
Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York

Don Mills, Ontario Wokingham, England Amsterdam Bonn

Sydney Singapore Tokyo Madrid San Juan

Paris Seoul Milan Mexico City Taipei

I N S I D E M A C I N T O S H

QuickDraw GX Typography

Apple Computer, Inc.

© 1994 Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.

Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
printing or clerical errors.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

APDA, the Apple logo, AppleLink, the
Apple logo, LaserWriter, Macintosh,
and QuickDraw are trademarks of
Apple Computer, Inc., registered in the
United States and other countries.

Balloon Help, Chicago, Geneva,
Monaco, NewYork, Skia, TrueType, and
WorldScript are trademarks of Apple
Computer, Inc.

Adobe Illustrator, Adobe Photoshop,
and PostScript are trademarks of Adobe
Systems Incorporated, which may be
registered in certain jurisdictions.

America Online is a service mark of
Quantum Computer Services, Inc.

CompuServe is a registered trademark
of Frame Technology Corporation.

FrameMaker is a registered trademark
of Frame Technology Corporation.

Helvetica and Palatino are registered
trademarks of Linotype Company.

Internet is a trademark of Digital
Equipment Corporation.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Optrotech is a trademark of Orbotech
Corporation.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

ISBN 0-201-40679-9
1 2 3 4 5 6 7 8 9-CRW-9897969594
First Printing, June 1994

The paper used in this book meets the
EPA standards for recycled fiber.

Library of Congress Cataloging-in-Publication Data

Inside Macintosh. QuickDraw GX typography / [by Apple Computer, Inc.].
p. cm.

Includes index.
ISBN 0-201-40679-9
1. Macintosh (Computer)—Programming. 2. Computer graphics.

3. QuickDraw GX. I. Apple Computer, Inc. II. Title: QuickDraw GX typography
QA76.8.M3I56235 1994
006.6'765—dc20 94-17334

CIP

iii

Contents

Figures, Tables, and Listings xiii

Preface About This Book xxi

What to Read xxi

Chapter Organization xxiii

Conventions Used in This Book xxiii

Special Fonts xxiii

Types of Notes xxiv

Numerical Formats xxiv

Type Definitions for Enumerations xxiv

Illustrations xxv

Development Environment xxv

Developer Products and Support xxv

Chapter 1 Introduction to QuickDraw GX Typography 1-1

Typography and QuickDraw GX 1-3

Characters, Glyphs, and Fonts 1-4

Encodings 1-5

Text Storage 1-7

Text Measurements 1-8

Typestyles 1-10

Font Variations and Instances 1-10

Text Faces 1-11

Laying Out Text 1-11

Text Direction and Baselines 1-12

Leading Edges and Trailing Edges 1-13

Baselines 1-13

Text Runs, Style Runs, and Direction Runs 1-15

Contextual Forms and Ligatures 1-16

Alignment and Justification 1-17

Kerning and Tracking 1-18

Special Font Features 1-19

Line Breaking 1-20

Drawing, Highlighting, and Hit-Testing Text 1-21

Carets 1-21

Highlighting 1-23

Hit-Testing 1-23

iv

Chapter 2 Typographic Shapes 2-1

About Typographic Shapes 2-3

Types of Typographic Shapes 2-3

Typographic Shape Structure 2-5

Typographic Shape Attributes 2-6

Default Characteristics of a Typographic Shape 2-6

Typographic Shapes and the Style Object 2-7

The Standard and Typographic Bounding Rectangles 2-7

Using Typographic Shapes 2-8

Positioning Typographic Shapes 2-8

Hit-Testing Typographic Shapes 2-9

Using GXHitTestShape 2-9

Using GXHitTestLayout 2-10

Measuring Typographic Shapes 2-10

Getting the Area of a Typographic Shape 2-10

Getting and Setting the Standard Bounding Rectangle 2-11

Getting the Font Measurements From a Typographic Shape 2-11

Getting the Typographic Bounding Rectangle 2-11

Editing Typographic Shapes 2-12

Converting Typographic Shapes 2-12

Converting a Typographic Shape to Its Primitive Form 2-12

Converting Typographic Shapes to Other Shape Types 2-12

Inserting Part of a Typographic Shape Into Another Shape 2-14

Flattening Typographic Shapes 2-15

Applying Functions Described Elsewhere to Typographic Shapes 2-16

Shape-Related Functions 2-16

Style-Related Functions 2-20

Ink- and Color-Related Functions 2-20

Transform- and View-Related Functions 2-20

Typographic Shapes Reference 2-20

Constants and Data Types 2-21

Shape Attributes 2-22

Shape Parts 2-23

Functions 2-24

Measuring Typographic Shapes 2-24

Summary of Typographic Shapes 2-27

Constants and Data Types 2-27

Functions 2-28

Chapter 3 Text Shapes 3-1

About Text Shapes 3-3

The Geometry of a Text Shape 3-3

The Default Text Shape 3-4

The Text Shape and Styles 3-4

v

Using Text Shapes 3-5

Creating and Drawing a Text Shape 3-5

Changing Text in a Text Shape 3-6

Text Shapes Reference 3-8

Functions 3-8

Creating and Drawing Text Shapes 3-8

Manipulating Geometries of Text Shapes 3-10

Summary of Text Shapes 3-16

Functions 3-16

Chapter 4 Glyph Shapes 4-1

About Glyph Shapes 4-3

The Geometry of a Glyph Shape 4-3

The Positions and Advance Bits Arrays 4-5

The Tangents Array 4-6

The Style Runs and Style List 4-8

The Default Glyph Shape 4-10

Using Glyph Shapes 4-10

Creating and Drawing a Glyph Shape 4-10

Getting Information From a Glyph Shape 4-12

Changing Parts of a Glyph Shape 4-13

Changing Text in a Glyph Shape 4-13

Changing the Style List and Style Runs Array 4-15

Positioning a Glyph Shape 4-16

Setting the Tangents Arrays 4-18

Glyph Shapes Reference 4-21

Functions 4-21

Creating and Drawing Glyph Shapes 4-22

Getting and Setting the Properties of Glyph Shapes 4-25

Summary of Glyph Shapes 4-37

Functions 4-37

Chapter 5 Layout Shapes 5-1

About Layout Shapes 5-3

Properties of the Layout Shape 5-4

Runs in a Layout Shape 5-5

Text Runs 5-6

Style Runs 5-7

Direction-Level Runs 5-9

Layout Options 5-10

Width 5-10

Alignment 5-11

Justification 5-13

vi

Baselines 5-16

Flags 5-16

The Default Layout Shape 5-17

Using Layout Shapes 5-17

Creating and Drawing a Layout Shape 5-17

Creating a Layout Shape With Multiple Style Runs 5-18

Positioning a Layout Shape 5-20

Changing Parts of an Existing Layout Shape 5-20

Changing Text in a Layout Shape 5-21

Inserting a Typographic Shape Into a Layout Shape 5-22

Extracting a Layout Shape From Part of an Existing Layout Shape 5-23

Setting Layout Options 5-24

Setting the Width of a Layout Shape 5-24

Setting the Alignment of a Layout Shape 5-24

Justifying Text in a Layout Shape 5-26

Getting Glyph Information From a Layout Shape 5-27

Converting a Layout Shape Into a Glyph Shape 5-27

Layout Shapes Reference 5-28

Constants and Data Types 5-28

Layout Options Structure 5-29

Layout Options Flags 5-30

Functions 5-30

Creating and Drawing Layout Shapes 5-30

Getting and Setting the Geometry of a Layout Shape 5-34

Getting and Setting Portions of a Layout Shape’s Geometry 5-38

Extracting or Inserting Parts of a Layout Shape 5-42

Obtaining Glyph Information From a Layout Shape 5-45

Summary of Layout Shapes 5-48

Constants and Data Types 5-48

Layout Shape Functions 5-48

Chapter 6 Typographic Styles 6-1

About Typographic Styles 6-3

Style Properties Associated With Typographic Shapes 6-3

Font 6-5

Text Face 6-5

Text Size 6-10

Alignment 6-11

Font Variations 6-13

Font Metrics 6-14

Encoding 6-14

Text Attributes 6-14

Typographic Properties of the Default Style Object 6-16

vii

Using Typographic Styles 6-17

Creating Text Faces 6-17

Setting the Advance Mapping 6-18

Setting a Face Layer 6-19

Setting the Layer Flags 6-23

Setting Text Attributes 6-25

Setting the Automatic Text Advance Attribute 6-25

Setting the No Contour Grid Attribute 6-27

Setting the Vertical Text Attribute 6-29

Applying Patterns and Dashes to Text Faces 6-32

Creating Unusual Effects With Text Faces 6-33

Typographic Styles Reference 6-35

Constants and Data Types 6-35

Text Face 6-36

Face Layers 6-36

Layer Flags 6-37

Alignment Values 6-38

Text Attributes 6-38

Functions 6-39

Getting and Setting the Font of a Style Object 6-39

Getting and Setting the Text Face 6-42

Getting and Setting the Text Size of a Style Object 6-46

Getting and Setting the Alignment of a Style Object 6-48

Getting and Setting the Font Variations of a Style Object 6-51

Retrieving the Elements in a Font Variation Suite 6-55

Retrieving Font Metrics 6-57

Getting and Setting the Encoding of a Style Object 6-61

Getting and Setting the Text Attributes of a Style Object 6-65

Summary of Typographic Styles 6-69

Constants and Data Types 6-69

Functions 6-70

Chapter 7 Font Objects 7-1

About Font Objects 7-5

Font Object Properties 7-5

Names 7-6

Encodings 7-7

Font Descriptors 7-9

Font Variations 7-10

Font Instances 7-11

Font Features 7-12

QuickDraw GX Font Formats 7-12

How Font Objects Are Stored and Referenced 7-13

Font Attributes 7-14

Font Embedding 7-14

viii

Font Tables 7-14

The List of Available Fonts 7-15

The Default Font 7-15

Using Font Objects 7-15

Getting Information About Available Fonts 7-15

Drawing With a Specific Font 7-17

Gaining Access to Font Properties 7-17

Getting a Font Name 7-17

Adding a Font Instance 7-18

Retrieving Font Features 7-19

Determining Font Variations 7-20

Retrieving Language-Specific Font Lists 7-20

Manipulating Font Tables 7-21

Font Objects Reference 7-21

Basic Constants and Data Types 7-22

The Font Object 7-22

Font Variations, Instances, and Descriptors 7-22

Font Names 7-23

Font Features 7-24

Font Platforms 7-25

QuickDraw GX Macintosh Scripts 7-26

Languages 7-28

Advanced Constants and Data Types 7-31

Font Storage Tags 7-31

Font Table Tags 7-32

Font Attributes 7-32

Basic Font Functions 7-32

Getting the List of Available Fonts 7-33

Counting Glyphs in a Font 7-34

Getting and Setting the Default Font 7-35

Manipulating Font Names 7-37

Manipulating Font Encodings 7-43

Manipulating Font Descriptors 7-48

Manipulating Font Variations 7-53

Manipulating Font Instances 7-56

Manipulating Font Features 7-60

Advanced Font Functions 7-63

Adding, Removing, and Flattening Fonts 7-63

Getting and Setting Basic Font Storage Information 7-66

Manipulating Font Tables 7-70

Changing Font Data 7-78

Summary of Font Objects 7-79

Basic Constants and Data Types 7-79

Advanced Constants and Data Types 7-85

Basic Font Functions 7-85

Advanced Font Functions 7-87

ix

Chapter 8 Layout Styles 8-1

About Layout Styles 8-3

Style-Object Properties Used by Layout Shapes 8-4

Run Controls 8-5

With-Stream Shift and Cross-Stream Shift 8-6
With-Stream Kerning and Cross-Stream Kerning 8-8

Tracking 8-10
Optical Alignment 8-11

Hanging Glyphs 8-14
Imposed Width 8-15

Kerning Adjustments 8-16

Glyph Substitutions 8-18

Font Features 8-18

Feature Types, Feature Selectors, and the Feature Registry 8-19
Contextual Font Features 8-22

Noncontextual Font Features 8-34
Using Layout Styles 8-40

Initializing Style-Run Properties 8-41

Manipulating Run Controls 8-42

Using With-Stream and Cross-Stream Shift 8-42

Specifying Tracking Values 8-44
Preventing Optical Alignment 8-45

Inhibiting Hanging Glyphs 8-47
Imposing a Width on a Style Run 8-48

Using Kerning Adjustment Factors 8-49

Substituting Glyphs 8-51

Using Font Features 8-53

Specifying Levels of Ligature Formation 8-53

Specifying Different Types of Swashes 8-54

Specifying Different Kinds of Case Substitution 8-56

Layout Styles Reference 8-57

Constants and Data Types 8-57

Run Controls Structure 8-57

Run Control Flags 8-60

Direction Overrides 8-62

Kerning Adjustment Factors Structure 8-63

Kerning Adjustment Structure 8-63

Glyph Substitution Structure 8-64

Run-Feature Structure 8-65

Functions 8-66

Getting and Setting Run Controls 8-66

Customizing Kerning 8-70

Customizing Glyph Substitution 8-75

Customizing Font Features 8-80

Summary of Layout Styles 8-86

Constants and Data Types 8-86

Functions 8-87

x

Chapter 9 Layout Line Control 9-1

About Line Control and Line Measurement for Layout Shapes 9-3

Baselines 9-4

Baseline Types 9-4

Font and Application Control Over Baselines 9-5

Alignment of Multiple Baselines 9-6

Baselines for Vertical Text 9-8

Line Measurement 9-10

Line Length 9-10

Line Span 9-11

Line Breaking 9-11

Text Direction 9-13

Glyph Direction 9-13

Dominant Direction 9-15

The Levels Array of the Layout Shape Object 9-17

Forced Reordering With Nested Direction Levels 9-19

Justification 9-21

The Justification Model 9-21

Justification Properties of the Shape Object and Style Object 9-24

Priority Justification Override 9-26

Glyph Justification Overrides 9-26

Using Line Control and Line Measurement With Layout Shapes 9-27

Setting Baselines 9-27

Drawing Vertical Text 9-30

Determining Line Lengths 9-32

Determining Line Spans 9-33

Breaking Lines 9-33

Using Macintosh WorldScript for Line Breaking 9-37

Manipulating Nested Direction Levels 9-38

Overriding the Glyph Direction in a Style Run 9-42

Justifying Lines by Stretching and Shrinking 9-43

Displaying Partial Justification 9-46

Justification With White Space 9-46

Justification With Kashidas 9-48

Justification With Glyph Deformation 9-50

Justification and Ligature Decomposition 9-50

Changing the Behavior of Justification Priorities 9-51

Changing Justification Behavior of Individual Glyphs 9-55

Layout Line Control Reference 9-58

Constants and Data Types 9-58

Baseline Types 9-58

Baseline Deltas Array 9-59

Baseline Structure 9-59

Justification Priorities 9-60

Width Delta Structure 9-61

xi

Justification Flags 9-62

Priority Justification Override Structure 9-63

Glyph Justification Override Structure 9-64

Functions 9-65

Manipulating Baselines 9-66

Measuring Line Span 9-67

Breaking Lines 9-69

Overriding the Behaviors of Justification Priorities 9-73

Overriding the Justification Behaviors of Individual Glyphs 9-78

Summary of Layout Line Control 9-84

Constants and Data Types 9-84

Functions 9-86

Chapter 10 Layout Carets, Highlighting, and Hit-Testing 10-1

About Carets, Highlighting, and Hit-Testing for Layout Shapes 10-3

Positioning in Source Text and Display Text 10-3

Caret Handling 10-6

Straight and Angled Carets 10-7

Split and Single Carets 10-8

Caret Position and Split Ligatures 10-10

Arrow Keys and Caret Movement 10-11

Highlighting 10-13

Visually Discontiguous and Contiguous Highlighting 10-14

Caret Angle and Tiled Highlighting 10-15

Hit-Testing 10-16

Using Carets, Highlighting, and Hit-Testing With Layout Shapes 10-18

Drawing Carets 10-18

Getting the Caret Shape 10-19

Drawing the Cursor at the Correct Angle Within a Given Area 10-22

Positioning the Caret in Response to Arrow Keypresses 10-22

Positioning the Caret Within Ligatures 10-24

Drawing Highlighting 10-25

Highlighting Discontiguously in Mixed-Direction Text 10-26

Highlighting Contiguously in Mixed-Direction Text 10-27

Providing Dynamic Highlighting 10-28

Performing Hit-Testing 10-28

Layout Hit Info Structure 10-29

Mouse Tracking Area 10-30

Sample Hit-Test Function 10-30

Analyzing Glyphs 10-33

Determining the Direction of a Glyph 10-33

Determining the Offsets for Each Edge of a Ligature 10-33

Finding the Equivalent Glyphs to an Offset in the Source Text 10-34

Finding the Equivalent Offset to a Glyph in the Display Text 10-37

xii

Layout Carets, Highlighting, and Hit-Testing Reference 10-40

Constants and Data Types 10-40

Highlighting Type 10-41

Caret Type 10-41

Layout Offset State 10-42

Layout Hit Info Structure 10-43

Functions 10-44

Manipulating Carets in a Layout Shape 10-44

Highlighting in a Layout Shape 10-49

Hit-Testing in a Layout Shape 10-54

Converting Between Glyphs and Characters in a Layout Shape 10-56

Summary of Layout Carets, Highlighting, and Hit-Testing 10-61

Constants and Data Types 10-61

Functions 10-62

Glossary GL-1

Index IN-1

xiii

Figures, Tables, and Listings

Preface About This Book

Figure P-1 Roadmap to the QuickDraw GX suite of books xxii

Chapter 1 Introduction to QuickDraw GX Typography 1-1

Figure 1-1 Contextual forms in a Roman font 1-4
Figure 1-2 Elements that distinguish glyphs of a Roman font 1-5
Figure 1-3 The Standard Roman character set 1-6
Figure 1-4 Input order and display order 1-8
Figure 1-5 Terms for glyph measurements 1-9
Figure 1-6 Font variations along a variation axis 1-10
Figure 1-7 An example of an unusual text face 1-11
Figure 1-8 Multi-direction text 1-12
Figure 1-9 Leading edges and trailing edges 1-13
Figure 1-10 Baselines for different sizes of a glyph and for different

writing systems 1-14
Figure 1-11 Drop capitals 1-14
Figure 1-12 Three style runs in a line of text 1-15
Figure 1-13 Two direction runs in a line of text 1-15
Figure 1-14 Contextual forms of the Arabic letter “ha” 1-16
Figure 1-15 Examples of Roman ligatures 1-16
Figure 1-16 Different kinds of alignment 1-17
Figure 1-17 Glyphs with and without kerning 1-18
Figure 1-18 Normal, tight, and loose tracking by the selection of

track setting 1-19
Figure 1-19 Determining where to break a line 1-20
Figure 1-20 Caret position 1-22
Figure 1-21 Highlighting 1-23
Figure 1-22 Discontiguous highlighting 1-23
Figure 1-23 Hit-testing 1-24

Table 1-1 Some special font features for layout shapes 1-19

Chapter 2 Typographic Shapes 2-1

Figure 2-1 Text shape 2-3
Figure 2-2 Glyph shape 2-4
Figure 2-3 Layout shape 2-5
Figure 2-4 Geometry of a typographic shape 2-5
Figure 2-5 Standard bounding rectangle and typographic bounding

rectangle 2-7
Figure 2-6 Hit-testing a typographic shape 2-9
Figure 2-7 Effects of the GXSetShapeBounds function 2-11

xiv

Table 2-1 Results of converting typographic shapes to other types
of shapes 2-13

Table 2-2 Converting a typographic shape to another typographic
shape 2-13

Table 2-3 Setting the shape parts of various types of shapes 2-15
Table 2-4 Selected effects of shape-related functions that you can apply to

typographic shapes 2-17
Table 2-5 Geometric shape functions that you can apply to typographic

shapes 2-17
Table 2-6 Geometric operations that you can apply to typographic

shapes 2-18
Table 2-7 Selected transform-related functions that you can apply to

typographic shapes 2-21

Chapter 3 Text Shapes 3-1

Figure 3-1 Geometry of a text shape 3-3
Figure 3-2 Three examples of a text shape, each with a different

style applied 3-5

Table 3-1 Changing text in a text shape using the GXSetTextParts
function 3-7

Listing 3-1 Creating a text shape with a nondefault text size 3-6
Listing 3-2 Replacing text in a text shape 3-7

Chapter 4 Glyph Shapes 4-1

Figure 4-1 Geometry of a glyph shape 4-4
Figure 4-2 The effect of the positions and advance bits arrays on

glyph placement 4-5
Figure 4-3 The same shape with a new advance bits array 4-6
Figure 4-4 Various tangents 4-7
Figure 4-5 The effect of the tangents array on glyph placement 4-8
Figure 4-6 Tangents used with and without positions 4-8
Figure 4-7 The effect of style runs on the appearance of glyphs in a

glyph shape 4-9
Figure 4-8 An example of a glyph shape with a style run for each glyph 4-9
Figure 4-9 A glyph shape with two styles 4-12
Figure 4-10 A glyph shape with positions and advance bits arrays set 4-18
Figure 4-11 A glyph shape with 45-degree angle tangents 4-18
Figure 4-12 Varying the angle and scale of individual glyphs using

tangents 4-21

Table 4-1 Changing text in a glyph shape using the GXSetGlyphParts
function 4-14

Listing 4-1 Creating a glyph shape with style runs 4-11
Listing 4-2 Getting all of the information from a glyph shape 4-12
Listing 4-3 Inserting text into an existing glyph shape 4-14
Listing 4-4 Changing the style runs of a glyph shape 4-15

xv

Listing 4-5 Setting the positions and advance bits arrays of a
glyph shape 4-17

Listing 4-6 Creating a series of tangents with varying angles
and scales 4-19

Chapter 5 Layout Shapes 5-1

Figure 5-1 Geometry of a layout shape 5-4
Figure 5-2 An example of a layout with its text, style, and direction-level

runs marked 5-5
Figure 5-3 English, Arabic, and Japanese text directions 5-6
Figure 5-4 A line of text rotated into a vertical position 5-8
Figure 5-5 A line of right-to-left of text with multiple direction levels 5-9
Figure 5-6 Types of alignment 5-12
Figure 5-7 Use of the flush field 5-12
Figure 5-8 Alignment and justification in English 5-13
Figure 5-9 Alignment and justification in Arabic 5-13
Figure 5-10 Use of the just field 5-14
Figure 5-11 How different values for justification and alignment affect text in a

layout shape 5-15
Figure 5-12 Text with multiple baselines aligned to the default baseline 5-16
Figure 5-13 A layout shape with multiple style runs 5-20
Figure 5-14 Changing the alignment of a layout shape 5-26

Table 5-1 Interactions between the width, just, and flush fields 5-11
Table 5-2 Changing text in a layout shape using the GXSetLayoutParts

function 5-21

Listing 5-1 Creating and drawing a layout shape 5-18
Listing 5-2 Creating a line containing multiple style runs 5-19
Listing 5-3 Adding text to a layout shape using the GXSetLayoutParts

function 5-21
Listing 5-4 Inserting a text shape and a glyph shape into a layout

shape 5-22
Listing 5-5 Creating a new layout shape from a previously

existing one 5-23
Listing 5-6 Altering the alignment of a layout shape 5-24

Chapter 6 Typographic Styles 6-1

Figure 6-1 The style object used by all typographic shapes 6-4
Figure 6-2 Face layers combined to form the visual composite of a

Roman “E” 6-6
Figure 6-3 An underlined glyph with tangent values 6-8
Figure 6-4 Underlining with interval and with style changes 6-8
Figure 6-5 Underlining vertical text through its center 6-9
Figure 6-6 Comparing alignment values for horizontal and

vertical text 6-12
Figure 6-7 Comparing alignment values for full justification 6-13
Figure 6-8 Orienting text vertically and horizontally 6-16
Figure 6-9 A shape with the advance mapping applied 6-18

xvi

Figure 6-10 An italic text face 6-20
Figure 6-11 A condensed text face 6-21
Figure 6-12 A drop-shadow text face 6-22
Figure 6-13 Different values of boldface 6-22
Figure 6-14 A simple underline text face 6-23
Figure 6-15 A thicker underline 6-25
Figure 6-16 Drawing text using the gxAutoAdvanceText

text attribute 6-27
Figure 6-17 Turning the no contour grid attribute off and on 6-28
Figure 6-18 Using the gxVerticalText attribute with a text or

glyph shape 6-31
Figure 6-19 Using the gxVerticalText attribute with a layout shape 6-31
Figure 6-20 A typographic shape with a pattern 6-33
Figure 6-21 An unusual effect with text faces 6-35

Table 6-1 Layer flag values and descriptions 6-10
Table 6-2 Alignment values and descriptions 6-11
Table 6-3 Text attributes and their values 6-15

Listing 6-1 Advance mapping 6-18
Listing 6-2 Creating an italic text face 6-19
Listing 6-3 Creating a drop-shadow text face 6-21
Listing 6-4 Creating a simple underline text face 6-23
Listing 6-5 Creating a thicker underline 6-24
Listing 6-6 Using the automatic text advance attribute 6-26
Listing 6-7 Using the no contour grid text attribute 6-27
Listing 6-8 Setting the vertical text attribute 6-29
Listing 6-9 The effects of the vertical text attribute on a glyph shape 6-29
Listing 6-10 Filling a typographic shape with a pattern 6-32
Listing 6-11 Creating an unusual effect 6-34

Chapter 7 Font Objects 7-1

Figure 7-1 The QuickDraw GX font object and its accessible properties 7-6
Figure 7-2 Words with alphabetic, syllabic, and ideographic characters 7-8
Figure 7-3 Font variations along the 'wght' variation axis 7-10
Figure 7-4 Font variations for the 'wght' and 'wdth' axes 7-11

Table 7-1 Character code sizes among various platforms and scripts 7-9
Table 7-2 A list of predefined font descriptors 7-10
Table 7-3 QuickDraw GX storage types 7-13
Table 7-4 Font tables and their contents 7-14

Listing 7-1 Obtaining a list of available fonts in the system 7-16
Listing 7-2 Using the GXGetFontName function 7-17
Listing 7-3 Extracting a full name as a C string 7-18
Listing 7-4 Adding a new font name to a font 7-18
Listing 7-5 Retrieving an array of ligature settings 7-19
Listing 7-6 Determining font variations 7-20
Listing 7-7 Retrieving all fonts that support Japanese characters 7-20
Listing 7-8 Using the GXGetFontTable function to retrieve a table 7-21

xvii

Chapter 8 Layout Styles 8-1

Figure 8-1 Layout-specific properties of the style object discussed in
this chapter 8-4

Figure 8-2 Negative and positive with-stream shift 8-7
Figure 8-3 Combining with-stream and cross-stream shift 8-7
Figure 8-4 Caret position between with-stream shifted glyphs 8-7
Figure 8-5 Apparent kerning caused by a glyph that extends beyond its

advance width 8-8
Figure 8-6 When kerning can and cannot occur 8-8
Figure 8-7 Caret position between two kerned glyphs 8-9
Figure 8-8 Cross-stream kerning 8-9
Figure 8-9 Partially and fully inhibiting kerning 8-10
Figure 8-10 Tracking with track settings 8-11
Figure 8-11 Advance widths, including side bearings to allow for

interglyph spacing 8-11
Figure 8-12 Misalignment caused by advance widths that vary with

glyph size 8-12
Figure 8-13 How curved letters extend below the baseline to align with

straight letters 8-12
Figure 8-14 Apparent misalignment of curved letters 8-13
Figure 8-15 The optical edges of a glyph 8-13
Figure 8-16 Optical alignment at line edges 8-14
Figure 8-17 Automatic hanging punctuation 8-14
Figure 8-18 Effects of hanging inhibit factor 8-15
Figure 8-19 Defining a nonhanging glyph as a hanging glyph 8-15
Figure 8-20 A style run with an imposed width in a line of text 8-16
Figure 8-21 Application-specified kerning adjustments 8-17
Figure 8-22 Application-controlled glyph substitution 8-18
Figure 8-23 Ligatures in Roman text 8-23
Figure 8-24 A ligature in Arabic text 8-23
Figure 8-25 Versions of the Arabic letter “ha” 8-24
Figure 8-26 Levels of ligature formation controlled with ligature

feature selectors 8-25
Figure 8-27 Use of diphthong ligatures 8-25
Figure 8-28 Noncontextual cursive connection in a Roman font 8-26
Figure 8-29 Case conversion 8-27
Figure 8-30 Vertical substitution forms in a font 8-28
Figure 8-31 The word “hindi” drawn with rearrangement turned on (upper) and

off (lower) 8-29
Figure 8-32 Specifying different swashes with feature selectors 8-30
Figure 8-33 Hebrew text with diacritical marks shown (upper) and

hidden (lower) 8-31
Figure 8-34 Accented forms 8-32
Figure 8-35 Fractions 8-33
Figure 8-36 Allowing and preventing glyph overlap 8-34
Figure 8-37 Traditional and simplified versions of a Chinese character 8-35
Figure 8-38 Fixed-width and proportional-width numerals 8-36
Figure 8-39 Uppercase and lowercase numerals 8-36
Figure 8-40 Ornamental glyphs 8-39
Figure 8-41 Result of with-stream and cross-stream shift applied to a

style run 8-44

xviii

Table 8-1 Examples of feature types 8-19
Table 8-2 Feature selectors for the allTypographicFeaturesType font

feature type 8-22
Table 8-3 Feature selectors for the ligaturesType feature type 8-24
Table 8-4 Feature selectors for the cursiveConnectionType

feature type 8-26
Table 8-5 Feature selectors for the letterCaseType feature type 8-26
Table 8-6 Feature selectors for the verticalSubstitutionType

feature type 8-27
Table 8-7 Feature selectors for the linguisticRearrangementType feature

type 8-28
Table 8-8 Feature selectors for the smartSwashType feature type 8-30
Table 8-9 Feature selectors for the diacriticsType feature type 8-31
Table 8-10 Feature selectors for the verticalPositionType

feature type 8-32
Table 8-11 Feature selectors for the fractionsType feature type 8-33
Table 8-12 Feature selectors for the overlappingCharactersType

feature type 8-34
Table 8-13 Feature selectors for the characterShapeType

feature type 8-35
Table 8-14 Feature selectors for the numberSpacingType

feature type 8-35
Table 8-15 Feature selectors for the numberCaseType feature type 8-36
Table 8-16 Feature selectors for the styleOptionsType

feature type 8-37
Table 8-17 Feature selectors for the typographicExtrasType

feature type 8-37
Table 8-18 Feature selectors for the mathematicalExtrasType

feature type 8-38
Table 8-19 Feature selectors for the ornamentSetsType

feature type 8-39
Table 8-20 Feature selectors for the characterAlternativesType

feature type 8-40
Table 8-21 Feature selectors for the designComplexityType

feature type 8-40

Listing 8-1 Setting up a style object for a layout shape 8-41
Listing 8-2 A sample that specifies with-stream and cross-

stream shifting 8-43
Listing 8-3 Using track settings to spread or compress text 8-45
Listing 8-4 Preventing optical alignment 8-46
Listing 8-5 Inhibiting hanging punctuation 8-47
Listing 8-6 Creating a line containing a style run with an

imposed width 8-48
Listing 8-7 Adjusting the kerning amount for a pair of glyphs 8-50
Listing 8-8 Using glyph substitutions to replace one glyph

with another 8-52
Listing 8-9 Specifying three levels of ligature formation 8-53
Listing 8-10 Specifying three different types of swashes 8-55
Listing 8-11 Specifying three different kinds of case substitution 8-56

xix

Chapter 9 Layout Line Control 9-1

Figure 9-1 Baseline positions for two fonts 9-6
Figure 9-2 How the same glyphs can align to different baselines 9-7
Figure 9-3 Text with multiple baselines aligned to y = 0 9-7
Figure 9-4 Preferred alignment for multiple baselines 9-8
Figure 9-5 Creating vertical text in a layout shape 9-9
Figure 9-6 Rotating vertical text in a layout shape 9-9
Figure 9-7 Line length and line span 9-10
Figure 9-8 Factors in line breaking 9-12
Figure 9-9 How glyph direction affects display order 9-14
Figure 9-10 How dominant direction affects display order 9-16
Figure 9-11 The levels array property of the layout shape 9-17
Figure 9-12 How nesting level relates to text direction 9-18
Figure 9-13 Multiple nesting direction levels in one line 9-19
Figure 9-14 Justification gap 9-21
Figure 9-15 Justification-related properties of the style object 9-25
Figure 9-16 Drop capitals created by aligning baselines 9-30
Figure 9-17 Rotated Roman glyphs in vertical text 9-32
Figure 9-18 A text line with nested direction levels 9-41
Figure 9-19 Results of overriding glyph direction 9-43
Figure 9-20 Unjustified (upper) and justified (lower) lines of different

lengths 9-45
Figure 9-21 Five degrees of justification with white space 9-48
Figure 9-22 Five degrees of justification with kashidas 9-49
Figure 9-23 Glyph stretching during increasing justification 9-50
Figure 9-24 Ligature decomposition during increasing justification 9-51
Figure 9-25 Results of justification priority overrides on intercharacter and

interword spacing 9-55
Figure 9-26 Results of overriding justification behavior of the whitespace

glyph 9-57

Table 9-1 Justification priorities 9-22

Listing 9-1 Aligning baselines to create drop capitals 9-28
Listing 9-2 Creating and drawing vertical text 9-31
Listing 9-3 Breaking a Roman layout shape into individual lines of

a paragraph 9-34
Listing 9-4 Defining nested direction levels for a line of text 9-39
Listing 9-5 Overriding the glyph direction in a style run 9-42
Listing 9-6 A simple justification example 9-43
Listing 9-7 Displaying partial justification using white space 9-46
Listing 9-8 Displaying partial justification with kashidas 9-48
Listing 9-9 Overriding justification priorities 9-52
Listing 9-10 Overriding justification behavior of the whitespace glyph 9-56

xx

Chapter 10 Layout Carets, Highlighting, and Hit-Testing 10-1

Figure 10-1 Positioning conventions for source text and display text 10-4
Figure 10-2 Edge offsets and glyph indexes in mixed-direction text 10-5
Figure 10-3 Insertion point and caret 10-7
Figure 10-4 Angled and straight carets in single-direction text 10-8
Figure 10-5 Split caret and single carets at a direction boundary in

mixed-direction text 10-9
Figure 10-6 Split caret with linguistically rearranged glyphs 10-10
Figure 10-7 Caret positions with and without ligature splits 10-11
Figure 10-8 Moving the caret with Left and Right Arrow keys 10-12
Figure 10-9 Highlighting in single-direction text 10-13
Figure 10-10 Discontiguous visual highlighting in mixed-direction text 10-14
Figure 10-11 Contiguous visual highlighting in mixed-direction text 10-15
Figure 10-12 Hit point and caret position in hit-testing 10-16
Figure 10-13 Hit-testing in mixed-direction text 10-17
Figure 10-14 Projecting the hit point to the baseline 10-18
Figure 10-15 Drawing all possible caret positions in a layout

shape’s text 10-20
Figure 10-16 Drawing different caret types at a single edge offset 10-22
Figure 10-17 All caret positions drawn with (upper) and without (lower)

ligature splits 10-25
Figure 10-18 Contiguous highlighting from offsets 4 to 13 in single-

direction text 10-26
Figure 10-19 Discontiguous highlighting from offsets 4 to 19 in mixed-

direction text 10-27
Figure 10-20 Contiguous highlighting from offsets 4 to 19 in mixed-

direction text 10-28
Figure 10-21 GXHitTestLayout example 10-29
Figure 10-22 Caret positions and glyph indexes for one display version of the

word “office” 10-33
Figure 10-23 Using GXGetOffsetGlyphs to locate glyphs corresponding to

known offsets 10-37
Figure 10-24 Using GXGetGlyphOffset to locate a glyph’s character 10-40

Listing 10-1 Drawing angled and straight carets at all caret positions 10-19
Listing 10-2 Drawing three different types of caret at one edge offset 10-21
Listing 10-3 A key-down handler using GXGetRightVisualOffset and

GXGetLeftVisualOffset 10-23
Listing 10-4 Preventing ligature splits for caret positioning 10-24
Listing 10-5 Using the GXHitTestLayout function 10-31
Listing 10-6 Converting an edge offset to a glyph index 10-34
Listing 10-7 Converting a glyph index to an edge offset 10-38

xxi

P R E F A C E

About This Book

QuickDraw GX is an integrated, object-based approach to graphics program-

ming on Macintosh computers. This book, Inside Macintosh: QuickDraw GX
Typography, describes the QuickDraw GX typographic shapes that display text

and shows you how to create and manipulate those shapes.

For application programming purposes, QuickDraw GX augments the capa-

bilities of some of the Macintosh system software managers documented in

other parts of Inside Macintosh. It supplements the chapters “QuickDraw Text”

and “Font Manager,” as well as parts of the chapter “Script Manager” and the

appendix “International Resources” in Inside Macintosh: Text. QuickDraw GX

and other Macintosh managers coexist without conflict, however, and you can

use both in the same program. Furthermore, for tasks outside the scope of

QuickDraw GX you need to use other parts of the system software. For

example, for multilingual word breaks and line breaks, you need to use the

Macintosh Text Utilities.

Before you read this book, you should already be familiar with Inside Macintosh:
QuickDraw GX Objects. Figure P-1 on page xxii shows the suggested reading

order for the QuickDraw GX books. A pictorial overview of Inside Macintosh,
including the QuickDraw GX suite of books, appears at the back of this book.

What to Read

This book is for all QuickDraw GX programmers. You can read the chapters

in any order, except that the first chapter introduces concepts that the others

build on:

Chapter 1, “Introduction to QuickDraw GX Typography,” provides an over-

view of typography and QuickDraw GX and describes how text is stored,

measured, and displayed. Read this chapter first.

Chapter 2, “Typographic Shapes,” describes how to create and use

QuickDraw GX shapes for the text you draw.

Chapter 3, “Text Shapes,” describes how to create and use QuickDraw GX

text shapes.

Chapter 4, “Glyph Shapes,” describes how to create and use QuickDraw GX

glyph shapes.

Chapter 5, “Layout Shapes,” describes how to create and use QuickDraw GX

layout shapes.

Chapter 6, “Typographic Styles,” describes how to use the typographic

properties of QuickDraw GX style objects.

xxii

P R E F A C E

Figure P-1 Roadmap to the QuickDraw GX suite of books

Chapter 7, “Font Objects,” describes the properties of QuickDraw GX font

objects and how to use them.

Chapter 8, “Layout Styles,” describes how to use the layout shape-related

properties of QuickDraw GX style objects.

Chapter 9, “Layout Line Control,” describes how to measure and control lines

for layout shapes.

Chapter 10, “Layout Carets, Highlighting, and Hit-Testing,” describes how to

use carets, how to highlight, and how to hit-test layout shapes.

xxiii

P R E F A C E

Chapter Organization

Most chapters in this book follow a standard general structure. For example,

the chapter “Layout Shapes” contains these major sections:

■ “About Layout Shapes.” This section provides an overview of the
properties of layout shapes.

■ “Using Layout Shapes.” This section describes how you can create and
manipulate layout shape objects using QuickDraw GX. It describes how to
use the most common functions, gives related user interface information,
provides code samples, and supplies additional information.

■ “Layout Shapes Reference.” This section provides a complete reference for
layout shape objects by describing the constants, data types, and functions
that you use with layout shapes. Each function description follows a stan-
dard format, which gives the function declaration; a description of every
parameter; the function result, if any; and a list of errors, warnings, and
notices. Most function descriptions give additional information about using
the function and include cross-references to related information elsewhere.

■ “Summary of Layout Shapes.” This section shows the C interface for the
constants, data types, and functions associated with layout shapes.

Conventions Used in This Book

This book uses various conventions to present certain types of information.

Special Fonts
All code listings, reserved words, and names of data structures, constants,

fields, parameters, and functions are shown in Courier (this is Courier).

When new terms are introduced, they are in boldface. These terms are also

defined in the glossary.

xxiv

P R E F A C E

Types of Notes
There are several types of notes used in this book.

Note

A note formatted like this contains information that is interesting but
possibly not essential to an understanding of the main text. The wording
in the title may say something more descriptive than just “Note”; for
example, “Terminology Note.” ◆

IMPORTANT

A note like this contains information that is especially important. (An
example appears on page 7-13.) ▲

Numerical Formats
Hexadecimal numbers are shown in this format: 0x0008.

The numerical values of constants are shown in decimal, unless the constants

are flag or mask elements that can be summed, in which case they are shown

in hexadecimal.

Type Definitions for Enumerations
Enumeration declarations in this book are commonly followed by a type

definition that is not strictly part of the enumeration. You can use the type to

specify one of the enumerated values for a parameter or field. The type name

is usually the singular of the enumeration name, as in the following example:

enum gxFontPlatforms {

gxGlyphPlatform = -1,

gxNoPlatform,

gxUnicodePlatform,

gxMacintoshPlatform,

gxReservedPlatform,

gxMicrosoftPlatform,

gxCustomPlatform,

};

typedef long gxFontPlatform;

xxv

P R E F A C E

Illustrations
This book uses several conventions in its illustrations.

In illustrations that show object properties, properties that are object

references are in italics.

In order to focus attention on the key part of some drawings, other parts are

printed in gray, rather than in black.

Objects in diagrams, whether shown with their properties or without, are

represented by distinctive icons, such as:

See, for example, Figure 2-4 in Chapter 2.

Development Environment

The QuickDraw GX functions described in this book are available using

C interfaces. How you access these functions depends on the development

environment you are using.

Code listings in this book are shown in ANSI C. They suggest methods of

using various functions and illustrate techniques for accomplishing particular

tasks. Although most code listings have been compiled and tested, Apple

Computer, Inc., does not intend for you to use these code samples in your

applications.

Developer Products and Support

APDA is Apple’s worldwide source for over three hundred development

tools, technical resources, training products, and information for anyone

interested in developing applications on Apple platforms. Customers receive

the quarterly APDA Tools Catalog featuring all current versions of Apple

development tools and the most popular third-party development tools.

Ordering is easy; there are no membership fees, and application forms are

not required for most of our products. APDA offers convenient payment and

shipping options, including site licensing.

xxvi

P R E F A C E

To order products or to request a complimentary copy of the APDA Tools
Catalog, contact

APDA

Apple Computer, Inc.

P.O. Box 319

Buffalo, NY 14207-0319

If you provide commercial products and services, call 408-974-4897 for

information on the developer support programs available from Apple.

