settings.

If there are no default settings, each of these functions could potentially display the

dialog box for single-frame compression operations shown in Figure 3-1 on page 3-4.

scUserCancelled 1 Dialog box canceled—user clicked Cancel
paramErr –50 Invalid parameter value

scUserCancelled 1 Dialog box canceled—user clicked Cancel
paramErr –50 Invalid parameter value

C H A P T E R 3

Standard Image-Compression Dialog Components

3-30 Standard Image-Compression Dialog Components Reference

SCCompressImage

The SCCompressImage function compresses an image that is stored in a pixel map.

pascal ComponentResult SCCompressImage (ComponentInstance ci,

PixMapHandle src,

Rect *srcRect,

 ImageDescriptionHandle *desc,

Handle *data);

ci Identifies your application’s connection to a standard image-compression
dialog component.

src Contains a handle to the pixel map to be compressed.

srcRect Contains a pointer to a portion of the pixel map to compress. This
rectangle must be in the pixel map’s coordinate system. If you want to
compress the entire pixel map, set this parameter to nil.

desc Contains a pointer to an image description handle. The standard dialog
component creates an image description structure when it compresses the
image, and returns a handle to that structure in the field referred to by
this parameter. The component sizes that handle appropriately. Your
application is responsible for disposing of that handle when you are done
with it.

data Contains a pointer to a handle. The standard dialog component returns a
handle to the compressed image data in the field referred to by this
parameter. The component sizes that handle appropriately. Your
application is responsible for disposing of that handle when you are done
with it.

RESULT CODES

Image Compression Manager errors (from FCompressImage function)

SCCompressPicture

The SCCompressPicture function compresses a picture that is stored in a handle.

pascal ComponentResult SCCompressPicture (ComponentInstance ci,

 PicHandle srcPicture,

 PicHandle dstPicture);

ci Identifies your application’s connection to a standard image-compression
dialog component.

scUserCancelled 1 Dialog box canceled—user clicked Cancel

C H A P T E R 3

Standard Image-Compression Dialog Components

Standard Image-Compression Dialog Components Reference 3-31

srcPicture
Contains a handle to the picture to be compressed.

dstPicture
Contains a handle to the compressed picture. The standard dialog
component resizes this handle to accommodate the compressed picture.
Your application is responsible for creating and disposing of this handle
when you are done with it.

RESULT CODES

Image Compression Manager errors (from FCompressPicture function)

SCCompressPictureFile

The SCCompressPictureFile function compresses a picture that is stored in a file.

pascal ComponentResult SCCompressPictureFile

(ComponentInstance ci,

 short srcRefNum, short dstRefNum);

ci Identifies your application’s connection to a standard image-compression
dialog component.

srcRefNum Contains a reference to the file to be compressed.

dstRefNum Contains a reference to the file that is to receive the compressed data. This
may be the same as the source file. The standard dialog component places
the compressed image data into the file identified by this reference. Your
application is responsible for this file after the compression operation.

RESULT CODES

Image Compression Manager errors (from FCompressPictureFile function)

Compressing Image Sequences

The standard dialog component provides three functions you may use to compress an

image sequence. The SCCompressSequenceBegin function allows you to start a

sequence-compression operation; use the SCCompressSequenceFrame function for

each image in the sequence; you end the sequence by calling the

SCCompressSequenceEnd function. The standard dialog component manages all of

the compression details for you. Your application may have only one

sequence-compression operation active on any given connection; naturally, you may

have more than one connection active at a time.

scUserCancelled 1 Dialog box canceled—user clicked Cancel

scUserCancelled 1 Dialog box canceled—user clicked Cancel

C H A P T E R 3

Standard Image-Compression Dialog Components

3-32 Standard Image-Compression Dialog Components Reference

All of these functions use the current compression settings. See “Displaying the Standard

Image-Compression Dialog Box” beginning on page 3-28 for detailed information about

establishing these current settings.

If there are no default settings, each of these functions could potentially display the

dialog box for sequence-compression operations shown in Figure 3-2 on page 3-5.

SCCompressSequenceBegin

The SCCompressSequenceBegin function initiates a sequence-compression operation.

You supply the first image in the sequence so that the component can determine its

spatial and graphical characteristics.

pascal ComponentResult SCCompressSequenceBegin

(ComponentInstance ci,

PixMapHandle src, Rect *srcRect,

ImageDescriptionHandle *desc);

ci Identifies your application’s connection to a standard image-compression
dialog component.

src Contains a handle to the pixel map to be compressed. This pixel map
must contain the first image in the sequence.

srcRect Contains a pointer to a portion of the pixel map to compress. This
rectangle must be in the pixel map’s coordinate system. If you want to
compress the entire pixel map, set this parameter to nil.

desc Contains a pointer to an image description handle. The standard dialog
component creates an image description structure when it compresses the
image, and returns a handle to that structure in the field referred to by
this parameter. The component sizes the handle appropriately. If you do
not want this information, set this parameter to nil.

The returned structure is valid for the entire sequence. The standard
dialog component disposes of the handle when you end the sequence by
calling the SCCompressSequenceEnd function. Your application must
not dispose of this handle by any other means.

RESULT CODES

Memory Manager errors

Image Compression Manager errors (from CompressSequenceBegin function)

C H A P T E R 3

Standard Image-Compression Dialog Components

Standard Image-Compression Dialog Components Reference 3-33

SCCompressSequenceFrame

The SCCompressSequenceFrame function continues a sequence-compression

operation. You must call this function once for each frame in the sequence, including the

first frame.

pascal ComponentResult SCCompressSequenceFrame

(ComponentInstance ci, PixMapHandle src,

 Rect *srcRect, Handle *data,

 long *dataSize, short *notSyncFlag);

ci Identifies your application’s connection to a standard image-compression
dialog component.

src Contains a handle to the pixel map to be compressed.

srcRect Contains a pointer to a portion of the pixel map to compress. This
rectangle must be in the pixel map’s coordinate system. If you want to
compress the entire pixel map, set this parameter to nil.

data Contains a pointer to a handle. The standard dialog component returns a
handle to the compressed image data in the field referred to by this
parameter. The component sizes that handle appropriately for the
sequence.

Your application must not dispose of this handle. The standard dialog
component disposes of the handle when you end the sequence by calling
the SCCompressSequenceEnd function. If you need to lock the handle,
be sure to save and restore the handle’s state.

dataSize Contains a pointer to a long integer. The standard dialog component
returns a value that indicates the number of bytes of compressed image
data that it returns. Note that this value will differ from the size of the
handle referred to by the data parameter, because the handle is allocated
to accommodate the largest image in the sequence.

notSyncFlag
Contains a pointer to a short integer that indicates whether the
compressed frame is a key frame. If the frame is a key frame, the standard
dialog component sets the field referred to by this parameter to 0;
otherwise, the component sets this field to mediaSampleNotSync. You
may use this field to set the sampleFlags parameter of the Movie
Toolbox’s AddMediaSample function.

RESULT CODES

Image Compression Manager errors (from CompressSequenceFrame function)

scUserCancelled 1 Dialog box canceled—user clicked Cancel

C H A P T E R 3

Standard Image-Compression Dialog Components

3-34 Standard Image-Compression Dialog Components Reference

SCCompressSequenceEnd

The SCCompressSequenceEnd function ends a sequence-compression operation. The

standard dialog component disposes of any memory it used to compress the image

sequence, including the data and image description buffers. You must call this function

once for each sequence you start.

pascal ComponentResult SCCompressSequenceEnd

(ComponentInstance ci);

ci Identifies your application’s connection to a standard image-compression
dialog component.

Working With Image or Sequence Settings

The standard dialog component provides two functions that allow you to work with the

current compression settings for an image or a sequence of images. You can establish

these settings in a number of ways: see “Setting Default Parameters” on page 3-8 for

more information about your options.

You use the SCGetInfo function to retrieve settings information. The SCSetInfo

function enables you to modify the settings.

These functions can work with a number of different types of settings information. When

you call either function, you specify the type of data you want to work with. Each of

these request types requires different parameter data. See “Request Types” beginning on

page 3-15 for a description of each of these request types and their data requirements.

SCGetInfo

The SCGetInfo function allows you to retrieve configuration information from the

standard dialog component.

pascal ComponentResult SCGetInfo (ComponentInstance ci,

 OSType type, void *info);

ci Identifies your application’s connection to a standard image-compression
dialog component.

C H A P T E R 3

Standard Image-Compression Dialog Components

Standard Image-Compression Dialog Components Reference 3-35

type Specifies the type of information you want to retrieve. The following
values are valid:

scSpatialSettingsType
The component returns its spatial compression parameters.

scTemporalSettingsType
The component returns its temporal compression
parameters.

scDataRateSettingsType
The component returns information about its compression
data rate.

scColorTableType
The component returns its color table.

scProgressProcType
The component returns a pointer to its progress function.

scExtendedProcsType
The component returns information about how you have
extended the standard dialog box.

scPreferenceFlagsType
The component returns its current preference flags settings.

scSettingsStateType
The component returns its complete configuration.

scSequenceIDType
The component returns its current image-compression
sequence identifier.

scWindowPositionType
The component returns information about where the
standard dialog is positioned.

scCodecFlagsType
The component returns its current image-compression
control flags.

info Contains a pointer to a field that is to receive the information.

DESCRIPTION

You use the type parameter to specify the type of information you want to retrieve. The

info parameter contains a pointer to a location to receive the information (see this

section’s introductory text for information about the format of the data that is returned

for each request type). If the component cannot satisfy your request, it returns a result

code of scTypeNotFoundErr.

RESULT CODE

scTypeNotFoundErr –8971 Component does not have the information you want

C H A P T E R 3

Standard Image-Compression Dialog Components

3-36 Standard Image-Compression Dialog Components Reference

SCSetInfo

The SCSetInfo function allows you to modify the standard dialog component’s

configuration information.

pascal ComponentResult SCSetInfo (ComponentInstance ci,

OSType type, void *info);

ci Identifies your application’s connection to a standard image-compression
dialog component.

type Specifies the type of information you want to modify. The following
values are valid:

scSpatialSettingsType
Modifies the component’s spatial compression parameters.

scTemporalSettingsType
Modifies the component’s temporal compression
parameters.

scDataRateSettingsType
Modifies the component’s compression data rate.

scColorTableType
Modifies the component’s color table.

scProgressProcType
Modifies the component’s progress function.

scExtendedProcsType
Allows you to extend the standard dialog box.

scPreferenceFlagsType
Modifies the component’s preference flags settings.

scSettingsStateType
Configures the component, based on a saved configuration.

scWindowPositionType
Positions the standard dialog box.

scCodecFlagsType
Modifies the component’s image-compression control flags.

info Contains a pointer to a field that contains the new configuration
information.

DESCRIPTION

You use the type parameter to specify the type of information you want to modify. The

info parameter contains a pointer to a location that contains the new information (see

“Request Types” beginning on page 3-15 for information about the format of the data

you must supply for each request type). If the component cannot satisfy your request, it

returns a result code of scTypeNotFoundErr.

C H A P T E R 3

Standard Image-Compression Dialog Components

Standard Image-Compression Dialog Components Reference 3-37

RESULT CODE

Specifying a Test Image

The standard image-compression dialog component provided by Apple supports a test

image. As you can see in Figure 3-3 on page 3-7, the dialog box contains a small image

along with the other parts of the dialog box. The component uses this image to display

the effect of the user’s image-compression settings. In this manner, the user can

experiment with different settings and see the results of those settings immediately.

The component provides three functions that allow you to specify the test image.

Use the SCSetTestImagePictHandle function if your test image is stored in a

handle. Use the SCSetTestImagePictFile function if your test image is in a picture

file. The SCSetTestImagePixMap function sets the test image from a pixel map.

SCSetTestImagePictHandle

The SCSetTestImagePictHandle function sets the dialog box’s test image from a

picture that is stored in a handle.

pascal ComponentResult SCSetTestImagePictHandle

(ComponentInstance ci, PicHandle testPict,

 Rect *testRect, short testFlags);

ci Identifies your application’s connection to a standard image-compression
dialog component.

testPict Identifies a handle that contains the new test image. Your application is
responsible for disposing of this handle when you are done with it. You
must clear the image or close your connection to the standard
image-compression dialog component before you dispose of this handle
or close the corresponding resource file. You must set this handle as
nonpurgeable.

Set this parameter to nil to clear the test image.

testRect Contains a pointer to a rectangle structure. This rectangle specifies, in the
coordinate system of the source image, the area of interest or point of
interest in the test image. The area of interest defines a portion of the test
image that is to be shown to the user in the dialog box. Use this parameter
to direct the component to a specific portion of the test image. The
component uses the value of the testFlags parameter to determine
how it transforms this image before displaying it to the user. The
component uses the testFlags parameter only when the test image is
larger than the test image portion of the dialog box.

scTypeNotFoundErr –8971 Component does not have the information you want

C H A P T E R 3

Standard Image-Compression Dialog Components

3-38 Standard Image-Compression Dialog Components Reference

You may specify a point of interest by setting the points in the rectangle
structure so that they enclose a single point—for example, (0,0) and (1,1).
The component centers this point in the image that is displayed in the
dialog box, and displays the part of the image that fits in the test image
portion of the dialog box.

To use the entire picture, specify nil in this parameter.

testFlags Specifies how the component is to display a test image that is larger
than the test image portion of the dialog box. If you set this parameter to
0, the component uses a default method of its own choosing. In all cases,
the component centers the area or point of interest in the test image
portion of the dialog box, and then displays some part of the test image.

You may indicate your display preference by setting this parameter to one
of the following values:

scPreferCropping
Indicates that the component should crop the test image to
fit the test image portion of the dialog box. The component
displays the part of the image that fits in the test image
portion of the box. If the image is smaller than the space
allotted in the dialog box, the component does not alter the
image before displaying it—the resulting image is smaller
than the available space.

scPreferScaling
Indicates that the component should scale the test image
to fit the test image portion of the dialog box. The
component shrinks the image to fit the test image portion
of the dialog box.

scPreferScalingAndCropping
Indicates that the component should both scale and crop
the test image. This option is useful with very large test
images. The component first shrinks the image to
approximately the size of the test image portion of the
dialog box, and then trims the image so that it fits the
available space.

RESULT CODE

paramErr –50 Invalid parameter specified

C H A P T E R 3

Standard Image-Compression Dialog Components

Standard Image-Compression Dialog Components Reference 3-39

SCSetTestImagePictFile

The SCSetTestImagePictFile function sets the dialog box’s test image from a

picture that is stored in a picture file.

pascal ComponentResult SCSetTestImagePictFile

(ComponentInstance ci, short testFileRef,

Rect *testRect, short testFlags);

ci Identifies your application’s connection to a standard image-compression
dialog component.

testFileRef
Identifies the file that contains the new test image. Your application is
responsible for opening this file before calling this function. You must also
close the file when you are done with it. You must clear the image or close
your connection to the standard image-compression dialog component
before you close the file. If the file contains a large image, the component
may take some time to display the standard image-compression dialog
box. In this case, the component displays the watch cursor while it loads
the test image.

Set this parameter to 0 to clear the test image.

testRect Contains a pointer to a rectangle structure. This rectangle specifies, in the
coordinate system of the source image, the area of interest or point of
interest in the test image. The area of interest defines a portion of the test
image that is to be shown to the user in the dialog box. Use this parameter
to direct the component to a specific portion of the test image. The
component uses the value of the testFlags parameter to determine
how it transforms large images before displaying them to the user.

You may specify a point of interest by setting the points in the rectangle
structure so that they enclose a single point—for example, (0,0) and (1,1).
The component centers this point in the image that is displayed in the
dialog box, and displays the part of the image that fits in the test image
portion of the dialog box.

To use the entire picture file, pass nil in this parameter.

testFlags Specifies how the component is to display a test image that is larger
than the test image portion of the dialog box. If you set this parameter
to 0, the component uses a default method of its own choosing. In all
cases, the component centers the area or point of interest in the test image
portion of the dialog box, and then displays some part of the test image.

You may indicate your display preference by setting this parameter to one
of the following values:

scPreferCropping
Indicates that the component should crop the test image to
fit the test image portion of the dialog box. The component
displays the part of the image that fits in the test image
portion of the box. If the image is smaller than the space

C H A P T E R 3

Standard Image-Compression Dialog Components

3-40 Standard Image-Compression Dialog Components Reference

alloted in the dialog box, the component does not alter the
image before displaying it—the resulting image is smaller
than the available space.

scPreferScaling
Indicates that the component should scale the test image
to fit the test image portion of the dialog box. The
component shrinks the image to fit the test image portion
of the dialog box.

scPreferScalingAndCropping
Indicates that the component should both scale and crop
the test image. This option is useful with very large test
images. The component first shrinks the image to
approximately the size of the test image portion of the
dialog box, then trims the image so that it fits the available
space.

RESULT CODES

File Manager errors

SCSetTestImagePixMap

The SCSetTestImagePixMap function sets the dialog box’s test image from a picture

that is stored in a pixel map.

pascal ComponentResult SCSetTestImagePixMap (ComponentInstance ci,

PixMapHandle testPixMap,

Rect *testRect,

short testFlags);

ci Identifies your application’s connection to a standard image-compression
dialog component.

testPixMap
Contains a handle to a pixel map that contains the new test image. Your
application is responsible for creating this pixel map before calling this
function. You must also dispose of the pixel map when you are done with
it. You must clear the image or close your connection to the standard
image-compression dialog component before you dispose of the pixel
map.

Set this parameter to nil to clear the test image.

paramErr –50 Invalid parameter specified

C H A P T E R 3

Standard Image-Compression Dialog Components

Standard Image-Compression Dialog Components Reference 3-41

testRect Contains a pointer to a rectangle structure. This rectangle specifies, in the
coordinate system of the source image, the area of interest or point of
interest in the test image. The area of interest defines a portion of the test
image that is to be shown to the user in the dialog box. Use this parameter
to direct the component to a specific portion of the test image. The
component uses the value of the testFlags parameter to determine
how it transforms large images before displaying them to the user.

You may specify a point of interest by setting the points in the rectangle
structure so that they enclose a single point—for example, (0,0) and (1,1).
The component centers this point in the image that is displayed in the
dialog box, and displays the part of the image that fits in the test image
portion of the dialog box.

To use the entire pixel map, specify nil in this parameter.

testFlags Specifies how the component is to display a test image that is larger
than the test image portion of the dialog box. If you set this parameter
to 0, the component uses a default method of its own choosing. In all
cases, the component centers the area or point of interest in the test image
portion of the dialog box, and then displays some part of the test image.

You may indicate your display preference by setting this parameter to one
of the following values:

scPreferCropping
Indicates that the component should crop the test image to
fit the test image portion of the dialog box. The component
displays the part of the image that fits in the test image
portion of the box. If the image is smaller than the space
alloted in the dialog box, the component does not alter the
image before displaying it—the resulting image is smaller
than the available space.

scPreferScaling
Indicates that the component should scale the test image
to fit the test image portion of the dialog box. The
component shrinks the image to fit the test image portion
of the dialog box.

scPreferScalingAndCropping
Indicates that the component should both scale and crop
the test image. This option is useful with very large test
images. The component first shrinks the image to
approximately the size of the test image portion of
the dialog box, then trims the image so that it fits the
available space.

RESULT CODE

paramErr –50 Invalid parameter specified

C H A P T E R 3

Standard Image-Compression Dialog Components

3-42 Standard Image-Compression Dialog Components Reference

Positioning Dialog Boxes and Rectangles

Standard image-compression dialog components provide functions that allow you to

position rectangles and dialog boxes. These functions are most useful in helping you to

manage dialog boxes that are related to the standard image-compression dialog. For

example, your application might support a custom button that initiates a dialog box with

the user to specify additional compression parameters. You can use these functions to

position that dialog box in relation to the standard image-compression dialog box.

There are two positioning functions: the SCPositionRect function positions a

rectangle; the SCPositionDialog positions a dialog box. The

SCGetBestDeviceRect function returns information about the best available display

device.

SCPositionRect

The SCPositionRect function positions a rectangle on the screen. You indicate where

you want to put the rectangle by specifying the desired coordinates of the upper-left

corner of the rectangle.

pascal ComponentResult SCPositionRect (ComponentInstance ci,

Rect *rp, Point *where);

ci Identifies your application’s connection to a standard image-compression
dialog component.

rp Contains a pointer to a rectangle structure. When you call the
SCPositionRect function, this structure should contain the rectangle’s
current global coordinates. The SCPositionRect function adjusts the
coordinates in the structure to reflect the rectangle’s new position.

where Contains a pointer to a point in global coordinates identifying the desired
location of the upper-left corner of the rectangle. This parameter allows
your application to position the rectangle on the screen.

The standard image-compression dialog component supports two special
values for this parameter. If you set this parameter to (–1,–1), the
component places the rectangle on the display device that has the menu
bar. The component centers the rectangle horizontally on that device. The
component vertically positions the rectangle so that 1/3 of the vertical
space that is not used by the rectangle remains above the rectangle, and
the remaining 2/3 of the unused space is below the rectangle.

If you set this parameter to (–2,–2), the component places the rectangle
on the display device that supports the highest color or grayscale
resolution. The component positions the rectangle as it does for the other
special value. This option displays images most clearly and is the
recommended value for most cases.

The SCPositionRect function adjusts the coordinates of this point to
correspond to the upper-left corner of the rectangle.

C H A P T E R 3

Standard Image-Compression Dialog Components

Standard Image-Compression Dialog Components Reference 3-43

RESULT CODE

SCPositionDialog

The SCPositionDialog function helps you to position a dialog box on the screen.

pascal ComponentResult SCPositionDialog (ComponentInstance ci,

short id, Point *where);

ci Identifies your application’s connection to a standard image-compression
dialog component.

id Specifies the resource number of a 'DLOG' resource. The
SCPositionDialog function positions the dialog box that corresponds
to this resource.

where Contains a pointer to a point in global coordinates identifying the desired
location of the upper-left corner of the dialog box. This parameter allows
you to indicate how you want to position the dialog box on the screen.

The standard image-compression dialog component supports two special
values for this parameter. If you set this parameter to (–1,–1), the
component places the dialog box on the display device that has the menu
bar. The component centers the dialog box horizontally on that device.
The component vertically positions the dialog box so that 1/3 of the
vertical space that is not used by the box remains above the box, and the
remaining 2/3 of the unused space is below the box.

If you set this parameter to (–2,–2), the component places the dialog box
on the display device that supports the highest color or gray scale
resolution. The component positions the dialog box as it does for the
other special value. This option displays images most clearly and is the
recommended value for most cases.

The SCPositionDialog function adjusts the coordinates of this point to
correspond to the upper-left corner of the dialog box.

DESCRIPTION

You indicate where you want to put the dialog box by specifying the desired coordinates

of the upper-left corner of the box. The component then derives appropriate location

information for the dialog box based upon its size and the display characteristics of the

destination device, and returns that location information to your program. You can then

pass that information to the Dialog Manager when you want to display the dialog box.

RESULT CODES

Resource Manager errors

paramErr –50 Invalid parameter specified

paramErr –50 Invalid parameter specified

C H A P T E R 3

Standard Image-Compression Dialog Components

3-44 Standard Image-Compression Dialog Components Reference

SCGetBestDeviceRect

The SCGetBestDeviceRect function determines the boundary rectangle that

surrounds the display device that supports the largest color or grayscale palette.

pascal ComponentResult SCGetBestDeviceRect (ComponentInstance ci,

Rect *r);

ci Identifies your application’s connection to a standard image-compression
dialog component.

r Contains a pointer to a rectangle structure. The SCGetBestDeviceRect
function returns the global coordinates of a rectangle that surrounds the
appropriate display device.

DESCRIPTION

The SCGetBestDeviceRect function determines the boundary rectangle that

surrounds the display device that supports the largest color or grayscale palette. If more

than one device supports the same pixel depth, the function returns information about

the device that has the highest resolution.

Note that the function subtracts the menu bar from the returned rectangle if the best

device is also the main display device.

The standard image-compression dialog component uses this function to position

rectangles and dialog boxes when you indicate that the component is to choose the best

display device. In general, your application does not need to use this function.

RESULT CODE

Utility Function

The standard dialog component provides a single utility function that you can use to

create a graphics world that is appropriate for the current compression settings. This

function is described next.

paramErr –50 Invalid parameter specified

C H A P T E R 3

Standard Image-Compression Dialog Components

Standard Image-Compression Dialog Components Reference 3-45

SCNewGWorld

The SCNewGWorld function creates a graphics world based on the current compression

settings.

pascal ComponentResult SCNewGWorld (ComponentInstance ci,

 GWorldPtr *gwp, Rect *rp,

 GWorldFlags flags);

ci Identifies your application’s connection to a standard image-compression
dialog component.

gwp Contains a pointer to a pointer to a graphics world. The standard dialog
component places a pointer to the new graphics world into the field
referred to by this parameter. If the component cannot create the graphics
world, it sets this field to nil.

Your application is responsible for disposing of the graphics world
when you are done with it.

rp Contains a pointer to the boundaries of the graphics world. If you set this
parameter to nil, the standard dialog component uses the test image’s
boundary rectangle. If you don’t specify a boundary rectangle and there is
no test image, the component does not create the graphics world.

flags Contains flags that are passed to QuickDraw’s NewGWorld function. See
the chapter “Basic QuickDraw” in Inside Macintosh: Imaging for more
information about this function.

DESCRIPTION

The SCNewGWorld function creates a graphics world that can accommodate the current

compression settings, including color table and grayscale settings (if appropriate). If the

selected color table is inappropriate for the pixel depth, the standard dialog component

uses a standard color for the depth.

RESULT CODE

Application-Defined Function

The standard image-compression dialog component supplied by Apple allows you to

extend the interface of the standard dialog box by defining a hook function. This section

describes how that hook function operates.

scTypeNotFoundErr –8971 Component cannot create a graphics world

C H A P T E R 3

Standard Image-Compression Dialog Components

3-46 Standard Image-Compression Dialog Components Reference

MyHook

This function is called by the standard dialog component whenever the user selects an

item in the standard image-compression dialog box. You define the function in your

application and assign it to a dialog box with the hookProc field of the

scExtendedProcsType request, which is discussed on page 3-21.

This is how you would define a hook function called MyHook:

pascal short MyHook (DialogPtr theDialog, short itemHit,

void *params, long refcon);

theDialog Contains a pointer to the dialog structure that identifies the current
dialog box.

itemHit Identifies the item clicked by the user.

params Contains a pointer to a field that contains the identifier for your
connection to the standard dialog component. You can use this identifier
to call the dialog component’s SCGetInfo or SCSetInfo functions.

refcon Contains the reference constant value you supplied to the
SCGetCompressionExtended function.

DESCRIPTION

Your hook function returns a short integer that identifies the item selected by the user. In

general, your hook function should return the same item number it receives in the

itemHit parameter. By returning a specific value, you can affect how the component

handles the user selection. The following values are defined:

scOKItem Indicates that the user clicked the OK button.

scCancelItem
Indicates that the user clicked the Cancel button.

scCustomItem
Indicates that the user clicked the custom button.

If you set the returned value to 0, you cancel the user selection; the dialog box remains

on the screen awaiting further action by the user.

The hook function allows your application to tailor or extend the operation of the

standard image-compression dialog box. By attaching your hook function to the dialog

box, you intercept all user selections. For example, your hook function could perform

additional parameter checking whenever the user clicks the OK button. In this case,

whenever you detect an incorrect parameter value, you could display a message to the

user and then set the returned value to 0, thereby canceling the user’s selection. The user

would then either cancel the dialog box or try again.

As another example, you could support additional parameters by implementing

the dialog box’s custom button. You could use your hook function to display a secondary

dialog box whenever the user clicks the custom button. For an example of defining and

using a custom button, see “Extending the Basic Dialog Box” beginning on page 3-11.

C H A P T E R 3

Standard Image-Compression Dialog Components

Summary of Standard Image-Compression Dialog Components 3-47

Summary of Standard Image-Compression Dialog Components

C Summary

Constants

/* component type value */

#define StandardCompressionType 'scdi' /* standard image-compression

 dialog component type */

#define StandardCompressionSubType 'imag' /* standard image-compression

 dialog component subtype */

/* preference flags */

#define scListEveryCodec (1L<<1) /* list all components */

#define scAllowZeroFrameRate (1L<<2) /* allow 0 frame rate */

#define scAllowZeroKeyFrameRate (1L<<3) /* allow 0 key frame rate */

#define scShowBestDepth (1L<<4) /* allow "best depth" */

#define scUseMovableModal (1L<<5) /* use movable dialog */

/* values for testFlags parameter of functions that set test image */

#define scPreferCropping (1<<0) /* crop image to fit */

#define scPreferScaling (1<<1) /* shrink image to fit */

#define scPreferScalingAndCropping (scPreferScaling + scPreferCropping)

/* shrink then crop */

/* dimensions of the test image portion of the dialog box */

#define scTestImageWidth 80 /* test width of image */

#define scTestImageHeight 80 /* test height of image */

/* possible items returned by hook function */

#define scOKItem 1 /* user clicked OK */

#define scCancelItem 2 /* user clicked Cancel */

#define scCustomItem 3 /* user clicked custom button */

/* result returned when user canceled */

#define scUserCancelled 1 /* user canceled dialog */

C H A P T E R 3

Standard Image-Compression Dialog Components

3-48 Summary of Standard Image-Compression Dialog Components

/* selectors for standard image-compression dialog components */

#define scPositionRect 2 /* SCPositionRect */

#define scPositionDialog 3 /* SCPositionDialog */

#define scSetTestImagePictHandle 4 /* SCSetTestImagePictHandle */

#define scSetTestImagePictFile 5 /* SCSetTestImagePictFile */

#define scSetTestImagePixMap 6 /* SCSetTestImagePixMap */

#define scGetBestDeviceRect 7 /* SCGetBestDeviceRect */

#define scRequestImageSettings 10 /* SCRequestImageSettings */

#define scCompressImage 11 /* SCCompressImage */

#define scCompressPicture 12 /* SCCompressPicture */

#define scCompressPictureFile 13 /* SCCompressPictureFile */

#define scRequestSequenceSettings 14 /* SCRequestSequenceSettings */

#define scCompressSequenceBegin 15 /* SCCompressSequenceBegin */

#define scCompressSequenceFrame 16 /* SCCompressSequenceFrame */

#define scCompressSequenceEnd 17 /* SCCompressSequencEnd */

#define scDefaultPictHandleSettings18 /* SCDefaultPictHandleSettings */

#define scDefaultPictFileSettings 19 /* SCDefaultPictFileSettings */

#define scDefaultPixMapSettings 20 /* SCDefaultPixMapSettings */

#define scGetInfo 21 /* SCGetInfo */

#define scSetInfo 22 /* SCSetInfo */

#define scNewGWorld 23 /* SCNewGWorld */

/* selectors included for compatibility with earlier linked version

of standard image-compression dialog component */

#define scGetCompression 1 /* SCGetCompression */

#define scShowMotionSettings (1L<<0) /* SCShowMotionSettings */

#define scSettingsChangedItem -1 /* SCSettingsChangedItem */

/* SCSetInfo and SCGetInfo request types */

#define scSpatialSettingsType 'sptl' /* spatial options */

#define scTemporalSettingsType 'tprl' /* temporal options */

#define scDataRateSettingsType 'drat' /* data rate */

#define scColorTableType 'clut' /* color table */

#define scProgressProcType 'prog' /* progress function */

#define scExtendedProcsType 'xprc' /* extended dialog */

#define scPreferenceFlagsType 'pref' /* preferences */

#define scSettingsStateType 'ssta' /* all settings */

#define scSequenceIDType 'sequ' /* sequence ID */

#define scWindowPositionType 'wndw' /* window position */

#define scCodecFlagsType 'cflg' /* compression flags */

C H A P T E R 3

Standard Image-Compression Dialog Components

Summary of Standard Image-Compression Dialog Components 3-49

Data Types

/* SCModelFilterProcPtr is a pointer to a filter function */

typedef pascal Boolean (*SCModalFilterProcPtr) (DialogPtr theDialog,

EventRecord *theEvent, short *itemHit, long refcon);

/* SCModalHookProcPtr is a pointer to a hook function */

typedef pascal short (*SCModalHookProcPtr) (DialogPtr theDialog,

short itemHit, SCParams *params, long refcon);

/* spatial options structure with the spatial settings request */

typedef struct {

CodecType codecType; /* compressor type */

CodecComponent codec; /* compressor */

short depth; /* pixel depth */

CodecQ spatialQuality; /* desired quality */

} SCSpatialSettings;

/* temporal options structure with the temporal settings request */

typedef struct {

CodecQ temporalQuality; /* desired quality */

Fixed frameRate; /* frame rate */

long keyFrameRate; /* key frame rate */

} SCTemporalSettings;

/* data rate options with the data rate settings request */

typedef struct {

long dataRate; /* desired data rate */

long frameDuration; /* frame duration */

CodecQ minSpatialQuality; /* minimum value */

CodecQ minTemporalQuality; /* minimum value */

} SCDataRateSettings;

/* extending the dialog box with the extended functions request */

typedef struct {

SCModalFilterProcPtr filterProc; /* filter function */

SCModalHookProcPtr hookProc; /* hook function */

long refcon; /* reference constant */

Str31 customName; /* custom button name */

} SCExtendedProcs;

/* standard compression parameter block for compatibility with earlier

linked version of standard image-compression dialog components */

C H A P T E R 3

Standard Image-Compression Dialog Components

3-50 Summary of Standard Image-Compression Dialog Components

typedef struct {

long flags; /* control flags */

CodecType theCodecType; /* compressor type */

CodecComponent theCodec; /* specific compressor */

CodecQ spatialQuality; /* spatial quality value */

CodecQ temporalQuality; /* temporal quality value */

short depth; /* pixel depth */

Fixed frameRate; /* desired frame rate */

long keyFrameRate; /* desired key frame rate */

long reserved1; /* reserved--set to 0) */

long reserved2; /* reserved--set to 0 */

} SCParams;

Standard Image-Compression Dialog Component Functions

Getting Default Settings for an Image or a Sequence

pascal ComponentResult SCDefaultPixMapSettings
(ComponentInstance ci, PixMapHandle src,
short motion);

pascal ComponentResult SCDefaultPictHandleSettings
(ComponentInstance ci, PicHandle srcPicture,
short motion);

pascal ComponentResult SCDefaultPictFileSettings
(ComponentInstance ci, short srcRef,
short motion);

Displaying the Standard Image-Compression Dialog Box

pascal ComponentResult SCRequestImageSettings
(ComponentInstance ci);

pascal ComponentResult SCRequestSequenceSettings
(ComponentInstance ci);

Compressing Still Images

pascal ComponentResult SCCompressImage
(ComponentInstance ci, PixMapHandle src,
Rect *srcRect, ImageDescriptionHandle *desc,
Handle *data);

pascal ComponentResult SCCompressPicture
(ComponentInstance ci, PicHandle srcPicture,
PicHandle dstPicture);

C H A P T E R 3

Standard Image-Compression Dialog Components

Summary of Standard Image-Compression Dialog Components 3-51

pascal ComponentResult SCCompressPictureFile
(ComponentInstance ci, short srcRefNum,
short dstRefNum);

Compressing Image Sequences

pascal ComponentResult SCCompressSequenceBegin
(ComponentInstance ci, PixMapHandle src,
Rect *srcRect, ImageDescriptionHandle *desc);

pascal ComponentResult SCCompressSequenceFrame
(ComponentInstance ci, PixMapHandle src,
Rect *srcRect, Handle *data, long *dataSize,
short *notSyncFlag);

pascal ComponentResult SCCompressSequenceEnd
(ComponentInstance ci);

Working With Image or Sequence Settings

pascal ComponentResult SCGetInfo
(ComponentInstance ci, OSType type, void *info);

pascal ComponentResult SCSetInfo
(ComponentInstance ci, OSType type, void *info);

Specifying a Test Image

pascal ComponentResult SCSetTestImagePictHandle
(ComponentInstance ci, PicHandle testPict,
Rect *testRect, short testFlags);

pascal ComponentResult SCSetTestImagePictFile
(ComponentInstance ci, short testFileRef,
Rect *testRect, short testFlags);

pascal ComponentResult SCSetTestImagePixMap
(ComponentInstance ci, PixMapHandle testPixMap,
Rect *testRect, short testFlags);

Positioning Dialog Boxes and Rectangles

pascal ComponentResult SCPositionRect
(ComponentInstance ci, Rect *rp, Point *where);

pascal ComponentResult SCPositionDialog
(ComponentInstance ci, short id, Point *where);

pascal ComponentResult SCGetBestDeviceRect
(ComponentInstance ci, Rect *r);

C H A P T E R 3

Standard Image-Compression Dialog Components

3-52 Summary of Standard Image-Compression Dialog Components

Utility Function

pascal ComponentResult SCNewGWorld
(ComponentInstance ci, GWorldPtr *gwp,
Rect *rp, GWorldFlags flags);

Application-Defined Function

pascal short MyHook (DialogPtr theDialog, short itemHit,
void *params, long refcon);

Pascal Summary

Constants

CONST

{component type value}

StandardCompressionType = 'scdi'; {standard image-compression }

{ dialog component type}

StandardCompressionSubType = 'imag'; {standard image-compression }

{ dialog component subtype}

{preference flags}

scListEveryCodec = $2; {list all components}

scAllowZeroFrameRate = $4; {allow 0 frame rate}

scAllowZeroKeyFrameRate = $8; {allow 0 key frame rate}

scShowBestDepth = $10; {allow "best depth"}

scUseMovableModal = $20; {use movable dialog box}

{values for testFlags parameter of functions that set test image}

scPreferCropping = 1; {crop image to fit}

scPreferScaling = 2; {shrink image to fit}

scPreferScalingAndCropping = 3; {shrink then crop}

{dimensions of the test image portion of the dialog box}

scTestImageWidth = 80; {test width of image}

scTestImageHeight = 80; {test height of image}

{possible items returned by hook function}

scOKItem = 1; {user clicked OK}

scCancelItem = 2; {user clicked Cancel}

scCustomItem = 3; {user clicked custom button}

C H A P T E R 3

Standard Image-Compression Dialog Components

Summary of Standard Image-Compression Dialog Components 3-53

{result returned when user canceled}

scUserCancelled = 1; {user canceled dialog}

{selectors for standard image-compression dialog components}

kScPositionRect = 2; {SCPositionRect}

kScPositionDialog = 3; {SCPositionDialog}

kScSetTestImagePictHandle = 4; {SCSetTestImagePictHandle}

kScSetTestImagePictFile = 5; {SCSetTestImagePictFile}

kScSetTestImagePixMap = 6; {SCSetTestImagePixMap}

kScGetBestDeviceRect = 7; {SCGetBestDeviceRect}

kScRequestImageSettings = $A; {SCRequestImageSettings}

kScCompressImage = $B; {SCCompressImage}

kScCompressPicture = $C; {SCCompressPicture}

kScCompressPictureFile = $D; {SCCompressPictureFile}

kScRequestSequenceSettings = $E; {SCRequestSequenceSettings}

kScCompressSequenceBegin = $F; {SCCompressSequenceBegin}

kScCompressSequenceFrame = $10; {SCCompressSequenceFrame}

kScCompressSequenceEnd = $11; {SCCompressSequenceEnd}

kScDefaultPictHandleSettings = $12; {SCDefaultPictHandleSettings}

kScDefaultPictFileSettings = $13; {SCDefaultPictFileSettings}

kScDefaultPixMapSettings = $14; {SCDefaultPixMapSettings}

kScGetInfo = $15; {SCGetInfo}

kScSetInfo = $16; {SCSetInfo}

kScNewGWorld = $17; {SCNewGWorld}

{selectors included for compatibility with earlier linked version }

{ of standard image-compression dialog component}

kScShowMotionSettings = 1; {SCShowMotionSettings}

kScGetCompression = 1; {SCGetCompression}

kScSettingsChangedItem = -1; {SCSettingsChangedItem}

{SCSetInfo and SCGetInfo request types}

scSpatialSettingsType = 'sptl'; {spatial options}

scTemporalSettingsType = 'tprl'; {temporal options}

scDataRateSettingsType = 'drat'; {data rate}

scColorTableType = 'clut'; {color table}

scProgressProcType = 'prog'; {progress function}

scExtendedProcsType = 'xprc'; {extended dialog}

scPreferenceFlagsType = 'pref'; {preferences}

scSettingsStateType = 'ssta'; {all settings}

scSequenceIDType = 'sequ'; {sequence ID}

scWindowPositionType = 'wndw'; {window position}

scCodecFlagsType = 'cflg'; {compression flags}

C H A P T E R 3

Standard Image-Compression Dialog Components

3-54 Summary of Standard Image-Compression Dialog Components

Data Types

TYPE

{SCModelFilterProcPtr is a pointer to a filter function}

SCModalFilterProcPtr = ProcPtr;

{SCModalHookProcPtr is a pointer to a hook function}

SCModalHookProcPtr = ProcPtr;

{spatial options structure with the spatial settings request}

SCSpatialSettings =

RECORD

cType: CodecType; {compressor type}

codec: CodecComponent; {compressor}

depth: Integer; {pixel depth}

spatialQuality: CodecQ; {desired quality}

END;

{temporal options structure with the temporal settings request}

SCTemporalSettings =

RECORD

temporalQuality: CodecQ; {desired quality}

frameRate: Fixed; {frame rate}

keyFrameRate: LongInt; {key frame rate}

END;

{data rate options with the data rate settings request}

SCDataRateSettings =

RECORD

dataRate: LongInt; {desired data rate}

frameDuration: LongInt; {frame duration}

minSpatialQuality: CodecQ; {minimum value}

minTemporalQuality: CodecQ; {minimum value}

END;

{extending the dialog box with the extended functions request}

SCExtendedProcs =

RECORD

filterProc: SCModalFilterProcPtr;{filter function}

hookProc: SCModalHookProcPtr; {hook function}

refCon: LongInt; {reference constant}

customName: Str31; {custom button name}

END;

C H A P T E R 3

Standard Image-Compression Dialog Components

Summary of Standard Image-Compression Dialog Components 3-55

{standard compression parameter block included for compatibility }

{ with earlier linked version of standard-image compression dialog }

{ component}

SCParams =

RECORD

flags : LongInt; {control flags}

theCodecType: CodecType; {compressor type}

theCodec: CodecComponent; {specific compressor}

spatialQuality: CodecQ; {spatial quality value}

temporalQuality: CodecQ; {temporal quality value}

depth: Integer; {pixel depth}

frameRate: Fixed; {desired frame rate}

keyFrameRate: LongInt; {desired key frame rate}

reserved1: LongInt; {reserved--set to 0}

reserved2: LongInt; [reserved--set to 0}

END;

Standard Image-Compression Dialog Component Routines

Getting Default Settings for an Image or a Sequence

FUNCTION SCDefaultPixMapSettings
(ci: ComponentInstance; src: PixMapHandle;
motion: Boolean): ComponentResult;

FUNCTION SCDefaultPictHandleSettings
(ci: ComponentInstance; src: PicHandle;
motion: Boolean): ComponentResult;

FUNCTION SCDefaultPictFileSettings
(ci: ComponentInstance; srcRef: Integer;
motion: Boolean): ComponentResult;

Displaying the Standard Image-Compression Dialog Box

FUNCTION SCRequestImageSettings
(ci: ComponentInstance): ComponentResult;

FUNCTION SCRequestSequenceSettings
(ci: ComponentInstance): ComponentResult;

Compressing Still Images

FUNCTION SCCompressImage (ci: ComponentInstance; src: PixMapHandle;
srcRect: Rect;
VAR desc: ImageDescriptionHandle;
VAR data: Handle): ComponentResult;

C H A P T E R 3

Standard Image-Compression Dialog Components

3-56 Summary of Standard Image-Compression Dialog Components

FUNCTION SCCompressPicture (ci: ComponentInstance; src, dst: PicHandle):
ComponentResult;

FUNCTION SCCompressPictureFile
(ci: ComponentInstance; srcRef,
dstRef: Integer): ComponentResult;

Compressing Image Sequences

FUNCTION SCCompressSequenceBegin
(ci: ComponentInstance; src: PixMapHandle;
srcRect: Rect;
VAR desc: ImageDescriptionHandle):
ComponentResult;

FUNCTION SCCompressSequenceFrame
(ci: ComponentInstance; src: PixMapHandle;
srcRect: Rect; VAR data: Handle;
VAR dataSize: LongInt;
VAR notSyncFlag: Boolean): ComponentResult;

FUNCTION SCCompressSequenceEnd
(ci: ComponentInstance): ComponentResult;

Working With Image or Sequence Settings

FUNCTION SCGetInfo (ci: ComponentInstance; infoType: OSType;
info: Ptr): ComponentResult;

FUNCTION SCSetInfo (ci: ComponentInstance; infoType: OSType;
info: Ptr): ComponentResult;

Specifying a Test Image

FUNCTION SCSetTestImagePictHandle
(ci: ComponentInstance; testPict: PicHandle;
testRect: RectPtr; testFlags: Integer):
ComponentResult;

FUNCTION SCSetTestImagePictFile
(ci: ComponentInstance; testFileRef: Integer;
testRect: RectPtr; testFlags: Integer):
ComponentResult;

FUNCTION SCSetTestImagePixMap
(ci: ComponentInstance;
testPixMap: PixMapHandle; testRect: RectPtr;
testFlags: Integer): ComponentResult;

C H A P T E R 3

Standard Image-Compression Dialog Components

Summary of Standard Image-Compression Dialog Components 3-57

Positioning Dialog Boxes and Rectangles

FUNCTION SCPositionRect (ci: ComponentInstance; r: RectPtr;
VAR where: Point): ComponentResult;

FUNCTION SCPositionDialog (ci: ComponentInstance; id: Integer;
VAR where: Point): ComponentResult;

FUNCTION SCGetBestDeviceRect
(ci: ComponentInstance; r: RectPtr):
ComponentResult;

Utility Function

FUNCTION SCNewGWorld (ci: ComponentInstance; VAR gwp: GWorldPtr;
VAR rp: Rect; flags: GWorldFlags):
ComponentResult;

Application-Defined Routine

FUNCTION MyHook (theDialog: DialogPtr; itemHit: Integer;
params Ptr; refcon: LongInt): Integer;

Result Codes
scTypeNotFoundErr –8971 Component does not have the information you want

Contents 4-1

C H A P T E R 4

Image Compressor

Contents

Components

About Image Compressor Components 4-3

Banding and Extending Images 4-4

Spooling of Compressed Data 4-6

Data Loading 4-6

Data Unloading 4-7

Compressing or Decompressing Images Asynchronously 4-8

Progress Functions 4-9

Using Image Compressor Components 4-10

Performing Image Compression 4-10

Choosing a Compressor 4-10

Compressing a Horizontal Band of an Image 4-13

Decompressing an Image 4-16

Choosing a Decompressor 4-17

Decompressing a Horizontal Band of an Image 4-21

Image Compressor Components Reference 4-26

Constants 4-26

Image Compressor Component Capabilities 4-26

Format of Compressed Data and Files 4-32

Data Types 4-35

The Compressor Capability Structure 4-35

The Compression Parameters Structure 4-40

The Decompression Parameters Structure 4-46

Functions 4-53

Direct Functions 4-54

Indirect Functions 4-62

Image Compression Manager Utility Functions 4-65

C H A P T E R 4

4-2 Contents

Summary of Image Compressor Components 4-69

C Summary 4-69

Constants 4-69

Data Types 4-72

Functions 4-76

Image Compression Manager Utility Functions 4-77

Pascal Summary 4-77

Constants 4-77

Data Types 4-80

Routines 4-83

Image Compression Manager Utility Functions 4-84

Result Codes 4-84

C H A P T E R 4

About Image Compressor Components 4-3

Image Compressor Components

This chapter discusses the attributes of image compressor components and the

functional interfaces these components must support. An image compressor component
is a code resource that provides compression or decompression services for image data.

Throughout this chapter, the term image compressor component is used to describe both

compressor and decompressor components.

Note

The information in this chapter is intended for developers of image
compressor components. Application developers normally do not need
to be familiar with this material to use the Image Compression
Manager. ◆

This chapter has been divided into the following sections:

■ “About Image Compressor Components” presents general information about image
compressor components.

■ “Using Image Compressor Components” discusses how the Image Compression
Manager uses image compressor components to compress and decompress images.

■ “Image Compressor Components Reference” describes the data structures used by the
Image Compression Manager to communicate with image compressor components. It
also provides a comprehensive reference to the functions that your image compressor
component must support.

■ “Summary of Image Compressor Components” presents a summary of image
compressor components in C and in Pascal.

If you are developing an image compressor component, you should read all the material

in this chapter. In addition, you should read the appropriate sections of the chapter

“Component Manager” in Inside Macintosh: More Macintosh Toolbox.

About Image Compressor Components

Image compressor components are registered by the Component Manager, and they

present a standard interface to the Image Compression Manager (see “Functions”

beginning on page 4-53 for a detailed description of the functions that image compressor

components must provide). An image compressor component can be a systemwide

resource, or it can be local to a particular application.

Applications never communicate directly with these components. Applications request

compression and decompression services by issuing the appropriate Image Compression

Manager functions. The Image Compression Manager then performs its necessary

processing before invoking the component. Of course, an application could install its

own image compressor component. However, any interaction between the application

and the component is still managed by the Image Compression Manager.

C H A P T E R 4

Image Compressor Components

4-4 About Image Compressor Components

The Image Compression Manager knows about two types of image compressor

components. Components that can compress image data carry a component type of

'imco' and are called image compressors. Components that can decompress images have

a component type of 'imdc' and are called image decompressors.

#define compressorComponentType 'imco' /* compressor component

type */

#define decompressorComponentType 'imdc' /* decompressor

 component type */

The value of the component subtype indicates the compression algorithm supported by

the component. For example, the graphics compressor has the component subtype

'cvid'. (A component subtype is an element in the classification hierarchy used by

the Component Manager to define the services provided by a component.) All

compressor components with the same subtype must be able to handle the same format

of compressed data. During decompression, a component should handle all variations of

the data specified for a subtype. While compressing an image, a compressor must not

produce data that decompressors of the same subtype cannot handle during

decompression.

The Image Compression Manager provides a set of utility functions for compressor

components. These functions allow compressors and decompressors to create custom

color lookup tables, among other things. For a complete description of these utility

functions, along with the functions that must be supported by compressor components,

see “Image Compression Manager Utility Functions,” which begins on page 4-65.

The Image Compression Manager defines four callback functions that may be provided

to compressors and decompressors by applications. These callback functions are

data-loading functions, data-unloading functions, completion functions, and progress

functions. Data-loading functions and data-unloading functions support spooling of

compressed data. Completion functions allow components to report that asynchronous

operations have completed. Progress functions provide a mechanism for components to

report their progress toward completing an operation. For more information about these

callback functions, see the chapter “Image Compression Manager” in Inside Macintosh:
QuickTime.

Banding and Extending Images
QuickTime handles images in bands, which are horizontal strips of an image. Bands

allow large images to be accommodated even if the entire image cannot fit into memory.

The Image Compression Manager calls the image compressor component once for each

band as the image is compressed or decompressed.

C H A P T E R 4

Image Compressor Components

About Image Compressor Components 4-5

The Image Compression Manager determines the height of a band based on the amount

of available memory and the bandMin and bandInc parameters provided by

the compressor component in the compressor capability structure (described in “The

Compressor Capability Structure” beginning on page 4-35). The bandMin field specifies

the minimum band height supported by a decompressor component. By providing a

minimum height, decompressor components that operate on blocks of pixels can operate

more efficiently since the minimum height ensures that a band has at least one row of

pixel blocks. The bandInc field specifies the increment in pixels by which the height of a

band is increased above the minimum when sufficient memory is available. This

specification allows easier processing by ensuring that a band is an integral number of

rows of blocks. The larger these two parameters, the more memory is required for the

band buffer, which may limit the size of images used with a given amount of memory.

By specifying a minimum height that is the size of the image, the compressor component

can indicate that it cannot handle banded images. However, the specification of a full

size is not recommended unless required by the compression format, since it requires

large amounts of memory for large images.

For decompressing sequences of images with temporal compression, the Image

Compression Manager always allocates the band to include the full image. The entire

image must be available whenever the screen needs updating and the current frame does

not have information for all pixels. The entire image is needed to make the comparison

with the previous frame.

The depth of the band is determined by the Image Compression Manager and the

wantedPixelSize field of the compressor capability structure (described on

page 4-35). That field is filled in by the image compressor component’s CDPreCompress

or CDPreDecompress function (described on page 4-62 and page 4-63, respectively).

The Image Compression Manager requests the depth that it decides is best for the image,

and the compressor component can return the wantedPixelSize field set to that depth

or another appropriate depth if the compressor cannot handle the one requested.

The width of the band is usually the width of the image, but the compressor can

extend the measurement if it cannot easily handle partial blocks of pixels at the edge of

the image. For compression operations, the Image Compression Manager sets the extra

pixels added to the right edge of the band to the same value as the last pixel in each scan

line. For decompression operations, the Image Compression Manager ignores the pixels

that were added to the right edge for the extension.

Image compressor components can also use extension for the height of the last (or the

only) band in the image (the other bands should always be an integral multiple of the

bandInc field set by the decompressor component). The extended pixels are added to

the bottom of the band. For compression operations, the added pixels have the same

value as the pixel at the same location in the last scan line of the image. For

decompression operations, the added pixels are ignored. If an image compressor

component does not want to deal with partial blocks of pixels, either horizontally or

vertically, it can use this extension technique. However, it would be more efficient for the

compressor to handle those blocks itself.

C H A P T E R 4

Image Compressor Components

4-6 About Image Compressor Components

Spooling of Compressed Data
If available memory is insufficient to hold the entire image that is being compressed or

decompressed, the image compressor component must call data-loading or

data-unloading functions to spool—that is, read or write the data from storage in stages.

The calling application indicates this in the data-loading or data-unloading structure, as

described in the following sections.

Data Loading

Decompressor components use data loading. The data buffer still exists when the calling

application supplies a data-loading function; however, the data buffer holds only part of

the data and you must use the data-loading function to load the remaining data into this

buffer. The bufferSize parameter of the decompression parameters structure

(described on page 4-46) indicates the size of the data buffer.

To use the data-loading function, the decompressor component calls it with the

pointer to the current position in the data buffer as a parameter. The decompressor

specifies the number of bytes it needs (this number must be less than or equal to the size

of the data buffer). The data-loading function fills in the data buffer with the number of

bytes requested and may adjust the pointer as necessary to remove some of the used

data and make room for new data.

If the decompressor component needs to skip data in the compressed stream or go back

to data earlier in the stream, the decompressor should call the data-loading function with

a nil pointer (instead of the pointer to the data buffer of the data-loading function) and

with the size parameter set to the number of bytes that the decompressor wants to skip

relative to the current position in the stream. A positive number seeks forward and a

negative one seeks backward. To ensure that the position in the stream is known by the

data-loading function, the decompressor should call the function before specifying a

seek operation with an actual pointer to the current position in the data buffer and a 0

byte count. After the seek operation, the decompressor component should call the

data-loading function again with the number of bytes needed from the new position to

make sure the needed bytes are read into the buffer.

A decompressor component should not depend on the ability to skip backward in the

data stream since not all applications are able to take advantage of this feature. The

decompressor should check the error from the data-loading function during a seek

operation and should not use the seek feature if an error code is returned. Seeking

forward works in most situations; however, it may entail reading the data and throwing

it out. Hence, seeking forward may not always be faster than reading the data.

C H A P T E R 4

Image Compressor Components

About Image Compressor Components 4-7

Figure 4-1 shows several image bands and their measurements.

Figure 4-1 Image bands and their measurements

Data Unloading

Data-unloading functions are used by compressor components when there is insufficient

memory to hold the buffer for the compressed data produced by the compressor

component. The compressor component needs to use a data-unloading function if the

flushProcRecord field in the compression parameters structure is not nil. (For

details on the compression parameters structure, see page 4-40). A data buffer is

provided even if the data-unloading function is present, and it should be used to hold

the data to be unloaded by the data-unloading function. The size of the data buffer is

indicated by the bufferSize field in the parameters.

C H A P T E R 4

Image Compressor Components

4-8 About Image Compressor Components

To use the data-unloading function, the compressor fills the data buffer with as much

data as possible (within the size limitations of the data buffer). The compressor

component then calls the data-unloading function with a pointer to the start of the data

buffer and the number of bytes written. The data-unloading function then unloads the

data from the buffer. The compressor should then use the entire buffer for the next piece

of data—and continue in this manner until all the data is unloaded.

If the compressor component needs to skip forward or backward in the data stream,

it should call the data-unloading function with a nil data pointer, and the compressor

should specify the number of bytes to seek relative to the current position in the size

parameter. A positive number seeks forward and a negative one seeks backward. The

compressor component should make sure that all data is unloaded from the buffer

before commencing the seek operation. After the seek operation, the next data unloaded

from the buffer with the data-unloading function is written starting at the new location.

The new data overwrites any data previously written at that location in the data stream.

Not all applications support the ability to seek forward or backward with a

data-unloading function. The compressor component should check the error result when

performing such an operation.

Compressing or Decompressing Images Asynchronously
With the appropriate hardware, image compressor components can handle

asynchronous compression and decompression of images using the CDBandCompress

and CDBandDecompress functions, which are described on page 4-63 and page 4-64,

respectively. Asynchronous refers to the fact that the compression or decompression

hardware performs its operations while the Macintosh computer simultaneously

continues its activities. For example, the Macintosh can read a movie for the next frame

while the current frame is decompressed. The Image Compression Manager ensures that

any asynchronous operation in progress is completed before starting the next operation.

If the Image Compression Manager wants the image compressor component to perform

an operation asynchronously, then the completionProcRecord field in the

compression or decompression parameters structure that the Image Compressor

Manager sends to the image compressor component should be set to a nonzero value. If

the value is –1, then the component should perform the operation asynchronously, but it

does not need to call a completion function. If the value is not nil and not –1, then the

component should perform the operation asynchronously, and it should call the

completion function when the operation is done. For details on the compression

parameters structure, see page 4-40. For more on the decompression parameters

structure, see page 4-46.

To provide synchronization for the Image Compression Manager, an image compressor

component provides the CDCodecBusy function (described on page 4-61).

CDCodecBusy should always return 1 if an asynchronous operation is in progress; it

should return 0 if there is no asynchronous operation in progress or if the image

compressor component does not perform asynchronous operations. If the

Image Compression Manager provided a completion function, the image compressor

component must call the completion function as well.

C H A P T E R 4

Image Compressor Components

About Image Compressor Components 4-9

IMPORTANT

If the Image Compression Manager provided a completion function,
then the compressor component must call it; otherwise, the memory for
that operation may become increasingly stranded in the system and
difficult to deallocate. ▲

There are two distinct steps to an asynchronous compression or decompression

operation. The first step depends on the source data, and the second step depends on the

destination data.

■ For a compression operation, the first step indicates when the compressor is finished
with the pixels of the source image, and the second step specifies that the compressed
data is fully written to memory.

■ For a decompression operation, the first step is complete when the compressed data is
read into the hardware or the decompressor’s local buffers, and the second step is
complete when all the pixels of the image have been written to the destination.

Depending on the design of the hardware used by your image compressor component,

the two steps in the asynchronous operations may be independent of each other or tied

together. To indicate to the completion function which steps have been completed, you

use the codecCompletionSource and CodecCompletionDest flags for the first and

second steps, respectively. If both parts of the asynchronous operation are completed

together, the image compressor component can call the completion function once with

both flags set. The memory used for each part of the operation remains valid and locked

while asynchronous operations are in progress. It is the responsibility of image

compressor components to make sure that they remain resident in RAM if virtual

memory is active (this is only an issue for hardware image compressor components that

perform direct memory access).

Progress Functions
Progress functions provide the calling application an indication of how much of an

operation is complete and a way for the user to cancel an operation. If the

progressProcRecord field is set either in the compression parameters structure or the

decompression parameters structure, then the image compressor component should call

the progress function as it performs the operation. The progress function is typically

called once for each scan line or row of pixel blocks processed, and it returns a

completion value that is the percentage of the band that is complete, represented as a

fixed-point number from 0 to 1.0.

If the result returned from a progress function is not 0, then the image compressor

component should return as soon as possible (without completing the band that is being

processed) with a return value of codecAbortErr.

Note

For efficiency, many image compressor components have a streamlined
path used for cases that do not require data-loading, data-unloading, or
progress functions, and a slower path that supports any or all these
application-defined functions when required. ◆

C H A P T E R 4

Image Compressor Components

4-10 Using Image Compressor Components

Using Image Compressor Components

This section shows how to use compressors and decompressors in conjunction with the

Image Compression Manager.

Performing Image Compression
This section describes what the Image Compression Manager does that affects

compressors. It then provides sample code that shows how the compressor components

prepare for image compression and how to compress an entire image or a horizontal

band of an image.

When compressing an image, the Image Compression Manager performs three

major tasks:

1. The Image Compression Manager first determines which compressor is best able to
compress the image. To do so, the Image Compression Manager examines the source
image as well as the parameters specified by the application. If the application
requested a specific compressor, the Image Compression Manager uses that
compressor (unless it is not installed, in which case the Image Compression
Manager returns an error to the application). If the application did not request a
compressor, the Image Compression Manager chooses the compressor that will do the
best job. The Image Compression Manager collects the information it needs to choose
a compressor by issuing the CDPreCompress request to each qualifying compressor
(see page 4-62 for a detailed description of the CDPreCompress function).

2. If the chosen compressor can handle the image directly, the Image Compression
Manager passes the request through to the compressor. The compressor then
processes the image and returns the compressed data to the specified location.

3. If none of the compressors can handle it directly, the Image Compression Manager
allocates an offscreen buffer and passes image bands to the compressor by issuing a
CDBandCompress request. (For more on the CDBandCompress function, see
page 4-63.) The compressor processes each band, accumulating the compressed data
as it goes. When the image has been completely compressed, the Image Compression
Manager returns control to the application.

Choosing a Compressor

Listing 4-1 on page 4-12 shows how the Image Compression Manager calls the

CDPreCompress function before an image is compressed. The compressor component

returns information about how it is able to compress the image to the Image

Compression Manager, so that it can fit the destination data to the requirements of

the compressor component. This information includes compressor capabilities for

■ depth of input pixels

■ minimum buffer band size

C H A P T E R 4

Image Compressor Components

Using Image Compressor Components 4-11

■ band increment size

■ extension width and height

When your compressor component is called with the CDPreCompress function

(described on page 4-62), it can handle all aspects of the function itself, or only the most

common ones. All image compressor components must handle at least one case.

Here is a list of some of the operations your compressor component can perform during

compression. It describes parameters in the compression parameters structure (described

on page 4-40) and indicates the operations that are required and which flags in the

compressor capabilities flags field of the compressor capabilities structure (described on

page 4-35) must be set to allow your compressor to handle them.

■ Depth conversion. If your compressor component can compress from the pixel depth
indicated by the pixelSize field (in the pixel map structure pointed to by the
srcPixmap field of the compression parameters structure), it should set the
wantedPixelSize field of the compressor capability structure to the same value. If
it cannot handle that depth, it should specify the closest depth it can support in the
wantedPixelSize field. The Image Compression Manager will convert the source
image to that depth.

■ Extension. If the format for the compressed data is block oriented, the compressor
component can request that the Image Compression Manager allocate a buffer that is
a multiple of the proper block size by setting the extendWidth and extendHeight
parameters of the compressor capability structure. The new pixels are replicated from
the left and bottom edges to fill the extended area. If your compressor can perform
this extension itself, it should leave the extendWidth and extendHeight fields set
to 0. In this case, the Image Compression Manager can avoid copying the source
image to attain more efficient operation.

■ Pixel shifting. For pixel sizes less than 8 bits per pixel, it may be necessary to shift the
source pixels so that they are at an aligned address. If the pixelSize field of the
source pixel map structure is less than 8, and your compressor component handles
that depth directly, and the left address of the image (srcRect.left –
srcPixMap.bounds.left) is not aligned and your compressor component can
handle these pixels directly, then it should set the codecCanShift flag in the flags
field of the compressor capabilities structure. If your compressor component does not
set this flag, then the data will be copied to a buffer with the image shifted so the first
pixel is in the most significant bit of an aligned long-word address.

■ Updating previous pixel maps. Compressors that perform temporal compression
may keep their own copy of the previous frame’s pixel map, or they may update the
previous frame’s pixel map as they perform the compression. In these cases, the
compressor component should set the codecCanCopyPrev flag if it updates the
previous pixel map with the original data from the current frame, or it should set the
codecCanCopyPrevComp flag if it updates the previous pixel map with a
compressed copy of the current frame.

C H A P T E R 4

Image Compressor Components

4-12 Using Image Compressor Components

Listing 4-1 Preparing for simple compression operations

pascal long

CDPreCompress (Handle storage, register CodecCompressParams *p)

{

CodecCapabilities *capabilities = p->capabilities;

/*

First the compressor returns which depth input pixels it

supports based on what the application has available. This

compressor can only work with 32-bit input pixels.

*/

switch ((*p->imageDescription)->depth) {

case 16:

capabilities->wantedPixelSize = 32;

break;

default:

return(codecConditionErr);

break;

}

/*

If the buffer gets banded, return the smallest one the

compressor can handle.

*/

capabilities->bandMin = 2;

/*

If the buffer gets banded, return the increment

by which it should increase.

*/

capabilities->bandInc = 2;

capabilities->extendWidth = (*p->imageDescription)->width & 1;

capabilities->extendHeight = (*p->imageDescription)->height &

 1;

/*

For efficiency, if the compressor could perform extension,

these flags would be set to 0.

*/

return(noErr);

}

C H A P T E R 4

Image Compressor Components

Using Image Compressor Components 4-13

Compressing a Horizontal Band of an Image

Listing 4-2 shows how the Image Compression Manager calls the CDBandCompress

function when it wants the compressor to compress a horizontal band of an image.

Note

This example does not perform compression on bands with a bit depth
of more than 1 or an extension of width and height. If the example did
do so, it would handle these cases faster. ◆

Listing 4-2 Performing simple compression on a horizontal band of an image

pascal long

CDBandCompress (Handle storage, register CodecCompressParams *p)

{

short width,height;

Ptr cDataPtr,dataStart;

short depth;

Rect sRect;

long offsetH,offsetV;

Globals **glob = (Globals **)storage;

register char *baseAddr;

long numLines,numStrips;

short rowBytes;

long stripBytes;

char mmuMode = 1;

register short y;

ImageDescription **desc = p->imageDescription;

OSErr result = noErr;

/*

If there is a progress function, give it an open call at

the start of this band.

*/

if (p->progressProcRecord.progressProc)

p->progressProcRecord.progressProc (codecProgressOpen, 0,

p->progressProcRecord.progressRefCon);

width = (*desc)->width;

height = (*desc)->height;

depth = (*desc)->depth;

dataStart = cDataPtr = p->data;

C H A P T E R 4

Image Compressor Components

4-14 Using Image Compressor Components

/*

Figure out offset to first pixel in baseAddr from the

pixel size and bounds.

 */

rowBytes = p->srcPixMap.rowBytes;

sRect = p->srcPixMap.bounds;

numLines = p->stopLine - p->startLine; /* number of scan

 lines */

numStrips = (numLines+1)>>1; /* number of strips

in */

stripBytes = ((width+1)>>1) * 5;

/*

Adjust the source baseAddress to be at the beginning

of the desired rect.

*/

switch (p->srcPixMap.pixelSize) {

case 32:

offsetH = sRect.left<<2;

break;

case 16:

offsetH = sRect.left<<1;

break;

case 8:

offsetH = sRect.left;

break;

/*

This compressor does not handle the other cases directly.

*/

default:

result = codecErr;

goto bail;

}

offsetV = sRect.top * rowBytes;

baseAddr = p->srcPixMap.baseAddr + offsetH + offsetV;

/*

If there is not a data-unloading function,

C H A P T E R 4

Image Compressor Components

Using Image Compressor Components 4-15

adjust the pointer to the next band.

*/

if (p->flushProcRecord.flushProc == nil) {

cDataPtr += (p->startLine>>1) * stripBytes;

}

else { /*

 Make sure the compressor can deal with the

 data-unloading function in this case.

*/

if (p->bufferSize < stripBytes) {

result = codecSpoolErr;

goto bail;

}

}

/*

Perform the slower data-loading or progress operation, as

required.

*/

if (p->flushProcRecord.flushProc ||

p->progressProcRecord.progressProc) {

SharedGlobals *sg = (*glob)->sharedGlob;

for (y=0; y < numStrips; y++) {

SwapMMUMode(&mmuMode);

CompressStrip(cDataPtr,baseAddr,rowBytes,width,sg);

SwapMMUMode(&mmuMode);

baseAddr += rowBytes<<1;

if (p->flushProcRecord.flushProc) {

if ((result=

p->flushProcRecord.flushProc(cDataPtr,stripBytes,

p->flushProcRecord.flushRefCon)) != noErr) {

result = codecSpoolErr;

goto bail;

}

} else {

cDataPtr += stripBytes;

}

if (p->progressProcRecord.progressProc) {

if ((result=

p->progressProcRecord.progressProc)

C H A P T E R 4

Image Compressor Components

4-16 Using Image Compressor Components

codecProgressUpdatePercent,

FixDiv(y,numStrips),

p->progressProcRecord.progressRefCon)

) != noErr) {

result = codecAbortErr;

goto bail;

}

}

}

} else {

SharedGlobals *sg = (*glob)->sharedGlob;

short tRowBytes = rowBytes<<1;

SwapMMUMode(&mmuMode);

for (y=numStrips; y--;) {

CompressStrip(cDataPtr,baseAddr,rowBytes,width,sg);

cDataPtr += stripBytes;

baseAddr += tRowBytes;

}

SwapMMUMode(&mmuMode);

}

}

Decompressing an Image
When decompressing an image, the Image Compression Manager performs these three

major tasks:

1. The Image Compression Manager first determines which decompressor is best able to
decompress the image. To do so, the Image Compression Manager examines the
source image as well as the parameters specified by the application. If the application
requested a specific decompressor, the Image Compression Manager uses that
decompressor (unless it is not installed, in which case the Image Compression
Manager returns an error to the application). If the application did not request a
decompressor, the Image Compression Manager chooses the decompressor that will
do the best job. The Image Compression Manager collects the information it needs to
choose a decompressor by issuing the CDPreDecompress request to each qualifying
decompressor (see page 4-63 for a detailed description of the CDPreDecompress
function).

C H A P T E R 4

Image Compressor Components

Using Image Compressor Components 4-17

2. If the chosen decompressor can handle the image directly, the Image Compression
Manager passes the request through to the decompressor. The decompressor then
processes the image and returns the image to the specified location.

3. If none of the decompressors can handle all of the conditions (matrix mapping,
masking or matting, depth conversion, and so on) the Image Compression Manager
allocates an offscreen buffer and passes image bands to the decompressor at a depth
that the decompressor can handle by issuing a CDBandDecompress request. (For
details on the CDBandDecompress function, see page 4-64). The decompressor
processes each band, building the image as it goes. When the image has been
completely decompressed, the Image Compression Manager returns control to the
application.

Choosing a Decompressor

Listing 4-3 on page 4-20 provides an example of how a decompressor is chosen. The

Image Compression Manager calls the CDPreDecompress function (described on

page 4-63) before an image is decompressed. The decompressor returns information

about how it can decompress an image. The Image Compression Manager can fit the

destination pixel map to your decompressor’s requirements if it is not able to support

decompression to the destination directly. The capability information the decompressor

returns includes

■ depth of pixels for the destination pixel map

■ minimum band size handled

■ extension width and height required

■ band increment size

When your decompressor component is called with the CDPreDecompress function, it

can handle all aspects of the call itself, or only the most common ones. All

decompressors must handle at least one case.

This section contains a bulleted list of some of the operations your decompressor

component can perform during the decompression operation. The list describes which

parameters in the decompression parameters structure (described on page 4-46) indicate

the operations are required and which flags in the flags field of the compressor

capabilities structure (described on page 4-35) must be set to allow your decompressor to

handle them.

For sequences of images the conditionFlags field in the decompression parameters

structure can be used to determine which parameters may have changed since the last

decompression operation. These parameters are also indicated in the bulleted list.

C H A P T E R 4

Image Compressor Components

4-18 Using Image Compressor Components

Since your decompressor’s capabilities depend on the full combination of parameters, it

must inspect all the relevant parameters before indicating that it will perform one of the

operations itself. For instance, if your decompressor has hardware that can perform

scaling only if the destination pixel depth is 32 and there is no clipping, then the

pre-decompression operation would have to check the following fields in the

decompression parameters structure: the matrix field, the pixelSize field of the

destination pixel map structure pointed to by the destPixMap field, and the maskBits

fields. Only then could the decompressor decide whether to set the codecCanScale

flag in the capabilities field of the decompression parameters structure.

■ Scaling. The decompressor component can look at the matrix and selectively decide
which scaling operations it wishes to handle. If the scaling factor specified by the
matrix is not unity and your decompressor can perform the scaling operation, it must
set the codecCanScale flag in the capabilities field. If it does not, then the
decompressor is asked to decompress without scaling, and the Image Compression
Manager performs the scaling operation afterward.

■ Depth conversion. If your component can decompress to the pixel depth indicated by
the pixelSize field (of the pixel map structure pointed to by the dstPixmap field of
the decompression parameters structure), it should set the wantedPixelSize field
of the compressor capability structure to the same value. If it cannot handle that
depth, it should specify the closest depth it can handle in the wantedPixelSize
field.

■ Dithering. When determining whether depth conversion can be performed (for
converting an image to a lower bit depth, or to a similar bit depth with a different
color table), dithering may be required. This is specified by the dither bit in the
transferMode field (0x40) of the decompression parameters structure being set.
The accuracy field of the decompression parameters structure indicates whether fast
dithering is acceptable (accuracy <= codecNormalQuality) or whether true
error diffusion dithering should be used (accuracy > codecNormalQuality).
Most decompressors do not perform true error diffusion dithering, although they can.
When a decompressor cannot perform the dither operation, it should specify the
higher bit depth in the wantedPixelSize field of the compressor capability
structure and let the Image Compression Manager perform the depth conversion with
dithering. Dithering to 16-bit destinations is normally done only if the accuracy field
is set to the codecNormalQuality value. However, if your decompressor
component can perform dithering fast enough, it could be performed at the lower
accuracy settings as well. To indicate that your decompressor can perform dithering
as specified, it should set the codecCanTransferMode flag in the capabilities
field of the decompression parameters structure.

■ Color remapping. If the compressed data has an associated color lookup table that is
different from the color lookup table of the destination pixel map, then the
decompressor can remap the color indices to the closest available ones in the
destination itself, or it can let the Image Compression Manager do the remapping. If
the decompressor can do the mapping itself, it should set the codecCanRemap flag in
the capabilities flags field of the decompression parameters structure.

C H A P T E R 4

Image Compressor Components

Using Image Compressor Components 4-19

■ Extending. If the format for the compressed data is block-oriented, the decompressor
can ask that the Image Compression Manager to allocate a buffer which is a multiple
of the proper block size by setting the extendWidth and extendHeight fields of
the compressor capabilities structure. If the right and bottom edges of the destination
image (as determined by the transformed srcRect and dstPixMap.bounds fields
of the decompression parameters structure) are not a multiple of the block size that
your decompressor handles, and your decompressor cannot handle partial blocks
(writing only the pixels that are needed for blocks that cross the left or bottom edge of
the destination), then your decompressor component must set the extendWidth and
extendHeight fields in the compressor capabilities structure. In this case, the Image
Compression Manager creates a buffer large enough so that no partial blocks are
needed. Your component can decompress into that buffer. This is then copied to the
destination by the Image Compression Manager. Your component can avoid this extra
step if it can handle partial blocks. In this case, it should leave the extendWidth and
extendHeight fields set to 0.

■ Clipping. If clipping must be performed on the image to be decompressed, the
maskBits field of the decompression parameters structure is nonzero. In the
CDPreDecompress function, it will be a region handle to the actual clipping region.
If your decompressor can handle the clipping operation as specified by this region, it
should set the codecCanMask bit in the capabilities flags field of the
decompression parameters structure. If it does this, then the parameter passed to the
CDBandDecompress function in the maskBits field will be a bitmap instead of a
region. If desired, your decompressor can save a copy of the actual region structure
during the pre-decompression operation.

■ Matting. If a matte must be applied to the decompressed image, the transferMode
field of the decompression parameters structure is set to blend and the mattePixMap
field is a handle to the pixel map to be used as the matte. If your decompressor can
perform the matte operation, then it should set the codecCanMatte field in the
compressor capabilities structure. If it does not, then the Image Compression Manager
will perform the matte operation after the decompression is complete.

■ Pixel shifting. For pixel sizes less than 8 bits per pixel, it may be necessary to shift
the destination pixels so that they are at an aligned address. If the pixel size of the
destination pixel map is less than 8 and your component handles that depth directly,
and the left address of the image is not aligned and your component can handle these
pixels directly, then it should set the codecCanShift flag in the capabilities
field of the decompression parameters structure. If your component does not set this
flag, the Image Compression Manager allocates a buffer for and performs the shifting
after the decompression is completed.

■ Partial extraction. If the source rectangle is not the entire image and the component
can decompress only the part of the image specified by the source rectangle, it should
set the codecCanSrcExtract flag in the capabilities field of the decompression
parameters structure. If it does not, the Image Compression Manger asks the
component to decompress the entire image and copy only the required part to the
destination.

C H A P T E R 4

Image Compressor Components

4-20 Using Image Compressor Components

Listing 4-3 Preparing for simple decompression

pascal long

CDPreDecompress(Handle storage, register CodecDecompressParams *p)

{

register CodecCapabilities*capabilities = p->capabilities;

RectdRect = p->srcRect;

/*

Check if the matrix is OK for this decompressor.

This decompressor doesn't do anything fancy.

*/

if (!TransformRect(p->matrix,&dRect,nil))

return(codecConditionErr);

/*

Decide which depth compressed data this decompressor can

deal with.

*/

switch ((*p->imageDescription)->depth) {

case 16:

break;

default:

return(codecConditionErr);

break;

}

/*

This decompressor can deal only with 32-bit pixels.

*/

capabilities->wantedPixelSize = 32;

/*

The smallest possible band the decompressor can handle is

2 scan lines.

*/

capabilities->bandMin = 2;

/* This decompressor can deal with 2 scan line high bands. */

C H A P T E R 4

Image Compressor Components

Using Image Compressor Components 4-21

capabilities->bandInc = 2;

/*

If this decompressor needed its pixels be aligned on

some integer multiple, you would set extendWidth and

extendHeight to the number of pixels by which you need the

destination extended. If you don't have such requirements

or if you take care of them yourself, you set extendWidth

and extendHeight to 0.

*/

capabilities->extendWidth = p->srcRect.right & 1;

capabilities->extendHeight = p->srcRect.bottom & 1;

return(noErr);

}

Decompressing a Horizontal Band of an Image

Listing 4-4 shows how to decompress the horizontal band of an image. The Image

Compression Manager calls the CDBandDecompress function when it wants a

decompressor to decompress an image or a horizontal band of an image. The pixel data

indicated by the baseAddr field is guaranteed to conform to the criteria your

decompressor specified in the CDPreDecompress function.

Note

This example does not perform decompression on bands with a bit
depth of more than one or an extension of width and height. If the
example did do so, it would handle these cases faster. ◆

Listing 4-4 Performing a decompression operation

pascal long

CDBandDecompress(Handle storage,register CodecDecompressParams *p)

{

Rect dRect;

long offsetH,offsetV;

Globals **glob = (Globals **)storage;

long numLines,numStrips;

short rowBytes;

long stripBytes;

short width;

register short y;

C H A P T E R 4

Image Compressor Components

4-22 Using Image Compressor Components

register char* baseAddr;

char *cDataPtr;

char mmuMode = 1;

OSErr result = noErr;

/*

Calculate the real base address based on the boundary

rectangle. If it's not a linear transformation, this

decompressor does not perform the operation.

*/

dRect = p->srcRect;

if (!TransformRect(p->matrix,&dRect,nil))

return(paramErr);

/* If there is a progress function, give it an open call at

the start of this band.

*/

if (p->progressProcRecord.progressProc)

p->progressProcRecord.progressProc(codecProgressOpen,0,

p->progressProcRecord.progressRefCon);

/*

Initialize some local variables.

*/

width = (*p->imageDescription)->width;

rowBytes = p->dstPixMap.rowBytes;

numLines = p->stopLine - p->startLine; /* number of scan lines

in this band */

numStrips = (numLines+1)>>1; /* number of strips in

this band */

stripBytes = ((width+1)>>1) * 5; /* number of bytes in

 1 strip of blocks */

cDataPtr = p->data;

/*

Adjust the destination base address to be at the beginning

of the desired rectangle.

*/

offsetH = (dRect.left - p->dstPixMap.bounds.left);

C H A P T E R 4

Image Compressor Components

Using Image Compressor Components 4-23

switch (p->dstPixMap.pixelSize) {

case 32:

offsetH <<=2; /* 1 pixel = 4 bytes */

break;

case 16:

offsetH <<=1; /* 1 pixel = 2 bytes */

break;

case 8:

break; /* 1 pixel = 1 byte */

default:

result = codecErr; /* This decompressor doesn't handle

these cases, although it

could. */

goto bail;

}

offsetV = (dRect.top - p->dstPixMap.bounds.top) * rowBytes;

baseAddr = p->dstPixMap.baseAddr + offsetH + offsetV;

/*

If your decompressor component is skipping some data,

it just skips it here. You can tell because

firstBandInFrame indicates this is the first band for a new

frame, and if startLine is not 0, then that many lines were

clipped out.

 */

if ((p->conditionFlags & codecConditionFirstBand) &&

p->startLine != 0) {

if (p->dataProcRecord.dataProc) {

for (y=0; y < p->startLine>>1; y++) {

if ((result=p->dataProcRecord.dataProc

 (&cDataPtr,stripBytes,

p->dataProcRecord.dataRefCon)) != noErr) {

result = codecSpoolErr;

goto bail;

}

cDataPtr += stripBytes;

}

} else

cDataPtr += (p->startLine>>1) * stripBytes;

}

/*

If there is a data-loading function spooling the data to your

decompressor, then you have to decompress the data in the

C H A P T E R 4

Image Compressor Components

4-24 Using Image Compressor Components

chunk size that is specified, or, if there is a progress

function, you must make sure to call it as you go along.

*/

if (p->dataProcRecord.dataProc ||

 p->progressProcRecord.progressProc) {

SharedGlobals *sg = (*glob)->sharedGlob;

for (y=0; y < numStrips; y++) {

if (p->dataProcRecord.dataProc) {

if ((result=p->dataProcRecord.dataProc

 (&cDataPtr,stripBytes,

p->dataProcRecord.dataRefCon)) != noErr) {

result = codecSpoolErr;

goto bail;

}

}

SwapMMUMode(&mmuMode);

DecompressStrip(cDataPtr,baseAddr,rowBytes,width,sg);

SwapMMUMode(&mmuMode);

baseAddr += rowBytes<<1;

cDataPtr += stripBytes;

if (p->progressProcRecord.progressProc) {

if ((result=p->progressProcRecord.progressProc

(codecProgressUpdatePercent,

FixDiv(y, numStrips),

p->progressProcRecord.progressRefCon)) != noErr) {

result = codecAbortErr;

 goto bail;

}

}

}

/*

Otherwise, do the fast case.

*/

} else {

C H A P T E R 4

Image Compressor Components

Using Image Compressor Components 4-25

SharedGlobals *sg = (*glob)->sharedGlob;

shorttRowBytes = rowBytes<<1;

SwapMMUMode(&mmuMode);

for (y=numStrips; y--;) {

DecompressStrip(cDataPtr,baseAddr,rowBytes,width,sg);

baseAddr += tRowBytes;

cDataPtr += stripBytes;

}

SwapMMUMode(&mmuMode);

}

/*

IMPORTANT-- Update the pointer to data in the decompression

parameters structure, so that when your decompressor gets the

next band, you'll be at the right place in your data.

*/

p->data = cDataPtr;

if (p->conditionFlags & codecConditionLastBand) {

/*

Tie up any loose ends on the last band of the frame.

*/

}

bail:

/*

If there is a progress function, give it a close call

at the end of this band.

*/

if (p->progressProcRecord.progressProc)

p->progressProcRecord.progressProc(codecProgressClose,0,

p->progressProcRecord.progressRefCon);

return(result);

}

C H A P T E R 4

Image Compressor Components

4-26 Image Compressor Components Reference

Image Compressor Components Reference

This section describes the constants, data structures, and functions that are specific to

image compression components.

Constants

This section provides details on the image compressor component capability and

format flags.

Image Compressor Component Capabilities

Apple has defined several component flags for image compressor components. These

flags specify information about the capabilities of the component. You set these flags in

the componentFlags field of your component’s component description structure. The

Image Compression Manager uses these same flags in the compressor information

structure to describe the capabilities of image compressors and decompressors. For a

complete description of this structure, see the chapter “Image Compression Manager” in

Inside Macintosh: QuickTime.

The compressFlags and decompressFlags fields of the compressor information

structure contain a number of flags that define the capabilities of your component.

Note

If the compressor information structure is shared, the compressor
component uses the component flags that are the same as the
compression flags for the component description structure, and the
decompressor component uses the component flags that are the same as
the decompression flags for the component description structure. ◆

The flag bits for those fields are defined as follows (each flag is valid for both fields

unless the description states otherwise):

#define codecInfoDoes1 (1L<<0) /* works with 1-bit pixel

maps */

#define codecInfoDoes2 (1L<<1) /* works with 2-bit pixel

maps */

#define codecInfoDoes4 (1L<<2) /* works with 4-bit pixel

maps */

#define codecInfoDoes8 (1L<<3) /* works with 8-bit pixel

maps */

#define codecInfoDoes16 (1L<<4) /* works with 16-bit pixel

maps */

C H A P T E R 4

Image Compressor Components

Image Compressor Components Reference 4-27

#define codecInfoDoes32 (1L<<5) /* works with 32-bit pixel

maps */

#define codecInfoDoesDither (1L<<6) /* supports fast dithering */

#define codecInfoDoesStretch (1L<<7) /* stretches to arbitrary

sizes */

#define codecInfoDoesShrink (1L<<8) /* shrinks to arbitrary sizes */

#define codecInfoDoesMask (1L<<9) /* handles clipping regions */

#define codecInfoDoesTemporal (1L<<10) /* sequential temporal

compression */

#define codecInfoDoesDouble (1L<<11) /* stretches to double size

exactly */

#define codecInfoDoesQuad (1L<<12) /* stretches to quadruple

size */

#define codecInfoDoesHalf (1L<<13) /* shrinks to half size */

#define codecInfoDoesQuarter (1L<<14) /* shrinks to one-quarter

size */

#define codecInfoDoesRotate (1L<<15) /* rotates during

decompression */

#define codecInfoDoesHorizFlip (1L<<16) /* flips horizontally during

decompression */

#define codecInfoDoesVertFlip (1L<<17) /* flips vertically during

decompression */

#define codecInfoDoesSkew (1L<<18) /* skews image during

 decompression */

#define codecInfoDoesBlend (1L<<19) /* blends image with matte

during decompression */

#define codecInfoDoesWarp (1L<<20) /* warps image arbitrarily

during decompression */

#define codecInfoDoesRecompress (1L<<21) /* recompresses images without

accumulating errors */

#define codecInfoDoesSpool (1L<<22) /* uses data-loading or

data-unloading function */

#define codecInfoDoesRateConstrain (1L<<23) /* constrains amount of

generated data to

caller-defined limit */

C H A P T E R 4

Image Compressor Components

4-28 Image Compressor Components Reference

Flag descriptions

codecInfoDoes1
Indicates whether the component can work with pixel maps that
contain 1-bit pixels. If this flag is set to 1, then the component can
compress or decompress images that contain 1-bit pixels. If this flag
is set to 0, then the component cannot handle such images.

codecInfoDoes2
Indicates whether the component can work with pixel maps that
contain 2-bit pixels. If this flag is set to 1, then the component can
compress or decompress images that contain 2-bit pixels. If this flag
is set to 0, then the component cannot handle such images.

codecInfoDoes4
Indicates whether the component can work with pixel maps that
contain 4-bit pixels. If this flag is set to 1, then the component can
compress or decompress images that contain 4-bit pixels. If this flag
is set to 0, then the component cannot handle such images.

codecInfoDoes8
Indicates whether the component can work with pixel maps that
contain 8-bit pixels. If this flag is set to 1, then the component can
compress or decompress images that contain 8-bit pixels. If this flag
is set to 0, then the component cannot handle such images.

codecInfoDoes16
Indicates whether the component can work with pixel maps that
contain 16-bit pixels. If this flag is set to 1, then the component can
compress or decompress images that contain 16-bit pixels. If this
flag is set to 0, then the component cannot handle such images.

codecInfoDoes32
Indicates whether the component can work with pixel maps that
contain 32-bit pixels. If this flag is set to 1, then the component can
compress or decompress images that contain 32-bit pixels. If this
flag is set to 0, then the component cannot handle such images.

codecInfoDoesDither
Indicates whether the component supports dithering. If this flag
is set to 1, the component supports dithering of colors. If this flag is
set to 0, the component does not support dithering. This flag is only
available for decompressor components.

codecInfoDoesStretch
Indicates whether the component can stretch images to arbitrary
sizes. If this flag is set to 1, the component can stretch images. If this
flag is set to 0, the component does not support stretching. This flag
is only available for decompressor components.

codecInfoDoesShrink
Indicates whether the component can shrink images to arbitrary
sizes. If this flag is set to 1, the component can shrink images. If this
flag is set to 0, the component does not support shrinking. This flag
is only available for decompressor components.

C H A P T E R 4

Image Compressor Components

Image Compressor Components Reference 4-29

codecInfoDoesMask
Indicates whether the component can handle clipping regions. If
this flag is set to 1, the component can mask to an arbitrary clipping
region. If this flag is set to 0, the component does not support
clipping regions. This flag is only available for decompressor
components.

codecInfoDoesTemporal
Indicates whether the component supports temporal compression
in sequences. If this flag is set to 1, the component supports time
compression. If this flag is set to 0, the component does not support
time compression.

codecInfoDoesDouble
Indicates whether the component supports stretching to double size
during decompression. Since images are in two dimensions (height
and width), this means a total of four times as many pixels. The
parameters for the stretch operation are specified in the matrix
structure for the request—the component modifies the scaling
attributes of the matrix (see the chapter “Movie Toolbox” in Inside
Macintosh: QuickTime for information about transformation
matrices). If this flag is set to 1, the component can stretch an image
to exactly four times its original size, up to the maximum size
supported by the decompressor. If this flag is set to 0, the
component does not support stretching to double size. This flag is
valid only for the decompressFlags field.

codecInfoDoesQuad
Indicates whether the component supports stretching an image to
four times its original size during decompression. Since images are
in two dimensions (height and width), this means a total of sixteen
times as many pixels. The parameters for the stretch operation are
specified in the matrix structure (defined by the MatrixRecord
data type) for the request—the component modifies the scaling
attributes of the matrix (see the chapter “Movie Toolbox” in Inside
Macintosh: QuickTime for information about transformation
matrices). If this flag is set to 1, the component can stretch an image
to exactly sixteen times its original size, up to the maximum size
supported by the decompressor. If this flag is set to 0, the
component does not support this capability. This flag is valid only
for the decompressFlags field.

codecInfoDoesHalf
Indicates whether the component supports shrinking an image to
half of its original size during decompression. Since images are in
two dimensions (height and width), this means a total of one-fourth
the number of pixels. The parameters for the shrink operation are
specified in the matrix structure for the request—the component
modifies the scaling attributes of the matrix (see the chapter “Movie
Toolbox” in Inside Macintosh: QuickTime for information about
transformation matrices). If this flag is set to 1, the component can
shrink an image to half size, down to the minimum size specified by
the minimumHeight and minimumWidth fields in the compressor
information structure. If this flag is set to 0, the component does not

C H A P T E R 4

Image Compressor Components

4-30 Image Compressor Components Reference

support this capability. This flag is valid only for the
decompressFlags field.

codecInfoDoesQuarter
Indicates whether the component can shrink an image to
one-quarter of its original size during decompression. Since images
are in two dimensions (height and width), this means a total of
one-sixteenth the number of pixels. The parameters for the shrink
operation are specified in the matrix structure for the request—the
component modifies the scaling attributes of the matrix (see the
chapter “Movie Toolbox” in Inside Macintosh: QuickTime for
information about transformation matrices). If this flag is set to 1,
the component can shrink an image to exactly one-quarter of its
original size, down to the minimum size specified by the
minimumHeight and minimumWidth fields in the compressor
information structure. If this flag is set to 0, the component does not
support this capability. This flag is valid only for the
decompressFlags field.

codecInfoDoesRotate
Indicates whether the component can rotate an image during
decompression. The parameters for the rotation are specified in the
matrix structure for a decompression operation. If this flag is
set to 1, the component can rotate the image at decompression time.
If this flag is set to 0, the component cannot rotate the resulting
image. This flag is valid only for the decompressFlags field.

codecInfoDoesHorizFlip
Indicates whether the component can flip an image horizontally
during decompression. The parameters for the horizontal flip are
specified in the matrix structure for a decompression operation. If
this flag is set to 1, the component can flip the image at
decompression time. If this flag is set to 0, the component cannot
flip the resulting image. This flag is valid only for the
decompressFlags field.

codecInfoDoesVertFlip
Indicates whether the component can flip an image vertically
during decompression. The parameters for the vertical flip are
specified in the matrix structure for a decompression operation. If
this flag is set to 1, the component can flip the image at
decompression time. If this flag is set to 0, the component cannot
flip the resulting image. This flag is valid only for the
decompressFlags field.

codecInfoDoesSkew
Indicates whether the component can skew an image during
decompression. Skewing an image distorts it linearly along only a
single axis—for example, drawing a rectangular image into a
parallelogram-shaped region. The parameters for the skew
operation are specified in the matrix structure for the

C H A P T E R 4

Image Compressor Components

Image Compressor Components Reference 4-31

decompression request. If this flag is set to 1, the component can
skew an image at decompression time. If this flag is set to 0, the
component does not support this capability. This flag is valid only
for the decompressFlags field.

codecInfoDoesBlend
Indicates whether the component can blend the resulting image
with a matte during decompression. The matte is provided by the
application in the decompression request. If this flag is set to 1, the
component can blend during decompression. If this flag is set to 0,
the component does not support this capability. This flag is valid
only for the decompressFlags field.

codecInfoDoesWarp
Indicates whether the component can warp an image during
decompression. Warping an image distorts it along one or more
axes, perhaps in a nonlinear fashion, in effect “bending” the
resulting region. The parameters for the warp operation are
specified in the matrix structure for the decompression request. If
this flag is set to 1, the component can warp an image at
decompression time. If this flag is set to 0, the component does not
support this capability. This flag is valid only for the
decompressFlags field.

codecInfoDoesRecompress
Indicates whether the component can recompress images it has
previously compressed without losing image quality. Many
compression algorithms cause image degradation when you apply
them repeatedly to the same image. If this flag is set to 1, the
component uses an algorithm that does not compromise image
quality after repeated compressions. If this flag is set to 0, you
should not use the component for repeated compressions of the
same image. This flag is only available for compressor components.

codecInfoDoesSpool
Indicates whether the component uses data-loading or
data-unloading functions. Your application can define data-loading
and data-unloading functions to help the component work with
images that are too large to be stored in memory (see the chapter
“Image Compression Manager” in Inside Macintosh: QuickTime for
more information about data-loading and data-unloading
functions). If this flag is set to 1, the component uses these functions
if needed for a given operation. If this flag is set to 0, the component
does not use these functions under any circumstances.

codecInfoDoesRateConstrain
Indicates the compressor is able to constrain the amount of data it
generates when compressing sequences of images to a limit defined
by the caller. See the chapter “Image Compression Manager” in
Inside Macintosh: QuickTime for details on data rate constraint
functions. This flag is only available for compressor components.

C H A P T E R 4

Image Compressor Components

4-32 Image Compressor Components Reference

Format of Compressed Data and Files

The formatFlags field of the compressor information structure contains a number of

flags that define the possible format of compressed data produced by the component

and the format of compressed files that the component can handle during

decompression. The defined flags are as follows:

#define codecInfoDepth1 (1L<<0) /* compressed images with 1-bit color

depth available */

#define codecInfoDepth2 (1L<<1) /* compressed images with 2-bit color

depth available */

#define codecInfoDepth4 (1L<<2) /* compressed images with 4-bit color

depth available */

#define codecInfoDepth8 (1L<<3) /* compressed images with 8-bit color

depth available */

#define codecInfoDepth16 (1L<<4) /* compressed images with 16-bit color

depth available */

#define codecInfoDepth32 (1L<<5) /* compressed images with 32-bit color

depth available */

#define codecInfoDepth24 (1L<<6) /* compressed images with 24-bit color

depth available */

#define codecInfoDepth33 (1L<<7) /* compressed data with monochrome images

 of 1-bit color depth */

#define codecInfoDepth34 (1L<<8) /* compressed images with 2-bit grayscale

depth available */

#define codecInfoDepth36 (1L<<9) /* compressed images with 4-bit grayscale

depth available */

#define codecInfoDepth40 (1L<<10) /* compressed images with 8-bit grayscale

depth available */

#define codecInfoStoresClut(1L<<11) /* compressed data with custom color

tables */

#define codecInfoDoesLossless

(1L<<12) /* compressed data stored lossless

format */

#define codecInfoSequenceSensitive

(1L<<13) /* compressed data requires non-key

frames to be decompressed in same

order as compressed */

C H A P T E R 4

Image Compressor Components

Image Compressor Components Reference 4-33

Flag descriptions

codecInfoDepth1
Indicates whether the component can work with files containing
color images with a color depth of 1 bit. If this flag is set to 1, the
component can compress into and decompress from files at this
depth. If this flag is set to 0, the component cannot handle such files.

codecInfoDepth2
Indicates whether the component can work with files containing
color images with a color depth of 2 bits. If this flag is set to 1, the
component can compress into and decompress from files at this
depth. If this flag is set to 0, the component cannot handle such files.

codecInfoDepth4
Indicates whether the component can work with files containing
color images with a color depth of 4 bits. If this flag is set to 1, the
component can compress into and decompress from files at this
depth. If this flag is set to 0, the component cannot handle such files.

codecInfoDepth8
Indicates whether the component can work with files containing
color images with a color depth of 8 bits. If this flag is set to 1, the
component can compress into and decompress from files at this
depth. If this flag is set to 0, the component cannot handle such files.

codecInfoDepth16
Indicates whether the component can work with files containing
color images with a color depth of 16 bits. If this flag is set to 1, the
component can compress into and decompress from files at this
depth. If this flag is set to 0, the component cannot handle such files.

codecInfoDepth32
Indicates whether the component can work with files containing
color images with a color depth of 32 bits. If this flag is set to 1, the
component can compress into and decompress from files at this
depth. If this flag is set to 0, the component cannot handle such files.
This flag is the same as the codecInfoDepth24 flag except it
contains one extra byte used as an alpha channel.

codecInfoDepth24
Indicates whether the component can work with files containing
color images with a color depth of 24 bits. If this flag is set to 1, the
component can compress into and decompress from files at this
depth. If this flag is set to 0, the component cannot handle such files.

codecInfoDepth33
Indicates whether the component can work with files containing
monochrome images, which have a grayscale depth of 1 bit. If this
flag is set to 1, the component can compress into and decompress
from files at this depth. If this flag is set to 0, the component cannot
handle such files.

C H A P T E R 4

Image Compressor Components

4-34 Image Compressor Components Reference

codecInfoDepth34
Indicates whether the component can work with files containing
grayscale images with a grayscale depth of 2 bits. If this flag is set
to 1, the component can compress into and decompress from files
at this depth. If this flag is set to 0, the component cannot handle
such files.

codecInfoDepth36
Indicates whether the component can work with files containing
grayscale images with a grayscale depth of 4 bits. If this flag is set
to 1, the component can compress into and decompress from files
at this depth. If this flag is set to 0, the component cannot handle
such files.

codecInfoDepth40
Indicates whether the component can work with files containing
grayscale images with a grayscale depth of 8 bits. If this flag is set
to 1, the component can compress into and decompress from files
at this depth. If this flag is set to 0, the component cannot handle
such files.

codecInfoStoresClut
Indicates whether the component can accommodate compressed
data with custom color tables. If this flag is set to 1, the component
can create compressed files with custom color tables and can
decompress files that contain custom color tables. If this flag is set
to 0, the component cannot handle such files.

codecInfoDoesLossless
Indicates whether the component can perform lossless compression
or decompression operations. Lossless compression results in a
decompressed image that is exactly the same as the original,
uncompressed image. If this flag is set to 1, the component can
perform lossless compression or decompression. If this flag is set
to 0, the component cannot perform lossless operations. The
application specifies a lossless operation by setting the desired
quality level to codecLosslessQuality (see Inside Macintosh:
QuickTime for more information about quality levels).

codecInfoSequenceSensitive
Indicates that the compressed data generated by this image
compressor component has the requirement that non-key frames in
a sequence be decompressed in the same order that they were
compressed.

C H A P T E R 4

Image Compressor Components

Image Compressor Components Reference 4-35

Data Types

This section discusses the data structures that the Image Compression Manager uses to

communicate with image compressor and decompressor components.

The Compressor Capability Structure

Image compressor components use the compressor capability structure to report their

capabilities to the Image Compression Manager. Before compressing or decompressing

an image, the Image Compression Manager requests this capability information from the

component that will be handling the operation by calling the CDPreCompress or

CDPreDecompress function provided by that component. The compressor component

examines the compression or decompression parameters and indicates any restrictions

on its ability to satisfy the request in a formatted compressor capability structure. The

Image Compression Manager then manages the operation according to the capabilities of

the component.

The CodecCapabilities data type defines the compressor capability structure.

typedef struct {

long flags; /* control information */

short wantedPixelSize; /* pixel depth for component

to use with image */

short extendWidth; /* extension width of image

in pixels */

short extendHeight; /* extension height of image

in pixels */

short bandMin; /* supported minimum

image band height */

short bandInc; /* common factor of

supported band heights */

short pad; /* reserved */

unsigned long time; /* milliseconds operation

takes to complete */

} CodecCapabilities;

typedef CodecCapabilities *CodecCapabilitiesPtr;

C H A P T E R 4

Image Compressor Components

4-36 Image Compressor Components Reference

Field descriptions

flags Contains flags that contain control information that is used by both
the Image Compression Manager and the compressor component.
The defined bit positions for this field are discussed later in this
section.

wantedPixelSize
Indicates the pixel depth the component can use with the specified
image. The component determines the pixel depth of the image for
the operation by examining the appropriate pixel map.

extendWidth Specifies the number of pixels the image must be extended in
width. If the component cannot accommodate the image at its
given width, the component may request that the Image
Compression Manager extend the width of the image by adding
pixels to the right edge of the image. This is sometimes necessary to
accommodate the component’s block size.

extendHeight Specifies the number of pixels the image must be extended in
height. If the component cannot accommodate the image at its
given height the component may request that the Image
Compression Manager extend the height of the image by adding
pixels to the bottom of the image. This is sometimes necessary to
accommodate the component’s block size.

bandMin Contains the minimum image band height supported by the
component. Components that can tolerate small values operate
under a wider set of memory conditions.

bandInc Specifies a common factor of supported image band heights. A
component may support only image bands that are an even
multiple of some number of pixels high. These components report
this common factor in the bandInc field. Set this field to 1 if your
component supports bands of any size.

pad Reserved for use by Apple.

time Indicates the number of milliseconds the operation will take to
complete. If the compressor cannot determine this value, it sets this
field to 0.

The flags field of the compressor capability structure contains flags that exchange

control information between the Image Compression Manager and the compressor

component. Components use flags in the low-order 16 bits to indicate their capabilities to

the manager. The Image Compression Manager may use flags in the high-order 16 bits to

pass control information to the component.

C H A P T E R 4

Image Compressor Components

Image Compressor Components Reference 4-37

The following flags are defined:

#define codecCanScale (1L<<0) /* decompressor scales

information */

#define codecCanMask (1L<<1) /* decompressor applies mask to

image */

#define codecCanMatte (1L<<2) /* decompressor blends image using

matte */

#define codecCanTransform (1L<<3) /* decompressor works with complex

placement matrices */

#define codecCanTransferMode (1L<<4) /* decompressor accepts transfer

mode */

#define codecCanCopyPrev (1L<<5) /* compressor updates previous

image buffer */

#define codecCanSpool (1L<<6) /* component can use functions to

spool data */

#define codecCanClipVertical (1L<<7) /* decompressor clips image

vertically */

#define codecCanClipRectangular (1L<<8) /* decompressor clips image

vertically & horizontally */

#define codecCanRemapColor (1L<<9) /* compressor remaps color */

#define codecCanFastDither (1L<<10) /* compressor supports fast

dithering */

#define codecCanSrcExtract (1L<<11) /* compressor extracts portion

of source image */

#define codecCanCopyPrevComp (1L<<12) /* compressor updates previous

image buffer */

#define codecCanAsync (1L<<13) /* component can work

asynchronously */

#definecodecCanMakeMask (1L<<14) /* decompressor makes

modification masks */

#define codecCanShift (1L<<15) /* component works with pixels

that are not byte-aligned */

IMPORTANT

The following flags are currently unused by the Image Compression
Manager: codecCanClipVertical, codecCanClipRectangular,
and codecCanFastDither. ▲

C H A P T E R 4

Image Compressor Components

4-38 Image Compressor Components Reference

Flag descriptions

codecCanScale Indicates whether the decompressor can scale the image during
decompression. The decompressor sets this flag to 1 to indicate that
it can scale the image during decompression. The decompressor sets
this flag to 0 if it cannot scale the decompressed image.

codecCanMask Indicates whether the decompressor can apply a mask to the
decompressed image. The decompressor sets this flag to 1 to
indicate that it can use a mask to control the image that results from
a decompression operation. The decompressor sets this flag to 0 if it
cannot work with masks.

codecCanMatte Indicates whether the decompressor can blend the decompressed
image using a matte. The decompressor sets this flag to 1 to indicate
that it can use a blend matte during decompression. The
decompressor sets this flag to 0 if it cannot use a blend matte.

codecCanTransform
Indicates whether the decompressor can work with complex
placement matrixes. The decompressor sets this flag to 1 to indicate
that it can work with transformation matrixes during
decompression. The decompressor sets this flag to 0 if it cannot
work with matrixes.

codecCanTransferMode
Indicates whether the decompressor can accept a transfer mode
other than source copy or dither copy when displaying a
decompressed image. The decompressor sets this flag to 1 to
indicate that it can accept transfer modes; otherwise, the
decompressor sets this flag to 0.

codecCanCopyPrev
Indicates whether the compressor can update the previous image
buffer during sequence compression. The compressor sets this flag
to 1 to indicate that it can update the previous image buffer. The
compressor sets this flag to 0 if it cannot update the buffer.

codecCanSpool Indicates whether the component can use data-loading and
data-unloading functions to spool data during decompression and
compression operations, respectively. Applications may define
data-loading and data-unloading functions to handle images that
cannot fit into memory (see the chapter “Image Compression
Manager” in Inside Macintosh: QuickTime for more information on
data-loading and data-unloading functions). The component sets
this flag to 1 to indicate that it can use these functions. The
component sets this flag to 0 to indicate that it cannot use these
functions.

codecCanClipVertical
Indicates whether the decompressor can clip an image vertically
during decompression. The decompressor sets this flag to 1 to
indicate that it can clip an image vertically. The decompressor sets
this flag to 0 to indicate that it cannot clip an image vertically.

C H A P T E R 4

Image Compressor Components

Image Compressor Components Reference 4-39

codecCanClipRectangular
Indicates whether the decompressor can clip both vertically and
horizontally during decompression. The decompressor sets this flag
to 1 to indicate that it can clip along both axes. The decompressor
sets this flag to 0 to indicate that it cannot clip an image both
vertically and horizontally.

codecCanRemapColor
Indicates whether the compressor can remap the colors for an image
using color tables. The compressor sets this flag to 1 if it can remap
colors. The compressor sets this flag to 0 if it cannot remap colors.

codecCanFastDither
Indicates whether the compressor supports fast dithering.
The compressor sets this flag to 1 if it supports fast dithering. The
compressor sets this flag to 0 if it does not support fast dithering.
See the chapter “Image Compression Manager” in Inside Macintosh:
QuickTime for more information about fast dithering.

codecCanSrcExtract
Indicates whether the compressor can extract a portion of the source
image. The compressor sets this flag to 1 if it can extract a portion of
the source image. The compressor sets the flag to 0 if it cannot.

codecCanCopyPrevComp
Indicates whether the compressor can update the previous image
buffer during sequence compression using compressed data. The
compressor sets this flag to 1 to indicate that it can update the
previous image buffer. The compressor sets this flag to 0 if it cannot
update the buffer.

codecCanAsync Indicates whether the component can work asynchronously. The
compressor sets this flag to 1 if it can compress and decompress
asynchronously; otherwise, it sets this flag to 0.

codecCanMakeMask
Indicates whether the decompressor creates modification masks
during decompression. These masks indicate which pixels in the
decompressed image differ from the previous image and must
therefore be displayed. Such masks are useful only when processing
sequences. The decompressor sets this flag to 1 to indicate that it
creates modification masks. The decompressor sets this flag to 0 if it
does not create such masks.

codecCanShift Indicates whether the component can work with pixels that are not
byte-aligned. This flag is valid only when the source or destination
uses fewer than 8 bits per pixel. Components set this flag to 1 if they
can read or write pixels that are not byte-aligned. Components set
this flag to 0 if pixels must be byte-aligned.

C H A P T E R 4

Image Compressor Components

4-40 Image Compressor Components Reference

The Compression Parameters Structure

Compressor components accept the parameters that govern a compression operation in

the form of a data structure. This data structure is called a compression parameters
structure. This structure is used by the CDBandCompress and CDPreCompress

functions (described on page 4-63 and page 4-62, respectively).

The compression parameters structure is defined by the CodecCompressParams data

type as follows:

typedef struct {

ImageSequence sequenceID; /* sequence identifier ID

 (precompress or

bandcompress) */

ImageDescriptionHandle imageDescription; /* handle to image

description structure

(precompress or

 bandcompress) */

Ptr data; /* location for receipt of

compressed image data */

long bufferSize; /* size of buffer for data */

long frameNumber; /* frame identifier */

long startLine; /* starting line for band */

long stopLine; /* ending line for band */

long conditionFlags; /* condition flags */

CodecFlags callerFlags; /* control information

flags */

CodecCapabilitiesPtr *capabilities; /* pointer to compressor

capability structure */

ProgressProcRecord progressProcRecord; /* progress function

structure */

CompletionProcRecord completionProcRecord;/* completion function

structure */

FlushProcRecord flushProcRecord; /* data-unloading function

structure */

PixMap srcPixMap; /* pointer to image

(precompress or

 bandcompress) */

PixMap prevPixMap; /* pointer to pixel map

for previous image */

CodecQ spatialQuality; /* compressed image

quality */

CodecQ temporalQuality; /* sequence temporal

quality */

C H A P T E R 4

Image Compressor Components

Image Compressor Components Reference 4-41

Fixed similarity; /* similarity between

adjacent frames */

DataRateParamsPtr dataRateParams; /* data constraint

parameters */

long reserved; /* reserved */

} CodecCompressParams;

typedef CodecCompressParams *CodecCompressParamsPtr;

Field descriptions

sequenceID
Contains a unique sequence identifier. If the image to be compressed is
part of a sequence, this field contains the sequence identifier that was
assigned by the CompressSequenceBegin function. If the image is not
part of a sequence, this field is set to 0.

imageDescription
Contains a handle to the image description structure that describes the
image to be compressed.

data Points to a location to receive the compressed image data. This is a 32-bit
clean address—do not call StripAddress. If there is not sufficient
memory to store the compressed image, the application may choose to
write the compressed data to mass storage during the compression
operation. The flushProc field identifies the data-unloading function
that the application provides for this purpose.

This field is used only by the CDBandCompress function.

bufferSize
Contains the size of the buffer specified by the data field. Your
component sets the value of the bufferSize field to the number of bytes
of compressed data written into the buffer. Your component should not
return more data than the buffer can hold—it should return a nonzero
result code instead.

This field is used only by the CDBandCompress function.

frameNumber
Contains a frame identifier. Indicates the relative frame number within
the sequence. The Image Compression Manager increments this value for
each frame in the sequence.

This field is used only by the CDBandCompress function.

startLine Contains the starting line for the band. This field indicates the starting
line number for the band to be compressed. The line number refers to the
pixel row in the image, starting from the top of the image. The first row is
row number 0.

This field is used only by the CDBandCompress function.

stopLine Contains the ending line for the band. This field indicates the ending line
number for the band to be compressed. The line number refers to the
pixel row in the image, starting from the top of the image. The first row in
the image is row number 0.

C H A P T E R 4

Image Compressor Components

4-42 Image Compressor Components Reference

The image band includes the row specified by this field. So, to define a
band that contains one row of pixels at the top of an image, you set the
startLine field to 0 and the stopLine field to 1.

conditionFlags
Contains flags that identify the condition under which your component
has been called. This field is used only by the CDBandCompress
function. In addition, these fields contain information about actions taken
by your component. Condition flags fields contain the following flags:

 #define codecConditionFirstBand (1L<<0)

 #define codecConditionLastBand (1L<<1)

The codecConditionFirstBand constant is an input flag that indicates
if this is the first band in the frame. If this flag is set to 1, then your
component is being called for the first time for the current frame.

The codecConditionLastBand constant is an input flag that indicates
if this is the last band in the frame. If this flag is set to 1, then your
component is being called for the last time for the current frame. If the
codecConditionFirstBand flag is also set to 1, this is the only time
the Image Compression Manager is calling your component for the
current frame.

The codecConditionCodecChangedMask constant is an output flag
that indicates that the component has changed the mask bits. If your
image decompressor component can mask decompressed images and if
some of the image pixels should not be written to the screen, set to 0 the
corresponding bits in the mask defined by the maskBits field in the
decompression parameter structure. In addition, set this flag to 1.
Otherwise, set this flag to 0.

callerFlags
The callerFlags constant is an output flag that contains flags
providing further control information. See the chapter “Image
Compression Manager” in Inside Macintosh: QuickTime for information
about the Image Compression Manager function control flags. The
following flags are available:

codecFlagUpdatePrevious
Controls whether your compressor updates the previous
image during compression. This flag is only used with
sequences that are being temporally compressed.
If this flag is set to 1, your compressor should copy the
current frame into the previous frame buffer at the end of
the frame-compression sequence. Use the source image.

C H A P T E R 4

Image Compressor Components

Image Compressor Components Reference 4-43

codecFlagWasCompressed
Indicates to your compressor that the image to be
compressed has been compressed before. This information
may be useful to compressors that can compensate for the
image degradation that may otherwise result from
repeated compression and decompression of the same
image. This flag is set to 1 to indicate that the image was
previously compressed. This flag is set to 0 if the image
was not previously compressed.

codecFlagUpdatePreviousComp
Controls whether your compressor updates the previous
image buffer with the compressed image. This flag is only
used with temporal compression. If this flag is set to 1,
your compressor should update the previous frame buffer
at the end of the frame-compression sequence, allowing
your compressor to perform frame differencing against the
compression results. Use the image that results from
the compression operation. If this flag is set to 0,
your compressor should not modify the previous frame
buffer during compression.

codecFlagLiveGrab
Indicates whether the current sequence results from
grabbing live video. When working with live video, your
compressor should operate as quickly as possible and
disable any additional processing, such as compensation
for previously compressed data. This flag is set to 1 when
you are compressing from a live video source.

This field is used only by the CDBandCompress function
(described on page 4-63).

capabilities
Points to a compressor capability structure. The Image Compression
Manager uses this field to determine the capabilities of your compressor
component.

This field is used only by the CDPreCompress function (described on
page 4-62).

progressProcRecord
Contains a progress function structure. During the compression
operation, your compressor may occasionally call a function that the
application provides in order to report your progress (see the chapter
“Image Compression Manager” in Inside Macintosh: QuickTime for more
information about progress functions). This field contains a structure that
identifies the progress function. If the progressProc field in this
structure is set to nil, the application has not supplied a progress
function.

This structure is used only by the CDBandCompress function (described
on page 4-63).

C H A P T E R 4

Image Compressor Components

4-44 Image Compressor Components Reference

completionProcRecord
Contains a completion function structure. This structure governs whether
you perform the compression asynchronously. If the completionProc
field in this structure is set to nil, perform the compression
synchronously. If this field is not nil, it specifies an application
completion function. Perform the compression asynchronously and call
that completion function when your component is finished. See the
chapter “Image Compression Manager” in Inside Macintosh: QuickTime for
information on calling completion functions. If the completionProc
field in this structure has a value of –1, perform the operation
asynchronously but do not call the application’s completion function.

This structure is used only by the CDBandCompress function.

flushProcRecord
Contains a data-unloading function structure. If there is not enough
memory to store the compressed image, the application may provide a
function that unloads some of the compressed data (see the chapter
“Image Compression Manager” in Inside Macintosh: QuickTime for more
information about data-unloading functions). This field contains a
structure that identifies that data-unloading function.

If the application did not provide a data-unloading function, the
flushProc field in this structure is set to nil. In this case, your
component writes the entire compressed image into the memory location
specified by the data field.

The data-unloading function structure is defined by the
flushProcRecord data type as follows:

struct FlushProcRecord {

FlushProcPtr flushProc; /* pointer to

data-unloading

function */

long flushRefCon; /* data-unloading

function reference

constant */

};

typedef struct FlushProcRecord FlushProcRecord;

typedef FlushProcRecord *FlushProcRecordPtr;

The data-unloading function structure is used only by the
CDBandCompress function (described on page 4-63).

srcPixMap Points to the image to be compressed. The image must be stored in a pixel
map structure. The contents of this pixel map differ from a standard
pixel map in two ways. First, the rowBytes field is a full 16-bit
value—the high-order bit is not necessarily set to 1. Second, the
baseAddr field must contain a 32-bit clean address.

This field is used only by the CDBandCompress function.

C H A P T E R 4

Image Compressor Components

Image Compressor Components Reference 4-45

prevPixMap
Points to a pixel map containing the previous image. If the
image to be compressed is part of a sequence that is being temporally
compressed, this field defines the previous image
for temporal compression. Your component should then use this previous
image as the basis of comparison for the image to be compressed.

If the temporalQuality field is set to 0, do not perform temporal
compression. If the codecFlagUpdatePrevious flag or the
codecFlagUpdatePreviousComp flag in the flags field is set to 1,
update the previous image at the end of the compression operation.

The contents of this pixel map differ from a standard pixel map in two
ways. First, the rowBytes field is a full 16-bit value—the high-order bit is
not necessarily set to 1. Second, the baseAddr field must contain a 32-bit
clean address.

This field is used only by the CDBandCompress function.

spatialQuality
Specifies the desired compressed image quality. See the chapter “Image
Compression Manager” in Inside Macintosh: QuickTime for valid values.

This field is used only by the CDBandCompress function.

Check to see if the value of this parameter is nil and, if so, do not write
to location 0.

temporalQuality
Specifies the desired sequence temporal quality. This field governs the
level of compression the application desires with respect to information in
successive frames in the sequence. If this field is set to 0, do not perform
temporal compression on this frame. See the chapter “Image
Compression Manger” in Inside Macintosh: QuickTime for other available
values.

This field is used only by the CDBandCompress function (described on
page 4-63).

Check to see if the value of this parameter is nil and, if so, do not write
to location 0.

similarity
Indicates the similarity between adjacent frames when performing
temporal compression. Your component returns a fixed-point number in
this field. That value indicates the relative similarity between the frame
just compressed and the previous frame. Valid values range from 0 (key
frame) to 1 (identical).

This field is used only by the CDBandCompress function.

Check to see if the value of this parameter is nil and, if so, do not write
to location 0.

dataRateParams
Points to the parameters used when performing data rate constraint.

reserved Reserved for use by Apple.

C H A P T E R 4

Image Compressor Components

4-46 Image Compressor Components Reference

The Decompression Parameters Structure

Decompressors accept the parameters that govern a decompression operation in the

form of a data structure. This data structure is called a decompression parameters structure.
It is used by the CDBandDecompress and CDPreDecompress functions, which are

described on page 4-64 and page 4-63, respectively.

The decompression parameters structure is defined by the CodecDecompressParams

data type as follows:

typedef struct {

ImageSequence sequenceID; /* unique sequence ID

(predecompress,

 band decompress) */

ImageDescriptionHandle imageDescription; /* handle to image description

 structure (predecompress,

band decompress) */

Ptr data; /* compressed image data */

long bufferSize; /* size of data buffer */

long frameNumber; /* frame identifier */

long startLine; /* starting line for band */

long stopLine; /* ending line for band */

long conditionFlags; /* condition flags */

CodecFlags callerFlags; /* control flags */

CodecCapabilitiesPtr *capabilities; /* pointer to compressor

capability structure

(predecompress,

band decompress) */

ProgressProcRecord progressProcRecord;

/* progress function

structure */

CompletionProcRecord completionProcRecord;

/* completion function

structure */

DataProcRecord dataProcRecord; /* data-loading function

structure */

CGrafPtr port; /* pointer to color

graphics port for image

(predecompress,

band decompress) */

PixMap dstPixMap; /* destination pixel map

(predecompress,

band decompress) */

BitMapPtr maskBits; /* update mask */

PixMapPtr mattePixMap; /* blend matte pixel map */

C H A P T E R 4

Image Compressor Components

Image Compressor Components Reference 4-47

Rect srcRect; /* source rectangle

 (predecompress,

band decompress) */

MatrixRecordPtr *matrix; /* pointer to matrix structure

(predecompress,

band decompress) */

CodecQ accuracy; /* desired accuracy

(predecompress,

band decompress) */

short transferMode; /* transfer mode(predecompress,

band decompress) */

long reserved[2]; /* reserved */

} CodecDecompressParams;

typedef CodecDecompressParams *CodecDecompressParamsPtr;

Field descriptions

sequenceID Contains the unique sequence identifier. If the image to be
decompressed is part of a sequence, this field contains the sequence
identifier that was assigned by the Image Compression Manager’s
DecompressSequenceBegin function. If the image is not part of a
sequence, this field is set to 0.

imageDescription
Contains a handle to the image description structure that describes
the image to be decompressed.

data Points to the compressed image data. This must be a 32-bit clean
address. The bufferSize field indicates the size of this data
buffer. If the entire compressed image does not fit in memory, the
application should provide a data-loading function, identified by
the dataProc field of the data-loading function structure stored
in the dataProcRecord field.

This field is used only by the CDBandDecompress function
(described on page 4-64).

bufferSize Specifies the size of the image data buffer.

This field is used only by the CDBandDecompress function.

frameNumber Contains a frame identifier. Indicates the relative frame number
within the sequence. The Image Compression Manager increments
this value for each frame in the sequence.

This field is used only by the CDBandDecompress function
(described on page 4-64).

startLine Specifies the starting line for the band. This field indicates the
starting line number for the band to be decompressed. The line
number refers to the pixel row in the image, starting from the top of
the image. The first row in the image is row number 0.

This field is used only by the CDBandDecompress function.

C H A P T E R 4

Image Compressor Components

4-48 Image Compressor Components Reference

stopLine Specifies the ending line for the band. This field indicates the
ending line number for the band to be decompressed. The line
number refers to the pixel row in the image, starting from the top of
the image. The first row is row number 0.

The image band includes the row specified by this field. So, to
define a band that contains one row of pixels at the top of an image,
you set the startLine field to 0 and the stopLine field to 1.

This field is used only by the CDBandDecompress function.

conditionFlags Contains flags that identify the condition under which your
component has been called (in order to save the component some
work). The flags in this field are passed to the component in the
CDBandCompress and CDPreDecompress functions when
conditions change to save it some work. In addition, these fields
contain information about actions taken by your component.
Condition flags fields contain the following flags:

#define codecConditionFirstFrame (1L<<2)

#define codecConditionNewDepth (1L<<3)

#define codecConditionNewTransform (1L<<4)

#define codecConditionNewSrcRect (1L<<5)

#define codecConditionNewMatte (1L<<7)

#define codecConditionNewTransferMode (1L<<8)

#define codecConditionNewClut (1L<<9)

#define codecConditionNewAccuracy (1L<<10)

#define codecConditionNewDestination (1L<<11)

#define codecConditionCodecChangedMask (1L<<31)

The codecConditionFirstBand constant is an input flag that
indicates if this is the first band in the frame. If this flag is set to 1,
then your component is being called for the first time for the current
frame.

The codecConditionLastBand constant is an input flag that
indicates if this is the last band in the frame. If this flag is set to 1,
then your component is being called for the last time for the current
frame. If the codecConditionFirstBand flag is also set to 1, this
is the only time the Image Compression Manager is calling your
component for the current frame.

The codecConditionFirstFrame constant is an input flag that
indicates that this is the first frame to be decompressed for this
image sequence.

C H A P T E R 4

Image Compressor Components

Image Compressor Components Reference 4-49

The codecConditionNewDepth constant is an input flag that
indicates that the depth of the destination has changed for this
image sequence.

The codecConditionNewTransform constant is an input flag
that indicates that the transformation matrix has changed for this
sequence.

The codecConditionNewSrcRect constant is an input flag that
indicates that the source rectangle has changed for this sequence.

The codecConditionNewMatte is an input flag that indicates that
the matte pixel map has changed for this sequence.

The codecConditionNewTransferMode constant is an input
flag that indicates that the transfer mode has changed for this
sequence.

The codecConditionNewClut constant is an input flag that
indicates that the color lookup table has changed for this sequence.

The codecConditionNewAccuracy constant is an input flag that
indicates to the component that the accuracy parameter has
changed for this sequence.

The codecConditionNewDestination constant is an input flag
that indicates to the component that the destination pixel map has
changed for this sequence.

The codecConditionCodecChangedMask constant is an output
flag that indicates that the component has changed the mask bits. If
your image decompressor component can mask decompressed
images and if some of the image pixels should not be written to the
screen, set the corresponding bits in the mask (defined by the
maskBits field in the decompression parameter structure) to 0. In
addition, set this flag to 1. Otherwise, set this flag to 0.

callerFlags Contains flags providing further control information. See the
chapter “Image Compression Manager” in Inside Macintosh:
QuickTime for information about the Image Compression Manager
function control flags. Four flags are available:

The codecFlagUpdatePrevious flag controls whether your
compressor updates the previous image during compression. This
flag is only used with sequences that are being temporally
compressed. If this flag is set to 1, your compressor should copy the
current frame into the previous frame buffer at the end of the frame-
compression sequence. Use the source image.

The codecFlagWasCompressed flag indicates to your compressor
that the image to be compressed has been compressed before. This
information may be useful to compressors that can compensate for
the image degradation that may otherwise result from repeated
compression and decompression of the same image. This flag is set
to 1 to indicate that the image was previously compressed. This flag
is set to 0 if the image was not previously compressed.

C H A P T E R 4

Image Compressor Components

4-50 Image Compressor Components Reference

The codecFlagUpdatePreviousComp flag controls whether your
compressor updates the previous image buffer with the compressed
image. This flag is only used with temporal compression. If this flag
is set to 1, your compressor should update the previous frame
buffer at the end of the frame compression sequence, allowing your
compressor to perform frame differencing against the compression
results. Use the image that results from the compression operation.
If this flag is set to 0, your compressor should not modify the
previous frame buffer during compression.

The codecFlagLiveGrab flag indicates whether the current
sequence results from grabbing live video. When working with live
video, your compressor should operate as quickly as possible and
disable any additional processing, such as compensation for
previously compressed data. This flag is set to 1 when you are
compressing from a live video source. This field is used only by the
CDBandCompress function (described on page 4-63).

capabilities Points to a compressor capability structure (described on page 4-35).
The Image Compression Manager uses this parameter to determine
the capabilities of your decompressor component.

This field is used only by the CDPreDecompress function
(described on page 4-63).

progressProcRecord
Contains a progress function structure. During the decompression
operation, your decompressor may occasionally call a function that
the application provides in order to report your progress (see the
chapter “Image Compression Manager” in Inside Macintosh:
QuickTime for more information about progress functions). This
field contains a structure that identifies the progress function. If the
progressProc field of this structure is set to nil, the application
did not provide a progress function.

The progress function structure is defined by the
progressProcRecord data type as follows:

struct ProgressProcRecord {

ProgressProcPtr progressProc; /* pointer to

 progress

 function */

long progressRefCon;/* reference

 constant */

};

typedef struct ProgressProcRecord ProgressProcRecord;

typedef ProgressProcRecord *ProgressProcRecordPtr;

This field is used only by the CDBandDecompress function
(described on page 4-64).

completionProcRecord
Contains a completion function structure. This field governs
whether you perform the decompression asynchronously. If the

C H A P T E R 4

Image Compressor Components

Image Compressor Components Reference 4-51

completionProc field in this structure is set to nil, perform the
decompression synchronously. If this field is not nil, it specifies an
application completion function. Perform the decompression
asynchronously and call that completion function when your
component is finished. See the chapter “Image Compression
Manager” in Inside Macintosh: QuickTime for information on calling
completion functions. If this field has a value of –1, perform the
operation asynchronously but do not call the application’s
completion function.

The completion function structure is defined by the
CompletionProcRecord data type as follows:

struct CompletionProcRecord {

 CompletionProcPtr completionProc; /* pointer to

completion

function */

 long completionRefCon; /* reference

constant */

};

typedef struct CompletionProcRecord CompletionProcRecord;

typedef CompletionProcRecord *CompletionProcRecordPtr;

This field is used only by the CDBandDecompress function
(described on page 4-64).

dataProcRecord
Contains a data-loading function structure. If the data stream is not
all in memory, your component may call an application function
that loads more compressed data (see the chapter “Image
Compression Manager” in Inside Macintosh: QuickTime for more
information about data-loading functions). This field contains a
structure that identifies that data-loading function. If the
application did not provide a data-loading function, the dataProc
field in this structure is set to nil. In this case, the entire image
must be in memory at the location specified by the data field.

The data-loading function structure is defined by the
dataProcRecord data type as follows:

struct DataProcRecord {

DataProcPtr dataProc;/* pointer to data-loading

function */

long dataRefCon; /* reference constant */

};

typedef struct DataProcRecord DataProcRecord;

typedef DataProcRecord *DataProcRecordPtr;

This field is used only by the CDBandDecompress function.

C H A P T E R 4

Image Compressor Components

4-52 Image Compressor Components Reference

port Points to the color graphics port that receives the decompressed
image.

dstPixMap Points to the pixel map where the decompressed image is to be
displayed. The GDevice global variable is set to the destination
graphics device.

The contents of this pixel map differ from a standard pixel map in
two ways. First, the rowBytes field is a full 16-bit value—the
high-order bit is not necessarily set to 1. Second, the baseAddr
field must contain a 32-bit clean address.

maskBits Contains an update mask. If your component can mask result data,
use this mask to indicate which pixels in the destination pixel map
to update. Your component indicates whether it can mask with the
codecCanMask flag in the flags field of the compressor capability
structure referred to by the capabilities field. This field is
updated in response to the CDPreDecompress request (described
on page 4-63). See “The Compressor Capability Structure”
beginning on page 4-35 for a description of the compressor
capability structure.

If the mask has not changed since the last CDBandDecompress
request, the codecConditionCodecChangedMask flag in the
conditionFlags field is set to 0.

This field is used only by the CDBandDecompress function.

mattePixMap Points to a pixel map that contains a blend matte. The matte can be
defined at any supported pixel depth—the matte depth need not
correspond to the source or destination depths. The matte must be
in the coordinate system of the source image. If the application does
not want to apply a blend matte, this field is set to nil.

The contents of this pixel map differ from a standard pixel map in
two ways. First, the rowBytes field is a full 16-bit value—the
high-order bit is not necessarily set to 1. Second, the baseAddr
field must contain a 32-bit clean address.

This field is used only by the CDBandDecompress function
(described on page 4-64).

srcRect Points to a rectangle defining the portion of the image to
decompress. This rectangle must lie within the boundary rectangle
of the compressed image, which is defined by the width and
height fields of the image description structure referred to by the
imageDescription field.

matrix Points to a matrix structure that specifies how to transform the
image during decompression.

accuracy Specifies the accuracy desired in the decompressed image. Values
for this parameter are on the same scale as compression quality. See
the chapter “Image Compression Manager” in Inside Macintosh:
QuickTime for valid values.

C H A P T E R 4

Image Compressor Components

Image Compressor Components Reference 4-53

transferMode Specifies the QuickDraw transfer mode for the operation. For
details on QuickDraw’s transfer modes, see the chapter “Basic
QuickDraw” in Inside Macintosh: Imaging.

reserved Reserved for use by Apple.

Functions

This section describes the external interface that image compressor components must

support. It also discusses the utility functions that the Image Compression Manager

provides for use by compressors and decompressors.

This discussion has been divided into two parts. They discuss the image compressor

component functions that are called by the Image Compression Manager. “Direct

Functions” deals with image compressor component functions that are called by the

Image Compression Manager in response to application requests. “Indirect Functions”

discusses image compressor component functions that may be called by the Image

Compression Manager at any time. The next section, “Image Compression Manager

Utility Functions,” defines a number of Image Compression Manager utility functions

that are available to image compressor components.

Apple has defined a functional interface for image compressor components. For

information about the functions your component must support, see the individual

function descriptions that follow.

You can use the following constants to refer to the request codes for each of the functions

that your component must support.

#define codecGetCodecInfo 0x00 /* CDGetCodecInf */

#define codecGetCompressionTime 0x01 /* CDGetCompressionTime */

#define codecGetMaxCompressionSize 0x02 /* CDGetMaxCompressionSize */

#define codecPreCompress 0x03 /* CDPreCompress */

#define codecBandCompress 0x04 /* CDBandCompress */

#define codecPreDecompress 0x05 /* CDPreDeCompress */

#define codecBandDecompress 0x06 /* CDBandDeCompress */

#define codecCDSequenceBusy 0x07 /* CDSequenceBusy */

#define codecGetCompressedImageSize 0x08 /* CDGetCompressedImageSize */

#define codecGetSimilarity 0x09 /* CDGetSimilarity */

#define codecTrimImage 0x0A /* CDTrimImage */

Note

Code selectors 0 through 127 are reserved for use by Apple. Code
selectors 128 through 191 are subtype specific. Code selectors 192
through 255 are vendor specific. Code selectors 256 through 32767 are
available for general use. Negative selectors are reserved by the
Component Manager. ◆

C H A P T E R 4

Image Compressor Components

4-54 Image Compressor Components Reference

Direct Functions

These functions are invoked by the Image Compression Manager in direct response to

application functions. Refer to the chapter “Image Compression Manager” in Inside
Macintosh: QuickTime for descriptions of the functions that applications call.

CDGetCodecInfo

Your component receives the CDGetCodecInfo request whenever an application calls

the Image Compression Manager’s GetCodecInfo function.

pascal ComponentResult CDGetCodecInfo (CodecInfo *info);

info Contains a pointer to the compressor information structure (defined by
the CodecInfo data type) to update. Your component should report its
capabilities by formatting a compressor information structure in the
location specified by this parameter.

DESCRIPTION

Your component returns a formatted compressor information structure defining its

capabilities.

Both compressors and decompressors may receive this request.

RESULT CODES

SEE ALSO

See the chapter “Image Compression Manager” in Inside Macintosh: QuickTime for a

description of the compressor information structure.

noErr 0 No error
codecUnimpError –8962 Feature not implemented by this compressor

C H A P T E R 4

Image Compressor Components

Image Compressor Components Reference 4-55

CDGetMaxCompressionSize

Your component receives the CDGetMaxCompressionSize request whenever an

application calls the Image Compression Manager’s GetMaxCompressionSize

function. The caller uses this function to determine the maximum size the data will

become for a given parameter.

pascal ComponentResult CDGetMaxCompressionSize (PixMapHandle src,

 const Rect *srcRect,

 short depth,

 CodecQ quality,

 long *size);

src Contains a handle to the source image. The source image is stored in a
pixel map structure. Applications use the size information you return to
allocate buffers that may be used for more than one image. Consequently,
your compressor should not consider the contents of the image when
determining the maximum compressed size. Rather, you should consider
only the quality level, pixel depth, and image size.

This parameter may be set to nil. In this case the application has not
supplied a source image—your component should use the other
parameters to determine the characteristics of the image to be compressed.

srcRect Contains a pointer to a rectangle defining the portion of the source image
to compress.

depth Specifies the depth at which the image is to be compressed. Values of 1, 2,
4, 8, 16, 24, and 32 indicate the number of bits per pixel for color images.
Values of 33, 34, 36, and 40 indicate 1-bit, 2-bit, 4-bit, and 8-bit grayscale,
respectively, for grayscale images.

quality Specifies the desired compressed image quality. See the chapter “Image
Compression Manager” in Inside Macintosh: QuickTime for valid values.

size Contains a pointer to a field to receive the maximum size, in bytes, of the
compressed image.

DESCRIPTION

Your component returns a long integer indicating the maximum number of bytes of

compressed data that results from compressing the specified image.

Only compressors receive this request.

RESULT CODES

noErr 0 No error
paramErr –50 Invalid parameter specified

C H A P T E R 4

Image Compressor Components

4-56 Image Compressor Components Reference

CDGetCompressionTime

Your component receives the CDGetCompressionTime request whenever an

application calls the Image Compression Manager’s GetCompressionTime function.

pascal ComponentResult CDGetCompressionTime (PixMapHandle src,

const Rect *srcRect,

short depth, CodecQ

*spatialQuality,

CodecQ *temporalQuality,

unsigned long *time);

src Contains a handle to the source image. The source image is stored in a
pixel map. Applications may use the time information you return for
more than one image. Consequently, your compressor should not
consider the contents of the image when determining the maximum
compression time. Rather, you should consider only the quality level,
pixel depth, and image size.

This parameter may be set to nil. In this case the application has not
supplied a source image—your component should use the other
parameters to determine the characteristics of the image to be compressed.

srcRect Contains a pointer to a rectangle defining the portion of the source image
to compress.

depth Specifies the depth at which the image is to be compressed. Values of 1, 2,
4, 8, 16, 24, and 32 indicate the number of bits per pixel for color images.
Values of 33, 34, 36, and 40 indicate 1-bit, 2-bit, 4-bit, and 8-bit grayscale,
respectively, for grayscale images.

spatialQuality
Contains a pointer to a field containing the desired compressed image
quality. The compressor sets this field to the closest actual quality that it
can achieve. See the chapter “Image Compression Manager” in Inside
Macintosh: QuickTime for valid values. Check to see if the value of this
field is nil and, if so, do not write to location 0.

temporalQuality
Contains a pointer to a field containing the desired sequence temporal
quality. The compressor sets this field to the closest actual quality that it
can achieve. See the chapter “Image Compression Manager” in Inside
Macintosh: QuickTime for valid values. Check to see if the value of this
field is nil and, if so, do not write to location 0.

time Contains a pointer to a field to receive the compression time, in
milliseconds. If your component cannot determine the amount of time
required to compress the image, set this field to 0. Check to see if the
value of this field is nil and, if so, do not write to location 0.

C H A P T E R 4

Image Compressor Components

Image Compressor Components Reference 4-57

DESCRIPTION

Your component returns a long integer indicating the maximum number of milliseconds

it would require to compress the specified image.

Only compressors receive this request.

RESULT CODES

CDGetSimilarity

Your component receives the CDGetSimilarity request whenever an application calls

the Image Compression Manager’s GetSimilarity function. Your component

compares the specified compressed image to a picture stored in a pixel map and returns

a value indicating the relative similarity of the two images.

Note
The CDGetSimilarity function is optional. If your component doesn’t
support it, it should return the codecUnimpError result code. ◆

pascal ComponentResult CDGetSimilarity (PixMapHandle src,

const Rect *srcRect,

 ImageDescriptionHandle desc,

Ptr data,

Fixed *similarity);

src Contains a handle to the noncompressed image. The image is stored in a
pixel map structure.

srcRect Contains a pointer to a rectangle defining the portion of the image to
compare to the compressed image.

desc Contains a handle to the image description structure that defines the
compressed image for the operation.

data Contains a pointer to the compressed image data.

similarity
Contains a pointer to a field that is to receive the similarity value. Your
component sets this field to reflect the relative similarity of the two
images. Valid values range from 0 (key frame) to 1 (identical).

noErr 0 No error
paramErr –50 Invalid parameter specified
codecUnimpError –8962 Feature not implemented by this compressor

C H A P T E R 4

Image Compressor Components

4-58 Image Compressor Components Reference

DESCRIPTION

If the source image has been temporally compressed and is not a key frame (that is, the

image relies on other frames that are not available to your component at this time), your

component should return a result value of paramErr.

Only decompressors receive this request.

RESULT CODES

CDGetCompressedImageSize

Your component receives the CDGetCompressedImageSize request whenever an

application calls the Image Compression Manager’s GetCompressedImageSize

function.

You can use the CDGetCompressedImageSize function when you are extracting a

single image from a sequence; therefore, you don’t have an image description structure

and don’t know the exact size of one frame. In this case, the Image Compression

Manager calls the component to determine the size of the data.

pascal ComponentResult CDGetCompressedImageSize

(ImageDescriptionHandle desc,

 Ptr data, long bufferSize,

 DataProcRecordPtr dataProc,

 long *dataSize);

desc Contains a handle to the image description structure that defines the
compressed image for the operation.

data Points to the compressed image data.

bufferSize
Specifies the size of the buffer to be used by the data-loading
function specified by the dataProc parameter. If the application did not
specify a data-loading function this parameter is nil.

dataProc Points to a data-loading function structure. If the data stream is not all in
memory when the application calls GetCompressedImageSize, your
component may call an application function that loads more compressed
data (see the chapter “Image Compression Manager” in Inside Macintosh:
QuickTime for more information about data-loading functions). This
parameter contains a pointer to a structure that identifies the data-loading

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available
codecUnimpError –8962 Feature not implemented by this compressor

C H A P T E R 4

Image Compressor Components

Image Compressor Components Reference 4-59

function. If the application did not provide a data-loading function, this
parameter is nil. In this case, the entire image must be in memory at the
location specified by the data parameter.

dataSize Contains a pointer to a field that is to receive the size, in bytes, of the
compressed image.