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
1-716-871-6555 (International)

Fax 1-716-871-6511

AppleLink APDA

America Online APDAorder

CompuServe 76666,2405

Internet APDA@applelink.apple.com

Contents 1-1

C H A P T E R 1

Introduction to
QuickDraw GX

Contents

Typography

Typography and QuickDraw GX 1-3

Characters, Glyphs, and Fonts 1-4

Encodings 1-5

Text Storage 1-7

Text Measurements 1-8

Typestyles 1-10

Font Variations and Instances 1-10

Text Faces 1-11

Laying Out Text 1-11

Text Direction and Baselines 1-12

Leading Edges and Trailing Edges 1-13

Baselines 1-13

Text Runs, Style Runs, and Direction Runs 1-15

Contextual Forms and Ligatures 1-16

Alignment and Justification 1-17

Kerning and Tracking 1-18

Special Font Features 1-19

Line Breaking 1-20

Drawing, Highlighting, and Hit-Testing Text 1-21

Carets 1-21

Highlighting 1-23

Hit-Testing 1-23

C H A P T E R 1

Typography and QuickDraw GX 1-3

Introduction to QuickDraw GX Typography

This chapter introduces the text-handling capabilities of QuickDraw GX and defines

important typographic terms related to text. If you are developing a QuickDraw GX

application that uses text, read this chapter before reading any other parts of this book.

This chapter assumes that you have read the book Inside Macintosh: QuickDraw GX
Objects and that you know what shape objects and style objects are.

This chapter starts by outlining the different components that make up text. It

then describes

■ how text is measured and stored

■ how you can arrange text on a display device

■ how you can adjust the text in various ways by affecting the text direction, kerning,
alignment, justification, and line breaks

■ how your application can draw, highlight, and hit-test text

Typography and QuickDraw GX

Text has traditionally been defined as the written representation of spoken language.

QuickDraw GX extends this definition by treating text as both text and graphics and by

allowing you to use special typographic features to generate and manipulate fully

editable, text-related shapes.

Because each line of text is a QuickDraw GX shape, you can modify it as you would any

other graphic shape, yet the shape still maintains its identity and editability as a text line.

With QuickDraw GX, you can use one or more of the typographic shapes described in

this book for simple word-processing tasks as well as for laying out more complex, typo-

graphically sophisticated text lines.

Typographic shapes have the same fundamental structure as other shapes. The geometry

of a typographic shape contains its characters, just as a rectangle shape’s geometry

contains the points that make up the upper-left and lower-right corners of the rectangle.

There are three kinds of typographic shapes, each with specific characteristics and

properties:

■ A text shape consists of a string of one or more characters or glyphs, all to be displayed
in the same font with the same typestyle.

■ A glyph shape consists of one or more characters or glyphs, each of which can be
independently located, rotated, sized, and styled.

■ A layout shape consists of a line of text that may be in multiple languages, and which
may be displayed with multiple writing directions (including vertical), with ligatures
and other contextual forms, and with other sophisticated formatting and stylistic
properties.

The three shapes are described as a group in the chapter “Typographic Shapes” and

individually in the chapters “Text Shapes,” “Glyph Shapes,” and “Layout Shapes.”

C H A P T E R 1

Introduction to QuickDraw GX Typography

1-4 Characters, Glyphs, and Fonts

Characters, Glyphs, and Fonts

A writing system’s alphabet, numbers, punctuation, and other writing marks consist of

characters. A character is a symbolic representation of an element of a writing system; it

is the concept of, for example, “lowercase a” or “the number 3.” It is an abstract object,

defined by custom in its own language.

As soon as you write a character, however, it is no longer abstract but concrete. The exact

shape by which a character is represented is called a glyph. The “characters” that

QuickDraw GX places on the screen are really glyphs.

Glyphs and characters do not necessarily have a one-to-one correspondence. For

example, a single character may be represented by one or more glyphs (the character

“lowercase i” could be represented by the combination of glyphs “ı” and “·”), and a

single glyph can represent two or more characters (the single glyph “fi” could represent

the two characters “f” and “i”).

Context—where the glyph appears in a line of text—also affects which glyph represents

a character. Figure 1-1 shows examples of such contextual forms in a Roman font.

Different forms of a glyph are used according to whether the glyph stands alone or

occurs at the beginning of a word, occurs at the end of a word, or forms part of a new

glyph, as in a ligature.

A font is a collection of glyphs, all of similar design, that constitute one way to represent

the characters of one or more language.

Figure 1-1 Contextual forms in a Roman font

C H A P T E R 1

Introduction to QuickDraw GX Typography

Encodings 1-5

Fonts usually have some element of design consistency, such as the shape of the ovals

(known as the counter), the design of the stem, stroke thickness, or the use of serifs,

which are the fine lines stemming from the upper and lower ends of the main strokes of

a letter. Figure 1-2 shows some of the elements of glyphs that indicate they are members

of the same family.

Figure 1-2 Elements that distinguish glyphs of a Roman font

A font always has a full name—for example, Geneva Regular or Times Bold. The full

name determines which family the font belongs to and what typestyle it represents.

(Typestyles are discussed on page 1-10.) The font Geneva Italic, for example, shares

many characteristics with Geneva Regular, but all of the glyphs slant at a certain angle.

Though different, these fonts are part of the same font family. A font family is a group

of fonts that share certain characteristics and have a common family name. Each font

family has its own name, such as “New York,” “Geneva,” or “Symbol.” Several fonts

may have the same family names (such as Geneva, Geneva Bold, and so on) but are

stored separately—these fonts are still part of the same font family.

Note
QuickDraw GX does not use the 'FOND' resource to determine what
fonts are part of which font family. It uses information in the naming
table of each font—a table that every QuickDraw GX font has. ◆

Encodings

For Roman fonts that have a one-to-one correspondence between glyphs and characters,

an application can access the proper glyph using 1-byte character codes. As Figure 1-3

shows, Macintosh Roman character codes are hexadecimal numbers from $00 through

$FF that represent the characters corresponding to a key or key combination. The figure

shows 1-byte character codes; but 2-byte character codes are also used—for example, in

Asian fonts, which may have 8,000 or more glyphs.

C H A P T E R 1

Introduction to QuickDraw GX Typography

1-6 Encodings

Figure 1-3 The Standard Roman character set

Fonts also associate each glyph with a 2-byte code called its glyph code. Different fonts

may have different glyph codes for the same glyphs, and a single font may have several

glyph codes associated with a particular character because several glyphs may represent

that character. Because the font and general textual context determine which glyph

and which glyph codes represent characters, QuickDraw GX transparently handles the

details of mapping character codes to the correct glyph codes. Your application does not

have to handle the details of obtaining glyphs from a font.

Note
Your application will usually deal with character codes, since those
correspond most closely with what the user types. However, QuickDraw
GX permits you to deal with glyph codes, if that is more appropriate to
your application’s functionality and needs. ◆

C H A P T E R 1

Introduction to QuickDraw GX Typography

Text Storage 1-7

Different languages may have different requirements in terms of which glyphs they want

from a font. A font contains some number of character encodings. Each encoding is an

internal conversion table for interpreting a specific character set—that is, a way to map a

character code to glyph code for that font.

The reason a font can have multiple encodings is that the requirements for each writing

system that the font supports may be different. A writing system is a method of

depicting words visually. It consists of a character set and a set of rules for displaying,

ordering, and formatting the glyphs associated with those characters. Writing systems

can differ in line direction, the direction in which their glyphs are read; the size of the

character set used to represent the script; and contextual variation (that is, whether a

glyph changes according to its position relative to other glyphs). Writing systems have

specific requirements for text display, text editing, character set, and fonts. A writing

system—for instance, the Roman system—can serve one or several languages, such as

French, Italian, and Spanish.

Text Storage

QuickDraw GX stores text in a typographic shape’s geometry as a sequence of character

codes or glyph codes. The storage order is the order in which text is stored. A shape may

contain 1-byte or 2-byte codes, or a mixture of both. Using information in the style object,

QuickDraw GX determines whether a character code is 1 or 2 bytes. The text stored in a

shape is the source text; the text displayed is the display text, as shown in Figure 1-4.

Display order is the left-to-right (or top-to-bottom) order in which glyphs are drawn.

For text shapes, and by default for glyph shapes, storage order and display order are the

same. For layout shapes, however, QuickDraw GX expects you to store your text in

input order, which is the “logical” order, or the order in which the characters, not glyphs,

would be read or pronounced in the language of the text. Because text of different

languages may be read from left to right, right to left, or top to bottom, the input order

is not necessarily the same as the display order of the text when it is drawn. Your

application needs to differentiate between the order in which the character codes are

stored in the shape and the order in which the corresponding glyphs are displayed.

Figure 1-4 shows Hebrew glyphs that are stored one way and displayed another way in

a layout shape.

Note

In Figure 1-4 and throughout this book, text in computer memory is
drawn as a vertical table of codes, representing sequential (downward)
storage of text characters in a buffer. Some diagrams also include byte
offsets in the buffer, and even miniature representations of the characters
themselves in a given language. ◆

C H A P T E R 1

Introduction to QuickDraw GX Typography

1-8 Text Measurements

Figure 1-4 Input order and display order

As shown in Figure 1-4, the character codes that make up the text are numbered using

zero-based offsets. Therefore, the first character code in the figure has an offset of 0.

QuickDraw GX uses a different numbering scheme to index the glyphs that are actually

displayed. The glyph index, which gives the glyph’s position in the display order,

always starts at 1. Therefore, the offset of the character code and the index of the corre-

sponding glyph may be different. Also, each glyph has a single index, even if its charac-

ter code is 2 bytes long (as in the case of Chinese characters). In Figure 1-4, the character

code offset of the uppercase “A” is 0, but the glyph’s index is 1. Likewise, the last

Chinese glyph begins at character code offset A but has an index of 9.

For layout shapes, QuickDraw GX provides functions to map back and forth from byte

offsets to glyph indexes. For text and glyph shapes, such mapping is not needed because

with those shapes a character offset corresponds one-to-one with a glyph index.

Text Measurements

Most users use point size to specify the size of the glyphs in a document. Point size

indicates the size of a font’s glyphs as measured from the baseline of one line of text

to the baseline of the next line of single-spaced text; in the United States, point size is

measured in typographic points, and there are 72.27 points per inch. However,

QuickDraw GX and the PostScript™ language both define 1 point to be exactly 1/72 of

an inch. QuickDraw GX permits fractional point sizes.

C H A P T E R 1

Introduction to QuickDraw GX Typography

Text Measurements 1-9

Although point size is a useful measure of the size of text, you may wish to use

more exact measurements for greater control over placement of the glyphs on the

display device.

Font designers use a special vocabulary for the measurements of different parts of a

glyph. Figure 1-5 shows the terms describing the most frequently used measurements.

The bounding box of a glyph is the smallest rectangle that entirely encloses the drawn
parts of the glyph. The glyph origin is the point that QuickDraw GX uses to position the

glyph when drawing. In Figure 1-5, notice that there is some space between the glyph
origin and the edge of the bounding box: this space is the glyph’s left-side bearing. The

left-side bearing value can be negative, which decreases the space between adjacent
characters. The right-side bearing is space on the right side of the glyph; this value may

or may not be equal to the value of the left-side bearing. The advance width is the full
horizontal width of the glyph as measured from its origin to the origin of the next glyph

on the line, including the side bearings on both sides.

Most glyphs in Roman fonts appear to sit astride the baseline, an imaginary horizontal

line. The ascent is a distance above the baseline, chosen by the font’s designer and the
same for all glyphs in a font, that often corresponds approximately to the tops of the

uppercase letters in a Roman font. Uppercase letters are chosen because, among the
regularly used glyphs in a font, they are generally the tallest. The descent is a distance

below the baseline that usually corresponds to the bottoms of the descenders (the “tails”
on glyphs such as “p” or “g”). The descent line is the same distance from the baseline for

all glyphs in the font, whether or not they have descenders. The sum of ascent plus
descent marks the line height of a font.

Figure 1-5 Terms for glyph measurements

C H A P T E R 1

Introduction to QuickDraw GX Typography

1-10 Typestyles

For vertical text, font designers may use additional measurements. The top-side bearing

is the space between the top of the glyph and the top edge of the bounding box. The

bottom-side bearing is the distance from the bottom of the bounding box to the origin

of the next glyph. For vertical text, the advance height is the sum of the top-side bearing,

the bounding-box height, and the bottom-side bearing.

These metrics are useful if, for example, you want to display a horizontal font vertically.

Likewise, vertical fonts such as Kanji may also have horizontal metrics.

Typestyles

Glyphs can be differentiated not only by font but by typestyle. A typestyle is a specific

variation in the appearance of a glyph that can be applied consistently to all the glyphs

in a font family. Some of the typical typestyles available on the Macintosh computer

include plain, bold, italic, underline, outline, shadow, condensed, and extended. Other

styles that may be available are Demibold, Extra Condensed, or Antique.

Font Variations and Instances
A font variation is a setting along a particular variation axis. Font variations allow your

application to produce a range of typestyles algorithmically.

Each variation axis has a name identifying the typestyle that the axis represents (such

as weight or width), a tag to represent that name (such as 'wght'), a set of maximum

and minimum values for the axis, and the default value of the axis. The weight axis,

for example, governs the possible values for the weight of the font; the minimum

value may produce the lightest appearance of that font, the maximum value the boldest.

The default value is the position along the variation axis value at which that font

falls normally.

Because the axis is created by the font designer, font variations can be optimized for

their particular font. Figure 1-6 shows a range of possible weights for a glyph, from

the minimum weight to the maximum weight.

A font instance is a set of named variations identified by the font designer that matches

specific values along the available variation axes and associates those values with a

name. For example, suppose a font has the variation axis 'wght' with a minimum value

of 0.0, a default of 0.5, and a maximum value of 1.0. The corresponding font instance

might have the name “Demibold” with a value along that variation axis of 0.8.

Figure 1-6 Font variations along a variation axis

C H A P T E R 1

Introduction to QuickDraw GX Typography

Laying Out Text 1-11

In Figure 1-6, the variation axis value of the glyph at the far right could represent the

named instance “Extra Bold,” whereas the glyph at the far left could represent the named

instance “Light.” The other values represented in the figure could likewise have instance

names.

Font variations and font instances give your application the ability to provide whatever

typestyles the font designer has decided to include with the font.

Text Faces
If the desired typestyle is not available as a separate font and cannot be produced as a

font variation, your application can generate a text face, which is an algorithmic way of

producing typestyles. You can use text faces to produce bold, italic, condensed, and other

typical Macintosh typestyles. You can also use them to create unusual typestyles not

supported anywhere else; for example, you can create a “sunburst” text face, as shown

in Figure 1-7.

Figure 1-7 An example of an unusual text face

Laying Out Text

When you arrange text on a display device, QuickDraw GX offers a simple approach:

you can put the information into one of the typographic shapes and then display it.

Depending on the shape type, QuickDraw GX automatically handles many aspects of

the text display. However, QuickDraw GX also offers you the ability to adjust the text in

various ways, to gain greater control over the presentation and arrangement of the text.

For example, you can affect

■ text direction and baselines

■ text runs, style runs, and direction runs

■ contextual forms and ligatures

■ alignment and justification

■ kerning and tracking

■ line breaks

This section describes some of the general concepts governing how you can affect the

text presented by your application. Actual implementation of these concepts is described

in various chapters in this book.

C H A P T E R 1

Introduction to QuickDraw GX Typography

1-12 Laying Out Text

Text Direction and Baselines
Text direction consists of text orientation (horizontal or vertical) and the direction in

which the text is read. Text in your application can be oriented in three common

directions: horizontally, left to right; horizontally, right to left; and vertically, top to

bottom. QuickDraw GX allows your application, for example, to draw lines of text in

multiple directions, as shown in Figure 1-8.

Figure 1-8 Multi-direction text

C H A P T E R 1

Introduction to QuickDraw GX Typography

Laying Out Text 1-13

The text in Figure 1-8 contains a mixture of English and Arabic, with the primary

direction being right to left. The figure also shows the character codes and byte offsets

of the source text.

Leading Edges and Trailing Edges

Because text has a direction, the concept of which glyph comes “first” in a line of text

cannot always be limited to the visual terms “left” and “right.” The leading edge is

defined as the edge of a glyph you first encounter—such as the left foot of a Roman

glyph—when you first read the text that includes that glyph. The trailing edge is the

edge of a glyph encountered last.

Figure 1-9 shows how the concepts of leading edge and trailing edge change depending

on the characteristics of the glyph. In the first example—a Roman glyph—the leading

edge is on the left, because the reader encounters that side first. In the second example,

the leading edge of the Hebrew glyph is on the right for the same reason. For more

information, see the chapter “Layout Carets, Highlighting, and Hit-testing” in this book.

Figure 1-9 Leading edges and trailing edges

Baselines

A baseline is an imaginary line that coincides with some point in a font—for example,

the bottom, middle, or top of each glyph. The baseline of a glyph defines the position

of the glyph with respect to other glyphs at different point sizes when all the glyphs are

aligned. It represents a stable platform from which glyphs of different sizes and different

writing systems grow proportionally, as shown in Figure 1-10.

C H A P T E R 1

Introduction to QuickDraw GX Typography

1-14 Laying Out Text

Figure 1-10 Baselines for different sizes of a glyph and for different writing systems

Note that, depending on the writing system, the baseline may be above, below, or

through the center of each glyph.

QuickDraw GX provides your application with capabilities for using multiple baselines.

For more information, see the chapter “Layout Line Control” in this book.

Various baselines can also be used to create special effects, such as drop capitals. (A drop
capital is an initial capital letter that is much larger than surrounding glyphs and

embedded in them.) Figure 1-11 is an example of drop capitals formed solely on the basis

of the baselines in the font. The default baseline for this text is the Roman baseline for

18-point type. The hanging baseline of the drop capitals aligns with the hanging baseline

of the regular text, creating the effect shown.

Figure 1-11 Drop capitals

C H A P T E R 1

Introduction to QuickDraw GX Typography

Laying Out Text 1-15

Text Runs, Style Runs, and Direction Runs
In any segment of contiguous text, certain parts stand out as belonging together, because

the glyphs share a certain font, typestyle, or direction. For the purposes of referring to

individual segments of text, you can think of sequences of glyphs that are contiguous in

memory and share a set of common attributes as runs.

The complete text in a shape is one text run. (A shape has only one text run internally,

although for layout shapes your application can provide multiple text runs.) A sequence

of glyphs continuous in memory that share the same style object is a style run. As

Figure 1-12 shows, a text run can be subdivided into several style runs.

Figure 1-12 Three style runs in a line of text

A sequence of contiguous glyphs that share the same text direction is a direction run. As

with text runs and style runs, the number of direction runs does not necessarily correlate

to the number of style runs available, as shown in Figure 1-13.

Figure 1-13 Two direction runs in a line of text

For more information on using text runs, style runs, and direction runs, see the chapters

“Layout Shapes” and “Glyph Shapes” in this book.

C H A P T E R 1

Introduction to QuickDraw GX Typography

1-16 Laying Out Text

Contextual Forms and Ligatures
A glyph’s position next to other glyphs or its position in a word or a line of text may

determine its appearance. For some writing systems, such as Roman, alternate glyphs

are used for aesthetic reasons; in other writing systems, use of alternate forms is required.

A contextual form is an alternate form of a glyph that is chosen depending on the

glyph’s placement in a certain context, such as a certain word or line. Some contextual

forms of initial and final forms of glyphs in a Roman font are shown in Figure 1-1 on

page 1-4. Other writing systems, such as Arabic, require different contextual forms of

glyphs according to where they appear. Figure 1-14 shows the forms of the Arabic letter

“ha” that appear alone and at the beginning, middle, or end of a word. The same

character code is used for each case; QuickDraw GX finds the appropriate glyph code.

Figure 1-14 Contextual forms of the Arabic letter “ha”

Ligatures are two or more glyphs combined to form a single new glyph (whereas

contextual forms are variations on the shape of one glyph). In the Roman writing system,

ligatures are generally an optional aesthetic refinement; in other writing systems,

special ligatures are required when certain glyphs appear next to one another. Some

examples of ligatures used in a Roman font are shown in Figure 1-15.

Figure 1-15 Examples of Roman ligatures

In general, the font contains all of the information needed to determine when your

application should use the appropriate contextual forms and ligatures. If your applica-

tion allows alternate forms of glyphs to be used, QuickDraw GX does the substitution

for you.

C H A P T E R 1

Introduction to QuickDraw GX Typography

Laying Out Text 1-17

Only the layout shape substitutes ligatures and contextual forms for the character codes

stored in the shape when the shape is displayed, if you request that behavior. The text

and glyph shapes do not perform contextual substitutions.

Alignment and Justification
Once you have the text, you can arrange it in the text area. The text area is the space on

the display device in which the text should fit. The left, right, top, and bottom sides of

that area are the margins.

How you arrange the text depends on the effect you want to achieve. There are two

primary methods of arranging text: alignment and justification.

Alignment is the process of placing text in relation to one or both margins. You can set

the alignment in the style object for glyph and text shapes, but not for layout shapes,

which use a different mechanism to align lines of text.

Figure 1-16 shows left, right, and center alignment of text.

Justification is the process of typographically “stretching” or “shrinking” a line of text

to fit within a given width. Your application can set the width of the space in which

the line of text should appear; QuickDraw GX then distributes the white space available

on the line between words or even between glyphs, depending on the level of justifica-

tion chosen.

For the layout shape, there are other means of aligning or justifying a line—for example,

stretching a glyph or decomposing a ligature. QuickDraw GX can also handle complex

justification such as that used in Arabic writing systems.

For more information about justification, see the chapter “Layout Line Control” in

this book.

Figure 1-16 Different kinds of alignment

C H A P T E R 1

Introduction to QuickDraw GX Typography

1-18 Laying Out Text

Kerning and Tracking
Kerning is an adjustment to the normal spacing between two or more specific glyphs. A

kerning pair consists of two adjacent glyphs such that the position of the second glyph is

changed with respect to the first. The font designer determines which glyphs participate

in kerning and in what context. Any adjustments to glyph positions are specified relative

to the point size of the glyphs. Kerning usually improves the apparent letter-spacing

between glyphs that “fit together” naturally.

Figure 1-17 shows how glyphs are positioned differently with and without kerning. Note

that the phrase is shorter when kerning is applied than when not.

Figure 1-17 Glyphs with and without kerning

Cross-stream kerning allows the automatic movement of glyphs perpendicular to the

line orientation of the text. (For example, when QuickDraw GX applies cross-stream

kerning to horizontal text, the automatic movement is vertical; this feature is required for

writing systems such as Taliq, which is used in the Urdu language.)

When your application lays out text, it has the option of using the interglyph spacing

specified by the font designer or altering the spacing slightly in order to achieve a tighter

fit between letters and improve the look of a line of text.

Your application can also use tracking. In tracking, space is adjusted between all glyphs

in the run. You can increase or decrease interglyph spacing by using a track setting,
which is a value that specifies the relative tightness or looseness of interglyph

spacing. Positive track settings result in an increase in the looseness of all glyphs

in the run. Negative track settings result in a increase in the tightness of all glyphs.

Normal tracking, tight tracking, and loose tracking are shown in Figure 1-18.

For more information about kerning and tracking, see the chapter “Layout Styles” in

this book.

C H A P T E R 1

Introduction to QuickDraw GX Typography

Laying Out Text 1-19

Figure 1-18 Normal, tight, and loose tracking by the selection of track setting

Special Font Features
Some special features are available in certain fonts. You can increase the control a user

has over the presentation of text in a document if you provide access to these features

when they are available in a font; the font provides the functionality for using these

features. Table 1-1 shows some of the currently defined features.

Table 1-1 Some special font features for layout shapes

Feature Description

Ligatures Permits selection from different ranges of ligatures.

Cursive connections Controls the level of cursive connection in the font. This
feature is used in fonts, such as cursive Roman fonts or Arabic
fonts, in which glyphs are connected to each other.

Vertical substitution Specifies that glyphs need to change their appearance in
vertical runs of text.

Smart swashes Controls contextual swash substitution, such as substituting
a final glyph when a particular glyph appears as the end of
a word.

Vertical position Controls superscripts, subscripts, and ordinal forms.

Fractions Governs selection and generation of fractions.

Overlapping glyphs Prevents the collision of long tails on glyphs with the
descenders of other glyphs.

Typographic extras Allows fine typographic effects, such as the automatic
conversion of two adjacent hyphens to an em dash.

Ornament sets Governs nonletter ornament sets of glyphs.

Style options Allows the font designer to group together collections of
noncontextual substitutions into named sets.

Character shape Specifies the use, with Chinese fonts, of the traditional or
simplified character forms.

C H A P T E R 1

Introduction to QuickDraw GX Typography

1-20 Laying Out Text

Some of these features, such as typographic extras, are fancy elements that provide the

user with alternate forms of glyphs or other ornamental designs. Other features are

contextual and absolutely necessary for using that font correctly—for example, cursive

connectors for Arabic. (The fonts that require these features include them.)

Only the layout shape allows you to take advantage of special typographic features in

a font. For more information, see the chapters “Layout Shapes” and “Layout Styles” in

this book.

Line Breaking
A typographic shape is designed to represent one line of text. Your application deter-

mines how wide the text area for a line should be. At times, a user enters a line of text

that does not fit neatly in the given text area and overlaps one of the margins. When this

happens, you break the line of text and wrap the text onto the next line.

Figure 1-19 shows a line break made on the basis of a simple algorithm: the application

backs up in the source text of the shape to the trailing edge of the last white space and

then carries over all of the text following that white space to the next line.

Figure 1-19 Determining where to break a line

Your application can devise more complex algorithms, such as breaking a word at an

appropriate hyphenation point, if possible.

C H A P T E R 1

Introduction to QuickDraw GX Typography

Drawing, Highlighting, and Hit-Testing Text 1-21

QuickDraw GX leaves the final decision about where to break the line up to your

application. However, when you use the layout shape, QuickDraw GX provides you

with a set of functions designed to help you determine the best place to break a line.

For more information, see the chapter “Layout Line Control” in this book.

Drawing, Highlighting, and Hit-Testing Text

After you have laid out the text exactly as you want, you can draw it. If you want

the user to interact with the text, you also need to support carets, highlighting, and

hit-testing.

Drawing text using QuickDraw GX is simple. You draw the typographic shapes exactly

as you might any other type of shape. There are no special requirements for drawing

text; a single call, GXDrawShape, is all you need.

Carets
A caret is a single line that appears at the position in the text where the user can insert

the next character. Carets indicate where the user can next add text. Figure 1-20 shows

how a caret appears between glyphs of a word; if the user were to add new text at this

point, the corresponding glyphs would appear between the “c” and the “i” of the word.

Remember that the glyphs in a line of text are numbered using a 1-based indexing

scheme. (See “Text Storage” on page 1-7.) However, when you place a caret between

glyphs, you need to be able to relate it to the insertion point: a point between byte offsets

in the source text. The edge offset is a byte offset between character codes in the source

text that corresponds to the caret location between glyphs. In Figure 1-20, the edge offset

is 12; the glyphs on either side have indexes of 12 and 13.

C H A P T E R 1

Introduction to QuickDraw GX Typography

1-22 Drawing, Highlighting, and Hit-Testing Text

Figure 1-20 Caret position

C H A P T E R 1

Introduction to QuickDraw GX Typography

Drawing, Highlighting, and Hit-Testing Text 1-23

Highlighting
Highlighting is the display of text in inverse video or with a colored background.

Figure 1-21 shows highlighting in some Arabic text.

Figure 1-21 Highlighting

The characters in memory corresponding to the glyphs that are highlighted make up the

selection range, which indicates where the next editing operation is to occur. The

characters in a selection range are always contiguous in memory, but their corresponding

glyphs are not necessarily so onscreen.

If the selection range crosses a direction boundary—a point at which the direction

of the displayed text changes—you may get discontiguous highlighting, as shown

in Figure 1-22.

Figure 1-22 Discontiguous highlighting

QuickDraw GX provides functions that create carets, contiguous highlighting, and

discontiguous highlighting for a layout shape. If you use one of the other types of

shapes, you must create your own carets and highlighting. For more information,

see the chapter “Layout Carets, Highlighting, and Hit-testing” in this book.

Hit-Testing
Caret handling and highlighting require you to convert from the edge offset to the screen

position. You must also be able to convert from screen position to edge offset. For

example, if the user clicks the mouse button while the cursor is in displayed text, you

need to determine the offset in your text buffer equivalent to that mouse-down event.

You can then use that information to set the insertion point or selection range.

C H A P T E R 1

Introduction to QuickDraw GX Typography

1-24 Drawing, Highlighting, and Hit-Testing Text

QuickDraw GX does most of the work of hit-testing, or converting a location within the

line into the corresponding edge offset that corresponds to that location in the original

string. Figure 1-23 shows a simple example of hit-testing. The user clicks on a glyph near

its boundary with another glyph. QuickDraw GX translates the location of this mouse

click into a point in the view port and to an offset in the source text that marks the

equivalent boundary between character codes. It takes into account the glyph edge (the

leading edge or trailing edge) nearest to which the click occurred and the most appro-

priate place to display the caret.

Figure 1-23 Hit-testing

QuickDraw GX provides functions that perform hit-testing on any type of shape, and

these functions can be used on any typographic shape. In general, if you are using layout

shapes, you should use the layout hit-testing function, which provides more information

about complex situations, such as when the shape contains multi-directional text (for

example, English and Hebrew).

For more information, see the chapter “Layout Carets, Highlighting, and Hit-Testing” in

this book.

Contents 2-1

C H A P T E R 2

Contents

Typographic Shapes

About Typographic Shapes 2-3

Types of Typographic Shapes 2-3

Typographic Shape Structure 2-5

Typographic Shape Attributes 2-6

Default Characteristics of a Typographic Shape 2-6

Typographic Shapes and the Style Object 2-7

The Standard and Typographic Bounding Rectangles 2-7

Using Typographic Shapes 2-8

Positioning Typographic Shapes 2-8

Hit-Testing Typographic Shapes 2-9

Using GXHitTestShape 2-9

Using GXHitTestLayout 2-10

Measuring Typographic Shapes 2-10

Getting the Area of a Typographic Shape 2-10

Getting and Setting the Standard Bounding Rectangle 2-11

Getting the Font Measurements From a Typographic Shape 2-11

Getting the Typographic Bounding Rectangle 2-11

Editing Typographic Shapes 2-12

Converting Typographic Shapes 2-12

Converting a Typographic Shape to Its Primitive Form 2-12

Converting Typographic Shapes to Other Shape Types 2-12

Inserting Part of a Typographic Shape Into Another Shape 2-14

Flattening Typographic Shapes 2-15

Applying Functions Described Elsewhere to
Typographic Shapes 2-16

Shape-Related Functions 2-16

Style-Related Functions 2-20

Ink- and Color-Related Functions 2-20

Transform- and View-Related Functions 2-20

C H A P T E R 2

2-2 Contents

Typographic Shapes Reference 2-20

Constants and Data Types 2-21

Shape Attributes 2-22

Shape Parts 2-23

Functions 2-24

Measuring Typographic Shapes 2-24

GXGetGlyphMetrics 2-24

GXGetShapeTypographicBounds 2-26

Summary of Typographic Shapes 2-27

C H A P T E R 2

About Typographic Shapes 2-3

Typographic Shapes

This chapter gives an overview of the typographic shape objects and the functions

you can use to manipulate them. Read this chapter if you create or use any kind of

QuickDraw GX typographic shapes.

Before reading this chapter, you should be familiar with the information in the

chapter “Introduction to QuickDraw GX Typography” in this book. You also need

to be familiar with the concept of objects as described in the book Inside Macintosh:
QuickDraw GX Objects.

This chapter introduces the QuickDraw GX typographic shape object, explains how

it relates to the concept of a QuickDraw GX shape object, and describes typographic

shapes and their properties. It then shows how to use QuickDraw GX functions to

■ hit-test typographic shapes

■ measure typographic shapes

■ convert typographic shapes to other types of shapes

■ flatten typographic shapes

■ use functions described in Inside Macintosh: QuickDraw GX Objects and Inside
Macintosh: QuickDraw GX Graphics on typographic shapes

About Typographic Shapes

Typographic shapes are the QuickDraw GX shapes that display text: text shapes, glyph

shapes, and layout shapes. In general, they act like other QuickDraw GX shapes, such as

paths, polygons, or pictures. The geometry of the shape holds the unique characteristics

of the typographic shape.

Each of the three shape types has different capabilities that make them suited for different

uses. The needs of your application determine which type of shape you should use.

Types of Typographic Shapes
Text shapes contain the text you want to draw, one style to draw the text in, and a

position at which to start drawing the text. They provide the simplest way for your

application to draw text. Figure 2-1 shows how a text shape looks when drawn.

Figure 2-1 Text shape

C H A P T E R 2

Typographic Shapes

2-4 About Typographic Shapes

Note
In this book, the term text always refers to displayed writing. When
referring to the text shape, this book always uses the term text shape. ◆

Glyph shapes allow you to draw text in several styles with independently positioned

glyphs. You can give each glyph in the shape its own absolute position and draw each

glyph at a different angle. In Figure 2-2, the glyph shape has two styles: most of the

sentence is in regular Hoefler Text Italic, and the word “offices” is in bold. In addition,

the shape is angled so that the first half of the sentence is at a 90-degree angle to the

second half.

Figure 2-2 Glyph shape

Note
Do not confuse the term glyph with the shape type glyph shape, which is
one of the typographic shapes. A glyph is a single unit of a font, and a
glyph shape is a QuickDraw GX shape type that, when drawn, contains
one or more glyphs. When referring to the shape, this book always uses
the phrase glyph shape. ◆

Layout shapes display text in a typographically sophisticated manner. These shapes use

more information from the font than other shapes do in order to display text correctly.

Correct display might require kerning the text, drawing the glyphs in a left-to-right or

right-to-left direction, or choosing different versions of glyphs depending on the glyph’s

position in the text. For example, a layout shape containing Arabic text automatically

draws the text from right to left and joins the glyphs together as required by the Arabic

script. Figure 2-3 shows a layout shape with the same text as Figure 2-2. However, the

layout shape uses information in the font to pick the best glyphs for display. Note that

the uppercase “T” that begins the sentence is a variant form of the glyph that appears in

Figure 2-2, because the “T” in Figure 2-3 is in a ligature. Also notice several other ligatures.

C H A P T E R 2

Typographic Shapes

About Typographic Shapes 2-5

Figure 2-3 Layout shape

Typographic Shape Structure
Typographic shapes are organized like other shapes: they have the same shape object

structure and have associated style, ink, and transform objects. Figure 2-4 shows the

organization of a typographic shape, including the contents of its geometry.

Figure 2-4 Geometry of a typographic shape

C H A P T E R 2

Typographic Shapes

2-6 About Typographic Shapes

The geometry of a typographic shape contains the following elements in common:

■ Character count. For text and glyph shapes only, the number of characters in the text
array (byte count for layout shapes).

■ Text. For glyph and layout shapes only, an array of character codes, glyph codes, or
both character and glyph codes. For text shapes only, an array of character codes or
glyph codes.

■ Position. The starting position of the typographic shape in geometry space.

Note

The shape type property specifies whether the
shape is a text, glyph, or layout shape. ◆

Typographic Shape Attributes

Typographic shapes, like other shapes, use shape attributes. The two shape attributes

that apply most frequently to typographic shapes are the gxMapTransformShape and

gxIgnorePlatformShape shape attributes.

■ The gxMapTransformShape shape attribute applies transformation operations—for
example, rotating, scaling, or skewing—to the shape’s transform object rather than
changing the information in the shape object’s geometry. This attribute is set by default
for layout shapes.

■ The gxIgnorePlatformShape shape attribute indicates that QuickDraw GX should
treat the codes in the geometry of this shape as glyph codes rather than as character
codes. This attribute overrides information in the style object or style run arrays about
the platform, script, and language used for individual style runs (explained in the
chapter “Typographic Styles” in this book). The only time your application needs to
set this attribute is if it needs to specify glyph codes directly—for example, if it is a
font editor.

Default Characteristics of a Typographic Shape

The default settings for all typographic shapes are:

■ Geometry: depends on the particular typographic shape. See the chapters “Text
Shapes,” “Glyph Shapes,” and “Layout Shapes” in this book for specifics about the
geometry of each of these shapes.

■ Fill: winding fill. The valid fill types for typographic shapes are: winding, even-odd,
and no fill.

■ Style: the same default style object as other QuickDraw GX shapes. See the chapter
“Typographic Styles” for more information about style properties, such as text
attributes, that are specific to typographic shapes.

■ Ink: the same default ink object as other shapes. Thus, the entire shape can only have
one color, and all glyphs in the shape must be of the same color.

■ Transform: the same default transform object as other shapes. The default layout shape
has the gxMapTransformShape attribute set, whereas the other two typographic
shapes, text and glyph shapes, do not. If the gxMapTransformShape attribute is set,

C H A P T E R 2

Typographic Shapes

About Typographic Shapes 2-7

any transformations that you apply to the shape are in fact applied to the mapping of
the transform object. If the attribute is not set, the transformations are applied to the
shape’s geometry.

■ Shape attributes: none. The exception is the layout shape, which has the
gxMapTransformShape attribute set.

■ Owner count: 1.

■ Tags: none.

Typographic Shapes and the Style Object

The style object associated with a typographic shape contains the font, the text size in

points, and other information that determines the characteristics of a shape when it is

displayed. (For more information about the parts of a style object that apply to typo-

graphic shapes, see the chapter “Typographic Styles” in this book.)

The Standard and Typographic Bounding Rectangles
Every QuickDraw GX shape has a standard bounding rectangle, which is the smallest

rectangle that completely encloses the filled or framed parts of the shape. However,

because of the height differences between glyphs—for example, between a small glyph,

such as a lowercase “e”, and a taller, larger glyph, such an uppercase “M”, or even

between glyphs of different fonts and point sizes—the standard bounding rectangle

may not be sufficient for your application’s purposes. Therefore, you can also use the

typographic bounding rectangle, which is the smallest rectangle that encloses the full

span of the glyphs from the ascent line to the descent line.

Figure 2-5 shows an example of how the typographic bounding rectangle and standard

bounding rectangle relate. The two rectangles are markedly different because the text has

no ascenders or descenders. Whereas the standard bounding rectangle encloses just the

black bits of the shape, the typographic bounding rectangle takes into account the ascent

and descent lines for the shape. If the text in the figure includes glyphs with ascenders

and descenders, the typographic bounding rectangle doesn’t change, but the standard

bounding rectangle does.

Figure 2-5 Standard bounding rectangle and typographic bounding rectangle

C H A P T E R 2

Typographic Shapes

2-8 Using Typographic Shapes

Using Typographic Shapes

This section describes the basic method of creating a typographic shape and some ways

you might manipulate that shape. You can manipulate all three types of shapes in these

ways, unless otherwise noted. For detailed information on using a specific typographic

shape, look in this book for the chapter that describes that shape.

Because typographic shapes act like other types of shapes, you can use many of the

functions described in Inside Macintosh: QuickDraw GX Objects on any of the typographic

shapes. You can also use many of the functions described in Inside Macintosh: QuickDraw
GX Graphics on the typographic shapes; these functions are mentioned in this section.

This chapter assumes that you are either familiar with these functions already or have

access to these other books—the function descriptions are not repeated here.

This section describes how you can

■ position typographic shapes

■ hit-test typographic shapes

■ measure typographic shapes

■ edit typographic shapes

■ convert typographic shapes to other shape types

■ insert part of a typographic shape into another shape

■ flatten typographic shapes

Positioning Typographic Shapes
The initial position of your typographic shape is specified when the shape is created. In

some cases, this will suffice. In other cases, you may wish to actually move the shape.

To move a shape to a specified position, use the GXMoveShapeTo function. This function

positions the shape at a specified point and either changes the shape’s transform object

to reflect the move or changes the geometry of the shape, depending on whether the

gxMapTransformShape shape attribute is set. For example, if you want to move the

glyph origin of a typographic shape to the point (100.0,50.0), make this call:

GXMoveShapeTo(myGlyphShape, ff(100), ff(50));

The GXMoveShapeTo function can move a shape a specified distance rather than to a

specified point, if the map transform bit is set and the shape has the identity transform.

You can also use the GXMoveShape function to move a shape a specified distance from

its original position. This function moves the shape horizontally and vertically by the

distances you specify. It either changes the shape’s transform object to reflect the move or

C H A P T E R 2

Typographic Shapes

Using Typographic Shapes 2-9

changes the geometry of the shape, depending on whether the gxMapTransformShape

attribute is set. For example, if you want to move the glyph origin of a typographic

shape down and to the right by 30 points, make this call

GXMoveShape(myTextShape, ff(30), ff(30));

The GXMoveShapeTo and GXMoveShape functions are described in Inside Macintosh:
QuickDraw GX Objects.

Hit-Testing Typographic Shapes
Hit-testing is a way of determining where the user clicked. To hit-test a typographic shape,

QuickDraw GX provides two functions: GXHitTestShape and GXHitTestLayout.

Using GXHitTestShape

You can use the GXHitTestShape function to hit-test any kind of shape. This function

takes parameters specifying the shape and the point where the user clicked, and it

returns a gxHitTestInfo structure, which contains information about the specified

point: its location in the shape and its distance from the bounding box of the glyph,

depending on the hit-test parameters.

Figure 2-6 shows an example of hit-testing a typographic shape.

Figure 2-6 Hit-testing a typographic shape

The GXHitTestShape function and the gxHitTestInfo structure are described in

Inside Macintosh: QuickDraw GX Objects. Functions specifically designed to hit-test

layout shapes are described in the chapter “Layout Carets, Highlighting, and Hit-

Testing” in this book.

C H A P T E R 2

Typographic Shapes

2-10 Using Typographic Shapes

Using GXHitTestLayout

You can use the GXHitTestLayout function to convert a view port location (repre-

senting, for example, the position of a mouse-down event) into an edge offset in the

source text of a layout shape. The GXHitTestLayout function determines which part

of which glyph in the display text of a layout shape is closest to a particular location.

The GXHitTestLayout function is described in the chapter “Layout Carets,

Highlighting, and Hit-Testing” in this book.

Measuring Typographic Shapes
You can measure typographic shapes exactly as you would any other type of shape:

using, for example, the GXGetShapeArea function. This function returns the area

covered by the shape’s standard bounding rectangle. You can also measure a typo-

graphic shape in different ways: you can get the bounding boxes of the individual

glyphs in the shape or the typographic bounding rectangle of the shape.

This section describes how you can

■ get the area of a typographic shape

■ get and set the standard bounding rectangle

■ get the font measurements from a typographic shape

■ get the typographic bounding rectangle

Functions specific to the layout shape that measure line lengths and line spans are

described in the chapter “Layout Line Control” in this book.

Getting the Area of a Typographic Shape

To get the area of the shape in square points, you can use the GXGetShapeArea

function. For example, if you want the total area of a layout shape, send the function

a reference to the shape, an index of 0, and a reference to a variable that will hold the

result of the function:

GXGetShapeArea(myLayoutShape, 0, &theArea);

The GXGetShapeArea function converts a copy of the shape into a path before com-

puting the area. The index can be 0, to refer to all paths, or an index to a specific contour.

Because contours don’t necessarily have a one-to-one correspondence to characters or

glyphs, it is rarely useful to specify a nonzero index for typographic shapes.

The function measures the shape area as defined in the shape’s geometry; it does not

consider transformations to the shape made by the shape’s transform object.

The GXGetShapeArea function is described in Inside Macintosh: QuickDraw GX Graphics.

C H A P T E R 2

Typographic Shapes

Using Typographic Shapes 2-11

Getting and Setting the Standard Bounding Rectangle

To get the bounding rectangle of the shape, which is the smallest rectangle that

completely encloses the filled part of the shape, you can use the GXGetShapeBounds

function, which is described in Inside Macintosh: QuickDraw GX Graphics.

You can change the size of a typographic shape using the GXSetShapeBounds function,

which is also described in Inside Macintosh: QuickDraw GX Graphics. By changing the

bounding rectangle of the shape, you can change the width and height of the glyphs in

the shape.

Figure 2-7 shows how decreasing the bounding rectangle can affect the size of the

resulting shape. As with other shape types, the gxMapTransformShape attribute of

the source shape determines how the function changes the bounding rectangle. If this

attribute is set, the function does not alter the shape’s geometry directly; if it is not, the

function changes the geometry of the source shape to fit the new bounding rectangle.

Figure 2-7 Effects of the GXSetShapeBounds function

Getting the Font Measurements From a Typographic Shape

To get the glyph origins, bounding boxes, and left-side bearings of the glyphs in the

typographic shape, you can use the GXGetGlyphMetrics function, which is described

on page 2-24.

Getting the Typographic Bounding Rectangle

To get the typographic bounding rectangle of the shape, you can use the

GXGetShapeTypographicBounds function, which is described on page 2-26. The

function returns a rectangle that completely encloses the shape, from the highest

ascent line to the lowest descent line in the shape. (Ascent lines and descent lines are

described in the chapter “Introduction to QuickDraw GX Typography” in this book.

You cannot set the typographic bounding rectangle, because the measurements of the

glyphs in the shape are determined by the font, not by QuickDraw GX.

C H A P T E R 2

Typographic Shapes

2-12 Using Typographic Shapes

Editing Typographic Shapes
In general, you should use the GXSetShapeType and GXSetShapeTypeParts functions

to edit typographic shapes. Each shape—text, glyph, or layout—has its own specific

function, such as GXSetTextParts. These functions are more efficient than

GXSetShapeType functions because you don’t have to replace all of the information

in a shape at once, as you do with the GXSetShapeType functions. Instead, you can

replace specific parts of the shape, such as inserting text into the shape’s text array,

quickly. For example, use GXSetLayoutParts to append a single character to an

existing layout shape.

Converting Typographic Shapes
You can convert one typographic shape to its primitive form or to a geometric shape,

bitmap, or picture. This section describes these operations.

Converting a Typographic Shape to Its Primitive Form

You can use the GXPrimitiveShape function, described in Inside Macintosh: QuickDraw
GX Graphics, to convert any of the typographic shapes to their primitive forms. The

primitive form of a typographic shape is a glyph shape, unless the typographic shape

has one or more text faces, in which case its primitive form is a path shape.

The primitive glyph shape contains simple styles in its style run; none of the style run

entries are nil, and the styles do not contain tags, caps, dashes, patterns, joins, font

variations, text faces, or any of the layout style features, such as run controls, justification

overrides, glyph substitutions, run features, or kerning adjustments. (Font variations and

text faces are discussed in the chapter “Typographic Styles” in this book. Caps, dashes,

patterns, and joins are discussed in the chapter “Geometric Styles” in Inside Macintosh:
QuickDraw GX Graphics.)

The GXPrimitiveShape function replaces any nil styles in the style list with a refer-

ence to the shape’s style object.

Converting Typographic Shapes to Other Shape Types

You can change any type of typographic shape to a geometric shape, bitmap shape, picture

shape, an empty shape, or a full shape, with the varying results shown in Table 2-1.

You cannot, however, change other types of shapes to typographic shapes. If you

try to convert the data from a geometric shape, a bitmap shape, or a picture shape

to a typographic shape, QuickDraw GX always posts the error

new_shape_contains_invalid_data.

C H A P T E R 2

Typographic Shapes

Using Typographic Shapes 2-13

You can change any type of typographic shape into another typographic shape with the

varying results shown in Table 2-2.

Table 2-1 Results of converting typographic shapes to other types of shapes

New shape type Result

Point A point equal to the upper-left corner of the bounding rectangle of
the original shape.

Line A line from the upper-left corner to the lower-right corner of the
bounding rectangle of the original shape.

Curve A point equal to the glyph origin for the original shape.

Rectangle The bounding rectangle of the original shape.

Polygon A polygon of the text from the original shape.

Path A path shape that traces the text from the original shape.

Bitmap A bitmap of the text from the original shape.

Picture A picture of the text from the original shape.

Empty An empty shape.

Full A full shape.

Table 2-2 Converting a typographic shape to another typographic shape

Source shape Target shape Result

Glyph shape Text shape The source text is gathered together and set as the
text shape’s text, but the new text shape gets the
default style (which may not match the style infor-
mation of the original glyph shape). None of the
tangent, positioning, or advance bit information is
preserved (except for the initial position, which is
set as the position of the text shape).

Glyph shape Layout shape The source text and style run information is con-
verted. Any specified tangents, advance bits, or
positions are not included in the resulting layout
shape (except for the initial position, which is set
as the position of the layout shape).

Text shape Glyph shape A one-run glyph shape using the text shape’s text
and the default style is the result.

Text shape Layout shape A one-run layout using the text shape’s text and
the default style is the result.

continued

C H A P T E R 2

Typographic Shapes

2-14 Using Typographic Shapes

Inserting Part of a Typographic Shape Into Another Shape
You can use the GXGetShapeParts and GXSetShapeParts functions, described in the

chapter “Geometric Shapes” in Inside Macintosh: QuickDraw GX Graphics, to insert

parts of one typographic shape into another typographic shape. You can also use the
GXSetShapeTypeParts functions described in the chapters “Text Shapes,” “Glyph

Shapes,” and “Layout Shapes” in this book.

Note

When you use these functions with typographic shapes, a “shape part”
consists of one or more characters or glyphs and any styles that apply to
those characters or glyphs. These functions do not use the hit-testing
gxShapeParts enumeration, described on page 2-23. ◆

For example, suppose a text shape contains “abcd” and a glyph shape contains “efgh”.

The following code fragment inserts the first three glyphs from the text shape (“abc”)

into the middle of the glyph shape (after “f”):

GXGetShapeParts(myTextShape, 1, 3, myInsertShape);

GXSetShapeParts(myGlyphsShape, 2, 0, myInsertShape,

myEditShapeFlags);

The result of this code would be a glyph shape that reads “efabcgh”.

If you want to put part of a geometric shape, a full shape, or a picture shape into a glyph

or layout shape, the GXSetShapeParts function converts the part to be inserted to the

empty shape. If you want to insert the part into a text shape, the function converts both

shapes to path shapes. Table 2-3 lists the behavior for most of the general operations

involving the GXSetShapeParts function.

Layout shape Glyph shape This conversion can be done in one of two ways.
If GXSetShapeType is used, the resulting glyph
shape has the same geometry as the layout
shape, with none of the layout effects. If
GXPrimitiveShape is used, the resulting glyph
shape has all the layout effects.

Layout shape Text shape The source text is gathered together and set as
the text shape’s text, but the new text shape gets
the default style (which may not match the style
information of the original glyph shape). None of
the layout effects are preserved.

Table 2-2 Converting a typographic shape to another typographic shape (continued)

Source shape Target shape Result

C H A P T E R 2

Typographic Shapes

Using Typographic Shapes 2-15

Note

The layout shape has its own functions for getting and setting
shape parts. The functions GXSetLayoutShapeParts and
GXGetLayoutShapeParts are described in the chapter “Layout
Shapes” in this book. The GXGetTextParts and the GXSetTextParts
functions are described in the chapter “Text Shapes” in this book.
The GXGetGlyphParts and the GXSetGlyphParts functions are
described in the chapter “Glyph Shapes” in this book. ◆

Flattening Typographic Shapes
You can use the GXFlattenShape function (described in Inside Macintosh: QuickDraw
GX Objects) on typographic shapes exactly as you would on any other type of shape.

Flattening a shape, however, does not flatten the fonts that are in that shape. It does

flatten all the style objects in the style list that are part of the geometry of a glyph or

layout shape.

When you flatten a shape that contains fonts, QuickDraw GX creates a flat font list. This

list specifies which fonts were used in the shape, which glyphs in that font were used in

the shape, or both. Each entry in the flat font list has the tag 'flst'.

To flatten the fonts in the shape and include them along with the flattened shape, you

can use the entries in the flat font list.

Table 2-3 Setting the shape parts of various types of shapes

Source shape Target shape Action

Typographic Point, line Changes a typographic shape to a
polygon shape.

Typographic Curve, path Changes a typographic shape to a path shape.

Typographic Rectangle Posts the error
rectangle_cannot_be_inserted_into.

Typographic Bitmap Posts the warning
shape_operator_may_not_be_a_bitmap.

Typographic Picture Replaces the specified shape or shapes in the
picture with the parts of the source shape.

Glyph, layout Text Changes a text shape to a glyph or layout shape.

Geometry, full,
picture

Glyph, layout Converts the source shape to an empty
shape and posts the warning
shape_does_not_contain_text.

Bitmap Glyph, layout Posts the warning
shape_operator_may_not_be_a_bitmap.

Geometry, full,
picture

Text Changes both shapes to path shapes.

C H A P T E R 2

Typographic Shapes

2-16 Applying Functions Described Elsewhere to Typographic Shapes

For more information about flattening shapes, see the chapter “Shape Objects” of Inside
Macintosh: QuickDraw GX Objects and the chapter “QuickDraw GX Stream Format” of

Inside Macintosh: QuickDraw GX Environment and Utilities.

Applying Functions Described Elsewhere to
Typographic Shapes

QuickDraw GX provides only a small number of functions that apply exclusively to

typographic shapes. However, most of the QuickDraw GX functions that apply to

other types of shapes can also be applied to typographic shapes.

The next four sections give an overview of these functions and their effects on

typographic shapes.

■ “Shape-Related Functions,” lists functions that operate on typographic shape objects
and geometric operations that work for typographic shape geometries.

■ “Style-Related Functions” on page 2-20 discusses how style-related functions affect
the drawing of typographic shapes.

■ “Ink- and Color-Related Functions” on page 2-20 discusses how the transfer mode of
a typographic shape’s ink object is used to draw a typographic shape.

■ “Transform- and View-Related Functions” on page 2-20 lists the functions that allow
you to map and clip a typographic shape as well as set its hit-test parameters and its
view-port list. This section also includes the functions that manipulate the typo-
graphic shape associated with a view device object.

Shape-Related Functions
You can apply all of the functions described in the “Shape Objects” chapter of Inside
Macintosh: QuickDraw GX Objects to typographic shapes. These functions allow you to:

■ manipulate the shape object that represents the typographic shape; for example, copy,
clone, cache, compare, and dispose of the typographic shape

■ set the geometry, shape type, shape fill, and shape attributes of the typographic shape

■ change the style, ink, and transform objects that are associated with the typo-
graphic shape

■ manipulate the typographic shape’s tags and owner count

Table 2-4 gives a partial list of the functions from the chapter “Shape Objects” in Inside
Macintosh: QuickDraw GX Objects. You should be aware of the results these functions

have when you apply them to typographic shapes. All other general shape functions

should act on typographic shapes exactly as they do on any other type of shape.

C H A P T E R 2

Typographic Shapes

Applying Functions Described Elsewhere to Typographic Shapes 2-17

You can also apply certain geometric shape functions to typographic shapes. Table 2-5

gives a selected list of the functions from the chapter “Geometric Shapes” in Inside
Macintosh: QuickDraw GX Graphics. You should be aware of the effects of these functions

have when you apply them to typographic shapes.

You can also apply certain geometric operation functions to typographic shapes.

Table 2-6 gives partial list of the functions from the chapter “Geometric Operations”

in Inside Macintosh: QuickDraw GX Graphics. You should be aware of the effects these

functions have when you apply them to typographic shapes. All other functions in this

chapter should act on, or have no meaning for, typographic shapes.

Table 2-4 Selected effects of shape-related functions that you can apply to
typographic shapes

Function name Action taken

GXCopyToShape Makes a copy of the typographic shape. It does not copy the
styles in the styles list (for glyph and layout shapes).

GXCopyDeepToShape Makes a copy of the typographic shape, including copies of
the style in the styles list (for glyph and layout shapes).

GXGetShapeStyle Returns the style object associated with the
typographic shape.

Table 2-5 Geometric shape functions that you can apply to typographic shapes

Function name Action taken

GXCountShapeContours For text and layout shapes, the function returns the
number of bytes. For glyph shapes, it returns the num-
ber of characters.

GXCountShapePoints Returns 1 for text shapes. For glyph and layout shapes,
the contour parameter specifies the style run about
which you want information (or, if you pass 0, the entire
shape). For glyph shapes, the function returns the num-
ber of characters in the specified style run or in the
shape. For layout shapes, the function returns
the number of bytes in the specified style run or
in the shape.

GXGetShapeIndex Posts the warning graphic_type_does_not_
have_multiple_contours and returns 0.

GXGetShapePoints For text and layout shapes, the function always returns
1. For glyph shapes, it returns the positions array of the
shape and the number of entries in the array.

GXSetShapePoints For text and layout shapes, sets the initial glyph position
of the shape. For glyph shapes, the function sets
elements in the positions array.

C H A P T E R 2

Typographic Shapes

2-18 Applying Functions Described Elsewhere to Typographic Shapes

Table 2-6 Geometric operations that you can apply to typographic shapes

Function name Action taken

GXBreakShape Converts text and layout shapes into glyph shapes.
On glyph shapes, the function uses the index
parameter as a character index and splits the style
run at that index into two runs.

GXContainsBoundsShape Returns true if the rectangle indicated in the
container parameter contains the bounding
rectangle of the untransformed typographic shape;
returns false otherwise.

GXContainsShape Treats both parameters of the function as though
they were path shapes. The function returns true
if the container parameter is equal to or larger
than the area of the test parameter.

GXGetShapeDirection Posts the error illegal_type_for_shape.

GXReverseShape Posts the warning contour_out_of_range.

GXReduceShape Posts the warning
graphic_type_cannot_be_reduced.

GXSimplifyShape Posts the notice
shape_already_in_simple_form.

GXPrimitiveShape Creates the primitive form of the
typographic shape.

GXGetShapeLength Posts the warning
shape_does_not_have_length.

GXShapeLengthToPoint For text and glyph shapes, posts the warning
shape_does_not_have_length.

GXGetShapeArea Converts layout shapes to glyph shapes before
continuing. For text and glyph shapes, the function
returns the weighted center of all of the bounding
boxes of all glyphs (excluding glyphs without
contours, such as the space glyph).

GXGetShapeCenter Returns the point that is the center of the shape’s
standard bounding rectangle.

GXGetShapeBounds Returns the bounds of the black bits area of the
specified glyph in the shape or the bounds of all the
glyphs in the shape if you specify an index of 0. For
layout shapes, the function returns the bounds as if
the layout shape had been converted to a glyph
shape by GXPrimitiveShape.

continued

C H A P T E R 2

Typographic Shapes

Applying Functions Described Elsewhere to Typographic Shapes 2-19

The other functions described in the chapter “Geometric Operations” are primarily

designed for the geometric, bitmap, and picture shape types. These functions and the

errors and warnings that they post are described in Inside Macintosh: QuickDraw
GX Graphics.

GXSetShapeBounds If the new bounds is a translation of the old
bounds or if the scaling is square, changes the
shape type to a glyph shape and changes the
tangents array of the shape. Keep in mind that
if the gxMapTransformShape attribute is set,
this function changes the typographic shape’s
transform mapping; otherwise, it changes the
geometry. If the scaling is not square, the function
changes the shape to a path shape.

GXInsetShape Moves the on-curve control points of each glyph by
the amount you specify. If you specify very small
values for the inset parameter, you can use the
function to make the glyphs of the shape thicker or
thinner, creating a bold or thin look for the glyphs.
However, large inset values are discouraged,
because they may distort the glyphs beyond
recognition.

GXTouchesBoundsShape Treats the typographic shape as if it were a path
shape, although the function does not change the
shape’s actual type. The function returns true if
the rectangle indicated in the target parameter
intersects the bounding rectangle of the path shape
described by the untransformed typographic shape;
returns false otherwise.

GXTouchesShape Returns true if two shapes intersect. One or both
of the shapes may be typographic shapes.

GXInvertShape Posts the warning shape_cannot_be_inverted.

GXIntersectShape
GXUnionShape
GXDifferenceShape
GXReverseDifferenceShape
GXExcludeShape

If the typographic shape is the shape specified by
the target parameter, these functions convert the
shape to a path shape in most cases. Otherwise,
these functions act exactly as they do for other
shape types.

Table 2-6 Geometric operations that you can apply to typographic shapes (continued)

Function name Action taken

C H A P T E R 2

Typographic Shapes

2-20 Typographic Shapes Reference

Style-Related Functions
Functions and attributes related to how typographic shapes use the style object are

described in the chapter “Typographic Styles” in this book.

Although you can use certain functions described in Inside Macintosh: QuickDraw GX
Graphics (such as GXSetShapePen, GXSetShapeDash, and so on) to set the other

properties of a typographic shape’s style object and other corresponding functions

(GXGetShapePen, GXGetShapeDash, and so on) to examine those properties,

QuickDraw GX ignores these properties when drawing a typographic shape. It does

use them, however, when these properties are part of a text face’s style. (See the

chapter “Typographic Styles” for more information on how the style object can use

geometric properties.)

Ink- and Color-Related Functions
You can use only a single ink object when drawing a typographic shape; thus, the entire

shape must share the same color. QuickDraw GX considers the transfer mode of the ink

object and applies it when drawing a typographic shape.

Transform- and View-Related Functions
You can apply all of the transform-related functions to typographic shapes. If the

gxMapTransformShape shape attribute is set, all transformations are applied to the

mapping matrix in the shape’s transform object. If the attribute is not set, the transfor-

mations are applied to the shape’s geometry. (The layout shape, by default, has the

gxMapTransformShape shape attribute set; the text and glyph shapes do not.)

Table 2-7 gives a partial list of the functions from the “Transform Objects” chapter of

Inside Macintosh: QuickDraw GX Objects. You should be aware of the effects these

functions have when you apply them to typographic shapes. All other functions should

act on typographic shapes exactly as they do on any other type of shape

Typographic Shapes Reference

This section describes constants, data types, and functions that are useful for all three

typographic shapes: text shapes, glyph shapes, and layout shapes.

Each shape type also has its own constants, data types, and functions, in addition to the

ones described in this chapter. See the chapters “Text Shapes,” “Glyph Shapes,” and

“Layout Shapes” in this book.

C H A P T E R 2

Typographic Shapes

Typographic Shapes Reference 2-21

Constants and Data Types

This section describes how those parts of the gxShapeAttributes enumeration and

the gxShapeParts enumeration that apply specifically to typographic shapes. The

gxShapeAttributes enumeration is described in more detail in the “Shape Objects”

chapter in Inside Macintosh: QuickDraw GX Objects; the gxShapeParts enumeration is

described in the “Transform Objects” chapter of Inside Macintosh: QuickDraw GX Objects.

Shape Attributes

Each shape object has a set of shape attributes. Shape attributes are a group of flags that

modify the behavior of the shape object. The shape attributes are defined as follows:

enum gxShapeAttributes{

gxNoAttributes,

gxDirectShape = 0x0001,

gxRemoteShape = 0x0002,

gxCachedShape = 0x0004,

gxLockedShape = 0x0008,

gxGroupShape = 0x0010,

gxMapTransformShape = 0x0020,

gxUniqueItemsShape = 0x0040,

gxIgnorePlatformShape = 0x0080,

gxNoMetricsGridShape = 0x0100,

gxDiskShape = 0x0200,

gxMemoryShape = 0x0400

};

typedef long gxShapeAttribute;

The following constants are of particular use for typographic shapes:

Constant descriptions

gxMapTransformShape
Indicates that any transforms or mappings you apply to the shape
are applied to the shape’s transform object. This bit is set by default
for layout shapes. If this bit is not set, transforms and mappings are
applied to the shape’s geometry.

gxIgnorePlatformShape
Indicates that the typographic shape contains only glyph codes,
which are 16-bit long values. This value overrides the current
setting of the platform value of the style object. Setting this attribute
is equivalent to setting the platform of all the styles attached to a
shape to gxGlyphPlatform.

gxNoMetricsGridShape
Indicates that QuickDraw GX is not to use hints that may be
provided by a font. Set this attribute if you intend to manipulate

C H A P T E R 2

Typographic Shapes

2-22 Typographic Shapes Reference

text as a shape. The hinting can affect a shape’s geometry, which
may be undesirable if you want to perform other operations, such
as scaling, on the shape.

All other values in the gxShapeAttributes enumeration are described in the chapter

“Shape Objects” in Inside Macintosh: QuickDraw GX Objects. Font platforms are described

in the chapter “Font Objects” in this book.

Shape Parts

To determine exactly where the user clicked on a glyph, use the values of the

gxShapeParts enumeration.

enum gxShapeParts {/* parts of a gxShape in hit-testing: */

gxNoPart = 0, /* (in order of evaluation) */

gxBoundsPart = 0x0001,

gxGeometryPart = 0x0002,

gxPenPart = 0x0004,

gxCornerPointPart = 0x0008,

gxControlPointPart = 0x0010,

gxEdgePart = 0x0020,

gxJoinPart = 0x0040,

gxStartCapPart = 0x0080,

gxEndCapPart = 0x0100,

gxDashPart = 0x0200,

gxPatternPart = 0x0400,

gxGlyphBoundsPart = gxJoinPart,

gxGlyphFirstPart = gxStartCapPart,

gxGlyphLastPart = gxEndCapPart,

gxSideBearingPart = gxDashPart,

gxAnyPart = gxBoundsPart | gxGeometryPart |

gxPenPart | gxCornerPointPart | gxControlPointPart |

gxEdgePart | gxJoinPart | gxStartCapPart | gxEndCapPart |

gxDashPart | gxPatternPart

};

typedef long gxShapePart;

The following constants are of particular use for typographic shapes.

Constant type descriptions

gxBoundsPart Indicates that the user clicked within the bounds rectangle that
surrounds the shape. You can get this rectangle using the
GXGetShapeBounds function, described in Inside Macintosh:
QuickDraw GX Graphics.

C H A P T E R 2

Typographic Shapes

Typographic Shapes Reference 2-23

gxCornerPointPart
Indicates that the user clicked on the glyph advance starting pen
position.

gxControlPointPart
Indicates that the user clicked on the character advance ending pen
position.

gxEdgePart Indicates that the user clicked on the line defined by the advance
vector (starting pen position to ending pen position).

gxGlyphBoundsPart
Indicates that the user clicked in the bounding box of the glyph.

gxGlyphFirstPart
Indicates that the user clicked on the left or top side of the glyph
(depending on the rotation of the shape).

gxGlyphLastPart Indicates that the user clicked on the right or bottom side of the
glyph (depending on the rotation of the shape).

gxSideBearingPart
Indicates that the user clicked in the side bearing of the glyph.
You can use this value in combination with either the
gxGlyphFirstPart or gxGlyphLastPart values to determine
whether the user clicked on the left or right (top or bottom) side
of the glyph.

All other values in the gxShapeParts enumeration are described in the “Transform

Objects” chapter of Inside Macintosh: QuickDraw GX Objects.

Functions

This section describes the functions that allow you to get the measurements of the

advance widths, bounding boxes, and side bearings of any of the typographic shapes.

Measuring Typographic Shapes

The GXGetGlyphMetrics function returns the metrics of the glyphs produced by the

shape. The measurements for these glyphs may change depending on the font, text size,

platform value, text direction (horizontal or vertical), and other variables.

The GXGetShapeTypographicBounds function returns the typographic bounding

rectangle. (See the section “The Standard and Typographic Bounding Rectangles” on

page 2-7 for more information about the typographic bounding rectangle.)

C H A P T E R 2

Typographic Shapes

2-24 Typographic Shapes Reference

GXGetGlyphMetrics

You can use the GXGetGlyphMetrics function to determine the metrics of the glyphs

in any typographic shape.

long GXGetGlyphMetrics(gxShape source, gxPoint glyphOrigins[],

 gxRectangle boundingBoxes[],

 gxPoint sideBearings[]);

source A reference to the typographic shape (text, glyph, or layout) whose
metrics you want to determine.

glyphOrigins
An array of point structures. On return, the array contains the glyph
origins, as points in the view port, for the glyphs in the shape. The array
always contains one entry more than the number of glyphs in the shape.
The last entry is the position of the end of the advance width of the final
glyph in the shape. This array is optional; you may pass nil for this
parameter.

boundingBoxes
An array of rectangle structures. On return, the array specifies the
bounding boxes for the black portion of each glyph; there is one entry in
the array for each glyph in the shape. The bounding boxes are relative
to the origin of the shape, not to the beginning of the glyph that the
bounding box describes. This array is optional; you may pass nil for
this parameter.

sideBearings
An array of point structures. On return, the array contains the vectors
along the advance between the pen position and the glyph’s bounding
box; there is one entry in the array for each glyph in the shape. This array
is optional; you may pass nil for this parameter.

function result The number of glyphs in the shape.

DESCRIPTION

The GXGetGlyphMetrics function returns the number of glyphs in the shape. The

function also returns the various metrics that describe the text, glyph, and layout shapes.

Note that the glyph metrics returned by the GXGetGlyphMetrics function are device

metrics, which are specific to the device on which you are rendering the shape, and not

ideal metrics, which are device-independent.

The glyph origins array has one more entry than the number of glyphs in the shape. Be

aware that the first entry in the array may not correspond to the given starting position.

For example, suppose the layout shape “office” has its position set to (100.0,100.0) and

uses hanging punctuation. The entry in the advance bits array for the open quotation

mark could be (92.0,100.0) and the entry for the “o” could be (99.0,100.0), because of the

C H A P T E R 2

Typographic Shapes

Typographic Shapes Reference 2-25

optical alignment of the glyph. (Hanging glyphs and optical alignment are described in

the chapter “Layout Styles” in this book.)

The final position in the glyph origins array is the position of the end of the advance

width of the final glyph. For example, if the origin of the final glyph is (50.0,50.0), and

the glyph is 10 points wide, the last entry in the array will be (60.0,50.0).

ERRORS, WARNINGS, AND NOTICES

GXGetShapeTypographicBounds

You can use the GXGetShapeTypographicBounds function to get the typographic

bounding rectangle of any typographic shape.

gxRectangle *GXGetShapeTypographicBounds(gxShape source,

 gxRectangle *rect);

source A reference to the shape whose typographic bounding rectangle you want.

rect A pointer to a rectangle structure. On return, the structure contains the
typographic bounding rectangle of the source shape.

function result A pointer to the typographic bounding rectangle of the typographic shape.

DESCRIPTION

The GXGetShapeTypographicBounds function returns the typographic bounding

rectangle of text, glyph, and layout shapes. The left edge of the rectangle is at the starting

position of the first glyph, and the right edge of the rectangle is at the advance width of

the final glyph. The height of the bounding rectangle is the distance from the ascent line

to the descent line.

For shape types other than typographic shapes, the function posts an error.

ERRORS, WARNINGS, AND NOTICES

Errors
illegal_type_for_shape (if not typographic) (debugging version)
shape_is_nil

Errors
illegal_type_for_shape (debugging version)
shape_is_nil
parameter_is_nil (debugging version)

C H A P T E R 2

Typographic Shapes

2-26 Summary of Typographic Shapes

Summary of Typographic Shapes

Constants and Data Types

Shape Attributes

enum gxShapeAttributes{

gxNoAttributes,

gxDirectShape = 0x0001,

gxRemoteShape = 0x0002,

gxCachedShape = 0x0004,

gxLockedShape = 0x0008,

gxGroupShape = 0x0010,

gxMapTransformShape = 0x0020,

gxUniqueItemsShape = 0x0040,

gxIgnorePlatformShape = 0x0080,

gxNoMetricsGridShape = 0x0100,

gxDiskShape = 0x0200,

gxMemoryShape = 0x0400

};

typedef long gxShapeAttribute;

Shape Parts

enum gxShapeParts {/* parts of a gxShape in hit-testing: */

gxNoPart = 0, /* (in order of evaluation) */

gxBoundsPart = 0x0001,

gxGeometryPart = 0x0002,

gxPenPart = 0x0004,

gxCornerPointPart = 0x0008,

gxControlPointPart = 0x0010,

gxEdgePart = 0x0020,

gxJoinPart = 0x0040,

gxStartCapPart = 0x0080,

gxEndCapPart = 0x0100,

gxDashPart = 0x0200,

gxPatternPart = 0x0400,

gxGlyphBoundsPart = gxJoinPart,

gxGlyphFirstPart = gxStartCapPart,

C H A P T E R 2

Typographic Shapes

Summary of Typographic Shapes 2-27

gxGlyphLastPart = gxEndCapPart,

gxSideBearingPart = gxDashPart,

gxAnyPart = gxBoundsPart | gxGeometryPart |

gxPenPart | gxCornerPointPart | gxControlPointPart |

gxEdgePart | gxJoinPart | gxStartCapPart | gxEndCapPart |

gxDashPart | gxPatternPart

};

typedef long gxShapePart;

Functions

Measuring Typographic Shapes

long GXGetGlyphMetrics (gxShape source, gxPoint glyphOrigins[],
gxRectangle boundingBoxes[],
gxPoint sideBearings[]);

gxRectangle *GXGetShapeTypographicBounds
(gxShape source, gxRectangle *rect);

C H A P T E R 2

Typographic Shapes

2-28 Summary of Typographic Shapes

Contents 3-1

C H A P T E R 3

Contents

Text Shapes

About Text Shapes 3-3

The Geometry of a Text Shape 3-3

The Default Text Shape 3-4

The Text Shape and Styles 3-4

Using Text Shapes 3-5

Creating and Drawing a Text Shape 3-5

Changing Text in a Text Shape 3-6

Text Shapes Reference 3-8

Functions 3-8

Creating and Drawing Text Shapes 3-8

GXNewText 3-8

GXDrawText 3-9

Manipulating Geometries of Text Shapes 3-10

GXGetText 3-11

GXSetText 3-12

GXGetTextParts 3-13

GXSetTextParts 3-14

Summary of Text Shapes 3-16

C H A P T E R 3

About Text Shapes 3-3

Text Shapes

This chapter defines the QuickDraw GX text shape, describes what it contains, and tells

how you can create one. Read this chapter if your application has simple text require-

ments, such as displaying text in a single font, text size, and typestyle.

Before reading this chapter, you should be familiar with the information in Inside
Macintosh: QuickDraw GX Objects. You should also be familiar with the information in

the chapters “Introduction to QuickDraw GX Typography” and “Typographic Shapes”

in this book.

This chapter discusses the QuickDraw GX text shape, explains how it relates to the

concept of a QuickDraw GX shape object, and describes the properties of text shapes.

It then shows how to use QuickDraw GX functions to

■ create and draw text shapes

■ change parts of text shapes

About Text Shapes

A text shape is a shape object containing a string of text associated with a single style

object. The text shape has the same set of properties as other QuickDraw GX shape

objects. Its shape type is gxTextType, and its geometry is unique.

The Geometry of a Text Shape
Figure 3-1 shows the properties of the text shape object. Note that, because a text shape is

an object and not a data structure, the order of the properties as shown in Figure 3-1 is

completely arbitrary.

Figure 3-1 Geometry of a text shape

C H A P T E R 3

Text Shapes

3-4 About Text Shapes

The geometry of a text shape contains these elements:

■ Character count. The number of characters in the text array. This number is not
necessarily the same as the number of bytes in the text array, because some of the
characters may be 16-bit characters.

■ Text. An array of character codes or glyph codes. Whether each character code is 8-bit
or 16-bit depends on both the platform in the text shape’s style object and on the
actual byte values. If the value of the shape attribute gxIgnorePlatformShape is
clear, then the text is interpreted as an array of character codes. If it is set, it is
interpreted as an array of 16-bit glyph codes. (For more information about platforms,
character codes, and glyph codes, see the discussion of encodings in the chapter “Font
Objects” in this book.)

■ Position. A point that marks the glyph origin of the first glyph in the shape.

You use the functions described in this chapter to set the values of the character count,

the text, and the position of the text shape.

Because a text shape is a single run, you cannot mix character codes and glyph codes in a

text shape; one run can have either character codes or glyph codes—but not both. A text

shape always contains one glyph per character, and they are always in the same order. In

other words, the character-code index is equal to the glyph index.

Note

The text shape displays only the glyphs the user asks for. For example, if
the user types the glyphs “f” and “i”, the text shape does not automati-
cally display an “fi” ligature. If you need automatic linguistic processing
of glyphs, you should use the layout shape, described in the chapter
“Layout Shapes” in this book. ◆

The Default Text Shape
The default text shape has no text; all of its components have the value 0 or nil. Like the

default glyph and layout shapes, the default text shape has the gxWindingFill type.

The gxWindingFill type and other shape fills are described in the “Shape Objects”

chapter of Inside Macintosh: QuickDraw GX Objects.

The default text shape has a style object, which is described in detail in the “Typographic

Styles” chapter in this book. The default settings for all typographic shapes are described

in detail in the chapter “Typographic Shapes” in this book.

The Text Shape and Styles
The style object associated with a text shape contains the font, the text size in points, and

other information that determines characteristics of the shape when it is displayed. (For

more information about the parts of a style object that apply to typographic shapes, see

the chapter “Typographic Styles” in this book.) Because a text shape can have only one

style object associated with it, the text of a text shape is displayed in a single style.

Figure 3-2 shows three different examples of a text shape, each with a different style

applied to it.

C H A P T E R 3

Text Shapes

Using Text Shapes 3-5

Figure 3-2 Three examples of a text shape, each with a different style applied

Because the text shape has only one style, it is most useful for drawing nonformatted

glyphs, such as those used in dialog boxes, terminal emulation programs, or primitive

text editors. Because the text shape contains only basic data, it is more efficient where

speed is concerned, but it contains less information than the other typographic shapes.

For more complex editors or word processors and for contextual non-Roman text, you

should use the layout shape, described in the chapter “Layout Shapes” in this book.

Also, you cannot use a text shape for clipping, dashing, patterns, joins, and start and end

caps. Before you can use these features, you must convert the text shape to a glyph shape.

You can, however, pattern a text shape by including, in the text shape’s style object, a

patterned text face. A text face can also contain joins, start and end caps, dashing, and so

on. Text faces are described in the chapter “Typographic Styles” in this book.

In general, you shouldn’t use text shapes and glyph shapes for non-Roman text. For

example, if you need to draw text vertically or text from right to left, you should use the

layout shape. For more information, see the chapter “Layout Shapes” in this book.

Using Text Shapes

This section describes the functions you use to create and draw text shapes and to

change the information in a text shape.

Creating and Drawing a Text Shape
To create a text shape, you can use the GXNewShape function, specifying gxTextType,

and then set properties. Alternatively, you can use the GXNewText function, passing it

the necessary information. For example, when you create a text shape with GXNewText,

you must specify its contents and position on the screen.

In Listing 3-1, the value of myPoint specifies where QuickDraw GX should display the

text shape. The code creates the text shape with the call to GXNewText. The text shape

starts out with the default style, but the call to GXSetShapeTextSize changes the

C H A P T E R 3

Text Shapes

3-6 Using Text Shapes

text size from the default to 120 points. This sample uses the ff macro, a shorthand

notation for the IntToFixed macro. Both versions of the macro are described in the

“Mathematics” chapter in Inside Macintosh: QuickDraw GX Environment and Utilities.

The GXNewShape function is described in the “Shape Objects” chapter in Inside Macintosh:
QuickDraw GX Objects.

Listing 3-1 Creating a text shape with a nondefault text size

gxPoint myPoint = {ff(50), ff(150)};

gxShape myTextShape = GXNewText(4, (unsigned char*)"Wow!",

&myPoint);

GXSetShapeTextSize(myTextShape, ff(120));

The function GXNewText is described on page 3-8. The function GXSetShapeTextSize

is described in the chapter “Typographic Styles” in this book.

To draw an existing text shape, use the GXDrawShape function.

You can also use the GXDrawText function to create, draw, and dispose of a text shape.

The function uses the text shape’s default style object to determine what the font, text size,

and other style attributes of the shape should be. This function is useful if you only need

to draw the shape once and if you don’t need to set any characteristics of the style used.

GXDrawText(myTextLen, myText, myPosition);

The GXDrawText function is described on page 3-9. The GXDrawShape function is

described in the “Shape Objects” chapter in Inside Macintosh: QuickDraw GX Objects.

Changing Text in a Text Shape
If you want to change all of the text of an existing shape, use the GXSetText function,

described on page 3-12. This function takes an existing shape, a character count, a string

of text, and a position. You can replace the text in the shape, change the position, or both.

(If you want to replace only one of these elements, you pass nil for the other.)

If you want to change only some of the text of an existing text shape, use the

GXSetTextParts function, described on page 3-14. The function takes an existing text

shape, a glyph index corresponding to a glyph in that shape, a number of characters to

be replaced, a number of characters to be added, and the new text to be inserted. You can

insert new text while maintaining all the current text, or you can replace or delete existing

text from the shape. Table 3-1 lists some of the uses of the GXSetTextParts function.

C H A P T E R 3

Text Shapes

Using Text Shapes 3-7

For example, suppose you want to change a text shape that reads “The dog” so that it

reads “The beast”. The index value, which is the location of the first glyph to replace, is

5. The old character count is 3 (which corresponds to the number of glyphs in the word

“dog”), and the new character count is 5 (the number of glyphs in “beast”). You could

also set the old character count to the gxSelectToEnd constant, because you want to

replace all of the text from position 5 to the end of the text in the shape. Listing 3-2 shows

how to make this change.

Listing 3-2 Replacing text in a text shape

char *myString = "The dog";

char *newWord = "beast";

short textLength, insertLength;

gxPoint myPoint = {ff(20), ff(20)};

textLength = strlen(myString);

insertLength = strlen(newWord);

gShape = GXNewText(textLength, (unsigned char *) myString,

&myPoint);

GXSetTextParts(gShape, 5, gxSelectToEnd, insertLength,

(unsigned char *) newWord);

Table 3-1 Changing text in a text shape using the GXSetTextParts function

Action Index
Old
character count

New
character count Text

Inserting new
text

Glyph index at
which new text
should start or
gxSelectToEnd,
if you want to
insert at the end

0 Length of the
new text

Pointer to the
new text

Replacing and
deleting some
text

Glyph index at
which the new
text should start

Number of
glyphs to delete
from the original
shape or
gxSelectToEnd

Length of the
new text

Pointer to the
new text

Replacing all text
in the shape

1 gxSelectToEnd Length of the
new text

Pointer to the
new text

Deleting all text
from the shape

1 gxSelectToEnd 0 nil

C H A P T E R 3

Text Shapes

3-8 Text Shapes Reference

Text Shapes Reference

Functions

This section describes the functions that you use for creating, drawing, or changing

QuickDraw GX text shapes.

Creating and Drawing Text Shapes

You can create a text shape using the GXNewText function. If you simply want to draw

some text without creating a new shape, you can use the GXDrawText function instead.

GXNewText

You can use the GXNewText function to create a text shape.

gxShape GXNewText(long charCount, const unsigned char text[],

const gxPoint *position);

charCount The number of character codes in the text parameter. For non-Roman
scripts, the actual byte length may be up to twice the number of charac-
ters. If the value of charCount is 0, the text shape is equivalent to the
empty shape.

text An array of text data. The value of this parameter may be nil if the value
of charCount is 0.

position A pointer to the position, in geometry coordinates, of the starting point of
the shape. This position is the intersection of the baseline with the left
margin of the left-side bearing at the first glyph in the shape. If you pass
nil, GXNewText sets the position to (0.0,0.0).

function result The new text shape.

DESCRIPTION

The GXNewText function creates a copy of the default text shape, sets the owner count of

the copy to 1, initializes its geometry with the values in the function’s parameters, and

returns a reference to it as the function result.

The new text shape returned by this function contains references to the same style, ink,

and transform objects as the default text shape.

C H A P T E R 3

Text Shapes

Text Shapes Reference 3-9

The parameter charCount indicates the number of characters present, which may not

necessarily equal the number of bytes in the length of the text parameter. The interpre-

tation of characters depends on the default text shape’s style attribute.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To create a new glyph shape, use the GXNewGlyphs function, described in the chapter

“Glyph Shapes” in this book.

To create a new layout shape, use the GXNewLayout function, described in the chapter

“Layout Shapes” in this book.

For information about the default ink and transform objects, see Inside Macintosh:
QuickDraw GX Objects.

The default values of the style object for any of the typographic shapes is discussed in

the chapter “Typographic Styles” in this book.

You can determine the platform of the style object associated with the default shape using

the GXGetShapeEncoding function, also described in the chapter “Typographic Styles.”

The default text shape is described on page 3-4.

GXDrawText

You can use the GXDrawText function to draw a string of text without first creating

a text shape.

void GXDrawText(long charCount, const unsigned char text[],

 const gxPoint *position);

charCount The number of characters in the text parameter. For non-Roman scripts,
the byte length may be up to twice the number of characters.

text An array of text data.

position A pointer to the position, in geometry coordinates, of the starting point of
the shape. This is the intersection of the baseline with the left margin of
the left-side bearing at the first glyph in the shape. If you pass nil,
GXDrawText sets the position to (0.0,0.0).

Errors
out_of_memory
parameter_is_nil (debugging version)
count_is_less_than_zero (debugging version)

C H A P T E R 3

Text Shapes

3-10 Text Shapes Reference

DESCRIPTION

The GXDrawText function draws the text string, starting at the point specified by

position. The charCount parameter specifies the number of characters in the text

drawn. The default text shape’s style object specifies the font, text size, typestyle,

baseline direction, and so on.

The parameter charCount indicates the number of characters present, which may not

necessarily equal the number of bytes in the length of the text parameter. The interpre-

tation of characters depends on the text shape’s style attribute.

If the value of the charCount parameter is 0, the GXDrawText function does nothing.

You should use the GXDrawShape function if you want to draw the text contained in the

text parameter several times (by creating a text shape) or if you want to draw the text

using a style other than the default style.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To draw an existing text shape, use the GXDrawShape function, described in the chapter

“Shape Objects” in Inside Macintosh: QuickDraw GX Objects.

To draw a line of text that contains glyphs of different fonts, text sizes, or typestyles, use

of the GXDrawGlyphs function, described in the chapter “Glyph Shapes” in this book.

To draw a line of text using the unique characteristics of the layout shape, see the

description of the GXDrawLayout function in the chapter “Layout Shapes” in this book.

Manipulating Geometries of Text Shapes

You can obtain the values in a text shape’s geometry—the number of character codes it

contains, the character codes themselves, or the shape’s position—using the GXGetText

function. You can set any of these values, including replacing all of the text of the shape,

by using the GXSetText function.

If you want to retrieve part of the text contained in the shape, use the GXGetTextParts

function. If you want to change only some of the text in a text shape, use the

GXSetTextParts function.