DESCRIPTION

Your component returns a long integer indicating the number of bytes of data in the

compressed image. You may want to store the image size somewhere in the image

description structure, so that you can respond to this request quickly. See the chapter

“Image Compression Manager” in Inside Macintosh: QuickTime for more information

about image description structures.

Only decompressors receive this request.

RESULT CODES

CDTrimImage

Your component receives the CDTrimImage request whenever an application calls the

TrimImage function. Your component adjusts a compressed image to the boundaries

defined by a rectangle specified by your application. The resulting image data is still

compressed and is in the same compression format as the source image.

Note
The CDTrimImage function is optional. If your component doesn’t
support it, it should return the codecUnimpError result code. ◆

pascal ComponentResult CDTrimImage

(ImageDescriptionHandle desc, Ptr inData,

 long inBufferSize, DataProcRecordPtr dataProc,

 Ptr outData, long outBufferSize,

 FlushProcRecordPtr flushProc, Rect *trimRect,

 ProgressProcRecordPtr progressProc);

desc Contains a handle to the image description structure that describes the
compressed image. Your component updates this image description to
refer to the resized image.

noErr 0 No error
paramErr –50 Invalid parameter specified
codecSpoolErr –8966 Error loading or unloading data

C H A P T E R 4

Image Compressor Components

4-60 Image Compressor Components Reference

inData Points to the compressed image data. If the entire compressed image
cannot be stored at this location, the application may provide a
data-loading function (see the description of the dataProc parameter to
this function for details). This is a 32-bit clean address.

inBufferSize
Specifies the size of the buffer to be used by the data-loading
function specified by the dataProc parameter. If the application did not
specify a data-loading function, this parameter is nil.

dataProc Points to a data-loading function structure. If the data stream is not all in
memory when the application calls the Image Compression Manager’s
GetCompressedImageSize function, your component may call an
application function that loads more compressed data (see the chapter
“Image Compression Manager” in Inside Macintosh: QuickTime for more
information about data-loading functions). This parameter contains a
pointer to a structure that identifies the data-loading function. If the
application did not provide a data-loading function, this parameter is
nil. In this case, the entire image must be in memory at the location
specified by the inData parameter.

outData Points to a buffer to receive the trimmed image. If there is not sufficient
memory to store the compressed image, the application may choose to
write the compressed data to mass storage during the compression
operation. The flushProc parameter identifies the data-unloading
function. This is a 32-bit clean address.

Your component should place the actual size of the resulting image into
the dataSize field of the image description referred to by the desc
parameter.

outBufferSize
Specifies the size of the buffer to be used by the data-unloading
function specified by the flushProc parameter. If the application did
not specify a data-unloading function, this parameter is nil.

flushProc Points to a data-unloading function structure. If there is not enough
memory to store the compressed image, your component may call an
application function that unloads some of the compressed data (see the
chapter “Image Compression Manager” in Inside Macintosh: QuickTime for
more information about data-unloading functions). This parameter
contains a pointer to a structure that identifies that data-unloading
function. If the application did not provide a data-unloading function,
this parameter is nil. In this case, your component writes the entire
compressed image into the memory location specified by the outData
parameter.

trimRect Contains a pointer to a rectangle that defines the desired image
dimensions. Your component adjusts the rectangle values so that they
refer to the same rectangle in the resulting image (this is necessary
whenever data is removed from the beginning of the image).

C H A P T E R 4

Image Compressor Components

Image Compressor Components Reference 4-61

progressProc
Points to a progress function structure. During the operation, your
component should occasionally call an application function to report its
progress (see the chapter “Image Compression Manager” in Inside
Macintosh: QuickTime for more information about progress functions).
This parameter contains a pointer to a structure that identifies that
progress function. If the application did not provide a progress function,
this parameter is nil.

DESCRIPTION

Only decompressors receive this request. If the TrimImage function has been called by

an application, the resulting picture should be modified.

RESULT CODES

CDCodecBusy

Your component receives the CDCodecBusy request whenever an application calls the

CDSequenceBusy function. Your component must report whether it is performing an

asynchronous operation.

pascal ComponentResult CDCodecBusy (ImageSequence seq);

seq Contains the unique sequence identifier assigned by the Image
Compression Manager’s CompressSequenceBegin or
DecompressSequenceBegin function.

DESCRIPTION

Your component should return a result code value of 1 if an asynchronous operation is in

progress; it should return a result code value of 0 if the component is not performing an

asynchronous operation. You can indicate an error by returning a negative result code.

Both compressors and decompressors may receive this request.

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available
noCodecErr –8961 Image Compression Manager could not find the

specified compressor
codecUnimpErr –8962 Feature not implemented by this compressor
codecSpoolErr –8966 Error loading or unloading data
codecAbortErr –8967 Operation aborted by the progress function

C H A P T E R 4

Image Compressor Components

4-62 Image Compressor Components Reference

RESULT CODES

Indirect Functions

This section describes functions that are invoked by the Image Compression Manager

but do not correspond to functions called by applications. The Image Compression

Manager may call these functions at any time.

CDPreCompress

Your component receives the CDPreCompress request before compressing an image or

a band of an image. The Image Compression Manager also calls this function when

processing a sequence. In that case, the Image Compression Manager calls this function

whenever the parameters governing the sequence operation have changed substantially.

Your component indicates whether it can perform the requested compression operation.

pascal ComponentResult CDPreCompress

(CodecCompressParams *params);

params Contains a pointer to a compression parameters structure. The Image
Compression Manager places the appropriate parameter information in
that structure. See “The Compression Parameters Structure” beginning on
page 4-40 for details.

DESCRIPTION

Your component should return a 0 result code to indicate that it can handle the request.

In addition, your component indicates any limitations on its capabilities in a compressor

capability structure (see “The Compressor Capability Structure” beginning on page 4-35

for details). Your component should return a result code of codecConditionError if it

cannot field the compression request.

Only compressors receive this request.

RESULT CODES

noErr 0 No error
codecUnimpError –8962 Feature not implemented by this compressor

noErr 0 No error
paramErr –50 Invalid parameter specified
codecConditionErr –8972 Component cannot perform requested operation

C H A P T E R 4

Image Compressor Components

Image Compressor Components Reference 4-63

CDBandCompress

Your component receives the CDBandCompress request to compress an image or a band

of an image. The image may be part of a sequence.

pascal ComponentResult CDBandCompress

(CodecCompressParams *params);

params Contains a pointer to a compression parameters structure. The Image
Compression Manager places the appropriate parameter information in
that structure. See “The Compression Parameters Structure” beginning on
page 4-40 for a complete description of the compression parameters
structure.

DESCRIPTION

Only compressors receive this request.

RESULT CODES

CDPreDecompress

Your component receives the CDPreDecompress request before decompressing an

image or a band of an image. The Image Compression Manager also calls this function

when processing a sequence. In that case, the Image Compression Manager calls this

function whenever the parameters governing the sequence operation have changed

substantially. Your component indicates whether it can perform the requested

decompression operation.

pascal ComponentResult CDPreDecompress

(CodecDecompressParams *params);

params Contains a pointer to a decompression parameters structure. The Image
Compression Manager places the appropriate parameter information in
that structure. See “The Decompression Parameters Structure” beginning
on page 4-46 for a complete description of the decompression parameters
structure.

noErr 0 No error
paramErr –50 Invalid parameter specified
codecSpoolErr –8966 Error loading or unloading data
codecAbortErr –8967 Operation aborted by the progress function

C H A P T E R 4

Image Compressor Components

4-64 Image Compressor Components Reference

DESCRIPTION

Your component should return a 0 result code to indicate that it can handle the request.

In addition, your component indicates any limitations on its capabilities in a

compressor capability structure (see page 4-35 for a description of that structure). Return

a result code of codecConditionError if your component cannot field the

decompression request.

Only decompressors receive this request.

RESULT CODES

CDBandDecompress

Your component receives the CDBandDecompress request to decompress an image or a

band of an image. The image may be part of a sequence.

pascal ComponentResult CDBandDecompress

(CodecDecompressParams *params);

params Contains a pointer to a decompression parameters structure. The Image
Compression Manager places the appropriate parameter information in
that structure. See “The Decompression Parameters Structure” beginning
on page 4-46 for a complete description of the decompression parameters
structure.

DESCRIPTION

Only decompressors receive these requests.

RESULT CODES

noErr 0 No error
paramErr –50 Invalid parameter specified
codecConditionErr –8972 Component cannot perform requested operation

noErr 0 No error
paramErr –50 Invalid parameter specified
codecSpoolErr –8966 Error loading or unloading data
codecAbortErr –8967 Operation aborted by the progress function

C H A P T E R 4

Image Compressor Components

Image Compressor Components Reference 4-65

Image Compression Manager Utility Functions

The Image Compression Manager provides a number of utility functions for use by your

compressor component. These utility functions allow compressor components to

manipulate the Image Compression Manager’s image description structures.

SetImageDescriptionExtension

Your component may use the SetImageDescriptionExtension function to create or

update the extended data for an image.

pascal OSErr SetImageDescriptionExtension

(ImageDescriptionHandle desc,

 Handle extension,

 long idType);

desc Contains a handle to the appropriate image description structure. The
SetImageDescriptionExtension function updates the size of the
image description to accommodate the new extended data.

extension Contains a handle to the new extended data. The
SetImageDescriptionExtension function uses this data to update
the extended data for the image described by the image description
referred to by the desc parameter.

idType Specifies the extension’s type value. Use this parameter to assign a data
type to the extension. Use a four-character code, similar to an OSType
field value.

DESCRIPTION

The Image Compression Manager appends the extended data for an image to the

appropriate image description structure (see the chapter “Image Compression Manager”

in Inside Macintosh: QuickTime for information about image description structures). Note

that each compressor type may have its own format for the extended data that is stored

with an image. The extended data is similar in concept to the user data that applications

can associate with QuickTime movies—see the chapter “Movie Toolbox” in Inside
Macintosh: QuickTime for more information about user data in QuickTime movies. Once

you have added extended data to an image, you cannot delete it.

C H A P T E R 4

Image Compressor Components

4-66 Image Compressor Components Reference

RESULT CODES

GetImageDescriptionExtension

Your component may use the GetImageDescriptionExtension function to obtain

the extended data for an image.

pascal OSErr GetImageDescriptionExtension

 (ImageDescriptionHandle desc,

Handle *extension,

long idType, long index);

desc Contains a handle to the appropriate image description structure.

extension Contains a pointer to a field to receive a handle to the returned data. The
GetImageDescriptionExtension function returns the extended data
for the image described by the image description referred to by the desc
parameter. The function correctly sizes the handle for the data it returns.

idType Specifies the extension’s type value. Use this parameter to determine the
data type of the extension. This parameter contains a four-character code,
similar to an OSType field value.

index Specifies the extension’s index value.

DESCRIPTION

The Image Compression Manager appends the extended data for an image to the

appropriate image description structure (see the chapter “Image Compression Manager”

in Inside Macintosh: QuickTime for information about image description structures). Note

that each compressor type may have its own format for the extended data that is stored

with an image. The extended data is similar in concept to the user data that applications

can associate with QuickTime movies—see the chapter “Movie Toolbox” in Inside
Macintosh: QuickTime for more information about user data in QuickTime movies. Once

you have added extended data to an image, you cannot delete it.

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available
noCodecErr –8961 Image Compression Manager could not

find the specified compressor
codecExtensionNotFoundErr –8971 Requested extension is not in the image

description

C H A P T E R 4

Image Compressor Components

Image Compressor Components Reference 4-67

RESULT CODES

RemoveImageDescriptionExtension

The RemoveImageDescriptionExtension function allows you to remove an

extension based on its type or index.

pascal OSErr RemoveImageDescriptionExtension

(ImageDescription **desc,

 long type, long index);

desc Contains a handle to the appropriate image description structure.

type Specifies the extension’s type, starting at 1. Use this parameter to specify
the data type of the extension to be removed. This parameter contains a
four-character code, similar to an OSType field value. Set the value of this
parameter to 0 to indicate that any extension should be matched, with the
index parameter becoming an index into all of the extensions.

index Specifies the extension’s index value.

RESULT CODE

CountImageDescriptionExtensionType

The CountImageDescriptionExtensionType function counts the number of image

description extensions in a specified image description structure.

pascal OSErr CountImageDescriptionExtensionType

(ImageDescription **desc,

 long type, long *count);

desc Contains a handle to the image description structure with the extensions
to be counted.

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available
noCodecErr –8961 The Image Compression Manager

could not find the specified compressor
codecExtensionNotFoundErr –8971 Requested extension is not in the

image description

codecExtensionNotFoundErr –8971 Requested extension is not in the image
description

C H A P T E R 4

Image Compressor Components

4-68 Image Compressor Components Reference

type Indicates the type of extension to be counted in the specified image
description structure. Set the value of this parameter to 0 to match any
extension, and return a count of all of the extensions.

count Contains a pointer to an integer that indicates how many extensions of
the given type are in the given image description structure.

GetNextImageDescriptionExtensionType

The GetNextImageDescriptionExtensionType function retrieves the next

extension type encountered after the one you specify.

pascal OSErr GetNextImageDescriptionExtensionType

 (ImageDescription **desc, long *type);

desc Contains a handle to the image description structure with the extension
under scrutiny.

type Contains a pointer to an integer that indicates the type of the extension
after which this function is to return the next extension type. Set the value
of this parameter to 0 to return the first type found. Point to a value of 0 to
return the first type found.

DESCRIPTION

If GetNextImageDescriptionExtensionType returns a value of 0 in the type

parameter, no more types could be found.

C H A P T E R 4

Image Compressor Components

Summary of Image Compressor Components 4-69

Summary of Image Compressor Components

C Summary

Constants

#define compressorComponentType 'imco' /* compressor component type */

#define decompressorComponentType 'imdc' /* decompressor component type */

/* selector values */

#define codecGetCodecInfo 0x00 /* CDGetCodecInfo */

#define codecGetCompressionTime 0x01 /* CDGetCompressionTime */

#define codecGetMaxCompressionSize 0x02 /* CDGetMaxCompressionSize */

#define codecPreCompress 0x03 /* CDPreCompress */

#define codecBandCompress 0x04 /* CDBandCompress */

#define codecPreDecompress 0x05 /* CDPreDecompress */

#define codecBandDecompress 0x06 /* CDBandDecompress */

#define codecCDSequenceBusy 0x07 /* CDSequenceBusy */

#define codecGetCompressedImageSize 0x08 /* CDGetCompressedImageSize */

#define codecGetSimilarity 0x09 /* CDGetSimilarity */

#define codecTrimImage 0x0A /* CDTrimImage */

/* image compressor component capabilities flags */

#define codecCanScale (1L<<0) /* decompressor scales

information */

#define codecCanMask (1L<<1) /* decompressor applies mask to

image */

#define codecCanMatte (1L<<2) /* decompressor blends image using

matte */

#define codecCanTransform (1L<<3) /* decompressor works with complex

placement matrices */

#define codecCanTransferMode (1L<<4) /* decompressor accepts transfer

mode */

#define codecCanCopyPrev (1L<<5) /* compressor updates previous

image buffer */

#define codecCanSpool (1L<<6) /* component can use functions to

spool data */

#define codecCanClipVertical (1L<<7) /* decompressor clips image

vertically */

C H A P T E R 4

Image Compressor Components

4-70 Summary of Image Compressor Components

#define codecCanClipRectangular (1L<<8) /* decompressor clips image

vertically & horizontally */

#define codecCanRemapColor (1L<<9) /* compressor remaps color */

#define codecCanFastDither (1L<<10) /* compressor supports fast

dithering */

#define codecCanSrcExtract (1L<<11) /* compressor extracts portion

of source image */

#define codecCanCopyPrevComp (1L<<12) /* compressor updates previous

image buffer */

#define codecCanAsync (1L<<13) /* component can work

asynchronously */

#definecodecCanMakeMask (1L<<14) /* decompressor makes

modification masks */

#define codecCanShift (1L<<15) /* component works with pixels

that are not byte-aligned */

/* compressor component condition flags passed to component in

CDBandDecompress and CDPreDecompress functions indicate changes */

#define codecConditionFirstBand (1L<<0) /* (input) first band

in frame */

#define codecConditionLastBand (1L<<1) /* (input) last band

in frame */

#define codecConditionFirstFrame (1L<<2) /* (input) first frame to be

 decompressed in this

 sequence */

#define codecConditionNewDepth (1L<<3) /* (input) depth of

 destination */

#define codecConditionNewTransform (1L<<4) /* (input) transformation

 matrix has changed */

#define codecConditionNewSrcRect (1L<<5) /* (input) source rectangle */

#define codecConditionNewMask (1L<<6) /* (input) mask bitmap has

 changed */

#define codecConditionNewMatte (1L<<7) /* (input) matte pixel map */

#define codecConditionNewTransferMode (1L<<8) /* (input) transfer mode */

#define codecConditionNewClut (1L<<9) /* (input) color lookup

 table */

#define codecConditionNewAccuracy (1L<<10) /* accuracy parameter has

changed */

#define codecConditionNewDestination (1L<<11) /*(input) destination pixel

map */

#define codecConditionCodecChangedMask (1L<<31) /* (output) component has

changed mask bits */

C H A P T E R 4

Image Compressor Components

Summary of Image Compressor Components 4-71

/* compressor and decompressor flag bits */

#define codecInfoDoes1 (1L<<0) /* works with 1-bit pixel maps */

#define codecInfoDoes2 (1L<<1) /* works with 2-bit pixel maps */

#define codecInfoDoes4 (1L<<2) /* works with 4-bit pixel maps */

#define codecInfoDoes8 (1L<<3) /* works with 8-bit pixel maps */

#define codecInfoDoes16 (1L<<4) /* works with 16-bit pixel maps */

#define codecInfoDoes32 (1L<<5) /* works with 32-bit pixel maps */

#define codecInfoDoesDither (1L<<6) /* supports fast dithering */

#define codecInfoDoesStretch (1L<<7) /* stretches to arbitrary sizes */

#define codecInfoDoesShrink (1L<<8) /* shrinks to arbitrary sizes */

#define codecInfoDoesMask (1L<<9) /* handles clipping regions */

#define codecInfoDoesTemporal (1L<<10) /* sequential temporal

compression */

#define codecInfoDoesDouble (1L<<11) /* stretches to double size

 exactly */

#define codecInfoDoesQuad (1L<<12) /* stretches to quadruple size */

#define codecInfoDoesHalf (1L<<13) /* shrinks to half size */

#define codecInfoDoesQuarter (1L<<14) /* shrinks to one quarter size */

#define codecInfoDoesRotate (1L<<15) /* rotates during decompression */

#define codecInfoDoesHorizFlip (1L<<16) /* flips horizontally during

decompression */

#define codecInfoDoesVertFlip (1L<<17) /* flips vertically during

decompression */

#define codecInfoDoesSkew (1L<<18) /* skews image during

decompression */

#define codecInfoDoesBlend (1L<<19) /* blends image with matte during

decompression */

#define codecInfoDoesWarp (1L<<20) /* warps image arbitrarily during

decompression */

#define codecInfoDoesRecompress (1L<<21) /* recompresses images without

accumulating errors */

#define codecInfoDoesSpool (1L<<22) /* uses data-loading or

 data-unloading function */

#define codecInfoDoesRateConstrain

(1L<<23) /* constrains amount of generated

data to caller-defined limit */

/* compressor and decompressor format flag bits */

#define codecInfoDepth1 (1L<<0) /* compressed images with 1-bit

color depth available */

#define codecInfoDepth2 (1L<<1) /* compressed images with 2-bit

color depth available */

#define codecInfoDepth4 (1L<<2) /* compressed images with 4-bit

color depth available */

C H A P T E R 4

Image Compressor Components

4-72 Summary of Image Compressor Components

#define codecInfoDepth8 (1L<<3) /* compressed images with 8-bit

color depth available */

#define codecInfoDepth16(1L<<4) /* compressed images with 16-bit

color depth available */

#define codecInfoDepth32(1L<<5) /* compressed images with 32-bit

color depth available */

#define codecInfoDepth24(1L<<6) /* compressed images with 24-bit

color depth available */

#define codecInfoDepth33(1L<<7) /* compressed data with monochrome images of

1-bit color depth */

#define codecInfoDepth34(1L<<8) /* compressed images with

2-bit grayscale depth available */

#define codecInfoDepth36(1L<<9) /* compressed images with 4-bit grayscale

depth available */

#define codecInfoDepth40(1L<<10) /* compressed images with 8-bit grayscale

depth available */

#define codecInfoStoresClut

(1L<<11) /* compressed data with custom color

tables */

#define codecInfoDoesLossless

(1L<<12) /* compressed data stored lossless format */

#define codecInfoSequenceSensitive

(1L<<13) /* compressed data requires non-key frames

to be compressed in same order as

compressed */

Data Types

typedef struct {

long flags; /* control information */

short wantedPixelSize; /* pixel depth for component to use

with image */

short extendWidth; /* extension width of image in pixels */

short extendHeight; /* extension height of image in pixels */

short bandMin; /* supported minimum image band height */

short bandInc; /* common factor of supported band

heights */

short pad; /* reserved */

unsigned long time; /* milliseconds operation takes to

complete */

} CodecCapabilities;

typedef CodecCapabilities *CodecCapabilitiesPtr;

C H A P T E R 4

Image Compressor Components

Summary of Image Compressor Components 4-73

typedef struct {

ImageSequence sequenceID; /* sequence identifier ID

 (precompress or

bandcompress) */

ImageDescriptionHandle imageDescription; /* handle to image

description structure

(precompress or

 bandcompress) */

Ptr data; /* location for receipt of

compressed image data */

long bufferSize; /* size of buffer for data */

long frameNumber; /* frame identifier */

long startLine; /* starting line for band */

long stopLine; /* ending line for band */

long conditionFlags; /* condition flags */

CodecFlags callerFlags; /* control info flags */

CodecCapabilities *capabilities; /* pointer to compressor

capability structure */

ProgressProcRecord progressProcRecord; /* progress function

structure */

CompletionProcRecord completionProcRecord;/* completion function

structure */

FlushProcRecord flushProcRecord; /* data-unloading function

structure */

PixMap srcPixMap; /* pointer to image

(precompress or

 bandcompress) */

PixMap prevPixMap; /* pointer to pixel map

for previous image */

CodecQ spatialQuality; /* compressed image

quality */

CodecQ temporalQuality; /* sequence temporal

quality */

Fixed similarity; /* similarity between

adjacent frames */

DataRateParamsPtr dataRateParams; /* pointer to the data rate

parameters structure */

long reserved; /* reserved */

} CodecCompressParams;

typedef CodecCompressParams *CodecCompressParamsPtr;

C H A P T E R 4

Image Compressor Components

4-74 Summary of Image Compressor Components

typedef struct {

ImageSequence sequenceID; /* unique sequence ID

(predecompress,

 band decompress) */

ImageDescriptionHandle imageDescription; /* handle to image

description structure

(predecompress,

band decompress) */

Ptr data; /* compressed image data */

long bufferSize; /* size of data buffer */

long frameNumber; /* frame identifier */

long startLine; /* starting line for band */

long stopLine; /* ending line for band */

long conditionFlags; /* condition flags */

CodecFlags callerFlags; /* control flags */

CodecCapabilities *capabilities; /* pointer to compressor

capability structure

(predecompress,

band decompress) */

ProgressProcRecord progressProcRecord; /* progress function

structure */

CompletionProcRecord completionProcRecord;/* completion function

structure */

DataProcRecord dataProcRecord; /* data-loading function

structure */

CGrafPtr port; /* pointer to color

graphics port for image

(predecompress,

band decompress) */

PixMap dstPixMap; /* destination pixel map

(predecompress,

 band decompress) */

BitMapPtr maskBits; /* update mask */

PixMapPtr mattePixMap; /* blend matte pixel map */

Rect srcRect; /* source rectangle

 (predecompress,

 band decompress) */

MatrixRecord *matrix; /* pointer to matrix

structure

(predecompress,

 band decompress) */

C H A P T E R 4

Image Compressor Components

Summary of Image Compressor Components 4-75

CodecQ accuracy; /* desired accuracy

(predecompress,

 band decompress) */

short transferMode; /* transfer mode

(predecompress,

 band decompress) */

long reserved[2]; /* reserved */

} CodecDecompressParams;

typedef CodecDecompressParams *CodecDecompressParamsPtr;

/* progress function structure */

typedef struct ProgressProcRecord ProgressProcRecord;

typedef ProgressProcRecord *ProgressProcRecordPtr;

struct ProgressProcRecord {

ProgressProcPtr progressProc; /* pointer to your progress function */

long progressRefCon; /* reference constant for use by

your progress function */

};

/* completion function structure */

typedef struct CompletionProcRecord CompletionProcRecord;

typedef CompletionProcRecord *CompletionProcRecordPtr;

struct CompletionProcRecord {

CompletionProcPtr completionProc;/* pointer to completion function */

long completionRefCon; /* reference constant used by

completion function */

};

/* data-loading structure */

typedef struct DataProcRecord DataProcRecord;

typedef DataProcRecord *DataProcRecordPtr;

struct DataProcRecord {

DataProcPtr dataProc; /* pointer to data-loading function */

long dataRefCon; /* reference constant used by

data-loading function */

};

/* data-unloading structure */

typedef struct FlushProcRecord FlushProcRecord;

typedef FlushProcRecord *FlushProcRecordPtr;

C H A P T E R 4

Image Compressor Components

4-76 Summary of Image Compressor Components

struct FlushProcRecord {

FlushProcPtr flushProc; /* pointer to data-unloading function */

long flushRefCon; /* reference constant used by data-unloading

function */

};

Functions

Direct Functions

pascal ComponentResult CDGetCodecInfo
(CodecInfo *info);

pascal ComponentResult CDGetMaxCompressionSize
(PixMapHandle src, const Rect *srcRect,
short depth, CodecQ quality, long *size);

pascal ComponentResult CDGetCompressionTime
(PixMapHandle src, const Rect *srcRect,
short depth, CodecQ *spatialQuality,
CodecQ *temporalQuality, unsigned long *time);

pascal ComponentResult CDGetSimilarity
(PixMapHandle src, const Rect *srcRect,
ImageDescriptionHandle desc, Ptr data,
Fixed *similarity);

pascal ComponentResult CDGetCompressedImageSize
(ImageDescriptionHandle desc, Ptr data,
long bufferSize, DataProcRecordPtr dataProc,
long *dataSize);

pascal ComponentResult CDTrimImage
(ImageDescriptionHandle desc, Ptr inData,
long inBufferSize, DataProcRecordPtr dataProc,
Ptr outData, long outBufferSize,
FlushProcRecordPtr flushProc, Rect *trimRect,
ProgressProcRecordPtr progressProc);

pascal ComponentResult CDCodecBusy
(ImageSequence seq);

Indirect Functions

pascal ComponentResult CDPreCompress
(CodecCompressParams *params);

pascal ComponentResult CDBandCompress
(CodecCompressParams *params);

pascal ComponentResult CDPreDecompress
(CodecDecompressParams *params);

C H A P T E R 4

Image Compressor Components

Summary of Image Compressor Components 4-77

pascal ComponentResult CDBandDecompress
(CodecDecompressParams *params);

Image Compression Manager Utility Functions

pascal OSErr SetImageDescriptionExtension
(ImageDescriptionHandle desc, Handle extension,
long idType);

pascal OSErr GetImageDescriptionExtension
(ImageDescriptionHandle desc,
Handle *extension, long idType, long index);

pascal OSErr RemoveImageDescriptionExtension
(ImageDescription **desc, long type,
long index);

pascal OSErr CountImageDescriptionExtensionType
(ImageDescription **desc, long type,
long *count);

pascal OSErr GetNextImageDescriptionExtensionType
(ImageDescription **desc, long *type);

Pascal Summary

Constants

CONST

compressorComponentType ='imco'; {compressor component type}

decompressorComponentType ='imdc'; {decompressor component type}

{selector values}

codecGetCodecInfo = $00; {CDGetCodecInfo}

codecGetCompressionTime = $01; {CDGetCompressionTime}

codecGetMaxCompressionSize = $02; {CDGetMaxCompressionSize}

codecPreCompress = $03; {CDPreCompress}

codecBandCompress = $04; {CDBandCompress}

codecPreDecompress = $05; {CDPreDeCompress}

codecBandDecompress = $06; {CDBandDeCompress}

codecCDSequenceBusy = $07; {CDSequenceBusy}

codecGetCompressedImageSize= $08; {CDGetCompressedImageSize}

codecGetSimilarity = $09; {CDGetSimilarity}

codecTrimImage = $0a; {CDTrimImage}

C H A P T E R 4

Image Compressor Components

4-78 Summary of Image Compressor Components

{image compressor component capabilities flags}

codecCanScale = $1; {decompressor scales information}

codecCanMask = $2; {decompressor applies mask to image}

codecCanMatte = $4; {decompressor blends using matte}

codecCanTransform = $8; {decompressor works with complex }

{ placement matrices}

codecCanTransferMode = $10; {decompressor accepts transfer mode}

codecCanCopyPrev = $20; {compressor updates previous buffer}

codecCanSpool = $40; {component uses functions to spool }

{ data}

codecCanClipVertical = $80; {decompressor clips vertically}

codecCanClipRectangular = $100; {decompressor clips vertically }

{ & horizontally}

codecCanRemapColor = $200; {compressor remaps color}

codecCanFastDither = $400; {compressor does fast dithering}

codecCanSrcExtract = $800; {compressor extracts portion of }

{ source image}

codecCanCopyPrevComp = $1000; {compressor updates previous buffer}

codecCanAsync = $2000; {component works asynchronously}

codecCanMakeMask = $4000; {decompressor makes masks}

codecCanShift = $8000; {component works with pixels }

{ that are not byte-aligned}

{condition flags}

codecConditionFirstBand = $1; {first band in frame}

codecConditionLastBand = $2; {last band in frame}

codecConditionFirstFrame = $4; {(input) first frame to be }

{ decompressed in this }

{ sequence}

codecConditionNewDepth = $8; {(input) depth of }

{ destination}

codecConditionNewTransform = $10; {(input) transformation }

{ matrix has changed}

codecConditionNewSrcRect = $20; {(input) source rectange}

codecConditionNewMask = $40; {(input) mask bitmap }

{ has changed}

codecConditionNewMatte = $80; {(input) matte pixel map)

codecConditionNewTransferMode = $100; {(input) transfer mode}

codecConditionNewClut = $200; {(input) color lookup table}

codecConditionNewAccuracy = $400; {accuracy parameter has }

{ changed}

codecConditionNewDestination = $800; {(input) destination pixel }

{ map}

codecConditionCodecChangedMask = $80000000;{changed mask bits}

C H A P T E R 4

Image Compressor Components

Summary of Image Compressor Components 4-79

{CodecInfo compressFlags and deCompressFlags bits}

codecInfoDoes1 = $1; {works with 1-bit pixel maps}

codecInfoDoes2 = $2; {works with 2-bit pixel maps}

codecInfoDoes4 = $4; {works with 4-bit pixel maps}

codecInfoDoes8 = $8; {works with 8-bit pixel maps}

codecInfoDoes16 = $10; {works with 16-bit pixel maps}

codecInfoDoes32 = $20; {works with 32-bit pixel maps}

codecInfoDoesDither = $40; {supports fast dithering}

codecInfoDoesStretch = $80; {stretches to arbitrary sizes}

codecInfoDoesShrink = $100; {shrinks to arbitrary sizes}

codecInfoDoesMask = $200; {handles clipping regions}

codecInfoDoesTemporal = $400; {sequential temporal }

{ compression}

codecInfoDoesDouble = $800; {stretches to double size}

codecInfoDoesQuad = $1000; {stretches to quadruple size}

codecInfoDoesHalf = $2000; {shrinks to half size}

codecInfoDoesQuarter = $4000; {shrinks to one-quarter size}

codecInfoDoesRotate = $8000; {rotates during decompression}

codecInfoDoesHorizFlip = $10000;{flips horizontally}

codecInfoDoesVertFlip = $20000;{flips vertically}

codecInfoDoesSkew = $40000;{skews image during }

{ decompression}

codecInfoDoesBlend = $80000;{blends image with matte }

{ during decompression}

codecInfoDoesWarp = $100000;{warps image during }

{ decompression}

codecInfoDoesRecompress = $200000;{recompresses images}

codecInfoDoesSpool = $400000;{uses data-loading }

{ or unloading functions}

codecInfoDoesRateConstrain = $800000;{constrains amount of generated }

{ data to caller-defined limit}

{codecInfo formatFlags bits}

codecInfoDepth1 = $1; {color images with 1-bit color depth}

codecInfoDepth2 = $2; {color images with 2-bit color depth}

codecInfoDepth4 = $4; {color images with 4-bit color depth}

codecInfoDepth8 = $8; {color images with 8-bit color depth}

codecInfoDepth16 = $10; {color images with 16-bit color depth}

codecInfoDepth32 = $20; {color images with 32-bit color depth}

codecInfoDepth24 = $40; {color images with 24-bit color depth}

codecInfoDepth33 = $80; {monochrome images with 1-bit color }

{ depth}

codecInfoDepth34 = $100; {grayscale images with 2-bit }

{ grayscale depth}

C H A P T E R 4

Image Compressor Components

4-80 Summary of Image Compressor Components

codecInfoDepth36 = $200; {grayscale images with 4-bit }

{ grayscale depth}

codecInfoDepth40 = $400; {grayscale images with 8-bit }

{ grayscale depth}

codecInfoStoresClut = $800; {custom color tables}

codecInfoDoesLossless = $1000; {lossless compression or }

{ decompression operations}

codecInfoSequenceSensitive = $2000; {compression data requires non-key }

{ frames to be decompressed in same }

{ order as compressed}

Data Types

TYPE CodecCapabilities =

RECORD

flags: LongInt; {control information}

wantedPixelSize: Integer; {pixel depth for component to use }

{ with image}

extendWidth: Integer; {extension width of image}

extendHeight: Integer; {extension height of image}

bandMin: Integer; {supported minimum band height}

bandInc: Integer; {common factor of band heights}

pad: Integer; {reserved}

time: Integer; {milliseconds to completion}

END;

CodecCapabilitiesPtr =^CodecCapabilities;

CodecCompressParams =

RECORD

sequenceID: ImageSequence; {sequence identifier ID}

imageDescription: ImageDescriptionHandle;

{handle to image }

{ description record}

data: Ptr; {location for receipt of }

{ compressed image data}

bufferSize: LongInt; {size of buffer for data}

frameNumber: LongInt; {frame identifier}

startLine: LongInt; {starting line for band}

stopLine: LongInt; {ending line for band}

conditionFlags: LongInt; {condition flags}

callerFlags: CodecFlags; {control information flags}

C H A P T E R 4

Image Compressor Components

Summary of Image Compressor Components 4-81

capabilities: CodecCapabilitiesPtr;

{pointer to compressor }

{ capability record

progressProcRecord: ProgressProcRecord;

{progress function record}

completionProcRecord:CompletionProcRecord;

{completion function }

{ record}

flushProcRecord: FlushProcRecord;

{data-unloading function }

{ record}

srcPixMap: PixMap; {pointer to image}

prevPixMap: PixMap; {pointer to pixel map }

{ for previous image}

spatialQuality: CodecQ; {compressed image quality}

temporalQuality: CodecQ; {sequence temporal quality}

similarity: Fixed; {similarity between }

{ adjacent frames}

dataRateParams dataRateParamsPtr;

{pointer to the data rate }

{ parameters record}

reserved: ARRAY[0..1] OF LongInt;

{reserved}

END;

CodecCompressParamsPtr = ^CodecCompressParams;

CodecDecompressParams =

RECORD

sequenceID: ImageSequence; {unique sequence ID}

imageDescription: ImageDescriptionHandle;

{handle to image }

{ description record}

data: Ptr; {compressed image data}

bufferSize: LongInt; {size of data buffer}

frameNumber: LongInt; {frame identifier}

startLine: LongInt; {starting line for band}

stopLine: LongInt; {ending line for band}

conditionFlags: LongInt; {condition flags}

callerFlags: CodecFlags; {control flags}

capabilities: CodecCapabilitiesPtr;

{pointer to compressor }

{ capability record}

C H A P T E R 4

Image Compressor Components

4-82 Summary of Image Compressor Components

progressProcRecord: ProgressProcRecord;

{progress function record}

completionProcRecord: CompletionProcRecord;

{completion function record}

dataProcRecord: DataProcRecord;{data-loading function }

{ record}

port: CGrafPtr; {pointer to color }

{ grafport for image}

dstPixMap: PixMap; {destination pixel map}

maskBits: BitMapPtr; {update mask}

mattePixMap: PixMapPtr; {blend matte pixel map}

srcRect: Rect; {source rectangle}

matrix: MatrixRecordPtr;

{pointer to matrix }

{ structure}

accuracy: CodecQ; {desired accuracy}

transferMode: Integer; {transfer mode}

reserved: ARRAY[0..1] OF LongInt;

{reserved}

END;

CodecDecompressParamsPtr = ^CodecDecompressParams;

ProgressProcRecordPtr = ^ProgressProcRecord;

ProgressProcRecord =

RECORD

progressProc: ProgressProcPtr; {pointer to progress function}

progressRefCon: LongInt; {progress function }

{ reference constant}

END;

CompletionProcRecordPtr = ^CompletionProcRecord;

CompletionProcRecord =

RECORD

completionProc: CompletionProcPtr;{pointer to completion function}

completionRefCon: LongInt; {completion function reference }

{ constant}

END;

DataProcRecordPtr = ^DataProcRecord;

DataProcRecord =

RECORD

dataProc: DataProcPtr; {pointer to data-loading function}

C H A P T E R 4

Image Compressor Components

Summary of Image Compressor Components 4-83

dataRefCon: LongInt; {data-loading function }

{ reference constant}

END;

FlushProcRecordPtr = ^FlushProcRecord;

FlushProcRecord =

RECORD

flushProc: FlushProcPtr; {pointer to data-unloading function}

flushRefCon: LongInt; {data-unloading function reference }

{ constant}

END;

Routines

Direct Functions

FUNCTION CDGetCodecInfo (VAR info: CodecInfo): ComponentResult;

FUNCTION CDGetMaxCompressionSize
(src: PixMapHandle; srcRect: Rect;
depth: Integer; quality: CodecQ;
VAR size: LongInt): ComponentResult;

FUNCTION CDGetCompressionTime
(src: PixMapHandle; srcRect: Rect;
depth: Integer; VAR spatialQuality: CodecQ;
VAR temporalQuality: CodecQ;
VAR time: LongInt): ComponentResult;

FUNCTION CDGetSimilarity (src: PixMapHandle; srcRect: Rect;
desc: ImageDescriptionHandle; data: Ptr;
VAR similarity: Fixed): ComponentResult;

FUNCTION CDGetCompressedImageSize
(desc: ImageDescriptionHandle; data: Ptr;
bufferSize: LongInt;
dataProc: DataProcRecordPtr;
VAR dataSize: LongInt): ComponentResult;

FUNCTION CDTrimImage (desc: ImageDescriptionHandle; inData: Ptr;
inBufferSize: LongInt;
dataProc: DataProcRecordPtr; outData: Ptr;
outBufferSize: LongInt;
flushProc: FlushProcRecordPtr;
VAR trimRect: Rect;
progressProc: ProgressProcRecordPtr):
ComponentResult;

FUNCTION CDCodecBusy (seq: ImageSequence): ComponentResult;

C H A P T E R 4

Image Compressor Components

4-84 Summary of Image Compressor Components

Indirect Functions

FUNCTION CDPreCompress (params: CodecCompressParamsPtr):
ComponentResult;

FUNCTION CDBandCompress (params: CodecCompressParamsPtr):
ComponentResult;

FUNCTION CDPreDecompress (params: CodecCompressParamsPtr):
ComponentResult;

FUNCTION CDBandDecompress (params: CodecCompressParamsPtr):
ComponentResult;

Image Compression Manager Utility Functions

FUNCTION SetImageDescriptionExtension
(desc: ImageDescriptionHandle;
extension: Handle; idType: LongInt): OSErr;

FUNCTION GetImageDescriptionExtension
(desc: ImageDescriptionHandle;
VAR extension: Handle; idType: LongInt;
index: LongInt): OSErr;

FUNCTION RemoveImageDescriptionExtension
(desc: ImageDescriptionHandle; idType: LongInt;
index: LongInt): OSErr;

FUNCTION CountImageDescriptionExtensionType
(desc: ImageDescriptionHandle; idType: LongInt;
VAR count: LongInt): OSErr;

FUNCTION GetNextImageDescriptionExtensionType
(desc: ImageDescriptionHandle;
VAR idType: LongInt): OSErr;

Result Codes

codecErr –8960 General error returned by compressor; can be returned
by any function that gets handled by the compressor

noCodecErr –8961 Image Compression Manager could not find specified
error

codecUnimpErr –8962 Feature not implemented by this compressor

codecSpoolErr –8966 Error loading or unloading data

codecAbortErr –8967 Operation aborted by progress function

codecExtensionNotFoundErr –8971 Requested extension is not in the image description
structure

codecOpenErr –8973 Compressor component could not be opened by the
Image Compression Manager

Contents 5-1

C H A P T E R 5

Sequence Grabber

Contents

Components

About Sequence Grabber Components 5-3

Using Sequence Grabber Components 5-5

Previewing and Recording Captured Data 5-9

Previewing 5-9

Recording 5-10

Playing Captured Data and Saving It in a QuickTime Movie 5-11

Initializing a Sequence Grabber Component 5-11

Creating a Sound Channel and a Video Channel 5-12

Previewing Sound and Video Sequences in a Window 5-14

Capturing Sound and Video Data 5-18

Setting Up the Video Bottleneck Functions 5-19

Drawing Information Over Video Frames During Capture 5-20

Sequence Grabber Components Reference 5-22

Data Types 5-22

The Compression Information Structure 5-22

The Frame Information Structure 5-23

Sequence Grabber Component Functions 5-24

Configuring Sequence Grabber Components 5-24

Controlling Sequence Grabber Components 5-36

Working With Sequence Grabber Settings 5-47

Working With Sequence Grabber Characteristics 5-53

Working With Channel Characteristics 5-58

Working With Channel Devices 5-72

Working With Video Channels 5-77

Working With Sound Channels 5-92

Video Channel Callback Functions 5-99

C H A P T E R 5

5-2 Contents

Utility Functions for Video Channel Callback Functions 5-102

Application-Defined Functions 5-111

Summary of Sequence Grabber Components 5-123

C Summary 5-123

Constants 5-123

Data Types 5-127

Sequence Grabber Component Functions 5-129

Application-Defined Functions 5-135

Pascal Summary 5-136

Constants 5-136

Data Types 5-140

Sequence Grabber Component Routines 5-141

Application-Defined Routines 5-148

Result Codes 5-149

C H A P T E R 5

About Sequence Grabber Components 5-3

Sequence Grabber Components

This chapter discusses sequence grabber components. Sequence grabber components

allow applications to obtain digitized data from external sources. Applications can then

request that the sequence grabber display that data or store it in QuickTime movie files.

If you are writing an application that needs to acquire data from sources external to the

Macintosh computer, or if you are developing a sequence grabber channel component,

you should read this chapter. If you are developing a channel component, you should

also read the chapter “Sequence Grabber Channel Components.”

Note that the information in this chapter is presented from the perspective of a

developer of an application that uses sequence grabber components. If you

are developing a sequence grabber component, your component must support the

interfaces described in this chapter.

This chapter has been divided into the following sections:

■ “About Sequence Grabber Components” presents general information about sequence
grabber components.

■ “Using Sequence Grabber Components” discusses how to use the sequence grabber
component to preview and record captured data. It then provides a sample program
that shows how to play captured data and save it in a QuickTime movie.

■ “Sequence Grabber Components Reference” describes the constants and data
structures that an application needs to communicate with sequence grabber
components as well as the functions that your sequence grabber component must
support.

■ “Summary of Sequence Grabber Components” supplies a summary of the sequence
grabber component constants, data types, and functions in C and in Pascal.

About Sequence Grabber Components

Sequence grabber components allow applications to obtain digitized data from sources

that are external to a Macintosh computer. For example, you can use a sequence grabber

component to record video data from a video digitizer. Your application can then request

that the sequence grabber store the captured video data in a QuickTime movie. In this

manner, you can acquire movie data from various sources that can augment the movie

data you create by other means, such as computer animation. You can also use sequence

grabber components to obtain and display data from external sources, without saving

the captured data in a movie.

The sequence grabber component provided by Apple allows applications to capture both

audio and video data easily, without concern for the details of how the data is acquired.

When capturing video data, this sequence grabber uses a video digitizer component to

supply the digitized video images (see the chapter “Video Digitizer Components” in this

book for more information about video digitizer components). When working with

audio data, Apple’s sequence grabber component retrieves its sound data from a sound

input device (see Inside Macintosh: More Macintosh Toolbox for more information about

sound input devices).

C H A P T E R 5

Sequence Grabber Components

5-4 About Sequence Grabber Components

Sequence grabber components use sequence grabber channel components (or, simply,

channel components) to obtain data from the audio- or video-digitizing equipment.

These components isolate the sequence grabber from the details of working with the

various types of data that can be collected. The features that a sequence grabber

component supplies are dependent on the services provided by sequence grabber

channel components. The channel components, in turn, may use other components to

interact with the digitizing equipment. For example, the video channel component

supplied by Apple uses a video digitizer component. Figure 5-1 shows the relationship

between these components and your application.

Figure 5-1 Relationships among your application, a sequence grabber component, and
channel components

C H A P T E R 5

Sequence Grabber Components

Using Sequence Grabber Components 5-5

Sequence grabber panel components augment the capabilities of sequence grabber

components and sequence grabber channel components by allowing sequence grabbers

to obtain configuration information from the user for a particular digitizing source.

Sequence grabbers present a settings dialog box to the user whenever an application

calls the SGSettingsDialog function (see “Working With Sequence Grabber Settings”

beginning on page 5-47 for more information about this sequence grabber function).

Applications never call sequence grabber panel components directly; application

developers use panel components only by calling the sequence grabber component. See

the chapter “Sequence Grabber Panel Components” in this book for more information

about the sequence grabber configuration dialog box and the relationships of sequence

grabbers, sequence grabber channels, and sequence grabber panels.

If you are developing digitizing equipment and you want to allow applications to use

the services of your equipment with a sequence grabber component, you should create

an appropriate video digitizer component or sound input device driver. See the chapter

“Video Digitizer Components” later in this book for a description of video digitizer

components. See Inside Macintosh: More Macintosh Toolbox for information about sound

input device drivers.

If you are developing equipment that provides a new type of data to QuickTime, you

should develop a new sequence grabber channel component. See the chapter “Sequence

Grabber Channel Components” in this book for a complete description of sequence

grabber channel components.

Using Sequence Grabber Components

You can use the sequence grabber component to play captured data for the user or to

save captured data in a QuickTime movie. The sequence grabber component provides

functions that give your application precise control over the display of the captured data.

This section describes how to use the basic sequence grabber component functions as

well as the functions that allow you to configure video and sound channels.

Sequence grabber components are standard components that are managed by the

Component Manager. See the chapter “Component Manager” in Inside Macintosh: More
Macintosh Toolbox for more information about the Component Manager and about how

to use components.

Apple has defined a component type value for sequence grabber components—that type

value is 'barg'. You can use the following constant to specify this type value.

#define SeqGrabComponentType 'barg' /* sequence grabber

component type */

C H A P T E R 5

Sequence Grabber Components

5-6 Using Sequence Grabber Components

Apple has defined a functional interface for basic sequence grabber components. For

information about the functions a sequence grabber component may support, see

“Sequence Grabber Component Functions,” which begins on page 5-24.

You can use the following constants to refer to the request codes for each of the functions

that a sequence grabber component may support.

enum {

/* selectors for basic sequence grabber component functions */

kSGInitializeSelect = 0x1; /* SGInitialize */

kSGSetDataOutputSelect = 0x2; /* SGSetDataOutput */

kSGGetDataOutputSelect = 0x3; /* SGGetDataOutput */

kSGSetGWorldSelect = 0x4; /* SGSetGWorld */

kSGGetGWorldSelect = 0x5; /* SGGetGWorld */

kSGNewChannelSelect = 0x6; /* SGNewChannel */

kSGDisposeChannelSelect = 0x7; /* SGDisposeChannel */

kSGStartPreviewSelect = 0x10; /* SGStartPreview */

kSGStartRecordSelect = 0x11; /* SGStartRecord */

kSGIdleSelect = 0x12; /* SGIdle */

kSGStopSelect = 0x13; /* SGStop */

kSGPauseSelect = 0x14; /* SGPause */

kSGPrepareSelect = 0x15; /* SGPrepare */

kSGReleaseSelect = 0x16; /* SGRelease */

kSGGetMovieSelect = 0x17; /* SGGetMovie */

kSGSetMaximumRecordTimeSelect = 0x18; /* SGSetMaximumRecordTime */

kSGGetMaximumRecordTimeSelect = 0x19; /* SGGetMaximumRecordTime */

kSGGetStorageSpaceRemainingSelect= 0x1a; /* SGGetStorageSpaceRemaining */

kSGGetTimeRemainingSelect = 0x1b; /* SGGetTimeRemaining */

kSGGrabPictSelect = 0x1c; /* SGGrabPict */

kSGGetLastMovieResIDSelect = 0x1d; /* SGGetLastMovieResID */

kSGSetFlagsSelect = 0x1e; /* SGSetFlags */

kSGGetFlagsSelect = 0x1f; /* SGGetFlags */

kSGSetDataProcSelect = 0x20; /* SGSetDataProc */

kSGNewChannelFromComponentSelect = 0x21; /* SGNewChannelFromComponent */

kSGDisposeDeviceListSelect = 0x22; /* SGDisposeDeviceList */

kSGAppendDeviceListToMenuSelect = 0x23; /* SGAppendDeviceListToMenu */

kSGSetSettingsSelect = 0x24; /* SGSetSettings */

kSGGetSettingsSelect = 0x25; /* SGGetSettings */

kSGGetIndChannelSelect = 0x26; /* SGGetIndChannel */

kSGUpdateSelect = 0x27; /* SGUpdate */

kSGGetPauseSelect = 0x28; /* SGGetPause */

kSGSettingsDialogSelect = 0x29; /* SGSettingsDialog */

kSGGetAlignmentProcSelect = 0x2A; /* SGGetAlignmentProc */

kSGSetChannelSettingsSelect = 0x2B; /* SGSetChannelSettings */

C H A P T E R 5

Sequence Grabber Components

Using Sequence Grabber Components 5-7

kSGGetChannelSettingsSelect = 0x2C; /* SGGetChannelSettings */

/* selectors for common channel configuration functions */

kSGCSetChannelUsageSelect = 0x80; /* SGCSetChannelUsage */

kSGCGetChannelUsageSelect = 0x81; /* SGCGetChannelUsage */

kSGCSetChannelBoundsSelect = 0x82; /* SGCSetChannelBounds */

kSGCGetChannelBoundsSelect = 0x83; /* SGCGetChannelBounds */

kSGCSetChannelVolumeSelect = 0x84; /* SGCSetChannelVolume */

kSGCGetChannelVolumeSelect = 0x85; /* SGCGetChannelVolume */

kSGCGetChannelInfoSelect = 0x86; /* SGCGetChannelInfo */

kSGCSetChannelPlayFlagsSelect = 0x87; /* SGCSetChannelPlayFlags */

kSGCGetChannelPlayFlagsSelect = 0x88; /* SGCGetChannelPlayFlags */

kSGCSetChannelMaxFramesSelect = 0x89; /* SGCSetChannelMaxFrames */

kSGCGetChannelMaxFramesSelect = 0x8a; /* SGCGetChannelMaxFrames */

kSGCSetChannelRefConSelect = 0x8b; /* SGCSetChannelRefCon */

kSGCSetChannelClipSelect = 0x8C; /* SGCSetChannelClip */

kSGCGetChannelClipSelect = 0x8D; /* SGCGetChannelClip */

kSGCGetChannelSampleDescriptionSelect = 0x8E;

/* SGCGetChannelSampleDescription */

kSGCGetChannelDeviceListSelect = 0x8F; /* SGCGetChannelDeviceList */

kSGCSetChannelDeviceSelect = 0x90; /* SGCSetChannelDevice */

kSGCSetChannelMatrixSelect = 0x91; /* SGCSetChannelMatrix */

kSGCGetChannelMatrixSelect = 0x92; /* SGCGetChannelMatrix */

kSGCGetChannelTimeScaleSelect = 0x93; /* SGCGetChannelTimeScale */

/* selectors for video channel configuration functions */

kSGCGetSrcVideoBoundsSelect = 0x100; /* SGCGetSrcVideoBounds */

kSGCSetVideoRectSelect = 0x101; /* SGCSetVideoRect */

kSGCGetVideoRectSelect = 0x102; /* SGCGetVideoRect */

kSGCGetVideoCompressorTypeSelect = 0x103; /* SGCGetVideoCompressorType */

kSGCSetVideoCompressorTypeSelect = 0x104; /* SGCSetVideoCompressorType */

kSGCSetVideoCompressorSelect = 0x105; /* SGCSetVideoCompressor */

kSGCGetVideoCompressorSelect = 0x106; /* SGCGetVideoCompressor */

kSGCGetVideoDigitizerComponentSelect

= 0x107;

/* SGCGetVideoDigitizerComponent */

kSGCSetVideoDigitizerComponentSelect

= 0x108;

/* SGCSetVideoDigitizerComponent */

kSGCVideoDigitizerChangedSelect = 0x109; /* SGCVideoDigitizerChanged */

kSGCSetVideoBottlenecksSelect = 0x10a; /* SGCSetVideoBottlenecks */

kSGCGetVideoBottlenecksSelect = 0x10b; /* SGCGetVideoBottlenecks */

kSGCGrabFrameSelect = 0x10c; /* SGCGrabFrame */

C H A P T E R 5

Sequence Grabber Components

5-8 Using Sequence Grabber Components

kSGCGrabFrameCompleteSelect = 0x10d; /* SGCGrabFrameComplete */

kSGCDisplayFrameSelect = 0x10e; /* SGCDisplayFrame */

kSGCCompressFrameSelect = 0x10f; /* SGCCompressFrame */

kSGCCompressFrameCompleteSelect = 0x110; /* SGCCompressFrameComplete */

kSGCAddFrameSelect = 0x111; /* SGCAddFrameSelect */

kSGCTransferFrameForCompressSelect = 0x112;

/* SGCTransferFrameForCompress */

kSGCSetCompressBufferSelect = 0x113; /* SGCSetCompressBuffer */

kSGCGetCompressBufferSelect = 0x114; /* SGCGetCompressBuffer */

kSGCGetBufferInfoSelect = 0x115; /* SGCGetBufferInfo */

kSGCSetUseScreenBufferSelect = 0x116; /* SGCSetUseScreenBuffer */

kSGCGetUseScreenBufferSelect = 0x117; /* SGCGetUseScreenBuffer */

kSGCGrabCompressCompleteSelect = 0x118; /* SGCGrabCompressComplete */

kSGCDisplayCompressSelect = 0x119; /* SGCDisplayCompress */

kSGCSetFrameRateSelect = 0x11A; /* SGCSetFrameRate */

kSGCGetFrameRateSelect = 0x11B; /* SGCGetFrameRate */

/* selectors for sound channel configuration functions */

kSGCSetSoundInputDriverSelect = 0x100;/* SGCSetSoundInputDriver */

kSGCGetSoundInputDriverSelect = 0x101;/* SGCGetSoundInputDriver */

kSGCSoundInputDriverChangedSelect = 0x102;

/* SGCSoundInputDriverChanged */

kSGCSetSoundRecordChunkSizeSelect = 0x103;

/* SGCSetSoundRecordChunkSize */

kSGCGetSoundRecordChunkSizeSelect = 0x104;

/* SGCGetSoundRecordChunkSize */

kSGCSetSoundInputRateSelect = 0x105; /* SGCSetSoundInputRate */

kSGCGetSoundInputRateSelect = 0x106; /* SGCGetSoundInputRate */

kSGCSetSoundInputParametersSelect = 0x107;

/* SGCSetSoundInputParameters */

kSGCGetSoundInputParametersSelect = 0x108;

/* SGCGetSoundInputParameters */

/* selectors for utility functions provided to channel components */

kSGWriteMovieData = 0x100; /* SGWriteMovieData */

kSGAddFrameReferenceSelect = 0x101; /* SGAddFrameReference */

kSGGetNextFrameReferenceSelect = 0x102; /* SGGetNextFrameReference */

kSGGetTimeBaseSelect = 0x103; /* SGGetTimeBase */

kSGSortDeviceListSelect = 0x104; /* SGSortDeviceList */

kSGAddMovieDataSelect = 0x105; /* SGAddMovieData */

kSGChangedSourceSelect = 0x106; /* SGChangedSource */

};

C H A P T E R 5

Sequence Grabber Components

Using Sequence Grabber Components 5-9

Previewing and Recording Captured Data
You can use sequence grabber components in two ways: to play digitized data for the

user or to save captured data in a QuickTime movie. The process of displaying data that

is to be captured is called previewing; saving captured data in a movie is called recording.

You can use previewing to allow the user to prepare to make a recording. If you do so,

your application can move directly from the preview operation to a record operation,

without stopping the process.

Previewing

Previewing captured data involves playing that data for the user as it is captured. For

video data, this means displaying the video images on the computer screen. For audio

data, this means playing the sound through the computer’s sound system. The following

paragraphs outline the steps you must follow to preview captured data.

1. First, you must open a connection to the sequence grabber component. Use the
Component Manager’s OpenDefaultComponent or OpenComponent function.

2. Once you have a connection to a sequence grabber component, you must configure
the component for the preview operation. Use the SGSetGWorld function (described
on page 5-29) to set the graphics world in which the preview is to be displayed.
Allocate the appropriate channels by calling the SGNewChannel function (described
on page 5-31). You must call this function once for each channel to be used by the
sequence grabber component. Use the SGSetChannelUsage function (described on
page 5-59) to specify that each channel is to be used for previewing. You can then use
the appropriate channel configuration functions to prepare the channel for the
preview operation. For video channels, use the functions discussed in “Working With
Video Channels” beginning on page 5-77. For sound channels, use the functions
discussed in “Working With Sound Channels” beginning on page 5-92.

3. You start the preview operation by calling the SGStartPreview function (see
page 5-37). The sequence grabber component then begins collecting data from the
channels that you have created and plays that data appropriately. You can pause and
restart the preview by calling the SGPause function (see page 5-41). Use the SGStop
function (see page 5-40) to stop the preview. During the preview operation, be sure to
call the SGIdle function (see page 5-39) frequently, so that the sequence grabber and
its channels can perform the operation.

4. When you are done previewing, you can start recording or close your connection to
the sequence grabber component. When you close the sequence grabber component, it
automatically disposes of the channels you created.

See the sample program in Listing 5-1 on page 5-11 for an example of the preview

operation.

C H A P T E R 5

Sequence Grabber Components

5-10 Using Sequence Grabber Components

Recording

During a record operation, a sequence grabber component collects the data it captures

and formats that data into a QuickTime movie. During a record operation, the sequence

grabber can also play the captured data for the user. However, the sequence grabber tries

to prevent the playback from interfering with the quality of the recording process.

The following paragraphs discuss the steps you must follow to record captured data.

1. As with a preview operation, your application must establish a
connection to a sequence grabber component. Use the Component
Manager’s OpenDefaultComponent or OpenComponent function.

2. Once you have a connection to a sequence grabber component, you must configure
the component for the record operation. Use the SGSetGWorld function (see
page 5-29) to set the graphics world in which the data is to be displayed. Allocate the
appropriate channels by calling the SGNewChannel function (see page 5-31). You
must call this function once for each channel to be used by the sequence grabber
component. Use the SGSetChannelUsage function (see page 5-59) to specify that
each channel is to be used for recording. At this time, you can specify whether the
sequence grabber is to play that channel’s data while recording. You can then use the
appropriate channel configuration functions to prepare the channel for the record
operation. For video channels, use the functions discussed in “Working With Video
Channels” beginning on page 5-77. For sound channels, use the functions discussed in
“Working With Sound Channels” beginning on page 5-92.

3. You must specify a movie file for use by the sequence grabber during the record
operation. Use the SGSetDataOutput function (see page 5-26) to specify this movie
file. This function also allows you to control whether the sequence grabber adds the
movie resource to the movie file and whether it replaces existing data or appends the
new movie to the file.

4. You can limit the amount of data that is captured during a record operation. The
SGSetMaximumRecordTime function (see page 5-53) establishes a time limit for the
record operation. The SGSetChannelMaxFrames function (see page 5-63) limits the
number of frames of data that the sequence grabber collects from a specific channel.

5. You start the record operation by calling the SGStartRecord function (see
page 5-38). The sequence grabber component then begins collecting data from the
channels you have created, stores the data in a QuickTime movie, and, optionally,
plays that data appropriately. You can pause and restart the record process by calling
the SGPause function (see page 5-41). During the record operation, be sure to call the
SGIdle function (see page 5-39) frequently, so that the sequence grabber and its
channels can perform the operation. Use the SGStop function (see page 5-40) to stop
recording. At this time, the sequence grabber saves the movie in your movie file, if
you have chosen to do so.

C H A P T E R 5

Sequence Grabber Components

Using Sequence Grabber Components 5-11

6. When you are done recording, you can go back to previewing or close your
connection to the sequence grabber component. When you close the sequence grabber
component, it automatically disposes of the channels you created as well as any
movies it has created.

Playing Captured Data and Saving It in a QuickTime Movie
This section supplies a sample program that shows how to use a sequence grabber

component to preview and record captured data. The program is divided into groups of

functions that do the following tasks:

■ initialization

■ video and sound channel creation

■ sequence preview

■ capture of sound and video sequences

■ drawing over video frames during a capture operation

Initializing a Sequence Grabber Component

Listing 5-1 provides a sample function that creates and initializes a default sequence

grabber component for a specified window (using the OpenDefaultComponent and

SGInitialize functions, respectively). It then sets the graphics world of the sequence

grabber component to the specified window with the SGSetGWorld function. Note that

the CloseComponent function is called for housekeeping purposes in case the sequence

grabber component fails. For more on OpenDefaultComponent and

CloseComponent, see the chapter “Component Manager” in Inside Macintosh: More
Macintosh Toolbox. For details on SGInitialize and SGSetGWorld, see page 5-25 and

page 5-29, respectively.

Listing 5-1 Initializing a sequence grabber component

SeqGrabComponent MakeSequenceGrabber (WindowPtr aWindow)

{

SeqGrabComponent anSG;

OSErr err = noErr;

/* open up the default sequence grabber */

anSG = OpenDefaultComponent (SeqGrabComponentType, 0);

if (anSG) {

C H A P T E R 5

Sequence Grabber Components

5-12 Using Sequence Grabber Components

/* initialize the default sequence grabber component */

err = SGInitialize (anSG);

if (!err) {

/* set the sequence grabber's graphics world to the

specified window */

err = SGSetGWorld (anSG, (CGrafPtr) aWindow, nil);

}

}

if (err && anSG) {

/* clean up on failure */

CloseComponent (anSG);

anSG = nil;

}

return anSG;

}

Creating a Sound Channel and a Video Channel

Listing 5-2 supplies a sample function that attempts to create a video channel and a

sound channel for the sequence grabber component that was created in Listing 5-1. The

boundaries of the video channel are set to the specifications of the bounds parameter.

The channel’s usage is always set to allow previewing. If the value of the willRecord

parameter is true, then the usage of the channel is set to allow recording also.

The SGNewChannel function (described on page 5-31) uses the VideoMediaType

constant to create a video channel and the SoundMediaType constant to create a sound

channel. The SGSetChannelBounds function (described on page 5-65) specifies the

boundaries of the video channel. The SGSetChannelUsage function (described on

page 5-59) specifies whether the video and the sound channels are used for preview or

record operations. The SGDisposeChannel function (described on page 5-34) cleans up

upon failure for each of the channels.

Listing 5-2 Creating a sound channel and a video channel

void MakeGrabChannels (SeqGrabComponent anSG,

SGChannel *videoChannel,

SGChannel *soundChannel,

const Rect *bounds, Boolean willRecord)

{

OSErr err;

long usage;

/* figure out the usage */

C H A P T E R 5

Sequence Grabber Components

Using Sequence Grabber Components 5-13

usage = seqGrabPreview; /* always previewing */

if (willRecord)

usage |= seqGrabRecord; /* sometimes recording */

/* create a video channel */

err = SGNewChannel (anSG, VideoMediaType, videoChannel);

if (!err) {

/* set boundaries for new video channel */

err = SGSetChannelBounds (*videoChannel, bounds);

/* set usage for new video channel */

if (!err)

err = SGSetChannelUsage (*videoChannel,

usage | seqGrabPlayDuringRecord);

if (err) {

/* clean up on failure */

SGDisposeChannel (anSG, *videoChannel);

*videoChannel = nil;

}

}

/* create a sound channel */

err = SGNewChannel (anSG, SoundMediaType, soundChannel);

if (!err) {

/* set usage of new sound channel */

err = SGSetChannelUsage (*soundChannel, usage);

if (err) {

/* clean up on failure */

SGDisposeChannel(anSG, *soundChannel);

*soundChannel = nil;

}

}

}

C H A P T E R 5

Sequence Grabber Components

5-14 Using Sequence Grabber Components

Previewing Sound and Video Sequences in a Window

Listing 5-3 shows how to use the sequence grabber component to preview sound and

video sequences in a window. Clicking the content area of the window causes the

sequence grabber to pause until the mouse button is released.

The Image Compression Manager’s GetBestDeviceRect function helps you

determine the best monitor for the window. The SGStartPreview function (described

on page 5-37) begins the preview of the sound and video sequences. The SGIdle

function (described on page 5-39) grants the sequence grabber component the time it

needs to preview data. The SGUpdate function (described on page 5-39) informs the

sequence grabber of the update event. The Window Manager’s BeginUpdate and

EndUpdate functions respond to the event. The SGPause function (described on

page 5-41) instructs the sequence grabber to suspend and resume its preview operation.

In this example, it is used to suspend the preview operation while the mouse button is

held down. Finally, the SGStop function (described on page 5-40) halts the action of the

sequence grabber component. The Component Manager’s CloseComponent function

closes the component connection. The Window Manager’s DisposeWindow function

disposes of the window.

Listing 5-3 Previewing sound and video sequences in a window

void CheckError(OSErr error, Str255 displayString)

{

if (error == noErr) return;

if (displayString[0] > 0)

DebugStr(displayString);

ExitToShell();

}

Boolean IsQuickTimeInstalled (void)

{

short error;

long result;

error = Gestalt (gestaltQuickTime, &result);

return (error == noErr);

}

void initialize (void)

{

OSErr err;

C H A P T E R 5

Sequence Grabber Components

Using Sequence Grabber Components 5-15

InitGraf (&qd.thePort);

InitFonts ();

InitWindows ();

InitMenus ();

TEInit ();

InitDialogs (nil);

MaxApplZone();

if (!IsQuickTimeInstalled())

CheckError(-1,"\pPlease install QuickTime and try again.");

err = EnterMovies ();

CheckError(err,"\pUnable to initialize Movie Toolbox.");

}

WindowPtr makeWindow(void)

{

WindowPtr aWindow;

Rect windowRect = {0, 0, 120, 160};

Rect bestRect;

/* figure out the best monitor for the window */

GetBestDeviceRect (nil, &bestRect);

/* put the window in the top left corner of that monitor */

OffsetRect(&windowRect, bestRect.left + 10, bestRect.top + 50);

/* create the window */

aWindow = NewCWindow (nil, &windowRect, "\pGrabber",

 true, noGrowDocProc, (WindowPtr)-1,

 true, 0);

/* and set the port to the new window */

SetPort(aWindow);

return aWindow;

}

C H A P T E R 5

Sequence Grabber Components

5-16 Using Sequence Grabber Components

main (void)

{

WindowPtr theWindow;

SeqGrabComponent theSG;

SGChannel videoChannel, soundChannel;

Boolean done = false;

OSErr err;

initialize();

theWindow = makeWindow();

theSG = makeSequenceGrabber(theWindow);

if (!theSG) return;

makeGrabChannels(theSG, &videoChannel, &soundChannel,

 &theWindow->portRect, false);

if ((videoChannel == nil) && (soundChannel == nil))

CheckError(-1,"\pNo sound or video available.");

err = SGStartPreview(theSG);

CheckError(err, "\pCan't start preview");

while (!done) {

AlignmentProcRecord alignProc;

short part;

WindowPtr whichWindow;

EventRecord theEvent;

GetNextEvent(everyEvent, &theEvent);

switch (theEvent.what) {

case nullEvent: /* give the sequence grabber time */

err = SGIdle (theSG);

if (err) done = true;

break;

case updateEvt:if (theEvent.message == (long)theWindow) {

/* inform the sequence grabber of the

update */

SGUpdate(theSG,((WindowPeek)

 theWindow)->updateRgn);

/* and swallow the update event */

BeginUpdate(theWindow);

EndUpdate(theWindow);

}

C H A P T E R 5

Sequence Grabber Components

Using Sequence Grabber Components 5-17

break;

case mouseDown:part = FindWindow (theEvent.where,

&whichWindow);

if (whichWindow != theWindow) break;

switch (part) {

case inContent:

/* pause until mouse button is

released */

SGPause (theSG, true);

while (StillDown())

;

SGPause(theSG, false);

break;

case inGoAway:

done = TrackGoAway (theWindow,

theEvent.where);

break;

case inDrag:

/* pause when dragging window so video

doesn't draw in the wrong place */

SGPause (theSG, true);

SGGetAlignmentProc (theSG, &alignProc);

DragAlignedWindow (theWindow,

 theEvent.where,

 &screenBits.bounds,

 nil, &alignProc);

SGPause (theSG, false);

break;

}

break;

}

}

/* clean up */

SGStop (theSG);

CloseComponent (theSG);

DisposeWindow (theWindow);

}

C H A P T E R 5

Sequence Grabber Components

5-18 Using Sequence Grabber Components

Capturing Sound and Video Data

Listing 5-4 uses the sequence grabber component to capture ten seconds of

sound and video data. It prompts the user for the name of the file to create. The

SGSettingsDialog function (described on page 5-48) is issued to invoke the default

sound and video capture settings dialog boxes. These default dialog boxes allow the user

to configure the settings for the capture operations. The SGSetMaximumRecordTime

function (described on page 5-53) indicates how long the capture operations will last.

The SGStartRecord function (described on page 5-38) specifies the time at which the

capture operations will begin. The SGIdle function (described on page 5-39) grants the

time needed to confirm the capture operations. Finally, the SGStop function (described

on page 5-40) and the Window Manager’s DisposeWindow routine are called in order

to complete the capture of the sequences.

Listing 5-4 Capturing sound and video

main (void)

{

WindowPtr theWindow;

CGrafPort tempPort;

SeqGrabComponent theSG;

SGChannel videoChannel, soundChannel;

OSErr err;

initialize();

theWindow = makeWindow();

theSG = makeSequenceGrabber(theWindow);

if (!theSG) return;

err = setGrabFile(theSG);

CheckError(err, "\pNo output file");

makeGrabChannels (theSG, &videoChannel, &soundChannel,

 &theWindow->portRect, true);

if ((videoChannel == nil) && (soundChannel == nil))

CheckError(-1,"\pNo sound or video available.");

C H A P T E R 5

Sequence Grabber Components

Using Sequence Grabber Components 5-19

if (videoChannel)

SGSettingsDialog (theSG, videoChannel, 0, nil,

 DoTheRightThing, nil, 0);

if (soundChannel)

SGSettingsDialog(theSG, soundChannel, 0, nil,

 DoTheRightThing, nil, 0);

err = SGSetMaximumRecordTime(theSG, 10 * 60);

CheckError(err, "\pCan't set max record time");

err = SGStartRecord (theSG);

CheckError(err, "\pCan't start record");

while (!err)

err = SGIdle (theSG);

if (err == grabTimeComplete)

err = noErr;

CheckError(err, "\pError while recording");

err = SGStop(theSG);

CheckError(err, "\pError creating movie");

CloseComponent(theSG);

DisposeWindow(theWindow);

}

Setting Up the Video Bottleneck Functions

Listing 5-5 shows how to set up the video bottleneck functions of the sequence grabber

video channel component. For more information on the video bottleneck functions, see

“Utility Functions for Video Channel Callback Functions” beginning on page 5-102.

Inside the main event loop in Listing 5-4, you should add the following lines after you

call the SGSetMaximumRecordTime function (described on page 5-53).

Listing 5-5 Setting up the video bottleneck functions

if (videoChannel) {

err = setupVideoBottlenecks (videoChannel, theWindow,

 &tempPort);

CheckError(err, "\pCouldn't set video bottlenecks");

}

C H A P T E R 5

Sequence Grabber Components

5-20 Using Sequence Grabber Components

Drawing Information Over Video Frames During Capture

Listing 5-6 shows how to use the video bottleneck functions of the sequence grabber

video channel component to draw the letters “QT” over each video frame as it is

captured.

Listing 5-6 Drawing information over video frames during capture

pascal ComponentResult myGrabFrameComplete (SGChannel c,

 short bufferNum,

 Boolean *done,

 long refCon)

{

ComponentResult err;

/* call the default grab-complete function */

 err = SGGrabFrameComplete (c, bufferNum, done);

if (*done) {

/* frame is done */

CGrafPtr savePort;

GDHandle saveGD;

PixMapHandle bufferPM, savePM;

Rect bufferRect;

CGrafPtr tempPort = (CGrafPtr)refCon;

/* set to our temporary port */

GetGWorld (&savePort, &saveGD);

SetGWorld (tempPort, nil);

/* find out about this buffer */

err = SGGetBufferInfo (c, bufferNum, &bufferPM, &bufferRect,

nil, nil);

if (!err) {

/* set up to draw into this buffer */

savePM = tempPort->portPixMap;

SetPortPix(bufferPM);

/* draw some text into the buffer */

TextMode (srcXor);

C H A P T E R 5

Sequence Grabber Components

Using Sequence Grabber Components 5-21

MoveTo (bufferRect.right - 20, bufferRect.bottom - 14);

DrawString ("\pQT");

TextMode(srcOr);

/* restore temporary port */

SetPortPix (savePM);

}

SetGWorld (savePort, saveGD);

}

return err;

}

OSErr setupVideoBottlenecks (SGChannel videoChannel, WindowPtr w,

 CGrafPtr tempPort)

{

OSErr err;

err = SGSetChannelRefCon (videoChannel, (long)tempPort);

if (!err) {

VideoBottles vb;

/* get the current bottlenecks */

vb.procCount = 9;

err = SGGetVideoBottlenecks (videoChannel, &vb);

if (!err) {

/* add our GrabFrameComplete function */

vb.grabCompleteProc = myGrabFrameComplete;

err = SGSetVideoBottlenecks (videoChannel, &vb);

/* set up the temporary port */

OpenCPort (tempPort); /* create a temporary port

for drawing */

SetRectRgn (tempPort->visRgn, -32000, -32000, 32000,

 32000); /* with a wide open visible

and clip region . . . */

CopyRgn (tempPort->visRgn, tempPort->clipRgn);

 /* so that you can use it in

any video buffer */

PortChanged ((GrafPtr)tempPort);

/* tell QuickDraw about the

changes */

}

}

return err;

}

C H A P T E R 5

Sequence Grabber Components

5-22 Sequence Grabber Components Reference

Sequence Grabber Components Reference

This section describes the data structures and functions that are specific to sequence

grabber components.

Data Types

This section describes the compression information structure and the sequence grabber

frame information structure.

Note

You only need to know about the frame information structure if you are
creating a sequence grabber component. If you are not creating a
sequence grabber component, you may skip this section. ◆

The Compression Information Structure

The compression information structure defines the characteristics of a buffer that

contains a captured image that has been compressed. Callback functions use

compression information structures to exchange information about compressed images.

For example, the compress-complete function must format a compression information

record whenever a video frame is compressed (see “Video Channel Callback Functions”

beginning on page 5-99 for more information about the compress-complete callback

function). The SGCompressInfo data type defines a compression information structure.

struct SGCompressInfo {

Ptr buffer; /* buffer for compressed image */

unsigned long bufferSize; /* bytes of image data in buffer */

unsigned char similarity; /* relative similarity */

unsigned char reserved; /* reserved--set to 0 */

};

typedef struct SGCompressInfo SGCompressInfo;

Field descriptions

buffer Points to the buffer that contains the compressed image.
This pointer must contain a 32-bit clean address.

bufferSize Specifies the number of bytes of image data in the buffer.

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-23

similarity Indicates the relative similarity of this image to the previous image
in a sequence. A value of 0 indicates that the current frame is a
key frame in the sequence. A value of 255 indicates that the current
frame is identical to the previous frame. Values from 1 through 254
indicate relative similarity, ranging from very different (1) to very
similar (254).

reserved Reserved for use by Apple. Set this field to 0.

The Frame Information Structure

The frame information structure defines a frame for a sequence grabber component and

sequence grabber channel components. The SeqGrabFrameInfo data type defines the

format of a frame information structure.

struct SeqGrabFrameInfo {

long frameOffset; /* offset to the sample */

long frameTime; /* time that frame was captured */

long frameSize; /* number of bytes in sample */

SGChannel frameChannel; /* current connection to channel */

long frameRefCon; /* reference constant for channel */

};

Field descriptions

frameOffset Specifies the offset to the sample.

frameTime Specifies the time at which a sequence grabber channel component
captured the frame. This time value is relative to the data sequence.
That is, this time is not represented in the context of any fixed time
scale. Rather, the channel component must choose and use a
time scale consistently for all sample references.

frameSize Specifies the number of bytes in the sample described by the sample
reference.

frameChannel Identifies the current connection to the channel component.

frameRefCon Contains a reference constant for use by the channel component. A
channel component can use this value in any way that is
appropriate. For example, video channel components may use this
value to store a reference to frame differencing information for a
temporally compressed image sequence.

C H A P T E R 5

Sequence Grabber Components

5-24 Sequence Grabber Components Reference

Sequence Grabber Component Functions

This section describes the functions that are provided by sequence grabber components.

These functions are described from the perspective of an application developer. If you

are developing a sequence grabber component, your component must behave as

described here.

This section discusses the following groups of functions:

■ “Configuring Sequence Grabber Components” describes the functions that allow you
to configure a sequence grabber component, including creating channels for the
component.

■ “Controlling Sequence Grabber Components” discusses the functions that allow you
to control a record or preview operation.

■ “Working With Sequence Grabber Settings” discusses the functions that allow you to
obtain sequence grabber configuration data from the user.

■ “Working With Sequence Grabber Characteristics” describes functions that allow you
to manage some of the detailed characteristics of a sequence grabber component.

■ “Working With Channel Characteristics” describes functions that allow you to
configure the general characteristics of a sequence grabber channel.

■ “Working With Channel Devices” discusses functions that allow you to determine the
device that is attached to a sequence grabber channel.

■ “Working With Video Channels” describes functions that allow you to configure video
channels.

■ “Working With Sound Channels” discusses functions that allow you to configure
sound channels.

■ “Video Channel Callback Functions” describes the callback functions that are
supported by video channels.

■ “Utility Functions for Video Channel Callback Functions” discusses a number of
utility functions that sequence grabber components provide for use by callback
functions.

Configuring Sequence Grabber Components

Sequence grabber components provide a number of functions that allow you to establish

the environment for grabbing or previewing digitized data. Before you can start a record

or a preview operation, you must initialize the sequence grabber component, establish

the channels that will be used, define the display environment for the operation, and

determine the optimum screen position for the sequence grabber. In addition, if you are

performing a record operation, you must define a destination movie file. This section

describes the sequence grabber component functions that allow you to perform these

tasks.

You can use the SGInitialize function to initialize a sequence grabber component.

Before you can call this function, you must establish a connection to the sequence

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-25

grabber by calling the Component Manager’s OpenDefaultComponent or

OpenComponent function.

The SGNewChannel function allows you to create channels for the sequence grabber for

an operation. You can use the SGNewChannelFromComponent function to create a new

channel using a specified channel component. Use the SGDisposeChannel function to

dispose of those channels that you are no longer using.

You can use the SGGetIndChannel function to retrieve information about the channels

that are currently in use by the sequence grabber.

You can use the SGSetGWorld and SGGetGWorld functions to establish the display

environment for the sequence grabber. These functions affect only those channels that

work with data that has visual information.

The SGSetDataOutput and SGGetDataOutput functions allow you to identify the

movie file that is currently assigned to the sequence grabber. You only use these

functions when you are performing a record operation.

The SGSetDataProc function allows you to assign a data function to a channel. The

sequence grabber calls your data function whenever it writes movie data to the

output file.

The SGGetAlignmentProc function allows you to determine a sequence grabber’s

optimum screen position to ensure the best performance and appearance.

SGInitialize

The SGInitialize function allows you to initialize the sequence grabber component.

Before you can call this function you must establish a connection to the sequence grabber

component. Use the Component Manager’s OpenDefaultComponent or

OpenComponent function to establish a component connection.

pascal ComponentResult SGInitialize (SeqGrabComponent s);

s Specifies the component instance that identifies your connection to the
sequence grabber component. You obtain this value from the Component
Manager’s OpenDefaultComponent or OpenComponent function.

DESCRIPTION

You must call the SGInitialize function before you call any other sequence grabber

component functions. If this function returns a nonzero result code, you should close

your connection to the sequence grabber component.

RESULT CODES

Memory Manager errors

C H A P T E R 5

Sequence Grabber Components

5-26 Sequence Grabber Components Reference

SGSetDataOutput

The SGSetDataOutput function allows you to specify the movie file for a record

operation and to specify other options that govern the operation. The sequence grabber

component stores the data that is obtained during the record operation as a QuickTime

movie in this file. This function also allows you to control some aspects of the record

operation, which are related to output, by specifying control flags. These flags are

discussed in the function description that follows.

pascal ComponentResult SGSetDataOutput (SeqGrabComponent s,

 FSSpec *movieFile,

 long whereFlags);

s Specifies the component instance that identifies your connection to the
sequence grabber component. You obtain this value from the Component
Manager’s OpenDefaultComponent or OpenComponent function.

movieFile Contains a pointer to the movie file for this record operation.

whereFlags
Contains flags that control the record operation. The following flags are
defined by the SeqGrabDataOutputEnum data type; you must set either
the seqGrabToDisk flag or the seqGrabToMemory flag to 1 (set unused
flags to 0).

seqGrabToDisk
Instructs the sequence grabber component to write the
recorded data to a QuickTime movie in the movie file
specified by the movieFile parameter. If you set this flag
to 1, the sequence grabber writes the data to the file as the
data is recorded. Set this flag to 0 if you set the
seqGrabToMemory flag to 1 (only one of these two flags
may be set to 1).

seqGrabToMemory
Instructs the sequence grabber component to store the
recorded data in memory until the recording process is
complete. The sequence grabber then writes the recorded
data to the movie file specified by the movieFile
parameter. This technique provides better performance
than recording directly to the movie file, but it limits the
amount of data you can record. Set this flag to 1 to record
to memory. Set this flag to 0 if you set the seqGrabToDisk
flag to 1 (only one of these two flags may be set to 1).

seqGrabDontUseTempMemory
Prevents the sequence grabber component from using
temporary memory during the record operation. By
default, the sequence grabber component and its channel
components use as much temporary memory as necessary

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-27

to perform the record operation. Set this flag to 1 to prevent
the sequence grabber component and its channel
components from using temporary memory.

seqGrabAppendToFile
Directs the sequence grabber component to add the
recorded data to the data fork of the movie file specified by
the movieFile parameter. By default, the sequence
grabber component deletes the movie file and creates a
new file containing one movie and the corresponding
movie resource. Set this flag to 1 to cause the sequence
grabber component to append the recorded data to the
data fork of the movie file and create a new movie resource
in that file.

seqGrabDontAddMovieResource
Prevents the sequence grabber component from adding the
new movie resource to the movie file specified by the
movieFile parameter. By default, the sequence grabber
component creates a new movie resource and adds that
resource to the movie file. Set this flag to 1 to prevent the
sequence grabber component from adding the movie
resource to the movie file. You are then responsible for
adding the resource to a file, if you so desire.

seqGrabDontMakeMovie
Prevents the sequence grabber component from creating a
movie. By default, the sequence grabber component creates
a new movie resource and adds the captured data to that
movie. If you set this flag to 1, the sequence grabber still
calls your data function, but does not write any data to the
movie file.

DESCRIPTION

If you are performing a preview operation, you do not need to use the

SGSetDataOutput function.

RESULT CODES

File Manager errors

Memory Manager errors

notEnoughMemoryToGrab –9403 Insufficient memory for record operation
notEnoughDiskSpaceToGrab –9404 Insufficient disk space for record

operation

C H A P T E R 5

Sequence Grabber Components

5-28 Sequence Grabber Components Reference

SGGetDataOutput

The SGGetDataOutput function allows you to determine the movie file that is

currently assigned to a sequence grabber component and the control flags that would

govern a record operation.

pascal ComponentResult SGGetDataOutput (SeqGrabComponent s,

 FSSpec *movieFile,

 long *whereFlags);

s Specifies the component instance that identifies your connection to the
sequence grabber component. You obtain this value from the Component
Manager’s OpenDefaultComponent or OpenComponent function.

movieFile Contains a pointer to a file system specification record that is to receive
information about the movie file for this record operation.

whereFlags
Contains a pointer to a long integer that is to receive flags that control
the record operation. The following flags are defined (unused flags are
set to 0):

seqGrabToDisk
Instructs the sequence grabber component to write the
recorded data to a QuickTime movie in the movie file
specified by the movieFile parameter. If this flag is set
to 1, the sequence grabber writes the data to the file as the
data is recorded.

seqGrabToMemory
Instructs the sequence grabber component to store the
recorded data in memory until the recording process is
complete. The sequence grabber then writes the recorded
data to the movie file specified by the movieFile
parameter. This technique provides better performance
than recording directly to the movie file, but it limits the
amount of data you can record. If this flag is set to 1, the
sequence grabber component is recording to memory.

seqGrabDontUseTempMemory
Prevents the sequence grabber component from using
temporary memory during the record operation. By
default, the sequence grabber component and its channel
components use as much temporary memory as necessary
to perform the record operation. If this flag is set to 1, the
sequence grabber component and its channel components
do not use temporary memory.

seqGrabAppendToFile
Directs the sequence grabber component to add the
recorded data to the data fork of the movie file specified by
the movieFile parameter. By default, the sequence
grabber component deletes the movie file and creates a

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-29

new file containing one movie and its movie resource. If
this flag is set to 1, the sequence grabber component
appends the recorded data to the data fork of the movie file
and creates a new movie resource in that file.

seqGrabDontAddMovieResource
Prevents the sequence grabber component from adding the
new movie resource to the movie file specified by the
movieFile parameter. By default, the sequence grabber
component creates a new movie resource and adds that
resource to the movie file. If this flag is set to 1, the
sequence grabber component does not add the movie
resource to the movie file. You are then responsible for
adding the resource to a file, if you so desire.

seqGrabDontMakeMovie
Prevents the sequence grabber component from creating a
movie. By default, the sequence grabber component creates
a new movie resource and adds the captured data to that
movie. If this flag is set to 1, the sequence grabber still calls
your data function, but does not write any data to the
movie file.

DESCRIPTION

You set these characteristics by calling the SGSetDataOutput function, which is

described in the previous section. If you have not set these characteristics before calling

the SGGetDataOutput function, the returned data is meaningless.

SGSetGWorld

The SGSetGWorld function allows you to establish the graphics port and device for a

sequence grabber component. The sequence grabber component displays the recorded or

previewed data in this graphics world.

pascal ComponentResult SGSetGWorld (SeqGrabComponent s,

CGrafPtr gp, GDHandle gd);

s Specifies the component instance that identifies your connection to the
sequence grabber component. You obtain this value from the Component
Manager’s OpenDefaultComponent or OpenComponent function.

gp Specifies the destination graphics port. The specified graphics port must
be a color graphics port. Set this parameter to nil to use the current
graphics port.

gd Specifies the destination graphics device. Set this parameter to nil to use
the current device. If the gp parameter specifies a graphics world, set this
parameter to nil to use that graphics world’s graphics device.

C H A P T E R 5

Sequence Grabber Components

5-30 Sequence Grabber Components Reference

DESCRIPTION

You must call this function if you are working with any channels that collect visual data.

If you are working only with data that has no visual representation, you do not need to

call this function. The sequence grabber component performs this operation implicitly

when you call the SGInitialize function (described on page 5-25), and the

component uses your application’s current graphics port.

You cannot call this function during a record or preview operation or after you have

prepared the sequence grabber component for a record or preview operation (by calling

the SGPrepare function, which is described on page 5-43).

IMPORTANT

The window in which the sequence grabber is to draw video frames as
defined by SGSetGWorld must be visible before you call the
SGPrepare function. Otherwise, the sequence grabber does not display
the frames properly. For details, see the discussion of SGPrepare
beginning on page 5-43. ▲

RESULT CODE

SGGetGWorld

The SGGetGWorld function allows you to determine the graphics port and device for a

sequence grabber component.

pascal ComponentResult SGGetGWorld (SeqGrabComponent s,

 CGrafPtr *gp, GDHandle *gd);

s Specifies the component instance that identifies your connection to the
sequence grabber component. You obtain this value from the Component
Manager’s OpenDefaultComponent or OpenComponent function.

gp Contains a pointer to a location that is to receive a pointer to the
destination graphics port. Set this parameter to nil if you are not
interested in this information.

gd Contains a pointer to a location that is to receive a handle to the
destination graphics device. Set this parameter to nil if you are not
interested in this information.

cantDoThatInCurrentMode –9402 Request invalid in current mode

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-31

DESCRIPTION

The sequence grabber component displays the recorded or previewed data in this

graphics world.

SEE ALSO

You can establish the graphics port and device for a sequence grabber component by

calling the SGSetGWorld function, which is described in the previous section.

SGNewChannel

The SGNewChannel function creates a sequence grabber channel and assigns a channel

component to the channel. The channel component is responsible for providing digitized

data to the sequence grabber component. You specify the type of channel component to

be added to the sequence grabber component.

pascal ComponentResult SGNewChannel (SeqGrabComponent s,

 OSType channelType,

 SGChannel *ref);

s Specifies the component instance that identifies your connection to the
sequence grabber component. You obtain this value from the Component
Manager’s OpenDefaultComponent or OpenComponent function.

channelType
Specifies the type of channel to open. This value corresponds to the
component subtype value of the channel component. The following
values are valid:

VideoMediaType
Video channel

SoundMediaType
Sound channel

ref Contains a pointer to the frameChannel field in the sequence grabber
information structure that is to receive a reference to the channel that is
added to the sequence grabber component. If the sequence grabber
component successfully locates and connects to an appropriate
channel component, the sequence grabber component returns a reference
to the channel component into the field referred to by this parameter. If
the sequence grabber component cannot open a connection, it sets the
result code to a nonzero value.

DESCRIPTION

The sequence grabber component locates, and attempts to connect to, an appropriate

channel component. If the sequence grabber component cannot locate or connect to

a channel component, it returns a nonzero result code.

C H A P T E R 5

Sequence Grabber Components

5-32 Sequence Grabber Components Reference

RESULT CODES

Memory Manager errors

SEE ALSO

When you are done with the sequence grabber component, you can dispose of the

channels you have used by calling the SGDisposeChannel function, which is described

on page 5-34. However, when you close the sequence grabber component, it

automatically disposes of all its channels, so this function is usually unnecessary.

If you want to use a specific channel component, you may use the

SGNewChannelFromComponent function, which is described next.

SGNewChannelFromComponent

The SGNewChannelFromComponent function creates a sequence grabber channel and

assigns a channel component to the channel. The channel component is responsible for

providing digitized data to the sequence grabber component. You specify the channel

component to be used.

pascal ComponentResult SGNewChannelFromComponent

 (SeqGrabComponent s, SGChannel *newChannel,

 Component sgChannelComponent);

s Specifies the component instance that identifies your connection to the
sequence grabber component. You obtain this value from the Component
Manager’s OpenDefaultComponent or OpenComponent function.

newChannel
Contains a pointer to a channel component that is to receive a reference to
the channel that is added to the sequence grabber component. If the
sequence grabber component successfully locates and connects to the
specified channel component, the sequence grabber component returns a
reference to the channel component into the field referred to by this
parameter. If the sequence grabber component cannot open a connection,
it sets the result code to a nonzero value.

sgChannelComponent
Identifies the channel component to use. You supply a component ID
value to the sequence grabber. The sequence grabber then opens a
connection to that channel component and returns your connection ID in
the field specified by the newChannel parameter. You may obtain a
component ID value by calling the Component Manager’s
FindNextComponent function.

couldntGetRequiredComponent –9405 Component not found

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-33

DESCRIPTION

The sequence grabber component locates and connects to the specified channel

component. If the sequence grabber component cannot locate or connect to the channel

component, it returns a nonzero result code.

This function is similar to the SGNewChannel function, except that this function allows

you to specify a particular component rather than just a component subtype value. Use

this function if you want to connect to a specific component.

RESULT CODES

Memory Manager errors

SEE ALSO

You may also use the SGNewChannel function to establish a new channel. That function

requires only a component subtype value, and is described on page 5-31.

When you are done with the sequence grabber component, you can dispose of the

channels you have used by calling the SGDisposeChannel function, which is described

on page 5-34.

SGGetIndChannel

The SGGetIndChannel function allows you to collect information about all of the

channel components currently in use by a sequence grabber component.

pascal ComponentResult SGGetIndChannel (SeqGrabComponent s,

 short index,

 SGChannel *ref,

 OSType *chanType);

s Specifies the component instance that identifies your connection to the
sequence grabber component. You obtain this value from the Component
Manager’s OpenDefaultComponent or OpenComponent function.

index Specifies an index value. This value identifies the channel to be queried.
The first channel has an index value of 1.

ref Contains a pointer to a field to receive a value identifying your
connection to the channel. If you do not want to receive this information,
set this parameter to nil.

couldntGetRequiredComponent –9405 Component not found

C H A P T E R 5

Sequence Grabber Components

5-34 Sequence Grabber Components Reference

chanType Contains a pointer to a field to receive the channel’s subtype value. This
value indicates the media type supported by the channel component. The
following values are valid:

VideoMediaType
Video channel

SoundMediaType
Sound channel

If you do not want to receive this information, set this parameter to nil.

DESCRIPTION

You may use the SGGetIndChannel function to retrieve information about each of the

channel components currently in use by a sequence grabber component. You identify

the channel in which you are interested by specifying an index value. These index values

start at 1 and increase sequentially; each channel has its own index value.

RESULT CODE

SGDisposeChannel

The SGDisposeChannel function removes a channel from a sequence grabber

component.

pascal ComponentResult SGDisposeChannel

(SeqGrabComponent s, SGChannel c);

s Specifies the component instance that identifies your connection to the
sequence grabber component. You obtain this value from the Component
Manager’s OpenDefaultComponent or OpenComponent function.

c Specifies the reference that identifies the channel you want to close. You
obtain this reference from the SGNewChannel function, described in the
previous section.

DESCRIPTION

You can use this function to remove a channel that you are no longer using. However,

you cannot dispose of a channel that is currently active—if you are recording or

previewing data, this function returns a nonzero result code.

paramErr –50 Component not found

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-35

RESULT CODE

SEE ALSO

The sequence grabber component automatically disposes of any open channels when

you close your connection to the component, so you do not need to call this function

prior to calling the Component Manager’s CloseComponent function.

SGSetDataProc

The SGSetDataProc function allows you to specify a data function for use by the

sequence grabber. Whenever any channel assigned to the sequence grabber writes data,

your data function is called as well. Your data function may then write the data to

another destination.

pascal ComponentResult SGSetDataProc (SeqGrabComponent sg,

SGDataProc proc,

long refCon);

sg Identifies your connection to the sequence grabber component.
You obtain this value from the Component Manager’s
OpenDefaultComponent or OpenComponent function.

proc Contains a pointer to your data function. To remove your data function,
set this parameter to nil. The interface that your data function must
support is described in “Application-Defined Functions” beginning on
page 5-111.

refCon Contains a reference constant. The sequence grabber provides this value
to your data function.

DESCRIPTION

Your application may use the SGSetDataProc function to assign a data function to a

sequence grabber. The sequence grabber calls your data function whenever any channel

component writes data to the destination movie. You may use your data function to store

the digitized data in some format other than a QuickTime movie.

SEE ALSO

You can instruct the sequence grabber not to write its data to a QuickTime movie by

calling the SGSetDataOutput function and setting the seqGrabDontMakeMovie flag

to 1. This can save processing time in cases where you do not want to create a movie.

This function is discussed beginning on page 5-26.

badSGChannel –9406 Invalid channel specified

C H A P T E R 5

Sequence Grabber Components

5-36 Sequence Grabber Components Reference

SGGetAlignmentProc

The SGGetAlignmentProc function allows you to obtain information about the best

screen positions for a sequence grabber’s video image in terms of appearance and

maximum performance.

pascal ComponentResult SGGetAlignmentProc (SeqGrabComponent s,

AlignmentProcRecordPtr alignmentProc);

s Specifies the component instance that identifies your connection to the
sequence grabber component. You obtain this value from the Component
Manager’s OpenDefaultComponent or OpenComponent function.

alignmentProc
Contains a pointer to an Image Compression Manager alignment function
structure. The sequence grabber places its alignment information into
this structure.

DESCRIPTION

You may use the SGGetAlignmentProc function to retrieve information about the best

screen positions for the sequence grabber’s window. The sequence grabber returns

information that can be used by the Image Compression Manager’s alignment functions

(see the chapter “Image Compression Manager” in Inside Macintosh: QuickTime for more

information about these functions). By using this alignment information, you can place

the sequence grabber’s window in a position that allows for optimal display

performance.

Controlling Sequence Grabber Components

Sequence grabber components provide a full set of functions that allow your application

to control the preview or record operation. You can use these functions to start and stop

the operation, to pause data collection, and to retrieve a reference to the movie that is

created during a record operation. This section describes these functions.

Use the SGStartPreview function to start a preview operation. The SGStartRecord

function lets you start a record operation. The SGStop function allows you to stop a

sequence grabber component.

You can instruct the sequence grabber to pause by calling the SGPause function. You can

determine whether the sequence grabber is paused by calling the SGGetPause function.

You grant processing time to the sequence grabber by calling the SGIdle function. Be

sure to call this function often during record and preview operations. If your application

receives an update event during a record or preview operation, you should call the

SGUpdate function.

You can prepare the sequence grabber for an upcoming preview or record operation by

calling the SGPrepare function. This function also allows the sequence grabber to verify

that it can support the parameters you have specified. By verifying the parameters you

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-37

want to use, you can improve the startup of preview and record operations. Use the

SGRelease function to release system resources after calling the SGPrepare function.

You can retrieve a reference to the movie created by a record operation by calling the

SGGetMovie function. You can determine the resource ID value assigned to the last

movie resource created by the sequence grabber by calling the SGGetLastMovieResID

function.

You can extract a picture from the video source data by calling the SGGrabPict function.

SGStartPreview

The SGStartPreview function instructs the sequence grabber to begin processing data

from its channels.

pascal ComponentResult SGStartPreview (SeqGrabComponent s);

s Specifies the component instance that identifies your connection to the
sequence grabber component. You obtain this value from the Component
Manager’s OpenDefaultComponent or OpenComponent function.

DESCRIPTION

The sequence grabber immediately presents the data to the user in the appropriate

format, according to the channel configuration parameters you have specified (see

“Working With Channel Characteristics” beginning on page 5-58 for information about

configuring channels). Video data is displayed in the destination display region; sound

data is played at the specified volume settings.

RESULT CODES

File Manager errors

Memory Manager errors

SEE ALSO

You stop the preview process by calling the SGStop function, which is described on

page 5-40.

In preview mode, the sequence grabber does not save any of the data it gathers from its

channels. If you want to record the data, use record mode. You start a record operation

by calling the SGStartRecord function, which is described in the next section.

cantDoThatInCurrentMode –9402 Request invalid in current mode
deviceCantMeetRequest –9408 Device cannot support grabber

C H A P T E R 5

Sequence Grabber Components

5-38 Sequence Grabber Components Reference

SGStartRecord

The SGStartRecord function instructs the sequence grabber component to begin

collecting data from its channels.

pascal ComponentResult SGStartRecord (SeqGrabComponent s);

s Specifies the component instance that identifies your connection to the
sequence grabber component. You obtain this value from the Component
Manager’s OpenDefaultComponent or OpenComponent function.

DESCRIPTION

The sequence grabber stores the collected data according to the recording parameters

you specify with the SGSetDataOutput function, which is described on page 5-26.

Before calling this function, you must correctly configure the sequence grabber’s

channels—see “Working With Channel Characteristics” beginning on page 5-58 for

information about configuring sequence grabber channels.

RESULT CODES

File Manager errors

Memory Manager errors

SEE ALSO

You can switch from previewing to recording by calling this function during a preview

operation—you need not stop the preview operation first. You stop the recording process

by calling the SGStop function, which is described on page 5-40.

You can cause the sequence grabber to display the data it obtains from its channels

without storing any of the data by calling the SGStartPreview function, which is

described in the previous section.

cantDoThatInCurrentMode –9402 Request invalid in current mode
notEnoughMemoryToGrab –9403 Insufficient memory for record operation
notEnoughDiskSpaceToGrab –9404 Insufficient disk space for record operation
deviceCantMeetRequest –9408 Device cannot support grabber

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-39

SGIdle

The SGIdle function provides processing time to the sequence grabber component and

its channel components. After starting a preview or record operation, you should call

this function as often as possible, until you stop the operation by calling SGStop.

▲ W A R N I N G

If you do not call SGIdle frequently enough, you may lose data. ▲

pascal ComponentResult SGIdle (SeqGrabComponent s);

s Specifies the component instance that identifies your connection to the
sequence grabber component. You obtain this value from the Component
Manager’s OpenDefaultComponent or OpenComponent function.

DESCRIPTION

The SGIdle function reports several status and error conditions by means of its result

code. If you have established a time limit for a record operation by calling the

SGSetMaximumRecordTime function (described on page 5-53), SGIdle returns a result

code of grabTimeComplete when the time limit expires. In addition, SGIdle reports

errors that are specific to the channels that are active for a given operation. If SGIdle

returns a nonzero result code during a record operation, you should still call the SGStop

function (described on page 5-40) so that the sequence grabber can store the data it has

collected.

RESULT CODES

File Manager errors

Memory Manager errors

SGUpdate

The SGUpdate function allows you to tell the sequence grabber that it must refresh its

display.

pascal ComponentResult SGUpdate (SeqGrabComponent s,

 RgnHandle updateRgn);

grabTimeComplete –9401 Time for record operation has expired
cantDoThatInCurrentMode –9402 Request invalid in current mode

C H A P T E R 5

Sequence Grabber Components

5-40 Sequence Grabber Components Reference

s Specifies the component instance that identifies your connection to the
sequence grabber component. You obtain this value from the Component
Manager’s OpenDefaultComponent or OpenComponent function.

updateRgn Indicates the part of the window that has been changed. You may use this
parameter to specify a portion of the window that you know has been
changed. You can obtain this information by examining the appropriate
window record. For example:

SGUpdate (theSG, ((WindowPeek)updateWindow)->updateRgn);

If you set this parameter to nil, the sequence grabber uses the window’s
current visible region.

DESCRIPTION

You may use the SGUpdate function to tell the sequence grabber that it must refresh its

display. You should call this function whenever you receive an update event for a

window that contains a sequence grabber display. You should call this function before

calling the Window Manager’s BeginUpdate function.

Your application should avoid drawing where the sequence grabber is displaying video.

Doing so may cause some video digitizer components to stop displaying video.

SPECIAL CONSIDERATIONS

It is dangerous to allow an update event to occur during recording. Many digitizers

capture directly to the screen; thus, an update event will result in data loss.

RESULT CODES

SGStop

The SGStop function stops a preview or record operation.

pascal ComponentResult SGStop (SeqGrabComponent s);

s Specifies the component instance that identifies your connection to the
sequence grabber component. You obtain this value from the Component
Manager’s OpenDefaultComponent or OpenComponent function.

DESCRIPTION

The sequence grabber releases any system resources it used during the operation, such

as temporary memory. In the case of a record operation, the sequence grabber stores the

paramErr –50 Component not found
deviceCantMeetRequest –9408 Device cannot support grabber

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-41

collected movie data in the assigned movie file—you specify the movie file by calling the

SGSetDataOutput function, which is described on page 5-26.

RESULT CODES

File Manager errors

Memory Manager errors

SGPause

You can suspend or restart a record or preview operation by calling the SGPause

function. You supply a byte value that instructs the sequence grabber whether to pause

or restart the current operation.

pascal ComponentResult SGPause (SeqGrabComponent s,

 Byte pause);

s Specifies the component instance that identifies your connection to the
sequence grabber component. You obtain this value from the Component
Manager’s OpenDefaultComponent or OpenComponent function.

pause Instructs the sequence grabber whether to suspend or restart the current
operation. The following values are valid:

seqGrabUnpause
Restarts the current operation.

seqGrabPause
Pauses the current operation.

seqGrabPauseForMenu
Pauses the current operation so that you may display a
menu. Use this option only in preview mode, just before
you call the Menu Manager’s MenuSelect or
PopUpMenuSelect function. In this case, the sequence
grabber may not pause all channels, depending upon the
ability of the sequence grabber to play with acceptable
quality. For example, sound channels may continue to play
while video channels are paused.

DESCRIPTION

The SGPause function does not release any system resources or temporary memory

associated with the current operation. Consequently, it is generally much faster than

using the SGStop and SGStartRecord functions or the SGStartPreview function to

suspend an operation.

cantDoThatInCurrentMode –9402 Request invalid in current mode

C H A P T E R 5

Sequence Grabber Components

5-42 Sequence Grabber Components Reference

SPECIAL CONSIDERATIONS

When you restart the operation, the sequence grabber component may be unable to

satisfy your request. This can occur, for example, if the user has moved the display

window to a location that the digitizing hardware cannot support.

RESULT CODES

File Manager errors

Memory Manager errors

SEE ALSO

You may determine whether the sequence grabber is paused by calling the SGGetPause

function, which is described next.

SGGetPause

You can determine whether the sequence grabber is paused by calling the SGGetPause

function.

pascal ComponentResult SGGetPause (SeqGrabComponent s,

 Byte *paused);

s Specifies the component instance that identifies your connection to the
sequence grabber component. You obtain this value from the Component
Manager’s OpenDefaultComponent or OpenComponent function.

paused Contains a pointer to a field that is to receive a value that indicates
whether the sequence grabber is currently paused. The following values
are valid:

seqGrabUnpause
The sequence grabber is not paused.

seqGrabPause
The sequence grabber is paused—all channels are stopped.

seqGrabPauseForMenu
The sequence grabber is paused in order to display a
menu—some or all of the channels may be stopped.

DESCRIPTION

The SGGetPause function allows you to determine whether the sequence grabber is

paused.

cantDoThatInCurrentMode –9402 Request invalid in current mode
notEnoughMemoryToGrab –9403 Insufficient memory for record operation
deviceCantMeetRequest –9408 Device cannot support grabber

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-43

SEE ALSO

You may pause or restart the sequence grabber by calling the SGPause function, which

is described in the previous section.

SGPrepare

The SGPrepare function instructs the sequence grabber to get ready to begin a preview

or record operation (or to commence both operations). You specify the operations.

pascal ComponentResult SGPrepare (SeqGrabComponent s,

Boolean prepareForPreview,

Boolean prepareForRecord);

s Specifies the component instance that identifies your connection to the
sequence grabber component. You obtain this value from the Component
Manager’s OpenDefaultComponent or OpenComponent function.

prepareForPreview
Instructs the sequence grabber component to prepare for a preview
operation. Set this parameter to true to prepare for a preview operation.
You may set both the prepareForPreview and prepareForRecord
parameters to true.

prepareForRecord
Instructs the sequence grabber component to prepare for a record
operation. Set this parameter to true to prepare for a record operation.
You may set both the prepareForPreview and prepareForRecord
parameters to true.

DESCRIPTION

The sequence grabber component does whatever is necessary to get ready to start the

preview or record operation. This may involve allocating memory, readying hardware,

and notifying the sequence grabber’s channels. By calling this function, you ensure that

the SGStartRecord or SGStartPreview function starts as quickly as possible.

If you do not call this function before starting a record or preview operation, the

sequence grabber component makes these preparations when you start the operation.

You cannot call this function after you start a preview or record operation.

If you call SGPrepare without subsequently starting a record or preview operation, you

should call the SGRelease function (described in the next section). This allows the

sequence grabber component to release any system resources it allocated when you

called SGPrepare.

C H A P T E R 5

Sequence Grabber Components

5-44 Sequence Grabber Components Reference

SPECIAL CONSIDERATIONS

The window in which the sequence grabber is to draw video frames (as defined by

the SGSetGWorld function, described on page 5-29) must be visible before you call the

SGPrepare function. Otherwise, the sequence grabber does not display the frames

properly. If the window isn’t visible and SGPrepare is called with the

prepareForPreview parameter set to true and the prepareForRecord parameter

set to false, and the window is subsequently shown via the Window Manager’s

ShowWindow routine, the sequence grabber won’t display frames properly in the video

window. The visible region of the window wasn’t valid when the SGPrepare call

was made.

RESULT CODES

File Manager errors

Memory Manager errors

SGRelease

The SGRelease function instructs the sequence grabber to release any system resources

it allocated when you called the SGPrepare function, which is described in the previous

section. You should call SGRelease whenever you call SGPrepare without

subsequently starting a record or preview operation.

pascal ComponentResult SGRelease (SeqGrabComponent s);

s Specifies the component instance that identifies your connection to the
sequence grabber component. You obtain this value from the Component
Manager’s OpenDefaultComponent or OpenComponent function.

DESCRIPTION

When you stop a record or preview operation by calling the SGStop function, the

sequence grabber component automatically releases the resources it uses during the

operation. Consequently, you do not have to call this function after a record or

preview operation.

You cannot call the SGRelease function during a record or preview operation.

paramErr –50 Invalid parameter specified
cantDoThatInCurrentMode –9402 Request invalid in current mode
notEnoughMemoryToGrab –9403 Insufficient memory for record operation
notEnoughDiskSpaceToGrab –9404 Insufficient disk space for record

operation
deviceCantMeetRequest –9408 Device cannot support grabber

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-45

SGGetMovie

The SGGetMovie function returns a reference to the movie that contains the data

collected during a record operation. You can use this movie identifier with Movie

Toolbox functions. However, you should not dispose of this movie—it is owned by the

sequence grabber component. Furthermore, the sequence grabber component disposes

of this movie when you prepare for or start the next record or preview operation, or

when you close the connection to the sequence grabber. If you want to work with a

movie containing the collected data, use the Movie Toolbox’s NewMovieFromFile

function (see the chapter “Movie Toolbox” in Inside Macintosh: QuickTime for more

information).

You can call this function only after you have stopped the record operation by calling the

SGStop function.

pascal Movie SGGetMovie (SeqGrabComponent s);

s Specifies the component instance that identifies your connection to the
sequence grabber component. You obtain this value from the Component
Manager’s OpenDefaultComponent or OpenComponent function.

DESCRIPTION

The SGGetMovie function returns a reference to the movie that contains the data

collected during a record operation. If there is no current movie, either because you are

in preview mode or because you have not yet stopped the record operation, the sequence

grabber component sets this returned reference to nil.

RESULT CODE

SGGetLastMovieResID

The SGGetLastMovieResID allows you to retrieve the last resource ID used by the

sequence grabber component. The sequence grabber component assigns a new resource

ID to each movie resource it creates. The sequence grabber creates the movie resource

when you stop a record operation by calling the SGStop function, unless you have

instructed the sequence grabber not to add the movie resource to the movie file (see the

description of the SGSetDataOutput function beginning on page 5-26 for more

information).

pascal ComponentResult SGGetLastMovieResID (SeqGrabComponent s,

 short *resID) ;

seqGrabInfoNotAvailable –9407 Sequence grabber cannot support request

C H A P T E R 5

Sequence Grabber Components

5-46 Sequence Grabber Components Reference

s Specifies the component instance that identifies your connection to the
sequence grabber component. You obtain this value from the Component
Manager’s OpenDefaultComponent or OpenComponent function.

resID Contains a pointer to an integer that is to receive the resource ID the
sequence grabber assigned to the movie resource it just created.

DESCRIPTION

If you want this information, you should call this function before you prepare for or start

another record or preview operation—because the sequence grabber component resets

this value when you start the next operation.

RESULT CODE

SGGrabPict

The SGGrabPict function provides a simple interface that allows your application to

obtain a QuickDraw picture from a sequence grabber component. The sequence grabber

can display the picture directly, or it can write the picture to an offscreen buffer. This

function is limited in scope, however, and does not allow you to control all of the

parameters that govern the operation. When you call this function, the sequence grabber

component obtains and configures appropriate sequence grabber channel components (if

necessary), grabs the data, and then releases any components it obtained.

pascal ComponentResult SGGrabPict (SeqGrabComponent s,

PicHandle *p,

const Rect *bounds,

short offscreenDepth,

long grabPictFlags);

s Specifies the component instance that identifies your connection to the
sequence grabber component. You obtain this value from the Component
Manager’s OpenDefaultComponent or OpenComponent function.

p Contains a pointer to a field that is to receive a handle to the picture. If the
SGGrabPict function cannot create the picture, it sets this handle to nil.

bounds Contains a pointer to the boundary region for the picture. By default,
this rectangle lies in the current graphics port. If you set the
grabPictOffScreen flag in the grabPictFlags parameter to 1, the
sequence grabber places the picture in an offscreen graphics world. In this
case, the rectangle is interpreted in that offscreen world.

offscreenDepth
Specifies the pixel depth for the offscreen graphics world. This parameter
is typically set to 0, which chooses the best available depth. If you set the

seqGrabInfoNotAvailable –9407 Sequence grabber cannot support request

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-47

grabPictOffScreen flag in the grabPictFlags parameter to 1, the
sequence grabber places the picture in an offscreen graphics world. You
specify the pixel depth of this offscreen graphics world with this
parameter. If you are displaying the picture, this parameter is ignored.

grabPictFlags
Contains flags that control the operation. The following flags are defined
(set unused flags to 0):

grabPictOffScreen
Instructs the sequence grabber to place the picture in
an offscreen graphics world. Set this flag to 1 to
use an offscreen graphics world. In this case, you use the
offscreenDepth parameter to specify the pixel depth
in the offscreen buffer. In addition, the rectangle specified
by the bounds parameter is applied to the offscreen buffer.

grabPictIgnoreClip
Instructs the sequence grabber to ignore any clipping
regions you may have defined for the sequence grabber’s
channels. Set this flag to 1 to have the sequence grabber
ignore these clipping regions.

DESCRIPTION

If you have created any channels for the sequence grabber component, the SGGrabPict

function uses those channels to obtain the data for the captured image.

SPECIAL CONSIDERATIONS

Some digitizer sources do not support grabbing offscreen, so the SGGrabPict function

may fail. In this case, try again grabbing onscreen.

RESULT CODES

File Manager errors

Memory Manager errors

Working With Sequence Grabber Settings

Sequence grabber components can work with channel components and panel

components to collect configuration settings from the user. The functions discussed in

this section allow you to direct the sequence grabber to display its settings dialog box to

the user and to work with the configuration of each of the grabber’s channels. See

“About Sequence Grabber Components” on page 5-3 for more information about the

relationship between the sequence grabber and panel components.

notEnoughMemoryToGrab –9403 Insufficient memory for record operation
deviceCantMeetRequest –9408 Device cannot support grabber

C H A P T E R 5

Sequence Grabber Components

5-48 Sequence Grabber Components Reference

Use the SGSettingsDialog function to instruct the sequence grabber to display its

settings dialog box to the user.

The SGSetSettings and SGGetSettings functions allow you to retrieve or set the

sequence grabber’s configuration.

The SGSetChannelSettings and SGGetChannelSettings functions work with the

configuration of an individual channel.

SGSettingsDialog

You may cause the sequence grabber to display its settings dialog box to the user by

calling the SGSettingsDialog function. The user can use this dialog box to specify the

configuration of a sequence grabber channel.

pascal ComponentResult SGSettingsDialog (SeqGrabComponent s,

 SGChannel c, short numPanels,

 Component *panelList, long flags,

 SGModalFilterProcPtr proc, long procRefNum);

s Specifies the component instance that identifies your connection to the
sequence grabber component. You obtain this value from the Component
Manager’s OpenDefaultComponent or OpenComponent function.

c Identifies the channel to be configured. You provide your
connection identifier. You connect to a channel component by calling the
SGNewChannel or SGNewChannelFromComponent function, discussed
on page 5-31 and page 5-32, respectively.

numPanels Specifies the number of panel components to be listed in the panel
component pop-up menu. You specify the panel components with the
panelList parameter. You may use these parameters to limit the user’s
choice of panel components. If you set this parameter to 0 and
the panelList parameter to nil, the sequence grabber lists all available
panel components.

panelList Contains a pointer to an array of component identifiers. The sequence
grabber presents only these components in the panel component pop-up
menu. You specify the number of identifiers in the array with the
numPanels parameter. If you set this parameter to nil, the sequence
grabber lists all available panel components.

flags Reserved for Apple Computer. Set this parameter to 0.

proc Specifies an event filter function. Because the sequence grabber’s settings
dialog box is a movable modal dialog box, you must supply an event
filter function to process update events in your window. The interface
that your filter function must support is described in
“Application-Defined Functions” beginning on page 5-111.

procRefNum
Contains a reference constant for use by your filter function.

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-49

IMPORTANT

Because the settings dialog box is a movable modal dialog box, you
must provide an event filter function. ▲

DESCRIPTION

The SGSettingsDialog function instructs the sequence grabber to display its settings

dialog box to the user. The sequence grabber works with one or more panel components

to configure a specified channel component.

If the user clicks OK and the settings are acceptable to the panel and channel

components, this function returns a result code of noErr. Because the user may change

several channel configuration parameters, your application should retrieve new

configuration information from the channel so that you can update any values you save,

such as the channel’s display boundaries or the channel device. In particular, the video

rectangle for the channels may be adjusted.

RESULT CODE

SEE ALSO

You may retrieve or set the configuration of one or more channel components by using

the SGGetSettings (described in the next section), SGSetSettings (described on

page 5-50), SGGetChannelSettings (described on page 5-51), or

SGSetChannelSettings function (described on page 5-52).

SGGetSettings

The SGGetSettings function retrieves the current settings of all channels used by the

sequence grabber. The sequence grabber places all of this configuration information into

a Movie Toolbox user data list.

pascal ComponentResult SGGetSettings (SeqGrabComponent s,

UserData *ud, long flags);

s Specifies the component instance that identifies your connection to the
sequence grabber component. You obtain this value from the Component
Manager’s OpenDefaultComponent or OpenComponent function.

ud Contains a pointer. The sequence grabber returns a pointer to a Movie
Toolbox user data list that contains the configuration information. Your
application is responsible for disposing of this user data list when you are
done with it.

flags Reserved for Apple. Set this parameter to 0.

userCanceledErr –128 User canceled the dialog

C H A P T E R 5

Sequence Grabber Components

5-50 Sequence Grabber Components Reference

DESCRIPTION

The SGGetSettings function allows you to retrieve the sequence grabber’s

configuration information. The sequence grabber, in turn, retrieves configuration

information for each of its channels and stores that information in a Movie Toolbox user

data list. You may subsequently use the SGSetSettings function (described in the next

section) to reconfigure the sequence grabber. You can store the settings (for example, in a

Preferences file) by using the Movie Toolbox’s PutUserDataIntoHandle function.

RESULT CODES

Memory Manager errors

SEE ALSO

You may retrieve the configuration of one channel component by using the

SGGetChannelSettings function (described on page 5-51).

SGSetSettings

The SGSetSettings function allows you to configure a sequence grabber and its

channels.

pascal ComponentResult SGSetSettings (SeqGrabComponent s,

UserData ud, long flags);

s Specifies the component instance that identifies your connection to the
sequence grabber component. You obtain this value from the Component
Manager’s OpenDefaultComponent or OpenComponent function.

ud Specifies a Movie Toolbox user data list that contains the configuration
information to be used by the sequence grabber.

flags Reserved for Apple. Set this parameter to 0.

DESCRIPTION

The SGSetSettings function allows you to configure a sequence grabber. You

provide this configuration information in a Movie Toolbox user data list. Typically, you

obtain this configuration data from the SGGetSettings function, which is discussed in

the previous section.

Note that the sequence grabber disposes of any of its current channels before applying

this configuration information. It then opens connections to new channels as appropriate.

You can restore saved settings by using the Movie Toolbox’s NewUserDataFromHandle

function.

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-51

RESULT CODES

SEE ALSO

You may set the configuration of one channel component by using the

SGSetChannelSettings function (described on page 5-52).

You may use the SGGetIndChannel function (described on page 5-33) to obtain

information about each channel that the sequence grabber is using as a result of applying

this new configuration.

SGGetChannelSettings

The SGGetChannelSettings function retrieves the current settings of one channel

used by the sequence grabber. The sequence grabber places this configuration

information into a Movie Toolbox user data list.

pascal ComponentResult SGGetChannelSettings (SeqGrabComponent s,

SGChannel c,

UserData *ud,

long flags);

s Specifies the component instance that identifies your connection to the
sequence grabber component. You obtain this value from the Component
Manager’s OpenDefaultComponent or OpenComponent function.

c Identifies the channel for this operation. You pass your
connection identifier. You connect to a channel component by calling the
SGNewChannel or SGNewChannelFromComponent function, discussed
on page 5-31 and page 5-32, respectively.

ud Contains a pointer. The sequence grabber returns a pointer to a Movie
Toolbox user data list that contains the configuration information.

flags Reserved for Apple. Set this parameter to 0.

DESCRIPTION

The SGGetChannelSettings function allows you to retrieve the configuration

information for a single channel component. The channel component stores

that information in a Movie Toolbox user data list. You may subsequently use the

SGSetChannelSettings function to reconfigure the channel (this function is

described next).

noDeviceForChannel –9400 Channel component cannot find its
device

couldntGetRequiredComponent –9405 Component not found
deviceCantMeetRequest –9408 Device cannot support grabber

C H A P T E R 5

Sequence Grabber Components

5-52 Sequence Grabber Components Reference

RESULT CODES

Memory Manager errors

SEE ALSO

You may retrieve the configuration of the entire sequence grabber, including all of its

channels, by using the SGGetSettings function, described on page 5-49.

SGSetChannelSettings

The SGSetChannelSettings function allows you to configure a sequence grabber

channel.

pascal ComponentResult SGSetChannelSettings (SeqGrabComponent s,

SGChannel c,

UserData ud,

long flags);

s Specifies the component instance that identifies your connection to the
sequence grabber component. You obtain this value from the Component
Manager’s OpenDefaultComponent or OpenComponent function.

c Identifies the channel to be configured. You provide your
connection identifier. You connect to a channel component by calling the
SGNewChannel or SGNewChannelFromComponent function, discussed
on page 5-31 and page 5-32, respectively.

ud Specifies a Movie Toolbox user data list that contains the configuration
information to be used by the channel component.

flags Reserved for Apple. Set this parameter to 0.

DESCRIPTION

The SGSetChannelSettings function allows you to configure a sequence grabber

channel. You provide this configuration information in a Movie Toolbox user data list.

Typically, you obtain this configuration data from the SGGetChannelSettings

function, which is discussed in the previous section.

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-53

RESULT CODES

SEE ALSO

You may set the configuration of all of the sequence grabber’s channels by using the

SGSetSettings function. This function is described on page 5-50.

Working With Sequence Grabber Characteristics

The characteristics that govern a sequence grabber operation fall into two main

categories: those that apply to the sequence grabber component, and those that apply to

an individual channel that has been created for the sequence grabber. Sequence grabber

components provide a number of functions in each category. This section describes the

functions that allow you to configure the characteristics of the sequence grabber

component. See “Working With Channel Characteristics” beginning on page 5-58 for

information about functions that apply to a single channel.

Use the SGSetMaximumRecordTime function to limit the duration of a record

operation. You can retrieve this time limit by calling the SGGetMaximumRecordTime

function.

The SGSetFlags function allows you to set control flags that govern an operation.

Use the SGGetFlags function to retrieve those flags.

You can obtain information about the progress of a record operation by calling the

SGGetStorageSpaceRemaining and SGGetTimeRemaining functions.

You can retrieve a reference to the time base used by a sequence grabber component by

calling the SGGetTimeBase function.

SGSetMaximumRecordTime

You can limit the duration of a record operation by calling the

SGSetMaximumRecordTime function. You specify the time limit as an exact number of

Macintosh system ticks (each is approximately a sixtieth of a second). The most efficient

technique for monitoring this time limit is to examine the result code from the SGIdle

function, which is described on page 5-39. When the time limit expires, the sequence

grabber component sets that result code to grabTimeComplete.

pascal ComponentResult SGSetMaximumRecordTime (SeqGrabComponent s,

 unsigned long ticks);

noDeviceForChannel –9400 Channel component cannot find its
device

couldntGetRequiredComponent –9405 Component not found
deviceCantMeetRequest –9408 Device cannot support grabber

C H A P T E R 5

Sequence Grabber Components

5-54 Sequence Grabber Components Reference

s Specifies the component instance that identifies your connection to the
sequence grabber component. You obtain this value from the Component
Manager’s OpenDefaultComponent or OpenComponent function.

ticks Specifies the maximum duration for the record operation, in system ticks.
Set this parameter to 0 to remove the time limit from the operation.

DESCRIPTION

By default, there is no time limit on a record operation. If you do not set a limit, a record

operation will run until it exhausts the Operating System resources or you call the

SGStop function (described on page 5-40). Memory and disk space are the two major

limiting factors.

You must call the SGSetMaximumRecordTime function before you start the record

operation.

SGGetMaximumRecordTime

The SGGetMaximumRecordTime function allows you to determine the time limit you

have set for a record operation.

pascal ComponentResult SGGetMaximumRecordTime (SeqGrabComponent s,

 unsigned long *ticks);

s Specifies the component instance that identifies your connection to the
sequence grabber component. You obtain this value from the Component
Manager’s OpenDefaultComponent or OpenComponent function.

ticks Contains a pointer to a long integer that is to receive a value indicating
the maximum duration for the record operation, in system ticks. A value
of 0 indicates that there is no time limit.

SEE ALSO

You set this time limit by calling the SGSetMaximumRecordTime function, which is

described in the previous section.

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-55

SGGetStorageSpaceRemaining

The SGGetStorageSpaceRemaining function allows you to monitor the amount of

space remaining for use during a record operation. You can use this function to monitor

the space being used so that you can limit the amount of space consumed by an

operation. Alternatively, you can use the information you receive from this function to

update a status display for the user.

pascal ComponentResult SGGetStorageSpaceRemaining

 (SeqGrabComponent s,

 unsigned long *bytes);

s Specifies the component instance that identifies your connection to the
sequence grabber component. You obtain this value from the Component
Manager’s OpenDefaultComponent or OpenComponent function.

bytes Contains a pointer to a long integer that is to receive a value indicating
the amount of space remaining for the current record operation. If you are
recording to memory, this value contains information about the amount
of memory remaining. If you are recording to a movie file, this value
contains information about the amount of storage space available on the
device that holds the file.

DESCRIPTION

The SGGetStorageSpaceRemaining function returns information that is appropriate

for the output conditions you establish with the SGSetDataOutput function, which is

described on page 5-26. If you are recording to memory, this function returns

information about the amount of memory remaining. If you are recording to a movie file,

this function returns information about the amount of storage space available on the

device that holds the file.

You can call this function only after you have started a record operation.

RESULT CODE

seqGrabInfoNotAvailable –9407 Sequence grabber does not have this
information at this time

C H A P T E R 5

Sequence Grabber Components

5-56 Sequence Grabber Components Reference

SGGetTimeRemaining

The SGGetTimeRemaining function allows you to obtain an estimate of the amount of

recording time that remains for the current record operation. The sequence

grabber component estimates this value based on the amount of storage remaining and

the speed with which the record operation is consuming that space. This estimate

improves as the record process continues. If you have limited the record time by calling

the SGSetMaximumRecordTime function (see page 5-53 for details),

SGGetTimeRemaining does not return a value that is greater than the limit you

have set.

pascal ComponentResult SGGetTimeRemaining (SeqGrabComponent s,

 long *ticksLeft);

s Specifies the component instance that identifies your connection to the
sequence grabber component. You obtain this value from the Component
Manager’s OpenDefaultComponent or OpenComponent function.

ticksLeft Contains a pointer to a long integer that is to receive a value indicating an
estimate of the amount of time remaining for the current record
operation. This value is expressed in system ticks.

DESCRIPTION

You can call the SGGetTimeRemaining function only after you have started a record

operation.

SPECIAL CONSIDERATIONS

This function may take a relatively long time to execute. You should not call it too

frequently—once per second is reasonable.

RESULT CODE

SGGetTimeBase

The SGGetTimeBase function allows you to retrieve a reference to the time base that is

being used by a sequence grabber component.

pascal ComponentResult SGGetTimeBase (SeqGrabComponent s,

TimeBase *tb);

seqGrabInfoNotAvailable –9407 Sequence grabber cannot support request

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-57

s Specifies the component instance that identifies your connection to the
sequence grabber component. You obtain this value from the Component
Manager OpenDefaultComponent or OpenComponent function.

tb Contains a pointer to a time base record that is to receive information
about the sequence grabber’s time base.

DESCRIPTION

You can examine the time base to monitor an operation or to schedule events based on

time values. However, you should not change this time base in any way.

SGSetFlags

The SGSetFlags function allows you to pass control information about the current

operation to the sequence grabber component.

pascal ComponentResult SGSetFlags (SeqGrabComponent s,

long sgFlags);

s Specifies the component instance that identifies your connection to the
sequence grabber component. You obtain this value from the Component
Manager’s OpenDefaultComponent or OpenComponent function.

sgFlags Contains flags for the current operation. The following flag is defined (set
unused flags to 0):

sgFlagControlledGrab
Informs the sequence grabber component that you are
working with a frame-addressable device to perform a
controlled record operation. The sequence grabber and its
channel components optimize their operation for this
situation. This flag allows the sequence grabber component
to trade off speed and quality. Set this flag to 1 if you are
performing a controlled grab using a frame-addressable
source device.

SGGetFlags

You can retrieve a sequence grabber’s control flags by calling the SGGetFlags function.

pascal ComponentResult SGGetFlags (SeqGrabComponent s,

long *sgFlags) ;

s Specifies the component instance that identifies your connection to the
sequence grabber component. You obtain this value from the Component
Manager’s OpenDefaultComponent or OpenComponent function.

C H A P T E R 5

Sequence Grabber Components

5-58 Sequence Grabber Components Reference

sgFlags Contains a pointer to a long integer that is to receive the control flags for
the current operation. The following flag is defined (unused flags are set
to 0):

sgFlagControlledGrab
Informs the sequence grabber component that you are
working with a frame-addressable device to perform a
controlled record operation. The sequence grabber and its
channel components optimize their operation for this
situation. This flag allows the sequence grabber component
to trade off speed and quality. This flag is set to 1 if you are
performing a controlled grab using a frame-addressable
source device.

SEE ALSO

You set these flags by calling the SGSetFlags function, which is described in the

previous section.

Working With Channel Characteristics

Sequence grabber components use channel components to obtain digitized data from

external media. After you create a channel for a sequence grabber component (by calling

the SGNewChannel function, which is described on page 5-31), you must configure that

channel before you start a preview or record operation. The sequence grabber

component provides a number of functions that allow you to configure the

characteristics of a channel component. Several of these functions work on any channel

component. This section discusses these general channel configuration functions.

In addition, sequence grabber components provide functions that are specific to the

channel type. Apple currently provides two types of channel components: video channel

components and sound channel components. See “Working With Video Channels”

beginning on page 5-77 for information about the sequence grabber configuration

functions that work only with video channels. See “Working With Sound Channels”

beginning on page 5-92 for information about the sequence grabber configuration

functions that work only with sound channels.

Use the SGSetChannelUsage function to specify how a channel is to be used. You can

restrict a channel to use during record or preview operations. In addition, this function

allows you to specify whether a channel plays during a record operation. The

SGGetChannelUsage function enables you to determine a channel’s usage.

The SGGetChannelInfo function allows you to determine whether a channel has a

visual or an audio representation.

The SGSetChannelPlayFlags function allows you to influence the speed

and quality with which the sequence grabber displays captured data. The

SGGetChannelPlayFlags function lets you determine these flag settings.

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-59

The SGSetChannelMaxFrames function establishes a limit on the number of frames

that the sequence grabber will capture from a channel. The SGGetChannelMaxFrames

function allows you to determine that limit.

The SGSetChannelBounds function allows you to set the display boundary rectangle

for a channel. Use the SGGetChannelBounds function to determine a channel’s

boundary rectangle.

The SGSetChannelVolume function allows you to control a channel’s sound volume.

Use the SGGetChannelVolume function to determine a channel’s volume.

The SGSetChannelRefCon function allows you to set the value of a reference constant

that is passed to your callback functions (see “Video Channel Callback Functions”

beginning on page 5-99 for information about the callback functions that are supported

by video channels).

Use the SGGetChannelSampleDescription function to retrieve a channel’s sample

description. The SGGetChannelTimeScale function allows you to obtain the channel’s

time scale.

You can modify or retrieve the channel’s clipping region by calling the

SGSetChannelClip or SGGetChannelClip function, respectively. You can work with

a channel’s transformation matrix by calling the SGSetChannelMatrix and

SGGetChannelMatrix functions.

SGSetChannelUsage

The SGSetChannelUsage function specifies how a channel is to be used by the

sequence grabber component. The sequence grabber component does not use a channel

until you specify how it is to be used. You can specify that a channel is to be used for

recording or previewing, or both. In addition, you can control whether the data captured

by a channel is displayed during the record or preview operation.

pascal ComponentResult SGSetChannelUsage (SGChannel c,

long usage);

c Specifies the reference that identifies the channel for this operation. You
obtain this reference from the SGNewChannel function, described on
page 5-31.

usage Contains flags (defined by the SeqGrabUsageEnum data type) specifying
how the channel is to be used. You may set more than one of these flags
to 1. Set unused flags to 0. The following flags are defined:

seqGrabRecord
Indicates that the channel is to be used during record
operations. Set this flag to 1 to use a channel for recording.

seqGrabPreview
Indicates that the channel is to be used during preview
operations. Set this flag to 1 to use a channel for previewing.

C H A P T E R 5

Sequence Grabber Components

5-60 Sequence Grabber Components Reference

seqGrabPlayDuringRecord
Indicates that the sequence grabber may play the data
captured by this channel during a record operation. If you
set this flag to 1, the data from the channel may be played
during the record operation, if the destination buffer is
onscreen. Video data is displayed; sound data is played
through the computer’s speaker. However, playing the
data may affect the quality of the recorded sequence by
causing frames to be dropped. Set this flag to 0 to prevent
the channel’s data from being played during a record
operation.

DESCRIPTION

You cannot call the SGSetChannelUsage function during a record or preview

operation.

RESULT CODES

SGGetChannelUsage

The SGGetChannelUsage function allows you to determine how a channel is to be

used by the sequence grabber component.

pascal ComponentResult SGGetChannelUsage (SGChannel c,

long *usage);

c Specifies the reference that identifies the channel for this operation. You
obtain this reference from the SGNewChannel function, described on
page 5-31.

usage Contains a pointer to flags indicating how the channel is to be used. More
than one flag may be set to 1; unused flags are set to 0. The following flags
are defined:

seqGrabRecord
Indicates that the channel is used during record operations.

seqGrabPreview
Indicates that the channel is used during preview
operations.

seqGrabPlayDuringRecord
Indicates that the sequence grabber component plays the
data captured by this channel during a record operation.

notEnoughMemoryToGrab –9403 Insufficient memory for record operation
notEnoughDiskSpaceToGrab –9404 Insufficient disk space for record

operation
deviceCantMeetRequest –9408 Device cannot support grabber

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-61

SEE ALSO

You establish a channel’s usage by calling the SGSetChannelUsage function, described

in the previous section.

SGGetChannelInfo

The SGGetChannelInfo function allows you to determine how a channel’s data is

represented to the user—as visual or audio data, or both.

pascal ComponentResult SGGetChannelInfo (SGChannel c,

long *channelInfo);

c Specifies the reference that identifies the channel for this operation. You
obtain this reference from the SGNewChannel function, described on
page 5-31.

channelInfo
Contains a pointer to a long integer that is to receive channel information
flags. More than one flag may be set to 1. Unused flags are set to 0. The
following flags are defined:

seqGrabHasBounds
Indicates that the channel has a visual representation. If
this flag is set to 1, the channel has a visual representation.

seqGrabHasVolume
Indicates that the channel has an audio representation. If
this flag is set to 1, the channel has an audio representation.

seqGrabHasDiscreteSamples
Indicates that the channel data is organized into discrete
frames. If this flag is set to 1, you can use the
SGSetChannelMaxFrames function (see page 5-63) to
limit the number of frames processed in a record operation
or the rate at which those frames are processed. If this flag
is set to 0, the channel data is not organized into frames.
Therefore, you can only limit a record operation by setting
the maximum time for the operation.

SGSetChannelPlayFlags

The SGSetChannelPlayFlags function allows you to influence the speed and quality

with which the sequence grabber displays data from a channel.

pascal ComponentResult SGSetChannelPlayFlags (SGChannel c,

 long playFlags);

C H A P T E R 5

Sequence Grabber Components

5-62 Sequence Grabber Components Reference

c Specifies the reference that identifies the channel for this operation. You
obtain this reference from the SGNewChannel function, described on
page 5-31.

playFlags Specifies a long integer that contains flags that influence channel
playback. The following values are defined—you must use one of these
values:

channelPlayNormal
Instructs the channel component to use its default playback
methodology.

channelPlayFast
Instructs the channel component to sacrifice playback
quality in order to achieve the specified playback rate.

channelPlayHighQuality
Instructs the channel component to play the channel’s data
at the highest possible quality—this option sacrifices
playback rate for the sake of image quality. This option
may reduce the amount of processor time available for
recording. This option does not affect the quality of
the recorded data, however.

The following flag is defined—you may use this flag with any of the
values defined for this parameter (set unused flags to 0):

channelPlayAllData
Instructs the channel component to try to play all of the
data it captures, even the data that is stored in offscreen
buffers. This option is useful when you want to be sure that
the user sees as much of the captured data as possible. Set
this flag to 1 to play all the captured data. You may
combine this flag with any of the values defined for the
playFlags parameter.

DESCRIPTION

The SGSetChannelPlayFlags function does not affect the quality of a record

operation.

SPECIAL CONSIDERATIONS

You cannot call this function during a record operation; you can call it during a preview

operation.

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-63

SGGetChannelPlayFlags

The SGGetChannelPlayFlags function allows you to retrieve the playback control

flags that you set with the SGSetChannelPlayFlags function, which is described in

the previous section.

pascal ComponentResult SGGetChannelPlayFlags (SGChannel c,

 long *playFlags);

c Specifies the reference that identifies the channel for this operation. You
obtain this reference from the SGNewChannel function, described on
page 5-31.

playFlags Contains a pointer to a long integer that is to receive flags that influence
channel playback. The following values are defined:

channelPlayNormal
The channel component uses its default playback
methodology.

channelPlayFast
The channel component sacrifices playback quality in order
to achieve the specified playback rate.

channelPlayHighQuality
The channel component plays the channel’s data at the
highest possible quality—this option sacrifices playback
rate for the sake of image quality. This option may reduce
the amount of processor time available for recording. This
option does not affect the quality of the recorded data,
however.

The following flag is defined and may be used with any of the values
defined for this parameter (unused flags are set to 0):

channelPlayAllData
The channel component tries to play all of the data it
captures, even the data that is stored in offscreen buffers.
This option is useful when you want to be sure that the
user sees as much of the captured data as possible.

SGSetChannelMaxFrames

The SGSetChannelMaxFrames function allows you to limit the number of frames

that the sequence grabber will capture from a specified channel. This function works

only with channels that have data that is organized into frames, such as video data from

a video disc.

pascal ComponentResult SGSetChannelMaxFrames (SGChannel c,

 long frameCount);

C H A P T E R 5

Sequence Grabber Components

5-64 Sequence Grabber Components Reference

c Specifies the reference that identifies the channel for this operation. You
obtain this reference from the SGNewChannel function, described on
page 5-31.

frameCount
Specifies the maximum number of frames to capture during the preview
or record operation. Set this value to –1 to remove the limit.

DESCRIPTION

You can use the SGSetChannelMaxFrames function in the context of a time-based

function to control the number of frames you collect for each unit of time. For example, if

you want to collect one frame of data per second, you can create a function that executes

once per second. That function should call SGSetChannelMaxFrames to set the

maximum frame count to 1. Your application can determine when the frame is captured

by calling the SGGetChannelMaxFrames function and detecting when that function

returns a value of 0. The SGGetChannelMaxFrames function is described in the next

section.

You may use this function only after you have prepared the sequence grabber

component for a record operation or during an active record operation. Note that

sequence grabber components clear this value when you prepare for a record operation.

SEE ALSO

You can determine whether a channel’s data is organized into frames by calling the

SGGetChannelInfo function, which is described on page 5-61.

RESULT CODES

SGGetChannelMaxFrames

The SGGetChannelMaxFrames function allows you to determine the number of frames

left to be captured from a specified channel.

pascal ComponentResult SGGetChannelMaxFrames (SGChannel c,

 long *frameCount);

c Specifies the reference that identifies the channel for this operation. You
obtain this reference from the SGNewChannel function, described on
page 5-31.

paramErr –50 Invalid parameter specified
cantDoThatInCurrentMode –9402 Request invalid in current mode

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-65

frameCount
Contains a pointer to a long integer that is to receive a value specifying
the number of frames left to be captured during the preview or record
operation. If the returned value is –1, the sequence grabber captures as
many frames as it can.

SEE ALSO

You set the starting value by calling the SGSetChannelMaxFrames function, which is

described in the previous section.

RESULT CODE

SGSetChannelBounds

The SGSetChannelBounds function allows you to specify a channel’s display

boundary rectangle. This rectangle defines the destination for data from this channel.

This rectangle is defined in the graphics world you establish by calling the

SGSetGWorld function, described on page 5-29.

pascal ComponentResult SGSetChannelBounds (SGChannel c,

 const Rect *bounds);

c Specifies the reference that identifies the channel for this operation. You
obtain this reference from the SGNewChannel function, described on
page 5-31.

bounds Contains a pointer to a rectangle that defines the channel’s display
boundary rectangle. This rectangle is defined in the graphics world you
establish when you call the SGSetGWorld function, described on
page 5-29.