Errors
parameter_is_nil (debugging version)

C H A P T E R 3

Text Shapes

Text Shapes Reference 3-11

GXGetText

You can use the GXGetText function to return the information in a text shape’s

geometry, such as its text string or its position.

long GXGetText(gxShape source, long *charCount,

unsigned char text[], gxPoint *position);

source A reference to the text shape whose character code values you want
to change.

charCount A pointer to a long value. On return, the number of characters in the
shape specified by source. If you pass nil in this parameter, GXGetText
does not return a value.

text A character array. On return, it contains the text string from the source
shape. You must allocate the memory for this string. If you pass nil in
this parameter, GXGetText does not return the text string.

position A pointer to a point structure. On return, the point is the position, in
geometry coordinates, of the text shape. If you pass nil, GXGetText
does not return the position.

function result The number of bytes of text in the text shape.

DESCRIPTION

The GXGetText function returns the number of characters, the text string, the position of

a text shape, and (in the function result) the byte length of the text shape specified by

source. The charCount parameter may not be equal to the function result; charCount

indicates the number of characters in the shape, which may not necessarily equal the

number of bytes. Call this function twice, once to determine the size of the text array

(pass nil for text), and a second time to fill out the array.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To get information from the geometry of a glyph shape, use the GXGetGlyphs function,

described in the chapter “Glyph Shapes” in this book.

To get information from the geometry of a layout shape, use the GXGetLayout function,

described in the chapter “Layout Shapes” in this book.

Errors
shape_is_nil
illegal_type_for_shape (debugging version)

C H A P T E R 3

Text Shapes

3-12 Text Shapes Reference

GXSetText

You can use the GXSetText function to insert a new text string into a text shape, or to

change the text shape’s position, or both.

void GXSetText(gxShape target, long charCount,

const unsigned char text[],

const gxPoint *position);

target A reference to the text shape whose character code values you want
to change.

charCount The number of characters to be copied into the new text shape.

text A character array containing the text to be copied into the text shape.

position A pointer to a point structure specifying the location of the text shape, in
geometry coordinates.

DESCRIPTION

The GXSetText function replaces the geometry of the specified shape with the text in

the text parameter and the point in the position parameter. The shape type is set

to gxTextType.

If the value of charCount is 0 and the value of text is not nil, the number of bytes in

the existing text shape determines the length of the text copied.

The parameter charCount indicates the number of characters present, which may not

necessarily equal the number of bytes in the length of the text parameter. The interpre-

tation of characters depends on the text shape’s style attribute.

You can shorten the shape by passing nil for the text parameter and a new character

count for the text shape. QuickDraw GX changes the contents of the text shape to

however many glyphs you specify. You cannot lengthen a text shape using this method,

because QuickDraw GX returns the warning new_shape_contains_invalid_data.

If you don’t want to change one of the values in the shape, such as the text or the position,

set that parameter to nil. If you want to set the value of either the text or the position to

nil, pass the value gxSetToNil in that parameter.

ERRORS, WARNINGS, AND NOTICES

Errors
shape_is_nil
count_is_less_than_zero (debugging version)
size_of_text_exceeds_implementation_limit (debugging version)
out_of_memory (debugging version)

Warnings
shape_access_not_allowed (debugging version)
new_shape_contains_invalid_data (debugging version)

C H A P T E R 3

Text Shapes

Text Shapes Reference 3-13

SEE ALSO

For more information on how to use the GXSetText function, see “Changing Text in a

Text Shape” beginning on page 3-6.

You can use the GXSetTextParts function, described on page 3-14, to replace part of

the text in a text shape or to insert new text into the shape.

You can also change the position of a text shape using the GXMoveShape or

GXMoveShapeTo function, described in the “Transform Objects” chapter in Inside
Macintosh: QuickDraw GX Objects.

To replace the geometry of a glyph shape with new text, use the GXSetGlyphs function,

described in the chapter “Glyph Shapes” in this book.

To replace the geometry of a layout shape with new text, use the GXSetLayout function,

described in the chapter “Layout Shapes” in this book.

To change a shape of another type into a text shape, use the GXSetShapeType function,

described in the “Shape Objects” chapter of Inside Macintosh: QuickDraw GX Objects.

GXGetTextParts

You can use the GXGetTextParts function to retrieve part of the text of a text shape.

long GXGetTextParts(gxShape source, long index, long charCount,

 unsigned char text[]);

source A reference to the shape from which you retrieve data.

index The index of the first glyph that you want to retrieve. This value must be
greater than or equal to 1.

charCount The number of character codes you want to retrieve. This value must be
greater than or equal to 1, or it can be gxSelectToEnd, which selects all
glyphs, beginning at the glyph index specified in index.

text A pointer to a character array. On return, the array contains the text
retrieved from the source shape.

function result The number of bytes of the retrieved text.

Notices (debugging version)
text_already_set

C H A P T E R 3

Text Shapes

3-14 Text Shapes Reference

DESCRIPTION

The GXGetTextParts function retrieves the specified number of character codes from

the shape. The text parameter is a pointer to the retrieved text. You can retrieve some

or all of the character codes from the shape using this function.

The shape specified in the source parameter must be of type gxTextType. If it isn’t,

GXGetTextParts posts the error illegal_type_for_shape.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

You can use the GXGetText function (page 3-11) to retrieve all of the text of a text shape.

To retrieve part of the text from a glyph shape, use the GXGetGlyphParts function,

described in the chapter “Glyph Shapes” in this book.

To retrieve part of the text from a layout shape, use the GXGetLayoutParts function

described in the chapter “Layout Shapes” in this book.

GXSetTextParts

You can use the GXSetTextParts function to change part of the text of a text shape.

void GXSetTextParts(gxShape target, long index, long oldCharCount,

 long newCharCount, const unsigned char text[]);

target A reference to the text shape whose character code values you want
to change.

index The index of the first glyph where the editing operation will begin. If you
are deleting text, this is the first glyph deleted; if you are inserting text,
the new glyphs will appear before this one. This value must be greater
than or equal to 0. A value of gxSelectToEnd in the index parameter
indicates that GXSetTextParts should add the new glyphs after the last
glyph in the text string. A value of 1 indicates the beginning of the text of
the shape.

Errors
shape_is_nil
index_is_less_than_one (debugging version)
count_is_less_than_one (debugging version)
illegal_type_for_shape (debugging version)

Warnings
index_out_of_range
count_out_of_range

C H A P T E R 3

Text Shapes

Text Shapes Reference 3-15

oldCharCount
The number of glyphs you want to replace. This value can be greater than
or equal to 0 (which indicates that you want to insert text), or it can be
gxSelectToEnd (which is equal to –1 and indicates that you want to
replace the text from the position specified by index to the end of the
available text).

newCharCount
The number of character codes you want to add to the text shape.

text A pointer to a character array containing the new text that you want to
put into the text shape.

DESCRIPTION

The GXSetTextParts function replaces the text in the target shape with the text

pointed to by the text parameter. The function inserts the new text at the glyph index

specified by the index parameter. If the value of oldCharCount is greater than 0, the

function replaces a corresponding number of glyphs in the original text string with a

number of glyphs from the new text string. The number of new glyphs added is specified

by the newCharCount parameter. If the value of the oldCharCount parameter is 0, the

function inserts the new text but does not delete any of the original text.

The target shape must be of type gxTextType. If it isn’t, GXSetTextParts posts the

error illegal_type_for_shape.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For more information on how to use the GXSetTextParts function, see “Changing Text

in a Text Shape” beginning on page 3-6.

To replace all of the text in a text shape, you can use the GXSetText function, described

on page 3-12.

To replace glyphs in a glyph shape, use the GXSetGlyphParts function, described in

the chapter “Glyph Shapes” in this book.

To replace glyphs in a layout shape, use the GXSetLayoutParts function, described in

the chapter “Layout Shapes” in this book.

Errors
shape_is_nil
parameter_out_of_range (debugging version)
inconsistent_parameters (debugging version)
index_is_less_than_zero (debugging version)
count_is_less_than_zero (debugging version)
illegal_type_for_shape (debugging version)

Warnings
index_out_of_range
count_out_of_range
shape_access_not_allowed (debugging version)

C H A P T E R 3

Text Shapes

3-16 Summary of Text Shapes

Summary of Text Shapes

Functions

Creating and Drawing Text Shapes

gxShape GXNewText (long charCount, const unsigned char text[],
const gxPoint *position);

void GXDrawText (long charCount, const unsigned char text[],
const gxPoint *position);

Manipulating Geometries of Text Shapes

long GXGetText (gxShape source, long *charCount, unsigned char
text[], gxPoint *position)

void GXSetText (gxShape target, long charCount, const unsigned
char text[], const gxPoint *position);

long GXGetTextParts (gxShape source, long index, long charCount,
unsigned char text[]);

void GXSetTextParts (gxShape target, long index, long oldCharCount,
long newCharCount, const unsigned char text[]);

Contents 4-1

C H A P T E R 4

Contents

Glyph Shapes

About Glyph Shapes 4-3

The Geometry of a Glyph Shape 4-3

The Positions and Advance Bits Arrays 4-5

The Tangents Array 4-6

The Style Runs and Style List 4-8

The Default Glyph Shape 4-10

Using Glyph Shapes 4-10

Creating and Drawing a Glyph Shape 4-10

Getting Information From a Glyph Shape 4-12

Changing Parts of a Glyph Shape 4-13

Changing Text in a Glyph Shape 4-13

Changing the Style List and Style Runs Array 4-15

Positioning a Glyph Shape 4-16

Setting the Tangents Arrays 4-18

Glyph Shapes Reference 4-21

Functions 4-21

Creating and Drawing Glyph Shapes 4-22

GXNewGlyphs 4-22

GXDrawGlyphs 4-24

Getting and Setting the Properties of Glyph Shapes 4-25

GXGetGlyphs 4-26

GXSetGlyphs 4-27

GXGetGlyphParts 4-29

GXSetGlyphParts 4-30

GXGetGlyphPositions 4-32

GXSetGlyphPositions 4-33

GXGetGlyphTangents 4-34

GXSetGlyphTangents 4-35

Summary of Glyph Shapes 4-37

C H A P T E R 4

About Glyph Shapes 4-3

Glyph Shapes

This chapter describes the QuickDraw GX glyph shape and its contents, and tells how to

create and use a glyph shape. Read this chapter if you want your application to use a

typographic shape as a graphic entity—for example, to dash text along a path or place

glyphs in arbitrary positions.

Before reading this chapter, you should be familiar with the information in the chapters

“Introduction to QuickDraw GX Typography” and “Typographic Shapes” in this book.

You should also be familiar with the information in Inside Macintosh: QuickDraw
GX Objects.

This chapter discusses the QuickDraw GX glyph shape and describes the properties of

glyph shapes. It then shows how to use QuickDraw GX functions to

■ create and draw glyph shapes

■ change parts of a glyph shape

■ set the tangents, positions, and advance bits arrays of a glyph shape

About Glyph Shapes

The glyph shape is a typographic shape that allows you to vary the position, font,

rotation, and scale of each glyph in a line of text. The glyph shape has the same set of

properties as other QuickDraw GX shape objects. Its shape type is gxGlyphShape,

and its geometry is unique.

A glyph shape is drawn as one or more glyphs. One glyph shape can represent a charac-

ter, such as “a”, or a ligature, such as “fi”. Note that the glyph shape, as defined in

QuickDraw GX, is a specific type of shape object. In this context, shape does not refer to

the form of an individual glyph.

The glyph shape is primarily useful as a graphic entity. Because of its geometry, the

glyphs in a glyph shape can be positioned individually, yet still be related to the other

glyphs in the shape. This allows you to create a number of graphic effects with the glyph

shape that you can’t with the text or layout shapes, such as setting text along an

arbritrary path—for example, in a circle.

The glyph shape displays only the glyphs for the specific character codes or glyph codes

it contains. For example, if you draw a glyph shape that contains adjacent character

codes for the glyphs “f” and “i”, the glyph shape does not automatically display an “fi”

ligature. If you need such automatic linguistic processing of glyphs, you should use the

layout shape, described in the chapter “Layout Shapes” in this book.

The Geometry of a Glyph Shape
The geometry of a glyph shape contains seven elements, as shown in Figure 4-1. Note

that, because a glyph shape is an object and not a data structure, the order of the

properties as shown in Figure 4-1 is completely arbitrary.

C H A P T E R 4

Glyph Shapes

4-4 About Glyph Shapes

Figure 4-1 Geometry of a glyph shape

The geometry of the glyph shape contains the following elements:

■ Character count. The number of characters in the text array. Note that the number of
characters is not necessarily the same as the number of bytes in the text array.

■ Text. An array of character codes or glyph codes. Whether each character code is 8-bit
or 16-bit depends on the platform in the glyph shape’s style object and on the actual
byte values. If the value of the shape attribute gxIgnorePlatformShape is clear,
then the text is interpreted as an array of character codes. If it is set, it is interpreted as
an array of 16-bit glyph codes. (See the chapter “Font Objects” in this book for more
information about platforms, character codes, and glyph codes.)

■ Positions array. Contains positions for the origin of each character or glyph in the
shape. These positions can be relative to the advance width of the previous character
or glyph, or they can be absolute positions in geometry coordinates. The first position
in the positions array marks the origin of the first character or glyph in the shape.

■ Advance bits array. Determines whether the points in the positions array are
absolute or relative. The advance bits array contains 1 bit for every character or
glyph in the shape.

■ Tangents array. Determines the scaling and orientation of the characters or glyphs in
the shape. It contains one entry for each character or glyph in the shape.

■ Style runs array. Determines how many characters or glyphs in the shape each style
applies to. Each entry is the number of characters or glyphs to which the equivalent
entry in the style list applies.

■ Style list. An array of references to the style object attached to the shape. This allows a
glyph shape to have more than one style. If there are styles in this array, QuickDraw
GX does not use the information in the style object associated with the shape.

You use the functions described in this chapter to set the values in the geometry of the

glyph shape.

C H A P T E R 4

Glyph Shapes

About Glyph Shapes 4-5

The Positions and Advance Bits Arrays
There are two ways of positioning a glyph in a glyph shape: it can be positioned relative

to the preceding glyph, or it can have its own position—except for the first glyph, which

has to be absolute, not relative—specified as a QuickDraw GX coordinate. Each position

is stored in the positions array as a point, such as (30.0,50.0).

For every position in the positions array, there is a corresponding bit in the advance bits
array. A value of 0 for an advance bit indicates a relative position—that is, the position of

the glyph at that index is relative to the end of the advance width of the preceding glyph.

A value of 1 indicates an absolute position, which specifies that the position is absolute

in geometry coordinates. For example, suppose the positions array specifies the point

(30.0,50.0) for a glyph. If the advance bits array indicates a relative position, QuickDraw

GX sets the origin of the glyph at 30 points along the x-axis and 50 points along the

y-axis from the end of the advance width of the previous glyph. If the advance bits array

indicates that the position is absolute, QuickDraw GX draws the glyph at the point

(30.0,50.0) in geometry space.

The order of bits in the array moves from high to low, meaning that the highest-order bit

in the entire array is for glyph 1. If there are less than 32 bits per glyph shape, the low-

order bits are ignored. Because the advance bits are stored in long integers, the array

contains a minimum of 32 bits per glyph shape. The value of the first bit is always 1,

because the first position in the array is always absolute.

In Figure 4-2, the glyphs in the shape “Dover” have the absolute position (30.0,30.0) and

the relative positions (10.0,10.0), (50.0,50.0), (10.0,10.0), and (40.0,40.0). The initial “D”

has an absolute position; the glyphs following have relative positions, because their

corresponding bits in the advance bits array are 0.

Figure 4-2 The effect of the positions and advance bits arrays on glyph placement

C H A P T E R 4

Glyph Shapes

4-6 About Glyph Shapes

In Figure 4-3, the shape has the same glyphs and the same values in the positions array.

However, the first, third, and fifth glyphs now have absolute positioning.

Figure 4-3 The same shape with a new advance bits array

If you don’t set positions for the glyph shape explicitly, QuickDraw GX sets the values

of all the advance bits (except the first one) and positions to 0 and (0.0,0.0) respectively,

resulting in glyphs that line up next to one another, each starting where the previous

glyph’s advance width ends. It sets the first advance bit to 1, because the first position is

always absolute.

However, if you set positions for the shape without specifying the advance bits,

QuickDraw GX sets every bit in the advance bits array to 1, because QuickDraw GX

interprets all of the positions as absolute positions. If you want some positions to be

relative, you must pass the advance bits array with the appropriate bits set to 0.

The Tangents Array
Each glyph in a glyph shape may have an optional tangent vector that specifies the scale

and angle that QuickDraw GX should apply before drawing that glyph. The tangent

vector is represented by a point: the direction of the vector is the direction from the point

(0.0,0.0) to the tangent point, and the length of the vector is determined by the length of

the line between those two points. The glyph with that tangent is laid out along that

vector accordingly, with its glyph origin aligned with the point (0.0,0.0) and the advance

width scaled to match the length of the vector. For a 1-unit-long vector, the glyph is

“scaled” to 100 percent of its size.

Here are some characteristics of a tangent that you should know about:

■ The tangent vector coordinate system matches the QuickDraw GX coordinate system:
values for the tangent are always (x,y), regardless of the baseline of the glyph or
glyphs associated with that tangent.

■ QuickDraw GX always processes the characters in storage order and always draws
the text of a typographic shape from left to right (regardless of the inherent line direc-
tion of the text), so the direction of the tangent is the direction of the advance vector.

C H A P T E R 4

Glyph Shapes

About Glyph Shapes 4-7

Figure 4-4 shows the effect of a variety of tangents on a glyph. All of the glyphs shown

have the same style, and therefore the same font and text size; they differ only in how the

tangents affect their appearance.

In the first example, a glyph has the default tangent vector of (1.0,0.0), which specifies

that there is a scaling factor of 1 and no rotation from the natural text direction; a glyph

with this tangent vector (typical for Roman text) would draw left to right, and a glyph

with the gxVerticalText text attribute (typical for Kanji) set in the shape’s style

would draw top to bottom.

The second example shows a tangent vector of (0.0,-1.0): the glyph is rotated 90 degrees

upward from the natural orientation. The third example shows a tangent vector of

(–2.0,0.0): notice how the glyph scales to double its normal size to fit the length of the

vector. In the fourth example, the glyph follows a tangent of (1.0,3.0). The glyph scales in

all directions to fit the tangent.

Figure 4-4 Various tangents

In Figure 4-5, the shape “Dover” has five separate tangents, one for each glyph in the

shape. The first two rotate the glyph counterclockwise by 90 degrees off the natural

baseline. The last three put the shape back onto the natural baseline: note how the origin

of the glyph “v” begins where the advance width of the glyph “o” ends, even though the

glyphs have different orientations. The last two tangents are (2.0,0.0), which scale those

glyphs to twice their given point size. This shape uses the default positions and advance

bits, and a single style for the entire shape, allowing the glyph shape to have glyphs of

different sizes in a single style run.

C H A P T E R 4

Glyph Shapes

4-8 About Glyph Shapes

Figure 4-5 The effect of the tangents array on glyph placement

QuickDraw GX begins drawing the glyph origin of a glyph in relation to the end of the

advance width of the previous glyph, if there are no other factors affecting the placement

of the glyphs in the geometry. In the top part of Figure 4-6, the glyph origin of the glyph

“l” begins where the advance width of the glyph “g” ended, and the orientation of the

tangents of the glyphs “l” and “y” cause those glyphs to overwrite the previous glyphs.

In the bottom part of Figure 4-6, use of the positions and advance bits arrays changes the

glyph origins of “l” and “y” so that they are farther away from previous glyphs and

avoid overwriting.

Figure 4-6 Tangents used with and without positions

The Style Runs and Style List
Every glyph in a glyph shape must belong to a style run. A style run consists of a number
of consecutive glyphs that share an associated style object (which contains the font, the

typestyle, the text size, and other specific characteristics). By default, QuickDraw GX
assigns the style object associated with the shape to all glyphs in a glyph shape. However,

each glyph in a glyph shape can be in its own style. The shape’s geometry contains the
style list, which is a list of references to style objects. (For more information about what is

contained in the style object that applies to typographic shapes, see the chapter
“Typographic Styles” in this book.)

C H A P T E R 4

Glyph Shapes

About Glyph Shapes 4-9

Figure 4-7 shows a four-glyph shape with two style runs, each containing two glyphs.

The first style run contains the font 24-point Courier Roman for two glyphs, “e” and “r”;

the second contains the font 10-point Helvetica® Bold for another two glyphs, “g” and

“o”. The style object associated with this shape—that is, the object referenced in the style

property of the shape—may contain completely different properties. However, because

there are style runs and a style list in the geometry of this glyph shape, QuickDraw GX

ignores the information in the “regular” associated style object—the one referenced in

the style property of the shape object.

Figure 4-7 The effect of style runs on the appearance of glyphs in a glyph shape

Figure 4-8 shows a glyph shape in which each glyph has its own style. You cannot get

the same result using multiple glyph shapes, because the position of each glyph would

differ depending on the device characteristics (which affect such values as the advance

widths). Each glyph can’t be positioned individually to get the same results over many

display devices, because device resolutions may vary.

Figure 4-8 An example of a glyph shape with a style run for each glyph

You can use glyph shapes for clipping, dashing, and patterns only if they are in primitive

form. (For more information about primitive forms, see the chapter “Typographic

Shapes” in this book.) Remember, however, that any shape you want to convert to

primitive form cannot have any styles, whether in the style object or in the style list, that

contain caps, dashes, patterns, joins, font variations, or text faces.

To pattern a glyph shape, for example, you must include, in the glyph shape’s style, a

text face that is patterned, or that includes joins, start and end caps, dashing, and so on.

(Text faces are described in the chapter “Typographic Styles.”)

You can convert a glyph shape into a text shape, a layout shape, or any other type

of shape by using the GXSetShapeType function. For more information about

GXSetShapeType, see the “Shape Objects” chapter of Inside Macintosh: QuickDraw
GX Objects.

C H A P T E R 4

Glyph Shapes

4-10 Using Glyph Shapes

The Default Glyph Shape
The default glyph shape has no text and no starting position (0,0); all of its components

are either zero or nil. Like the default text and layout shapes, the default glyph shape

has a gxWindingFill type.

The default glyph shape has a style and that style is described in the “Typographic Styles”

chapter in this book. The default settings for all typographic shapes are described in the

chapter “Typographic Shapes” in this book.

Using Glyph Shapes

This section describes how to perform typical operations with the glyph shape. It tells

how to

■ create and draw a glyph shape

■ get information from a glyph shape

■ change parts of a glyph shape by modifying the text in the shape and replacing styles
and style runs

■ manipulate the positions and advance bits arrays to change the position of the shape
in the view port

■ change the tangent array

Creating and Drawing a Glyph Shape
To create a glyph shape, you use the GXNewGlyphs function (described on page 4-22).

You can also use the GXNewShape function, which is described in the “Shape Objects”

chapter of Inside Macintosh: QuickDraw GX Objects.

If you create a glyph shape, the shape has one style run (because there is no style list),

one absolute position (the starting position of the first glyph of the shape), and the same

tangent for each of the glyphs in the shape.

If you want to change the styles in the shape or add new styles to the existing ones, you

must determine how many glyphs are in each style run. Listing 4-1 shows how to use the

GXNewGlyphs function to create a glyph shape with five glyphs in it, with the first two

in 30-point New York and the other three in 60-point Geneva.

The code in Listing 4-1 creates the two styles and uses the GXSetStyleTextSize and

GXSetStyleFont functions and the GXFindFonts library function to set up each style.

It then uses the GXNewGlyphs function to create the glyph shape, and positions the

shape using the GXMoveShapeTo function. (You can also set the position of the shape in

the positions array by using GXSetGlyphPositions function, described on page 4-33.)

It then uses GXDrawShape to draw the glyph shape and GXDisposeShape to dispose

of the shape.

C H A P T E R 4

Glyph Shapes

Using Glyph Shapes 4-11

Listing 4-1 Creating a glyph shape with style runs

gxShape myShape;

gxStyle myStyles[2];

gxFont newYorkFont = 0, genevaFont = 0;

static const unsigned char myString[] = "glyph";

short myStyleRuns[2];

/* create two styles */

myStyles[0] = GXNewStyle();

myStyles[1] = GXNewStyle();

/* set up first style as 30-pt.New York*/

GXSetStyleTextSize(myStyles[0], ff(30));

GXFindFonts(0,gxFullFontName,gxMacintoshPlatform,gxRomanScript,

gxEnglishLanguage, 8, “New York”, 1, 1, &newYorkFont);

GXSetStyleFont(myStyles[0], newYorkFont);

myStyleRuns[0] = 2; //length of text in style

/* set up second style as 60-pt.Geneva */

GXFindFonts(0,gxFullFontName,gxMacintoshPlatform,gxRomanScript,

gxEnglishLanguage, 6, “Geneva”, 1, 1, &genevaFont);

GXSetStyleFont(myStyles[1], genevaFont);

GXSetStyleTextSize(myStyles[1], ff(60));

myStyleRuns[1] = 3; //length of text in style

/* create glyph shape using myString and the new styles */

myShape = GXNewGlyphs(sizeof(myString) -1, myString,

nil, nil, nil, myStyleRuns, myStyles);

/* move the shape to (50,125)*/

GXMoveShapeTo(myShape, ff(50), ff(125));

GXDrawShape(myShape);

GXDisposeStyle(myStyles[0]);

GXDisposeStyle(myStyles[1]);

GXDisposeShape(myShape);

Listing 4-1 produces the output shown in Figure 4-9.

C H A P T E R 4

Glyph Shapes

4-12 Using Glyph Shapes

Figure 4-9 A glyph shape with two styles

For more information about GXSetStyleTextSize and GXSetStyleFont see the

chapter “Typographic Styles” in this book. For more information about GXMoveShapeTo,

GXDrawShape, and GXDisposeShape, see Inside Macintosh: QuickDraw GX Objects.

There are two ways to draw a glyph shape or its equivalent. You can draw an existing

glyph shape using the GXDrawShape function, described in Inside Macintosh: QuickDraw
GX Objects. You can also use the GXDrawGlyphs function, described on page 4-24, which

allows you to draw a glyph shape without first creating the shape.

Getting Information From a Glyph Shape
You can retrieve the information that is in the geometry of a glyph shape—the character

or glyph codes, positions, advance bits, tangents, style runs, and style lists—using

GXGetGlyphs.

Listing 4-2 shows one way of allocating the required space and retrieving all of the glyph

shape’s data. You call GXGetGlyphs twice—once to find out the number of elements in

the shape, and once to retrieve the information.The code first calls GXGetGlyphs to

retrieve the shape’s byte count, character count, and style-run count. The code must then

assign enough space to the variables to hold that data. The code calls GXGetGlyphs

again to retrieve the information from the glyph shape.

Listing 4-2 Getting all of the information from a glyph shape

long myByteCount, myCharCount, myRunCount;

unsigned char *myText;

gxPoint *myPositions, *myTangents;

long *myAdvanceBits;

short *myStyleRunLengths;

gxStyle *myStyleRunStyles;

/* get the byte count, character count, and style run count */

myByteCount = GXGetGlyphs(myGlyphsShape, &myCharCount, nil, nil,

 nil, &myRunCount, nil, nil);

C H A P T E R 4

Glyph Shapes

Using Glyph Shapes 4-13

/* calculate space needed, and assign it to variables */

myText = (unsigned char *) NewPtr(myByteCount);

myPositions = (gxPoint *) NewPtr(myCharCount * sizeof(gxPoint));

myAdvanceBits = (long *) NewPtr(((myCharCount + 31) / 32) *

sizeof(long);

myTangents = (gxPoint *) NewPtr(myCharCount * sizeof(gxPoint));

myStyleRunLengths = (short *) NewPtr(myRunCount * sizeof(short));

myStyleRunStyles = (gxStyle *) NewPtr(myRunCount *

 sizeof(gxStyle));

/* call GXGetGlyphs again to retrieve the information */

GXGetGlyphs(myGlyphsShape, nil, myText, myPositions,

myAdvanceBits, myTangents, nil, myStyleRunLengths,

myStyleRunStyles);

You can use the GXGetGlyphParts function to retrieve specified glyphs from the source

shape. The GXGetGlyphs function is described on page 4-26. The GXGetGlyphParts

function is described on page 4-29.

Changing Parts of a Glyph Shape
You can change any of the information in the geometry of a glyph shape—the text, the

style runs, the positions array, the advance bits array, or the tangents array—using the

GXSetGlyphs or GXSetGlyphParts function. The difference between these two func-

tions is that the GXSetGlyphs function replaces an entire element of the glyph shape’s

geometry (for example, the entire positions array), whereas the GXSetGlyphParts

function allows you to replace a portion of an element (for example, to add some new

positions to an existing positions array without changing any of the original data).

To change all or part of the positions array and advance bits array, use the

GXSetGlyphPositions function, although you must be sure to correlate the data

in the new positions array with the values in the advance bits array. The

GXSetGlyphPositions function is described on page 4-33.

To change the tangents array only, use the GXSetGlyphTangents function, which is

described on page 4-35.

In each of these functions, if you do not want to change the values for an array, set its

parameter to nil. If you want to explicitly delete the values for one array and reset its

values to the default settings, you must use the constant gxSetToNil for that array’s

parameter.

Changing Text in a Glyph Shape

You can change text in a glyph shape using the GXSetGlyphs or GXSetGlyphParts

function. Use the former if you want to replace all of the text in the shape. (For more

information about GXSetGlyphs, see page 4-27.)

C H A P T E R 4

Glyph Shapes

4-14 Using Glyph Shapes

However, for most editing operations you may want to perform on the shape—whether

adding text, deleting text, or replacing text—you should use the GXSetGlyphParts

function, which is described on page 4-30. Table 4-1 lists some of the parameter settings

for changing text in a glyph shape using this function.

Listing 4-3 shows how to create a glyph shape that reads “Shape”. It then uses the

GXSetGlyphParts function to insert new text, “hips”, into the existing shape, changing

the shape so that it reads “Shipshape”.

Listing 4-3 Inserting text into an existing glyph shape

char *myString = "Shape";

char *newString = "hips";

short textLength;

gxShape myShape;

textLength = strlen(myString);

myShape = GXNewGlyphs(textLength, (unsigned char *)myString,

nil, nil, nil, nil, nil);

GXMoveShapeTo(myShape, ff(50), ff(50));

GXDrawShape(myShape);

textLength = strlen(newString);

Table 4-1 Changing text in a glyph shape using the GXSetGlyphParts function

Action Index
Old
character count

New
character count Text

Inserting new
text

Glyph index at
which new text
should start or
gxSelectToEndif
you want to insert
at the end

0 Length of the
new text

Pointer to the
new text

Replacing and
deleting some
text

Glyph index at
which the new text
should start

Number of
glyphs to delete
from the original
shape or
gxSelectToEnd

Length of the
new text

Pointer to the
new text

Replacing all
text in the shape

1 gxSelectToEnd Length of the
new text

Pointer to the
new text

Deleting all text
from the shape

1 gxSelectToEnd 0 nil

C H A P T E R 4

Glyph Shapes

Using Glyph Shapes 4-15

GXSetGlyphParts(myShape, 2, 0, textLength,

(unsigned char *)newString,

nil, nil, nil, nil, nil);

GXMoveShapeTo(myShape, ff(50), ff(100));

GXDrawShape(myShape);

GXDisposeShape(myShape);

Remember that if you add text to a shape in which you have style runs, you must update

the runs to reflect the new number of glyphs in the shape.

Changing the Style List and Style Runs Array

When you first create a glyph shape, QuickDraw GX gives it a single style run and the

default glyph shape’s style. However, you can change the styles of glyphs in the shape

when you create the shape, or you can use the GXSetGlyphParts function.

Keep in mind that when you change the style list in a glyph shape, you must always

pass appropriate values for the style runs as well, even if the style runs are not changing.

Likewise, you must always pass values for the style list when you want to change the

style runs.

For example, Listing 4-4 shows code that swaps, but doesn’t actually change, two

typefaces. It initially creates the shape “Birdy” so that the first two glyphs have the New

York font and second three glyphs have the Geneva font, and it later reverses the fonts.

The code in Listing 4-4 first creates references to the typefaces New York and Geneva. It

uses the GXNewStyle function to create the two styles and uses GXSetStyleTextSize

to set their text sizes, which will not change. The code then uses GXSetStyleFont to

set the first two glyphs to New York and the remaining three to Geneva, and creates the

glyph shape using GXNewGlyphs.

The next series of calls swaps the style runs. Note that in the call to GXSetGlyphParts,

you must reassign the style runs you assigned with GXNewGlyphs, even though the

style runs are not changing.

Listing 4-4 Changing the style runs of a glyph shape

gxShape myShape;
char *myString = "Birdy";

short myStyleRuns[] = {2,3};

gxStyle myStyles[2];

short textLength;
gxFont newYorkFont, genevaFont;

/* create references to typefaces; creates styles and text sizes*/

newYorkFont = FindPNameFont(gxFullFontName, "\pNew York");
genevaFont = FindPNameFont(gxFullFontName, "\pGeneva");

myStyles[0] = GXNewStyle();

C H A P T E R 4

Glyph Shapes

4-16 Using Glyph Shapes

myStyles[1] = GXNewStyle();
GXSetStyleTextSize(myStyles[0], ff(30));

GXSetStyleTextSize(myStyles[1], ff(60));

/* set styles for original shape */
GXSetStyleFont(myStyles[0], newYorkFont);

GXSetStyleFont(myStyles[1], genevaFont);

textLength = strlen(myString);

myShape = GXNewGlyphs(textLength, (unsigned char *)myString,
nil, nil, nil, myStyleRuns, myStyles);

/* replace the original style runs with the new ones */

GXSetStyleFont(myStyles[0], genevaFont);
GXSetStyleFont(myStyles[1], newYorkFont);

GXSetGlyphParts(myShape, 1, gxSelectToEnd, textLength,

nil, nil, nil, nil, myStyleRuns, myStyles);

GXMoveShapeTo(myShape, ff(50), ff(50));

GXDrawShape(myShape);

GXDisposeShape(myShape);
GXDisposeStyle(myStyles[0]);

GXDisposeStyle(myStyles[1]);

The GXSetGlyphParts function is described on page 4-30; the GXNewGlyphs function is

described on page 4-22. For more information about the functions GXSetStyleTextSize

and GXSetStyleFont, see the chapter “Typographic Styles” in this book.

Positioning a Glyph Shape
If you want to position the entire glyph shape to start at a particular QuickDraw GX

coordinate as the glyph origin for the first glyph in the shape, you can use the

GXMoveShapeTo function. This function changes the value in the positions array for the

first glyph. For example, if the gxMapTransform shape attribute is clear, this call to

GXMoveShapeTo changes the first glyph’s position in the positions array to (30.0,40.0):

GXMoveShapeTo(myGlyphsShape, ff(30), ff(40));

However, you can explicitly set the positions using the positions array, together with the

advance bits array, to position the glyphs of a glyph shape. The positions in the positions

array can be absolute or relative, depending on the corresponding bit in the advance bits

array for that glyph. A value of 1 indicates that the position is absolute in the geometry; a

C H A P T E R 4

Glyph Shapes

Using Glyph Shapes 4-17

value of 0 indicates that the position is relative to the end of the advance width of the

previous glyph. There are some other combinations of positions and advance bits arrays

to keep in mind:

■ If you don’t specify the positions or advance bits, QuickDraw GX sets one absolute
position and the advance bits array to 0x80000000, which indicates that that first
position is absolute.

■ If you only specify the positions and do not specify advance bits, QuickDraw GX sets
the advance bits array to 0xFFFFFFFF—that is, it sets each of those positions as
absolute positions for the shape.

■ You cannot set the advance bits to 0x00000000; the first glyph advance must always
be absolute.

To place each glyph of the glyph shape at a different location, use the

GXSetGlyphPositions function to set the positions array of an existing shape, as

demonstrated in Listing 4-5. (You can also use the GXSetGlyphParts function, a

general-purpose function that allows you to change many of the arrays in a glyph

shape at the same time. This function is described on page 4-30.)

The listing uses GXNewGlyphs to create a basic glyph shape, which includes the default

positions array. It then changes the positions and advance bits arrays of the shape using

the GXSetGlyphPositions function.

Listing 4-5 Setting the positions and advance bits arrays of a glyph shape

gxShape myShape;

gxPoint positions[] = { {ff(100), ff(100)}, {ff(50), ff(25)},

{ff(50), ff(25)}, {ff(50), ff(25)},

{ff(50), ff(25)} };

long advanceBits[] = {0x80000000};

char *myString = "Birdy";

short textLength;

/* create glyph shape, which includes default positions array */

textLength = strlen(myString);

myShape = GXNewGlyphs(textLength, (unsigned char *) myString,

nil, nil, nil, nil, nil);

GXSetShapeTextSize(myShape, ff(20));

/* change the shape’s positions and advance bits arrays */

GXSetGlyphPositions(myShape, 1, 5, advanceBits, positions);

This result of this code is shown in Figure 4-10.

C H A P T E R 4

Glyph Shapes

4-18 Using Glyph Shapes

Figure 4-10 A glyph shape with positions and advance bits arrays set

The GXSetGlyphPositions function is described on page 4-33; the GXNewGlyphs

function is described on page 4-22. For more information about GXSetShapeTextSize,

see the chapter “Typographic Styles” in this book.

Setting the Tangents Arrays
If you want to change the tangents of an existing shape, use the GXSetGlyphTangents

function, which allows you to replace a single tangent in an existing shape. (You can

also use the GXSetGlyphParts function, a general-purpose function that is useful if

you are replacing much of the information in a glyph shape. This function is described

on page 4-30.) For example, the following code draws the third and fifth glyphs of a

five-glyph shape at 45-degree angles. (Note that 0.707 represents the square root of 2

divided by 2.)

const gxPoint my45DegreeTangent[] = {{fl(0.707), fl(0.707)}};

GXSetGlyphTangents(myShape, 3, 1, my45DegreeTangent);

GXSetGlyphTangents(myShape, 5, 1, my45DegreeTangent);

Figure 4-11 shows what happens when this code is applied to an existing shape.

Figure 4-11 A glyph shape with 45-degree angle tangents

C H A P T E R 4

Glyph Shapes

Using Glyph Shapes 4-19

Of course, because a tangent represents both angle and scale, you can change both

values at the same time. (Note that this example had to explicitly design its tangent so

that scaling did not occur.) In Listing 4-6, the main function, GlyphDemo, uses the sub-

routine CreateGlyphTangents to create a series of tangents that apply varying scales

to the glyphs of a glyph shape, a series of tangents that apply varying angles to the

glyphs, and then a series of tangents that combine the scales and angles.

Listing 4-6 Creating a series of tangents with varying angles and scales

#include “math routines.h”

static void CreateGlyphTangents(long tangentCount,
 const Fixed angles[],

 const Fixed scales[],
 gxPoint *createdTangents)

{
/* The subroutine uses the angleWalker and scaleWalker variables

for stepping through the various values for angles and scales sent
by the main function. The tangentWalker variable stores the

tangents created as a result of the values given for the angles
and scales.

*/
register const Fixed *angleWalker = angles;

register const Fixed *scaleWalker = scales;
register gxPoint *tangentWalker = createdTangents;

gxPolar angleScale = {fixed1, 0};

/* If there are angles provided, use the next one in the series.
If there are scales provided, use the next one in the series.

*/
while (--tangentCount >= 0) {

if (angleWalker)
angleScale.angle = *angleWalker++;

if (scaleWalker)
angleScale.radius = *scaleWalker++;

PolarToPoint(&angleScale, tangentWalker++);
}

}
/* The routine calculates the x and y values of the tangent by

multiplying the scale by the cosine and sine, respectively, of the
angle.

*/

tangentWalker->x = FractMultiply(x, cos);
tangentWalker->y = FractMultiply(x, sin);

C H A P T E R 4

Glyph Shapes

4-20 Using Glyph Shapes

++tangentWalker;
--tangentCount;

}
}

static void GlyphDemo(void)

{
Fixed angles[11] = { 0, ff(10), ff(15), ff(20), ff(25),

ff(30), ff(25), ff(20), ff(15), ff(10),
0 };

Fixed scales[11] = { fl(1.0), fl(1.2), fl(1.4), fl(1.6),
fl(1.8), fl(2.0), fl(2.2), fl(2.4),

fl(2.6), fl(2.8), fl(3.0) };
gxPoint tangents[11];

gxShape myShape;

/* create tangents that scale each glyph of the shape
differently but do not affect the angle.

*/
CreateGlyphTangents(11, nil, scales, tangents);

myShape = GXNewGlyphs(11, (unsigned char *)"Glyphs Rule", nil,
nil, tangents, nil, nil);

GXSetShapeTextSize(myShape, ff(24));
GXMoveShape(myShape, ff(10), ff(30));

GXDrawShape(myShape);

/* create tangents that draw each glyph of the shape at
different angles but do not affect the scale or the size of the

glyphs.
*/

CreateGlyphTangents(11, angles, nil, tangents);
GXSetGlyphs(myShape, 0, nil, nil, nil, tangents, nil, nil);

GXMoveShape(myShape, 0, ff(120));
GXDrawShape(myShape);

/* combine the previous two sections: it changes the angle and

scale of each glyph in the shape. */
CreateGlyphTangents(11, angles, scales, tangents);

GXSetGlyphs(myShape, 0, nil, nil, nil, tangents, nil, nil);
GXMoveShape(myShape, 0, ff(150));

GXDrawShape(myShape);
GXDisposeShape(myShape);

}

C H A P T E R 4

Glyph Shapes

Glyph Shapes Reference 4-21

The results of Listing 4-6 are shown in Figure 4-12.

Figure 4-12 Varying the angle and scale of individual glyphs using tangents

The GXSetGlyphTangents function is described on page 4-35.

If you are trying to calculate the proper coordinates for a tangent that must approximate a

particular angle, you can use the PolarToPoint function. You can use the MapPoints

function to take a single mapping that has the rotation and scaling you desire, plus an

array of tangents for your shape, and produce an array of tangents that specify that

mapping and rotation.

The PolarToPoint and MapPoints functions are described the “QuickDraw GX

Mathematics” chapter in Inside Macintosh: QuickDraw GX Environment and Utilities.

Glyph Shapes Reference

Functions

This section describes the functions you use for creating, changing, or setting parts of

QuickDraw GX glyph shapes.

C H A P T E R 4

Glyph Shapes

4-22 Glyph Shapes Reference

Creating and Drawing Glyph Shapes

The GXNewGlyphs function creates a new glyph shape. You can also use the GXNewShape

function to create a glyph shape that has the default style, ink, and transform objects.

GXNewShape is described in Inside Macintosh: QuickDraw GX Objects.

The GXDrawGlyphs function draws a string of glyphs in the view port without actually

creating a glyph shape. To draw an existing glyph shape, you use the GXDrawShape,

which is described in Inside Macintosh: QuickDraw GX Objects.