DESCRIPTION

You cannot call the SGSetChannelBounds function during a record operation.

SPECIAL CONSIDERATIONS

The SGSetChannelBounds function adjusts the channel matrix, as appropriate.

seqGrabInfoNotAvailable –9407 Sequence grabber component cannot
support request

C H A P T E R 5

Sequence Grabber Components

5-66 Sequence Grabber Components Reference

RESULT CODES

SGGetChannelBounds

The SGGetChannelBounds function allows you to determine a channel’s display

boundary rectangle.

pascal ComponentResult SGGetChannelBounds (SGChannel c,

 Rect *bounds);

c Specifies the reference that identifies the channel for this operation. You
obtain this reference from the SGNewChannel function, described on
page 5-31.

bounds Contains a pointer to a rectangle structure that is to receive information
about the channel’s display boundary rectangle. This rectangle is defined
in the graphics world that you establish when you call the SGSetGWorld
function.

DESCRIPTION

You set the boundary rectangle by calling the SGSetChannelBounds function, which is

described in the previous section. This rectangle is defined in the graphics world that

you establish by calling the SGSetGWorld function, described on page 5-29.

SGSetChannelVolume

The SGSetChannelVolume function sets a channel’s sound volume.

pascal ComponentResult SGSetChannelVolume (SGChannel c,

 short volume);

c Specifies the reference that identifies the channel for this operation. You
obtain this reference from the SGNewChannel function, described on
page 5-31.

volume Specifies the volume setting of the channel represented as a 16-bit,
fixed-point number. The high-order 8 bits contain the integer part of the
value; the low-order 8 bits contain the fractional part. Volume values
range from –1.0 to 1.0. Negative values play no sound but preserve the
absolute value of the volume setting.

cantDoThatInCurrentMode –9402 Request invalid in current mode
notEnoughMemoryToGrab –9403 Insufficient memory for record operation
deviceCantMeetRequest –9408 Device cannot support grabber component

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-67

DESCRIPTION

The sequence grabber component uses this volume setting during playback—this setting

does not affect the record level or the volume of the track in the recorded QuickTime

movie.

SGGetChannelVolume

The SGGetChannelVolume function allows you to determine a channel’s sound

volume setting.

pascal ComponentResult SGGetChannelVolume (SGChannel c,

 short *volume);

c Specifies the reference that identifies the channel for this operation. You
obtain this reference from the SGNewChannel function, described on
page 5-31.

volume Contains a pointer to an integer that is to receive the volume setting of the
channel represented as a 16-bit, fixed-point number. The high-order 8 bits
contain the integer part of the value; the low-order 8 bits contain the
fractional part. Volume values range from –1.0 to 1.0. Negative values
play no sound but preserve the absolute value of the volume setting.

SEE ALSO

You establish the volume setting by calling the SGSetChannelVolume function,

described in the previous section.

SGSetChannelRefCon

The SGSetChannelRefCon function allows you to set the value of a reference constant

that is passed to your callback functions (see “Video Channel Callback Functions”

beginning on page 5-99 for information about the callback functions that are supported

by video channels).

pascal ComponentResult SGSetChannelRefCon (SGChannel c,

 long refCon);

c Specifies the reference that identifies the channel for this operation. You
obtain this reference from the SGNewChannel function, described on
page 5-31.

C H A P T E R 5

Sequence Grabber Components

5-68 Sequence Grabber Components Reference

refCon Specifies a reference constant value that is to be passed to your callback
functions for this channel. See “Video Channel Callback Functions” on
page 5-99 for information about the callback functions that are supported
by video channels. Sound channels do not support callback functions.

SPECIAL CONSIDERATIONS

 Sound channels do not support callback functions.

SGGetChannelSampleDescription

The SGGetChannelSampleDescription function allows you to retrieve a channel’s

sample description.

pascal ComponentResult SGGetChannelSampleDescription

(SGChannel c, Handle sampleDesc);

c Identifies the channel for this operation. You provide your
connection identifier. You connect to a channel component by calling the
SGNewChannel or SGNewChannelFromComponent function, described
on page 5-31 and page 5-32, respectively.

sampleDesc Specifies a handle that is to receive the sample description.

DESCRIPTION

The SGGetChannelSampleDescription function allows you to retrieve a channel’s

current sample description. You may call this function only when the channel is

prepared to record or is actually recording.

The channel returns a sample description that is appropriate to the type of data being

captured. For video channels, the channel component returns an Image Compression

Manager image description structure; for sound channels, you receive a sound

description structure, as defined by the Movie Toolbox.

RESULT CODE

SGGetChannelTimeScale

The SGGetChannelTimeScale function allows you to retrieve a channel’s time scale.

pascal ComponentResult SGGetChannelTimeScale (SGChannel c,

 TimeScale *scale);

cantDoThatInCurrentMode –9402 Request invalid in current mode

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-69

c Identifies the channel for this operation. You provide your
connection identifier. You connect to a channel component by calling the
SGNewChannel or SGNewChannelFromComponent function; these
functions are described on page 5-31 and page 5-32, respectively.

scale Contains a pointer to a time scale structure. The channel component
places information about its time scale into this structure.

DESCRIPTION

The time scale you obtain by calling the SGGetChannelTimeScale typically

corresponds to the time scale of the media that has been created by the channel. You can

use this time scale in your data function, which you assign with the SGSetDataProc

function (discussed on page 5-35).

SGSetChannelClip

The SGSetChannelClip function allows you to set a channel’s clipping region.

pascal ComponentResult SGSetChannelClip (SGChannel c,

 RgnHandle theClip);

c Identifies the channel for this operation. You provide your
connection identifier. You connect to a channel component by calling the
SGNewChannel or SGNewChannelFromComponent function, described
on page 5-31 and page 5-32, respectively.

theClip Contains a handle to the new clipping region. Set this parameter to nil to
remove the current clipping region. The channel component makes a
copy of this handle; it is your application’s responsibility to dispose of
this handle when you are finished with it.

DESCRIPTION

The SGSetChannelClip function allows you to apply a clipping region to a channel’s

display region. By default, channel components do not apply a clipping region to

their displayed image.

SEE ALSO

You may retrieve a channel’s clipping region by calling the SGGetChannelClip

function, described in the next section.

C H A P T E R 5

Sequence Grabber Components

5-70 Sequence Grabber Components Reference

SGGetChannelClip

The SGGetChannelClip function allows you to retrieve a channel’s clipping region.

pascal ComponentResult SGGetChannelClip (SGChannel c,

RgnHandle *theClip);

c Identifies the channel for this operation. You provide your
connection identifier. You connect to a channel component by calling the
SGNewChannel or SGNewChannelFromComponent function, described
on page 5-31 and page 5-32, respectively.

theClip Contains a pointer to a handle that is to receive the clipping region. Your
application is responsible for disposing of this handle. If there is no
clipping region, the channel component sets this handle to nil.

Note
Some devices may not support clipping. ◆

SEE ALSO

You may set a channel’s clipping region by calling the SGSetChannelClip function,

which is discussed in the previous section.

SGSetChannelMatrix

The SGSetChannelMatrix function allows you to set a channel’s display

transformation matrix.

pascal ComponentResult SGSetChannelMatrix (SGChannel c,

const MatrixRecord *m);

c Identifies the channel for this operation. You provide your
connection identifier. You connect to a channel component by calling the
SGNewChannel or SGNewChannelFromComponent function, discussed
on page 5-31 and page 5-32, respectively.

m Contains a pointer to a matrix structure, as defined by the Movie Toolbox
(see the chapter “Movie Toolbox” in Inside Macintosh: QuickTime for more
information about matrix structures). Set this parameter to nil to select
the identity matrix.

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-71

DESCRIPTION

The SGSetChannelMatrix function allows you to specify a display transformation

matrix for a video channel. The channel uses this matrix to transform its video image

into the destination window. If the channel cannot accommodate your matrix, it returns

an appropriate result code. Note that you may not call this function when you are

recording.

Other channel component functions may affect this matrix. The SGSetChannelBounds

function sets the matrix values so that the matrix maps the channel’s output to the

channel’s boundary rectangle (this function is discussed beginning on page 5-65). The

SGSetVideoRect function modifies the matrix so that the specified video rectangle

appears in the existing destination rectangle (see page 5-78 for more information about

this function).

RESULT CODES

SEE ALSO

You may retrieve a channel’s matrix by calling the SGGetChannelMatrix function,

which is discussed next.

SGGetChannelMatrix

The SGGetChannelMatrix function allows you to retrieve a channel’s display

transformation matrix.

pascal ComponentResult SGGetChannelMatrix (SGChannel c,

 MatrixRecord *m);

c Identifies the channel for this operation. You provide your
connection identifier. You connect to a channel component by calling the
SGNewChannel or SGNewChannelFromComponent function, described
on page 5-31 and page 5-32, respectively.

m Contains a pointer to a matrix structure, as defined by the Movie Toolbox
(see “Movie Toolbox” in Inside Macintosh: QuickTime for more information
about matrix structures). The channel component places its current matrix
values into this matrix structure.

SEE ALSO

You may set a channel’s matrix by calling the SGSetChannelMatrix function, which is

discussed in the previous section.

matrixErr –2203 Invalid matrix
deviceCantMeetRequest –9408 Device cannot support grabber

C H A P T E R 5

Sequence Grabber Components

5-72 Sequence Grabber Components Reference

Working With Channel Devices

Sequence grabbers provide a number of functions that allow you to determine the device

that is attached to a given sequence grabber channel. These devices allow the channel

component to control the digitizing equipment. For example, video channels use video

digitizer components, and sound channels use sound input drivers. Your application can

use these routines to present a list of available devices to the user, allowing the user to

select a specific device for each channel.

You may use the SGGetChannelDeviceList function to retrieve a list of devices that

may be used with a specified channel. You dispose of this device list by calling the

SGDisposeDeviceList function. You can place one or more device names into a menu

by calling the SGAppendDeviceListToMenu function. You can use the

SGSetChannelDevice function to assign a device to a channel.

Some of these functions use a device list structure to pass information about one or more

channel devices. The SGDeviceListRecord data type defines the format of the device

list structure.

typedef struct SGDeviceListRecord {

short count; /* count of devices */

short selectedIndex; /* current device */

long reserved; /* set to 0 */

SGDeviceName entry[1]; /* device names */

} SGDeviceListRecord, *SGDeviceListPtr, **SGDeviceList;

Field descriptions

count Indicates the number of devices described by this structure. The
value of this field corresponds to the number of entries in the device
name array defined by the entry field.

selectedIndex Identifies the currently active device. The value of this field
corresponds to the appropriate entry in the device name array
defined by the entry field. Note that this value is 0-relative; that is,
the first entry has an index number of 0, the second’s value is 1, and
so on.

reserved Reserved for Apple. Always set to 0.

entry Contains an array of device name structures. Each structure
corresponds to one valid device. The count field indicates the
number of entries in this array. The SGDeviceName data type
defines the format of a device name structure; this data type is
discussed next.

Device list structures contain an array of device name structures. Each device name

structure identifies a single device that may be used by the channel. The SGDeviceName

data type defines the format of a device name structure.

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-73

typedef struct SGDeviceName {

Str63 name; /* device name */

Handle icon; /* device icon */

long flags; /* flags */

long refCon; /* set to 0 */

long reserved; /* set to 0 */

} SGDeviceName;

Field descriptions

name Contains the name of the device. For video digitizer components, this
field contains the component’s name as specified in the component
resource. For sound input drivers, this field contains the driver name.

icon Contains a handle to the device’s icon. Some devices may support an
icon, which you may choose to present to the user. If the device does not
support an icon, or if you choose not to retrieve this information (by
setting the sgDeviceListWithIcons flag to 0 when you call the
SGGetChannelDeviceList function), this field is set to nil.

flags Reflects the current status of the device. The sequence grabber sets these
flags when you retrieve a device list. The following flag is defined:

sgDeviceNameFlagDeviceUnavailable
When set to 1, this flag indicates that this device is not
currently available.

refCon Reserved for Apple. Always set to 0.

reserved Reserved for Apple. Always set to 0.

SGGetChannelDeviceList

The SGGetChannelDeviceList function allows you to retrieve a list of the devices

that are valid for a specified channel.

pascal ComponentResult SGGetChannelDeviceList (SGChannel c,

long selectionFlags,

SGDeviceList *list);

c Identifies the channel for this operation. You provide your
connection identifier. You connect to a channel component by calling the
SGNewChannel or SGNewChannelFromComponent function, discussed
on page 5-31 and page 5-32, respectively.

C H A P T E R 5

Sequence Grabber Components

5-74 Sequence Grabber Components Reference

selectionFlags
Controls the data returned for each device. The following flags are
defined:

sgDeviceListWithIcons
Specifies whether you want to retrieve an icon for each
device. If you set this flag to 1, the sequence grabber
returns an icon for each device in the list, in the icon field.
If you set this flag to 0, the sequence grabber sets the icon
fields to 0.

sgDeviceListDontCheckAvailability
Controls whether the sequence grabber verifies
that each device is currently available. If you set this
flag to 1, the sequence grabber does not check the
availability of each device. Otherwise, the sequence
grabber checks each device’s availability, and sets the
sgDeviceNameFlagDeviceUnavailable flag
appropriately in each device name structure that is
returned.

Note that checking device availability slows this function.
In general, however, you should check availability if you
plan to present a list of devices to the user. Otherwise, the
user may select a device that is unavailable.

list Defines a pointer to a device list structure pointer. The sequence grabber
creates a device name structure and returns a pointer to that structure in
the field referred to by this parameter. When you are done with the list,
use the SGDisposeDeviceList function (described in the next section)
to dispose of the memory used by the list.

DESCRIPTION

This function allows you to retrieve a list of the devices that may be used with a channel.

Each entry in this list identifies a valid device by name. Your application may then place

these device names into a menu using the SGAppendDeviceListToMenu function,

which is described on page 5-75.

This function can be useful for retrieving the name of the current device. Retrieve the

device list and use the selectedIndex field to determine which device is currently

in use.

RESULT CODES

Memory Manager errors

SEE ALSO

When you are done with the list, use the SGDisposeDeviceList function to dispose of

the memory used by the list. This function is discussed next.

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-75

SGDisposeDeviceList

The SGDisposeDeviceList function allows you to dispose of a device list.

pascal ComponentResult SGDisposeDeviceList (SeqGrabComponent s,

 SGDeviceList list);

s Specifies the component instance that identifies your connection to the
sequence grabber component. You obtain this value from the Component
Manager’s OpenDefaultComponent or OpenComponent function.

list Defines a pointer to a device list structure pointer. The sequence grabber
disposes of the memory used by the device list structure.

DESCRIPTION

You must use this function to dispose of the memory used by a device list structure. Do

not use Memory Manager functions to do so.

RESULT CODES

Memory Manager errors

SGAppendDeviceListToMenu

The SGAppendDeviceListToMenu function allows you to place a list of device names

into a specified menu.

pascal ComponentResult SGAppendDeviceListToMenu

(SeqGrabComponent s,

SGDeviceList list, MenuHandle mh);

s Specifies the component instance that identifies your connection to the
sequence grabber component. You obtain this value from the Component
Manager’s OpenDefaultComponent or OpenComponent function.

list Defines a pointer to a device list structure pointer. The sequence grabber
appends the name of each device in the list to the menu specified by the
mh parameter. If the sgDeviceNameFlagDeviceUnavailable flag is
set to 1 for a device in the list, the sequence grabber disables the menu
item corresponding to that device.

mh Specifies the menu to which the device names are to be appended.

C H A P T E R 5

Sequence Grabber Components

5-76 Sequence Grabber Components Reference

DESCRIPTION

You may use the SGAppendDeviceListToMenu function to present a list of valid

devices to the user. The user may then select a device from the list. You can assign

that device to a channel by calling the SGSetChannelDevice function. Note that, if

you choose to have the sequence grabber check the availability of each device (by setting

the sgDeviceListDontCheckAvailability flag to 0 with the

SGGetChannelDeviceList function), the sequence grabber will disable menu

items that correspond to unavailable devices. This prevents the user from selecting a

device that cannot be used.

RESULT CODE

SEE ALSO

You obtain the device list by calling the SGGetChannelDeviceList function, which is

discussed on page 5-73.

SGSetChannelDevice

The SGSetChannelDevice function allows you to assign a device to a channel.

pascal ComponentResult SGSetChannelDevice (SGChannel c,

StringPtr name);

c Identifies the channel for this operation. You provide your
connection identifier. You connect to a channel component by calling the
SGNewChannel or SGNewChannelFromComponent function, discussed
on page 5-31 and page 5-32, respectively.

name Points to the device’s name string. This name is contained in the name
field of the appropriate device name structure in the device list.

DESCRIPTION

When you call the SGSetChannelDevice function, the sequence grabber channel tries

to use the specified device, in place of the device currently in use. You must obtain the

device name from the channel’s device list.

paramErr –50 Invalid parameter value

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-77

RESULT CODES

SEE ALSO

You obtain the device list by calling the SGGetChannelDeviceList function, which is

described on page 5-73.

Working With Video Channels

Sequence grabber components provide a number of functions that allow you to

configure the grabber’s video channels. This section describes these configuration

functions, which you can use only with video channels. You can determine whether a

channel has a visual representation by calling the SGGetChannelInfo function, which

is described on page 5-61. If you want to configure a sound channel, use the functions

described in “Working With Sound Channels” beginning on page 5-92. If you want to

configure general attributes of a channel, use the functions described in “Working With

Channel Characteristics” beginning on page 5-58.

The SGGetSrcVideoBounds function allows you to determine the coordinates of the

source video boundary rectangle. This rectangle defines the size of the source video

image being captured by the video channel. You can use the SGSetVideoRect function

to specify a part of the source video boundary rectangle to be captured by the channel.

The SGGetVideoRect function allows you to determine the active source video

rectangle.

Typically, the sequence grabber component uses the Image Compression Manager

to compress the video data it captures. You can control many aspects of this image-

compression process. Use the SGSetVideoCompressorType function to specify the

type of image compressor to use. You can determine the type of image compressor

currently in use by calling the SGGetVideoCompressorType function. You can specify

a particular image compressor and set many image-compression parameters by calling

the SGSetVideoCompressor function. You can determine which image compressor is

being used and its parameter settings by calling the SGGetVideoCompressor function.

The channel components that supply video data to a sequence grabber

component typically work with a video digitizer component (see the chapter

“Video Digitizer Components” in this book for a complete description of video

digitizer components). Sequence grabber components provide functions that allow

you to work with a channel’s video digitizer component. You can use the

SGGetVideoDigitizerComponent function to determine which video digitizer

component is supplying data to a specified channel component. You can set a channel’s

video digitizer by calling the SGSetVideoDigitizerComponent function. If you

change any video digitizer settings by calling the video digitizer component directly, you

should inform the sequence grabber component by calling the

SGVideoDigitizerChanged function.

paramErr –50 Invalid parameter value
deviceCantMeetRequest –9408 Device cannot support grabber

C H A P T E R 5

Sequence Grabber Components

5-78 Sequence Grabber Components Reference

Some video source data may contain unacceptable levels of visual noise or artifacts. One

technique for removing this noise is to capture the image and then reduce it in size.

During the size reduction process, the noise can be filtered out. Sequence grabber

components provide functions that allow you to filter the input video data.

The SGSetCompressBuffer function sets a filter buffer for a video channel. The

SGGetCompressBuffer function returns information about your filter buffer.

You can work with a video channel’s frame rate by calling the SGSetFrameRate and

SGGetFrameRate functions. You can control whether a channel uses an offscreen buffer

by calling the SGSetUseScreenBuffer and SGGetUseScreenBuffer functions.

SGGetSrcVideoBounds

The SGGetSrcVideoBounds function allows you to determine the size of the source

video boundary rectangle. This rectangle defines the size of the source video image.

For video channel components that work with video digitizer components, this rectangle

corresponds to the video digitizer’s active source rectangle (see the chapter “Video

Digitizer Components” in this book for more information).

pascal ComponentResult SGGetSrcVideoBounds (SGChannel c, Rect *r);

c Specifies the reference that identifies the channel for this operation. You
obtain this reference from the SGNewChannel function, described on
page 5-31.

r Contains a pointer to a rectangle structure that is to receive information
about the source video boundary rectangle.

RESULT CODE

SGSetVideoRect

The SGSetVideoRect function allows you to specify a part of the source video image

that is to be captured by the sequence grabber component. This rectangle must reside

within the boundaries of the source video boundary rectangle. You obtain the

dimensions of the source video boundary rectangle by calling the

SGGetSrcVideoBounds function, described in the previous section. If you do not use

this function to set a source rectangle, the sequence grabber component captures the

entire video image, as defined by the source video boundary rectangle.

pascal ComponentResult SGSetVideoRect (SGChannel c, Rect *r);

paramErr –50 Invalid parameter specified

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-79

c Specifies the reference that identifies the channel for this operation. You
obtain this reference from the SGNewChannel function, described on
page 5-31.

r Contains a pointer to the dimensions of the rectangle that defines the
portion of the source video image to be captured. This rectangle must lie
within the boundaries of the source video boundary rectangle, which you
can obtain by calling the SGGetSrcVideoBounds function.

DESCRIPTION

For video channel components that receive their data from video digitizer components,

this function sets the video digitizer component’s digitizer rectangle. See the chapter

“Video Digitizer Components” in this book for information about video digitizer

components.

You cannot call this function during a record operation.

RESULT CODES

SGGetVideoRect

The SGGetVideoRect function allows you to determine the portion of the source video

image that is to be captured. Use the SGSetVideoRect function, which is described in

the previous section, to set the dimensions of this rectangle.

pascal ComponentResult SGGetVideoRect (SGChannel c, Rect *r);

c Specifies the reference that identifies the channel for this operation. You
obtain this reference from the SGNewChannel function, described on
page 5-31.

r Contains a pointer to a rectangle structure that is to receive the
dimensions of the rectangle that defines the portion of the source video
image to be captured.

DESCRIPTION

If you have not set a source rectangle, the sequence grabber captures the entire source

video image, as defined by the source video boundary rectangle.

SEE ALSO

You can obtain the dimensions of the source video boundary rectangle by calling the

SGGetSrcVideoBounds function, described on page 5-78.

cantDoThatInCurrentMode –9402 Request invalid in current mode
notEnoughMemoryToGrab –9403 Insufficient memory for record operation

C H A P T E R 5

Sequence Grabber Components

5-80 Sequence Grabber Components Reference

SGSetVideoCompressorType

The SGSetVideoCompressorType function allows you to specify the type of image

compression to be applied to the captured video images.

pascal ComponentResult SGSetVideoCompressorType (SGChannel c,

 OSType compressorType);

c Specifies the reference that identifies the channel for this operation. You
obtain this reference from the SGNewChannel function, described on
page 5-31.

compressorType
Specifies the type of image compression to use. The value of this
parameter must correspond to one of the image compressor types
supported by the Image Compression Manager. Currently, six
CodecType values are provided by Apple. You should use the
GetCodecNameList function to retrieve these names, so that your
application can take advantage of new compressor types that may be
added in the future. For each CodecType value in the following list, the
corresponding compression method is also identified by its text
string name.

See the chapter “Image Compression Manager” in Inside Macintosh:
QuickTime for information about valid compressor types. If this value is
set to 0, the default compression type is selected.

DESCRIPTION

In addition, the SGSetVideoCompressorType function resets all image-compression

parameters to their default values. You can then use the SGSetVideoCompressor

function, described on page 5-82, to change the compression parameters.

SPECIAL CONSIDERATIONS

You cannot call the SGSetVideoCompressorType function during a record operation

or after you have prepared the sequence grabber component for a record operation (by

calling the SGPrepare function, described on page 5-43).

Compressor type Compressor name

'rpza' video compressor

'jpeg' photo compressor

'rle ' animation compressor

'raw ' raw compressor

'smc ' graphics compressor

'cvid' compact video compressor

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-81

RESULT CODES

SGGetVideoCompressorType

The SGGetVideoCompressorType function allows you to determine the type of image

compression that is being applied to a channel’s video data.

pascal ComponentResult SGGetVideoCompressorType (SGChannel c,

 OSType *compressorType);

c Specifies the reference that identifies the channel for this operation. You
obtain this reference from the SGNewChannel function, described on
page 5-31.

compressorType
Contains a pointer to an OSType field that is to receive information about
the type of image compression to use. The returned value must
correspond to one of the image compressor types supported by the Image
Compression Manager. Currently, six CodecType values are provided by
Apple. You should use the GetCodecNameList function to retrieve
these names, so that your application can take advantage of new
compressor types that may be added in the future. For each CodecType
value in the following list, the corresponding compression method is also
identified by its text string name.

See the chapter “Image Compression Manager” in Inside Macintosh:
QuickTime for information about valid compressor types.

SEE ALSO

You can set the image-compression type by calling the SGSetVideoCompressorType

function, which is described in the previous section.

cantDoThatInCurrentMode –9402 Request invalid in current mode
notEnoughMemoryToGrab –9403 Insufficient memory for record operation
deviceCantMeetRequest –9408 Device cannot support grabber

Compressor type Compressor name

'rpza' video compressor

'jpeg' photo compressor

'rle ' animation compressor

'raw ' raw compressor

'smc ' graphics compressor

'cvid' compact video compressor

C H A P T E R 5

Sequence Grabber Components

5-82 Sequence Grabber Components Reference

SGSetVideoCompressor

The SGSetVideoCompressor function allows you to specify many of the parameters

that control image compression of the video data captured by a video channel.

pascal ComponentResult SGSetVideoCompressor (SGChannel c,

short depth,

CompressorComponent compressor,

CodecQ spatialQuality,

CodecQ temporalQuality,

long keyFrameRate);

c Specifies the reference that identifies the channel for this operation. You
obtain this reference from the SGNewChannel function, described on
page 5-31.

depth Specifies the depth at which the image is likely to be viewed. Image
compressors may use this as an indication of the color or grayscale
resolution of the compressed images. If you set this parameter to 0, the
sequence grabber component determines the appropriate value for the
source image. Values of 1, 2, 4, 8, 16, 24, and 32 indicate the number of bits
per pixel for color images. Values of 33, 34, 36, and 40 indicate 1-bit, 2-bit,
4-bit, and 8-bit grayscale, respectively, for grayscale images. Your
program can determine which depths are supported by a given
compressor by examining the compressor information structure returned
by the Image Compression Manager’s GetCodecInfo function (see the
chapter “Image Compression Manager” in Inside Macintosh: QuickTime for
more information on the GetCodecInfo function).

Set this parameter to 0 to leave the depth unchanged.

compressor
Specifies the image compressor identifier. Specify a particular compressor
by setting this parameter to its compressor identifier. You can obtain this
identifier from the Image Compression Manager’s GetCodecNameList
function. Set this parameter to 0 to leave the compressor unchanged.

spatialQuality
Specifies the desired compressed image quality. See the chapter “Image
Compression Manager” in Inside Macintosh: QuickTime for valid values.

temporalQuality
Specifies the desired sequence temporal quality. This parameter governs
the level of compression you desire with respect to information between
successive frames in the sequence. Set this parameter to 0 to prevent the
image compressor from applying temporal compression to the sequence.
See the chapter “Image Compression Manager” in Inside Macintosh:
QuickTime for other valid values.

keyFrameRate
Specifies the maximum number of frames allowed between key frames.
Key frames provide points from which a temporally compressed
sequence may be decompressed. Use this parameter to control the

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-83

frequency at which the image compressor places key frames into the
compressed sequence. For more information about key frames, see the
chapter “Image Compression Manager” in Inside Macintosh: QuickTime.

The compressor determines the optimum placement for key frames based
upon the amount of redundancy between adjacent images in the
sequence. Consequently, the compressor may insert key frames more
frequently than you have requested. However, the compressor will never
place key frames less often than is indicated by the setting of the
keyFrameRate parameter. The compressor ignores this parameter if you
have not requested temporal compression (that is, you have set the
temporalQuality parameter to 0).

DESCRIPTION

Typically, you are interested in setting only one or two of these parameters. You can call

the SGGetVideoCompressor function to retrieve the values of all of the parameters,

and you can then use that information to supply values for the parameters you do not

wish to change.

SPECIAL CONSIDERATIONS

You may call this function during a record operation or after you have prepared the

sequence grabber component for a record operation only if you set the depth and

compressor parameters to 0. This allows you to work with the quality or key frame

rate configuration while you are capturing a sequence.

RESULT CODES

SGGetVideoCompressor

The SGGetVideoCompressor function allows you to determine a channel’s current

image-compression parameters.

pascal ComponentResult SGGetVideoCompressor (SGChannel c,

short *depth,

 compressorComponent *compressor,

 CodecQ *spatialQuality,

CodecQ *temporalQuality,

long *keyFrameRate);

paramErr –50 Invalid parameter specified
cantDoThatInCurrentMode –9402 Request invalid in current mode
notEnoughMemoryToGrab –9403 Insufficient memory for record operation
deviceCantMeetRequest –9408 Device cannot support grabber

C H A P T E R 5

Sequence Grabber Components

5-84 Sequence Grabber Components Reference

c Specifies the reference that identifies the channel for this operation. You
obtain this reference from the SGNewChannel function, described on
page 5-31.

depth Contains a pointer to a field that is to receive the depth at which the
image is likely to be viewed. Image compressors may use this as an
indication of the color or grayscale resolution of the compressed images.
If the value returned by this function is 0, the sequence grabber
component determines the appropriate value for the source image. Values
of 1, 2, 4, 8, 16, 24, and 32 indicate the number of bits per pixel for color
images. Values of 33, 34, 36, and 40 indicate 1-bit, 2-bit, 4-bit, and 8-bit
grayscale, respectively, for grayscale images. Your program can determine
which depths are supported by a given compressor by examining the
compressor information record (defined by the CodecInfo data type)
returned by the Image Compression Manager’s GetCodecInfo function
(see the chapter “Image Compression Manager” in Inside Macintosh:
QuickTime for more information on the GetCodecInfo function).

If you are not interested in this information, set this parameter to nil.

compressor
Contains a pointer a field that is to receive an image compressor identifier.
If you are not interested in this information, set this parameter to nil.

spatialQuality
Contains a pointer to a field that is to receive the desired compressed
image quality. See the chapter “Image Compression Manager” in Inside
Macintosh: QuickTime for valid values. If you are not interested in this
information, set this parameter to nil.

temporalQuality
Contains a pointer to a field that is to receive the desired sequence
temporal quality. This parameter governs the level of compression you
desire with respect to information between successive frames in the
sequence. If the returned value is set to 0, the image compressor is not
performing temporal compression on the source video. See the chapter
“Image Compression Manager” in Inside Macintosh: QuickTime for other
valid values.

If you are not interested in this information, set this parameter to nil.

keyFrameRate
Contains a pointer to a field that is to receive the maximum number of
frames allowed between key frames. Key frames provide points from
which a temporally compressed sequence may be decompressed. This
value controls the frequency at which the image compressor places key
frames into the compressed sequence. The compressor determines the
optimum placement for key frames based upon the amount of
redundancy between adjacent images in the sequence. Consequently, the
compressor may insert key frames more frequently than you have

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-85

requested. However, the compressor will never place key frames less
often than is indicated by the setting of the keyFrameRate parameter.
The compressor ignores this value if you have not requested temporal
compression (that is, you have set the temporalQuality parameter of
the SGSetVideoCompressor function to 0).

If you are not interested in this information, set this parameter to nil.

SEE ALSO

You can set these parameters by calling the SGSetVideoCompressor function, which is

described in the previous section.

SGSetVideoDigitizerComponent

The SGSetVideoDigitizerComponent function allows you to assign a video

digitizer component to a video channel.

pascal ComponentResult SGSetVideoDigitizerComponent

(SGChannel c, ComponentInstance vdig);

c Specifies the reference that identifies the channel for this operation. You
obtain this reference from the SGNewChannel function, described on
page 5-31.

vdig Contains a component instance that identifies a connection to a video
digitizer component. The specified video channel component uses this
video digitizer component to obtain its source video data. For more
information about video digitizer components, see the chapter “Video
Digitizer Components” in this book.

DESCRIPTION

Typically, the video channel component locates its own video digitizer component.

Consequently, you may not need to use the SGSetVideoDigitizerComponent

function.

SPECIAL CONSIDERATIONS

You cannot use the SGSetVideoDigitizerComponent function during a record

operation. Many values are reinitialized as a result of changing digitizers.

RESULT CODE

cantDoThatInCurrentMode –9402 Request invalid in current mode

C H A P T E R 5

Sequence Grabber Components

5-86 Sequence Grabber Components Reference

SGGetVideoDigitizerComponent

The SGGetVideoDigitizerComponent function allows you to determine the video

digitizer component that is providing source video to a video channel component. You

can use this function to obtain access to the video digitizer component so that you can

set its parameters, if you so desire. See the chapter “Video Digitizer Components” in this

book for information about video digitizer components.

pascal ComponentInstance SGGetVideoDigitizerComponent

(SGChannel c);

c Specifies the reference that identifies the channel for this operation. You
obtain this reference from the SGNewChannel function, described on
page 5-31.

DESCRIPTION

The SGGetVideoDigitizerComponent function returns a component instance that

identifies the connection between the video channel component and its video digitizer

component. If the video channel component does not use a video digitizer component,

this returned value is set to nil.

SPECIAL CONSIDERATIONS

If you change any video digitizer component parameters, be sure to notify the sequence

grabber component by calling the SGVideoDigitizerChanged function, which is

described in the next section. In addition, you should not change any video digitizer

component parameters during a record operation.

SGVideoDigitizerChanged

The SGVideoDigitizerChanged function allows you to notify the sequence grabber

component whenever you change the configuration of a video channel’s video digitizer.

pascal ComponentResult SGVideoDigitizerChanged (SGChannel c);

c Specifies the reference that identifies the channel for this operation. You
obtain this reference from the SGNewChannel function, described on
page 5-31.

DESCRIPTION

The sequence grabber and its video channels maintain information about the

configuration of any video digitizer components that are currently in use.

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-87

IMPORTANT

It is very important to notify the sequence grabber of any configuration
changes you make. ▲

SPECIAL CONSIDERATIONS

You should not change the configuration of the video digitizer during a record operation.

SEE ALSO

You can obtain access to a video channel’s video digitizer component by calling the

SGGetVideoDigitizerComponent function, which is described in the previous

section.

RESULT CODE

SGSetCompressBuffer

Some video source data may contain unacceptable levels of visual noise or artifacts. One

technique for removing this noise is to capture the image and then reduce it in size.

During the size reduction process, the noise can be filtered out.

The SGSetCompressBuffer function creates a filter buffer for a video channel.

Logically, this buffer sits between the source video buffer and the destination rectangle

you set with the SGSetChannelBounds function, described on page 5-65. The filter

buffer should be larger than the area enclosed by the destination rectangle.

pascal ComponentResult SGSetCompressBuffer (SGChannel c,

short depth,

const Rect *compressSize);

c Specifies the reference that identifies the channel for this operation. You
obtain this reference from the SGNewChannel function, described on
page 5-31.

depth Specifies the pixel depth of the filter buffer. If you set this parameter to 0,
the sequence grabber component uses the depth of the video buffer.

compressSize
Contains a pointer to the dimensions of the filter buffer. This buffer
should be larger than the destination buffer. Set this parameter to nil, or
set the coordinates of this rectangle to 0 (specifying an empty rectangle),
to stop filtering the input source video data.

cantDoThatInCurrentMode –9402 Request invalid in current mode

C H A P T E R 5

Sequence Grabber Components

5-88 Sequence Grabber Components Reference

DESCRIPTION

If you establish a filter buffer for a channel, the sequence grabber component places the

captured video image into the filter buffer, then copies the image into the destination

buffer. This process may be too slow for some record operations, but can be useful

during controlled record operations (where the source video can be read on a

frame-by-frame basis). Be sure to call this function before you prepare the sequence

grabber component for the record or playback operation.

Figure 5-2 demonstrates the process by which the SGSetCompressBuffer function

creates a filter buffer for a video channel.

Figure 5-2 The effect of the SGSetCompressBuffer function

SEE ALSO

If you want to perform some more elaborate image filtering, you may define a

transfer-frame function. See “Video Channel Callback Functions” beginning on

page 5-99 for more information about transfer-frame functions.

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-89

RESULT CODE

SGGetCompressBuffer

The SGGetCompressBuffer function returns information about the filter buffer you

have established for a video channel.

pascal ComponentResult SGGetCompressBuffer (SGChannel c,

short *depth,

Rect *compressSize);

c Specifies the reference that identifies the channel for this operation. You
obtain this reference from the SGNewChannel function, described on
page 5-31.

depth Contains a pointer to a field that is to receive the pixel depth of the filter
buffer. If the returned value is set to 0, the sequence grabber is not
filtering the input video data.

compressSize
Contains a pointer to a rectangle structure that is to receive the
dimensions of the filter buffer. If the sequence grabber is not filtering the
input video data, it returns an empty rectangle (all coordinates set to 0).

SEE ALSO

You set a filter buffer by calling the SGSetCompressBuffer function, which is

described in the previous section.

SGSetFrameRate

The SGSetFrameRate function allows you to specify a video channel’s frame rate for

recording.

pascal ComponentResult SGSetFrameRate (SGChannel c,

 Fixed frameRate);

c Identifies the channel for this operation. You provide your
connection identifier. You connect to a channel component by calling the
SGNewChannel or SGNewChannelFromComponent function, discussed
on page 5-31 and page 5-32, respectively.

frameRate Specifies the desired frame rate. Set this parameter to 0 to select the
channel’s default frame rate. Typically, this corresponds to the fastest rate
that the channel can support.

cantDoThatInCurrentMode –9402 Request invalid in current mode

C H A P T E R 5

Sequence Grabber Components

5-90 Sequence Grabber Components Reference

DESCRIPTION

The SGSetFrameRate function allows you to control a video channel’s frame rate. Note

that the digitizing hardware may not be able to support the full rate you specify. If you

specify too high a rate, the sequence grabber operates at the highest rate that it can

support. Note that you may not call this function when you are recording.

RESULT CODES

SEE ALSO

You can retrieve a channel’s current frame rate by calling the SGGetFrameRate

function, which is described next.

SGGetFrameRate

The SGGetFrameRate function allows you to retrieve a video channel’s frame rate for

recording.

pascal ComponentResult SGGetFrameRate (SGChannel c,

Fixed *frameRate);

c Identifies the channel for this operation. You provide your
connection identifier. You connect to a channel component by calling the
SGNewChannel or SGNewChannelFromComponent function, discussed
on page 5-31 and page 5-32, respectively.

frameRate Contains a pointer to a field to receive the current frame rate. The
sequence grabber returns the channel’s current frame rate.

DESCRIPTION

The SGGetFrameRate function returns the channel’s current rate. By default, the

channel records at the fastest rate it can support. In this case, the channel sets the field

referred to by the frameRate parameter to 0.

SEE ALSO

You can set a channel’s frame rate by calling the SGSetFrameRate function, which is

described in the previous section.

paramErr –50 Invalid parameter value
cantDoThatInCurrentMode –9402 Request invalid in current mode

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-91

SGSetUseScreenBuffer

The SGSetUseScreenBuffer function allows you to control whether a video channel

uses an offscreen buffer.

pascal ComponentResult SGSetUseScreenBuffer (SGChannel c,

Boolean useScreenBuffer);

c Identifies the channel for this operation. You provide your
connection identifier. You connect to a channel component by calling the
SGNewChannel or SGNewChannelFromComponent function, discussed
on page 5-31 and page 5-32, respectively.

useScreenBuffer
Indicates whether to use an offscreen buffer. If you set this parameter to
true, the channel draws directly to the screen. If you set it to false, the
channel may use an offscreen buffer. If the channel cannot work with
offscreen buffers, it ignores this parameter.

DESCRIPTION

By default, video channels try to draw directly to the screen. The

SGSetUseScreenBuffer function allows you to direct a video channel to

draw to an offscreen buffer. If the channel cannot draw offscreen, it ignores

this function. Note that you may not call this function when you are recording.

Directing a channel to draw offscreen may be useful if you are performing

transformations on the data before displaying it (such as blending it with another

graphical image).

RESULT CODES

SEE ALSO

You can determine whether you have allowed a channel to draw offscreen by calling the

SGGetUseScreenBuffer function, which is described next.

SGGetUseScreenBuffer

The SGGetUseScreenBuffer function allows you to determine whether a video

channel is allowed to use an offscreen buffer.

pascal ComponentResult SGGetUseScreenBuffer (SGChannel c,

Boolean *useScreenBuffer);

paramErr –50 Invalid parameter value
cantDoThatInCurrentMode –9402 Request invalid in current mode

C H A P T E R 5

Sequence Grabber Components

5-92 Sequence Grabber Components Reference

c Identifies the channel for this operation. You provide your
connection identifier. You connect to a channel component by calling the
SGNewChannel or SGNewChannelFromComponent function, discussed
on page 5-31 and page 5-32, respectively.

useScreenBuffer
Contains a pointer to a Boolean value. The sequence grabber sets this field
to reflect whether you have allowed the channel to draw offscreen. If this
field is set to true, the channel draws directly to the screen. If it is set to
false, the channel may use an offscreen buffer. If the channel cannot
work with offscreen buffers, it ignores this value.

DESCRIPTION

By default, video channels draw directly to the screen. You can direct a channel to draw

to an offscreen buffer by calling the SGSetUseScreenBuffer function. Channels that

can work offscreen then allocate and draw to an offscreen buffer.

SEE ALSO

You can allow a channel to draw offscreen by calling the SGSetUseScreenBuffer

function, which is described in the previous section.

Working With Sound Channels

Sequence grabber components provide a number of functions that allow you to

configure the grabber’s sound channels. This section describes these configuration

functions, which you can use only with sound channels. You can determine whether a

channel has a sound representation by calling the SGGetChannelInfo function,

described on page 5-61. If you want to configure a video channel, use the

functions described in “Working With Video Channels” beginning on page 5-77. If you

want to configure general attributes of a channel, use the functions described in

“Working With Channel Characteristics” beginning on page 5-58.

Use the SGSetSoundInputDriver function to specify a channel’s sound

input device. You can determine a channel’s sound input device by calling the

SGGetSoundInputDriver function. If you change any attributes of the sound input

device, you should notify the sequence grabber component by calling the

SGSoundInputDriverChanged function. By default, the sequence grabber component

uses the sound driver’s best settings.

You can control the amount of sound data the sequence grabber works with at one

time by calling the SGSetSoundRecordChunkSize function. You can determine

this value by calling the SGGetSoundRecordChunkSize function.

You can control the rate at which the sound channel samples the input data by calling

the SGSetSoundInputRate function. You can determine the sample rate by calling the

SGGetSoundInputRate function.

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-93

You can control other sound input parameters by using the

SGSetSoundInputParameters and SGGetSoundInputParameters functions.

SGSetSoundInputDriver

Some sound channel components may use sound input devices to obtain their source

data. The SGSetSoundInputDriver function allows you to assign a sound input

device to a sound channel.

pascal ComponentResult SGSetSoundInputDriver (SGChannel c,

const Str255 driverName);

c Specifies the reference that identifies the channel for this operation. You
obtain this reference from the SGNewChannel function, described on
page 5-31.

driverName
Specifies the name of the sound input device. This is a Pascal string, and it
must correspond to a valid sound input device.

DESCRIPTION

If the sound channel component does not use sound input devices, it returns a nonzero

result code. For more information about sound input devices, see Inside Macintosh: More
Macintosh Toolbox—in particular, refer to the discussion of the Sound Manager’s

SPBGetIndexedDevice routine.

SPECIAL CONSIDERATIONS

You cannot call the SGSetSoundInputDriver function during a record operation.

RESULT CODES

SGGetSoundInputDriver

The SGGetSoundInputDriver function allows you to determine the sound input

device currently in use by a sound channel component.

pascal long SGGetSoundInputDriver (SGChannel c);

noDeviceForChannel –9400 Channel component cannot find its device
cantDoThatInCurrentMode –9402 Request invalid in current mode
deviceCantMeetRequest –9408 Device cannot support grabber

C H A P T E R 5

Sequence Grabber Components

5-94 Sequence Grabber Components Reference

c Specifies the reference that identifies the channel for this operation. You
obtain this reference from the SGNewChannel function, described on
page 5-31.

DESCRIPTION

The SGGetSoundInputDriver function returns a reference to the sound input device.

If the sound channel is not using a sound input device, this returned value is set to nil.

You may want to gain access to the sound input device if you want to change the

device’s configuration.

SPECIAL CONSIDERATIONS

If you change any of the device’s operating parameters, be sure to inform the sequence

grabber component by calling the SGSoundInputDriverChanged function, which is

described in the next section.

SEE ALSO

You can assign a sound input device to a sound channel by calling the

SGSetSoundInputDriver function, described in the previous section.

SGSoundInputDriverChanged

The SGSoundInputDriverChanged function allows you to notify the sequence

grabber component whenever you change the configuration of a sound channel’s sound

input device.

pascal ComponentResult SGSoundInputDriverChanged (SGChannel c);

c Specifies the reference that identifies the channel for this operation. You
obtain this reference from the SGNewChannel function, described on
page 5-31.

DESCRIPTION

The sequence grabber’s sound channels maintain information about the configuration of

any sound input devices that are currently in use. It is very important to notify the

sequence grabber component of any configuration changes you make.

SPECIAL CONSIDERATIONS

You should not change the configuration of the sound input device during a record

operation.

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-95

SEE ALSO

You can obtain access to a sound channel’s sound input device by calling the

SGGetSoundInputDriver function, which is described in the previous section.

SGSetSoundRecordChunkSize

During record operations, the sequence grabber works with groups of sound samples.

These groups are referred to as chunks. By default, each chunk contains two seconds of

sound data. Smaller chunks use less memory. You can control the amount of sound data

in each chunk by calling the SGSetSoundRecordChunkSize function.

pascal ComponentResult SGSetSoundRecordChunkSize (SGChannel c,

long seconds);

c Specifies the reference that identifies the channel for this operation. You
obtain this reference from the SGNewChannel function, described on
page 5-31.

seconds Specifies the number of seconds of sound data the sequence grabber is to
work with at a time. To specify a fraction of a second, set this parameter
to a negative fixed-point number. For example, to set the duration to half
a second, pass in –0.5 in this parameter.

DESCRIPTION

You specify the number of seconds of sound data the sequence grabber is to work with at

a time.

SPECIAL CONSIDERATIONS

You cannot call the SGSetSoundRecordChunkSize function during a record or

preview operation, or after you have prepared the sequence grabber for a record

or preview operation (by calling the SGPrepare function, described on page 5-43).

This function may return a fraction (for details, see the discussion of the seconds

parameter above).

RESULT CODES

paramErr –50 Invalid parameter specified
cantDoThatInCurrentMode –9402 Request invalid in current mode

C H A P T E R 5

Sequence Grabber Components

5-96 Sequence Grabber Components Reference

SGGetSoundRecordChunkSize

The SGGetSoundRecordChunkSize function allows you to determine the amount of

sound data the sequence grabber component works with at a time.

pascal long SGGetSoundRecordChunkSize (SGChannel c);

c Specifies the reference that identifies the channel for this operation. You
obtain this reference from the SGNewChannel function, described on
page 5-31.

DESCRIPTION

SGGetSoundRecordChunkSize returns a long integer that specifies the number of

seconds of sound data the sequence grabber works with at a time.

SEE ALSO

You set the amount of sound data the sequence grabber component works with at any

given time by calling the SGSetSoundRecordChunkSize function, which is described

in the previous section.

SGSetSoundInputRate

The SGSetSoundInputRate function allows you to set the rate at which the sound

channel obtains its sound data.

pascal ComponentResult SGSetSoundInputRate (SGChannel c,

Fixed rate);

c Specifies the reference that identifies the channel for this operation. You
obtain this reference from the SGNewChannel function, described on
page 5-31.

rate Specifies the rate at which the sound channel is to acquire data. This
parameter specifies the number of samples the sound channel is to
generate per second. If the sound channel cannot support the rate you
specify, it uses the closest available rate that it supports—you can use the
SGGetSoundInputRate function, described in the next section, to
retrieve the rate being used by the channel. Set this parameter to 0 to
cause the sound channel to use its default rate.

You can determine the rates that are valid for a sound channel that uses a
sound input device by calling the Sound Manager (see Inside Macintosh:
More Macintosh Toolbox for more information about the Sound Manager).

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-97

RESULT CODES

SGGetSoundInputRate

The SGGetSoundInputRate function allows you to determine the rate at which the

sound channel is collecting sound data.

pascal Fixed SGGetSoundInputRate (SGChannel c);

c Specifies the reference that identifies the channel for this operation. You
obtain this reference from the SGNewChannel function, described on
page 5-31.

DESCRIPTION

SGGetSoundInputRate returns a fixed-point number that indicates the number of

samples the sound channel collects per second.

SEE ALSO

You set the rate at which the sound channel is collecting data by calling the

SGSetSoundInputRate function, which is described in the previous section.

SGSetSoundInputParameters

The SGSetSoundInputParameters function allows you to set some parameters that

relate to sound recording.

pascal ComponentResult SGSetSoundInputParameters (SGChannel c,

short sampleSize,

short numChannels,

OSType compressionType);

c Identifies the channel for this operation. You provide your
connection identifier. You connect to a channel component by calling the
SGNewChannel or SGNewChannelFromComponent function, discussed
on page 5-31 and page 5-32, respectively.

sampleSize
Specifies the number of bits in each sound sample. Set this field to 8 for
8-bit sound; set it to 16 for 16-bit sound.

cantDoThatInCurrentMode –9402 Request invalid in current mode
deviceCantMeetRequest –9408 Device cannot support grabber

C H A P T E R 5

Sequence Grabber Components

5-98 Sequence Grabber Components Reference

numChannels
Indicates the number of sound channels used by the sound sample. Set
this field to 1 for monaural sounds; set it to 2 for stereo sounds.

compressionType
Describes the format of the sound data. The following values are
supported:

'raw ' Sound samples are uncompressed, in offset-binary format
(that is, sample data values range from 0 to 255).

'MAC3' Sound samples have been compressed by the Sound
Manager at a ratio of 3:1.

'MAC6' Sound samples have been compressed by the Sound
Manager at a ratio of 6:1.

DESCRIPTION

You may use the SGSetSoundInputParameters function to control many parameters

relating to sound recording. All of the sound parameters support two special values. If

you set any of these parameters to 0, the sequence grabber does not change the current

value of that parameter. If you set any of them to –1, the sequence grabber returns that

parameter to its default value.

If you select a parameter value that the sound device cannot support, the sequence

grabber returns an appropriate Sound Manager result code.

RESULT CODES

Sound Manager errors

SGGetSoundInputParameters

The SGGetSoundInputParameters function allows you to retrieve some parameters

that relate to sound recording.

pascal ComponentResult SGGetSoundInputParameters (SGChannel c,

 short *sampleSize,

 short *numChannels,

 OSType *compressionType);

c Identifies the channel for this operation. You provide your
connection identifier. You connect to a channel component by calling the
SGNewChannel or SGNewChannelFromComponent function, discussed
on page 5-31 and page 5-32, respectively.

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-99

sampleSize
Contains a pointer to a field to receive the sample size. The sequence
grabber sets this field to 8 for 8-bit sound; it sets the field to 16 for 16-bit
sound.

numChannels
Contains a pointer to a field to receive the number of sound channels
used by the sound sample. The sequence grabber sets this field to 1 for
monaural sounds; it sets the field to 2 for stereo sounds.

compressionType
Contains a pointer to a field that is to receive the format of the sound
data. The following values may be returned:

'raw' Sound samples are uncompressed, in offset-binary format
(that is, sample data values range from 0 to 255).

'MAC3' Sound samples have been compressed by the Sound
Manager at a ratio of 3:1.

'MAC6' Sound samples have been compressed by the Sound
Manager at a ratio of 6:1.

DESCRIPTION

You may use the SGGetSoundInputParameters function to retrieve many parameters

relating to sound recording. If you set any of the sound parameters to nil, the sequence

grabber does not return that value.

Video Channel Callback Functions

Sequence grabber components allow you to define a number of callback functions in

your application. The sequence grabber calls your functions at specific points in the

process of collecting, compressing, and displaying the source video data. By defining

callback functions, you can control the process more precisely or customize the operation

of the sequence grabber component.

For example, you could use a callback function to draw a frame number on each video

frame as it is collected. You could use either a compress callback function or a

grab-complete callback function to accomplish this. The compress callback function

is called after each frame is collected, in order to compress the frame. The grab-complete

callback function is called just before the compress callback function, as soon as the

frame has been captured.

The SGSetVideoBottlenecks function lets you assign callback functions to a video

channel. You can use the SGGetVideoBottlenecks function to determine the callback

functions that have been assigned to a video channel.

The SGSetVideoBottlenecks function accepts a video bottlenecks structure that

identifies the callback functions to be assigned to the channel. In addition, the

SGGetVideoBottlenecks function contains a pointer to this structure.

C H A P T E R 5

Sequence Grabber Components

5-100 Sequence Grabber Components Reference

The video bottlenecks structure is defined by the VideoBottles data type as follows:

struct VideoBottles {

short procCount; /* count of callbacks */

GrabProc grabProc; /* grab function */

GrabCompleteProc grabCompleteProc; /* grab-complete function */

DisplayProc displayProc; /* display function */

CompressProc compressProc; /* compress function */

CompressCompleteProc compressCompleteProc;

/* compress-complete

function */

AddFrameProc addFrameProc; /* add-frame function */

TransferFrameProc transferFrameProc;/* transfer-frame function */

GrabCompressCompleteProc grabCompressCompleteProc;

/* grab-compress–complete

function */

DisplayCompressProc displayCompressProc;

/* display-compress

function */

};

typedef struct VideoBottles VideoBottles;

Field descriptions

procCount Specifies the number of callback functions that may be identified in
the structure. Set this field to 9.

grabProc Identifies the grab function. If you are setting a grab function, set
this field so that it points to the function’s entry point. If you are not
setting a grab function, set this field to nil.

grabCompleteProc
Identifies the grab-complete function. If you are setting a
grab-complete function, set this field so that it points to
the function’s entry point. If you are not setting a grab-complete
function, set this field to nil.

displayProc Identifies the display function. If you are setting a display function,
set this field so that it points to the function’s entry point. If you are
not setting a display function, set this field to nil.

compressProc Identifies the compress function. If you are setting a compress
function, set this field so that it points to the function’s entry point.
If you are not setting a compress function, set this field to nil.

compressCompleteProc
Identifies the compress-complete function. If you are setting a
compress-complete function, set this field so that it points to
the function’s entry point. If you are not setting a
compress-complete function, set this field to nil.

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-101

addFrameProc Identifies the add-frame function. If you are setting an add-frame
function, set this field so that it points to the function’s entry point.
If you are not setting an add-frame function, set this field to nil.

transferFrameProc
Identifies the transfer-frame function. If you are setting a
transfer-frame function, set this field so that it points to
the function’s entry point. If you are not setting a transfer-frame
function, set this field to nil.

grabCompressCompleteProc
Identifies the grab-compress–complete function. If you are setting a
grab-compress–complete function, set this field so that it points to
the function’s entry point. If you are not setting a
grab-compress–complete function, set this field to nil.

displayCompressProc
Identifies the display-compress function. If you are setting a
display-compress function, set this field so that it points to
the function’s entry point. If you are not setting a display-compress
function, set this field to nil.

SGSetVideoBottlenecks

The SGSetVideoBottlenecks function assigns callback functions to a video channel.

pascal ComponentResult SGSetVideoBottlenecks (SGChannel c,

 VideoBottles *vb);

c Specifies the reference that identifies the channel for this operation. You
obtain this reference from the SGNewChannel function, described on
page 5-31.

vb Contains a pointer to a video bottlenecks structure (defined by the
VideoBottles data type). That structure identifies the callback
functions to be assigned to this video channel. The video bottlenecks
structure is described on page 5-100.

DESCRIPTION

The SGSetVideoBottlenecks function accepts a video bottlenecks structure that

identifies the callback functions to be assigned to the channel.

SPECIAL CONSIDERATIONS

Your application should not call this function during a record or playback operation.

C H A P T E R 5

Sequence Grabber Components

5-102 Sequence Grabber Components Reference

SGGetVideoBottlenecks

The SGGetVideoBottlenecks function allows you to determine the callback functions

that have been assigned to a video channel.

pascal ComponentResult SGGetVideoBottlenecks (SGChannel c,

 VideoBottles *vb);

c Specifies the reference that identifies the channel for this operation. You
obtain this reference from the SGNewChannel function, described on
page 5-31.

vb Contains a pointer to a video bottlenecks structure, described on
page 5-100. The SGGetVideoBottlenecks function sets the fields of
that structure to indicate the callback functions that have been assigned to
this video channel. You must set the procCount field in the video
bottlenecks structure to 9.

SEE ALSO

You assign callback functions to a video channel by calling the

SGSetVideoBottlenecks function, which is described in the previous section.

Utility Functions for Video Channel Callback Functions

Sequence grabber components provide a number of functions that your callback

functions can use. This section describes those functions.

Use the SGGetBufferInfo function to obtain information about a buffer that contains

data to be manipulated by your callback function.

The remaining functions described here provide default behavior for your callback

functions.

SGGetBufferInfo

You can use the SGGetBufferInfo function to obtain information about a buffer that

has been passed to your callback function.

pascal ComponentResult SGGetBufferInfo (SGChannel c,

short bufferNum,

PixMapHandle *bufferPM,

Rect *bufferRect,

GWorldPtr *compressBuffer,

Rect *compressBufferRect);

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-103

c Specifies the reference that identifies the channel for this operation.

bufferNum Identifies the buffer. The sequence grabber component provides this value
to your callback function.

bufferPM Contains a pointer to a location that is to receive a handle to the pixel map
that contains the image. Note that this pixel map may be offscreen. Do not
dispose of this pixel map. If you do not want this information, set this
parameter to nil.

bufferRect
Contains a pointer to a rectangle structure that is to receive the
dimensions of the image’s boundary rectangle. If you do not want this
information, set this parameter to nil.

compressBuffer
Contains a pointer to a location that is to receive a pointer to the filter
buffer for the image. The sequence grabber component returns this
information only if your application has assigned a filter buffer to this
video channel. You assign a filter buffer by calling the
SGSetCompressBuffer function, which is described on page 5-87. Do
not dispose of this buffer.

If you have not assigned a filter buffer, the sequence grabber sets the
returned value to nil. If you do not want this information, set this
parameter to nil.

compressBufferRect
Contains a pointer to a rectangle structure that is to receive the
dimensions of the filter buffer for the image. The sequence grabber
component returns this information only if your application has assigned
a filter buffer to this video channel. You assign a filter buffer by calling the
SGSetCompressBuffer function, which is described on page 5-87. If
you have not assigned a filter buffer, the sequence grabber component
returns an empty rectangle. If you do not want this information, set this
parameter to nil.

RESULT CODE

SGGrabFrame

The SGGrabFrame function provides the default behavior for your grab function.

pascal ComponentResult SGGrabFrame (SGChannel c, short bufferNum);

c Specifies the reference that identifies the channel for this operation. The
sequence grabber component provides this value to your grab function.

bufferNum Identifies the buffer. The sequence grabber component provides this value
to your grab function.

paramErr –50 Invalid parameter specified

C H A P T E R 5

Sequence Grabber Components

5-104 Sequence Grabber Components Reference

SPECIAL CONSIDERATIONS

You should call the SGGrabFrame function only from your grab function. If you call it at

any other time, results are unpredictable.

SEE ALSO

 See “Application-Defined Functions,” which begins on page 5-111, for information

about grab-complete functions.

RESULT CODE

SGGrabFrameComplete

The SGGrabFrameComplete function provides the default behavior for your

grab-complete function.

pascal ComponentResult SGGrabFrameComplete (SGChannel c,

short bufferNum,

Boolean *done);

c Specifies the reference that identifies the channel for this operation. The
sequence grabber provides this value to your grab-complete function.

bufferNum Identifies the buffer. The sequence grabber provides this value to your
grab-complete function.

done Contains a pointer to a Boolean value. The SGGrabFrameComplete
function sets this Boolean value to indicate whether the frame has been
completely captured. The function sets the Boolean value to true if the
capture is complete, and sets it to false if the capture is incomplete. The
sequence grabber provides this pointer to your grab-complete function.

SPECIAL CONSIDERATIONS

You should call the SGGrabFrameComplete function only from your grab-complete

function. If you call it at any other time, results are unpredictable.

RESULT CODE

SEE ALSO

See “Application-Defined Functions,” which begins on page 5-111, for details about

grab-complete functions.

cantDoThatInCurrentMode –9402 Request invalid in current mode

cantDoThatInCurrentMode –9402 Request invalid in current mode

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-105

SGDisplayFrame

The SGDisplayFrame function provides the default behavior for your display function.

pascal ComponentResult SGDisplayFrame (SGChannel c,

short bufferNum,

MatrixRecord *mp,

RgnHandle clipRgn);

c Specifies the reference that identifies the channel for this operation. The
sequence grabber component provides this value to your display function.

bufferNum Identifies the buffer. The sequence grabber component provides this value
to your display function.

mp Contains a pointer to a transformation matrix for the display operation. If
there is no matrix for the operation, set this parameter to nil.

clipRgn Contains a handle to the clipping region for the destination image. This
region is defined in the destination coordinate system. If there is no
clipping region, set this parameter to nil.

SPECIAL CONSIDERATIONS

You should call the SGDisplayFramefunction only from your display function.

If you call it at any other time, results are unpredictable.

RESULT CODE

SEE ALSO

See “Application-Defined Functions,” which begins on page 5-111, for details about

display functions.

SGCompressFrame

The SGCompressFrame function provides the default behavior for your compress

function.

pascal ComponentResult SGCompressFrame (SGChannel c,

short bufferNum);

c Specifies the reference that identifies the channel for this operation. The
sequence grabber provides this value to your compress function.

cantDoThatInCurrentMode –9402 Request invalid in current mode

C H A P T E R 5

Sequence Grabber Components

5-106 Sequence Grabber Components Reference

bufferNum Identifies the buffer. The sequence grabber provides this value to your
compress function.

SPECIAL CONSIDERATIONS

You should call the SGCompressFrame function only from your compress function.

If you call it at any other time, results are unpredictable.

RESULT CODES

Image Compression Manager errors

SEE ALSO

See “Application-Defined Functions,” which begins on page 5-111, for information about

compress functions.

SGCompressFrameComplete

The SGCompressFrameComplete function provides the default behavior for your

compress-complete function.

pascal ComponentResult SGCompressFrameComplete (SGChannel c,

short bufferNum,

Boolean *done,

SGCompressInfo *ci);

c Specifies the reference that identifies the channel for this operation.
The sequence grabber component provides this value to your
compress-complete function.

bufferNum Identifies the buffer. The sequence grabber component provides this value
to your compress-complete function.

done Contains a pointer to a Boolean value. The
SGCompressFrameComplete function sets this Boolean
value to indicate whether the frame has been completely
compressed. The function sets the Boolean value to true
if the compression is complete; it sets the Boolean value to
false if the operation is incomplete. The sequence grabber
component provides this pointer to your compress-complete function.

cantDoThatInCurrentMode –9402 Request invalid in current mode

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-107

ci Contains a pointer to a compression information structure (defined by the
SGCompressInfo data type). If the compression is complete, the
function completely formats this structure with information that is
appropriate to the frame just compressed. See “The Compression
Information Structure” beginning on page 5-22 for a description of this
structure. The sequence grabber component provides this pointer to your
compress-complete function.

SPECIAL CONSIDERATIONS

You should call the SGCompressFrameComplete function only from your

compress-complete function. If you call it at any other time, results are unpredictable.

RESULT CODES

Image Compression Manager errors

SEE ALSO

See “Application-Defined Functions,” which begins on page 5-111, for information about

compress-complete functions.

SGAddFrame

The SGAddFrame function provides the default behavior for your add-frame function.

pascal ComponentResult SGAddFrame (SGChannel c, short bufferNum,

 TimeValue atTime,

TimeScale scale,

const SGCompressInfo *ci);

c Specifies the reference that identifies the channel for this operation. The
sequence grabber component provides this value to your add-frame
function.

bufferNum Identifies the buffer. The sequence grabber component provides this value
to your add-frame function.

atTime Specifies the time at which the frame was captured, in the time
scale specified by the scale parameter. The sequence grabber component
provides this value to your add-frame function. Your add-frame function
can change this value before calling the SGAddFrame function. You can
determine the duration of a frame by subtracting its capture time from the
capture time of the next frame in the sequence.

scale Specifies the time scale of the movie. The sequence grabber component
provides this value to your add-frame function.

cantDoThatInCurrentMode –9402 Request invalid in current mode

C H A P T E R 5

Sequence Grabber Components

5-108 Sequence Grabber Components Reference

ci Contains a pointer to a compression information structure (defined by the
SGCompressInfo data type). This structure contains information
describing the compression characteristics of the image to be added to the
movie. See “The Compression Information Structure” beginning on
page 5-22 for a description of this structure. The sequence grabber
component provides this structure to your add-frame function.

SPECIAL CONSIDERATIONS

You should call the SGAddFrame function only from your add-frame function. If you

call it at any other time, results are unpredictable.

RESULT CODES

Memory Manager errors

SEE ALSO

See “Application-Defined Functions,” which begins on page 5-111, for information about

add-frame functions.

SGTransferFrameForCompress

The SGTransferFrameForCompress function provides the default behavior for your

transfer-frame function.

pascal ComponentResult SGTransferFrameForCompress (SGChannel c,

short bufferNum,

MatrixRecord *mp,

RgnHandle clipRgn);

c Specifies the reference that identifies the channel for this operation. The
sequence grabber component provides this value to your transfer-frame
function.

bufferNum Identifies the buffer. The sequence grabber component provides this value
to your transfer-frame function.

mp Contains a pointer to a transformation matrix for the transfer operation. If
there is no matrix for the operation, set this parameter to nil.

clipRgn Contains a handle to the clipping region for the destination image. This
region is defined in the destination coordinate system. If there is no
clipping region, set this parameter to nil.

cantDoThatInCurrentMode –9402 Request invalid in current mode

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-109

SPECIAL CONSIDERATIONS

You should call the SGTransferFrameForCompress function only from your

transfer-frame function. If you call it at any other time, results are unpredictable.

RESULT CODE

SEE ALSO

See “Application-Defined Functions,” which begins on page 5-111, for information about

transfer-frame functions.

SGGrabCompressComplete

The SGGrabCompressComplete function provides the default behavior for your

grab-compress–complete function.

pascal ComponentResult SGGrabCompressComplete (SGChannel c,

Boolean *done,

SGCompressInfo *ci,

TimeRecord *tr);

c Identifies the channel for this operation. The sequence grabber provides
this value to your grab-compress–complete function.

done Contains a pointer to a Boolean value. The SGGrabCompressComplete
function sets this value to true when it is done; it sets it to false if the
operation is incomplete. The sequence grabber provides this pointer to
your grab-compress–complete function.

ci Contains a pointer to a compression information structure. When the
operation is complete, the SGGrabCompressComplete function fills in
this structure with information about the compression operation. The
format and content of this structure are discussed earlier in this chapter,
beginning on page 5-22.

The sequence grabber provides this pointer to your
grab-compress–complete function.

tr Contains a pointer to a time record. When the operation is complete, the
SGGrabCompressComplete function uses this structure to indicate
when the frame was grabbed. The format and content of this structure are
discussed in the chapter “Movie Toolbox” in Inside Macintosh: QuickTime.

The sequence grabber provides this pointer to your
grab-compress–complete function.

cantDoThatInCurrentMode –9402 Request invalid in current mode

C H A P T E R 5

Sequence Grabber Components

5-110 Sequence Grabber Components Reference

SPECIAL CONSIDERATIONS

You should call the SGGrabCompressComplete function only from your

grab-compress–complete function. If you call it at other times, results are unpredictable.

RESULT CODE

SEE ALSO

See “Application-Defined Functions” beginning on page 5-111 for information about

grab-compress–complete functions.

SGDisplayCompress

The SGDisplayCompress function provides the default behavior for your

display-compress function.

pascal ComponentResult SGDisplayCompress (SGChannel c,

Ptr dataPtr,

ImageDescriptionHandle desc,

 MatrixRecord *mp,

RgnHandle clipRgn);

c Identifies the channel for this operation. The sequence grabber provides
this value to your display-compress function.

dataPtr Contains a pointer to the compressed image data. The sequence grabber
provides this pointer to your display-compress function.

desc Specifies a handle to the image description structure to use for the
decompression operation. The sequence grabber provides this handle to
your display-compress function.

mp Contains a pointer to a matrix structure. This matrix structure contains
the transformation matrix to use when displaying the image. If there is no
matrix for the operation, set this parameter to nil.

clipRgn Contains a handle to the clipping region for the destination image. This
region is defined in the destination coordinate system. If there is no
clipping region, set this parameter to nil.

cantDoThatInCurrentMode –9402 Request invalid in current mode

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-111

SPECIAL CONSIDERATIONS

You should call the SGDisplayCompress function only from your display-compress

function. If you call it at other times, results are unpredictable.

RESULT CODE

SEE ALSO

See the next section, “Application-Defined Functions,” for information about

display-compress functions.

Application-Defined Functions

This section describes the functions that your application may supply to sequence

grabber components.

Your grab function is used by the sequence grabber component to begin the capture of a

frame of video data. Your grab-complete function allows the sequence grabber

component to determine whether the current frame-capture operation is complete.

Your display function enables the sequence grabber component to move a captured

video image in an offscreen buffer into the destination buffer for the video channel.

The sequence grabber component uses your compress function to commence the

compression of a captured video image. Your compress-complete function helps the

sequence grabber component to find out if the current frame-compression operation is

finished.

Your add-frame function lets the sequence grabber component add a frame to a movie.

The sequence grabber component uses your transfer-frame function to move a video

frame from the capture buffer into the channel’s filter buffer.

You may provide two functions for use with compressed-source devices. Your

grab-compress–complete function determines when the current capture and compress

operation is complete. Your display-compress function decompresses and displays a

frame.

The sequence grabber calls your data function whenever any of the grabber’s channels

write data to the movie file.

If you call the SGSettingsDialog function, described on page 5-48, you must supply a

modal-dialog filter function. The interface that your function must provide is discussed

on page 5-122.

cantDoThatInCurrentMode –9402 Request invalid in current mode

C H A P T E R 5

Sequence Grabber Components

5-112 Sequence Grabber Components Reference

MyGrabFunction

The sequence grabber component calls your grab function in order to start capturing a

frame of video data.

Your grab function must present the following interface:

pascal ComponentResult MyGrabFunction (SGChannel c,

short bufferNum,

long refCon);

c Specifies the reference that identifies the channel for this operation.

bufferNum Identifies the buffer for this operation. You can obtain information about
this buffer by calling the SGGetBufferInfo function, which is described
on page 5-102.

refCon Contains a reference constant value. You can set this value by calling the
SGSetChannelRefCon function, which is described on page 5-67.

RESULT CODE

SEE ALSO

Your grab function can use the sequence grabber component’s SGGrabFrame function to

support the default behavior. SGGrabFrame is described on page 5-103.

MyGrabCompleteFunction

The sequence grabber component calls your grab-complete function in order to

determine whether the current frame-capture operation is complete. Once a frame has

been completely captured, you can modify its contents to suit your needs. For example,

you can overlay text onto the video image.

Your function must present the following interface:

pascal ComponentResult MyGrabCompleteFunction (SGChannel c,

 short bufferNum,

Boolean *done,

 long refCon);

c Specifies the reference that identifies the channel for this operation.

bufferNum Identifies the buffer for this operation. You can obtain information about
this buffer by calling the SGGetBufferInfo function, which is described
on page 5-102.

cantDoThatInCurrentMode –9402 Request invalid in current mode

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-113

done Contains a pointer to a Boolean value. Your function sets this Boolean
value to indicate whether the frame has been completely captured. Set the
Boolean value to true if the capture is complete; set it to false if it is
incomplete.

refCon Contains a reference constant value. You can set this value by calling the
SGSetChannelRefCon function, which is described on page 5-67.

RESULT CODE

SEE ALSO

Your grab-complete function can use the sequence grabber

component’s SGGrabFrameComplete function to support the

default behavior. SGGrabFrameComplete is described on page 5-104.

See Listing 5-6 on page 5-20 for a sample grab-complete function. This function draws

the letters “QT” over each video frame in the sequence.

MyDisplayFunction

The sequence grabber component calls your display function in order to transfer a

captured video image in an offscreen buffer into the destination buffer for the video

channel.

Your display function must support the following interface:

pascal ComponentResult MyDisplayFunction (SGChannel c,

 short bufferNum,

 MatrixRecord *mp,

 RgnHandle clipRgn,

 long refCon);

c Specifies the reference that identifies the channel for this operation.

bufferNum Identifies the buffer for this operation. You can obtain information about
this buffer by calling the SGGetBufferInfo function, which is described
on page 5-102.

mp Contains a pointer to a transformation matrix for the display operation. If
there is no matrix for the operation, this parameter is set to nil.

clipRgn Contains a handle to the clipping region for the destination image.
This region is defined in the destination coordinate system. Apply
the clipping region after applying the transformation matrix. If there is no
clipping region, this parameter is set to nil.

refCon Contains a reference constant value. You can set this value by calling the
SGSetChannelRefCon function, which is described on page 5-67.

cantDoThatInCurrentMode –9402 Request invalid in current mode

C H A P T E R 5

Sequence Grabber Components

5-114 Sequence Grabber Components Reference

RESULT CODE

SEE ALSO

Your application sets the destination buffer by calling the SGSetChannelBounds

function, which is described on page 5-65.

Your display function can use the sequence grabber component’s SGDisplayFrame

function to support the default behavior. SGDisplayFrame is described on page 5-105.

MyCompressFunction

The sequence grabber component calls your compress function in order to start

compressing the captured video image.

Your compress function must support the following interface:

pascal ComponentResult MyCompressFunction (SGChannel c,

 short bufferNum,

 long refCon);

c Specifies the reference that identifies the channel for this operation.

bufferNum Identifies the buffer for this operation. You can obtain information about
this buffer by calling the SGGetBufferInfo function, which is described
on page 5-102.

refCon Contains a reference constant value. You can set this value by calling the
SGSetChannelRefCon function, which is described on page 5-67.

RESULT CODES

Image Compression Manager errors

SEE ALSO

Your compress function can use the sequence grabber component’s SGCompressFrame

function to support the default behavior. SGCompressFrame is described on page 5-105.

This function uses the Image Compression Manager to compress the video image. For

more on the Image Compression Manager, see Inside Macintosh: QuickTime.

cantDoThatInCurrentMode –9402 Request invalid in current mode

cantDoThatInCurrentMode –9402 Request invalid in current mode

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-115

MyCompressCompleteFunction

The sequence grabber component calls your compress-complete function in order to

determine whether the current frame-compression operation is complete.

Your compress-complete function must support the following interface:

pascal ComponentResult MyCompressCompleteFunction (SGChannel c,

 short bufferNum,

Boolean *done,

 SGCompressInfo *ci,

long refCon);

c Specifies the reference that identifies the channel for this operation.

bufferNum Identifies the buffer for this operation. You can obtain information about
this buffer by calling the SGGetBufferInfo function, which is described
on page 5-102.

done Contains a pointer to a Boolean value. Your function sets this Boolean
value to indicate whether the frame has been completely compressed. Set
the Boolean value to true if the compression is complete; set it to false
if it is incomplete.

ci Contains a pointer to a compression information structure (defined by the
SGCompressInfo data type). If the compression is complete, your
function must completely format this structure with information that is
appropriate to the frame just compressed. See “The Compression
Information Structure” beginning on page 5-22, for a description of this
structure.

refCon Contains a reference constant value. You can set this value by calling the
SGSetChannelRefCon function, which is described on page 5-67.

DESCRIPTION

Once a frame has been completely compressed, you can add it to the movie.

SEE ALSO

Your compress-complete function can use the sequence grabber

component’s SGCompressFrameComplete function to support the default behavior.

SGCompressFrameComplete is described on page 5-106.

RESULT CODES

Image Compression Manager errors

cantDoThatInCurrentMode –9402 Request invalid in current mode

C H A P T E R 5

Sequence Grabber Components

5-116 Sequence Grabber Components Reference

MyAddFrameFunction

The sequence grabber component calls your add-frame function in order to add a frame

to a movie. Your add-frame function must support the following interface:

pascal ComponentResult MyAddFrameFunction (SGChannel c,

short bufferNum,

TimeValue atTime,

TimeScale scale,

SGCompressInfo *ci,

long refCon);

c Specifies the reference that identifies the channel for this operation.

bufferNum Identifies the buffer for this operation. You can obtain information about
this buffer by calling the SGGetBufferInfo function, which is described
on page 5-102.

atTime Specifies the time at which the frame was captured, in the time scale
specified by the scale parameter. Your add-frame function can change
this value before adding the frame to the movie or before calling the
SGAddFrame function, which is described on page 5-107. You can
determine the duration of a frame by subtracting its capture time from the
capture time of the next frame in the sequence.

scale Specifies the time scale of the movie. You must not change this value.

ci Contains a pointer to a compression information structure (defined by the
SGCompressInfo data type). This structure contains information
describing the compression characteristics of the image to be added to the
movie. See “The Compression Information Structure” beginning on
page 5-22 for a description of this structure.

refCon Contains a reference constant value. You can set this value by calling the
SGSetChannelRefCon function, which is described on page 5-67.

DESCRIPTION

You can use your add-frame function to modify the contents of the frame before it is

added to the movie. This can be useful if you want to place frame numbers onto frames

you are recording.

RESULT CODES

Memory Manager errors

cantDoThatInCurrentMode –9402 Request invalid in current mode

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-117

SEE ALSO

Your add-frame function can use the sequence grabber component’s SGAddFrame

function to support the default behavior. SGAddFrame is described on page 5-107.

MyTransferFrameFunction

The sequence grabber component calls your transfer-frame function in order to move a

video frame from the capture buffer into the channel’s filter buffer.

Your transfer-frame function must support the following interface:

pascal ComponentResult MyTransferFrameFunction (SGChannel c,

short bufferNum,

MatrixRecord *mp,

RgnHandle clipRgn,

long refCon);

c Specifies the reference that identifies the channel for this operation.

bufferNum Identifies the buffer for this operation. You can obtain information about
this buffer by calling the SGGetBufferInfo function, which is described
on page 5-102.

mp Contains a pointer to a transformation matrix for the transfer operation. If
there is no matrix for the operation, this parameter is set to nil.

clipRgn Contains a handle to the clipping region for the destination image.
This region is defined in the destination coordinate system. Apply
the clipping region after applying the transformation matrix. If there is no
clipping region, this parameter is set to nil.

refCon Contains a reference constant value. You can set this value by calling the
SGSetChannelRefCon function, which is described on page 5-67.

DESCRIPTION

The sequence grabber component calls this function only when you are filtering the

video data. By filtering the video data through a filter buffer, you can eliminate some

visual artifacts that result from noisy input video sources. Your application sets a filter

buffer by calling the SGSetCompressBuffer function, which is described on page 5-87.

If you are using a grab-complete function to determine when frames have been grabbed,

you should also implement a grab-compress–complete function (described in the next

section). Otherwise, the channel will decompress the specified image before calling your

grab-complete function, which will result in significantly lower performance. For details

on grab-complete functions, see page 5-112.

C H A P T E R 5

Sequence Grabber Components

5-118 Sequence Grabber Components Reference

RESULT CODE

SEE ALSO

Your transfer-frame function can use the sequence grabber

component’s SGTransferFrameForCompress function to support

the default behavior—SGTransferFrameForCompress is described

on page 5-108.

MyGrabCompressCompleteFunction

The sequence grabber calls your grab-compress–complete function when it

is working with a video digitizer that supports compressed source data. Your

grab-compress–complete function is responsible for determining whether the current

compressed frame has been completely captured and compressed, essentially combining

your grab-complete, compress, and compress-complete functions into one function.

Your function must support the following interface:

pascal ComponentResult MyGrabCompressCompleteFunction

(SGChannel c,

 Boolean *done,

 SGCompressInfo *ci,

 TimeRecord *tr,

 long refCon);

c Identifies the channel for this operation.

done Contains a pointer to a Boolean value. Set this Boolean value to indicate
whether you are finished. Set it to true when you are done; set it to
false if the operation is incomplete.

ci Contains a pointer to a compression information structure. When the
operation is complete, fill in this structure with information about the
compression operation. The format and content of this structure are
discussed earlier in this chapter, beginning on page 5-22.

tr Contains a pointer to a time record. When the operation is complete, fill in
this structure with information indicating when the frame was grabbed.
The format and content of this structure are discussed in the chapter
“Movie Toolbox” in Inside Macintosh: QuickTime.

refCon Contains a reference constant value. You can set this value by calling the
SGSetChannelRefCon function, which is described on page 5-67.

cantDoThatInCurrentMode –9402 Request invalid in current mode

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-119

RESULT CODE

SEE ALSO

Your grab-compress–complete function may use the sequence

grabber’s SGGrabCompressComplete function to support the default behavior.

SGGrabCompressComplete is discussed beginning on page 5-109.

MyDisplayCompressFunction

The sequence grabber calls your display-compress function when it is working with a

video digitizer component that supports compressed source data. Your display-compress

function is responsible for decompressing and displaying a compressed image.

pascal ComponentResult MyDisplayCompressFunction (SGChannel c,

Ptr dataPtr,

ImageDescriptionHandle desc,

MatrixRecord *mp,

RgnHandle clipRgn,

long refCon);

c Identifies the channel for this operation. The sequence grabber provides
this value to your display-compress function.

dataPtr Contains a pointer to the compressed image data.

desc Specifies a handle to the image description structure to use for the
decompression operation. See the chapter “Image Compression Manager”
in Inside Macintosh: QuickTime for more information about this data
structure.

mp Contains a pointer to a matrix structure. This matrix structure contains
the transformation matrix to use when displaying the image. If there is no
matrix for the operation, this parameter is set to nil.

clipRgn Contains a handle to the clipping region for the destination image.
This region is defined in the destination coordinate system. Apply the
clipping region after the transformation matrix. If there is no clipping
region, this parameter is set to nil.

refCon Contains a reference constant value. You can set this value by calling the
SGSetChannelRefCon function, which is described on page 5-67.

cantDoThatInCurrentMode –9402 Request invalid in current mode

C H A P T E R 5

Sequence Grabber Components

5-120 Sequence Grabber Components Reference

RESULT CODE

SEE ALSO

Your display-compress function may use the sequence grabber’s SGDisplayCompress

function to support the default behavior. SGDisplayCompress is discussed beginning

on page 5-110.

MyDataFunction

The sequence grabber calls your data function whenever any of the grabber’s channels

write digitized data to the destination movie file. You assign a data function to the

sequence grabber by calling the SGSetDataProc function, which is discussed on

page 5-35.

Your data function must support the following interface:

pascal OSErr MyDataFunction (SGChannel c, Ptr p, long len,

long *offset, long chRefCon,

TimeValue time, short writeType,

long refCon);

c Identifies the channel component that is writing the digitized data.

p Contains a pointer to the digitized data.

len Indicates the number of bytes of digitized data.

offset Contains a pointer to a field that may specify where you are to write the
digitized data, and that is to receive a value indicating where you wrote
the data. You must update the field referred to by this parameter,
supplying the value indicated by the writeType parameter.

chRefCon Contains control information. The low-order 16 bits contain sample flags
for use by the Movie Toolbox’s AddMediaSample function (see the
chapter “Movie Toolbox” in Inside Macintosh: QuickTime for information
about these flags). The sequence grabber sets these flags as appropriate.

The high-order 16 bits are reserved for Apple and are always set to 0.

time Identifies the starting time of the data, in the channel’s time scale. You
may use the SGGetChannelTimeScale function to retrieve the
channel’s time scale (discussed on page 5-68).

cantDoThatInCurrentMode –9402 Request invalid in current mode

C H A P T E R 5

Sequence Grabber Components

Sequence Grabber Components Reference 5-121

writeType Indicates the type of write operation being performed. The following
values are defined:

seqGrabWriteAppend
Append the new data to the end of the file. Set the field
referred to by the offset parameter to reflect the location at
which you added the data.

seqGrabWriteReserve
Do not write any data to the output file. Instead, reserve
space in the output file for the amount of data indicated by
the len parameter. Set the field referred to by the offset
parameter to the location of the reserved space.

seqGrabWriteFill
Write the data into the location specified by the field
referred to by the offset parameter. Set that field to the
location of the byte following the last byte you wrote.

This option is used to fill the space reserved previously
when the writeType parameter was set to
seqGrabWriteReserve. Note that the sequence grabber
may call your data function several times to fill a single
reserved location.

refCon Contains the reference constant you specified when you assigned your
data function to the sequence grabber.

DESCRIPTION

The sequence grabber calls your data function whenever any channel component writes

data to the destination movie. You may use your data function to store the digitized data

in some format other than a QuickTime movie.

RESULT CODES

File Manager errors

Memory Manager errors

SEE ALSO

You can instruct the sequence grabber not to write its data to a QuickTime movie by

calling the SGSetDataOutput function and setting the seqGrabDontMakeMovie flag

to 1. This can save processing time in cases where you do not want to create or update a

movie. SGSetDataOutput is discussed on page 5-26.

C H A P T E R 5

Sequence Grabber Components

5-122 Sequence Grabber Components Reference

MyModalFilter

The SGSettingsDialog function causes the sequence grabber to present its settings

dialog box to the user. This is a movable modal dialog box, so you must provide a filter

function to handle update events in your window. You specify your filter function with

the proc parameter.

A modal-dialog filter function whose address is passed to SGSettingsDialog should

support the following interface:

pascal Boolean MyModalFilter (DialogPtr theDialog,

EventRecord *theEvent,

short *itemHit, long refCon);

theDialog Points to the settings dialog box’s dialog structure.

theEvent Contains a pointer to an event structure. This event structure contains
information identifying the nature of the event.

itemHit Contains a pointer to a field that contains the item selected by the user. If
you handle the event, you should update this field to reflect the item
number of the selected item.

refCon Contains a reference constant. You provide this reference constant to the
sequence grabber in the procRefNum parameter of the
SGSettingsDialog function, which is described on page 5-48.

DESCRIPTION

Your modal-dialog filter function returns a Boolean value that indicates whether you

handled the event. Set this value to true if you handled the event; otherwise, set it to

false. If you handle the event, be sure to update the value of the field referred to by the

itemHit parameter.

SEE ALSO

See Inside Macintosh: Files for a sample modal-dialog filter function.

C H A P T E R 5

Sequence Grabber Components

Summary of Sequence Grabber Components 5-123

Summary of Sequence Grabber Components

C Summary

Constants

/* sequence grabber component type */

#define SeqGrabComponentType 'barg'

/* sequence grabber channel type */

#define SeqGrabChannelType 'sgch'

/* SGGrabPict function grabPictFlags parameter flags */

enum {

grabPictOffScreen = 1, /* place in offscreen graphics world */

grabPictIgnoreClip = 2 /* ignore channel clipping regions */

};

/* flag for SGSetFlags and SGGetFlags functions */

#define sgFlagControlledGrab (1)/* controlled grab */

/* flags for SGSetChannelPlayFlags and SGGetChannelPlayFlags functions */

#define channelPlayNormal 0 /* use default playback methodology */

#define channelPlayFast 1 /* achieve fast playback rate */

#define channelPlayHighQuality 2 /* achieve high quality image */

#define channelPlayAllData 4 /* play all captured data */

/* flags for SGSetDataOutput and SGGetDataOutput functions */

enum {

seqGrabToDisk = 1, /* write recorded data to movie */

seqGrabToMemory = 2, /* store recorded data in memory */

seqGrabDontUseTempMemory = 4, /* no temporary memory for recorded

data */

seqGrabAppendToFile = 8, /* add recorded data to file's data

fork */

seqGrabDontAddMovieResource = 16, /* don't add movie resource to file */

seqGrabDontMakeMovie = 32 /* don't put data into movie */

};

typedef unsigned char SeqGrabDataOutputEnum;

C H A P T E R 5

Sequence Grabber Components

5-124 Summary of Sequence Grabber Components

/* usage flags for SGSetChannelUsage and SGGetChannelUsage functions */

enum {

seqGrabRecord = 1, /* used during record operations */

seqGrabPreview = 2, /* used during preview operations */

seqGrabPlayDuringRecord = 4 /* plays data during record operation */

};

typedef unsigned char SeqGrabUsageEnum;

/* SGGetChannelInfo function flags */

enum {

seqGrabHasBounds = 1, /* visual representation of data */

seqGrabHasVolume = 2, /* audio representation of data */

seqGrabHasDiscreteSamples = 4 /* data organized in discrete frames */

};typedef unsigned char SeqGrabChannelInfoEnum;

/* device list structure flags */

#define sgDeviceListWithIcons (1) /* include icons */

#define sgDeviceListDontCheckAvailability (2) /* don't check available */

/* data function write operation types */

enum {

seqGrabWriteAppend, /* append to file */

seqGrabWriteReserve, /* reserve space in file */

seqGrabWriteFill /* fill reserved space */

};

/* SGPause and SGGetPause options */

enum {

seqGrabUnpause = 0, /* release grabber */

seqGrabPause = 1, /* pause all playback */

seqGrabPauseForMenu = 3 /* pause for menu display */

};

/* selectors for basic sequence grabber component functions */

kSGInitializeSelect = 0x1; /* SGInitialize */

kSGSetDataOutputSelect = 0x2; /* SGSetDataOutput */

kSGGetDataOutputSelect = 0x3; /* SGGetDataOutput */

kSGSetGWorldSelect = 0x4; /* SGSetGWorld */

kSGGetGWorldSelect = 0x5; /* SGGetGWorld */

kSGNewChannelSelect = 0x6; /* SGNewChannel */

C H A P T E R 5

Sequence Grabber Components

Summary of Sequence Grabber Components 5-125

kSGDisposeChannelSelect = 0x7; /* SGDisposeChannel */

kSGStartPreviewSelect = 0x10; /* SGStartPreview */

kSGStartRecordSelect = 0x11; /* SGStartRecord */

kSGIdleSelect = 0x12; /* SGIdle */

kSGStopSelect = 0x13; /* SGStop */

kSGPauseSelect = 0x14; /* SGPause */

kSGPrepareSelect = 0x15; /* SGPrepare */

kSGReleaseSelect = 0x16; /* SGRelease */

kSGGetMovieSelect = 0x17; /* SGGetMovie */

kSGSetMaximumRecordTimeSelect = 0x18; /* SGSetMaximumRecordTime */

kSGGetMaximumRecordTimeSelect = 0x19; /* SGGetMaximumRecordTime */

kSGGetStorageSpaceRemainingSelect= 0x1a; /* SGGetStorageSpaceRemaining */

kSGGetTimeRemainingSelect = 0x1b; /* SGGetTimeRemaining */

kSGGrabPictSelect = 0x1c; /* SGGrabPict */

kSGGetLastMovieResIDSelect = 0x1d; /* SGGetLastMovieResID */

kSGSetFlagsSelect = 0x1e; /* SGSetFlags */

kSGGetFlagsSelect = 0x1f; /* SGGetFlags */

kSGSetDataProcSelect = 0x20; /* SGSetDataProc */

kSGNewChannelFromComponentSelect = 0x21; /* SGNewChannelFromComponent */

kSGDisposeDeviceListSelect = 0x22; /* SGDisposeDeviceList */

kSGAppendDeviceListToMenuSelect = 0x23; /* SGAppendDeviceListToMenu */

kSGSetSettingsSelect = 0x24; /* SGSetSettings */

kSGGetSettingsSelect = 0x25; /* SGGetSettings */

kSGGetIndChannelSelect = 0x26; /* SGGetIndChannel */

kSGUpdateSelect = 0x27; /* SGUpdate */

kSGGetPauseSelect = 0x28; /* SGGetPause */

kSGSettingsDialogSelect = 0x29; /* SGSettingsDialog */

kSGGetAlignmentProcSelect = 0x2A; /* SGGetAlignmentProc */

kSGSetChannelSettingsSelect = 0x2B; /* SGSetChannelSettings */

kSGGetChannelSettingsSelect = 0x2C; /* SGGetChannelSettings */

/* selectors for common channel configuration functions */

kSGCSetChannelUsageSelect = 0x80; /* SGCSetChannelUsage */

kSGCGetChannelUsageSelect = 0x81; /* SGCGetChannelUsage */

kSGCSetChannelBoundsSelect = 0x82; /* SGCSetChannelBounds */

kSGCGetChannelBoundsSelect = 0x83; /* SGCGetChannelBounds */

kSGCSetChannelVolumeSelect = 0x84; /* SGCSetChannelVolume */

kSGCGetChannelVolumeSelect = 0x85; /* SGCGetChannelVolume */

kSGCGetChannelInfoSelect = 0x86; /* SGCGetChannelInfo */

kSGCSetChannelPlayFlagsSelect = 0x87; /* SGCSetChannelPlayFlags */

kSGCGetChannelPlayFlagsSelect = 0x88; /* SGCGetChannelPlayFlags */

kSGCSetChannelMaxFramesSelect = 0x89; /* SGCSetChannelMaxFrames */

C H A P T E R 5

Sequence Grabber Components

5-126 Summary of Sequence Grabber Components

kSGCGetChannelMaxFramesSelect = 0x8a; /* SGCGetChannelMaxFrames */

kSGCSetChannelRefConSelect = 0x8b; /* SGCSetChannelRefCon */

kSGCSetChannelClipSelect = 0x8C; /* SGCSetChannelClip */

kSGCGetChannelClipSelect = 0x8D; /* SGCGetChannelClip */

kSGCGetChannelSampleDescriptionSelect = 0x8E;

/* SGCGetChannelSampleDescription */

kSGCGetChannelDeviceListSelect = 0x8F; /* SGCGetChannelDeviceList */

kSGCSetChannelDeviceSelect = 0x90; /* SGCSetChannelDevice */

kSGCSetChannelMatrixSelect = 0x91; /* SGCSetChannelMatrix */

kSGCGetChannelMatrixSelect = 0x92; /* SGCGetChannelMatrix */

kSGCGetChannelTimeScaleSelect = 0x93; /* SGCGetChannelTimeScale */

/* selectors for video channel configuration functions */

kSGCGetSrcVideoBoundsSelect = 0x100; /* SGCGetSrcVideoBounds */

kSGCSetVideoRectSelect = 0x101; /* SGCSetVideoRect */

kSGCGetVideoRectSelect = 0x102; /* SGCGetVideoRect */

kSGCGetVideoCompressorTypeSelect = 0x103; /* SGCGetVideoCompressorType */

kSGCSetVideoCompressorTypeSelect = 0x104; /* SGCSetVideoCompressorType */

kSGCSetVideoCompressorSelect = 0x105; /* SGCSetVideoCompressor */

kSGCGetVideoCompressorSelect = 0x106; /* SGCGetVideoCompressor */

kSGCGetVideoDigitizerComponentSelect

= 0x107;

/* SGCGetVideoDigitizerComponent */

kSGCSetVideoDigitizerComponentSelect

= 0x108;

/* SGCSetVideoDigitizerComponent */

kSGCVideoDigitizerChangedSelect = 0x109; /* SGCVideoDigitizerChanged */

kSGCSetVideoBottlenecksSelect = 0x10a; /* SGCSetVideoBottlenecks */

kSGCGetVideoBottlenecksSelect = 0x10b; /* SGCGetVideoBottlenecks */

kSGCGrabFrameSelect = 0x10c; /* SGCGrabFrame */

kSGCGrabFrameCompleteSelect = 0x10d; /* SGCGrabFrameComplete */

kSGCDisplayFrameSelect = 0x10e; /* SGCDisplayFrame */

kSGCCompressFrameSelect = 0x10f; /* SGCCompressFrame */

kSGCCompressFrameCompleteSelect = 0x110; /* SGCCompressFrameComplete */

kSGCAddFrameSelect = 0x111; /* SGCAddFrame */

kSGCTransferFrameForCompressSelect = 0x112;

/* SGCTransferFrameForCompress */

kSGCSetCompressBufferSelect = 0x113;

/* SGCSetCompressBuffer */

kSGCGetCompressBufferSelect = 0x114;

 /* SGCGetCompressBuffer */

kSGCGetBufferInfoSelect = 0x115; /* SGCGetBufferInfo */

kSGCSetUseScreenBufferSelect = 0x116; /* SGCSetUseScreenBuffer */

C H A P T E R 5

Sequence Grabber Components

Summary of Sequence Grabber Components 5-127

kSGCGetUseScreenBufferSelect = 0x117; /* SGCGetUseScreenBuffer */

kSGCGrabCompressCompleteSelect = 0x118; /* SGCGrabCompressComplete */

kSGCDisplayCompressSelect = 0x119; /* SGCDisplayCompress */

kSGCSetFrameRateSelect = 0x11A; /* SGCSetFrameRate */

kSGCGetFrameRateSelect = 0x11B; /* SGCGetFrameRate */

/* selectors for sound channel configuration functions */

kSGCSetSoundInputDriverSelect = 0x100; /* SGCSetSoundInputDriver */

kSGCGetSoundInputDriverSelect = 0x101; /* SGCGetSoundInputDriver */

kSGCSoundInputDriverChangedSelect = 0x102;

/* SGCSoundInputDriverChanged */

kSGCSetSoundRecordChunkSizeSelect = 0x103;

/* SGCSetSoundRecordChunkSize */

kSGCGetSoundRecordChunkSizeSelect = 0x104;

/* SGCGetSoundRecordChunkSize */

kSGCSetSoundInputRateSelect = 0x105; /* SGCSetSoundInputRate */

kSGCGetSoundInputRateSelect = 0x106; /* SGCGetSoundInputRate */

kSGCSetSoundInputParametersSelect = 0x107;

/* SGCSetSoundInputParameters */

kSGCGetSoundInputParametersSelect = 0x108;

/* SGCGetSoundInputParameters */

/* selectors for utility functions provided to channel components */

kSGWriteMovieDataSelect = 0x100; /* SGWriteMovieData */

kSGAddFrameReferenceSelect = 0x101; / *SGAddFrameReference */

kSGGetNextFrameReferenceSelect = 0x102; /* SGGetNextFrameReference */

kSGGetTimeBaseSelect = 0x103; /* SGGetTimeBase */

kSGSortDeviceListSelect = 0x104; /* SGSortDeviceList */

kSGAddMovieDataSelect = 0x105; /* SGAddMovieData */

kSGChangedSourceSelect = 0x106; /* SGChangedSource */

Data Types

struct SGCompressInfo {

Ptr buffer; /* buffer for compressed image */

unsigned long bufferSize; /* bytes of image data in buffer */

unsigned char similarity; /* relative similarity */

unsigned char reserved; /* reserved--set to 0 */

};

typedef struct SGCompressInfo SGCompressInfo;

C H A P T E R 5

Sequence Grabber Components

5-128 Summary of Sequence Grabber Components

struct SeqGrabFrameInfo {

long frameOffset; /* offset to the sample */

long frameTime; /* time that frame was captured */

long frameSize; /* number of bytes in sample */

SGChannel frameChannel; /* current connection to channel */

long frameRefCon; /* reference constant for channel */

};

struct VideoBottles {

short procCount; /* count of callbacks */

GrabProc grabProc; /* grab function */

GrabCompleteProc grabCompleteProc; /* grab-complete

function */

DisplayProc displayProc; /* display function */

CompressProc compressProc; /* compress function */

CompressCompleteProc compressCompleteProc;

/* compress-complete

function */

AddFrameProc addFrameProc; /* add-frame function */

TransferFrameProc transferFrameProc; /* transfer-frame

function */

GrabCompressCompleteProc grabCompressCompleteProc;

/* grab-compress–complete

function */

DisplayCompressProc displayCompressProc; /* display-compress

function */

};

typedef struct VideoBottles VideoBottles;

typedef struct SGDeviceListRecord {

short count; /* count of devices */

short selectedIndex; /* current device */

long reserved; /* set to 0 */

SGDeviceName entry[1]; /* device names */

} SGDeviceListRecord, *SGDeviceListPtr, **SGDeviceList;

typedef struct SGDeviceName {

Str63 name; /* device name */

Handle icon; /* device icon */

long flags; /* flags */

long refCon; /* set to 0 */

long reserved; /* set to 0 */

} SGDeviceName;

C H A P T E R 5

Sequence Grabber Components

Summary of Sequence Grabber Components 5-129

Sequence Grabber Component Functions

Configuring Sequence Grabber Components

pascal ComponentResult SGInitialize
(SeqGrabComponent s);

pascal ComponentResult SGSetDataOutput
(SeqGrabComponent s, FSSpec *movieFile,
long whereFlags);

pascal ComponentResult SGGetDataOutput
(SeqGrabComponent s,
FSSpec *movieFile, long *whereFlags);

pascal ComponentResult SGSetGWorld
(SeqGrabComponent s, CGrafPtr gp, GDHandle gd);

pascal ComponentResult SGGetGWorld
(SeqGrabComponent s, CGrafPtr *gp,
GDHandle *gd);

pascal ComponentResult SGNewChannel
(SeqGrabComponent s, OSType channelType,
SGChannel *ref);

pascal ComponentResult SGNewChannelFromComponent
(SeqGrabComponent s, SGChannel *newChannel,
Component sgChannelComponent);

pascal ComponentResult SGGetIndChannel
(SeqGrabComponent s, short index,
SGChannel *ref, OSType *chanType);

pascal ComponentResult SGDisposeChannel
(SeqGrabComponent s, SGChannel c);

pascal ComponentResult SGSetDataProc
(SeqGrabComponent sg, SGDataProc proc,
long refCon);

pascal ComponentResult SGGetAlignmentProc
(SeqGrabComponent s,
AlignmentProcRecordPtr alignmentProc);

Controlling Sequence Grabber Components

pascal ComponentResult SGStartPreview
(SeqGrabComponent s);

pascal ComponentResult SGStartRecord
(SeqGrabComponent s);

pascal ComponentResult SGIdle
(SeqGrabComponent s);

C H A P T E R 5

Sequence Grabber Components

5-130 Summary of Sequence Grabber Components

pascal ComponentResult SGUpdate
(SeqGrabComponent s, RgnHandle updateRgn);

pascal ComponentResult SGStop
(SeqGrabComponent s);

pascal ComponentResult SGPause
(SeqGrabComponent s, Byte pause);

pascal ComponentResult SGGetPause
(SeqGrabComponent s, Byte *paused);

pascal ComponentResult SGPrepare
(SeqGrabComponent s, Boolean prepareForPreview,
Boolean prepareForRecord);

pascal ComponentResult SGRelease
(SeqGrabComponent s);

pascal Movie SGGetMovie (SeqGrabComponent s);

pascal ComponentResult SGGetLastMovieResID
(SeqGrabComponent s, short *resID);

pascal ComponentResult SGGrabPict
(SeqGrabComponent s, PicHandle *p,
const Rect *bounds, short offscreenDepth,
long grabPictFlags);

Working With Sequence Grabber Settings

pascal ComponentResult SGSettingsDialog
(SeqGrabComponent s, SGChannel c,
short numPanels, Component *panelList,
long flags, SGModalFilterProcPtr proc,
long procRefNum);

pascal ComponentResult SGGetSettings
(SeqGrabComponent s, UserData *ud, long flags);

pascal ComponentResult SGSetSettings
(SeqGrabComponent s, UserData ud, long flags);

pascal ComponentResult SGGetChannelSettings
(SeqGrabComponent s, SGChannel c, UserData *ud,
long flags);

pascal ComponentResult SGSetChannelSettings
(SeqGrabComponent s, SGChannel c, UserData ud,
long flags);

Working With Sequence Grabber Characteristics

pascal ComponentResult SGSetMaximumRecordTime
(SeqGrabComponent s, unsigned long ticks);

C H A P T E R 5

Sequence Grabber Components

Summary of Sequence Grabber Components 5-131

pascal ComponentResult SGGetMaximumRecordTime
(SeqGrabComponent s, unsigned long *ticks);

pascal ComponentResult SGGetStorageSpaceRemaining
(SeqGrabComponent s, unsigned long *bytes);

pascal ComponentResult SGGetTimeRemaining
(SeqGrabComponent s, long *ticksLeft);

pascal ComponentResult SGGetTimeBase
(SeqGrabComponent s, TimeBase *tb);

pascal ComponentResult SGSetFlags
(SeqGrabComponent s, long sgFlags);

pascal ComponentResult SGGetFlags
(SeqGrabComponent s, long *sgFlags);

Working With Channel Characteristics

pascal ComponentResult SGSetChannelUsage
(SGChannel c, long usage);

pascal ComponentResult SGGetChannelUsage
(SGChannel c, long *usage);

pascal ComponentResult SGGetChannelInfo
(SGChannel c, long *channelInfo);

pascal ComponentResult SGSetChannelPlayFlags
(SGChannel c, long playFlags);

pascal ComponentResult SGGetChannelPlayFlags
(SGChannel c, long *playFlags);

pascal ComponentResult SGSetChannelMaxFrames
(SGChannel c, long frameCount);

pascal ComponentResult SGGetChannelMaxFrames
(SGChannel c, long *frameCount);

pascal ComponentResult SGSetChannelBounds
(SGChannel c, const Rect *bounds);

pascal ComponentResult SGGetChannelBounds
(SGChannel c, Rect *bounds);

pascal ComponentResult SGSetChannelVolume
(SGChannel c, short volume);

pascal ComponentResult SGGetChannelVolume
(SGChannel c, short *volume);

pascal ComponentResult SGSetChannelRefCon
(SGChannel c, long refCon);

pascal ComponentResult SGGetChannelSampleDescription
(SGChannel c, Handle sampleDesc);

pascal ComponentResult SGGetChannelTimeScale
(SGChannel c, TimeScale *scale);

C H A P T E R 5

Sequence Grabber Components

5-132 Summary of Sequence Grabber Components

pascal ComponentResult SGSetChannelClip
(SGChannel c, RgnHandle theClip);

pascal ComponentResult SGGetChannelClip
(SGChannel c, RgnHandle *theClip);

pascal ComponentResult SGSetChannelMatrix
(SGChannel c, const MatrixRecord *m);

pascal ComponentResult SGGetChannelMatrix
(SGChannel c, MatrixRecord *m);

Working With Channel Devices

pascal ComponentResult SGGetChannelDeviceList
(SGChannel c, long selectionFlags,
SGDeviceList *list);

pascal ComponentResult SGDisposeDeviceList
(SeqGrabComponent s, SGDeviceList list);

pascal ComponentResult SGAppendDeviceListToMenu
(SeqGrabComponent s, SGDeviceList list,
MenuHandle mh);

pascal ComponentResult SGSetChannelDevice
(SGChannel c, StringPtr name);

Working With Video Channels

pascal ComponentResult SGGetSrcVideoBounds
(SGChannel c, Rect *r);

pascal ComponentResult SGSetVideoRect
(SGChannel c, Rect *r);

pascal ComponentResult SGGetVideoRect
(SGChannel c, Rect *r);

pascal ComponentResult SGSetVideoCompressorType
(SGChannel c, OSType compressorType);

pascal ComponentResult SGGetVideoCompressorType
(SGChannel c, OSType *compressorType);

pascal ComponentResult SGSetVideoCompressor
(SGChannel c, short depth,
CompressorComponent compressor,
CodecQ spatialQuality,
CodecQ temporalQuality, long keyFrameRate);

pascal ComponentResult SGGetVideoCompressor
(SGChannel c, short *depth,
CompressorComponent *compressor,
CodecQ *spatialQuality,
CodecQ *temporalQuality, long *keyFrameRate);

C H A P T E R 5

Sequence Grabber Components

Summary of Sequence Grabber Components 5-133

pascal ComponentResult SGSetVideoDigitizerComponent
(SGChannel c, ComponentInstance vdig);

pascal ComponentInstance SGGetVideoDigitizerComponent
(SGChannel c);

pascal ComponentResult SGVideoDigitizerChanged
(SGChannel c);

pascal ComponentResult SGSetCompressBuffer
(SGChannel c, short depth,
const Rect *compressSize);

pascal ComponentResult SGGetCompressBuffer
(SGChannel c, short *depth, Rect *compressSize);

pascal ComponentResult SGSetFrameRate
(SGChannel c, Fixed frameRate);

pascal ComponentResult SGGetFrameRate
(SGChannel c, Fixed *frameRate);

pascal ComponentResult SGSetUseScreenBuffer
(SGChannel c, Boolean useScreenBuffer);

pascal ComponentResult SGGetUseScreenBuffer
(SGChannel c, Boolean *useScreenBuffer);

Working With Sound Channels

pascal ComponentResult SGSetSoundInputDriver
(SGChannel c, const Str255 driverName);

pascal long SGGetSoundInputDriver
(SGChannel c);

pascal ComponentResult SGSoundInputDriverChanged
(SGChannel c);

pascal ComponentResult SGSetSoundRecordChunkSize
(SGChannel c, long seconds);

pascal long SGGetSoundRecordChunkSize
(SGChannel c);

pascal ComponentResult SGSetSoundInputRate
(SGChannel c, Fixed rate);

pascal Fixed SGGetSoundInputRate
(SGChannel c);

pascal ComponentResult SGSetSoundInputParameters
(SGChannel c, short sampleSize,
short numChannels, OSType compressionType);

pascal ComponentResult SGGetSoundInputParameters
(SGChannel c, short *sampleSize,
short *numChannels, OSType *compressionType);

C H A P T E R 5

Sequence Grabber Components

5-134 Summary of Sequence Grabber Components

Video Channel Callback Functions

pascal ComponentResult SGSetVideoBottlenecks
(SGChannel c, VideoBottles *vb);

pascal ComponentResult SGGetVideoBottlenecks
(SGChannel c, VideoBottles *vb);

Utility Functions for Video Channel Callback Functions

pascal ComponentResult SGGetBufferInfo
(SGChannel c, short bufferNum,
PixMapHandle *bufferPM, Rect *bufferRect,
GWorldPtr *compressBuffer,
Rect *compressBufferRect);

pascal ComponentResult SGGrabFrame
(SGChannel c, short bufferNum);

pascal ComponentResult SGGrabFrameComplete
(SGChannel c, short bufferNum, Boolean *done);

pascal ComponentResult SGDisplayFrame
(SGChannel c, short bufferNum,
MatrixRecord *mp, RgnHandle clipRgn);

pascal ComponentResult SGCompressFrame
(SGChannel c, short bufferNum);

pascal ComponentResult SGCompressFrameComplete
(SGChannel c, short bufferNum, Boolean *done,
SGCompressInfo *ci);

pascal ComponentResult SGAddFrame
(SGChannel c, short bufferNum,
TimeValue atTime, TimeScale scale,
const SGCompressInfo *ci);

pascal ComponentResult SGTransferFrameForCompress
(SGChannel c, short bufferNum, MatrixRecord *mp,
RgnHandle clipRgn);

pascal ComponentResult SGGrabCompressComplete
(SGChannel c, Boolean *done,
SGCompressInfo *ci, TimeRecord *tr);

pascal ComponentResult SGDisplayCompress
(SGChannel c, Ptr dataPtr,
ImageDescriptionHandle desc, MatrixRecord *mp,
RgnHandle clipRgn);

C H A P T E R 5

Sequence Grabber Components

Summary of Sequence Grabber Components 5-135

Application-Defined Functions

pascal ComponentResult MyGrabFunction
(SGChannel c, short bufferNum, long refCon);

pascal ComponentResult MyGrabCompleteFunction
(SGChannel c, short bufferNum, Boolean *done,
long refCon);

pascal ComponentResult MyDisplayFunction
(SGChannel c, short bufferNum,
MatrixRecord *mp, RgnHandle clipRgn,
long refCon);

pascal ComponentResult MyCompressFunction
(SGChannel c, short bufferNum, long refCon);

pascal ComponentResult MyCompressCompleteFunction
(SGChannel c, short bufferNum, Boolean *done,
SGCompressInfo *ci, long refCon);

pascal ComponentResult MyAddFrameFunction
(SGChannel c, short bufferNum,
TimeValue atTime, TimeScale scale,
SGCompressInfo ci, long refCon);

pascal ComponentResult MyTransferFrameFunction
(SGChannel c, short bufferNum, MatrixRecord *mp,
RgnHandle clipRgn, long refCon);

pascal ComponentResult MyGrabCompressCompleteFunction
(SGChannel c, Boolean *done,
SGCompressInfo *ci, TimeRecord *tr,
long refCon);

pascal ComponentResult MyDisplayCompressFunction
(SGChannel c, Ptr dataPtr,
ImageDescriptionHandle desc, MatrixRecord *mp,
RgnHandle clipRgn, long refCon);

pascal OSErr MyDataFunction (SGChannel c, Ptr p, long len, long *offset,
long chRefCon, TimeValue time,
short writeType, long refCon);

pascal Boolean MyModalFilter
(DialogPtr theDialog, EventRecord *theEvent,
short *itemHit, long refCon);

C H A P T E R 5

Sequence Grabber Components

5-136 Summary of Sequence Grabber Components

Pascal Summary

Constants

CONST

{sequence grabber component type}

SeqGrabComponentType = 'barg';

{sequence grabber channel type}

SeqGrabChannelType = 'sgch'

{SGGrabPict function grabPictFlags parameter flags}

grabPictOffScreen = 1; {place in offscreen graphics world}

grabPictIgnoreClip = 2; {ignore channel clipping regions}

{flag for SGSetFlags and SGGetFlags functions}

sgFlagControlledGrab = 1; {controlled grab}

{flags for SGSetChannelPlayFlags and SGGetChannelPlayFlags functions}

channelPlayNormal = 0; {use default playback methodology}

channelPlayFast = 1; {achieve fast playback rate}

channelPlayHighQuality = 2; {achieve high quality image}

channelPlayAllData = 4; {play all captured data}

{flags for SGSetDataOutput and SGGetDataOutput functions}

seqGrabToDisk = 1; {write recorded data to specified }

{ QuickTime movie}

seqGrabToMemory = 2; {store recorded data in memory until }

{ completion of recording process}

seqGrabDontUseTempMemory = 4; {don't use temporary memory to store }

{ recorded data}

seqGrabAppendToFile = 8; {add recorded data to data fork of }

{ specified movie file}

seqGrabDontAddMovieResource = 16; {don't add movie resource to }

{ specified movie file}

{usage flags for SGSetChannelUsage and SGGetChannelUsage functions}

seqGrabRecord = 1; {used during record operations}

seqGrabPreview = 2; {used during preview operations}

seqGrabPlayDuringRecord = 4; {used during record operations}

C H A P T E R 5

Sequence Grabber Components

Summary of Sequence Grabber Components 5-137

{SGGetChannelInfo function flags}

seqGrabHasBounds = 1; {visual representation of data}

seqGrabHasVolume = 2; {audio representation of data}

seqGrabHasDiscreteSamples = 4; {data organized in discrete frames}

{device list structure flags}

sgDeviceListWithIcons = 1; {include icons}

sgDeviceListDontCheckAvailability = 2; {do not check availability }

{ of device}

{data function write operation types}

seqGrabWriteAppend = 0; {append to file}

seqGrabWriteReserve = 1; {reserve space in file}

seqGrabWrite = 2; {fill reserved space}

{SGPause and SGGetPause options}

seqGrabUnpause = 0; {release grabber}

seqGrabPause = 1; {pause all playback}

seqGrabPauseForMenu = 3; {pause for menu display}

{selectors for basic sequence grabber component functions}

kSGInitializeSelect = $1; {SGInitialize}

kSGSetDataOutputSelect = $2; {SGSetDataOutput}

kSGGetDataOutputSelect = $3; {SGGetDataOutput}

kSGSetGWorldSelect = $4; {SGSetGWorld}

kSGGetGWorldSelect = $5; {SGGetGWorld}

kSGNewChannelSelect = $6; {SGNewChannel}

kSGDisposeChannelSelect = $7; {SGDisposeChannel}

kSGStartPreviewSelect = $10; {SGStartPreview}

kSGStartRecordSelect = $11; {SGStartRecord}

kSGIdleSelect = $12; {SGIdle}

kSGStopSelect = $13; {SGStop}

kSGPauseSelect = $14; {SGPause}

kSGPrepareSelect = $15; {SGPrepare}

kSGReleaseSelect = $16; {SGRelease}

kSGGetMovieSelect = $17; {SGGetMovie}

kSGSetMaximumRecordTimeSelect = $18; {SGSetMaximumRecordTime}

kSGGetMaximumRecordTimeSelect = $19; {SGGetMaximumRecordTime}

kSGGetStorageSpaceRemainingSelect= $1A; {SGGetStorageSpaceRemaining}

kSGGetTimeRemainingSelect = $1B; {SGGetTimeRemaining}

kSGGrabPictSelect = $1C; {SGGrabPict}

kSGGetLastMovieResIDSelect = $1D; {SGGetLastMovieResID}

kSGSetFlagsSelect = $1E; {SGSetFlags}

kSGGetFlagsSelect = $1F; {SGGetFlags}

C H A P T E R 5

Sequence Grabber Components

5-138 Summary of Sequence Grabber Components

kSGSetDataProcSelect = $20; {SGSetDataProc}

kSGNewChannelFromComponentSelect = $21; {SGNewChannelFromComponent}

kSGDisposeDeviceListSelect = $22; {SGDisposeDeviceList}

kSGAppendDeviceListToMenuSelect = $23; {SGAppendDeviceListToMenu}

kSGSetSettingsSelect = $24; {SGSetSettings}

kSGGetSettingsSelect = $25; {SGGetSettings}

kSGGetIndChannelSelect = $26; {SGGetIndChannel}

kSGUpdateSelect = $27; {SGUpdate}

kSGGetPauseSelect = $28; {SGGetPause}

kSGSettingsDialogSelect = $29; {SGSettingsDialog}

kSGGetAlignmentProcSelect = $2A; {SGGetAlignmentProc}

kSGSetChannelSettingsSelect = $2B; {SGSetChannelSettings}

kSGGetChannelSettingsSelect = $2C; {SGGetChannelSettings}

{selectors for common channel configuration functions}

kSGCSetChannelUsageSelect = $80; {SGCSetChannelUsage}

kSGCGetChannelUsageSelect = $81; {SGCGetChannelUsage}

kSGCSetChannelBoundsSelect = $82; {SGCSetChannelBounds}

kSGCGetChannelBoundsSelect = $83; {SGCGetChannelBounds}

kSGCSetChannelVolumeSelect = $84; {SGCSetChannelVolume}

kSGCGetChannelVolumeSelect = $85; {SGCGetChannelVolume}

kSGCGetChannelInfoSelect = $86; {SGCGetChannelInfo}

kSGCSetChannelPlayFlagsSelect = $87; {SGCSetChannelPlayFlags}

kSGCGetChannelPlayFlagsSelect = $88; {SGCGetChannelPlayFlags}

kSGCSetChannelMaxFramesSelect = $89; {SGCSetChannelMaxFrames}

kSGCGetChannelMaxFramesSelect = $8A; {SGCGetChannelMaxFrames}

kSGCSetChannelRefConSelect = $8B; {SGCSetChannelRefCon}

kSGCSetChannelClipSelect = $8C; {SGCSetChannelClip}

kSGCGetChannelClipSelect = $8D; {SGCGetChannelClip}

kSGCGetChannelSampleDescriptionSelect = $8E;

{SGCGetChannelSampleDescription}

kSGCGetChannelDeviceListSelect = $8F; {SGCGetChannelDeviceList}

kSGCSetChannelDeviceSelect = $90; {SGCSetChannelDevice}

kSGCSetChannelMatrixSelect = $91; {SGCSetChannelMatrix}

kSGCGetChannelMatrixSelect = $92; {SGCGetChannelMatrix}

kSGCGetChannelTimeScaleSelect = $93; {SGCGetChannelTimeScale}

{selectors for video channel configuration functions}

kSGCGetSrcVideoBoundsSelect = $100; {SGCGetSrcVideoBounds}

kSGCSetVideoRectSelect = $101; {SGCSetVideoRect}

kSGCGetVideoRectSelect = $102; {SGCGetVideoRect}

kSGCGetVideoCompressorTypeSelect = $103;

{SGCGetVideoCompressorType}

C H A P T E R 5

Sequence Grabber Components

Summary of Sequence Grabber Components 5-139

kSGCSetVideoCompressorTypeSelect = $104;

{SGCSetVideoCompressorType}

kSGCSetVideoCompressorSelect = $105; {SGCSetVideoCompressor}

kSGCGetVideoCompressorSelect = $106; {SGCGetVideoCompressor}

kSGCGetVideoDigitizerComponentSelect = $107;

{SGCGetVideoDigitizerComponent}

kSGCSetVideoDigitizerComponentSelect = $108;

{SGCSetVideoDigitizerComponent}

kSGCVideoDigitizerChangedSelect = $109; {SGCVideoDigitizerChanged}

kSGCSetVideoBottlenecksSelect = $10A; {SGCSetVideoBottlenecks}

kSGCGetVideoBottlenecksSelect = $10B; {SGCGetVideoBottlenecks}

kSGCGrabFrameSelect = $10C; {SGCGrabFrame}

kSGCGrabFrameCompleteSelect = $10D; {SGCGrabFrameComplete}

kSGCDisplayFrameSelect = $10E; {SGCDisplayFrame}

kSGCCompressFrameSelect = $10F; {SGCCompressFrame}

kSGCCompressFrameCompleteSelect = $110; {SGCCompressFrameComplete}

kSGCAddFrameSelect = $111; {SGCAddFrame}

kSGCTransferFrameForCompressSelect = $112;

{SGCTransferFrameForCompress}

kSGCSetCompressBufferSelect = $113; {SGCSetCompressBuffer}

kSGCGetCompressBufferSelect = $114; {SGCGetCompressBuffer}

kSGCGetBufferInfoSelect = $115; {SGCGetBufferInfo}

kSGCSetUseScreenBufferSelect = $116; {SGCSetUseScreenBuffer}

kSGCGetUseScreenBufferSelect = $117; {SGCGetUseScreenBuffer}

kSGCGrabCompressCompleteSelect = $118; {SGCGrabCompressComplete}

kSGCDisplayCompressSelect = $119; {SGCDisplayCompress}

kSGCSetFrameRateSelect = $11A; {SGCSetFrameRate}

kSGCGetFrameRateSelect = $11B; {SGCGetFrameRate}

{selectors for sound channel configuration functions}

kSGCSetSoundInputDriverSelect = $100; {SGCSetSoundInputDriver}

kSGCGetSoundInputDriverSelect = $101; {SGCGetSoundInputDriver}

kSGCSoundInputDriverChangedSelect = $102; {SGCSoundInputDriverChanged}

kSGCSetSoundRecordChunkSizeSelect = $103; {SGCSetSoundRecordChunkSize}

kSGCGetSoundRecordChunkSizeSelect = $104; {SGCGetSoundRecordChunkSize}

kSGCSetSoundInputRateSelect = $105; {SGCSetSoundInputRate}

kSGCGetSoundInputRateSelect = $106; {SGCGetSoundInputRate}

kSGCSetSoundInputParametersSelect = $107; {SGCSetSoundInputParameters}

kSGCGetSoundInputParametersSelect = $108; {SGCGetSoundInputParameters}

{selectors for utility functions provided to channel components}

kSGWriteMovieDataSelect = $100; {SGWriteMovieData}

kSGAddFrameReferenceSelect = $101; {SGAddFrameReference}

kSGGetNextFrameReferenceSelect = $102; {SGGetNextFrameReference}

C H A P T E R 5

Sequence Grabber Components

5-140 Summary of Sequence Grabber Components

kSGGetTimeBaseSelect = $103; {SGGetTimeBase}

kSGSortDeviceListSelect = $104; {SGSortDeviceList}

kSGAddMovieDataSelect = $105; {SGAddMovieData}

kSGChangedSourceSelect = $106; {SGChangedSource}

Data Types

TYPE SGCompressInfo =

PACKED RECORD

buffer: Ptr; {buffer containing compressed image}

bufferSize: LongInt; {bytes of image data in buffer}

similarity: Char; {relative similarity of image }

{ to previous image in sequence}

reserved: Char; {reserved}

END;

VideoBottles =

RECORD

procCount: Integer; {number of callback }

{ routines in record}

grabProc: GrabProc; {grab function}

grabCompleteProc: GrabCompleteProc; {grab-complete function}

displayProc: DisplayProc; {display function}

compressProc: CompressProc; {compress function}

compressCompleteProc: CompressCompleteProc;

{compress-complete }

{ function}

addFrameProc: AddFrameProc; {add-frame function}

transferFrameProc: TransferFrameProc; {transfer-frame }

{ function}

END;

SeqGrabFrameInfo =

RECORD

frameOffset: LongInt; {offset to the sample}

frameTime: LongInt; {time that frame was captured}

frameSize: LongInt; {number of bytes in sample}

frameChannel: SGChannel; {current connection to channel}

frameRefCon: LongInt; {reference constant for channel}

END;

C H A P T E R 5

Sequence Grabber Components

Summary of Sequence Grabber Components 5-141

SGDeviceName =

RECORD

name: Str63; {device name}

icon: Handle; {device icon}

flags: LongInt; {flags}

refCon: LongInt; {set to 0}

reserved: LongInt; {reserved--set to 0}

END;

SGDeviceListPtr = ^SGDeviceListRecord;

SGDeviceList = ^SGDeviceListPtr;

SGDeviceListRecord =

RECORD

count: Integer; {count of devices}

selectedIndex: Integer; {current device}

reserved: LongInt; {reserved--set to 0}

entry: ARRAY[0..0] OF SGDeviceName; {device names}

END;

Sequence Grabber Component Routines

Configuring Sequence Grabber Components

FUNCTION SGInitialize (s: SeqGrabComponent): ComponentResult;

FUNCTION SGSetDataOutput (s: SeqGrabComponent; movieFile: FSSpec;
whereFlags: LongInt): ComponentResult;

FUNCTION SGGetDataOutput (s: SeqGrabComponent; VAR movieFile: FSSpec;
VAR whereFlags: LongInt): ComponentResult;

FUNCTION SGSetGWorld (s: SeqGrabComponent; gp: CGrafPtr;
gd: GDHandle): ComponentResult;

FUNCTION SGGetGWorld (s: SeqGrabComponent; VAR gp: CGrafPtr;
VAR gd: GDHandle): ComponentResult;

FUNCTION SGNewChannel (s: SeqGrabComponent; channelType: OSType;
VAR ref: SGChannel): ComponentResult;

FUNCTION SGNewChannelFromComponent
(s: SeqGrabComponent;
VAR newChannel: SGChannel;
sgChannelComponent: Component):
ComponentResult;

FUNCTION SGGetIndChannel (s: SeqGrabComponent; index: Integer;
VAR ref: SGChannel;
VAR chanType: OSType): ComponentResult;

C H A P T E R 5

Sequence Grabber Components

5-142 Summary of Sequence Grabber Components

FUNCTION SGDisposeChannel (s: SeqGrabComponent;
c: SGChannel): ComponentResult;

FUNCTION SGSetDataProc (s: SeqGrabComponent; proc: SGDataProc;
refCon: LongInt): ComponentResult;

FUNCTION SGGetAlignmentProc
(s: SeqGrabComponent;
alignmentProc: AlignmentProcRecordPtr):
ComponentResult;

Controlling Sequence Grabber Components

FUNCTION SGStartPreview (s: SeqGrabComponent): ComponentResult;

FUNCTION SGStartRecord (s: SeqGrabComponent): ComponentResult;

FUNCTION SGIdle (s: SeqGrabComponent): ComponentResult;

FUNCTION SGUpdate (s: SeqGrabComponent; updateRgn: RgnHandle):
ComponentResult;

FUNCTION SGStop (s: SeqGrabComponent): ComponentResult;

FUNCTION SGPause (s: SeqGrabComponent;
paused: Byte): ComponentResult;

FUNCTION SGGetPause (s: SeqGrabComponent;
VAR paused: Byte): ComponentResult;

FUNCTION SGPrepare (s: SeqGrabComponent;
prepareForPreview: Boolean;
prepareForRecord: Boolean): ComponentResult;

FUNCTION SGRelease (s: SeqGrabComponent): ComponentResult;

FUNCTION SGGetMovie (s: SeqGrabComponent): Movie;

FUNCTION SGGetLastMovieResID
(s: SeqGrabComponent;
VAR resID: Integer): ComponentResult;

FUNCTION SGGrabPict (s: SeqGrabComponent; VAR p: PicHandle;
bounds: Rect; offscreenDepth: Integer;
grabPictFlags: LongInt): ComponentResult;

Working With Sequence Grabber Settings

FUNCTION SGSettingsDialog (s: SeqGrabComponent; c: SGChannel;
numPanels: Integer; VAR panelList: Component;
flags: LongInt; proc: SGModalFilterProcPtr;
procRefNum: LongInt): ComponentResult;

FUNCTION SGGetSettings (s: SeqGrabComponent; VAR ud: UserData;
flags: LongInt): ComponentResult;

FUNCTION SGSetSettings (s: SeqGrabComponent; ud: UserData;
flags: LongInt): ComponentResult;

C H A P T E R 5

Sequence Grabber Components

Summary of Sequence Grabber Components 5-143

FUNCTION SGGetChannelSettings
(s: SeqGrabComponent; c: SGChannel;
VAR ud: UserData; flags: LongInt):
ComponentResult;

FUNCTION SGSetChannelSettings
(s: SeqGrabComponent; c: SGChannel;
ud: UserData; flags: LongInt): ComponentResult;

Working With Sequence Grabber Characteristics

FUNCTION SGSetMaximumRecordTime
(s: SeqGrabComponent; ticks: LongInt):
ComponentResult;

FUNCTION SGGetMaximumRecordTime
(s: SeqGrabComponent; VAR ticks: LongInt):
ComponentResult;

FUNCTION SGGetStorageSpaceRemaining
(s: SeqGrabComponent; VAR bytes: LongInt):
ComponentResult;

FUNCTION SGGetTimeRemaining (s: SeqGrabComponent; VAR ticksLeft: LongInt):
ComponentResult;

FUNCTION SGGetTimeBase (s: SeqGrabComponent; VAR tb: TimeBase):
ComponentResult;

FUNCTION SGSetFlags (s: SeqGrabComponent; sgFlags: LongInt):
ComponentResult;

FUNCTION SGGetFlags (s: SeqGrabComponent; VAR sgFlags: LongInt):
ComponentResult;

Working With Channel Characteristics

FUNCTION SGSetChannelUsage (c: SGChannel; usage: LongInt): ComponentResult;

FUNCTION SGGetChannelUsage (c: SGChannel; VAR usage: LongInt):
ComponentResult;

FUNCTION SGGetChannelInfo (c: SGChannel; VAR channelInfo: LongInt):
ComponentResult;

FUNCTION SGSetChannelPlayFlags
(c: SGChannel; playFlags: LongInt):
ComponentResult;

FUNCTION SGGetChannelPlayFlags
(c: SGChannel; VAR playFlags: LongInt):
ComponentResult;

FUNCTION SGSetChannelMaxFrames
(c: SGChannel; frameCount: LongInt):
ComponentResult;

C H A P T E R 5

Sequence Grabber Components

5-144 Summary of Sequence Grabber Components

FUNCTION SGGetChannelMaxFrames
(c: SGChannel; VAR frameCount: LongInt):
ComponentResult;

FUNCTION SGSetChannelBounds
(c: SGChannel; bounds: Rect): ComponentResult;

FUNCTION SGGetChannelBounds
(c: SGChannel; VAR bounds: Rect):
ComponentResult;

FUNCTION SGSetChannelVolume
(c: SGChannel; volume: Integer):
ComponentResult;

FUNCTION SGGetChannelVolume
(c: SGChannel; VAR volume: Integer):
ComponentResult;

FUNCTION SGSetChannelRefCon
(c: SGChannel; refCon: LongInt):
ComponentResult;

FUNCTION SGGetChannelSampleDescription
(c: SGChannel; sampleDesc: Handle):
ComponentResult;

FUNCTION SGGetChannelTimeScale
(c: SGChannel; VAR scale: TimeScale):
ComponentResult;

FUNCTION SGGetChannelClip (c: SGChannel; VAR theClip: RgnHandle):
ComponentResult;

FUNCTION SGGetChannelClip (c: SGChannel; VAR theClip: RgnHandle):
ComponentResult;

FUNCTION SGGetChannelMatrix
(c: SGChannel; VAR m: MatrixRecord):
ComponentResult;

FUNCTION SGGetChannelMatrix
(c: SGChannel; VAR m: MatrixRecord):
ComponentResult;

Working With Channel Devices

FUNCTION SGGetChannelDeviceList
(c: SGChannel; selectionFlags: LongInt;
VAR list: SGDeviceList): ComponentResult;

FUNCTION SGDisposeDeviceList
(s: SeqGrabComponent; list: SGDeviceList):
ComponentResult;

C H A P T E R 5

Sequence Grabber Components

Summary of Sequence Grabber Components 5-145

FUNCTION SGAppendDeviceListToMenu
(s: SeqGrabComponent; list: SGDeviceList;
mh: MenuHandle): ComponentResult;

FUNCTION SGSetChannelDevice (c: SGChannel; name: StringPtr):
ComponentResult;

Working With Video Channels

FUNCTION SGGetSrcVideoBounds
(c: SGChannel; VAR r: Rect): ComponentResult;

FUNCTION SGSetVideoRect (c: SGChannel; r: Rect): ComponentResult;

FUNCTION SGGetVideoRect (c: SGChannel; VAR r: Rect): ComponentResult;

FUNCTION SGSetVideoCompressorType
(c: SGChannel; compressorType: OSType):
ComponentResult;

FUNCTION SGGetVideoCompressorType
(c: SGChannel; VAR compressorType: OSType):
ComponentResult;

FUNCTION SGSetVideoCompressor
(c: SGChannel; depth: Integer;
compressor: CompressorComponent;
spatialQuality: CodecQ;
temporalQuality: CodecQ;
keyFrameRate: LongInt): ComponentResult;

FUNCTION SGGetVideoCompressor
(c: SGChannel; VAR depth: Integer;
VAR compressor: CompressorComponent;
VAR spatialQuality: CodecQ;
VAR temporalQuality: CodecQ;
VAR keyFrameRate: LongInt): ComponentResult;

FUNCTION SGSetVideoDigitizerComponent
(c: SGChannel; vdig: ComponentInstance):
ComponentResult;

FUNCTION SGGetVideoDigitizerComponent
(c: SGChannel): ComponentInstance;

FUNCTION SGVideoDigitizerChanged
(c: SGChannel): ComponentResult;

FUNCTION SGSetCompressBuffer
(c: SGChannel; depth: Integer;
compressSize: Rect): ComponentResult;

FUNCTION SGGetCompressBuffer
(c: SGChannel; VAR depth: Integer;
VAR compressSize: Rect): ComponentResult;

C H A P T E R 5

Sequence Grabber Components

5-146 Summary of Sequence Grabber Components

FUNCTION SGSetFrameRate (c: SGChannel;
frameRate: Fixed): ComponentResult;

FUNCTION SGGetFrameRate (c: SGChannel;
VAR frameRate: Fixed): ComponentResult;

FUNCTION SGSetUseScreenBuffer
(c: SGChannel; useScreenBuffer: Boolean):
ComponentResult;

FUNCTION SGGetUseScreenBuffer
(c: SGChannel; VAR useScreenBuffer: Boolean):
ComponentResult;

Working With Sound Channels

FUNCTION SGSetSoundInputDriver
(c: SGChannel; driverName: Str255):
ComponentResult;

FUNCTION SGGetSoundInputDriver
(c: SGChannel): LongInt;

FUNCTION SGSoundInputDriverChanged
(c: SGChannel): ComponentResult;

FUNCTION SGSetSoundRecordChunkSize
(c: SGChannel; seconds: LongInt):
ComponentResult;

FUNCTION SGGetSoundRecordChunkSize
(c: SGChannel): LongInt;

FUNCTION SGSetSoundInputRate
(c: SGChannel; rate: Fixed): ComponentResult;

FUNCTION SGGetSoundInputRate
(c: SGChannel): Fixed;

FUNCTION SGSetSoundInputParameters
(c: SGChannel; sampleSize: Integer;
numChannels: Integer;
compressionType: OSType): ComponentResult;

FUNCTION SGGetSoundInputParameters
(c: SGChannel; VAR sampleSize: Integer;
VAR numChannels: Integer;
VAR compressionType: OSType): ComponentResult;

Video Channel Callback Routines

FUNCTION SGSetVideoBottlenecks
(c: SGChannel; VAR vb: VideoBottles):
ComponentResult;

C H A P T E R 5

Sequence Grabber Components

Summary of Sequence Grabber Components 5-147

FUNCTION SGGetVideoBottlenecks
(c: SGChannel; VAR vb: VideoBottles):
ComponentResult;

Utility Routines for Video Channel Callback Functions

FUNCTION SGGetBufferInfo (c: SGChannel; bufferNum: Integer;
VAR bufferPM: PixMapHandle;
VAR bufferRect: Rect;
VAR compressBuffer: GWorldPtr;
VAR compressBufferRect: Rect): ComponentResult;

FUNCTION SGGrabFrame (c: SGChannel; bufferNum: Integer):
ComponentResult;

FUNCTION SGGrabFrameComplete
(c: SGChannel; bufferNum: Integer;
VAR done: Boolean): ComponentResult;

FUNCTION SGDisplayFrame (c: SGChannel; bufferNum: Integer;
mp: MatrixRecord; clipRgn: RgnHandle):
ComponentResult;

FUNCTION SGCompressFrame (c: SGChannel; bufferNum: Integer):
ComponentResult;

FUNCTION SGCompressFrameComplete
(c: SGChannel; bufferNum: Integer;
VAR done: Boolean; VAR ci: SGCompressInfo):
ComponentResult;

FUNCTION SGAddFrame (c: SGChannel; bufferNum: Integer;
atTime: TimeValue; scale: TimeScale;
ci: SGCompressInfo): ComponentResult;

FUNCTION SGTransferFrameForCompress
(c: SGChannel; bufferNum: Integer;
mp: MatrixRecord; clipRgn: RgnHandle):
ComponentResult;

FUNCTION SGGrabCompressComplete
(c: SGChannel; VAR done: Boolean;
VAR ci: SGCompressInfo; VAR tr: TimeRecord):
ComponentResult;

FUNCTION SGDisplayCompress (c: SGChannel; dataPtr: Ptr;
desc: ImageDescriptionHandle;
VAR mp: MatrixRecord;
clipRgn: RgnHandle): ComponentResult;

C H A P T E R 5

Sequence Grabber Components

5-148 Summary of Sequence Grabber Components

Application-Defined Routines

FUNCTION MyGrabFunction (c: SGChannel; bufferNum: Integer;
refCon: LongInt): ComponentResult;

FUNCTION MyGrabCompleteFunction
(c: SGChannel; bufferNum: Integer;
VAR done: Boolean; refCon: LongInt):
ComponentResult;

FUNCTION MyDisplayFunction (c: SGChannel; bufferNum: Integer;
mp: MatrixRecord; clipRgn: RgnHandle;
refCon: LongInt): ComponentResult;

FUNCTION MyCompressFunction
(c: SGChannel; bufferNum: Integer;
refCon: LongInt): ComponentResult;

FUNCTION MyCompressCompleteFunction
(c: SGChannel; bufferNum: Integer;
VAR done: Boolean; VAR ci: SGCompressInfo;
refCon: LongInt): ComponentResult;

FUNCTION MyAddFrameFunction
(c: SGChannel; bufferNum: Integer;
atTime: TimeValue; scale: TimeScale;
ci: SGCompressInfo; refCon: LongInt):
ComponentResult;

FUNCTION MyTransferFrameFunction
(c: SGChannel; bufferNum: Integer;
mp: MatrixRecord; clipRgn: RgnHandle;
refCon: LongInt): ComponentResult;

FUNCTION MyGrabCompressCompleteFunction
(c: SGChannel; VAR done: Boolean;
VAR ci: SGCompressInfo; VAR tr: TimeRecord;
refCon: LongInt): ComponentResult;

FUNCTION MyDisplayCompressFunction
(c: SGChannel; dataPtr; Ptr;
desc: ImageDescriptionHandle;
VAR mp: MatrixRecord; clipRgn: RgnHandle;
refCon: LongInt): ComponentResult;

FUNCTION MyDataFunction (c: SGChannel; p: Ptr; len: LongInt;
VAR offset: LongInt; chRefCon: LongInt;
time: TimeValue; writeType: Integer;
refCon: LongInt): OSErr;

FUNCTION MyModalFilter (theDialog: DialogPtr;
VAR theEvent: EventRecord;
VAR ItemHit: Integer; refCon: LongInt): OSErr;

C H A P T E R 5

Sequence Grabber Components

Summary of Sequence Grabber Components 5-149

Result Codes
noDeviceForChannel –9400 Channel component cannot find its device
grabTimeComplete –9401 Time limit for record operation has expired
cantDoThatInCurrentMode –9402 Request invalid in current mode
notEnoughMemoryToGrab –9403 Insufficient memory for record operation
notEnoughDiskSpaceToGrab –9404 Insufficient disk space for record operation
couldntGetRequiredComponent –9405 Component not found
badSGChannel –9406 Invalid channel specified
seqGrabInfoNotAvailable –9407 Sequence grabber does not have this information at

this time
deviceCantMeetRequest –9408 Device cannot support grabber

Contents 6-1

C H A P T E R 6

Sequence Grabber Channel

Contents

Components

About Sequence Grabber Channel Components 6-3

Creating Sequence Grabber Channel Components 6-5

Component Type and Subtype Values 6-6

Required Functions 6-6

Component Manager Request Codes 6-7

A Sample Sequence Grabber Channel Component 6-10

Implementing the Required Component Functions 6-10

Initializing the Sequence Grabber Channel Component 6-15

Setting and Retrieving the Channel State 6-16

Managing Spatial Properties 6-17

Controlling Previewing and Recording Operations 6-20

Managing Channel Devices 6-24

Utility Functions for Recording Image Data 6-24

Providing Media-Specific Functions 6-28

Managing the Settings Dialog Box 6-29

Displaying Channel Information in the Settings Dialog Box 6-31

Using Sequence Grabber Channel Components 6-33

Previewing 6-33

Recording 6-34

Working With Callback Functions 6-35

Using Callback Functions for Video Channel Components 6-35

Using Utility Functions for Video Channel Component Callback
Functions 6-36

Sequence Grabber Channel Components Reference 6-37

Functions 6-37

Configuring Sequence Grabber Channel Components 6-38

Controlling Sequence Grabber Channel Components 6-39

C H A P T E R 6

6-2 Contents

Configuration Functions for All Channel Components 6-46

Working With Channel Devices 6-58

Configuration Functions for Video Channel Components 6-61

Configuration Functions for Sound Channel Components 6-77

Utility Functions for Sequence Grabber Channel Components 6-84

Summary of Sequence Grabber Channel Components 6-91

C Summary 6-91

Constants 6-91

Data Types 6-94

Functions 6-94

Pascal Summary 6-99

Constants 6-99

Data Types 6-101

Routines 6-102

Result Codes 6-107

C H A P T E R 6

About Sequence Grabber Channel Components 6-3

Sequence Grabber Channel Components

This chapter discusses sequence grabber channel components. Sequence grabber
channel components manipulate captured data for sequence grabber components.