GXNewGlyphs

You can use the GXNewGlyphs function to create a new glyph shape.

gxShape GXNewGlyphs(long charCount, const unsigned char text[],

 const gxPoint positions[],

 const long advance[],

 const gxPoint tangents[],

 const short styleRuns[],

 const gxStyle glyphStyles[]);

charCount The number of character codes in the text parameter. The value of
charCount must be greater than or equal to 0; if it is not 0, the text
parameter must contain an array of character codes. For non-Roman
scripts, the byte length may be up to twice the number of character codes.

text An array of character codes or glyph codes. Whether each character code
is 8-bit or 16-bit depends on both the platform in the glyph shape’s style
object and on the actual byte values. If the value of the glyph attribute
gxIgnorePlatformShape is clear, then it returns an array of character
codes. If it is set, it is returns an array of 16-bit glyph codes.

positions An array of points, one for each character code in the text parameter.
Depending on the corresponding values in the advance bits array, these
points are either the relative or absolute positions of the glyphs in
geometry space. If you pass nil for this parameter, GXNewGlyphs places
the first glyph at (0.0,0.0).

advance An array of bits, one bit for each character code in the text parameter. The
high bit in the long integer corresponds to the first character code in the
shape. If the bit is set, then the corresponding position for that glyph in the
positions parameter is an absolute position in geometry space. If the bit
is not set, the position for that glyph is relative to the end of the advance
width of the previous glyph. If you pass nil for both this parameter and
the positions parameter, GXNewGlyphs positions each glyph relative
according to the advance width of the preceding glyph. If you pass nil for
this parameter but not for the positions parameter, GXNewGlyphs gives
each glyph an absolute position from the positions array.

C H A P T E R 4

Glyph Shapes

Glyph Shapes Reference 4-23

tangents An array of points that serve as tangents. This array determines the
scaling or rotation of each glyph. If you pass nil for this parameter,
GXNewGlyphs does not apply optional scaling or rotation to each
character.

styleRuns An array of values that specify how many consecutive glyphs use the
same style; the styles are stored in the glyphStyle list. The number of
entries in the styleRuns array must match the number of entries in the
glyphStyles parameter; the sum of the entries in this array should
equal the value in the charCount parameter, so that every glyph is part
of a style run. The value of each entry must be greater than or equal to 1.
If this parameter is nil, GXNewGlyphs uses the default style object for all
glyphs in the shape.

glyphStyles
An array of references to style objects. This array should be present only if
the style-runs array is present. If you pass nil for this parameter,
GXNewGlyphs assigns the style object associated with the glyph shape
object to all glyphs in the shape. If an entry in the glyphStyles array is
nil, that entry refers to the style object associated with the shape.

function result A reference to the new glyph shape.

DESCRIPTION

The GXNewGlyphs function creates a copy of the default glyph shape, sets the owner

count of the copy to 1, initializes its geometry with the values in the function’s parameters,

and returns a reference to the glyph shape as the function result.

The new glyph shape returned by this function contains references to the same style, ink,

and transform objects as the default glyph shape.

Most of parameters to GXNewGlyphs—positions, advance, tangents, styleRuns,

and glyphStyles—are optional; if you set them to nil, QuickDraw GX sets their

values to those of the default glyph shape.

The charCount parameter indicates the number of character codes present, which may

not necessarily equal the number of bytes in the length of the text parameter. The

interpretation of characters depends on the glyph shape’s style attribute.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
parameter_is_nil (debugging version)
missing_parameter (debugging version)
inconsistent_parameters (debugging version)
count_is_less_than_zero (debugging version)
parameter_out_of_range (debugging version)

C H A P T E R 4

Glyph Shapes

4-24 Glyph Shapes Reference

SEE ALSO

You can also use the GXNewShape function, described in the chapter “Shape Objects” in

Inside Macintosh: QuickDraw GX Objects, to create a new glyph shape. The shape type of

the glyph shape is gxGlyphType. The default glyph shape is described on page 4-10.

To create a new text shape, use the GXNewText function, described in the chapter “Text

Shapes” in this book.

To create a new layout shape, see the description of the GXNewLayout function in the

chapter “Layout Shapes” in this book.

For information about the positions and advance bits arrays, see “The Positions and

Advance Bits Arrays” on page 4-5. For information about the tangents array, see “The

Tangents Array” on page 4-6.

GXDrawGlyphs

You can use the GXDrawGlyphs function to draw a string of glyphs without first creating

a glyph shape.

void GXDrawGlyphs(long charCount, const unsigned char text[],

const gxPoint positions[], const long advance[],

const gxPoint tangents[], const short styleRuns[],

 const gxStyle glyphStyles[]);

charCount The number of character codes in the text parameter. For non-Roman
scripts, the byte length may be up to twice the number of character codes.
This value must be greater than 0, and the text parameter must point at
an array of character codes. (If the value of this parameter is 0, the
GXDrawGlyphs function does nothing.)

text An array of character codes.

positions An array of points, one for each character code in the text parameter.
Depending on the corresponding values in the advance bits array, these
points are either the relative or absolute positions of the glyphs in
geometry space. If you pass nil for this parameter, GXDrawGlyphs
places the first glyph at (0.0,0.0).

advance An array of bits, one bit for each character code in the text parameter. The
high bit in the long integer corresponds to the first character code in the
shape. If the bit is set, then the corresponding position for that glyph in the
positions parameter is an absolute position in geometry space. If the bit
is not set, the position for that glyph is relative to the end of the advance
width of the previous glyph. If you pass nil for both this parameter and
the positions parameter, GXDrawGlyphs positions each glyph at the
end of the advance width of the preceding glyph. If you pass nil for this
parameter but not for the positions parameter, GXDrawGlyphs gives
each glyph an absolute position from the positions array.

C H A P T E R 4

Glyph Shapes

Glyph Shapes Reference 4-25

tangents An array of tangents that determines the scaling or rotation of each glyph.
If you pass nil, GXDrawGlyphs does not apply optional scaling or
rotation to each character.

styleRuns An array of values that specify how many consecutive glyphs use the same
style; the styles are stored in the style list. The number of entries in the
style-runs array must match the number of entries in the glyphStyles
parameter; the sum of the entries in the style-runs array should equal the
value in the charCount parameter, so that every glyph is part of a style
run. The value of each entry must be greater than or equal to 1. If you pass
nil for this parameter, GXDrawGlyphs uses the default style object when
drawing the glyphs.

glyphStyles
An array of references to style objects. This array should be present only if
the style-runs array is present. If you pass nil, GXDrawGlyphs assigns
the glyphs the default style.

DESCRIPTION

The GXDrawGlyphs function draws the text using the default transform and ink

objects. If the glyphStyles parameter contains no values, GXDrawGlyphs also uses

the default style object. The function does not create a new glyph shape that you can

subsequently use.

The parameter charCount indicates the number of characters present, which may not

necessarily equal the number of bytes in the length of the text parameter. The interpre-

tation of characters depends on the glyph shape’s style attribute.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To draw an existing glyph shape, use the GXDrawShape function, described in the

“Shape Objects” chapter in Inside Macintosh: QuickDraw GX Objects.

To draw simple text that shares the same font and other font characteristics, see the

description of the GXDrawText function in the chapter “Text Shapes” in this book.

To draw a layout shape, see the description of the GXDrawLayout function in the

chapter “Layout Shapes” in this book.

Getting and Setting the Properties of Glyph Shapes

You can get the settings of the various arrays of glyph shapes—the positions, advance

bits, tangents, style-runs arrays, and the styles—with the GXGetGlyphs function. You

can change any type of shape into a glyph shape with the GXSetGlyphs function.

Errors
parameter_is_nil (debugging version)
out_of_memory

C H A P T E R 4

Glyph Shapes

4-26 Glyph Shapes Reference

The GXGetGlyphParts function allows you to examine parts of a glyph shape, such as

some of the character codes stored in the shape or a portion of the positions array. The

GXSetGlyphParts function allows you to change parts of a glyph shape.

The GXGetGlyphPositions function allows you to examine the positions and advance

bits arrays of a glyph shape. The GXSetGlyphPositions function lets you change the

values of the positions and advance bits arrays.

The GXGetGlyphTangents function allows you to examine the tangents array of a

glyph shape. The GXSetGlyphTangents function lets you change the values of the

tangents array.

GXGetGlyphs

You can use the GXGetGlyphs function to retrieve the information in the geometry of a

glyph shape.

long GXGetGlyphs(gxShape source, long *charCount,

 unsigned char text[], gxPoint positions[],

 long advance[], gxPoint tangents[],

 long *runCount, short styleRuns[],

 gxStyle glyphStyles[]);

source A reference to the glyph shape.

charCount A pointer to a long value. On return, the value is the number of character
codes in the text parameter. For non-Roman scripts, the byte length may
be up to twice the number of character codes.

text An array of character codes or glyph codes. On return, the array contains
the character codes of the source glyph shape.

positions An array of points. On return, the array contains the positions array of the
source glyph shape.

advance An array of bits. On return, the array contains the advance bits array of
the source glyph shape.

tangents An array of points that serve as tangents. On return, the array contains
the tangents array of the source glyph shape.

runCount A pointer to a long value. On return, the value is the number of
style runs.

styleRuns An array of short values. On return, each element specifies how many
consecutive glyphs use the same style (the style runs array).

glyphStyles
An array of references to style objects. On return, the array contains the
style list for the source glyph shape.

function result The number of bytes needed to store the character codes of the
glyph shape.

C H A P T E R 4

Glyph Shapes

Glyph Shapes Reference 4-27

DESCRIPTION

The GXGetGlyphs function gets information from a glyph shape: the character or glyph

codes, positions, advance bits, tangents, style runs, and style lists. The parameters,

except for the shape reference, are pointers to storage for the other information, such as

the number of characters (which may not be equal to the number of bytes, depending on

the platform) or the positions array of the shape.

You must allocate the required space for the charCount,text, positions, advance,

tangents, styleRuns, and glyphStyles parameters.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To retrieve the description of a text shape, use the GXGetText function, described in the

chapter “Text Shapes” in this book.

GXSetGlyphs

You can use the GXSetGlyphs function to change the information in a glyph shape.

void GXSetGlyphs(gxShape target, long charCount,

 const unsigned char text[],

 const gxPoint positions[], const long advance[],

 const gxPoint tangents[], const short styleRuns[],

 const gxStyle glyphStyles[]);

target A reference to the shape whose arrays you want to change.

charCount The number of character codes in the text parameter. For non-Roman
scripts, the byte length may be up to twice the number of character codes.
This value must be greater than or equal to 0; if it is not 0, the text
parameter must point to an array of character codes.

text An array of character codes or glyph codes. Whether each character code
is 8-bit or 16-bit depends on both the platform in the glyph shape’s style
object and on the actual byte values. If the value of the shape attribute
gxIgnorePlatformShape is clear, then it returns an array of character
codes. If it is set, it is returns an array of 16-bit glyph codes.

Errors
out_of_memory
shape_is_nil
illegal_type_for_shape (debugging version)

Notices (debugging version)
glyph_tangents_have_no_effect
glyph_positions_determined_by_advance

C H A P T E R 4

Glyph Shapes

4-28 Glyph Shapes Reference

positions An array of points, one for each character code in the text parameter.
Depending on the corresponding values in the advance bits array, these
points are either the relative or absolute positions of the glyphs in
geometry space. If you pass nil for this parameter, GXSetGlyphs places
the first glyph at (0.0,0.0).

advance An array of bits, one bit for each character code in the text parameter.
The high bit in the long integer corresponds to the first character code in
the shape. If the bit is set, then the corresponding position for that glyph
in the positions array is an absolute position in geometry space. If the bit
is not set, the position for that glyph is relative to the end of the advance
width of the previous glyph. If you pass nil for both this parameter and
the positions parameter, GXSetGlyphs positions each glyph relative
to the advance width of the preceding glyph. If you pass nil for this
parameter but not for the positions parameter, GXSetGlyphs gives
each glyph an absolute position from the positions array.

tangents An array of points that serve as tangents. This array determines the
scaling or rotation of each glyph. If you pass nil, GXSetGlyphs does
not apply optional scaling or rotation to each character.

styleRuns An array of values that specify how many consecutive glyphs use the
same style; the styles are stored in the style list. The sum of the entries in
the style runs array should equal the value in the charCount parameter.
The value of each entry must be greater than or equal to 1. If you pass
nil for this parameter, GXSetGlyphs uses the default style object for all
glyphs in the shape.

glyphStyles
An array of references to style objects. This array should be present only if
the value of the styleRuns parameter is not nil. If you pass nil for
glyphStyles, GXSetGlyphs assigns the style object associated with the
shape object to all glyphs in the shape. If an entry in the style list is nil,
that entry refers to the style object associated with the shape.

DESCRIPTION

The GXSetGlyphs function changes the information in a glyph shape. If you use

GXSetGlyphs to change one of the elements of one of the arrays in a glyph shape—for

example, a point in the positions array—you must send the entire array for the shape.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
shape_is_nil
parameter_is_nil (debugging version)
missing_parameter (debugging version)
inconsistent_parameters (debugging version)
cannot_add_unspecified_new_glyphs (debugging version)
style_run_array_does_not_match_number_
of_characters

(debugging version)

C H A P T E R 4

Glyph Shapes

Glyph Shapes Reference 4-29

SEE ALSO

To change a portion of an array in a glyph shape, use the GXSetGlyphParts function,

described on page 4-30.

GXGetGlyphParts

You can use the GXGetGlyphParts function to retrieve parts of a glyph shape.

long GXGetGlyphParts(gxShape source, long index, long charCount,

long *byteLength, unsigned char text[],

gxPoint positions[], long advanceBits[],

gxPoint tangents[], long *runCount,

short styleRuns[], gxStyle styles[]);

source A reference to the shape whose information you want to retrieve.

index The number of the first character you want to retrieve.

charCount The number of character codes you want to retrieve. The number of
actual glyphs returned may be different from this value. (The function
itself returns the number of glyphs retrieved.)

byteLength A pointer to a long value. On return, the value is the number of bytes
used by the character codes.

text An array of character codes. On return, the array contains the character
codes from the source shape.

positions An array of gxPoint values. On return, the array contains the positions
of each of the glyphs.

advanceBits
An array of long values. On return, the array contains the advance bits
for the glyph shape.

tangents An array of gxPoint values. On return, the array contains the tangents
for glyphs you specify.

runCount A pointer to a long value. On return, the value is the number of
style runs.

styleRuns An array of short values. On return, the array contains the number of
glyphs associated with each style run.

styles An array of style-object references. On return, the array contains the styles
of the glyphs you specify.

function result The number of glyphs retrieved.

Warnings
shape_access_not_allowed (debugging version)
first_glyph_advance_must_be_absolute (debugging version)

C H A P T E R 4

Glyph Shapes

4-30 Glyph Shapes Reference

DESCRIPTION

The GXGetGlyphParts function retrieves the specified glyphs from the source shape,

which must be of type glyphsType, and places the character codes into the text

parameter, the positions into the positions parameter, the advance bits into the

advanceBits parameter, and so on. It also returns the length in bytes of these

characters in the byteLength parameter and the number of style runs in the runCount

parameter. You must allocate the memory to store the information the function returns.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To retrieve part of a text shape, use the GXGetTextParts function, described in the

chapter “Text Shapes” in this book.

GXSetGlyphParts

You can use the GXSetGlyphParts function to replace specific parts of a glyph shape

with new information.

void GXSetGlyphParts(gxShape source, long index,

long oldCharCount, long newCharCount,

const unsigned char text[],

const gxPoint positions[],

const long advanceBits[],

const gxPoint tangents[],

const short styleRuns[],

const gxStyle styles[]);

source A reference to the shape you want to change.

index The index number of the first character code that you want to replace in
the source shape. This value must be greater than or equal to 1.

Errors
out_of_memory
shape_is_nil
index_is_less_than_one (debugging version)
count_is_less_than_one (debugging version)
illegal_type_for_shape (debugging version)

Warnings
index_out_of_range
count_out_of_range

C H A P T E R 4

Glyph Shapes

Glyph Shapes Reference 4-31

oldCharCount
The number of character codes that you want to replace in the source
shape. This value may be greater than or equal to 0, or it may be
gxSelectToEnd, which selects all characters after and including the
character code specified by the value of the index parameter.

newCharCount
The number of character codes you want to add to the source shape.

text An array of the new characters you want to add.

positions The new values for the positions array.

advanceBits
The new values for the advance bits array.

tangents The new values for the tangents array.

styleRuns The new style-runs array.

styles The new style list.

DESCRIPTION

The GXSetGlyphParts function replaces the specified glyphs in the source shape with

the new glyphs specified by the text, positions, advanceBits, tangents,
styleRuns, and styles parameters.

If you send new text to the shape, the values in the positions, advanceBits,
tangents, styleRuns, and styles parameters apply only to new text, not to

the shape as a whole.

You cannot change the style list and style-runs array independently of each other. If you

change one, you must resend the values for the other.

Using the GXSetGlyphParts function, you can change the positions and advance bits

arrays independently, and you can send part of or all of a positions or advance bits array.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
shape_is_nil
inconsistent_parameters (debugging version)
index_is_less_than_zero (debugging version)
count_is_less_than_zero (debugging version)
illegal_type_for_shape (debugging version)
cannot_add_unspecified_new_glyphs (debugging version)
style_run_array_does_not_match_number
_of_characters

(debugging version)

Warnings
index_out_of_range
count_out_of_range
shape_access_not_allowed (debugging version)
first_glyph_advance_must_be_absolute (debugging version)

C H A P T E R 4

Glyph Shapes

4-32 Glyph Shapes Reference

SEE ALSO

For more information on how to use the GXSetGlyphParts function, see “Changing

Parts of a Glyph Shape” beginning on page 4-13.

To change parts of a text shape, use the GXSetTextParts function, described in the

chapter “Text Shapes” in this book.

GXGetGlyphPositions

You can use the GXGetGlyphPositions function to retrieve a number of entries in the

positions and advance bits arrays of a glyph shape.

long GXGetGlyphPositions(gxShape source, long index, long count,

long advance[], gxPoint positions[]);

source A reference to the glyph shape whose positions and advance bits arrays
you want to retrieve.

index The first entry in the positions and advance bits arrays you want.

count The number of entries in the positions and advance bits arrays to return,
starting at the value of the index parameter. This value may be greater
than or equal to 0. If you pass 0, the function result is a Boolean value
indicating whether the glyph shape has any entries set in the advance bits
array. A function result of false indicates that all the advance bits array
values are the default values.

advance An array of long values. On return, the array contains the requested
portion of the advance bits.

positions An array of points. On return, the array contains the requested portion of
the positions.

function result The number of retrieved entries, if the value of count is greater than 0;
otherwise, a Boolean value indicating whether the glyph shape has any
entries set in the advance bits array.

DESCRIPTION

The GXGetGlyphPositions function retrieves the specified number of entries from the

positions and advance bits arrays of the source glyph shape.

If the glyph shape’s advance bits array is not set, GXGetGlyphPositions fills the

advance bits array with zeros. If the glyph shape’s positions array is empty, the function

returns the positions array filled with the coordinate point (0.0,0.0), unless it is also

returning the first point in the shape; in this case, the function returns the initial position

of the glyph shape and fills the rest of the array with (0.0,0.0).

If you do not want either the advance bits or positions array, send nil for that parameter.

C H A P T E R 4

Glyph Shapes

Glyph Shapes Reference 4-33

ERRORS, WARNINGS, AND NOTICES

GXSetGlyphPositions

You can use the GXSetGlyphPositions function to replace the selected positions and

advance bits arrays of a glyph shape with new arrays.

void GXSetGlyphPositions(gxShape target, long index, long count,

const long advance[],

const gxPoint positions[]);

target A reference to the shape whose advance bits and positions arrays you
want to replace.

index The first entry in the positions and advance bits arrays you want
to replace.

count The number of entries to replace. This value may be greater than or equal
to 1. It may also be equal to gxSelectToEnd, which indicates that
GXSetGlyphPositions should select all positions and advance bits
beginning at the entry indicated by index.

advance The advance bits array you want to put into the target shape. If you pass
gxSetToNil, GXSetGlyphPositions sets all the bits, except the first
one, in this array to 0.

positions The positions array you want to put into the target shape. If you pass
gxSetToNil, GXSetGlyphPositions sets all the positions, except the
first one, in this array to (0.0,0.0).

DESCRIPTION

The GXSetGlyphPositions function replaces the selected sections of the advance bits

and positions arrays of the target shape with the arrays in the advance and positions

parameters.

Errors
shape_is_nil
index_is_less_than_one (debugging version)
count_is_less_than_zero (debugging version)
illegal_type_for_shape (debugging version)
out_of_memory

Warnings
index_out_of_range
count_out_of_range

C H A P T E R 4

Glyph Shapes

4-34 Glyph Shapes Reference

ERRORS, WARNINGS, AND NOTICE

GXGetGlyphTangents

You can use the GXGetGlyphTangents function to get some or all of the information

about tangents in a glyph shape.

long GXGetGlyphTangents(gxShape source, long index, long count,

gxPoint tangents[]);

source A reference to the shape from which you want the tangent information.

index The index number of the first tangent to return. This value must be
greater than or equal to 1.

count The number of tangents to return. This value may be greater than or equal
to 0. If you pass 0, the function result changes to a Boolean value
indicating whether the glyph shape has any explicit tangents at all.

tangents An array of gxPoint tangents. On return, the array of tangents.

function result The number of retrieved tangents, or, if the value of count is 0, a
Boolean value indicating whether the glyph shape has any explicit
tangents. A function result of false indicates that all the tangents are
the default settings.

DESCRIPTION

The GXGetGlyphTangents function retrieves the specified number of tangent

points from the glyph shape. If the glyph shape does not have tangents, then

GXGetGlyphTangents returns an array filled with the value (1.0,0.0) in the

tangents parameter.

Errors
out_of_memory
shape_is_nil
parameter_is_nil (debugging version)
index_is_less_than_zero (debugging version)
count_is_less_than_zero (debugging version)
illegal_type_for_shape (debugging version)

Warnings
index_out_of_range
count_out_of_range
shape_access_not_allowed
first_glyph_advance_must_be_absolute (debugging version)

Notices (debugging version)
glyph_positions_are_already_set

C H A P T E R 4

Glyph Shapes

Glyph Shapes Reference 4-35

ERRORS, WARNINGS, AND NOTICES

GXSetGlyphTangents

You can use the GXSetGlyphTangents function to replace selected tangents in a glyph

shape with new ones.

void GXSetGlyphTangents(gxShape target, long index, long count,

const gxPoint tangents[]);

target A reference to the glyph shape.

index The first tangent you want to replace.

count The number of tangents to replace. This value may be greater than or
equal to 1. It may also be equal to gxSelectToEnd, which indicates that
the function should select all tangents, from the one indicated by index
to the end of the tangents array.

tangents The array of tangents you want to put into the glyph shape. You can pass
gxSetToNil for an entry in this array; this value sets the tangents to the
default value of (1.0,0.0).

DESCRIPTION

The GXSetGlyphTangents function replaces the selected tangents with the new ones

you pass in the tangents parameter.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
shape_is_nil
index_is_less_than_one (debugging version)
count_is_less_than_one (debugging version)
illegal_type_for_shape (debugging version)
parameter_out_of_range (debugging version)

Warnings
index_out_of_range
count_out_of_range

Errors
out_of_memory
shape_is_nil
parameter_is_nil (debugging version)
index_is_less_than_one (debugging version)
count_is_less_than_zero (debugging version)
illegal_type_for_shape (debugging version)
parameter_out_of_range (debugging version)

C H A P T E R 4

Glyph Shapes

4-36 Glyph Shapes Reference

Warnings
index_out_of_range
count_out_of_range
shape_access_not_allowed

Notices (debugging version)
glyph_tangents_already_set

C H A P T E R 4

Glyph Shapes

Summary of Glyph Shapes 4-37

Summary of Glyph Shapes

Functions

Creating and Drawing Glyph Shapes

gxShape GXNewGlyphs (long charCount, const unsigned char text[],
const gxPoint positions[],
const long advance[],
const gxPoint tangents[],
const short styleRuns[],
const gxStyle glyphStyles[]);

void GXDrawGlyphs (long charCount, const unsigned char text[],
const gxPoint positions[],
const long advance[], const gxPoint tangents[],
const short styleRuns[],
const gxStyle glyphStyles[]);

Getting and Setting the Properties of Glyph Shapes

long GXGetGlyphs (gxShape source, long *charCount,
unsigned char text[], gxPoint positions[],
long advance[], gxPoint tangents[],
long *runCount, short styleRuns[],
gxStyle glyphStyles[]);

void GXSetGlyphs (gxShape target, long charCount,
const unsigned char text[],
const gxPoint positions[],
const long advance[],
const gxPoint tangents[],
const short styleRuns[],
const gxStyle glyphStyles[]);

long GXGetGlyphParts (gxShape source, long index, long charCount,
long *byteLength, unsigned char text[],
gxPoint positions[], long advanceBits[],
gxPoint tangents[], long *runCount,
short styleRuns[], gxStyle styles[]);

void GXSetGlyphParts (gxShape source, long index, long oldCharCount,
long newCharCount, const unsigned char text[],
const gxPoint positions[],
const long advanceBits[],
const gxPoint tangents[],
const short styleRuns[],
const gxStyle styles[]);

C H A P T E R 4

Glyph Shapes

4-38 Summary of Glyph Shapes

long GXGetGlyphPositions (gxShape source, long index, long count,
long advance[], gxPoint positions[]);

void GXSetGlyphPositions (gxShape target, long index, long count,
const long advance[],
const gxPoint positions[]);

long GXGetGlyphTangents (gxShape source, long index, long count,
gxPoint tangents[]);

void GXSetGlyphTangents (gxShape target, long index, long count,
const gxPoint tangents[]);

Contents 5-1

C H A P T E R 5

Contents

Layout Shapes

About Layout Shapes 5-3

Properties of the Layout Shape 5-4

Runs in a Layout Shape 5-5

Text Runs 5-6

Style Runs 5-7

Direction-Level Runs 5-9

Layout Options 5-10

Width 5-10

Alignment 5-11

Justification 5-13

Baselines 5-16

Flags 5-16

The Default Layout Shape 5-17

Using Layout Shapes 5-17

Creating and Drawing a Layout Shape 5-17

Creating a Layout Shape With Multiple Style Runs 5-18

Positioning a Layout Shape 5-20

Changing Parts of an Existing Layout Shape 5-20

Changing Text in a Layout Shape 5-21

Inserting a Typographic Shape Into a Layout Shape 5-22

Extracting a Layout Shape From Part of an Existing Layout Shape 5-23

Setting Layout Options 5-24

Setting the Width of a Layout Shape 5-24

Setting the Alignment of a Layout Shape 5-24

Justifying Text in a Layout Shape 5-26

Getting Glyph Information From a Layout Shape 5-27

Converting a Layout Shape Into a Glyph Shape 5-27

C H A P T E R 5

5-2 Contents

Layout Shapes Reference 5-28

Constants and Data Types 5-28

Layout Options Structure 5-29

Layout Options Flags 5-30

Functions 5-30

Creating and Drawing Layout Shapes 5-30

GXNewLayout 5-31

GXDrawLayout 5-33

Getting and Setting the Geometry of a Layout Shape 5-34

GXGetLayout 5-34

GXSetLayout 5-36

Getting and Setting Portions of a Layout Shape’s Geometry 5-38

GXGetLayoutParts 5-38

GXSetLayoutParts 5-40

Extracting or Inserting Parts of a Layout Shape 5-42

GXGetLayoutShapeParts 5-42

GXSetLayoutShapeParts 5-44

Obtaining Glyph Information From a Layout Shape 5-45

GXGetLayoutGlyphs 5-45

Summary of Layout Shapes 5-48

Constants and Data Types 5-48

Layout Shape Functions 5-48

C H A P T E R 5

About Layout Shapes 5-3

Layout Shapes

This chapter describes the basic features of the layout shape object and the functions you

can use to manipulate them. Read this chapter if you create or use layout shapes in your

application.

Before reading this chapter, you should be familiar with the information in the chapters

“Introduction to QuickDraw GX Typography” and “Typographic Shapes” in this book.

You may also need to refer to the book Inside Macintosh: QuickDraw GX Objects before

reading this chapter.

This chapter describes the basic elements of a layout shape. For information on creating

carets, highlighting, and hit-testing a layout shape, read the chapter “Layout Carets,

Highlighting, and Hit-Testing for Layout Shapes.” For information about baselines, line

measurement, line breaking, and text direction, read the chapter “Layout Line Control.”

For information on style-object properties used by layout shapes, see the chapter

“Layout Styles.”

This chapter introduces the concept of a layout shape, describes how it relates to the

other typographic shapes, and describes the layout shape’s properties. It then shows

how to use QuickDraw GX functions to

■ create and draw layout shapes

■ manipulate the contents of a layout shape

■ retrieve glyph information from a layout shape

About Layout Shapes

A layout shape, like a text shape or glyph shape, produces a line of text that QuickDraw

GX can draw on the screen. Unlike the text and glyph shapes, however, the layout shape

deals with text primarily in typographic terms (“kern by this amount” or “change the

orientation of this text in a vertical line”) rather than graphic terms (“place this glyph at

the following (x,y) location” or “set this glyph’s rotation to 12 degrees”).

Some of the things your application can do with layout shapes include

■ creating contextual forms and ligatures automatically

■ manual and automatic kerning, tracking, and letterspacing

■ justifying text in sophisticated ways, including the use of language-specific justification,
such as Arabic kashidas

■ automatically rearranging text for languages such as Arabic, Hebrew, Hindi, and
other non-Roman script systems that require rearrangement

■ highlighting some or all of the text in the layout, including text in two different scripts,
such as Roman and Arabic

■ hit-testing within the text

■ determining the caret or carets for some location within the text

■ supporting your application’s line-breaking decisions with fast measurement
functions

C H A P T E R 5

Layout Shapes

5-4 About Layout Shapes

A layout shape generally describes a single line of text. It is not suited for large blocks of

text, such as a paragraph. However, you can use QuickDraw GX functions to break up a

paragraph into several layouts that your application can work with.

Properties of the Layout Shape
The geometry of a layout shape, shown in Figure 5-1, has three main components: text,

style-run information, and direction-level information. Note that, because a layout shape

is an object and not a data structure, the order of the properties as shown in Figure 5-1 is

completely arbitrary.

Figure 5-1 shows the ten accessible properties of the layout shape object.

Figure 5-1 Geometry of a layout shape

The geometry of a layout shape contains these elements:

■ Text length. The count of the total number of bytes contained in the text. Note that
with layout shapes, you pass in byte counts, unlike with text and glyph shapes.

■ Text. The text of a layout shape is stored as a single run of character codes, although
you can supply pointers to several separate runs when you create or modify a layout.

■ Position. The starting position of the layout shape in geometry space. This position
always marks the left (if horizontal) or top (if vertical) edge of the shape. If the shape
is left-aligned, this position corresponds to the intersection of the baseline with the
leftmost glyph of the shape.

■ Style-run count. The number of style runs in the layout shape—that is, text sequences
that each share the same font, size, style, and script system.

■ Style-run lengths. An array that specifies the length, in bytes, of each style run in the
layout shape.

C H A P T E R 5

Layout Shapes

About Layout Shapes 5-5

■ Style list. An array of references to the style objects for each of the style runs. If the
layout shape has only one style run or is nil, its style list may be empty, and the one
style object may be referenced instead in the style property of the shape object itself.

■ Level-run count. The number of direction-level runs in a layout shape. Each direction-
level run defines a direction—left to right or right to left—for reading the text of that
run. Because the runs can be nested (a left-to-right phrase may be embedded within a
right-to-left phrase), each run has a level that describes its depth of embedding. Left-
to-right phrases are given even numbers; right-to-left phrases are given odd numbers.

■ Level-run lengths. An array that specifies the length, in bytes, of each level run in the
layout shape.

■ Levels array. An array that specifies the length in bytes of each level run in the
layout shape.

■ Layout options. A set of values and flags that are general controls for the line des-
cribed by the layout shape: the width of the text area from the left margin to the right
margin, the alignment of the text, the justification of the text, and the locations of the
various baselines for the text.

Some functions, such as GXSetLayoutParts and GXSetLayout, manipulate the geo-

metry, and other functions, such as GXHitTestLayout and GXGetLayoutHighlight,

allow you to interact with the layout shape.

Runs in a Layout Shape
Most of the information in a layout shape is in the form of three kinds of runs. In

Figure 5-2, a single layout shape has one text run, four style runs, and two direction-

level runs.

Figure 5-2 An example of a layout with its text, style, and direction-level runs marked

C H A P T E R 5

Layout Shapes

5-6 About Layout Shapes

Text Runs

A text run is an ordered array of character codes or glyph codes. These codes may be

in any character encoding and therefore may be 1-byte codes, 2-byte codes, or a mixture

of 1- and 2-byte codes. When you create a new layout shape, you specify the number of

text runs, the byte length of each run, and the text in the runs that are to make up the

source text of the layout shape. For example, your source text would include the two

separate characters “f” and “i” and not the “fi” ligature, because the layout shape allows

you to create ligatures. (The purpose of the layout shape is to manipulate the appearance

of the text.)

The text in a layout shape is stored as a single text run, but you can maintain pointers to

separate text runs in your own data structures. You pass those pointers to functions, such

as GXSetLayout or GXSetLayoutParts, that modify the text of a layout shape.

QuickDraw GX assumes that the character codes of layout shape’s source text are always

stored in input order—the order in which characters are typically entered when the user

creates a document. (Note that sometimes the term phonetic order is used as a synonym

for input order.) This may be different from the order in which QuickDraw GX displays

them, which is the display order.

Note

If the gxIgnorePlatformShape attribute is set for the layout
shape, then the text consists only of glyph codes. Otherwise, the
platform controls of each run determine whether that run consists
of character codes or glyph codes. For more information on the
gxIgnorePlatformShape attribute, see the chapter “Typographic
Shapes” in this book. ◆

The input order and display order may differ for certain text directions—the directions

in which text of a particular language is written and read. Written English has a left-to-

right direction; written Arabic has a (predominantly) right-to-left direction, and Japanese

has a top-to-bottom direction, as shown in Figure 5-3.

Figure 5-3 English, Arabic, and Japanese text directions

C H A P T E R 5

Layout Shapes

About Layout Shapes 5-7

If the text direction is right to left, QuickDraw GX may need to rearrange text from its

input order to its display order. Layout shapes provide the information QuickDraw GX

needs to rearrange text where necessary. The important point to remember is that you

should store the source text of your layout shapes in input order, not display order.

In simple cases of left-to-right or right-to-left text, QuickDraw GX handles the rearrange-

ment automatically. However, in certain situations you may need to specify direction,

which you can do using direction-level runs. See “Direction-Level Runs” on page 5-9.

Style Runs

A single layout shape can have multiple style runs. When you create style runs for a

layout shape, you specify the number of style runs, the number of bytes of text in each

style run, and the style objects themselves. The style object references are contained in an

array (the style list) within the layout shape geometry; these style objects are like the

style object referenced in the style property of the layout shape object, except that there

can be more than one of them per shape. If you don’t add any style objects to the layout

shape geometry, QuickDraw GX uses the default style object for the entire shape. If you

do add styles to the shape, QuickDraw GX ignores the default style object, except that if

one of the styles in the style list is nil, QuickDraw GX uses the style object attached to

the shape for that particular style run.

Note

If the geometry of a layout shape contains the style object or objects
used with the layout shape, the function GXSetShapeStyle, which
affects only the style object referenced in the style property of the shape,
has no effect on the look of the layout shape. To change the styles of
the shape, you must call GXSetLayout, GXSetLayoutParts, or
GXSetLayoutShapeParts, which are described in this chapter. ◆

Because each style object in the style list contains the font, the text size, and the character

encoding that you want to apply to one run of text in the shape, you can create one

layout with several different fonts and scripts, such as Roman and Arabic. (For more

information about the basic contents of the typographic elements of the style object, see

the chapter “Typographic Styles” in this book. For information about the contents of a

font, such as its script and language, see the chapter “Font Objects” in this book.)

Style objects, when used with layout shapes, also contain the run controls, font features,

glyph justification overrides array, priority justification override structure, kerning

adjustments array, and glyph substitutions array of a layout shape. These are described

in the chapters “Layout Line Control” and “Layout Styles” in this book.

Vertical Text in a Layout Shape

Fundamentally, there is no vertical text direction for layout shapes. Because transform

objects allow you to rotate any shape by any amount, to draw a layout shape as a vertical

line of text you must rotate it 90 degrees before drawing it, as in Figure 5-4.

C H A P T E R 5

Layout Shapes

5-8 About Layout Shapes

Figure 5-4 A line of text rotated into a vertical position

For measurement and analysis, a vertical line of text is considered to be left to right and

horizontal. If a style run is to be vertical, that is, if its glyphs are to appear in their proper

orientation when the line is rotated, you set the gxVerticalText text attribute. That

setting rotates the glyphs 90 degrees counterclockwise before they are positioned on the

baseline. You then perform operations (such as measuring the line) while the line is still

considered horizontal, rotate the shape 90 degrees clockwise, and position it correctly

before drawing it.

For more information and examples of drawing vertical lines, see the chapter “Layout

Line Control” in this book.

Font Features

Font features are glyph-substitution capabilities that are built into QuickDraw GX fonts

specifically for the layout shape. For example, a font can contain ligatures that your

application can use whenever certain glyphs (such as “f” and “i”) appear in sequence on

a line of text. Other examples of font features are cursive connections, special typestyles

of number sets, and automatic formation of fractions.

The use of font features with the layout shape is an advanced topic discussed in detail in

the chapter “Layout Styles” in this book.

C H A P T E R 5

Layout Shapes

About Layout Shapes 5-9

Direction-Level Runs

If a text run (the text in a shape) has only one direction, whether left to right or right to

left, displaying its characters in the proper order is simple. (The inherent direction of

glyphs is determined by linguistic rules and stored by the font designer in the glyph

properties table of the font.) However, if a text run contains a mixture of left-to-right and

right-to-left text, the display order of its characters can be more complex.

To help QuickDraw GX determine the display order of the characters in a layout shape

containing text running in multiple directions, you can create direction-level runs by

supplying a direction-level code to each block of text that runs in a different direction.

The direction-level code determines the dominant direction of the target text run; the

code affects only multidirectional text. A text run with a dominant direction can have

embedded direction-level runs that must be displayed in other directions.

Furthermore, when you create a layout shape that contains multidirectional text, you can

in most cases simply assign a single direction-level code to the entire shape, which gives

it an overall dominant direction of left to right or right to left. When you do, QuickDraw

GX automatically draws the embedded text in the proper direction. It is only when

embedded text itself contains embedded text of another direction that the assignment of

direction-level codes to portions of the text run becomes important.

Direction-level codes do not affect the order of the character codes as stored in the source

text of a layout shape. Furthermore, direction-level codes affect only the ordering of

blocks of text of a given direction; they do not affect the display order of the individual

characters of a given direction. That is, if a layout shape contains a text run that is all

right to left and you assign the shape a direction-level code that specifies a left-to-right

dominant direction, QuickDraw GX does not rearrange the characters so they read left to

right—it displays them correctly as right to left.

Figure 5-5 shows an example of right-to-left text embedded within left-to-right text; for

an explanation of the numbering scheme used in this example, see the chapter “Layout

Line Control” in this book.

Figure 5-5 A line of right-to-left of text with multiple direction levels

See the chapter “Layout Line Control” in this book for more information and for examples

of how to create layout shapes with several level runs and multiple embedded text

directions.

C H A P T E R 5

Layout Shapes

5-10 About Layout Shapes

Layout Options
Layout options are values that apply to the entire layout shape and are stored in the

layout options structure. The layout options determine the following basic characteristics

of a layout shape:

■ The width of the layout shape.

■ The alignment of the layout shape. The default is zero or left-flush.

■ The justification of the layout shape—that is, how the white space on the line of text is
distributed between the words and glyphs. A layout shape can have no justification,
full justification (all the extra white space on the line is distributed), or some fractional
value in between. The default value is 0, or no justification.

■ A pointer to a structure containing the distances between the y-positions of the base-
lines to use for this layout shape. (See the chapter “Layout Line Control” for more
information about baselines.) The default value is nil.

■ Layout option flags, which allow you to set some basic attributes of the layout shape.
The default value is 0, or no flags set.

The layout options structure is described on page 5-29; values for the layout options

flags are described on page 5-30.

Width

The width field of the layout options structure specifies the width of the line, from left

margin to right margin. This value is a fixed number in typographic points (72 per inch),

not QuickDraw GX coordinates.The default value is 0. Table 5-1 shows the various inter-

actions of the width, just, and flush fields.

If you do not want to justify the text in the layout shape, the actual width of the line may

differ from the value specified in this field. See “Setting the Width of a Layout Shape” on

page 5-24.

Also, if the line contains glyphs with large negative side bearings, hanging punctuation,

or optically aligned edges, the final width of the displayed layout shape may be different

from the value you specify in the width field. (Hanging punctuation and optical align-

ment are described in the chapter “Layout Styles” in this book.)

C H A P T E R 5

Layout Shapes

About Layout Shapes 5-11

Alignment

Alignment, or flushness, is the placement of lines of text with respect to the left and right,

or top and bottom margins (edges of the text area). Text can be left-aligned, right-aligned,

centered, or positioned elsewhere between the margins. (Text that is both left-aligned and

right-aligned is said to be fully justified; see “Justification” beginning on page 5-13.)

Table 5-1 Interactions between the width, just, and flush fields

Width Just Flush Effect

0 0 0 Unjustified layout is flush left.

0 0 >0 Unjustified layout moves around the origin proportion-
ally. For example, if the flush field equals 0.5, layout is
centered on the origin, or, if the flush field equals 1.0,
the right edge of layout is aligned to the origin.

0 >0 0 Unjustified layout compresses, flush left.

0 >0 >0 Unjustified layout compresses at the point specified by
the flush field.

>0 0 0 Unjustified layout is flush left, unless the unjustified
width is greater than the specified width. In this case, the
layout is compressed into the specified width.

>0 0 >0 Unjustified layout is at the point specified by the flush
field within the specified width (rather than around the
origin, as happens when the width is 0). If the unjustified
width is greater than the specified width, layout is
compressed into the specified width.

>0 >0 0 Justified layout is in the specified width, flush left, unless
the just field is equal to 1.0. In this case, both edges
are flush.

>0 >0 >0 Justified layout is in the specified width at the point
specified by the flush field within the specified width,
unless the just field is equal to 1.0. In this case, both
edges are flush.

C H A P T E R 5

Layout Shapes

5-12 About Layout Shapes

In Figure 5-6, three types of alignment are shown: left, right, and centered. Note how the

words of the text are spaced normally. Unlike justification, alignment does not affect the

spacing between words or individual glyphs.

Figure 5-6 Types of alignment

The default value for the alignment of a layout shape is 0, or alignment at the left margin.

(A value of 0 also indicates the left-alignment for right-to-left text, such as Hebrew.) The

flush field of the layout options structure, not the alignment values in the style objects

associated with the shape, determines alignment. The flush field specifies whether the

text is left-aligned, right-aligned, or centered in relation to the text margins, as shown in

Figure 5-7.