This chapter has been divided into the following sections:

■ “About Sequence Grabber Channel Components” presents general information about
sequence grabber channel components and their relationship to sequence grabber
components.

■ “Creating Sequence Grabber Channel Components” lists issues you should consider
when developing a sequence grabber component, including required functions and
the Component Manager result codes that you should use. It then provides a sample
program that illustrates how to implement a sequence grabber channel component.

■ “Using Sequence Grabber Channel Components” gives details on how sequence
grabber components can use channel components to play captured data for the user
or to save captured data in a QuickTime movie.

■ “Sequence Grabber Channel Components Reference” describes the data structures
and functions associated with the Apple-supplied sequence grabber channel
component.

■ “Summary of Sequence Grabber Channel Components” presents a summary of
sequence grabber channel components in C and in Pascal.

If you are writing an application that uses the sequence grabber component, you do not

need to read this chapter. Read the chapter “Sequence Grabber Components” in this

book for a description of the services provided by sequence grabber components. If you

are writing a sequence grabber channel component, you should read this chapter and

read the earlier chapter that discusses sequence grabber components.

Note

Information in this chapter is presented from the perspective of
a developer of a sequence grabber channel component. If you are
developing a sequence grabber channel component, your component
must support the interfaces described in this chapter. ◆

About Sequence Grabber Channel Components

Sequence grabber components allow applications to obtain digitized data from sources

that are external to a Macintosh computer. For example, applications can use a sequence

grabber component to record video data from a video digitizer or a video disc player.

The application can then request that the sequence grabber component store the

captured video data in a QuickTime movie. In this manner users can acquire movie data

from various sources. Applications can also use sequence grabber components to obtain

and display data from external sources, without saving the captured data in a movie. For

more information about sequence grabbers, see the chapter “Sequence Grabber

Components” in this book.

C H A P T E R 6

Sequence Grabber Channel Components

6-4 About Sequence Grabber Channel Components

Sequence grabber components use sequence grabber channel components (or, simply,

channel components) to obtain data from audio- or video-digitizing equipment. These

components isolate the sequence grabber component from the details of working with

the various types of data that can be collected. The functionality provided by a sequence

grabber component depends upon the services provided by sequence grabber channel

components. The channel components, in turn, may use other components to interact

with the digitizing equipment. For example, the video channel component supplied by

Apple uses a video digitizer component. Figure 6-1 shows the relationship between these

components and an application.

Figure 6-1 Relationships of an application, a sequence grabber component, and channel
components

C H A P T E R 6

Sequence Grabber Channel Components

Creating Sequence Grabber Channel Components 6-5

Sequence grabber panel components augment the capabilities of sequence grabber

components and sequence grabber channel components by allowing sequence grabbers

to obtain configuration information from the user for a particular digitizing source.

Sequence grabbers present a settings dialog box to the user whenever an application

calls the SGSettingsDialog function (see the chapter “Sequence Grabber

Components” for more information about this sequence grabber function). Applications

never call sequence grabber panel components directly; application developers use panel

components only by calling the sequence grabber component.

Note that sequence grabber channel components may support all of the functions that

are supported by sequence grabber panel components. For example, sequence grabbers

obtain settings information from a channel component by calling the channel

component’s SGPanelGetSettings function. See the chapter “Sequence Grabber

Panel Components” in this book for more information about the sequence grabber

configuration dialog box; the relationship between sequence grabbers, sequence grabber

channels, and sequence grabber panels; and the functional interface supported by

sequence grabber panel components.

If you are developing digitizing equipment and you want to allow applications to use

the services of your equipment with a sequence grabber component, you should create

an appropriate video digitizer component or sound input device driver. See the chapter

“Video Digitizer Components” in this book for a description of video digitizer

components. See Inside Macintosh: More Macintosh Toolbox for information about sound

input device drivers.

If you are developing equipment that provides a new type of data to QuickTime, you

should develop a new sequence grabber channel component. See the next section,

“Creating Sequence Grabber Channel Components,” for more information about

creating sequence grabber channel components.

Creating Sequence Grabber Channel Components

Sequence grabber channel components are the most convenient mechanism for

extending the ability of the sequence grabber component to accommodate new types of

source data. For example, if you are developing special-purpose hardware that generates

a new kind of data, you should create a channel component for that kind of data.

Refer to the chapter “Component Manager” in Inside Macintosh: More Macintosh Toolbox
for a general discussion of how to create a component.

This section discusses issues you should consider when creating a sequence grabber

channel component. It also provides a sample program for the implementation of a

sequence grabber channel component.

C H A P T E R 6

Sequence Grabber Channel Components

6-6 Creating Sequence Grabber Channel Components

Component Type and Subtype Values
Apple has defined a component type value for sequence grabber channel

components—that type value is 'sgch'. You can use the following constant to specify

this type value:

#define SeqGrabChannelType 'sgch';

Sequence grabber channel components use their component subtype value to indicate

the media type created by the component. For example, a channel component that works

with video data would have a subtype of 'vide' (this value is defined by the Movie

Toolbox’s VideoMediaType constant).

Required Functions
At a minimum, your channel component should support the following functions:

In addition, if your channel component supports visual data, it should support at least

the following functions:

SGGetChannelBounds

SGSetChannelBounds

SGSetGWorld

If your channel component supports audio data, it should support the following

functions as well:

SGGetChannelVolume

SGSetChannelVolume

The remaining functions described in this section are optional. However, your

channel component should support as many of these functions as possible, so that your

component is more useful to applications and users.

SGGetChannelInfo SGRelease

SGGetChannelUsage SGSetChannelRefCon

SGGetDataRate SGSetChannelUsage

SGIdle SGStartPreview

SGInitChannel SGStartRecord

SGPause SGStop

SGPrepare SGWriteSamples

C H A P T E R 6

Sequence Grabber Channel Components

Creating Sequence Grabber Channel Components 6-7

Component Manager Request Codes
As with all components, your channel component receives its requests from the

Component Manager in the form of request codes. Apple strongly recommends that you

fully support all of the Component Manager’s request codes in your channel

component—especially the target request. Developers will want to extend the

capabilities of the sequence grabber channel components. The Component Manager’s

CaptureComponent function, which uses the target request, is the most convenient

mechanism for obtaining the services of a component and then extending those services.

If your channel component does not support the target request, then it cannot be used by

applications or other components in this manner. You can use the following constants to

refer to the request codes for each of the functions that your channel component must

support.

/* basic sequence grabber channel component selectors */

kSGSetGWorldSelect = 0x4; /* SetGWorld */

kSGStartPreviewSelect = 0x10; /* SGStartPreview */

kSGStartRecordSelect = 0x11; /* SGStartRecord */

kSGIdleSelect = 0x12; /* SGIdle */

kSGStopSelect = 0x13; /* SGStop */

kSGPauseSelect = 0x14; /* SGPause */

kSGPrepareSelect = 0x15; /* SGPrepare */

kSGReleaseSelect = 0x16; /* SGRelease */

kSGUpdateSelect = 0x27; /* SGUpdate */

/* selectors for common channel configuration functions */

kSGCSetChannelUsageSelect = 0x80; /* SGCSetChannelUsage */

kSGCGetChannelUsageSelect = 0x81; /* SGCGetChannelUsage */

kSGCSetChannelBoundsSelect = 0x82; /* SGCSetChannelBounds */

kSGCGetChannelBoundsSelect = 0x83; /* SGCGetChannelBounds */

kSGCSetChannelVolumeSelect = 0x84; /* SGCSetChannelVolume */

kSGCGetChannelVolumeSelect = 0x85; /* SGCGetChannelVolume */

kSGCGetChannelInfoSelect = 0x86; /* SGCGetChannelInfo */

kSGCSetChannelPlayFlagsSelect = 0x87; /* SGCSetChannelPlayFlags */

kSGCGetChannelPlayFlagsSelect = 0x88; /* SGCGetChannelPlayFlags */

kSGCSetChannelMaxFramesSelect = 0x89; /* SGCSetChannelMaxFrames */

kSGCGetChannelMaxFramesSelect = 0x8a; /* SGCGetChannelMaxFrames */

kSGCSetChannelRefConSelect = 0x8b; /* SGCSetChannelRefCon */

kSGCSetChannelClipSelect = 0x8C; /* SGCSetChannelClip */

kSGCGetChannelClipSelect = 0x8D; /* SGCGetChannelClip */

C H A P T E R 6

Sequence Grabber Channel Components

6-8 Creating Sequence Grabber Channel Components

kSGCGetChannelSampleDescriptionSelect = 0x8E;

/* SGCGetChannelSampleDescription */

kSGCGetChannelDeviceListSelect = 0x8F; /* SGCGetChannelDeviceList */

kSGCSetChannelDeviceSelect = 0x90; /* SGCSetChannelDevice */

kSGCSetChannelMatrixSelect = 0x91; /* SGCSetChannelMatrix */

kSGCGetChannelMatrixSelect = 0x92; /* SGCGetChannelMatrix */

kSGCGetChannelTimeScaleSelect = 0x93; /* SGCGetChannelTimeScale */

/* selectors for video channel configuration functions */

kSGCGetSrcVideoBoundsSelect = 0x100; /* SGCGetSrcVideoBounds */

kSGCSetVideoRectSelect = 0x101; /* SGCSetVideoRect */

kSGCGetVideoRectSelect = 0x102; /* SGCGetVideoRect */

kSGCGetVideoCompressorTypeSelect = 0x103;

/* SGCGetVideoCompressorType */

kSGCSetVideoCompressorTypeSelect = 0x104;

/* SGCSetVideoCompressorType */

kSGCSetVideoCompressorSelect = 0x105; /* SGCSetVideoCompressor */

kSGCGetVideoCompressorSelect = 0x106; /* SGCGetVideoCompressor */

kSGCGetVideoDigitizerComponentSelect= 0x107;

/* SGCGetVideoDigitizerComponent */

kSGCSetVideoDigitizerComponentSelect= 0x108;

/* SGCSetVideoDigitizerComponent */

kSGCVideoDigitizerChangedSelect = 0x109;

/* SGCVideoDigitizerChanged */

kSGCSetVideoBottlenecksSelect = 0x10a;

/* SGCSetVideoBottlenecks */

kSGCGetVideoBottlenecksSelect = 0x10b;

/* SGCGetVideoBottlenecks */

kSGCGrabFrameSelect = 0x10c; /* SGCGrabFrame */

kSGCGrabFrameCompleteSelect = 0x10d;

/* SGCGrabFrameComplete */

kSGCDisplayFrameSelect = 0x10e; /* SGCDisplayFrame */

kSGCCompressFrameSelect = 0x10f; /* SGCCompressFrame */

kSGCCompressFrameCompleteSelect = 0x110;

/* SGCCompressFrameComplete */

kSGCAddFrameSelect = 0x111; /* SGCAddFrame */

kSGCTransferFrameForCompressSelect = 0x112;

/* SGCTransferFrameForCompress */

C H A P T E R 6

Sequence Grabber Channel Components

Creating Sequence Grabber Channel Components 6-9

kSGCSetCompressBufferSelect = 0x113; /* SGCSetCompressBuffer */

kSGCGetCompressBufferSelect = 0x114; /* SGCGetCompressBuffer */

kSGCGetBufferInfoSelect = 0x115; /* SGCGetBufferInfo */

kSGCSetUseScreenBufferSelect = 0x116; /* SGCSetUseScreenBuffer */

kSGCGetUseScreenBufferSelect = 0x117; /* SGCGetUseScreenBuffer */

kSGCGrabCompressCompleteSelect = 0x118;

/* SGCGrabCompressComplete */

kSGCDisplayCompressSelect = 0x119; /* SGCDisplayCompress */

kSGCSetFrameRateSelect = 0x11A; /* SGCSetFrameRate */

kSGCGetFrameRateSelect = 0x11B; /* SGCGetFrameRate */

/* selectors for sound channel configuration functions */

kSGCSetSoundInputDriverSelect = 0x100; /* SGCSetSoundInputDriver */

kSGCGetSoundInputDriverSelect = 0x101; /* SGCGetSoundInputDriver */

kSGCSoundInputDriverChangedSelect

= 0x102; /* SGCSoundInputDriverChanged */

kSGCSetSoundRecordChunkSizeSelect

= 0x103;

/* SGCSetSoundRecordChunkSize */

kSGCGetSoundRecordChunkSizeSelect = 0x104;

/* SGCGetSoundRecordChunkSize */

kSGCSetSoundInputRateSelect = 0x105; /* SGCSetSoundInputRate */

kSGCGetSoundInputRateSelect = 0x106; /* SGCGetSoundInputRate */

kSGCSetSoundInputParametersSelect = 0x107;

/* SGCSetSoundInputParameters */

kSGCGetSoundInputParametersSelect = 0x108;

/* SGCGetSoundInputParameters */

/* selectors for channel control functions */

kSGCInitChannelSelect = 0x180; /* SGCInitChannel */

kSGCWriteSamplesSelect = 0x181; /* SGCWriteSamples */

kSGCGetDataRateSelect = 0x182; /* SGCDataRate */

kSGCAlignChannelRectSelect = 0x183; /* SGAlignChannelRect */

};

C H A P T E R 6

Sequence Grabber Channel Components

6-10 Creating Sequence Grabber Channel Components

A Sample Sequence Grabber Channel Component
This section describes a sample sequence grabber channel component for PICT image

data.

Implementing the Required Component Functions

Listing 6-1 supplies the component dispatchers for the sequence grabber channel

component together with the required functions.

Listing 6-1 Setting up global variables and implementing required functions

#define kMediaTimeScale 600

typedef struct {

ComponentInstance self;

SeqGrabComponent grabber;

long usage;

Boolean paused;

CGrafPtr destPort;

GDHandle destGD;

CGrafPort tempPort;

MatrixRecord displayMatrix;

Rect destRect;

Rect srcRect;

RgnHandle clip;

Boolean inPreview;

Boolean inRecord;

TimeBase base;

long bytesWritten;

Boolean showTickCount;

long saveUsage;

} SGPictGlobalsRecord, *SGPictGlobals;

pascal ComponentResult SGPICTDispatcher

(ComponentParameters *params, Handle storage)

{

OSErr err = badComponentSelector;

ComponentFunction componentProc = 0;

C H A P T E R 6

Sequence Grabber Channel Components

Creating Sequence Grabber Channel Components 6-11

switch (params->what) {

case kComponentOpenSelect:

componentProc = SGPictOpen; break;

case kComponentCloseSelect:

componentProc = SGPictClose; break;

case kComponentCanDoSelect:

componentProc = SGPictCanDo; break;

case kComponentVersionSelect:

componentProc = SGPictVersion; break;

case kSGSetGWorldSelect:

componentProc = SGPictSetGWorld; break;

case kSGStartPreviewSelect:

componentProc = SGPictStartPreview; break;

case kSGStartRecordSelect:

componentProc = SGPictStartRecord; break;

case kSGIdleSelect:

componentProc = SGPictIdle; break;

case kSGStopSelect:

componentProc = SGPictStop; break;

case kSGPauseSelect:

componentProc = SGPictPause; break;

case kSGPrepareSelect:

componentProc = SGPictPrepare; break;

case kSGReleaseSelect:

componentProc = SGPictRelease; break;

case kSGCSetChannelUsageSelect:

componentProc = SGPictSetChannelUsage; break;

case kSGCGetChannelUsageSelect:

componentProc = SGPictGetChannelUsage; break;

case kSGCSetChannelBoundsSelect:

componentProc = SGPictSetChannelBounds; break;

case kSGCGetChannelBoundsSelect:

componentProc = SGPictGetChannelBounds; break;

case kSGCGetChannelInfoSelect:

componentProc = SGPictGetChannelInfo; break;

case kSGCSetChannelMatrixSelect:

componentProc = SGPictSetChannelMatrix; break;

case kSGCGetChannelMatrixSelect:

componentProc = SGPictGetChannelMatrix; break;

case kSGCSetChannelClipSelect:

componentProc = SGPictSetChannelClip; break;

case kSGCGetChannelClipSelect:

componentProc = SGPictGetChannelClip; break;

C H A P T E R 6

Sequence Grabber Channel Components

6-12 Creating Sequence Grabber Channel Components

case kSGCGetChannelSampleDescriptionSelect:

componentProc = SGPictGetChannelSampleDescription;

 break;

case kSGCGetChannelDeviceListSelect:

componentProc = SGPictGetChannelDeviceList; break;

case kSGCSetChannelDeviceSelect:

componentProc = SGPictSetChannelDevice; break;

case kSGCGetChannelTimeScaleSelect:

componentProc = SGPictGetChannelTimeScale; break;

case kSGCInitChannelSelect:

componentProc = SGPictInitChannel; break;

case kSGCWriteSamplesSelect:

componentProc = SGPictWriteSamples; break;

case kSGCGetDataRateSelect:

componentProc = SGPictGetDataRate; break;

case kSGCPanelGetDitlSelect:

componentProc = SGPictPanelGetDitl; break;

case kSGCPanelInstallSelect:

componentProc = SGPictPanelInstall; break;

case kSGCPanelEventSelect:

componentProc = SGPictPanelEvent; break;

case kSGCPanelRemoveSelect:

componentProc = SGPictPanelRemove; break;

case kSGCPanelGetSettingsSelect:

componentProc = SGPictPanelGetSettings; break;

case kSGCPanelSetSettingsSelect:

componentProc = SGPictPanelSetSettings; break;

case 0x0100:

componentProc = SGPictSetShowTickCount; break;

case 0x0101:

componentProc = SGPictGetShowTickCount; break;

}

if (componentProc)

err = CallComponentFunctionWithStorage (storage, params,

 componentProc);

return err;

}

pascal ComponentResult SGPictCanDo (SGPictGlobals store,

short ftnNumber)

{

switch (ftnNumber) {

C H A P T E R 6

Sequence Grabber Channel Components

Creating Sequence Grabber Channel Components 6-13

case kComponentOpenSelect:

case kComponentCloseSelect:

case kComponentCanDoSelect:

case kComponentVersionSelect:

case kSGSetGWorldSelect:

case kSGStartPreviewSelect:

case kSGStartRecordSelect:

case kSGIdleSelect:

case kSGStopSelect:

case kSGPauseSelect:

case kSGPrepareSelect:

case kSGReleaseSelect:

case kSGCSetChannelUsageSelect:

case kSGCGetChannelUsageSelect:

case kSGCSetChannelBoundsSelect:

case kSGCGetChannelBoundsSelect:

case kSGCGetChannelInfoSelect:

case kSGCSetChannelMatrixSelect:

case kSGCGetChannelMatrixSelect:

case kSGCSetChannelClipSelect:

case kSGCGetChannelClipSelect:

case kSGCGetChannelSampleDescriptionSelect:

case kSGCGetChannelDeviceListSelect:

case kSGCSetChannelDeviceSelect:

case kSGCGetChannelTimeScaleSelect:

case kSGCInitChannelSelect:

case kSGCWriteSamplesSelect:

case kSGCGetDataRateSelect:

case kSGCPanelGetDitlSelect:

case kSGCPanelInstallSelect:

case kSGCPanelEventSelect:

case kSGCPanelRemoveSelect:

case kSGCPanelGetSettingsSelect:

case kSGCPanelSetSettingsSelect:

/* private component functions */

case 0x0100:

case 0x0101:

return true;

C H A P T E R 6

Sequence Grabber Channel Components

6-14 Creating Sequence Grabber Channel Components

default:

return false;

}

}

pascal ComponentResult SGPictVersion (SGPictGlobals store)

{

return 0x00020001;

}

pascal ComponentResult SGPictOpen (SGPictGlobals store,

 ComponentInstance self)

{

OSErr err;

GrafPtr savePort;

/* allocate global variables */

store =

(SGPictGlobals)NewPtrClear(sizeof(SGPictGlobalsRecord));

if (err = MemError()) goto bail;

/* create a temporary port for drawing during the idle

function */

GetPort (&savePort);

OpenCPort (&store->tempPort);

SetPort ((GrafPtr)&store->tempPort);

PortSize (4096, 4096);

SetRectRgn (store->tempPort.visRgn, 0, 0, 4096, 4096);

ClipRgn (store->tempPort.visRgn);

SetPort (savePort);

store->self = self;

store->showTickCount = false;

SetComponentInstanceStorage (self, (Handle)store);

bail:

return err;

}

C H A P T E R 6

Sequence Grabber Channel Components

Creating Sequence Grabber Channel Components 6-15

pascal ComponentResult SGPictClose (SGPictGlobals store,

 ComponentInstance self)

{

/* disposal operations */

if (store) {

if (store->clip) DisposeRgn(store->clip);

CloseCPort(&store->tempPort);

DisposPtr((Ptr)store);

}

return noErr;

}

Initializing the Sequence Grabber Channel Component

To initialize the channel component, the sequence grabber component calls the

SGInitChannel function, which is described on page 6-38.

The code in Listing 6-2 initializes channel variables. The grabber component calls the

SGPictInitChannel function to initialize a sequence grabber channel component.

The SGPictInitChannel function calls QuickDraw’s SetRect routine and

QuickTime’s SetIdentityMatrix function to specify the size of the area (around a

mouse-down event) in which the sequence grabber component will capture PICT

images. For more on the SetRect routine, see the chapter “Basic QuickDraw” in Inside
Macintosh: Imaging. For details on the SetIdentityMatrix function, see the chapter

“Movie Toolbox” in Inside Macintosh: QuickTime.

Listing 6-2 Initializing the sequence grabber channel component

pascal ComponentResult SGPictInitChannel (SGPictGlobals store,

 SeqGrabComponent owner)

{

/* initialize any variables here */

SetRect(&store->srcRect, 0, 0, 160, 120);/* rectangle in which

 capture occurs */

SetIdentityMatrix (&store->displayMatrix);

store->grabber = owner;

SGGetTimeBase (owner, &store->base);

return noErr;

}

C H A P T E R 6

Sequence Grabber Channel Components

6-16 Creating Sequence Grabber Channel Components

Setting and Retrieving the Channel State

Listing 6-3 supplies configuration functions that set the usage parameters and storage for

the channel component. (See the descriptions of the SGSetChannelUsage and

SGGetChannelUsage functions on page 6-48 and page 6-49, respectively, for details.)

The sample code illustrates how to retrieve usage information. (See the description of the

SGGetChannelInfo function on page 6-49 for details.) In this case, you indicate that

the sequence grabber component has spatial boundaries by using the

seqGrabHasBounds constant in the channelInfo parameter.

Listing 6-3 Determining usage parameters and getting usage data

pascal ComponentResult SGPictSetChannelUsage(SGPictGlobals store,

 long usage)

{

/* remember usage */

store->usage = usage;

return noErr;

}

pascal ComponentResult SGPictGetChannelUsage(SGPictGlobals store,

long *usage)

{

/* return usage */

*usage = store->usage;

return noErr;

}

pascal ComponentResult SGPictGetChannelInfo (SGPictGlobals store,

 long *channelInfo)

{

/* indicate that you have spatial boundaries */

*channelInfo = seqGrabHasBounds;

return noErr;

}

C H A P T E R 6

Sequence Grabber Channel Components

Creating Sequence Grabber Channel Components 6-17

Managing Spatial Properties

To set up an area in which the channel component displays image data, the sequence

grabber should perform these tasks:

■ Assign the destination graphics world and graphics device for the display of the
captured image with the SGSetGWorld function (described on page 6-39).

■ Specify a display transformation matrix for a video channel using the
SGSetChannelMatrix function, which is described on page 6-57. Your function
determines the matrix that is being set, validates it, and updates the matrix and
destination rectangle. Your channel uses this matrix to transform its video image into
the destination window.

■ Obtain the channel’s display transformation matrix by calling the
SGGetChannelMatrix function, which is described on page 6-58.

■ Specify the channel’s display boundary rectangle with the SGSetChannelBounds
function, which is described on page 6-63. The display boundary rectangle defines the
destination for data from this channel and adjusts the channel matrix.

■ Determine the channel’s display boundary rectangle with the SGGetChannelBounds
function (described on page 6-63).

■ Dispose of the old clipping region and apply a new clipping region to the channel’s
display region using the SGSetChannelClip function, which is described on
page 6-56.

■ Retrieve the new clipping region by calling the SGGetChannelClip function
(described on page 6-56).

The code in Listing 6-4 provides an example of how to manage the spatial characteristics

of the area in which the channel component displays PICT image data.

Listing 6-4 Managing spatial characteristics

pascal ComponentResult SGPictSetGWorld (SGPictGlobals store,

 CGrafPtr gp, GDHandle gd)

{

/* remember the destination graphics world */

store->destPort = gp;

store->destGD = gd;

return noErr;

}

C H A P T E R 6

Sequence Grabber Channel Components

6-18 Creating Sequence Grabber Channel Components

pascal ComponentResult SGPictSetChannelMatrix

(SGPictGlobals store, const MatrixRecord *m)

{

OSErr err = noErr;

MatrixRecord mat;

short matType;

/* determine the matrix being set */

if (m)

mat = *m;

else

SetIdentityMatrix (&mat);

/* validate it */

matType = GetMatrixType (&mat);

if ((mat.matrix[0][0] < 0) || (mat.matrix[1][1] < 0) ||

(matType >= linearMatrixType))

return paramErr;

/* update the matrix and destination rectangle */

store->displayMatrix = mat;

store->destRect = store->srcRect;

TransformRect (&mat, &store->destRect, nil);

return err;

}

pascal ComponentResult SGPictGetChannelMatrix

(SGPictGlobals store, MatrixRecord *m)

{

/* return current matrix */

*m = store->displayMatrix;

return noErr;

}

pascal ComponentResult SGPictSetChannelBounds

(SGPictGlobals store, const Rect *bounds)

{

/* remember destination rect */

store->destRect = *bounds;

C H A P T E R 6

Sequence Grabber Channel Components

Creating Sequence Grabber Channel Components 6-19

/* recalculate display matrix from it */

RectMatrix (&store->displayMatrix, &store->srcRect,

 &store->destRect);

return noErr;

}

pascal ComponentResult SGPictGetChannelBounds

(SGPictGlobals store, Rect *bounds)

{

/* return current boundaries */

*bounds = store->destRect;

return noErr;

}

pascal ComponentResult SGPictSetChannelClip (SGPictGlobals store,

 RgnHandle theClip)

{

OSErr err = noErr;

/* toss the old channel clipping */

if (store->clip) {

DisposeRgn (store->clip);

store->clip = nil;

}

/* and remember the new one */

if (theClip) {

err = HandToHand ((Handle *)&theClip);

store->clip = theClip;

}

return err;

}

pascal ComponentResult SGPictGetChannelClip

(SGPictGlobals store, RgnHandle *theClip)

{

OSErr err = noErr;

/* return clip, if there is one */

if (*theClip = store->clip)

err = HandToHand ((Handle *)theClip);

return err;

}

C H A P T E R 6

Sequence Grabber Channel Components

6-20 Creating Sequence Grabber Channel Components

Controlling Previewing and Recording Operations

To preview and record image data in the channel component, the code in Listing 6-5

implements these tasks:

■ The SGStartPreview function (described on page 6-40) instructs the channel to
commence processing any source data. In preview mode, the component does not
save any of the data it gathers from its source. Your channel component should
immediately present the data to the user in the appropriate format for the channel’s
configuration and display video data in the destination display region.

■ The SGStartRecord function (described on page 6-41) instructs the channel to begin
recording data from its source. The sequence grabber component stores the collected
data. The channel component should immediately begin recording data.

■ The SGIdle function (described on page 6-42) allows the sequence grabber
component to grant processing time to the channel component. The SGIdle function
permits the processing time for the previewing and recording operations to take place.
In the example shown in Listing 6-5, the work for the channel consists of getting the
current time, adding data to the movie if recording, and showing the preview image if
necessary.

■ The SGStop function (described on page 6-43) stops the channel’s preview and
recording operations.

■ The SGPause function (described on page 6-44) suspends or restarts the channel’s
preview and recording operations.

■ The SGPrepare function (described on page 6-45) has the sequence grabber
component prepare the channel for subsequent preview or record operations.

■ The SGRelease function (described on page 6-46) releases any system resources that
were allocated during preview or recording operations and that remain thereafter.

The code in Listing 6-5 illustrates a channel component’s control of the previewing and

recording of a PICT image.

Listing 6-5 Controlling previewing and recording operations

pascal ComponentResult SGPictStartPreview (SGPictGlobals store)

{

/* into preview mode */

store->inPreview = (store->usage & seqGrabPreview) != 0;

return noErr;

}

pascal ComponentResult SGPictStartRecord (SGPictGlobals store)

{

/* into record mode (also preview, if PlayDuringRecord) */

store->inRecord = (store->usage & seqGrabRecord) != 0;

store->inPreview = (store->usage & seqGrabPlayDuringRecord) !=

C H A P T E R 6

Sequence Grabber Channel Components

Creating Sequence Grabber Channel Components 6-21

0;

return noErr;

}

pascal ComponentResult SGPictIdle (SGPictGlobals store)

{

OSErr err = noErr;

/* this is where the work for preview and record happens */

if (!store->paused && (store->inRecord || store->inPreview)) {

Point mouseLoc;

Rect r;

PicHandle tempPict = nil;

TimeRecord tr;

CGrafPtr savePort;

GDHandle saveGD;

Rect maxR;

GetGWorld (&savePort, &saveGD);

/* get the current time */

GetTimeBaseTime (store->base, kMediaTimeScale, &tr);

/* figure the current area around the mouse

(only on main screen) */

SetGWorld (&store->tempPort, GetMainDevice());

GetMouse (&mouseLoc);

LocalToGlobal (&mouseLoc);

r.top = r.bottom = mouseLoc.v;

r.left = r.right = mouseLoc.h;

InsetRect(&r, -(store->srcRect.right >> 1),

 -(store->srcRect.bottom >> 1));

maxR = (**GetMainDevice()).gdRect;

if (r.left < maxR.left)

 OffsetRect (&r, -r.left + maxR.left, 0);

if (r.top < maxR.top)

 OffsetRect (&r, 0, -r.top + maxR.top);

if (r.right > maxR.right)

 OffsetRect(&r, maxR.right - r.right, 0);

if (r.bottom > maxR.bottom)

 OffsetRect (&r, 0, maxR.bottom - r.bottom);

/* copy the screen into a picture */

tempPict = OpenPicture(&r);

CopyBits ((BitMap *)&store->tempPort.portPixMap,

C H A P T E R 6

Sequence Grabber Channel Components

6-22 Creating Sequence Grabber Channel Components

(BitMap *)&store->tempPort.portPixMap, &r, &r,

 srcCopy, nil);

if (store->showTickCount) {

/* if users want to see ticks, draw them */

Str63 str;

NumToString (TickCount(), str);

/* do some magic positioning */

r.right = r.left + StringWidth(str) + 4;

r.bottom = r.top + 14;

EraseRect (&r);

MoveTo(r.left + 2, r.bottom - 3);

TextSize (12);

DrawString (str);

}

ClosePicture();

/* if recording, add data to movie */

if (store->inRecord) {

long offset;

long pictSize = GetHandleSize ((Handle)tempPict);

HLock ((Handle)tempPict);

err = SGAddMovieData (store->grabber, store->self,

(Ptr)*tempPict, pictSize, &offset, 0,

 tr.value.lo, seqGrabWriteAppend);

store->bytesWritten += pictSize;

}

/* if you need to show the preview image, do that */

if (store->inPreview) {

RgnHandle saveClip;

SetGWorld (store->destPort, store->destGD);

if (store->clip) {

saveClip = NewRgn();

GetClip (saveClip);

SetClip (store->clip);

}

DrawPicture (tempPict, &store->destRect);

if (store->clip) {

SetClip (saveClip);

DisposeRgn (saveClip);

}

}

C H A P T E R 6

Sequence Grabber Channel Components

Creating Sequence Grabber Channel Components 6-23

KillPicture (tempPict);

SetGWorld (savePort, saveGD);

}

return err;

}

pascal ComponentResult SGPictStop (SGPictGlobals store)

{

/* stop all previewing and recording */

store->inRecord = store->inPreview = false;

return noErr;

}

pascal ComponentResult SGPictPause (SGPictGlobals store,

Byte pause)

{

/* pause */

store->paused = pause;

return noErr;

}

pascal ComponentResult SGPictPrepare (SGPictGlobals store,

 Boolean prepareForPreview,

 Boolean prepareForRecord)

{

/* prepare for previewing and recording operations--

all you do here is initialize a variable */

store->bytesWritten = 0;

return noErr;

}

pascal ComponentResult SGPictRelease (SGPictGlobals store)

{

/* no resources to release after previewing or recording */

return noErr;

}

C H A P T E R 6

Sequence Grabber Channel Components

6-24 Creating Sequence Grabber Channel Components

Managing Channel Devices

To manage channel devices such as video digitizers or sound input drivers, you should

■ let the sequence grabber retrieve a list of devices that are valid for the channel using
the SGGetChannelDeviceList function (described on page 6-60)

■ assign an appropriate channel device with the SGSetChannelDevice function
(described on page 6-61)

Listing 6-6 provides examples of these required functions for channel device

management. The SGPictGetChannelDeviceList function obtains a list of devices

associated with the channel component. The SGPictSetChannelDevice function

allows the sequence grabber to specify a channel device. In this code sample, there are no

devices associated with the channel component.

Listing 6-6 Coordinating devices for the channel component

pascal ComponentResult SGPictGetChannelDeviceList

(SGPictGlobals store,

 long selectionFlags,

 SGDeviceList *list)

{

*list = (SGDeviceList) NewHandleClear

(sizeof (SGDeviceListRecord)); /* no devices */

return MemError();

}

pascal ComponentResult SGPictSetChannelDevice

(SGPictGlobals store, StringPtr name)

{

/* you have no devices, so no problem */

return noErr;

}

Utility Functions for Recording Image Data

To record image data, the channel component must allow the sequence grabber to do the

following:

■ Obtain an appropriate time scale with the SGGetChannelTimeScale function
(described on page 6-55).

■ Retrieve the sample description of the image that is to be recorded with the
SGGetChannelSampleDescription function (described on page 6-55).

■ Create a track and media in which to record the sample image by calling the
SGWriteSamples function (described on page 6-43). SGWriteSamples writes the
captured data to a movie file after a record operation.

C H A P T E R 6

Sequence Grabber Channel Components

Creating Sequence Grabber Channel Components 6-25

■ Obtain references from the sequence grabber and add them to the newly created
media using the SGGetNextFrameReference function (described on page 6-88) so
that the channel component can retrieve the sample references it stored.

■ Determine how many bytes of captured data the channel is collecting each second
using the SGGetDataRate function (described on page 6-54).

The code in Listing 6-7 shows how the channel component uses these utility functions to

record PICT image data.

Listing 6-7 Recording image data

pascal ComponentResult SGPictGetChannelTimeScale

(SGPictGlobals store, TimeScale *scale)

{

scale = kMediaTimeScale; / a reasonable default time scale */

return noErr;

}

pascal ComponentResult SGPictGetChannelSampleDescription

 (SGPictGlobals store, Handle sampleDesc)

{

OSErr err;

SampleDescriptionPtr sdp;

SetHandleSize (sampleDesc, sizeof(SampleDescription));

if (err = MemError()) goto bail;

/* make up a minimal sample description */

sdp = (SampleDescriptionPtr)*sampleDesc;

sdp->descSize = sizeof(SampleDescription);

sdp->dataFormat = 'PICT';

sdp->resvd1 = 0;

sdp->resvd2 = 0;

sdp->dataRefIndex = 0;

bail:

return err;

}

pascal ComponentResult SGPictWriteSamples (SGPictGlobals store,

 Movie m, AliasHandle theFile)

{

OSErr err = 0;

Track pictT;

Media pictM;

C H A P T E R 6

Sequence Grabber Channel Components

6-26 Creating Sequence Grabber Channel Components

long i;

MatrixRecord aMatrix;

Rect from, to;

seqGrabFrameInfo fi;

TimeRecord tr;

TimeValue mediaDuration;

SampleDescriptionHandle sampleDesc = 0;

/* after SGStop, this function creates the track and media */

if (!(store->usage & seqGrabRecord))

return err;

/* get the sample description */

sampleDesc = (SampleDescriptionHandle)NewHandle(4);

if (err = MemError()) goto bail;

if (err = SGGetChannelSampleDescription (store->self,

 (Handle)sampleDesc)) goto bail;

/* figure out the track matrix */

SetRect (&from, 0, 0, store->srcRect.right,

 store->srcRect.bottom);

to = from;

TransformRect (&store->displayMatrix, &to, nil);

/* create the track and media */

pictT = NewMovieTrack (m, (long)from.right << 16,

 (long)from.bottom << 16, 0);

pictM = NewTrackMedia (pictT, 'PICT', kMediaTimeScale,

 (Handle)theFile, rAliasType);

/* spin in a loop getting sample references from the

sequence grabber and adding them to the media */

fi.frameChannel = store->self;

i = -1;

do {

TimeValue frameDuration;

err = SGGetNextFrameReference (store->grabber,

&fi, &frameDuration, &i);

if (err) {

if (err == paramErr)

err = 0;

break;

}

C H A P T E R 6

Sequence Grabber Channel Components

Creating Sequence Grabber Channel Components 6-27

err = AddMediaSampleReference (pictM,

fi.frameOffset, fi.frameSize,

frameDuration,

sampleDesc, 1,

0, 0);

if (err == invalidDuration) {

err = noErr;

break;

}

} while (!err);

done:

if (err) goto bail;

GetTimeBaseTime (store->base, 0, &tr);

ConvertTimeScale (&tr, kMediaTimeScale);/* trim media inserted

 to not extend

 beyond end time */

mediaDuration = GetMediaDuration(pictM);

/* add media to track */

err = InsertMediaIntoTrack (pictT, 0, 0, tr.value.lo, kFix1);

/* set track matrix */

RectMatrix (&aMatrix, &from, &to);

SetTrackMatrix (pictT, &aMatrix);

/* set track clipping region */

SetTrackClipRgn (pictT, store->clip);

bail:

if (sampleDesc) DisposHandle ((Handle)sampleDesc);

return err;

}

pascal ComponentResult SGPictGetDataRate (SGPictGlobals store,

 long *bytesPerSecond)

{

/* take a guess at the data rate */

*bytesPerSecond = 24 * 1024;

if (store->bytesWritten) {

TimeValue timeNow = GetTimeBaseTime (store->base, 8, nil);

/* one-eighth second resolution */

C H A P T E R 6

Sequence Grabber Channel Components

6-28 Creating Sequence Grabber Channel Components

if (!timeNow)

return seqGrabInfoNotAvailable;

*bytesPerSecond = (store->bytesWritten / timeNow) * 8;

/* convert back to seconds */

}

return noErr;

}

Providing Media-Specific Functions

The channel can provide media-specific functions for a particular channel type.

These functions are analogous to the SGSetVideoCompressorType and

SGGetVideoCompressorType functions (described on page 6-66 and page 6-67,

respectively). These functions allow the sequence grabber to specify and determine the

type of image compression the channel component is to apply to the captured video

images.

The code in Listing 6-8 provides two specialized channel component functions,

SGPictSetShowTickCount and SGPictGetShowTickCount, which set and retrieve

the tick count, respectively. Note that both the functions refer to the showTickCount

field in the SGPictGlobals structure.

Listing 6-8 Showing the tick count

pascal ComponentResult SGPictSetShowTickCount

(SGPictGlobals store, Boolean show)

{

store->showTickCount = show;

return noErr;

}

pascal ComponentResult SGPictGetShowTickCount

(SGPictGlobals store, Boolean *show)

{

*show = store->showTickCount;

return noErr;

}

C H A P T E R 6

Sequence Grabber Channel Components

Creating Sequence Grabber Channel Components 6-29

Managing the Settings Dialog Box

The channel allows the sequence grabber to manage the placement of your channel data

in the sequence grabber’s settings dialog box.

■ To prepare to add the channel component’s items to the settings dialog box, the
sequence grabber obtains your item list by calling the sequence grabber panel
component’s SGPanelGetDITL function. It retrieves and detaches the dialog box
template from the sequence grabber panel component.

■ Once it has installed the items, the sequence grabber uses the SGPanelInstall
function so initial values can be set. This function resets the channel to use the dialog
window and preview mode. It also updates the boundaries to match the size of the
user item list.

■ To provide idle time in which to draw the channel’s information in the settings dialog
box, the sequence grabber uses the SGPanelEvent function. It allows the sequence
grabber component to receive and process dialog events in a manner similar to a
modal-dialog filter function. In this example, the information is the tick count.

■ Prior to the removal of items from the settings dialog box, the sequence grabber
component calls the SGPanelRemove function. The sequence grabber supplies
information that specifies the channel that the panel is to configure, the dialog box,
and the offset of the panel’s items into the dialog box.

For details on the SGPanelGetDITL, SGPanelInstall, SGPanelEvent, and

SGPanelRemove functions, see the chapter “Sequence Grabber Panel Components” in

this book.

The code in Listing 6-9 calls the sequence grabber panel component and indicates that

the channel component will display a tick count checkbox in the panel settings.

Listing 6-9 Including a tick count checkbox in a dialog box in the panel component

pascal ComponentResult SGPictPanelGetDitl (SGPictGlobals store,

 Handle *ditl)

{

/* get and detach your dialog template */

*ditl = GetResource('DITL', 7000);

if (!*ditl) return resNotFound;

DetachResource(*ditl);

return noErr;

}

pascal ComponentResult SGPictPanelInstall (SGPictGlobals store,

 SGChannel c,

 DialogPtr d,

 short itemOffset)

{

C H A P T E R 6

Sequence Grabber Channel Components

6-30 Creating Sequence Grabber Channel Components

Rect newBounds;

short kind;

Handle h;

/* reset this channel to use the dialog window and be in

preview mode with no clip */

SGSetGWorld (store->self, (CGrafPtr)d, GetMainDevice());

SGGetChannelUsage (store->self, &store->saveUsage);

SGSetChannelUsage (store->self, seqGrabPreview);

SGSetChannelClip (c, nil);

/* update boundaries to match size of user item */

GetDItem (d, 1 + itemOffset, &kind, &h, &newBounds);

SGSetChannelBounds (c, &newBounds);

SGStartPreview (store->self);

return noErr;

}

pascal ComponentResult SGPictPanelEvent (SGPictGlobals store,

SGChannel c, DialogPtr d,

short itemOffset,

EventRecord *theEvent,

short *itemHit,

Boolean *handled)

{

/* use idle time to draw */

if (theEvent->what == nullEvent)

return SGIdle (store->self);

return noErr;

}

pascal ComponentResult SGPictPanelRemove (SGPictGlobals store,

 SGChannel c, DialogPtr d,

 short itemOffset)

{

/* stop playing */

SGStop (store->self);

SGRelease (store->self);

/* note that the clip and bounds are automatically restored

 for you because you stored them using the SGGetSettings

 function */

C H A P T E R 6

Sequence Grabber Channel Components

Creating Sequence Grabber Channel Components 6-31

/* restore usage */

SGSetChannelUsage(store->self, store->saveUsage);

return noErr;

}

Displaying Channel Information in the Settings Dialog Box

The final step in the implementation of a sequence grabber channel component is the

display of the channel preview in the settings dialog box. Two sequence grabber

functions, SGSettingsDialog and SGGetSettingsDialog (described in the chapter

“Sequence Grabber Components” in this book), facilitate this process.

■ The channel component instructs the sequence grabber to display its settings dialog
box to the user by calling the sequence grabber component’s SGSettingsDialog
function. The user can specify the configuration of a sequence grabber channel in this
dialog box.

■ To retrieve the current settings of all channels used by the sequence grabber, call the
SGGetSettings function. The sequence grabber places all of this configuration
information into a Movie Toolbox user data list.

Listing 6-10 provides code that creates a user data list to contain the tick count

information for the sequence grabber’s settings dialog box, adds a matrix to the list, and

stores clipping information (if any exists). The sample code then restores the clipping

and the matrix.

Listing 6-10 Displaying channel settings

pascal ComponentResult SGPictPanelGetSettings

(SGPictGlobals store, SGChannel c,

 UserData *result, long flags)

{

OSErr err = noErr;

UserData ud = 0;

MatrixRecord matrix;

RgnHandle clip;

/* create a user data list to hold your state */

if (err = NewUserData (&ud)) goto bail;

/* add matrix to user data */

C H A P T E R 6

Sequence Grabber Channel Components

6-32 Creating Sequence Grabber Channel Components

if (SGGetChannelMatrix (c, &matrix) == noErr) {

if (err = SetUserDataItem (ud, &matrix, sizeof(matrix),

 sgMatrixType, 1))

goto bail;

}

/* store clip, if there is one */

if (SGGetChannelClip (c, &clip) == noErr) {

if (clip)

err = AddUserData (ud, (Handle)clip, sgClipType);

else

err = SetUserDataItem (ud, nil, 0, sgClipType, 1);

/* add a dummy to indicate none */

DisposeRgn(clip);

if (err) goto bail;

}

bail:

if (err) {

DisposeUserData (ud);

ud = 0;

}

*result = ud;

return err;

}

pascal ComponentResult SGPictPanelSetSettings

(SGPictGlobals store,

 SGChannel c, UserData ud, long flags)

{

OSErr err;

RgnHandle clip = NewRgn();

MatrixRecord matrix;

/* restore clip, if one was stored */

if (GetUserData (ud, (Handle)clip, sgClipType, 1) == noErr) {

if (err = SGSetChannelClip

(c, GetHandleSize ((Handle)clip) ? clip : 0))

goto bail;

}

C H A P T E R 6

Sequence Grabber Channel Components

Using Sequence Grabber Channel Components 6-33

/* restore matrix */

if (err = GetUserDataItem (ud, &matrix, sizeof(matrix),

 sgMatrixType, 1)) goto bail;

if (err = SGSetChannelMatrix (c, &matrix))

 goto bail;

bail:

DisposeRgn (clip);

return err;

}

Using Sequence Grabber Channel Components

In response to application requests, sequence grabber components can use channel

components in two ways: to play digitized data for the user or to save captured data in a

QuickTime movie. The process of playing digitized data is called previewing; saving

captured data in a movie is called recording. Applications can use previewing to allow

the user to prepare to make a recording. Applications that use previewing can move

directly from the preview operation to a record operation, without stopping the process.

The next two sections provide an overview of preview and record operations. A third

section discusses the callback functions that are supported by some channel components.

Previewing
Previewing captured data involves playing that data for the user as it is digitized. For

video data, this means displaying the video images on the computer screen. For audio

data, this means playing the sound through the computer’s sound system. The following

paragraphs outline the steps the sequence grabber component follows to preview

captured data.

1. First, the sequence grabber component opens a connection to your channel
component, using the Component Manager’s OpenComponent function. The
sequence grabber component then calls your SGInitChannel function to initialize
your component. For more on SGInitChannel, see page 6-38.

2. The sequence grabber component then configures your channel component for the
preview operation. The SGSetGWorld function (described on page 6-39) sets the
graphics world in which the preview is to be displayed. The SGSetChannelUsage
function (described on page 6-48) specifies that your channel is to be used for
previewing. The application can then use the appropriate channel configuration
functions to prepare your channel for the preview operation. For video channels, it
uses the functions discussed in “Configuration Functions for Video Channel
Components” beginning on page 6-61. For sound channels, the sequence grabber uses
the functions discussed in “Configuration Functions for Sound Channel Components”
beginning on page 6-77.

C H A P T E R 6

Sequence Grabber Channel Components

6-34 Using Sequence Grabber Channel Components

3. The sequence grabber component starts the preview operation by calling your
SGStartPreview function (described on page 6-40). The sequence grabber
component then begins collecting data from all of the channels participating in the
preview and plays that data appropriately. The sequence grabber component can
pause and restart the preview by calling the SGPause function (described on
page 6-44). The sequence grabber component uses the SGStop function (described
on page 6-43) to stop the preview. During the preview operation, the sequence
grabber component calls your SGIdle function (described on page 6-42) frequently,
so that your channel can perform its operation.

4. When the application is done previewing, the sequence grabber component can start
recording or close its connection to your component.

Recording
During a record operation, a sequence grabber component collects the data it captures

and formats that data into a QuickTime movie. During a record operation, the sequence

grabber component can also play the captured data for the user.

The following paragraphs discuss the steps the sequence grabber component follows to

record captured data.

1. As with a preview operation, the sequence grabber component establishes a
connection to your channel component by calling the Component Manager’s
OpenComponent function. It then initializes your component by calling your
SGInitChannel function (described on page 6-38).

2. The sequence grabber component then configures your component for the record
operation. The SGSetGWorld function (described on page 6-39) sets the graphics
world in which the data is to be displayed. The SGSetChannelUsage function
(described on page 6-48) specifies each channel that is to be used for recording. At this
time, the sequence grabber component can also specify whether your component is to
play its data while recording. The application can then use the appropriate channel
configuration functions to prepare your channel for the record operation. For video
channels, it uses the functions discussed in “Configuration Functions for Video
Channel Components” beginning on page 6-61. For sound channels, the sequence
grabber uses the functions discussed in “Configuration Functions for Sound Channel
Components” beginning on page 6-77.

3. The sequence grabber component starts the record operation by calling your
SGStartRecord function (described on page 6-41). The sequence grabber
component then begins collecting data from the channels it has assigned, stores the
data in a QuickTime movie, and, optionally, plays that data appropriately. The
sequence grabber can pause and restart the record process by calling the SGPause
function (described on page 6-44). During the record operation, the sequence grabber
component calls your SGIdle function (described on page 6-42) frequently, so that
your channel can perform its operation. The sequence grabber component uses the
SGStop function (described on page 6-43) to stop the record operation. At this time,

C H A P T E R 6

Sequence Grabber Channel Components

Using Sequence Grabber Channel Components 6-35

your component saves the movie in the appropriate movie file if the sequence grabber
component instructs your component to do so by calling your SGWriteSamples
function (described on page 6-43).

4. When the application is done recording, it either returns to previewing or closes its
connection to your component.

Working With Callback Functions
Sequence grabber components provide callback functions that allow application

developers to customize some aspects of capturing video data. It is your channel

component’s responsibility to call these callback functions at specified points in the data

capture process. The application’s function can then perform any special processing that

is appropriate for the application. For example, an application can overlay text, such as a

frame number, on each frame of video data as it is captured. These functions are

discussed in detail in the next section.

Note

Sound channel components do not support any callback functions. ◆

Using Callback Functions for Video Channel Components

Sequence grabber components allow application developers to define a number of

callback functions in their applications. Your channel component calls these functions at

specific points in the process of collecting, compressing, and displaying the source visual

data. By defining callback functions, a developer can control the process more precisely

or customize the operation of the sequence grabber component and its channel

components.

For example, a developer could use a callback function to draw a frame number on each

video frame as it is collected. In this case, the developer could use either a compress

callback function or a grab-complete callback function. You call the compress function

after each frame is collected, in order to compress the frame. You call the grab-complete

function just before the compress function or as soon as the frame has been captured.

Note that your channel component need not call each and every callback function. If

some functions are inappropriate to the operation of your channel, do not call them.

However, if your component calls one function of a pair, be sure to call the other. For

example, if your component calls an application’s grab function, you must also call its

grab-complete function.

The sequence grabber component uses the SGSetVideoBottlenecks function to

assign callback functions to your video channel. The SGGetVideoBottlenecks

function allows the sequence grabber to determine the callback functions that have been

assigned to your video channel. See the chapter “Sequence Grabber Components” in this

book for details on SGSetVideoBottlenecks and SGGetVideoBottlenecks.

C H A P T E R 6

Sequence Grabber Channel Components

6-36 Using Sequence Grabber Channel Components

The following application-defined functions are supported by video channels and are

described in the chapter “Sequence Grabber Components” in this book.

Using Utility Functions for Video Channel Component Callback
Functions

Sequence grabber components provide a number of functions that application-defined

functions can use. Several channel functions support those sequence grabber

component functions.

The sequence grabber component uses the SGGetBufferInfo function to obtain

information about a buffer that contains data to be manipulated by a callback function.

Application callback functions can use the SGGetBufferInfo function to obtain

information about a buffer that you have passed. This information is valid only

during record operations, or after your channel has been prepared to record. The

SGGetBufferInfo function is described in detail in the chapter “Sequence Grabber

Components” in this book.

The following functions provide default behavior for application-defined grab,

grab-complete, display, compress, compress-complete, add-frame, transfer-frame,

display-compress, and grab-compress–complete functions:

■ Your video channel component’s SGGrabFrame function provides the default
behavior for an application’s grab function. Applications should call this function
only from their grab function.

■ Your channel component’s SGGrabFrameComplete function provides the default
behavior for an application’s grab-complete function. Applications should call this
function only from their grab-complete functions.

■ Your channel component’s SGDisplayFrame function provides the default behavior
for an application’s display function. Applications should call this function only from
their display functions.

■ Your video channel component’s SGCompressFrame function provides the default
behavior for an application’s compress function. Applications should call this function
only from their compress functions.

■ Your channel component’s SGCompressFrameComplete function provides the
default behavior for an application’s compress-complete function. Applications
should call this function only from their compress-complete functions.

■ Your component’s SGAddFrame function provides the default behavior for an
application’s add-frame function. Applications should call this function only from
their add-frame functions.

MyAddFrameFunction MyGrabCompressCompleteFunction

MyCompressCompleteFunction MyGrabFunction

MyCompressFunction MyTransferFrameFunction

MyDisplayFunction

MyGrabCompleteFunction

C H A P T E R 6

Sequence Grabber Channel Components

Sequence Grabber Channel Components Reference 6-37

■ Your component’s SGTransferFrameForCompress function provides the default
behavior for an application’s transfer-frame function. Applications should call this
function only from their transfer-frame functions.

■ Your component’s SGGrabCompressComplete function provides the default
behavior for an application’s grab-compress–complete function. Applications should
call this function only from their grab-compress–complete function.

■ Your component’s SGDisplayCompress function provides the default behavior for
an application’s display-compress function. Applications should call this function
only from their display-compress function.

Sequence Grabber Channel Components Reference

This section describes the functions and associated data structures and constants that are

specific to the Apple-supplied sequence grabber channel component. These functions are

described from the perspective of a sequence grabber component—the most likely client

of a sequence grabber channel component. If you are developing a sequence grabber

channel component, your component must behave as described here.

Functions

This section has been divided into the following topics:

■ “Configuring Sequence Grabber Channel Components” describes the functions that
allow sequence grabber components to configure your channel component.

■ “Controlling Sequence Grabber Channel Components” discusses the functions that
allow sequence grabber components to control your channel component.

■ “Configuration Functions for All Channel Components” describes configuration
functions that may be supported by all sequence grabber channel components.

■ “Working With Channel Devices” discusses functions that allow the sequence grabber
to assign devices to your channel.

■ “Configuration Functions for Video Channel Components” describes functions that
are supported only by video channel components.

■ “Configuration Functions for Sound Channel Components” discusses functions that
are supported only by sound channel components.

■ “Utility Functions for Sequence Grabber Channel Components” describes several
utility functions that sequence grabber components provide to sequence grabber
channel components.

Note

If your channel component will also receive any of the functions defined
in the interface for sequence grabber panel components, see the chapter
“Sequence Grabber Panel Components” in this book for more
information about these functions. ◆

C H A P T E R 6

Sequence Grabber Channel Components

6-38 Sequence Grabber Channel Components Reference

Configuring Sequence Grabber Channel Components

Sequence grabber components use a number of functions to establish the environment

for grabbing or previewing digitized data. This section describes the channel component

functions that allow the sequence grabber component to establish the environment for

recording or previewing captured data.

The sequence grabber component uses the SGInitChannel function to initialize your

channel prior to a record or preview operation.

The SGSetGWorld function allows the sequence grabber component to assign a

graphics world to your component.

SGInitChannel

A sequence grabber component calls the SGInitChannel function to initialize a

sequence grabber channel component. Your component should perform its initialization

processing here, rather than in response to the Component Manager’s open request. The

initialization processing may include allocating memory or checking for the availability

of special-purpose hardware or software.

pascal ComponentResult SGInitChannel (SGChannel c,

SeqGrabComponent owner);

c Identifies the channel connection for this operation.

owner Identifies the sequence grabber component that has connected to your
channel component. You should save this value so that your channel
component can call the utility functions that are provided by the sequence
grabber component (see “Utility Functions for Sequence Grabber Channel
Components,” which begins on page 6-84, for information about these
utility functions).

DESCRIPTION

If your component cannot gain access to the resources or equipment it needs to function

properly, you should return a nonzero result code. If you return a nonzero result, the

sequence grabber component closes its connection to your component and reports the

error to the calling application.

RESULT CODES

File Manager errors

Memory Manager errors

noDeviceForChannel –9400 Channel component cannot find its device

C H A P T E R 6

Sequence Grabber Channel Components

Sequence Grabber Channel Components Reference 6-39

SGSetGWorld

A sequence grabber component calls the SGSetGWorld function to establish the display

environment for your channel component.

pascal ComponentResult SGSetGWorld (SeqGrabComponent s,

CGrafPtr gp, GDHandle gd);

s Identifies the sequence grabber component that has connected to your
channel component.

gp Specifies the destination graphics port. The sequence grabber component
always sets this parameter to a valid value. The specified graphics port
must be a color graphics port. The parameter is set to nil to use the
current graphics port.

gd Specifies the destination graphics device. The sequence grabber
component always sets this parameter to a valid value.

DESCRIPTION

Note that sequence grabber components may call this function for sound channel

components as well as for video channel components.

RESULT CODE

Controlling Sequence Grabber Channel Components

Sequence grabber channel components must provide a full set of functions that allow

the sequence grabber component to control the preview or record operation. The

sequence grabber component can use these functions to start and stop the operation, to

pause data collection, and to write captured data to a movie. This section describes these

functions.

The sequence grabber component uses the SGStartPreview function to start a preview

operation. The SGStartRecord function starts a record operation. The SGStop

function stops your channel component after a preview or record operation.

The sequence grabber component grants processing time to your channel component

by calling the SGIdle function. The sequence grabber notifies you of update events by

calling your SGUpdate function.

The sequence grabber pauses the current operation by calling the SGPause function.

The sequence grabber component calls your SGWriteSamples function to write

captured data to a movie file after a record operation.

cantDoThatInCurrentMode –9402 Request invalid in current mode

C H A P T E R 6

Sequence Grabber Channel Components

6-40 Sequence Grabber Channel Components Reference

The sequence grabber component prepares your channel component for an upcoming

preview or record operation by calling the SGPrepare function. This function also

allows the sequence grabber component to verify that your component can support the

parameters an application has specified. The SGRelease function releases system

resources allocated during the SGPrepare function.

SGStartPreview

The SGStartPreview function instructs your channel to begin processing its source

data. In preview mode, your component does not save any of the data it gathers from its

source.

pascal ComponentResult SGStartPreview (SeqGrabComponent s);

s Identifies the sequence grabber component that has connected to your
channel component.

DESCRIPTION

Your channel component should immediately present the data to the user in the

appropriate format, according to your channel’s configuration (see “Configuration

Functions for All Channel Components,” which begins on page 6-46, for information

about functions that configure channels). Display video data in the destination display

region; play sound data at the specified volume settings.

RESULT CODES

File Manager errors

Memory Manager errors

SEE ALSO

The sequence grabber component stops the preview process by calling your SGStop

function, which is described on page 6-43.

cantDoThatInCurrentMode –9402 Request invalid in current mode
deviceCantMeetRequest –9408 Device cannot support grabber

C H A P T E R 6

Sequence Grabber Channel Components

Sequence Grabber Channel Components Reference 6-41

SGStartRecord

The SGStartRecord function instructs your channel component to begin recording

data from its source. The sequence grabber component stores the collected data

according to the recording parameters that the calling application specified with the

sequence grabber component’s SGSetDataOutput function (described in the chapter

“Sequence Grabber Components” in this book). Your channel component should

immediately begin recording data in the appropriate format, according to your channel’s

configuration (see “Configuration Functions for All Channel Components,” which

begins on page 6-46, for information about functions that configure channels).

pascal ComponentResult SGStartRecord (SeqGrabComponent s);

s Identifies the sequence grabber component that has connected to your
channel component.

DESCRIPTION

The sequence grabber component can switch from previewing to recording by calling

this function during a preview operation—the sequence grabber need not stop the

preview operation first.

RESULT CODES

File Manager errors

Memory Manager errors

SEE ALSO

The sequence grabber component stops the recording process by calling your SGStop

function, which is described on page 6-43.

cantDoThatInCurrentMode –9402 Request invalid in current mode
notEnoughMemoryToGrab –9403 Insufficient memory for record operation
notEnoughDiskSpaceToGrab –9404 Insufficient disk space for record operation
deviceCantMeetRequest –9408 Device cannot support grabber

C H A P T E R 6

Sequence Grabber Channel Components

6-42 Sequence Grabber Channel Components Reference

SGIdle

The SGIdle function provides processing time to your channel component.

pascal ComponentResult SGIdle (SeqGrabComponent s);

s Identifies the sequence grabber component that has connected to your
channel component.

DESCRIPTION

After starting a preview or record operation, the application calls the sequence grabber

component’s SGIdle function as often as possible. The sequence grabber component

then calls your SGIdle function. This continues until the calling application stops the

operation by calling the SGStop sequence grabber function.

Your SGIdle function reports several status and error conditions by means of its result

code. If your component returns a nonzero result code during a record operation, the

application should still call the SGStop function (described on page 6-43) so that the

sequence grabber component can store the data it has collected.

RESULT CODES

File Manager errors

Memory Manager errors

SGUpdate

The SGUpdate function allows you to learn about update events. This gives you an

opportunity to update your display.

pascal ComponentResult SGUpdate (SeqGrabComponent s,

RgnHandle updateRgn);

s Identifies the sequence grabber component that has connected to your
channel component.

updateRgn Indicates the part of the window that has been changed. This parameter
specifies a portion of the window that has been changed. Applications can
obtain this information by examining the appropriate window record. For
example, they may call the sequence grabber in this manner:

SGUpdate (theSG, ((WindowPeek)updateWindow)->updateRgn);

If this parameter is set to nil, use the window’s current visible region.

C H A P T E R 6

Sequence Grabber Channel Components

Sequence Grabber Channel Components Reference 6-43

DESCRIPTION

Applications call the sequence grabber’s SGUpdate function whenever they receive an

update event for a window that contains a sequence grabber display. The sequence

grabber then calls each affected channel. Applications should call this function before

calling the Window Manager’s BeginUpdate function.

RESULT CODE

SGStop

The SGStop function stops a preview or record operation.

pascal ComponentResult SGStop (SeqGrabComponent s);

s Identifies the sequence grabber component that has connected to your
channel component.

DESCRIPTION

In the case of a record operation, the sequence grabber component stores the collected

movie data in the assigned movie file. The sequence grabber component then calls your

SGWriteSamples function (described in the next section) to place the references to the

captured data into the movie after it calls SGStop.

▲ W A R N I N G

It is dangerous to allow an update event to occur during recording.
Many digitizers capture directly to the screen, and an update event will
result in data loss. ▲

RESULT CODES

File Manager errors

Memory Manager errors

SGWriteSamples

The sequence grabber component calls the SGWriteSamples function when it is ready

to add recorded data to a movie.

pascal ComponentResult SGWriteSamples (SGChannel c, Movie m,

 AliasHandle theFile);

deviceCantMeetRequest –9408 Device cannot support grabber

C H A P T E R 6

Sequence Grabber Channel Components

6-44 Sequence Grabber Channel Components Reference

c Identifies the channel connection for this operation.

m Identifies the movie to which your component should add the captured
data. Your component should not make any other changes to the movie
identified by this reference. Use the SGWriteMovieData function,
described on page 6-86.

theFile Identifies the movie file. The sequence grabber component provides this
alias so that you can supply it to the Movie Toolbox. You should not open
this file or write to it directly. Use the SGWriteMovieData function.

DESCRIPTION

The sequence grabber component calls this function when the recording operation is

complete, after calling your SGStop function (described on page 6-43). In this manner,

your channel component can avoid unnecessary Movie Toolbox overhead during the

record operation.

SPECIAL CONSIDERATIONS

Your component should dispose of any buffered data and add the captured data to the

movie. If necessary, use the Movie Toolbox’s functions to create a track and a media. See

the chapter “Movie Toolbox” in Inside Macintosh: QuickTime for details.

RESULT CODES

File Manager errors

Memory Manager errors

SGPause

A sequence grabber component can suspend or restart a record or preview operation by

calling the SGPause function.

pascal ComponentResult SGPause (SeqGrabComponent s, Byte pause);

s Identifies the sequence grabber component that has connected to your
channel component.

pause Instructs your component to suspend or restart the current operation. The
following values are valid:

seqGrabUnpause
Restart the current operation.

seqGrabPause
Pause the current operation.

C H A P T E R 6

Sequence Grabber Channel Components

Sequence Grabber Channel Components Reference 6-45

DESCRIPTION

The sequence grabber component supplies a constant value in the paused parameter

that instructs your component to pause or restart the current operation.

SPECIAL CONSIDERATIONS

Your component should not release any system resources or temporary memory

associated with the current operation—you should be ready to restart the operation

immediately.

RESULT CODES

File Manager errors

Memory Manager errors

SGPrepare

The SGPrepare function instructs your component to get ready to begin a preview or

record operation (or both)—the sequence grabber component specifies the operations.

pascal ComponentResult SGPrepare (SeqGrabComponent s,

 Boolean prepareForPreview,

 Boolean prepareForRecord);

s Identifies the sequence grabber component that has connected to your
channel component.

prepareForPreview
Instructs your component to prepare for a preview operation. The
sequence grabber component sets this parameter to true to prepare for a
preview operation. The sequence grabber component may set both the
prepareForPreview and prepareForRecord parameters to true.

prepareForRecord
Instructs your component to prepare for a record operation. The sequence
grabber component sets this parameter to true to prepare for a record
operation. The sequence grabber component may set both the
prepareForPreview and prepareForRecord parameters to true.

DESCRIPTION

Your component should do whatever is necessary to get ready to start the operation. The

goal is to reduce the delay between the time when the sequence grabber calls your

SGStartPreview function (described on page 6-40) or SGStartRecord function

(described on page 6-41) and the time when the operation actually begins. This may

involve allocating memory or readying special hardware.

deviceCantMeetRequest –9408 Device cannot support grabber

C H A P T E R 6

Sequence Grabber Channel Components

6-46 Sequence Grabber Channel Components Reference

SPECIAL CONSIDERATIONS

If the sequence grabber calls SGPrepare without subsequently starting a record or

preview operation, it calls the SGRelease function (described in the next section) later.

This allows your component to release any system resources it allocated during the

SGPrepare function.

RESULT CODES

File Manager errors

Memory Manager errors

SGRelease

The SGRelease function instructs your component to release any system resources it

allocated during the SGPrepare function, which is described in the previous section.

pascal ComponentResult SGRelease (SeqGrabComponent s);

s Identifies the sequence grabber component that has connected to your
channel component.

DESCRIPTION

The sequence grabber component calls your SGRelease function whenever it calls

SGPrepare without subsequently starting a record or preview operation.

SPECIAL CONSIDERATIONS

Note that the sequence grabber component may call SGRelease more than once after

calling SGPrepare.

Configuration Functions for All Channel Components

Sequence grabber components use channel components to obtain digitized data from

external media. Your channel is assigned to a sequence grabber component when the

application calls the sequence grabber component’s SGNewChannel function, described

in the chapter “Sequence Grabber Components” in this book. The sequence grabber

component must configure your channel before a preview or record operation. Your

paramErr –50 Invalid parameter specified
notEnoughDiskSpaceToGrab –9404 Insufficient disk space for record operation
deviceCantMeetRequest –9408 Device cannot support grabber

C H A P T E R 6

Sequence Grabber Channel Components

Sequence Grabber Channel Components Reference 6-47

channel component must provide a number of functions that allow the sequence grabber

to configure the characteristics of your channel. Several of these functions work on any

channel component. This section discusses these general channel configuration functions.

In addition, channel components provide functions that are specific to the channel type.

The sequence grabber component supplied by Apple uses two types of channel

components: video channel components and sound channel components. See

“Configuration Functions for Video Channel Components,” which begins on page 6-61,

for information about the configuration functions that work only with video channels.

See “Configuration Functions for Sound Channel Components,” which begins on

page 6-77, for information about the configuration functions that work only with sound

channels.

The SGSetChannelUsage function specifies how your channel is to be used. The

sequence grabber component can restrict a channel to use during record or preview

operations. In addition, this function allows the sequence grabber component to specify

whether your channel plays during a record operation. The SGGetChannelUsage

function allows the sequence grabber component to determine a channel’s usage.

The SGGetChannelInfo function allows the sequence grabber component to

determine some of the characteristics of your channel. For example, this function returns

information indicating whether your channel has a visual or an audio representation.

The SGSetChannelPlayFlags function lets the sequence grabber component

influence the speed and quality with which your channel plays captured data. The

SGGetChannelPlayFlags function allows the sequence grabber component to

determine these flag settings.

The SGSetChannelMaxFrames function establishes a limit on the number of frames

that your channel component will capture from a channel.

The SGGetChannelMaxFrames function enables the sequence grabber component to

determine that limit.

The SGSetChannelRefCon function allows the sequence grabber component to set the

value of a reference constant that your component passes to its callback functions (see

“Using Callback Functions for Video Channel Components,” which begins on page 6-35,

for information about the callback functions that are supported by video channels).

The SGGetDataRate function allows the sequence grabber component to determine

how many bytes of captured data your channel is collecting each second.

The SGGetChannelSampleDescription function allows the sequence grabber to

retrieve your channel’s sample description. The SGGetChannelTimeScale function

allows it to obtain your channel’s time scale.

The sequence grabber can modify or retrieve your channel’s clipping region by calling

the SGSetChannelClip or SGGetChannelClip function, respectively. The sequence

grabber can work with your channel’s transformation matrix by calling the

SGSetChannelMatrix and SGGetChannelMatrix functions.

C H A P T E R 6

Sequence Grabber Channel Components

6-48 Sequence Grabber Channel Components Reference

SGSetChannelUsage

The SGSetChannelUsage function specifies how your channel is to be used by the

sequence grabber component.

pascal ComponentResult SGSetChannelUsage (SGChannel c,

long usage);

c Identifies the channel connection for this operation.

usage Contains flags specifying how your channel is to be used. The sequence
grabber component may set more than one of these flags to 1. It sets
unused flags to 0. The following flags are defined by the
SeqGrabUsageEnum data type:

seqGrabRecord
Indicates that your channel is to be used during record
operations. The sequence grabber component sets this flag
to 1 to use a channel for recording.

seqGrabPreview
Indicates that your channel is to be used during preview
operations. The sequence grabber component sets this flag
to 1 to use a channel for previewing.

seqGrabPlayDuringRecord
Indicates that your component is to play its captured data
during a record operation. If the sequence grabber
component sets this flag to 1, your channel should play its
captured data during a record operation, if the destination
buffer is onscreen.

DESCRIPTION

The sequence grabber component can specify that a channel is to be used for recording

or previewing, or both. In addition, the sequence grabber component can control

whether the data captured by a channel is displayed during the record or preview

operation.

RESULT CODES

notEnoughMemoryToGrab –9403 Insufficient memory for record operation
deviceCantMeetRequest –9408 Device cannot support grabber

C H A P T E R 6

Sequence Grabber Channel Components

Sequence Grabber Channel Components Reference 6-49

SGGetChannelUsage

The SGGetChannelUsage function allows the sequence grabber to determine how your

channel is to be used.

pascal ComponentResult SGGetChannelUsage (SGChannel c,

long *usage);

c Identifies the channel connection for this operation.

usage Contains a pointer to a location that is to receive flags specifying how
your channel is to be used. You may set more than one of these flags to 1.
Set unused flags to 0. The following flags are defined by the
SeqGrabUsageEnum data type:

seqGrabRecord
Indicates that your channel is to be used during record
operations. Set this flag to 1 if your channel is being used
for recording.

seqGrabPreview
Indicates that your channel is to be used during preview
operations. Set this flag to 1 if your channel is being used
for previewing.

seqGrabPlayDuringRecord
Indicates that your component is to play its captured data
during a record operation. Set this flag to 1 if your channel
plays its captured data during a record operation.

SEE ALSO

The sequence grabber component establishes your channel’s usage by calling your

SGSetChannelUsage function, described in the previous section.

SGGetChannelInfo

The SGGetChannelInfo function allows the sequence grabber to determine how a

channel’s data is represented to the user—as visual or audio data, or both.

pascal ComponentResult SGGetChannelInfo (SGChannel c,

 long *channelInfo);

c Identifies the channel connection for this operation.

C H A P T E R 6

Sequence Grabber Channel Components

6-50 Sequence Grabber Channel Components Reference

channelInfo
Contains a pointer to a long integer that is to receive channel information
flags. You may set more than one flag to 1. Set unused flags to 0. The
following flags are defined:

seqGrabHasBounds
Indicates that your channel has a visual representation. If
you set this flag to 1, the channel has a visual
representation. The sequence grabber component may call
your SGSetChannelBounds function (described on
page 6-63).

seqGrabHasVolume
Indicates that your channel has an audio representation. If
you set this flag to 1, the channel has an audio
representation. The sequence grabber component may call
your SGSetChannelVolume function (described on
page 6-77).

seqGrabHasDiscreteSamples
Indicates that the data captured by your channel
component is organized into discrete frames. If you set this
flag to 1, the sequence grabber component may use the
SGSetChannelMaxFrames function (described on
page 6-52) to limit the number of frames processed in a
record operation or the rate at which those frames are
processed. If your channel’s data is not organized into
frames, set this flag to 0.

SGSetChannelPlayFlags

The SGSetChannelPlayFlags function allows the sequence grabber component to

influence the speed and quality with which your channel component displays data from

its source.

pascal ComponentResult SGSetChannelPlayFlags (SGChannel c,

 long playFlags);

c Identifies the channel connection for this operation.

playFlags Specifies a long integer that contains flags and values that influence
channel playback. The following values are defined—the sequence
grabber component must use one of these values:

channelPlayNormal
Instructs your channel component to use its default
playback methodology.

channelPlayFast
Instructs your channel component to sacrifice playback
quality in order to achieve the specified playback rate.

C H A P T E R 6

Sequence Grabber Channel Components

Sequence Grabber Channel Components Reference 6-51

channelPlayHighQuality
Instructs your channel component to play the channel’s
data at the highest possible quality—this option sacrifices
playback rate for the sake of image quality. This option
may reduce the amount of processor time available to other
programs in the computer. This option should not affect the
quality of the recorded data, however.

The following flag is defined—the sequence grabber component may use
this flag with any of the values defined for this parameter (unused flags
are set to 0):

channelPlayAllData
Instructs your channel component to try to play all of the
data it captures, even the data that is stored in offscreen
buffers. This option is useful when you want to be sure that
the user sees as much of the captured data as possible. The
sequence grabber component sets this flag to 1 to play all
the captured data. The sequence grabber component may
combine this flag with any of the values defined for the
playFlags parameter.

DESCRIPTION

The SGSetChannelPlayFlags function should not affect the quality of a record

operation.

SGGetChannelPlayFlags

The SGGetChannelPlayFlags function allows the sequence grabber component to

retrieve the playback control flags that it set with the SGSetChannelPlayFlags

function, which is described in the previous section.

pascal ComponentResult SGGetChannelPlayFlags (SGChannel c,

 long *playFlags);

c Identifies the channel connection for this operation.

playFlags Contains a pointer to a long integer that is to receive flags and values that
influence channel playback. The following values are defined:

channelPlayNormal
Your channel component uses its default playback
methodology.

channelPlayFast
Your channel component sacrifices playback quality in
order to achieve the specified playback rate.

C H A P T E R 6

Sequence Grabber Channel Components

6-52 Sequence Grabber Channel Components Reference

channelPlayHighQuality
Your channel component plays the channel’s data at the
highest possible quality—this option sacrifices playback
rate for the sake of image quality. This option may reduce
the amount of processor time available to other programs
in the computer. This option should not affect the quality of
the recorded data, however.

The following flag is defined—this flag may be used with any of the
values defined for this parameter (unused flags are set to 0):

channelPlayAllData
Your channel component tries to play all of the data it
captures, even the data that is stored in offscreen buffers.
This option is useful when you want to be sure that the
user sees as much of the captured data as possible. The
sequence grabber component sets this flag to 1 to play all
the captured data. The sequence grabber component may
combine this flag with any of the values defined for the
playFlags parameter.

SGSetChannelMaxFrames

The SGSetChannelMaxFrames function allows the sequence grabber to limit the

number of frames that your channel component will capture during a record operation.

pascal ComponentResult SGSetChannelMaxFrames (SGChannel c,

 long frameCount);

c Identifies the channel connection for this operation.

frameCount
Specifies the maximum number of frames to capture during the preview
or record operation. The sequence grabber component sets this parameter
to –1 to remove the limit.

DESCRIPTION

The SGSetChannelMaxFrames function works only with channels that have data that

is organized into frames, such as video data from a video disc.

RESULT CODES

paramErr –50 Invalid parameter specified
cantDoThatInCurrentMode –9402 Request invalid in current mode

C H A P T E R 6

Sequence Grabber Channel Components

Sequence Grabber Channel Components Reference 6-53

SEE ALSO

You report whether your channel’s data is organized into frames in your response to the

SGGetChannelInfo function, which is described on page 6-49.

SGGetChannelMaxFrames

The SGGetChannelMaxFrames function allows the sequence grabber component to

determine the number of frames left to be captured from your channel.

pascal ComponentResult SGGetChannelMaxFrames (SGChannel c,

 long *frameCount);

c Identifies the channel connection for this operation.

frameCount
Contains a pointer to a long integer that is to receive a value specifying
the number of frames left to be captured during the preview or record
operation. If the returned value is –1, the sequence grabber channel
component captures as many frames as it can.

RESULT CODE

SEE ALSO

The sequence grabber component sets the starting value by calling the

SGSetChannelMaxFrames function, which is described in the previous section.

SGSetChannelRefCon

The SGSetChannelRefCon function allows the sequence grabber component to set the

value of a reference constant that your component passes to its callback functions.

pascal ComponentResult SGSetChannelRefCon (SGChannel c,

 long refCon);

c Identifies the channel connection for this operation.

refCon Specifies a reference constant value that your component should pass to
the callback functions that have been assigned to this channel.

DESCRIPTION

 Sound channels do not support callback functions.

seqGrabInfoNotAvailable –9407 Channel component cannot support request

C H A P T E R 6

Sequence Grabber Channel Components

6-54 Sequence Grabber Channel Components Reference

SEE ALSO

See “Using Callback Functions for Video Channel Components,” which begins on

page 6-36, for a description of the callback functions that are supported by video channel

components.

SGGetDataRate

The sequence grabber component calls your component’s SGGetDataRate function in

order to determine how much recording time is left. The sequence grabber calls your

component when an application calls the sequence grabber component’s

SGGetTimeRemaining function (see the chapter “Sequence Grabber Components” in

this book for details).

pascal ComponentResult SGGetDataRate (SGChannel c,

long *bytesPerSecond);

c Identifies the channel connection for this operation.

bytesPerSecond
Contains a pointer to a long integer that is to receive a value indicating
the number of bytes your component is recording per second. Your
component calculates this value based on its current operational
parameters.

DESCRIPTION

Your component should calculate and return a value indicating the number of bytes of

data your component is recording per second. The sequence grabber component uses

this information, along with similar information gathered from other channels being

used in the recording operation, to determine how many seconds of data may be

recorded given the amount of space remaining.

SPECIAL CONSIDERATIONS

The sequence grabber component calls the SGGetDataRate function during the

recording operation. Consequently, your component should service the request as

quickly as possible.

C H A P T E R 6

Sequence Grabber Channel Components

Sequence Grabber Channel Components Reference 6-55

SGGetChannelSampleDescription

The SGGetChannelSampleDescription function allows the sequence grabber to

retrieve your channel’s sample description.

pascal ComponentResult SGGetChannelSampleDescription

(SGChannel c, Handle sampleDesc);

c Identifies the channel connection for this operation.

sampleDesc
Specifies a handle that is to receive your sample description.

DESCRIPTION

The SGGetChannelSampleDescription function allows the sequence grabber to

retrieve your channel’s current sample description. The sequence grabber may call this

function only when your channel is prepared to record or is actually recording.

Your channel returns a sample description that is appropriate to the type of data being

captured. For video channels, your channel component returns an Image Compression

Manager image description structure; for sound channels, you return a sound

description structure, as defined by the Movie Toolbox.

RESULT CODE

SGGetChannelTimeScale

The SGGetChannelTimeScale function allows the sequence grabber to retrieve your

channel’s time scale.

pascal ComponentResult SGGetChannelTimeScale (SGChannel c,

 TimeScale *scale);

c Identifies the channel connection for this operation.

scale Contains a pointer to a time scale structure. Your channel component
places information about its time scale into this structure.

DESCRIPTION

The time scale you return typically corresponds to the time scale of the media that has

been created by your channel. Applications may use this time scale in their data

functions (see the chapter “Sequence Grabber Components” in this book for more

information about application-defined data functions).

cantDoThatInCurrentMode –9402 Request invalid in current mode

C H A P T E R 6

Sequence Grabber Channel Components

6-56 Sequence Grabber Channel Components Reference

SGSetChannelClip

The SGSetChannelClip function allows the sequence grabber to set your channel’s

clipping region.

pascal ComponentResult SGSetChannelClip (SGChannel c,

 RgnHandle theClip);

c Identifies the channel connection for this operation.

theClip Contains a handle to the new clipping region. You should make a copy of
this region; the application may dispose of the region immediately.

If this parameter is set to nil, remove the current clipping region.

DESCRIPTION

The SGSetChannelClip function allows the sequence grabber to apply a clipping

region to your channel’s display region. By default, channel components do not apply a

clipping region to their displayed image.

SGGetChannelClip

The SGGetChannelClip function allows the sequence grabber to retrieve your

channel’s clipping region.

pascal ComponentResult SGGetChannelClip (SGChannel c,

RgnHandle *theClip);

c Identifies the channel connection for this operation.

theClip Contains a pointer to a handle that is to receive the clipping region. The
application is responsible for disposing of this handle. If there is no
clipping region, set this handle to nil.

Note

Some devices may not support clipping. ◆

C H A P T E R 6

Sequence Grabber Channel Components

Sequence Grabber Channel Components Reference 6-57

SGSetChannelMatrix

The SGSetChannelMatrix function allows the sequence grabber to set your channel’s

display transformation matrix.

pascal ComponentResult SGSetChannelMatrix (SGChannel c,

const MatrixRecord *m);

c Identifies the channel connection for this operation.

m Contains a pointer to a matrix structure, as defined by the Movie Toolbox
(see the chapter “Movie Toolbox” in Inside Macintosh: QuickTime for more
information about matrix structures). This parameter is set to nil to
select the identity matrix.

DESCRIPTION

The SGSetChannelMatrix function allows the sequence grabber to specify a display

transformation matrix for a video channel. Your channel uses this matrix to transform its

video image into the destination window. If your channel cannot accommodate the

matrix, return an appropriate result code. Note that the sequence grabber may not call

this function when you are recording.

Other channel component functions may affect this matrix. The SGSetChannelBounds

function sets the matrix values so that the matrix maps the channel’s output to the

channel’s boundary rectangle (described on page 6-63). The SGSetVideoRect function

modifies the matrix so that the specified video rectangle appears in the existing

destination rectangle (see page 6-64 for more information about the SGSetVideoRect

function).

RESULT CODES

SEE ALSO

The sequence grabber may retrieve your channel’s matrix by calling the

SGGetChannelMatrix function, which is discussed next.

matrixErr –2203 Invalid matrix
deviceCantMeetRequest –9408 Device cannot support grabber

C H A P T E R 6

Sequence Grabber Channel Components

6-58 Sequence Grabber Channel Components Reference

SGGetChannelMatrix

The SGGetChannelMatrix function allows the sequence grabber to retrieve your

channel’s display transformation matrix.

pascal ComponentResult SGGetChannelMatrix (SGChannel c,

 MatrixRecord *m);

c Identifies the channel connection for this operation.

m Contains a pointer to a matrix structure, as defined by the Movie Toolbox
(see “Movie Toolbox” in Inside Macintosh: QuickTime for more information
about matrix structures). Place your current matrix values into this matrix
structure.

SEE ALSO

The sequence grabber may set your channel’s matrix by calling the

SGSetChannelMatrix function, which is discussed in the previous section.

Working With Channel Devices

Sequence grabbers provide a number of functions that allow applications to determine

the devices that can be, or the device that is, attached to a given sequence grabber

channel. These devices, in turn, allow the channel component to control the digitizing

equipment. For example, video channels use video digitizer components, and sound

channels use sound input drivers. Applications can use these functions to present a list

of available devices to the user, allowing the user to select a specific device for each

channel. The sequence grabber passes these functions on to your channel component.

The sequence grabber may use the SGGetChannelDeviceList function to retrieve a

list of devices that may be used by your channel.

The sequence grabber can use the SGSetChannelDevice function to assign a device to

your channel.

The SGGetChannelDeviceList function uses a device list structure to pass

information about one or more channel devices. The SGDeviceListRecord data type

defines the format of the device list structure.

typedef struct SGDeviceListRecord {

short count; /* count of devices */

short selectedIndex; /* current device */

long reserved; /* set to 0 */

SGDeviceName entry[1]; /* device names */

} SGDeviceListRecord, *SGDeviceListPtr, **SGDeviceList;

C H A P T E R 6

Sequence Grabber Channel Components

Sequence Grabber Channel Components Reference 6-59

Field descriptions

count Indicates the number of devices described by this structure. The
value of this field corresponds to the number of entries in the device
name array defined by the entry field.

selectedIndex
Identifies the currently active device. The value of this field
corresponds to the appropriate entry in the device name array
defined by the entry field. Note that this value is 0-relative; that is,
the first entry has an index number of 0, the second’s value is 1, and
so on.

reserved Reserved for Apple. Always set to 0.

entry Contains an array of device name structures. Each structure
corresponds to one valid device. The count field indicates the
number of entries in this array. The SGDeviceName data type
defines the format of a device name structure; this data type is
discussed next.

Device list structures contain an array of device name structures. Each device name

structure identifies a single device that may be used by the channel. The SGDeviceName

data type defines the format of a device name structure.

typedef struct SGDeviceName {

Str63 name; /* device name */

Handle icon; /* device icon */

long flags; /* flags */

long refCon; /* set to 0 */

long reserved; /* set to 0 */

} SGDeviceName;

Field descriptions

name Contains the name of the device. For video digitizer components, this
field contains the component’s name as specified in the component
resource. For sound input drivers, this field contains the driver name.

icon Contains a handle to the device’s icon. Some devices may support an
icon, which applications may choose to present to the user. If the device
does not support an icon, or if the sequence grabber chooses not to
retrieve this information (by setting the sgDeviceListWithIcons flag
to 0 when it calls the SGGetChannelDeviceList function, which is
described in the next section), set this field to nil.

flags Reflects the current status of the device. The following flag is defined:

sgDeviceNameFlagDeviceUnavailable
When set to 1, this flag indicates that this device is not
currently available.

refCon Reserved for Apple. Always set to 0.

reserved Reserved for Apple. Always set to 0.

C H A P T E R 6

Sequence Grabber Channel Components

6-60 Sequence Grabber Channel Components Reference

SGGetChannelDeviceList

The SGGetChannelDeviceList function allows the sequence grabber to retrieve a list

of the devices that are valid for your channel.

pascal ComponentResult SGGetChannelDeviceList (SGChannel c,

long selectionFlags,

SGDeviceList *list);

c Identifies the channel connection for this operation.

selectionFlags
Controls the data you are to return for each device. The following flags
are defined:

sgDeviceListWithIcons
Specifies whether the sequence grabber wants to retrieve
an icon for each device. If this flag is set to 1, return an icon
for each device in the list, in the icon field. If this flag is set
to 0, set the icon field to 0.

sgDeviceListDontCheckAvailability
Controls whether you verify that each device is
currently available. If this flag is set to 1, do not
check the availability of each device. Otherwise, you
should check each device’s availability, and set the
sgDeviceNameFlagDeviceUnavailable flag
appropriately in each device name structure that you
return.

list Contains a pointer to a device list structure pointer. The channel creates a
device name structure and returns a pointer to that structure in the field
referred to by this parameter. Applications use the sequence grabber’s
SGDisposeDeviceList function to dispose of the memory used by
the list.

DESCRIPTION

This function allows the sequence grabber to retrieve a list of the devices that may be

used by your channel. Each entry in this list identifies a valid device by name.

Applications may then place these device names into a menu using the sequence

grabber’s SGAppendDeviceListToMenu function.

Applications may use this function in order to determine the device your channel is

currently using. Be sure to set the selectedIndex field properly.

RESULT CODES

Memory Manager errors

C H A P T E R 6

Sequence Grabber Channel Components

Sequence Grabber Channel Components Reference 6-61

SEE ALSO

You may use the sequence grabber’s SGSortDeviceList function to sort the entries

in your device list structure. This function is discussed on page 6-89.

SGSetChannelDevice

The SGSetChannelDevice function allows the sequence grabber to assign a device to

your channel.

pascal ComponentResult SGSetChannelDevice (SGChannel c,

 StringPtr name);

c Identifies the channel connection for this operation.

name Contains a pointer to the device’s name string. This name is contained in
the name field of the appropriate device name structure in the device list
that your channel returns to the SGGetChannelDeviceList function.

DESCRIPTION

When the sequence grabber calls your SGSetChannelDevice function, your channel

should try to use the specified device instead of the device currently in use. The device

name must be derived from your channel’s device list.

RESULT CODES

SEE ALSO

The sequence grabber obtains the device list by calling your

SGGetChannelDeviceList function, which is discussed in the previous section.

Configuration Functions for Video Channel Components

Video channel components provide a number of functions that allow the sequence

grabber to configure the channel’s video characteristics. This section describes these

video channel configuration functions, which the sequence grabber component uses only

with video channels.

The SGSetChannelBounds function allows the sequence grabber to set the display

boundary rectangle for a video channel. The SGGetChannelBounds function

determines a channel’s boundary rectangle.

paramErr –50 Invalid parameter value
deviceCantMeetRequest –9408 Device cannot support grabber

C H A P T E R 6

Sequence Grabber Channel Components

6-62 Sequence Grabber Channel Components Reference

The sequence grabber component uses the SGGetSrcVideoBounds function to

determine the coordinates of the source video boundary rectangle. This rectangle defines

the size of the source video image being captured by a video channel. The

SGSetVideoRect function specifies a part of the source video boundary rectangle to be

captured by the channel. The SGGetVideoRect function retrieves this active source

video rectangle.

Typically, video channel components use the Image Compression Manager to

compress the video data they capture. The sequence grabber component can control

many aspects of this image-compression process. The SGSetVideoCompressorType

function specifies the type of image compressor to use. The sequence grabber

can determine the type of image compressor currently in use by calling the

SGGetVideoCompressorType function. The sequence grabber component can specify

a particular image compressor and set many image-compression parameters by calling

the SGSetVideoCompressor function. The sequence grabber component can

determine which image compressor is being used and its parameter settings by calling

the SGGetVideoCompressor function.

Video channel components typically work with a video digitizer component (see the

chapter “Video Digitizer Components” in this book for a complete description of video

digitizer components). Sequence grabber components provide functions that allow an

application to work with a channel’s video digitizer component. Video channel

components, in turn, must provide support for these functions. The sequence

grabber component uses the SGGetVideoDigitizerComponent function to

determine which video digitizer component is supplying data to your video

channel component. The sequence grabber component sets a channel’s video digitizer

component by calling the SGSetVideoDigitizerComponent function. If an

application changes any video digitizer settings by calling the video digitizer component

directly, the sequence grabber component informs your video channel component by

calling the SGVideoDigitizerChanged function.

Some video source data may contain unacceptable levels of visual noise or artifacts. One

technique for removing this noise is to capture the image and then reduce it in size.

During the size reduction process, the noise can be filtered out. Some video channel

components may provide functions that allow the sequence grabber component to filter

the input video data. The SGSetCompressBuffer function sets a filter buffer for a

video channel. The SGGetCompressBuffer function returns information about your

filter buffer.

The sequence grabber can work with a video channel’s frame rate by calling the

SGSetFrameRate and SGGetFrameRate functions. The sequence grabber can control

whether your channel uses an offscreen buffer by calling your

SGSetUseScreenBuffer and SGGetUseScreenBuffer functions.

Your SGAlignChannelRect function allows the sequence grabber to determine a

channel’s optimum screen position.

C H A P T E R 6

Sequence Grabber Channel Components

Sequence Grabber Channel Components Reference 6-63

SGSetChannelBounds

The SGSetChannelBounds function allows the sequence grabber component to specify

your channel’s display boundary rectangle.

pascal ComponentResult SGSetChannelBounds (SGChannel c,

 Rect *bounds);

c Identifies the channel connection for this operation.

bounds Contains a pointer to a rectangle that defines your channel’s display
boundary rectangle.

DESCRIPTION

This rectangle defines the destination for data from this channel. This rectangle is

defined in the graphics world that the sequence grabber component establishes by

calling the SGSetGWorld function, described on page 6-39.

SPECIAL CONSIDERATIONS

The SGSetChannelBounds function adjusts the channel matrix, as appropriate.

RESULT CODES

SGGetChannelBounds

The SGGetChannelBounds function allows the sequence grabber component to

determine your channel’s display boundary rectangle.

pascal ComponentResult SGGetChannelBounds (SGChannel c,

const Rect *bounds);

c Identifies the channel connection for this operation.

bounds Contains a pointer to a rectangle structure that is to receive information
about your channel’s display boundary rectangle.

cantDoThatInCurrentMode –9402 Request invalid in current mode
notEnoughMemoryToGrab –9403 Insufficient memory for record operation
deviceCantMeetRequest –9408 Device cannot support grabber

C H A P T E R 6

Sequence Grabber Channel Components

6-64 Sequence Grabber Channel Components Reference

DESCRIPTION

The sequence grabber component sets the boundary rectangle by calling the

SGSetChannelBounds function, which is described in the previous section. This

rectangle is defined in the graphics world that the sequence grabber establishes by

calling the SGSetGWorld function, described on page 6-39.

SGGetSrcVideoBounds

The SGGetSrcVideoBounds function allows the sequence grabber component to

determine the size of the source video boundary rectangle.

pascal ComponentResult SGGetSrcVideoBounds (SGChannel c, Rect *r);

c Identifies the channel connection for this operation.

r Contains a pointer to a rectangle structure that is to receive information
about your channel’s source video boundary rectangle.

DESCRIPTION

This rectangle defines the size of the source video image.

RESULT CODE

SEE ALSO

For video channel components that work with video digitizer components, this rectangle

corresponds to the video digitizer’s active source rectangle (see the chapter “Video

Digitizer Components” in this book for more information about video digitizer

components).

SGSetVideoRect

The SGSetVideoRect function allows the sequence grabber component to specify a

part of the source video image that is to be captured by your channel component.

pascal ComponentResult SGSetVideoRect (SGChannel c, Rect *r);

c Identifies the channel connection for this operation.

paramErr –50 Invalid parameter specified

C H A P T E R 6

Sequence Grabber Channel Components

Sequence Grabber Channel Components Reference 6-65

r Contains a pointer to the dimensions of the rectangle that defines the
portion of the source video image to be captured. This rectangle must lie
within the boundaries of the source video boundary rectangle, which the
sequence grabber can obtain by calling the SGGetSrcVideoBounds
function, described in the previous section.

DESCRIPTION

This rectangle must reside within the boundaries of the source video boundary

rectangle. The sequence grabber component obtains the dimensions of the source video

boundary rectangle by calling the SGGetSrcVideoBounds function. By default, your

component should capture the entire video image, as defined by the source video

boundary rectangle.

RESULT CODES

SEE ALSO

For video channel components that receive their data from video digitizer components,

this function sets the video digitizer component’s digitizer rectangle. See the chapter

“Video Digitizer Components” in this book for information about video digitizer

components.

SGGetVideoRect

The SGGetVideoRect function allows the sequence grabber to determine the portion of

the source video image that your component is going to capture.

pascal ComponentResult SGGetVideoRect (SGChannel c, Rect *r);

c Contains a pointer to the channel connection for this operation.

r Contains a pointer to a rectangle structure that is to receive the
dimensions of the rectangle that defines the portion of the source video
image your component is going to capture.

SEE ALSO

The sequence grabber uses the SGSetVideoRect function, which is described in the

previous section, to set the dimensions of this rectangle.

cantDoThatInCurrentMode –9402 Request invalid in current mode
notEnoughMemoryToGrab –9403 Insufficient memory for record operation
deviceCantMeetRequest –9408 Device cannot support grabber

C H A P T E R 6

Sequence Grabber Channel Components

6-66 Sequence Grabber Channel Components Reference

SGSetVideoCompressorType

The SGSetVideoCompressorType function allows the sequence grabber component

to specify the type of image compression your component is to apply to the captured

video images.

pascal ComponentResult SGSetVideoCompressorType (SGChannel c,

OSType compressorType);

c Identifies the channel connection for this operation.

compressorType
Specifies the type of image compression to use. The value of this
parameter must correspond to one of the image compressor types
supported by the Image Compression Manager. Currently, six
CodecType values are provided by Apple. You should use the
GetCodecNameList function to retrieve these names, so that your
application can take advantage of new compressor types that may be
added in the future. For each CodecType value in the following list, the
corresponding compression method is also identified by its text
string name.

See the chapter “Image Compression Manager” in Inside Macintosh:
QuickTime for information about valid compressor types. If this value is
set to 0, its default compression type is selected.

DESCRIPTION

In addition, your component should reset all image-compression parameters

to their default values. The sequence grabber component can then use the

SGSetVideoCompressor function, described on page 6-68, to change those

compression parameters.

RESULT CODES

Compressor type Compressor name

'rpza' video compressor

'jpeg' photo compressor

'rle ' animation compressor

'raw ' raw compressor

'smc ' graphics compressor

'cvid' compact video compressor

cantDoThatInCurrentMode –9402 Request invalid in current mode
notEnoughMemoryToGrab –9403 Insufficient memory for record operation
deviceCantMeetRequest –9408 Device cannot support grabber

C H A P T E R 6

Sequence Grabber Channel Components

Sequence Grabber Channel Components Reference 6-67

SGGetVideoCompressorType

The SGGetVideoCompressorType function allows the sequence grabber component

to determine the type of image compression that is being applied to your channel’s

video data.

pascal ComponentResult SGGetVideoCompressorType (SGChannel c,

OSType *compressorType);

c Identifies the channel connection for this operation.

compressorType
Contains a pointer to an OSType field that is to receive information about
the type of image compression to use. Return a value that corresponds to
one of the image-compression types supported by the Image
Compression Manager. Currently, six CodecType values are provided by
Apple. You should use the GetCodecNameList function to retrieve
these names, so that your application can take advantage of new
compressor types that may be added in the future. For each CodecType
value in the following list, the corresponding compression method is also
identified by its text string name.

See the chapter “Image Compression Manager” in Inside Macintosh:
QuickTime for information about valid compressor types. If this value is
set to 0, its default compression type is selected.

SEE ALSO

The sequence grabber component can set the image-compression type by calling the

SGSetVideoCompressorType function, which is described in the previous section.

Compressor type Compressor name

'rpza' video compressor

'jpeg' photo compressor

'rle ' animation compressor

'raw ' raw compressor

'smc ' graphics compressor

'cvid' compact video compressor

C H A P T E R 6

Sequence Grabber Channel Components

6-68 Sequence Grabber Channel Components Reference

SGSetVideoCompressor

The SGSetVideoCompressor function allows the sequence grabber component to

specify many of the parameters that control image compression of the video data

captured by your video channel.

pascal ComponentResult SGSetVideoCompressor (SGChannel c,

short depth,

CompressorComponent compressor,

CodecQ spatialQuality,

CodecQ temporalQuality,

long keyFrameRate);

c Identifies the channel connection for this operation.

depth Specifies the depth at which the image is likely to be viewed. Image
compressors may use this as an indication of the color or grayscale
resolution of the compressed images. If the sequence grabber component
sets this parameter to 0, let the sequence grabber component determine
the appropriate value for the source image. Values of 1, 2, 4, 8, 16, 24, and
32 indicate the number of bits per pixel for color images. Values of 33, 34,
36, and 40 indicate 1-bit, 2-bit, 4-bit, and 8-bit grayscale, respectively, for
grayscale images. Your component can determine which depths are
supported by a given compressor by examining the compression
information record (defined by the CodecInfo data type) returned by
the Image Compression Manager’s GetCodecInfo function (see the
chapter “Image Compression Manager” in Inside Macintosh: QuickTime for
more information on the GetCodecInfo function).

compressor
Specifies the image compressor identifier. The sequence grabber
component may specify a particular compressor by setting this parameter
to its compressor identifier. You can obtain these identifiers from the
Image Compression Manager’s GetCodecNameList function.

spatialQuality
Specifies the desired quality of the compressed image. See the chapter
“Image Compression Manager” in Inside Macintosh: QuickTime for valid
values.

temporalQuality
Specifies the desired temporal quality of the sequence. This parameter
governs the level of compression the sequence grabber component desires
with respect to information in successive frames in the sequence. The
sequence grabber component sets this parameter to 0 to prevent the
image compressor from applying temporal compression to the sequence.
See the chapter “Image Compression Manager” in Inside Macintosh:
QuickTime for other valid values.

C H A P T E R 6

Sequence Grabber Channel Components

Sequence Grabber Channel Components Reference 6-69

keyFrameRate
Specifies the maximum number of frames allowed between key frames.
Key frames provide points from which a temporally compressed
sequence may be decompressed. The sequence grabber component uses
this parameter to control the frequency with which the image compressor
places key frames into the compressed sequence. For more information
about key frames, see the chapter “Image Compression Manager” in
Inside Macintosh: QuickTime.

The compressor determines the optimum placement for key frames based
upon the amount of redundancy between adjacent images in the
sequence. Consequently, the compressor may insert key frames more
frequently than you have requested. However, the compressor will never
place key frames less often than is indicated by the setting of the
keyFrameRate parameter. The compressor ignores this parameter if you
have not requested temporal compression (that is, you have set the
temporalQuality parameter to 0).

RESULT CODES

SGGetVideoCompressor

The SGGetVideoCompressor function allows the sequence grabber component to

determine your channel’s current image-compression parameters.

pascal ComponentResult SGGetVideoCompressor (SGChannel c,

short *depth,

CompressorComponent *compressor,

CodecQ *spatialQuality,

CodecQ *temporalQuality,

long *keyFrameRate);

c Identifies the channel connection for this operation.

depth Contains a pointer to a field that is to receive the depth at which the
image is likely to be viewed. Image compressor components may use the
depth as an indication of the color or grayscale resolution of the
compressed images. Return the depth value currently in use by your
channel component. If this parameter is set to nil, the sequence grabber
component is not interested in this information.

paramErr –50 Invalid parameter
cantDoThatInCurrentMod
e

–9402 Request invalid in current mode

notEnoughMemoryToGrab –9403 Insufficient memory for record operation
deviceCantMeetRequest –9408 Device cannot support grabber

C H A P T E R 6

Sequence Grabber Channel Components

6-70 Sequence Grabber Channel Components Reference

compressor
Contains a pointer to a field that is to receive an image compressor
identifier. Return the identifier that corresponds to the image compressor
your channel is using. If this parameter is set to nil, the sequence
grabber component is not interested in this information.

spatialQuality
Contains a pointer to a field that is to receive the desired compressed
image quality. Return the current quality value. See the chapter “Image
Compression Manager” in Inside Macintosh: QuickTime for valid values. If
this parameter is set to nil, the sequence grabber component is not
interested in this information.

temporalQuality
Contains a pointer to a field that is to receive the desired temporal quality
of the sequence. This parameter governs the level of compression you
desire with respect to information between successive frames in the
sequence. Return the current temporal quality value. If this parameter is
set to nil, the sequence grabber component is not interested in this
information.

keyFrameRate
Contains a pointer to a field that is to receive the maximum number of
frames allowed between key frames. Key frames provide points from
which a temporally compressed sequence may be decompressed. This
value controls the frequency at which the image compressor places key
frames into the compressed sequence. Return the current key frame rate.
If this parameter is set to nil, the sequence grabber component is not
interested in this information.

SEE ALSO

The sequence grabber component can set these parameters by calling the

SGSetVideoCompressor function, which is described in the previous section.

SGSetVideoDigitizerComponent

The SGSetVideoDigitizerComponent function allows the sequence grabber

component to assign a video digitizer component to your video channel.

pascal ComponentResult SGSetVideoDigitizerComponent

(SGChannel c, ComponentInstance vdig);

c Identifies the channel connection for this operation.

C H A P T E R 6

Sequence Grabber Channel Components

Sequence Grabber Channel Components Reference 6-71

vdig Contains a component instance that identifies a connection to a video
digitizer component. Your video channel component should use this
video digitizer component to obtain its source video data.

DESCRIPTION

Typically, your video channel component locates its own video digitizer component. The

sequence grabber component calls the SGSetVideoDigitizerComponent function if

an application chooses to assign a video digitizer to a video channel.

RESULT CODE

SGGetVideoDigitizerComponent

The SGGetVideoDigitizerComponent function allows the sequence grabber

component to determine the video digitizer component that is providing source video to

your video channel component. For example, the sequence grabber component can use

this function to obtain access to the video digitizer component so that the

grabber component can set the digitizer’s parameters. See the chapter “Video Digitizer

Components” in this book for information about video digitizer components.

pascal ComponentInstance SGGetVideoDigitizerComponent

(SGChannel c);

c Identifies the channel connection for this operation.

DESCRIPTION

The SGGetVideoDigitizerComponent function returns a component instance that

identifies the connection between your video channel component and its video digitizer

component. If your video channel component does not use a video digitizer component,

set this returned value to nil.

SEE ALSO

If the sequence grabber component changes any video digitizer component parameters,

it notifies your sequence grabber channel component by calling your

SGVideoDigitizerChanged function, which is described in the next section.

cantDoThatInCurrentMode –9402 Request invalid in current mode

C H A P T E R 6

Sequence Grabber Channel Components

6-72 Sequence Grabber Channel Components Reference

SGVideoDigitizerChanged

The SGVideoDigitizerChanged function allows the sequence grabber component to

notify your component whenever an application changes the configuration of your video

channel’s video digitizer.

pascal ComponentResult SGVideoDigitizerChanged (SGChannel c);

c Identifies the channel connection for this operation.

DESCRIPTION

You should update any status information you maintain regarding the video digitizer

component used by your channel component.

RESULT CODE

SGSetCompressBuffer

Some video source data may contain unacceptable levels of visual noise or artifacts. One

technique for removing this noise is to capture the image and then reduce it in size.

During the size reduction process, the noise can be filtered out.

The SGSetCompressBuffer function allows the sequence grabber component to direct

your component to create a filter buffer for your video channel. Logically, this buffer sits

between the source video buffer and the destination rectangle that the sequence grabber

component sets with the SGSetChannelBounds function, described on page 6-63. The

filter buffer should be larger than the area enclosed by the destination rectangle.

pascal ComponentResult SGSetCompressBuffer (SGChannel c,

short depth,

const Rect *compressSize);

c Identifies the channel connection for this operation.

depth Specifies the pixel depth of the filter buffer. If the sequence grabber sets
this parameter to 0, use the depth of the video buffer (which the sequence
grabber sets with the SGSetChannelBounds function).

cantDoThatInCurrentMode –9402 Request invalid in current mode

C H A P T E R 6

Sequence Grabber Channel Components

Sequence Grabber Channel Components Reference 6-73

compressSize
Contains a pointer to the dimensions of the filter buffer. This buffer
should be larger than the destination buffer. The sequence grabber
component sets this parameter to nil, or it sets the coordinates of this
rectangle to 0 (specifying an empty rectangle), to stop filtering the input
source video data.

DESCRIPTION

If the sequence grabber component establishes a filter buffer for a channel, your channel

component should place its captured video image into the filter buffer and then copy the

image into the destination buffer. This process may be too slow for some record

operations, but it can be useful during controlled record operations (where the source

video can be read on a frame-by-frame basis).

RESULT CODE

SGGetCompressBuffer

The SGGetCompressBuffer function returns information about the filter buffer that

the sequence grabber component has established for your video channel.

pascal ComponentResult SGGetCompressBuffer (SGChannel c,

short *depth,

Rect *compressSize);

c Identifies the channel connection for this operation.

depth Contains a pointer to a field that is to receive the pixel depth of the filter
buffer. If your component is not filtering the input video data, set the
returned value to 0.

compressSize
Contains a pointer to a rectangle structure that is to receive the
dimensions of the filter buffer. If your component is not filtering the input
video data, return an empty rectangle (all coordinates set to 0).

SEE ALSO

The sequence grabber component sets a filter buffer by calling the

SGSetCompressBuffer function, which is described in the previous section.

cantDoThatInCurrentMode –9402 Request invalid in current mode

C H A P T E R 6

Sequence Grabber Channel Components

6-74 Sequence Grabber Channel Components Reference

SGSetFrameRate

The SGSetFrameRate function allows the sequence grabber to specify a video

channel’s frame rate for recording.

pascal ComponentResult SGSetFrameRate (SGChannel c,

 Fixed frameRate);

c Identifies the channel connection for this operation.

frameRate Specifies the desired frame rate. If this parameter is set to 0, use your
channel’s default frame rate. Typically, this corresponds to the fastest rate
that your channel can support.

DESCRIPTION

The SGSetFrameRate function allows the sequence grabber to control a video

channel’s frame rate. Note that the digitizing hardware may not be able to support the

full rate that the sequence grabber specifies. If the rate is too high, operate at the highest

rate you can support.

SPECIAL CONSIDERATIONS

Note that this function will not be called when you are recording.

RESULT CODES

SEE ALSO

The sequence grabber can retrieve your channel’s current frame rate by calling your

SGGetFrameRate function, which is described next.

SGGetFrameRate

The SGGetFrameRate function allows you to retrieve a video channel’s frame rate for

recording.

pascal ComponentResult SGGetFrameRate (SGChannel c,

Fixed *frameRate);

c Identifies the channel connection for this operation.

frameRate Contains a pointer to a field to receive the current frame rate. Return your
channel’s current frame rate.

paramErr –50 Invalid parameter value
cantDoThatInCurrentMode –9402 Request invalid in current mode

C H A P T E R 6

Sequence Grabber Channel Components

Sequence Grabber Channel Components Reference 6-75

DESCRIPTION

The SGGetFrameRate function returns your channel’s current rate. By default, your

channel should record at the fastest rate that it can support. In this case, set the field

referred to by the frameRate parameter to 0.

SEE ALSO

The sequence grabber can set your channel’s frame rate by calling the SGSetFrameRate

function, which is described in the previous section.

SGSetUseScreenBuffer

The SGSetUseScreenBuffer function allows the sequence grabber to control whether

your video channel uses an offscreen buffer.

pascal ComponentResult SGSetUseScreenBuffer (SGChannel c,

Boolean useScreenBuffer);

c Identifies the channel connection for this operation.

useScreenBuffer
Indicates whether to use an offscreen buffer. If this parameter is set to
true, draw directly to the screen. If it is set to false, your channel may
use an offscreen buffer. If your channel cannot work with offscreen
buffers, ignore this parameter.

DESCRIPTION

By default, video channels try to draw directly to the screen. The

SGSetUseScreenBuffer function allows the sequence grabber to direct your video

channel to draw to an offscreen buffer. If your channel cannot draw offscreen, ignore this

function. Note that this function will not be called when you are recording.

RESULT CODES

SEE ALSO

The sequence grabber can determine whether it has allowed your channel to draw

offscreen by calling your SGGetUseScreenBuffer function, which is described next.

paramErr –50 Invalid parameter value
cantDoThatInCurrentMode –9402 Request invalid in current mode

C H A P T E R 6

Sequence Grabber Channel Components

6-76 Sequence Grabber Channel Components Reference

SGGetUseScreenBuffer

The SGGetUseScreenBuffer function allows the sequence grabber to determine

whether your video channel is allowed to use an offscreen buffer.

pascal ComponentResult SGGetUseScreenBuffer (SGChannel c,

Boolean *useScreenBuffer);

c Identifies the channel connection for this operation.

useScreenBuffer
Contains a pointer to a Boolean value. Set this field to true if your
channel draws directly to the screen. Set it to false if your channel can
use an offscreen buffer. If your channel cannot work with offscreen
buffers, ignore this value.

DESCRIPTION

By default, video channels draw directly to the screen. The sequence grabber can direct a

channel to draw to an offscreen buffer by calling your SGSetUseScreenBuffer

function. If the channels can work offscreen, it then allocates and draws to an offscreen

buffer.

SEE ALSO

You can allow a channel to draw offscreen by calling the SGSetUseScreenBuffer

function, which is described in the previous section.

SGAlignChannelRect

The sequence grabber calls your SGAlignChannelRect function in order to determine

whether your channel prefers to draw at a particular screen location.

pascal ComponentResult SGAlignChannelRect (SGChannel c, Rect *r);

c Identifies the connection to your channel.

r Contains a pointer to a rectangle. On entry, this rectangle contains
coordinates at which the sequence grabber would like to draw your
captured video image. If your component can draw more efficiently or at
a higher frame rate at a different location, update the contents of this
rectangle to reflect where you would prefer to draw. The rectangle will be
passed in with global, not local, coordinates.

C H A P T E R 6

Sequence Grabber Channel Components

Sequence Grabber Channel Components Reference 6-77

DESCRIPTION

The sequence grabber uses your SGAlignChannelRect function to determine the best

alignment for your captured image.

RESULT CODE

Configuration Functions for Sound Channel Components

Sound channel components provide a number of functions that allow sequence grabber

components to configure the component’s sound channel. This section describes these

sound channel configuration functions. The sequence grabber component uses these

functions only with sound channels.

The SGSetChannelVolume function allows the sequence grabber component to

control a channel’s sound volume. The sequence grabber component uses the

SGGetChannelVolume function to determine a channel’s volume.

The SGSetSoundInputDriver specifies a channel’s sound input device. The sequence

grabber component can determine a channel’s sound input device by calling the

SGGetSoundInputDriver function. If an application changes any attributes of the

sound input device, the sequence grabber component notifies your sound component by

calling the SGSoundInputDriverChanged function.

The sequence grabber component can control the amount of sound data your channel

works with at one time by calling the SGSetSoundRecordChunkSize function. The

sequence grabber component can determine this value by calling the

SGGetSoundRecordChunkSize function.

The sequence grabber component controls the rate at which your sound channel samples

the input data by calling the SGSetSoundInputRate function. The sequence grabber

component can determine the sample rate by calling the SGGetSoundInputRate

function.

The sequence grabber can control other sound input parameters by using your

SGSetSoundInputParameters and SGGetSoundInputParameters functions.

SGSetChannelVolume

The SGSetChannelVolume function sets your channel’s sound volume.

pascal ComponentResult SGSetChannelVolume (SGChannel c,

 short volume);

c Identifies the channel connection for this operation.

badComponentSelector 0x80008002 Function not supported

C H A P T E R 6

Sequence Grabber Channel Components

6-78 Sequence Grabber Channel Components Reference

volume Specifies the volume setting of your channel represented as a 16-bit,
fixed-point number. The high-order 8 bits contain the integer part of the
value; the low-order 8 bits contain the fractional part. Volume values
range from –1.0 to 1.0. Negative values play no sound but preserve the
absolute value of the volume setting.

DESCRIPTION

Use this volume setting during playback—this setting should not affect the record level

or the volume of the track in the recorded QuickTime movie.

SGGetChannelVolume

The SGGetChannelVolume function allows the sequence grabber component to

determine your channel’s sound volume setting.

pascal ComponentResult SGGetChannelVolume (SGChannel c,

 short *volume);

c Identifies the channel connection for this operation.

volume Contains a pointer to an integer that is to receive the volume setting of the
channel represented as a 16-bit, fixed-point number. The high-order 8 bits
contain the integer part of the value; the low-order 8 bits contain the
fractional part. Volume values range from –1.0 to 1.0. Negative values
play no sound but preserve the absolute value of the volume setting.

SEE ALSO

The sequence grabber component establishes the volume setting by calling the

SGSetChannelVolume function, described in the previous section.

SGSetSoundInputDriver

Some sound channel components may use sound input devices to obtain their source

data. The SGSetSoundInputDriver function allows the sequence grabber component

to assign a sound input device to your sound channel.

pascal ComponentResult SGSetSoundInputDriver (SGChannel c,

const Str255 driverName);

c Identifies the channel connection for this operation.

C H A P T E R 6

Sequence Grabber Channel Components

Sequence Grabber Channel Components Reference 6-79

driverName
Specifies the name of the sound input device. This is a Pascal string, and it
must correspond to a valid sound input device.

DESCRIPTION

If your sound channel component does not use sound input devices, return a nonzero

result code.

RESULT CODES

SEE ALSO

For more information about sound input devices, see Inside Macintosh: More Macintosh
Toolbox—in particular, refer to the discussion of the SPBGetIndexedDevice function in

the chapter “Sound Manager.”

SGGetSoundInputDriver

The SGGetSoundInputDriver function allows the sequence grabber component to

determine the sound input device currently in use by your sound channel component.

pascal long SGGetSoundInputDriver (SGChannel c);

c Identifies the channel connection for this operation.

DESCRIPTION

The sequence grabber component may want to gain access to the sound input device if it

wants to change the device’s configuration. For example, the sequence grabber

component may want to configure the device for stereo sound. If the sequence

grabber component changes any of the device’s operating parameters, it informs your

sequence grabber channel component by calling your SGSoundInputDriverChanged

function, which is described in the next section.

The SGGetSoundInputDriver function returns a reference to the sound input device.

If your sound channel is not using a sound input device, set the returned value to nil.

noDeviceForChannel –9400 Channel component cannot find its device
cantDoThatInCurrentMode –9402 Request invalid in current mode
deviceCantMeetRequest –9408 Device cannot support grabber

C H A P T E R 6

Sequence Grabber Channel Components

6-80 Sequence Grabber Channel Components Reference

SEE ALSO

The sequence grabber component can assign a sound input device to a sound channel by

calling the SGSetSoundInputDriver function, which is described in the previous

section.

SGSoundInputDriverChanged

The SGSoundInputDriverChanged function allows the sequence grabber component

to notify your sound channel component whenever an application changes the

configuration of your sound channel’s sound input device.

pascal ComponentResult SGSoundInputDriverChanged (SGChannel c);

c Identifies the channel connection for this operation.

DESCRIPTION

 Your component should update any sound device status information it maintains.

SGSetSoundRecordChunkSize

During record operations, the sequence grabber component and its sound channels work

with groups of sound samples. These groups are referred to as chunks. By default, each

chunk contains two seconds of sound data. Smaller chunks use less memory.

pascal ComponentResult SGSetSoundRecordChunkSize (SGChannel c,

long seconds);

c Identifies the channel connection for this operation.

seconds Specifies the number of seconds of sound data your sound channel
component is to work with at a time. This parameter is set to a negative
fixed-point number to specify a fraction of a second. For example, to set
the duration to half a second, –0.5 is passed in.

DESCRIPTION

The sequence grabber component can control the amount of sound data in each chunk

by calling the SGSetSoundRecordChunkSize function. The sequence grabber

component specifies the number of seconds of sound data your channel is to work with

at a time.

C H A P T E R 6

Sequence Grabber Channel Components

Sequence Grabber Channel Components Reference 6-81

SPECIAL CONSIDERATIONS

The SGSetSoundRecordChunkSize function may return a fraction of a second (see the

discussion of the seconds parameter above).

RESULT CODES

SGGetSoundRecordChunkSize

The SGGetSoundRecordChunkSize function allows the sequence grabber component

to determine the amount of sound data your sound channel component works with

at a time.

pascal long SGGetSoundRecordChunkSize (SGChannel c);

c Identifies the channel connection for this operation.

DESCRIPTION

The SGGetSoundRecordChunkSize function returns a long integer that specifies the

number of seconds of sound data your channel works with at a time.

SEE ALSO

The sequence grabber component sets this value by calling the

SGSetSoundRecordChunkSize function, which is described in the previous section.

SGSetSoundInputRate

The SGSetSoundInputRate function allows the sequence grabber component to set

the rate at which your sound channel obtains its sound data.

pascal ComponentResult SGSetSoundInputRate (SGChannel c,

Fixed rate);

c Identifies the channel connection for this operation.

rate Specifies the rate at which your sound channel is to acquire data. This
parameter specifies the number of samples your sound channel is to
generate per second. If your sound channel cannot support the specified
rate, use the closest available rate that you can support. If this parameter
is set to 0, use your default rate.

paramErr –50 Invalid parameter specified
cantDoThatInCurrentMode –9402 Request invalid in current mode

C H A P T E R 6

Sequence Grabber Channel Components

6-82 Sequence Grabber Channel Components Reference

RESULT CODES

SGGetSoundInputRate

The SGGetSoundInputRate function allows the sequence grabber component to

determine the rate at which your sound channel is collecting sound data.

pascal Fixed SGGetSoundInputRate (SGChannel c);

c Identifies the channel connection for this operation.

DESCRIPTION

The SGGetSoundInputRate function returns a fixed-point number that indicates the

number of samples your sound channel collects per second.

SEE ALSO

The sequence grabber component sets this rate by calling the SGSetSoundInputRate

function, which is described in the previous section.

SGSetSoundInputParameters

The SGSetSoundInputParameters function allows the sequence grabber to set some

parameters that relate to sound recording.

pascal ComponentResult SGSetSoundInputParameters (SGChannel c,

 short sampleSize,

 short numChannels,

 OSType compressionType);

c Identifies the channel connection for this operation.

sampleSize
Specifies the number of bits in each sound sample. This field is set to 8 for
8-bit sound; it is set to 16 for 16-bit sound.

numChannels
Indicates the number of sound channels to be used by the sound sample.
This field is set to 1 for monaural sounds; it is set to 2 for stereo sounds.

cantDoThatInCurrentMode –9402 Request invalid in current mode
deviceCantMeetRequest –9408 Device cannot support grabber

C H A P T E R 6

Sequence Grabber Channel Components

Sequence Grabber Channel Components Reference 6-83

compressionType
Describes the format of the sound data. The following values are
supported:

'raw ' Sound samples are uncompressed, in offset-binary format
(that is, sample data values range from 0 to 255).

'MAC3' Sound samples have been compressed by the Sound
Manager at a ratio of 3:1.

'MAC6' Sound samples have been compressed by the Sound
Manager at a ratio of 6:1.

DESCRIPTION

Sequence grabbers may use the SGSetSoundInputParameters function to control

many parameters relating to sound recording. All of the sound parameters support two

special values. If any of these parameters are set to 0, your channel should not change

the current value of that parameter. If any are set to –1, return that parameter to its

default value.

If your sound device cannot support a specified parameter value, return an appropriate

Sound Manager result code.

RESULT CODES

Sound Manager errors

SGGetSoundInputParameters

The SGGetSoundInputParameters function allows the sequence grabber to retrieve

some parameters that relate to sound recording.

pascal ComponentResult SGGetSoundInputParameters (SGChannel c,

short *sampleSize,

short *numChannels,

OSType *compressionType);

c Identifies the channel connection for this operation.

sampleSize
Contains a pointer to a field to receive the sample size. Set this field to 8
for 8-bit sound; set the field to 16 for 16-bit sound.

numChannels
Contains a pointer to a field to receive the number of sound channels
used by the sound sample. Set this field to 1 for monaural sounds; set the
field to 2 for stereo sounds.

C H A P T E R 6

Sequence Grabber Channel Components

6-84 Sequence Grabber Channel Components Reference

compressionType
Contains a pointer to a field to receive the format of the sound data. You
may return the following values:

'raw ' Sound samples are uncompressed, in offset-binary format
(that is, sample data values range from 0 to 255).

'MAC3' Sound samples have been compressed by the Sound
Manager at a ratio of 3:1.

'MAC6' Sound samples have been compressed by the Sound
Manager at a ratio of 6:1.

DESCRIPTION

The sequence grabber may use the SGGetSoundInputParameters function to retrieve

many parameters relating to sound recording. If any of the sound parameters are set to

nil, do not return that value.

Utility Functions for Sequence Grabber Channel Components

Sequence grabber components provide several utility functions that your channel

component can use. This section discusses those functions.

The SGAddMovieData function lets you add data and sample references to a movie.

Alternatively, you can use the SGWriteMovieData function to add data to a movie, and

the SGAddFrameReference and SGGetNextFrameReference functions to keep

track of sample references prior to creating a QuickTime movie from recorded data.

The SGSortDeviceList function allows you to sort the entries in the device list that

you create for the sequence grabber when it calls your SGGetChannelDeviceList

function (which is discussed on page 6-60).

The SGChangedSource function allows you to tell the sequence grabber that you have

changed your source device.

The SGAddFrameReference and SGGetNextFrameReference functions take a

pointer to a frame information structure as a parameter. The SeqGrabFrameInfo data

type defines the format of a frame information structure.

struct SeqGrabFrameInfo {

long frameOffset; /* offset to the sample */

long frameTime; /* time that frame was captured */

long frameSize; /* number of bytes in sample */

SGChannel frameChannel; /* current connection to channel */

long frameRefCon; /* reference constant for channel */

};

C H A P T E R 6

Sequence Grabber Channel Components

Sequence Grabber Channel Components Reference 6-85

Field descriptions

frameOffset Specifies the offset to the sample. Your channel component obtains
this value from the SGWriteMovieData function, described on
page 6-86.

frameTime Specifies the time at which your channel component captured the
frame. This time value is relative to the data sequence. That is, this
time is not represented in the context of any fixed time scale. Rather,
your channel component must choose and use a time scale
consistently for all sample references.

frameSize Specifies the number of bytes in the sample described by the sample
reference.

frameChannel Identifies the current connection to your channel.

frameRefCon Contains a reference constant for use by your channel component.
You can use this value in any way that is appropriate for your
channel component. For example, video channel components may
use this value to store a reference to frame differencing information
for a temporally compressed image sequence.

SGAddMovieData

The SGAddMovieData function allows your channel component to add data to a movie.

This function combines the services provided by the SGWriteMovieData and

SGAddFrameReference functions. Your channel component should not write data

directly to the movie file—use this function instead.

pascal ComponentResult SGAddMovieData (SeqGrabComponent s,

SGChannel c, Ptr p,

long len,

long *offset,

long chRefCon,

TimeValue time,

short writeType);

s Specifies the component instance that identifies the sequence grabber
component that is using your channel. The sequence grabber provides
this to you when it calls your SGInitChannel function (described on
page 6-38).

c Identifies the connection to your channel.

p Specifies the location of the data to be added to the movie.

len Indicates the number of bytes of data to be added to the movie.

C H A P T E R 6

Sequence Grabber Channel Components

6-86 Sequence Grabber Channel Components Reference

offset Contains a pointer to a field that is to receive the offset to the new data in
the movie. The sequence grabber component returns an offset that is
correct in the context of the movie resource, even if the movie is currently
stored in memory. That is, if the movie is in memory, the returned offset
reflects the location that the data will have in a movie on a permanent
storage device, such as a disk.

chRefCon Contains your channel’s reference constant.

time Specifies the time at which your channel captured the frame. This time
value is expressed in your channel’s time scale.

writeType Specifies the type of write operation. The following values are valid:

seqGrabWriteAppend
Append the new data to the end of the file. The sequence
grabber sets the field referred to by the offset parameter
to reflect the location at which it added the data.

seqGrabWriteReserve
Do not write any data to the output file. Instead, reserve
space in the output file for the amount of data indicated by
the len parameter. The sequence grabber sets the field
referred to by the offset parameter to the location of the
reserved space.

seqGrabWriteFill
Write the data into the location specified by the field
referred to by the offset parameter. The sequence
grabber sets that field to the location of the byte following
the last byte it wrote.

This option is used to fill the space reserved previously
when the writeType parameter was set to
seqGrabWriteReserve.

RESULT CODES

File Manager errors

Memory Manager errors

SGWriteMovieData

The SGWriteMovieData function allows your channel component to add data to a

movie.

pascal ComponentResult SGWriteMovieData (SeqGrabComponent s,

 SGChannel c, Ptr p,

 long len, long *offset);

C H A P T E R 6

Sequence Grabber Channel Components

Sequence Grabber Channel Components Reference 6-87

s Contains a component instance that identifies the sequence grabber
component that has connected to your channel component. The sequence
grabber component provides this value to your channel component when
it calls your SGInitChannel function (described on page 6-38).

c Identifies the connection to your channel.

p Specifies the location of the data to be added to the movie.

len Contains the number of bytes of data to be added to the movie.

offset Contains a pointer to a long integer that is to receive the offset to the new
data in the movie. The sequence grabber component returns an offset that
is correct in the context of a movie resource, even if the movie data is
currently stored in memory. That is, if the movie is in memory, the
returned offset reflects the location that the data will have in a movie on a
permanent storage device, such as a disk.

DESCRIPTION

The SGWriteMovieData function behaves differently depending upon when you call

it. If you call it from your SGWriteSamples function, this function writes the movie

data to the device that contains the recording operation’s movie file. If you call this

function at other times, it may write the movie data to a movie in memory, depending

upon the recording options that are in effect.

RESULT CODES

File Manager errors

Memory Manager errors

SGAddFrameReference

The SGAddFrameReference function allows your channel component to store sample

references.

pascal ComponentResult SGAddFrameReference (SeqGrabComponent s,

 SeqGrabFrameInfo *frameInfo);

s Contains a component instance that identifies the sequence grabber
component that has connected to your channel component. The sequence
grabber component provides this value to your channel component when
it calls your SGInitChannel function (described on page 6-38).

frameInfo Contains a pointer to a frame information structure (defined by the
SeqGrabFrameInfo data type). Your component must completely
specify the reference by placing the appropriate information into the
record referred to by this parameter. The format and content of the frame
information structure are described on page 6-84.

C H A P T E R 6

Sequence Grabber Channel Components

6-88 Sequence Grabber Channel Components Reference

DESCRIPTION

The sequence grabber component uses the information you provide to create a new

sample reference in the movie that contains the captured data. You supply the

information for the reference in a frame information structure.

RESULT CODES

Memory Manager errors

SEE ALSO

Your component can retrieve these references by calling the

SGGetNextFrameReference function, which is described in the next section.

SGGetNextFrameReference

The SGGetNextFrameReference function allows your channel component to retrieve

the sample references you stored by calling the SGAddMovieData or

SGAddFrameReference function, described on page 6-85 and in the previous section,

respectively.

pascal ComponentResult SGGetNextFrameReference

(SeqGrabComponent s,

 SeqGrabFrameInfo *frameInfo,

 TimeValue *frameDuration,

 long *frameNumber);

s Contains a component instance that identifies the sequence grabber
component that has connected to your channel component. The sequence
grabber component provides this value to your channel component when
it calls your SGInitChannel function (described on page 6-38).

frameInfo Contains a pointer to a frame information structure (defined by the
SeqGrabFrameInfo data type), which is described on page 6-84. Your
component must identify itself to the sequence grabber component by
setting the frameChannel field of this structure to the component
instance that identifies the current connection to your channel. The
sequence grabber component then returns information about the specified
frame in the remaining fields of this structure.

C H A P T E R 6

Sequence Grabber Channel Components

Sequence Grabber Channel Components Reference 6-89

frameDuration
Contains a pointer to a time value. The sequence grabber component
calculates the duration of the specified frame and returns that duration in
the structure referred to by this parameter. Note that the sequence grabber
component cannot calculate the duration of the last frame in a sequence.
In this case, the sequence grabber component sets the returned time value
to –1.

frameNumber
Contains a pointer to a long integer. Your channel component specifies the
frame number corresponding to the frame about which you want to
retrieve information. Frames are numbered starting at 0. However, frame
numbers need not start at 0, and they may not be sequential. Set the field
referred to by the frameNumber parameter to –1 to retrieve information
about the first frame in a movie.

The sequence grabber component returns the frame number of the
movie’s next frame into the field referred to by this parameter. You can
use this value the next time you call SGGetNextFrameReference.

DESCRIPTION

The SGGetNextFrameReference function allows your channel component to process

these references sequentially or randomly—you specify the relative frame for which you

want to retrieve information. The sequence grabber component then retrieves and

returns information for that frame. Typically, your channel component calls this function

within its SGWriteSamples function (described on page 6-43).

RESULT CODE

SGSortDeviceList

The SGSortDeviceList function allows you to sort your device list alphabetically.

pascal ComponentResult SGSortDeviceList (SeqGrabComponent s,

SGDeviceList list);

s Specifies the component instance that identifies the sequence grabber
component that is using your channel. The sequence grabber provides
this to you when it calls your SGInitChannel function (described on
page 6-38).

list Contains a pointer to a device list structure pointer.

paramErr –50 Invalid parameter specified

C H A P T E R 6

Sequence Grabber Channel Components

6-90 Sequence Grabber Channel Components Reference

DESCRIPTION

Your component constructs its device list whenever the sequence grabber calls your

SGGetChannelDeviceList function (described on page 6-60). You may add entries to

the device list in any order you like. Once you have built up your device list, you may

use the SGSortDeviceList function to sort that list alphabetically, by device name.

The sequence grabber correctly updates the selectedIndex field in the device list

structure, as well.

The format and content of the device list structure are discussed earlier in this chapter, in

“Working With Channel Devices” beginning on page 6-58.

RESULT CODE

SGChangedSource

The SGChangedSource function allows you to tell the sequence grabber that your

component is now using a different device.

pascal ComponentResult SGChangedSource (SeqGrabComponent s,

SGChannel c);

s Specifies the component instance that identifies the sequence grabber
component that is using your channel. The sequence grabber provides
this to you when it calls your SGInitChannel function (described on
page 6-38).

c Identifies the connection to your channel.

DESCRIPTION

Applications can instruct your channel to change its input device, for example, by calling

the sequence grabber’s SGSetChannelDevice function. The sequence grabber passes

this request on to your channel component. Whenever you successfully change your

input device, you should tell the sequence grabber by calling its SGChangedSource

function. This allows the sequence grabber to update the information it keeps about your

channel.

paramErr –50 Invalid parameter value

C H A P T E R 6

Sequence Grabber Channel Components

Summary of Sequence Grabber Channel Components 6-91

Summary of Sequence Grabber Channel Components

C Summary

Constants

/* sequence grabber channel component type */

#define SeqGrabChannelType 'sgch'

/* device list structure flags */

#define sgDeviceListWithIcons (1) /* include icons */

#define sgDeviceListDontCheckAvailability (2) /* don't check available */

/* data function write operation types */

enum {

seqGrabWriteAppend, /* append to file */

seqGrabWriteReserve, /* reserve space in file */

seqGrabWriteFill /* fill reserved space */

};

/* flags for SGSetChannelPlayFlags and SGGetChannelPlayFlags functions */

#define channelPlayNormal 0 /* use default playback methodology */

#define channelPlayFast 1 /* achieve fast playback rate */

#define channelPlayHighQuality 2 /* achieve high-quality image */

#define channelPlayAllData 4 /* play all captured data */

/* usage flags for SGSetChannelUsage and SGGetChannelUsage functions */

enum {

seqGrabRecord = 1, /* used during record operations */

seqGrabPreview = 2, /* used during preview operations */

seqGrabPlayDuringRecord = 4 /* plays data during record operation */

};

typedef unsigned char SeqGrabUsageEnum;

/* SGGetChannelInfo function flags */

enum {

seqGrabHasBounds = 1, /* visual representation of data */

seqGrabHasVolume = 2, /* audio representation of data */

seqGrabHasDiscreteSamples = 4 /* data organized in discrete frames */

C H A P T E R 6

Sequence Grabber Channel Components

6-92 Summary of Sequence Grabber Channel Components

};

typedef unsigned char SeqGrabChannelInfoEnum;

/* basic sequence grabber channel component selectors */

kSGSetGWorldSelect = 0x4; /* SetGWorld */

kSGStartPreviewSelect = 0x10; /* SGStartPreview */

kSGStartRecordSelect = 0x11; /* SGStartRecord */

kSGIdleSelect = 0x12; /* SGIdle */

kSGStopSelect = 0x13; /* SGStop */

kSGPauseSelect = 0x14; /* SGPause */

kSGPrepareSelect = 0x15; /* SGPrepare */

kSGReleaseSelect = 0x16; /* SGRelease */

kSGUpdateSelect = 0x27; /* SGUpdate */

/* selectors for common channel configuration functions */

kSGCSetChannelUsageSelect = 0x80; /* SGSetChannelUsage */

kSGCGetChannelUsageSelect = 0x81; /* SGGetChannelUsage */

kSGCSetChannelBoundsSelect = 0x82; /* SGSetChannelBounds */

kSGCGetChannelBoundsSelect = 0x83; /* SGGetChannelBounds */

kSGCSetChannelVolumeSelect = 0x84; /* SGSetChannelVolume */

kSGCGetChannelVolumeSelect = 0x85; /* SGGetChannelVolume */

kSGCGetChannelInfoSelect = 0x86; /* SGGetChannelInfo */

kSGCSetChannelPlayFlagsSelect = 0x87; /* SGSetChannelPlayFlags */

kSGCGetChannelPlayFlagsSelect = 0x88; /* SGGetChannelPlayFlags */

kSGCSetChannelMaxFramesSelect = 0x89; /* SGSetChannelMaxFrames */

kSGCGetChannelMaxFramesSelect = 0x8A; /* SGGetChannelMaxFrames */

kSGCSetChannelRefConSelect = 0x8B; /* SGSetChannelRefCon */

kSGCSetChannelClipSelect = 0x8C; /* SGSetChannelClip */

kSGCGetChannelClipSelect = 0x8D; /* SGGetChannelClip */

kSGCGetChannelSampleDescriptionSelect = 0x8E;

/* SGCGetChannelSampleDescription */

kSGCGetChannelDeviceListSelect = 0x8F; /* SGCGetChannelDeviceList */

kSGCSetChannelDeviceSelect = 0x90; /* SGCSetChannelDevice */

kSGCSetChannelMatrixSelect = 0x91; /* SGCSetChannelMatrix */

kSGCGetChannelMatrixSelect = 0x92; /* SGCGetChannelMatrix */

kSGCGetChannelTimeScaleSelect = 0x93; /* SGCGetChannelTimeScale */

/* selectors for video channel configuration functions */

kSGCGetSrcVideoBoundsSelect = 0x100; /* SGCGetSrcVideoBounds */

kSGCSetVideoRectSelect = 0x101; /* SGCSetVideoRect */

kSGCGetVideoRectSelect = 0x102; /* SGCGetVideoRect */

kSGCGetVideoCompressorTypeSelect = 0x103; /* SGCGetVideoCompressorType */

C H A P T E R 6

Sequence Grabber Channel Components

Summary of Sequence Grabber Channel Components 6-93

kSGCSetVideoCompressorTypeSelect = 0x104; /* SGCSetVideoCompressorType */

kSGCSetVideoCompressorSelect = 0x105; /* SGCSetVideoCompressor */

kSGCGetVideoCompressorSelect = 0x106; /* SGCGetVideoCompressor */

kSGCGetVideoDigitizerComponentSelect= 0x107;

/* SGCGetVideoDigitizerComponent */

kSGCSetVideoDigitizerComponentSelect= 0x108;

/* SGCSetVideoDigitizerComponent */

kSGCVideoDigitizerChangedSelect = 0x109; /* SGCVideoDigitizerChanged */

kSGCSetVideoBottlenecksSelect = 0x10a; /* SGCSetVideoBottlenecks */

kSGCGetVideoBottlenecksSelect = 0x10b; /* SGCGetVideoBottlenecks */

kSGCGrabFrameSelect = 0x10c; /* SGCGrabFrame */

kSGCGrabFrameCompleteSelect = 0x10d; /* SGCGrabFrameComplete */

kSGCDisplayFrameSelect = 0x10e; /* SGCDisplayFrame */

kSGCCompressFrameSelect = 0x10f; /* SGCCompressFrame */

kSGCCompressFrameCompleteSelect = 0x110; /* SGCCompressFrameComplete */

kSGCAddFrameSelect = 0x111; /* SGCAddFrame */

kSGCTransferFrameForCompressSelect = 0x112;

/* SGCTransferFrameForCompress */

kSGCSetCompressBufferSelect = 0x113; /* SGCSetCompressBuffer */

kSGCGetCompressBufferSelect = 0x114; /* SGCGetCompressBuffer */

kSGCGetBufferInfoSelect = 0x115; /* SGCGetBufferInfo */

kSGCSetUseScreenBufferSelect = 0x116; /* SGCSetUseScreenBuffer */

kSGCGetUseScreenBufferSelect = 0x117; /* SGCGetUseScreenBuffer */

kSGCGrabCompressCompleteSelect = 0x118; /* SGCGrabCompressComplete */

kSGCDisplayCompressSelect = 0x119; /* SGCDisplayCompress */

kSGCSetFrameRateSelect = 0x11A; /* SGCSetFrameRate */

kSGCGetFrameRateSelect = 0x11B; /* SGCGetFrameRate */

/* selectors for sound channel configuration functions */

kSGCSetSoundInputDriverSelect = 0x100; /* SGCSetSoundInputDriver */

kSGCGetSoundInputDriverSelect = 0x101; /* SGCGetSoundInputDriver */

kSGCSoundInputDriverChangedSelect = 0x102; /* SGCSoundInputDriverChanged */

kSGCSetSoundRecordChunkSizeSelect = 0x103; /* SGCSetSoundRecordChunkSize */

kSGCGetSoundRecordChunkSizeSelect = 0x104; /* SGCGetSoundRecordChunkSize */

kSGCSetSoundInputRateSelect = 0x105; /* SGCSetSoundInputRate */

kSGCGetSoundInputRateSelect = 0x106; /* SGCGetSoundInputRate */

kSGCSetSoundInputParametersSelect = 0x107; /* SGCSetSoundInputParameters */

kSGCGetSoundInputParametersSelect = 0x108; /* SGCGetSoundInputParameters */

/* selectors for channel control functions */

kSGCInitChannelSelect = 0x180; /* SGCInitChannel */

kSGCWriteSamplesSelect = 0x181; /* SGCWriteSamples */

C H A P T E R 6

Sequence Grabber Channel Components

6-94 Summary of Sequence Grabber Channel Components

kSGCGetDataRateSelect = 0x182; /* SGCDataRate */

kSGCAlignChannelRectSelect = 0x183; /* SGAlignChannelRect */

};

/* values for pause parameter of SGPause function */

enum {

seqGrabUnpause = 0, /* restart the current operation */

seqGrabPause = 1, /* pause the current operation */

};

Data Types

struct SeqGrabFrameInfo {

long frameOffset; /* offset to the sample */

long frameTime; /* time that frame was captured */

long frameSize; /* number of bytes in sample */

SGChannel frameChannel; /* current connection to channel */

long frameRefCon; /* reference constant for channel */

};

typedef struct SGDeviceListRecord {

short count; /* count of devices */

short selectedIndex; /* current device */

long reserved; /* set to 0 */

SGDeviceName entry[1]; /* device names */

} SGDeviceListRecord, *SGDeviceListPtr, **SGDeviceList;

typedef struct SGDeviceName {

Str63 name; /* device name */

Handle icon; /* device icon */

long flags; /* flags */

long refCon; /* set to 0 */

long reserved; /* set to 0 */

} SGDeviceName;

Functions

Configuring Sequence Grabber Channel Components

pascal ComponentResult SGInitChannel
(SGChannel c, SeqGrabComponent owner);

pascal ComponentResult SGSetGWorld
(SeqGrabComponent s, CGrafPtr gp, GDHandle gd);

C H A P T E R 6

Sequence Grabber Channel Components

Summary of Sequence Grabber Channel Components 6-95

Controlling Sequence Grabber Channel Components

pascal ComponentResult SGStartPreview
(SeqGrabComponent s);

pascal ComponentResult SGStartRecord
(SeqGrabComponent s);

pascal ComponentResult SGIdle
(SeqGrabComponent s);

pascal ComponentResult SGUpdate
(SeqGrabComponent s, RgnHandle updateRgn);

pascal ComponentResult SGStop
(SeqGrabComponent s);

pascal ComponentResult SGWriteSamples
(SGChannel c, Movie m, AliasHandle theFile);

pascal ComponentResult SGPause
(SeqGrabComponent s, Byte pause);

pascal ComponentResult SGPrepare
(SeqGrabComponent s, Boolean prepareForPreview,
Boolean prepareForRecord);

pascal ComponentResult SGRelease
(SeqGrabComponent s);

Configuration Functions for All Channel Components

pascal ComponentResult SGSetChannelUsage
(SGChannel c, long usage);

pascal ComponentResult SGGetChannelUsage
(SGChannel c, long *usage);

pascal ComponentResult SGGetChannelInfo
(SGChannel c, long *channelInfo);

pascal ComponentResult SGSetChannelPlayFlags
(SGChannel c, long playFlags);

pascal ComponentResult SGGetChannelPlayFlags
(SGChannel c, long *playFlags);

pascal ComponentResult SGSetChannelMaxFrames
(SGChannel c, long frameCount);

pascal ComponentResult SGGetChannelMaxFrames
(SGChannel c, long *frameCount);

pascal ComponentResult SGSetChannelRefCon
(SGChannel c, long refCon);

pascal ComponentResult SGGetDataRate
(SGChannel c, long *bytesPerSecond);

pascal ComponentResult SGGetChannelSampleDescription
(SGChannel c, Handle sampleDesc);

C H A P T E R 6

Sequence Grabber Channel Components

6-96 Summary of Sequence Grabber Channel Components

pascal ComponentResult SGGetChannelTimeScale
(SGChannel c, TimeScale *scale);

pascal ComponentResult SGSetChannelClip
(SGChannel c, RgnHandle theClip);

pascal ComponentResult SGGetChannelClip
(SGChannel c, RgnHandle *theClip);

pascal ComponentResult SGSetChannelMatrix
(SGChannel c, const MatrixRecord *m);

pascal ComponentResult SGGetChannelMatrix
(SGChannel c, MatrixRecord *m);

Working With Channel Devices

pascal ComponentResult SGGetChannelDeviceList
(SGChannel c, long selectionFlags,
SGDeviceList *list);

pascal ComponentResult SGSetChannelDevice
(SGChannel c, StringPtr name);

Configuration Functions for Video Channel Components

pascal ComponentResult SGSetChannelBounds
(SGChannel c, Rect *bounds);

pascal ComponentResult SGGetChannelBounds
(SGChannel c, const Rect *bounds);

pascal ComponentResult SGGetSrcVideoBounds
(SGChannel c, Rect *r);

pascal ComponentResult SGSetVideoRect
(SGChannel c, Rect *r);

pascal ComponentResult SGGetVideoRect
(SGChannel c, Rect *r);

pascal ComponentResult SGSetVideoCompressorType
(SGChannel c, OSType compressorType);

pascal ComponentResult SGGetVideoCompressorType
(SGChannel c, OSType *compressorType);

pascal ComponentResult SGSetVideoCompressor
(SGChannel c, short depth,
CompressorComponent compressor,
CodecQ spatialQuality, CodecQ temporalQuality,
long keyFrameRate);

C H A P T E R 6

Sequence Grabber Channel Components

Summary of Sequence Grabber Channel Components 6-97

pascal ComponentResult SGGetVideoCompressor
(SGChannel c, short *depth,
CompressorComponent *compressor,
CodecQ *spatialQuality,
CodecQ *temporalQuality, long *keyFrameRate);

pascal ComponentResult SGSetVideoDigitizerComponent
(SGChannel c, ComponentInstance vdig);

pascal ComponentInstance SGGetVideoDigitizerComponent
(SGChannel c);

pascal ComponentResult SGVideoDigitizerChanged
(SGChannel c);

pascal ComponentResult SGSetCompressBuffer
(SGChannel c, short depth,
const Rect *compressSize);

pascal ComponentResult SGGetCompressBuffer
(SGChannel c, short *depth, Rect *compressSize);

pascal ComponentResult SGSetFrameRate
(SGChannel c, Fixed frameRate);

pascal ComponentResult SGGetFrameRate
(SGChannel c, Fixed *frameRate);

pascal ComponentResult SGSetUseScreenBuffer
(SGChannel c, Boolean useScreenBuffer);

pascal ComponentResult SGGetUseScreenBuffer
(SGChannel c, Boolean *useScreenBuffer);

pascal ComponentResult SGAlignChannelRect
(SGChannel c, Rect *r);

Configuration Functions for Sound Channel Components

pascal ComponentResult SGSetChannelVolume
(SGChannel c, short volume);

pascal ComponentResult SGGetChannelVolume
(SGChannel c, short *volume);

pascal ComponentResult SGSetSoundInputDriver
(SGChannel c, const Str255 driverName);

pascal long SGGetSoundInputDriver
(SGChannel c);

pascal ComponentResult SGSoundInputDriverChanged
(SGChannel c);

pascal ComponentResult SGSetSoundRecordChunkSize
(SGChannel c, long seconds);

pascal long SGGetSoundRecordChunkSize
(SGChannel c);

C H A P T E R 6

Sequence Grabber Channel Components

6-98 Summary of Sequence Grabber Channel Components

pascal ComponentResult SGSetSoundInputRate
(SGChannel c, Fixed rate);

pascal Fixed SGGetSoundInputRate
(SGChannel c);

pascal ComponentResult SGSetSoundInputParameters
(SGChannel c, short sampleSize,
short numChannels, OSType compressionType);

pascal ComponentResult SGGetSoundInputParameters
(SGChannel c, short *sampleSize,
short *numChannels, OSType *compressionType);

Utility Functions for Sequence Grabber Channel Components

pascal ComponentResult SGAddMovieData
(SeqGrabComponent s, SGChannel c, Ptr p,
long len, long *offset, long chRefCon,
TimeValue time, short writeType);

pascal ComponentResult SGWriteMovieData
(SeqGrabComponent s, SGChannel c,
Ptr p, long len, long *offset);

pascal ComponentResult SGAddFrameReference
(SeqGrabComponent s,
SeqGrabFrameInfo *frameInfo);

pascal ComponentResult SGGetNextFrameReference
(SeqGrabComponent s,
SeqGrabFrameInfo *frameInfo,
TimeValue *frameDuration,
long *frameNumber);

pascal ComponentResult SGSortDeviceList
(SeqGrabComponent s, SGDeviceList list);

pascal ComponentResult SGChangedSource
(SeqGrabComponent s, SGChannel c);

C H A P T E R 6

Sequence Grabber Channel Components

Summary of Sequence Grabber Channel Components 6-99

Pascal Summary

Constants

CONST

SeqGrabChannelType = 'sgch';{sequence grabber channel component type}

{device list structure flags}

sgDeviceListWithIcons = 1; {include icons}

sgDeviceListDontCheckAvailability = 2; {don't check available }

{ device list}

{flags for SGSetChannelPlayFlags and SGGetChannelPlayFlags functions}

channelPlayNormal = 0 {use default play methodology}

channelPlayFast = 1; {sacrifice playback quality }

{ for specified rate}

channelPlayHighQuality = 2; {sacrifice playback rate }

{ for image quality}

channelPlayAllData = 4; {play all captured data }

{ including that stored in }

{ offscreen buffers}

{flags for SGSetChannelUsage and SGGetChannelUsage functions}

seqGrabRecord = 1; {used during record operations}

seqGrabPreview = 2; {used during preview operations}

seqGrabPlayDuringRecord = 4; {used during record operations}

{SGGetChannelInfo function flags}

seqGrabHasBounds = 1; {visual representation of data}

seqGrabHasVolume = 2; {audio representation of data}

seqGrabHasDiscreteSamples = 4; {data organized in discrete frames}

{basic sequence grabber channel component selectors}

kSGSetGWorldSelect = $4; {SGSetGWorld}

kSGStartPreviewSelect = $10; {SGStartPreview}

kSGStartRecordSelect = $11; {SGStartRecord}

kSGIdleSelect = $12; {SGIdle}

kSGStopSelect = $13; {SGStop}

kSGPauseSelect = $14; {SGPause}

kSGPrepareSelect = $15; {SGPrepare}

C H A P T E R 6

Sequence Grabber Channel Components

6-100 Summary of Sequence Grabber Channel Components

kSGReleaseSelect = $16; {SGRelease}

kSGUpdateSelect = $27; {SGUpdate}

{selectors for common channel configuration functions}

kSGCSetChannelUsageSelect = $80; {SGCSetChannelUsage}

kSGCGetChannelUsageSelect = $81; {SGCGetChannelUsage}

kSGCSetChannelBoundsSelect = $82; {SGCSetChannelBounds}

kSGCGetChannelBoundsSelect = $83; {SGCGetChannelBounds}

kSGCSetChannelVolumeSelect = $84; {SGCSetChannelVolume}

kSGCGetChannelVolumeSelect = $85; {SGCGetChannelVolume}

kSGCGetChannelInfoSelect = $86; {SGCGetChannelInfo}

kSGCSetChannelPlayFlagsSelect = $87; {SGCSetChannelPlayFlags}

kSGCGetChannelPlayFlagsSelect = $88; {SGCGetChannelPlayFlags}

kSGCSetChannelMaxFramesSelect = $89; {SGCSetChannelMaxFrames}

kSGCGetChannelMaxFramesSelect = $8A; {SGCGetChannelMaxFrames}

kSGCSetChannelRefConSelect = $8B; {SGCSetChannelRefCon}

kSGCSetChannelClipSelect = $8C; {SGSetChannelClip}

kSGCGetChannelClipSelect = $8D; {SGGetChannelClip}

kSGCGetChannelSampleDescriptionSelect

= $8E; {SGCGetChannelSampleDescription}

kSGCGetChannelDeviceListSelect = $8F; {SGCGetChannelDeviceList}

kSGCSetChannelDeviceSelect = $90; {SGCSetChannelDevice}

kSGCSetChannelMatrixSelect = $91; {SGCSetChannelMatrix}

kSGCGetChannelMatrixSelect = $92; {SGCGetChannelMatrix}

kSGCGetChannelTimeScaleSelect = $93; {SGCGetChannelTimeScale}

{selectors for video channel configuration functions}

kSGCGetSrcVideoBoundsSelect = $100; {SGCGetSrcVideoBounds}

kSGCSetVideoRectSelect = $101; {SGCSetVideoRect}

kSGCGetVideoRectSelect = $102; {SGCGetVideoRect}

kSGCGetVideoCompressorTypeSelect = $103; {SGCGetVideoCompressorType}

kSGCSetVideoCompressorTypeSelect = $104; {SGCSetVideoCompressorType}

kSGCSetVideoCompressorSelect = $105; {SGCSetVideoCompressor}

kSGCGetVideoCompressorSelect = $106; {SGCGetVideoCompressor}

kSGCGetVideoDigitizerComponentSelect= $107;

{SGCGetVideoDigitizerComponent}

kSGCSetVideoDigitizerComponentSelect= $108;

{SGCSetVideoDigitizerComponent}

kSGCVideoDigitizerChangedSelect = $109; {SGCVideoDigitizerChanged}

kSGCSetVideoBottlenecksSelect = $10A; {SGCSetVideoBottlenecks}

kSGCGetVideoBottlenecksSelect = $10B; {SGCGetVideoBottlenecks}

kSGCGrabFrameSelect = $10C; {SGCGrabFrame}

kSGCGrabFrameCompleteSelect = $10D; {SGCGrabFrameComplete}

C H A P T E R 6

Sequence Grabber Channel Components

Summary of Sequence Grabber Channel Components 6-101

kSGCDisplayFrameSelect = $10E; {SGCDisplayFrame}

kSGCCompressFrameSelect = $10F; {SGCCompressFrame}

kSGCCompressFrameCompleteSelect = $110; {SGCCompressFrameComplete}

kSGCAddFrameSelect = $111; {SGCAddFrame}

kSGCTransferFrameForCompressSelect = $112; {SGCTransferFrameForCompress}

kSGCSetCompressBufferSelect = $113; {SGCSetCompressBuffer}

kSGCGetCompressBufferSelect = $114; {SGCGetCompressBuffer}

kSGCGetBufferInfoSelect = $115; {SGCGetBufferInfo}

kSGCSetUseScreenBufferSelect = $116; {SGCSetUseScreenBuffer}

kSGCGetUseScreenBufferSelect = $117; {SGCGetUseScreenBuffer}

kSGCGrabCompressCompleteSelect = $118; {SGCGrabCompressComplete}

kSGCDisplayCompressSelect = $119; {SGCDisplayCompress}

kSGCSetFrameRateSelect = $11A; {SGCSetFrameRate}

kSGCGetFrameRateSelect = $11B; {SGCGetFrameRate}

{selectors for sound channel configuration functions}

kSGCSetSoundInputDriverSelect = $100; {SGCSetSoundInputDriver}

kSGCGetSoundInputDriverSelect = $101; {SGCGetSoundInputDriver}

kSGCSoundInputDriverChangedSelect = $102; {SGCSoundInputDriverChanged}

kSGCSetSoundRecordChunkSizeSelect = $103; {SGCSetSoundRecordChunkSize}

kSGCGetSoundRecordChunkSizeSelect = $104; {SGCGetSoundRecordChunkSize}

kSGCSetSoundInputRateSelect = $105; {SGCSetSoundInputRate}

kSGCGetSoundInputRateSelect = $106; {SGCGetSoundInputRate}

kSGCSetSoundInputParametersSelect = $107; {SGCSetSoundInputParameters}

kSGCGetSoundInputParametersSelect = $108; {SGCGetSoundInputParameters}

{selectors for channel control functions}

kSGCInitChannelSelect = $180; {SGCInitChannel}

kSGCWriteSamplesSelect = $181; {SGCWriteSamples}

kSGCGetDataRateSelect = $182; {SGCDataRate}

{values for the pause parameter of the SGPause function}

seqGrabUnpause = 0; {restart current operation}

seqGrabPause = 1; {pause the current operation}

Data Types

TYPE

SeqGrabFrameInfo =

RECORD

frameOffset: LongInt; {offset to the sample}

frameTime: LongInt; {time that frame was captured}

C H A P T E R 6

Sequence Grabber Channel Components

6-102 Summary of Sequence Grabber Channel Components

frameChannel: SGChannel; {current connection to channel}

frameRefCon: LongInt; {reference constant for channel}

END;

SGDeviceListPtr = ^SGDeviceListRecord;

SGDeviceList = ^SGDeviceListPtr;

SGDeviceListRecord =

RECORD

count: Integer; {count of devices}

selectedIndex: Integer; {current device}

reserved: LongInt; {set to 0}

entry: ARRAY[0..] OF SGDeviceName; {device names}

END;

SGDeviceName =

RECORD

name: Str63; {device name}

icon: Handle; {device icon}

flags: LongInt; {flags}

refCon: LongInt; {set to 0}

reserved: LongInt; {set to 0}

} END;

Routines

Configuring Sequence Grabber Channel Components

FUNCTION SGInitChannel (c: SGChannel; owner: SeqGrabComponent):
ComponentResult;

FUNCTION SGSetGWorld (s: SeqGrabComponent; gp: CGrafPtr;
gd: GDHandle): ComponentResult;

Controlling Sequence Grabber Channel Components

FUNCTION SGStartPreview (s: SeqGrabComponent): ComponentResult;

FUNCTION SGStartRecord (s: SeqGrabComponent): ComponentResult;

FUNCTION SGIdle (s: SeqGrabComponent): ComponentResult;

FUNCTION SGUpdate (s SeqGrabComponent; updateRgn RgnHandle):
ComponentResult;

FUNCTION SGStop (s: SeqGrabComponent): ComponentResult;

FUNCTION SGWriteSamples (c: SGChannel; m: Movie; theFile: AliasHandle):
ComponentResult;

C H A P T E R 6

Sequence Grabber Channel Components

Summary of Sequence Grabber Channel Components 6-103

FUNCTION SGPause (s: SeqGrabComponent; pause: Byte):
ComponentResult;

FUNCTION SGPrepare (s: SeqGrabComponent;
prepareForPreview: Boolean;
prepareForRecord: Boolean): ComponentResult;

FUNCTION SGRelease (s: SeqGrabComponent): ComponentResult;

Configuration Routines for All Channel Components

FUNCTION SGSetChannelUsage (c: SGChannel; usage: LongInt): ComponentResult;

FUNCTION SGGetChannelUsage (c: SGChannel;
VAR usage: LongInt): ComponentResult;

FUNCTION SGGetChannelInfo (c: SGChannel;
VAR channelInfo: LongInt): ComponentResult;

FUNCTION SGSetChannelPlayFlags
(c: SGChannel; playFlags: LongInt):
ComponentResult;

FUNCTION SGGetChannelPlayFlags
(c: SGChannel; VAR playFlags: LongInt):
ComponentResult;

FUNCTION SGSetChannelMaxFrames
(c: SGChannel; frameCount: LongInt):
ComponentResult;

FUNCTION SGGetChannelMaxFrames
(c: SGChannel; VAR frameCount: LongInt):
ComponentResult;

FUNCTION SGSetChannelRefCon
(c: SGChannel; refCon: LongInt):
ComponentResult;

FUNCTION SGGetDataRate (c: SGChannel;
VAR bytesPerSecond: LongInt): ComponentResult;

FUNCTION SGGetChannelSampleDescription
(c: SGChannel; sampleDesc: Handle):
ComponentResult;

FUNCTION SGGetChannelTimeScale
(c: SGChannel; VAR scale: TimeScale):
ComponentResult;

FUNCTION SGSetChannelClip (c: SGChannel; theClip: RgnHandle):
ComponentResult;

FUNCTION SGGetChannelClip (c: SGChannel; VAR theClip: RgnHandle):
ComponentResult;

C H A P T E R 6

Sequence Grabber Channel Components

6-104 Summary of Sequence Grabber Channel Components

FUNCTION SGSetChannelMatrix
(c: SGChannel; VAR m: MatrixRecord):
ComponentResult;

FUNCTION SGGetChannelMatrix
(c: SGChannel; VAR m: MatrixRecord):
ComponentResult;

Working With Channel Devices

FUNCTION SGGetChannelDeviceList
(c: SGChannel; selectionFlags: LongInt;
VAR list: SGDeviceList): ComponentResult;

FUNCTION SGSetChannelDevice
(c: SGChannel; name: StringPtr):
ComponentResult;

Configuration Routines for Video Channel Components

FUNCTION SGSetChannelBounds (c: SGChannel; bounds: Rect): ComponentResult;

FUNCTION SGGetChannelBounds (c: SGChannel; VAR bounds: Rect):
ComponentResult;

FUNCTION SGGetSrcVideoBounds
(c: SGChannel; VAR r: Rect): ComponentResult;

FUNCTION SGSetVideoRect (c: SGChannel; r: Rect): ComponentResult;

FUNCTION SGGetVideoRect (c: SGChannel; VAR r: Rect): ComponentResult;

FUNCTION SGSetVideoCompressorType
(c: SGChannel;
compressorType: OSType): ComponentResult;

FUNCTION SGGetVideoCompressorType
(c: SGChannel;
VAR compressorType: OSType): ComponentResult;

FUNCTION SGSetVideoCompressor
(c: SGChannel; depth: Integer;
compressor: CompressorComponent;
spatialQuality: CodecQ;
temporalQuality: CodecQ;
keyFrameRate: LongInt): ComponentResult;

FUNCTION SGGetVideoCompressor
(c: SGChannel; VAR depth: Integer;
VAR compressor: CompressorComponent;
VAR spatialQuality: CodecQ;
VAR temporalQuality: CodecQ;
VAR keyFrameRate: LongInt): ComponentResult;

C H A P T E R 6

Sequence Grabber Channel Components

Summary of Sequence Grabber Channel Components 6-105

FUNCTION SGSetVideoDigitizerComponent
(c: SGChannel; vdig: ComponentInstance):
ComponentResult;

FUNCTION SGGetVideoDigitizerComponent
(c: SGChannel): ComponentInstance;

FUNCTION SGVideoDigitizerChanged
(c: SGChannel): ComponentResult;

FUNCTION SGSetCompressBuffer
(c: SGChannel; depth: Integer;
compressSize: Rect): ComponentResult;

FUNCTION SGGetCompressBuffer
(c: SGChannel; VAR depth: Integer;
VAR compressSize: Rect): ComponentResult;

FUNCTION SGSetFrameRate (c: SGChannel; frameRate: Fixed):
ComponentResult;

FUNCTION SGGetFrameRate (c: SGChannel; VAR frameRate: Fixed):
ComponentResult;

FUNCTION SGSetUseScreenBuffer
(c: SGChannel; useScreenBuffer: Boolean):
ComponentResult;

FUNCTION SGGetUseScreenBuffer
(c: SGChannel; VAR useScreenBuffer: Boolean):
ComponentResult;

FUNCTION SGAlignChannelRect
(c: SGChannel; VAR r: Rect): ComponentResult;

Configuration Routines for Sound Channel Components

FUNCTION SGSetChannelVolume
(c: SGChannel; volume: Integer):
ComponentResult;

FUNCTION SGGetChannelVolume
(c: SGChannel; VAR volume: Integer):
ComponentResult;

FUNCTION SGSetSoundInputDriver
(c: SGChannel; driverName: Str255):
ComponentResult;

FUNCTION SGGetSoundInputDriver
(c: SGChannel): LongInt;

FUNCTION SGSoundInputDriverChanged
(c: SGChannel): ComponentResult;

FUNCTION SGSetSoundRecordChunkSize
(c: SGChannel; seconds: LongInt):
ComponentResult;

C H A P T E R 6

Sequence Grabber Channel Components

6-106 Summary of Sequence Grabber Channel Components

FUNCTION SGGetSoundRecordChunkSize
(c: SGChannel): LongInt;

FUNCTION SGSetSoundInputRate
(c: SGChannel; rate: Fixed): ComponentResult;

FUNCTION SGGetSoundInputRate
(c: SGChannel): Fixed;

FUNCTION SGSetSoundInputParameters
(c: SGChannel; sampleSize: Integer;
numChannels: Integer;
compressionType: OSType): ComponentResult;

FUNCTION SGGetSoundInputParameters
(c: SGChannel; VAR sampleSize: Integer;
VAR numChannels: Integer;
VAR compressionType: OSType): ComponentResult;

Utility Routines for Sequence Grabber Channel Components

FUNCTION SGAddMovieData (s: SeqGrabComponent; c: SGChannel; p: Ptr;
len: LongInt; VAR offset: LongInt;
chRefCon: LongInt; time: TimeValue;
writeType: Integer): ComponentResult;

FUNCTION SGWriteMovieData (s: SeqGrabComponent; c: SGChannel; p: Ptr;
len: LongInt; VAR offset: LongInt):
ComponentResult;

FUNCTION SGAddFrameReference
(s: SeqGrabComponent;
VAR frameInfo: SeqGrabFrameInfo):
ComponentResult;

FUNCTION SGGetNextFrameReference
(s: SeqGrabComponent;
VAR frameInfo: SeqGrabFrameInfo;
VAR frameDuration: TimeValue;
VAR frameNumber: LongInt): ComponentResult;

FUNCTION SGSortDeviceList (s: SeqGrabComponent; list: SGDeviceList):
ComponentResult;

FUNCTION SGChangedSource (s: SeqGrabComponent; c: SGChannel):
ComponentResult;

C H A P T E R 6

Sequence Grabber Channel Components

Summary of Sequence Grabber Channel Components 6-107

Result Codes
noDeviceForChannel –9400 Channel component cannot find its device
cantDoThatInCurrentMode –9402 Request invalid in current mode
notEnoughMemoryToGrab –9403 Insufficient memory for record operation
notEnoughDiskSpaceToGrab –9404 Insufficient disk space for record operation
seqGrabInfoNotAvailable –9407 Channel component cannot support request
deviceCantMeetRequest –9408 Device cannot support grabber

Contents 7-1

C H A P T E R 7

Sequence Grabber Panel

Contents

Components

About Sequence Grabber Panel Components 7-4

Creating Sequence Grabber Panel Components 7-7

Implementing the Required Component Functions 7-9

Managing the Dialog Box 7-11

Managing Your Panel’s Settings 7-13

Sequence Grabber Panel Components Reference 7-14

Component Flags for Sequence Grabber Panel Components 7-15

Functions 7-15

Managing Your Panel Component 7-15

Processing Your Panel’s Events 7-21

Managing Your Panel’s Settings 7-24

Summary of Sequence Grabber Panel Components 7-27

C Summary 7-27

Constants 7-27

Functions 7-28

Pascal Summary 7-29

Constants 7-29

Routines 7-29

Result Codes 7-30

C H A P T E R 7

7-3

Sequence Grabber Panel Components

This chapter discusses sequence grabber panel components. Sequence grabber

components create a settings dialog box that includes items that are managed

by sequence grabber panel components and sequence grabber channel components.

Sequence grabber panel components allow sequence grabber components to obtain

configuration information from the user for a particular sequence grabber channel

component. Applications never call sequence grabber panel components directly;

application developers use panel components only by calling the sequence grabber

component.

This chapter is divided into the following sections:

■ “About Sequence Grabber Panel Components” provides a general introduction to
components of this type.

■ “Creating Sequence Grabber Panel Components” discusses how sequence grabbers
use these components.

■ “Sequence Grabber Panel Components Reference” presents detailed information
about the functions that are supported by these components.

■ “Summary of Sequence Grabber Panel Components” contains a condensed listing of
the constants and functions supported by these components.

This chapter addresses developers of sequence grabber panel components. If you plan to

create a sequence grabber panel component, you should read the entire chapter. If you

are writing an application that uses components of this type, you do not need to read

this chapter. Refer to the chapter “Sequence Grabber Components” in this book for

information about sequence grabber components and how to display the settings dialog

box to the user.

As components, sequence grabber panel components rely on the facilities of the

Component Manager. In order to use any component, your application must also

use the Component Manager. If you are not familiar with this manager, see the chapter

“Component Manager” in Inside Macintosh: More Macintosh Toolbox. In addition, you

should be familiar with sequence grabber components and sequence grabber channel

components. See the chapters “Sequence Grabber Components” and “Sequence Grabber

Channel Components” in this book for more information.

Note

The text in this chapter makes numerous references to sequence grabber
components, sequence grabber channel components, and sequence
grabber panel components. For the sake of brevity, shortened names
have been adopted for each of these components. Consequently, you
will often find sequence grabber components referred to as sequence
grabbers; sequence grabber channel components as channel components;
and sequence grabber panel components as panel components. ◆

C H A P T E R 7

Sequence Grabber Panel Components

7-4 About Sequence Grabber Panel Components

About Sequence Grabber Panel Components

This section provides background information about sequence grabber panel

components. After reading this section, you should understand why these components

exist and whether you need to create one.

Sequence grabber panel components augment the capabilities of sequence grabber

components and sequence grabber channel components by allowing sequence grabbers

to obtain configuration information from the user for a particular digitizing source that is

managed by a channel component. Consequently, sequence grabbers, channel

components, and panel components have a close relationship. Figure 7-1 shows this

relationship and how these components interact with one another to place digitized data

into a QuickTime movie.

C H A P T E R 7

Sequence Grabber Panel Components

About Sequence Grabber Panel Components 7-5

Figure 7-1 Sequence grabbers, channel components, and panel components

Sequence grabbers present a settings dialog box to the user whenever an application

calls the SGSettingsDialog function (see the chapter “Sequence Grabber

Components” in this book for more information about this sequence grabber function).

Applications never call sequence grabber panel components directly; application

developers use panel components only by calling the sequence grabber component.

C H A P T E R 7

Sequence Grabber Panel Components

7-6 About Sequence Grabber Panel Components

Although the sequence grabber creates the dialog box and manages its interactions with

the user, portions of the dialog box are controlled by panel components and channel

components. Figure 7-2 shows a sample dialog box and identifies the various parts of the

dialog box.

Figure 7-2 A sample sequence grabber settings dialog box

The sequence grabber creates the dialog box itself and manages the OK and Cancel

buttons and the panel pop-up menu. Channel components are responsible for the

monitor area on the right side of the dialog box. Panel components manage the

settings area immediately below the panel pop-up menu. Only one panel component is

active at any given time; the user selects a panel component by manipulating the panel

pop-up menu.

When the user selects a specific panel component, the sequence grabber works with

that component to build the panel settings dialog area and present it to the user. The

panel component processes dialog events and mouse clicks as appropriate and validates

the user’s settings. The sequence grabber then retrieves the settings from the panel

component and stores those settings.

There are two circumstances under which you should consider creating a sequence

grabber panel component: first, if you want to support special digitizing equipment in

the QuickTime environment; and, second, if you have created your own sequence

grabber channel component.

C H A P T E R 7

Sequence Grabber Panel Components

Creating Sequence Grabber Panel Components 7-7

If you have created special digitizing equipment, you may not have to create a special

channel component for your equipment—the channel components provided by Apple

may be sufficient for your needs. By providing a special panel component, however, you

can allow the user to take advantage of your equipment’s special capabilities.

If you have created your own channel component, you must create an accompanying

panel component to allow the user to configure your channel.

Creating Sequence Grabber Panel Components

This section discusses how to create a sequence grabber panel component. You should

read this section if you are creating a panel component.

Applications do not call panel components directly. Rather, they invoke a sequence

grabber’s settings dialog box by calling the SGSettingsDialog function. In response,

the sequence grabber presents the settings dialog box to the user. When the user selects a

specific settings panel, the sequence grabber invokes the appropriate panel component.

Panel components provide a number of functions that allow sequence grabbers to

manage their relationships with panel components. See “Managing Your Panel

Component” beginning on page 7-15 for complete descriptions of these functions.

Panel components are not responsible for saving their settings information.

Sequence grabbers manage this information on behalf of panel components,

and a sequence grabber may combine configuration information from several panel

components in order to build up the complete configuration for an elaborate digitizing

environment. Panel components provide functions that allow sequence grabbers to

obtain this configuration information. See “Managing Your Panel’s Settings” beginning

on page 7-24 for more information about these functions.

Sequence grabbers store this configuration data in user data items. The Movie Toolbox

provides a number of functions that allow you to create and manage user data items. If

you are not familiar with these functions, see the chapter “Movie Toolbox” in Inside
Macintosh: QuickTime for more information.

Apple has defined a component type value for sequence grabber panel components. You

can use the following constant to specify this component type.

#define SeqGrabPanelType 'sgpn' /* panel component type */

Sequence grabber panel components use their component subtype and manufacturer

values to indicate the type of configuration services they provide. The subtype value

indicates the media type supported by the panel component. This value should

correspond to the component subtype value of channel components that may be

configured by the panel component. For example, a panel component that manages

video settings would have a subtype of 'vide' (this value is defined by the Movie

Toolbox’s VideoMediaType constant).

C H A P T E R 7

Sequence Grabber Panel Components

7-8 Creating Sequence Grabber Panel Components

The manufacturer field contains a unique identifier for each panel component. The value

should indicate something about the specific services provided by the component. For

example, Apple has defined the following manufacturer values:

#define SeqGrabCompressionPanelType 'sour' /* input source

selection */

#define SeqGrabSourcePanelType 'cmpr' /* compression

settings */

In general, Apple has reserved all lowercase values of component subtypes and

manufacturer codes.

Apple has defined a functional interface for sequence grabber panel components. For

information about the functions that your component must support, see “Sequence

Grabber Panel Components Reference” beginning on page 7-14. You may use the

following constants to refer to the request codes for each of the functions that your

component must support:

enum {

/* sequence grabber panel request codes */

kSGCPanelGetDitlSelect = 0x200, /* SGPanelGetDITL */

kSGCPanelCanRunSelect = 0x202, /* SGPanelCanRun */

kSGCPanelInstallSelect = 0x203, /* SGPanelInstall */

kSGCPanelEventSelect = 0x204, /* SGPanelEvent */

kSGCPanelItemSelect = 0x205, /* SGPanelItem */

kSGCPanelRemoveSelect = 0x206, /* SGPanelRemove */

kSGCPanelSetGrabberSelect = 0x207, /* SGPanelSetGrabber */

kSGCPanelSetResFileSelect = 0x208, /* SGPanelSetResFile */

kSGCPanelGetSettingsSelect = 0x209, /* SGPanelGetSettings */

kSGCPanelSetSettingsSelect = 0x20A, /* SGPanelSetSettings */

kSGCPanelValidateInputSelect = 0x20B /* SGPanelValidateInput */

};

Before reading the rest of this chapter, you should know how to create components. See

the chapter “Component Manager” in Inside Macintosh: More Macintosh Toolbox for a

complete discussion of components, how to use them, and how to create them.

The next section contains sample code for the creation of a sequence grabber panel

component that acts as a settings dialog box for PICT images. To create a sequence

grabber panel component, you set up the global variables and implement the required

Component Manager request codes and the functions that are private to your

particular component. Then you manage the dialog box and work with the settings in

the dialog box.

C H A P T E R 7

Sequence Grabber Panel Components

Creating Sequence Grabber Panel Components 7-9

Implementing the Required Component Functions
Listing 7-1 supplies the component dispatchers for the sequence grabber panel

component together with the required functions for open, close, can do, and version.

Listing 7-1 Implementing the required functions

#define sgcPictShowTicksType 'TICK'

typedef struct {

ComponentInstance self;

ControlHandle ch;

} PictPanelGlobalsRecord, *PictPanelGlobals;

/* only for PICT channels */

pascal ComponentResult SGSetShowTickCount (SGChannel c,

Boolean show) = {0x2f3c,2,0x100,0x7000,0xA82A};

pascal ComponentResult SGGetShowTickCount (SGChannel c,

Boolean *show) = {0x2f3c,4,0x101,0x7000,0xA82A};

pascal ComponentResult PictPanelDispatcher

(ComponentParameters *params, Handle storage)

{

OSErr err = badComponentSelector;

ComponentFunction componentProc = 0;

switch (params->what) {

case kComponentOpenSelect:

componentProc = PictPanelOpen; break;

case kComponentCloseSelect:

componentProc = PictPanelClose; break;

case kComponentCanDoSelect:

componentProc = PictPanelCanDo; break;

case kComponentVersionSelect:

componentProc = PictPanelVersion; break;

case kSGCPanelGetDitlSelect:

componentProc = PictPanelPanelGetDitl; break;

case kSGCPanelInstallSelect:

componentProc = PictPanelPanelInstall; break;

case kSGCPanelItemSelect:

componentProc = PictPanelPanelItem; break;

case kSGCPanelRemoveSelect:

componentProc = PictPanelPanelRemove; break;

C H A P T E R 7

Sequence Grabber Panel Components

7-10 Creating Sequence Grabber Panel Components

case kSGCPanelGetSettingsSelect:

componentProc = PictPanelPanelGetSettings; break;

case kSGCPanelSetSettingsSelect:

componentProc = PictPanelPanelSetSettings; break;

}

if (componentProc)

err = CallComponentFunctionWithStorage (storage, params,

 componentProc);

return err;

}

pascal ComponentResult PictPanelCanDo (PictPanelGlobals store,

 short ftnNumber)

{

switch (ftnNumber) {

case kComponentOpenSelect:

case kComponentCloseSelect:

case kComponentCanDoSelect:

case kComponentVersionSelect:

case kSGCPanelGetDitlSelect:

case kSGCPanelInstallSelect:

case kSGCPanelItemSelect:

case kSGCPanelRemoveSelect:

case kSGCPanelGetSettingsSelect:

case kSGCPanelSetSettingsSelect:

return true;

default:

return false;

}

}

pascal ComponentResult PictPanelVersion (PictPanelGlobals store)

{

return 0x00020001;

}

C H A P T E R 7

Sequence Grabber Panel Components

Creating Sequence Grabber Panel Components 7-11

pascal ComponentResult PictPanelOpen (PictPanelGlobals store,

 ComponentInstance self)

{

OSErr err;

/* allocate global variables */

store = (PictPanelGlobals) NewPtrClear

(sizeof(PictPanelGlobalsRecord));

if (err = MemError()) goto bail;

SetComponentInstanceStorage (self, (Handle)store);

/* remember the component instance identification number */

store->self = self;

bail:

return err;

}

pascal ComponentResult PictPanelClose (PictPanelGlobals store,

ComponentInstance self)

{

if (store) DisposePtr ((Ptr)store);

return noErr;

}

Managing the Dialog Box
This section gives details on the functions that the panel component must provide so that

the sequence grabber can load the component’s items into the settings dialog box and

receive and process dialog events.

1. To prepare to add the component’s items to the settings dialog box, the sequence
grabber obtains the item list by calling the SGPanelGetDITL function (described on
page 7-18).

2. Once it has installed the items, the sequence grabber calls the SGPanelInstall
function (described on page 7-19), which sets up the state of the dialog box
(for example, a checkbox) and gives the panel component an opportunity to set initial
values.

3. When the panel component is loaded into the settings dialog box and active, it may
receive and process dialog events and mouse clicks. The component’s SGPanelEvent
function (described on page 7-22) processes individual dialog events.

4. Whenever the user clicks a dialog item, the sequence grabber calls the SGPanelItem
function (described on page 7-21).

5. Before the sequence grabber removes the items from the settings dialog box, it calls
the SGPanelRemove function (described on page 7-20).

C H A P T E R 7

Sequence Grabber Panel Components

7-12 Creating Sequence Grabber Panel Components

Listing 7-2 provides an example of the management of the settings dialog box for a

sequence grabber that displays PICT images. The component item displayed in the

dialog box in this case is a tick count checkbox.

Listing 7-2 Managing the settings dialog box

pascal ComponentResult PictPanelPanelGetDitl

(PictPanelGlobals store,

 Handle *ditl)

{

/*

Get and detach the dialog box template. Note that

the sequence grabber has already opened the resource file.

*/

*ditl = GetResource ('DITL', 7001);

if (!*ditl) return resNotFound;

DetachResource (*ditl);

return noErr;

}

pascal ComponentResult PictPanelPanelInstall

(PictPanelGlobals store, SGChannel c,

 DialogPtr d, short itemOffset)

{

Rect r;

short kind;

Handle h;

Boolean ticksShowing;

/* set up the initial state of the checkbox */

GetDItem (d, 1 + itemOffset, &kind, &h, &r);

store->ch = (ControlHandle)h;

SGGetShowTickCount (c, &ticksShowing);

SetCtlValue (store->ch, ticksShowing);

return noErr;

}

pascal ComponentResult PictPanelPanelItem

(PictPanelGlobals store, SGChannel c,

 DialogPtr d, short itemOffset,

 short itemNum)

C H A P T E R 7

Sequence Grabber Panel Components

Creating Sequence Grabber Panel Components 7-13

{

/* if the item clicked was your checkbox, update its state */

if ((itemNum - itemOffset) == 1) {

Boolean showing = GetCtlValue (store->ch);

SetCtlValue (store->ch, !showing);

SGSetShowTickCount (c, !showing);

}

return noErr;

}

pascal ComponentResult PictPanelPanelRemove

(PictPanelGlobals store,

SGChannel c, DialogPtr d,

short itemOffset)

{

/* forget that it ever had a control */

store->ch = nil;

return noErr;

}

Managing Your Panel’s Settings
To allow the sequence grabber to work with your panel’s settings, your panel component

must allow the sequence grabber to

■ retrieve the panel’s current settings by calling your SGPanelGetSettings function
(described on page 7-24)

■ restore those settings to some previous values by using your SGPanelSetSettings
function (described on page 7-25)

Listing 7-3 gives an example in which the settings are managed in a user list that

contains tick count information for a panel component for PICT images.

Listing 7-3 Managing the settings for a panel component

pascal ComponentResult PictPanelPanelGetSettings

(PictPanelGlobals store, SGChannel c,

 UserData *result, long flags)

{

OSErr err;

UserData ud;

Boolean ticksShowing;

C H A P T E R 7

Sequence Grabber Panel Components

7-14 Sequence Grabber Panel Components Reference

/* create a user data list containing your state */

if (err = NewUserData (&ud)) goto bail;

if (err = SGGetShowTickCount (c, &ticksShowing)) goto bail;

if (err = SetUserDataItem (ud, &ticksShowing,

sizeof (ticksShowing),

sgcPictShowTicksType, 1)) goto bail;

bail:

if (err) {

DisposeUserData(ud);

ud = 0;

}

*result = ud;

return err;

}

pascal ComponentResult PictPanelPanelSetSettings

(PictPanelGlobals store, SGChannel c,

 UserData ud, long flags)

{

Boolean ticksShowing;

/* restore the state from the specified user data list */

if (GetUserDataItem (ud, &ticksShowing,

sizeof (ticksShowing),

sgcPictShowTicksType, 1) == noErr)

SGSetShowTickCount (c, ticksShowing);

return noErr;

}

Sequence Grabber Panel Components Reference

This section describes the constants and functions that your sequence grabber panel

component may support. Some of these functions are optional—your component should

support only those functions that are appropriate to it.

C H A P T E R 7

Sequence Grabber Panel Components

Sequence Grabber Panel Components Reference 7-15

Component Flags for Sequence Grabber Panel Components

The Component Manager allows you to specify information about your component’s

capabilities in the componentFlags field of the component description record.

Sequence grabber panel components use the componentFlags field to indicate specific

information about their capabilities.

The following flags are currently defined:

enum {

channelFlagDontOpenResFile = 2, /* do not open resource

file */

channelFlagHasDependency = 4 /* needs special hardware */

};

These flags control how sequence grabbers manage their connection with your panel

component. The channelFlagDontOpenResFile flag instructs the sequence grabber

not to open your component’s resource file. By default, the sequence grabber opens your

component’s resource file for you, and then provides you with the appropriate file

reference number. In general, this is convenient. However, if your component is linked

with your application and does not have its own resource file, you may not want the

sequence grabber to try to open the resource file. In such cases, set this flag to 1.

The channelFlagHasDependency flag allows you to tell the sequence grabber that

your panel component requires special digitizing hardware. If you set this flag to 1, the

sequence grabber gives your component an opportunity to verify that it can work in the

current hardware environment—by calling your component’s SGPanelCanRun function

(described on page 7-17).

Functions

This section describes the functions that may be supported by sequence grabber panel

components. It is divided into the following topics:

■ “Managing Your Panel Component” discusses the functions that allow sequence
grabber components to load, configure, and unload your panel component.

■ “Processing Your Panel’s Events” describes the functions that allow your component
to receive and process events in your panel.

■ “Managing Your Panel’s Settings” tells you about the functions that allow sequence
grabber components to collect and reset your panel’s settings.

Managing Your Panel Component

Sequence grabber components load, configure, and unload your panel component. As

part of this process, the sequence grabber installs your panel’s dialog items into the

settings dialog box and may open your component’s resource file. Panel components

C H A P T E R 7

Sequence Grabber Panel Components

7-16 Sequence Grabber Panel Components Reference

provide a number of functions that allow the sequence grabber to manage its

relationship with panel components. This section discusses those functions.

After opening a connection to your panel component, the sequence grabber identifies

itself to your component by calling your SGPanelSetGrabber function. The sequence

grabber then tries to determine whether your component can work with its associated

channel component by calling your SGPanelCanRun function. The sequence grabber

calls this function only if you have set the channelFlagHasDependency component

flag to 1.

Once the sequence grabber has determined that your panel component can work with its

channel component, the sequence grabber may open your component’s resource file

(unless you have set the channelFlagDontOpenResFile component flag to 1). Once

it has opened the resource file, it passes the file’s reference number to you by calling your

SGPanelSetResFile function.

Next, the sequence grabber prepares to add your component’s items to the

settings dialog box. The sequence grabber obtains your item list by calling

your SGPanelGetDITL function. Once it has installed the items, it calls your

SGPanelInstall function, giving you an opportunity to set initial values.

Before the sequence grabber removes your items from the settings dialog box, it calls

your SGPanelRemove function.

SGPanelSetGrabber

The SGPanelSetGrabber function allows a sequence grabber component to identify

itself to your panel component. This is typically the first function the sequence grabber

component calls after opening your panel component.

pascal ComponentResult SGPanelSetGrabber

(SeqGrabPanelComponent s,

 SeqGrabComponent sg);

s Identifies the sequence grabber component’s connection to your panel
component.

sg Identifies a connection to the sequence grabber component that is using
your panel component. Your component may use this connection to call
sequence grabber component functions.

DESCRIPTION

A sequence grabber component calls your SGPanelSetGrabber function in order to

identify itself to your panel component. Your component can use the provided

connection to call sequence grabber functions, either to determine the characteristics of

the current capture operation or to alter those characteristics.

C H A P T E R 7

Sequence Grabber Panel Components

Sequence Grabber Panel Components Reference 7-17

RESULT CODE

SGPanelCanRun

The SGPanelCanRun function allows a sequence grabber component to determine

whether your panel component can work with the current sequence grabber channel

component.

pascal ComponentResult SGPanelCanRun (SeqGrabPanelComponent s,

SGChannel c);

s Identifies the sequence grabber component’s connection to your panel
component.

c Identifies a connection to a sequence grabber channel component. You
must determine whether your panel component can operate with this
channel component and its associated channel hardware.

DESCRIPTION

A sequence grabber component calls your SGPanelCanRun function in order to

determine whether your component can work with a specified sequence grabber channel

component and its associated hardware. If your component works only with certain

hardware, you should support this function.

Set the channelFlagHasDependency component flag to 1 to cause the sequence

grabber component to call this function.

The sequence grabber component provides you with a connection to the channel

component in question. Your component should query the channel component to

determine whether you can operate with it. You may want to use channel component

functions to determine the characteristics of the digitization source attached to the

channel. If your component can work with the specified channel, return a result code of

noErr. Otherwise, return an appropriate sequence grabber or sequence grabber channel

component result code.

If your panel component can only support a limited number of connections, you should

regulate the number of active connections in your SGPanelCanRun function. Return a

nonzero result code to indicate to the sequence grabber that your panel component

cannot support the current connection.

RESULT CODES

Other appropriate sequence grabber or sequence grabber channel result codes

badComponentSelector 0x80008002 Function not supported

noDeviceForChannel –9408 Cannot work with specified channel
badComponentSelector 0x80008002 Function not supported

C H A P T E R 7

Sequence Grabber Panel Components

7-18 Sequence Grabber Panel Components Reference

SGPanelSetResFile

Unless you instruct it otherwise, the sequence grabber component opens your panel

component’s resource file for you. The SGPanelSetResFile function allows the

sequence grabber to pass you the resource file’s reference number. The sequence grabber

also calls this function when it closes your resource file.

pascal ComponentResult SGPanelSetResFile

(SeqGrabPanelComponent s,

 short resRef);

s Identifies the sequence grabber component’s connection to your panel
component.

resRef Contains a reference number that identifies your component’s resource
file. After it closes your resource file, the sequence grabber component
calls this function and sets this value to 0.

DESCRIPTION

A sequence grabber component calls your SGPanelSetResFile function in order to

pass you your component’s resource file reference number. By default, the sequence

grabber component opens your component’s resource file for you. You can use this

reference number to retrieve resources from your resource file.

The sequence grabber component also calls this function when it closes your

component’s resource file. In this case, it sets the resRef parameter to 0. Note that the

sequence grabber component may close your resource file at any time; you should not

count on any particular calling sequence.

If you do not want the sequence grabber component to open your resource file, set the

channelFlagDontOpenResFile component flag to 1.

SGPanelGetDITL

The SGPanelGetDITL function allows a sequence grabber component to determine the

dialog items managed by your panel component. The sequence grabber uses this

information to build the sequence grabber settings dialog box for the user.

pascal ComponentResult SGPanelGetDITL (SeqGrabPanelComponent s,

 Handle *ditl);

s Identifies the sequence grabber component’s connection to your panel
component.

ditl Contains a pointer to a handle that is to receive your component’s item
list. Your component should resize this handle as appropriate.

C H A P T E R 7

Sequence Grabber Panel Components

Sequence Grabber Panel Components Reference 7-19

DESCRIPTION

A sequence grabber component calls your SGPanelGetDITL function in order to obtain

the list of dialog items supported by your panel component. The sequence grabber then

places these items into the settings dialog box and presents the dialog box to the user.

When the sequence grabber builds the settings dialog box, it places your items

appropriately—you do not need to specify particular locations for the items.

Your component returns the item list in a handle that is provided by the sequence

grabber component. Note that the sequence grabber component will dispose of this

handle after retrieving the item list, so make sure that the item list is not stored in a

resource. If your item list is in a resource handle, you can use the Resource Manager’s

DetachResource routine to convert that resource handle into a handle that is suitable

for use with the SGPanelGetDITL function.

The sequence grabber component will open your resource file before calling this function

unless you have instructed the sequence grabber component not to open your resource

file (that is, you have set the channelFlagDontOpenResFile component flag to 1).

SGPanelInstall

A sequence grabber component calls your SGPanelInstall function after adding your

items to the settings dialog box, just before it displays the dialog box to the user.

pascal ComponentResult SGPanelInstall (SeqGrabPanelComponent s,

 SGChannel c, DialogPtr d,

 short itemOffset);

s Identifies the sequence grabber component’s connection to your panel
component.

c Identifies a connection to the sequence grabber channel associated with
your panel component.

d Contains a dialog pointer identifying the settings dialog box. Your
component may use this value to manage its part of the dialog box.

itemOffset
Specifies the offset to your panel’s first item in the dialog box. Because
sequence grabber components build your dialog items into a larger dialog
box containing other items, this value may be different each time your
panel component is installed; do not rely on it being the same.

DESCRIPTION

A sequence grabber component calls your SGPanelInstall function just before

displaying the dialog box to the user. The sequence grabber provides you with

information identifying the channel that your panel is to configure, the dialog box, and

the offset of your panel’s items into the dialog box. You may use this opportunity to set

default dialog values or to initialize your control values.

C H A P T E R 7

Sequence Grabber Panel Components

7-20 Sequence Grabber Panel Components Reference

SEE ALSO

Sequence grabber components call your component’s SGPanelRemove function before

they remove your panel from the settings dialog box. That function is discussed next.

SGPanelRemove

Sequence grabber components call your component’s SGPanelRemove function before

removing your panel from the settings dialog box.

pascal ComponentResult SGPanelRemove (SeqGrabPanelComponent s,

 SGChannel c, DialogPtr d,

short itemOffset);

s Identifies the sequence grabber component’s connection to your panel
component.

c Identifies a connection to the sequence grabber channel associated with
your panel component.

d Contains a dialog pointer identifying the settings dialog box.

itemOffset
Specifies the offset to your panel’s first item in the dialog box.

DESCRIPTION

A sequence grabber component calls your SGPanelRemove function just before

removing your items from the settings dialog box. The sequence grabber provides you

with information identifying the channel your panel is to configure, the dialog box, and

the offset of your panel’s items into the dialog box. You may use this opportunity to save

any changes you may have made to the dialog box or to retrieve the contents of TextEdit

items.

If the sequence grabber opened your resource file, it will still be open when it calls this

function.

SEE ALSO

Sequence grabbers call your SGPanelInstall function (described in the previous

section) before displaying the settings dialog box to the user.

C H A P T E R 7

Sequence Grabber Panel Components

Sequence Grabber Panel Components Reference 7-21

Processing Your Panel’s Events

When your panel component is loaded into the settings dialog box and active, you may

receive and process dialog events and mouse clicks.

Your component’s SGPanelEvent function acts like a modal-dialog filter function,

allowing you to process individual dialog events. The sequence grabber calls your

SGPanelItem function whenever the user clicks a dialog item.

Whenever the user clicks the OK button, the sequence grabber calls your

SGPanelValidateInput function. Your panel component may then validate the user’s

settings.

SGPanelItem

Your SGPanelItem function allows your component to receive and process mouse

clicks in the settings dialog box.

pascal ComponentResult SGPanelItem (SeqGrabPanelComponent s,

 SGChannel c, DialogPtr d,

 short itemOffset,

 short itemNum);

s Identifies the sequence grabber component’s connection to your panel
component.

c Identifies a connection to the sequence grabber channel associated with
your panel component.

d Contains a dialog pointer identifying the settings dialog box.

itemOffset
Specifies the offset to your panel’s first item in the dialog box.

itemNum Contains the item number of the dialog item selected by the user. Note
that this is an absolute item number; the sequence grabber does not adjust
this value to account for the offset to your first dialog item.

DESCRIPTION

A sequence grabber component calls your SGPanelItem function whenever the user

clicks an item in the settings dialog box. Your component may then perform whatever

processing is appropriate, depending upon the item number. Note that the sequence

grabber provides an absolute item number. It is your responsibility to adjust this value to

account for the offset to your panel’s first item in the dialog box.

C H A P T E R 7

Sequence Grabber Panel Components

7-22 Sequence Grabber Panel Components Reference

SEE ALSO

Your component can filter all dialog events with your SGPanelEvent function. This

function is described next.

Sequence grabber components use your component’s SGPanelValidateInput

function to validate the current input settings as a whole. That function is discussed on

page 7-23.

SGPanelEvent

Your SGPanelEvent function allows your component to receive and process dialog

events. This function is similar to a modal-dialog filter function.

pascal ComponentResult SGPanelEvent (SeqGrabPanelComponent s,

 SGChannel c, DialogPtr d,

 short itemOffset,

 EventRecord *theEvent,

 short *itemHit,

 Boolean *handled);

s Identifies the sequence grabber component’s connection to your panel
component.

c Identifies a connection to the sequence grabber channel associated with
your panel component.

d Contains a dialog pointer identifying the settings dialog box.

itemOffset
Specifies the offset to your panel’s first item in the dialog box.

theEvent Contains a pointer to an event structure. This event structure contains
information identifying the nature of the event.

itemHit Contains a pointer to a field that is to receive the item number in cases
where your component handles the event. The number returned is an
absolute, not a relative number, so it must be offset by the itemOffset
parameter.

handled Contains a pointer to a Boolean value. Set this Boolean value to indicate
whether your component handles the event: set it to true if you handle
the event; set it to false if you do not.

DESCRIPTION

A sequence grabber component calls your SGPanelEvent function whenever an event

occurs in the settings dialog box. Your SGPanelEvent function is similar to a modal-

dialog filter function. The main difference is that, rather than returning a Boolean value

to indicate whether you handled the event, your SGPanelEvent function sets a Boolean

C H A P T E R 7

Sequence Grabber Panel Components

Sequence Grabber Panel Components Reference 7-23

value that is provided by the calling function. If you handle the event, be sure to update

the field referred to by the itemHit parameter.

SEE ALSO

Your component can process mouse clicks with your SGPanelItem function. This

function is discussed on page 7-21.

SGPanelValidateInput

Sequence grabber components call your component’s SGPanelValidateInput

function in order to allow you to validate the contents of the user dialog box.

pascal ComponentResult SGPanelValidateInput

 (SeqGrabPanelComponent s,

 Boolean *ok);

s Identifies the sequence grabber component’s connection to your panel
component.

ok Contains a pointer to a Boolean value. You set this Boolean value to
indicate whether the user’s settings are acceptable. Set it to true if the
settings are OK; otherwise, set it to false.

DESCRIPTION

A sequence grabber component calls your SGPanelValidateInput function in order

to allow you to validate the settings chosen by the user. This is your opportunity to

validate the settings in their entirety, including those for which you may not have

received dialog events or mouse clicks. For example, if your panel component uses a

TextEdit box, you should validate its contents at this time. Be sure to give the user some

indication of what to do to fix the settings.

The sequence grabber calls this function when the user clicks the OK button. If the user

clicks the Cancel button, the sequence grabber does not call this function.

You indicate whether the settings are acceptable by setting the Boolean value referred to

by the ok parameter. If you set this Boolean value to false, the sequence grabber

component ignores the OK button in the dialog box.

SEE ALSO

Your component can process mouse clicks with your SGPanelItem function, described

on page 7-21. Your component can filter all dialog events with your SGPanelEvent

function, described in the previous section.

C H A P T E R 7

Sequence Grabber Panel Components

7-24 Sequence Grabber Panel Components Reference

Managing Your Panel’s Settings

Sequence grabber components store their configuration information in Movie Toolbox

user data items (see the chapter “Movie Toolbox” in Inside Macintosh: QuickTime for more

information about user data items). This configuration information includes settings for

each of the channels used by the sequence grabber. Because your panel component

configures sequence grabber channels, your panel component is responsible for creating

and formatting the contents of its user data items. The sequence grabber component calls

your component whenever it wants to retrieve these settings. The sequence grabber may

also use previously stored settings to restore your panel’s settings. This section discusses

the functions that allow the sequence grabber to work with your panel’s settings.

The sequence grabber calls your SGPanelGetSettings function in order to retrieve

your panel’s current settings. The sequence grabber uses your SGPanelSetSettings

function to restore those settings to some previous values.

SGPanelGetSettings

Sequence grabber components call your component’s SGPanelGetSettings function

in order to retrieve your panel’s current settings.

pascal ComponentResult SGPanelGetSettings

(SeqGrabPanelComponent s,

 SGChannel c, UserData *ud,

 long flags);

s Identifies the sequence grabber component’s connection to your panel
component.

c Identifies a connection to the sequence grabber channel associated with
your panel component.

ud Contains a pointer to a user data item. Your component is responsible for
creating a new user data item and returning that item by means of this
pointer. Your component is not responsible for disposing of the user data
item.

flags Reserved for future use.

DESCRIPTION

A sequence grabber component calls your SGPanelGetSettings function in order to

obtain a copy of your panel’s current settings. The sequence grabber stores these settings

for you and may use them to restore your panel’s settings by calling your

SGPanelSetSettings function (described next). Your component should store

C H A P T E R 7

Sequence Grabber Panel Components

Sequence Grabber Panel Components Reference 7-25

whatever values are necessary to properly configure your associated channel

component. For example, Apple’s video compression panel component saves such

values as video compressor component type, compression quality, key frame rate, and

frame rate values.

These settings may be stored as part of a larger sequence grabber configuration and may

be stored for a long period of time. Therefore, you should not store values that may

change without your knowledge (such as component ID or connection values).

You are free to format the data in the user data item in any way you desire. Make

sure you can retrieve the settings information from the user data item when your

SGPanelGetSettings function is called. You may choose to format the data in such a

way that other components can parse it easily, thus allowing your component to operate

with other panel components.

You create a new user data item by calling the Movie Toolbox’s NewUserData function

(see the chapter “Movie Toolbox” in Inside Macintosh: QuickTime for more information

about this function). You may then use other Movie Toolbox functions to manipulate the

user data item.

SEE ALSO

Sequence grabber components use your component’s SGPanelSetSettings function

to restore this configuration information. That function is discussed next.

SGPanelSetSettings

Sequence grabber components call your component’s SGPanelSetSettings function

in order to restore your panel’s current settings.

pascal ComponentResult SGPanelSetSettings

(SeqGrabPanelComponent s,

 SGChannel c, UserData ud,

 long flags);

s Identifies the sequence grabber component’s connection to your panel
component.

c Identifies a connection to the sequence grabber channel associated with
your panel component.

ud Identifies a user data item that contains new settings information for your
panel. Your component must not dispose of this user data item.

flags Reserved for future use.

C H A P T E R 7

Sequence Grabber Panel Components

7-26 Sequence Grabber Panel Components Reference

DESCRIPTION

A sequence grabber component calls your SGPanelSetSettings function in order to

restore your panel’s settings. The sequence grabber may call this function when the user

cancels the settings dialog box.

Your component originally creates the settings information when the sequence grabber

calls your SGPanelGetSettings function (described in the previous section). The

sequence grabber passes this configuration information back to you in the ud parameter

to this function. Your component should parse the configuration information and use

it to establish your panel’s current settings.

Note that your component may not be able to accommodate the original settings. For

example, because the settings may have been stored for some time, the hardware

environment may not be able to support the values in the settings. You should try to

make your new settings match the original settings as closely as possible. If you cannot

get close enough, return an appropriate sequence grabber or sequence grabber channel

result code.

You may use Movie Toolbox functions to manipulate the user data item (see the chapter

“Movie Toolbox” in Inside Macintosh: QuickTime for more information about functions

that work with user data items).

RESULT CODES

Other appropriate sequence grabber or sequence grabber channel result codes

SEE ALSO

Sequence grabber components use your component’s SGPanelGetSettings function

(described in the previous section) to retrieve the configuration information.

noDeviceForChannel –9408 Device cannot support settings

C H A P T E R 7

Sequence Grabber Panel Components

Summary of Sequence Grabber Panel Components 7-27

Summary of Sequence Grabber Panel Components

C Summary

Constants

/* component type value */

#define SeqGrabPanelType 'sgpn' /* panel component type */

/* component manufacturer code values */

#define SeqGrabCompressionPanelType 'sour' /* input source selection */

#define SeqGrabSourcePanelType 'cmpr' /* compression settings */

/* componentFlags values for sequence grabber panel components */

enum {

channelFlagDontOpenResFile = 2, /* do not open resource file */

channelFlagHasDependency = 4 /* needs special hardware */

};

enum {

/* sequence grabber panel request codes */

kSGCPanelGetDitlSelect = 0x200, /* SGPanelGetDITL */

kSGCPanelCanRunSelect = 0x202, /* SGPanelCanRun */

kSGCPanelInstallSelect = 0x203, /* SGPanelInstall */

kSGCPanelEventSelect = 0x204, /* SGPanelEvent */

kSGCPanelItemSelect = 0x205, /* SGPanelItem */

kSGCPanelRemoveSelect = 0x206, /* SGPanelRemove */

kSGCPanelSetGrabberSelect = 0x207, /* SGPanelSetGrabber */

kSGCPanelSetResFileSelect = 0x208, /* SGPanelSetResFile */

kSGCPanelGetSettingsSelect = 0x209, /* SGPanelGetSettings */

kSGCPanelSetSettingsSelect = 0x20A, /* SGPanelSetSettings */

kSGCPanelValidateInputSelect = 0x20B /* SGPanelValidateInput */

};

C H A P T E R 7

Sequence Grabber Panel Components

7-28 Summary of Sequence Grabber Panel Components

Functions

Managing Your Panel Component

pascal ComponentResult SGPanelSetGrabber
(SeqGrabPanelComponent s, SeqGrabComponent sg);

pascal ComponentResult SGPanelCanRun
(SeqGrabPanelComponent s, SGChannel c);

pascal ComponentResult SGPanelSetResFile
(SeqGrabPanelComponent s, short resRef);

pascal ComponentResult SGPanelGetDITL
(SeqGrabPanelComponent s, Handle *ditl);

pascal ComponentResult SGPanelInstall
(SeqGrabPanelComponent s, SGChannel c,
DialogPtr d, short itemOffset);

pascal ComponentResult SGPanelRemove
(SeqGrabPanelComponent s, SGChannel c,
DialogPtr d, short itemOffset);

Processing Your Panel’s Events

pascal ComponentResult SGPanelItem
(SeqGrabPanelComponent s, SGChannel c,
DialogPtr d, short itemOffset, short itemNum);

pascal ComponentResult SGPanelEvent
(SeqGrabPanelComponent s, SGChannel c,
DialogPtr d, short itemOffset,
EventRecord *theEvent, short *itemHit,
Boolean *handled);

pascal ComponentResult SGPanelValidateInput
(SeqGrabPanelComponent s, Boolean *ok);

Managing Your Panel’s Settings

pascal ComponentResult SGPanelGetSettings
(SeqGrabPanelComponent s, SGChannel c,
UserData *ud, long flags);

pascal ComponentResult SGPanelSetSettings
(SeqGrabPanelComponent s, SGChannel c,
UserData ud, long flags);

C H A P T E R 7

Sequence Grabber Panel Components

Summary of Sequence Grabber Panel Components 7-29

Pascal Summary

Constants

CONST

{component type value}

SeqGrabPanelType = 'sgpn'; {panel component type}

{component manufacturer code values}

SeqGrabCompressionPanelType = 'comp'; {compression settings}

SeqGrabSourcePanelType = 'sour'; {input source slection}

{componentFlags values for sequence grabber panel components}

channelFlagDontOpenResFile = 2; {do not open resource file}

channelFlagHasDependency = 4; {channel has special hardware}

{sequence grabber panel component request codes}

kSGCPanelGetDitlSelect = $200; {SGCPanelGetDitl}

kSGCPanelCanRunSelect = $202; {SGCPanelCanRun}

kSGCPanelInstallSelect = $203; {SGCPanelInstall}

kSGCPanelEventSelect = $204; {SGCPanelEvent}

kSGCPanelItemSelect = $205; {SGCPanelItem}

kSGCPanelRemoveSelect = $206; {SGCPanelRemove}

kSGCPanelSetGrabberSelect = $207; {SGCPanelSetGrabber}

kSGCPanelSetResFileSelect = $208; {SGCPanelSetResFile}

kSGCPanelGetSettingsSelect = $209; {SGCPanelGetSettings}

kSGCPanelSetSettingsSelect = $20A; {SGCPanelSetSettings}

kSGCPanelValidateInputSelect = $20B; {SGCPanelValidateInput}

Routines

Managing Your Panel Component

FUNCTION SGPanelSetGrabber (s: SeqGrabComponent; sg: SeqGrabComponent):
ComponentResult;

FUNCTION SGPanelCanRun (s: SeqGrabComponent; c: SGChannel):
ComponentResult;

FUNCTION SGPanelSetResFile (s: SeqGrabComponent; resRef: Integer):
ComponentResult;

FUNCTION SGPanelGetDITL (s: SeqGrabComponent; VAR ditl: Handle):
ComponentResult;

C H A P T E R 7

Sequence Grabber Panel Components

7-30 Summary of Sequence Grabber Panel Components

FUNCTION SGPanelInstall (s: SeqGrabComponent; c: SGChannel;
d: DialogPtr; itemOffset: Integer):
ComponentResult;

FUNCTION SGPanelRemove (s: SeqGrabComponent; c: SGChannel;
d: DialogPtr; itemOffset: Integer):
ComponentResult;

Processing Your Panel’s Events

FUNCTION SGPanelItem (s: SeqGrabComponent; c: SGChannel;
d: DialogPtr; itemOffset: Integer;
itemNum: Integer): ComponentResult;

FUNCTION SGPanelEvent (s: SeqGrabComponent; c: SGChannel;
d: DialogPtr; itemOffset: Integer;
VAR theEvent: EventRecord;
VAR itemHit: Integer;
VAR handled: Boolean): ComponentResult;

FUNCTION SGPanelValidateInput
(s: SeqGrabComponent; VAR ok: Boolean):
ComponentResult;

Managing Your Panel’s Settings

FUNCTION SGPanelGetSettings (s: SeqGrabComponent; c: SGChannel;
VAR ud: UserData; flags: LongInt):
ComponentResult;

FUNCTION SGPanelSetSettings (s: SeqGrabComponent; c: SGChannel;
ud: UserData; flags: LongInt): ComponentResult;

Result Codes
noDeviceForChannel –9408 Cannot work with specified channel
badComponentSelector 0x80008002 Function not supported

Contents 8-1

C H A P T E R 8

Contents

Video Digitizer Components

About Video Digitizer Components 8-3

Types of Video Digitizer Components 8-5

Source Coordinate Systems 8-6

Using Video Digitizer Components 8-7

Specifying Destinations 8-7

Starting and Stopping the Digitizer 8-7

Multiple Buffering 8-8

Obtaining an Accurate Time of Frame Capture 8-8

Creating Video Digitizer Components 8-8

Component Type and Subtype Values 8-11

Required Functions 8-11

Optional Functions 8-12

Frame Grabbers Without Playthrough 8-12

Frame Grabbers With Hardware Playthrough 8-12

Key Color and Alpha Channel Devices 8-13

Compressed Source Devices 8-13

Video Digitizer Components Reference 8-14

Constants 8-14

Capability Flags 8-14

Current Flags 8-19

Data Types 8-20

The Digitizer Information Structure 8-20

The Buffer List Structure 8-22

The Buffer Structure 8-23

Video Digitizer Component Functions 8-23

Getting Information About Video Digitizer Components 8-24

Setting Source Characteristics 8-26

Selecting an Input Source 8-30

Setting Video Destinations 8-34

Controlling Compressed Source Devices 8-42

C H A P T E R 8

8-2 Contents

Controlling Digitization 8-52

Controlling Color 8-60

Controlling Analog Video 8-65

Selectively Displaying Video 8-81

Clipping 8-89

Utility Functions 8-92

Application-Defined Function 8-98

Summary of Video Digitizer Components 8-99

C Summary 8-99

Constants 8-99

Data Types 8-104

Video Digitizer Component Functions 8-105

Application-Defined Function 8-111

Pascal Summary 8-111

Constants 8-111

Data Types 8-116

Video Digitizer Component Routines 8-117

Application-Defined Routine 8-123

Result Codes 8-124

C H A P T E R 8

About Video Digitizer Components 8-3

Video Digitizer Components

This chapter discusses video digitizer components. Video digitizer components provide

an interface for obtaining digitized video from an analog video source. In QuickTime,

the typical client of a video digitizer component is a sequence grabber component

(sequence grabber components are described in the chapter “Sequence Grabber

Components” in this book). Sequence grabber components use the services of video

digitizer components and image compressor components to create a simple interface for

making and previewing movies. However, video digitizer components can also operate

independently, placing video into a window.

IMPORTANT

Most applications never need to communicate directly with a video
digitizer component. It is strongly advised that your application use the
sequence grabber component instead; it isolates you from the myriad of
details associated with video digitization. ▲

This chapter has been divided into the following major sections:

■ “About Video Digitizer Components” presents some general information about video
digitizer components.

■ “Using Video Digitizer Components” gives details on how you tell the digitizer where
to put the data and how to control digitization. It describes a technique for improving
performance.

■ “Creating Video Digitizer Components” discusses how to create a video digitizer
component.

■ “Video Digitizer Components Reference” describes the constants, data structures, and
functions associated with video digitizer components.

■ “Summary of Video Digitizer Components” supplies a summary of the constants,
data types, and functions associated with video digitizer components in C and in
Pascal.

About Video Digitizer Components

Video digitizer components convert video input into a digitized color image that is

compatible with the graphics system of a computer. For example, a video digitizer may

convert input analog video into a specified digital format. The input may be any video

format and type, whereas the output must be intelligible to the Macintosh computer’s

display system. Once the digitizer has converted the input signal to an appropriate

digital format, it then prepares the image for display by resizing the image, performing

necessary color conversions, and clipping to the output window. At the end of this

process, the digitizer component places the converted image into a buffer you specify—if

that buffer is the current frame buffer, the image appears on the user’s computer screen.

C H A P T E R 8

Video Digitizer Components

8-4 About Video Digitizer Components

Figure 8-1 shows the steps involved in converting the analog video signal to digital

format and preparing the digital data for display. Some video digitizer components

perform all these steps in hardware. Others perform some or all of these steps in

software. Others may perform only a few of these steps—in which case, it is up to the

program that is using the video digitizer to perform these tasks.

Figure 8-1 Basic tasks of a video digitizer

Video digitizer components resize the image by applying a transformation matrix to the

digitized image. Your application specifies the matrix that is applied to the image. Matrix

operations can enlarge or shrink an image, distort the image, or move the location of an

image. The Movie Toolbox provides a set of functions that make it easy for you to work

with transformation matrices. See the chapter “Movie Toolbox” in Inside Macintosh:
QuickTime for more information about matrix operations.

Before the digitized image can be displayed on your computer, the video digitizer

component must convert the image into an appropriate color representation. This

conversion may involve dithering or pixel depth conversion. The digitizer component

handles this conversion based on the destination characteristics you specify.

Video digitizer components may support clipping. Digitizers that do support clipping

can display the resulting image in regions of arbitrary shapes. See the next section for a

complete discussion of the techniques that digitizer components can use to perform

clipping.

C H A P T E R 8

Video Digitizer Components

About Video Digitizer Components 8-5

Types of Video Digitizer Components
Video digitizer components fall into four categories, distinguished by their support for

clipping a digitized video image:

■ basic digitizers, which do not support clipping

■ alpha channel digitizers, which clip by means of an alpha channel

■ mask plane digitizers, which clip by means of a mask plane

■ key color digitizers, which clip by means of key colors

Basic video digitizer components are capable of placing the digitized video into memory,

but they do not support any graphics overlay or video blending. If you want to perform

these operations, you must do so in your application. For example, you can stop the

digitizer after each frame and do the work necessary to blend the digitized video with a

graphics image that is already being displayed. Unfortunately, this may cause jerkiness

or discontinuity in the video stream. Other types of digitizers that support clipping make

this operation much easier for your application.

Alpha channel digitizer components use a portion of each display pixel to represent the

blending of video and graphical image data. This part of each pixel is referred to as an

alpha channel. The size of the alpha channel differs depending upon the number of bits

used to represent each pixel. For 32 bits per pixel modes, the alpha channel is

represented in the 8 high-order bits of each 32-bit pixel. These 8 bits can define up to

256 levels of blend. For 16 bits per pixel modes, the alpha channel is represented in the

high-order bit of the pixel and defines one level of blend (on or off).

Mask plane digitizer components use a pixel map to define blending. Values in this mask

correspond to pixels on the screen, and they define the level of blend between video and

graphical image data.

Key color digitizer components determine where to display video data based upon the

color currently being displayed on the output device. These digitizers reserve one or

more colors in the color table; these colors define where to display video. For example, if

blue is reserved as the key color, the digitizer replaces all blue pixels in the display

rectangle with the corresponding pixels of video from the input video source.

C H A P T E R 8

Video Digitizer Components

8-6 About Video Digitizer Components

Source Coordinate Systems
Your application can control what part of the source video image is extracted. The

digitizer then converts the specified portion of the source video signal into a digital

format for your use. Video digitizer components define four areas you may need to

manipulate when you define the source image for a given operation. These areas are

■ the maximum source rectangle

■ the active source rectangle

■ the vertical blanking rectangle

■ the digitizer rectangle

Figure 8-2 shows the relationships between these rectangles.

Figure 8-2 Video digitizer rectangles

The maximum source rectangle defines the maximum source area that the digitizer

component can grab. This rectangle usually encompasses both the vertical and

horizontal blanking areas. The active source rectangle defines that portion of the

maximum source rectangle that contains active video. The vertical blanking rectangle

defines that portion of the input video signal that is devoted to vertical blanking. This

rectangle occupies lines 10 through 19 of the input signal. Broadcast video sources may

use this portion of the input signal for closed captioning, teletext, and other nonvideo

information. Note that the blanking rectangle might not be contained in the maximum

source rectangle.

You specify the digitizer rectangle, which defines that portion of the active source

rectangle that you want to capture and convert.

C H A P T E R 8

Video Digitizer Components

Using Video Digitizer Components 8-7

Using Video Digitizer Components

This section describes how you can control a video digitizer component. It has been

divided into the following topics:

■ “Specifying Destinations” discusses how you tell the digitizer where to put the
converted video data.

■ “Starting and Stopping the Digitizer” discusses how you control digitization.

■ “Multiple Buffering” describes a technique for improving performance.

■ “Obtaining an Accurate Time of Frame Capture” tells how the sequence grabber
usually supplies video digitizers with a time base. This time base lets your application
get an accurate time for the capture of any specified frame.

Specifying Destinations
Video digitizer components provide several functions that allow applications to specify

the destination for the digitized video stream produced by the digitizer component. You

have two options for specifying the destination for the video data stream in your

application.

The first option requires that the video be digitized as RGB pixels and placed into a

destination pixel map. This option allows the video to be placed either onscreen or

offscreen, depending upon the placement of the pixel map. Your application can use the

VDSetPlayThruDestination function (described on page 8-35) to set the

characteristics for this option. Your application can use the VDPreflightDestination

function (described on page 8-36) to determine the capabilities of the digitizer. All video

digitizer components must support this option.

The second option uses a global boundary rectangle to define the destination for the

video. This option always results in onscreen images and is useful with digitizers that

support hardware direct memory access (DMA) across multiple screens. The digitizer

component is responsible for any required color depth conversions, image clipping and

resizing, and so on. Your application can use the VDSetPlayThruGlobalRect function

(described on page 8-39) to set the characteristics for this option. Your application can

use the VDPreflightGlobalRect function (described on page 8-40) to determine the

capabilities of the digitizer. Not all video digitizer components support this option.

Starting and Stopping the Digitizer
You can control digitization on a frame-by-frame basis in your application. The

VDGrabOneFrame function (described on page 8-54) digitizes a single video frame. All

video digitizer components support this function.

C H A P T E R 8

Video Digitizer Components

8-8 Creating Video Digitizer Components

Alternatively, you can use the VDSetPlayThruOnOff function (described on page 8-53)

to enable or disable digitization. When digitization is enabled, the video digitizer

component places video into the specified destination continuously. The application

stops the digitizer by disabling digitization. This function can be used with both

destination options. However, not all video digitizer components support this function.

Multiple Buffering
You can improve the performance of frame-by-frame digitization by using

multiple destination buffers for the digitized video. Your application defines a number of

destination buffers to the video digitizer component and specifies the order in which

those buffers are to be used. The digitizer component then fills the buffers, allowing you

to switch between the buffers more quickly than your application otherwise could. In

this manner, you can grab a video sequence at a higher rate with less chance of data loss.

This technique can be used with both destination options.

You define the buffers to the digitizer by calling the VDSetupBuffers function

(described on page 8-54). The VDGrabOneFrameAsync function (described on

page 8-56) starts the process of grabbing a single video frame. The VDDone function

(described on page 8-58) allows you to determine when the digitizer component has

finished a given frame.

Obtaining an Accurate Time of Frame Capture
The sequence grabber typically gives video digitizers a time base so your application can

obtain an accurate time for the capture of any given frame. Applications can set the

digitizer’s time base by calling the VDSetTimeBase function, which is described on

page 8-51.

Creating Video Digitizer Components

Video digitizer components are the most convenient mechanism for presenting new

sources of video data to QuickTime. For example, if you are developing special-purpose

video hardware that digitizes video images from a previously unsupported source

device, you should create a video digitizer component so that applications or sequence

grabber components can obtain data from your device.

Refer to the chapter “Component Manager” in Inside Macintosh: More Macintosh Toolbox
for a general discussion of how to create a component.

The remaining topics in this section discuss issues you should consider when creating a

video digitizer component.

Apple has defined a functional interface for video digitizer components. For information

about the functions your digitizer component must support, see “Video Digitizer

Component Functions” beginning on page 8-23.

C H A P T E R 8

Video Digitizer Components

Creating Video Digitizer Components 8-9

You can use the following enumerators to refer to the request codes for each of the

functions that your component must support.

enum {

/* video digitizer interface */

kSelectVDGetMaxSrcRect = 0x1,/* VDGetMaxSrcRect (required) */

kSelectVDGetActiveSrcRect = 0x2,/* VDGetActiveSrcRect

(required) */

kSelectVDSetDigitizerRect = 0x3,/* VDSetDigitizerRect

(required) */

kSelectVDGetDigitizerRect = 0x4,/* VDGetDigitizerRect

(required) */

kSelectVDGetVBlankRect = 0x5,/* VDGetVBlankRect (required) */

kSelectVDGetMaskPixMap = 0x6,/* VDGetMaskPixMap */

kSelectVDGetPlayThruDestination = 0x8,/* VDGetPlayThruDestination

(required) */

kSelectVDUseThisCLUT = 0x9,/* VDUseThisCLUT */

kSelectVDSetInputGammaValue = 0xA,/* VDSetInputGammaValue */

kSelectVDGetInputGammaValue = 0xB,/* VDGetInputGammaValue */

kSelectVDSetBrightness = 0xC,/* VDSetBrightness */

kSelectVDGetBrightness = 0xD,/* VDGetBrightness */

kSelectVDSetContrast = 0xE,/* VDSetContrast */

kSelectVDSetHue = 0xF,/* VDSetHue */

kSelectVDSetSharpness = 0x10,/* VDSetSharpness */

kSelectVDSetSaturation = 0x11,/* VDSetSaturation */

kSelectVDGetContrast = 0x12,/* VDGetContrast */

kSelectVDGetHue = 0x13,/* VDGetHue */

kSelectVDGetSharpness = 0x14,/* VDGetSharpness */

kSelectVDGetSaturation = 0x15,/* VDGetSaturation */

kSelectVDGrabOneFrame = 0x16,/* VDGrabOneFrame

(required) */

kSelectVDGetMaxAuxBuffer = 0x17,/* VDGetMaxAuxBuffer */

kSelectVDGetDigitizerInfo = 0x19,/* VDGetDigitizerInfo

(required) */

kSelectVDGetCurrentFlags = 0x1A,/* VDGetCurrentFlags

(required) */

kSelectVDSetKeyColor = 0x1B,/* VDSetKeyColor */

kSelectVDGetKeyColor = 0x1C,/* VDGetKeyColor */

kSelectVDAddKeyColor = 0x1D,/* VDAddKeyColor */

kSelectVDGetNextKeyColor = 0x1E,/* VDGetNextKeyColor */

kSelectVDSetKeyColorRange = 0x1F,/* VDSetKeyColorRange */

kSelectVDGetKeyColorRange = 0x20,/* VDGetKeyColorRange */

kSelectVDSetDigitizerUserInterrupt = 0x21,

/* VDSetDigitizerUserInterrupt */

C H A P T E R 8

Video Digitizer Components

8-10 Creating Video Digitizer Components

kSelectVDSetInputColorSpaceMode = 0x22,/* VDSetInputColorSpaceMode */

kSelectVDGetInputColorSpaceMode = 0x23,/* VDGetInputColorSpaceMode */

kSelectVDSetClipState = 0x24,/* VDSetClipState */

kSelectVDSetClipState = 0x25,/* VDGetClipState */

kSelectVDSetClipRgn = 0x26,/* VDSetClipRgn */

kSelectVDClearClipRgn = 0x27,/* VDClearClipRgn */

kSelectVDGetCLUTInUse = 0x28,/* VDGetCLUTInUse */

kSelectVDSetPLLFilterType = 0x29,/* VDSetPLLFilterType */

kSelectVDGetPLLFilterType = 0x2A,/* VDGetPLLFilterType */

kSelectVDGetMaskandValue = 0x2B,/* VDGetMaskandValue */

kSelectVDSetMasterBlendLevel = 0x2C,/* VDSetMasterBlendLevel */

kSelectVDSetPlayThruDestination = 0x2D,/* VDSetPlayThruDestination */

kSelectVDSetPlayThruOnOff = 0x2E,/* VDSetPlayThruOnOff */

kSelectVDSetFieldPreference = 0x2F,/* VDSetFieldPreference

(required) */

kSelectVDGetFieldPreference = 0x30,/* VDGetFieldPreference

(required) */

kSelectVDPreflightDestination = 0x32,/* VDPreflightDestination

(required) */

kSelectVDPreflightGlobalRect = 0x33,/* VDPreflightGlobalRect */

kSelectVDSetPlayThruGlobalRect = 0x34,/* VDSetPlayThruGlobalRect */

kSelectVDSetInputGammaRecord = 0x35,/* VDSetInputGammaRecord */

kSelectVDGetInputGammaRecord = 0x36,/* VDGetInputGammaRecord */

kSelectVDSetBlackLevelValue = 0x37,/* VDSetBlackLevelValue */

kSelectVDGetBlackLevelValue = 0x38,/* VDGetBlackLevelValue */

kSelectVDSetWhiteLevelValue = 0x39,/* VDSetWhiteLevelValue */

kSelectVDGetWhiteLevelValue = 0x3A,/* VDGetWhiteLevelValue */

kSelectVDGetVideoDefaults = 0x3B,/* VDGetVideoDefaults */

kSelectVDGetNumberOfInputs = 0x3C,/* VDGetNumberOfInputs */

kSelectVDGetInputFormat = 0x3D,/* VDGetInputFormat */

kSelectVDSetInput = 0x3E,/* VDSetInput */

kSelectVDGetInput = 0x3F,/* VDGetInput */

kSelectVDSetInputStandard = 0x40,/* VDSetInputStandard */

kSelectVDSetupBuffers = 0x41,/* VDSetupBuffers */

kSelectVDGrabOneFrameAsync = 0x42,/* VDGrabOneFrameAsync */

kSelectVDDone = 0x43,/* VDDone */

kSelectVDSetCompression = 0x44,/* VDSetCompression */

kSelectVDCompressOneFrameAsync = 0x45,/* VDCompressOneFrameAsync */

kSelectVDCompressDone = 0x46,/* VDCompressDone */

kSelectVDReleaseCompressBuffer = 0x47,/* VDReleaseCompressBuffer */

kSelectVDGetImageDescription = 0x48,/* VDGetImageDescription */

kSelectVDResetCompressSequence = 0x49,/* VDResetCompressSequence */

kSelectVDSetCompressionOnOff = 0x4A,/* VDSetCompressionOnOff */

C H A P T E R 8

Video Digitizer Components

Creating Video Digitizer Components 8-11

kSelectVDGetCompressionTypes = 0x4B,/* VDGetCompressionTypes */

kSelectVDSetTimeBase = 0x4C,/* VDSetTimeBase */

kSelectVDSetFrameRate = 0x4D,/* VDSetFrameRate */

kSelectVDGetDataRate = 0x4E,/* VDGetDataRate */

kSelectVDGetSoundInputDriver = 0x4F,/* VDGetSoundInputDriver */

kSelectVDGetDMADepths = 0x50,/* VDGetDMADepths */

kSelectVDGetPreferredTimeScale = 0x51,/* VDGetPreferredTimeScale */

kSelectVDReleaseAsyncBuffers = 0x52,/* VDReleaseAsyncBuffers */

};

Component Type and Subtype Values
Apple has defined a type value for video digitizer components. All video digitizer

components have a component type value of 'vdig'. You can use the following

constant to specify the component type value.

#define videoDigitizerComponentType = 'vdig'

There are no special conventions applied to the subtype value of video digitizer

components.

Required Functions
Video digitizer components support a rich functional interface that can accommodate

devices with quite varied capabilities. To relieve you from having to support irrelevant

functions, Apple has made several video digitizer functions optional.

At a minimum, your video digitizer component must support the following functions:

All of these functions are required for all video digitizer components.

VDGetActiveSrcRect VDGetCurrentFlags

VDGetDigitizerInfo VDGetDigitizerRect

VDGetFieldPreference VDGetInput

VDGetInputFormat VDGetMaxSrcRect

VDGetNumberOfInputs VDGetPlayThruDestination

VDGetVBlankRect VDGetVideoDefaults

VDGrabOneFrame VDPreflightDestination

VDSetDigitizerRect VDSetFieldPreference

VDSetInput VDSetInputStandard

VDSetPlayThruDestination

C H A P T E R 8

Video Digitizer Components

8-12 Creating Video Digitizer Components

Optional Functions
Based on the type of device your component supports, you may have to implement

functions other than those listed in “Required Functions,” and you may have to set some

of your component’s capability flags. Read this section to learn which additional

functions your component needs to support and how to set your capability flags

properly.

If your component does not support a particular function, be sure to return a result code

value of digiUnimpErr.

Note

Hardware support for the simultaneous capture and display of frames
on the screen is called playthrough in these sections. ◆

Frame Grabbers Without Playthrough

Suppose your video digitization hardware grabs frames but cannot simultaneously

display the frames on the screen. Suppose also that your hardware supplies the grabbed

frames in QuickDraw pixel maps at specific pixel depths (say, 16 and 32 bits per pixel).

For details on QuickDraw pixel maps, see the chapter “Basic QuickDraw” in Inside
Macintosh: Imaging.

In this case, you should set the following component capability flags:

digiOutDoes16 Set this flag to 1.

digiOutDoes32 Set this flag to 1.

Set other depth flags to 0.

digiOutDoesHWPlayThru
Set this flag to 0.

digiOutDoesDMA
Set this flag to 0.

If your component can operate asynchronously, you should also set the following flag:

digiOutDoesAsyncGrabs
Set this flag to 1 if your component can operate asynchronously.

Frame grabbers that support asynchronous operation must support the following

optional functions:

Frame Grabbers With Hardware Playthrough

If your frame grabber hardware provides support for playing the captured images

directly, you need to support one additional function beyond those discussed in “Frame

Grabbers Without Playthrough.” The VDSetPlayThruOnOff function (described on

page 8-53) allows the application to turn playthrough on and off.

VDDone VDGrabOneFrameAsync

VDReleaseAsyncBuffers VDSetupBuffers

C H A P T E R 8

Video Digitizer Components

Creating Video Digitizer Components 8-13

You should also set the digiOutDoesHWPlayThru capability flag (described on

page 8-18) to 1. In addition, be sure to use the gdh field in the digitizer information

structure to identify your component’s display device. For details on the video digitizer

information structure, see page 8-20.

Key Color and Alpha Channel Devices

As a further elaboration on a basic frame grabber, your device could support the display

or mixing of output data via an alpha channel or through the use of key colors (see

“Types of Video Digitizer Components” on page 8-5 for more information about alpha

channels and key colors). In either case, image data cannot be read directly from the

screen. Therefore, you must set the digiOutDoesUnreadableScreenBits capability

flag to 1. For more on the video digitizer capability flags, see “Capability Flags”

beginning on page 8-14.

Your component must load its alpha channel or fill in the key color whenever

playthrough is enabled or when the destination changes.

Compressed Source Devices

You may create a video digitizer component that supports a device that delivers

compressed image data. In this case, your component is not capable of displaying the

data directly.

Your component should set the following capability flags:

digiOutDoesCompress
Set this flag to 1.

digiOutDoesCompressOnly
Set this flag to 1 if your component cannot display the images
directly.

digiOutDoesPlayThruDuringCompress
Set this flag to 1 if your component cannot display the images
directly.

In addition, frame grabbers that support compressed source devices must support the

following optional functions:

If your hardware generates compressed data that cannot be decompressed by any

standard QuickTime image decompressor components, be sure to provide an

appropriate decompressor component so that the data you provide can be displayed.

VDCompressDone VDCompressOneFrameAsync

VDGetCompressionTypes VDGetDataRate

VDGetImageDescription VDResetCompressSequence

VDSetCompression VDSetCompressionOnOff

VDSetFrameRate VDSetTimeBase

C H A P T E R 8

Video Digitizer Components

8-14 Video Digitizer Components Reference

Video Digitizer Components Reference

The following sections describe the constants, data structures, and functions that are

specific to video digitizer components.

Constants

This section provides details on the video digitizer component’s capability and

current flags.

Capability Flags

Video digitizer components report their capabilities to your application by means of

capability flags. These flags are formatted as part of the digitizer information structure

you obtain by calling the VDGetDigitizerInfo function, which is described on

page 8-24. There are two sets of flags: one set describes the input capabilities of the video

digitizer component; the other describes its output capabilities.

Video digitizer components support the following input capability flags:

digiInDoesNTSC
Indicates that the video digitizer supports National Television System
Committee (NTSC) format input video signals. This flag is set to 1 if the
digitizer component supports NTSC video.

digiInDoesPAL
Indicates that the video digitizer component supports Phase Alternation
Line (PAL) format input video signals. This flag is set to 1 if the digitizer
component supports PAL video.

digiInDoesSECAM
Indicates that the video digitizer component supports Systeme
Electronique Couleur avec Memoire (SECAM) format input video
signals. This flag is set to 1 if the digitizer component supports
SECAM video.

digiInDoesGenLock
Indicates that the video digitizer component supports genlock; that is, the
digitizer can derive its timing from an external time base. This flag is set
to 1 if the digitizer component supports genlock.

digiInDoesComposite
Indicates that the video digitizer component supports composite input
video. This flag is set to 1 if the digitizer component supports composite
input.

C H A P T E R 8

Video Digitizer Components

Video Digitizer Components Reference 8-15

digitInDoesSVideo
Indicates that the video digitizer component supports s-video input
video. This flag is set to 1 if the digitizer component supports s-video
input.

digiInDoesComponent
Indicates that the video digitizer component supports RGB input video.
This flag is set to 1 if the digitizer component supports RGB input.

digiInVTR_Broadcast
Indicates that the video digitizer component can distinguish between an
input signal that emanates from a videotape player and a broadcast
signal. This flag is set to 1 if the digitizer component can differentiate
between the two different signal types.

digiInDoesColor
Indicates that the video digitizer component supports color input. This
flag is set to 1 if the digitizer component can accept color input.

digiInDoesBW
Indicates that the video digitizer component supports grayscale input.
This flag is set to 1 if the digitizer component can accept grayscale input.

Video digitizer components support the following output capability flags:

digiOutDoes1
Indicates that the video digitizer component can work with pixel maps
that contain 1-bit pixels. If this flag is set to 1, then the digitizer
component can write images that contain 1-bit pixels. If this flag is set
to 0, then the digitizer component cannot handle such images.

digiOutDoes2
Indicates that the video digitizer component can work with pixel maps
that contain 2-bit pixels. If this flag is set to 1, then the digitizer
component can write images that contain 2-bit pixels. If this flag is set
to 0, then the digitizer component cannot handle such images.

digiOutDoes4
Indicates that the video digitizer component can work with pixel maps
that contain 4-bit pixels. If this flag is set to 1, then the digitizer
component can write images that contain 4-bit pixels. If this flag is set
to 0, then the digitizer component cannot handle such images.

digiOutDoes8
Indicates that the video digitizer component can work with pixel maps
that contain 8-bit pixels. If this flag is set to 1, then the digitizer
component can write images that contain 8-bit pixels. If this flag is set
to 0, then the digitizer component cannot handle such images.

digiOutDoes16
Indicates that the video digitizer component can work with pixel maps
that contain 16-bit pixels. If this flag is set to 1, then the digitizer
component can write images that contain 16-bit pixels. If this flag is set
to 0, then the digitizer component cannot handle such images.

C H A P T E R 8

Video Digitizer Components

8-16 Video Digitizer Components Reference

digiOutDoes32
Indicates that the video digitizer component can work with pixel maps
that contain 32-bit pixels. If this flag is set to 1, then the digitizer
component can write images that contain 32-bit pixels. If this flag is set
to 0, then the digitizer component cannot handle such images.

digiOutDoesDither
Indicates that the video digitizer component supports dithering. If this
flag is set to 1, the component supports dithering of colors. If this flag is
set to 0, the digitizer component does not support dithering.

digiOutDoesStretch
Indicates that the video digitizer component can stretch images to
arbitrary sizes. If this flag is set to 1, the digitizer component can stretch
images. If this flag is set to 0, the digitizer component does not support
stretching.

digiOutDoesShrink
Indicates that the video digitizer component can shrink images to
arbitrary sizes. If this flag is set to 1, the digitizer component can shrink
images. If this flag is set to 0, the digitizer component does not support
shrinking.

digiOutDoesMask
Indicates that the video digitizer component can handle clipping regions.
If this flag is set to 1, the digitizer component can mask to an arbitrary
clipping region. If this flag is set to 0, the digitizer component does not
support clipping regions.

digiOutDoesDouble
Indicates that the video digitizer component supports stretching to
quadruple size when displaying the output video. The parameters for the
stretch operation are specified in the matrix structure for the request—the
component modifies the scaling attributes of the matrix (see the chapter
“Movie Toolbox” in Inside Macintosh: QuickTime for information about
transformation matrices). If this flag is set to 1, the digitizer component
can stretch an image to exactly four times its original size, up to the
maximum size specified by the maxDestHeight and maxDestWidth
fields in the digitizer information structure. If this flag is set to 0, the
digitizer component does not support stretching to quadruple size.

digiOutDoesQuad
Indicates that the video digitizer component supports stretching an image
to 16 times its original size when displaying the output video. The
parameters for the stretch operation are specified in the matrix structure
for the request—the component modifies the scaling attributes of the
matrix (see the chapter “Movie Toolbox” in Inside Macintosh: QuickTime
for information about transformation matrices). If this flag is set to 1, the
digitizer component can stretch an image to exactly 16 times its original
size, up to the maximum size specified by the maxDestHeight and
maxDestWidth fields in the digitizer information structure. If this flag is
set to 0, the digitizer component does not support this capability.

C H A P T E R 8

Video Digitizer Components

Video Digitizer Components Reference 8-17

digiOutDoesQuarter
Indicates that the video digitizer component can shrink an image to
one-quarter of its original size when displaying the output video. The
parameters for the shrink operation are specified in the matrix structure
for the request—the component modifies the scaling attributes of the
matrix (see the chapter “Movie Toolbox” in Inside Macintosh: QuickTime
for information about transformation matrices). If this flag is set to 1, the
digitizer component can shrink an image to exactly one-quarter of its
original size, down to the minimum size specified by the
minDestHeight and minDestWidth fields in the digitizer information
structure. If this flag is set to 0, the digitizer component does not support
this capability.

digiOutDoesSixteenth
Indicates that the video digitizer component can shrink an image to 1/16
of its original size when displaying the output video. The parameters
for the shrink operation are specified in the matrix structure for the
request—the digitizer component modifies the scaling attributes of the
matrix (see the chapter “Movie Toolbox” in Inside Macintosh: QuickTime
for information about transformation matrices). If this flag is set to 1, the
digitizer component can shrink an image to exactly 1/16 of its original
size, down to the minimum size specified by the minDestHeight and
minDestWidth fields in the digitizer information structure. If this flag is
set to 0, the digitizer component does not support this capability.

digiOutDoesRotate
Indicates that the video digitizer component can rotate an image when
displaying the output video. The parameters for the rotation are specified
in the matrix structure for an operation. If this flag is set to 1, the
digitizer component can rotate the image. If this flag is set to 0,
the digitizer component cannot rotate the resulting image.

digiOutDoesHorizFlip
Indicates that the video digitizer component can flip an image
horizontally when displaying the output video. The parameters for
the horizontal flip are specified in the matrix structure for an operation. If
this flag is set to 1, the digitizer component can flip the image. If this flag
is set to 0, the digitizer component cannot flip the resulting image.

digiOutDoesVertFlip
Indicates that the video digitizer component can flip an image vertically
when displaying the output video. The parameters for the vertical flip are
specified in the matrix structure for an operation. If this flag is set to 1, the
digitizer component can flip the image. If this flag is set to 0, the digitizer
component cannot flip the resulting image.

digiOutDoesSkew
Indicates that the video digitizer component can skew an image when
displaying the output video. Skewing an image distorts it linearly along
only a single axis—for example, drawing a rectangular image into a
parallelogram-shaped region. The parameters for the skew operation are
specified in the matrix structure for the request. If this flag is set to 1, the
digitizer component can skew an image. If this flag is set to 0, the digitizer
component does not support this capability.

C H A P T E R 8

Video Digitizer Components

8-18 Video Digitizer Components Reference

digiOutDoesBlend
Indicates that the video digitizer component can blend the resulting
image with a matte when displaying the output video. The matte is
provided by the application by defining either an alpha channel or a mask
plane. If this flag is set to 1, the digitizer component can blend. If this flag
is set to 0, the digitizer component does not support this capability.

digiOutDoesWarp
Indicates that the video digitizer component can warp an image when
displaying the output video. Warping an image distorts it along one or
more axes, perhaps nonlinearly, in effect “bending” the result region. The
parameters for the warp operation are specified in the matrix structure for
the request. If this flag is set to 1, the digitizer component can warp an
image. If this flag is set to 0, the digitizer component does not support this
capability.

digiOutDoesDMA
Indicates that the video digitizer component can write to any screen or to
offscreen memory. If this flag is set to 1, the digitizer component can use
DMA to write to any screen or memory location.

digiOutDoesHWPlayThru
Indicates that the video digitizer component does not need idle time in
order to display its video. If this flag is set to 1, your application does not
need to grant processor time to the digitizer component at normal display
speeds.

digiOutDoesILUT
Indicates that the video digitizer component supports inverse lookup
tables for indexed color modes. If this flag is set to 1, the digitizer
component uses inverse lookup tables when appropriate.

digiOutDoesKeyColor
Indicates that the video digitizer component supports clipping by means
of key colors. If this flag is set to 1, the digitizer component can clip to a
region defined by a key color.

digiOutDoesAsyncGrabs
Indicates that the video digitizer component can operate asynchronously.
If this flag is set to 1, your application can use the VDSetupBuffers and
VDGrabOneFrameAsync functions (described on page 8-54 and
page 8-56, respectively).

digiOutDoesUnreadableScreenBits
Indicates that the video digitizer may place pixels on the screen that
cannot be used when compressing images.

digiOutDoesCompress
Indicates that the video digitizer component supports compressed source
devices. These devices provide compressed data directly, without having
to use the Image Compression Manager. See “Controlling Compressed
Source Devices” beginning on page 8-42 for more information about the
functions that applications can use to work with compressed source
devices.

C H A P T E R 8

Video Digitizer Components

Video Digitizer Components Reference 8-19

digiOutDoesCompressOnly
Indicates that the video digitizer component only provides compressed
image data; the component cannot provide displayable data. This flag
only applies to digitizers that support compressed source devices.

digiOutDoesPlayThruDuringCompress
Indicates that the video digitizer component can draw images on the
screen at the same time that it is delivering compressed image data. This
flag only applies to digitizers that support compressed source devices.

Current Flags

Video digitizer components report their current status to your application by means of

flags. These flags are formatted as part of the digitizer information structure that you

obtain by calling the VDGetDigitizerInfo function (described on page 8-24).

Alternatively, you can obtain these flags by calling the VDGetCurrentFlags function

(described on page 8-25). There are two sets of flags: one set describes the status of the

digitizer with respect to its input signal; the other describes its status with respect to its

output.

Video digitizer components report their current status by returning a flags field that

contains 1 bit for each of the capability flags (discussed in “Capability Flags” beginning

on page 8-14) plus additional flags as appropriate. The digitizer component sets these

flags to reflect its current status. When reporting input status, for example, a video

digitizer component sets the digiInDoesGenLock flag to 1 whenever the digitizer

component is deriving its time signal from the input video. When reporting its input

capabilities, the digitizer component sets this flag to 1 to indicate that it can derive its

timing from the input video.

Video digitizer components report their current input status by returning a flags field

that contains a bit for each of the input capability flags (discussed in “Capability Flags”

beginning on page 8-14) plus one additional flag.

The additional flag is as follows:

digiInSignalLock
Indicates that the video digitizer component is locked onto the input
signal. If this flag is set to 1, the digitizer component detects either vertical
or horizontal signal lock.

Video digitizer components report their current output status by returning a flags field

that contains a bit for each of the output capability flags discussed in “Capability Flags”

beginning on page 8-14. The digitizer component sets these flags to reflect its current

output status.

C H A P T E R 8

Video Digitizer Components

8-20 Video Digitizer Components Reference

Data Types

This section discusses the data structures that are used by video digitizer components

and by applications that use video digitizer components.

The Digitizer Information Structure

Your application can retrieve information about the capabilities and current status of a

video digitizer component. You call the VDGetDigitizerInfo function, described on

page 8-24, to retrieve all this information from a video digitizer component. In response,

the component formats a digitizer information structure. The contents of this structure

fully define the capabilities and current status of the video digitizer component.

Note

If you are interested only in the current status information, you can call
the VDGetCurrentFlags function, which is described on page 8-25.
This function returns the input and output current flags of the video
digitizer component. ◆

The DigitizerInfo data type defines the layout of the digitizer information structure.

struct DigitizerInfo {

short vdigType; /* type of digitizer component */

long inputCapabilityFlags; /* input video signal features */

long outputCapabilityFlags; /* output digitized video data

features of digitizer component */

long inputCurrentFlags; /* status of input video signal */

long outputCurrentFlags; /* status of output digitized

video information */

short slot; /* for connection purposes */

GDHandle gdh; /* for digitizers with preferred

screen */

GDHandle maskgdh; /* for digitizers with mask planes */

short minDestHeight; /* smallest resizable height */

short minDestWidth; /* smallest resizable width */

short maxDestHeight; /* largest resizable height */

short maxDestWidth; /* largest resizable width */

short blendLevels; /* number of blend levels supported

(2 if 1-bit mask) */

long private; /* reserved--set to 0 */

};

typedef struct DigitizerInfo DigitizerInfo;

C H A P T E R 8

Video Digitizer Components

Video Digitizer Components Reference 8-21

Field descriptions

vdigType Specifies the type of video digitizer component. Valid values are

vdTypeBasic
Basic video digitizer—does not support any clipping

vdTypeAlpha
Supports clipping by means of an alpha channel

vdTypeMask
Supports clipping by means of a mask plane

vdTypeKey
Supports clipping by means of key colors

inputCapabilityFlags
Specifies the capabilities of the video digitizer component with respect to
the input video signal. These flags are discussed in “Capability Flags”
beginning on page 8-14.

outputCapabilityFlags
Specifies the capabilities of the video digitizer component with respect to
the output digitized video information. These flags are discussed in
“Capability Flags” beginning on page 8-14.

inputCurrentFlags
Specifies the current status of the video digitizer with respect to the input
video signal. These flags are discussed in “Current Flags” on page 8-19.

outputCurrentFlags
Specifies the current status of the video digitizer with respect to the
output digitized video information. These flags are discussed in “Current
Flags” on page 8-19.

slot Identifies the slot that contains the video digitizer interface card.

gdh Contains a handle to the graphics device that defines the screen to which
the digitized data is to be written. Set this field to nil if your application
is not constrained to a particular graphics device.

maskgdh Contains a handle to the graphics device that contains the mask plane.
This field is used only by digitizers that clip by means of mask planes.

minDestHeight
Indicates the smallest height value the digitizer component can
accommodate in its destination.

minDestWidth
Indicates the smallest width value the digitizer component can
accommodate in its destination.

maxDestHeight
Indicates the largest height value the digitizer component can
accommodate in its destination.

maxDestWidth
Indicates the largest width value the digitizer component can
accommodate in its destination.

C H A P T E R 8

Video Digitizer Components

8-22 Video Digitizer Components Reference

blendLevels
Specifies the number of blend levels the video digitizer component
supports.

private Reserved. Set this field to 0.

The Buffer List Structure

If you are using more than one asynchronous output buffer, you must define the output

buffers to the video digitizer component. You define these output buffers by calling the

VDSetupBuffers function (described on page 8-54). You specify the buffers to that

function in a buffer list structure. Note that all the output buffers must be the same size

and must accommodate output rectangles of the same dimensions.

The VdigBufferRecList data type defines a buffer list structure.

struct VdigBufferRecList {

short count; /* number of buffers defined by

this structure */

MatrixRecordPtr matrix; /* tranformation matrix applied to

destination rectangles before

video image is displayed */

RgnHandle mask; /* clipping region applied to

destination rectangle before

video image is displayed */

VdigBufferRec list[1]; /* array of output buffer

specifications */

};

Field descriptions

count Specifies the number of buffers defined by this structure. The value
of this field must correspond to the number of entries in the list
array.

matrix Specifies the transformation matrix that is applied to all of the
destination rectangles before the video image is displayed. You
must specify a matrix. If you do not want to perform any
transformations, use the identity matrix.

mask Specifies a clipping region that is applied to the destination
rectangle before the video image is displayed. Note that this region
applies to only the first destination buffer. If you want the region
to apply to all of your destination buffers, you must do this
yourself. For example, you can use QuickDraw’s OffsetRgn
function, which is described in the chapter “Basic QuickDraw” in
Inside Macintosh: Imaging. If you do not want to specify a clipping
region, set this field to nil.

list Contains an array of output buffer specifications. Each buffer is
represented by a buffer structure. The format and content of this
structure are described in the next section.

C H A P T E R 8

Video Digitizer Components

Video Digitizer Components Reference 8-23

The Buffer Structure

The VdigBufferRec data type defines a buffer structure.

typedef struct {

PixMapHandle dest; /* handle to pixel map for

destination buffer */

Point location; /* location of video destination

in pixel map */

long reserved; /* reserved--set to 0 */

} VdigBufferRec;

Field descriptions

dest Contains a handle to the pixel map that defines the destination
buffer.

location Specifies the location of the video destination in the pixel
map specified by the dest field. This point identifies the upper-left
corner of the destination rectangle. The size and scaling of the
destination rectangle are governed by the matrix and mask fields
of the buffer list structure that contains this structure.

reserved Reserved for use by Apple. Set this field to 0.

Video Digitizer Component Functions

This section describes the functions that are provided by video digitizer components.

These functions are described from the perspective of an application that uses video

digitizer components. If you are developing a video digitizer component, your digitizer

component must behave as described here.

This section has been divided into the following topics:

■ “Getting Information About Video Digitizer Components” describes the functions
that allow applications to obtain information about the capabilities of video digitizer
components.

■ “Setting Source Characteristics” discusses the video digitizer functions that allow
applications to establish the source video environment.

■ “Selecting an Input Source” describes how applications select the input video source.

■ “Setting Video Destinations” describes the functions that allow applications to
establish the destination display environment.

■ “Controlling Compressed Source Devices” describes the functions that allow
applications to work with devices that return compressed image data.

■ “Controlling Digitization” describes functions that allow applications to start and stop
digitization.

■ “Controlling Color” discusses the functions that allow applications to control color
mapping in the video digitizer component.

C H A P T E R 8

Video Digitizer Components

8-24 Video Digitizer Components Reference

■ “Controlling Analog Video” describes several functions that allow applications to
control the characteristics of the input analog video signal.

■ “Selectively Displaying Video” discusses functions that allow applications to work
with the key colors that are used to control video display.

■ “Clipping” discusses functions that allow applications to control the clipping region
used by video digitizer components.

■ “Utility Functions” describes a few utility functions that are supported by video
digitizer components.

Note

If you are developing an application that uses video digitizer
components, you should read the sections that are appropriate to your
application. If you are developing a video digitizer component, you
should read all the sections. ◆

These functions specify the video digitizer components for their requests with a

reference obtained from the Component Manager’s OpenComponent function. See the

chapter “Component Manager” in Inside Macintosh: More Macintosh Toolbox for details.

Getting Information About Video Digitizer Components

This section discusses functions that allow applications to obtain information about the

capabilities and current state of video digitizer components.

You can use the VDGetDigitizerInfo function in your application to retrieve

information about the capabilities of a video digitizer component. You can use the

VDGetCurrentFlags function to obtain current status information from a video

digitizer component.

VDGetDigitizerInfo

The VDGetDigitizerInfo function returns capability and status information about a

specified video digitizer component.

All video digitizer components must support this function.

pascal VideoDigitizerError VDGetDigitizerInfo

 (VideoDigitizerComponent ci,

DigitizerInfo *info);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

C H A P T E R 8

Video Digitizer Components

Video Digitizer Components Reference 8-25

info Contains a pointer to a digitizer information structure. The
VDGetDigitizerInfo function returns information describing the
capabilities of the specified video digitizer into this structure. See “The
Digitizer Information Structure” on page 8-20 for a complete description.

DESCRIPTION

The VDGetDigitizerInfo function returns the capability and status information in a

digitizer information structure (defined by the DigitizerInfo data type).

RESULT CODE

SEE ALSO

Your application may also use the VDGetCurrentFlags function (described in the next

section) to retrieve just the current status information about a video digitizer component.

VDGetCurrentFlags

The VDGetCurrentFlags function returns status information about a specified video

digitizer component.

All video digitizer components must support this function.

pascal VideoDigitizerError VDGetCurrentFlags

(VideoDigitizerComponent ci,

 long *inputCurrentFlag,

 long *outputCurrentFlag);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

inputCurrentFlag
Contains a pointer to a long integer that is to receive the current input
state flags for the video digitizer component. The VDGetCurrentFlags
function returns the current input state flags into this location. See
“Current Flags” on page 8-19 for a complete description of these flags.

outputCurrentFlag
Contains a pointer to a long integer that is to receive the current output
state flags for the video digitizer component. The VDGetCurrentFlags
function returns the current output state flags into this location. See
“Current Flags” on page 8-19 for a complete description of these flags.

noErr 0 No error

C H A P T E R 8

Video Digitizer Components

8-26 Video Digitizer Components Reference

DESCRIPTION

The VDGetCurrentFlags function returns the status information into two fields that

contain flags specifying the current input and output status of the digitizer component.

You can also use the VDGetDigitizerInfo function (described in the previous section)

in your application to retrieve capability and current status information about a video

digitizer component.

The VDGetCurrentFlags function is often more convenient than the

VDGetDigitizerInfo function. For example, this function provides a simple

mechanism for determining whether a video digitizer is receiving a valid input signal.

An application can retrieve the current input state flags and test the high-order bit by

examining the sign of the returned value. If the value is negative (that is, the high-order

bit, digiInSignalLock, is set to 1), the digitizer component is receiving a valid input

signal.

RESULT CODE

Setting Source Characteristics

This section discusses the video digitizer component functions that allow applications to

set the spatial characteristics of the source video signal. You can use these functions in

your application to set and retrieve information about the maximum source rectangle,

the active source rectangle, the vertical blanking rectangle, and the digitizer rectangle.

For a complete discussion of the relationship between these rectangles, see “About Video

Digitizer Components,” which begins on page 8-3.

You can use the VDGetMaxSrcRect function in your application to get the size and

location of the maximum source rectangle. Similarly, the VDGetActiveSrcRect

function allows you to get this information about the active source rectangle, and the

VDGetVBlankRect function enables you to obtain information about the vertical

blanking rectangle.

You can use the VDSetDigitizerRect function to set the size and location of the

digitizer rectangle. The VDGetDigitizerRect function lets you retrieve the size and

location of this rectangle.

VDGetMaxSrcRect

The VDGetMaxSrcRect function returns the maximum source rectangle.

pascal VideoDigitizerError VDGetMaxSrcRect

 (VideoDigitizerComponent ci,

short inputStd,

Rect *maxSrcRect);

noErr 0 No error

C H A P T E R 8

Video Digitizer Components

Video Digitizer Components Reference 8-27

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

inputStd A short integer that specifies the input video signal associated with this
maximum source rectangle.

maxSrcRect
Contains a pointer to a rectangle that is to receive the size and location
information for the maximum source rectangle.

DESCRIPTION

The maximum source rectangle defines the spatial boundaries of the input video signal.

All other rectangles—active source rectangle, digitizer rectangle, and vertical blanking

rectangle—are defined relative to the maximum source rectangle. For a complete

discussion of the relationship between these rectangles, see “About Video Digitizer

Components,” which begins on page 8-3.

All video digitizer components must support this function.

RESULT CODES

VDGetActiveSrcRect

The VDGetActiveSrcRect function allows applications to obtain the size and location

information for the active source rectangle used by a video digitizer component.

pascal VideoDigitizerError VDGetActiveSrcRect

 (VideoDigitizerComponent ci,

short inputStd,

Rect *activeSrcRect);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

inputStd A short integer that specifies the input video signal associated with this
maximum source rectangle.

activeSrcRect
Contains a pointer to a rectangle that is to receive the size and location
information for the active source rectangle.

noErr 0 No error
qtParamErr –2202 Invalid parameter value

C H A P T E R 8

Video Digitizer Components

8-28 Video Digitizer Components Reference

DESCRIPTION

The source rectangle is that area in the source video image that contains active

video. The video digitizer component returns spatial information that is relative to the

maximum source rectangle. For a complete discussion of the relationship between these

rectangles, see “About Video Digitizer Components,” which begins on page 8-3.

All video digitizer components must support this function.

RESULT CODES

VDGetVBlankRect

The VDGetVBlankRect function returns the vertical blanking rectangle.

pascal VideoDigitizerError VDGetVBlankRect

 (VideoDigitizerComponent ci,

short inputStd,

Rect *vBlankRect);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

inputStd Specifies a short integer for the signaling standard used in the source
video signal. Valid values are

ntscIn Input video signal to digitize is in NTSC format

palIn Input video signal to digitize is in PAL format

secamIn Input video signal to digitize is in SECAM format

vBlankRect
Contains a pointer to a rectangle that is to receive the size and location
information for the vertical blanking rectangle.

DESCRIPTION

The vertical blanking rectangle defines the vertical blanking area in the input video

signal, and it corresponds to lines 10 through 19 of the incoming video signal. The video

digitizer component returns spatial information that is relative to the maximum source

noErr 0 No error
qtParamErr –2202 Invalid parameter value

C H A P T E R 8

Video Digitizer Components

Video Digitizer Components Reference 8-29

rectangle. For a complete discussion of the relationship between these rectangles, see

“About Video Digitizer Components,” which begins on page 8-3.

All video digitizer components must support this function.

RESULT CODES

VDSetDigitizerRect

The VDSetDigitizerRect function allows applications to set the current digitizer

rectangle.

pascal VideoDigitizerError VDSetDigitizerRect

 (VideoDigitizerComponent ci,

 Rect *digitizerRect);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

digitizerRect
Contains a pointer to a rectangle that contains the size and location
information for the digitizer rectangle. The coordinates of this rectangle
must be relative to the maximum source rectangle. In addition, the
digitizer rectangle must be within the maximum source rectangle.

DESCRIPTION

The current digitizer rectangle defines the area that the digitizer component reads from

the input video signal. Applications can crop the input video signal by manipulating this

rectangle. The digitizer rectangle coordinates must be specified relative to the maximum

source rectangle. Furthermore, the digitizer rectangle must be completely within the

maximum source rectangle. For a complete discussion of the relationship between these

rectangles, see “About Video Digitizer Components,” which begins on page 8-3.

All video digitizer components must support this function.

RESULT CODES

noErr 0 No error
qtParamErr –2202 Invalid parameter value

noErr 0 No error
qtParamErr –2202 Invalid parameter value

C H A P T E R 8

Video Digitizer Components

8-30 Video Digitizer Components Reference

VDGetDigitizerRect

The VDGetDigitizerRect function returns the current digitizer rectangle.

pascal VideoDigitizerError VDGetDigitizerRect

 (VideoDigitizerComponent ci,

 Rect *digitizerRect);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

digitizerRect
Contains a pointer to a rectangle that is to receive the size and location
information for the current digitizer rectangle.

DESCRIPTION

The current digitizer rectangle defines the area that the digitizer component reads from

the input video signal. The video digitizer component returns spatial information that is

relative to the maximum source rectangle. For a complete discussion of the relationship

between these rectangles, see “About Video Digitizer Components,” which begins on

page 8-3.

All video digitizer components must support this function.

RESULT CODE

Selecting an Input Source

This section discusses the video digitizer component functions that allow applications to

select an input video source.

Some of these functions provide information about the available video inputs.

Applications can use the VDGetNumberOfInputs function to determine the number of

video inputs supported by the digitizer component. The VDGetInputFormat function

allows applications to find out the video format (composite, s-video, or component)

employed by a specified input.

You can use the VDSetInput function in your application to specify the input to be used

by the digitizer component. The VDGetInput function returns the currently selected

input.

The VDSetInputStandard function allows you to specify the video signaling standard

to be used by the video digitizer component.

noErr 0 No error

C H A P T E R 8

Video Digitizer Components

Video Digitizer Components Reference 8-31

VDGetNumberOfInputs

The VDGetNumberOfInputs function returns the number of input video sources that a

video digitizer component supports.

All video digitizer components must support this function.

pascal VideoDigitizerError VDGetNumberOfInputs

 (VideoDigitizerComponent ci,

 short *inputs);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

inputs Contains a pointer to an integer that is to receive the number of input
video sources supported by the specified component. Video digitizer
components number video sources sequentially, starting at 0. So, if a
digitizer component supports two inputs, this function sets the field
referred to by the inputs parameter to 1.

RESULT CODE

VDSetInput

The VDSetInput function allows applications to select the input video source for a

video digitizer component.

All video digitizer components must support this function.

pascal VideoDigitizerError VDSetInput (VideoDigitizerComponent ci,

 short input);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

input Specifies the input video source for this request. Video digitizer
components number video sources sequentially, starting at 0. So, to
request the first video source, an application sets this parameter to 0.

noErr 0 No error

C H A P T E R 8

Video Digitizer Components

8-32 Video Digitizer Components Reference

RESULT CODES

SEE ALSO

Applications can get the number of video sources supported by a video digitizer

component by calling the VDGetNumberOfInputs function (described in the previous

section). Applications can get more information about a video source by calling the

VDGetInputFormat function (described on page 8-32).

VDGetInput

The VDGetInput function returns data that identifies the currently active input video

source.

All video digitizer components must support this function.

pascal VideoDigitizerError VDGetInput (VideoDigitizerComponent ci,

 short *input);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

input Contains a pointer to a short integer that is to receive the identifier for the
currently active input video source. Video digitizer components number
video sources sequentially, starting at 0. So, if the first source is active, this
function sets the field referred to by the input parameter to 0.

RESULT CODES

VDGetInputFormat

The VDGetInputFormat function allows applications to determine the format of the

video signal provided by a specified video input source.

pascal VideoDigitizerError VDGetInputFormat

(VideoDigitizerComponent ci,

 short input, short *format);

noErr 0 No error
qtParamErr –2202 Invalid parameter value

noErr 0 No error
qtParamErr –2202 Invalid parameter value

C H A P T E R 8

Video Digitizer Components

Video Digitizer Components Reference 8-33

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

input Specifies the input video source for this request. Video digitizer
components number video sources sequentially, starting at 0. So, to
request information about the first video source, an application sets this
parameter to 0. Applications can get the number of video sources
supported by a video digitizer component by calling the
VDGetNumberOfInputs function, discussed on page 8-31.

format Contains a pointer to a short integer that is to receive the specification of
the video format of the specified input source. This function updates the
field referred to by the format parameter. Valid values are

compositeIn
The input video signal is in composite format

sVideoIn The input video signal is in s-video format

rgbComponentIn
The input video signal is in RGB component format

DESCRIPTION

Video digitizer components support three video formats: composite video, s-video, and

component video (RGB signal).

All video digitizer components must support this function.

RESULT CODES

VDSetInputStandard

The VDSetInputStandard function allows applications to specify the input

signaling standard to digitize. Video digitizer components support three input signaling

standards: NTSC, PAL, and SECAM.

pascal VideoDigitizerError VDSetInputStandard

 (VideoDigitizerComponent ci,

 short inputStandard);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

noErr 0 No error
qtParamErr –2202 Invalid parameter value

C H A P T E R 8

Video Digitizer Components

8-34 Video Digitizer Components Reference

inputStandard
A short integer that specifies the signaling standard used in the source
video signal. Valid values are

ntscIn Input video signal to digitize is in NTSC format

palIn Input video signal to digitize is in PAL format

secamIn Input video signal to digitize is in SECAM format

DESCRIPTION

Applications can use the VDGetDigitizerInfo function (described on page 8-24) to

determine the capabilities of a specified video digitizer component. Applications can use

the VDGetCurrentFlags function (described on page 8-25) to determine the current

input state of a digitizer component.

All video digitizer components must support this function.

SPECIAL CONSIDERATIONS

Your digitizer component should ensure that spatial characteristics that were set for one

standard are not interpreted within another standard.

RESULT CODES

Setting Video Destinations

Video digitizer components provide several functions that allow applications to specify

the destination for the digitized video stream produced by the digitizer component.

Applications have two options for specifying the destination for the video data stream.

The first option requires that the video be digitized as RGB pixels and placed into a

destination pixel map. This option allows the video to be placed either onscreen or

offscreen, depending upon the placement of the pixel map. You can use the

VDSetPlayThruDestination function in your application to set the characteristics for

this option. The VDPreflightDestination function lets you determine the

capabilities of the digitizer in your application. All video digitizer components must

support this option. The VDGetPlayThruDestination function lets you get data

about the current video destination.

The second option uses a global boundary rectangle to define the destination for the

video. This option is useful only with digitizers that support hardware DMA. You can

use the VDSetPlayThruGlobalRect function in your application to set the

characteristics for this option. You can use the VDPreflightGlobalRect function in

your application to determine the capabilities of the digitizer. Not all video digitizer

components support this option.

noErr 0 No error
qtParamErr –2202 Invalid parameter value

C H A P T E R 8

Video Digitizer Components

Video Digitizer Components Reference 8-35

The VDGetMaxAuxBuffer function returns information about a buffer that may be

located on some special hardware.

VDSetPlayThruDestination

You can use the VDSetPlayThruDestination function in your application to

establish the destination settings for a video digitizer component.

All video digitizer components must support this function.

pascal VideoDigitizerError VDSetPlayThruDestination

 (VideoDigitizerComponent ci,

PixMapHandle dest,

Rect *destRect,

MatrixRecord *m, RgnHandle mask);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

dest Contains a handle to the destination pixel map. This pixel map may be in
the video frame buffer of the Macintosh computer, or it may specify an
offscreen buffer.

The video digitizer component examines this pixel map to determine the
display characteristics of the video destination, including the base
address, row bytes, and pixel depth. If the digitizer component does not
support these characteristics, it sets the return value to badDepth. If the
digitizer component cannot accommodate the location of the destination
pixel map, it sets the return value to noDMA.

If you are going to use multiple output buffers, be sure to include this
buffer in the buffer list that you define with the VDSetupBuffers
function, which is described on page 8-54. You may call
the VDSetupBuffers function before calling
VDSetPlayThruDestination.

destRect Contains a pointer to a rectangle that specifies the size and location of the
video destination. This rectangle must be in the coordinate system of the
destination pixel map specified by the dest parameter.

This is an optional parameter. Applications may specify a transformation
matrix to control the placement and scaling of the video image in the
destination pixel map. In this case, the destRect parameter is set to nil
and the m parameter specifies the matrix.

If the destRect parameter is nil, you can determine the destination
rectangle for simple matrices by calling the TransformRect function
using the current digitizer rectangle and this matrix. For more
information on TransformRect, see the chapter “Movie Toolbox” in
Inside Macintosh: QuickTime.

C H A P T E R 8

Video Digitizer Components

8-36 Video Digitizer Components Reference

m Contains a pointer to a matrix structure containing the transformation
matrix for the destination video image. To determine the capabilities of a
video digitizer component, you can call the VDGetDigitizerInfo
function, described on page 8-24, in your application.

This is an optional parameter. Applications may specify a destination
rectangle to control the placement and scaling of the video image in the
destination pixel map. In this case, the m parameter is set to nil and the
destRect parameter specifies the destination rectangle.

mask Contains a region handle that defines a mask. Applications can use masks
to control clipping of the video into the destination rectangle. This mask
region is defined in the destination coordinate space.

This is an optional parameter. Applications may use alpha channels or
key colors to control video blending. If there is no mask, applications
should set the mask parameter to nil.

DESCRIPTION

The application provides the desired settings as parameters to this function. Applications

should verify that the video digitizer component can accommodate the settings by

calling the VDPreflightDestination function, described in the next section.

Applications set the source digitizer rectangle by calling the VDSetDigitizerRect

function, described on page 8-29.

RESULT CODES

VDPreflightDestination

You can use the VDPreflightDestination function in your application to verify that

a video digitizer component can support a set of destination settings intended for use

with the VDSetPlayThruDestination function, which is described in the previous

section.

pascal VideoDigitizerError VDPreflightDestination

(VideoDigitizerComponent ci,

 Rect *digitizerRect,

 PixMapHandle dest,

 Rect *destRect,

 MatrixRecord *m);

noErr 0 No error
badDepth –2207 Digitizer cannot accommodate pixel depth
noDMA –2208 Digitizer cannot use DMA to this destination

C H A P T E R 8

Video Digitizer Components

Video Digitizer Components Reference 8-37

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

digitizerRect
Contains a pointer to a rectangle that contains the size and location
information for the digitizer rectangle. The coordinates of this rectangle
must be relative to the maximum source rectangle. In addition, the
digitizer rectangle must be within the maximum source rectangle. For a
complete discussion of the relationship between these rectangles, see
“About Video Digitizer Components,” which begins on page 8-3.

If the video digitizer component cannot accommodate the specified
rectangle, it changes the coordinates in this structure to specify a rectangle
that it can support and sets the result to qtParamErr.

dest Contains a handle to the destination pixel map.

destRect Contains a pointer to a rectangle that specifies the size and location of the
video destination. This rectangle must be in the coordinate system of the
destination pixel map specified by the dest parameter. If the video
digitizer component cannot accommodate this rectangle, it changes the
coordinates in the structure to specify a rectangle that it can support and
sets the result to qtParamErr.

This is an optional parameter. Applications may specify a transformation
matrix to control the placement and scaling of the video image in the
destination pixel map. In this case, the destRect parameter is set to nil
and the m parameter specifies the matrix.

m Contains a pointer to a matrix structure containing the transformation
matrix for the destination video image. If the video digitizer component
cannot accommodate this matrix, it changes the values in the structure to
define a matrix that it can support and sets the result to qtParamErr.
Applications can determine the capabilities of a video digitizer
component by calling the VDGetDigitizerInfo function, described on
page 8-24.

This is an optional parameter. Applications may specify a destination
rectangle to control the placement and scaling of the video image in the
destination pixel map. In this case, the m parameter is set to nil and the
destRect parameter specifies the destination rectangle.

If the destRect parameter is nil, you can determine the destination
rectangle for simple matrices by calling the TransformRect function
using the current digitizer rectangle and this matrix. For more
information on TransformRect, see the chapter “Movie Toolbox” in
Inside Macintosh: QuickTime.

C H A P T E R 8

Video Digitizer Components

8-38 Video Digitizer Components Reference

DESCRIPTION

The application provides the desired settings as parameters to this function. The video

digitizer component then examines those settings. If the digitizer component can

support the specified settings, it sets the result code to noErr. If the digitizer component

cannot support the settings, it alters the input settings to reflect values that it can support

and returns a result code of qtParamErr. The application can then use the settings with

the VDSetPlayThruDestination function (described in the previous section).

All video digitizer components must support this function.

Applications should use the VDPreflightDestination function to test destination

settings whenever the video digitizer component cannot support arbitrary scaling.

RESULT CODES

SEE ALSO

Applications can determine the capabilities of a video digitizer component by examining

the output capability flags (see the discussion of the VDGetCurrentFlags function,

which begins on page 8-25, for more information about retrieving these flags).

Specifically, if the digiOutDoesStretch and digiOutDoesShrink flags are set to 1

in the output capability flag, the digitizer component supports arbitrary scaling.

VDGetPlayThruDestination

The VDGetPlayThruDestination function allows applications to obtain information

about the current video destination.

All video digitizer components must support this function.

pascal VideoDigitizerError VDGetPlayThruDestination

 (VideoDigitizerComponent ci,

PixMapHandle *dest, Rect *destRect,

MatrixRecord *m, RgnHandle *mask);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

dest Contains a pointer to a pixel map handle. The video digitizer component
returns a handle to the destination pixel map in the field referred to by
this parameter. It is the caller’s responsibility to dispose of the pixel map.

noErr 0 No error
qtParamErr –2202 Invalid parameter value

C H A P T E R 8

Video Digitizer Components

Video Digitizer Components Reference 8-39

destRect Contains a pointer to a rectangle structure. The video digitizer component
places the coordinates of the output rectangle into the structure referred
to by this parameter. If there is no output rectangle defined, the
component returns an empty rectangle.

m Contains a pointer to a matrix structure. The video digitizer component
places the transformation matrix into the structure referred to by this
parameter.

mask Contains a pointer to a region handle. The video digitizer component
places a handle to the mask region into the field referred to by this
parameter. Applications can use masks to control the video into the
destination rectangle. For more information about masks, see “About
Video Digitizer Components,” which begins on page 8-3. If there is no
mask region defined, the digitizer component sets this returned handle to
nil. The caller is responsible for disposing of this region.

DESCRIPTION

Applications can set the video destination by calling either the

VDSetPlayThruDestination function (described on page 8-35) or

the VDSetPlayThruGlobalRect function (described in the next section). Applications

should call the VDGetPlayThruDestination function only after having set the

destination with the VDSetPlayThruDestination function.

RESULT CODE

VDSetPlayThruGlobalRect

You can use the VDSetPlayThruGlobalRect function in your application to establish

the destination settings for a video digitizer component that is to digitize into a global

rectangle. The application provides the desired settings as parameters to this function.

Not all video digitizer components support global rectangles.

pascal VideoDigitizerError VDSetPlayThruGlobalRect

 (VideoDigitizerComponent ci,

GrafPtr theWindow,

Rect *globalRect);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

theWindow Contains a pointer to the destination window.

noErr 0 No error

C H A P T E R 8

Video Digitizer Components

8-40 Video Digitizer Components Reference

globalRect
Contains a pointer to a rectangle that specifies the size and location of the
video destination. This rectangle must be in the coordinate system of the
destination window specified by the theWindow parameter.

DESCRIPTION

Applications should verify that the digitizer component can accommodate the settings

by calling the VDPreflightGlobalRect function, described in the next section.

RESULT CODES

SEE ALSO

Applications set the source digitizer rectangle by calling the VDSetDigitizerRect

function, described on page 8-29.

VDPreflightGlobalRect

You can use the VDPreflightGlobalRect function in your application to verify that a

video digitizer component can support a set of destination settings intended for use with

the VDSetPlayThruGlobalRect function (described in the previous section).

pascal VideoDigitizerError VDPreflightGlobalRect

(VideoDigitizerComponent ci,

GrafPtr theWindow,

Rect *globalRect);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

theWindow Contains a pointer to the destination window.

globalRect
Contains a pointer to a rectangle that specifies the size and location of the
video destination. This rectangle must be in the coordinate system of the
destination window specified by the theWindow parameter. If the video
digitizer component cannot accommodate this rectangle, it changes the
coordinates in the structure to specify a rectangle that it can support and
sets the result to qtParamErr.

noErr 0 No error
digiUnimpErr –2201 Function not supported

C H A P T E R 8

Video Digitizer Components

Video Digitizer Components Reference 8-41

DESCRIPTION

The application provides the desired settings as parameters to this function. The video

digitizer component then examines those settings. If the digitizer component can

support the specified settings, it sets the result code to noErr. If the digitizer component

cannot support the settings, it alters the input settings to reflect values that it can support

and returns a result code of qtParamErr.

Applications should use this function to determine whether a video digitizer supports

placing destination video into a rectangle that crosses screens. Digitizers that do not

support this capability return a result of digiUnimpErr.

RESULT CODES

VDGetMaxAuxBuffer

The VDGetMaxAuxBuffer function allows applications to obtain access to buffers that

are located on special hardware. Digitizer components that are constrained to a single

output device can provide an auxiliary buffer to support multiple buffering.

pascal VideoDigitizerError VDGetMaxAuxBuffer

 (VideoDigitizerComponent ci,

 PixMapHandle *pm, Rect *r);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

pm Contains a pointer to a pixel map handle. The video digitizer component
returns a handle to the destination pixel map in the field referred to by
this parameter. Do not dispose of this pixel map. If the digitizer
component cannot allocate a buffer, this handle is set to nil.

r Contains a pointer to a rectangle structure. The video digitizer component
places the coordinates of the largest output rectangle it can support into
the structure referred to by this parameter.

DESCRIPTION

You can use the VDGetMaxAuxBuffer function in your application to determine

whether a video digitizer component supports an auxiliary buffer. If the digitizer

component provides an auxiliary buffer, it is to your advantage to use it. By using the

buffer, you may achieve better performance under some circumstances, such as when the

digitizer component does not support DMA.

noErr 0 No error
digiUnimpErr –2201 Function not supported
qtParamErr –2202 Invalid parameter value

C H A P T E R 8

Video Digitizer Components

8-42 Video Digitizer Components Reference

RESULT CODES

Controlling Compressed Source Devices

Some video digitizer components may provide functions that allow applications to work

with digitizing devices that can provide compressed image data directly. Such devices

allow applications to retrieve compressed image data without using the Image

Compression Manager. However, in order to display images from the compressed data

stream, there must be an appropriate decompressor component available to decompress

the image data.

Video digitizers that can support compressed source devices set the

digiOutDoesCompress flag to 1 in their capability flags (see “Capability Flags”

beginning on page 8-14 for more information about these flags).

Applications can use the VDGetCompressionTypes function to determine the

image-compression capabilities of a video digitizer. The VDSetCompression function

allows applications to set some parameters that govern image compression.

Applications control digitization by calling the VDCompressOneFrameAsync function,

which instructs the video digitizer to create one frame of compressed image data. The

VDCompressDone function returns that frame. When an application is done with a

frame, it calls the VDReleaseCompressBuffer function to free the buffer. An

application can force the digitizer to place a key frame into the sequence by calling the

VDResetCompressSequence function. Applications can turn compression on and off

by calling VDSetCompressionOnOff.

Applications can obtain the digitizer’s image description structure by calling the

VDGetImageDescription function. Applications can set the digitizer’s time base by

calling the VDSetTimeBase function.

All of the digitizing functions described in this section support only asynchronous

digitization. That is, the video digitizer works independently to digitize each frame.

Applications are free to perform other work while the digitizer works on each frame.

The video digitizer component manages its own buffer pool for use with these functions.

In this respect, these functions differ from the other video digitizer functions that

support asynchronous digitization (see “Controlling Digitization” beginning on

page 8-52 for more information about these functions).

noErr 0 No error
digiUnimpErr –2201 Function not supported

C H A P T E R 8

Video Digitizer Components

Video Digitizer Components Reference 8-43

VDGetCompressionTypes

The VDGetCompressionTypes function allows an application to determine the

image-compression capabilities of the video digitizer.

pascal VideoDigitizerError VDGetCompressionTypes

(VideoDigitizerComponent ci,

VDCompressionListHandle h);

ci Identifies an application’s connection to the video digitizer component.
An application obtains this value from the Component Manager’s
OpenComponent function.

h Identifies a handle to receive the compression information. The video
digitizer returns information about its capabilities by formatting one or
more compression list structures in this handle (the format and content of
the compression list structure are discussed later). If the digitizer supports
more than one compression type, it creates an array of structures in this
handle.

The video digitizer sizes this handle appropriately. It is the application’s
responsibility to dispose of this handle when it is done with it.

DESCRIPTION

The video digitizer places its preferred, or default, compression options in the first

compression list structure in the returned array.

Note that there must be a decompressor component of the appropriate type available in

the system if an application is to display images from a compressed image sequence.

The VDCompressionList data type defines the format and content of the compression

list structure:

typedef struct VDCompressionList {

CodecComponent codec; /* component ID */

CodecType cType; /* compressor type */

Str63 typeName; /* compression algorithm */

Str63 name; /* compressor name string */

long formatFlags; /* data format flags */

long compressFlags; /* capabilities flags */

long reserved; /* set to 0 */

} VDCompressionList, *VDCompressionListPtr,

**VDCompressionListHandle;

C H A P T E R 8

Video Digitizer Components

8-44 Video Digitizer Components Reference

Field descriptions

codec Contains the component identifier for the video digitizer’s
compressor component. Some video digitizers may also implement
their image-compression capabilities in an Image Compression
Manager compressor component. In this case, the digitizer may
allow the application to connect to and use the compressor. If so, the
digitizer provides the compressor component’s identifier here. If
not, the digitizer sets this field to nil.

cType Identifies the compression algorithm supported by the video
digitizer. See the chapter “Image Compression Manager” in Inside
Macintosh: QuickTime for a list of values supported by Apple.

typeName Contains a text string that identifies the compression algorithm. An
application may display this string to the user to identify the type of
image compression being performed. See the chapter “Image
Compression Manager” in Inside Macintosh: QuickTime for a list of
values supported by Apple.

name Specifies the name of the compressor. The developer of the video
digitizer assigns this name. An application may display this string
to the user.

formatFlags Contains flags that describe the data formats supported by the
video digitizer. Typically, these flags are of interest only to
developers of video digitizers and image compressors. See the
chapter “Image Compressor Components” in this book for more
information.

compressFlags Contains flags that describe the compression capabilities of the
video digitizer. Typically, these flags are of interest only to
developers of video digitizers and image compressors. See the
chapter “Image Compressor Components” in this book for more
information.

reserved Reserved for Apple. Always set to 0.

RESULT CODES

noErr 0 No error
digiUnimpErr –2201 Function not supported

C H A P T E R 8

Video Digitizer Components

Video Digitizer Components Reference 8-45

VDSetCompression

The VDSetCompression function allows applications to specify some compression

parameters.

pascal VideoDigitizerError VDSetCompression

(VideoDigitizerComponent ci,

 OSType compressType, short depth,

 Rect *bounds, CodecQ spatialQuality,

 CodecQ temporalQuality,

 long keyFrameRate);

ci Identifies the application’s connection to the video digitizer component.
An application obtains this value from the Component Manager’s
OpenComponent function.

compressType
Specifies a compressor type. This value corresponds to the component
subtype of the compressor component. See the chapter “Image
Compression Manager” in Inside Macintosh: QuickTime for more
information about compressor types and for valid values for this
parameter.

depth Specifies the depth at which the image is likely to be viewed.
Compressors may use this as an indication of the color or grayscale
resolution of the image. Values of 1, 2, 4, 8, 16, 24, and 32 indicate the
number of bits per pixel for color images. Values of 33, 34, 36, and 40
correspond to 1-bit, 2-bit, 4-bit, and 8-bit grayscale images.

bounds Contains a pointer to a rectangle that defines the desired boundaries of
the compressed image.

spatialQuality
Indicates the desired image quality for each frame in the sequence. See
the chapter “Image Compression Manager” in Inside Macintosh: QuickTime
for valid compression quality values.

temporalQuality
Indicates the desired temporal quality for the sequence as a whole. See
the chapter “Image Compression Manager” in Inside Macintosh: QuickTime
for valid compression quality values.

keyFrameRate
Specifies the maximum number of frames to allow between key frames.
This value defines the minimum rate at which key frames are to appear in
the compressed sequence; however, the video digitizer may insert key
frames more often than an application specifies. If the application
requests no temporal compression (that is, the application set the
temporalQuality parameter to 0), the video digitizer ignores this
parameter.