Figure 5-7 Use of the flush field

C H A P T E R 5

Layout Shapes

About Layout Shapes 5-13

If the value of the flush field is 0.0, the text appears aligned at the left or top edge. If the

value is 0.5, the text is centered. If the value is 1.0, the text appears aligned at the right

or bottom edge. Other values can be between these main values: for example, a value of

0.25 aligns the edge of the text halfway between where it would appear if the values

were 0.0 and 0.5.

Justification

Justification is a type of alignment that involves expanding or compressing a line to

occupy a given line width. The line width is specified by the value of the width field;

QuickDraw GX uses the value in the just field to distribute the glyphs on the line.

QuickDraw GX justifies Roman text primarily by adjusting the white space between

words and glyphs, as shown in Figure 5-8. Note that white space is added not only

between words but also between glyphs. Also notice that ligatures such as “fi” and “ffi”

can be broken during justification.

Figure 5-8 Alignment and justification in English

When Arabic text is justified, QuickDraw GX distributes the available white space on the

line by automatically lengthening or shortening the kashidas, which are the extender

bars stretching between some of the glyphs of a word, as shown in Figure 5-9.

Figure 5-9 Alignment and justification in Arabic

C H A P T E R 5

Layout Shapes

5-14 About Layout Shapes

The just field of the layout options structure can have valid fractional values from 0

through 1. A value of 0.0 means no justification; a value of 1.0 means full justification (to

the value of the width field). QuickDraw GX interprets intermediate values, such as 0.5,

to mean partial justification (also called ragged justification), as shown in Figure 5-10.

Figure 5-10 Use of the just field

Figure 5-11 shows how the just field and flush (alignment) field of the layout options

structure interact with values ranging from 0.0 to 1.0. Note that when the user chooses

full justification—that is, when the just field equals 1.0—the value in the flush field

has no effect.

For more information on how to control justification and alignment, see the chapter

“Layout Line Control” in this book.

C H A P T E R 5

Layout Shapes

About Layout Shapes 5-15

Figure 5-11 How different values for justification and alignment affect text in a layout shape

C H A P T E R 5

Layout Shapes

5-16 About Layout Shapes

Baselines

In general, a run of text has a default baseline, the line to which all glyphs are visually

aligned when the text is laid out. For example, in a run of Roman text, the default base-

line is the Roman baseline, upon which glyphs sit (except for descenders, which extend

below the baseline). In some other writing systems, glyphs hang from the baseline. When

text in a line comprises runs using multiple baselines, the layout shape uses information

in the baseline record of the layout options structure to determine how to align the runs

with each other.

The baseline structure of the layout options structure contains an array of distances, in

points, from a delta of 0 from the y-coordinate of the layout’s origin to the other baseline

types the layout shape contains. Positive values indicate baselines above the default base-

line, and negative values indicate baselines below it. QuickDraw GX can use these values

to position text in relation to the default baseline. Figure 5-12 shows an example of text

with multiple baselines aligned according to information in the baseline structure.

Figure 5-12 Text with multiple baselines aligned to the default baseline

Baseline types and other uses for baselines are described in the chapter “Layout Line

Control” in this book.

Flags

The flags of the layout options structure allow you to set certain characteristics of the

layout shape as a whole.

The layout options flags can have the following settings:

■ gxNoLayoutOptions. In this case, no layout options flags are set.

■ gxLineIsDisplayOnly. This setting indicates that QuickDraw GX creates the shape
without the internal information needed for editing the layout shape. This shape
conserves memory and is for display purposes only. Performing any editing on this
shape will clear this flag.

C H A P T E R 5

Layout Shapes

Using Layout Shapes 5-17

The Default Layout Shape
The default layout shape has no text and no layout options associated with it. The

gxMapTransformShape attribute is set by default. Like text and glyph shapes, the

default layout shape is of type gxWindingFill.

The default layout shape is associated with a style object. (See the chapter “Style Objects”

in Inside Macintosh: QuickDraw GX Objects.) The default settings for all typographic

shapes are described in the “Typographic Shapes” chapter in this book.

Using Layout Shapes

This section describes how to perform basic operations with the simple layout shape

described in this chapter. These operations include

■ creating and drawing a layout shape

■ changing its parts: that is, changing some or all of the text, styles, or direction levels in
the shape or inserting the geometry of another typographic shape

■ setting the layout options of a layout shape, including its width, its alignment, and its
justification

■ getting glyph information from a layout shape

■ converting a layout shape to a glyph shape to perform certain graphic operations on
the shape

For information about more complex actions you can take with a layout shape, see the

chapters “Layout Styles,” “Layout Carets, Highlighting, and Hit-Testing,” and “Layout

Line Control” in this book.

Creating and Drawing a Layout Shape
You can use the GXNewLayout function (described on page 5-31) to create a new layout

shape based on the text and style information you specify. All information about style

runs is stored in the geometry of the shape, not in the style object associated with the

layout shape object.

Alternatively, you can use the GXNewShape function followed by the GXSetLayout

function to create and initialize the values of a layout shape. The GXNewShape function

is described in the chapter “Shape Objects” in Inside Macintosh: QuickDraw GX Objects.
Unlike GXNewLayout, GXSetLayout (page 5-36) uses an existing shape rather than

creating a new shape, but both functions allow you to set the values of text runs, style

runs, and direction-level runs.

C H A P T E R 5

Layout Shapes

5-18 Using Layout Shapes

If you have a pointer to some text and one or more style objects to apply to that text, you

can create the layout shape and then draw it. Listing 5-1 illustrates this operation. The

GXNewLayout function takes a string, a style, and a position, and puts a reference to the

new layout shape into the variable myLayout.

Listing 5-1 Creating and drawing a layout shape

gxShape myLayout;

char *myText = "Hi there!";

short textLen = strlen(myText);

gxStyle myStyle = GXNewStyle();

gxPoint position = {ff(100), ff(100)};

myLayout = GXNewLayout(1, &textLen, &myText,

 1, &textLen, &myStyle,

 0, nil, nil,

 nil, &position);

GXDrawShape(myLayout);

The GXDrawLayout function (page 5-33) speeds the process of creating, drawing, and

then disposing of a layout shape. If you wanted to use GXDrawLayout instead of

GXNewLayout and GXDrawShape in Listing 5-1, you could replace the last five lines

of the listing with this code:

GXDrawLayout(1, &textLen, &myText,

1, &textLen, &myStyle,

0, nil, nil,

nil, &position);

However, GXDrawLayout does not create a new layout shape that you can subse-

quently use. If you want to draw an existing layout shape or anticipate that you may

want to draw a layout shape repeatedly, use the GXDrawShape function as shown in

Listing 5-1 and as described in the chapter “Shape Objects” in Inside Macintosh: QuickDraw
GX Objects.

Creating a Layout Shape With Multiple Style Runs

If a layout shape does not contain style list in its geometry, QuickDraw GX uses the style

object referenced in the style property of the shape object. If the layout shape does have a

style list, however, QuickDraw GX stores in it the information about the styles used in

the layout shape, including information about the fonts, text size, typestyles, justification,

and text attributes.

Listing 5-2 creates a layout shape that contains three style runs. The code creates two

styles: the Palatino® Regular font at point size 20, and the Hoefler Text Italic font at point

size 20. It assigns the first and third styles runs to Palatino, and the second style run to

C H A P T E R 5

Layout Shapes

Using Layout Shapes 5-19

Hoefler Text Italic. Listing 5-2 sets the style run lengths to the appropriate byte counts,

and then it creates and draws the shape. The routine makes use of a library function,

NewLayoutStyle, to create and initialize a style object.

Listing 5-2 Creating a line containing multiple style runs

static gxLayoutOptions myLayoutOptions;

static gxPoint myPosition = {ff(20), ff(100)};

static short len;

static short myStyleRunCount = 3;

gxStyle myStyles[3];

static short myStyleRunLengths[] = {7,10,12};

static const char *myString = "Jeff’s excellent layout shape";

/* Initialize as Pascal strings.

 */

static char palatinoName[] = "\pPalatino"

static char hoeflerName[] = "\pHoefler Text Italic"

len = strlen(myString);

InitializeLayoutOptions(&myLayoutOptions);

/* Set up styles: call the library function NewLayoutStyle to

 create the styles.

 */

myStyles[0] = NewLayoutStyle(palatinoName,ff(20),0, nil, nil, 0,

 nil);

myStyles[1] = NewLayoutStyle(hoeflerName,ff(20),0, nil, nil, 0,

 nil);

myStyles[2] = myStyles[0];

/* Create layout. */

gShape = GXNewLayout(1, &len, (void *)&myString,

myStyleRunCount, myStyleRunLengths, myStyles,

0, nil, nil, &myLayoutOptions,

&myPosition);

GXDrawShape(gShape);

Listing 5-2 creates the output shown in Figure 5-13.

C H A P T E R 5

Layout Shapes

5-20 Using Layout Shapes

Figure 5-13 A layout shape with multiple style runs

Positioning a Layout Shape
To position a layout shape, you can use either the GXNewLayout or GXSetLayout

function. The value you supply in the position parameter of these functions generally

determines the position, in the local coordinates of the view port, of the baseline of the

intersection on the margin and the layout shape.

Alternatively, you can call the GXMoveShapeTo function to draw the shape at a specified

point in the view port, as in this example:

GXMoveShapeTo(myLayoutShape, ff(50), ff(125));

However, the GXMoveShapeTo function does not change the value of the position stored

in the layout shape. If you want to change the position stored in the shape, you must call

the GXSetLayout function (page 5-36).

For a description of the GXMoveShapeTo function, see the chapter “Transform Objects”

in Inside Macintosh: QuickDraw GX Objects.

Changing Parts of an Existing Layout Shape
Three similarly named functions allow you to change values in the geometry of a layout

shape: GXSetLayout, GXSetLayoutParts, and GXSetLayoutShapeParts. These

functions have companion functions that are also similarly named and allow you to

retrieve values: GXGetLayout, GXGetLayoutParts, and GXGetLayoutShapeParts.

Each set of functions serves a different purpose:

■ If you want to retrieve or change information for the whole layout (text, style, levels)
in a layout shape, use the GXGetLayout and GXSetLayout functions.

■ If you want to retrieve or change parts of runs of information in a layout shape, use
the GXGetLayoutParts and GXSetLayoutParts functions.

■ If you want to create a second layout shape using some or all of a first layout shape,
use the GXGetLayoutShapeParts function. This function allows you to extract a
section from a layout shape—including the text, styles, and levels—and create a new
layout shape out of it.

■ If you want to change the geometry of an existing layout shape using the geometry
of another typographic shape (whether text, glyph, or layout), use the
GXSetLayoutShapeParts function. This function allows you to insert the text and
styles of another typographic shape into an existing layout shape. Any styles attached

C H A P T E R 5

Layout Shapes

Using Layout Shapes 5-21

to the text from the inserted shape are also inserted into the layout shape, but other
arrays of information, such as the positions and advance bits arrays of the glyph
shape, are not.

Changing Text in a Layout Shape

You can change text in a layout shape using the GXSetLayout or GXSetLayoutParts

function. Use the former if you want to replace all of the text in the shape.

However, for most editing operations you may want to perform on the shape—

whether adding text, deleting text, or replacing text—you should use the faster

GXSetLayoutParts function. Table 5-2 lists some of the parameter settings for

changing text in a layout shape using this function.

In Listing 5-3, the original layout shape contains the string “ABC”. The

GXSetLayoutParts function inserts the new text, “ DEF”, at the end of the

original string. The layout shape then reads “ABC DEF”.

Listing 5-3 Adding text to a layout shape using the GXSetLayoutParts function

gxShape myLayout;

char *originalText = "ABC";

char *newText = " DEF";

short originalLen, newLen;

gxPoint position = {ff(100), ff(100)};

originalLen = strlen(originalText);

myLayout = GXNewLayout(1, &originalLen, (void *)&originalText,

 0, nil, nil,

 0, nil, nil,

 nil, &position);

Table 5-2 Changing text in a layout shape using the GXSetLayoutParts function

Action
Starting offset in the
text to be edited

Ending offset in the
text to be edited

Inserting new text The offset (in source text) at
which the new text should
start, or gxSelectToEnd, if
you want to insert at the end

The same as
oldStartOffset

Replacing and
deleting text

The offset of the first byte
you want to replace

The offset of the last byte
you want to replace

Replacing all text
in the shape

0 The value gxSelectToEnd

C H A P T E R 5

Layout Shapes

5-22 Using Layout Shapes

newLen = strlen(newText);

GXSetLayoutParts(myLayout, 3, gxSelectToEnd,

 1, &newLen, (void *)&newText,

 0, nil, nil,

 0, nil, nil);

If you use the GXSetLayout function to perform the same action, you must pass the

entire string of text (“ABC DEF”), and not simply the string “ DEF”. (You also must pass

the new text length and resend the text run count, as well as the style run lengths and

direction-level run lengths.)

The values in Table 5-2 apply if you are changing the style runs or direction-level runs in

the layout shape. However, you can’t insert style runs or direction-level runs without

changing the values of the runs already stored in the shape.

Inserting a Typographic Shape Into a Layout Shape

To insert the geometry of another typographic shape—whether a text, glyph, or layout

shape—into an existing layout shape, you can use the GXSetLayoutShapeParts

function (page 5-44). The function inserts both the text of the typographic shape and the

associated style or styles into the layout shape.

Listing 5-4 creates a layout shape that reads “, , and layout”. It then creates a glyph shape

that reads “glyph” and inserts it into the original layout shape, changing the shape to

read “, glyph, and layout”. It then creates a text shape that reads “text” and inserts that

into the layout shape, leaving the shape with the text “text, glyph, and layout”. In this

example, the glyph and text shapes use the default style object, as the layout shape does.

However, if the inserted shapes had had different styles, those styles would have been

inserted into the layout shape as well, creating a layout shape with several style runs.

Listing 5-4 Inserting a text shape and a glyph shape into a layout shape

char *layoutText = ", , and layout"

short layoutLen;

gxPoint position = {ff(100), ff(100)};

gxShape myLayout, myGlyph, myText;

layoutLen = strlen(layoutText);

myLayout = GXNewLayout(1, &layoutLen, (void *)&layoutText,

 0, nil, nil,

 0, nil, nil,

 nil, &position);

myGlyph = GXNewGlyphs(5, (unsigned char *)"glyph",

nil, nil, nil, nil, nil);

GXSetLayoutShapeParts(myLayout, 2, 2, myGlyph);

C H A P T E R 5

Layout Shapes

Using Layout Shapes 5-23

myText = GXNewText(4, (unsigned char *)"text", nil);

GXSetLayoutShapeParts(myLayout, 0, 0, myText);

GXDrawShape(myLayout);

GXDisposeShape(myLayout);

GXDisposeShape(myGlyph);

GXDisposeShape(myText);

Note that if you insert the geometry of a glyph shape into a layout shape, you lose the

advance bits, positions, and tangents arrays of that glyph shape.

Extracting a Layout Shape From Part of an Existing Layout Shape

To copy part or all of an existing layout shape to another layout shape, you can use the

GXGetLayoutShapeParts function (page 5-42). You can copy to an existing layout

shape (in which case the function replaces the entire geometry of the shape) or a new

layout shape, which GXGetLayoutShapeParts creates.

Listing 5-5 creates a layout shape that reads “blue & red balloon”. Using the

GXGetLayoutShapeParts function, it then extracts the text “red ball” from the

layout shape and creates a new layout shape that contains that text. If the text had

styles attached to it, the function would include references to these styles in the new

layout shape. (In this example, however, the default layout shape’s style object is used.)

Listing 5-5 Creating a new layout shape from a previously existing one

char *layoutText = "blue & red balloon";

short layoutLen;

gxPoint position = {ff(100), ff(100)};

gxShape myLayout, newLayout;

layoutLen = strlen(layoutText);

myLayout = GXNewLayout(1, &layoutLen, (void *)&layoutText,

 0, nil, nil, 0, nil, nil,

 nil, &position);

newLayout = GXGetLayoutShapeParts(myLayout, 7, 15, nil);

GXDrawShape(newLayout);

GXDisposeShape(myLayout);

GXDisposeShape(newLayout);

C H A P T E R 5

Layout Shapes

5-24 Using Layout Shapes

Setting Layout Options
The layout options structure is described in detail on page 5-29. Values for layout options

flags are described on page 5-30.

Setting the Width of a Layout Shape

You can set the width of a layout shape by setting the width field of the layout options

structure. This field specifies the desired width, in typographic points, of the line when

you draw justified or right-aligned text. However, the width of the line and the width

of the (unjustified) layout shape itself may be different, and if the line is not justified

or right-aligned, the width field is ignored, unless the unjustified width of the layout

would exceed the specified width, in which case the layout is squeezed to fit (see

Table 5-1).

Also, if the line contains glyphs with large negative side bearings, hanging punctuation,

or optically aligned edges, the final width of the displayed layout shape may be different

from the value specified here.

For more information and examples on line measurement and the use of the width field

for justification, see the chapter “Layout Line Control” in this book.

Setting the Alignment of a Layout Shape

You can set the alignment of a layout shape by changing the value of the flush field in

the layout options structure. A value of 0 specifies left alignment, a value of 1 specifies

right alignment, and fractional values between 0 and 1 position the text proportional

distances from the left and right margins.

Listing 5-6 creates a layout shape containing the text “A line of text”. It then aligns the

string at five different positions by changing the value of the flush field. This code uses

library functions InitializeRunControls and InitializeLayoutOptions to

initialize the data structures, and NewLayoutStyle to create a style object.

Listing 5-6 Altering the alignment of a layout shape

char *myString = "A line of text";

gxLayoutOptions layoutOptions;

gxLine myLine;

static gxPoint myPoint = {ff(30), ff(50)};

gxShape layout;

short len;

gxStyle myStyle;

len = strLen(myString);

InitializeLayoutOptions(&layoutOptions);

layoutOptions.width = ff(500);

C H A P T E R 5

Layout Shapes

Using Layout Shapes 5-25

/* The initial alignment of the layout shape is set to 0.0. */

layoutOptions.flush = 0;

myLine.first.x = myLine.last.x = myPoint.x;

myLine.first.y = 0;

myLine.last.y = ff(1000);

GXDrawLine(&myLine);

myLine.first.x = myLine.last.x = myPoint.x + layoutOptions.width;

GXDrawLine(&myLine);

myStyle = NewLayoutStyle((char *) "\pTimes Roman", ff(50), 0,

nil, nil, 0, nil);

layout = GXNewLayout(

1, &len, (void *) &myString,

1, &len, &myStyle,

0, nil, nil,

nil, &myPoint);

GXDrawShape(layout);

/* The alignment of the layout shape is set to 0.25. */

layoutOptions.flush = fract1 / 4;

GXSetLayout(layout, 0, nil, nil, 0, nil, nil, 0, nil, nil,

&layoutOptions, nil);

GXMoveShape(layout, 0, ff(75));

GXDrawShape(layout);

/* The alignment of the layout shape is set to 0.5. */

layoutOptions.flush = fract1 / 2;

GXSetLayout(layout, 0, nil, nil, 0, nil, nil, 0, nil, nil,

&layoutOptions, nil);

GXMoveShape(layout, 0, ff(75));

GXDrawShape(layout);

/* The alignment of the layout shape is set to 0.75. */

layoutOptions.flush = 3 * (fract1 / 4);

GXSetLayout(layout, 0, nil, nil, 0, nil, nil, 0, nil, nil,

&layoutOptions, nil);

GXMoveShape(layout, 0, ff(75));

GXDrawShape(layout);

C H A P T E R 5

Layout Shapes

5-26 Using Layout Shapes

/* Here the alignment of the layout shape is set to 1.0. */

layoutOptions.flush = fract1;

GXSetLayout(layout, 0, nil, nil, 0, nil, nil, 0, nil, nil,

&layoutOptions, nil);

GXMoveShape(layout, 0, ff(75));

GXDrawShape(layout);

GXDisposeShape(layout);

GXDisposeStyle(myStyle);

Figure 5-14 shows the output of Listing 5-6. The numbers in the gray boxes specify what

fraction of the gap appears on either side of the text.

Figure 5-14 Changing the alignment of a layout shape

See “Alignment” on page 5-11 for more information.

Justifying Text in a Layout Shape

You can control the justification of a layout shape by setting the value of the just field

in the layout options structure. A value of 0 specifies no justification, a value of 1

specifies full justification, and fractional values between 0 and 1 distribute the extra

space proportionally. The width field in the layout options structure defines the text

width for justification.

Justification is easy to specify, but its internal workings are complex, powerful, and

controlled by settings in the style object for each style run. For more information on and

examples of the QuickDraw GX justification process, see the chapter “Layout Line

Control” in this book.

C H A P T E R 5

Layout Shapes

Using Layout Shapes 5-27

Getting Glyph Information From a Layout Shape
In a layout shape, there can be a difference between the number of character codes in the

source text and the number and order of glyphs displayed, because the layout shape can

automatically form ligatures or other contextual forms. (The other typographic shapes,

text and glyph, have a one-to-one correspondence between the number of character codes

and the number of glyphs displayed.)

You can get information about the character codes stored in the shape using the

GXGetLayout or GXGetLayoutParts function, as described in “Changing Parts of an

Existing Layout Shape” on page 5-20. However, you can also get information about

the glyphs in a layout shape using the GXGetLayoutGlyphs function, described on

page 5-45.

The difference between the information returned by the GXGetLayoutGlyphs function

and by the GXGetLayout function can be illustrated as follows. Take, for example, the

layout shape “office”, which has a source text of six character codes but is displayed

using only four glyphs because of the “ffi” ligature. If you look at the contents of the

text parameter returned by the GXGetLayout function, you will see six character

codes. The GXGetLayoutGlyphs function returns only four glyph codes—and all four

may be different from the glyph codes that individually correspond to the original char-

acter codes, depending on whether alternate forms are used. Likewise, the style runs are

different: there is a different count for character codes than for glyph codes.

The GXGetLayoutGlyphs function treats the layout shape as though it were a glyph

shape—that is, it returns information about the advance bits, positions, and tangents

arrays, although the layout shape does not explicitly contain any of these arrays.

The tangents array gives every entry a default value of (1.0,0.0). However, if you set the

gxVerticalText text attribute in the layout shape, the array contains individual

tangents for each glyphs.

Converting a Layout Shape Into a Glyph Shape
You can convert a layout shape into a text shape, a glyph shape, or any other type

of shape.

As with all typographic shapes, you cannot convert any type of geometric shape (point,

line, rectangle, and so on) into a layout shape.You can include, in the layout shape’s style

list, a text face that is patterned. Text faces are described in the chapter “Typographic

Styles” in this book.

You can use the GXPrimitiveShape function, described in Inside Macintosh: QuickDraw
GX Graphics, to convert a layout shape into a glyph shape. This conversion lets you take

advantage of the special capabilities of a glyph shape. For instance, you may want to

alter the tangents or positions of the individual glyphs in the shape.

Keep in mind that, after conversion, the resulting glyph shape looks exactly the same

as the layout shape, but its internal data may be very different. For example, the order

of character codes in the source text is the same as the display order of the glyphs

in the glyph shape, which may not have been the case with the original layout shape.

C H A P T E R 5

Layout Shapes

5-28 Layout Shapes Reference

In addition, you cannot restore the original layout shape by converting the glyph shape

back into a layout shape. However, you can use the glyph shape for clipping, dashing,

and patterns.

Also keep in mind that, after conversion, the resulting glyph shape may not retain align-

ment settings, justification settings, and other information originally in the layout shape.

This information is lost, for instance, if you alter the positions of glyphs in the displayed

shape by calling GXSetGlyphTangents and other functions described in the chapter

“Glyph Shapes” in this book.

Note

You can also use the GXSetShapeType function to convert a layout
shape into a glyph shape, although the resulting shape may not look
the same. The GXSetShapeType function does not preserve all layout
functionality in the destination shape, whereas the GXPrimitiveShape
function does. ◆

Layout Shapes Reference

This section describes the constants and data types you use with layout shapes, as well

as the basic functions you need to create a layout shape, change the information stored in

a layout shape, and retrieve information from a layout shape.

Functions that relate to other aspects of layout shapes are described in the following

chapters in this book:

■ The chapter “Layout Styles” describes functions you can use to override the kerning
and justification behavior and manipulate the special typographic features of a
layout shape.

■ The chapter “Layout Line Control” describes functions you can use to measure and
break lines in a layout shape.

■ The chapter “Layout Carets, Highlighting, and Hit-Testing” describes functions you
can use to create and manipulate carets and highlighted sections of a layout shape.

Constants and Data Types

This section describes the constants and data types that you use when creating

layout shapes.

C H A P T E R 5

Layout Shapes

Layout Shapes Reference 5-29

Layout Options Structure

The layout options structure contains information that is relevant to the entire line of text

rather than to any individual text run, style run, or direction-level run in the shape.

typedef struct {

Fixed width;

fract flush;

fract just;

gxLayoutOptionsFlags flags;

gxLineBaselineRecord *baselineRec;

} gxLayoutOptions;

Field descriptions

width The desired width of the line, measured in points (72 per inch) in
geometry space. If you want the layout shape to be fully left-aligned
and not justified, you do not need this field and you can set it to 0.
See “Width” on page 5-10.

flush The alignment of the text, based on the layout shape’s position and
the line width as specified in the width field. Alignment is a
continuously varying, fractional value. A value of 0 means the text
is to be left-aligned; its left or top edge coincides with the shape’s
position. A value of 1 means the text is to be right-aligned; its right
or bottom edge coincides with the shape position plus the text
width. Intermediate values place the text between the left and right
edges. (A value of 0.5 centers the text.) The following constants are
available for specifying typical values in the flush field:

#define gxFlushLeft 0

#define gxFlushCenter (fract1/2)

#define gxFlushRight fract1

just The degree of justification in the line, defined as a continuously
varying fractional value between 0 and 1. A value of 0 means no
justification. A value of 1 means full justification between the edges
defined by the layout position and the sum of the layout position and
the width field. Intermediate values cause a fractional amount of
the extra white space to be taken up by justification. The following
constants are available for specifying typical values in the just field:

#define gxNoJustification 0

#define gxFullJustification fract1

flags Flag values that describe certain aspects of the entire layout shape.
Values for the flags field are described in the next section, “Layout
Options Flags.”

C H A P T E R 5

Layout Shapes

5-30 Layout Shapes Reference

baselineRec An array of distances, in points (72 per inch), from the primary
baseline for this layout shape to other baseline types. If you fill in
this structure manually, you need to fill in only those values that
correspond to the set of baselines present on the line. If you specify
nil for this value, the line uses the Roman baseline, and all text is
aligned to it. For more information on baselines and baseline
alignment, see the chapter “Layout Line Control” in this book.

The layout options structure is used by the functions GXNewLayout (page 5-31),

GXGetLayout (page 5-34), GXSetLayout (page 5-36), and GXDrawLayout (page 5-33).

Layout Options Flags

The layout options flags allow you to set certain characteristics of the layout shape as a

whole. You set these flags through the flags field of the layout options structure.

#define gxNoLayoutOptions 0

#define gxLineIsDisplayOnly 0x00000001

Flag descriptions

gxNoLayoutOptions
Indicates that no layout option flags are used in this layout shape.

gxLineIsDisplayOnly
Indicates that the layout shape will be displayed but not edited in
any way. If this bit is set, the shape is not edited, and QuickDraw GX
does not recalculate any changes to the shape, such as the addition of
ligatures or kashidas. This allows QuickDraw GX to display the
layout shape faster and make the shape smaller.

Functions

This section describes functions for creating and drawing layout shapes, getting informa-

tion from layout shapes, and editing layout shapes.

Some functions in this section use a byte offset parameter type. The gxByteOffset data

type defines a byte offset into the text stored in the layout shape.

typedef long gxByteOffset;

The number of bytes is not necessarily equal to the number of character codes or

glyph codes.

Creating and Drawing Layout Shapes

When you create a layout shape, you can supply it with different numbers of text runs,

style runs, and direction-level runs. The GXNewLayout function creates a new layout

shape for you to use: the GXDrawLayout function creates, draws, and disposes of a

layout shape with a single call.

C H A P T E R 5

Layout Shapes

Layout Shapes Reference 5-31

Note that you can also create and draw a layout shape by using the GXNewShape and

GXDrawShape functions, described in the chapter “Shape Objects” in Inside Macintosh:
QuickDraw GX Objects.

GXNewLayout

You can use the GXNewLayout function to create a new layout shape.

gxShape GXNewLayout(long textRunCount,

 const short textRunLengths[],

 const void *text[],

 long styleRunCount,

 const short styleRunLengths[],

 const gxStyle styles[],

 long levelRunCount,

 const short levelRunLengths[],

 const short levels[],

 const gxLayoutOptions *layoutOptions,

 const gxPoint *position);

textRunCount
The number of text runs supplied (the number of entries in the text
parameter).

textRunLengths
An array containing the byte length of each text run (the length of each
entry in the text parameter).

text An array of pointers to runs of text. The text from these runs is
concatenated, in order, to make up the source text of the layout shape.

styleRunCount
The number of style runs in the layout shape. (The number of entries in
the styles parameter.)

styleRunLengths
An array containing the byte length of each style run.

styles The style list: an array of references to the style objects associated with the
layout shape, one for each style run. If you pass nil for this parameter,
QuickDraw GX assigns the default layout style object to the layout shape
and leaves the style list empty. If you pass a non-nil value for this
parameter, then any nil entries in the array also refer to the shape’s style.

levelRunCount
The number of direction-level runs in this layout shape (the number of
entries in the levels parameter).

levelRunLengths
An array containing the byte length of each direction-level run.

C H A P T E R 5

Layout Shapes

5-32 Layout Shapes Reference

levels The levels array: an array of nested direction levels that control the
dominant text direction within the layout shape. If pass nil for this
parameter, QuickDraw GX assumes that the layout shape has an overall
dominant direction of left to right.

layoutOptions
A pointer to a layout options structure. If you specify nil for this param-
eter, the default values are: left-aligned, unjustified, horizontal text on a
Roman baseline.

position The position of the baseline in the geometry coordinates. If you specify
nil for this parameter, GXNewLayout sets the position to (0.0,0.0).

function result A reference to the newly created layout shape.

DESCRIPTION

The GXNewLayout function creates a layout shape, sets its owner count to 1, initializes

its geometry with the values in the function’s parameters, and returns a reference to it

as the function result.

Although this function creates a new layout shape, it does not create new style, ink, or

transform objects. The new layout shape returned by GXNewLayout contains references

to the default style, ink, and transform objects.

Most of the parameters to GXNewLayout are optional; if you set them to nil,

QuickDraw GX sets the layout shape’s equivalent properties to the default values,

which are no text, no styles, and no levels.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To create a new layout shape without specifying an initial geometry, see the description

of the GXNewShape function in the chapter “Shape Objects” in Inside Macintosh:
QuickDraw GX Objects.

Errors
out_of_memory
count_is_less_than_zero
parameter_out_of_range
inconsistent_parameters

C H A P T E R 5

Layout Shapes

Layout Shapes Reference 5-33

GXDrawLayout

You can use the GXDrawLayout function to create, draw, and dispose of a layout shape

with one call.

void GXDrawLayout(long textRunCount, const short textRunLengths[],

const void *text[], long styleRunCount,

const short styleRunLengths[],

const gxStyle styles[], long levelRunCount,

const short levelRunLengths[],

const short levels[],

const gxLayoutOptions *layoutOptions,

const gxPoint *position);

textRunCount
The number of text runs supplied (the number of entries in the text
parameter).

textRunLengths
An array containing the byte length of each text run (the length of each
entry in the text parameter).

text An array of pointers to runs of text. The text from these runs is concate-
nated, in order, to make up the source text of the (temporary) layout shape.

styleRunCount
The number of style runs in the layout shape. (The number of entries in
the styles parameter.)

styleRunLengths
An array containing the byte length of each style run.

styles The style list: an array of references to the style objects associated with the
(temporary) layout shape, one for each style run. If you pass nil for this
parameter, QuickDraw GX assigns the default layout style object to the
layout shape and leaves the style list empty. If you pass a non-nil value
for this parameter, then any nil entries in the array also refer to the
shape’s style.

levelRunCount
The number of direction-level runs in this layout shape (the number of
entries in the levels parameter).

levelRunLengths
An array containing the byte length of each direction-level run.

levels The levels array: an array of nested direction levels that control the
dominant text direction within the layout shape. If you specify nil for
this parameter, QuickDraw GX assumes that the layout shape has an
overall dominant direction of left to right.

layoutOptions
A pointer to a layout options structure. If you specify nil for this param-
eter, the default values are: left-aligned, unjustified, left to right horizontal
text on a Roman baseline.

C H A P T E R 5

Layout Shapes

5-34 Layout Shapes Reference

position The position of the baseline in the geometry coordinates. If you specify
nil for this parameter, GXNewLayout sets the position to (0.0,0.0).

DESCRIPTION

The GXDrawLayout function creates, draws, and then disposes of a layout shape. You

may want to use this function if you do not need to store a layout shape or draw the

shape more than once.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The GXNewLayout function, described on page 5-31, creates a new layout shape that

you can store and draw more than once.

You can use the GXDrawShape function, described in Inside Macintosh: QuickDraw GX
Objects, to draw an existing layout shape.

Getting and Setting the Geometry of a Layout Shape

When you retrieve information about the text, style, and direction-level runs from a

layout shape, you can get an entire array from the geometry—for instance, the

complete style list—using the GXGetLayout function. You can change an entire

array in the geometry—for instance, all of the text runs in the shape—using the

GXSetLayout function.

GXGetLayout

You can use the GXGetLayout function to get all the information from the geometry of a

layout shape.

long GXGetLayout(gxShape layout, void *text, long *styleRunCount,

 short styleRunLengths[], gxStyle styles[],

long *levelRunCount, short levelRunLengths[],

 short levels[], gxLayoutOptions *layoutOptions,

 gxPoint *position);

Errors
out_of_memory
count_is_less_than_zero
parameter_out_of_range
inconsistent_parameters

C H A P T E R 5

Layout Shapes

Layout Shapes Reference 5-35

layout A reference to the layout shape whose information you need.

text A pointer to a space for a text string. On return, the string contains all of
the text from the layout shape (as a single text run).

styleRunCount
A pointer to a long value. On return, the value is the number of style runs
in the shape (the number of entries in the style list).

styleRunLengths
An array of short values. On return, the array contains the byte length of
each style run in the layout shape.

styles An array of style-object references. On return, the array contains the style
list for the layout shape.

levelRunCount
A pointer to a long value. On return, the value is the number of direction-
level runs in this layout shape (the number of entries in the levels
parameter).

levelRunLengths
An array of short values. On return, the array contains the byte length of
each direction-level run.

levels An array of short values. On return, the array is the levels array for the
layout shape: an array of nested direction levels that control the dominant
text direction within the layout shape.

layoutOptions
A pointer to the gxLayoutOptions structure. On return, the structure
contains the layout options for the layout shape.

position A pointer to a gxPoint value. On return, this parameter contains the
position of the layout shape in geometry coordinates.

function result The number of bytes of text returned in the text parameter.

DESCRIPTION

The GXGetLayout function returns all the information from the geometry of the specified

layout shape. If you specify nil for any parameter, GXGetLayout does not return that

information.

ERRORS, WARNINGS, AND NOTICES

Errors
shape_is_nil
illegal_type_for_shape
index_is_less_than_zero
parameter_out_of_range
inconsistent_parameters

C H A P T E R 5

Layout Shapes

5-36 Layout Shapes Reference

SEE ALSO

To change the geometry of an existing layout shape by replacing an entire array in the

geometry, use the GXSetLayout function, described next.

To get a portion of one or more arrays from the geometry of an existing layout shape,

use the GXGetLayoutParts function, described on page 5-38. To change the geometry

of an existing layout shape by replacing a portion of one or more of its arrays, use the

GXSetLayoutParts function, described on page 5-40.

To get a portion of the geometry of an existing layout shape and put that portion into

another layout shape, use the GXGetLayoutShapeParts function, described on

page 5-42. To change the geometry of an existing layout shape by inserting the geometry

of another typographic shape, use the GXSetLayoutShapeParts function, described

on page 5-44.

GXSetLayout

You can use the GXSetLayout function to assign a new text array, style list, direction-

levels array, or other property in the geometry of a layout shape.

void GXSetLayout(gxShape layout, long textRunCount,

 const short textRunLengths[], const void *text[],

 long styleRunCount,

 const short styleRunLengths[],

 const gxStyle styles[], long levelRunCount,

 const short levelRunLengths[],

 const short levels[],

 const gxLayoutOptions *layoutOptions,

 const gxPoint *position);

layout A reference to the layout shape whose properties you want to set.

textRunCount
The number of text runs supplied (the number of entries in the text
parameter).

textRunLengths
An array containing the byte length of each text run (the length of each
entry in the text parameter).

text An array of pointers to runs of text. The text from these runs is collated, in
order, to make up the new source text of the layout shape.

styleRunCount
The number of style runs to put in the layout shape. (The number of
entries in the styles parameter.)

styleRunLengths
An array containing the byte length of each style run.

styles The new style list for the layout shape.

C H A P T E R 5

Layout Shapes

Layout Shapes Reference 5-37

levelRunCount
The number of direction-level runs to put in this layout shape (the number
of entries in the levels parameter).

levelRunLengths
An array containing the byte length of each direction-level run.

levels The new levels array for the layout shape.

layoutOptions
A pointer to the layout options structure to use for this layout shape. If
you specify nil for this parameter, the layout shape’s current layout
options are not changed.

position The position of the baseline in the geometry coordinates. If you specify
nil for this parameter, the layout shape’s current position is not changed.

DESCRIPTION

The GXSetLayout function sets one or more entire field properties of a layout shape.

You can change the values in any of the text, styles, or direction-levels arrays, or in the

layout options or position. If you change one value having to do with the text, styles, or

direction-levels components, you must send values for all the parameters having to do

with that part—run count, run lengths, or the main component itself—even if those

values are not changing.

If you want to add new values to existing values, you must send both the old and new

values. For example, if you want to change the text “ABC” to “ABC DEF”, you must

send the entire string, not simply the string “DEF”. (You must also send the new text

length and resend the text run count. If you don’t, the function returns the error

inconsistent_parameters. In addition, you must update the style list and change

the level run length.)

If you don’t want to change one property of a layout (the text, styles, or direction levels),

you can specify in 0, nil, and nil for the corresponding count, run lengths, and array

parameters.

If you don’t want to change the layout options or position, specify nil for the

corresponding parameters.

ERRORS, WARNINGS, AND NOTICES

Errors
shape_is_nil
parameter_out_of_range
length_is_less_than_zero
index_is_less_than_zero
inconsistent_parameters
count_is_out_of_range
count_is_less_than_zero

Warnings
shape_access_not_allowed
shape_contains_invalid_data

C H A P T E R 5

Layout Shapes

5-38 Layout Shapes Reference

SEE ALSO

For an example of how to use the GXSetLayout function, see “Changing Parts of an

Existing Layout Shape” beginning on page 5-20.

To get one or more complete arrays from the geometry of an existing layout shape, use

the GXGetLayout function, described on page 5-34.

To get a portion of one or more arrays from the geometry of an existing layout shape,

use the GXGetLayoutParts function, described next. To change the geometry of

an existing layout shape by replacing a portion of one or more of its arrays, use the

GXSetLayoutParts function, described on page 5-40.

To get a portion of the geometry of an existing layout shape and put that portion into

another layout shape, use the GXGetLayoutShapeParts function, described on

page 5-42. To change the geometry of an existing layout shape by inserting the geometry

of another typographic shape, use the GXSetLayoutShapeParts function, described

on page 5-44.

Getting and Setting Portions of a Layout Shape’s Geometry

If you want to retrieve information about only a part of the shape—for example, the part

of the style list associated with the characters 9 to 15 of the shape in the source text—you

can use the GXGetLayoutParts function. If you want to change only a portion of the

geometry—for example, if you want to insert four character codes in the middle of the

existing shape’s source text—you can use the GXSetLayoutParts function.

GXGetLayoutParts

You can use the GXGetLayoutParts function to get a portion of one of the various

arrays of a layout shape, such as the style runs or layout options.

long GXGetLayoutParts(gxShape layout, gxByteOffset startOffset,

 gxByteOffset endOffset, void *text,

 short *styleRunCount,

 short styleRunLengths[], gxStyle styles[],

 short *levelRunCount,

 short levelRunLengths[], short levels[]);

layout A reference to the layout shape whose information you need.

startOffset
The edge offset in source text preceding the first character you want to
retrieve from the layout shape.

endOffset The edge offset in source text following the final character you want to
retrieve from the layout shape.

text A pointer to a text string. On return, the specified portion of the text of the
layout shape.

C H A P T E R 5

Layout Shapes

Layout Shapes Reference 5-39

styleRunCount
A pointer to a short value. On return, the number of entries in the
style list.

styleRunLengths
An array of short values. On return, the array contains the number of
bytes of text associated with each entry in the styles parameter.

styles An array of style-object references. On return, the array is a style list
associated with the text parameter.

levelRunCount
A pointer to a short value. On return, the number of entries in the
levels parameter.

levelRunLengths
An array of short values. On return, the array contains the number of
bytes per level associated with each entry in the levels parameter.

levels An array of short values. On return, the array of direction-level codes
associated with the text.

function result The byte count of the part of the text specified, which may not be equal to
the character count or the glyph count, depending on the character codes
or glyph codes used and the platform.

DESCRIPTION

The GXGetLayoutParts function queries a layout shape and retrieves a portion of the

information from the shape, such as the style runs or layout options. For example, if a

layout shape has three styles attached to it, you can retrieve one of those styles, rather

than all three.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To change the geometry of an existing layout shape by replacing a portion of one or

more of its arrays, use the GXSetLayoutParts function, described next.

To get one or more complete arrays from the geometry of an existing layout shape, use

the GXGetLayout function, described on page 5-34. To change an existing layout shape

by replacing an entire array in its geometry, use the GXSetLayout function, described

on page 5-36.

Errors
shape_is_nil
illegal_type_for_shape
index_is_less_than_zero
parameter_out_of_range
inconsistent_parameters

C H A P T E R 5

Layout Shapes

5-40 Layout Shapes Reference

To get a portion of the geometry of an existing layout shape and put that portion into

another layout shape, use the GXGetLayoutShapeParts function, described on

page 5-42. To change the geometry of an existing layout shape by inserting the geometry

of another typographic shape, use the GXSetLayoutShapeParts function, described

on page 5-44.