For more information about key frames, see the chapter “Image
Compression Manager” in Inside Macintosh: QuickTime.

C H A P T E R 8

Video Digitizer Components

8-46 Video Digitizer Components Reference

DESCRIPTION

An application may use the VDSetCompression function to control the parameters that

govern image compression. An application may change the compressor type, image

depth, and boundary rectangle parameters only when the digitizer is stopped. However,

if an application sets these three parameters (that is, the compressType, depth, and

bounds parameters) to 0, it may work with the other parameters while digitization is

active. This allows an application to vary the data rate during digitization.

RESULT CODES

VDSetCompressionOnOff

The VDSetCompressionOnOff function allows an application to start and stop

compression by digitizers that can deliver either compressed or uncompressed image

data.

pascal VideoDigitizerError VDSetCompressionOnOff

(VideoDigitizerComponent ci,

 Boolean state);

ci Identifies the application’s connection to the video digitizer component.
An application obtains this value from the Component Manager’s
OpenComponent function.

state Contains a Boolean value that indicates whether to enable or
disable compression. Applications set this parameter to true to enable
compression. Setting it to false disables compression.

DESCRIPTION

This is a required function for digitizers that are going to perform compression.

These digitizers have their digiOutDoesCompress capability flag set to 1 and their

digiOutDoesCompressOnly flag set to 0. Digitizers that support this capability

typically deliver uncompressed image data in addition to the compressed data stream;

the uncompressed data is ready for display.

Digitizers that only provide compressed data have their digiOutDoesCompressOnly

flag set to 1, rather than 0. These digitizers may either ignore this function or return a

nonzero result code.

noErr 0 No error
digiUnimpErr –2201 Function not supported
qtParamErr –2202 Invalid parameter value

C H A P T E R 8

Video Digitizer Components

Video Digitizer Components Reference 8-47

Applications must call this function before they call either VDSetCompression or

VDCompressOneFrameAsync. This allows the video digitizer to prepare for the

operation.

RESULT CODES

VDCompressOneFrameAsync

The VDCompressOneFrameAsync function instructs the video digitizer to digitize and

compress a single frame of image data. Because the component performs this action

asynchronously, the application is free to do other things while the digitizer works on

the image.

pascal VideoDigitizerError VDCompressOneFrameAsync

(VideoDigitizerComponent ci);

ci Identifies the application’s connection to the video digitizer component.
An application obtains this value from the Component Manager’s
OpenComponent function.

DESCRIPTION

An application can determine when the digitizer is done with the frame by calling the

VDCompressDone function, which is discussed next.

Unlike the VDGrabOneFrameAsync function (discussed on page 8-56), the video

digitizer handles all details of managing data buffers.

RESULT CODES

noErr 0 No error
digiUnimpErr –2201 Function not supported

noErr 0 No error
digiUnimpErr –2201 Function not supported

C H A P T E R 8

Video Digitizer Components

8-48 Video Digitizer Components Reference

VDCompressDone

The VDCompressDone function allows an application to determine whether the video

digitizer has finished digitizing and compressing a frame of image data. An application

starts the digitizing process by calling the VDCompressOneFrameAsync function,

which was just discussed.

pascal VideoDigitizerError VDCompressDone

(VideoDigitizerComponent ci,

 Boolean *done, Ptr *theData,

 long *dataSize,

 unsigned char *similarity,

 TimeRecord *t);

ci Identifies the application’s connection to the video digitizer component.
An application obtains this value from the Component Manager’s
OpenComponent function.

done Contains a pointer to a Boolean value. Applications set this value to true
when they are done, and set it to false if the operation is incomplete.

theData Contains a pointer to a field that is to receive a pointer to the compressed
image data. The digitizer returns a pointer that is valid in the
application’s current memory mode.

The digitizer allocates the memory into which it places the digitized data.
An application must call the VDReleaseCompressBuffer function to
dispose of this memory; this function is discussed next.

dataSize Contains a pointer to a field to receive a value indicating the number of
bytes of compressed image data.

similarity
Contains a pointer to a field to receive an indication of the relative
similarity of this image to the previous image in a sequence. A value of 0
indicates that the current frame is a key frame in the sequence. A value
of 255 indicates that the current frame is identical to the previous frame.
Values from 1 through 254 indicate relative similarity, ranging from very
different (1) to very similar (254). This field is only filled in if the temporal
quality passed in with the VDSetCompression function (described on
page 8-45) is not 0—that is, if it is not frame-differenced.

t Contains a pointer to a time record. When the operation is complete, the
digitizer fills in this structure with information indicating when the frame
was grabbed. The time value stored in this structure is in the time base
that the application sets with the VDSetTimeBase function (see
page 8-51 for more information about this function). The format and
content of this structure are discussed in the chapter “Movie Toolbox” in
Inside Macintosh: QuickTime.

C H A P T E R 8

Video Digitizer Components

Video Digitizer Components Reference 8-49

DESCRIPTION

An application can determine when the digitizer is done with the frame by calling the

VDCompressDone function. When the digitizer is done, it sets the Boolean value

referred to by the done parameter to true, and then returns information about the

digitized and compressed frames via the theData, dataSize, similarity, and

t parameters.

If the digitizer is not yet done, it sets the Boolean value to false. In this case, the

digitizer does not return any other information.

Note that the digitizer is careful to return the frames in temporal order, and to avoid

returning two frames with the same time value (unless the rate is set to 0).

RESULT CODES

SEE ALSO

Applications must use the VDReleaseCompressBuffer function to free the memory

that contains the compressed image data. This function is described in the next section.

VDReleaseCompressBuffer

The VDReleaseCompressBuffer function allows an application to free a buffer

received from the VDCompressDone function.

pascal VideoDigitizerError VDReleaseCompressBuffer

(VideoDigitizerComponent ci,

 Ptr bufferAddr);

ci Identifies the application’s connection to the video digitizer component.
An application obtains this value from the Component Manager’s
OpenComponent function.

bufferAddr
Points to the location of the buffer to be released. This address must
correspond to a buffer address that the application obtained from the
VDCompressDone function (discussed in the previous section).

noErr 0 No error
digiUnimpErr –2201 Function not supported

C H A P T E R 8

Video Digitizer Components

8-50 Video Digitizer Components Reference

DESCRIPTION

Once an application frees the buffer, the video digitizer is able to use the buffer for other

images. Applications should try to free these buffers as quickly as possible, so that

the video digitizer can make optimum use of its buffer, and thereby support higher

frame rates.

RESULT CODES

VDGetImageDescription

The VDGetImageDescription function allows an application to retrieve an image

description structure from a video digitizer.

pascal VideoDigitizerError VDGetImageDescription

(VideoDigitizerComponent ci,

 ImageDescriptionHandle desc);

ci Identifies the application’s connection to the video digitizer component.
An application obtains this value from the Component Manager’s
OpenComponent function.

desc Specifies a handle. The video digitizer fills this handle with an Image
Compression Manager image description structure containing
information about the digitizer’s current compression settings. The
digitizer resizes the handle appropriately. It is the application’s
responsibility to dispose of this handle.

RESULT CODES

SEE ALSO

See the chapter “Image Compression Manager” in Inside Macintosh: QuickTime for a

complete description of the image description structure.

noErr 0 No error
digiUnimpErr –2201 Function not supported

noErr 0 No error
digiUnimpErr –2201 Function not supported

C H A P T E R 8

Video Digitizer Components

Video Digitizer Components Reference 8-51

VDResetCompressSequence

The VDResetCompressSequence function allows an application to force the video

digitizer to insert a key frame into a temporally compressed image sequence.

pascal VideoDigitizerError VDResetCompressSequence

(VideoDigitizerComponent ci);

ci Identifies the application’s connection to the video digitizer component.
An application obtains this value from the Component Manager’s
OpenComponent function.

DESCRIPTION

After an application calls this function, the digitizer ensures that the next frame returned

to the application is a key frame.

RESULT CODES

SEE ALSO

An application can control the rate at which the digitizer inserts key frames by calling

the VDSetCompression function, which is discussed beginning on page 8-45.

VDSetTimeBase

The VDSetTimeBase function allows an application to establish the video digitizer’s

time coordinate system.

pascal VideoDigitizerError VDSetTimeBase

(VideoDigitizerComponent ci,

 TimeBase t);

ci Identifies the application’s connection to the video digitizer component.
An application obtains this value from the Component Manager’s
OpenComponent function.

t Specifies the video digitizer’s new time base.

noErr 0 No error
digiUnimpErr –2201 Function not supported

C H A P T E R 8

Video Digitizer Components

8-52 Video Digitizer Components Reference

DESCRIPTION

Video digitizers return all time information in relation to the specified time base. For

example, whenever a digitizer returns a compressed frame from its VDCompressDone

function, it returns time information relating to the time when the frame was digitized

and compressed. This time information is expressed in the time base that the application

specifies with this function.

RESULT CODES

Controlling Digitization

This section describes the video digitizer component functions that allow applications to

control video digitization. Video digitizer components allow applications to start and

stop the digitizing process. Your application can request continuous digitization or

single-frame digitization. When a digitizer component is operating continuously, it

automatically places successive frames of digitized video into the specified destination.

When a digitizer component works with a single frame at a time, the application and

other software, such as an image compressor component, control the speed at which the

digitized video is processed.

You can use the VDSetPlayThruOnOff function in your application to enable or

disable digitization. When digitization is enabled, the video digitizer component places

digitized video frame into the specified destination continuously. The application stops

the digitizer by disabling digitization. This function can be used with both destination

options.

Alternatively, your application can control digitization on a frame-by-frame basis. The

VDGrabOneFrame and VDGrabOneFrameAsync functions digitize a single video

frame; VDGrabOneFrame works synchronously, returning control to your application

when it has obtained a complete frame, while VDGrabOneFrameAsync works

asynchronously. The VDDone function helps you to determine when the

VDGrabOneFrameAsync function is finished with a video frame. Your application can

define the buffers for use with asynchronous digitization by calling the

VDSetupBuffers function. Free the buffers by calling the VDReleaseAsyncBuffers

function.

The VDSetFrameRate function allows applications to control the digitizer’s frame

rate. The VDGetDataRate function returns the digitizer’s current data rate.

noErr 0 No error
digiUnimpErr –2201 Function not supported

C H A P T E R 8

Video Digitizer Components

Video Digitizer Components Reference 8-53

VDSetPlayThruOnOff

The VDSetPlayThruOnOff function allows applications to control continuous

digitization.

pascal VideoDigitizerError VDSetPlayThruOnOff

 (VideoDigitizerComponent ci,

 short state);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

state A short integer that specifies whether to use continuous digitization. The
following values are valid:

digitizerOff
Turns off continuous digitization

digitizerOn
Turns on continuous digitization

When an application stops continuous digitization, the video digitizer
component must restore its alpha channel, blending mask, or key color
settings to graphics mode.

DESCRIPTION

When opened, video digitizer components are always set to off, so that no digitization is

taking place. Your application can use the VDSetPlayThruOnOff function to turn

continuous digitization on and off.

RESULT CODES

SEE ALSO

Applications can also use single-frame digitization by calling the VDGrabOneFrame or

VDGrabOneFrameAsync function, described in the next section and on page 8-56,

respectively.

noErr 0 No error
digiUnimpErr –2201 Function not supported
qtParamErr –2202 Invalid parameter value

C H A P T E R 8

Video Digitizer Components

8-54 Video Digitizer Components Reference

VDGrabOneFrame

The VDGrabOneFrame function instructs the video digitizer component to digitize a

single frame of source video.

All video digitizer components must support this function.

pascal VideoDigitizerError VDGrabOneFrame

(VideoDigitizerComponent ci);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

DESCRIPTION

The application specifies the destination for the digitized frame by calling

either the VDSetPlayThruDestination function (described on page 8-35) or the

VDSetPlayThruGlobalRect function (described on page 8-39).

If the specified digitizer component is already digitizing continuously when the

application calls VDGrabOneFrame, the digitizer component returns the next digitized

frame and then stops. If the digitizer component is stopped, the component digitizes a

single frame and then stops. To resume continuous digitization, applications should call

the VDSetPlayThruOnOff function, which is described in the previous section.

The VDGrabOneFrame function supports synchronous single-frame video digitization—

that is, the digitizer component does not return control to your application until it has

successfully processed the next video frame. Some video digitizer components may also

support asynchronous single-frame digitization. Applications can use asynchronous

digitization by calling the VDGrabOneFrameAsync function, described on page 8-56.

RESULT CODE

VDSetupBuffers

The VDSetupBuffers function allows applications to define output buffers for use

with asynchronous grabs. Video digitizer components extract information about the

spatial characteristics of the video destinations from these buffers.

pascal VideoDigitizerError VDSetupBuffers

(VideoDigitizerComponent ci,

 VdigBufferRecListHandle bufferList);

noErr 0 No error

C H A P T E R 8

Video Digitizer Components

Video Digitizer Components Reference 8-55

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

bufferList
Contains a handle to a list of output buffers. This buffer list is contained
in a buffer list structure. This structure is described in “The Buffer List
Structure” on page 8-22. Note that the video digitizer component makes a
copy of the buffer list—you may dispose of this handle when the function
returns to your application.

▲ W A R N I N G

If you are developing a video digitizer component, note that the matrix
field in the buffer list structure contains a pointer to the matrix structure.
It is your responsibility to copy that matrix structure. ▲

SPECIAL CONSIDERATIONS

Applications must define the output buffers before starting an asynchronous grab.

RESULT CODES

SEE ALSO

Applications instruct digitizer components to grab a single frame by calling the

VDGrabOneFrameAsync function, which is described on page 8-56.

Applications free these buffers by calling the VDReleaseAsyncBuffers function,

which is described next.

VDReleaseAsyncBuffers

The VDReleaseAsyncBuffers function allows an application to release the buffers

that it allocates with the VDSetupBuffers function.

pascal VideoDigitizerError VDReleaseAsyncBuffers

(VideoDigitizerComponent ci);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

noErr 0 No error
digiUnimpErr –2201 Function not supported
qtParamErr –2202 Invalid parameter value
badDepth –2207 Digitizer cannot accommodate specified depth
noDMA –2208 Digitizer cannot use DMA to this destination

C H A P T E R 8

Video Digitizer Components

8-56 Video Digitizer Components Reference

DESCRIPTION

Applications release the buffers used in an asynchronous grab by calling the

VDReleaseAsyncBuffers function.

RESULT CODES

SEE ALSO

Applications allocate buffers for asynchronous grabs by calling the VDSetupBuffers

function, which is discussed in the previous section.

VDGrabOneFrameAsync

The VDGrabOneFrameAsync function instructs the video digitizer component to start

to digitize asynchronously a single frame of source video. Because the component

digitizes the video asynchronously, the application is free to do other things while

the digitization is performed.

pascal VideoDigitizerError VDGrabOneFrameAsync

 (VideoDigitizerComponent ci,

short buffer);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

buffer Identifies the next output buffer. The value of this parameter must
correspond to a valid index into the list of buffers that you supply when
your application calls the VDSetupBuffers function (which is described
on page 8-54). Note that this value is zero-based (that is, you must set this
parameter to 0 to refer to the first buffer in the buffer list).

The video digitizer component uses this buffer for the next video frame
(that is, the frame that will be digitized the next time the application calls
the VDGrabOneFrameAsync function). In this manner, video digitizer
components can quickly and efficiently prepare for the next video frame.

Some digitizer components may not allow your application to queue
more than one asynchronous frame grab at a time. These components
may not return control to your application until a previously requested
grab has been completed.

noErr 0 No error
digiUnimpErr –2201 Function not supported

C H A P T E R 8

Video Digitizer Components

Video Digitizer Components Reference 8-57

DESCRIPTION

Applications determine when the digitizer component is finished with a frame by calling

the VDDone function, which is described in the next section.

When calling the VDGrabOneFrameAsync function, the application specifies the next

destination video buffer, allowing the digitizer component to quickly switch from the

current buffer to the next buffer. In this manner, your application’s ability to grab video

at high frame rates is enhanced. See “Multiple Buffering” on page 8-8 for a discussion of

multiple-buffered video digitization.

Applications can determine whether a video digitizer component supports

asynchronous frame grabbing by examining the output capability flags of the digitizer

component. Specifically, if the digiOutDoesAsyncGrabs flag is set to 1, the

digitizer component supports the VDGrabOneFrameAsync function and the VDDone

function, which is described in the next section.

Applications can use the VDGetCurrentFlags function (described on page 8-25) to

retrieve the digitizer component’s output capability flags. If a video digitizer component

does not support asynchronous digitization, applications must use the

VDGrabOneFrame function (described on page 8-54) to perform single-frame

digitization.

If the specified digitizer component is already digitizing continuously when the

application calls VDGrabOneFrameAsync, the digitizer component returns the

next digitized frame and then stops. If the digitizer component is stopped, the

component digitizes a single frame and then stops. To resume continuous digitization,

applications should call the VDSetPlayThruOnOff function, which is described on

page 8-53.

The VDGrabOneFrameAsync function also allows applications to use more than

one destination buffer for the digitized video. The application defines these buffers

by calling the VDSetupBuffers function (described on page 8-54). The application

specifies one of these destination buffers for the digitized frame when it calls

the VDSetPlayThruDestination function (described on page 8-35) or the

VDSetPlayThruGlobalRect function (described on page 8-39).

RESULT CODES

noErr 0 No error
digiUnimpErr –2201 Function not supported

C H A P T E R 8

Video Digitizer Components

8-58 Video Digitizer Components Reference

VDDone

You can use the VDDone function in your application to determine if

the VDGrabOneFrameAsync function is finished with a specific output buffer

(VDGrabOneFrameAsync is described in the previous section). Applications that use

the VDGrabOneFrameAsync function to digitize video frames should call VDDone

before working with a digitized image.

pascal long VDDone (VideoDigitizerComponent ci, short buffer);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

buffer Identifies the buffer for the operation. The value of this parameter must
correspond to a valid index into the list of buffers you supply when your
application calls the VDSetupBuffers function (which is described on
page 8-54). Note that this value is zero-based (that is, you must set this
parameter to 0 to refer to the first buffer in the buffer list).

DESCRIPTION

If the VDDone function returns a 0 result, the video digitizer component has not finished

the specified asynchronous frame grab. If the result is nonzero, the frame has been

processed and the application can proceed to use the contents of the specified buffer.

Applications can determine whether a video digitizer component supports

asynchronous frame grabbing by examining the output capability flags of the

digitizer component. Specifically, if the digiOutDoesAsyncGrabs flag is set to 1,

the digitizer component supports the VDGrabOneFrameAsync and VDDone functions.

Applications can use the VDGetCurrentFlags function to retrieve the component’s

output capability flags. See page 8-25 for a description of the VDGetCurrentFlags

function.

The VDDone function returns a long integer indicating whether the specified

asynchronous frame grab is complete. If the returned value is 0, the video

digitizer component is still working on the frame. If the returned value is nonzero,

the digitizer component is finished with the frame and the application can perform its

processing.

C H A P T E R 8

Video Digitizer Components

Video Digitizer Components Reference 8-59

VDSetFrameRate

The VDSetFrameRate function allows an application to indicate its desired frame

rate to the video digitizer. Note that some digitizers may not be able to support high

frame rates.

pascal VideoDigitizerError VDSetFrameRate

 (VideoDigitizerComponent ci,

 Fixed framesPerSecond);

ci Identifies the application’s connection to the video digitizer component.
An application obtains this value from the Component Manager’s
OpenComponent function.

framesPerSecond
Specifies the application’s desired frame rate. Applications may set
this parameter to 0 to return the digitizer to its default frame rate
(typically 29.97 frames per second).

DESCRIPTION

In some cases, the digitizer component may not be able to control its frame rate. These

digitizers can run at only a single rate of speed. In this case, the digitizer returns a result

code of digiUnimpErr.

RESULT CODES

VDGetDataRate

The VDGetDataRate function allows an application to retrieve information that

describes the performance capabilities of a video digitizer.

pascal VideoDigitizerError VDGetDataRate

(VideoDigitizerComponent ci,

 long *milliSecPerFrame,

 Fixed *framesPerSecond,

 long *bytesPerSecond);

noErr 0 No error
digiUnimpErr –2201 Function not supported

C H A P T E R 8

Video Digitizer Components

8-60 Video Digitizer Components Reference

ci Identifies the application’s connection to the video digitizer component.
An application obtains this value from the Component Manager’s
OpenComponent function.

milliSecPerFrame
Contains a pointer to a long integer. The video digitizer returns a value
that indicates the number of milliseconds of synchronous overhead
involved in digitizing a single frame. This value includes the average
delay incurred between the time when the digitizer requests a frame from
its associated device, and the time at which the device delivers the frame.

framesPerSecond
Contains a pointer to a fixed value. The video digitizer supplies the
maximum rate at which it can capture video. Note that this value may
differ from the rate that the application set with the VDSetFrameRate
function, described in the previous section.

bytesPerSecond
Contains a pointer to a long integer. Video digitizers that can return
compressed image data return a value that indicates the approximate
number of bytes per second that the digitizer is generating compressed
data, given the current compression settings and frame rate settings.

RESULT CODES

Controlling Color

Video digitizer components support color digitization. Therefore, these components

provide several functions that allow applications to control the color digitization process.

You can use VDSetInputColorSpaceMode in your application to enable and disable

color digitization; you can use the VDGetInputColorSpaceMode function to

determine whether color digitization is enabled. The VDUseThisCLUT function allows

you to specify a color lookup table to be used by the video digitizer component. In cases

where the component cannot accommodate a particular lookup table, your application

can use the VDGetCLUTInUse function to retrieve the color lookup table used by the

digitizer component.

Your application can determine whether a digitizer component supports color

digitization by examining the input capability flags of the component. Specifically, if the

digiInDoesColor flag is set to 1, the component supports color digitization.

Applications can use the VDGetCurrentFlags function to obtain the input capability

flags of a component (see “Getting Information About Video Digitizer Components” on

page 8-24 for more information).

Your application can determine a digitizer’s supported pixel depths by calling the

VDGetDMADepths function.

noErr 0 No error
digiUnimpErr –2201 Function not supported

C H A P T E R 8

Video Digitizer Components

Video Digitizer Components Reference 8-61

VDUseThisCLUT

Some video digitizer components allow applications to specify the lookup table for color

digitization. Your application can set the color lookup table by calling the

VDUseThisCLUT function.

pascal VideoDigitizerError VDUseThisCLUT

 (VideoDigitizerComponent ci,

 CTabHandle colorTableHandle);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

colorTableHandle
Contains a color table handle. The video digitizer component uses the
color table referred to by this parameter.

DESCRIPTION

Applications can determine whether a digitizer component supports specified lookup

tables by examining the digitizer component’s output capability flags. Specifically, if the

digiOutDoesILUT flag is set to 1, the digitizer component allows applications to

specify color lookup tables. Applications can use the VDGetCurrentFlags function

(described on page 8-25) to obtain the input capability flags of a component.

This feature is only useful for capturing 8-bit color video.

RESULT CODES

VDGetCLUTInUse

The VDGetCLUTInUse function allows an application to obtain the color lookup table

used by a video digitizer component. By using the Palette Manager, the application can

then set the destination so that it uses the same lookup table.

pascal VideoDigitizerError VDGetCLUTInUse

(VideoDigitizerComponent ci,

 CTabHandle *colorTableHandle);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

noErr 0 No error
digiUnimpErr –2201 Function not supported

C H A P T E R 8

Video Digitizer Components

8-62 Video Digitizer Components Reference

colorTableHandle
Contains a pointer to a field that is to receive a color table handle. The
video digitizer component returns a handle to its color lookup table.
Applications can then set the destination to use this returned color table.
Your application is responsible for disposing of this handle.

DESCRIPTION

In general, applications use this function only when a video digitizer component does

not allow applications to specify lookup tables with the VDUseThisCLUT function.

Applications can determine whether a digitizer component supports specified lookup

tables by examining the component’s output capability flags. Specifically, if the

digiOutDoesILUT flag is set to 1, the digitizer component allows applications to

specify color lookup tables. Applications can use the VDGetCurrentFlags function

(described on page 8-25) to obtain the input capability flags of a component.

RESULT CODES

VDSetInputColorSpaceMode

The VDSetInputColorSpaceMode function allows applications to choose between

color and grayscale digitized video.

pascal VideoDigitizerError VDSetInputColorSpaceMode

 (VideoDigitizerComponent ci,

 short colorSpaceMode);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

colorSpaceMode
Controls color digitization. The following values are valid:

0 Grayscale digitization

1 Color digitization

noErr 0 No error
memFullErr –108 Not enough room in heap zone
digiUnimpErr –2201 Function not supported

C H A P T E R 8

Video Digitizer Components

Video Digitizer Components Reference 8-63

DESCRIPTION

Applications can determine whether a digitizer component supports grayscale or color

digitization by examining the digitizer component’s input capability flags. Specifically, if

the digiInDoesColor flag is set to 1, the digitizer component supports color

digitization. Similarly, if the digiInDoesBW flag is set to 1, the digitizer component

supports grayscale digitization. Applications can use the VDGetCurrentFlags

function (described on page 8-25) to obtain the input capability flags of a digitizer

component.

RESULT CODES

VDGetInputColorSpaceMode

The VDGetInputColorSpaceMode function allows applications to determine whether

a digitizer is operating in color or grayscale mode.

pascal VideoDigitizerError VDGetInputColorSpaceMode

 (VideoDigitizerComponent ci,

short *colorSpaceMode);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

colorSpaceMode
Contains a pointer to a value that indicates whether the digitizer is
operating in color or grayscale mode. The following values are valid:

0 Grayscale digitization

1 Color digitization

DESCRIPTION

Applications can determine whether a digitizer component supports grayscale or color

digitization by examining the digitizer component’s input capability flags. Specifically, if

the digiInDoesColor flag is set to 1, the digitizer component supports color

digitization. Similarly, if the digiInDoesBW flag is set to 1, the digitizer component

supports grayscale digitization. Applications can use the VDGetCurrentFlags

function (described on page 8-25) to obtain the input capability flags of a digitizer

component.

noErr 0 No error
digiUnimpErr –2201 Function not supported
qtParamErr –2202 Invalid parameter value

C H A P T E R 8

Video Digitizer Components

8-64 Video Digitizer Components Reference

RESULT CODES

SEE ALSO

Applications can choose between color and grayscale digitization by calling the

VDSetInputColorSpaceMode function, which is described in the previous section.

VDGetDMADepths

The VDGetDMADepths function allows an application to determine which pixel depths a

digitizer supports. This function is supported only by digitizers that support DMA (that

is, their digiOutDoesDMA output capability flag is set to 1).

pascal VideoDigitizerError VDGetDMADepths

(VideoDigitizerComponent ci,

 long *depthArray,

 long *preferredDepth);

ci Identifies the application’s connection to the video digitizer component.
An application obtains this value from the Component Manager’s
OpenComponent function.

depthArray
Contains a pointer to a long integer. The video digitizer returns a value
that indicates the depths it can support. Each depth is represented by a
single bit in this field. More than one bit may be set to 1.

preferredDepth
Contains a pointer to a long integer. Video digitizers that have a preferred
depth value return that value in this field, using one of the possible values
of the depthArray parameter. Digitizers that do not prefer any given
value set this field to 0.

DESCRIPTION

The flags returned by this function augment the information that an application can

obtain from the digitizer’s output capability flags in the digitizer information structure

(see “Capability Flags” beginning on page 8-14 for more information). If a digitizer does

not support this function but does support DMA, an application may assume that the

digitizer can handle offscreen buffers at all of the depths indicated in its output

capabilities flags.

noErr 0 No error
digiUnimpErr –2201 Function not supported
qtParamErr –2202 Invalid parameter value

C H A P T E R 8

Video Digitizer Components

Video Digitizer Components Reference 8-65

Before a program that uses a video digitizer creates an offscreen buffer, it should call the

VDGetDMADepths function to determine the pixel depths supported by the digitizer. If

possible, the program should use the preferred depth, in order to obtain the best possible

display performance.

Applications may use the following enumerators to set bits in the field referred to by the

depthArray parameter.

enum {

dmaDepth1 = 1, /* supports black and white */

dmaDepth2 = 2, /* supports 2-bit color */

dmaDepth4 = 4, /* supports 4-bit color */

dmaDepth8 = 8, /* supports 8-bit color */

dmaDepth16 = 16, /* supports 16-bit color */

dmaDepth32 = 32, /* supports 32-bit color */

dmaDepth2Gray = 64, /* supports 2-bit grayscale */

dmaDepth4Gray = 128,/* supports 4-bit grayscale */

dmaDepth8Gray = 256 /* supports 8-bit grayscale */

};

RESULT CODES

Controlling Analog Video

Some video digitizer components may provide functions that allow applications to

control the characteristics of the input analog video signal. This section describes these

analog video functions.

The VDGetVideoDefaults function returns the suggested default values for the analog

video parameters that can be affected by functions described in this section.

A number of functions affect gamma correction. The VDSetInputGammaRecord and

VDGetInputGammaRecord functions work with gamma structures (see Designing Cards
and Drivers for the Macintosh Family, third edition, for more information about gamma

structures). You can use the VDSetInputGammaValue and VDGetInputGammaValue

functions to allow your application to set particular gamma values.

The VDSetBlackLevelValue, VDGetBlackLevelValue, VDSetWhiteLevelValue,

and VDGetWhiteLevelValue functions allow applications to work with black

levels and white levels in the source video. Black level refers to the degree of blackness

in an image. This is a common setting on a video digitizer. The highest setting produces

an all-black image; on the other hand, the lowest setting yields little, if any, black even

with black objects in the scene. Black level is a significant setting because it can be

adjusted so that there is little or no noise in an image. White level refers to the degree of

whiteness in an image. It is also a common video digitizer setting.

noErr 0 No error
digiUnimpErr –2201 Function not supported

C H A P T E R 8

Video Digitizer Components

8-66 Video Digitizer Components Reference

The VDSetContrast, VDGetContrast, VDSetSharpness, and VDGetSharpness

functions allow applications to work with contrast and sharpness values in the source

video. The VDGetBrightness and VDSetBrightness functions allow applications to

work with the image brightness setting.

The VDSetHue, VDGetHue, VDSetSaturation, and VDGetSaturation functions

allow applications to work with hue and saturation settings in the source video.

VDGetVideoDefaults

The VDGetVideoDefaults function returns the recommended values for many of the

analog video parameters that may be set by applications.

All video digitizer components must support this function.

pascal VideoDigitizerError VDGetVideoDefaults

(VideoDigitizerComponent ci,

 unsigned short *blackLevel,

 unsigned short *whiteLevel,

 unsigned short *brightness,

 unsigned short *hue,

 unsigned short *saturation,

 unsigned short *contrast,

 unsigned short *sharpness);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

blackLevel
Contains a pointer to an integer that is to receive the default black level
value. The video digitizer component places the default black level value
into the field referred to by this parameter. Refer to the discussion of the
VDSetBlackLevelValue function in the next section for more
information about black level values.

whiteLevel
Contains a pointer to an integer that is to receive the default white level
value. The video digitizer component places the default white level value
into the field referred to by this parameter. Refer to the discussion of the
VDSetWhiteLevelValue function on page 8-69 for more information
about white level values.

brightness
Contains a pointer to an integer that is to receive the default brightness
value. The video digitizer component places the default brightness value
into the field referred to by this parameter. Refer to the discussion of the
VDSetBrightness function on page 8-73 for more information about
brightness values.

C H A P T E R 8

Video Digitizer Components

Video Digitizer Components Reference 8-67

hue Contains a pointer to an integer that is to receive the default hue value.
The video digitizer component places the default hue value into the field
referred to by this parameter. Refer to the discussion of the VDSetHue
function on page 8-70 for more information about hue values.

saturation
Contains a pointer to an integer that is to receive the default saturation
value. The video digitizer component places the default saturation value
into the field referred to by this parameter. Refer to the discussion of the
VDSetSaturation function on page 8-72 for more information about
saturation values.

contrast Contains a pointer to an integer that is to receive the default contrast
value. The video digitizer component places the default contrast value
into the field referred to by this parameter. Refer to the discussion of the
VDSetContrast function on page 8-75 for more information about
contrast values.

sharpness Contains a pointer to an integer that is to receive the default sharpness
value. The video digitizer component places the default sharpness value
into the field referred to by this parameter. Refer to the discussion of the
VDSetSharpness function on page 8-76 for more information about
sharpness values.

RESULT CODE

VDSetBlackLevelValue

The VDSetBlackLevelValue function sets the current black level value. Black level

values range from 0 to 65,535, where 0 represents the maximum black value and 65,535

represents the minimum black value.

pascal VideoDigitizerError VDSetBlackLevelValue

 (VideoDigitizerComponent ci,

 unsigned short *blackLevel);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

blackLevel
Contains a pointer to an integer that contains the new black level value.
The video digitizer component attempts to set the black level value to the
value specified by this parameter. The digitizer component returns the
new value, so that the application can avoid using unsupported values in
future requests.

noErr 0 No error

C H A P T E R 8

Video Digitizer Components

8-68 Video Digitizer Components Reference

RESULT CODES

SEE ALSO

Applications can get the current black level value by calling the

VDGetBlackLevelValue function (described in the next section).

Applications can obtain the recommended black level value by calling the

VDGetVideoDefaults function (described in the previous section).

VDGetBlackLevelValue

The VDGetBlackLevelValue function returns the current black level value. Black level

values range from 0 to 65,535, where 0 represents the maximum black value and 65,535

represents the minimum black value.

pascal VideoDigitizerError VDGetBlackLevelValue

 (VideoDigitizerComponent ci,

unsigned short *blackLevel);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

blackLevel
Contains a pointer to an integer that is to receive the current black level
value. The video digitizer component places the black level value into the
field referred to by this parameter.

DESCRIPTION

Applications can set the black level value by calling the VDSetBlackLevelValue

function (described in the previous section). Applications can obtain the recommended

black level value by calling the VDGetVideoDefaults function (described on

page 8-66).

RESULT CODES

noErr 0 No error
digiUnimpErr –2201 Function not supported
qtParamErr –2202 Invalid parameter value

noErr 0 No error
digiUnimpErr –2201 Function not supported

C H A P T E R 8

Video Digitizer Components

Video Digitizer Components Reference 8-69

VDSetWhiteLevelValue

The VDSetWhiteLevelValue function sets the white level value. White level values

range from 0 to 65,535, where 0 represents the minimum white value and 65,535

represents the maximum white value.

pascal VideoDigitizerError VDSetWhiteLevelValue

 (VideoDigitizerComponent ci,

 unsigned short *whiteLevel);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

whiteLevel
Contains a pointer to an integer that contains the new white level value.
The video digitizer component attempts to set the white level value to the
value specified by this parameter. The digitizer component returns the
new value, so that the application can avoid using unsupported values in
future requests.

RESULT CODES

SEE ALSO

Applications can get the current white level value by calling the

VDGetWhiteLevelValue function (described in the next section).

Applications can obtain the recommended white level value by calling

the VDGetVideoDefaults function (described on page 8-66).

VDGetWhiteLevelValue

The VDGetWhiteLevelValue function returns the current white level value. White

level values range from 0 to 65,535, where 0 represents the minimum white value

and 65,535 represents the maximum white value.

pascal VideoDigitizerError VDGetWhiteLevelValue

 (VideoDigitizerComponent ci,

 unsigned short *whiteLevel);

noErr 0 No error
digiUnimpErr –2201 Function not supported
qtParamErr –2202 Invalid parameter value

C H A P T E R 8

Video Digitizer Components

8-70 Video Digitizer Components Reference

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

whiteLevel
Contains a pointer to an integer that is to receive the current white level
value. The video digitizer component places the white level value into the
field referred to by this parameter.

RESULT CODES

SEE ALSO

Your application can set the white level value by calling the VDSetWhiteLevelValue

function (described in the previous section). Your application can obtain the

recommended white level value by calling the VDGetVideoDefaults function

(described on page 8-66).

VDSetHue

The VDSetHue function sets the current hue value. Hue is similar to the tint control on a

television, and it is specified in degrees with complementary colors set 180 degrees apart

(red is 0°, green is +120°, and blue is –120°). Video digitizer components support hue

values that range from 0 (–180° shift in hue) to 65,535 (+179° shift in hue), where 32,767

represents a 0° shift in hue.

pascal VideoDigitizerError VDSetHue (VideoDigitizerComponent ci,

 unsigned short *hue);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

hue Contains a pointer to an integer that contains the new hue value. The
video digitizer component attempts to set the hue value to the value
specified by this parameter. The digitizer component returns the new
value, so that the application can avoid using unsupported values in
future requests.

noErr 0 No error
digiUnimpErr –2201 Function not supported

C H A P T E R 8

Video Digitizer Components

Video Digitizer Components Reference 8-71

RESULT CODES

SEE ALSO

Your application can obtain the current hue value by calling the VDGetHue function

(described in the next section). To retrieve the recommended hue value, your application

can call the VDGetVideoDefaults function (described on page 8-66).

VDGetHue

The VDGetHue function returns the current hue value. Hue is similar to the tint control

on a television, and it is specified in degrees with complementary colors set 180 degrees

apart (red is 0°, green is +120°, and blue is –120°). Video digitizer components support

hue values that range from 0 (–180° shift in hue) to 65,535 (+179° shift in hue),

where 32,767 represents a 0° shift in hue.

pascal VideoDigitizerError VDGetHue (VideoDigitizerComponent ci,

 unsigned short *hue);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

hue Contains a pointer to an integer that is to receive the current hue value.
The video digitizer component places the hue value into the field referred
to by this parameter.

RESULT CODES

SEE ALSO

Your application can set the hue value by calling the VDSetHue function (described

in the previous section). To obtain the recommended hue value, your application can call

the VDGetVideoDefaults function (described on page 8-66).

noErr 0 No error
digiUnimpErr –2201 Function not supported
qtParamErr –2202 Invalid parameter value

noErr 0 No error
digiUnimpErr –2201 Function not supported

C H A P T E R 8

Video Digitizer Components

8-72 Video Digitizer Components Reference

VDSetSaturation

The VDSetSaturation function sets the saturation value, which controls color

intensity. For example, at high saturation levels, red appears to be red; at low saturation,

red appears pink. Valid saturation values range from 0 to 65,535, where 0 is the

minimum saturation value and 65,535 specifies maximum saturation.

pascal VideoDigitizerError VDSetSaturation

 (VideoDigitizerComponent ci,

unsigned short *saturation);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

saturation
Contains a pointer to an integer that contains the new saturation value.
The video digitizer component attempts to set the saturation value to the
value specified by this parameter. The digitizer component returns the
new value, so that the application can avoid using unsupported values in
future requests.

RESULT CODES

SEE ALSO

Applications can get the current saturation value by calling the VDGetSaturation

function (described in the next section). Applications can obtain the recommended

saturation value by calling the VDGetVideoDefaults function (described on

page 8-66).

VDGetSaturation

The VDGetSaturation function returns the current saturation value, which controls

color intensity. For example, at high saturation levels red appears to be red, while at low

saturation red appears pink. Valid saturation values range from 0 to 65,535, where 0 is

the minimum saturation value and 65,535 specifies maximum saturation.

pascal VideoDigitizerError VDGetSaturation

(VideoDigitizerComponent ci,

 unsigned short *saturation);

noErr 0 No error
digiUnimpErr –2201 Function not supported
qtParamErr –2202 Invalid parameter value

C H A P T E R 8

Video Digitizer Components

Video Digitizer Components Reference 8-73

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

saturation
Contains a pointer to an integer that is to receive the current saturation
value. The video digitizer component places the saturation value into the
field referred to by this parameter.

DESCRIPTION

The VDGetSaturation function returns the current saturation value.

RESULT CODES

SEE ALSO

Your application can set the saturation value by calling the VDSetSaturation function

(described in the previous section). To obtain the recommended saturation value, your

application can call the VDGetVideoDefaults function (described on page 8-66).

VDSetBrightness

The VDSetBrightness function sets the current brightness value, which controls the

overall brightness of the digitized video image. Brightness values range from 0 to 65,535,

where 0 is the darkest possible setting and 65,535 is the lightest possible setting.

pascal VideoDigitizerError VDSetBrightness

 (VideoDigitizerComponent ci,

unsigned short *brightness);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

brightness
Contains a pointer to an integer that contains the new brightness value.
The video digitizer component attempts to set the brightness value to the
value specified by this parameter. The digitizer component returns the
new value, so that the application can avoid using unsupported values in
future requests.

noErr 0 No error
digiUnimpErr –2201 Function not supported

C H A P T E R 8

Video Digitizer Components

8-74 Video Digitizer Components Reference

RESULT CODES

SEE ALSO

Your application can get the current brightness value by calling the VDGetBrightness

function (described in the next section). To obtain the recommended brightness value,

your application can call the VDGetVideoDefaults function (described on page 8-66).

VDGetBrightness

The VDGetBrightness function returns the current brightness value, which reflects the

overall brightness of the digitized video image. Brightness values range from 0 to 65,535,

where 0 is the darkest possible setting and 65,535 is the lightest possible setting.

pascal VideoDigitizerError VDGetBrightness

 (VideoDigitizerComponent ci,

 unsigned short *brightness);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

brightness
Contains a pointer to an integer that is to receive the current brightness
value. The video digitizer component places the brightness value into the
field referred to by this parameter.

RESULT CODES

SEE ALSO

Your application can set the brightness value by calling the VDSetBrightness function

(described in the previous section). To obtain the recommended brightness value, your

application can call the VDGetVideoDefaults function (described on page 8-66).

noErr 0 No error
digiUnimpErr –2201 Function not supported

noErr 0 No error
digiUnimpErr –2201 Function not supported

C H A P T E R 8

Video Digitizer Components

Video Digitizer Components Reference 8-75

VDSetContrast

The VDSetContrast function sets the current contrast value. The contrast value ranges

from 0 to 65,535, where 0 represents no change to the basic image and larger values

increase the contrast of the video image (that is, increase the slope of the transform).

pascal VideoDigitizerError VDSetContrast

 (VideoDigitizerComponent ci,

 unsigned short *contrast);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

contrast Contains a pointer to an integer that contains the new contrast value. The
video digitizer component attempts to set the contrast value to the value
specified by this parameter. The digitizer component returns the new
value, so that the application can avoid using unsupported values in
future requests.

RESULT CODES

SEE ALSO

Your application can obtain the current contrast value by calling the VDGetContrast

function (described in the next section). To retrieve the recommended contrast value,

your application can call the VDGetVideoDefaults function (described on page 8-66).

VDGetContrast

The VDGetContrast function returns the current contrast value. The contrast value

ranges from 0 to 65,535, where 0 represents no change to the basic image and larger

values increase the contrast of the video image (that is, increase the slope of the

transform).

pascal VideoDigitizerError VDGetContrast

(VideoDigitizerComponent ci,

 unsigned short *contrast);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

noErr 0 No error
digiUnimpErr –2201 Function not supported
qtParamErr –2202 Invalid parameter value

C H A P T E R 8

Video Digitizer Components

8-76 Video Digitizer Components Reference

contrast Contains a pointer to an integer that is to receive the current contrast
value. The video digitizer component places the contrast value into the
field referred to by this parameter.

RESULT CODES

SEE ALSO

Your application can set the contrast value by calling the VDSetContrast function

(described in the previous section). To obtain the recommended contrast value, your

application can call the VDGetVideoDefaults function (described on page 8-66).

VDSetSharpness

The VDSetSharpness function sets the sharpness value. The sharpness value

ranges from 0 to 65,535, where 0 represents no sharpness filtering and 65,535 represents

full sharpness filtering. Higher values result in a visual impression of increased picture

sharpness.

pascal VideoDigitizerError VDSetSharpness

(VideoDigitizerComponent ci,

 unsigned short *sharpness);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

sharpness Contains a pointer to an integer that contains the new sharpness value.
The video digitizer component attempts to set the sharpness value to the
value specified by this parameter. The digitizer component returns the
new value, so that the application can avoid using unsupported values in
future requests.

RESULT CODES

noErr 0 No error
digiUnimpErr –2201 Function not supported

noErr 0 No error
digiUnimpErr –2201 Function not supported
qtParamErr –2202 Invalid parameter value

C H A P T E R 8

Video Digitizer Components

Video Digitizer Components Reference 8-77

SEE ALSO

Your application can obtain the current sharpness value by calling the

VDGetSharpness function (described in the next section). To retrieve the recommended

sharpness value, your application can call the VDGetVideoDefaults function

(described on page 8-66).

VDGetSharpness

The VDGetSharpness function returns the current sharpness value. The sharpness

value ranges from 0 to 65,535, where 0 represents no sharpness filtering and 65,535

represents full sharpness filtering. Higher values result in a visual impression of

increased picture sharpness.

pascal VideoDigitizerError VDGetSharpness

(VideoDigitizerComponent ci,

 unsigned short *sharpness);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

sharpness Contains a pointer to an integer that is to receive the current sharpness
value. The video digitizer component places the sharpness value into the
field referred to by this parameter.

RESULT CODES

SEE ALSO

Your application can set the sharpness value by calling the VDSetSharpness function

(described in the previous section). To obtain the recommended sharpness value, your

application can call the VDGetVideoDefaults function (described on page 8-66).

noErr 0 No error
digiUnimpErr –2201 Function not supported

C H A P T E R 8

Video Digitizer Components

8-78 Video Digitizer Components Reference

VDSetInputGammaRecord

The VDSetInputGammaRecord function allows an application to change the active

input gamma data structure. Gamma structures give applications complete control over

color filtering transforms.

pascal VideoDigitizerError VDSetInputGammaRecord

 (VideoDigitizerComponent ci,

VDGamRecPtr inputGammaPtr);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

inputGammaPtr
Contains a pointer to an input gamma structure. The input gamma
structure is defined by the gammaTbl data type. For more information
about gamma structures, see Designing Cards and Drivers for the Macintosh
Family, third edition. The video digitizer component uses the input
gamma structure specified by this parameter.

SPECIAL CONIDERATIONS

Note that the VDSetInputGammaRecord function may override the current gamma

value and contrast settings if the video digitizer component uses a lookup table to

implement brightness and contrast.

RESULT CODES

SEE ALSO

Your application can get a pointer to the current input gamma structure by calling the

VDGetInputGammaRecord function, which is described in the next section.

noErr 0 No error
digiUnimpErr –2201 Function not supported

C H A P T E R 8

Video Digitizer Components

Video Digitizer Components Reference 8-79

VDGetInputGammaRecord

The VDGetInputGammaRecord function allows your application to retrieve a pointer to

the active input gamma structure. Gamma structures give applications complete control

over color filtering transforms and are therefore more precise than the gamma values

that can be set by calling the VDSetInputGammaValue function (described in the next

section).

pascal VideoDigitizerError VDGetInputGammaRecord

 (VideoDigitizerComponent ci,

 VDGamRecPtr *inputGammaPtr);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

inputGammaPtr
Contains a pointer to a field that is to receive a pointer to an input gamma
structure. The input gamma structure is defined by the gammaTbl data
type. For more information about gamma structures, see Designing Cards
and Drivers for the Macintosh Family, third edition. The video digitizer
component places a pointer to its input gamma structure into the field
referred to by this parameter.

RESULT CODES

SEE ALSO

Your application can set the input gamma structure by calling the

VDSetInputGammaRecord function, which is described in the previous section.

noErr 0 No error
digiUnimpErr –2201 Function not supported

C H A P T E R 8

Video Digitizer Components

8-80 Video Digitizer Components Reference

VDSetInputGammaValue

The VDSetInputGammaValue function sets the gamma values. These gamma values

control the brightness of the input video signal. Your application can implement special

color effects, such as turning off specific color channels, by calling this function.

pascal VideoDigitizerError VDSetInputGammaValue

 (VideoDigitizerComponent ci,

Fixed channel1,

Fixed channel2,

Fixed channel3);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager's OpenComponent
function.

channel1 Specifies the gamma value for the red component of the input
video signal.

channel2 Specifies the gamma value for the green component of the input
video signal.

channel3 Specifies the gamma value for the blue component of the input
video signal.

RESULT CODES

SEE ALSO

Your application can retrieve the current gamma values by calling the

VDGetInputGammaValue function (described in the next section). To obtain the

recommended gamma values, your application can call the VDGetVideoDefaults

function (described on page 8-66).

VDGetInputGammaValue

The VDGetInputGammaValue function returns the current gamma values. These

gamma values control the brightness of the input video signal.

pascal VideoDigitizerError VDGetInputGammaValue

(VideoDigitizerComponent ci,

 Fixed *channel1, Fixed *channel2,

 Fixed *channel3);

noErr 0 No error
digiUnimpErr –2201 Function not supported

C H A P T E R 8

Video Digitizer Components

Video Digitizer Components Reference 8-81

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

channel1 Contains a pointer to a fixed field that is to receive the gamma value for
the red component of the input video signal. The video digitizer
component places the appropriate gamma value into the field referred to
by this parameter.

channel2 Contains a pointer to a fixed field that is to receive the gamma value for
the green component of the input video signal. The video digitizer
component places the appropriate gamma value into the field referred to
by this parameter.

channel3 Contains a pointer to a fixed field that is to receive the gamma value for
the blue component of the input video signal. The video digitizer
component places the appropriate gamma value into the field referred to
by this parameter.

RESULT CODES

SEE ALSO

Your application can set the gamma values by calling the VDSetInputGammaValue

function (described in the previous section). To obtain the recommended gamma values,

you can call the VDGetVideoDefaults function (described on page 8-66).

Selectively Displaying Video

Video digitizer components may support one of three methods of selectively

displaying video on the screen of a Macintosh computer. The three methods are key

colors, alpha channels, and blend masks. For a complete description of these techniques

for selectively displaying video, see “About Video Digitizer Components,” which begins

on page 8-3.

Your application can determine whether a video digitizer component supports selective

video display by examining the component’s digitizer information structure (described

on page 8-20). Specifically, the vdigType field indicates the type of blending supported

by the digitizer. Applications can use the VDGetDigitizerInfo function (described on

page 8-24) to retrieve a component’s digitizer information structure.

Some video digitizer components support the use of key colors as a mechanism for

selectively displaying video on the screen of a Macintosh computer. When a key color is

active, the digitizer component replaces all screen occurrences of that color with the

appropriate portion of the source video. Video digitizer components that support key

colors provide a number of functions to applications. Those functions are described in

this section.

noErr 0 No error
digiUnimpErr –2201 Function not supported

C H A P T E R 8

Video Digitizer Components

8-82 Video Digitizer Components Reference

Your applications can use the VDSetKeyColor, VDAddKeyColor, and

VDSetKeyColorRange functions to set one or more key colors for a video digitizer

component. The VDGetKeyColor, VDGetNextKeyColor, and VDGetKeyColorRange

functions allow your application to retrieve information about the currently

active key colors.

Alpha channels and blend masks work similarly to one another. Digitizer components

that support alpha channels use a portion of each pixel value to indicate the degree of

video display for that pixel. Digitizer components that support blend masks use the

mask to indicate the degree of video display for corresponding pixels.

Your applications can use the VDGetMaskandValue function to determine the

appropriate mask value for a desired blend level. The VDSetMasterBlendLevel

function allows applications to set a blend level that applies to the entire source video

image. The VDGetMaskPixMap function allows applications to retrieve the pixel map

that defines the blend mask.

VDSetKeyColor

The VDSetKeyColor function allows applications to set the key color.

All video digitizer components that support key colors must support this function.

pascal VideoDigitizerError VDSetKeyColor

 (VideoDigitizerComponent ci,

long index);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

index Specifies the new key color. The value of the index field corresponds to a
color in the current color lookup table.

DESCRIPTION

Some video digitizer components support multiple key colors. The VDSetKeyColor

function instructs such digitizer components to clear the key color list and insert a single

entry for the specified color. Applications can then use the VDAddKeyColor function,

described on page 8-84, to place additional colors into the key color list.

RESULT CODES

noErr 0 No error
digiUnimpErr –2201 Function not supported
qtParamErr –2202 Invalid parameter value

C H A P T E R 8

Video Digitizer Components

Video Digitizer Components Reference 8-83

VDGetKeyColor

The VDGetKeyColor function allows your application to obtain the index value of the

active key color.

All video digitizer components that support key colors must support this function.

pascal VideoDigitizerError VDGetKeyColor

 (VideoDigitizerComponent ci,

 long *index);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

index Contains a pointer to a field that is to receive the index of the key color.
This index value identifies the key color within the currently active color
lookup table. If there are several active key colors, the video digitizer
returns the first color from the key color list. Subsequently, applications
use the VDGetNextKeyColor function (described on page 8-86) to
obtain other colors from the list. If there is no active key color, the
VDGetKeyColor function sets the field to –1.

DESCRIPTION

In cases where there are several key colors, the VDGetKeyColor function always

returns the index of the first color in the list. Applications should then use the

VDGetNextKeyColor function (described on page 8-86) to retrieve the remaining colors

in the list.

RESULT CODES

VDSetKeyColorRange

Some video digitizer components that support key colors may allow applications to set a

range of key color values. The key color range is expressed as a range of RGB color

values. The VDSetKeyColorRange function allows your application to define a key

color range.

pascal VideoDigitizerError VDSetKeyColorRange

 (VideoDigitizerComponent ci,

 RGBColor *minRGB,

RGBColor *maxRGB);

noErr 0 No error
digiUnimpErr –2201 Function not supported

C H A P T E R 8

Video Digitizer Components

8-84 Video Digitizer Components Reference

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

minRGB Contains a pointer to a field that contains the lower bound of the key
color range. All colors in the color table between the color specified by the
minRGB parameter and the color specified by the maxRGB parameter are
considered key colors.

maxRGB Contains a pointer to a field that contains the upper bound of the key
color range. All colors in the color table between the color specified by the
minRGB parameter and the color specified by the maxRGB parameter are
considered key colors.

DESCRIPTION

If the digitizer component cannot accommodate all the colors that are defined in the

specified range, it returns a result value of noMoreKeyColors.

RESULT CODES

SEE ALSO

Your application can obtain the current key color range by calling the

VDGetKeyColorRange function, which is described on page 8-85.

VDAddKeyColor

Some video digitizer components can support more than one active key color. The

VDAddKeyColor function allows applications to add a key color to a component’s list of

active key colors.

pascal VideoDigitizerError VDAddKeyColor

 (VideoDigitizerComponent ci,

long *index);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

index Contains a pointer to the color to add to the key color list. The value of
the index field corresponds to a color in the current color lookup table.

noErr 0 No error
digiUnimpErr –2201 Function not supported
noMoreKeyColors –2205 Key color list is full

C H A P T E R 8

Video Digitizer Components

Video Digitizer Components Reference 8-85

DESCRIPTION

If the digitizer component cannot accommodate any more key colors, it returns a result

code of noMoreKeyColors.

RESULT CODES

SEE ALSO

To ensure that the key color list contains only the desired colors, your application should

use the VDSetKeyColor function (described on page 8-82) to set the first key color.

VDGetKeyColorRange

Some video digitizer components that support key colors may allow applications to set a

range of key color values. The key color range is expressed as a range of RGB color

values. The VDGetKeyColorRange function allows applications to obtain the currently

defined key color range.

pascal VideoDigitizerError VDGetKeyColorRange

 (VideoDigitizerComponent ci,

RGBColor *minRGB,

RGBColor *maxRGB);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

minRGB Contains a pointer to a field that is to receive the lower bound of the key
color range. The video digitizer component places the RGB color that
corresponds to the lower end of the range in the field referred to by this
parameter.

maxRGB Contains a pointer to a field that is to receive the upper bound of the key
color range. The video digitizer component places the RGB color that
corresponds to the upper end of the range in the field referred to by this
parameter.

RESULT CODES

noErr 0 No error
digiUnimpErr –2201 Function not supported
qtParamErr –2202 Invalid parameter value
noMoreKeyColors –2205 Key color list is full

noErr 0 No error
digiUnimpErr –2201 Function not supported
badCallOrder –2209 Digitizer component not ready for this function

C H A P T E R 8

Video Digitizer Components

8-86 Video Digitizer Components Reference

SEE ALSO

Your application can set the color range by calling the VDSetKeyColorRange function,

which is described on page 8-83.

VDGetNextKeyColor

The VDGetNextKeyColor function allows your application to obtain the index value of

the active key colors in cases where the digitizer component supports multiple key

colors. Your application can use the VDGetKeyColor function (described on page 8-83)

to retrieve the first key color in the list. Subsequently, your application can call the

VDGetNextKeyColor function to retrieve the other colors in the key color list.

All video digitizer components that support multiple key colors must support this

function.

pascal VideoDigitizerError VDGetNextKeyColor

 (VideoDigitizerComponent ci,

 long index);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

index Specifies a field that is to receive the index of the next key color. This
index value identifies the key color within the currently active color
lookup table. If there are no more colors left in the list, the digitizer
component sets the field referred to by the index parameter to –1.

DESCRIPTION

The VDGetNextKeyColor function returns an index value of –1 when there are no

more colors in the list.

RESULT CODES

noErr 0 No error
digiUnimpErr –2201 Function not supported

C H A P T E R 8

Video Digitizer Components

Video Digitizer Components Reference 8-87

VDSetMasterBlendLevel

The VDSetMasterBlendLevel function allows your application to set the blend level

value for the input video signal. This value applies to the entire source video image.

pascal VideoDigitizerError VDSetMasterBlendLevel

 (VideoDigitizerComponent ci,

unsigned short *blendLevel);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

blendLevel
Contains a pointer to a field that specifies the new master blend level.
Valid values range from 0 to 65,535, where 0 corresponds to no video
and 65,535 corresponds to all video. The digitizer component returns the
new value in this field, so your application can avoid using unsupported
values in future requests.

RESULT CODES

VDGetMaskandValue

The VDGetMaskandValue function allows your application to obtain the appropriate

alpha channel or blend mask value for a desired level of video blending. Your

application specifies a desired level of video blend.

pascal VideoDigitizerError VDGetMaskandValue

 (VideoDigitizerComponent ci,

 unsigned short blendLevel,

 long *mask, long *value);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

blendLevel
Specifies the desired blend level. Valid values range from 0 to 65,535,
where 0 corresponds to no video and 65,535 corresponds to all video.

noErr 0 No error
digiUnimpErr –2201 Function not supported

C H A P T E R 8

Video Digitizer Components

8-88 Video Digitizer Components Reference

mask Contains a pointer to a field that is to receive a value indicating which bits
are meaningful in the data returned for the value parameter. The video
digitizer component sets to 1 the bits that correspond to meaningful bits
in the data returned for the value parameter.

value Contains a pointer to a field that is to receive data that can be used to
obtain the desired blend level. The data returned for the mask parameter
indicates which bits are valid in the data returned for this parameter.

DESCRIPTION

The video digitizer returns the corresponding mask value. The application can then use

this value to set the alpha channel or blend mask.

The information returned by the digitizer component differs based on the type of

blending supported by the component. In all cases, however, the returned value of the

value parameter contains the value for the desired blend level, and the returned value

of the mask parameter indicates which bits in the value parameter are meaningful. Bits

in the returned mask parameter value that are set to 1 correspond to meaningful bits in

the returned value parameter value.

For example, if an application requests a 50 percent video blend level from a digitizer

that supports 8-bit alpha channels, the digitizer component might return the following

values:

RESULT CODES

VDGetMaskPixMap

The VDGetMaskPixMap function allows applications to retrieve the pixel map data for a

component’s blend mask. This function is supported only by digitizer components that

support blend masks.

pascal VideoDigitizerError VDGetMaskPixMap

 (VideoDigitizerComponent ci,

 PixMapHandle maskPixMap);

mask 0xFF000000 Identifies full upper byte as the alpha channel

value 0x80000000 Value for 50 percent blend level

noErr 0 No error
digiUnimpErr –2201 Function not supported

C H A P T E R 8

Video Digitizer Components

Video Digitizer Components Reference 8-89

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

maskPixMap
Contains a handle to a pixel map. The video digitizer component returns
the pixel map data for its blend mask into the pixel map specified by this
parameter. The video digitizer component resizes the handle as
appropriate. Your application is responsible for disposing of this handle.

RESULT CODES

Clipping

Some video digitizer components can clip the output video image based on an arbitrary

clipping region. Your application can determine whether a video digitizer component

supports clipping by examining the digitizer information structure of the component.

Specifically, if the digiOutDoesMask flag is set to 1 in the outputCapabilityFlags

field of the appropriate digitizer information structure, the component supports

clipping. See “The Digitizer Information Structure” beginning on page 8-20 for details.

Your application can obtain a component’s digitizer information structure by calling the

VDGetDigitizerInfo function, which is described on page 8-24. This section

describes the functions provided to applications by components that support clipping.

Applications can use the VDSetClipState and VDGetClipState functions to enable

and disable clipping, and to determine whether clipping is enabled. Applications can use

the VDSetClipRgn and VDClearClipRgn functions to manipulate the clipping region.

Applications can use these functions only during an active grab sequence. Applications

set the initial clipping settings by calling either VDSetPlayThruDestination or

VDSetPlayThruGlobalRect (described on page 8-35 and page 8-39, respectively).

Note

The functions that manipulate clipping and clipping state operate on a
clipping region in addition to the one specified by the mask passed by
the VDSetPlayThruDestination and VDSetUpBuffers functions
(described on page 8-35 and page 8-54, respectively). To determine the
final clipping regions, intersect these two clippings. ◆

noErr 0 No error
digiUnimpErr –2201 Function not supported

C H A P T E R 8

Video Digitizer Components

8-90 Video Digitizer Components Reference

VDSetClipRgn

The VDSetClipRgn function allows your application to define a clipping region.

pascal VideoDigitizerError VDSetClipRgn

(VideoDigitizerComponent ci,

 RgnHandle clipRegion);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

clipRegion
Specifies the clipping region.

DESCRIPTION

When clipping is enabled, the video digitizer component performs clipping in the region

specified with this function.

RESULT CODES

SEE ALSO

Applications can disable all or part of a clipping region by calling the VDClearClipRgn

function, described in the next section.

VDClearClipRgn

The VDClearClipRgn function allows your application to disable all or part of a

clipping region that was previously set with the VDSetClipRgn function, which is

described in the previous section.

pascal VideoDigitizerError VDClearClipRgn

(VideoDigitizerComponent ci,

 RgnHandle clipRegion);

noErr 0 No error
digiUnimpErr –2201 Function not supported

C H A P T E R 8

Video Digitizer Components

Video Digitizer Components Reference 8-91

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

clipRegion
Specifies the clipping region to clear. This region must correspond to all or
part of the clipping region established previously with the
VDSetClipRgn function.

RESULT CODES

VDSetClipState

The VDSetClipState function allows applications to control whether clipping is

enabled.

pascal VideoDigitizerError VDSetClipState

(VideoDigitizerComponent ci,

short clipEnable);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

clipEnable
Controls whether clipping is enabled. Valid values are

0 Disable clipping

1 Enable clipping

RESULT CODES

SEE ALSO

Applications can determine whether clipping is enabled by calling the

VDGetClipState function, which is described in the next section.

noErr 0 No error
digiUnimpErr –2201 Function not supported

noErr 0 No error
digiUnimpErr –2201 Function not supported

C H A P T E R 8

Video Digitizer Components

8-92 Video Digitizer Components Reference

VDGetClipState

The VDGetClipState function allows applications to determine whether clipping is

enabled.

pascal VideoDigitizerError VDGetClipState

(VideoDigitizerComponent ci,

short *clipEnable);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

clipEnable
Contains a pointer to a field that is to receive a value indicating whether
clipping is enabled. The video digitizer component places one of the
following values into the field referred to by the clipEnable parameter:

0 Clipping disabled

1 Clipping enabled

RESULT CODES

SEE ALSO

Applications can enable and disable clipping by calling the VDSetClipState function,

described in the previous section.

Utility Functions

This section describes a number of utility functions that may be supported by some

video digitizer components.

The VDSetPLLFilterType and VDGetPLLFilterType functions allow applications

to control which phase-locked loop (PLL) is used by a video digitizer component that

supports multiple PLLs.

The VDSetFieldPreference and VDGetFieldPreference functions allow

applications to control which field is used for some vertical scaling operations.

The VDSetDigitizerUserInterrupt function allows applications to install custom

interrupt functions that are called by the video digitizer component.

The VDGetSoundInputDriver function allows an application to retrieve information

about a digitizer’s sound input driver.

The VDGetPreferredTimeScale function allows an application to determine a

digitizer’s preferred time scale.

noErr 0 No error
digiUnimpErr –2201 Function not supported

C H A P T E R 8

Video Digitizer Components

Video Digitizer Components Reference 8-93

VDSetPLLFilterType

The VDSetPLLFilterType function allows applications to specify which PLL is to be

active.

pascal VideoDigitizerError VDSetPLLFilterType

 (VideoDigitizerComponent ci,

 short pllType);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

pllType Indicates which PLL is to be active. Available values are

0 Broadcast mode

1 VTR mode (stands for video tape recorder—equivalent to
VCR, which stands for video cassette recorder)

RESULT CODES

SEE ALSO

Applications can get the active PLL type by calling the VDGetPLLFilterType function,

which is described in the next section.

VDGetPLLFilterType

The VDGetPLLFilterType function allows applications to determine which PLL is

currently active.

pascal VideoDigitizerError VDGetPLLFilterType

 (VideoDigitizerComponent ci,

short *pllType);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

pllType Points to a field that is to receive a value indicating which PLL is active.
Available values are

0 Broadcast mode

1 VTR mode

noErr 0 No error
digiUnimpErr –2201 Function not supported
qtParamErr –2202 Invalid parameter value

C H A P T E R 8

Video Digitizer Components

8-94 Video Digitizer Components Reference

RESULT CODES

SEE ALSO

Applications can set the PLL type by calling the VDSetPLLFilterType function, which

is described in the previous section.

VDSetFieldPreference

The VDSetFieldPreference function allows applications to specify which field to use

in cases where the vertical scaling is less than half size.

All video digitizer components must support this function.

pascal VideoDigitizerError VDSetFieldPreference

(VideoDigitizerComponent ci,

 short fieldFlag);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

fieldFlag Indicates which field to use. Valid values are

vdUseAnyField
Digitizer component decides which field to use

vdUseOddField
Digitizer uses odd field

vdUseEvenField
Digitizer uses even field

DESCRIPTION

Applications can specify that the digitizer use either the odd-line field or the even-line

field; alternatively, applications can let the component decide which field to use.

RESULT CODES

noErr 0 No error
digiUnimpErr –2201 Function not supported
qtParamErr –2202 Invalid parameter value

noErr 0 No error
qtParamErr –2202 Invalid parameter value

C H A P T E R 8

Video Digitizer Components

Video Digitizer Components Reference 8-95

VDGetFieldPreference

The VDGetFieldPreference function allows applications to determine which field is

being used in cases where the image is vertically scaled to half its original size.

pascal VideoDigitizerError VDGetFieldPreference

(VideoDigitizerComponent ci,

 short *fieldFlag);

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

fieldFlag Points to a field that is to receive a value indicating which field is being
used. Valid values are

vdUseAnyField
Digitizer component decides which field to use

vdUseOddField
Digitizer component uses odd field

vdUseEvenField
Digitizer component uses even field

DESCRIPTION

Video digitizer components can use either the odd-line field or the even-line field.

All video digitizer components must support this function.

RESULT CODES

VDSetDigitizerUserInterrupt

The VDSetDigitizerUserInterrupt function allows applications to set custom

interrupt functions.

pascal VideoDigitizerError VDSetDigitizerUserInterrupt

(VideoDigitizerComponent ci,

long flags,

VdigIntProc userInterruptProc,

 long refcon);

noErr 0 No error
qtParamErr –2202 Invalid parameter value

C H A P T E R 8

Video Digitizer Components

8-96 Video Digitizer Components Reference

ci Specifies the video digitizer component for the request. Applications
obtain this reference from the Component Manager’s OpenComponent
function.

flags Indicates when the interrupt function is to be called. Applications may set
more than one flag to 1. The following flags are defined:

Bit 0 Calls the interrupt function on even-line fields. If this flag is
set to 1, the video digitizer component calls the custom
interrupt procedure each time it starts to display an
even-line field.

Bit 1 Calls the interrupt function on odd-line fields. If this flag is
set to 1, the video digitizer component calls the custom
interrupt procedure each time it starts to display an
odd-line field.

userInterruptProc
Contains a pointer to the custom interrupt function. Applications set this
parameter to nil to remove a custom interrupt function.

Every custom interrupt function must support the following interface:

pascal void MyInterruptProc (long flags, long refcon);

See page 8-98 for details on the parameters of the MyInterruptProc
function.

refcon Contains parameter data that is appropriate for the interrupt procedure.

DESCRIPTION

The video digitizer component calls these custom interrupt functions during field or

frame interrupt processing. The application function can then perform special processing.

RESULT CODES

VDGetSoundInputDriver

The VDGetSoundInputDriver function allows an application to retrieve information

about a digitizer’s sound input driver.

pascal VideoDigitizerError VDGetSoundInputDriver

(VideoDigitizerComponent ci,

 Str255 soundDriverName);

noErr 0 No error
digiUnimpErr –2201 Function not supported

C H A P T E R 8

Video Digitizer Components

Video Digitizer Components Reference 8-97

ci Identifies the application’s connection to the video digitizer component.
An application obtains this value from the Component Manager’s
OpenComponent function.

soundDriverName
Specifies a pointer to a string. The video digitizer returns the name of its
sound input driver. If the digitizer does not have an associated driver, it
returns a result code of digiUnimpErr.

DESCRIPTION

An application can use the driver name returned by this function to choose an

appropriate sound input device to use with this digitizer.

RESULT CODES

VDGetPreferredTimeScale

The VDGetPreferredTimeScale function allows an application to determine a

digitizer’s preferred time scale.

pascal VideoDigitizerError VDGetPreferredTimeScale

(VideoDigitizerComponent ci,

 TimeScale *preferred);

ci Identifies the application’s connection to the video digitizer component.
An application obtains this value from the Component Manager’s
OpenComponent function.

preferred Contains a pointer to a time scale structure. The video digitizer returns
information about its preferred time scale.

DESCRIPTION

Apple’s sequence grabber component uses this function to establish the time scale of the

media that it creates from the digitizer’s output. This is especially beneficial for digitizers

that return compressed data, because it allows these digitizers to timestamp the frames

very accurately.

If the digitizer does not have a preferred time scale, it returns a result code of

digiUnimpErr.

noErr 0 No error
qtParamErr –2202 Invalid parameter value

C H A P T E R 8

Video Digitizer Components

8-98 Video Digitizer Components Reference

RESULT CODES

Application-Defined Function

Applications can provide a custom interrupt function in the userInterruptProc

parameter of the VDSetDigitizerUserInterrupt function. Every custom interrupt

function must support the following interface:

pascal void MyInterruptProc (long flags, long refcon);

flags Indicates when the interrupt function has been called. The video digitizer
component sets these flags to indicate the circumstances in which the
function has been called. The following flags are defined:

Bit 0 Even-line field interrupt. If this flag is set to 1, the video
digitizer component is about to display an even-line field.

Bit 1 Odd-line field interrupt. If this flag is set to 1, the video
digitizer component is about to display an odd-line field.

refcon Contains parameter data that is appropriate for the interrupt function.
The application assigns the value of the reference constant when it sets
the interrupt function.

noErr 0 No error
qtParamErr –2202 Invalid parameter value

C H A P T E R 8

Video Digitizer Components

Summary of Video Digitizer Components 8-99

Summary of Video Digitizer Components

C Summary

Constants

enum {

videoDigitizerComponentType = 'vdig',/* standard type for video

 digitizer components */

/* input format standards */

ntscIn = 0, /* National Television System Committee */

palIn = 1, /* Phase Alternation Line */

secamIn = 2, /* Sequential Color with Memory */

/* input formats */

compositeIn = 0, /* no color separation of channels */

sVideoIn = 1, /* s-video (super VHS) */

rgbComponentIn = 2, /* separate channels for red, green, & blue */

/* video digitizer component PlayThru states */

 vdPlayThruOff = 0, /* playthrough off */

vdPlayThruOn = 1, /* playthrough on */

/* field preference options in VDGetFieldPreference function */

vdUseAnyField = 0, /* digitizer component decides which field to use */

vdUseOddField = 1, /* digitizer component uses odd field */

vdUseEvenField = 2, /* digitizer component uses even field */

/* input color space modes */

vdDigitizerBW = 0, /* digitizer component uses black and white */

vdDigitizerRGB = 1, /* digitizer component uses red, green, & blue */

/* phase lock loop modes */

vdBroadcastMode = 0, /* broadcast (laser disk) video mode */

vdVTRMode = 1, /* VCR (magnetic media) mode */

C H A P T E R 8

Video Digitizer Components

8-100 Summary of Video Digitizer Components

/* video digitizer component types */

vdTypeBasic = 0,/* basic component does not support clipping */

vdTypeAlpha = 1,/* component supports clipping with alpha channel */

vdTypeMask = 2,/* component supports clipping with mask plane */

vdTypeKey = 3, /* component supports clipping with one or more key

 colors */

/* digitizer input capability/current flags */

digiInDoesNTSC = (1L<<0), /* NTSC input */

digiInDoesPAL = (1L<<1), /* PAL input */

digiInDoesSECAM = (1L<<2), /* SECAM format */

digiInDoesGenLock = (1L<<7), /* digitizer performs genlock */

digiInDoesComposite = (1L<<8), /* composite input */

digiInDoesSVideo = (1L<<9), /* s-video input type */

digiInDoesComponent = (1L<<10), /* component (RGB) input type */

digiInVTR_Broadcast = (1L<<11),/* differentiates between magnetic

media and broadcast input */

digiInDoesColor = (1L<<12),/* digitizer supports color */

digiInDoesBW = (1L<<13),/* digitizer supports black & white */

/* digitizer input current flags (these are valid only during active

operating conditions) */

digiInSignalLock = (1L<<31), /* digitizer detects locked input signal

- this bit =

horiz lock || vertical lock */

/* digitizer output capability/current flags */

digiOutDoes1 = (1L<<0), /* digitizer supports 1-bit pixels */

digiOutDoes2 = (1L<<1), /* digitizer supports 2-bit pixels */

digiOutDoes4 = (1L<<2), /* digitizer supports 4-bit pixels */

digiOutDoes8 = (1L<<3), /* digitizer supports 8-bit pixels */

digiOutDoes16 = (1L<<4), /* digitizer supports 16-bit pixels */

digiOutDoes32 = (1L<<5), /* digitizer supports 32-bit pixels */

digiOutDoesDither = (1L<<6), /* digitizer dithers in indexed modes */

digiOutDoesStretch= (1L<<7), /* digitizer can arbitrarily stretch */

digiOutDoesShrink = (1L<<8), /* digitizer can arbitrarily shrink */

 digiOutDoesMask = (1L<<9), /* masks to clipping regions */

digiOutDoesDouble = (1L<<11),/* stretches to exactly double size */

digiOutDoesQuad = (1L<<12),/* stretches to exactly quadruple size */

digiOutDoesQuarter = (1L<<13),/* shrinks to exactly one-quarter size */

digiOutDoesSixteenth = (1L<<14),/* shrinks to exactly one-sixteenth */

digiOutDoesRotate = (1L<<15),/* supports rotation transformations */

digiOutDoesHorizFlip = (1L<<16),/* supports horizontal flips Sx < 0 */

C H A P T E R 8

Video Digitizer Components

Summary of Video Digitizer Components 8-101

digiOutDoesVertFlip = (1L<<17),/* supports vertical flips Sy < 0 */

digiOutDoesSkew = (1L<<18),/* supports skew (shear,twist) */

digiOutDoesBlend = (1L<<19),/* supports blend operations */

digiOutDoesWarp = (1L<<20),/* supports warp operations */

digiOutDoesHW_DMA = (1L<<21),/* not constrained to local device */

digiOutDoesHWPlayThru= (1L<<22),/* doesn't need time to play */

digiOutDoesILUT = (1L<<23),/* does lookup table for index modes */

digiOutDoesKeyColor = (1L<<24),/* performs key color functions too */

digiOutDoesAsyncGrabs= (1L<<25),/* supports asynchronous grabs */

digiOutDoesUnreadableScreenBits

= (1L<<26),/* playthru doesn't generate readable

bits on screen */

digiOutDoesCompress = (1L<<27),/* supports compressed source devices */

digiOutDoesCompressOnly

= (1L<<28),/* can't draw images */

digiOutDoesPlayThruDuringCompress

= (1L<<29) /* can play while providing compressed

data */

};

enum {

/* video digitizer interface */

kSelectVDGetMaxSrcRect = 0x1,/* VDGetMaxSrcRect (required) */

kSelectVDGetActiveSrcRect = 0x2,/* VDGetActiveSrcRect

(required) */

kSelectVDSetDigitizerRect = 0x3,/* VDSetDigitizerRect

(required) */

kSelectVDGetDigitizerRect = 0x4,/* VDGetDigitizerRect

(required) */

kSelectVDGetVBlankRect = 0x5,/* VDGetVBlankRect (required) */

kSelectVDGetMaskPixMap = 0x6,/* VDGetMaskPixMap */

/* 1 available selector here */

kSelectVDGetPlayThruDestination = 0x8,/* VDGetPlayThruDestination

(required) */

kSelectVDUseThisCLUT = 0x9,/* VDUseThisCLUT */

kSelectVDSetInputGammaValue = 0xA,/* VDSetInputGammaValue */

kSelectVDGetInputGammaValue = 0xB,/* VDGetInputGammaValue */

kSelectVDSetBrightness = 0xC,/* VDSetBrightness */

kSelectVDGetBrightness = 0xD,/* VDGetBrightness */

kSelectVDSetContrast = 0xE,/* VDSetContrast */

kSelectVDSetHue = 0xF,/* VDSetHue */

kSelectVDSetSharpness = 0x10,/* VDSetSharpness */

kSelectVDSetSaturation = 0x11,/* VDSetSaturation */

C H A P T E R 8

Video Digitizer Components

8-102 Summary of Video Digitizer Components

kSelectVDGetContrast = 0x12,/* VDGetContrast */

kSelectVDGetHue = 0x13,/* VDGetHue */

kSelectVDGetSharpness = 0x14,/* VDGetSharpness */

kSelectVDGetSaturation = 0x15,/* VDGetSaturation */

kSelectVDGrabOneFrame = 0x16,/* VDGrabOneFrame

(required) */

kSelectVDGetMaxAuxBuffer = 0x17,/* VDGetMaxAuxBuffer */

kSelectVDGetDigitizerInfo = 0x19,/* VDGetDigitizerInfo

(required) */

kSelectVDGetCurrentFlags = 0x1A,/* VDGetCurrentFlags

(required) */

kSelectVDSetKeyColor = 0x1B,/* VDSetKeyColor */

kSelectVDGetKeyColor = 0x1C,/* VDGetKeyColor */

kSelectVDAddKeyColor = 0x1D,/* VDAddKeyColor */

kSelectVDGetNextKeyColor = 0x1E,/* VDGetNextKeyColor */

kSelectVDSetKeyColorRange = 0x1F,/* VDSetKeyColorRange */

kSelectVDGetKeyColorRange = 0x20,/* VDGetKeyColorRange */

kSelectVDSetDigitizerUserInterrupt = 0x21,

/* VDSetDigitizerUserInterrupt */

kSelectVDSetInputColorSpaceMode = 0x22,/* VDSetInputColorSpaceMode */

kSelectVDGetInputColorSpaceMode = 0x23,/* VDGetInputColorSpaceMode */

kSelectVDSetClipState = 0x24,/* VDSetClipState */

kSelectVDGetClipState = 0x25,/* VDGetClipState */

kSelectVDSetClipRgn = 0x26,/* VDSetClipRgn */

kSelectVDClearClipRgn = 0x27,/* VDClearClipRgn */

kSelectVDGetCLUTInUse = 0x28,/* VDGetCLUTInUse */

kSelectVDSetPLLFilterType = 0x29,/* VDSetPLLFilterType */

kSelectVDGetPLLFilterType = 0x2A,/* VDGetPLLFilterType */

kSelectVDGetMaskandValue = 0x2B,/* VDGetMaskandValue */

kSelectVDSetMasterBlendLevel = 0x2C,/* VDSetMasterBlendLevel */

kSelectVDSetPlayThruDestination = 0x2D,/* VDSetPlayThruDestination */

kSelectVDSetPlayThruOnOff = 0x2E,/* VDSetPlayThruOnOff */

kSelectVDSetFieldPreference = 0x2F,/* VDSetFieldPreference

(required) */

kSelectVDGetFieldPreference = 0x30,/* VDGetFieldPreference

(required) */

kSelectVDPreflightDestination = 0x32,/* VDPreflightDestination

(required) */

kSelectVDPreflightGlobalRect = 0x33,/* VDPreflightGlobalRect */

kSelectVDSetPlayThruGlobalRect = 0x34,/* VDSetPlayThruGlobalRect */

kSelectVDSetInputGammaRecord = 0x35,/* VDSetInputGammaRecord */

kSelectVDGetInputGammaRecord = 0x36,/* VDGetInputGammaRecord */

kSelectVDSetBlackLevelValue = 0x37,/* VDSetBlackLevelValue */

C H A P T E R 8

Video Digitizer Components

Summary of Video Digitizer Components 8-103

kSelectVDGetBlackLevelValue = 0x38,/* VDGetBlackLevelValue */

kSelectVDSetWhiteLevelValue = 0x39,/* VDSetWhiteLevelValue */

kSelectVDGetWhiteLevelValue = 0x3A,/* VDGetWhiteLevelValue */

kSelectVDGetVideoDefaults = 0x3B,/* VDGetVideoDefaults */

kSelectVDGetNumberOfInputs = 0x3C,/* VDGetNumberOfInputs */

kSelectVDGetInputFormat = 0x3D,/* VDGetInputFormat */

kSelectVDSetInput = 0x3E,/* VDSetInput */

kSelectVDGetInput = 0x3F,/* VDGetInput */

kSelectVDSetInputStandard = 0x40,/* VDSetInputStandard */

kSelectVDSetupBuffers = 0x41,/* VDSetupBuffers */

kSelectVDGrabOneFrameAsync = 0x42,/* VDGrabOneFrameAsync */

kSelectVDDone = 0x43,/* VDDone */

kSelectVDSetCompression = 0x44,/* VDSetCompression */

kSelectVDCompressOneFrameAsync = 0x45,/* VDCompressOneFrameAsync */

kSelectVDCompressDone = 0x46,/* VDCompressDone */

kSelectVDReleaseCompressBuffer = 0x47,/* VDReleaseCompressBuffer */

kSelectVDGetImageDescription = 0x48,/* VDGetImageDescription */

kSelectVDResetCompressSequence = 0x49,/* VDResetCompressSequence */

kSelectVDSetCompressionOnOff = 0x4A,/* VDSetCompressionOnOff */

kSelectVDGetCompressionTypes = 0x4B,/* VDGetCompressionTypes */

kSelectVDSetTimeBase = 0x4C,/* VDSetTimeBase */

kSelectVDSetFrameRate = 0x4D,/* VDSetFrameRate */

kSelectVDGetDataRate = 0x4E,/* VDGetDataRate */

kSelectVDGetSoundInputDriver = 0x4F,/* VDGetSoundInputDriver */

kSelectVDGetDMADepths = 0x50,/* VDGetDMADepths */

kSelectVDGetPreferredTimeScale = 0x51,/* VDGetPreferredTimeScale */

kSelectVDReleaseAsyncBuffers = 0x52,/* VDReleaseAsyncBuffers */

};

/* flags for VDGetDMADepths depthArray parameter */

enum {

dmaDepth1 = 1, /* supports black and white */

dmaDepth2 = 2, /* supports 2-bit color */

dmaDepth4 = 4, /* supports 4-bit color */

dmaDepth8 = 8, /* supports 8-bit color */

dmaDepth16 = 16, /* supports 16-bit color */

dmaDepth32 = 32, /* supports 32-bit color */

dmaDepth2Gray = 64, /* supports 2-bit grayscale */

dmaDepth4Gray = 128, /* supports 4-bit grayscale */

dmaDepth8Gray = 256 /* supports 8-bit grayscale */

};

C H A P T E R 8

Video Digitizer Components

8-104 Summary of Video Digitizer Components

Data Types

typedef ComponentInstance VideoDigitizerComponent;/* video digitizer

component */

typedef ComponentResult VideoDigitizerError; /* video digitizer error */

struct DigitizerInfo {

short vdigType; /* type of digitizer component */

long inputCapabilityFlags;/* input video signal features */

long outputCapabilityFlags;/* output digitized video data features

of digitizer component */

long inputCurrentFlags; /* status of input video signal */

long outputCurrentFlags; /* status of output digitized video data */

short slot; /* temporary for connection purposes */

GDHandle gdh; /* temporary for digitizers with

preferred screen */

GDHandle maskgdh; /* temporary for digitizers with

mask planes */

short minDestHeight; /* smallest resizable height */

short minDestWidth; /* smallest resizable width */

short maxDestHeight; /* largest resizable height */

short maxDestWidth; /* largest resizable width */

short blendLevels; /* number of blend levels supported

(2 if 1 bit mask) */

long Private; /* reserved--set to 0 */

};

typedef struct DigitizerInfo DigitizerInfo;

struct VdigBufferRecList {

short count; /* # of buffers defined by this structure */

MatrixRecordPtr matrix; /* tranformation matrix applied to dest rects

before video image is displayed */

RgnHandle mask; /* clip region applied to dest rect before

video image is displayed */

VdigBufferRec list[1]; /* array of output buffer specifications */

};

typedef struct {

PixMapHandle dest; /* handle to pixel map for destination buffer */

Point location;/* location of video destination in pixel map */

long reserved;/* reserved--set to 0 */

} VdigBufferRec;

C H A P T E R 8

Video Digitizer Components

Summary of Video Digitizer Components 8-105

typedef struct VDCompressionList {

CodecComponent codec; /* component ID */

CodecType cType; /* compressor type */

Str63 typeName; /* compression algorithm */

Str63 name; /* compressor name string */

long formatFlags; /* data format flags */

long compressFlags; /* capabilities flags */

long reserved; /* set to 0 */

} VDCompressionList, *VDCompressionListPtr, **VDCompressionListHandle;

Video Digitizer Component Functions

Getting Information About Video Digitizer Components

pascal VideoDigitizerError VDGetDigitizerInfo
(VideoDigitizerComponent ci,
DigitizerInfo *info);

pascal VideoDigitizerError VDGetCurrentFlags
(VideoDigitizerComponent ci,
long *inputCurrentFlag,
long *outputCurrentFlag);

Setting Source Characteristics

pascal VideoDigitizerError VDGetMaxSrcRect
(VideoDigitizerComponent ci, short inputStd,
Rect *maxSrcRect);

pascal VideoDigitizerError VDGetActiveSrcRect
(VideoDigitizerComponent ci,
short inputStd, Rect *activeSrcRect);

pascal VideoDigitizerError VDGetVBlankRect
(VideoDigitizerComponent ci,
short inputStd, Rect *vBlankRect);

pascal VideoDigitizerError VDSetDigitizerRect
(VideoDigitizerComponent ci,
Rect *digitizerRect);

pascal VideoDigitizerError VDGetDigitizerRect
(VideoDigitizerComponent ci,
Rect *digitizerRect);

C H A P T E R 8

Video Digitizer Components

8-106 Summary of Video Digitizer Components

Selecting an Input Source

pascal VideoDigitizerError VDGetNumberOfInputs
(VideoDigitizerComponent ci, short *inputs);

pascal VideoDigitizerError VDSetInput
(VideoDigitizerComponent ci, short input);

pascal VideoDigitizerError VDGetInput
(VideoDigitizerComponent ci, short *input);

pascal VideoDigitizerError VDGetInputFormat
(VideoDigitizerComponent ci, short input,
short *format);

pascal VideoDigitizerError VDSetInputStandard
(VideoDigitizerComponent ci,
short inputStandard);

Setting Video Destinations

pascal VideoDigitizerError VDSetPlayThruDestination
(VideoDigitizerComponent ci,
PixMapHandle dest, Rect *destRect,
MatrixRecord *m, RgnHandle mask);

pascal VideoDigitizerError VDPreflightDestination
(VideoDigitizerComponent ci,
Rect *digitizerRect, PixMapHandle dest,
Rect *destRect, MatrixRecord *m);

pascal VideoDigitizerError VDGetPlayThruDestination
(VideoDigitizerComponent ci,
PixMapHandle *dest, Rect *destRect,
MatrixRecord *m, RgnHandle *mask);

pascal VideoDigitizerError VDSetPlayThruGlobalRect
(VideoDigitizerComponent ci,
GrafPtr theWindow, Rect *globalRect);

pascal VideoDigitizerError VDPreflightGlobalRect
(VideoDigitizerComponent ci,
GrafPtr theWindow, Rect *globalRect);

pascal VideoDigitizerError VDGetMaxAuxBuffer
(VideoDigitizerComponent ci,
PixMapHandle *pm, Rect *r);

Controlling Compressed Source Devices

pascal VideoDigitizerError VDGetCompressionTypes
(VideoDigitizerComponent ci,
VDCompressionListHandle h);

C H A P T E R 8

Video Digitizer Components

Summary of Video Digitizer Components 8-107

pascal VideoDigitizerError VDSetCompression
(VideoDigitizerComponent ci,
OSType compressType, short depth,
Rect *bounds, CodecQ spatialQuality,
CodecQ temporalQuality, long keyFrameRate);

pascal VideoDigitizerError VDSetCompressionOnOff
(VideoDigitizerComponent ci, Boolean state);

pascal VideoDigitizerError VDCompressOneFrameAsync
(VideoDigitizerComponent ci);

pascal VideoDigitizerError VDCompressDone
(VideoDigitizerComponent ci, Boolean *done,
Ptr *theData, long *dataSize,
unsigned char *similarity, TimeRecord *t);

pascal VideoDigitizerError VDReleaseCompressBuffer
(VideoDigitizerComponent ci, Ptr bufferAddr);

pascal VideoDigitizerError VDGetImageDescription
(VideoDigitizerComponent ci,
ImageDescriptionHandle desc);

pascal VideoDigitizerError VDResetCompressSequence
(VideoDigitizerComponent ci);

pascal VideoDigitizerError VDSetTimeBase
(VideoDigitizerComponent ci, TimeBase t);

Controlling Digitization

pascal VideoDigitizerError VDSetPlayThruOnOff
(VideoDigitizerComponent ci, short state);

pascal VideoDigitizerError VDGrabOneFrame
(VideoDigitizerComponent ci);

pascal VideoDigitizerError VDSetupBuffers
(VideoDigitizerComponent ci,
VdigBufferRecListHandle bufferList);

pascal VideoDigitizerError VDReleaseAsyncBuffers
(VideoDigitizerComponent ci);

pascal VideoDigitizerError VDGrabOneFrameAsync
(VideoDigitizerComponent ci, short buffer);

pascal long VDDone (VideoDigitizerComponent ci, short buffer);

pascal VideoDigitizerError VDSetFrameRate
(VideoDigitizerComponent ci,
Fixed framesPerSecond);

pascal VideoDigitizerError VDGetDataRate
(VideoDigitizerComponent ci,
long *milliSecPerFrame,
Fixed *framesPerSecond, long *bytesPerSecond);

C H A P T E R 8

Video Digitizer Components

8-108 Summary of Video Digitizer Components

Controlling Color

pascal VideoDigitizerError VDUseThisCLUT
(VideoDigitizerComponent ci,
CTabHandle colorTableHandle);

pascal VideoDigitizerError VDGetCLUTInUse
(VideoDigitizerComponent ci,
CTabHandle *colorTableHandle);

pascal VideoDigitizerError VDSetInputColorSpaceMode
(VideoDigitizerComponent ci,
short colorSpaceMode);

pascal VideoDigitizerError VDGetInputColorSpaceMode
(VideoDigitizerComponent ci,
short *colorSpaceMode);

pascal VideoDigitizerError VDGetDMADepths
(VideoDigitizerComponent ci,
long *depthArray, long *preferredDepth);

Controlling Analog Video

pascal VideoDigitizerError VDGetVideoDefaults
(VideoDigitizerComponent ci,
unsigned short *blackLevel,
unsigned short *whiteLevel,
unsigned short *brightness,
unsigned short *hue,
unsigned short *saturation,
unsigned short *contrast,
unsigned short *sharpness);

pascal VideoDigitizerError VDSetBlackLevelValue
(VideoDigitizerComponent ci,
unsigned short *blackLevel);

pascal VideoDigitizerError VDGetBlackLevelValue
(VideoDigitizerComponent ci,
unsigned short *blackLevel);

pascal VideoDigitizerError VDSetWhiteLevelValue
(VideoDigitizerComponent ci,
unsigned short *whiteLevel);

pascal VideoDigitizerError VDGetWhiteLevelValue
(VideoDigitizerComponent ci,
unsigned short *whiteLevel);

pascal VideoDigitizerError VDSetHue
(VideoDigitizerComponent ci,
unsigned short *hue);

C H A P T E R 8

Video Digitizer Components

Summary of Video Digitizer Components 8-109

pascal VideoDigitizerError VDGetHue
(VideoDigitizerComponent ci,
unsigned short *hue);

pascal VideoDigitizerError VDSetSaturation
(VideoDigitizerComponent ci,
unsigned short *saturation);

pascal VideoDigitizerError VDGetSaturation
(VideoDigitizerComponent ci,
unsigned short *saturation);

pascal VideoDigitizerError VDSetBrightness
(VideoDigitizerComponent ci,
unsigned short *brightness);

pascal VideoDigitizerError VDGetBrightness
(VideoDigitizerComponent ci,
unsigned short *brightness);

pascal VideoDigitizerError VDSetContrast
(VideoDigitizerComponent ci,
unsigned short *contrast);

pascal VideoDigitizerError VDGetContrast
(VideoDigitizerComponent ci,
unsigned short *contrast);

pascal VideoDigitizerError VDSetSharpness
(VideoDigitizerComponent ci,
unsigned short *sharpness);

pascal VideoDigitizerError VDGetSharpness
(VideoDigitizerComponent ci,
unsigned short *sharpness);

pascal VideoDigitizerError VDSetInputGammaRecord
(VideoDigitizerComponent ci,
VDGamRecPtr inputGammaPtr);

pascal VideoDigitizerError VDGetInputGammaRecord
(VideoDigitizerComponent ci,
VDGamRecPtr *inputGammaPtr);

pascal VideoDigitizerError VDSetInputGammaValue
(VideoDigitizerComponent ci,
Fixed channel1, Fixed channel2,
Fixed channel3);

pascal VideoDigitizerError VDGetInputGammaValue
(VideoDigitizerComponent ci,
Fixed *channel1, Fixed *channel2,
Fixed *channel3);

C H A P T E R 8

Video Digitizer Components

8-110 Summary of Video Digitizer Components

Selectively Displaying Video

pascal VideoDigitizerError VDSetKeyColor
(VideoDigitizerComponent ci,long index);

pascal VideoDigitizerError VDGetKeyColor
(VideoDigitizerComponent ci, long *index);

pascal VideoDigitizerError VDSetKeyColorRange
(VideoDigitizerComponent ci,
RGBColor *minRGB, RGBColor *maxRGB);

pascal VideoDigitizerError VDAddKeyColor
(VideoDigitizerComponent ci, long *index);

pascal VideoDigitizerError VDGetKeyColorRange
(VideoDigitizerComponent ci,
RGBColor *minRGB, RGBColor *maxRGB);

pascal VideoDigitizerError VDGetNextKeyColor
(VideoDigitizerComponent ci, long index);

pascal VideoDigitizerError VDSetMasterBlendLevel
(VideoDigitizerComponent ci,
unsigned short *blendLevel);

pascal VideoDigitizerError VDGetMaskandValue
(VideoDigitizerComponent ci,
unsigned short blendLevel, long *mask,
long *value);

pascal VideoDigitizerError VDGetMaskPixMap
(VideoDigitizerComponent ci,
PixMapHandle maskPixMap);

Clipping

pascal VideoDigitizerError VDSetClipRgn
(VideoDigitizerComponent ci,
RgnHandle clipRegion);

pascal VideoDigitizerError VDClearClipRgn
(VideoDigitizerComponent ci,
RgnHandle clipRegion);

pascal VideoDigitizerError VDSetClipState
(VideoDigitizerComponent ci, short clipEnable);

pascal VideoDigitizerError VDGetClipState
(VideoDigitizerComponent ci, short *clipEnable);

C H A P T E R 8

Video Digitizer Components

Summary of Video Digitizer Components 8-111

Utility Functions

pascal VideoDigitizerError VDSetPLLFilterType
(VideoDigitizerComponent ci, short pllType);

pascal VideoDigitizerError VDGetPLLFilterType
(VideoDigitizerComponent ci, short *pllType);

pascal VideoDigitizerError VDSetFieldPreference
(VideoDigitizerComponent ci, short fieldFlag);

pascal VideoDigitizerError VDGetFieldPreference
(VideoDigitizerComponent ci, short *fieldFlag);

pascal VideoDigitizerError VDSetDigitizerUserInterrupt
(VideoDigitizerComponent ci, long flags,
VdigIntProc userInterruptProc, long refcon);

pascal VideoDigitizerError VDGetSoundInputDriver
(VideoDigitizerComponent ci,
Str255 soundDriverName);

pascal VideoDigitizerError VDGetPreferredTimeScale
(VideoDigitizerComponent ci,
TimeScale *preferred);

Application-Defined Function

pascal void MyInterruptProc (long flags, long refcon);

Pascal Summary

Constants

CONST

videoDigitizerComponentType = 'vdig'; {standard type for video }

{ digitizer components}

{input format standards}

ntscIn = 0; {National Television System Committee}

palIn = 1; {Phase Alternation Line}

secamIn = 2; {Sequential Color with Memory}

{input formats}

compositeIn = 0; {no color separation of channels}

sVideoIn = 1; {s-video (Super VHS)}

rgbComponentIn = 2; {separate channels for red, green, & blue}

C H A P T E R 8

Video Digitizer Components

8-112 Summary of Video Digitizer Components

{video digitizer PlayThru states}

vdPlayThruOff = 0; {playthrough off}

vdPlayThruOn = 1; {playthrough on}

{field preference options in VDGetFieldPreference function}

vdUseAnyField = 0; {digitizer component decides which field to use}

vdUseOddField = 1; {digitizer component uses odd field}

vdUseEvenField = 2; {digitizer component uses even field}

{input color space modes}

vdDigitizerBW = 0; {digitizer component uses black and white}

vdDigitizerRGB = 1; {digitizer component uses red, green, and blue}

{phase lock loop modes}

vdBroadcastMode = 0; {broadcast or laser disk video mode}

vdVTRMode = 1; {video cassette recorder or magnetic media mode}

{video digitizer component types}

vdTypeBasic = 0; {basic component does not support clipping}

vdTypeAlpha = 1; {component supports clipping with alpha channel}

vdTypeMask = 2; {component supports clipping with mask plane}

vdTypeKey = 3; {supports clipping with one or more key colors}

{digitizer input capability/current flags}

digiInDoesNTSC = $1; {digitizer supports NTSC input}

digiInDoesPAL = $2; {digitizer supports PAL input}

digiInDoesSECAM = $4; {digitizer supports SECAM input}

digiInDoesGenLock = $80; {digitizer supports genlock}

digiInDoesComposite = $100; {digitizer supports composite input type}

digiInDoesSVideo = $200; {digitizer supports s-video input type}

digiInDoesComponent = $400; {digitizer supports component input type}

digiInVTR_Broadcast = $800; {digitizer can differentiate between }

{ magnetic media & broadcast}

digiInDoesColor = $1000; {digitizer supports color}

digiInDoesBW = $2000; {digitizer supports black and white}

{digitizer input current flag (valid only during active operating }

{ conditions)}

digiInSignalLock = $80000000;{digitizer detects input signal is }

{ locked--this bit equals }

{ horiz lock || vertical lock}

C H A P T E R 8

Video Digitizer Components

Summary of Video Digitizer Components 8-113

{digitizer output capability/current flags}

 digiOutDoes1 = $1; {digitizer supports 1-bit pixels}

digiOutDoes2 = $2; {digitizer supports 2-bit pixels}

digiOutDoes4 = $4; {digitizer supports 4-bit pixels}

digiOutDoes8 = $8; {digitizer supports 8-bit pixels}

digiOutDoes16 = $10; {digitizer supports 16-bit pixels}

digiOutDoes32 = $20; {digitizer supports 32-bit pixels}

digiOutDoesDither = $40; {digitizer dithers in indexed modes}

digiOutDoesStretch = $80; {digitizer can arbitrarily stretch}

digiOutDoesShrink = $100; {digitizer can arbitrarily shrink}

digiOutDoesMask = $200; {digitizer can mask to clipping }

{ regions}

digiOutDoesDouble = $800; {can stretch to exactly double size}

digiOutDoesQuad = $1000; {can stretch to exactly quadruple }

{ size}

digiOutDoesQuarter = $2000; {can shrink to exactly 1/4 size}

digiOutDoesSixteenth = $4000; {can shrink to exactly 1/16 size}

digiOutDoesRotate = $8000; {supports rotation transformations}

digiOutDoesHorizFlip = $10000; {supports horizontal flips Sx < 0}

digiOutDoesVertFlip = $20000; {supports vertical flips Sy < 0}

digiOutDoesSkew = $40000; {supports skew (shear, twist)}

digiOutDoesBlend = $80000; {digitizer performs blend operations}

digiOutDoesWarp = $100000; {digitizer performs warp operations}

digiOutDoesHW_DMA = $200000; {not constrained to logical device}

digiOutDoesHWPlayThru= $400000; {doesn't need time to play through}

digiOutDoesILUT = $800000; {does lookup for index modes}

digiOutDoesKeyColor = $1000000; {performs key color functions too}

digiOutDoesAsyncGrabs= $2000000; {performs asynchronous grabs}

digiOutDoesUnreadableScreenBits

= $4000000; {playthru doesn't generate readable }

{ bits on screen}

digiOutDoesCompress = $8000000; {supports compressed source devices}

digiOutDoesCompressOnly

= $10000000; {can't draw images}

digiOutDoesPlayThruDuringCompress

= $2000000; {can play while providing compressed }

{ data}

{video digitizer interface}

kSelectVDGetMaxSrcRect = $1; {VDGetMaxSrcRect (required)}

kSelectVDGetActiveSrcRect = $2; {VDGetActiveSrcRect (required)}

kSelectVDSetDigitizerRect = $3; {VDSetDigitizerRect (required)}

kSelectVDGetDigitizerRect = $4; {VDGetDigitizerRect (required)}

kSelectVDGetVBlankRect = $5; {VDGetVBlankRect (required)}

C H A P T E R 8

Video Digitizer Components

8-114 Summary of Video Digitizer Components

kSelectVDGetMaskPixMap = $6; {VDGetMaskPixMap}

kSelectVDGetPlayThruDestination = $8; {VDGetPlayThruDestination }

{ (required)}

kSelectVDUseThisCLUT = $9; {VDUseThisCLUT}

kSelectVDSetInputGammaValue = $A; {VDSetInputGammaValue}

kSelectVDGetInputGammaValue = $B; {VDGetInputGammaValue}

kSelectVDSetBrightness = $C; {VDSetBrightness}

kSelectVDGetBrightness = $D; {VDGetBrightness}

kSelectVDSetContrast = $E; {VDSetContrast}

kSelectVDSetHue = $F; {VDSetHue}

kSelectVDSetSharpness = $10;{VDSetSharpness}

kSelectVDSetSaturation = $11;{VDSetSaturation}

kSelectVDGetContrast = $12;{VDGetContrast}

kSelectVDGetHue = $13;{VDGetHue}

kSelectVDGetSharpness = $14;{VDGetSharpness}

kSelectVDGetSaturation = $15;{VDGetSaturation}

kSelectVDGrabOneFrame = $16;{VDGrabOneFrame (required)}

kSelectVDGetMaxAuxBuffer = $17;{VDGetMaxAuxBuffer}

kSelectVDGetDigitizerInfo = $19;{VDGetDigitizerInfo}

kSelectVDGetCurrentFlags = $1A;{VDGetCurrentFlags}

kSelectVDSetKeyColor = $1B;{VDSetKeyColor}

kSelectVDGetKeyColor = $1C;{VDGetKeyColor}

kSelectVDAddKeyColor = $1D;{VDAddKeyColor}

kSelectVDGetNextKeyColor = $1E;{VDGetNextKeyColor}

kSelectVDSetKeyColorRange = $1F;{VDSetKeyColorRange}

kSelectVDGetKeyColorRange = $20;{VDGetKeyColorRange}

kSelectVDSetDigitizerUserInterrupt

= $21;{VDSetDigitizerUserInterrupt}

kSelectVDSetInputColorSpaceMode = $22;{VDSetInputColorSpaceMode}

kSelectVDGetInputColorSpaceMode = $23;{VDGetInputColorSpaceMode}

kSelectVDSetClipState = $24;{VDSetClipState}

kSelectVDGetClipState = $25;{VDGetClipState}

kSelectVDSetClipRgn = $26;{VDSetClipRgn}

kSelectVDClearClipRgn = $27;{VDClearClipRgn}

kSelectVDGetCLUTInUse = $28;{VDGetCLUTInUse}

kSelectVDSetPLLFilterType = $29;{VDSetPLLFilterType}

kSelectVDGetPLLFilterType = $2A;{VDGetPLLFilterType}

kSelectVDGetMaskandValue = $2B;{VDGetMaskandValue}

kSelectVDSetMasterBlendLevel = $2C;{VDSetMasterBlendLevel}

kSelectVDSetPlayThruDestination = $2D;{VDSetPlayThruDestination}

kSelectVDSetPlayThruOnOff = $2E;{VDSetPlayThruOnOff}

kSelectVDSetFieldPreference = $2F;{VDSetFieldPreference }

{ (required)}

C H A P T E R 8

Video Digitizer Components

Summary of Video Digitizer Components 8-115

kSelectVDGetFieldPreference = $30;{VDGetFieldPreference }

{ (required)}

kSelectVDPreflightDestination = $32;{VDPreflightDestination }

{ (required)}

kSelectVDPreflightGlobalRect = $33;{VDPreflightGlobalRect}

kSelectVDSetPlayThruGlobalRect = $34;{VDSetPlayThruGlobalRect}

kSelectVDSetInputGammaRecord = $35;{VDSetInputGammaRecord}

kSelectVDGetInputGammaRecord = $36;{VDGetInputGammaRecord}

kSelectVDSetBlackLevelValue = $37;{VDSetBlackLevelValue}

kSelectVDGetBlackLevelValue = $38;{VDGetBlackLevelValue}

kSelectVDSetWhiteLevelValue = $39;{VDSetWhiteLevelValue}

kSelectVDGetWhiteLevelValue = $3A;{VDGetWhiteLevelValue}

kSelectVDGetVideoDefaults = $3B;{VDGetVideoDefaults}

kSelectVDGetNumberOfInputs = $3C;{VDGetNumberOfInputs}

kSelectVDGetInputFormat = $3D;{VDGetInputFormat}

kSelectVDSetInput = $3E;{VDSetInput}

kSelectVDGetInput = $3F;{VDGetInput}

kSelectVDSetInputStandard = $40;{VDSetInputStandard}

kSelectVDSetupBuffers = $41;{VDSetupBuffers}

kSelectVDGrabOneFrameAsync = $42;{VDGrabOneFrameAsync}

kSelectVDDone = $43;{VDDone}

kSelectVDSetCompression = $44;{VDSetCompression}

kSelectVDCompressOneFrameAsync = $45;{VDCompressOneFrameAsync}

kSelectVDCompressDone = $46;{VDCompressDone}

kSelectVDReleaseCompressBuffer = $47;{VDReleaseCompressBuffer}

kSelectVDGetImageDescription = $48;{VDGetImageDescription}

kSelectVDResetCompressSequence = $49;{VDResetCompressSequence}

kSelectVDSetCompressionOnOff = $4A;{VDSetCompressionOnOff}

kSelectVDGetCompressionTypes = $4B;{VDGetCompressionTypes}

kSelectVDSetTimeBase = $4C;{VDSetTimeBase}

kSelectVDSetFrameRate = $4D;{VDSetFrameRate}

kSelectVDGetDataRate = $4E;{VDGetDataRate}

kSelectVDGetSoundInputDriver = $4F;{VDGetSoundInputDriver}

kSelectVDGetDMADepths = $50;{VDGetDMADepths}

kSelectVDGetPreferredTimeScale = $51;{VDGetPreferredTimeScale}

kSelectVDReleaseAsyncBuffers = $52;{VDReleaseAsyncBuffers}

C H A P T E R 8

Video Digitizer Components

8-116 Summary of Video Digitizer Components

Data Types

TYPE

VideoDigitizerComponent = ComponentInstance; {video digitizer }

{ component}

VideoDigitizerError = ComponentResult; {video digitizer }

{ error}

VdigIntProc = ComponentResult;

DigitizerInfo =

RECORD

vdigType: Integer; {type of digitizer component}

inputCapabilityFlags: LongInt; {input video signal features}

outputCapabilityFlags: LongInt; {output digitized video data features}

inputCurrentFlags: LongInt; {status of input video signal}

outputCurrentFlags: LongInt; {status of output digitized data}

slot: Integer; {temporary for connection purposes}

gdh: GDHandle;{temporary for digitizers with }

{ preferred screen}

maskgdh: GDHandle;{temporary for digitizers }

{ with mask planes}

minDestHeight: Integer; {smallest resizable height}

minDestWidth: Integer; {smallest resizable width}

maxDestHeight: Integer; {largest resizable height}

maxDestWidth: Integer; {largest resizable width}

blendLevels: Integer; {number of blend levels supported (2 }

{ if 1 bit mask)}

Private: LongInt; {reserved--set to 0}

END;

VdigBufferRec =

RECORD

dest: PixMapHandle; {handle to pixel map for destination buffer}

location: Point; {location of video destination in pixel map}

reserved: LongInt; {reserved--set to 0}

END;

VdigBufferRecListPtr = ^VdigBufferRecList;

VdigBufferRecListHandle = ^VdigBufferRecListPtr;

VdigBufferRecList =

RECORD

count: Integer; {buffers defined by this record}

matrix: MatrixRecordPtr ; {transformation matrix applied to }

{ dest rect before image displayed}

C H A P T E R 8

Video Digitizer Components

Summary of Video Digitizer Components 8-117

mask: RgnHandle; {clip rgn applied to dest rect }

{ before image displayed}

list: ARRAY[0..0] OF VdigBufferRec;

{array of output buffer specs}

END;

VDCompressionListHandle = ^VDCompressionListPtr;

VDCompressionList =

RECORD

codec: CodecComponent; {component ID}

cType: CodecType; {compressor type}

typeName: Str63; {compression algorithm}

name: Str63; {compressor name string}

formatFlags: LongInt; {data format flags}

compressFlags: LongInt; {capabilities flags}

reserved: LongInt; {set to 0}

END;

Video Digitizer Component Routines

Getting Information About Video Digitizer Components

FUNCTION VDGetDigitizerInfo
(ci: VideoDigitizerComponent;
VAR info: DigitizerInfo): VideoDigitizerError;

FUNCTION VDGetCurrentFlags (ci: VideoDigitizerComponent;
VAR inputCurrentFlag: LongInt;
VAR outputCurrentFlag: LongInt):
VideoDigitizerError;

Setting Source Characteristics

FUNCTION VDGetMaxSrcRect (ci: VideoDigitizerComponent;
VAR maxSrcRect: Rect): VideoDigitizerError;

FUNCTION VDGetActiveSrcRect
(ci: VideoDigitizerComponent; inputStd: Integer;
VAR activeSrcRect: Rect): VideoDigitizerError;

FUNCTION VDGetVBlankRect (ci: VideoDigitizerComponent;
VAR vBlankRect: Rect): VideoDigitizerError;

FUNCTION VDSetDigitizerRect
(ci: VideoDigitizerComponent;
VAR digitizerRect: Rect): VideoDigitizerError;

C H A P T E R 8

Video Digitizer Components

8-118 Summary of Video Digitizer Components

FUNCTION VDGetDigitizerRect
(ci: VideoDigitizerComponent;
VAR digitizerRect: Rect): VideoDigitizerError;

Selecting an Input Source

FUNCTION VDGetNumberOfInputs
(ci: VideoDigitizerComponent;
VAR inputs: Integer): VideoDigitizerError;

FUNCTION VDSetInput (ci: VideoDigitizerComponent;
input: Integer): VideoDigitizerError;

FUNCTION VDGetInput (ci: VideoDigitizerComponent;
VAR input: Integer): VideoDigitizerError;

FUNCTION VDGetInputFormat (ci: VideoDigitizerComponent; input: Integer;
VAR format: Integer): VideoDigitizerError;

FUNCTION VDSetInputStandard
(ci: VideoDigitizerComponent;
inputStandard: Integer): VideoDigitizerError;

Setting Video Destinations

FUNCTION VDSetPlayThruDestination
(ci: VideoDigitizerComponent;
dest: PixMapHandle; VAR destRect: Rect;
VAR m: MatrixRecord;
mask: RgnHandle): VideoDigitizerError;

FUNCTION VDPreflightDestination
(ci: VideoDigitizerComponent;
VAR digitizerRect: Rect; dest: PixMapHandle;
VAR destRect: Rect;
VAR m: MatrixRecord): VideoDigitizerError;

FUNCTION VDGetPlayThruDestination
(ci: VideoDigitizerComponent;
VAR dest: PixMapHandle; VAR destRect: Rect;
VAR m: MatrixRecord;
VAR mask: RgnHandle): VideoDigitizerError;

FUNCTION VDSetPlayThruGlobalRect
(ci: VideoDigitizerComponent;
theWindow: GrafPtr; VAR globalRect: Rect):
VideoDigitizerError;

FUNCTION VDPreflightGlobalRect
(ci: VideoDigitizerComponent;
theWindow: GrafPtr; VAR globalRect: Rect):
VideoDigitizerError;

C H A P T E R 8

Video Digitizer Components

Summary of Video Digitizer Components 8-119

FUNCTION VDGetMaxAuxBuffer (ci: VideoDigitizerComponent;
VAR pm: PixMapHandle; VAR r: Rect):
VideoDigitizerError;

Controlling Compressed Source Devices

FUNCTION VDGetCompressionTypes
(ci: VideoDigitizerComponent;
h: VDCompressionListHandle):
VideoDigitizerError;

FUNCTION VDSetCompression (ci: VideoDigitizerComponent;
compressType: OSType; depth: Integer;
VAR bounds: Rect; spatialQuality: CodecQ;
temporalQuality: CodecQ;
keyFrameRate: LongInt): VideoDigitizerError;

FUNCTION VDSetCompressionOnOff
(ci: VideoDigitizerComponent; state: Boolean):
VideoDigitizerError;

FUNCTION VDGrabOneFrameAsync
(ci: VideoDigitizerComponent; buffer: Integer):
VideoDigitizerError;

FUNCTION VDCompressDone (ci: VideoDigitizerComponent;
VAR done: Boolean; VAR theData: Ptr;
VAR dataSize: LongInt; VAR similarity: Byte;
VAR t: TimeRecord): VideoDigitizerError;

FUNCTION VDReleaseCompressBuffer
(ci: VideoDigitizerComponent;
bufferAddr: Ptr): VideoDigitizerError;

FUNCTION VDGetImageDescription
(ci: VideoDigitizerComponent;
desc: ImageDescriptionHandle):
VideoDigitizerError;

FUNCTION VDResetCompressSequence
(ci: VideoDigitizerComponent):
VideoDigitizerError;

FUNCTION VDSetTimeBase (ci: VideoDigitizerComponent; t: TimeBase):
VideoDigitizerError;

Controlling Digitization

FUNCTION VDSetPlayThruOnOff (ci: VideoDigitizerComponent;
state: Integer): VideoDigitizerError;

FUNCTION VDGrabOneFrame (ci: VideoDigitizerComponent):
VideoDigitizerError;

C H A P T E R 8

Video Digitizer Components

8-120 Summary of Video Digitizer Components

FUNCTION VDSetupBuffers (ci: VideoDigitizerComponent;
bufferList: VdigBufferRecListHandle):
VideoDigitizerError;

FUNCTION VDReleaseAsyncBuffers
(ci: VideoDigitizerComponent):
VideoDigitizerError;

FUNCTION VDGrabOneFrameAsync
(ci: VideoDigitizerComponent;
nextBuffer: Integer): VideoDigitizerError;

FUNCTION VDDone (ci: VideoDigitizerComponent,
buffer: Integer): LongInt;

FUNCTION VDSetFrameRate (ci: VideoDigitizerComponent;
framesPerSecond: Fixed): VideoDigitizerError;

FUNCTION VDGetDataRate (ci: VideoDigitizerComponent;
VAR milliSecPerFrame: LongInt;
VAR framesPerSecond: Fixed;
VAR bytesPerSecond: LongInt):
VideoDigitizerError;

Controlling Color

FUNCTION VDUseThisCLUT (ci: VideoDigitizerComponent;
colorTableHandle: CTabHandle):
VideoDigitizerError;

FUNCTION VDGetCLUTInUse (ci: VideoDigitizerComponent;
VAR colorTableHandle: CTabHandle):
VideoDigitizerError;

FUNCTION VDSetInputColorSpaceMode
(ci: VideoDigitizerComponent;
colorSpaceMode: Integer): VideoDigitizerError;

FUNCTION VDGetInputColorSpaceMode
(ci: VideoDigitizerComponent;
VAR colorSpaceMode: Integer):
VideoDigitizerError;

FUNCTION VDGetDMADepths (ci: VideoDigitizerComponent;
VAR depthArray: LongInt; VAR preferredDepth:
LongInt): VideoDigitizerError;

C H A P T E R 8

Video Digitizer Components

Summary of Video Digitizer Components 8-121

Controlling Analog Video

FUNCTION VDGetVideoDefaults (ci: VideoDigitizerComponent;
VAR blackLevel: Integer;
VAR whiteLevel: Integer;
VAR brightness: Integer; VAR hue: Integer;
VAR saturation: Integer; VAR contrast: Integer;
VAR sharpness: Integer): VideoDigitizerError;

FUNCTION VDSetBlackLevelValue
(ci: VideoDigitizerComponent;
VAR blackLevel: Integer): VideoDigitizerError;

FUNCTION VDGetBlackLevelValue
(ci: VideoDigitizerComponent;
VAR blackLevel: Integer): VideoDigitizerError;

FUNCTION VDSetWhiteLevelValue
(ci: VideoDigitizerComponent;
VAR whiteLevel: Integer): VideoDigitizerError;

FUNCTION VDGetWhiteLevelValue
(ci: VideoDigitizerComponent;
VAR whiteLevel: Integer): VideoDigitizerError;

FUNCTION VDSetHue (ci: VideoDigitizerComponent;
VAR hue: Integer): VideoDigitizerError;

FUNCTION VDGetHue (ci: VideoDigitizerComponent;
VAR hue: Integer): VideoDigitizerError;

FUNCTION VDSetSaturation (ci: VideoDigitizerComponent;
VAR saturation: Integer): VideoDigitizerError;

FUNCTION VDGetSaturation (ci: VideoDigitizerComponent;
VAR saturation: Integer): VideoDigitizerError;

FUNCTION VDSetBrightness (ci: VideoDigitizerComponent;
VAR brightness: Integer): VideoDigitizerError;

FUNCTION VDGetBrightness (ci: VideoDigitizerComponent;
VAR brightness: Integer): VideoDigitizerError;

FUNCTION VDSetContrast (ci: VideoDigitizerComponent;
VAR contrast: Integer): VideoDigitizerError;

FUNCTION VDGetContrast (ci: VideoDigitizerComponent;
VAR contrast: Integer): VideoDigitizerError;

FUNCTION VDSetSharpness (ci: VideoDigitizerComponent;
VAR sharpness: Integer): VideoDigitizerError;

FUNCTION VDGetSharpness (ci: VideoDigitizerComponent;
VAR sharpness: Integer): VideoDigitizerError;

FUNCTION VDSetInputGammaRecord
(ci: VideoDigitizerComponent;
inputGammaPtr: VDGamRecPtr):
VideoDigitizerError;

C H A P T E R 8

Video Digitizer Components

8-122 Summary of Video Digitizer Components

FUNCTION VDGetInputGammaRecord
(ci: VideoDigitizerComponent;
VAR inputGammaPtr: VDGamRecPtr):
VideoDigitizerError;

FUNCTION VDSetInputGammaValue
(ci: VideoDigitizerComponent; channel1: Fixed;
channel2: Fixed; channel3: Fixed):
VideoDigitizerError;

FUNCTION VDGetInputGammaValue
(ci: VideoDigitizerComponent;
VAR channel1: Fixed; VAR channel2: Fixed;
VAR channel3: Fixed): VideoDigitizerError;

Selectively Displaying Video

FUNCTION VDSetKeyColor (ci: VideoDigitizerComponent;
index: LongInt): VideoDigitizerError;

FUNCTION VDGetKeyColor (ci: VideoDigitizerComponent;
VAR index: LongInt): VideoDigitizerError;

FUNCTION VDSetKeyColorRange
(ci: VideoDigitizerComponent;
VAR minRGB: RGBColor; VAR maxRGB: RGBColor):
VideoDigitizerError;

FUNCTION VDAddKeyColor (ci: VideoDigitizerComponent;
VAR index: LongInt): VideoDigitizerError;

FUNCTION VDGetKeyColorRange
(ci: VideoDigitizerComponent;
VAR minRGB: RGBColor; VAR maxRGB: RGBColor):
VideoDigitizerError;

FUNCTION VDGetNextKeyColor (ci: VideoDigitizerComponent;
index: LongInt): VideoDigitizerError;

FUNCTION VDSetMasterBlendLevel
(ci: VideoDigitizerComponent;
VAR blendLevel: Integer): VideoDigitizerError;

FUNCTION VDGetMaskandValue (ci: VideoDigitizerComponent;
blendLevel: Integer; VAR mask: LongInt;
VAR value: LongInt): VideoDigitizerError;

FUNCTION VDGetMaskPixMap (ci: VideoDigitizerComponent;
maskPixMap: PixMapHandle): VideoDigitizerError;

C H A P T E R 8

Video Digitizer Components

Summary of Video Digitizer Components 8-123

Clipping

FUNCTION VDSetClipRgn (ci: VideoDigitizerComponent;
clipRegion: RgnHandle): VideoDigitizerError;

FUNCTION VDClearClipRgn (ci: VideoDigitizerComponent;
clipRegion: RgnHandle): VideoDigitizerError;

FUNCTION VDSetClipState (ci: VideoDigitizerComponent;
clipEnable: Integer): VideoDigitizerError;

FUNCTION VDGetClipState (ci: VideoDigitizerComponent;
VAR clipEnable: Integer): VideoDigitizerError;

Utility Functions

FUNCTION VDSetPLLFilterType
(ci: VideoDigitizerComponent;
pllType: Integer): VideoDigitizerError;

FUNCTION VDGetPLLFilterType
(ci: VideoDigitizerComponent;
VAR pllType: Integer): VideoDigitizerError;

FUNCTION VDSetFieldPreference
(ci: VideoDigitizerComponent;
fieldFlag: Integer): VideoDigitizerError;

FUNCTION VDGetFieldPreference
(ci: VideoDigitizerComponent;
VAR fieldFlag: Integer): VideoDigitizerError;

FUNCTION VDSetDigitizerUserInterrupt
(ci: VideoDigitizerComponent;
flags: LongInt; userInterruptProc: ProcPtr;
refcon: LongInt): VideoDigitizerError;

FUNCTION VDGetSoundInputDriver
(ci: VideoDigitizerComponent;
soundDriverName: Str255): VideoDigitizerError;

FUNCTION VDGetPreferredTimeScale
(ci: VideoDigitizerComponent;
preferred: TimeScale): VideoDigitizerError;

Application-Defined Routine

PROCEDURE MyInterruptProc (flags: LongInt; refcon: LongInt);

C H A P T E R 8

Video Digitizer Components

8-124 Summary of Video Digitizer Components

Result Codes
noErr 0 No error
digiUnimpErr –2201 Function not supported
qtParamErr –2202 Invalid parameter value
noMoreKeyColor
s

–2205 Key color list is full

badDepth –2207 Digitizer cannot accommodate pixel depth
noDMA –2208 Digitizer cannot use DMA to this destination
badCallOrder –2209 Invalid call order (usually due to status call that was made prior to

initial setup)

Contents 9-1

C H A P T E R 9

Movie Data Exchange

Contents

Components

About Movie Data Exchange Components 9-3

Using Movie Data Exchange Components 9-5

Importing and Exporting Movie Data 9-6

Configuring a Movie Data Exchange Component 9-6

Finding a Specific Movie Data Exchange Component 9-6

Creating a Movie Data Exchange Component 9-8

A Sample Movie Import Component 9-9

Implementing the Required Import Component Functions 9-10

Importing a Scrapbook File 9-12

A Sample Movie Export Component 9-15

Implementing the Required Export Component Functions 9-16

Exporting Data to a PICS File 9-18

Movie Data Exchange Components Reference 9-20

Importing Movie Data 9-20

Configuring Movie Data Import Components 9-26

Exporting Movie Data 9-34

Configuring Movie Data Export Components 9-37

Summary of Movie Data Exchange Components 9-41

C Summary 9-41

Constants 9-41

Data Type 9-42

Functions 9-42

Pascal Summary 9-44

Constants 9-44

Data Type 9-45

Routines 9-45

Result Codes 9-47

C H A P T E R 9

About Movie Data Exchange Components 9-3

Movie Data Exchange Components

This chapter discusses movie data exchange components. Movie data exchange
components allow applications to move various types of data into and out of a

QuickTime movie. These components provide data conversion services to and from

standard QuickTime movie data formats. Movie data import components convert other

data formats into QuickTime’s movie data format; movie data export components

convert QuickTime movie data into other formats.

This chapter is divided into the following sections:

■ “About Movie Data Exchange Components” provides a general introduction to
components of this type.

■ “Using Movie Data Exchange Components” discusses how applications use these
components.

■ “Creating a Movie Data Exchange Component” describes how to create movie import
and export components with sample programs for their implementation.

■ “Movie Data Exchange Components Reference” presents detailed information about
the functions that are supported by these components.

■ “Summary of Movie Data Exchange Components” contains a condensed listing of the
constants, data structures, and functions supported by these components.

This chapter addresses developers of movie data exchange components. If you plan to

create either a movie data import component or a movie data export component (or

both), you should read the entire chapter. If you are writing an application that uses

components of this type, you should read the first two sections (“About Movie Data

Exchange Components” and “Using Movie Data Exchange Components”), and consult

“Movie Data Exchange Components Reference” as appropriate.

As components, movie data exchange components rely on the facilities of the

Component Manager. In order to use any component, your application must also use

the Component Manager. If you are not familiar with this manager, see the chapter

“Component Manager” in Inside Macintosh: More Macintosh Toolbox. In addition, you

should be familiar with the Movie Toolbox. See “Movie Toolbox” in Inside Macintosh:
QuickTime for more information.

About Movie Data Exchange Components

This section provides background information about movie data exchange components.

After reading this section, you should understand why these components exist and

whether you need to create or use one.

Movie data exchange components allow applications to place various types of data into

a QuickTime movie or extract data from a movie in a specified format. Movie data

import components translate foreign (that is, nonmovie) data formats into QuickTime

movie data format. For example, a movie data import component might convert images

from a paint application into frames in a QuickTime movie.

C H A P T E R 9

Movie Data Exchange Components

9-4 About Movie Data Exchange Components

Conversely, movie data export components convert movie data into other formats, so

that the data can be used by other applications. As an example, a movie data export

component might allow an application to extract the sound track from a QuickTime

movie in AIFF format. The extracted sound track may then be manipulated by

applications that are not QuickTime-aware.

Applications use the services of movie data exchange components by calling the Movie

Toolbox. Figure 9-1 shows the relationship between the Movie Toolbox and movie data

import components; Figure 9-2 shows how movie data export components fit into the

picture.

Figure 9-1 The Movie Toolbox, movie data import components, and your application

C H A P T E R 9

Movie Data Exchange Components

Using Movie Data Exchange Components 9-5

Figure 9-2 The Movie Toolbox, movie data export components, and your application

The next section describes in detail how to use each of these components.

If you are writing a media handler that works with a new type of data, you will probably

need to use one or more data exchange components to facilitate the importing and

exporting of data to QuickTime movies.

Using Movie Data Exchange Components

This section discusses how applications use movie data exchange components. You

should read this section if you are writing an application that uses these components or

if you are creating one of these components.

C H A P T E R 9

Movie Data Exchange Components

9-6 Using Movie Data Exchange Components

Importing and Exporting Movie Data
Your application starts a data import or export operation by calling the Movie Toolbox.

There are several Movie Toolbox functions that allow you to specify a data import or

data export component. For example, the PasteHandleIntoMovie and

ConvertFileToMovieFile functions allow you to specify a movie data import

component. The PutMovieIntoTypedHandle and ConvertMovieToFile functions

allow you to specify a movie data export component. All of these functions select a

component for you if you do not specify one yourself. For more information about these

functions, see the chapter “Movie Toolbox” in Inside Macintosh: QuickTime.

When you import data into a QuickTime movie, you can specify that the data be placed

into a specific existing track in the movie, into a new track that is created by the movie

data import component, or into one or more existing tracks (in this case, the component

may create additional tracks, if necessary).

When you export data from a QuickTime movie, you can request data from a specific

track or from the entire movie. In addition, you can specify a segment of the track or

movie to be exported.

Configuring a Movie Data Exchange Component
You do not need to configure a movie data exchange component before you use it to

convert data into or out of a QuickTime movie. These components are implemented in

such a way that they can operate successfully using their own default configuration

information. In fact, some data exchange components do not allow you to configure

them. However, most data exchange components do support some or all of the

configuration functions that are defined for components of this type.

If you are going to configure a data exchange component, you must do so before you

start the data exchange operation. You must call the component directly in order to set

the configuration—the Movie Toolbox does not do this for you. Use the functions

described in “Configuring Movie Data Import Components” and “Configuring Movie

Data Export Components,” as appropriate. Note that all of these functions are optional;

that is, it is up to the developer of the component to decide whether or not to support a

given configuration function. If the component does not support a function you have

called, the component returns an error code of badComponentSelector.

Finding a Specific Movie Data Exchange Component
If you are going to specify a particular data exchange component to the Movie Toolbox,

you must first open a connection to that component. Use the Component Manager’s

OpenDefaultComponent or OpenComponent function to open a connection to a

C H A P T E R 9

Movie Data Exchange Components

Using Movie Data Exchange Components 9-7

movie data exchange component (see the chapter “Component Manager” in Inside
Macintosh: More Macintosh Toolbox for more information about these functions). Before

you can open that connection, however, you must find an appropriate movie data

exchange component.

To find an appropriate data exchange component, you may need to use the

Component Manager’s FindNextComponent function. You specify the characteristics

of the component you are seeking in a component description record—in particular, in

the componentType, componentSubtype, componentManufacturer, and

componentFlags fields.

Movie data import components have a component type value of 'eat ', which is

defined by the MovieImportType constant. Movie data export components have a type

value of 'spit', which is defined by the MovieExportType constant.

Movie data exchange components use their component subtype and manufacturer

values to indicate the type of data that they support. The subtype value indicates the

type of data that these components can import or export. For example, movie data

import components that convert text into QuickTime movie data have a component

subtype value of 'TEXT'. A single data exchange component may support only one

data type.

The manufacturer field indicates the QuickTime media type that is supported by the

component. For example, movie data export components that can read data from a

sound media have a manufacturer value of 'soun' (this value is defined by the

SoundMediaType constant). If a data exchange component can work with more than

one media type, it specifies a manufacturer value of 0.

In addition, these components use the componentFlags field to indicate more specific

information about their capabilities. The following flags are currently defined:

enum {

canMovieImportHandles = 1, /* can import from

handles */

canMovieImportFiles = 2, /* can import from files */

hasMovieImportUserInterface = 4, /* import has user

interface */

canMovieExportHandles = 8, /* can export to handles */

canMovieExportFiles = 16, /* can export to files */

hasMovieExportUserInterface = 32, /* export has user

interface */

dontAutoFileMovieImport = 64 /* turn off automatic file

conversion */

};

Movie data import components use the first three flags to specify their capabilities. If

a component can convert data from a handle, its canMovieImportHandles flag is set

to 1. If it can work with files, its canMovieImportFiles flag is set to 1. Note that both

of these flags may be set to 1 if a single component can work with both files and handles.

C H A P T E R 9

Movie Data Exchange Components

9-8 Creating a Movie Data Exchange Component

If a component provides a dialog box that allows the user to specify configuration

information, the hasMovieImportUserInterface flag is set to 1. If a component does

not support the automatic conversion of standard files to movies in an import

component, set the dontAutoFileMovieImport flag to 1 (the default setting is 0).

Movie data export components use the other three flags in the same way.

Creating a Movie Data Exchange Component

This section discusses the details of creating a movie data exchange component. This

section includes source code for two simple movie data exchange components.

You should consider creating a movie data import component if you have data that you

would like to place in a QuickTime movie and there are not currently facilities for

placing that type of data into a movie. Similarly, if you want to work with data from a

QuickTime movie without using QuickTime, you might consider creating a movie data

export component that can convert the data into a format your program can understand.

After reading this section, you should understand all of the special requirements of these

components. The functional interface that your component must support is described in

“Movie Data Exchange Components Reference” beginning on page 9-20. Note that a

single component may support only import or export functions, not both.

Before reading this section, you should be familiar with how to create components. See

the chapter “Component Manager” in Inside Macintosh: More Macintosh Toolbox for a

complete discussion of components, how to use them, and how to create them.

Apple has defined component type values for movie data exchange components. You

can use the following constants to specify this component type:

#define MovieImportType 'eat ' /* movie data import */

#define MovieExportType 'spit' /* movie data export */

Apple has defined a functional interface for movie data exchange components. For

information about the functions that your component must support, see “Movie Data

Exchange Components Reference” beginning on page 9-20. You can use the following

constants to refer to the request codes for each of the functions that your component

must support:

enum {

/* movie data import components */

kMovieImportHandleSelect = 1, /* import from handle */

kMovieImportFileSelect = 2, /* import from file */

kMovieImportSetSampleDurationSelect = 3, /* set sample duration */

kMovieImportSetSampleDescriptionSelect

= 4, /* set sample description */

kMovieImportSetMediaFileSelect = 5, /* set media file */

kMovieImportSetDimensionsSelect = 6, /* set track dimensions */

C H A P T E R 9

Movie Data Exchange Components

Creating a Movie Data Exchange Component 9-9

kMovieImportSetChunkSizeSelect = 7, /* set chunk size */

kMovieImportSetProgressProcSelect = 8, /* set progress function */

kMovieImportSetAuxiliaryDataSelect = 9, /* set additional data */

kMovieImportSetFromScrapSelect = 10, /* data from scrap */

kMovieImportDoUserDialogSelect = 11, /* invoke user dialog box */

kMovieImportSetDurationSelect = 12 /* set paste duration */

/* movie data export components */

kMovieExportToHandleSelect = 128,/* export to handle */

kMovieExportToFileSelect = 129,/* export to file */

kMovieExportDoUserDialogSelect = 130,/* invoke user dialog box */

kMovieExportGetAuxiliaryDataSelect = 131,/* get additional data */

kMovieExportSetProgressProcSelect ` = 132 /* set progress function */

};

A Sample Movie Import Component
This section describes how to create a movie import component. First you implement the

required functions. Then you instruct your component to obtain the movie data from a

handle or a file. This section then supplies a sample program that implements a movie

data exchange component that imports a Scrapbook file containing QuickDraw PICT

images. (For details on QuickDraw PICT images, see the chapter “Basic QuickDraw” in

Inside Macintosh: Imaging.)

Your movie data import component may provide a user dialog box. You may use this

dialog box in any way that is appropriate for your component—for example, to

obtain certain parameter information governing the import operation, such as the

image-compression method.

In addition, the requesting application may use one or more of the configuration

functions to establish parameters for the import operation.

You should not rely on any outside configuration information. Your component should

work properly knowing only the source data and the target movie. The Movie Toolbox

supplies this information to your component when it calls your MovieImportHandle

function (described on page 9-21) or MovieImportFile function (described on

page 9-24).

Your movie data import component may implement either one or both of these

functions, which allow the Movie Toolbox to request that data be converted into a format

for use in a QuickTime movie.

■ If the data is to be imported from a handle, the MovieImportHandle function is
used.

■ If data is to be imported from a file, the MovieImportFile function is used.

Set the appropriate flags in your component’s componentFlags field to indicate which

of these functions your component supports. Note that your component may support

both functions.

C H A P T E R 9

Movie Data Exchange Components

9-10 Creating a Movie Data Exchange Component

Implementing the Required Import Component Functions

Listing 9-1 supplies a sample program that implements a movie data exchange

component that imports a Scrapbook file containing QuickDraw PICT images. (For

details on QuickDraw PICT images, see the chapter “Basic QuickDraw” in Inside
Macintosh: Imaging.) The sample program also provides the dispatchers for the movie

import component together with the required functions.

Listing 9-1 Implementing the required import functions

#define kMediaTimeScale 600

typedef struct {

ComponentInstance self

TimeValue frameDuration;

} ImportScrapbookGlobalsRecord, **ImportScrapbookGlobals;

/* entry point for all Component Manager requests */

pascal ComponentResult ImportScrapbookDispatcher

 (ComponentParameters *params,

 Handle storage)

{

OSErr err = badComponentSelector;

ComponentFunction componentProc = 0;

switch (params->what) {

case kComponentOpenSelect:

componentProc = ImportScrapbookOpen; break;

case kComponentCloseSelect:

componentProc = ImportScrapbookClose; break;

case kComponentCanDoSelect:

componentProc = ImportScrapbookCanDo; break;

case kComponentVersionSelect:

componentProc = ImportScrapbookVersion; break;

case kMovieImportFileSelect:

componentProc = ImportScrapbookFile; break;

case kMovieImportSetSampleDurationSelect:

componentProc = ImportScrapbookSetSampleDuration; break;

}

C H A P T E R 9

Movie Data Exchange Components

Creating a Movie Data Exchange Component 9-11

if (componentProc)

err = CallComponentFunctionWithStorage (storage, params,

 componentProc);

return err;

}

pascal ComponentResult ImportScrapbookCanDo

(ImportScrapbookGlobals storage,

short ftnNumber)

{

switch (ftnNumber) {

case kComponentOpenSelect:

case kComponentCloseSelect:

case kComponentCanDoSelect:

case kComponentVersionSelect:

case kMovieImportFileSelect:

case kMovieImportSetSampleDurationSelect:

return true;

default:

return false;

}

}

pascal ComponentResult ImportScrapbookVersion

(ImportScrapbookGlobals storage)

{

return 0x00010001;

}

pascal ComponentResult ImportScrapbookOpen

(ImportScrapbookGlobals storage,

 ComponentInstance self)

{

storage = (ImportScrapbookGlobals) NewHandleClear

(sizeof (ImportScrapbookGlobalsRecord));

if (!storage) return MemError();

(**storage).self = self;

SetComponentInstanceStorage (self, (Handle)storage);

return noErr;

}

pascal ComponentResult ImportScrapbookClose

 (ImportScrapbookGlobals storage,

 ComponentInstance self)

C H A P T E R 9

Movie Data Exchange Components

9-12 Creating a Movie Data Exchange Component

{

if (storage) DisposeHandle((Handle)storage);

return noErr;

}

Importing a Scrapbook File

Before the import operation begins, the client may set the duration of samples to be

added by the movie data import component by calling the MovieImportSetDuration

function (described on page 9-27).

The MovieImportFile function (described on page 9-24) performs the import

operation. The tasks involved in importing the data include

■ opening the source file

■ retrieving the first sample in order to determine the track dimension

■ creating a new track and media

■ determining the frame duration

■ setting up a sample description structure

■ cycling through all the frames in the Scrapbook and adding them to the new media

■ adding the new media to the track

■ closing the source file

Listing 9-2 supplies an example in which a Scrapbook file is imported.

Listing 9-2 Importing a Scrapbook file

/* if this function is called, it provides a hint from the

caller as to the desired sample (frame) duration in the new

media */

pascal ComponentResult ImportScrapbookSetSampleDuration

 (ImportScrapbookGlobals storage,

TimeValue duration,

TimeScale scale)

{

TimeRecord tr;

tr.value.lo = duration;

tr.value.hi = 0;

tr.scale = 0;

tr.base = nil;

ConvertTimeScale (&tr, kMediaTimeScale);

/* your new media will have a time scale of 600 */

(**storage).frameDuration = tr.value.lo;

C H A P T E R 9

Movie Data Exchange Components

Creating a Movie Data Exchange Component 9-13

return noErr;

}

pascal ComponentResult ImportScrapbookFile

(ImportScrapbookGlobals storage,

 FSSpec *theFile, Movie theMovie,

 Track targetTrack, Track *usedTrack,

 TimeValue atTime,

 TimeValue *addedTime,

 long inFlags, long *outFlags)

{

OSErr err;

short resRef = 0, saveRes = CurResFile();

PicHandle thePict;

Rect trackRect;

short pageIndex = 0;

Track newTrack = 0;

Media newMedia;

Boolean endMediaEdits = false;

TimeValue frameDuration;

SampleDescriptionHandle sampleDesc = 0;

*outFlags = 0;

if (inFlags & movieImportMustUseTrack)

return invalidTrack;

/* open source file */

resRef = FSpOpenResFile (theFile, fsRdPerm);

if (err = ResError()) goto bail;

UseResFile(resRef);

/* get the first PICT to determine the track size */

thePict = (PicHandle)Get1IndResource ('PICT', 1);

if (!thePict) {

err = ResError();

goto bail;

}

trackRect = (**thePict).picFrame;

OffsetRect(&trackRect, -trackRect.left, -trackRect.top);

C H A P T E R 9

Movie Data Exchange Components

9-14 Creating a Movie Data Exchange Component

/* create a track and PICT media */

newTrack = NewMovieTrack (theMovie, trackRect.right << 16,

 trackRect.bottom << 16, kNoVolume);

if (err = GetMoviesError()) goto bail;

newMedia = NewTrackMedia (newTrack, 'PICT', kMediaTimeScale,

 nil, 0);

if (err = GetMoviesError()) goto bail;

if (err = BeginMediaEdits (newMedia)) goto bail;

endMediaEdits = true;

/* determine the frame duration (check the hint you may

have been called with) */

frameDuration = (**storage).frameDuration;

if (!frameDuration) frameDuration = kMediaTimeScale/5;

/* default is 1/5th second */

/* set up a simple sample description */

sampleDesc = (SampleDescriptionHandle) NewHandleClear

(sizeof (SampleDescription));

(**sampleDesc).descSize = sizeof(SampleDescription);

(**sampleDesc).dataFormat = 'PICT';

/* cycle through all source frames and add them to the media */

do {

Handle thePict;

short resID = pageToMapIndex (++pageIndex,

*GetResource ('SMAP', 0));

if (resID == 0) break;

thePict = Get1Resource ('PICT', resID);

if (thePict == nil) continue; /* some pages may not

contain a 'PICT' */

err = AddMediaSample(newMedia, thePict, 0,

GetHandleSize (thePict),

 frameDuration, sampleDesc, 1, 0, nil);

ReleaseResource (thePict);

DisposeHandle (thePict);

} while (!err);

if (err) goto bail;

C H A P T E R 9

Movie Data Exchange Components

Creating a Movie Data Exchange Component 9-15

/* add the new media to the track */

err = InsertMediaIntoTrack (newTrack, 0, 0,

GetMediaDuration (newMedia), kFix1);

bail:

if (resRef) CloseResFile (resRef);

if (endMediaEdits) EndMediaEdits (newMedia);

if (err && newTrack) {

DisposeMovieTrack (newTrack);

newTrack = 0;

}

UseResFile (saveRes);

if (sampleDesc) DisposeHandle ((Handle)sampleDesc);

*usedTrack = newTrack;

return err;

}

/* map from a Scrapbook page number to a resource ID */

short pageToMapIndex (short page, Ptr map)

{

short mapIndex;

for (mapIndex = 0; mapIndex < 256; mapIndex++)

if (*map++ == page)

return mapIndex | 0x8000;

return 0;

}

A Sample Movie Export Component
As with movie data import components, the movie data export component should not

rely on any configuration information beyond that which is supplied by the Movie

Toolbox when it calls the MovieExportToHandle or MovieExportToFile function

(described on page 9-35 and page 9-36, respectively).

This section provides an implementation of a movie data exchange component that

exports a movie or movie’s track to a PICS animation file.

C H A P T E R 9

Movie Data Exchange Components

9-16 Creating a Movie Data Exchange Component

Implementing the Required Export Component Functions

Listing 9-3 provides the component dispatchers for the movie export component

together with the required functions.

Listing 9-3 Implementing the required export functions

typedef struct {

ComponentInstance self;

} ExportPICSGlobalsRecord, *ExportPICSGlobals;

/* entry point for all Component Manager requests */

pascal ComponentResult ExportPICSDispatcher

(ComponentParameters *params,

 Handle storage)

{

OSErr err = badComponentSelector;

ComponentFunction componentProc = 0;

switch (params->what) {

case kComponentOpenSelect:

componentProc = ExportPICSOpen; break;

case kComponentCloseSelect:

componentProc = ExportPICSClose; break;

case kComponentCanDoSelect:

componentProc = ExportPICSCanDo; break;

case kComponentVersionSelect:

componentProc = ExportPICSVersion; break;

case kMovieExportToFileSelect:

componentProc = ExportPICSToFile; break;

}

if (componentProc)

err = CallComponentFunctionWithStorage (storage, params,

 componentProc);

return err;

}

C H A P T E R 9

Movie Data Exchange Components

Creating a Movie Data Exchange Component 9-17

pascal ComponentResult ExportPICSCanDo (ExportPICSGlobals store,

 short ftnNumber)

{

switch (ftnNumber) {

case kComponentOpenSelect:

case kComponentCloseSelect:

case kComponentCanDoSelect:

case kComponentVersionSelect:

case kMovieExportToFileSelect:

return true;

break;

default:

return false;

break;

}

}

pascal ComponentResult ExportPICSVersion (ExportPICSGlobals store)

{

return 0x00010001;

}

pascal ComponentResult ExportPICSOpen (ExportPICSGlobals store,

 ComponentInstance self)

{

OSErr err;

store = (ExportPICSGlobals) NewPtrClear

(sizeof(ExportPICSGlobalsRecord));

if (err = MemError()) goto bail;

store->self = self;

SetComponentInstanceStorage(self, (Handle)store);

bail:

return err;

}

pascal ComponentResult ExportPICSClose (ExportPICSGlobals store,

 ComponentInstance self)

{

if (store) DisposPtr((Ptr)store);

return noErr;

}

C H A P T E R 9

Movie Data Exchange Components

9-18 Creating a Movie Data Exchange Component

Exporting Data to a PICS File

To export data to a PICS file, your component must

■ allow the Movie Toolbox to call the MovieExportToFile function in order to export
movie data into a file

■ read the data from the track or movie

■ perform appropriate conversions on that data

■ place the data into the specified file (the file’s type corresponds to the component
subtype of your movie data export component)

Listing 9-4 provides an implementation of these tasks in a movie export component. The

ExportPICSToFile function performs the export operation by opening the resource

fork of the PICS file and cycling through the movie time segment, adding a frame to the

PICS file.

Listing 9-4 Exporting a frame of movie data to a PICS file

pascal ComponentResult ExportPICSToFile (ExportPICSGlobals store,

const FSSpec *theFile,

Movie m,

Track onlyThisTrack,

TimeValue startTime,

TimeValue duration)

{

OSErr err = noErr;

short resRef = 0;

short saveResRef = CurResFile();

short resID = 128;

PicHandle thePict = nil;

/* open the resource fork of the PICS file

(the caller is responsible for creating the file) */

resRef = FSpOpenResFile (theFile, fsRdWrPerm);

if (err = ResError()) goto bail;

UseResFile(resRef);

/* cycle through the movie time segment you were given */

while (startTime < duration) {

Byte c = 0;

C H A P T E R 9

Movie Data Exchange Components

Creating a Movie Data Exchange Component 9-19

if (onlyThisTrack)

thePict = GetTrackPict (onlyThisTrack, startTime);

else

thePict = GetMoviePict(m, startTime);

if (!thePict) continue;

/* add a frame to the PICS file */

AddResource ((Handle)thePict, 'PICT', resID++, &c);

err = ResError();

WriteResource ((Handle)thePict);

DetachResource ((Handle)thePict);

KillPicture (thePict);

thePict = nil;

if (err) break;

/* find the time of the next frame */

do {

TimeValue nextTime;

if (onlyThisTrack)

GetTrackNextInterestingTime (onlyThisTrack,

 nextTimeMediaSample, startTime,

 kFix1, &nextTime, nil);

else {

OSType mediaType = VisualMediaCharacteristic;

GetMovieNextInterestingTime (m, nextTimeMediaSample,

1, &mediaType,

startTime, kFix1,

&nextTime, nil);

}

if (GetMoviesError ()) goto bail;

if (nextTime != startTime) {

startTime = nextTime;

break;

}

} while (++startTime < duration);

}

bail:

if (thePict) KillPicture (thePict);

if (resRef) CloseResFile (resRef);

UseResFile (saveResRef);

return err;

}

C H A P T E R 9

Movie Data Exchange Components

9-20 Movie Data Exchange Components Reference

Movie Data Exchange Components Reference

This section describes the functions that your movie data exchange component may

support. Many of these functions are optional—your component should support only

those functions that are appropriate to it.

This section is divided into the following topics:

■ “Importing Movie Data” discusses the functions that allow the Movie Toolbox to
import movie data using the services of a movie data import component.

■ “Configuring Movie Data Import Components” describes the functions that allow
applications to configure a movie data import component prior to importing
movie data.

■ “Exporting Movie Data” tells you about the functions that allow the Movie Toolbox to
export movie data using the services of a movie data export component.

■ “Configuring Movie Data Export Components” provides information about the
functions that allow applications to configure a movie data export component prior to
exporting movie data.

Note

All of the functions described in “Configuring Movie Data Import
Components” and “Configuring Movie Data Export Components” are
optional. Your import or export component must be able to work
properly if none of these functions is called. ◆

Importing Movie Data

Movie data import components may provide one or two functions that allow the Movie

Toolbox to request a data conversion operation. The MovieImportHandle function

instructs your component to retrieve the data that is to be imported from a specified

handle. The MovieImportFile function instructs you to retrieve the data from a file.

You should set the appropriate flags in your component’s componentFlags field to

indicate which of these functions your component supports. Note that your component

may support both functions.

Before the Movie Toolbox calls one of these functions, a requesting application may call

one or more of your component’s configuration functions (see “Configuring Movie Data

Import Components” beginning on page 9-26 for more information about these

functions). However, your component should work properly even if none of these

configuration functions is called.

C H A P T E R 9

Movie Data Exchange Components

Movie Data Exchange Components Reference 9-21

MovieImportHandle

The MovieImportHandle function allows the Movie Toolbox to import data from a

handle, using your movie data import component.

pascal ComponentResult MovieImportHandle (ComponentInstance ci,

Handle dataH,

Movie theMovie,

Track targetTrack,

Track *usedTrack,

TimeValue atTime,

TimeValue *addedDuration,

 long inFlags,

long *outFlags);

ci Identifies the Movie Toolbox’s connection to your movie data import
component.

dataH Contains a handle to the data that is to be imported into the movie
identified by the parameter theMovie. The data contained in this
handle has a data type value that corresponds to your component’s
subtype value.

Your component is not responsible for disposing of this handle.

theMovie Identifies the movie for this operation. This movie identifier is supplied
by the Movie Toolbox. Your component may use this identifier to add
sample data to the target movie, or to obtain information about the movie.

targetTrack
Identifies the track that is to receive the imported data. This track
identifier is supplied by the Movie Toolbox and is valid only if the
movieImportMustUseTrack flag in the inFlags parameter is set to 1.

usedTrack Contains a pointer to the track that received the imported data.
Your component returns this track identifier to the Movie Toolbox. Your
component needs to set this parameter only if you operate on a single
track or if you create a new track. If you modify more than one track,
leave the field referred to by this parameter unchanged.

atTime Specifies the time corresponding to the location where your component is
to place the imported data. This time value is expressed in the movie’s
time coordinate system.

addedDuration
Contains a pointer to the duration of the data that your component added
to the movie. Your component must specify this value in the movie’s time
coordinate system.

C H A P T E R 9

Movie Data Exchange Components

9-22 Movie Data Exchange Components Reference

inFlags Specifies control information governing the import operation. The
following flags are defined:

movieImportCreateTrack
Indicates that your component should create a new
track to receive the imported data. You must create a track
whose type value corresponds to the media type that you
have specified in your component’s manufacturer code.
You should return the track identifier of this new
track in the field referred to by the usedTrack
parameter, unless you create more than one track. If you
create more than one track, be sure to set the
movieImportResultUsedMultipleTracks flag (in the
field referred to by the outFlags parameter) to 1.

If the movieImportCreateTrack flag is set to 1, then the
movieImportMustUseTrack flag is set to 0.

movieImportMustUseTrack
Indicates that your component must use an existing track.
That track is identified by the targetTrack parameter. If
you create more than one track, be sure to set the
movieImportResultUsedMultipleTracks flag (in the
field referred to by the outFlags parameter) to 1.

If the movieImportMustUseTrack flag is set to 1, then
the movieImportCreateTrack flag is set to 0.

If both the movieImportCreateTrack and
movieImportMustUseTrack flags are set to 0, then you
are free to use any existing tracks in the movie or to create a
new track (or tracks) as needed.

movieImportInParallel
Indicates whether you are to perform an insert operation or
a paste operation. If this flag is set to 0, then you should
insert the imported data into the target track. If this flag is
set to 1, then you should add the imported data to the
track, overwriting preexisting open space currently in
the track. Note that an application may use the
MovieImportSetDuration function (described on
page 9-27) to control the amount of data you paste into a
movie.

If the movieImportMustUseTrack flag is set to 1, then
you should use the track specified by the targetTrack
parameter. If this is not possible, return an appropriate
Movie Toolbox result code.

C H A P T E R 9

Movie Data Exchange Components

Movie Data Exchange Components Reference 9-23

outFlags Contains a pointer to a field that is to receive status information about the
import operation. Your component sets the appropriate flags in this field
when the operation is complete. The following flags are defined:

movieImportResultUsedMultipleTracks
Indicates that your component modified more than one
track in the movie. Set this flag to 1 if your component
places imported data into more than one track. In this case,
you do not need to update the field referred to by the
usedTrack parameter.

movieImportInParallel
Indicates whether you performed an insert operation or a
paste operation. Set this flag to 0 if you inserted the
imported data into the target track. Set this flag to 1 if you
added the imported data to the track, overwriting
preexisting open space currently in the track.

DESCRIPTION

The Movie Toolbox calls the MovieImportHandle function in order to import movie

data from a handle. The data stored in the handle has a data type that corresponds to the

component subtype of your movie data import component. Your component must read

the data from the supplied handle, perform appropriate conversions on that data, and

place the data into the movie.

If your component can accept data from a handle, be sure to set the

canMovieImportHandles flag in your component’s componentFlags field.

Your component must be prepared to perform this function at any time. You should not

expect that any of your component’s configuration functions will be called first.

RESULT CODES

Other appropriate Movie Toolbox result codes

SEE ALSO

The Movie Toolbox uses the MovieImportFile function to import data from a file; this

function is described next.

invalidTrack –2009 Specified track cannot receive imported data

C H A P T E R 9

Movie Data Exchange Components

9-24 Movie Data Exchange Components Reference

MovieImportFile

The MovieImportFile function allows the Movie Toolbox to import data from a file,

using your movie data import component.

pascal ComponentResult MovieImportFile (ComponentInstance ci,

 const FSSpec *theFile,

 Movie theMovie,

 Track targetTrack,

 Track *usedTrack,

 TimeValue atTime,

 TimeValue *addedDuration,

 long inFlags,

 long *outFlags);

ci Identifies the Movie Toolbox’s connection to your movie data import
component.

theFile Contains a pointer to the file that contains the data that is to be imported
into the movie. This file’s type value corresponds to your component’s
subtype value.

theMovie Identifies the movie for this operation. This movie identifier is supplied
by the Movie Toolbox. Your component may use this identifier to add
sample data to the target movie or to obtain information about the movie.

targetTrack
Identifies the track that is to receive the imported data. This
track identifier is supplied by the Movie Toolbox and is valid only if the
movieImportMustUseTrack flag in the inFlags parameter is set to 1.

usedTrack Contains a pointer to the track that received the imported data.
Your component returns this track identifier to the Movie Toolbox. Your
component needs to set this parameter only if you operate on a single
track or if you create a new track. If you modify more than one track,
leave the field referred to by this parameter unchanged.

atTime Specifies the time corresponding to the location where your component is
to place the imported data. This time value is expressed in the movie’s
time coordinate system.

addedDuration
Contains a pointer to the duration of the data that your component added
to the movie. Your component must specify this value in the movie’s time
coordinate system.

inFlags Specifies control information governing the import operation. The
following flags are defined:

movieImportCreateTrack
Indicates that your component should create a new track to
receive the imported data. You must create a track whose
type value corresponds to the media type you have
specified in your component’s manufacturer code. You

C H A P T E R 9

Movie Data Exchange Components

Movie Data Exchange Components Reference 9-25

should return the track identifier of this new track
in the field referred to by the usedTrack parameter,
unless you create more than one track. If you
create more than one track, be sure to set the
movieImportResultUsedMultipleTracks flag (in the
field referred to by the outFlags parameter) to 1.

If the MovieImportCreateTrack flag is set to 1, then the
movieImportMustUseTrack flag is set to 0.

movieImportMustUseTrack
Indicates that your component must use an existing track.
That track is identified by the targetTrack parameter. If
you create more than one track, be sure to set the
movieImportResultUsedMultipleTracks flag (in the
field referred to by the outFlags parameter) to 1.

If the movieImportMustUseTrack flag is set to 1, then
the movieImportCreateTrack flag is set to 0.

If both the movieImportCreateTrack and
movieImportMustUseTrack flags are set to 0, then you
are free to use any existing tracks in the movie, or to create
a new track (or tracks) as needed.

movieImportInParallel
Indicates whether you are to perform an insert operation or
a paste operation. If this flag is set to 0, then you should
insert the imported data into the target track. If this flag is
set to 1, then you should add the imported data to the
track, overwriting the preexisting open space currently in
the track. Note that an application may use the
MovieImportSetDuration function to control the
amount of data you paste into a movie.

If the movieImportMustUseTrack flag is set to 1, then
you should use the track specified by the targetTrack
parameter. If this is not possible, return an appropriate
Movie Toolbox result code.

outFlags Identifies a field that is to receive status information about the import
operation. Your component sets the appropriate flags in this field when
the operation is complete. The following flags are defined:

movieImportResultUsedMultipleTracks
Indicates that your component modified more than one
track in the movie. Set this flag to 1 if your component
places imported data into more than one track. In this case,
you do not need to update the field referred to by the
usedTrack parameter.

movieImportInParallel
Indicates whether you performed an insert operation or a
paste operation. Set this flag to 0 if you inserted the
imported data into the target track. Set this flag to 1 if you
added the imported data to the track, overwriting
preexisting open space currently in the track.

C H A P T E R 9

Movie Data Exchange Components

9-26 Movie Data Exchange Components Reference

DESCRIPTION

The Movie Toolbox calls the MovieImportFile function in order to import movie data

from a file. The file’s type corresponds to the component subtype of your movie data

import component. Your component must read the data from the supplied file, perform

appropriate conversions on that data, and place the data into the movie.

If your component can accept data from a file, be sure to set the

canMovieImportFiles flag in your component’s componentFlags field.

Your component must be prepared to perform this function at any time. You should not

expect that any of your component’s configuration functions will be called first.

RESULT CODES

Other appropriate Movie Toolbox result codes

SEE ALSO

The Movie Toolbox uses the MovieImportHandle function to import data from a

handle; this function is described on page 9-21.

Configuring Movie Data Import Components

Your component may provide one or more configuration functions. These functions

allow applications to configure your component before the Movie Toolbox calls your

component to start the import process. Note that applications may call these functions

directly.

All of these functions are optional. If your component receives a request that it does not

support, you should return the badComponentSelector error code. In addition, your

component should work properly even if none of these functions is called.

These functions address a variety of configuration issues. The

MovieImportSetSampleDuration function allows an application to set

your component’s sample duration. Use the MovieImportSetDuration

function to control the duration of the imported data. Applications can use the

MovieImportSetDimensions function to specify the spatial dimensions of a new

track. Use the MovieImportSetSampleDescription function to supply a sample

description structure to your movie data import component.

The MovieImportSetMediaFile function allows applications to direct your

component’s output to a specific media file. Applications can provide additional data to

your component by calling the MovieImportSetAuxiliaryData function. The

MovieImportSetChunkSize function allows applications to control the chunk size in

the new media. Applications can inform you that the source data came from the scrap by

calling your MovieImportSetFromScrap function.

invalidTrack –2009 Specified track cannot receive imported data

C H A P T E R 9

Movie Data Exchange Components

Movie Data Exchange Components Reference 9-27

Applications can specify a progress function for use by your component by calling the

MovieImportSetProgressProc function.

Applications can instruct your component to display its user dialog box by calling the

MovieImportDoUserDialog function.

MovieImportSetDuration

The MovieImportSetDuration function allows an application to control the duration

of the data that your component pastes into the target movie.

pascal ComponentResult MovieImportSetDuration

(ComponentInstance ci,

 TimeValue duration);

ci Identifies the application’s connection to your movie data import
component.

duration Specifies the duration in the movie’s time scale. If this parameter is set
to 0, then you may paste any amount of movie data that is appropriate for
the data to be imported.

DESCRIPTION

Applications may use the MovieImportSetDuration function to set the duration of

the data to be pasted by your movie data import component. This duration is expressed

in the movie’s time scale.

If your component supports paste operations (that is, your component allows the

application to set the movieImportInParallel flag to 1 with the

MovieImportHandle or MovieImportFile function), then you must support this

function. If an application calls this function and sets a duration limit, you must abide by

that limit. This function is not valid for insert operations (where the

movieImportInParallel flag is set to 0).

RESULT CODE

badComponentSelector 0x80008002 Function not supported

C H A P T E R 9

Movie Data Exchange Components

9-28 Movie Data Exchange Components Reference

MovieImportSetSampleDuration

The MovieImportSetSampleDuration function allows an application to set the

sample duration for new samples to be created with your component.

pascal ComponentResult MovieImportSetSampleDuration

 (ComponentInstance ci,

TimeValue duration,

TimeScale scale);

ci Identifies the application’s connection to your movie data import
component.

duration Specifies the sample duration in units specified by the scale parameter.

scale Specifies the time scale for the duration value. This may be any arbitrary
time scale; that is, it may not correspond to the movie’s time scale. You
should convert this time scale to the movie’s time scale before using the
duration value, using the Movie Toolbox’s ConvertTimeScale
function.

DESCRIPTION

Applications may use the MovieImportSetSampleDuration function to set the

duration of samples to be added by your movie data import component. This duration is

expressed in an arbitrary time scale.

RESULT CODE

MovieImportSetSampleDescription

The MovieImportSetSampleDescription function allows an application to provide

a sample description to your movie data import component.

pascal ComponentResult MovieImportSetSampleDescription

 (ComponentInstance ci,

 SampleDescriptionHandle desc,

 OSType mediaType);

ci Identifies the application’s connection to your movie data import
component.

badComponentSelector 0x80008002 Function not supported

C H A P T E R 9

Movie Data Exchange Components

Movie Data Exchange Components Reference 9-29

desc Contains a handle to a sample description. Your component must not
dispose of this handle. If you want to save any data from the sample
description, be sure to copy it at this time.

mediaType Specifies the type of sample description referred to by the desc
parameter. If the desc parameter refers to an image description structure,
this parameter is set to VideoMediaType ('vide'); for sound
description structures, this parameter is set to SoundMediaType
('soun').

DESCRIPTION

Applications may use the MovieImportSetSampleDescription function to supply a

sample description to your movie data import component. This can be useful in cases

where your component must transform the data before adding it to the movie’s media.

For example, your component may be responsible for adding image data to a movie. In

this case, you may allow applications to specify image-compression parameters by

supplying a formatted image description structure.

RESULT CODE

MovieImportSetMediaFile

The MovieImportSetMediaFile function allows an application to specify a media file

that is to receive the imported movie data.

pascal ComponentResult MovieImportSetMediaFile

(ComponentInstance ci,

 AliasHandle alias);

ci Identifies the application’s connection to your movie data import
component.

alias Identifies the media file that is to receive the imported movie data. Your
component must make a copy of this parameter. You should not dispose
of it.

DESCRIPTION

Applications may use the MovieImportSetMediaFile function to specify a

destination media file for imported movie data. By default, your movie data import

component should add new data to an existing media file that is associated with the

movie. However, you may choose to allow applications to specify an alternative

destination file. This can be useful when your component is importing data into a new

badComponentSelector 0x80008002 Function not supported

C H A P T E R 9

Movie Data Exchange Components

9-30 Movie Data Exchange Components Reference

track. In this case, the application can use this function to tell your component where the

media’s data should reside.

RESULT CODE

MovieImportSetDimensions

The MovieImportSetDimensions function allows an application to specify a new

track’s spatial dimensions.

pascal ComponentResult MovieImportSetDimensions

 (ComponentInstance ci, Fixed width,

Fixed height);

ci Identifies the application’s connection to your movie data import
component.

width Indicates the width, in pixels, of the track rectangle. This parameter, along
with the height parameter, specifies a rectangle that surrounds the
image that is to be displayed when the current media is played. This
value corresponds to the x coordinate of the lower-right corner of the
rectangle, and it is expressed as a fixed-point number.

height Indicates the height, in pixels, of the track rectangle. This value
corresponds to the y coordinate of the lower-right corner of the rectangle,
and it is expressed as a fixed-point number.

DESCRIPTION

Applications may use this function to specify the spatial dimensions of a new track.

Although your movie data import component may not change the spatial characteristics

of an existing track, if you are importing image data into a new track, you may choose to

allow applications to specify the spatial characteristics of the new track.

If you want to change the track’s matrix, use the Movie Toolbox’s SetTrackMatrix

function after performing the import operation.

RESULT CODE

badComponentSelector 0x80008002 Function not supported

badComponentSelector 0x80008002 Function not supported

C H A P T E R 9

Movie Data Exchange Components

Movie Data Exchange Components Reference 9-31

MovieImportSetChunkSize

The MovieImportSetChunkSize function allows an application to specify the amount

of data your component works with at a time.

pascal ComponentResult MovieImportSetChunkSize

(ComponentInstance ci,

 long chunkSize);

ci Identifies the application’s connection to your movie data import
component.

chunkSize Specifies the number of seconds of data your movie data import
component places into each chunk of movie data. This parameter may not
be set to a value less than 1.

DESCRIPTION

The chunk size controls the amount of data in each of a media’s data chunks (for more

information about data chunks in a media, see the chapter “QuickTime Movie Format”

in Inside Macintosh: QuickTime). Generally, your component should determine a

reasonable default chunk size, based on the type of data you are importing. However,

you may choose to allow applications to override your default value—this can be

especially useful for sound data, where the chunk size affects the quality of sound

playback.

RESULT CODE

MovieImportSetProgressProc

The MovieImportSetProgressProc function allows an application to assign a movie

progress function.

pascal ComponentResult MovieImportSetProgressProc

(ComponentInstance ci,

 MovieProgressProcPtr proc,

 long refcon);

ci Identifies the application’s connection to your movie data import
component.

badComponentSelector 0x80008002 Function not supported

C H A P T E R 9

Movie Data Exchange Components

9-32 Movie Data Exchange Components Reference

proc Contains a pointer to the application’s movie progress function. See the
chapter “Movie Toolbox” in Inside Macintosh: QuickTime for a complete
description of the interface supported by movie progress functions. If this
parameter is set to nil, the application is removing its progress function.
In this case, your component should stop calling the progress function.

refcon Specifies a reference constant. Your component should pass this constant
back to the application’s progress function whenever you call that
function.

DESCRIPTION

Some data import operations may be time consuming, and application developers may

therefore choose to display progress information to the user. Your component provides

this information to an application’s progress function. As your component processes

an import request, you should call the progress function occasionally in order to

report on the progress of the operation. Use an operation code value of

progressOpImportMovie. The application can then present this information

to the user.

These progress functions must support the same interface as Movie Toolbox progress

functions. That interface is discussed in the chapter “Movie Toolbox” in Inside Macintosh:
QuickTime. Note that this interface not only allows you to report progress to the

application, but also allows the application to cancel the request.

RESULT CODE

MovieImportSetAuxiliaryData

The MovieImportSetAuxiliaryData function allows an application to provide

additional data to your component. Your component can then use this data during the

data import process.

pascal ComponentResult MovieImportSetAuxiliaryData

(ComponentInstance ci,

 Handle data,

 OSType handleType);

ci Identifies the application’s connection to your movie data import
component.

data Contains a handle to the additional data. Your component should not
dispose of this handle. Be sure to copy any data you need to keep.

handleType
Identifies the type of data in the specified handle.

badComponentSelector 0x80008002 Function not supported

C H A P T E R 9

Movie Data Exchange Components

Movie Data Exchange Components Reference 9-33

DESCRIPTION

The MovieImportSetAuxiliaryData function allows your component to accept

additional data for use during the data import process. Your component may use this

data in any way that is appropriate for a given import operation. For example, if your

component imports data stored in 'TEXT' handles, you might choose to accept style

information for that text. An application could provide that style information in a

'styl' handle supplied to your component by calling this function.

Your component should expect the application to call this function before the import

process begins.

RESULT CODES

MovieImportSetFromScrap

The MovieImportSetFromScrap function allows an application to indicate that the

source data resides on the scrap.

pascal ComponentResult MovieImportSetFromScrap

(ComponentInstance ci,

Boolean fromScrap);

ci Identifies the application’s connection to your movie data import
component.

fromScrap Indicates whether or not the source data resides on the scrap. This
parameter is set to true if the data originated on the scrap; otherwise,
the parameter is set to false.

DESCRIPTION

The MovieImportSetFromScrap function allows an application to indicate that the

data to be imported originated on the scrap. In some cases, your component may be able

to use this information during the import process. For example, you may establish the

convention that additional data that is pertinent to an import operation should be stored

on the scrap along with the data to be imported. Your component can then look in the

scrap for the additional data.

RESULT CODE

unsupportedAuxiliaryImportData –2057 Cannot work with specified
handle type

badComponentSelector 0x80008002 Function not supported

badComponentSelector 0x80008002 Function not supported

C H A P T E R 9

Movie Data Exchange Components

9-34 Movie Data Exchange Components Reference

MovieImportDoUserDialog

The MovieImportDoUserDialog function allows an application to request that your

component display its user dialog box.

pascal ComponentResult MovieImportDoUserDialog

(ComponentInstance ci,

 const FSSpec *theFile,

 Handle theData, Boolean *canceled);

ci Identifies the application’s connection to your movie data import
component.

theFile Contains a pointer to a valid file specification. If the import request
pertains to a file, the application must specify the source file with this
parameter and set the parameter theData to nil. If the request is for a
handle, this parameter is set to nil.

theData Contains a handle to the data to be imported. If the import request
pertains to a handle, the application must specify the source of the data
with this parameter, and set the parameter theFile to nil. If the request
is for a file, this parameter is set to nil.

canceled Contains a pointer to a Boolean value. Your component should set this
Boolean value to reflect whether the user cancels the dialog box. If the
user cancels the dialog box, set the Boolean value to true. Otherwise, set
it to false.

DESCRIPTION

Your movie data import component may support a user dialog box that allows the user

to configure an import operation. For components that support such a dialog box, the

MovieImportDoUserDialog function allows an application to tell you when to

display the dialog box to the user.

If your component supports a user dialog box, be sure to set the

hasMovieImportUserInterface flag in your component’s componentFlags field.

RESULT CODE

Exporting Movie Data

Movie data export components may provide one or two functions that allow the Movie

Toolbox to request a data conversion operation. The MovieExportToHandle function

instructs your component to place the converted data into a specified handle. The

MovieExportToFile function instructs you to put the data into a file. You should set

the appropriate flags in your component’s componentFlags field to indicate which of

badComponentSelector 0x80008002 Function not supported

C H A P T E R 9

Movie Data Exchange Components

Movie Data Exchange Components Reference 9-35

these functions your component supports. Note that your component may support both

functions.

Before the Movie Toolbox calls one of these functions, a requesting application may call

one or more of your component’s configuration functions (see “Configuring Movie Data

Export Components” beginning on page 9-37 for more information about these

functions). However, your component should work properly even if none of these

configuration functions is called.

MovieExportToHandle

The MovieExportToHandle function allows the Movie Toolbox to export data from a

movie, using your movie data export component.

pascal ComponentResult MovieExportToHandle

(ComponentInstance ci,

 Handle dataH, Movie theMovie,

 Track onlyThisTrack,

 TimeValue startTime,

 TimeValue duration);

ci Identifies the Movie Toolbox’s connection to your movie data export
component.

dataH Handle to be filled with the converted movie data. Your component must
write data into this handle that corresponds to your component’s subtype
value.

Your component should resize this handle as appropriate.

theMovie Identifies the movie for this operation. This movie identifier is supplied
by the Movie Toolbox. Your component may use this identifier to obtain
sample data from the movie or to obtain information about the movie.

onlyThisTrack
Identifies a track that is to be converted. This track identifier is supplied
by the Movie Toolbox. If this parameter contains a track identifier, your
component must convert only the specified track.

startTime Specifies the starting point of the track or movie segment to be converted.
This time value is expressed in the movie’s time coordinate system.

duration Specifies the duration of the track or movie segment to be converted. This
duration value is expressed in the movie’s time coordinate system.

DESCRIPTION

The Movie Toolbox calls the MovieExportToHandle function in order to export movie

data into a handle. Your component must read the data from the specified movie or

track, perform appropriate conversions on that data, and place the data into the handle.

C H A P T E R 9

Movie Data Exchange Components

9-36 Movie Data Exchange Components Reference

The data stored in the handle must have a data type that corresponds to the component

subtype of your movie data export component.

If your component can write data to a handle, be sure to set the

canMovieExportHandles flag in your component’s componentFlags field.

Your component must be prepared to perform this function at any time. You should not

expect that any of your component’s configuration functions will be called first.

RESULT CODES

Other appropriate Movie Toolbox result codes

SEE ALSO

The Movie Toolbox uses the MovieExportToFile function to export data to a file; this

function is described next.

MovieExportToFile

The MovieExportToFile function allows the Movie Toolbox to export data to a file,

using your movie data export component.

pascal ComponentResult MovieExportToFile (ComponentInstance ci,

 const FSSpec *theFile,

 Movie theMovie,

 Track onlyThisTrack,

 TimeValue startTime,

 TimeValue duration);

ci Identifies the Movie Toolbox’s connection to your movie data import
component.

theFile Contains a pointer to the file that is to receive the converted movie data.
This file’s type value corresponds to your component’s subtype value.

theMovie Identifies the movie for this operation. This movie identifier is supplied
by the Movie Toolbox. Your component may use this identifier to obtain
sample data from the movie or to obtain information about the movie.

onlyThisTrack
Identifies a track that is to be converted. This track identifier is supplied
by the Movie Toolbox. If this parameter contains a track identifier, your
component must convert only the specified track.

startTime Specifies the starting point of the track or movie segment to be converted.
This time value is expressed in the movie’s time coordinate system.

invalidTrack –2009 Specified track cannot be converted

C H A P T E R 9

Movie Data Exchange Components

Movie Data Exchange Components Reference 9-37

duration Specifies the duration of the track or movie segment to be converted. This
duration value is expressed in the movie’s time coordinate system.

DESCRIPTION

The Movie Toolbox calls the MovieExportToFile function in order to export movie

data into a file. Your component must read the data from the track or movie, perform

appropriate conversions on that data, and place the data into the specified file. The file’s

type corresponds to the component subtype of your movie data export component.

Note that the requesting program or toolbox must create the destination file before

calling this function. Furthermore, your component may not destroy any data in the

destination file. If you cannot add data to the specified file, return an appropriate error.

If your component can write data to a file, be sure to set the canMovieExportFiles

flag in your component’s componentFlags field.

Your component must be prepared to perform this function at any time. You should not

expect that any of your component’s configuration functions will be called first.

RESULT CODES

Other appropriate Movie Toolbox result codes

SEE ALSO

The Movie Toolbox uses the MovieExportToHandle function to export data to a file;

this function is described in the previous section.

Configuring Movie Data Export Components

Your component may provide one or more configuration functions. These functions

allow applications to configure your component before the Movie Toolbox calls your

component to start the export process. Note that applications may call these functions

directly.

All of these functions are optional. If your component receives a request that it does not

support, you should return the badComponentSelector error code. In addition, your

component should work properly even if none of these functions is called.

These functions address a variety of configuration issues. Applications

can retrieve additional data from your component by calling the

MovieExportGetAuxiliaryData function.

Applications can specify a progress function for use by your component by calling the

MovieExportSetProgressProc function.

Applications can instruct your component to display its user dialog box by calling the

MovieExportDoUserDialog function.

invalidTrack –2009 Specified track cannot be converted

C H A P T E R 9

Movie Data Exchange Components

9-38 Movie Data Exchange Components Reference

MovieExportSetProgressProc

The MovieExportSetProgressProc function allows an application to assign a movie

progress function.

pascal ComponentResult MovieExportSetProgressProc

 (ComponentInstance ci,

MovieProgressProcPtr proc,

long refcon);

ci Identifies the application’s connection to your movie data export
component.

proc Contains a pointer to the application’s movie progress function. See the
chapter “Movie Toolbox” in Inside Macintosh: QuickTime for a complete
description of the interface supported by movie progress functions. If this
parameter is set to nil, the application is removing its progress function.
In this case, your component should stop calling the progress function.

refcon Specifies a reference constant. Your component should pass this constant
back to the application’s progress function whenever you call that
function.

DESCRIPTION

Some data export operations may be time-consuming, and application developers may

therefore choose to display progress information to the user. Your component provides

this information to an application’s progress function. As your component processes an

export request, you should call the progress function occasionally in order to report on

the progress of the operation. Use a progress code of progressOpExportMovie. The

application can then present this information to the user.

These progress functions must support the same interface as Movie Toolbox progress

functions. That interface is discussed in the chapter “Movie Toolbox” in Inside Macintosh:
QuickTime. Note that this interface not only allows you to report progress to the

application, but also allows the application to cancel the request.

RESULT CODE

badComponentSelector 0x80008002 Function not supported

C H A P T E R 9

Movie Data Exchange Components

Movie Data Exchange Components Reference 9-39

MovieExportGetAuxiliaryData

The MovieExportGetAuxiliaryData function allows an application to retrieve

additional data from your component. This additional data may be created during the

data export process.

pascal ComponentResult MovieExportGetAuxiliaryData

 (ComponentInstance ci,

Handle dataH,

OSType *handleType);

ci Identifies the application’s connection to your movie data export
component.

data Contains a handle that is to be filled with the additional data. Your
component should resize this handle as appropriate. Your component is
not responsible for disposing of this handle.

handleType
Contains a pointer to the type of data you place in the handle specified by
the data parameter.

DESCRIPTION

The MovieExportGetAuxiliaryData function allows an application to retrieve

additional data that is generated during the data export process. The application may

then use the data as appropriate. Your component may create this data in cases where

the target data type cannot accommodate all of the converted data. For example, if your

component exports data into 'TEXT' handles or files, you might choose to preserve

associated style information for that text. However, 'TEXT' resources cannot store that

style information. You could save that style information in a 'styl' handle and allow

an application to retrieve it after the conversion.

Your component should expect the application to call this function after the export

process ends.

RESULT CODE

badComponentSelector 0x80008002 Function not supported

C H A P T E R 9

Movie Data Exchange Components

9-40 Movie Data Exchange Components Reference

MovieExportDoUserDialog

The MovieExportDoUserDialog function allows an application to request that your

component display its user dialog box.

pascal ComponentResult MovieExportDoUserDialog

(ComponentInstance ci,

 const FSSpec *theFile,

 Handle theData,

 Boolean *canceled);

ci Identifies the application’s connection to your movie data export
component.

theFile Contains a pointer to a valid file specification. If the export request
pertains to a file, the application must specify the destination file with this
parameter and set the parameter theData to nil. If the request is for a
handle, this parameter is set to nil.

theData Contains a handle to receive the converted data. If the export request
pertains to a handle, the application must specify the destination handle
with this parameter, and set the parameter theFile to nil. If the request
is for a file, this parameter is set to nil.

canceled Contains a pointer to a Boolean value. Your component should set this
Boolean value to reflect whether the user cancels the dialog box. If the
user cancels the dialog box, set the Boolean value to true. Otherwise, set
it to false.

DESCRIPTION

Your movie data export component may support a user dialog box that allows the user

to configure an export operation. For components that support such a dialog box, the

MovieExportDoUserDialog function allows an application to tell you when to

display the dialog box to the user.

If your component supports a user dialog box, be sure to set the

hasMovieExportUserInterface flag in your component’s componentFlags field.

RESULT CODE

badComponentSelector 0x80008002 Function not supported

C H A P T E R 9

Movie Data Exchange Components

Summary of Movie Data Exchange Components 9-41

Summary of Movie Data Exchange Components

C Summary

Constants

/* component type values */

#define MovieImportType 'eat ' /* movie data import */

#define MovieExportType 'spit' /* movie data export */

/* componentFlags values for movie import and movie export components */

enum {

canMovieImportHandles = 1, /* can import from handles */

canMovieImportFiles = 2, /* can import from files */

hasMovieImportUserInterface = 4, /* import has user interface */

canMovieExportHandles = 8, /* can export to handles */

canMovieExportFiles = 16, /* can export to files */

hasMovieExportUserInterface = 32, /* export has user interface */

dontAutoFileMovieImport = 64 /* do not automatically import

movie files */

};

/* flags for MovieImportHandle and MovieImportFile */

enum {

movieImportCreateTrack = 1, /* create a new track */

movieImportInParallel = 2, /* paste imported data */

movieImportMustUseTrack = 4 /* use specified track */

};

enum {

movieImportResultUsedMultipleTracks = 8, /* component used several

tracks */

};

enum {

/* movie data import components */

kMovieImportHandleSelect = 1, /* import from handle */

kMovieImportFileSelect = 2, /* import from file */

kMovieImportSetSampleDurationSelect = 3, /* set sample duration */

C H A P T E R 9

Movie Data Exchange Components

9-42 Summary of Movie Data Exchange Components

kMovieImportSetSampleDescriptionSelect = 4, /* set sample description */

kMovieImportSetMediaFileSelect = 5, /* set media file */

kMovieImportSetDimensionsSelect = 6, /* set track dimensions */

kMovieImportSetChunkSizeSelect = 7, /* set chunk size */

kMovieImportSetProgressProcSelect = 8, /* set progress func */

kMovieImportSetAuxiliaryDataSelect = 9, /* set additional data */

kMovieImportSetFromScrapSelect = 10, /* data from scrap */

kMovieImportDoUserDialogSelect = 11, /* invoke user dialog */

kMovieImportSetDurationSelect = 12 /* set paste duration */

/* movie data export components */

kMovieExportToHandleSelect = 128,/* export to handle */

kMovieExportToFileSelect = 129,/* export to file */

kMovieExportDoUserDialogSelect = 130,/* invoke user dialog */

kMovieExportGetAuxiliaryDataSelect = 131,/* get additional data */

kMovieExportSetProgressProcSelect = 132 /* set progress function */

};

Data Type

typedef ComponentInstance MovieImportComponent, MovieExportComponent;

Functions

Importing Movie Data

pascal ComponentResult MovieImportHandle
(ComponentInstance ci,
Handle dataH, Movie theMovie,
Track targetTrack, Track *usedTrack,
TimeValue atTime, TimeValue *addedDuration,
long inFlags, long *outFlags);

pascal ComponentResult MovieImportFile
(ComponentInstance ci,
const FSSpec *theFile, Movie theMovie,
Track targetTrack, Track *usedTrack,
TimeValue atTime, TimeValue *addedDuration,
long inFlags, long *outFlags);

C H A P T E R 9

Movie Data Exchange Components

Summary of Movie Data Exchange Components 9-43

Configuring Movie Data Import Components

pascal ComponentResult MovieImportSetDuration
(ComponentInstance ci, TimeValue duration);

pascal ComponentResult MovieImportSetSampleDuration
(ComponentInstance ci, TimeValue duration,
TimeScale scale);

pascal ComponentResult MovieImportSetSampleDescription
(ComponentInstance ci,
SampleDescriptionHandle desc,
OSType mediaType);

pascal ComponentResult MovieImportSetMediaFile
(ComponentInstance ci, AliasHandle alias);

pascal ComponentResult MovieImportSetDimensions
(ComponentInstance ci,
Fixed width, Fixed height);

pascal ComponentResult MovieImportSetChunkSize
(ComponentInstance ci, long chunkSize);

pascal ComponentResult MovieImportSetProgressProc
(ComponentInstance ci,
MovieProgressProcPtr proc, long refcon);

pascal ComponentResult MovieImportSetAuxiliaryData
(ComponentInstance ci,
Handle data, OSType handleType);

pascal ComponentResult MovieImportSetFromScrap
(ComponentInstance ci, Boolean fromScrap);

pascal ComponentResult MovieImportDoUserDialog
(ComponentInstance ci, const FSSpec *theFile,
Handle theData, Boolean *canceled);

Exporting Movie Data

pascal ComponentResult MovieExportToHandle
(ComponentInstance ci, Handle dataH,
Movie theMovie, Track onlyThisTrack,
TimeValue startTime, TimeValue duration);

pascal ComponentResult MovieExportToFile
(ComponentInstance ci,
const FSSpec *theFile, Movie theMovie,
Track onlyThisTrack, TimeValue startTime,
TimeValue duration);

C H A P T E R 9

Movie Data Exchange Components

9-44 Summary of Movie Data Exchange Components

Configuring Movie Data Export Components

pascal ComponentResult MovieExportSetProgressProc
(ComponentInstance ci,
MovieProgressProcPtr proc, long refcon);

pascal ComponentResult MovieExportGetAuxiliaryData
(ComponentInstance ci, Handle dataH,
OSType *handleType);

pascal ComponentResult MovieExportDoUserDialog
(ComponentInstance ci, const FSSpec *theFile,
Handle theData, Boolean *canceled);

Pascal Summary

Constants

CONST

{component type values}

MovieImportType = 'eat ' {movie data import}

MovieExportType = 'spit' {movie data export}

{componentFlags values for movie import and movie export components}

canMovieImportHandles = 1; {can import from handles}

canMovieImportFiles = 2; {can import from files}

hasMovieImportUserInterface = 4; {import has user interface}

canMovieExportHandles = 8; {can export to handles}

canMovieExportFiles = $10;{can export to files}

hasMovieExportUserInterface = $20;{export has user interface}

dontAutoFileMovieImport = $40;{do not automatically import movie }

{ files}

{flags for MovieImportHandle and MovieImportFile functions}

movieImportCreateTrack = 1; {create a new track}

movieImportInParallel = 2; {paste imported data}

movieImportMustUseTrack = 4; {use specified track}

movieImportResultUsedMultipleTracks = 8; {component used several }

{ tracks}

{movie data import components}

kMovieImportHandleSelect = 1; {import from handle}

kMovieImportFileSelect = 2; {import from file}

kMovieImportSetSampleDurationSelect = 3; {set sample duration}

C H A P T E R 9

Movie Data Exchange Components

Summary of Movie Data Exchange Components 9-45

kMovieImportSetSampleDescriptionSelect = 4; {set sample description}

kMovieImportSetMediaFileSelect = 5; {set media file}

kMovieImportSetDimensionsSelect = 6; {set track dimensions}

kMovieImportSetChunkSizeSelect = 7; {set chunk size}

kMovieImportSetProgressProcSelect = 8; {set progress function}

kMovieImportSetAuxiliaryDataSelect = 9; {set additional data}

kMovieImportSetFromScrapSelect = $A; {data from scrap}

kMovieImportDoUserDialogSelect = $B; {invoke user dialog box}

kMovieImportSetDurationSelect = $C; {set paste duration}

{movie data export components}

kMovieExportToHandleSelect = $80; {export to handle}

kMovieExportToFileSelect = $81; {export to file}

kMovieExportDoUserDialogSelect = $82; {invoke user dialog box}

kMovieExportGetAuxiliaryDataSelect = $83; {get additional data}

kMovieExportSetProgressProcSelect = $84; {set progress function}

Data Type

TYPE

MovieImportComponent = ComponentInstance;

MovieExportComponent = ComponentInstance;

Routines

Importing Movie Data

FUNCTION MovieImportHandle (ci: MovieImportComponent; dataH: Handle;
theMovie: Movie; targetTrack: Track;
VAR usedTrack: Track; atTime: TimeValue;
VAR addedDuration: TimeValue;
inFlags: LongInt; VAR outFlags: LongInt):
ComponentResult;

FUNCTION MovieImportFile (ci: MovieImportComponent; theFile: FSSpec;
theMovie: Movie; targetTrack: Track;
VAR usedTrack: Track; atTime: TimeValue;
VAR addedDuration: TimeValue;
inFlags: LongInt; VAR outFlags: LongInt):
ComponentResult;

C H A P T E R 9

Movie Data Exchange Components

9-46 Summary of Movie Data Exchange Components

Configuring Movie Data Import Components

FUNCTION MovieImportSetDuration
(ci: MovieImportComponent;
duration: TimeValue): ComponentResult;

FUNCTION MovieImportSetSampleDuration
(ci: MovieImportComponent; duration: TimeValue;
scale: TimeScale): ComponentResult;

FUNCTION MovieImportSetSampleDescription
(ci: MovieImportComponent;
desc: SampleDescriptionHandle;
mediaType: OSType): ComponentResult;

FUNCTION MovieImportSetMediaFile
(ci: MovieImportComponent; alias: AliasHandle):
ComponentResult;

FUNCTION MovieImportSetDimensions
(ci: MovieImportComponent;
width, height: Fixed): ComponentResult;

FUNCTION MovieImportSetChunkSize
(ci: MovieImportComponent; chunkSize: LongInt):
ComponentResult;

FUNCTION MovieImportSetProgressProc
(ci: MovieImportComponent; proc: ProcPtr;
refCon: LongInt): ComponentResult;

FUNCTION MovieImportSetAuxiliaryData
(ci: MovieImportComponent; data: Handle;
handleType: OSType): ComponentResult;

FUNCTION MovieImportSetFromScrap
(ci: MovieImportComponent; fromScrap: Boolean):
ComponentResult;

FUNCTION MovieImportDoUserDialog
(ci: MovieImportComponent; srcFile: FSSpec;
data: Handle; VAR canceled: Boolean):
ComponentResult;

C H A P T E R 9

Movie Data Exchange Components

Summary of Movie Data Exchange Components 9-47

Exporting Movie Data

FUNCTION MovieExportToHandle
(ci: MovieExportComponent; data: Handle;
theMovie: Movie; onlyThisTrack: Track;
startTime: TimeValue; duration: TimeValue):
ComponentResult;

FUNCTION MovieExportToFile (ci: MovieExportComponent; dstFile: FSSpec;
theMovie: Movie; onlyThisTrack: Track;
startTime: TimeValue; duration: TimeValue):
ComponentResult;

Configuring Movie Data Export Components

FUNCTION MovieExportSetProgressProc
(ci: MovieExportComponent; proc: ProcPtr;
refCon: LongInt): ComponentResult;

FUNCTION MovieExportGetAuxiliaryData
(ci: MovieExportComponent; dstFile: Handle;
VAR handleType: OSType): ComponentResult;

FUNCTION MovieExportDoUserDialog
(ci: MovieExportComponent; dstFile: FSSpec;
data: Handle; VAR canceled: Boolean):
ComponentResult;

Result Codes
invalidTrack –2009 Specified track cannot receive imported

data
unsupportedAuxiliaryImportData –2057 Cannot work with specified handle type
badComponentSelector 0x80008002 Function not supported

Contents 10-1

C H A P T E R 1 0

Derived Media Handler

Contents

Components

About Derived Media Handler Components 10-4

Media Handler Components 10-4

Derived Media Handler Components 10-6

Creating a Derived Media Handler Component 10-7

Component Flags for Derived Media Handlers 10-8

Request Processing 10-8

A Sample Derived Media Handler Component 10-9

Implementing the Required Component Functions 10-9

Initializing a Derived Media Handler Component 10-12

Drawing the Media Sample 10-13

Derived Media Handler Components Reference 10-15

Data Type 10-15

Functions 10-18

Managing Your Media Handler Component 10-18

General Data Management 10-23

Graphics Data Management 10-31

Sound Data Management 10-37

Base Media Handler Utility Function 10-38

Summary of Derived Media Handler Components 10-41

C Summary 10-41

Constants 10-41

Data Type 10-43

Functions 10-43

Pascal Summary 10-45

Constants 10-45

Data Type 10-46

Routines 10-47

C H A P T E R 1 0

10-3

Derived Media Handler Components

This chapter discusses derived media handler components. Derived media handler
components allow the Movie Toolbox to play the data in a media. These components

isolate the Movie Toolbox from the details of how or where a particular media is stored.

This not only frees the Movie Toolbox from reading and writing media data, but also

makes QuickTime extensible to new data formats.

These components are referred to as derived components because they rely on the

services of a common base media handler component, which is supplied by Apple. The

base media handler component handles most of the duties that must be performed by

all media handlers. Your derived media handler component extends the services

provided by the base media handler.

This chapter is divided into the following sections:

■ “About Derived Media Handler Components” provides a general introduction to
components of this type.

■ “Creating a Derived Media Handler Component” provides a sample program for the
implementation of such a component for PICT files.

■ “Derived Media Handler Components Reference” presents detailed information
about the functions that are supported by these components.

■ “Summary of Derived Media Handler Components” contains a condensed listing of
the constants, data structures, and functions supported by these components.

This chapter addresses developers of derived media handler components. You should

never need to use the facilities of a derived media handler directly—only the Movie

Toolbox calls derived media handler components. The functions described in this

chapter define the functional interface that your component must support.

As components, derived media handlers rely on the facilities of the

Component Manager. To use any component, your application must also use

the Component Manager. If you are not familiar with this manager, see the

chapter “Component Manager” in Inside Macintosh: More Macintosh Toolbox. In addition,

you should be familiar with the Movie Toolbox in general and the concept of media

structures in particular. See the chapter “Movie Toolbox” in Inside Macintosh: QuickTime
for more information.

Note

Throughout this chapter, the terms media handler and handler refer to
media handler components. Apple’s sound and video handlers are not
derived media handlers, so you cannot override them using the
functions described in this chapter. Apple’s text media handler, on the
other hand, is built on the base media handler. ◆

C H A P T E R 1 0

Derived Media Handler Components

10-4 About Derived Media Handler Components

About Derived Media Handler Components

This section provides background information about media handler components in

general and derived media handler components in particular. After reading this section,

you should understand why media handler components exist and whether you need to

create a derived media handler component.

Media Handler Components
Media handler components allow the Movie Toolbox to play a movie’s data. The Movie

Toolbox, by itself, cannot read or write movie data. Rather, media handlers perform

input and output services on behalf of the Movie Toolbox. The Movie Toolbox gains

access to the appropriate media handler for a particular movie track by examining the

track’s media. That data structure identifies the media handler that created and

maintains the media (see the chapter “Movie Toolbox” in Inside Macintosh: QuickTime
for more information about the relationship between a movie, its tracks, and each

track’s media).

Each media handler is primarily responsible for understanding the format and content of

the media type it supports. The media handler is intimately familiar with the sample

structure used in its media, the compression techniques used to store the media’s sample

data, and the performance characteristics of the device that stores the media.

During movie playback, the media handler draws its media’s data on the screen and

plays the media’s sounds. The media handler may use the services of other managers

such as the Image Compression Manager for compressed image data and the Sound

Manager for sound data. When an application creates a movie, media handlers store the

movie’s data. The actual reading and writing of media data are performed by another

component, the data handler. For details on the Image Compression Manager,

see Inside Macintosh: QuickTime. For more on the Sound Manager, see Inside Macintosh:
More Macintosh Toolbox.

Applications never directly use the services of media handlers. The Movie Toolbox

controls all movie data storage and retrieval on behalf of QuickTime applications.

C H A P T E R 1 0

Derived Media Handler Components

About Derived Media Handler Components 10-5

Figure 10-1 shows the logical relationships between applications, the Movie Toolbox,

media handlers, and data handlers.

Figure 10-1 Logical relationships between the Movie Toolbox and media handlers

Apple had three primary goals for isolating the Movie Toolbox and QuickTime

applications from the details of media data access. First, the isolation allows

programmers who develop the Movie Toolbox and QuickTime applications to focus on

the specifics of the problems they are addressing, freed from concerns about data access.

Second, this architecture allows QuickTime to be easily extended to accommodate new

storage devices and technologies. Third, by documenting the media handler interface,

developers can create their own, special-purpose media handlers that work with

QuickTime.

C H A P T E R 1 0

Derived Media Handler Components

10-6 About Derived Media Handler Components

Derived Media Handler Components
Much of what a media handler component must do is common to all media handlers.

Managing a connection with the appropriate data handler, retrieving movie data from

media samples, and storing movie data into new samples account for a substantial part

of every media handler’s responsibilities. To make it easier for developers to create

media handler components, Apple provides a base media handler component that

performs most of the common duties of a media handler.

Apple’s base media handler component eliminates much of the work you would have to

do to create your own media handler component. The base media handler interacts with

both the Movie Toolbox and the appropriate data handler, so that your media handler

only has to deal with service requests, and you can ignore many of the housekeeping

functions. It understands the format of Apple’s media samples and sample descriptions,

so that your media handler only has to worry about the actual media data. Finally, it

provides basic services that your media handler can use to accommodate unusual

display environments.

When you build your media handler component on top of the base media handler,

your media handler is known as a derived media handler component. This terminology is

borrowed from object-oriented development and refers to the fact that your

media handler is based on, or derived from, the services provided by Apple’s base media

handler. Figure 10-2 shows the relationship between the base media handler, derived

media handlers, the Movie Toolbox, and data handler components.

Figure 10-2 Relationship between the base media handler component and derived media
handlers

You should consider deriving your media handler from Apple’s base media handler

component if your media requires low to moderate data throughput. Apple’s base

media handler can support data rates up to 32 kilobits per second. This rate is adequate

for such data types as text, sound effects, animation, annotations, or MIDI (Musical

C H A P T E R 1 0

Derived Media Handler Components

Creating a Derived Media Handler Component 10-7

Instrument Digital Interface) sound data. However, Apple’s base media handler is not

appropriate for CD-quality sound, which may require data rates of up to 176 kilobits per

second.

Creating a Derived Media Handler Component

This section provides an example of creating a derived media handler component. The

functional interface that your derived media handler component must support is

described in “Derived Media Handler Components Reference” beginning on page 10-15.

Before reading this section, you should be familiar with how to create components. See

the chapter “Component Manager” in Inside Macintosh: More Macintosh Toolbox for a

complete discussion of components—how to use them and how to create them.

Apple has defined a component type value for media handler components. All

components of this type have the same type value. You can use the following constant to

specify this component type:

#define MediaHandlerType 'mhlr' /* media handler */

Apple has defined a functional interface for derived media handler components. For

information about the functions that your component must support, see “Derived Media

Handler Components Reference” beginning on page 10-15. You can use the following

constants to refer to the request codes for each of the functions that your component

must support:

enum {

kMediaInitializeSelect = 0x501, /* MediaInitialize */

kMediaSetHandlerCapabilitiesSelect = 0x502,

/* MediaSetHandlerCapabilities */

kMediaIdleSelect = 0x503, /* MediaIdle */

kMediaGetMediaInfoSelect = 0x504, /* MediaGetMediaInfo */

kMediaPutMediaInfoSelect = 0x505, /* MediaPutMediaInfo */

kMediaSetActiveSelect = 0x506, /* MediaSetActive */

kMediaSetRateSelect = 0x507, /* MediaSetRate */

kMediaGGetStatusSelect = 0x508, /* MediaGGetStatus */

kMediaTrackEditedSelect = 0x509, /* MediaTrackEdited */

kMediaSetMediaTimeScaleSelect = 0x50A, /* MediaSetMediaTimeScale */

kMediaSetMovieTimeScaleSelect = 0x50B, /* MediaSetMovieTimeScale */

kMediaSetGWorldSelect = 0x50C, /* MediaSetGWorld */

kMediaSetDimensionsSelect = 0x50D, /* MediaSetDimensions */

kMediaSetClipSelect = 0x50E, /* MediaSetClip */

kMediaSetMatrixSelect = 0x50F, /* MediaSetMatrix */

kMediaGetTrackOpaqueSelect = 0x510, /* MediaGetTrackOpaque */

kMediaSetGraphicsModeSelect = 0x511, /* MediaSetGraphicsMode */

C H A P T E R 1 0

Derived Media Handler Components

10-8 Creating a Derived Media Handler Component

kMediaGetGraphicsModeSelect = 0x512, /* MediaGetGraphicsMode */

kMediaGSetVolumeSelect = 0x513, /* MediaGSetVolume */

kMediaSetSoundBalanceSelect = 0x514, /* MediaSetSoundBalance */

kMediaGetSoundBalanceSelect = 0x515, /* MediaGetSoundBalance */

kMediaGetNextBoundsChangeSelect = 0x516,

/* MediaGetNextBoundsChange */

kMediaGetSrcRgnSelect = 0x517, /* MediaGetSrcRgn */

kMediaPrerollSelect = 0x518, /* MediaPreroll */

kMediaSampleDescriptionChangedSelect = 0x519,

/* MediaSampleDescriptionChanged */

kMediaHasCharacteristicSelect = 0x51A /* MediaHasCharacteristic */

};

Component Flags for Derived Media Handlers
The Component Manager allows you to specify information about your component’s

capabilities in the componentFlags field of the component description record. You

must set this component flag to 1 in the component description that is associated with

your derived media handler:

mediaHandlerFlagBaseClient
Indicates that your component is derived from another component.
Setting this flag to 1 tells the Component Manager that your component is
a client of the base media handler.

Request Processing
Because your derived media handler is based on the base media handler component,

you avoid many of the details involved in creating a media handler. However, your

derived media handler must observe a few rules when processing service requests.

These rules are as follows:

■ When you receive an open request from the Component Manager, in addition to the
other processing you perform on your own behalf, you must also open a connection
to the base media handler component. You should save the component instance that is
returned by the Component Manager so that your media handler can use the services
of the base media handler.

■ The base media handler has a component type of MediaHandlerType (which is set
to 'mhlr') and a component subtype of BaseMediaType (which is set to 'gnrc').
You can use these values with the Component Manager’s OpenDefaultComponent
function to open a connection to the base media handler.

C H A P T E R 1 0

Derived Media Handler Components

Creating a Derived Media Handler Component 10-9

■ At this time, you must also tell the base media handler that your handler is derived
from it. Use the Component Manager’s OpenComponent function to create a
component instance of your media handler as a descendant of the base media handler.
After calling that function, you should send the kComponentSetTargetSelect
request to the base media handler, so that it knows your media handler is derived
from it. Use the Component Manager’s ComponentSetTarget function to send a
target request.

■ When you receive a close request from the Component Manager, be sure to close your
handler’s connection to the base media handler component. Use the Component
Manager’s CloseComponent function.

■ Your derived media handler must support the target request, so that your component
can be used by other media handlers.

■ Be sure to pass all unsupported service requests to the base media handler
component. Use the Component Manager’s DelegateComponentCall function to
pass these requests to the base media handler.

■ If your media handler component competes for potentially scarce system resources,
your component should release those resources when you aren’t using them. For
example, if you are creating a media handler that uses sound, you might use sound
channels. Because there are a limited number of sound channels available, your
component should free its channels whenever your media is not playing or has been
stopped. You can reallocate the channels when you start playing or your component’s
MediaPreroll function is called.

A Sample Derived Media Handler Component
This section supplies a sample program that implements a derived media handler

component for PICT images.

Implementing the Required Component Functions

Listing 10-1 supplies the component dispatchers for the media handler component for

PICT images together with the required functions.

Listing 10-1 Implementing the required functions

typedef struct {

ComponentInstance self;

ComponentInstance parent;

ComponentInstance delegateComponent;

Fixed width;

Fixed height;

MatrixRecord matrix;

Media media;

Track track;

} PictGlobalsRecord, *PictGlobals;

C H A P T E R 1 0

Derived Media Handler Components

10-10 Creating a Derived Media Handler Component

pascal ComponentResult PictMediaDispatch

(ComponentParameters *params,

 Handle storage)

{

OSErr err = badComponentSelector;

ComponentFunction componentProc = 0;

switch (params->what) {

case kComponentOpenSelect:

componentProc = PictOpen; break;

case kComponentCloseSelect:

componentProc = PictClose; break;

case kComponentCanDoSelect:

componentProc = PictCanDo; break;

case kComponentVersionSelect:

componentProc = PictVersion; break;

case kComponentTargetSelect:

componentProc = PictVersion; break;

case kMediaInitializeSelect:

componentProc = PictInitialize; break;

case kMediaIdleSelect:

componentProc = PictIdle; break;

case kMediaSetDimensionsSelect:

componentProc = PictSetDimensions; break;

case kMediaSetMatrixSelect:

componentProc = PictSetMatrix; break;

}

if (componentProc)

err = CallComponentFunctionWithStorage (storage, params,

 componentProc);

else

err = DelegateComponentCall (params, ((PictGlobals)

 storage)->delegateComponent);

return err;

}

pascal ComponentResult PictCanDo (PictGlobals globals,

short ftnNumber)

{

switch (ftnNumber) {

case kComponentOpenSelect:

case kComponentCloseSelect:

C H A P T E R 1 0

Derived Media Handler Components

Creating a Derived Media Handler Component 10-11

case kComponentCanDoSelect:

case kComponentVersionSelect:

case kComponentTargetSelect:

case kMediaInitializeSelect:

case kMediaIdleSelect:

case kMediaSetDimensionsSelect:

case kMediaSetMatrixSelect:

return true;

default:

return ComponentFunctionImplemented

(globals->delegateComponent, ftnNumber);

}

}

pascal ComponentResult PictVersion (PictGlobals globals)

{

return 0x00020001;

}

pascal ComponentResult PictOpen(PictGlobals globals,

 ComponentInstance self)

{

OSErr err;

/* allocate storage */

globals = (PictGlobals)NewPtrClear(sizeof(PictGlobalsRecord));

if (err = MemError()) return err;

SetComponentInstanceStorage(self, (Handle)globals);

globals->self = self;

globals->parent = self;

/* find a base media handler to serve as a delegate */

globals->delegateComponent =

OpenDefaultComponent (MediaHandlerType,

 BaseMediaType);

if (globals->delegateComponent)

PictTarget(globals, self); /* set up the calling chain */

else {

DisposePtr((Ptr)globals);

err = cantOpenHandler;

}

return err;

}

C H A P T E R 1 0

Derived Media Handler Components

10-12 Creating a Derived Media Handler Component

pascal ComponentResult PictClose (PictGlobals globals,

 ComponentInstance self)

{

if (globals) {

if (globals->delegateComponent)

CloseComponent(globals->delegateComponent);

DisposePtr((Ptr)globals);

}

return noErr;

}

pascal ComponentResult PictTarget(PictGlobals store,

 ComponentInstance parentComponent)

{

/* remember who is at the top of your calling chain */

store->parent = parentComponent;

/* and inform your delegate component of the change */

ComponentSetTarget(store->delegateComponent, parentComponent);

return noErr;

}

Initializing a Derived Media Handler Component

The derived media handler component is initialized by the Movie Toolbox’s calling of

the MediaInitialize function (described on page 10-18). You should then report the

derived media handler capabilities to the base media handler before the Movie Toolbox

starts working with your media by calling the MediaSetHandlerCapabilities

function (described on page 10-38) from your MediaInitialize function.

Listing 10-2 is the initialization function for a derived media handler. The

PictInitialize function stores the initial height, width, track movie matrix, media,

and track of the derived media handler component. From PictInitialize, the

MediaSetHandlerCapabilities function is called to inform the base media handler

of its existence and features.

C H A P T E R 1 0

Derived Media Handler Components

Creating a Derived Media Handler Component 10-13

Listing 10-2 Initializing a derived media handler

pascal ComponentResult PictInitialize (PictGlobals store,

 GetMovieCompleteParams *gmc)

{

/* remember some useful parameters */

store->width = gmc->width;

store->height = gmc->height;

store->matrix = gmc->trackMovieMatrix;

store->media = gmc->theMedia;

store->track = gmc->theTrack;

/* tell the base media handler about your derived

media handler */

MediaSetHandlerCapabilities(store->delegateComponent,

handlerHasSpatial, handlerHasSpatial);

return noErr;

}

Drawing the Media Sample

The Movie Toolbox provides processing time to your derived media handler to display

samples by calling the MediaIdle function (described on page 10-20). Your media

handler may use this time to play its media sample. The code in Listing 10-3 allows the

derived media handler component to draw the current media sample (in this case, a

PICT image).

Listing 10-3 Drawing the media sample

pascal ComponentResult PictIdle (PictGlobals store,

TimeValue atMediaTime,

long flagsIn, long *flagsOut,

const TimeValue *tr)

{

OSErr err;

Rect r;

Handle sample = NewHandle (0);

if (err = MemError()) goto bail;

C H A P T E R 1 0

Derived Media Handler Components

10-14 Creating a Derived Media Handler Component

/* get the current sample */

err = GetMediaSample (store->media, sample, 0, nil,

atMediaTime, nil, 0, 0, 0, 0, 0, 0);

if (err) goto bail;

/* draw it using the current matrix */

SetRect (&r, 0, 0, FixRound (store->width),

FixRound (store->height));

TransformRect (&store->matrix, &r, nil);

EraseRect (&r);

DrawPicture ((PicHandle)sample, &r);

bail:

DisposeHandle (sample);

flagsOut |= mDidDraw; / let Movie Toolbox know you drew

something */

return err;

}

pascal ComponentResult PictSetDimensions (PictGlobals store,

Fixed width,

Fixed height)

{

/* remember the new track */

store->width = width;

store->height = height;

return noErr;

}

pascal ComponentResult PictSetMatrix (PictGlobals store,

 MatrixRecord *trackMovieMatrix)

{

/* remember the new display matrix */

store->matrix = *trackMovieMatrix;

return noErr;

}

C H A P T E R 1 0

Derived Media Handler Components

Derived Media Handler Components Reference 10-15

Derived Media Handler Components Reference

This section describes the functions that your derived media handler may support and

the data structure that your component may use to interact with the base media handler.

Data Type

The GetMovieCompleteParams data type defines the layout of the complete movie

parameter structure used by the MediaInitialize function (described on page 10-18):

typedef struct {

short version; /* version; always 0 */

Movie theMovie; /* movie identifier */

Track theTrack; /* track identifier */

Media theMedia; /* media identifier */

TimeScale movieScale; /* movie's time scale */

TimeScale mediaScale; /* media's time scale */

TimeValue movieDuration; /* movie's duration */

TimeValue trackDuration; /* track's duration */

TimeValue mediaDuration; /* media's duration */

Fixed effectiveRate; /* media's effective rate */

TimeBase timeBase; /* media's time base */

short volume; /* media's volume */

Fixed width; /* width of display area */

Fixed height; /* height of display area */

MatrixRecord trackMovieMatrix; /* transformation matrix */

CGrafPtr moviePort; /* movie's graphics port */

GDHandle movieGD; /* movie's graphics device */

PixMapHandle trackMatte; /* track's matte */

} GetMovieCompleteParams;

Field descriptions

version Specifies the version of this structure. This field is always set to 0.

theMovie Identifies the movie that contains the current media’s track. This
movie identifier is supplied by the Movie Toolbox. Your component
may use this identifier to obtain information about the movie that is
using your media.

C H A P T E R 1 0

Derived Media Handler Components

10-16 Derived Media Handler Components Reference

theTrack Identifies the track that contains the current media. This
track identifier is supplied by the Movie Toolbox. Your component
may use this identifier to obtain information about the track that
contains your media. For example, you might call the Movie
Toolbox’s GetTrackNextInterestingTime function in order to
examine the track’s edit list.

theMedia Identifies the current media. This media identifier is supplied by the
Movie Toolbox. Your derived media handler can use this identifier
to read samples or sample descriptions from the current media,
using the Movie Toolbox’s GetMediaSample and
GetMediaSampleDescription functions (see Inside Macintosh:
QuickTime for information about the Movie Toolbox).

movieScale Specifies the time scale of the movie that contains the current
media’s track. If the Movie Toolbox changes the movie’s time scale,
the toolbox calls your derived media handler’s
MediaSetMovieTimeScale function, which is described on
page 10-30.

mediaScale Specifies the time scale of the current media. If the Movie Toolbox
changes your media’s time scale, the toolbox calls your derived
media handler’s MediaSetMediaTimeScale function, which is
described on page 10-30.

movieDuration Contains the movie’s duration. This value is expressed in the
movie’s time scale.

trackDuration Contains the track’s duration. This value is expressed in the movie’s
time scale.

mediaDuration Contains the media’s duration. This value is expressed in the
media’s time scale.

effectiveRate Contains the media’s effective rate. This rate ties the media’s time
scale to the passage of absolute time, and does not necessarily
correspond to the movie’s rate. This value takes into account any
master time bases that may be serving the media’s time base. The
value of this field indicates the number of time units (in the media’s
time scale) that pass each second.

This rate is represented as a 32-bit, fixed-point number. The
high-order 16 bits contain the integer portion, and the low-order 16
bits contain the fractional portion. The rate is negative when time is
moving backward for the media.

Whenever the Movie Toolbox changes your media’s effective rate, it
calls your derived media handler’s MediaSetRate function, which
is discussed on page 10-26.

timeBase Identifies the media’s time base.

volume Contains the media’s current volume setting. This value is
represented as a 16-bit, fixed-point number. The high-order 8 bits
contain the integer portion; the low-order 8 bits contain the

C H A P T E R 1 0

Derived Media Handler Components

Derived Media Handler Components Reference 10-17

fractional part. Volume values range from –1.0 to 1.0. Negative
values play no sound but preserve the absolute value of the volume
setting.

If the Movie Toolbox changes your media’s volume, it calls your
derived media handler’s MediaGSetVolume function, which is
discussed on page 10-38.

width Indicates the width, in pixels, of the track rectangle. This field, along
with the height field, specifies a rectangle that surrounds the
image that is displayed when the current media is played. This
value corresponds to the x coordinate of the lower-right corner of
the rectangle and is expressed as a fixed-point number.

If the Movie Toolbox modifies this rectangle, the toolbox calls your
derived media handler’s MediaSetDimensions function, which is
discussed on page 10-32.

Note that your media need not present only a rectangular image.
The Movie Toolbox can use a clipping region to cause your media’s
image to be displayed in a region of arbitrary shape, and it can use a
matte to control the image’s transparency. The toolbox calls your
derived media handler’s MediaSetClip function whenever it
changes your media’s clipping region (see page 10-34 for more
information about this function). The trackMatte field in this
structure specifies a matte region.

height Indicates the height, in pixels, of the track rectangle. This value
corresponds to the y coordinate of the lower-right corner of the
rectangle and is expressed as a fixed-point number.

trackMovieMatrix
Specifies the matrix that transforms your media’s pixels into the
movie’s coordinate system. The Movie Toolbox obtains this matrix
by concatenating the track matrix and the movie matrix. You should
use this matrix whenever you are displaying graphical data from
your media.

Whenever the Movie Toolbox modifies this matrix, it calls your
derived media handler’s MediaSetMatrix function, which is
discussed on page 10-33.

moviePort Indicates the movie’s graphics port. Whenever the Movie Toolbox
changes the movie’s graphics world, it calls your derived media
handler’s MediaSetGWorld function, which is discussed on
page 10-31.

movieGD Specifies the movie’s graphics device. Whenever the Movie Toolbox
changes the movie’s graphics world, it calls your derived media
handler’s MediaSetGWorld function, which is discussed on
page 10-31.

trackMatte Identifies the matte region assigned to the track that uses your
media. This field contains a handle to a pixel map that contains a
blend matte. Your component is not responsible for disposing of
this matte. If there is no matte, this field is set to nil.

C H A P T E R 1 0

Derived Media Handler Components

10-18 Derived Media Handler Components Reference

Functions

This section describes the functions that may be supported by derived media handler

components. It is divided into the following topics:

■ “Managing Your Media Handler Component” discusses the functions that allow the
Movie Toolbox to manage its connection to your component.

■ “General Data Management” describes the functions that allow the Movie Toolbox to
manage the general characteristics of the control path through your component.

■ “Graphics Data Management” tells you about the functions that allow the Movie
Toolbox to manage the graphical characteristics of the control path through your
component.

■ “Sound Data Management” provides information about the function that allows the
Movie Toolbox to manage the sound characteristics of the control path through your
component.

■ “Base Media Handler Utility Function” discusses a function that allows your derived
media handler to report its capabilities to the base media handler.

Note

Many of the functions described in this chapter are optional—that is,
your derived media handler may not need to support them. The
description of each function discusses the issues you should consider
when deciding whether or not to support a specific function. ◆

Managing Your Media Handler Component

Derived media handlers provide three functions that allow the Movie Toolbox to

manage its relationship with the media handler. The Movie Toolbox calls your

MediaInitialize function in order to give you an opportunity to prepare to provide

access to your media. The Movie Toolbox grants processing time to your handler by

calling your MediaIdle function. Your MediaGGetStatus function allows the Movie

Toolbox to retrieve status information after calling MediaIdle.

MediaInitialize

The MediaInitialize function allows your derived media handler component to

prepare itself for providing access to its media.

pascal ComponentResult MediaInitialize (ComponentInstance ci,

GetMovieCompleteParams *gmc);

ci Identifies the Movie Toolbox’s connection to your derived media handler.

C H A P T E R 1 0

Derived Media Handler Components

Derived Media Handler Components Reference 10-19

gmc Contains a pointer to a complete movie parameter structure, which is
described in “Data Type” beginning on page 10-15. You can obtain
information about the current media from this structure. You should
copy any values you need to save into your derived media handler’s local
data area.

Because this data structure is owned by the Movie Toolbox, you do not
need to worry about disposing of any of the data in it.

DESCRIPTION

Once the Movie Toolbox has loaded a movie’s data from its file, the toolbox calls your

derived media handler’s MediaInitialize function. If the user is creating a new

movie, the Movie Toolbox calls your media handler anyway, even though there may be

no media data.

This function gives your media handler an opportunity to get ready to support

the Movie Toolbox. As part of these preparations, your derived media handler

should report its capabilities to the base media handler by calling the

MediaSetHandlerCapabilities function (see page 10-38 for more information

about this function).

You may choose to examine the data in the movie parameter structure; you may also

save values from this structure. If you save references to structures (such as the matte

pixel map), do not dispose of the memory associated with these structures. The Movie

Toolbox owns these structures.

All derived media handlers should support this function. In addition, if your media

handler saves values from the movie parameter structure that may change, be sure to

support the corresponding functions that allow the Movie Toolbox to report changes to

your media handler. For example, if your handler saves the movie time scale from the

movieScale field, you should also support the MediaSetMovieTimeScale function.

If you return an error, the Movie Toolbox disables the track that uses your media. In

cases where your media has just been created, the Movie Toolbox immediately disposes

of your media.

Note that the Movie Toolbox may call other functions supported by your media handler

before it calls your MediaInitialize function. In particular, it may call your

MediaGetMediaInfo and MediaPutMediaInfo functions. However, before the

Movie Toolbox tries to do anything with the data in your media, it will call your

MediaInitialize function. The Movie Toolbox loads the movie’s data using functions

that are supported by the base media handler—your media handler does not have to

support those functions.

RESULT CODES

Any Component Manager result code

C H A P T E R 1 0

Derived Media Handler Components

10-20 Derived Media Handler Components Reference

MediaIdle

The MediaIdle function allows the Movie Toolbox to provide processing time to your

derived media handler during movie playback. Your media handler may use this time to

play its media.

pascal ComponentResult MediaIdle (ComponentInstance ci,

TimeValue atMediaTime,

long flagsIn, long *flagsOut,

const TimeRecord *movieTime);

ci Identifies the Movie Toolbox’s connection to your derived media handler.

atMediaTime
Specifies the current time, in your media’s time base. You can use this
time to determine the appropriate media data to work with.

flagsIn Contains flags that indicate what the Movie Toolbox wants your media
handler to do. These flags are applicable only to media handlers that
perform their own scheduling.

The following flags are defined—the Movie Toolbox may use none, or it
may set one or more flag to 1:

mMustDraw
Indicates that your media handler must play its media at
this time. For graphical media, this means that your
handler must draw the appropriate media data on the
screen. For sound-based media, your handler must play the
media’s sounds. If this flag is set to 1, the Movie Toolbox
has encountered a new sample in your media.

mAtEnd Indicates that the current time corresponds to the end of
the movie.

mPreflightDraw
Indicates that your media handler must not play its media
at this time. Your handler may examine the media data and
prepare to play it, but you should not draw any graphical
data or play any sounds. If this flag is set to 1, your handler
must not play its data.

If these flags are set to 0, then your media handler is free to
decide whether to play the media data or not.

flagsOut Contains a pointer to a long integer that your media handler uses to
indicate to the Movie Toolbox what the handler did. You must always set
the values of these flags appropriately.

The following flags are defined:

mDidDraw Indicates that your media handler played its media’s data
with the handlerHasSpatial flag set, then it drew the
data. Any time your media handler plays its media’s data,
you should set this flag to 1 when you return from your
MediaIdle function. The Movie Toolbox uses this

C H A P T E R 1 0

Derived Media Handler Components

Derived Media Handler Components Reference 10-21

information when it is displaying a composited movie—
that is, a movie whose image is derived by blending
several tracks together. If your media’s track is obscured by
other, semitransparent tracks, the Movie Toolbox must
redraw those other tracks whenever your media’s image
changes.

mNeedsToDraw
Indicates that your media handler needs to play its data.
Typically, you use this flag when the Movie Toolbox calls
your MediaIdle function with the mPreflightDraw flag
in the flagsIn field set to 1, and you discover that you
have data that must be played at the current time. Set this
flag to 1 if your handler needs to play its media’s data.

movieTime Contains a pointer to the movie time value corresponding to the
atMediaTime parameter. Note that this may differ from the current
value returned by the Movie Toolbox’s GetMovieTime function.

DESCRIPTION

The Movie Toolbox uses your MediaIdle function to provide processing time to your

derived media handler during movie playback. Your media handler is free to use this

time in any appropriate manner. For example, if your media handler supports a sound

data type, you might prepare to play your media’s sounds or actually play them,

depending upon the options asserted by the Movie Toolbox. Your media handler is

responsible for limiting the amount of processing time it uses.

The Movie Toolbox provides the current time, in your media’s time base, in the

atMediaTime parameter. You can use this value to obtain the appropriate samples and

sample descriptions from your media (using the Movie Toolbox’s GetMediaSample

function). Your media handler may then work with the sample data and descriptions as

appropriate.

If you encounter an error, save the result code. The Movie Toolbox polls you for status

information using the MediaGGetStatus function, which is described next.

Your handler should examine the flagsIn parameter each time the Movie Toolbox calls

its MediaIdle function. The flags in this parameter indicate the actions that your

handler may perform. In addition, when you return from your MediaIdle function,

you should report what you did using the flagsOut parameter. You tell the base media

handler that you perform your own scheduling by setting the handlerNoScheduler

flag to 1 in the flags parameter of the MediaSetHandlerCapabilities function

(see page 10-38 for more information about this function).

If your media handler changes any of the settings of the movie’s graphics port or

graphics world, be sure to restore the original settings before you exit. In addition, note

that you may be drawing into a black-and-white graphics port. Finally, be aware that the

Movie Toolbox also uses this function to obtain data for QuickDraw pictures. Therefore,

if your media handler does not use QuickDraw when drawing to the screen, be sure to

examine the picSave field in the graphics port so that you can detect when the toolbox

C H A P T E R 1 0

Derived Media Handler Components

10-22 Derived Media Handler Components Reference

wants to save an image. Your media handler is then responsible for performing the

appropriate display processing. (For details on QuickDraw pictures, see the chapter

“Basic QuickDraw” in Inside Macintosh: Imaging.)

Your derived media handler should support this function if you need to do work during

movie playback. If you set the handlerNoIdle flag to 1 in the flags parameter of

the MediaSetHandlerCapabilities function, the Movie Toolbox does not call your

MediaIdle function.

RESULT CODES

Any Component Manager result code

MediaGGetStatus

The MediaGGetStatus function allows your derived media handler to report error

conditions to the Movie Toolbox.

pascal ComponentResult MediaGGetStatus (ComponentInstance ci,

ComponentResult *statusErr);

ci Identifies the Movie Toolbox’s connection to your derived media handler.

statusErr Contains a pointer to a component result field. If you have error
information that you would like to report to the Movie Toolbox, place an
appropriate result code into the field referred to by this pointer.

DESCRIPTION

The Movie Toolbox calls your MediaGGetStatus function whenever an application

calls the toolbox’s GetMovieStatus or GetTrackStatus function. This provides your

media handler an opportunity to report any difficulties it may be having in

playing your media. You should use this mechanism to report any errors you encounter

in your MediaIdle function (described in the previous section). You may use any

appropriate result code.

Your derived media handler should support this function if you anticipate that you may

encounter an error when playing your media. Because these errors may include such

conditions as low memory or missing hardware, you should only rarely create a derived

media handler that does not support this function. If your media handler does not

support this function, the base media handler always sets the returned result code to

noErr.

RESULT CODES

Any Component Manager result code

C H A P T E R 1 0

Derived Media Handler Components

Derived Media Handler Components Reference 10-23

General Data Management

While the base media handler isolates your component from the details of media data

access, your derived media handler still needs to keep track of certain information in

order to support movie playback and creation. This section discusses functions that help

your media handler manage its information.

Your media handler may store proprietary information in its media. The Movie Toolbox

calls two media handler functions in order to give you an opportunity to retrieve or store

this information. The MediaPutMediaInfo function allows you to store your special

information in your media. The MediaGetMediaInfo function delivers that data to

your media handler.

The Movie Toolbox tells your media handler when its track has been enabled or disabled

by calling your MediaSetActive function. The Movie Toolbox prepares your handler

for playback by calling your MediaPreroll function. Whenever your media’s playback

rate changes, the Movie Toolbox calls your MediaSetRate function. Whenever the

track that uses your media is edited, the Movie Toolbox calls your MediaTrackEdited

function.

If the Movie Toolbox has called its SetMediaSampleDescription function on a

sample description, it uses the MediaSampleDescriptionChanged function to notify

your media handler of the change.

The Movie Toolbox allows tracks to be identified by various characteristics. For instance,

it is possible to request that all tracks containing audio information be searched. To

determine whether a track has a given characteristic, the Movie Toolbox queries the

media handler for each track. The Movie Toolbox calls the MediaHasCharacteristic

function with the specified characteristic.

The Movie Toolbox uses two functions to inform you about changes to your media’s

time environment. The MediaSetMediaTimeScale function allows the Movie Toolbox

to change your media’s time scale. The MediaSetMovieTimeScale function allows the

Movie Toolbox to tell you when the movie’s time scale has changed.

MediaPutMediaInfo

The MediaPutMediaInfo function allows your derived media handler to store

proprietary information in its media.

pascal ComponentResult MediaPutMediaInfo (ComponentInstance ci,

 Handle h);

ci Identifies the Movie Toolbox’s connection to your derived media handler.

C H A P T E R 1 0

Derived Media Handler Components

10-24 Derived Media Handler Components Reference

h Contains a handle to storage into which your media handler may place its
proprietary information. You determine the format and content of the
data that you store in this handle. Your media handler must resize the
handle as appropriate before you exit this function. Do not dispose of
this handle—it is owned by the Movie Toolbox. The Movie Toolbox uses
the base media handler to write this data to your media.

DESCRIPTION

The Movie Toolbox uses the MediaPutMediaInfo function to provide you an

opportunity to store private data in your media. You determine the format and content

of this data. The base media handler stores some information for you, including the

media’s transfer mode, opcolor, and sound balance. However, you may need to store

additional information. For example, you may want to place a version number in each

media you create.

Whenever the Movie Toolbox opens your media, it provides this private data to your

media handler by calling your MediaGetMediaInfo function, which is described next.

Note that the Movie Toolbox may call this function before it calls your

MediaInitialize function.

Your derived media handler should support this function if you need to store private

data in your media.

RESULT CODES

Any Component Manager result code

MediaGetMediaInfo

The MediaGetMediaInfo function allows your derived media handler to obtain the

private data you have stored in your media.

pascal ComponentResult MediaGetMediaInfo (ComponentInstance ci,

 Handle h);

ci Identifies the Movie Toolbox’s connection to your derived media handler.

h Contains a handle to storage containing your media handler’s proprietary
information. Your media handler creates this private data when the
Movie Toolbox calls your MediaPutMediaInfo function. Do not dispose
of this handle—it is owned by the Movie Toolbox.

DESCRIPTION

If you placed private data into your media, the Movie Toolbox calls your media

handler’s MediaPutMediaInfo function whenever it opens your media. Your

C H A P T E R 1 0

Derived Media Handler Components

Derived Media Handler Components Reference 10-25

media handler determines the format and content of this private data. Note that the

Movie Toolbox may call this function before it calls your MediaInitialize function.

Your derived media handler should support this function if you store private data

in your media.

RESULT CODES

Any Component Manager result code

MediaSetActive

The MediaSetActive function allows the Movie Toolbox to enable and disable your

media.

pascal ComponentResult MediaSetActive (ComponentInstance ci,

 Boolean enableMedia);

ci Identifies the Movie Toolbox’s connection to your derived media handler.

enableMedia
Contains a Boolean value that indicates whether your media is enabled or
disabled. If this parameter is set to true, your media is enabled; if the
parameter is false, your media is disabled.

DESCRIPTION

The Movie Toolbox calls your derived media handler’s MediaSetActive function

whenever your media is either enabled or disabled. Initially, your media is disabled.

Subsequently, the enabled state of your media is controlled by the state of the track

that is using your media. When that track is enabled, your media is enabled; when that

track is disabled, your media is disabled. Applications can control the enabled state of

a track by using the Movie Toolbox’s SetTrackEnabled function.

Your derived media handler should support this function if you perform your own

scheduling or if your media handler uses significant amounts of temporary storage. If

you are doing your own scheduling (that is, you have set the handlerNoScheduler

flag to 1 in the flags parameter of the MediaSetHandlerCapabilities function—

see page 10-38 for more information about this function), your media handler needs to

keep account of the media’s active state so that you can properly respond to Movie

Toolbox requests. When your media is disabled, you may choose to dispose of

temporary storage you have allocated, so that the storage is available to other programs.

RESULT CODES

Any Component Manager result code

C H A P T E R 1 0

Derived Media Handler Components

10-26 Derived Media Handler Components Reference

MediaPreroll

The MediaPreroll function allows the Movie Toolbox to prepare your media handler

for playback.

pascal ComponentResult MediaPreroll (ComponentInstance ci,

 TimeValue time, Fixed rate);

ci Identifies the Movie Toolbox’s connection to your derived media handler.

time Contains the starting time of the media segment to play. This time value is
expressed in your media’s time scale.

rate Specifies the rate at which the Movie Toolbox expects to play the media.
This is a 32-bit, fixed-point number. Positive values indicate forward
rates; negative values correspond to reverse rates.

DESCRIPTION

Use this as an opportunity to load data from your media, so that when the Movie

Toolbox starts to play, your media can play smoothly from the start.

RESULT CODES

Any Component Manager result code

MediaSetRate

The MediaSetRate function allows the Movie Toolbox to set your media’s

playback rate.

pascal ComponentResult MediaSetRate (ComponentInstance ci,

 Fixed rate);

ci Identifies the Movie Toolbox’s connection to your derived media handler.

rate Contains a 32-bit, fixed-point number that indicates your media’s new
effective playback rate. This effective rate accounts for any master time
bases that may be in use with the current movie. Positive values represent
forward rates and negative values indicate reverse rates.

DESCRIPTION

The Movie Toolbox calls your derived media handler’s MediaSetRate function

whenever the movie’s playback rate changes. The Movie Toolbox provides you with a

new effective rate for your media. This effective rate accounts for any master time bases

C H A P T E R 1 0

Derived Media Handler Components

Derived Media Handler Components Reference 10-27

that may be in use with the current movie. Consequently, you may use this rate without

having to further transform it.

You obtain the initial rate information from the effectiveRate field of the movie

parameter structure that the Movie Toolbox provides to your MediaInitialize

function.

Your derived media handler should support this function if you perform your

own scheduling. If you are doing your own scheduling (that is, you

have set the handlerNoScheduler flag to 1 in the flags parameter of the

MediaSetHandlerCapabilities function—see page 10-38 for more information

about this function), your media handler can use this function to determine when your

media is playing, and the direction and rate of playback. This information can help you

prepare for playback more efficiently.

RESULT CODES

Any Component Manager result code

MediaTrackEdited

The MediaTrackEdited function allows the Movie Toolbox to inform your derived

media handler about edits to its track.

pascal ComponentResult MediaTrackEdited (ComponentInstance ci);

ci Identifies the Movie Toolbox’s connection to your derived media handler.

DESCRIPTION

The Movie Toolbox calls your derived media handler’s MediaTrackEdited function

whenever the track that is using your media is edited. While these edits do not directly

affect the data in your media, they can change the way in which the movie uses your

media’s data.

Your derived media handler should support this function if you are caching location

information about track edits, or if you are using any time values in the movie’s time

base. Whenever the Movie Toolbox calls this function, your media handler should

recalculate this type of information.

RESULT CODES

Any Component Manager result code

C H A P T E R 1 0

Derived Media Handler Components

10-28 Derived Media Handler Components Reference

MediaSampleDescriptionChanged

The MediaSampleDescriptionChanged function allows the Movie Toolbox to inform

your media handler that its SetMediaSampleDescription function has been called

for a specified sample description.

pascal ComponentResult MediaSampleDescriptionChanged

(ComponentInstance ci,

 long index);

ci Identifies the Movie Toolbox’s connection to your derived media handler.

index Specifies the index of the sample description that has been changed.

DESCRIPTION

If your media handler caches sample description structures for any reason, it should

support the MediaSampleDescriptionChanged function so that it will know when

to update or invalidate the contents of that cache.

RESULT CODES

Any Component Manager result code

MediaHasCharacteristic

The Movie Toolbox calls the MediaHasCharacteristic function with a specified

characteristic to allow tracks to be identified by various attributes.

pascal ComponentResult MediaHasCharacteristic

(ComponentInstance ci,

 OSType characteristic,

 Boolean *hasIt);

ci Identifies the Movie Toolbox’s connection to your derived media handler.

characteristic
Contains a constant that specifies the attribute of a track. Examples of
characteristics that are currently defined are the Movie Toolbox constants
VisualMediaCharacteristic and AudioMediaCharacteristic.

C H A P T E R 1 0

Derived Media Handler Components

Derived Media Handler Components Reference 10-29

hasIt Contains a pointer to a Boolean value that specifies whether the track has
the attribute specified in the characteristic parameter. Set this value to
true if the attribute applies to your media handler; otherwise, set this
value to false.

DESCRIPTION

The Movie Toolbox might request the search of all tracks with audio data. For example,

to find out if a track has a given attribute, the Movie Toolbox queries the media handler

for each track by calling MediaHasCharacteristic with a particular constant

specified in the characteristic parameter. If your media handler does not recognize

a characteristic, return a value of false.

You should implement this function for any media handler that has characteristics in

addition to spatial ones. If you have set the handlerHasSpatial capabilities flag, the

base media handler automatically handles the VisualMediaCharacteristic

constant for you.

RESULT CODES

Any Component Manager result code

MediaSetMediaTimeScale

The MediaSetMediaTimeScale function allows the Movie Toolbox to inform your

media handler that your media’s time scale has been changed.

pascal ComponentResult MediaSetMediaTimeScale

(ComponentInstance ci,

 TimeScale newTimeScale);

ci Identifies the Movie Toolbox’s connection to your derived media handler.

newTimeScale
Specifies your media’s new time scale.

DESCRIPTION

The Movie Toolbox calls your derived media handler’s MediaSetMediaTimeScale

function whenever your media’s time scale is changed. Applications can change your

media’s time scale by using the Movie Toolbox’s SetMediaTimeScale function. When

the Movie Toolbox calls this function, your media handler should recalculate any time

values you have stored that are expressed in your media’s time coordinate system.

Changing your media’s time scale may also affect media playback.

C H A P T E R 1 0

Derived Media Handler Components

10-30 Derived Media Handler Components Reference

You obtain the initial media time scale information from the mediaScale field of the

movie parameter structure that the Movie Toolbox provides to your MediaInitialize

function.

Your derived media handler should support this function if your media handler stores

time information that pertains to its media.

RESULT CODES

Any Component Manager result code

MediaSetMovieTimeScale

The MediaSetMovieTimeScale function allows the Movie Toolbox to inform your

media handler that the movie’s time scale has been changed.

pascal ComponentResult MediaSetMovieTimeScale

(ComponentInstance ci,

 TimeScale newTimeScale);

ci Identifies the Movie Toolbox’s connection to your derived media handler.

newTimeScale
Specifies the movie’s new time scale.

DESCRIPTION

The Movie Toolbox calls your derived media handler’s MediaSetMovieTimeScale

function whenever the movie’s time scale is changed. Applications can change the

movie’s time scale by using the Movie Toolbox’s SetMovieTimeScale function. When

the Movie Toolbox calls this function, your media handler should recalculate any time

values you have stored that are expressed in the movie’s time coordinate system.

Changing the movie’s time scale may also affect playback of your media.

You obtain the initial movie time scale information from the movieScale field of the

movie parameter structure that the Movie Toolbox provides to your MediaInitialize

function.

Your derived media handler should support this function if your media handler stores

time information in the movie’s time coordinate system.

RESULT CODES

Any Component Manager result code

C H A P T E R 1 0

Derived Media Handler Components

Derived Media Handler Components Reference 10-31

Graphics Data Management

If your media handler draws media data on the screen, you need to manage your

media’s graphics environment. The Movie Toolbox uses a number of functions to inform

you about changes to the graphics environment. The Movie Toolbox only calls these

functions if you have set the handlerHasSpatial flag to 1 in the flags parameter of

the MediaSetHandlerCapabilities function.

The Movie Toolbox calls your handler’s MediaSetGWorld function whenever your

media’s graphics port or graphics device has changed. The MediaSetDimensions

function allows the Movie Toolbox to inform your handler about changes to its spatial

dimensions. Whenever either the movie or track matrix changes, the Movie Toolbox calls

your MediaSetMatrix function. Similarly, if your media’s clipping region changes, the

Movie Toolbox calls your MediaSetClip function.

When it is building up a movie’s image from its component tracks, the Movie Toolbox

must be able to determine which tracks are transparent. The Movie Toolbox calls your

MediaGetTrackOpaque function to retrieve this information about your media.

The Movie Toolbox calls your MediaGetNextBoundsChange function so that it can

learn when your media will next change its display shape. When the Movie Toolbox

wants to find out the shape of the region into which you draw your media, it calls your

MediaGetSrcRgn function.

MediaSetGWorld

The MediaSetGWorld function allows your derived media handler to learn about

changes to your media’s graphic environment.

pascal ComponentResult MediaSetGWorld (ComponentInstance ci,

 CGrafPtr aPort,

 GDHandle aGD);

ci Identifies the Movie Toolbox’s connection to your derived media handler.

aPort Contains a pointer to the new graphics port. Note that this may be either
a color or a black-and-white port.

aGD Contains a handle to the new graphics device.

DESCRIPTION

The Movie Toolbox calls your derived media handler’s MediaSetGWorld function

whenever your media’s graphics world changes. The toolbox provides you with the

new graphics port and graphics device. You should then use this information for

subsequent graphics operations.

C H A P T E R 1 0

Derived Media Handler Components

10-32 Derived Media Handler Components Reference

Your derived media handler should support this function if you perform specialized

graphics processing or if you are using the Image Compression Manager to decompress

your media. Note that when the Movie Toolbox calls your MediaIdle function, it

supplies you with information about the current graphics environment. Consequently,

you do not need to support the MediaSetGWorld function in order to draw during

playback. However, if your media data is compressed and you are using the Image

Compression Manager to decompress sequences, you may need to provide updated

graphics environment information before playback.

You obtain the initial graphics environment information from the moviePort and

movieGD fields of the movie parameter structure that the Movie Toolbox provides to

your MediaInitialize function.

The Movie Toolbox calls this function only if you have set the handlerHasSpatial

flag to 1 in the flags parameter of the MediaSetHandlerCapabilities function.

RESULT CODES

Any Component Manager result code

MediaSetDimensions

The MediaSetDimensions function allows the Movie Toolbox to inform your media

handler when its media’s spatial dimensions change.

pascal ComponentResult MediaSetDimensions (ComponentInstance ci,

 Fixed width,

 Fixed height);

ci Identifies the Movie Toolbox’s connection to your derived media handler.

width Indicates the width, in pixels, of the track rectangle. This field, along with
the height field, specifies a rectangle that surrounds the image that is
displayed when the current media is played. This value corresponds to
the x coordinate of the lower-right corner of the rectangle and is
expressed as a fixed-point number.

height Indicates the height, in pixels, of the track rectangle. This value
corresponds to the y coordinate of the lower-right corner of the rectangle
and is expressed as a fixed-point number.

DESCRIPTION

The Movie Toolbox calls your derived media handler’s MediaSetDimensions function

whenever the spatial dimensions of your media’s track change. The toolbox provides

you with the dimensions of the rectangle that encloses your media’s graphical image.

Changes to this rectangle may affect the way in which you display your media’s data.

C H A P T E R 1 0

Derived Media Handler Components

Derived Media Handler Components Reference 10-33

You obtain the initial dimension information from the width and height fields of the

movie parameter structure that the Movie Toolbox provides to your MediaInitialize

function (described on page 10-18).

Your derived media handler should support this function if you draw during playback.

The Movie Toolbox calls this function only if you have set the handlerHasSpatial

flag to 1 in the flags parameter of the MediaSetHandlerCapabilities function

(described on page 10-38).

RESULT CODES

Any Component Manager result code

SEE ALSO

The Movie Toolbox uses the MediaSetMatrix function (described in the next section)

to tell your media handler about changes to either the movie matrix or the track matrix.

In addition, your media handler’s MediaSetClip function allows you to learn about

changes to your media’s clipping region. This function is discussed on page 10-34.

MediaSetMatrix

The MediaSetMatrix function allows the Movie Toolbox to tell your media handler

about changes to either the movie matrix or the track matrix.

pascal ComponentResult MediaSetMatrix (ComponentInstance ci,

const MatrixRecord *trackMovieMatrix);

ci Identifies the Movie Toolbox’s connection to your derived media handler.

trackMovieMatrix
Contains a pointer to the matrix that transforms your media’s pixels into
the movie’s coordinate system. The Movie Toolbox obtains this matrix by
concatenating the track matrix and the movie matrix. You should use this
matrix whenever you are displaying graphical data from your media.

DESCRIPTION

The Movie Toolbox calls your derived media handler’s MediaSetMatrix function

whenever either the movie matrix or track matrix changes. The toolbox provides you

with a matrix that concatenates the transformations defined by both the movie and track

matrices. You can use this matrix to map your media’s display representation into the

movie’s coordinate system. For example, by applying this matrix to the track rectangle,

you can determine the display boundaries of your media (the track rectangle is defined

by the width and height fields in the movie parameter structure that you obtain when

the toolbox calls your MediaInitialize function).

C H A P T E R 1 0

Derived Media Handler Components

10-34 Derived Media Handler Components Reference

You obtain the initial matrix from the trackMovieMatrix field of the movie parameter

structure that the Movie Toolbox provides to your MediaInitialize function.

Your derived media handler should support this function if you draw during playback.

The Movie Toolbox calls this function only if you have set the handlerHasSpatial

flag to 1 in the flags parameter of the MediaSetHandlerCapabilities function

(described on page 10-38).

SPECIAL CONSIDERATIONS

Before you try to use this matrix, you should make sure that your media handler can

accommodate its transformations. You can use the Movie Toolbox’s GetMatrixType

function to learn about the matrix. If the matrix includes transformations that are beyond

the capabilities of your media handler, you can direct the base media handler to do

display processing on your behalf. Call the MediaSetHandlerCapabilities function

and set the handlerNeedsBuffer flag to 1 in the flags parameter. This forces the

base media handler to draw your media into an offscreen buffer.

RESULT CODES

Any Component Manager result code

SEE ALSO

The Movie Toolbox uses the MediaSetDimensions function to tell your media handler

about changes to the rectangle that surrounds the graphical representation of your

media; this function is described in the previous section. In addition, your media

handler’s MediaSetClip function allows you to learn about changes to your media’s

clipping region. This function is discussed next.

MediaSetClip

The MediaSetClip function allows your derived media handler to learn about changes

to its clipping region.

pascal ComponentResult MediaSetClip (ComponentInstance ci,

 RgnHandle theClip);

ci Identifies the Movie Toolbox’s connection to your derived media handler.

C H A P T E R 1 0

Derived Media Handler Components

Derived Media Handler Components Reference 10-35

theClip Contains a handle to your media’s clipping region. Your media handler is
responsible for disposing of this region when you are done with it. Note
that this region lies in the movie’s coordinate system.

DESCRIPTION

The Movie Toolbox calls your derived media handler’s MediaSetClip function

whenever the track’s clipping region changes. The toolbox provides you with a handle to

a clipping region that supersedes any other clipping region you may be using.

Your derived media handler should support this function if you draw during playback.

The Movie Toolbox calls this function only if you have set the handlerHasSpatial

and handlerCanClip flags to 1 in the flags parameter of the

MediaSetHandlerCapabilities function (described on page 10-38).

RESULT CODES

Any Component Manager result code

MediaGetTrackOpaque

The MediaGetTrackOpaque function allows the Movie Toolbox to determine whether

your media is transparent or opaque when displayed.

pascal ComponentResult MediaGetTrackOpaque (ComponentInstance ci,

 Boolean *trackIsOpaque);

ci Identifies the Movie Toolbox’s connection to your derived media handler.

trackIsOpaque
Contains a pointer to a Boolean value. Your media handler must set this
Boolean value to indicate whether your media is transparent or opaque
when displayed. Set the Boolean value to true if your media is
semitransparent (that is, you draw in blend mode); otherwise, leave the
flag unchanged.

DESCRIPTION

The Movie Toolbox uses this function when it is building a movie from composited

images. Your media handler returns information that tells the toolbox whether your

media’s displayed image is to be combined with other images that are already on the

screen. If you draw your media in blend mode, for example, your media is

semitransparent, and its display relies upon other images on the screen. The Movie

Toolbox needs to know this in order to correctly display the movie to the user.

C H A P T E R 1 0

Derived Media Handler Components

10-36 Derived Media Handler Components Reference

Your derived media handler should support this function if your media is

semitransparent when displayed or if you handle display transfer modes.

The Movie Toolbox calls this function only if you have set the handlerHasSpatial

or handlerCanTransferMode flag to 1 in the flags parameter of the

MediaSetHandlerCapabilities function.

RESULT CODES

Any Component Manager result code

MediaGetNextBoundsChange

The MediaGetNextBoundsChange function allows the Movie Toolbox to determine

when your media causes a spatial change to the movie.

pascal ComponentResult MediaGetNextBoundsChange

(ComponentInstance ci,

 TimeValue *when);

ci Identifies the Movie Toolbox’s connection to your derived media handler.

when Contains a pointer to a movie time value. Your media handler must set
this time value. Be sure to return a time value in the movie’s time base.
Use the current effective rate to determine the direction your media is
playing. Set this value to –1 if there are no more changes in the specified
direction.

DESCRIPTION

The Movie Toolbox uses this function to determine when the next spatial

change will occur in the current movie. Your media handler returns a time

value. Your media handler must examine the edit list of the track that contains

your media in order to derive this duration. You can use the Movie Toolbox’s

GetTrackNextInterestingTime function to retrieve time values in the movie’s time

coordinate system. For details on this function and on movie time values, see the chapter

“Movie Toolbox” in Inside Macintosh: QuickTime.

Your derived media handler should support this function if you change the shape

of your media’s spatial representation during playback.

The Movie Toolbox calls this function only if you have set the handlerHasSpatial

flag to 1 in the flags parameter of the MediaSetHandlerCapabilities function.

RESULT CODES

Any Component Manager result code

C H A P T E R 1 0

Derived Media Handler Components

Derived Media Handler Components Reference 10-37

MediaGetSrcRgn

The MediaGetSrcRgn function allows your derived media handler to specify an

irregular destination display region to the Movie Toolbox.

pascal ComponentResult MediaGetSrcRgn (ComponentInstance ci,

RgnHandle rgn,

TimeValue atMediaTime);

ci Identifies the Movie Toolbox’s connection to your derived media handler.

rgn Contains a handle to a region. When the Movie Toolbox calls your
function, this region is initialized to the track’s boundary rectangle (which
is defined by the width and height fields in the movie parameter
structure that you obtain when the toolbox calls your MediaInitialize
function, which is described on page 10-18). Your media handler may
then alter this region as appropriate, so that it corresponds to the
boundaries of your media’s display image. Note that this region is in the
track’s coordinate system, not the movie’s.

Do not dispose of this region—it is owned by the Movie Toolbox.

atMediaTime
Specifies the time value at which the Movie Toolbox wants to know what
the source region is.

DESCRIPTION

The Movie Toolbox uses this function to determine whether your media has an

irregularly shaped display area. If your media is displayed in a nonrectangular area, or if

your media uses only a portion of the track rectangle, you can use this function to report

that fact to the toolbox.

Your derived media handler should support this function if your media does not

completely fill the track rectangle during playback.

The Movie Toolbox calls this function only if you have set the handlerHasSpatial

flag to 1 in the flags parameter of the MediaSetHandlerCapabilities function.

RESULT CODES

Any Component Manager result code

Sound Data Management

The Movie Toolbox uses your MediaGSetVolume function to tell your media handler

when its sound volume has changed.

C H A P T E R 1 0

Derived Media Handler Components

10-38 Derived Media Handler Components Reference

MediaGSetVolume

The MediaGSetVolume function allows your derived media handler to learn about

changes to its sound volume setting.

pascal ComponentResult MediaGSetVolume (ComponentInstance ci,

 short volume);

ci Identifies the Movie Toolbox’s connection to your derived media handler.

volume Contains the media’s current volume setting. This value is represented as
a 16-bit, fixed-point number. The high-order 8 bits contain the integer
portion; the low-order 8 bits contain the fractional part. Volume values
range from –1.0 to 1.0. Negative values play no sound but preserve the
absolute value of the volume setting.

The Movie Toolbox scales your media’s volume in light of the track’s and
movie’s volume settings, but it does not take into account the system
speaker volume setting. This value is appropriate for use with the Sound
Manager.

DESCRIPTION

The Movie Toolbox uses this function to tell your derived media handler about changes

to your media’s sound volume.

Your derived media handler should support this function if it can play sounds.

RESULT CODES

Any Component Manager result code

Base Media Handler Utility Function

Apple’s base media handler component provides a utility function,

MediaSetHandlerCapabilities, which allows you to tell the base

handler what your derived handler can do.

MediaSetHandlerCapabilities

The MediaSetHandlerCapabilities function allows your derived media handler to

report its capabilities to the base media handler.

pascal ComponentResult MediaSetHandlerCapabilities

(ComponentInstance ci,

 long flags,

 long flagsMask);

C H A P T E R 1 0

Derived Media Handler Components

Derived Media Handler Components Reference 10-39

ci Identifies your derived media handler’s connection to the base media
handler.

flags Specifies the capabilities of your derived media handler. This parameter
contains a number of flags, each of which corresponds to a particular
feature. You may work with more than one flag at a time. The following
flags are defined (be sure to set unused flags to 0):

handlerHasSpatial
Indicates that your handler does spatial processing. If you
set this flag to 1, the Movie Toolbox informs your derived
media handler about changes to the graphics environment
or spatial representation of your media.

handlerCanClip
Indicates that your media handler can perform clipping. If
you set this flag to 1, the Movie Toolbox calls your
MediaSetClip function (described on page 10-34)
whenever the clipping region changes.

handlerCanMatte
Reserved for Apple. Do not set this flag to 1.

handlerCanTransferMode
Indicates that you can work with transfer modes other than
source copy or dither copy. If you set this flag to 1, the
Movie Toolbox calls your MediaGetTrackOpaque
function to determine whether your track is transparent.

handlerNeedsBuffer
Indicates that your media handler needs help during
playback. If you set this flag to 1, the base media handler
allocates an offscreen buffer and handles all display
transformations for you.

handlerNoIdle
Indicates that your derived media handler does not need
any processing time during playback. If you set this flag
to 1, the Movie Toolbox never calls your MediaIdle
function. This is useful for media handlers that store data
in a media, but do not play that data.

handlerNoScheduler
Indicates that your media handler performs special
processing during playback. Normally, the Movie Toolbox
calls your MediaIdle function only when it is time for
your handler to draw data from a new media sample.
If you set this flag to 1, the Movie Toolbox calls that
function other times as well, so that your media handler
can prepare for playback or perform other necessary
processing.

handlerWantsTime
Indicates that your media handler needs additional
processing time. If you set this flag to 1, the Movie Toolbox
calls your MediaIdle function as often as possible.

C H A P T E R 1 0

Derived Media Handler Components

10-40 Derived Media Handler Components Reference

handlerCGrafPortOnly
Indicates that your media handler can only draw into color
graphics ports. If you set this flag to 1, the base media
handler performs the necessary processing to display your
color media on a black-and-white graphics port (this
involves drawing to an offscreen buffer and then
transferring the image to the screen).

flagsMask Indicates which flags in the flags parameter are to be considered in this
operation. For each bit in the flags parameter that you want the base
media handler to consider, you must set the corresponding bit in the
flagsMask parameter to 1. Set unused flags to 0. This allows you to
work with a single flag without altering the settings of other flags.

DESCRIPTION

Use the MediaSetHandlerCapabilities function to tell the base media handler

what your derived media handler can do. By default, all of the flags are set to 0—in this

case, your media handler is only responsible for storing and retrieving data. You can

specify further capabilities by setting various flags to 1. For example, if your handler

draws data on the screen, be sure to set the handlerHasSpatial flag to 1. Other flags

govern more detailed aspects of handler operation.

This function uses both a flags parameter and a flagsMask parameter. You specify

which flags are to be changed in a given operation by setting the flagsMask parameter.

You then specify the new values for those affected flags with the flags parameter.

In this manner, you can work with a single flag without affecting the settings of any

other flags.

Your media handler may call this function at any time. In general, you should call it

from your MediaInitialize function (described on page 10-18), so that you report

your capabilities to the base media handler before the Movie Toolbox starts working

with your media. You may call this function again later, in response to changing

conditions. For example, if your media handler receives a matrix that it cannot

accommodate from the MediaSetMatrix function, you can allow the base

media handler to handle your drawing by calling this function and setting the

handlerNeedsBuffer flag in both the flags and flagsMask parameters to 1.

Note that this function is provided by the base media handler—your media handler does

not support this function.

RESULT CODES

Any Component Manager result code

C H A P T E R 1 0

Derived Media Handler Components

Summary of Derived Media Handler Components 10-41

Summary of Derived Media Handler Components

C Summary

Constants

/* flags in flags parameter of MediaSetHandlerCapabilities function */

enum {

handlerHasSpatial = 1<<0, /* draws */

handlerCanClip = 1<<1, /* clips */

handlerCanMatte = 1<<2, /* reserved */

handlerCanTransferMode = 1<<3, /* does transfer modes */

handlerNeedsBuffer = 1<<4, /* use offscreen buffer */

handlerNoIdle = 1<<5, /* never draws */

handlerNoScheduler = 1<<6, /* schedules self */

handlerWantsTime = 1<<7, /* needs more time */

handlerCGrafPortOnly = 1<<8 /* color only */

};

/* values for inFlags parameter of MediaIdle function */

enum {

mMustDraw = 1<<3, /* must draw now */

mAtEnd = 1<<4, /* current time corresponds to

end of movie */

mPreflightDraw = 1<<5 /* must not draw */

};

/* values for outFlags parameter of MediaIdle function */

enum {

mDidDraw = 1<<0, /* did draw */

mNeedsToDraw = 1<<2 /* needs to draw */

};

/* component type and subtype values */

#define MediaHandlerType 'mhlr' /* derived media handler */

#define BaseMediaType 'gnrc' /* base media handler */

C H A P T E R 1 0

Derived Media Handler Components

10-42 Summary of Derived Media Handler Components

/* constants used in the characteristic parameter of the

MediaHasCharacteristic function */

#define VisualMediaCharacteristic'eyes' /* visual media characteristic */

#define AudioMediaCharacteristic 'ears' /* audio media characteristic */

/* selectors for derived media handler components */

enum {

enum {

kMediaInitializeSelect = 0x501, /* MediaInitialize */

kMediaSetHandlerCapabilitiesSelect = 0x502,

/* MediaSetHandlerCapabilities */

kMediaIdleSelect = 0x503, /* MediaIdle */

kMediaGetMediaInfoSelect = 0x504, /* MediaGetMediaInfo */

kMediaPutMediaInfoSelect = 0x505, /* MediaPutMediaInfo */

kMediaSetActiveSelect = 0x506, /* MediaSetActive */

kMediaSetRateSelect = 0x507, /* MediaSetRate */

kMediaGGetStatusSelect = 0x508, /* MediaGGetStatus */

kMediaTrackEditedSelect = 0x509, /* MediaTrackEdited */

kMediaSetMediaTimeScaleSelect = 0x50A, /* MediaSetMediaTimeScale */

kMediaSetMovieTimeScaleSelect = 0x50B, /* MediaSetMovieTimeScale */

kMediaSetGWorldSelect = 0x50C, /* MediaSetGWorld */

kMediaSetDimensionsSelect = 0x50D, /* MediaSetDimensions */

kMediaSetClipSelect = 0x50E, /* MediaSetClip */

kMediaSetMatrixSelect = 0x50F, /* MediaSetMatrix */

kMediaGetTrackOpaqueSelect = 0x510, /* MediaGetTrackOpaque */

kMediaSetGraphicsModeSelect = 0x511, /* MediaSetGraphicsMode */

kMediaGetGraphicsModeSelect = 0x512, /* MediaGetGraphicsMode */

kMediaGSetVolumeSelect = 0x513, /* MediaGSetVolume */

kMediaSetSoundBalanceSelect = 0x514, /* MediaSetSoundBalance */

kMediaGetSoundBalanceSelect = 0x515, /* MediaGetSoundBalance */

kMediaGetNextBoundsChangeSelect = 0x516,

/* MediaGetNextBoundsChange */

kMediaGetSrcRgnSelect = 0x517, /* MediaGetSrcRgn */

kMediaPrerollSelect = 0x518, /* MediaPreroll */

kMediaSampleDescriptionChangedSelect = 0x519,

/* MediaSampleDescriptionChanged */

kMediaHasCharacteristicSelect = 0x51A /* MediaHasCharacteristic */

};

C H A P T E R 1 0

Derived Media Handler Components

Summary of Derived Media Handler Components 10-43

Data Type

typedef struct {

short version; /* version--always 0 */

Movie theMovie; /* movie identifier */

Track theTrack; /* track identifier */

Media theMedia; /* media identifier */

TimeScale movieScale; /* movie's time scale */

TimeScale mediaScale; /* media's time scale */

TimeValue movieDuration; /* movie's duration */

TimeValue trackDuration; /* track's duration */

TimeValue mediaDuration; /* media's duration */

Fixed effectiveRate; /* media's effective rate */

TimeBase timeBase; /* media's time base */

short volume; /* media's volume */

Fixed width; /* width of display area */

Fixed height; /* height of display area */

MatrixRecord trackMovieMatrix; /* transformation matrix */

CGrafPtr moviePort; /* movie's graphics port */

GDHandle movieGD; /* movie's graphics device */

PixMapHandle trackMatte; /* track's matte */

} GetMovieCompleteParams;

Functions

Managing Your Media Handler Component

pascal ComponentResult MediaInitialize
(ComponentInstance ci,
GetMovieCompleteParams *gmc);

pascal ComponentResult MediaIdle
(ComponentInstance ci,
TimeValue atMediaTime, long flagsIn,
long *flagsOut, const TimeRecord *movieTime);

pascal ComponentResult MediaGGetStatus
(ComponentInstance ci,
ComponentResult *statusErr);

General Data Management

pascal ComponentResult MediaPutMediaInfo
(ComponentInstance ci, Handle h);

pascal ComponentResult MediaGetMediaInfo
(ComponentInstance ci, Handle h);

C H A P T E R 1 0

Derived Media Handler Components

10-44 Summary of Derived Media Handler Components

pascal ComponentResult MediaSetActive
(ComponentInstance ci, Boolean enableMedia);

pascal ComponentResult MediaPreroll
(ComponentInstance ci, TimeValue time,
Fixed rate);

pascal ComponentResult MediaSetRate
(ComponentInstance ci, Fixed rate);

pascal ComponentResult MediaTrackEdited
(ComponentInstance ci);

pascal ComponentResult MediaSampleDescriptionChanged
(ComponentInstance ci, long index);

pascal ComponentResult MediaHasCharacteristic
(ComponentInstance ci,
OSType characteristic, Boolean *hasIt);

pascal ComponentResult MediaSetMediaTimeScale
(ComponentInstance ci, TimeScale newTimeScale);

pascal ComponentResult MediaSetMovieTimeScale
(ComponentInstance ci, TimeScale newTimeScale);

Graphics Data Management

pascal ComponentResult MediaSetGWorld
(ComponentInstance ci, CGrafPtr aPort,
GDHandle aGD);

pascal ComponentResult MediaSetDimensions
(ComponentInstance ci, Fixed width,
Fixed height);

pascal ComponentResult MediaSetMatrix
(ComponentInstance ci,
const MatrixRecord *trackMovieMatrix);

pascal ComponentResult MediaSetClip
(ComponentInstance ci, RgnHandle theClip);

pascal ComponentResult MediaGetTrackOpaque
(ComponentInstance ci, Boolean *trackIsOpaque);

pascal ComponentResult MediaGetNextBoundsChange
(ComponentInstance ci, TimeValue *when);

pascal ComponentResult MediaGetSrcRgn
(ComponentInstance ci, RgnHandle rgn,
TimeValue atMediaTime);

Sound Data Management

pascal ComponentResult MediaGSetVolume
(ComponentInstance ci, short volume);

C H A P T E R 1 0

Derived Media Handler Components

Summary of Derived Media Handler Components 10-45

Base Media Handler Utility Function

pascal ComponentResult MediaSetHandlerCapabilities
(ComponentInstance ci, long flags,
long flagsMask);

Pascal Summary

Constants

CONST

{flags in flags parameter of MediaSetHandlerCapabilities function}

handlerHasSpatial = $1; {draws}

handlerCanClip = $2; {clips}

handlerCanMatte = $4; {reserved}

handlerCanTransferMode = $8; {does transfer modes}

handlerNeedsBuffer = $10; {use offscreen buffer}

handlerNoIdle = $20; {never draws}

handlerNoScheduler = $40; {schedules self}

handlerWantsTime = $80; {needs more time}

handlerCGrafPortOnly = $100; {color only}

{values for inFlags parameter of MediaIdle function}

mMustDraw = $8; {must draw now}

mAtEnd = $10; {current time corresponds to }

{ end of movie}

mPreflightDraw = $20; {must not draw}

{values for outFlags parameter of MediaIdle function}

mDidDraw = $1; {did draw}

mNeedsToDraw = $4; {needs to draw}

{component type and subtype values}

MediaHandlerType 'mhlr' {derived media handler}

BaseMediaType 'gnrc' {base media handler}

{constants used in the characteristic parameter of the }

{ MediaHasCharacteristic function}

VisualMediaCharacteristic 'eyes' {visual media characteristic}

AudioMediaCharacteristic 'ears' {audio media characteristic}

C H A P T E R 1 0

Derived Media Handler Components

10-46 Summary of Derived Media Handler Components

{selectors for derived media handler components}

kMediaInitializeSelect = $501; {MediaInitialize}

kMediaSetHandlerCapabilitiesSelect = $502; {MediaSetHandlerCapabilities}

kMediaIdleSelect = $503; {MediaIdle}

kMediaGetMediaInfoSelect = $504; {MediaGetMediaInfo}

kMediaPutMediaInfoSelect = $505; {MediaPutMediaInfo}

kMediaSetActiveSelect = $506; {MediaSetActive}

kMediaSetRateSelect = $507; {MediaSetRate}

kMediaGGetStatusSelect = $508; {MediaGGetStatus}

kMediaTrackEditedSelect = $509; {MediaTrackEdited}

kMediaSetMediaTimeScaleSelect = $50A; {MediaSetMediaTimeScale}

kMediaSetMovieTimeScaleSelect = $50B; {MediaSetMovieTimeScale}

kMediaSetGWorldSelect = $50C; {MediaSetGWorld}

kMediaSetDimensionsSelect = $50D; {MediaSetDimensions}

kMediaSetClipSelect = $50E; {MediaSetClip}

kMediaSetMatrixSelect = $50F; {MediaSetMatrix}

kMediaGetTrackOpaqueSelect = $510; {MediaGetTrackOpaque}

kMediaSetGraphicsModeSelect = $511; {MediaSetGraphicsMode}

kMediaGetGraphicsModeSelect = $512; {MediaGetGraphicsMode}

kMediaGSetVolumeSelect = $513; {MediaGSetVolume}

kMediaSetSoundBalanceSelect = $514; {MediaSetSoundBalance}

kMediaGetSoundBalanceSelect = $515; {MediaGetSoundBalance}

kMediaGetNextBoundsChangeSelect = $516; {MediaGetNextBoundsChange}

kMediaGetSrcRgnSelect = $517; {MediaGetSrcRgn}

kMediaPrerollSelect = $518; {MediaPreroll}

kMediaSampleDescriptionChangedSelect= $519;

{MediaSampleDescriptionChanged}

kMediaHasCharacteristicSelect = $51A; {MediaHasCharacteristic}

Data Type

TYPE

GetMovieCompleteParams =

RECORD

version: Integer; {version; always 0}

theMovie: Movie; {movie identifier}

theTrack: Track; {track identifier}

theMedia: Media; {media identifier}

movieScale: TimeScale; {movie's time scale}

mediaScale: TimeScale; {media's time scale}

movieDuration: TimeValue; {movie's duration}

trackDuration: TimeValue; {track's duration}

mediaDuration: TimeValue; {media's duration}

C H A P T E R 1 0

Derived Media Handler Components

Summary of Derived Media Handler Components 10-47

effectiveRate: Fixed; {media's effective rate}

timeBase: TimeBase; {media's time base}

volume: Integer; {media's volume}

width: Fixed; {width of display area}

height: Fixed; {height of display area}

trackMovieMatrix: MatrixRecord; {transformation matrix}

moviePort: CGrafPtr; {movie's graphics port}

movieGD: GDHandle; {movie's graphics device}

trackMatte: PixMapHandle; {track's matte}

END;

Routines

Managing Your Media Handler Component

FUNCTION MediaInitialize (ci: ComponentInstance;
VAR gmc: GetMovieCompleteParams):
ComponentResult;

FUNCTION MediaIdle (ci: ComponentInstance; atMediaTime: TimeValue;
flagsIn: LongInt; VAR flagsOut: LongInt;
VAR movieTime: TimeRecord): ComponentResult;

FUNCTION MediaGGetStatus (ci: ComponentInstance;
VAR statusErr: ComponentResult):
ComponentResult;

General Data Management

FUNCTION MediaPutMediaInfo (ci: ComponentInstance; h: Handle):
ComponentResult;

FUNCTION MediaGetMediaInfo (ci: ComponentInstance; h: Handle):
ComponentResult;

FUNCTION MediaSetActive (ci: ComponentInstance; enableMedia: Boolean):
ComponentResult;

FUNCTION MediaPreroll (ci: ComponentInstance; time: TimeValue;
rate: Fixed): ComponentResult;

FUNCTION MediaSetRate (ci: ComponentInstance; rate: Fixed):
ComponentResult;

FUNCTION MediaTrackEdited (ci: ComponentInstance): ComponentResult;

FUNCTION MediaSampleDescriptionChanged
(ci: ComponentInstance; index: LongInt):
ComponentResult;

C H A P T E R 1 0

Derived Media Handler Components

10-48 Summary of Derived Media Handler Components

FUNCTION MediaHasCharacteristic
(ci: ComponentInstance; characteristic: OSType;
VAR hasIt: Boolean): ComponentResult;

FUNCTION MediaSetMediaTimeScale
(ci: ComponentInstance;
newTimeScale: TimeScale): ComponentResult;

FUNCTION MediaSetMovieTimeScale
(ci: ComponentInstance;
newTimeScale: TimeScale): ComponentResult;

Graphics Data Management

FUNCTION MediaSetGWorld (ci: ComponentInstance; aPort: CGrafPtr;
aGD: GDHandle): ComponentResult;

FUNCTION MediaSetDimensions (ci: ComponentInstance; width: Fixed;
height: Fixed): ComponentResult;

FUNCTION MediaSetMatrix (ci: ComponentInstance;
VAR trackMovieMatrix: MatrixRecord):
ComponentResult;

FUNCTION MediaSetClip (ci: ComponentInstance; theClip: RgnHandle):
ComponentResult;

FUNCTION MediaGetTrackOpaque
(ci: ComponentInstance;
VAR trackIsOpaque: Boolean): ComponentResult;

FUNCTION MediaGetNextBoundsChange
(ci: ComponentInstance; VAR when: TimeValue):
ComponentResult;

FUNCTION MediaGetSrcRgn (ci: ComponentInstance; rgn: RgnHandle;
atMediaTime: TimeValue): ComponentResult;

Sound Data Management

FUNCTION MediaGSetVolume (ci: ComponentInstance; volume: Integer):
ComponentResult;

Base Media Handler Utility Routine

FUNCTION MediaSetHandlerCapabilities
(ci: ComponentInstance; flags: LongInt;
flagsMask: LongInt): ComponentResult;

Contents 11-1

C H A P T E R 1 1

Contents

Clock Components

About Clock Components 11-3

Clock Components Reference 11-5

Component Capability Flags for Clocks 11-5

Component Types for Clocks 11-6

Data Type 11-6

Clock Component Functions 11-7

Getting the Current Time 11-9

Using the Callback Functions 11-9

Managing the Time 11-15

Movie Toolbox Clock Support Functions 11-18

Summary of Clock Components 11-22

C Summary 11-22

Constants 11-22

Data Type 11-24

Clock Component Functions 11-24

Movie Toolbox Clock Support Functions 11-25

Pascal Summary 11-25

Constants 11-25

Data Type 11-27

Clock Component Routines 11-27

Movie Toolbox Clock Support Routines 11-28

C H A P T E R 1 1

About Clock Components 11-3

Clock Components

This chapter discusses clock components. Clock components provide timing

information. In QuickTime, the Movie Toolbox is the primary client of clock components.

Applications seldom call clock components directly. However, you may want to develop

your own clock component for use by the Movie Toolbox. Therefore, this chapter focuses

on what you must do to create a clock component.

■ “About Clock Components” presents some general information about clock
components.

■ “Clock Components Reference” describes the constants, data structures, and functions
that are specific to clock components.

■ “Summary of Clock Components” provides summaries of the clock component
constants, data structures, and functions in C and in Pascal.

Before learning about clock components, you must be familiar with QuickTime time

bases. See the chapter “Movie Toolbox” in Inside Macintosh: QuickTime for a complete

description of time bases and of the Movie Toolbox functions that support time bases.

About Clock Components

Clock components provide two basic services: they generate time information and

schedule time-based callback events. In QuickTime, the Movie Toolbox is the primary

user of clock components. Specifically, the Movie Toolbox uses clock components to

provide basic timing to time bases. In general, clock components derive their timing

information from some external source. For example, a clock component could use the

Macintosh tick count to provide its basic timing. Alternatively, a clock component could

use some special hardware installed in the Macintosh computer to provide its basic

timing. Figure 11-1 shows the relationships between an application, the movie controller

component, the Movie Toolbox, and a clock component.

C H A P T E R 1 1

Clock Components

11-4 About Clock Components

Figure 11-1 Relationships of an application, the movie controller component, the Movie
Toolbox, and a clock component

Clock components may also support time-based callback events. The Movie Toolbox’s

time base functions allow applications and other programs to schedule functions to be

called in specified circumstances. Since time bases derive their time information from

clock components, ultimate responsibility for servicing these callback functions also falls

to clock components. The Movie Toolbox provides a set of support functions that your

clock component can use to manage its callback events—these functions are described

later in this chapter.

Your clock component is not required to support callback functions. You can

delegate this responsibility to another clock component. “Component Capability Flags

for Clocks” on page 11-5 describes how you can tell the Component Manager that your

clock component does not support callback functions.

C H A P T E R 1 1

Clock Components

Clock Components Reference 11-5

Clock Components Reference

This section describes the constants, data type, and functions that are specific to clock

components.

Component Capability Flags for Clocks

The Component Manager allows you to specify information about your component’s

capabilities in the componentFlags field of the component description structure. Apple

has defined two component flags for clock components. These flags specify information

about the capabilities of the clock component. You set these flags in the

componentFlags field of your component’s component description structure. You can

use the following constants to manipulate these flags. You should set them appropriately

for your clock. For more on the component description structure, see the chapter

“Component Manager” in Inside Macintosh: More Macintosh Toolbox.

enum {

kClockRateIsLinear = 1, /* clock keeps constant

rate */

kClockImplementsCallBacks = 2 /* clock supports callback

events */

};

kClockRateIsLinear
Indicates that your clock maintains a constant rate. Most clocks that you
deal with in the everyday world fall into this category. An example of a
clock with an irregular rate is a clock that is dependent on the position of
the Macintosh computer’s mouse—the clock’s rate might change
depending upon where the user moves the mouse. Set this flag to 1 if
your clock has a constant rate.

kClockImplementsCallBacks
Indicates that your clock supports callback events. Set this flag to 1 if your
clock supports callback events.

You should set the componentFlags field appropriately in the component description

structure that is associated with your clock component.

C H A P T E R 1 1

Clock Components

11-6 Clock Components Reference

Component Types for Clocks

Apple has defined a type value and a number of subtype values for clock components.

All clock components have a component type value of 'clok'. The component subtype

value indicates the type of clock. You can use the following constants to specify these

type and subtype values.

#define clockComponentType 'clok' /* clock component type */

#define systemTickClock 'tick' /* system tick clock */

#define systemSecondClock 'seco' /* system seconds clock */

#define systemMillisecondClock 'mill' /* system millisecond clock */

#define systemMicrosecondClock 'micr' /* system microsecond clock */

Data Type

The clock component data structure is a private data structure. Programs that use your

clock component never change the contents of this data structure directly. Your clock

component provides functions that allow programs to use this data structure.

The callback header structure specifies the callback function for an operation. Your

application can obtain callback function identifiers by calling its clock component’s

ClockNewCallBack function (described on page 11-10).

The QTCallBackHeader data type defines the callback header structure.

struct QTCallBackHeader {

long callBackFlags; /* flags used by clock

component to communicate

scheduling data about

callback to Movie Toolbox */

long reserved1; /* reserved for use by Apple */

char qtPrivate[40]; /* reserved for use by Apple */

};

Field descriptions

callBackFlags
Contains flags that your component can use to communicate scheduling
information about the callback event to the Movie Toolbox. This
scheduling information tells the Movie Toolbox what time base events
your clock component needs to know about in order to support the
callback event. The following flags are defined (all other flags must be
set to 0):

enum {

qtcbNeedsRateChanges = 1, /* clock needs to

know about rate

 changes */

C H A P T E R 1 1

Clock Components

Clock Components Reference 11-7

qtcbNeedsTimeChanges = 2 /* clock needs to

know about time

changes */

qtcbNeedsStartStopChanges

= 4 /* clock needs to

know about time

base changes */

};

qtcbNeedsRateChanges
Indicates that your clock component needs to know about
rate changes. If you set this flag to 1, the Movie Toolbox
calls your ClockRateChanged function (described on
page 11-16) whenever the rate of the callback event’s time
base changes.

qtcbNeedsTimeChanges
Indicates that your clock component needs to know about
time changes. If you set this flag to 1, the Movie Toolbox
calls your ClockTimeChanged function (described on
page 11-15) whenever a program changes the time value of
the time base, or when the time value changes by an
amount that is different from the time base’s rate.

qtcbNeedsStartStopChanges
Indicates that your clock component needs to know
about the time base’s start and stop changes. If you
set this flag to 1, the Movie Toolbox calls your
ClockStartStopChanged function (described on
page 11-16) whenever a program changes the start or stop
time of the time base.

reserved1 Reserved for use by Apple.

qtPrivate Reserved for use by Apple.

Clock Component Functions

This section describes the functions that are provided by clock components. These

functions are described from the perspective of the Movie Toolbox, the entity that is most

likely to call clock components. If you are developing a clock component, your

component must behave as described here.

C H A P T E R 1 1

Clock Components

11-8 Clock Components Reference

This section has been divided into the following topics:

■ “Getting the Current Time” describes the function that allows the Movie Toolbox to
obtain the current time from a clock component.

■ “Using the Callback Functions” discusses the functions that allow clock components
to help applications define and schedule time base callback functions.

■ “Managing the Time” describes functions that help clock components manage their
time correctly.

If you are developing an application that uses clock components, you should read the

next section, “Getting the Current Time.”

If you are developing a clock component, you need to be familiar with all the functions

described in this section.

Note

Your application can call any clock component function at
interrupt time, except for the ClockNewCallBack and
ClockDisposeCallBack functions (described on page 11-10 and
page 11-14, respectively). In addition, your application should not call
the Component Manager’s OpenComponent and CloseComponent
functions at interrupt time. ◆

You can use the following constants to refer to the request codes for each of the functions

that your clock component must support:

/* constants to refer to request codes for supported functions */

enum {

kClockGetTimeSelect = 0x1,/* ClockGetTime */

kClockNewCallBackSelect = 0x2,/* ClockNewCallBack */

kClockDisposeCallBackSelect = 0x3,/* ClockDisposeCallBack */

kClockCallMeWhenSelect = 0x4,/* ClockCallMeWhen */

kClockCancelCallBackSelect = 0x5,/* ClockCancelCallBack */

kClockRateChangedSelect = 0x6,/* ClockRateChanged */

kClockTimeChangedSelect = 0x7,/* ClockTimeChanged */

kClockSetTimeBaseSelect = 0x8,/* ClockSetTimeBase */

kClockStartStopChangedSelect = 0x9,/* ClockStartStopChanged */

kClockGetRateSelect = 0xA /* ClockGetRate */

};

C H A P T E R 1 1

Clock Components

Clock Components Reference 11-9

Getting the Current Time

Clock components provide a single function that allows the Movie Toolbox to obtain the

current time.

ClockGetTime

The ClockGetTime function allows the Movie Toolbox to obtain the current time

according to the specified clock.

pascal ComponentResult ClockGetTime (ComponentInstance aClock,

 TimeRecord *out);

aClock Specifies the clock for the operation. You obtain this identifier from
the Component Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh Toolbox for
details.

out Contains a pointer to a time structure. (For details on the time structure,
see the chapter “Movie Toolbox” in Inside Macintosh: QuickTime.) The
clock component updates this structure with the current time
information. Specifically, the clock component sets the value and scale
fields in the time structure. Your clock component should always return
values in its native time scale—this time scale does not change during the
life of the component connection.

DESCRIPTION

The ClockGetTime function is the most important function for most clock components.

The Movie Toolbox calls this function very often, so it should be fast.

Using the Callback Functions

Applications that use QuickTime time bases may define callback functions that are

associated with a specific time base. Applications can then use these callback functions to

perform activities that are triggered by temporal events, such as a certain time being

reached or a specified rate being achieved. The time base functions of the Movie Toolbox

interact with clock components to schedule the invocation of these callback

functions—your clock component is responsible for calling the callback function at its

scheduled time.

C H A P T E R 1 1

Clock Components

11-10 Clock Components Reference

The functions described in this section are called by the Movie Toolbox to support

applications that define time base callback functions. For more information about time

base callback functions, see the chapter “Movie Toolbox” in Inside Macintosh: QuickTime.
Note that your clock component can delegate its callback events to another component

by calling the Component Manager’s DelegateComponent function, which is

described in the chapter “Component Manager” in Inside Macintosh: More Macintosh
Toolbox.

The ClockNewCallBack function allows your clock component to allocate the memory

to support a new callback event. When an application discards a callback event, the

Movie Toolbox calls your clock component’s ClockDisposeCallBack function.

The Movie Toolbox calls your clock component’s ClockCallMeWhen function when an

application wants to schedule a callback event. When the callback function is to be

invoked to service the event, the Movie Toolbox calls your component’s

ClockCancelCallBack function so that you can remove the callback event from the

list of scheduled events.

ClockNewCallBack

Your component’s ClockNewCallBack function allocates the memory for a new

callback event. The Movie Toolbox calls this function when an application defines a time

base callback event with the Movie Toolbox’s NewCallBack function. The callback

event created at this time is not active until it has been scheduled. An application

schedules a callback event by calling the Movie Toolbox’s CallMeWhen function.

Your component allocates the memory required to support the callback event. The

memory must be in a locked block and must begin with a callback header structure. This

structure is described in “Data Type,” which begins on page 11-6.

You should not call this function at interrupt time.

pascal QTCallBack ClockNewCallBack (ComponentInstance aClock,

TimeBase tb,

short callBackType);

aClock Specifies the clock for the operation. Applications obtain this identifier
from the Component Manager’s OpenComponent function.

tb Specifies the callback event’s time base. Typically, your component does
not need to save this specification. You can use the Movie Toolbox’s
GetCallBackTimeBase function to determine the callback event’s time
base when it is invoked (see the discussion of time bases in the chapter
“Movie Toolbox” in Inside Macintosh: QuickTime for more information
about this function).

C H A P T E R 1 1

Clock Components

Clock Components Reference 11-11

callBackType
Specifies when the callback event is to be invoked. The value of this field
governs how your component interprets the data supplied in the param1,
param2, and param3 parameters to the ClockCallMeWhen function,
which is described in the next section. The following three values are
valid for this parameter:

callBackAtTime
Indicates that the callback event is to be invoked at a
specified time. The Movie Toolbox supplies this time to
your component in the parameter data of the
ClockCallMeWhen function (described in the next
section).

callBackAtRate
Indicates that the callback event is to be invoked when the
rate for the time base reaches a specified value. The Movie
Toolbox supplies this value to your component in the
parameter data of the ClockCallMeWhen function.

callBackAtTimeJump
Indicates that the callback event is to be invoked when a
program changes the time value for the time base.

In addition, if the high-order bit of the callBackType parameter is set
to 1 (this bit is defined by the callBackAtInterrupt flag), the callback
event may be invoked at interrupt time.

DESCRIPTION

Your clock component allocates the memory for the event and returns a pointer to that

memory. If your clock component cannot satisfy the request or detects invalid or

unsupported parameter values, you should set the QTCallBack result to nil.

Your component can allocate an arbitrarily large piece of memory for the callback event.

That memory must begin with a callback header structure, which must be initialized to 0.

ClockCallMeWhen

Your clock component’s ClockCallMeWhen function schedules a callback event for

invocation. The Movie Toolbox calls this function when an application schedules a

callback event using the CallMeWhen function of the Movie Toolbox (described in the

chapter “Movie Toolbox” in Inside Macintosh: QuickTime).

C H A P T E R 1 1

Clock Components

11-12 Clock Components Reference

The Movie Toolbox passes the parameter data from its CallMeWhen function to

your component in the param1, param2, and param3 parameters to this function. Your

clock component interprets these parameters based on the value of the callBackType

parameter to the ClockNewCallBack function (see page 11-10).

pascal ComponentResult ClockCallMeWhen (ComponentInstance aClock,

 QTCallBack cb,

long param1,

long param2,

long param3);

aClock Specifies the clock for the operation. Applications obtain this identifier
from the Component Manager’s OpenComponent function.

cb Specifies the callback event for the operation. The Movie Toolbox obtains
this value from your component’s ClockNewCallBack function.

param1 Contains data supplied to the Movie Toolbox in the param1 parameter to
the CallMeWhen function. Your component interprets this parameter
based on the value of the callBackType parameter to the
ClockNewCallBack function.