GXSetLayoutParts

You can use the GXSetLayoutParts function to change a portion of the text, styles, or

direction-levels arrays in the geometry of a layout shape.

void GXSetLayoutParts(gxShape layout, gxByteOffset oldStartOffset,

 gxByteOffset oldEndOffset,

 long newTextRunCount,

 const short newTextRunLengths[],

 const void *newText[],

 long newStyleRunCount,

 const short newStyleRunLengths[],

 const gxStyle newStyles[],

 long newLevelRunCount,

 const short newLevelRunLengths[],

 const short newLevels[]);

layout A reference to the layout shape you want to modify.

oldStartOffset
The edge offset in the source text preceding the first character to replace.

oldEndOffset
The edge offset in the source text following the last character to replace.

newTextRunCount
The number of text runs supplied in the newText parameter.

newTextRunLengths
An array containing the byte length of each text run in the newText
parameter.

newText An array of pointers to runs of text. If you pass nil for this parameter,
QuickDraw GX uses the default text object.

newStyleRunCount
The number of styles in the style list.

newStyleRunLengths
An array containing the byte length of each style run.

newStyles An array of references to style objects, one for each style run. If you pass
nil for this parameter, QuickDraw GX uses the default style object. If
you pass a non-nil value for this parameter, then any nil entries in the
array also refer to the shape’s style.

C H A P T E R 5

Layout Shapes

Layout Shapes Reference 5-41

newLevelRunCount
The number of direction-level runs.

newLevelRunLengths
An array containing the byte lengths of each direction-level run.

newLevels An array of nested direction levels that control text direction within the
layout shape.

DESCRIPTION

The GXSetLayoutParts function sets or changes parts of the geometry of a layout

shape. You can make changes to an array in the layout shape without sending the old

values in addition to the new values. For example, if you want to change the text “ABC”

to “ABC DEF”, send only the string “DEF”. You must also set the oldStartOffset

and oldEndOffset parameters to the character offset of the last character offset, in the

source text, of the original string; in the previous example, both parameters should be

set to 3.

Any new values you add must be consistent with values already in the shape, unless you

are discarding the old values. For example, if you change the text in the layout shape, the

new text must be consistent with the values of the newTextRunCount and

newTextRunLengths parameters, or you must enter new values for these parameters.

If you don’t want to change one component of a layout (text, styles, or levels), you can

specify 0, nil, and nil for the corresponding count, run lengths, and array parameters.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example of how to use the GXSetLayoutParts function, see “Changing Parts of

an Existing Layout Shape” beginning on page 5-20.

To get a portion of one or more arrays from the geometry of an existing layout shape, use

the GXGetLayoutParts function, described on page 5-38.

To get one or more complete arrays from the geometry of an existing layout shape, use

the GXGetLayout function, described on page 5-34. To change the geometry of an

existing layout shape by replacing an entire array in the geometry, use the GXSetLayout

function, described on page 5-36.

Errors
shape_is_nil
parameter_out_of_range
length_is_less_than_zero
index_is_less_than_zero
inconsistent_parameters
count_is_out_of_range
count_is_less_than_zero

Warnings
shape_access_not_allowed
shape_contains_invalid_data

C H A P T E R 5

Layout Shapes

5-42 Layout Shapes Reference

To get a portion of the geometry of an existing layout shape and put that portion into

another layout shape, use the GXGetLayoutShapeParts function, described on

page 5-42. To change the geometry of an existing layout shape by inserting the geometry

of another typographic shape, use the GXSetLayoutShapeParts function, described

on page 5-44.

Extracting or Inserting Parts of a Layout Shape

If you want to get part of the geometry of a layout shape and put it into another layout

shape, use the GXGetLayoutShapeParts function. If you want to insert the geometry

of another typographic shape, whether a text shape, glyph shape, or layout shape into a

layout shape, use the GXSetLayoutShapeParts function.

GXGetLayoutShapeParts

You can use the GXGetLayoutShapeParts function to extract a copy of a specified

range of the geometry of a layout shape and encapsulate it in another layout shape.

gxShape GXGetLayoutShapeParts(gxShape layout,

gxByteOffset startOffset,

gxByteOffset endOffset,

gxShape dest);

layout A reference to the layout shape containing the geometry you want to use.

startOffset
The edge offset in the source text preceding the starting character to
retrieve from the layout shape.

endOffset The edge offset in the source text following the ending character to
retrieve from the layout shape.

dest A reference to the layout shape that will receive the extracted geometry.
If you set this parameter to nil, a new layout shape is returned as the
function result. Even if it’s not set to nil, the function result is still a copy
of the old shape’s reference.

function result A reference to the layout shape referenced by the dest parameter or to a
new layout shape if the value of the dest parameter is nil.

DESCRIPTION

The GXGetLayoutShapeParts function extracts a copy of a portion of the layout

shape in the layout parameter, including the text, styles, and levels arrays, and

copies the geometry into an existing layout shape, specified by the dest parameter.

The function returns a reference to the layout shape specified by the dest parameter

C H A P T E R 5

Layout Shapes

Layout Shapes Reference 5-43

or a new layout shape, if dest is set to nil. The extracted data is bounded by the

startOffset and endOffset values, which refer to byte offsets, in the source text, of

the original layout shape.

If you want to put the copy in an existing layout shape, put a reference to that layout

shape in the dest parameter; otherwise, leave that parameter set to nil, and the

function returns a reference to a new layout shape in the function result.

SPECIAL CONSIDERATIONS

The GXGetLayoutShapeParts function is analogous to the GXGetShapeParts

function, described in Inside Macintosh: QuickDraw GX Objects. However, the

GXGetLayoutShapeParts function uses zero-based indexing and two offsets to

mark a section within a layout shape; the GXGetShapeParts function uses 1-based

indexing, a single offset, and a count to mark a section within a shape.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example of the use of GXGetLayoutShapeParts, see “Extracting a Layout

Shape From Part of an Existing Layout Shape” on page 5-23.

To change the geometry of an existing layout shape by inserting the geometry of another

typographic shape, use the GXSetLayoutShapeParts function, described next.

To get one or more entire arrays from the geometry of an existing layout shape, use the

GXGetLayout function, described on page 5-34. To change an existing layout shape by

replacing an entire array in its geometry, use the GXSetLayout function, described on

page 5-36.

To get a portion of one or more arrays from the geometry of an existing layout shape, use

the GXGetLayoutParts function, described on page 5-38. To change the geometry of an

existing layout shape by replacing a portion of one or more of its arrays, use the

GXSetLayoutParts function, described on page 5-40.

Errors
shape_is_nil
illegal_type_for_shape
index_is_less_than_zero
parameter_out_of_range
inconsistent_parameters

C H A P T E R 5

Layout Shapes

5-44 Layout Shapes Reference

GXSetLayoutShapeParts

You can use the GXSetLayoutShapeParts function to replace the geometry in a layout

shape with another typographic shape’s geometry.

void GXSetLayoutShapeParts(gxShape layout,

gxByteOffset startOffset,

gxByteOffset endOffset,

gxShape insert);

layout A reference to the layout shape whose geometry you want to edit.

startOffset
The edge offset in the source text preceding the starting character to
retrieve from the layout shape.

endOffset The edge offset in the source text following the ending character to
retrieve from the layout shape.

insert The typographic shape whose geometry you want to insert. This shape
may be a text, glyph, or layout shape. Note: the whole shape’s geometry
is inserted; the start and end offsets refer to the edited shape only.

DESCRIPTION

The GXSetLayoutShapeParts function inserts the entire text of the shape specified by

the insert parameter into the layout shape specified by the layout parameter. The

inserted text may have its own styles; however, you cannot add positions and tangents

arrays of a glyph shape to a layout shape.

The startOffset and endOffset parameters are the starting offset and ending offset

in the layout shape where you want to insert the new geometry. As long as the values

of startOffset and endOffset are equal, GXSetLayoutShapeParts performs the

insertion. If they are not equal, it replaces the old text between startOffset and

endOffset.

If the value of insert is not a text, glyph, or layout shape, the function returns the

warning illegal_type_for_shape.

SPECIAL CONSIDERATIONS

The GXSetLayoutShapeParts function is analogous to the GXSetShapeParts

function, described in Inside Macintosh: QuickDraw GX Objects. However, the

GXSetLayoutShapeParts function uses 0-based offsets to mark a section within

a layout shape; GXSetShapeParts uses 1-based indexing, an offset, and a count to

mark a section within a shape.

C H A P T E R 5

Layout Shapes

Layout Shapes Reference 5-45

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example of how to use the GXSetLayoutShapeParts function, see “Changing

Parts of an Existing Layout Shape” beginning on page 5-20.

To get a portion of the geometry of an existing layout shape and put that portion into

another layout shape, use the GXGetLayoutShapeParts function, described on

page 5-42.

To get one or more entire arrays from the geometry of an existing layout shape, use the

GXGetLayout function, described on page 5-34. To change the geometry of an existing

layout shape by replacing an entire array in the geometry, use the GXSetLayout

function, described on page 5-36.

To get a portion of one or more arrays from the geometry of an existing layout shape,

use the GXGetLayoutParts function, described on page 5-38. To change the geometry

of an existing layout shape by replacing a portion of one or more of its arrays, use the

GXSetLayoutParts function, described on page 5-40.

Obtaining Glyph Information From a Layout Shape

You can obtain information about the glyphs in a layout shape by using the

GXGetLayoutGlyphs function.

GXGetLayoutGlyphs

You can use the GXGetLayoutGlyphs function to get information about each of the

glyphs in a layout shape.

long GXGetLayoutGlyphs(gxShape layout, gxGlyphcode glyphs[],

gxPoint positions[], long advance[],

gxPoint tangents[], long *runCount,

short styleRuns[], gxStyle glyphStyles[]);

Errors
shape_is_nil
parameter_out_of_range
inconsistent_parameters
count_is_less_than_zero
count_is_out_of_range
index_is_less_than_zero
length_is_less_than_zero

Warnings
shape_access_not_allowed
shape_contains_invalid_data
illegal_type_for_shape

C H A P T E R 5

Layout Shapes

5-46 Layout Shapes Reference

layout A reference to the layout shape whose glyph information you need.

glyphs A pointer to an array of glyph codes. On return, the array contains the
glyph codes for all the glyphs in the layout shape.

positions An array of gxPoint values. On return, the array contains the positions
of each of the glyphs in the layout shape.

advance An array of long values. On return, the array contains the advance bits
for the glyphs in the layout shape with the first bit on, the others off.

tangents An array of gxPoint values. On return, the array contains the tangents
for the glyphs in the layout shape. If the layout contains runs with the
gxVertical Text flag set, the array contains the tangents for the
individual glyphs; otherwise it is filled with [1.0,0.0].

runCount A pointer to a long value. On return, the value is the number of style
runs in the glyph shape that is equivalent to this layout shape.

styleRuns An array of short values. On return, the array contains the number of
glyphs in each style run.

glyphStyles
An array of style-object references. On return, the array contains the style
list for the glyph shape that is equivalent to this layout shape.

function result The number of glyphs in the shape.

DESCRIPTION

The GXGetLayoutGlyphs function provides access to a layout shape’s glyph informa-

tion without requiring you to first convert the layout shape to a glyph shape. It returns

the glyph code and positioning information for each glyph, in a form analogous to the

information returned for glyph shapes by the GXGetGlyphs function.

This function treats the layout shape as if it were a glyph shape. The advance and the

positions parameters return the advance bits and positions arrays, respectively, which

contain information about whether the positions stored in the positions array (one posi-

tion per glyph in the shape) are absolute or relative. For layout shapes, the first bit of the

advance bits array is always absolute, and the remaining bits are relative. The tangents

parameter contains as many tangents as there are glyphs in the shape and determines

the direction and scaling of the individual glyph. For more information about advance

bits, positions, and tangents, see the chapter “Glyph Shapes” in this book.

Besides glyph identity and positioning, this function returns style-run information

indexed by glyph (rather than by character code, as is true for other functions). See

“Getting Glyph Information From a Layout Shape” on page 5-27 for a demonstration of

the difference between the GXGetLayoutGlyphs function and the GXGetLayout

function, which returns information based upon the character codes stored in the shape.

If you pass nil for a parameter, GXGetLayoutGlyphs does not return values in that

parameter.

C H A P T E R 5

Layout Shapes

Layout Shapes Reference 5-47

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

This function is similar in form and purpose to the GXGetGlyphs function, described in

the chapter “Glyph Shapes” in this book. The advance bits and tangent arrays are

properties of the glyph shape, also described in the chapter “Glyph Shapes” in this book.

Errors
shape_is_nil

Notices (debugging version)
glyph_tangents_have_no_effect

C H A P T E R 5

Layout Shapes

5-48 Summary of Layout Shapes

Summary of Layout Shapes

Constants and Data Types

typedef long gxByteOffset;

Layout Options Structure

typedef struct {

 Fixed width;

 fract flush;

 fract just;

 gxLayoutOptionsFlags flags;

 gxLineBaselineRecord *baselineRec;

 } gxLayoutOptions;

#define gxNoLayoutOptions 0

#define gxLineIsDisplayOnly 0x00000100

#define gxMaxRunLevel 15

#define gxFlushLeft 0

#define gxFlushCenter (frac1/2)

#define gxFlushRight frac1

#define gxNoJustification 0

#define gxFullJustification frac1

typedef unsigned long gxLayoutOptionsFlags;

Layout Shape Functions

Creating and Drawing Layout Shapes

gxShape GXNewLayout (long textRunCount,
const short textRunLengths[],
const void *text[], long styleRunCount,
const short styleRunLengths[],
const gxStyle styles[], long levelRunCount,
const short levelRunLengths[],
const short levels[],
const gxLayoutOptions *layoutOptions,
const gxPoint *position);

C H A P T E R 5

Layout Shapes

Summary of Layout Shapes 5-49

void GXDrawLayout (long textRunCount,
const short textRunLengths[],
const void *text[], long styleRunCount,
const short styleRunLengths[],
const gxStyle styles[], long levelRunCount,
const short levelRunLengths[],
const short levels[],
const gxLayoutOptions *layoutOptions,
const gxPoint *position);

Getting and Setting the Geometry of a Layout Shape

long GXGetLayout (gxShape layout, void *text,
long *styleRunCount, short styleRunLengths[],
gxStyle styles[], long *levelRunCount,
short levelRunLengths[], short levels[],
gxLayoutOptions *layoutOptions,
gxPoint *position);

void GXSetLayout (gxShape layout, long textRunCount,
const short textRunLengths[],
const void *text[], long styleRunCount,
const short styleRunLengths[],
const gxStyle styles[], long levelRunCount,
const short levelRunLengths[],
const short levels[],
const gxLayoutOptions *layoutOptions,
const gxPoint *position);

Getting and Setting Portions of a Layout Shape’s Geometry

long GXGetLayoutParts (gxShape layout, gxByteOffset startOffset,
gxByteOffset endOffset, void *text,
short *styleRunCount, short styleRunLengths[],
gxStyle styles[], short *levelRunCount,
short levelRunLengths[], short levels[]);

void GXSetLayoutParts (gxShape layout, gxByteOffset oldStartOffset,
gxByteOffset oldEndOffset,
long newTextRunCount,
const short newTextRunLengths[],
const void *newText[], long newStyleRunCount,
const short newStyleRunLengths[],
const gxStyle newStyles[],
long newLevelRunCount,
const short newLevelRunLengths[],
const short newLevels[]);

C H A P T E R 5

Layout Shapes

5-50 Summary of Layout Shapes

Extracting or Inserting Parts of a Layout Shape

gxShape GXGetLayoutShapeParts
(gxShape layout, gxByteOffset startOffset,
gxByteOffset endOffset, gxShape dest);

void GXSetLayoutShapeParts (gxShape layout, gxByteOffset startOffset,
gxByteOffset endOffset, gxShape insert);

Obtaining Glyph Information From a Layout Shape

long GXGetLayoutGlyphs (gxShape layout, gxGlyphcode *glyphs,
gxPoint positions[], long advance[],
gxPoint tangents[], long *runCount,
short styleRuns[], gxStyle glyphStyles[]);

Contents 6-1

C H A P T E R 6

Contents

Typographic Styles

About Typographic Styles 6-3

Style Properties Associated With Typographic Shapes 6-3

Font 6-5

Text Face 6-5

Text Size 6-10

Alignment 6-11

Font Variations 6-13

Font Metrics 6-14

Encoding 6-14

Text Attributes 6-14

Typographic Properties of the Default Style Object 6-16

Using Typographic Styles 6-17

Creating Text Faces 6-17

Setting the Advance Mapping 6-18

Setting a Face Layer 6-19

Setting the Layer Flags 6-23

Setting Text Attributes 6-25

Setting the Automatic Text Advance Attribute 6-25

Setting the No Contour Grid Attribute 6-27

Setting the Vertical Text Attribute 6-29

Applying Patterns and Dashes to Text Faces 6-32

Creating Unusual Effects With Text Faces 6-33

Typographic Styles Reference 6-35

Constants and Data Types 6-35

Text Face 6-36

Face Layers 6-36

Layer Flags 6-37

Alignment Values 6-38

Text Attributes 6-38

C H A P T E R 6

6-2 Contents

Functions 6-39

Getting and Setting the Font of a Style Object 6-39

GXGetStyleFont 6-40

GXSetStyleFont 6-40

GXGetShapeFont 6-41

GXSetShapeFont 6-42

Getting and Setting the Text Face 6-42

GXGetStyleFace 6-43

GXSetStyleFace 6-43

GXGetShapeFace 6-44

GXSetShapeFace 6-45

Getting and Setting the Text Size of a Style Object 6-46

GXGetStyleTextSize 6-46

GXSetStyleTextSize 6-46

GXGetShapeTextSize 6-47

GXSetShapeTextSize 6-48

Getting and Setting the Alignment of a Style Object 6-48

GXGetStyleJustification 6-49

GXSetStyleJustification 6-49

GXGetShapeJustification 6-50

GXSetShapeJustification 6-50

Getting and Setting the Font Variations of a Style Object 6-51

GXGetStyleFontVariations 6-51

GXSetStyleFontVariations 6-52

GXGetShapeFontVariations 6-53

GXSetShapeFontVariations 6-54

Retrieving the Elements in a Font Variation Suite 6-55

GXGetStyleFontVariationSuite 6-55

GXGetShapeFontVariationSuite 6-56

Retrieving Font Metrics 6-57

GXGetStyleFontMetrics 6-57

GXGetShapeFontMetrics 6-58

GXGetShapeLocalFontMetrics 6-59

GXGetShapeDeviceFontMetrics 6-60

Getting and Setting the Encoding of a Style Object 6-61

GXGetStyleEncoding 6-62

GXSetStyleEncoding 6-62

GXGetShapeEncoding 6-63

GXSetShapeEncoding 6-64

Getting and Setting the Text Attributes of a Style Object 6-65

GXGetStyleTextAttributes 6-66

GXSetStyleTextAttributes 6-66

GXGetShapeTextAttributes 6-67

GXSetShapeTextAttributes 6-68

Summary of Typographic Styles 6-69

C H A P T E R 6

About Typographic Styles 6-3

Typographic Styles

This chapter describes how typographic shapes use the style object. Read this chapter if

you want to create or use any styles with QuickDraw GX typographic shapes.

Before reading this chapter, you should be familiar with the information in the chapter

“Introduction to QuickDraw GX Typography” in this book. You should also be familiar

with typographic shapes, as discussed in the chapter “Typographic Shapes” in this book.

For more information on style objects, see the chapter “Style Objects” in Inside Macintosh:
QuickDraw GX Objects.

This chapter does not cover style object properties used exclusively by layout shapes,

such as run controls and the kerning adjustments array, which are also part of the style

object. For more information about style properties used by layout shapes, see the

chapter “Layout Styles” in this book.

This chapter introduces the properties of the style object and how they are associated

with QuickDraw GX typographic shapes. It then shows how to use QuickDraw GX

functions to

■ get and set the style object’s properties, such as its font, text face, text size, and
text attributes

■ create a text face in order to create stylistic variations of a font

■ orient text vertically instead of horizontally

About Typographic Styles

Typographic styles exist to provide information about typographic shapes. Each

QuickDraw GX typographic style associated with a particular typographic shape

defines much of that shape’s appearance, such as what font the shape uses and where

it is placed. Typographic styles also describe what glyphs are represented by a font’s

character encoding and its text size, as well as the stylistic variations of a font and its

text faces.

Typographic styles are device-independent. The styles of a typographic shape are not

affected by the properties of the display device for which the shape is drawn.

Although a typographic style is the same as a geometric style, typographic shapes––text,

glyph, and layout shapes––use different properties from the style object than those used

by geometric shapes, such as caps, joins, and dashes.

Style Properties Associated With Typographic Shapes
The interface to style objects is entirely procedural. You manipulate the information in a

style object by modifying its properties using QuickDraw GX functions.

C H A P T E R 6

Typographic Styles

6-4 About Typographic Styles

Style objects have 22 accessible properties, as shown in Figure 6-1. Note that, because

a style is an object and not a data structure, the order of the properties as shown in

Figure 6-1 is completely arbitrary.

Figure 6-1 The style object used by all typographic shapes

Thirteen of the style object’s properties pertain only to typographic styles––that is, styles

associated with typographic shapes. Seven apply to all typographic shapes:

■ Font. A reference to the font to use in drawing the text of this shape.

■ Text face. The text face––the constructed stylistic variation from plain text––to apply
in drawing the text of this shape.

■ Text size. The size, in typographic points (72 per inch), at which to draw the text of
this shape.

■ Alignment. The alignment value to use when drawing the text of this shape. Text
may be left-aligned, right-aligned, anywhere between the two alignments (such as
centered), or fully justified.

■ Font variations. The list of font variations––stylistic variations built into the font––
available for drawing the text of this shape.

■ Encoding. The type of character encoding used to represent the text of this shape, as
well as its script and language.

■ Text attributes. The set of flags that allow you to specify how QuickDraw GX alters
glyph outlines or chooses the proper metrics for horizontal or vertical text.

Most of the properties of the style object associated with geometric shapes––pen size,

cap, join, dash, curve error, and style attributes––can be set in a style object used by a

typographic shape, but they do not affect the appearance of the shape. (Patterns are

an exception; they do affect the appearance of a typographic shape. See Figure 6-20

C H A P T E R 6

Typographic Styles

About Typographic Styles 6-5

on page 6-33 for example.) However, you can take advantage of the geometric style

properties by using the text face property of the style object. In this way, you can apply

cap, join, dash, and pattern properties to your typographic shape. See the section

“Applying Patterns and Dashes to Text Faces” on page 6-32.

Note

Both glyph shapes and layout shapes may have arrays of styles in their
shape geometry and therefore do not necessarily use the style object
associated with the shape object. However, any operation you can
perform on the shape’s style object can also be performed on the styles
stored in the shape’s geometry. (Note that any nil member of an array
causes the shapes’s style object to be used.) ◆

QuickDraw GX provides functions for manipulating each of these style object properties.

The properties and functions pertaining to typographic styles are described in the

following sections.

Font

The font property of style objects specifies the font or font family of a style object.

QuickDraw GX provides your application with functions for retrieving and specifying

font information for a style object, as well as retrieving and specifying information for

a style object associated with a particular shape. The functions for getting and setting

the font of a style object are described in the “Typographic Styles Reference” section of

this chapter.

For more information about fonts––specifically, encodings and font variations––see the

chapter “Font Objects” in this book.

Text Face

If your application needs to apply a typestyle to text, you have three options. (A typestyle

is a specific variation in the appearance of a glyph that can be applied consistently to all

the glyphs in a font family.) You can

■ use a font specifically designed for that typestyle, as described in the chapter
“Font Objects”

■ use a font that has a font variation for that typestyle, as described in the chapter
“Font Objects”

■ apply a text face created by your application to that text

The first two methods involve using information already present in the font. If there isn’t

a separate font in the appropriate typestyle, or the font doesn’t contain the font variation

that the user needs, your application can use text faces to create the desired typestyle. A

text face is a typestyle created by an algorithmic method, which allows you to control

the appearance and placement of glyphs in a font.

A text face consists of a mapping, which affects the advance widths and interglyph

spacing––but not the shape of the glyphs––and a number of optional face layers,

which describe the appearance of the glyphs.

C H A P T E R 6

Typographic Styles

6-6 About Typographic Styles

A face layer specifies the manner in which the glyphs are drawn. When all of the face

layers are combined, they form the visual composite. This creates the particular look of

the text face––that is, bold, oblique, underline, condensed, extended, or a more unusual

pattern, dash, join, or other style. If a text face has multiple face layers, the layers combine

to form the final text face, as shown in Figure 6-2.

A face layer contains the following elements:

■ a shape fill

■ an optional style object

■ an optional transform object

■ bold values for the x and y directions

■ layer flags

The Shape Fill

The shape fill determines the kind of geometry––that is, fill or frame––used by the layer. If

the fill is an open frame or closed frame fill, then the glyph is converted to a path shape.

For more information about shape fills, see the chapter “Shape Objects” in Inside
Macintosh: QuickDraw GX Objects.

The Style

The style in a face layer allows the text face to take advantage of the geometric, as

opposed to typographic, properties of the style object. The only restriction is that the

text face’s style cannot have its own text face.

Figure 6-2 Face layers combined to form the visual composite of a Roman “E”

C H A P T E R 6

Typographic Styles

About Typographic Styles 6-7

The style is the overriding style for the text face. The values in this style are interpreted

in a unique way because of the text face. The style’s pen size, pattern, dash, and join are

scaled by a factor corresponding to the point size of the text.

The fields of the outline style are multiplied by the text size of the text being drawn.

Thus, a pattern in an outline style is scaled relative to the text being patterned, so that,

for example, a 30.0-point “A” will have a pattern shape twice as large as a 15.0-point “A”.

The bulleted items listed are the fields of the outline style that are scaled. Wherever the

text “scaled by textSize” appears, the text size refers to the size of the text being drawn.

This text size comes from the text size field of the text’s style. The scaled fields include:

■ Pen width: scaled by the text size

■ Dash (if present): advance scaled by the text size; dash shape scaled in X only by the
text size

■ Pattern (if present): u and v vectors scaled in X and Y by the text size; pattern shape
scaled in X and Y by the text size

■ Start and End Caps (if present): scaled in X and Y by the text size.

■ Join (if present and join type is gxShapeJoin): join shape is scaled in X and Y by the
text size.

■ Text Size: scaled by the text size

If the outline style’s text size is 1.1, for example, the text will end up being drawn with

a point size 10 percent larger than if there were no text face. A 12.0 point text will be

drawn at 13.2 points.

You can use the style in the text face to pattern a typographic shape. See “Applying

Patterns and Dashes to Text Faces” on page 6-32.

The Transform

The transform in the face layer allows you to produce oblique, condensed, and extended

typestyles, as well as unusual special effects. You can change, skew, and scale the text

face’s transform as you would any other transform.

For more information about the transform object, its properties, and the

GXNewTransform, GXSkewTransform, GXScaleTransform, and

GXSetTransformMapping functions, see Inside Macintosh: QuickDraw GX Objects.

The Bold Outset

The x and y values in the boldOutset field of the face layer scale the thicknesses of the

glyphs in the displayed shape. The values for bold are treated as though they are for a

1-point font. For example, to get 3 points worth of bold at 48-point text, you set the bold

outset to ff(3)/ff(48).

C H A P T E R 6

Typographic Styles

6-8 About Typographic Styles

Layer Flags

The layer flags describe the characteristics of one layer of a text face. They are used pri-

marily to determine the underlining capabilities of the text face. By setting the layer

flags, you can affect where the underlining goes. Figure 6-3 indicates underlining a glyph

with tangent values.

Figure 6-3 An underlined glyph with tangent values

QuickDraw GX allows your application to

■ underline all of the glyphs in that text face

■ underline only the glyphs that make up words (skipping whitespace glyphs)

■ connect text of different text faces

Figure 6-4 shows underlining with intervals, and with a style change from italic

to Roman.

Figure 6-4 Underlining with interval and with style changes

C H A P T E R 6

Typographic Styles

About Typographic Styles 6-9

A layer flag can also indicate whether the layer adds to or subtracts from the

previous layers.

Figure 6-5 shows underlining vertical text, with centering.

Figure 6-5 Underlining vertical text through its center

C H A P T E R 6

Typographic Styles

6-10 About Typographic Styles

Table 6-1 describes values for layer flags. When you pass a value for one of the flags,

QuickDraw GX performs the described action.

Text Size

The text size property of style objects specifies the size, in fractional typographic points,

of the text of a style object.

QuickDraw GX provides functions to retrieve and specify the text size from a style object

as well as functions to retrieve and specify the text size for the style object associated

with a particular shape. The functions for getting and setting the text size of a style object

are described later in the “Typographic Styles Reference” section of this chapter.

Table 6-1 Layer flag values and descriptions

Flag Value Description

gxUnderlineAdvanceLayer 1 Draws an underline from the
beginning of the text that shares
one text face to the end, including
white spaces.

gxSkipWhiteSpaceLayer 2 Does not draw a line under
glyphs that have no contours
(such as the space character) if
the gxUnderlineAdvanceLayer
bit is also set.

gxUnderlineIntervalLayer 4 Extends the underline through
the gaps between text. If you set
this bit, you must also set the
gxStringLayer bit.

gxUnderlineContinuationLayer 8 Draws an underline across text
of different style runs. If you
set this bit, you must also set
the gxStringLayer bit.
Also, you must set the
gxUnderlineAdvanceLayer
flag; if you do not, you get an error.

gxWhiteLayer 16 Subtracts portions of previously
drawn layers. You can set this bit
only for the second or greater layer.

gxClipLayer 32 Clips the underline with the outline
as a glyph.

gxStringLayer 64 Connects the text of different text
faces and style runs.

C H A P T E R 6

Typographic Styles

About Typographic Styles 6-11

Alignment

Alignment is the process of placing text in relation to one or both margins, which are

the left and right sides (or top and bottom sides) of the text area. Text can be aligned

left, right, center, or at full justification (full justification allows you to “stretch” or

“shrink” a line of text to fit within a given width). Alignment should be used only to

compensate for the differences between ideal measurements of characters and device-

specific measurements of characters.

The alignment is set by getting and setting the alignment values of the style object.

Table 6-2 describes some alignment values of the style object.

Note

The alignment value in the style object is used only by text and glyph
shapes. The layout shape has its own method of justifying and aligning
text, as described in the chapter “Layout Line Control.” ◆

As shown in Table 6-2, several values are predefined for different types of alignment.

However, any fractional value between 0.0 and 1.0 is legal for alignment and represents

a gradation of one of the types of alignment. (Note that values between 0.0 and –1.0

are illegal.) For example, a value of 0.25 indicates that QuickDraw GX should draw the

shape one quarter of the way from the left text position, or one quarter of the way from

the left and right edges.

Table 6-2 Alignment values and descriptions

Alignment Value Description

Left 0.0 Text is drawn to the right of the left margins (or below the
top margin, for vertical text).

Right 1.0 Text is drawn to the left of the right margin (or above the
bottom margin, for vertical text).

Center 0.5 Text is drawn between the left and right margins with an
equal amount of space on either side.

Full
Justification

–1.0 Text is evenly distributed between the margins (left and
right for horizontal text or top and bottom for vertical text)
because the white space on the line is distributed between
the words and, to a lesser extent, between the glyphs
in the words.

C H A P T E R 6

Typographic Styles

6-12 About Typographic Styles

Figure 6-6 compares alignment values for horizontal and vertical text.

IMPORTANT

If you use text and glyph shapes with non-Roman scripts, you are not
assured of getting the proper results when you use these alignment
values. For example, if you use a script such as Arabic that relies on
kashidas (extending bars), then full justification may break that
alignment apart. To guarantee correct results in non-Roman cases,
you should use layout shapes. ▲

Figure 6-6 Comparing alignment values for horizontal and vertical text

Full Justification

In full justification, the glyphs are distributed evenly between the margins, the left

and right margins for horizontal text or the top and bottom margins for vertical text.

Full justification does not affect text or layout shapes; it affects only glyph shapes

that have two absolute positions. The first absolute position is first entry in the glyph

shape’s position array; the second absolute position is the final entry in the glyph shape’s

position array.

For each pair of absolute positions in the glyph shape, the first position specifies the left

alignment for the glyph that corresponds to that position; the second of the pair specifies

the right alignment for the glyph that corresponds to that position. QuickDraw GX

justifies the remaining glyphs between the pair of glyphs corresponding to the absolute

positions. The glyphs are justified using the glyph advance and the relative position.

C H A P T E R 6

Typographic Styles

About Typographic Styles 6-13

QuickDraw GX justifies the whitespace glyphs (whitespace glyphs are those with no

contours, such as spaces between characters) after justifying the other glyphs. If there is a

difference between the advance after the next-to-the-last glyph and the initial position of

the last glyph, the difference is divided by the number of whitespace glyphs. If there are

no whitespace glyphs, or if changing their width is not enough to compensate for the

mismatch in widths, the positions of all other characters are also adjusted.

Figure 6-7 shows the absolute positions for two different alignment values.

Figure 6-7 Comparing alignment values for full justification

Font Variations

The font variations property of a style object specifies the font variations that will be

applied to the style’s font.

QuickDraw GX provides your application with functions to retrieve and specify the

font variations from a style object, as well as to retrieve and specify the font variations

associated with a particular shape. See “Getting and Setting the Font Variations of a Style

Object” on page 6-51 and the chapter “Font Objects” in this book.

The QuickDraw GX Font Variation Suite

A typographic style may specify the values for any number of variation axes. (A

variation axis has a name that identifies the typestyle which the axis represents, a set

of maximum and minimum values for the axis, and the default value of the axis.)

A style’s font might not support, however, all of the specified axes, or support axes not

explicitly mentioned in the style. In addition, the style may specify a value for an axis that

is beyond the supported range for that axis by the style’s font. QuickDraw GX manages

all of these cases by converting the style’s list of variations into a canonical form before

using them. This canonical form is called a font variation suite.

The canonical form is a complete listing of every axis supported in the font (see the

GXCountFontVariations function described in the “Font Objects” chapter in this

book), in the order specified by the font (see the GXGetFontVariation function).

Each axis is given a value. If the style specifies a value for an axis, the value is pinned

to lie within (inclusively) the font’s minimum and maximum value for that axis. Axes

not specified in the style are set to their default values.

C H A P T E R 6

Typographic Styles

6-14 About Typographic Styles

The functions GXGetStyleFontVariationSuite and

GXGetShapeFontVariationSuite return a gxFontVariation array

in this canonical form. For more information, see “Retrieving the Elements in

a Font Variation Suite” on page 6-55.

The functions return the number of elements in the variation suite for the font specified

by the style or shape. This number is the same as the number of font variation axes

returned by GXCountFontVariations, described in the chapter “Font Objects” in this

book. If the variations parameter is not nil, the variations specified in the style are

converted into their canonical form, and then copied into variations.

Font Metrics

The font metrics property allows you to retrieve font metrics for specified style objects

or style objects associated with a shape object.

You can retrieve the font metrics, including line spacing and caret angle, for a style

object. You can also retrieve the font metrics for the style object associated with a

shape object. You can retrieve the font metrics for the style object associated with a

shape, taking into account the shape’s transform or the mappings on the specified

view port and view device. See “Retrieving Font Metrics” on page 6-57.

Encoding

The encoding property of a style object represents a combination of its platform, script,

and language. Platforms, scripts, and languages are described in the chapter “Font

Objects” in this book.

QuickDraw GX provides your application with functions to retrieve and specify the

encoding information of a style object, as well as to retrieve and specify the encoding

information for the style object associated with a particular shape. The functions are

described in “Getting and Setting the Encoding of a Style Object” on page 6-61.

For more information on encoding, see the chapters “Typographic Shapes” and “Font

Objects” in this book.

Text Attributes

Each style object has a set of text attributes that modify the behavior of the style object

associated with typographic shapes. Text attributes are a collection of flags which

individually affect different properties of typographic styles.

Table 6-3 describes text attributes and their values.

As shown in Table 6-3, the text attribute flags allow you to specify how QuickDraw GX

alters glyph outlines or chooses the proper types of metrics for horizontal or vertical text.

For example, the gxAutoAdvanceText text attribute determines the difference between

the advance width of the glyph from the font and the advance width of the same glyph

with the text face applied. It then adds this difference to the original advance width.

C H A P T E R 6

Typographic Styles

About Typographic Styles 6-15

Given a specific point size and resolution, hinted outlines produce better-looking text for

a specific point size and resolution by moving points or otherwise altering the outline. A

hinted outline for a particular point size that is converted to a path or polygon shape

may not respond to scaling as well as graphic objects or unhinted outlines do on a high-

resolution display device. The gxNoContourGridText text attribute does not use

hinted outlines before displaying the text.

The gxNoMetricsGridText text attribute uses the ideal metrics to space the glyphs

in a typographic shape. Ideal metrics always give the same interglyph spacing on a

high-resolution device, but you may get poorer spacing if you use ideal metrics on

a low-resolution device such as the screen. Also, ideal metrics scale linearly with the

shape’s transform and device. (Your application may want to use ideal metrics for such

features as linebreaking.) The alternative, device-specific metrics, change non-linearly

with scaling factors in the transform and device.

Table 6-3 Text attributes and their values

Attribute Value Description

gxAutoAdvanceText 0x0001 QuickDraw GX automatically changes the
advance width of a glyph to match the
change of glyph width due to a text face.

gxNoContourGridText 0x0002 QuickDraw GX doesn’t use hinted outlines
before displaying the text––that is, it
instructs the scaler not to use hints when
imaging. If you set this bit, you must also
set the gxNoMetricsGridText bit.

gxNoMetricsGridText 0x0004 Uses the ideal metrics to space the glyphs
in a typographic shape––that is, instructs
the scaler not to use hints when measuring
the character.

gxAnchorPointsText 0x0008 Includes data for all the outline’s points.
QuickDraw GX’s default action is to return
a basic outline, removing points that do
not affect the shape, such as single-point
contours. If set, and a typographic shape is
converted to a path, all points are returned.

gxVerticalText 0x0010 Uses the vertical advance and side bearing
metrics. The default values are the hori-
zontal advance and side bearing metrics.

gxNoOpticalScaleText 0x0020 QuickDraw GX automatically specifies an
optical scale variation value equal to the
style’s text size, if the style’s font supports
optical scaling variations and the style does
not already specify a value for this axis. If
set, this bit prevents QuickDraw GX from
specifying an optical scale variation value.

C H A P T E R 6

Typographic Styles

6-16 About Typographic Styles

When you convert a glyph to a path, the gxAnchorPointsText text attribute includes

data for all the points on a glyph’s outline if this bit is set. QuickDraw GX’s default

action is to return a basic outline, removing points that do not affect the shape, such as

single-point contours.

The gxVerticalText text attribute uses the vertical advance and side bearing metrics.

You should set this bit if you want QuickDraw GX to draw text vertically. The default

values are the horizontal advance and side bearing metrics. Figure 6-8 shows an example

of orienting text both vertically and horizontally.

Figure 6-8 Orienting text vertically and horizontally

Typographic Properties of the Default Style Object
When QuickDraw GX first creates a style object, that object has default characteristics

defined by QuickDraw GX. The typographic properties of the default style object have

the following values:

■ A nil font reference, meaning that the default font is used for text. The default font is
described in the chapter “Font Objects” in this book.

■ A text size of 12.0

C H A P T E R 6

Typographic Styles

Using Typographic Styles 6-17

■ A text attributes value of gxNoAttributes (0)

■ A scale value (within the dash property) of 1.0

■ A joins miter value of 1.0

■ A value of 0 or nil for all other typographic properties

Using Typographic Styles

This section describes the basic method of manipulating the style object for typographic

shapes. Unless otherwise noted, these methods apply to all three typographic shapes.

For detailed information on using a specific typographic shape––text, glyph, or layout––

see the chapter describing that particular shape.

This section describes how you can

■ create text faces in your application

■ set text attributes and orient the vertical text attribute

■ apply patterns and dashes to text faces

■ create unusual effects with text faces

For more information on setting font variations and encoding, see the chapter “Font

Objects” in this book.

Creating Text Faces
You can include text faces in your application that create the basic typestyles: bold, italic,

condensed, extended, outlined, and underlined. You may also want to include unusual

text faces for users.

Note that your application must allocate enough memory to store the text face and all of

the face layers of that text face. For example, to create a text face with three layers, you

can use the following code:

gxTextFace*face;

long numOfLayers = 3;

face = (gxTextFace *)NewPtr(sizeof(gxTextFace) +

 (numOfLayers - gxAnyNumber)* sizeof(gxFaceLayer));

face->faceLayers = numOfLayers;

You can then set the values of the advance mapping and the individual face layers.

C H A P T E R 6

Typographic Styles

6-18 Using Typographic Styles

Setting the Advance Mapping

The advance mapping in the text face affects the positions of the glyphs using the text

face. It does not affect the size of the glyphs themselves or change the positions of the

shape as stored in the shape’s geometry.

Listing 6-1 is an example of a routine that shows advance mapping. Note that the

translation component of the advance mapping is multiplied by the text size before

being applied.

Listing 6-1 Advance mapping

static void ShowAdvanceMapping(void)

{

gxTextFace mappingOnlyFace;

ResetMapping(&mappingOnlyFace.advanceMapping);

mappingOnlyFace.advanceMapping.map[2][1] = -fixed1/3;

mappingOnlyFace.faceLayers = 0;

GXSetShapeFace(GXGetDefaultShape (gxTextType),

&mappingOnlyFace);

GXDrawText(6, (unsigned char*) “Mapped”, nil);

}

Figure 6-9 shows the results of executing the code in Listing 6-1.

Figure 6-9 A shape with the advance mapping applied

Note
If you scale the advance mapping, you’re scaling
on a glyph-by-glyph basis. ◆

C H A P T E R 6

Typographic Styles

Using Typographic Styles 6-19

Setting a Face Layer

To modify the appearance of the text face, you can use the face layer in a text face. The

various layers of the text face are composited on top of one another; the first face layer of

the text face is the bottom most layer. Subsequent layers are added to or subtracted from

previous layers.

The Transform

To produce italic, condensed, and extended typestyles, as well as unusual effects, you

can use the transform in the face layer. You can change, skew, and scale the text face’s

transform as you would any other transform.

To create an italic text face, for example, you can use the following code in Listing 6-2.

Listing 6-2 Creating an italic text face

void ApplyItalicTextFace(gxShape target, Fixed italicValue)

{

gxTextFace italicFace;

ResetMapping(&italicFace.advanceMapping);

italicFace.faceLayers = 1;

italicFace.faceLayer[0].outlineFill = gxWindingFill;

italicFace.faceLayer[0].flags = 0;

italicFace.faceLayer[0].outlineStyle = nil;

italicFace.faceLayer[0].outlineTransform = GXNewTransform();

GXSkewTransform(italicFace.faceLayer[0].outlineTransform,

italicValue, 0, 0, 0);

italicFace.faceLayer[0].boldOutset.x = 0;

italicFace.faceLayer[0].boldOutset.y = 0;

GXDisposeTransform(italicFace.facelayer[0].outlineTransform)

}

void DisplayItalicText(void)

{

gxShape text = GXNewText(6, (unsigned char *)"Italic", nil);

GXMoveShape(text, 0, ff(20));

ApplyItalicTextFace(text, -fixed1/6);

GXDrawShape(text);

GXMoveShape(text, 0, ff(20));

ApplyItalicTextFace(text, -fixed1/4);

GXDrawShape(text);

C H A P T E R 6

Typographic Styles

6-20 Using Typographic Styles

GXMoveShape(text, 0, ff(20));

ApplyItalicTextFace(text, -fixed1/3);

GXDrawShape(text);

GXMoveShape(text, 0, ff(20));

ApplyItalicTextFace(text, -fixed1/2);

GXDrawShape(text);

GXDisposeShape(text);

}

Figure 6-10 shows the results of executing the code in Listing 6-2.