If callBackType is set to callBackAtTime, param1 contains
QuickTime callback flags indicating when to invoke the callback function.
The following values are defined:

triggerTimeFwd
Indicates that the callback function should be called at the
time specified by param2 only when time is moving
forward (positive rate). The value of this flag is 0x0001.

triggerTimeBwd
Indicates that the callback function should be called at the
time specified by param2 only when time is moving
backward (negative rate). The value of this flag is 0x0002.

triggerTimeEither
Indicates that the callback function should be called at the
time specified by param2 without regard to direction. The
value of this flag is 0x0003.

If callBackType is set to callBackAtRate, param1 contains flags
indicating when to invoke the callback function.

The following values are defined:

triggerRateChange
Indicates that the callback function should be called
whenever the rate changes. The value of this flag is 0.

triggerRateLT
Indicates that the callback function should be called when
the rate changes to a value less than that specified by
param2. The value of this flag is 0x0004.

C H A P T E R 1 1

Clock Components

Clock Components Reference 11-13

triggerRateGT
Indicates that the callback function should be called when
the rate changes to a value greater than that specified by
param2. The value of this flag is 0x0008.

triggerRateEqual
Indicates that the callback function should be called when
the rate changes to a value equal to that specified by
param2. The value of this flag is 0x0010.

triggerRateLTE
Indicates that the callback function should be called when
the rate changes to a value that is less than or equal to that
specified by param2. The value of this flag is 0x0014.

triggerRateGTE
Indicates that the callback function should be called when
the rate changes to a value that is less than or equal to that
specified by param2. The value of this flag is 0x0018.

triggerRateNotEqual
Indicates that the callback function should be called when
the rate changes to a value that is not equal to that specified
by param2. The value of this flag is 0x001C.

param2 Contains data supplied to the Movie Toolbox in the param2 parameter to
the CallMeWhen function (see page 11-11). Your component interprets
this parameter based on the value of the callBackType parameter to the
ClockNewCallBack function, described on page 11-10.

If callBackType is set to callBackAtTime, param2 contains the time
value at which your component should invoke the callback function for
this event. The param1 parameter contains flags affecting when you
should call the function.

If callBackType is set to callBackAtRate, param2 contains the rate
value at which your component should invoke the callback function for
this event. The param1 parameter contains flags affecting when you
should call the function.

param3 Contains data supplied to the Movie Toolbox in the param3 parameter to
the CallMeWhen function. If qtType is set to callBackAtTime,
param3 contains the time scale in which to interpret the time value that is
stored in param2.

DESCRIPTION

The Movie Toolbox maintains control information about the callback event. Your clock

component only needs to maintain the invocation schedule. For example, the Movie

Toolbox saves the address of the callback event, its reference constant, and the value of

the A5 register. In addition, the Movie Toolbox prevents applications from scheduling a

single callback event more than once.

C H A P T E R 1 1

Clock Components

11-14 Clock Components Reference

If your clock component successfully schedules the callback event, you should call the

AddCallBackToTimeBase function (described on page 11-18) to add it to the list of

callback events for the corresponding time base. If your component cannot schedule

the callback event, it should return an appropriate error.

ClockCancelCallBack

Your clock component’s ClockCancelCallBack function removes the specified

callback event from the list of scheduled callback events for a time base.

pascal ComponentResult ClockCancelCallBack

(ComponentInstance aClock,

 QTCallBack cb)

aClock Specifies the clock for the operation. Your application obtains this
identifier from the Component Manager’s OpenComponent function.

cb Specifies the callback event for the operation. The Movie Toolbox obtains
this value from your component’s ClockNewCallBack function
(described on page 11-10).

DESCRIPTION

The Movie Toolbox calls this function when an application cancels its callback event by

calling CancelCallBack. The Movie Toolbox also calls this function whenever it

executes the callback event, thus removing it from the list of scheduled callback events.

The application is then responsible for rescheduling the event, if appropriate.

If your clock component successfully cancels the callback event, you should call the

RemoveCallBackFromTimeBase function, described on page 11-19, so that the Movie

Toolbox can remove the callback event from its list of scheduled events.

ClockDisposeCallBack

Your clock component’s ClockDisposeCallBack function disposes of the memory

associated with the specified callback event.

pascal ComponentResult ClockDisposeCallBack

(ComponentInstance aClock,

 QTCallBack cb);

aClock Specifies the clock for the operation. Applications obtain this identifier
from the Component Manager’s OpenComponent function.

C H A P T E R 1 1

Clock Components

Clock Components Reference 11-15

cb Specifies the callback event for the operation. The Movie Toolbox obtains
this value from your component’s ClockNewCallBack function
(described on page 11-10).

DESCRIPTION

The Movie Toolbox calls this function when an application discards its callback event

by calling the DisposeCallBack function. Your clock component should cancel the

callback event before you dispose of it.

You should not call this function at interrupt time.

Managing the Time

Clock components provide several functions that allow the Movie Toolbox to

alert your component to changes in its environment. Three of these functions,

ClockTimeChanged, ClockRateChanged, and ClockStartStopChanged, are

associated with application callback functions and help your component determine

whether to invoke the callback function. The fourth, the ClockSetTimeBase function,

tells your clock component about the time base it is supporting.

ClockTimeChanged

The Movie Toolbox calls your component’s ClockTimeChanged function whenever the

callback’s time base time value is set. The Movie Toolbox calls this function only if the

qtcbNeedsTimeChanges flag is set to 1 in the callBackFlags field of the QuickTime

callback header structure allocated by your clock component (see “Data Type” beginning

on page 11-6 for more information).

pascal ComponentResult ClockTimeChanged

(ComponentInstance aClock,

 QTCallBack cb);

aClock Specifies the clock for the operation. Applications obtain this identifier
from the Component Manager’s OpenComponent function.

cb Specifies the callback for the operation. The Movie Toolbox obtains this
value from your component’s ClockNewCallBack function.

DESCRIPTION

The Movie Toolbox calls this function once for each qualified callback function

associated with the time base. Note that the Movie Toolbox calls this function only for

callback events that are currently scheduled.

C H A P T E R 1 1

Clock Components

11-16 Clock Components Reference

ClockRateChanged

The Movie Toolbox calls your component’s ClockRateChanged function whenever the

callback’s time base rate changes. The Movie Toolbox calls this function only if the

qtcbNeedsRateChanges flag is set to 1 in the callBackFlags field of the callback

header structure in the QTCallBackHeader structure allocated by your clock

component (see “Data Type” beginning on page 11-6 for more information about the

callback header structure).

pascal ComponentResult ClockRateChanged (ComponentInstance aClock,

 QTCallBack cb);

aClock Specifies the clock for the operation. Applications obtain this identifier
from the Component Manager’s OpenComponent function.

cb Specifies the callback for the operation. The Movie Toolbox obtains this
value from your component’s ClockNewCallBack function (described
on page 11-10).

DESCRIPTION

The Movie Toolbox calls this function once for each qualified callback function

associated with the time base. Note that the Movie Toolbox calls this function only for

callback events that are currently scheduled.

ClockStartStopChanged

The Movie Toolbox calls your component’s ClockStartStopChanged function

whenever the start or stop time of the callback’s time base changes. The Movie

Toolbox calls this function only if the qtcbNeedsStartStop flag is set to 1 in the

callBackFlags field of the callback header structure in the QTCallBackHeader

structure allocated by your clock component (see “Data Type” beginning on page 11-6

for more information about the callback header structure).

pascal ComponentResult ClockStartStopChanged

(ComponentInstance aClock, QTCallBack cb,

 Boolean startChanged,

 Boolean stopChanged);

aClock Specifies the clock for the operation. Applications obtain this identifier
from the Component Manager’s OpenComponent function.

C H A P T E R 1 1

Clock Components

Clock Components Reference 11-17

cb Specifies the callback for the operation. The Movie Toolbox obtains this
value from your component’s ClockNewCallBack function (described
on page 11-10).

startChanged
Indicates that the start time of the time base associated with the clock
component instance has changed.

stopChanged
Indicates that the stop time of the time base associated with the clock
component instance has changed.

DESCRIPTION

The Movie Toolbox calls this function once for each qualified callback function

associated with the time base. Note that the Movie Toolbox calls this function only for

callback events that are currently scheduled.

ClockSetTimeBase

The Movie Toolbox calls your component’s ClockSetTimeBase function when an

application creates a time base that uses your clock component. The tb parameter

indicates the time base that is associated with your clock.

pascal ComponentResult ClockSetTimeBase (ComponentInstance aClock,

 TimeBase tb);

aClock Specifies the clock for the operation. Applications obtain this identifier
from the Component Manager’s OpenComponent function.

tb Specifies the time base that is associated with the clock.

DESCRIPTION

Your clock component may need to know its time base if the rate or time value of the

time base can be changed without using Movie Toolbox functions. This could be the case

if your clock supports an external clock. Under these circumstances, the Movie Toolbox

cannot use the ClockRateChanged and ClockTimeChanged functions (described on

page 11-16 and page 11-15, respectively) to alert your component to changes in its

environment. Instead, your component can use the time base provided here to seed the

GetFirstCallBack function, described on page 11-20, and then scan all its associated

callback functions.

C H A P T E R 1 1

Clock Components

11-18 Clock Components Reference

Movie Toolbox Clock Support Functions

The Movie Toolbox provides a number of support functions for clock components. All of

these functions help your component manage its associated callback functions. Your

clock component may call any of these functions at interrupt time. These functions

should only be called by clock components.

Use the AddCallBackToTimeBase function to add a callback event to the list of

scheduled callback events maintained by the Movie Toolbox. You should use the

RemoveCallBackFromTimeBase function to remove a callback event from the list.

When your clock component determines that it is time to invoke a callback function, you

should use the ExecuteCallBack function to cause the Movie Toolbox to call the

function.

If your clock component needs to scan all its associated callback events, you can use the

GetFirstCallBack and GetNextCallBack functions.

AddCallBackToTimeBase

Your clock component uses the AddCallBackToTimeBase function to place a callback

event into the list of scheduled callback events. The Movie Toolbox maintains this list.

pascal OSErr AddCallBackToTimeBase (QTCallBack cb);

cb Specifies the callback event for the operation. Your clock component
obtains this value from the parameters passed to your
ClockCallMeWhen function (described on page 11-11).

DESCRIPTION

Your component should call the AddCallBackToTimeBase function when your

ClockCallMeWhen function determines that your component can support the callback

event (see “Using the Callback Functions,” which begins on page 11-9, for more

information about the ClockCallMeWhen function).

If your component does not call this function, the Movie Toolbox does not notify your

component of time, rate, or stop and start changes (via the ClockRateChanged and

ClockTimeChanged functions, described on page 11-16 and page 11-15, respectively).

C H A P T E R 1 1

Clock Components

Clock Components Reference 11-19

ExecuteCallBack

When your clock component determines that it is time to execute a callback function,

your component should call the ExecuteCallBack function.

pascal void ExecuteCallBack (QTCallBack cb);

cb Specifies the callback event for the operation. Your clock component
obtains this value from the parameters passed to your
ClockCallMeWhen function (described on page 11-11).

DESCRIPTION

This function handles all the details of invoking the callback function properly. For

example, the ExecuteCallBack function queues the callback function correctly,

according to the function’s ability to execute at interrupt time (specified in the

callBackType parameter to your ClockNewCallBack function, described on

page 11-10).

Before calling the application’s function, the ExecuteCallBack function cancels the

callback event. In this manner, the callback event is prevented from executing twice in

succession. It is up to the application, or the callback function itself, to reschedule the

callback event.

SPECIAL CONSIDERATIONS

This function sets the A5 register to the value it contained at the time the callback event

was scheduled when calling the callback function.

Your clock component should not release the memory associated with the callback event

at this time. You should do so only in your ClockDisposeCallBack function

(described on page 11-14). This is particularly important when a callback function cannot

execute at interrupt time, since the Movie Toolbox schedules such functions for

invocation at a later time.

RemoveCallBackFromTimeBase

Your clock component uses the RemoveCallBackFromTimeBase function to remove a

callback event from the list of scheduled callback events. The Movie Toolbox maintains

this list.

pascal OSErr RemoveCallBackFromTimeBase (QTCallBack cb);

cb Specifies the callback event for the operation. Your clock component
obtains this value from the parameters passed to your
ClockCallMeWhen function (described on page 11-11).

C H A P T E R 1 1

Clock Components

11-20 Clock Components Reference

DESCRIPTION

Your component should call the RemoveCallBackToTimeBase function when your

ClockCancelCallBack function determines that your component can cancel the

callback event (see “Using the Callback Functions” beginning on page 11-9 for more

information about the ClockCancelCallBack function).

SPECIAL CONSIDERATIONS

Your component should call the RemoveCallbackFromTimeBase function only for

callback events that were successfully added to the schedule with the

AddCallBackToTimeBase function (described on page 11-18).

GetFirstCallBack

The GetFirstCallBack function returns the first callback event associated with a

specified time base. Your component can use this function, along with the

GetNextCallBack function (described in the next section), to scan all callback events

associated with a time base.

pascal QTCallBack GetFirstCallBack (TimeBase tb);

tb Specifies the time base for the operation. Your component can obtain the
time base reference from your ClockSetTimeBase function (described
on page 11-17) or from the Movie Toolbox’s GetCallBackTimeBase
function.

DESCRIPTION

The GetFirstCallBack function returns the first callback event in the list managed

for the specified time base. If there are no callback events associated with the time base,

the QTCallBack result is set to nil. Your component cannot assume that the Movie

Toolbox maintains the callback list in any particular order.

C H A P T E R 1 1

Clock Components

Clock Components Reference 11-21

GetNextCallBack

The GetNextCallBack function returns the next callback event associated with a

specified time base. Your component can use this function, along with the

GetFirstCallBack function (described in the previous section), to scan all callback

events associated with a time base.

pascal QTCallBack GetNextCallBack (QTCallBack cb);

cb Specifies the starting callback event for the operation. Your clock
component obtains this value from the GetFirstCallBack function or
from previous calls to the GetNextCallBack function.

DESCRIPTION

The GetNextCallBack function returns the next callback event in the list managed for

the specified time base. If there are no more callback events associated with the time

base, the returned QuickTime callback header structure is set to nil. Your component

cannot assume that the Movie Toolbox maintains the callback list in any particular order.

C H A P T E R 1 1

Clock Components

11-22 Summary of Clock Components

Summary of Clock Components

C Summary

Constants

/* type value */

#define clockComponentType 'clok' /* clock component */

/* subtype values */

#define systemTickClock 'tick' /* system tick clock */

#define systemMicrosecondClock 'micr' /* system microsecond clock */

#define systemSecondClock 'seco' /* system second clock */

#define systemMillisecondClock 'mill' /* system millisecond clock */

/* constants for manipulating clock component capability flags */

enum{

kClockRateIsLinear = 1, /* clock keeps constant rate */

kClockImplementsCallBacks = 2 /* clock supports callback events */

};

#define ClockGetTime GetClockTime

/* constants to refer to request codes for supported functions */

enum {

kClockGetTimeSelect = 0x1, /* ClockGetTime */

kClockNewCallBackSelect = 0x2, /* ClockNewCallBack */

kClockDisposeCallBackSelect = 0x3, /* ClockDisposeCallBack */

kClockCallMeWhenSelect = 0x4, /* ClockCallMeWhen */

kClockCancelCallBackSelect = 0x5, /* ClockCancelCallBack */

kClockRateChangedSelect = 0x6, /* ClockRateChanged */

kClockTimeChangedSelect = 0x7, /* ClockTimeChanged */

kClockSetTimeBaseSelect = 0x8, /* ClockSetTimeBase */

kClockStartStopChangedSelect = 0x9, /* ClockStartStopChanged */

kClockGetRateSelect = 0xA /* ClockGetRate */

};

C H A P T E R 1 1

Clock Components

Summary of Clock Components 11-23

enum {

qtcbNeedsRateChanges = 1,/* wants to know about rate changes */

qtcbNeedsTimeChanges = 2,/* wants to know about time changes */

qtcbNeedsStartStopChanges = 4 /* wants to know when time base start

or stop has changed */

};

/* values for callBackType parameter of ClockNewCallBack function that

indicate when a callback event is to be invoked */

enum

{

callBackAtTime = 1, /* at specific time */

callBackAtRate = 2, /* when the rate for the time base

reaches a specific value */

callBackAtTimeJump = 3, /* when a program changes the time value

for a time base */

};

typedef unsigned short QTCallBackType;

/* callback equates--values for the parameter param1 of the

ClockCallMeWhen function that indicate when the callback function should

be called */

enum

{

triggerTimeFwd = 0x0001,/* when current time exceeds trigger time

going forward */

triggerTimeBwd = 0x0002,/* when current time exceeds trigger time

going backward */

triggerTimeEither = 0x0003,/* when curTime exceeds triggerTime going

either direction */

triggerRateLT = 0x0004,/* when rate changes to less than trigger

value */

triggerRateGT = 0x0008,/* when rate changes to greater than trigger

value */

triggerRateEqual = 0x0010,/* when rate changes to equal trigger

value */

triggerRateLTE = triggerRateLT | triggerRateEqual,

/* when rate changes to a value less than

or equal to param2 rate */

triggerRateGTE = triggerRateGT | triggerRateEqual,

/* when rate changes to value greater than

or equal to param2 rate */

C H A P T E R 1 1

Clock Components

11-24 Summary of Clock Components

triggerRateNotEqual = triggerRateGT | triggerRateEqual | triggerRateLT,

/* when rate changes to value not equal to

param2 rate */

triggerRateChange = 0, /* whenever rate changes */

};

typedef unsigned short QTCallBackFlags;

Data Type

struct QTCallBackHeader {

long callBackFlags; /* flags used by clock component to

communicate scheduling data about

callback to Movie Toolbox */

long reserved1; /* reserved for use by Apple */

char qtPrivate[40]; /* reserved for use by Apple */

};

Clock Component Functions

Getting the Current Time

pascal ComponentResult ClockGetTime
(ComponentInstance aClock, TimeRecord *out);

Using the Callback Functions

pascal QTCallBack ClockNewCallBack
(ComponentInstance aClock, TimeBase tb,
short callBackType);

pascal ComponentResult ClockCallMeWhen
(ComponentInstance aClock, QTCallBack cb,
long param1, long param2, long param3);

pascal ComponentResult ClockCancelCallBack
(ComponentInstance aClock, QTCallBack cb);

pascal ComponentResult ClockDisposeCallBack
(ComponentInstance aClock, QTCallBack cb);

Managing the Time

pascal ComponentResult ClockTimeChanged
(ComponentInstance aClock, QTCallBack cb);

pascal ComponentResult ClockRateChanged
(ComponentInstance aClock, QTCallBack cb);

C H A P T E R 1 1

Clock Components

Summary of Clock Components 11-25

pascal ComponentResult ClockStartStopChanged
(ComponentInstance aClock, QTCallBack cb,
Boolean startChanged, Boolean stopChanged);

pascal ComponentResult ClockSetTimeBase
(ComponentInstance clock, TimeBase tb);

Movie Toolbox Clock Support Functions

pascal OSErr AddCallBackToTimeBase
(QTCallBack cb);

pascal void ExecuteCallBack
(QTCallBack cb);

pascal OSErr RemoveCallBackFromTimeBase
(QTCallBack cb);

pascal QTCallBack GetFirstCallBack
(TimeBase tb);

pascal QTCallBack GetNextCallBack
(QTCallBack cb);

Pascal Summary

Constants

CONST

{type value}

clockComponentType = 'clok'; {clock component}

{subtype values}

systemTickClock = 'tick'; {system tick clock}

systemMicrosecondClock = 'micr'; {system microsecond clock}

systemSecondClock = 'seco'; {system second clock}

systemMillisecondClock = 'mill'; {system microsecond clock}

{constants for manipulating clock component capability flags}

kClockRateIsLinear = 1; {linear clock rate}

kClockImplementsCallBacks = 2; {clock to implement callback }

{ routines}

{constants to refer to request codes for supported routines}

kClockGetClockTimeSelect = $1; {ClockGetTime}

kClockNewCallBackSelect = $2; {ClockNewCallBack}

C H A P T E R 1 1

Clock Components

11-26 Summary of Clock Components

kClockDisposeCallBackSelect = $3; {ClockDisposeCallBack}

kClockCallMeWhenSelect = $4; {ClockCallMeWhen}

kClockCancelCallBackSelect = $5; {ClockCancelCallBack}

kClockRateChangedSelect = $6; {ClockRateChanged}

kClockTimeChangedSelect = $7; {ClockTimeChanged}

kClockSetTimeBaseSelect = $8; {ClockSetTimeBase}

kClockStartStopChangedSelect = $9; {ClockStartStopChanged}

kClockGetRateSelect = $A; {ClockGetRate}

qtcbNeedsRateChanges = 1; {wants to know about rate changes}

qtcbNeedsTimeChanges = 2; {wants to know about time changes}

qtcbNeedsStartStopChanges = 4; {wants to know when time base start }

{ or stop has changed}

{values for callBackType parameter of ClockNewCallBack function that }

{ indicate when a callback event is to be invoked}

callBackAtTime = 1; {at specific time}

callBackAtRate = 2; {when the rate for the time base }

{ reaches a specific value}

callBackAtTimeJump = 3; {when a program changes the time value }

{ for a time base}

{values for the parameter param1 of ClockCallMeWhen function that indicate }

{ when callback function should be called}

triggerTimeFwd = $0001; {when current time exceeds trigger time going }

{ forward}

triggerTimeBwd = $0002; {when current time exceeds trigger time going }

{ backward}

triggerTimeEither = $0003; {when current time exceeds trigger time going }

{ either direction}

triggerRateLT = $0004; {when rate changes to less than trigger value}

triggerRateGT = $0008; {when rate changes to greater than trigger }

{ value}

triggerRateEqual = $0010; {when rate changes to equal trigger value}

triggerRateLTE = $0014; {when rate changes to less than or equal }

{ trigger value}

triggerRateGTE = $0018; {when rate changes to greater than or equal }

{ to trigger value}

triggerRateNotEqual = $001C; {when rate is not equal to trigger value}

triggerRateChange = 0; {whenever rate changes}

C H A P T E R 1 1

Clock Components

Summary of Clock Components 11-27

Data Type

TYPE

QTCallBack = ^CallBackRecord;

QTCallBackHeader =

RECORD

callBackFlags: LongInt; {component flags about callback }

{ events}

reserved1: LongInt; {reserved}

qtPrivate: ARRAY[0..39] OF Byte;

{reserved}

END;

QTCallBackFlags = Byte;

QTCallBackType = Byte;

QTCallBackProc = ProcPtr;

Clock Component Routines

Getting the Current Time

FUNCTION ClockGetTime (aClock: ComponentInstance;
VAR out: TimeRecord): ComponentResult;

Using the Callback Functions

FUNCTION ClockNewCallBack (aClock: ComponentInstance; tb: TimeBase;
callBackType: Integer): QTCallBack;

FUNCTION ClockCallMeWhen (aClock: ComponentInstance; cb: QTCallBack;
param1: LongInt; param2: LongInt;
param3: LongInt): ComponentResult;

FUNCTION ClockCancelCallBack
(aClock: ComponentInstance;
cb: QTCallBack): ComponentResult;

FUNCTION ClockDisposeCallBack
(aClock: ComponentInstance;
cb: QTCallBack): ComponentResult;

C H A P T E R 1 1

Clock Components

11-28 Summary of Clock Components

Managing the Time

FUNCTION ClockTimeChanged (aClock: ComponentInstance;
cb: QTCallBack): ComponentResult;

FUNCTION ClockRateChanged (aClock: ComponentInstance;
cb: QTCallBack): ComponentResult;

FUNCTION ClockStartStopChanged
(clock: ComponentInstance; cb: QTCallBack;
startChanged: Boolean; stopChanged: Boolean):
ComponentResult;

FUNCTION ClockSetTimeBase (aClock: ComponentInstance;
tb: TimeBase): ComponentResult;

Movie Toolbox Clock Support Routines

FUNCTION AddCallBackToTimeBase
(cb: QTCallBack): OSErr;

PROCEDURE ExecuteCallBack (cb: QTCallBack);

FUNCTION RemoveCallBackFromTimeBase
(cb: QTCallBack): OSErr;

FUNCTION GetFirstCallBack (tb: TimeBase): QTCallBack;

FUNCTION GetNextCallBack (cb: QTCallBack): QTCallBack;

Contents 12-1

C H A P T E R 1 2

Contents

Preview Components

About Preview Components 12-3

Obtaining Preview Data 12-3

Storing Preview Data in Files 12-5

Using the Preview Data 12-5

Creating Preview Components 12-6

Implementing Required Component Functions 12-7

Displaying Image Data as a Preview 12-8

Preview Components Reference 12-10

Functions 12-10

Displaying Previews 12-10

Handling Events 12-11

Creating Previews 12-11

Resources 12-13

The Preview Resource 12-14

The Preview Resource Item Structure 12-15

Summary of Preview Components 12-16

C Summary 12-16

Constants 12-16

Data Types 12-16

Functions 12-17

Pascal Summary 12-17

Constants 12-17

Data Types 12-18

Routines 12-19

C H A P T E R 1 2

About Preview Components 12-3

Preview Components

This chapter discusses preview components. Preview components are used by the

Image Compression Manager’s standard file preview functions to display and create

visual previews for files. Previews usually consist of a single image, but they may

contain many kinds of data, including sound. In QuickTime, the Image Compression

Manager is the primary client of preview components. Rarely, if ever, do applications call

preview components directly. However, you may want to develop your own preview

component for use by the Image Compression Manager. Therefore, this chapter focuses

on what you must do to create a preview component.

■ “About Preview Components” presents some general information about how preview
components obtain, store, and use preview data.

■ “Creating Preview Components” presents a sample program for the implementation
of a preview component that displays PICT images.

■ “Preview Components Reference” describes the functions and resources that are
specific to preview components.

■ “Summary of Preview Components” provides summaries of the preview component
constants, data structures, and functions in C and in Pascal.

Before learning about preview components, you must be familiar with QuickTime movie

previews. See the chapter “Movie Toolbox” in Inside Macintosh: QuickTime for a complete

description of movie previews and of the Image Compression Manager functions that

support standard file previews.

About Preview Components

Preview components provide two basic services: they draw and create previews. This

section describes how preview components obtain preview data, what kind of

information is stored with the file, and what they do with the preview data.

Obtaining Preview Data
Preview components obtain data from

■ a small data cache

■ a reference they create to another resource in the file

■ the file for which they are invoked

C H A P T E R 1 2

Preview Components

12-4 About Preview Components

The preview component can create a small data cache containing the preview. Although

creation of the preview cache may be time-consuming, the cache can then be stored in

the file and used to display the preview for the file rapidly on subsequent occasions. The

picture file preview component, which creates a thumbnail picture for the file and stores

it in the file’s resource fork, is one way of getting information from a data cache.

The preview component can create a reference to another resource in the file. For

example, some file types already contain a picture preview in them. The preview

component can then create a pointer to that existing data, rather than making another

copy of it. The movie preview component works in this way when the preview for the

movie is actually the movie’s preview, rather than only its poster picture.

If the preview component can display the preview for the file quickly enough in every

case, there is no need for a cache. Such a preview component reinterprets the data in the

file each time it is invoked, rather than creating a preview cache once. This method of

getting the information allows the file to remain untouched, requires no disk space, and

does not demand that the user or the application make any special effort to create the

preview. Unfortunately, in most cases, it is not possible to interpret the data quickly

enough to use this approach. Preview components that handle this type of preview

should set the pnotComponentNeedsNoCache flag in their component flags field.

enum {

pnotComponentNeedsNoCache = 2

};

If a preview component relies on other system software services, it must make sure they

are present. For example, if your preview component uses the Movie Toolbox, it is

responsible for calling the Movie Toolbox’s EnterMovies and ExitMovies functions.

When previewing is complete, the component receives a normal Component Manager

close request. If you add any controls to the window, you should dispose of them while

you are calling the Component Manager’s CloseComponent function.

A preview component should never write back to the file directly. The caller of the

preview component is responsible for actually modifying the file. You should open all

access paths to the file with read permission only.

C H A P T E R 1 2

Preview Components

About Preview Components 12-5

Figure 12-1 illustrates the relationships of a preview component, the Image Compression

Manager, and an application.

Figure 12-1 Relationships of a preview component, the Image Compression Manager, and an
application

Storing Preview Data in Files
A preview may or may not contain sound or text data or other types of information. In

addition to the visual preview, QuickTime provides the preview resource, described on

page 12-14, which also allows you to store

■ a brief description of the file

■ a list of keywords

■ an associated language code to allow use of a single file in more than one region

■ a modification date to help applications determine when the data has been changed

Using the Preview Data
Preview components may

■ create a preview

■ draw a preview

■ create and draw a preview

C H A P T E R 1 2

Preview Components

12-6 Creating Preview Components

Some preview components only create a preview and rely on another component to

display it. For example, by default, the movie preview component creates a picture

preview for the file. This is displayed by the picture preview component.

Most preview components simply draw the preview. These are the simplest type of

display components. They do not require any other event processing—including the

scheduling of idle time—for example, to play a movie. The picture preview component

is an example of this type of component.

Preview components that do not require a cache should have a subtype that matches the

type of file for which they can display previews.

A preview component for sound would require event processing, since it would need

time to play the sound. If your preview component requires event processing, you must

have the pnotComponentWantsEvents flag set in its component flags field.

enum {

pnotComponentWantsEvents = 1,

};

Creating Preview Components

This section describes how to create your own preview component.

Preview components that create previews have a type of 'pmak' and a subtype that

matches the type of the file for which they create previews.

Preview components that display previews have a type of 'pnot' and a subtype that

matches the type of the resource that they display.

You can use the following constants to refer to the request codes for each of the functions

that your preview component must support.

enum {

kPreviewShowDataSelector = 1, /* PreviewShowData */

kPreviewMakePreviewSelector = 2, /* PreviewMakePreview */

kPreviewMakePreviewReferenceSelector = 3,/* PreviewMakePreviewReference */

kPreviewEventSelector = 4 /* PreviewEvent */

};

This section presents a sample program that displays a preview component for the

display of PICS animation files. First it implements the required Component Manager

functions. Then it converts the PICT image data into a format for display as a preview.

C H A P T E R 1 2

Preview Components

Creating Preview Components 12-7

Implementing Required Component Functions
Listing 12-1 supplies the component dispatchers for the preview component together

with the can do, version, open, and close functions.

Listing 12-1 Implementing the required Component Manager functions

typedef struct {

ComponentInstance self;

} PICSPreviewRecord, **PICSPreviewGlobals;

/* entry point for all Component Manager requests */

pascal ComponentResult PICSPreviewDispatch

(ComponentParameters *params, Handle store)

{

OSErr err = badComponentSelector;

ComponentFunction componentProc = 0;

switch (params->what) {

case kComponentOpenSelect:

componentProc = PICSPreviewOpen; break;

case kComponentCloseSelect:

componentProc = PICSPreviewClose; break;

case kComponentCanDoSelect:

componentProc = PICSPreviewCanDo; break;

case kComponentVersionSelect:

componentProc = PICSPreviewVersion; break;

case kPreviewShowDataSelector:

componentProc = PICSPreviewShowData; break;

}

if (componentProc)

err = CallComponentFunctionWithStorage (store, params,

 componentProc);

return err;

}

pascal ComponentResult PICSPreviewCanDo

(PICSPreviewGlobals store, short ftnNumber)

{

switch (ftnNumber) {

case kComponentOpenSelect:

case kComponentCloseSelect:

case kComponentCanDoSelect:

C H A P T E R 1 2

Preview Components

12-8 Creating Preview Components

case kComponentVersionSelect:

case kPreviewShowDataSelector:

return true;

default:

return false;

}

}

pascal ComponentResult PICSPreviewVersion

(PICSPreviewGlobals store)

{

return 0x00010001;

}

pascal ComponentResult PICSPreviewOpen (PICSPreviewGlobals store,

 ComponentInstance self)

{

store = (PICSPreviewGlobals)NewHandle

(sizeof (PICSPreviewRecord));

if (!store) return MemError();

SetComponentInstanceStorage (self, (Handle)store);

(**store).self = self;

return noErr;

}

pascal ComponentResult PICSPreviewClose

(PICSPreviewGlobals store,

 ComponentInstance self)

{

if (store) DisposeHandle ((Handle)store);

return noErr;

}

Displaying Image Data as a Preview
To display a file’s image preview, your PreviewShowData function is called.

Listing 12-2 includes the PICSPreviewShowData function, which previews a PICS file.

The function loads the first PICT image from the PICS file and uses the PICT file preview

component to display it.

C H A P T E R 1 2

Preview Components

Creating Preview Components 12-9

Listing 12-2 Converting data into a form that can be displayed as a preview

pascal ComponentResult PICSPreviewShowData

(PICSPreviewGlobals store,

 OSType dataType, Handle data,

 const Rect *inHere)

{

OSErr err = noErr;

short resRef = 0, saveRes = CurResFile();

FSSpec theFile;

Boolean whoCares;

Handle thePict = nil;

ComponentInstance ci;

/* because your component has the pnotComponentNeedsNoCache

flag set, it should only be called to display files */

if (dataType != rAliasType)

return paramErr;

/* open up the file to preview */

if (err = ResolveAlias (nil, (AliasHandle)data, &theFile,

 &whoCares)) goto bail;

resRef = FSpOpenResFile (&theFile, fsRdPerm);

if (err = ResError()) goto bail;

/* get the first 'PICT' */

UseResFile (resRef);

thePict = Get1IndResource ('PICT', 1);

if (!thePict) goto bail;

/* use the PICT preview component to display the preview */

if (ci = OpenDefaultComponent (ShowFilePreviewComponentType,

 'PICT')) {

PreviewShowData (ci, 'PICT', thePict, inHere);

CloseComponent (ci);

}

bail:

if (resRef) CloseResFile (resRef);

if (thePict) DisposeHandle (thePict);

UseResFile (saveRes);

return err;

}

C H A P T E R 1 2

Preview Components

12-10 Preview Components Reference

Preview Components Reference

This section describes the functions and resources that are specific to preview

components.

Functions

This section describes the functions for displaying previews, handling events in

previews, and creating previews that are provided by preview components. These

functions are described from the perspective of the Image Compression Manager, which

is most likely to call preview components. If you are developing a preview component,

your component must behave as described here.

Displaying Previews

The preview component supplies a single function for displaying movie previews. If

your preview component does not handle events (that is, does not contain time-based

data), you should use this function.

PreviewShowData

The PreviewShowData function allows you to display a preview if your preview

component does not handle events.

pascal ComponentResult PreviewShowData (pnotComponent p,

OSType dataType,

Handle data,

const Rect *inHere);

p Specifies your preview component. You obtain this identifier from
the Component Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh Toolbox for
details.

dataType Contains the type of handle pointing to the data to be displayed in the
preview.

data Contains a handle to the data, which is typically the same as the subtype
of your preview component.

inHere Contains a pointer to a rectangle that defines the area into which you
draw the preview. The current port is set to the correct graphics port
for drawing. You must not draw outside the given rectangle.

C H A P T E R 1 2

Preview Components

Preview Components Reference 12-11

DESCRIPTION

If your preview component can display the data for the preview quickly enough that it

does not need a cache (that is, you have set the pnotComponentNeedsNoCache flag),

you should consider the PreviewShowData function an initialization function.

Therefore, you should remember the location of the preview rectangle and set up any

necessary data structures. An update event is generated after this function for your

initial drawing. In this case, the type of the handle in the data parameter is an alias (that

is, it is the rAliasType resource type), and the handle contains an alias to the file to be

previewed.

Handling Events

The PreviewEvent function is provided so that your preview component can do

standard event filtering. See Inside Macintosh: Files for details on the standard dialog

event filter function.

PreviewEvent

If your preview component handles events, the PreviewEvent function is called as

appropriate.

pascal ComponentResult PreviewEvent (pnotComponent p,

 EventRecord *e,

 Boolean *handledEvent);

p Specifies your preview component. You obtain this identifier from
the Component Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh Toolbox for
details.

e Contains a pointer to the event structure for this operation.

handledEvent
Contains a pointer to a Boolean value. If you completely handle an event
such as a mouse-down event or keystroke, you should set the
handledEvent parameter to true. Otherwise, set it to false.

Creating Previews

Two functions are available for use in creating previews. The PreviewMakePreview

function creates previews by allocating a handle to data to be added to the file. On the

other hand, the PreviewMakePreviewReference function makes previews by

returning the type and identification number of a resource within the file to be used as

the preview for the file.

C H A P T E R 1 2

Preview Components

12-12 Preview Components Reference

PreviewMakePreview

The PreviewMakePreview function creates previews by allocating a handle to data

that is to be added to the file.

pascal ComponentResult PreviewMakePreview (pnotComponent p,

OSType *previewType,

Handle *previewResult,

const FSSpec *sourceFile,

ProgressProcRecordPtr progress);

p Specifies your preview component. You obtain this identifier from
the Component Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh Toolbox for
details.

previewType
Contains a pointer to the type of preview component that should be used
to display the preview.

previewResult
Contains a pointer to a handle of cached preview data created by this
function.

sourceFile
Contains a pointer to a reference to the file for which the preview is
created.

progress Points to a progress function. For details on progress functions, see the
chapter “Image Compression Manager” in Inside Macintosh: QuickTime. If
the process of creating a preview takes more than a few seconds, you
should call the progress function that is provided.

DESCRIPTION

Your preview component should not actually write the preview to the given file. It

should simply return the handle. The data is added to the file by the caller.

C H A P T E R 1 2

Preview Components

Preview Components Reference 12-13

 PreviewMakePreviewReference

Instead of creating a handle to data that is to be added to the file, the

PreviewMakePreviewReference function returns the type and identification number

of a resource within the file to be used as the preview for the file.

pascal ComponentResult PreviewMakePreviewReference

(pnotComponent p, OSType *previewType,

 short *resID, const FSSpec *sourceFile);

p Specifies your preview component. You obtain this identifier from
the Component Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh Toolbox for
details.

previewType
Contains a pointer to the type of preview component that should be used
to display the preview.

resID Contains a pointer to the identification number of a resource within the
file to be used as the preview for the file.

sourceFile
Contains a pointer to a reference to the file for which the preview is
created.

DESCRIPTION

If your preview component creates previews by reference, you must also implement the

PreviewMakePreview function, described in the previous section. However, you

should return an error from it. PreviewMakePreview is always called first. If it fails,

PreviewMakePreviewReference is tried next.

Resources

This section describes the preview resource and the preview resource item

structures. The preview component uses the preview resource to store visual preview

information. The preview resource item structure stores an unlimited number of

additional pieces of file data.

C H A P T E R 1 2

Preview Components

12-14 Preview Components Reference

The Preview Resource

QuickTime uses the preview resource (defined by the pnotResource data type) with

a resource ID of 0 to store the visual preview information. The structure of the preview

resource is shown in Listing 12-3.

▲ W A R N I N G

If you parse this resource directly, please do extensive error checking in
your code so as not to hinder future expansion of the data structure. In
particular, if you encounter unknown version bits, exercise caution.
Unexpected results may occur. ▲

Listing 12-3 The preview resource

typedef struct pnotResource {

unsigned long modDate; /* modification date */

short version; /* version number of preview

resource */

OSType resType; /* type of resource used as preview

cache */

short resID; /* resource identification number

of resource used as preview

cache */

short numResItems;/* number of additional file

 descriptions */

pnotResItem resItem[]; /* array of file descriptions */

} pnotResource;

Field descriptions

modDate Contains the modification time (in standard Macintosh seconds
since midnight, January 1, 1904) of the file for which the preview
was created. This parameter allows you to find out if the preview is
out of date with the contents of the file.

version Contains the version number of the preview resource. The low bit
of the version is a flag for preview components that only reference
their data. If the bit is set, it indicates that the resource identified in
the preview resource is not owned by the preview component,
but is part of the file. It is not removed when the preview is
updated or removed (using the Image Compression Manager’s
MakeFilePreview or AddFilePreview function), as it would be
if the version number were 0.

resType Contains the type of a resource used as a preview cache for the
given file. The type of the resource determines the subtype of the
preview component that should be used to display the preview.

resID Contains the identification number of a resource used as a preview
cache for the specified file.

C H A P T E R 1 2

Preview Components

Preview Components Reference 12-15

numResItems Specifies the number of additional file descriptions stored with this
preview.

resItem Contains the preview resource item structure (defined by the
pnotResItem data type), which is described next.

The Preview Resource Item Structure

The preview resource item structure is an array that allows you to store an unlimited

number of additional pieces of file information. Each piece of data contains a reference to

its information using the structure defined by the pnotResItem data type, which is

shown in Listing 12-4.

Listing 12-4 The preview resource item structure

typedef struct pnotResItem {

unsigned long modDate; /* last modification date of item */

OSType useType; /* what type of data */

OSType resType; /* resource type containing item */

short resID; /* resource ID containing this item */

short rgnCode; /* region code */

long reserved;/* set to 0 */

} pnotResItem; *pnotResItemPtr;

Field descriptions

modDate Contains the modification time (in standard Macintosh seconds since
midnight, January 1, 1904) of this item. This parameter allows you to find
out if the item is out of date with the rest of the items in the array.

useType Indicates the meaning of the data pointed to by this item. Two values are
currently defined for this field.

KeyW Indicates that this item points to a list of keywords,
typically stored in an'STR#' resource.

Desc Indicates that the item points to a brief text description of
the file, typically stored in a 'TEXT' resource.

Developers are encouraged to expand the list of types to include
additional relevant kinds of information.

resType Contains the type of a resource used as a preview cache for the file
associated with the given item. The type of the resource determines which
preview component should be used to display the preview.

resID Contains the identification number of a resource used as a preview cache
for the specified file.

rgnCode Contains the region code for this item.

reserved Reserved for use by Apple. Set this field to 0.

C H A P T E R 1 2

Preview Components

12-16 Summary of Preview Components

Summary of Preview Components

C Summary

Constants

enum {

pnotComponentWantsEvents = 1, /* component requires events */

pnotComponentNeedsNoCache = 2 /* component does not require cache */

};

enum {

kPreviewShowDataSelector = 1, /* PreviewShowData */

kPreviewMakePreviewSelector = 2, /* PreviewMakePreview */

kPreviewMakePreviewReferenceSelector= 3,

/* PreviewMakePreviewReference */

kPreviewEventSelector = 4 /* PreviewEvent */

};

#define ShowFilePreviewComponentType 'pnot' /* creates previews */

#define CreateFilePreviewComponentType 'pmak' /* displays previews */

Data Types

typedef ComponentInstance pnotComponent;

typedef struct pnotResource {

unsigned long modDate; /* modification date */

short version; /* version number of preview resource */

OSType resType; /* type of resource used as preview cache */

short resID; /* resource identification number

of resource used as preview cache */

short numResItems;/* number of additional file descriptions */

pnotResItem resItem[]; /* array of file descriptions */

} pnotResource;

C H A P T E R 1 2

Preview Components

Summary of Preview Components 12-17

typedef struct pnotResItem {

unsigned long modDate; /* last modification date of item */

OSType useType; /* what type of data */

OSType resType; /* resource type containing item */

short resID; /* resource ID containing this item */

short rgnCode; /* region code */

long reserved;/* set to 0 */

} pnotResItem; *pnotResItemPtr;

Functions

Displaying Previews

pascal ComponentResult PreviewShowData
(pnotComponent p, OSType dataType,
Handle data, const Rect *inHere);

Handling Events

pascal ComponentResult PreviewEvent
(pnotComponent p, EventRecord *e,
Boolean *handledEvent);

Creating Previews

pascal ComponentResult PreviewMakePreview
(pnotComponent p, OSType *previewType,
Handle *previewResult,
const FSSpec *sourceFile,
ProgressProcRecordPtr progress);

pascal ComponentResult PreviewMakePreviewReference
(pnotComponent p, OSType *previewType,
short *resID, const FSSpec *sourceFile);

Pascal Summary

Constants

CONST

{flags for component flags field for your preview component}

pnotComponentWantsEvents = 1; {component requires events}

pnotComponentNeedsNoCache = 2; {component does not require cache}

C H A P T E R 1 2

Preview Components

12-18 Summary of Preview Components

{selectors for preview components}

kPreviewShowDataSelector = 1; {PreviewShowData}

kPreviewMakePreviewSelector = 2; {PreviewMakePreview}

kPreviewMakePreviewReferenceSelector = 3; {PreviewMakePreviewReference}

kPreviewEventSelector = 4; {PreviewEvent}

{component types and subtypes}

ShowFilePreviewComponentType 'pnot' {creates previews}

CreateFilePreviewComponentType 'pmak' {displays previews}

Data Types

TYPE

pnotComponent = ComponentInstance;{preview component type}

pnotResource =

RECORD

modDate: LongInt; {modification date}

version: Integer; {version number of preview }

{ resource}

resType: OSType; {type of resource used as preview }

{ cache}

resID: Integer; {resource identification number }

{ of resource used as preview }

{ cache}

numResItems: Integer; {number of additional file }

 { descriptions}

ARRAY OF resItem[]: pnotResItem;

{array of file descriptions}

END;

pnotResItem =

RECORD

modDate: LongInt; {last modification date of item}

useType: OSType; {what type of data}

resType: OSType; {resource type containing item}

resID: Integer; {resource ID containing this item}

rgnCode: Integer; {region code}

reserved: LongInt; {set to 0}

END;

C H A P T E R 1 2

Preview Components

Summary of Preview Components 12-19

Routines

Displaying Previews

FUNCTION PreviewShowData (p: pnotComponent; dataType: OSType;
data: Handle; VAR inHere: Rect):
ComponentResult;

Handling Events

FUNCTION PreviewEvent (p: pnotComponent; VAR e: EventRecord;
VAR handledEvent: Boolean): ComponentResult;

Creating Previews

FUNCTION PreviewMakePreview
(p: pnotComponent; VAR previewType: OSType;
VAR previewResult: Handle;
VAR sourceFile: FSSpec;
progress: ProgressProcRecordPtr):
ComponentResult;

FUNCTION PreviewMakePreviewReference
(p: pnotComponent; VAR previewType: OSType;
VAR resID: Integer; VAR sourceFile: FSSpec):
ComponentResult;

GL-1

action One of many integer constants used by
QuickTime movie controller components in the
MCDoAction function. Applications that include
action filters may receive any of these actions.

active movie segment A portion of a
QuickTime movie that is to be used for playback.
By default, the active segment is set to the entire
movie. You can change the active segment of
a movie by using the Movie Toolbox.

active source rectangle The portion of the
maximum source rectangle that contains active
video that can be digitized by a video digitizer
component.

aliasing The result of sampling a signal at less
than twice its natural frequency. Aliasing causes
data to be lost in the conversion that occurs when
resampling an existing signal at more than twice
its natural frequency.

alpha channel The portion of each display
pixel that represents the blending of video and
graphical image data for a video digitizer
component.

alternate group A collection of movie tracks
that contain alternate data for one another. The
Movie Toolbox chooses one track from the group
to be used when the movie is played. The choice
may be based on such considerations as quality
or language.

anti-aliasing The process of sampling a signal
at more than twice its natural frequency to ensure
that aliasing artifacts do not occur.

area of interest The portion of a test image
that is to be displayed in the standard
image-compression dialog box.

atom The basic unit of data in a movie resource.
There are a number of different atom types,
including movie atoms, track atoms, and media
atoms. There are two varieties of atoms:
container atoms, which contain other atoms, and
leaf atoms, which do not contain any other atoms.

attached controller A movie controller with an
attached movie.

automatic key frame A key frame that is
inserted automatically by the Image
Compression Manager when it detects a scene
change. When performing temporal
compression, the Image Compression Manager
looks for frames that have changed more than
90 percent since the previous frame. If such a
change occurs, the Image Compression Manager
assumes a scene change and inserts a key frame.
A key frame allows fast random access and
reverse play in addition to efficient compression
and picture quality of the frame.

badge A visual element in a movie’s display
that distinguishes a movie from a static image.
The movie controller component supplied by
Apple supports badges.

band A horizontal strip from an image.
The Image Compression Manager may break an
image into bands if a compressor or
decompressor component cannot handle an
entire image at once.

base media handler component A component
that handles most of the duties that must be
performed by all media handlers. See also
derived media handler component.

black level The degree of blackness in an
image. This is a common setting on a video
digitizer. The highest setting will produce an
all-black image, whereas the lowest setting will
yield very little, if any, black even with black
objects in the scene. Black level is an important
digitization setting since it can be adjusted so
that there is little or no noise in an image.

blend matte A pixel map that defines the
blending of video and digital data for a video
digitizer component. The value of each pixel in
the pixel map governs the relative intensity of the
video data for the corresponding pixel in the
result image.

Glossary

G L O S S A R Y

GL-2

callback event A scheduled invocation of a
Movie Toolbox callback function. Applications
establish the criteria that determine when the
callback function is to be invoked. When those
criteria are met, the Movie Toolbox invokes the
callback function.

callback function An application-defined
function that is invoked at a specified time or
based on specified criteria. These callback
functions are data-loading functions,
data-unloading functions, completion functions,
and progress functions. See also callback event.

chunk In the movie resource formats, a
collection of sample data in a media. Chunks
allow optimized data access. A chunk may
contain one or more samples. Chunks in a media
may have different sizes, and the samples within
a chunk may have different sizes. In the Sound
Manager, a chunk may refer to a collection of
sampled sound and definitions of the
characteristics of sampled sound and other
relevant details about the sound.

clipped movie boundary region The region
that is clipped by the Movie Toolbox. This region
combines the union of all track movie boundary
regions for a movie, which is the movie’s movie
boundary region, with the movie’s movie
clipping region, which defines the portion of the
movie boundary region that is to be used.

clock component A component that supplies
basic time information to its clients. Clock
components have a component type value of
'clok'.

color ramps Images in which the shading goes
from light to dark in smooth increments.

component A software entity, managed by the
Component Manager, that provides a defined set
of services to its clients. Examples include clock
components, movie controller components, and
image compressor components.

component instance A channel of
communication between a component and its
client.

component subtype An element in the
classification hierarchy used by the Component
Manager to define the services provided by a
component. Within a component type, the

component subtype provides additional
information about the component. For example,
image compressor components all have the same
component type value; the component subtype
value indicates the compression algorithm
implemented by the component.

component type An element in the
classification hierarchy used by the Component
Manager to define the services provided by a
component. The component type value indicates
the type of services provided by the component.
For example, all image compressor components
have a component type value of 'imco'. See
also component subtype.

compressor component A general term used to
refer to both image compressor components and
image decompressor components.

connection A channel of communication
between a component and its client. A
component instance is used to identify the
connection.

container atom A QuickTime atom
that contains other atoms, possibly including
other container atoms. Examples of container
atoms are track atoms and edit atoms. Compare
leaf atom.

controller boundary rectangle The rectangle
that completely encloses a movie controller. If the
controller is attached to its movie, the rectangle
also encloses the movie image.

controller boundary region The region
occupied by a movie controller. If the controller is
attached to its movie, the region also includes the
movie image.

controller clipping region The clipping region
of a movie controller. Only the portion of the
controller and its movie that lies within the
clipping region is visible to the user.

controller window region The portion of a
movie controller and its movie that is visible to
the user.

cover function An application-defined function
that is called by the Movie Toolbox whenever a
movie covers a portion of the screen or reveals a
portion of the screen that was previously hidden
by the movie.

G L O S S A R Y

GL-3

current error One of two error values
maintained by the Movie Toolbox. The current
error value is updated by every Movie Toolbox
function. The other error value, the sticky error,
is updated only when an application directs the
Movie Toolbox to do so.

current selection A portion of a QuickTime
movie that has been selected for a cut, copy, or
paste operation.

current time The time value that represents the
point of a QuickTime movie that is currently
playing or would be playing if the movie had a
nonzero rate value.

data dependency An aspect of image
compression in which compression ratios are
highly dependent on the image content. Using an
algorithm with a high degree of data
dependency, an image of a crowd at a football
game (which contains a lot of detail) may
produce a very small compression ratio, whereas
an image of a blue sky (which consists mostly of
constant colors and intensities) may produce a
very high compression ratio.

data handler A piece of software that is
responsible for reading and writing a media’s
data. The data handler provides data input and
output services to the media’s media handler.

data reference A reference to a media’s data.

derived media handler component A
component that allows the Movie Toolbox to
access the data in a media. Derived media
handler components isolate the Movie Toolbox
from the details of how or where a particular
media is stored. This not only frees the Movie
Toolbox from reading and writing media data,
but also makes QuickTime extensible to new data
formats and storage devices. These components
are referred to as derived components because
they rely on the services of a common base media
handler component, which is supplied by Apple.
See also base media handler component.

detached controller A movie controller
component that is separate from its associated
movie.

digitizer rectangle The portion of the active
source rectangle that you want to capture and
convert with a video digitizer component.

display coordinate system The QuickDraw
graphics world, which can be used to display
QuickTime movies, as opposed to the movie’s
time coordinate system, which defines the
basic time unit for each of the movie’s tracks.

dithering A technique used to improve picture
quality when you are attempting to display an
image that exists at a higher bit-depth
representation on a lower bit-depth device. For
example, you might want to dither a 24 bits per
pixel image for display on an 8-bit screen.

duration A time interval. Durations are time
values that are interpreted as spans of time,
rather than as points in time.

edit state Information defining the current state
of a movie or track with respect to an edit
session. The Movie Toolbox uses edit states to
support its undo facilities.

fixed point A point that uses fixed-point
numbers to represent its coordinates. The Movie
Toolbox uses fixed points to provide greater
display precision for graphical and image data.

fixed rectangle A rectangle that uses fixed
points to represent its vertices. The Movie
Toolbox uses fixed rectangles to provide greater
display precision.

flattening The process of copying all of the
original data referred to by reference in
QuickTime tracks into a QuickTime movie file.
This can also be called resolving references.
Flattening is used to bring in all of the data that
may be referred to from multiple files after
QuickTime editing is complete. It makes
a QuickTime movie stand-alone—that is, it can be
played on any system without requiring any
additional QuickTime movie files or tracks, even
if the original file referenced hundreds of files.
The flattening operation is essential if QuickTime
movies are to be used with CD-ROM discs.

frame A single image in a sequence of images.

frame differencing A form of temporal
compression that involves examining
redundancies between adjacent frames in a
moving image sequence. Frame differencing can
improve compression ratios considerably for a
video sequence.

G L O S S A R Y

GL-4

frame rate The rate at which a movie is
displayed—that is, the number of frames per
second that are actually being displayed. In
QuickTime the frame rate at which a movie was
recorded may be different from the frame rate at
which it is displayed. On very fast machines, the
playback frame rate may be faster than the record
frame rate; on slow machines, the playback frame
rate may be slower than the record frame rate.
Frame rates may be fractional.

genlock A circuit that locks the frequency of an
internal clock to an external timing source. This
term is used to refer to the ability of a video
digitizer to rely on external clocking.

hue value A setting that is similar to the tint
control on a television. Hue value can be
specified in degrees with complementary colors
set 180˚ apart (red is 0˚, green is +120˚, and blue
is –120˚). Video digitizer components support
hue values that range from 0 (–180˚ shift in hue)
to 65,535 (+179˚ shift in hue), where 32,767
represents a 0˚ shift in hue. Hue value is set with
the video digitizer component’s VDSetHue
function.

identity matrix A transformation matrix that
specifies no change in the coordinates of the
source image. The resulting image corresponds
exactly to the source image.

image compressor component A component
that provides image-compression services. Image
compressor components have a component type
of 'imco'.

image decompressor component A component
that provides image-decompression services.
Image decompressor components have a
component type value of 'imdc'.

image sequence A series of visual
representations usually represented by video
over time. Image sequences may also be
generated synthetically, such as from an
animation sequence.

interesting time A time value in a movie, track,
or media that meets certain search criteria. You
specify the search criteria in the Movie Toolbox.
The Movie Toolbox then scans the movie, track,
or media and locates time values that meet those
search criteria.

interlacing A video mode that updates half the
scan lines on one pass and goes through the
second half during the next pass.

interleaving A technique in which sound and
video data are alternated in small pieces, so the
data can be read off disk as it is needed.
Interleaving allows for movies of almost any
length with little delay on startup.

intraframe coding A process that compresses
only a single frame. It does not require looking at
adjacent frames in time to achieve compression,
but allows fast random access and reverse play.

Joint Photographic Experts Group
(JPEG) Refers to an international standard for
compressing still images. This standard supplies
the algorithm for image compression. The
version of JPEG supplied with QuickTime
complies with the baseline International
Standards Organization (ISO) standard bitstream,
version 9R9. This algorithm is best suited for use
with natural images.

JPEG See Joint Photographic Experts Group.

key color A color in a destination image that is
replaced with video data by a video digitizer
component. Key colors represent one technique
for selectively displaying video on a computer
display. Other techniques include the use of
alpha channels and blend mattes.

key frame A sample in a sequence of
temporally compressed samples that does not
rely on other samples in the sequence for any of
its information. Key frames are placed into
temporally compressed sequences at a frequency
that is determined by the key frame rate.
Typically, the term key frame is used with respect
to temporally compressed sequences of image
data. See also sync sample.

key frame rate The frequency with which key
frames are placed into temporally compressed
data sequences.

layer A mechanism for prioritizing the tracks in
a movie. When it plays a movie, the Movie
Toolbox displays the movie’s tracks according to
their layer—tracks with lower layer numbers are
displayed first; tracks with higher layer numbers
are displayed over those tracks.

G L O S S A R Y

GL-5

leaf atom A QuickTime atom that contains no
other atoms. A leaf atom, however, may contain a
table. An example of a leaf atom is an edit list
atom. The edit list atom contains the edit list
table. Compare container atom.

lossless compression A compression scheme
that preserves all of the original data.

lossy compression A compression scheme
that does not preserve the data precisely; some
data is lost, and it cannot be recovered
after compression. Most lossy schemes try to
compress the data as much as possible, without
decreasing the image quality in a noticeable way.

mask region A 1-bit-deep region that defines
how an image is to be displayed in the
destination coordinate system. For example,
during decompression the Image Compression
Manager displays only those pixels in the source
image that correspond to bits in the mask region
that are set to 1. Mask regions must be defined in
the destination coordinate system.

master clock component A movie’s clock
component.

matrix See transformation matrix.

matte See blend matte, track matte.

maximum source rectangle A rectangle
representing the maximum source area that a
video digitizer component can grab. This
rectangle usually encompasses both the vertical
and horizontal blanking areas.

media A Movie Toolbox data structure that
contains information that describes the data for a
track in a movie. Note that a media does not
contain its data; rather, a media contains a
reference to its data, which may be stored on
disk, CD-ROM disc, or any other mass storage
device.

media handler A piece of software that is
responsible for mapping from the movie’s time
coordinate system to the media’s time coordinate
system. The media handler also interprets the
media’s data. The data handler for the media is
responsible for reading and writing the media’s
data. See also base media handler component,
derived media handler component.

media information Control information about
a media’s data that is stored in the media
structure by the appropriate media handler.

movie A set of time-based data that is managed
by the Movie Toolbox. A QuickTime movie may
contain sound, video, animation, laboratory
results, financial data, or a combination of any of
these types of time-based data. A QuickTime
movie contains one or more tracks; each track
represents a single data stream in the movie.

movie boundary region A region that describes
the area occupied by a movie in the movie
coordinate system, before the movie has been
clipped by the movie clipping region.
A movie’s boundary region is built up from the
track movie boundary regions for each of the
movie’s tracks.

movie box A rectangle that completely encloses
the movie display boundary region. The movie
box is defined in the display coordinate system.

movie clipping region The clipping region
of a movie in the movie’s coordinate system. The
Movie Toolbox applies the movie’s clipping
region to the movie boundary region to obtain a
clipped movie boundary region. Only that
portion of the movie that lies in the clipped
movie boundary region is then transformed into
an image in the display coordinate system.

movie controller component A component that
manages movie controllers, which present a user
interface for playing and editing movies.

movie data exchange component A component
that allows applications to move various types of
data into and out of a QuickTime movie. The two
types of data exchange components, which
provide data conversion services to and from
standard QuickTime movie data formats, are the
movie import component and the movie export
component.

movie data export component A component
that converts QuickTime movie data into other
formats.

movie data import component A component
that converts other data formats into QuickTime
movie data format.

G L O S S A R Y

GL-6

movie display boundary region A region that
describes the display area occupied by a movie in
the display coordinate system, before the movie
has been clipped by the movie display clipping
region.

movie display clipping region The clipping
region of a movie in the display coordinate
system. Only that portion of the movie that lies in
the clipping region is visible to the user. The
Movie Toolbox applies the movie’s display
clipping region to the movie display boundary
region to obtain the visible image.

movie file A QuickTime file that stores all
information about the movie in a Macintosh
resource, and stores all the associated data for the
movie separately. The resource is stored in the
resource fork, and the data in the data fork. Most
QuickTime movies are stored in files with double
forks. Compare single-fork movie file.

movie poster A single visual image
representing a QuickTime movie. You specify a
poster as a point in time in the movie and specify
the tracks that are to be used to constitute the
poster image.

movie preview A short dynamic representation
of a QuickTime movie. Movie previews typically
last no more than 3 to 5 seconds, and they should
give the user some idea of what the movie
contains. You define a movie preview by
specifying its start time, its duration, and its
tracks.

movie resource One of several data structures
that provide the medium of exchange for movie
data between applications on a Macintosh
computer and between computers,
even computers of different types.

National Television System Committee
(NTSC) Refers to the color-encoding method
adopted by the committee in 1953. This standard
was the first monochrome-compatible,
simultaneous color transmission system used for
public broadcasting. This method is used widely
in the United States.

NTSC See National Television System
Committee.

offset-binary encoding A method of digitally
encoding sound that represents the range of
amplitude values as an unsigned number, with
the midpoint of the range representing silence.
For example, an 8-bit sound sample stored in
offset-binary format would contain sample
values ranging from 0 to 255, with a value of 128
specifying silence (no amplitude). Samples in
Macintosh sound resources are stored in
offset-binary form. Compare twos-complement
encoding.

PAL See Phase Alternation Line.

palindrome looping Running a movie in a
circular fashion from beginning to end and end
to beginning, alternating forward and backward.
Looping must also be enabled in order for
palindrome looping to take effect.

Phase Alternation Line (PAL) A color-
encoding system used widely in Europe, in
which one of the subcarrier phases derived from
the color burst is inverted in phase from one line
to the next. This technique minimizes hue errors
that may result during color video transmission.
Sometimes called Phase Alternating Line.

phase-locked loop (PLL) A piece of hardware
that synchronizes itself to an input signal—for
example, a video digitizer card that synchronizes
to an incoming video source. The video digitizer
component’s VDSetPLLFilterType function
allows applications to specify which
phase-locked loop is to be active.

playback quality A relative measure of the
fidelity of a track in a QuickTime movie. You can
control the playback (or language) quality of a
movie during movie playback. The Movie
Toolbox chooses tracks from alternate groups
that most closely correspond to the display
quality you desire. In this manner you can create
a single movie that can take advantage of the
hardware configurations of different computer
systems during playback.

PLL See phase-locked loop.

preferred rate The default playback rate for a
QuickTime movie.

preferred volume The default sound volume
for a QuickTime movie.

G L O S S A R Y

GL-7

preroll A technique for improving movie
playback performance. When prerolling a movie,
the Movie Toolbox informs the movie’s media
handlers that the movie is about to be played.
The media handlers can then load the
appropriate movie data. In this manner, the
movie can play smoothly from the start.

preview A short, potentially dynamic, visual
representation of the contents of a file. The
Standard File Package can use file previews in
file dialog boxes to give the user a visual cue
about a file’s contents.

preview component A component used by the
Movie Toolbox’s standard file preview functions
to display and create visual previews for files.
Previews usually consist of a single image, but
they may contain many kinds of data, including
sound. In QuickTime, the Movie Toolbox is the
primary client of preview components. Rarely, if
ever, do applications call preview components
directly.

progress function An application-defined
function that is invoked by the Movie Toolbox or
the Image Compression Manager. You can use
these functions to track the progress of
time-consuming activities, and thereby keep the
user informed about that progress.

rate A value that specifies the pace at which
time passes for a time base. A time base’s rate is
multiplied by the time scale to obtain the number
of time units that pass per second. For example,
consider a time base that operates in a time
coordinate system that has a time scale of 60. If
that time base has a rate of 1, 60 time units are
processed per second. If the rate is set to 1/2,
30 time units pass per second. If the rate is 2,
120 time units pass per second.

sample A single element of a sequence of
time-ordered data.

sample number A number that identifies
the sample with data for a specified time.

saturation value A setting that controls color
intensity. For example, at high saturation levels,
red appears to be red; at low saturation, red
appears pink. Valid saturation values range
from 0 to 65,535, where 0 is the minimum
saturation value and 65,535 specifies

maximum saturation. Saturation value is
set with the video digitizer component’s
VDSetSaturation function.

SECAM See Systeme Electronique Couleur
avec Memoire.

selection duration A time value that specifies
the duration of the current selection of a movie.

selection time A time value that specifies the
starting point of the current selection of a movie.

sequence A series of images that may be
compressed as a sequence. To do this, the images
must share an image description structure. In
other words, each image or frame in the
sequence must have the same compressor type,
pixel depth, color lookup table, and boundary
dimensions.

sequence grabber channel component A
component that manipulates captured data for
sequence grabber components.

sequence grabber component A component
that allows applications to obtain digitized data
from sources that are external to a Macintosh
computer. For example, you can use a sequence
grabber component to record video data from a
video digitizer component. Your application can
then request that the sequence grabber store the
captured video data in a QuickTime movie. In
this manner you can acquire movie data from
various sources that can augment the movie data
you create by other means, such as computer
animation. You can also use sequence grabber
components to obtain and display data from
external sources, without saving the captured
data in a movie.

sequence grabber panel component A
component that allows sequence
grabber components to obtain configuration
information from the user for a particular
sequence grabber channel component. An
application never calls a sequence grabber panel
component directly; application developers use
panel components only by calling the sequence
grabber component.

shadow sync sample A self-contained sample
that is an alternate for an already existing frame
difference sample. During certain random-access
operations, a shadow sync sample is used instead

G L O S S A R Y

GL-8

of a normal key frame, which may be very far
away from the desired frame. See also frame
differencing.

single-fork movie file A QuickTime movie file
that stores both the movie data and the movie
resource in the data fork of the movie file. You
can use single-fork movie files to ease the
exchange of QuickTime movie data between
Macintosh computers and other computer
systems. Compare movie file.

spatial compression Image compression that is
performed within the context of a single frame.
This compression technique takes advantage of
redundancy in the image to reduce the amount of
data required to accurately represent the image.
Compare temporal compression.

standard image-compression dialog
component A component that provides a
consistent user interface for selecting parameters
that govern compression of an image or image
sequence and then manages the compression
operation.

sticky error One of two error values
maintained by the Movie Toolbox. The sticky
error is updated only when an application directs
the Movie Toolbox to do so. The other error
value, the current error, is updated by every
Movie Toolbox function.

s-video A video format in which color and
brightness information are encoded as separate
signals. The s-video format is component video,
as opposed to composite video, which is the
NTSC standard.

sync sample A sample that does not rely on
preceding frames for content. See also key frame.

Systeme Electronique Couleur avec Memoire
(SECAM) Sequential Color With Memory;
refers to a color-encoding system in which the
red and blue color-difference information is
transmitted on alternate lines, requiring a
one-line memory in order to decode green
information.

tearing The effect you obtain if you redraw the
screen from the buffer while the buffer is only
half updated, so that you get one-half of one
image and one-half of another on a single raster
scan.

temporal compression Image compression that
is performed between frames in a sequence. This
compression technique takes advantage of
redundancy between adjacent frames in a
sequence to reduce the amount of data that is
required to accurately represent each frame in the
sequence. Sequences that have been temporally
compressed typically contain key frames at
regular intervals. Compare spatial compression.

thumbnail picture A picture that can be
created from an existing image that is stored as a
pixel map, a picture, or a picture file. A
thumbnail picture is useful for creating small
representative images of a source image and in
previews for files that contain image data.

time base A set of values that define the time
basis for an entity, such as a QuickTime movie. A
time base consists of a time coordinate system
(that is, a time scale and a duration) along with a
rate value. The rate value specifies the speed
with which time passes for the time base.

time coordinate system A set of values that
defines the context for a time base. A time
coordinate system consists of a time scale and a
duration. Together, these values define the
coordinate system in which a time value or a
time base has meaning.

time scale The number of time units that pass
per second in a time coordinate system. A time
coordinate system that measures time in sixtieths
of a second, for example, has a time scale of 60.

time unit The basic unit of measure for time in
a time coordinate system. The value of the time
unit for a time coordinate system is represented
by the formula (1/time scale) seconds. A time
coordinate system that has a time scale of 60
measures time in terms of sixtieths of a second.

time value A value that specifies a number
of time units in a time coordinate system. A time
value may contain information about a point in
time or about a duration.

track A Movie Toolbox data structure that
represents a single data stream in a QuickTime
movie. A movie may contain one or more tracks.
Each track is independent of other tracks in the

G L O S S A R Y

GL-9

movie and represents its own data stream. Each
track has a corresponding media. The media
describes the data for the track.

track boundary region A region that describes
the area occupied by a track in the track’s
coordinate system. The Movie Toolbox obtains
this region by applying the track clipping region
and the track matte to the visual image contained
in the track rectangle.

track clipping region The clipping region of
a track in the track’s coordinate system. The
Movie Toolbox applies the track’s clipping region
and the track matte to the image contained in the
track rectangle to obtain the track boundary
region. Only that portion of the track that lies in
the track boundary region is then transformed
into an image in the movie coordinate system.

track height The height, in pixels, of the track
rectangle.

track matte A pixel map that defines the
blending of track visual data. The value of each
pixel in the pixel map governs the relative
intensity of the track data for the corresponding
pixel in the result image. The Movie Toolbox
applies the track matte, along with the track
clipping region, to the image contained in the
track rectangle to obtain the track boundary
region.

track movie boundary region A region that
describes the area occupied by a track in the
movie coordinate system, before the movie has
been clipped by the movie clipping region.
The movie boundary region is built up from the
track movie boundary regions for each of the
movie’s tracks.

track offset The blank space that represents the
intervening time between the beginning of a
movie and the beginning of a track’s data. In an
audio track, the blank space translates to silence;
in a video track, the blank space generates no
visual image. All of the tracks in a movie use
the movie’s time coordinate system. That is, the
movie’s time scale defines the basic time unit for
each of the movie’s tracks. Each track begins at
the beginning of the movie, but the track’s data
might not begin until some time value other
than 0.

track rectangle A rectangle that completely
encloses the visual representation of a track in a
QuickTime movie. The width of this rectangle in
pixels is referred to as the track width; the
height, as the track height.

track width The width, in pixels, of the track
rectangle.

transformation matrix A 3-by-3 matrix that
defines how to map points from one coordinate
space into another coordinate space.

twos-complement encoding A system for
digitally encoding sound that stores the
amplitude values as a signed number—silence is
represented by a sample with a value of 0. For
example, with 8-bit sound samples,
twos-complement values would range from –128
to 127, with 0 meaning silence. The Audio
Interchange File Format (AIFF) used by the
Sound Manager stores samples in
twos-complement form. Compare offset-binary
encoding.

user data Auxiliary data that your application
can store in a QuickTime movie, track, or media
structure. The user data is stored in a user data
list; items in the list are referred to as user data
items. Examples of user data include a copyright,
date of creation, name of a movie’s director, and
special hardware and software requirements.

user data item A single element in a user data
list.

user data list The collection of user data for a
QuickTime movie, track, or media. Each element
in the user data list is referred to as a user data
item.

vertical blanking rectangle A rectangle that
defines a portion of the input video signal that is
devoted to vertical blanking. This rectangle
occupies lines 10 through 19 of the input signal.
Broadcast video sources may use this portion of
the input signal for closed captioning, teletext,
and other nonvideo information. Note that the
blanking rectangle cannot be contained in the
maximum source rectangle.

video digitizer component A component that
provides an interface for obtaining digitized
video from an analog video source. The typical
client of a video digitizer component is a

G L O S S A R Y

GL-10

sequence grabber component, which uses the
services of video digitizer components to create a
very simple interface for making and previewing
movies. Video digitizer components can also
operate independently, placing live video into a
window.

white level The degree of whiteness in an
image. It is a common video digitizer setting.

IN-1

Index

A

accuracy for image decompression
changes for a sequence 4-49
dithering and 4-18
specifying for an image 4-52

action filter functions
establishing the form of 2-61
specifying to movie controller components 2-47
using 2-13

actions
defined 2-13
movie controller 2-15 to 2-27
performing with movie controller components 2-47

activate events, handling with movie controller
components 2-58

active source rectangles 8-6
AddCallBackToTimeBase function 11-18
add-frame functions 5-107, 5-116
alpha channels 8-5

blending and 8-18
blend masks and 8-82
clipping and 8-21
continuous digitization and 8-53
masks and 8-36

analog video digitizers, recommended values for 8-66
Animation Compressor, compressor type value

for 5-80, 6-66
areas of interest

defined 3-9
specifying in test images 3-37, 3-39, 3-41

associating a movie with a movie controller 2-31
asynchronous compression, reporting 4-61
asynchronous compression and decompression of

images 4-8 to 4-9, 4-50, 4-61

B

badges, movie
controlling use of 2-20
determining use of 2-20
drawing 2-38
support for 2-6

Balloon Help, controlling with movie controller
components 2-27

bands of images 4-4 to 4-5
compressing horizontal 4-13 to 4-16

decompressing horizontal 4-21 to 4-25
defined 4-4

'barg' component type value 5-5
base media handler components

client status of component 10-8
defined 10-3
derived media handler capabilities, notifying

of 10-12, 10-38 to 10-40
opening a connection to 10-8
relationship to derived media handler

components 10-6
saving component instance for 10-8
utility function provided by 10-38 to 10-40

BeginUpdate function 5-14
black-and-white input video 8-15
black levels

default value for video digitizer 8-66
defined 8-65
returning current video digitizer 8-68
setting current 8-67

blend masks 8-82
brightness of digitized video image

controlling overall 8-73
receiving default value for 8-66
returning current value of 8-74

brightness of input video signal, controlling 8-80
broadcast input video 8-15
buffer list structures 8-22
buffer structures 8-23

C

callback events 11-9 to 11-15
assigning to time base by a clock component 11-18
callback header structures 11-6 to 11-11
canceling by a clock component 11-14
changes in start or stop time 11-16
control flags for a clock component 11-6
creating for a clock component 11-10
detecting rate changes by a clock component 11-7
detecting time changes by a clock component 11-7
disposing by a clock component 11-15
finding by a clock component 11-20 to 11-21
removing from a clock component 11-15
removing from time base by a clock

component 11-20
rescheduling by a clock component 11-14

I N D E X

IN-2

callback events (continued)
scheduling by a clock component 11-11
time base rate, changing 11-16

callback functions
assigning to a video channel 5-101, 5-102
for clock components 11-9 to 11-15
clock component support for time bases 11-4
completion functions for image compressors and

decompressors 4-4
data-loading functions for image decompressors 4-4
data-unloading functions for image compressors 4-4
executing by clock components 11-19
identifiers 11-6
progress functions for image compressors and

decompressors 4-4
reference constants for, setting value of 6-53
sequence grabber channel components and 6-35 to

6-37
sequence grabber components and 5-102 to 5-111
setting value of reference constant for 5-67
supported by image compressor components 4-4

callback header structures 11-6 to 11-7
caller flags. See control flags
capability flags

for image compressor components 4-26 to 4-31
input video signal 8-21
optional video digitizer component functions

and 8-12 to 8-13
output video signal 8-21
and video digitizer component current flags 8-19
for video digitizer components 8-14 to 8-19

capturing image data 5-103, 5-112 to 5-113
capturing sound and video data 5-18
CDBandCompress function 4-13, 4-63
CDBandDecompress function 4-17, 4-21, 4-64
CDCodecBusy function 4-61 to 4-62
CDGetCodecInfo function 4-54
CDGetCompressedImageSize function 4-58 to 4-59
CDGetCompressionTime function 4-56 to 4-57
CDGetMaxCompressionSize function 4-55
CDGetSimilarity function 4-57 to 4-58
CDPreCompress function 4-10, 4-62
CDPreDecompress function 4-16, 4-20 to 4-21, 4-63 to

4-64
CDTrimImage function 4-59 to 4-61
'cflg' request type 3-15
channel components. See sequence grabber channel

components
chunks of sound samples 6-80
clear operations, and movie controller

components 2-54
clipping

image decompressor components and 4-19, 4-38
movie controller components and 2-42
sequence grabber channel components and 6-17

sequence grabber components and
display-compress functions 5-110, 5-119
display functions 5-105, 5-113
transfer-frame functions 5-108, 5-117

video digitizer components and 8-5, 8-21
clipping regions

image decompressor components and 4-29
movie controller components and 2-9, 2-43
sequence grabber channel components and 6-56
sequence grabber components and 5-47, 5-69
video digitizer components and 8-16

ClockCallMeWhen function 11-11 to 11-14
ClockCancelCallBack function 11-14
clock components 11-3 to 11-28

assigning a time base to 11-17
callback events 11-6 to 11-21
callback functions 11-9 to 11-15
callback header structures 11-6 to 11-11
component flags, defined 11-5
component subtype values 11-6
component type value 11-6
constant rate for 11-5
current time and 11-9
data structures in 11-6 to 11-7
defined 1-3
functions in 11-7 to 11-21

getting the current time 11-9
managing the time 11-15 to 11-17
Movie Toolbox clock support functions 11-18 to

11-21
using the callback functions 11-9 to 11-15

rate changes in 11-7
request code values 11-8
support functions, Movie Toolbox 11-18 to 11-21
time base, creating 11-17
time changes 11-15
variable rate for 11-5

ClockDisposeCallBack function 11-14 to 11-15
ClockGetTime function 11-9
ClockNewCallBack function 11-10 to 11-11
ClockRateChanged function 11-7, 11-16
ClockSetTimeBase function 11-17
ClockStartStopChanged function 11-16 to 11-17
ClockTimeChanged function 11-15
'clok' component type 11-6
CloseComponent function 5-14, 10-9
CloseDefaultComponent function 3-8
'clut' request type 3-15
'cmpr' manufacturer value 7-8
CodecCapabilities data type 4-35 to 4-39
CodecCompressParams data type 4-40 to 4-45
CodecDecompressParams data type 4-46 to 4-53
CodecType data type 6-66, 8-44
color input video 8-15

I N D E X

IN-3

color lookup tables for video digitizer
components 8-61

color remapping, image decompressor components
and 4-18

Compact Video Compressor
component type value for 5-80, 6-66

complete movie parameter structures 10-15 to 10-17
completion functions 4-4, 4-44, 4-51
completion function structures 4-51
CompletionProcRecord data type 4-51
Component Manager

image compressor components and 4-4
standard image-compression dialog components

and 3-6
components

component flags for
image compressor components 4-26 to 4-31
movie data exchange components 9-7
preview components 12-6

defined xvii
manufacturer field, movie data exchange values

for 9-7
manufacturer values for sequence grabber panel

components 7-8
request codes for functions

image compressor components 4-53
movie controller components 2-14
standard image-compression dialog

components 3-14
subtypes

base media handler components value for 10-8
clock components values for 11-6
defined 4-4
image compressor values for 5-80
movie data exchange values for 9-7
preview components values for 12-6
sequence grabber channel components value

for 6-6
sequence grabber panel components value for 7-7
standard image-compression dialog value for 3-8
video digitizer components values for 8-11

types
base media handler components value for 10-8
clock components value for 11-6
decompressor components values for 4-4
derived media handler components value for 10-7
image compressor components values for 4-4
movie controller component value for 2-4
movie data exchange components values for 9-8
preview components values for 12-6
sequence grabber channel components value

for 6-6
sequence grabber channel values for 6-66
sequence grabber components value for 5-5
sequence grabber panel components value for 7-7

standard image-compression value for 3-8
video digitizer components values for 8-11

ComponentSetTarget function 10-9
compress buffers 5-87 to 5-89
compress-complete functions 5-115, 6-36
compressed source devices, video digitizer

components and 8-13
compress functions 5-114
compressing images 5-105, 5-114
compressing still images 1-8 to 1-10
compression. See image compression
compression dialog, standard image. See standard

image-compression dialog components
compression information structures 5-22 to 5-23
compression list structures 8-43 to 8-44
compression parameters structures 4-40 to 4-45
compressor capabilities structures 4-35 to 4-39
compressor information structures

format flags 4-32
image compressor component capability flags

in 4-26
compressor names 5-80, 6-66
compressor types 5-81. See also components, types
compressor type values. See components, types
continuous digitization 8-53
contrast in video digitizer components 8-67
control flags

determining for image compression
components 4-49

determining for image compressor components 4-42
to 4-43

determining for movie controller components 2-20,
2-26

determining for sequence grabber channel
components 6-51

determining for sequence grabber components 5-63
modifying for standard image-compression dialog

components 3-36
request type for standard image-compression dialog

components 3-25
returning for standard image-compression dialog

components 3-35
setting for movie controller components 2-20, 2-26
setting for sequence grabber channel

components 6-51
setting for sequence grabber components 5-57

controlled grab 5-57
controller boundary rectangles 2-8
controller boundary regions 2-8
controller clipping regions 2-9
controller window regions 2-9
ConvertFileToMovieFile function 9-6
ConvertMovieToFile function 9-6
copy operations, and movie controller

components 2-52

I N D E X

IN-4

CountImageDescriptionExtension function 4-67 to
4-68

creating
attached movie controllers 2-29
sound and video channels for sequence grabber

channel components 5-12
current flags, video digitizer component 8-19
current time, determining with clock components 11-9
cut operations, and movie controller components 2-52
'cvid' compressor type value 5-80

D

data exchange components. See movie data exchange
components

data-loading functions
indicating use by image compressor

components 4-31
introduced 4-4
specifying to image decompressor components 4-51
spooling data to decompressor with 4-23
use by decompressor components 4-6 to 4-7
use in compressing a horizontal band of an

image 4-15
data-loading function structures 4-51
dataProcRecord data type 4-51
data-rate settings structure 3-19 to 3-20
data-unloading functions

data buffers and 4-7 to 4-8
Image Compression Manager and 4-4
specifying to image compressor components 4-44

data-unloading function structures 4-44
deactivate events, handling with movie controller

components 2-58
deactivating movie controllers 2-17
decompressing still images 1-8 to 1-10
decompression parameters structures 4-46 to 4-53
decompression. See image decompression
decompressors. See image decompressor components
DelegateComponent function 10-9
depth conversion, during image decompression

operations 4-18
derived media handler components 10-3 to 10-48

activating a media 10-25
base media handlers and 10-6, 10-38 to 10-40
black-and-white screen support, indicating 10-40
boundary changes, determining 10-36
capabilities, reporting to base media handler 10-38
clipping capability, indicating 10-39
clipping region, setting 10-34
complete movie parameter structures 10-15 to 10-17
component flags 10-8
component type value 10-7

creating 10-7 to 10-14
data structure in 10-15 to 10-17
defined 10-3
destination region, setting 10-37
displaying samples 10-13
drawing a media sample 10-13 to 10-14
duration of media 10-16
effective rate of media 10-16
function selector values 10-7
functions in 10-18 to 10-40

base media handler utility function 10-38 to 10-40
general data management 10-23 to 10-30
graphics data management 10-31 to 10-37
media handler management 10-18 to 10-22
sound data management 10-37 to 10-38

graphics world, changing 10-31
identifier of current media 10-16
identifier of movie containing current track 10-15
idle processor time, getting more 10-39
image dimensions, setting 10-32
initializing 10-12 to 10-13, 10-18
irregular destination region, setting 10-37
matrices 10-17, 10-33
media characteristics of tracks 10-28
movie time scale, changed 10-30
Movie Toolbox and 10-13
offscreen buffer, using 10-39
opaqueness, determining 10-35
prerolling a media 10-26
rate, setting 10-26
receiving idle processor time 10-20
reporting errors to Movie Toolbox 10-22
required component functions for,

implementing 10-9 to 10-12
retrieving auxiliary data 10-24
sound volume 10-17, 10-38
spatial dimensions, changing 10-32
spatial processing capability, indicating 10-39
storing auxiliary data 10-23
suppressing idle events 10-39
time base for media 10-16
time scales 10-16, 10-29
track edits, finding out about 10-27
transfer mode support, indicating 10-39
transparency, determining 10-35

device list structures 6-58 to 6-59
device name structures 5-72 to 5-73
DigitizerInfo data type 8-20 to 8-22
digitizer information structures 8-20 to 8-22

retrieving 8-24
digitizer rectangles

determining for video digitizer component 8-30
setting for video digitizer component 8-29

display boundary rectangles 6-17
display functions 5-114, 6-36

I N D E X

IN-5

displaying data 5-113 to 5-114, 6-36
displaying image data as a preview 12-8 to 12-9
displaying movie controllers 2-7
display transformation matrices 6-17
DisposeMovieController function 2-12, 2-32
DisposeWindow function 5-14, 5-18
dithering

during image-decompression operations 4-18
image compressor components and 4-28, 4-39
video digitizer component support for 8-16

'drat' request type 3-15
duration of movie controller components 2-57

E

'eat ' component type value 9-8
editing movies

clear operations and movie controller
components 2-54

copy operations and movie controller
components 2-52

cut operations and movie controller
components 2-52

enabling editing 2-50
with a movie controller component 2-4
movie controller component functions 2-50 to 2-56
paste operations and movie controller components

and 2-53
undo operations and movie controller

components 2-54
Edit menu 2-55 to 2-56
EndUpdate function 5-14
exchanging movie data. See movie data exchange

components
ExecuteCallBack function 11-19
exporting data to a PICS file 9-18 to 9-19
exporting movie data. See movie data exchange

components
extended data, setting for an image 4-66
extended functions structure 3-21 to 3-22
extension of images 4-4 to 4-5

F

filter buffers. See compress buffers
filtering source image data 5-117, 6-37
FlushProcRecord data type 4-44
frame compression, determining completion of 5-115
frame differencing in image compression

reference constant for 5-23

retrieving desired temporal quality of a
sequence 5-84, 6-70

specifying desired temporal quality of a
sequence 6-68

frame grabbers with hardware playthrough, video
digitizer components and 8-12

frame grabbers without playthrough, video digitizer
components and 8-12

frame information structures 5-23, 6-84
frames

adding to a movie 5-116
adding with sequence grabber components 5-107
compressing with sequence grabber

components 5-105
controlling in movies 2-20, 2-26
determining if displayed by movie controller

components 2-20, 2-26
displaying with sequence grabber components 5-105
transferring 5-108

G

genlock 8-14
GetBestDeviceRect function 5-14
GetFirstCallBack function 11-20
GetImageDescriptionExtension function 4-66
GetMovieCompleteParams data type 10-15 to 10-17
GetNextCallBack function 11-21
GetNextImageDescriptionExtensionType

function 4-68
'gnrc' component subtype 10-8
grab-complete functions

application-defined 5-112 to 5-113
default behavior for 5-104
using 5-20 to 5-21

grab functions 5-112
application-defined 5-112
default behavior for 5-103
identifying 5-100

Graphics Compressor, component type value for 6-66
graphics device for current movie 10-17
graphics port for current movie 10-17
grayscale input 8-15

H

hue values 8-70
receiving default 8-67
returning current 8-71
setting current 8-70

human interface guidelines

I N D E X

IN-6

for badges 2-6
for movie controllers 2-4 to 2-5

I

icons for channel devices 5-73, 6-59
idle events

handling with movie controller components 2-60
sending to movie controller components 2-17

'imag' component subtype 3-8
image compression 4-3

applying to captured video images 6-28
controlling temporal compression with sequence

grabbers 5-82
depth conversion during 4-11
extended data 4-65, 4-66
extension during 4-11
image description structures and 4-65
pixel shifting during 4-11
preparing for simple 4-12
responsibilities of image compressors 4-10. See also

image compressor components
temporal compression with sequence grabbers 5-84
type for channel to apply to captured image 6-66
updating previous pixel maps during 4-11

Image Compression Manager
compression information structure format flags 4-32

to 4-34
compressor capabilities, determining 4-26 to 4-31
compressor components, functions for 4-65 to 4-68
compressor data formats, determining 4-32 to 4-34
extended data 4-65, 4-66
preview components and 12-5
standard image-compression dialog components

and 3-6
image compressor components 4-3 to 4-84

asynchronous compression, reporting 4-61
asynchronous compression and decompression of

images 4-39, 4-44
capabilities 4-26 to 4-31

data structure for 4-35 to 4-39
format of data and files 4-32 to 4-34
reporting 4-54

choosing 4-10 to 4-12
clipping images, support for 4-29
color tables and 4-39
completion, reporting 4-61
completion functions and 4-44
component type value 4-4
compressing an image 4-10

horizontal band of 4-13 to 4-16
request for 4-63

compression parameters structures 4-40 to 4-45

compressor capabilities structures 4-35 to 4-39
condition flag values 4-48 to 4-49
custom color tables and 4-34
data structures in 4-35 to 4-53
data unloading and 4-7
data-unloading functions

determining component use 4-31
providing 4-44
using 4-15

defined 1-4
dithering and 4-28, 4-39
extended image data 4-66
extracting part of an image 4-39
first band in frame 4-42, 4-48
frame number in sequence and 4-41
functions in 4-53 to 4-65

direct 4-54 to 4-62
Image Compression Manager utility 4-65 to 4-68
indirect 4-62 to 4-64

grayscale depth of 4-33
Image Compression Manager functions for 4-65 to

4-68
Image Compressor Manager and 4-3
image description structures and 4-41
interframe compression 4-29
last band in frame and 4-42, 4-48
live video and 4-43, 4-50
nonaligned pixels and 4-39
operations performed during compression 4-11
output location and 4-41
pixel depth for an image 4-36
pixel map images, support for 4-28
preparing to compress an image 4-62
previously compressed images and 4-43, 4-49
progress functions and 4-13, 4-43
recompressing without loss 4-31
reporting returned data to application 4-41
request code values 4-53
sequence compression, specifying 4-41
shrinking images, support for 4-28
similarity, reporting 4-45
size of image 4-55, 4-58
spatial quality and 4-45
specifying images to be compressed 4-44
stretching images, support for 4-28
temporal compression and 4-29
temporal quality and 4-45
time to compress image 4-36, 4-57
updating previous image buffer

during compression 4-49
during sequence compression 4-39
with temporally compressed sequences 4-42

image decompression 4-3
clipping during 4-19
color remapping during 4-18

I N D E X

IN-7

depth conversion during 4-18
dithering during 4-18
extending during 4-19
matting during 4-19
operations performed during 4-18
partial extraction during 4-19
pixel shifting during 4-19
preparing for 4-20 to 4-21. See also image

decompressor components
image decompressor components

accuracy, specifying 4-52
application use by calling Image Compression

Manager 4-3
asynchronous decompression, reporting 4-61
asynchronous operation of 4-51
blending images 4-31
capabilities 4-28 to 4-31
choosing a decompressor 4-17
clipping 4-39
color depth of 4-33
completion functions and 4-51
component type value 4-4
compressed image data for 4-47
data formats 4-32 to 4-34
data loading and 4-6
data-loading functions, determining component

use 4-38
data-loading functions and 4-23, 4-51

determining use by decompressor 4-31
decompressing an image 4-16 to 4-25

request for 4-64
decompression parameters structures 4-46 to 4-53
destination pixel map, specifying 4-52
flipping images 4-30
frame number in sequence 4-47
graphics port and 4-52
halving image size 4-30
image bands and 4-47, 4-48
image description structures for 4-47
image source rectangle, specifying 4-52
input buffer size and 4-47
masking images 4-38
matrices, specifying 4-52
mattes

for blending during decompression 4-31, 4-38
change in pixel map for 4-49
defining pixel depth for 4-52

modification masks
changes in mask bits 4-42, 4-49
creating during decompression 4-39
updating result data 4-52

preparing to decompress an image 4-63
previous buffer updating and 4-38
progress functions and 4-25, 4-50
quartering image size 4-30

recompressing images without loss 4-31
reporting completion of asynchronous

operation 4-61
resizing a compressed image 4-59
responsibilities 4-16 to 4-17
rotating images 4-30
scaling images 4-38
sequence decompression, specifying 4-47
similarity between frames, reporting 4-57
skewing images 4-31
transfer modes and 4-38, 4-53
transforming images 4-38
trimming a compressed image 4-59
warping images 4-31

image description extensions 4-67, 4-68
'imco' component type value 4-4
'imdc' component type value 4-4
importing a Scrapbook file 9-12
importing movie data. See movie data exchange

components
initializing

derived media handler components 10-12 to 10-13,
10-18 to 10-19

sequence grabber channel components 6-15, 6-38
sequence grabber components 5-11, 5-25

interframe compression 6-70
controlling with sequence grabber 6-68
sequence grabbers and 5-82, 5-84

J

'jpeg' compressor type value 5-80, 6-66, 6-67

K

keyboard events
handling with movie controller components 2-61
sending to movie controller components 2-17

key color digitizer components 8-5
key colors 8-82 to 8-86

adding to list in video digitizer component 8-85
determining for video digitizer component 8-83
setting for video digitizer components 8-82
used by video digitizer components 8-5, 8-13
video digitizer component support for 8-18

key frames
determining rate 5-85
inserting into compressed sequences 8-51
setting rate 5-83, 6-69

keystrokes 2-19

I N D E X

IN-8

L

looping 2-18. See also palindrome looping

M

'MAC3' sound data format value 5-98
'MAC6' sound data format value 5-98
mask planes 8-5
matrices

channel, adjusting 6-17
display transformation for video channels 6-17
doubling operations and 8-16
image decompressor components and 4-38, 4-52
one-quarter reduction operations and 8-17
quadrupling operations and 8-16
vertical flip operations and 8-17
video digitizer component uses of 8-4

mattes 8-18
blending images with 4-31, 4-38
location of pixel map containing 4-52
media handler components and 10-17
preparing for simple decompression 4-19

maximum source rectangles 8-27
mcAction data type 2-15
MCActivate function 2-58
MCClear function 2-54
MCClick function 2-59
MCCopy function 2-52 to 2-53
MCCut function 2-52
MCDoAction function 2-12, 2-47
MCDrawBadge function 2-38
MCDraw function 2-59 to 2-60
MCEnableEditing function 2-50 to 2-51
MCGetClip function 2-43
MCGetControllerBoundsRect function 2-12, 2-39 to

2-40
MCGetControllerBoundsRgn function 2-40 to 2-41
MCGetControllerInfo function 2-48 to 2-49
MCGetControllerPort function 2-44
MCGetCurrentTime function 2-57
MCGetMenuString function 2-55 to 2-56
MCGetMovie function 2-32
MCGetVisible function 2-37
MCGetWindowRgn function 2-41 to 2-42
MCIdle function 2-60
MCIsControllerAttached function 2-35
MCIsEditingEnabled function 2-51
MCIsPlayerEvent function 2-45
MCKey function 2-61
MCMovieChanged function 2-49
MCNewAttachedController function 2-30
MCPaste function 2-53

MCPositionController function 2-33 to 2-34
MCSetActionFilterWithRefCon function 2-13, 2-47

to 2-48
MCSetClip function 2-42 to 2-43
MCSetControllerAttached function 2-35
MCSetControllerBoundsRect function 2-38 to 2-39
MCSetControllerPort function 2-44
MCSetDuration function 2-57
MCSetMovie function 2-31
MCSetUpEditMenu function 2-55
MCSetVisible function 2-36 to 2-37
MCUndo function 2-54
media characteristics 10-28
MediaGetMediaInfo function 10-24
MediaGetNextBoundsChange function 10-36
MediaGetSrcRgn function 10-37
MediaGetTrackOpaque function 10-35 to 10-36
MediaGGetStatus function 10-22
MediaGSetVolume function 10-38
media handlers, defined 1-4. See also base media

handler components; derived media handler
components

MediaHasCharacteristic function 10-28 to 10-29
MediaIdle function 10-13, 10-20 to 10-22
MediaInitialize function 10-12, 10-18 to 10-19
MediaPreroll function 10-26
MediaPutMediaInfo function 10-23
MediaSampleDescriptionChanged function 10-28
MediaSetActive function 10-25
MediaSetClip function 10-34
MediaSetDimensions function 10-32 to 10-33
MediaSetGWorld function 10-31 to 10-32
MediaSetHandlerCapabilities function 10-12, 10-38
MediaSetMatrix function 10-33 to 10-34
MediaSetMediaTimeScale function 10-29 to 10-30
MediaSetMovieTimeScale function 10-30
MediaSetRate function 10-26
MediaTrackEdited function 10-27
'mhlr' component subtype 10-8
'micr' component subtype 11-6
'mill' component subtype value 11-6
mouse events

handling with movie controller components 2-59
sending to movie controller components 2-17

movable modal dialog boxes, saving last window
position for 3-25

movie controller components 2-3 to 2-75
action filter functions 2-13, 2-61
actions, specifying to 2-47
activating a controller 2-17
advantages of using 2-4
Apple-supplied component 2-4
application-defined functions in 2-61 to 2-62
assigning a movie to a controller 2-30, 2-31
assigning attached controller to a movie 2-29

I N D E X

IN-9

attached controllers 2-35
badges 2-6, 2-20, 2-38
Balloon Help, controlling 2-27
beginning of current selection, setting 2-19
boundary rectangles 2-38, 2-39
boundary regions 2-40
clear operations and 2-54
clipping regions 2-42, 2-43
closing connection for 2-32
component type value 2-4
control flags 2-20, 2-26
controlling the play of every frame 2-21
controls for 2-5
copy operations and 2-52
current time, getting 2-57
customizing 2-15 to 2-27
cut operations and 2-52
deactivating a controller 2-17
defined 1-3
detached controllers 2-35
display size for, determining 2-41
disposing of 2-32
duration of current selection 2-19
duration of movie controller components 2-57
editing 2-50, 2-51
establishing a component instance for 2-29
establishing a connection for a movie 2-29
event handling

activate events 2-58
click events 2-59
deactivate events 2-58
idle events 2-17, 2-22, 2-60
keyboard events 2-17, 2-61
mouse events 2-58, 2-59
movie events 2-44
resume events 2-58
suspend events 2-58
update events 2-17, 2-22, 2-59

frame-by-frame playback 2-18, 2-24
frame display 2-20, 2-26
frames around 2-30
functions in 2-28 to 2-61

associating movies with controllers 2-28 to 2-32
editing movies 2-50 to 2-56
event handling 2-58 to 2-61
handling movie events 2-44 to 2-50
managing display attributes 2-33 to 2-44
working with time 2-56 to 2-58

graphics port for 2-44
looping 2-18
movie rate 2-17, 2-22, 2-23
palindrome looping 2-18
paste operations and 2-53
play in current selections 2-19
playing a movie 2-17, 2-21, 2-23

positioning movie and controller 2-31, 2-33
for attached controllers 2-30
boundary rectangles and 2-38 to 2-40
computer display and 2-34
creation of controllers and 2-29

removing a movie from a controller 2-31
request code values 2-14 to 2-15
resizing controller 2-24
resizing the movie 2-27
scaling movies 2-29, 2-34
single-step playback 2-18, 2-24
size of controller 2-38 to 2-40
sound volume 2-18
spatial properties of 2-6
speaker buttons 2-20, 2-26
status, retrieving 2-48
step buttons 2-20
stopping a movie from playing 2-17, 2-23
undo operations and 2-54
update events 2-17
visibility of 2-30, 2-37
window for display, identifying 2-30
window region in use 2-41

movie data exchange components 9-3 to 9-47
auxiliary data 9-32, 9-39
chunk size, setting 9-31
component flags 9-7
component subtype values 9-7
component type values 9-7, 9-8
configuring 9-6
creating 9-8 to 9-19
creating tracks for imported data 9-22, 9-25
defined 1-11
duration of data, setting 9-27
exporting data

to a file 9-36 to 9-37
to a handle 9-35 to 9-36
to a PICS file 9-18 to 9-19

function selector values 9-8
functions in 9-20 to 9-40

configuring movie export components 9-37 to 9-40
configuring movie import components 9-26 to 9-34
exporting movie data 9-34 to 9-37
importing movie data 9-20 to 9-26

importing
data 9-21, 9-24
data to paste or insert 9-22, 9-25
into existing tracks 9-22, 9-25
from scrap 9-33
a Scrapbook file 9-12 to 9-15

invoking via Movie Toolbox functions 9-6
manufacturer values 9-7
media files and 9-29
output file, setting 9-29
progress functions, setting 9-31, 9-38

I N D E X

IN-10

required component functions for export,
implementing 9-16 to 9-17

movie data exchange components (continued)
required component functions for import,

implementing 9-10 to 9-12
sample descriptions and 9-28
sample duration, setting 9-28
spatial dimensions of new track, setting 9-30
tracks and 9-22, 9-24, 9-30
user dialog boxes 9-34, 9-40

MovieExportComponent data type 9-42
MovieExportDoUserDialog function 9-40
MovieExportGetAuxiliaryData function 9-39
MovieExportSetProgressProc function 9-38
MovieExportToFile function 9-18, 9-36 to 9-37
MovieExportToHandle function 9-35 to 9-36
MovieImportComponent data type 9-42
MovieImportDoUserDialog function 9-34
MovieImportFile function 9-12, 9-24 to 9-26
MovieImportHandle function 9-21 to 9-23
MovieImportSetAuxiliaryData function 9-32 to 9-33
MovieImportSetChunkSize function 9-31
MovieImportSetDimensions function 9-30
MovieImportSetDuration function 9-27
MovieImportSetFromScrap function 9-33
MovieImportSetMediaFile function 9-29 to 9-30
MovieImportSetProgressProc function 9-31 to 9-32
MovieImportSetSampleDescription function 9-28,

9-28 to 9-29
MovieImportSetSampleDuration function 9-12, 9-28
movie parameter structures, saving values from 10-19
movies 9-3

adding data to 6-85, 6-86
adding frames to 5-107, 5-116, 6-36
adding recorded data to 6-43
badges 2-6, 2-20, 2-38
beginning of current selection, setting 2-19
changing characteristics of 2-49
creating 6-41
current time, setting 2-18
duration of 10-16
exporting data to a PICS file 9-18 to 9-19
getting 5-45
graphics device for 10-17
graphics port for 10-17
identifier of movie containing current media's

track 10-15
importing a Scrapbook file 9-12 to 9-15
obtaining last resource ID for 5-45
opening 2-10
playback, providing 1-3 to 1-4
playing with movie controller components 2-10 to

2-13

previews for, displaying 12-10
references for, obtaining 2-32. See also movie

controller components; Movie Toolbox
selection duration, setting 2-19
sound volume 2-18
time scale for 10-16

Movie Toolbox
clock components and 11-4
clock component support functions 11-18 to 11-21
data conversion operations and 9-20, 9-34
derived media handler components and 10-13
function for assigning movie to a controller 2-29
movie controller components and 2-3
movie data export components and 9-5
movie data import components and 9-4
user data items for sequence grabber configuration

settings 7-25
user data lists for sequence grabber settings 6-31

MultiFinder events, and movie controller
components 2-46

MyAddFrameFunction function 5-116
MyCompressCompleteFunction function 5-115
MyCompressFunction function 5-114
MyDataFunction function 5-120 to 5-121
MyDisplayCompressFunction function 5-119 to 5-120
MyDisplayFunction function 5-113 to 5-114
MyGrabCompleteFunction function 5-112 to 5-113
MyGrabCompressCompleteFunction function 5-118

to 5-119
MyGrabFunction function 5-112
MyHook function 3-46
MyInterruptProc function 8-96, 8-98
MyModalFilter function 5-122
MyPlayerFilterWithRefCon function 2-61 to 2-62
MyTransferFrameFunction function 5-117 to 5-118

N

National Television System Committee (NTSC) 8-14
NewMovieController function 2-11, 2-29 to 2-30
NTSC input video 8-14

O

OpenComponent function
creating a component instance of a media

handler 10-8
identifying application’s connection to digitizer

components 8-24
identifying a preview component with 12-10
opening connection to channel component 6-33

I N D E X

IN-11

sequence grabber components and 5-9
specifying a clock component for an operation 11-9
specifying a data exchange component to the Movie

Toolbox 9-6
specifying movie controller components with 2-30

OpenDefaultComponent function 11-8
creating a sequence grabber component 5-11
creating preview component with 12-9
establishing a connection to a standard

image-compression dialog component 3-8
finding a specific data exchange component 9-6
opening a connection to a base media handler 10-8
specifying movie controller for operation 2-30

opening a connection
to a base media handler component 10-8
to a channel component 6-33
to a movie data exchange component 9-6
to a sequence grabber channel component 6-33
to the sequence grabber component 5-9
to a sequence grabber panel component 7-15
to a standard image-compression dialog

component 3-6 to 3-8
opening a movie 2-10
opening an image file 3-9
opening a sequence grabber panel component resource

file 7-16, 7-18

P

palindrome looping
controller currently set to 2-49
defined 2-18
turning on or off 2-24

PAL input video 8-14
panel components. See sequence grabber panel

components
PasteHandleIntoMovie function 9-6
paste operations, movie controller components

and 2-53
Phase Alternation Line (PAL) 8-14
phase-locked loops (PLL) 8-92
photo compressor, component type for 5-80, 6-66
picture files 3-11
pictures

compared to compressed images 4-57
compressing 3-30
compression settings for 3-27
getting from sequence grabber components 5-46 to

5-47
obtaining data for QuickDraw 10-21
test images

for standard image-compression dialog box 3-9
stored in files 3-8

stored in handles 3-8
stored in picture files 3-9

playback control flags. See control flags
play buttons 2-5
'play' component type value 2-4
playing movies

action-filter functions and 2-23
with movie controller components 2-4
starting or stopping with movie controller

components 2-17
PLL (phase-locked loops) 8-93
'pmak' component type 12-6
'pnot' component type 12-6
pnotResItem data type 12-15
pnotResource data type 12-14 to 12-15
positioning a movie in a movie controller 2-34
'pref' request type 3-15
preview components 12-3 to 12-19

caches and 12-4
converting data for display as preview 12-8
defined 1-11, 12-3
displaying movie previews 12-10 to 12-11
event handling and 12-6, 12-11
functions in 12-10 to 12-13

creating previews 12-11 to 12-13
displaying previews 12-10 to 12-11
handling events 12-11

obtaining data for 12-3
required component functions, implementing 12-7

to 12-8
resources for 12-13 to 12-15
storing preview data in files 12-5
using preview data 12-5

PreviewEvent function 12-11
previewing a PICS file 12-8 to 12-9
previewing image data 6-20
previewing sound and video sequences in a

window 5-14
PreviewMakePreview function 12-12
PreviewMakePreviewReference function 12-13
preview resource item structures 12-15
preview resources 12-14 to 12-15
PreviewShowData function 12-8, 12-10 to 12-11
'prog' request type 3-15
progress functions 4-4, 4-9

specifying to image compressor components 4-43
specifying to image decompressor components 4-50

PutMovieIntoTypedHandle function 9-6

Q

QTCallBackHeader data type 11-6 to 11-7
quality of image

I N D E X

IN-12

spatial 4-45, 4-56
temporal 4-45, 4-56

QuickDraw, standard image-compression dialog
components and 3-6

R

rate, movie
determining 2-22
setting 2-17, 2-23

Raw Compressor, compressor type value 5-80
'raw ' compressor type value 5-80, 6-66
'raw ' sound data format value 5-98
recording image data 6-20, 6-24 to 6-28
RemoveCallBackToTimeBase function 11-19 to 11-20
RemoveImageDescriptionExtension function 4-67
request codes, component

clock component values 11-8
derived media handler component values 10-7 to

10-8
image compressor component values 4-53
movie controller component values 2-14 to 2-15
movie data exchange component values 9-8 to 9-9
preview component values 12-6
sequence grabber channel component values 6-7 to

6-9
sequence grabber component values 5-6 to 5-8
sequence grabber panel component values 7-8
standard image-compression dialog component

values 3-14
video digitizer component values 8-9 to 8-20

request processing, derived media handler
components and 10-8 to 10-9

resume events, handling with movie controller
components 2-58

RGB input 8-15
'rle ' compressor type value 5-80, 6-66
'rpza' compressor type value 5-80, 6-66

S

saturation in video digitizer components 8-67
saturation value 8-72
saving changes to sequence grabber settings dialog

box 7-20
saving compressed pictures 3-13
saving movie data 6-43
saving sample description data 9-29
scaling movies 2-29, 2-34
SCCompressImage function 3-30
SCCompressPictureFile function 3-31

SCCompressPicture function 3-30
SCCompressSequenceBegin function 3-32
SCDataRateSettings data type 3-19
SCDefaultPictFileSettings function 3-27
SCDefaultPictHandleSettings function 3-27
SCDefaultPixMapSettings function 3-26
'scdi' component type value 3-8
SCExtendedProcs data type 3-21
scExtendedProcsType data type 3-12
SCGetBestDeviceRect function 3-44
SCGetInfo function 3-34 to 3-35, 3-36 to 3-37
SCNewGWorld function 3-45
SCParams data type 3-50
SCPositionDialog function 3-13, 3-43
SCPositionRect function 3-13, 3-42 to 3-43
SCRequestImageSettings function 3-10, 3-28
SCRequestSequenceSettings function 3-10, 3-29
SCSequenceCompressFrame function 3-33
SCSequenceCompressSequenceEnd function 3-34
SCSetInfo function 3-12
SCSetTestImagePictFile function 3-39 to 3-40
SCSetTestImagePictHandle function 3-37 to 3-38
SCSetTestImagePixMap function 3-40 to 3-41
SCSpatialSettings data type 3-16
SCTemporalSettings data type 3-18
SECAM input video 8-14
'seco' component subtype value 11-6
SeqGrabDataOutputEnum data type 5-26
SeqGrabFrameInfo data type 5-23, 6-84
SeqGrabUsageEnum data type 5-59, 6-48
sequence grabber channel components 6-3 to 6-107

adding data to a movie 6-85
adding frames to a movie 6-36
aligning captured images 6-76
audio representation of channel 6-50
boundary rectangles, size of 6-64
callback functions

using utility functions for 6-36 to 6-37
working with 6-35

captured data, playing all 6-51
capturing movie data 6-34 to 6-35
channel devices

managing 6-24
working with 6-58 to 6-61

channel information flags 6-50
channel state, setting and retrieving 6-16
chunk size of sound samples 6-80, 6-81
clipping regions 5-69

disposing of 6-17
retrieving 6-56
setting 6-56

component type value 6-6
compress buffers

creating 6-72
retrieving information 6-73

I N D E X

IN-13

compression parameters for 6-66, 6-69
compressors for 6-69
compressor type for 6-66, 6-67
control flags for playback 5-63
controlling 6-39 to 6-46
creating 6-5 to 6-33
data rate and 6-54
defined 1-6
depth of images 6-68, 6-69
destination graphics world for captured image 6-17
device list

assigning 6-61
retrieving 6-60
sorting 6-89

discrete frames and 6-50
display boundary rectangles 6-17, 6-63

determining 6-63
specifying 6-63

display destinations, setting 6-39
displaying image data 6-36
display quality of 6-50, 6-51
display status 6-49
filtering source image data

filter buffers for 6-72, 6-73
transfer-frame functions and 6-37

frame rate 6-74
frames and 6-53, 6-88
functions in 6-37 to 6-90

channel devices, working with 6-58 to 6-61
configuration functions for all channels 6-46 to

6-58
configuring 6-38 to 6-39
configuring sound channels 6-77 to 6-84
configuring video channels 6-61 to 6-77
controlling 6-39 to 6-46
utility 6-84 to 6-90

graphics device for display of captured image 6-17
image-compression parameters for 6-68
image compressors for 6-67, 6-69
image quality 6-68
initializing 6-15, 6-38
initializing control values for 7-19
key frame rates for 6-68, 6-69
matrices 6-57, 6-58
media-specific functions, providing 6-28
offscreen buffer, using 6-75, 6-76
panel components, working with 7-17
parameters for image compression 6-66
pausing 6-44
playback control flags 6-50, 6-51
playing data 6-33 to 6-34
previewing data 6-20, 6-33 to 6-34
preview operations

display quality of 6-50, 6-51
pausing 6-44

preparing for 6-45
processing time for 6-42
restarting 6-44
starting 6-40
stopping 6-43
use during 6-48, 6-49

quality of images 6-68, 6-69
recording 6-20, 6-34 to 6-35
recording time left 6-54
record operations

display quality of 6-50, 6-51
limiting number of frames for 6-52
pausing 6-44
playing captured data during 6-49
preparing for 6-45
processing time for 6-42
restarting 6-44
starting 6-41
stopping 6-43
use during 6-48, 6-49

required component functions 6-6
implementing 6-10 to 6-15

resources, releasing 6-46
sample description, retrieving 6-55
sample rate for sound data 6-81
sample references 6-87, 6-89
samples, saving 6-44
saving captured data 6-34 to 6-35, 6-44
settings dialog box 6-5

displaying channel information in 6-31 to 6-33
managing 6-29 to 6-31

sound chunk size 6-80, 6-81
sound input devices 6-78, 6-79
sound parameters 6-82, 6-83
sound sample compression format 6-83
sound sample rate 6-81, 6-82
sound volume 6-77, 6-78
source devices, changing 6-90
source rectangles

determining portion for capture 6-65
determining size of 6-64
specifying portion for capture 6-65

spatial properties of 6-17
stopping 6-43
target requests, support for 6-7

sequence grabber channel components (continued)
tick counts

checkbox in dialog box 6-29 to 6-31
showing 6-28

time scale, retrieving 6-55
update events, handling 6-42
usage data, getting 6-16
usage parameters, determining 6-16
use by sequence grabber 6-4
use by sequence grabber channel components 5-4

I N D E X

IN-14

video digitizers for 6-70, 6-71, 6-72
visual representation of channel 6-50
writing movie data to a channel 6-86

sequence grabber components 5-3 to 5-149
add-frame functions 5-101, 5-116

default behavior for 5-107
identifying 5-101

adding frames to a movie 5-107, 5-116
allocating channels 5-31
alpha channels, loading 8-13
appending to a movie file 5-26
application-defined functions 5-111 to 5-122
boundary rectangles and 5-65, 5-66
buffer information and callback functions 5-102
callback functions 5-102
capturing image data 5-18 to 5-19

default behavior for 5-103
drawing information over frames during 5-20
start of 5-112

capturing movie files 5-26
channel data organization 5-61
channel device lists 5-73, 5-75
channel devices 5-72 to 5-77
channels

assigning from component 5-32
chunk size 5-95, 5-96
configuring 5-58 to 5-77
configuring video 5-77 to 5-92
creating 5-12 to 5-13
device lists for 5-73
display boundary rectangle 5-66
display of 5-60
and key frames 5-83
parameters for image compression 5-82, 5-83
for preview operations 5-60
for record operations 5-60
sound 5-92 to 5-99
and source data 5-87, 5-89
source video boundary rectangle for 5-78
time scale 5-68
video 5-99 to 5-102, 5-102 to 5-111, 5-112
and video digitizers 5-85, 5-86

channel type 5-31, 5-61
clipping regions 5-70
component type value 5-5
compress-complete functions 5-115

default behavior for 5-106
identifying 5-100

compress functions 5-114
default behavior for 5-105
identifying 5-100

compressing images 5-105, 5-114
compression information structures 5-22 to 5-23
compressor types and 5-80, 5-81
control flags and 5-57

controlled grab 5-57
controlled record operations 5-58
creating sound and video channels 5-12 to 5-13
data functions 5-120

assigning 5-35
data structures in 5-22 to 5-23
defined 1-6
depth of images 5-83
display boundary rectangles 5-65
display-compress functions 5-119 to 5-120

default behavior for 5-110 to 5-111
identifying 5-101

display destinations 5-29, 5-30
display functions 5-113 to 5-114

default behavior for 5-105
identifying 5-100

displaying image data 5-105, 5-114
display quality 5-63
disposing of a channel 5-34
filtering source image data

filter buffers for 5-87, 5-89
transfer-frame functions and 5-117

format of sound data 5-97
frame addition 5-107, 5-116
frame information structures 5-23
frame rate

retrieving 5-90
setting 5-89

frames and 5-63, 5-64
functions in 5-24 to 5-122

channel devices 5-72 to 5-77
configuring 5-24 to 5-36
configuring channels 5-58 to 5-71
controlling 5-36 to 5-47
managing characteristics 5-53 to 5-58
settings 5-47 to 5-53
sound channels, working with 5-92 to 5-99
utility for video channel callback 5-102 to 5-111
video callback 5-99 to 5-102
video channels, working with 5-77 to 5-92

getting movies 5-45
grab-complete functions

application defined 5-112
calling default 5-20
default behavior for 5-104
identifying 5-100
using 5-20

grab-compress–complete functions 5-118 to 5-119
default behavior for 5-109 to 5-110
identifying 5-101

grab functions 5-103, 5-112
image compression type of channel data 5-81
initializing 5-11, 5-25
input devices and 5-93
key frame rate and 5-82, 5-83

I N D E X

IN-15

matrices and 5-70, 5-71
modal-dialog filter functions 5-48, 5-122
movie creation and 5-38
movie files and 5-26
offscreen buffer for 5-91
panel components, identifying to 7-16
parameters for image compression

determining 5-83
specifying 5-82
specifying type of compression 5-80

pausing 5-41, 5-42
pictures, getting from captured data 5-46
playing data 5-9
preparing for operation 5-43
previewing data 5-9
previewing sound and video sequences in a

window 5-14 to 5-17
preview operations

pausing 5-41
preparing for 5-43
starting 5-37
stopping 5-40

rate for sound channel 5-96, 5-97
record, preparing for 5-43
recording 5-10 to 5-11
record operations

counting frames to be captured 5-64
limiting frames for capture during 5-63
pausing 5-41
space remaining for storage during 5-55
starting 5-38
stopping 5-40
time limits for 5-54
time remaining for 5-56

reference constants 5-67
releasing resources 5-44
request code values 5-6
sample description, retrieving 5-68
sample rates for sound channels 5-97
saving captured data 5-10 to 5-11
screen position, determining optimum 5-36
sequence grabber channel components and 5-4
settings 5-47 to 5-53

modifying 5-50, 5-52
retrieving 5-49, 5-51

settings dialog box 5-5, 7-18
displaying 5-48

sound channels 5-61, 5-92 to 5-99
sound input devices 5-94
sound parameters 5-97, 5-98
sound volume 5-66 to 5-67
source boundary rectangles 5-78, 5-79
storing data outside of movie 5-35
time bases, determining 5-56
time of record operations 5-53 to 5-56

time scale, retrieving 5-68
transfer-frame functions

application-defined 5-117
default behavior for 5-108
identifying 5-101

update events, handling 5-39
video channels 5-77 to 5-92

callback functions and 5-101
determining 5-61
filter buffers for 5-87, 5-89
frame rate for 5-89, 5-90

video digitizers and 5-86
windows, previewing sequences in 5-14

sequence grabber panel components 7-3 to 7-30
component flags 7-15
component subtype values 6-6, 7-7
component type value 7-7
creating 7-8 to 7-15
defined 1-6
dependency upon device 7-15
dialog items, installing 7-18
digitizing hardware required 7-15
event processing 7-22
functions in 7-15 to 7-26

managing panel components 7-15 to 7-20
managing panel settings 7-24 to 7-26
processing panel events 7-21 to 7-23

hardware dependency 7-15
identifying sequence grabber components to 7-17
installing 7-19
manufacturer values 7-8
mouse clicks, processing 7-21
panel settings, managing 7-13 to 7-14
processing mouse clicks 7-21
removing 7-20
request code values 7-8
required component functions for,

implementing 7-9 to 7-11
resource files

accessing 7-18
preventing sequence grabber from opening 7-15

sequence grabber panel components (continued)
sequence grabber, connecting to 7-16
sequence grabbers and 7-5
settings

modifying 7-25
retrieving 7-24

settings dialog box
creating 7-6
managing 7-11 to 7-13
mouse clicks, processing 7-21
removing from panel 7-20

validating user input 7-23
sequences of images, capturing 1-6 to 1-7
'sequ' request type 3-15

I N D E X

IN-16

SetIdentityMatrix function 6-15
SetImageDescriptionExtension function 4-65 to

4-66
SetRect function 6-15
SGAddFrame function 5-107 to 5-108, 6-36
SGAddFrameReference function 6-87
SGAddMovieData function 6-85 to 6-86
SGAlignChannelRect function 6-76
SGAppendDeviceListToMenu function 5-75
SGChangedSource function 6-90
'sgch' component type value 6-6
SGCompressFrameComplete function 5-106 to 5-107,

6-36
SGCompressFrame function 5-105, 6-36
SGCompressInfo data type 5-22 to 5-23
SGDeviceListRecord data type 5-72
SGDeviceName data type 5-72 to 5-73
SGDisplayCompress function 5-110 to 5-111
SGDisplayFrame function 5-105, 6-36
SGDisposeChannel function 5-12, 5-34 to 5-35
SGDisposeDeviceList function 5-75
SGGetAlignmentProc function 5-36
SGGetBufferInfo function 5-102 to 5-103
SGGetChannelBounds function 5-66, 6-63
SGGetChannelClip function 5-70, 6-17, 6-56
SGGetChannelDeviceList function 5-73 to 5-74, 6-24,

6-60 to 6-61
SGGetChannelInfo function 5-61, 6-49 to 6-50
SGGetChannelMatrix function 5-71, 6-58
SGGetChannelMaxFrames function 5-64 to 5-65, 6-53
SGGetChannelPlayFlags function 5-63, 6-51 to 6-52
SGGetChannelSampleDescription function 5-68,

6-24, 6-55
SGGetChannelSettings function 5-51 to 5-52
SGGetChannelTimeScale function 5-68, 6-24, 6-55
SGGetChannelUsage function 5-60 to 5-61, 6-49
SGGetChannelVolume function 5-67, 6-78
SGGetCompressBuffer function 5-89, 6-73
SGGetDataOutput function 5-28 to 5-29
SGGetDataRate function 6-25, 6-54
SGGetFlags function 5-57 to 5-58
SGGetFrameRate function 5-90, 6-74
SGGetGWorld function 5-30 to 5-31
SGGetIndChannel function 5-33 to 5-34
SGGetLastMovieResID function 5-45 to 5-46
SGGetMaximumRecordTime function 5-54
SGGetMovie function 5-45
SGGetNextFrameReference function 6-25, 6-88 to 6-89
SGGetPause function 5-42
SGGetSettings function 5-49 to 5-50, 6-31
SGGetSoundInputDriver function 5-93, 6-79
SGGetSoundInputParameters function 5-98, 6-83
SGGetSoundInputRate function 5-97, 6-82
SGGetSoundRecordChunkSize function 5-96, 6-81
SGGetSrcVideoBounds function 5-78, 6-64

SGGetStorageSpaceRemaining function 5-55
SGGetTimeBase function 5-56 to 5-57
SGGetTimeRemaining function 5-56
SGGetUseScreenBuffer function 5-91, 6-76
SGGetVideoBottlenecks function 5-102
SGGetVideoCompressor function 5-83 to 5-85, 6-69 to

6-70
SGGetVideoCompressorType function 5-81, 6-28, 6-67
SGGetVideoDigitizerComponent function 5-86, 6-71
SGGetVideoRect function 5-79, 6-65
SGGrabCompressComplete function 5-109 to 5-110
SGGrabFrameComplete function 5-104, 6-36
SGGrabFrame function 5-103 to 5-104
SGGrabPict function 5-46 to 5-47
SGIdle function 5-14, 5-18, 5-39, 6-20, 6-42
SGInitChannel function 6-38
SGInitialize function 5-11, 5-25
SGNewChannelFromComponent function 5-32 to 5-33
SGNewChannel function 5-12, 5-31 to 5-32
SGPanelCanRun function 7-17
SGPanelEvent function 6-29, 7-11, 7-22
SGPanelGetDITL function 6-29, 7-11, 7-18 to 7-19
SGPanelGetSettings function 7-24 to 7-25
SGPanelInstall function 6-29, 7-11, 7-19
SGPanelItem function 7-11, 7-21
SGPanelRemove function 6-29, 7-11, 7-20
SGPanelSetGrabber function 7-16
SGPanelSetResFile function 7-18
SGPanelSetSettings function 7-25 to 7-26
SGPanelValidateInput function 7-23
SGPause function 5-41, 6-20, 6-44 to 6-45
'sgpn' component type 7-7
SGPrepare function 5-43 to 5-44, 6-20, 6-45 to 6-46
SGRelease function 5-44, 6-20, 6-46
SGSetChannelBounds function 5-12, 5-65, 6-17, 6-63
SGSetChannelClip function 5-69, 6-17, 6-56
SGSetChannelDevice function 5-76, 6-24, 6-61
SGSetChannelMatrix function 5-70, 6-17, 6-57
SGSetChannelMaxFrames function 5-63 to 5-64, 6-52
SGSetChannelPlayFlags function 5-61 to 5-62, 6-50

to 6-51
SGSetChannelRefCon function 5-67, 6-53 to 6-54
SGSetChannelSettings function 5-52 to 5-53
SGSetChannelUsage function 5-12, 5-59 to 5-60, 6-48
SGSetChannelVolume function 5-66, 6-77
SGSetCompressBuffer function 5-87 to 5-88, 6-72 to

6-73
SGSetDataOutput function 5-26 to 5-27, 5-35
SGSetDataProc function 5-35
SGSetFlags function 5-57
SGSetFrameRate function 5-89 to 5-90, 6-74
SGSetGWorld function 5-11, 5-29 to 5-30, 6-17, 6-39
SGSetMaximumRecordTime function 5-18, 5-53 to 5-54
SGSetSettings function 5-50
SGSetSoundInputDriverChanged function 6-80

I N D E X

IN-17

SGSetSoundInputDriver function 5-93, 6-78
SGSetSoundInputParameters function 5-97, 6-82 to

6-83
SGSetSoundInputRate function 5-96 to 5-97, 6-81
SGSetSoundRecordChunkSize function 5-95, 6-80
SGSettingsDialog function 5-5, 5-18, 5-48 to 5-49,

6-5, 6-31
SGSetUseScreenBuffer function 5-91, 6-75
SGSetVideoBottlenecks function 5-101
SGSetVideoCompressor function 5-82 to 5-83, 6-68 to

6-69
SGSetVideoCompressorType function 5-80 to 5-81,

6-28, 6-66
SGSetVideoDigitizerComponent function 5-85, 6-70

to 6-71
SGSetVideoRect function 5-78 to 5-79, 6-64 to 6-65
SGSortDeviceList function 6-89
SGSoundInputDriverChanged function 5-94 to 5-95,

6-80
SGStartPreview function 5-37, 6-20, 6-40

using 5-14
SGStartRecord function 5-38, 6-41

using 5-18, 6-20
SGStop function 5-18, 5-40, 6-43

using 5-14, 6-20
SGTransferFrameForCompress function 5-108 to

5-109, 6-37
SGUpdate function 5-14, 5-39 to 5-40, 6-42
SGVideoDigitizerChanged function 5-86 to 5-87, 6-72
SGWriteMovieData function 6-86
SGWriteSamples function 6-24, 6-43 to 6-44
sharpness in video digitizer components 8-67
sliders 2-5
'smc ' compressor type value 5-80, 6-66
sound channel components. See sequence grabber

channel components
SoundMediaType component subtype 5-31, 5-34
sound volume

for media 10-17
for movie 2-18

'soun' media type 9-29
source coordinate systems, video digitizer

components 8-6
'sour' manufacturer value 7-8
spatial settings structures 3-16 to 3-17
speaker buttons 2-20, 2-26
'spit' component type value 9-8
spooling data. See data-loading function structures;

data-unloading function structures
spooling images 4-38. See also data-loading function

structures; data-unloading function structures
spooling of compressed data 4-6
'sptl' request type 3-15
'ssta' request type 3-15
standard compression parameter block structures 3-50

standard image-compression dialog. See standard
image-compression dialog components

standard image-compression dialog components 3-3
to 3-57

application-defined function in 3-45
closing a connection 3-8
color tables 3-20, 3-35
compressing still images 3-29 to 3-31
compression data rate 3-35
compressor components, selecting 3-16
compressor flags 3-25
compressor list, controlling content of 3-23
compressor type value 3-16
configuration information

modifying 3-36 to 3-37
retrieving 3-34 to 3-35

control flags 3-25, 3-35
custom button name 3-22
data rate parameters 3-19
data-rate settings request type 3-19
data rate value 3-19
data structures in 3-15 to 3-25
default settings 3-8, 3-26, 3-27
depth, allowing the user to select best 3-24
dialog boxes 3-4 to 3-5

defining custom buttons in 3-12
displaying 3-8 to 3-11
extending 3-11 to 3-13, 3-35
image-sequence compression 3-5
parts of 3-7
position of 3-13, 3-25, 3-35, 3-43
single-frame compression 3-4

display device, determining best 3-44
extended functions request type 3-21
filter functions 3-11, 3-21
frame duration value 3-19

standard image-compression dialog components
(continued)

frame rate value 3-18
functions in 3-25 to 3-45

compressing image sequences 3-31 to 3-34
compressing still images 3-29 to 3-31
creating a graphics world for compression

settings 3-44 to 3-45
displaying the standard dialog box 3-28 to 3-29
getting default settings for an image or

sequence 3-26 to 3-28
image or sequence settings 3-34 to 3-37
positioning dialog boxes and rectangles 3-42 to

3-44
specifying a test image 3-37 to 3-41

graphics world, creating 3-45
hook functions 3-12, 3-22, 3-46
key frame rate and 3-19, 3-23
modal-dialog filter functions 3-11

I N D E X

IN-18

movable dialog boxes, specifying 3-24
opening a connection 3-8
parameters, retrieving default 3-10 to 3-11
pixel depth value 3-17
preference flags 3-22, 3-35
preference flags request type 3-22
progress function request type 3-20
progress functions 3-20, 3-35
rate, allowing user to select best 3-23
rectangles, positions of 3-42
request types used by 3-15 to 3-25
sequence-compression parameters 3-17
sequence identifier 3-35
sequence ID request type 3-24
settings 3-15 to 3-25, 3-34 to 3-37
settings information box 3-15, 3-34, 3-36
settings state request type 3-24
spatial compression parameters 3-15, 3-35
spatial quality value 3-17, 3-20
spatial settings request type 3-15
subtype value 3-8
temporal compression parameters 3-35
temporal quality value 3-18, 3-20
temporal settings request type 3-17
test images 3-9 to 3-10, 3-37

area of interest 3-9
from picture file 3-39
from pixel map 3-40

type value 3-8
window position request type 3-25

status flags, video digitizer component 8-19
step buttons 2-5, 2-20, 2-26
still images, compressing and decompressing 1-8 to

1-10
stopping movies from playing with movie controller

components 2-17, 2-23
suspend events, handling with movie controller

components 2-58
s-video input 8-15
system clocks, component types for 11-6
Systeme Electronique Couleur avec Memoire

(SECAM) 8-14

T

target requests, sending 10-9
temporal compression 6-70

controlling with sequence grabber 6-68
sequence grabber channels and 6-68
sequence grabbers and 5-82, 5-84

temporal settings structure 3-18 to 3-19
test images. See standard image-compression dialog

components

'TEXT' component subtype value 9-7
'tick' component subtype value 11-6
time

callback functions for clock components 11-9 to 11-15
current, getting for movie controller component 2-57
providing to sequence grabber channel

component 6-42
required to compress image 4-57

time bases
assigning callback events 11-18
assigning to a clock component 11-17
callback events, finding by clock component 11-20

to 11-21
clock components and 11-3
clock component support for callback functions 11-4
executing a callback function 11-19
removing callback events 11-20
sequence grabber components, determining 5-56
video digitizer components, setting for 8-8

'tprl' request type 3-15
tracks

duration of 10-16
identifier for track containing current media 10-16
identifying by media characteristics 10-28
image height of track rectangle 10-17
image width of track rectangle 10-17
matte region for 10-17

transfer-frame functions 6-37
transfer modes, specifying in image decompressor

components 4-53

U

undo operations, and movie controller
components 2-54

update events
handling with movie controller component 2-59
sending to movie controller components 2-17

user data items 7-7
user data lists 7-14

V

VDAddKeyColor function 8-84 to 8-85
VDClearClipRegion function 8-90
VDCompressDone function 8-48 to 8-49
VDCompressionList data type 8-43 to 8-44
VDCompressOneFrameAsync function 8-47
VDDone function 8-58
VDGetActiveSrcRect function 8-27 to 8-28
VDGetBlackLevelValue function 8-68

I N D E X

IN-19

VDGetBrightness function 8-74
VDGetClipState function 8-92
VDGetCLUTInUse function 8-61 to 8-62
VDGetCompressionTypes function 8-43 to 8-44
VDGetContrast function 8-75 to 8-76
VDGetCurrentFlags function 8-19, 8-20, 8-25 to 8-26
VDGetDataRate function 8-59 to 8-60
VDGetDigitizerInfo function 8-14, 8-19, 8-20, 8-24 to

8-25
VDGetDigitizerRect function 8-30
VDGetDMADepths function 8-64 to 8-65
VDGetFieldPreference function 8-95
VDGetHue function 8-71
VDGetImageDescription function 8-50
VDGetInputColorSpaceMode function 8-63 to 8-64
VDGetInputFormat function 8-33
VDGetInput function 8-32
VDGetInputGammaRecord function 8-79
VDGetInputGammaValue function 8-80 to 8-81
VDGetKeyColor function 8-83
VDGetKeyColorRange function 8-85
VDGetMaskandValue function 8-87 to 8-88
VDGetMaskPixMap function 8-88 to 8-89
VDGetMaxAuxBuffer function 8-41 to 8-42
VDGetMaxSrcRect function 8-26 to 8-27
VDGetNextKeyColor function 8-86
VDGetNumberOfInputs function 8-31
VDGetPlayThruDestination function 8-38 to 8-39
VDGetPLLFilterType function 8-93
VDGetPreferredTimeScale function 8-97 to 8-98
VDGetSaturation function 8-72 to 8-73
VDGetSharpness function 8-77
VDGetSoundInputDriver function 8-96
VDGetVBlankRect function 8-28 to 8-29
VDGetVideoDefaults function 8-66 to 8-67
VDGetWhiteLevelValue function 8-69 to 8-70
VDGrabOneFrameAsync function 8-56 to 8-57
VDGrabOneFrame function 8-54
VdigBufferRec data type 8-23
VdigBufferRecList data type 8-22 to 8-23
'vdig' component type value 8-11
VDPreflightDestination function 8-36 to 8-38
VDPreflightPlayThruGlobalRect function 8-40 to

8-41
VDReleaseAsyncBuffers function 8-55
VDReleaseCompressBuffer function 8-49
VDResetCompressSequence function 8-51
VDSetBlackLevelValue function 8-67 to 8-68
VDSetBrightness function 8-73
VDSetClipRegion function 8-90
VDSetClipState function 8-91
VDSetCompression function 8-45 to 8-46
VDSetCompressionOnOff function 8-46 to 8-47
VDSetContrast function 8-75
VDSetDigitizerRect function 8-29

VDSetDigitizerUserInterrupt function 8-95 to 8-96
VDSetFieldPreference function 8-94
VDSetFrameRate function 8-59
VDSetHue function 8-70
VDSetInputColorSpaceMode function 8-62 to 8-63
VDSetInput function 8-31
VDSetInputGammaRecord function 8-78
VDSetInputGammaValue function 8-80
VDSetInputStandard function 8-33
VDSetKeyColor function 8-82
VDSetKeyColorRange function 8-83 to 8-84
VDSetMasterBlendLevel function 8-87
VDSetPlayThruDestination function 8-35 to 8-36
VDSetPlayThruGlobalRect function 8-39
VDSetPlayThruOnOff function 8-53
VDSetPLLFilterType function 8-93
VDSetSaturation function 8-72
VDSetSharpness function 8-76 to 8-77
VDSetTimeBase function 8-51
VDSetupBuffers function 8-54 to 8-55
VDSetWhiteLevelValue function 8-69
VDUseThisCLUT function 8-61
vertical blanking rectangles

defined 8-6
and video digitizer component 8-29

'vide' component subtype value 6-6
'vide' media type 9-29
video bottleneck functions, setting up 5-19
video bottlenecks structures 5-100 to 5-101
VideoBottles data type 5-100 to 5-101
video channel components. See sequence grabber

channel components
Video Compressor, component type value for 5-80,

6-66
video digitizer components 8-3 to 8-124

accessing from sequence grabbers 5-86
active source rectangles 8-28
alpha channel devices and 8-13
alpha channels 8-87
application-defined function in 8-98
assigning to a video channel 5-85
asynchronous digitization 8-47, 8-54, 8-57, 8-58
auxiliary buffers for non-DMA components 8-41
black-and-white digitization 8-62, 8-63
blend levels

channel, determining 8-87
master 8-87
supported by 8-22

blend masks
clipping region for 8-22
defining 8-36, 8-39
pixel map data for 8-88

buffer count 8-22
buffers for asynchronous digitization

releasing 8-55

I N D E X

IN-20

setting up 8-54
specifying 8-57

capabilities of 8-24
capability flags 8-14 to 8-19
clipping 8-89 to 8-92

alpha channels and 8-5, 8-21
clearing regions 8-90
disabling 8-91
disabling region 8-90
enabling 8-91
key colors and 8-21
mask planes and 8-21
no support for 8-21
output images 8-16
region for destination rectangle 8-22
state of 8-92

color digitization 8-62
color effects and 8-80
color filtering transforms and 8-78
color lookup tables for 8-61
component type values 8-11
compressed source devices and 8-13
compressed sources 8-42 to 8-52
compression parameters, setting 8-45
continuous digitization 8-53
contrast in analog video 8-67, 8-75
counting number of inputs to 8-31
creating 8-8 to 8-13

minimum support required 8-11
current flags 8-19, 8-25
data rate, determining 8-59 to 8-60
data structures in 8-20 to 8-23
defined 1-6
destination buffers 8-23
destination characteristics of 8-34 to 8-42
destination graphics device for 8-21
destination height for 8-21
destinations, specifying 8-7, 8-34 to 8-42
destination width for 8-21
digitizer rectangles 8-6, 8-37
digitizing and compressing frame 8-47
DMA 8-18
even-field preference 8-94, 8-95
frame rate, setting 8-59
functions in 8-23 to 8-98

analog video, controlling 8-65 to 8-81
clipping 8-89 to 8-92
color, controlling 8-60 to 8-65
compressed source devices, controlling 8-42 to

8-52
digitization, controlling 8-52 to 8-60
getting information about 8-24 to 8-26
input sources, selecting 8-30 to 8-34
selectively displaying video 8-81 to 8-89
source characteristics, setting 8-26 to 8-30

utility functions 8-92 to 8-98
gamma structures for 8-78 to 8-79
gamma values for 8-80
idle time needed for display 8-18
image description structures, getting 8-50
input capabilities 8-21

black-and-white input 8-15
broadcast input 8-15
color input 8-15
composite input 8-14
genlock support 8-14
NTSC input 8-14, 8-33
PAL input 8-14, 8-33
RGB input 8-15
SECAM input 8-14, 8-33
signal lock input report 8-19
s-video input 8-15
VTR input 8-15

input sources to 8-31 to 8-32
input video format, determining 8-33
interface card, slot for 8-21
interrupt functions 8-95, 8-98
inverse color lookup tables 8-18
key color devices and 8-13
key colors

adding to list 8-85
determining 8-83
digitizer components 8-5
getting from list 8-86
range, determining 8-86
settings 8-82
support 8-18
values, setting range of 8-83

key frames, inserting into compressed
sequences 8-51

mask plane devices 8-5, 8-21
matrices and 8-4, 8-22, 8-36, 8-39
maximum source rectangles 8-6, 8-27
multiple buffering 8-8, 8-41
notifying sequence grabber of changes to 5-86
odd-field preference 8-94, 8-95
offscreen digitizing 8-7
onscreen digitizing 8-7
optional functions for 8-12 to 8-13
output capabilities 8-21

asynchronous grabs 8-18
blending 8-18
compressed image data only 8-19
compressed-source devices 8-18
dithering of output images 8-16
drawing images during compression 8-19
flipping output images 8-17
increasing size 8-16
quadrupling size 8-16
quartering size 8-17

I N D E X

IN-21

rotating 8-17
screen bits, unreadable 8-18
shrinking 8-16
skewing 8-17
stretching 8-16
warping 8-18

phase-locked loops 8-93
pixel depth 8-15 to 8-16
request code values 8-9 to 8-20
required functions for 8-11
saturation 8-67, 8-72
selectively displaying video 8-81 to 8-89
sharpness in analog video 8-67, 8-76, 8-77
single-frame digitization 8-7, 8-54, 8-57
sound input driver, getting 8-96
source coordinate systems 8-6
source video, selecting 8-30 to 8-34
source video signal

characteristics of 8-26 to 8-30
standard used 8-28

status flags 8-19
status of 8-24
time base, setting 8-51
time scale, getting preferred 8-97
transformation matrix support 8-37
types of 8-5, 8-21
video destination buffers 8-23

VideoMediaType component subtype 5-31, 5-34
visibility of movie controllers 2-36
volume, sound

determining with movie controller component 2-18
setting with movie controller component 2-18

volume controls 2-5
VTR input video 8-15

W

white level values
defined 8-65
returning current 8-69
returning default 8-66
setting for video digitizer components 8-69

'wndw' request type 3-15

X, Y, Z

'xprc' request type 3-15

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages were created on an Apple
LaserWriter IINTX printer. Final page
negatives were output directly from text
files on an AGFA ProSet 9800 imagesetter.
Line art was created using
Adobe™ Illustrator. PostScript™, the
page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Apple Courier.

WRITERS

Doug Engfer and Patria Brown

DEVELOPMENTAL EDITOR

Sue Factor

ILLUSTRATOR

Ruth Anderson

PRODUCTION EDITORS

Pat Christenson and Alan Morgenegg

PROJECT MANAGER

Patricia Eastman

COVER DESIGNER

Barbara Smyth

Special thanks to Jim Batson,
Sean Callahan, Ken Doyle, Peter Hoddie,
Mark Krueger, Bruce Leak, and
Kip Olson.

Acknowledgments to Eric Chan,
Mike Dodd, Bill Guschwan, Eric Hoffert,
Miki Lee, Guillermo Ortiz,
Martha Steffen, John Wang,
Gary Woodcock, Bill Wright, and the
entire Inside Macintosh team.