Figure 6-10 An italic text face

To create a condensed or extended text face, scale the transform of the text face. The trans-

forms of condensed text faces are scaled to less than 1; those of extended text faces are

scaled to more than 1.

shrink = ff(60)/100;

face->faceLayer[0].outlineTransform = GXNewTransform();

GXScaleTransform(face->faceLayer[0].outlineTransform, shrink,

 fixed1, 0, 0);

ScaleMapping(&face->advance mapping, shrink, fix1, 0, 0)

C H A P T E R 6

Typographic Styles

Using Typographic Styles 6-21

The preceding code produces the text face in Figure 6-11.

Figure 6-11 A condensed text face

You can combine these steps to produce a condensed-italic text face. You can also use

the transform of a face layer in a text face with more than one layer to produce a drop

shadow or other unusual text face.

Listing 6-3 creates a text face with two layers. The first layer is the drop shadow, which is

drawn with a closed frame fill; the second layer does not alter the appearance of the text

at all. Together, they produce the text face in Figure 6-12.

Listing 6-3 Creating a drop-shadow text face

ResetMapping (& layer2map);

layer1map.map[2][0] = fl(0.2);

layer1map.map[2][1] = fl(0.2);

face->faceLayer[0].flags = gxNoAttributes;

face->faceLayer[0].outlineFill = gxClosedFrameFill;

face->faceLayer[0].outlineStyle = nil;

GXSetTransformMapping(face->faceLayer[0].outlineTransform =

GXNewTransform(), &layer1map);

face->faceLayer[0].boldOutset.x = 0;

face->faceLayer[0].boldOutset.y = 0;

mapping layer1map;

face->faceLayer[1].flags = gxNoAttributes;

face->faceLayer[1].outlineFill = gxWindingFill;

face->faceLayer[1].outlineStyle = nil;

face->faceLayer[1].outlineTransform = nil;

face->faceLayer[1].boldOutset.x = 0;

face->faceLayer[1].boldOutset.y = 0;

C H A P T E R 6

Typographic Styles

6-22 Using Typographic Styles

Figure 6-12 shows the results of executing the code in Listing 6-3.

Figure 6-12 A drop-shadow text face

For more information about the transform object, its properties, and the

GXNewTransform, GXSkewTransform, GXScaleTransform, and

GXSetTransformMapping functions, see Inside Macintosh: QuickDraw GX Objects.

The Bold Outset

The x and y values in the boldOutset field of the face layer scale the thicknesses of the

glyphs in the displayed shape. The values for bold are treated as though they are for a

1-point font. For example, to get 3 points worth of bold at 48-point text, you set the bold

outset to ff(3)/48.

You can produce a simple bold text face by setting the x value of the boldOutset field

to any positive value other than 0 and setting the y value to 0. In this way, you can create

several kinds of boldface text: bold, demibold, black, and so on. See Figure 6-13.

In general, bold fonts tend to get heavy in just the horizontal direction. You can use the y

bolding as well.

IMPORTANT

You can decrease the amount of bold by using
negative values in the bold outset field. ▲

Figure 6-13 Different values of boldface

C H A P T E R 6

Typographic Styles

Using Typographic Styles 6-23

Setting the Layer Flags

The layer flags primarily allow you to determine the underlining characteristics of the

text face. You can also use the layer flags to create a “white layer.”

Listing 6-4 is a sample routine that shows how to create a simple underline text face.

Listing 6-4 Creating a simple underline text face

#include “graphics routines.h”

#include “math routines.h”

static ShowSimpleUnderline(void)

{

gxPoint position = {0, ff(400)};

gxShape text = GXNewText(9, (unsigned char *)"Underline",

&position);

gxTextFace underlineFace = {1, {{{fixed1, 0, 0},

{0, fixed1, 0}, {0, 0, fract1}}},

gxUnderlineAdvanceLayer, gxWindingFill, nil, nil,

{0, 0}};

GXSetShapeFace(text, &underlineFace);

GXDrawShape(text);

GXDisposeShape(text);

}

Figure 6-14 shows the results of executing the code in Listing 6-4.

Figure 6-14 A simple underline text face

Listing 6-5 is a sample function that produces a thicker underline text face.

C H A P T E R 6

Typographic Styles

6-24 Using Typographic Styles

Listing 6-5 Creating a thicker underline

void ShowBetterUnderline(void)

{

gxShape text = GXNewText(9, (unsigned char *)"Underline", nil);

gxTextFace *underlineFace;

gxStyle thickPenStyle;

gxTransform moveDownTransform;

underlineFace = (gxTextFace *)NewPtr(sizeof(gxTextFace) +

 sizeof(gxFaceLayer));

ResetMapping(&underlineFace->advanceMapping);

underlineFace->faceLayers = 2;

underlineFace->faceLayer[0].flags = gxNoAttributes;

underlineFace->faceLayer[0].outlineFill = gxWindingFill;

underlineFace->faceLayer[0].outlineStyle = nil;

underlineFace->faceLayer[0].outlineTransform = nil;

underlineFace->faceLayer[0].boldOutset.x = 0;

underlineFace->faceLayer[0].boldOutset.y = 0;

/* Create a style to thicken the underline. The pen size will

 be scaled by the size of the text drawn,so we make the pen size

 1/12, so that 12 point text gets a 1 pixel underline and larger

 text will get a proportionally thicker underline.

*/

thickPenStyle = GXNewStyle();

GXSetStylePen(thickPenStyle, fixed1/12);

/* Create a transform to position the underline. We want it to

 be 2 pixels below the baseline, so we translate it in the

 positive y direction by 2/12.

*/

moveDownTransform = GXNewTransform();

GXMoveTransform(moveDownTransform, 0, fixed1/6);

underlineFace->faceLayer[1].flags = gxUnderlineAdvanceLayer;

underlineFace->faceLayer[1].outlineFill = gxNoFill;

underlineFace->faceLayer[1].outlineStyle = thickPenStyle;

underlineFace->faceLayer[1].outlineTransform =

 moveDownTransform;

underlineFace->faceLayer[1].boldOutset.x = 0;

underlineFace->faceLayer[1].boldOutset.y = 0;

C H A P T E R 6

Typographic Styles

Using Typographic Styles 6-25

GXSetShapeFace(text, underlineFace);

GXMoveShape(text, 0, ff(400));

GXDrawShape(text);

DisposePtr((void *)underlineFace);

GXDisposeShape(text);

}

Figure 6-15 shows the results of executing the code in Listing 6-5.

Figure 6-15 A thicker underline

Setting Text Attributes
By setting the text attributes of a style, you affect how QuickDraw GX treats individual

glyphs in a shape.

You should always get the current settings of the text attributes before setting any of

them. The GXSetStyleTextAttributes function replaces all of the attributes

currently associated with the style; if you want any attributes to remain the same, you

must be include them in the call.

For example, to set the gxVerticalText text attribute of a style, you can use the

following code:

GXSetStyleTextAttributes(myStyle,

 GXGetStyleTextAttributes(myStyle) | gxVerticalText);

If you want to clear only that text attribute from a style, you can use the code:

GXSetStyleTextAttributes(myStyle,

 GXGetStyleTextAttributes(myStyle) & ~gxVerticalText);

Setting the Automatic Text Advance Attribute

By setting the gxAutoAdvanceText text attribute you tell QuickDraw GX to take into

account changes to the widths of the glyphs in the shape. For example, by applying a

bold text face, you increase the widths of the glyphs. If you set the gxAutoAdvanceText

attribute, QuickDraw GX increases the advance widths of the glyphs by a percentage

corresponding to the increase in the filled widths of the bold glyphs.

C H A P T E R 6

Typographic Styles

6-26 Using Typographic Styles

Listing 6-6 is a pair of sample routines that show how the automatic text advance attribute

increases the advance width of glyphs in the case of applying a bold text face.

Listing 6-6 Using the automatic text advance attribute

void MakeBoldTextFace(gxTextFace* face)

{

face->faceLayers = 1;

ResetMapping(&face->advanceMapping);

face->faceLayer[0].outlineFill = gxWindingFill;

face.faceLayer[0].flags = 0;

face.faceLayer[0].outlineStyle = nil;

face.faceLayer[0].boldOutset.x = fixed1/12;

face.faceLayer[0].boldOutset.y = fixed1/36;

}

void MakeBoldText(void)

{

gxShape text;

gxPoint loc = { ff(50), ff(250);

gxTextFace myFace;

text = MakeTextShape(“Bolded”, “Hoefler Text”, ff(200),

&loc);

GXDrawShape(text);

GXMoveShape(text, 0, ff(200));

MakeBoldTextFace(&myFace);

GXSetShapeFace(text, &myFace);

GXDrawShape(text);

GXMoveShape(text, 0, ff(200));

GXSetShapeTextAttributes(text,

GXGetShapeStyleAttributes(text) | gxAutoAdvanceText);

GXDrawShape(text);

GXDisposeShape(text);

}

Figure 6-16 shows the results of executing the code in Listing 6-6. The same typographic

shape is drawn three times. The first time, the shape is drawn with no text face applied.

The second time, the shape is drawn with a bold text face, but the gxAutoAdvanceText

C H A P T E R 6

Typographic Styles

Using Typographic Styles 6-27

text attribute not set. The third time, the shape is drawn with the text bolded and with

the gxAutoAdvanceText text attribute set. Note that in the third case the glyph spacing

has expanded to account for the bold text face.

Figure 6-16 Drawing text using the gxAutoAdvanceText text attribute

Setting the No Contour Grid Attribute

If you set the gxNoContourGridText text attribute, QuickDraw GX instructs

the scaler not to use hints when imaging. If you set this bit, you must also set the

gxNoMetricsGridText bit.

Listing 6-7 is an example of a routine that shows results of turning off the

gxNoContourGridText attribute, then turning the shapes into path shapes.

Listing 6-7 Using the no contour grid text attribute

void CompareNoContourGrid(void)
{

gxShape contourGriddedA = GXNewText(1, (unsigned char *)"a",
nil);

gxShape noContourGriddedA;

GXSetShapeTextSize(contourGriddedA, ff(9));/* A small point
size increases the effect of gridding */

GXSetShapePen(contourGriddedA, ff(4));

/* Make a copy of the original "a" and turn off contour gridding
*/

noContourGriddedA = GXCopyToShape(nil, contourGriddedA);
GXSetShapeTextAttributes(noContourGriddedA,

GXGetShapeTextAttributes(noContourGriddedA) |
gxNoContourGridText|gxNoMetricsGridText);

C H A P T E R 6

Typographic Styles

6-28 Using Typographic Styles

/* Turn both shapes into paths, and magnify them 75x to show the
differences */

GXSetShapeType(contourGriddedA, gxPathType);
GXSetShapeFill(contourGriddedA, gxClosedFrameFill);
GXSetShapeType(noContourGriddedA, gxPathType);
GXSetShapeFill(noContourGriddedA, gxClosedFrameFill);
GXScaleShape(contourGriddedA, ff(75), ff(75), 0, 0);
GXScaleShape(noContourGriddedA, ff(75), ff(75), 0, 0);
GXMoveShape(contourGriddedA, ff(20), ff(400));
GXMoveShape(noContourGriddedA, ff(400), ff(400));

GXDrawShape(contourGriddedA);
GXDrawShape(noContourGriddedA);

GXDisposeShape(contourGriddedA);
GXDisposeShape(noContourGriddedA);

}

Figure 6-17 shows the results of executing the code in Listing 6-7. The “a” to the left shows

an example with the gxNoContourGridText attribute clear, the “a” to right with it set.

Note that at small point sizes, more realistic characters can be produced with contour

gridding on (with gxNoContourGridText clear).

Figure 6-17 Turning the no contour grid attribute off and on

C H A P T E R 6

Typographic Styles

Using Typographic Styles 6-29

Setting the Vertical Text Attribute

If you set the gxVerticalText text attribute in the style, QuickDraw GX returns the

font’s vertical metrics for the glyphs in the shape when you call a function such as

GXGetGlyphMetrics. (See the chapter “Typographic Shapes” in this book for a descrip-

tion of this function).

Listing 6-8 is a sample routine that shows how to set the vertical text attribute.

Listing 6-8 Setting the vertical text attribute

static void ShowVerticalText(void)

{

gxShape text = GXNewText(8, (unsigned char *)"Vertical", nil);

GXMoveShape(text, ff(100), ff(100));

GXDrawShape(text);

GXSetShapeTextAttributes(text,

GXGetShapeTextAttributes(text) | gxVerticalText);

GXDrawShape(text);

GXDisposeShape(text);

}

Figure 6-8 on page 6-16 shows the results of the executing code in Listing 6-8.

Depending on the type of shape you’re using, setting the gxVerticalText text attribute

has two very different results. If the shape is a text or glyph shape, QuickDraw GX auto-

matically draws the glyphs that use that style in a vertical line.

Listing 6-9 creates a glyph shape that uses two styles: the first part of the shape uses a

Times® Roman style that does not have the vertical text attribute set, and second half

of the shape uses a Helvetica style that does.

Listing 6-9 The effects of the vertical text attribute on a glyph shape

gxShape gShape;

gxStyle helveticaStyle, timesStyle;

gxFont helveticaFont, timesFont;

stat const unsigned charvertText[] = "one way another";

static const shortmyStyleRuns[] = {8,7};

static gxStyle myStyles[2];

C H A P T E R 6

Typographic Styles

6-30 Using Typographic Styles

GXFindFonts (gxFullFontName, gxMacintoshPlatform, gxRomanScript,

gxEnglishLanguage, 9, "Helvetica", 1, 1, &helveticaFont);

helveticaStyle = GXNewStyle ();

GXSetStyleTextSize(helveticaStyle, ff(40));

GXSetStyleFont(helveticaStyle, helveticaFont);

GXSetStyleTextAttributes (helveticaStyle,

 GXGetStyleTextAttributes (helveticaStyle) | gxVerticalText);

GXFindFonts (gxFullFontName,gxMacintoshPlatform, gxRomanScript,

gxEnglishLanguage, 9, 11, "Times Roman",1, 1, ×Font);

timesStyle = GXNewStyle ();

GXSetStyleTextSize(timesStyle, ff(40));

GXSetStyleFont(timesStyle, timesFont);

GXSetStyleTextAttributes (timesStyle, gxVerticalText);

myStyles[0] = timesStyle;

myStyles[1] = helveticaStyle;

totalLength = sizeof(vertText);

gShape = GXNewGlyphs(totalLength, vertText,

nil, nil, nil, myStyleRuns, myStyles);

GXMoveShapeTo(gShape, ff(100), ff(100));

GXDrawShape(gShape);

GXDisposeShape(gShape);

GXDisposeStyle(myStyles[0]);

GXDisposeStyle(myStyles[1]);

Figure 6-18 shows the results of the code in Listing 6-9. The first half of the shape is drawn

in a horizontal line; the second half in a vertical line. Notice that the individual glyphs

in the second half of the shape retain their original horizontal orientation but are stacked

on top of one another. The glyphs that use the style with the vertical text attribute set

are aligned through their centers, and the vertical glyph origin, which is at the top of

the glyph “a”) is placed exactly where the advance width of the previous glyph––the

space glyph––ends.

Keep in mind, however, that a layout shape describes a single line of text. Therefore,

when you set the vertical text attribute on a style in a layout shape, QuickDraw GX does

not give those glyphs a vertical orientation. It rotates them in line and makes them line-

up vertically.

C H A P T E R 6

Typographic Styles

Using Typographic Styles 6-31

Figure 6-18 Using the gxVerticalText attribute with a text or glyph shape

For example, you can use the glyph shape in Listing 6-9 to describe the same appearance,

using the following code:

gxPoint textPositions = {ff(100), ff(100)};

gShape = GXNewLayout(1, &totalLength, (void *)&vertText,

2, myStyleRuns, myStyles,

0, nil, nil,

nil, &textPositions);

Figure 6-19 shows the resulting shape of executing the code. Notice how the glyphs

using the Helvetica style, which has the vertical text attribute set, are center aligned just

as they are in Figure 6-18, and the vertical glyph origin of the glyph “a” begins where the

advance width of the previous space glyph ends.

In the layout shape, however, the entire shape must have one orientation in order to

describe a single line. Therefore, in order to orient the second half of the shape correctly,

the entire shape needs to be rotated.

Figure 6-19 Using the gxVerticalText attribute with a layout shape

See the chapter “Layout Line Control” in this book for more information on creating

vertical text in layout shapes.

C H A P T E R 6

Typographic Styles

6-32 Using Typographic Styles

Applying Patterns and Dashes to Text Faces
You can fill a typographic shape with a pattern, or outline the glyphs in the shape with

dashes, just as you can with any other shape. Listing 6-10 is a set of sample routines that

creates a repeating sunburst pattern and applies it to a typographic shape through the

shape’s style object.

Listing 6-10 Filling a typographic shape with a pattern

void MakePatternText(void)

{

gxShape text;

gxPatternRecord myPat;

gxPoint loc = { ff(50), ff(200) };

text = MakeTextShape("Patterned words!", "Hoefler Text",

ff(144), &loc);

MakeBurstPattern(&myPat, ff(5), ff(64));

GXSetShapePattern(text, &myPat);

GXDisposeShape(myPat.pattern);

GXDrawShape(text);

GXDisposeShape(text);

}

/* A utility function that creates a text shape.*/

gxShape MakeTextShape(const char text[], const char font[],

Fixed textSize, const gxPoint* loc)

{

gxFont fontID;

gxShape shape = GXNewText(strlen(text), (unsigned char*)text,

loc);

GXFindFonts(nil, gxFullFontName, gxMacintoshPlatform,

 gxRomanScript, gxEnglishLanguage,

strlen(font), (unsigned char*)font, 1, 1, &fontID);

GXSetShapeFont(shape, fontID);

GXSetShapeTextSize(shape, textSize);

return shape;

}

/* A utility function that creates the sunburst pattern.*/

C H A P T E R 6

Typographic Styles

Using Typographic Styles 6-33

void MakeBurstPattern(gxPatternRecord* pat,

Fixed rotateAmount, Fixed scaleAmount)

{

gxLine lineData = { { -fixed1, 0 }, { fixed1, 0 } };

gxShape line = GXNewLine(&lineData);

gxShape rotated = GXNewShape(gxPolygonType);

Fixed angle;

GXSetShapeFill(rotated, gxOpenFrameFill);

for (angle = 0; angle < ff(180); angle += rotateAmount)

{ GXSetShapeParts(rotated, 0, 0, line, gxBreakLeftEdit);

GXRotateShape(line, rotateAmount, 0, 0);

}

GXDisposeShape(line);

GXScaleShape(rotated, scaleAmount, scaleAmount, 0, 0);

pat->attributes = 0;

pat->pattern = rotated;

pat->u.x = pat->v.x = MultiplyDivide(scaleAmount, 3, 2);

pat->u.y = MultiplyDivide(scaleAmount, FixedSquareRoot(ff(3)),

ff(2));

pat->v.y = -pat->u.y;

}

Figure 6-20 shows the results of executing the code in Listing 6-10. Note that the sunburst

pattern is applied to the shape as a whole, repeating at regular intervals across the text.

Figure 6-20 A typographic shape with a pattern

Creating Unusual Effects With Text Faces
Listing 6-11 is a sample routine that creates a similar sunburst effect, but with a pattern

in a text face rather than as a style pattern. This listing uses the same utility functions as

does Listing 6-10.

C H A P T E R 6

Typographic Styles

6-34 Using Typographic Styles

Listing 6-11 Creating an unusual effect

void MakePatternTextFace(void)

{

gxShape text;

gxPoint loc = { ff(50), ff(200) };

gxPatternRecord myPat;

gxTextFace myFace;

text = MakeTextShape("Patterned words!", "Hoefler Text",

ff(144), &loc);

MakeBurstPattern(&myPat, ff(5), fixed1/2);

MakePatternFace(&myFace, &myPat);

GXDisposeShape(myPat.pattern);

GXSetShapeFace(text, &myFace);

GXDisposeStyle(myFace.faceLayer[0].outlineStyle);

GXDrawShape(text);

GXDisposeShape(text);

}

/* A utility function that creates a patterned text shape.*/

void MakePatternFace(gxTextFace* face,

const gxPatternRecord* pat)

{

face->faceLayers = 1;

ResetMapping(&face->advanceMapping);

face->faceLayer[0].outlineFill = gxWindingFill;

face->faceLayer[0].flags = 0;

face->faceLayer[0].outlineStyle = GXNewStyle();

face->faceLayer[0].outlineTransform = nil;

face->faceLayer[0].boldOutset.x = 0;

face->faceLayer[0].boldOutset.y = 0;

GXSetStyleTextSize(face->faceLayer[0].outlineStyle, fixed1);

GXSetStylePattern(face->faceLayer[0].outlineStyle, pat);

}

Figure 6-21 shows the results of executing the code in Listing 6-11. Note that the sunburst

pattern is applied individually to each character; for example, unlike in Figure 6-20,

repeated letters are identically patterned wherever they appear.

C H A P T E R 6

Typographic Styles

Typographic Styles Reference 6-35

Figure 6-21 An unusual effect with text faces

Typographic Styles Reference

This section describes the constants and data types, data structures, and functions that

are specific to the text shape, glyph shape, and layout shape.

The “Constants and Data Types” section lists the enumerated types that provide

information about the shapes and the data structures that contain information about

the typographic shapes.

The “Functions” section, beginning on page 6-39, lists the QuickDraw GX functions you

use to manipulate the values in the style objects associated with typographic shapes.

The layout shape has its own style and shape routines, in addition to the ones described

in this chapter. These routines are described in the chapter “Layout Shapes” in this book.

Constants and Data Types

This section describes the data types that you use to provide information about and

retrieve information from the typographic shapes and their associated styles. The data

types discussed in this section include

■ the gxTextFace structure, which you use to define an algorithmically added font
style, such as bold or italic, or a more complex font style, such as a special kind of
pattern or fill you add to the glyphs of a typographic shape

■ the gxFaceLayer structure, which you use to describe one of the layers that make up
a text face

■ the gxLayerFlags enumeration, which specifies the characteristics of a face layer in
a text face

■ the values for alignment, which allow you to pick a predefined alignment setting or
create your own

■ the gxTextAttributes enumeration, which allows you to control how QuickDraw
GX alters glyph outlines or sets text to be horizontal or vertical

C H A P T E R 6

Typographic Styles

6-36 Typographic Styles Reference

Text Face

A text face is an algorithmically applied typestyle that you define. A text face has both a

mapping and face layers. The mapping affects the advance widths and interglyph

spacing, but not the shape of the glyphs. The face layers, which are optional, specify the

manner in which the glyphs are drawn. All of the face layers are combined to form the

visual composite. QuickDraw GX then draws the filled parts of the glyph as it appears

with the text face.

The gxTextFace structure specifies how to distort the outline, which can be used, among

other things, to mimic popular variants of a plain text face.

typedef struct {

long faceLayers;

gxMapping advanceMapping;

gxFaceLayer gxFaceLayer[gxAnyNumber];

} gxTextFace;

Field descriptions

faceLayers The number of face layers.

advanceMapping The mapping applied to the advance width for each glyph when
the text face is applied. See “Setting the Advance Mapping” on
page 6-18.

gxFaceLayer The face layers attached to this text face. There may be 0 or more
face layers, and the first face layer is drawn first. The gxFaceLayer
data structure is described in “Face Layers” on page 6-36.

For more information on how to create a text face, see “Creating Text Faces” on page 6-17.

Face Layers

A face layer is a description of a part of a text face that you define using the gxTextFace

structure. The gxFaceLayer structure contains the shape fill, the layer flags, a style, a

transform, and a degree of boldness that QuickDraw GX should apply. A text face may

contain 0 or more face layers.

For more information about how to create a face layer, see “Setting a Face Layer” on

page 6-19.

typedef struct {

gxShapeFill outlineFill;

gxLayerFlag flags;

gxStyle outlineStyle;

gxTransform outlineTransform;

gxPoint boldOutset;

} gxFaceLayer;

C H A P T E R 6

Typographic Styles

Typographic Styles Reference 6-37

Field descriptions

outlineFill The shape fill for each layer. The possible values for this field are
described in Inside Macintosh: QuickDraw GX Graphics. The most
useful values with typographic shapes are gxWindingFill and
gxClosedFrameFill. The gxEvenOddFill fill may give you
unpredictable results.

flags The flags that describe the drawing and composition of the layers of
the text. Possible values for this field are discussed in “Functions”
on page 6-39.

outlineStyle The optional overriding style for the face. The style’s pen size is
scaled by a factor corresponding to the point size of the text. This
style cannot have its own text face; if so QuickDraw GX posts
an error.

outlineTransform
The matrix and clip used to distort the glyph. This field governs
the algorithmic application of the italic, condensed, and extended
typestyles as well as any designs and patterns in the text face. All
distortions are scaled factors corresponding to text point size and by
any mappings affecting the text. This clip has a more global effect
than the clip specified in the layer flags.

boldOutset The degree of boldness QuickDraw GX should apply in the x and y
directions for 1-point text.

Layer Flags

The layer flags describe the characteristics of one layer of a text face. For more informa-

tion about the meanings of the flags, see “Setting the Layer Flags” on page 6-23.

enum gxLayerFlags{

gxUnderlineAdvanceLayer = 0x0001,

gxSkipWhiteSpaceLayer = 0x0002,

gxUnderlineIntervalLayer = 0x0004,

gxUnderlineContinuationLayer= 0x0008,

gxWhiteLayer = 0x0010,

gxClipLayer = 0x0020,

gxStringLayer = 0x0040

};

typedef long gxLayerFlag;

Constant descriptions

gxUnderlineAdvanceLayer
Draws an underline from the beginning of the text that shares one
text face to the end, including white spaces. This bit must be set if
the gxSkipWhiteSpaceLayer, gxUnderlineIntervalLayer,
or gxUnderlineContinuationLayer bit is set.

C H A P T E R 6

Typographic Styles

6-38 Typographic Styles Reference

gxSkipWhiteSpaceLayer
Does not draw an underline with glyphs that have no contours
(such as the space character) if the gxUnderlineAdvanceLayer
bit is also set.

gxUnderlineIntervalLayer
Draws an underline through the gaps between text of different text
faces. If you set this bit, you must also set the gxStringLayer bit.

gxUnderlineContinuationLayer
Draws an underline across text of different style runs. If you set this
bit, you must also set the gxStringLayer bit. Also, the previous
style in the shape must have gxUnderlineAdvanceLayer set; if it
doesn’t, you will get an error.

gxWhiteLayer Erases portions of previously drawn layers. You can only set this bit
for the second or greater layer.

gxClipLayer Clips the layer to the original outline of the glyph. You should set
this bit if you want to clip a pattern or fill to the text.

gxStringLayer Connects the text of different text faces and style runs.

Alignment Values

Several values are predefined for various types of alignment.

#define gxLeftJustify 0

#define gxCenterJustify (fract1/2)

#define gxRightJustify fract1

#define gxFillJustify -1

Constant descriptions

gxLeftJustify Draws left-aligned text.

gxCenterJustifyDraws centered text.

gxRightJustify Draws right-aligned text.

gxFillJustify Draws fully justified text.

For more information see “Alignment” on page 6-11.

Text Attributes

Each style object has a set of text attributes, which consist of a group of flags that modify

the behavior of the style object associated with typographic shapes. These flags allow

you to specify how QuickDraw GX alters glyph outlines or chooses the proper types of

metrics for horizontal or vertical text. These flags are defined in the gxTextAttributes

enumeration.

enum gxTextAttributes{

gxAutoAdvanceText = 0x0001,

gxNoContourGridText = 0x0002,

gxNoMetricsGridText = 0x0004,

C H A P T E R 6

Typographic Styles

Typographic Styles Reference 6-39

gxAnchorPointsText = 0x0008,

gxVerticalText = 0x0010,

gxNoOpticalScaleText = 0x0020

};

Constant descriptions

gxAutoAdvanceText
Tells QuickDraw GX to take into account changes to the widths of
glyphs in the shape.

gxNoContourGridText
Prevents QuickDraw GX from using hinted outlines before
displaying the text.

gxNoMetricsGridText
Tells QuickDraw GX to use the ideal metrics to space the glyphs in a
typographic shape.

gxAnchorPointsText
Tells QuickDraw GX to include data for all the outline’s points.
QuickDraw GX’s default action is to return a basic outline,
removing points that do not affect the shape, such as single-point
contours.

gxVerticalText Tells QuickDraw GX to return the vertical advance and side bearing
metrics. The default values are the horizontal advance and side
bearing metrics.

gxNoOpticalScaleText
Disables QuickDraw GX’s attempt to automatically set the optical
scale variation value.

Text attributes are described in “Text Attributes” on page 6-14.

Functions

This section describes the routines that access, retrieve, change, or delete information

about the typographic shapes.

You can retrieve and set basic shape and style information, such as the text attributes,

the text face, the font, the text size, the justification amount, the platform, or the font

variation descriptions.

Getting and Setting the Font of a Style Object

The font property of style objects specifies the font (or font family) of a style object. You

use the gxFont data structure, which is described in the chapter “Fonts Objects” of this

book, when retrieving or setting the font used by a style object.

You can use the GXGetStyleFont function to retrieve the font information from a

style object and the GXSetStyleFont function to specify the font information for

a style object.

The GXGetShapeFont and GXSetShapeFont functions provide a way to retrieve and

specify the font information for the style object associated with a particular shape.

C H A P T E R 6

Typographic Styles

6-40 Typographic Styles Reference

GXGetStyleFont

You can use the GXGetStyleFont function to determine the font currently set by a

style object.

gxFont GXGetStyleFont(gxStyle source);

source A reference to the style object whose font you want to determine

function result The font associated with the style object.

DESCRIPTION

The GXGetStyleFont function returns the font associated with the style object. To get

the name of the font, you can use the GXFindFontName function.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The GXGetStyleFace function (page 6-43) determines the text face currently set by a

style object.

Fonts are discussed in the chapter “Font Objects” in this book.

GXSetStyleFont

You can use the GXSetStyleFont function to set or change the font used by a

style object.

void GXSetStyleFont(gxStyle target, gxFont aFont);

target A reference to the style object whose font you want to set or change.

aFont The new font.

DESCRIPTION

The GXSetStyleFont function sets the font used by the style object specified by the

target parameter. If you want the default font, pass nil in the aFont parameter.

Errors
out_of_memory
shape_is_nil

C H A P T E R 6

Typographic Styles

Typographic Styles Reference 6-41

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Fonts are discussed in the chapter “Font Objects” in this book.

GXGetShapeFont

You can use the GXGetShapeFont function to determine the font set for the style object

of a particular QuickDraw GX typographic shape.

gxFont GXGetShapeFont(gxShape source);

source A reference to the shape whose font you want to determine.

function result The font of the style object of a shape.

DESCRIPTION

The GXGetShapeFont function returns as the function result the font of the style object

of a shape.

The function returns information about the font setting of the style object associated

with the shape object. However, the glyph and layout shapes may have arrays of styles

in their geometries and therefore do not necessarily use the style object attached to

the shape object. In this case, you should use the GXGetStyleFont (page 6-40) and

GXSetStyleFont (page 6-40) functions to determine the fonts of the styles stored in

the shape’s geometry.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Fonts are discussed in the chapter “Font Objects” in this book.

Errors
out_of_memory
style_is_nil
illegal_font_parameter

Notices (debugging version)
font_already_set

Errors
out_of_memory
shape_is_nil

C H A P T E R 6

Typographic Styles

6-42 Typographic Styles Reference

GXSetShapeFont

You can use the GXSetShapeFont function to alter the font of the style object associated

with a particular shape.

void GXSetShapeFont(gxShape target, gxFont aFont);

target A reference to the shape whose font you want to alter.

aFont The new font.

DESCRIPTION

The GXSetShapeFont function sets the font of the style object associated with the shape

specified by the target parameter. If you want the default font, pass nil in the aFont

parameter. If a style object is shared among shapes, GXSetShapeFont copies the style

object so that only the shape in the target parameter is affected by the changes to the font.

This function provides a convenient way to change the font of a shape without having to

call the GXGetShapeStyle function to obtain a reference to the shape’s style object.

The function specifies the font for the style object associated with the shape object. How-

ever, the glyph and layout shapes may have arrays of styles in their geometries and

therefore do not necessarily use the style object attached to the shape object. In this case,

you should use the GXGetStyleFont (page 6-40) and GXGetStyleFont (page 6-40)

functions to get and set the fonts of the styles stored in the shape’s geometry.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Fonts are discussed in the chapter “Font Objects” in this book.

Getting and Setting the Text Face

The text face property of a style object specifies an algorithmic typestyle that you want to

apply to text. You use the gxTextFace data structure, which is described on page 6-36,

when retrieving or setting text face information.

You can use the GXGetStyleFace function to retrieve the text face information from

a style object and the GXSetStyleFace function to specify the text face information

for a style object.

Errors
out_of_memory
shape_is_nil
illegal_font_parameter

Notices (debugging version)
font_already_set

C H A P T E R 6

Typographic Styles

Typographic Styles Reference 6-43

The GXGetShapeFace and GXSetShapeFace functions provide a way to retrieve and

specify the text face information for the style object associated with a particular shape.

GXGetStyleFace

You can use the GXGetStyleFace function to get the text face currently set in a

style object.

long GXGetStyleFace(gxStyle source, gxTextFace *face);

source A reference to the style object whose text face you want to determine.

face The text face set in the style object, returned by the function. This can be
nil, which just returns the layer count.

function result The number of layers in the text face. If there is no text face, the function
returns –1.

DESCRIPTION

The GXGetStyleFace function returns the number of layers in the text face. The

function also returns, in the face parameter, the text face used by the style object.

Note
Your application must allocate enough memory to store
the text face and all of the face layers of that text face. See
“Creating Text Faces” on page 6-17. ◆

ERRORS, WARNINGS, AND NOTICES

GXSetStyleFace

You can use the GXSetStyleFace function to set or change the text face of a style object.

void GXSetStyleFace(gxStyle target, const gxTextFace *face);

target A reference to the style object whose text face you want to change.

face The new text face for the style object. If nil, it will remove an
existing face.

Errors
out_of_memory
style_is_nil

C H A P T E R 6

Typographic Styles

6-44 Typographic Styles Reference

DESCRIPTION

The GXSetStyleFace function sets the text face of the style object specified by target to

the text face specified in the face parameter.

ERRORS, WARNINGS, AND NOTICES

GXGetShapeFace

You can use the GXGetShapeFace function to determine the text face set for the style

object of a particular QuickDraw GX typographic shape.

long GXGetShapeFace(gxShape source, gxTextFace *face);

source A reference to the shape whose text face you want to determine.

face The text face of the shape, returned by the function.

function result The number of layers in the text face. If there is no text face, the function
returns –1.

DESCRIPTION

The GXGetShapeFace function returns the number of layers in the text face named by

the face parameter. The function also returns the text face itself.

The function returns information about the text face setting of the style object associated

with the shape object. However, the glyph and layout shapes may have arrays of styles

in their geometries and therefore do not necessarily use the style object attached to the

shape object. In this case, you should use the GXGetStyleFace function, described on

page 6-43 and the GXSetStyleFace function, described on page 6-43, to determine the

text faces for the styles stored in the shape’s geometry.

Note
Your application must allocate enough memory to store
the text face and all of the face layers of that text face. See
“Creating Text Faces” on page 6-17. ◆

Errors
out_of_memory
style_is_nil
parameter_out_of_range (debugging version)
inverseFill_must_set_cliplayer_flag (debugging version)
style_wrong_type (debugging version)
layer_style_cannot_contain_face (debugging version)
transform_wrong_type (debugging version)

Notices (debugging version)
face_already_set

C H A P T E R 6

Typographic Styles

Typographic Styles Reference 6-45

ERRORS, WARNINGS, AND NOTICES

GXSetShapeFace

You can use the GXSetShapeFace function to alter the text face of the style object

associated with a particular shape.

void GXSetShapeFace(gxShape target, const gxTextFace *face);

target A reference to the shape whose text face you want to alter.

face The new text face.

DESCRIPTION

The GXSetShapeFace function sets the text face of the style object associated with the

shape specified by the target parameter. If a style object is shared among shapes,

GXSetShapeFace copies the style object so that only the shape in the parameter is

affected by the changes to the text face.

This function provides a convenient way to change the text face of a shape without

calling the GXGetShapeStyle function to obtain a reference to the shape’s style object.

You can use this function in combination with the GXGetShapeFace function, described

on page 6-44, to set or clear single style attributes.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
shape_is_nil

Errors
out_of_memory
style_is_nil
parameter_out_of_range (debugging version)
inverseFill_must_set_cliplayer_flag (debugging version)
style_wrong_type (debugging version)
layer_style_cannot_contain_face (debugging version)
transform_wrong_type (debugging version)

Notices (debugging version)
face_already_set

C H A P T E R 6

Typographic Styles

6-46 Typographic Styles Reference

Getting and Setting the Text Size of a Style Object

The text size property of style objects specifies the size, in typographic points, of the text

of a style object.

You can use the GXGetStyleTextSize function to retrieve the text size from a style

object and the GXSetStyleTextSize function to specify the text size of a style object.

The GXGetShapeTextSize and GXSetShapeTextSize functions provide a way to

retrieve and specify the text size for the style object associated with a particular shape.

GXGetStyleTextSize

You can use the GXGetStyleTextSize function to determine the text size of a

style object.

Fixed GXGetStyleTextSize(gxStyle source);

source A reference to the style object whose text size you want to determine.

function result The text size, in typographic points, of the style object named by the
source parameter.

DESCRIPTION

The GXGetStyleTextSize function returns the text size, in typographic points, of the

style object named by the source parameter.

ERRORS, WARNINGS, AND NOTICES

GXSetStyleTextSize

You can use the GXSetStyleTextSize function to set or change the text size used by a

style object.

void GXSetStyleTextSize(gxStyle target, Fixed size);

target A reference to the style object whose text size you want to set.

size The new text size, in points. This parameter can be any positive value,
including fractional sizes. A value of 0 resets the text size to the point size
natural for the current script. For Roman scripts, this is 12 points.

Errors
out_of_memory
style_is_nil

C H A P T E R 6

Typographic Styles

Typographic Styles Reference 6-47

DESCRIPTION

The GXSetStyleTextSize function sets the text size, in typographic points, of the

style object.

ERRORS, WARNINGS, AND NOTICES

GXGetShapeTextSize

You can use the GXGetShapeTextSize function to determine the text size, in typo-

graphic points, set for the style object of a particular QuickDraw GX typographic shape.

FixedGXGetShapeTextSize(gxShape source);

source A reference to the shape whose text size you want to determine.

function result The text size, in typographic points, of the style object of the shape named
by the source parameter.

DESCRIPTION

The GXGetShapeTextSize function returns the text size, in typographic points, of the

style object of the shape named by the source parameter.

The function returns information about the text size setting of the style object associated

with the shape object. However, the glyph and layout shapes may have arrays of styles

in their geometries and therefore do not necessarily use the style object attached to the

shape object. In this case, you should use the GXGetStyleTextSize (page 6-46) and

GXGetStyleTextSize (page 6-46) functions to set the sizes of the styles stored in the

shape’s geometry.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
style_is_nil
parameter_out_of_range (debugging version)

Notices (debugging version)
text_size_already_set

Errors
out_of_memory
style_is_nil

C H A P T E R 6

Typographic Styles

6-48 Typographic Styles Reference

GXSetShapeTextSize

You can use the GXSetShapeTextSize function to alter the text size of the style object

associated with a particular shape.

void GXSetShapeTextSize(gxShape target, Fixed size);

target A reference to the shape whose text size you want to change.

size The new text size, in points. This parameter can be any positive value,
including fractional sizes. A value of 0 resets the text size to the point size
natural for the current script. For Roman scripts, this is 12 points.

DESCRIPTION

The GXSetShapeTextSize function sets the text size, in typographic points, of the

style object associated with the shape specified by the target parameter. If a style object

is shared among shapes, GXSetShapeTextSize copies the style object so that only the

shape in the target parameter is affected by the changes to the text size.

This function provides a convenient way to change the text size of a shape without

calling the GXGetShapeStyle function to obtain a reference to the shape’s style object.

ERRORS, WARNINGS, AND NOTICES

Getting and Setting the Alignment of a Style Object

The alignment property of style objects specifies the type of alignment used in a style

object. For more information, see “Alignment” on page 6-11. Possible values for alignment

are described in “Alignment Values” on page 6-38.

You can use the GXGetStyleJustification function to retrieve the alignment amount

from a style object and the GXSetStyleJustification function to specify the align-

ment for a style object.

The GXGetShapeJustification and GXSetShapeJustification functions

provide a way to retrieve and specify the alignment of the style object associated with a

text or glyph shape.

The justification value accounts for the difference between ideal and device metrics

when the text is measured or drawn. For more control over how justification is used in

your text, see the chapter “Layout Line Control” in this book.

Errors
out_of_memory
style_is_nil
parameter_out_of_range (debugging version)

Notices (debugging version)
text_size_already_set

C H A P T E R 6

Typographic Styles

Typographic Styles Reference 6-49

GXGetStyleJustification

You can use the GXGetStyleJustification function to determine the alignment set

by a style object.

fract GXGetStyleJustification(gxStyle source);

source A reference to the style object whose alignment you want to determine.

function result The alignment set by a style object

DESCRIPTION

The GXGetStyleJustification function returns the alignment set by a style object.

Possible values for the style’s alignment are discussed in “Alignment Values” on

page 6-38.

ERRORS, WARNINGS, AND NOTICES

GXSetStyleJustification

You can use the GXSetStyleJustification function to set or change the alignment

used by a style object.

void GXSetStyleJustification(gxStyle target, fract justify);

target A reference to the style object whose alignment you want to change.

justify The alignment you want to set in the style object. Possible values are
discussed in “Alignment Values” on page 6-38.

DESCRIPTION

The GXSetStyleJustification function sets the alignment used by the style object

named by the target parameter.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
style_is_nil

Errors
out_of_memory
style_is_nil
parameter_out_of_range (debugging version)

Notices (debugging version)
justification_already_set

C H A P T E R 6

Typographic Styles

6-50 Typographic Styles Reference

GXGetShapeJustification

You can use the GXGetShapeJustification function to determine the alignment set

for the style object of a particular QuickDraw GX typographic shape.

fractGXGetShapeJustification(gxShape source);

source A reference to the shape whose set alignment you want to determine.

function result The alignment set in the style object used by the specified shape.

DESCRIPTION

The GXGetShapeJustification function returns the alignment set in the style object

associated with the shape specified by source.

The function returns information about the alignment setting of the style object associated

with the shape object. However, the glyph and layout shapes may have arrays of styles in

their geometries and therefore do not necessarily use the style object attached to the shape

object. In this case, you should use the GXGetStyleJustification (page 6-49) and

GXGetStyleJustification (page 6-49) functions to determine the alignments of the

styles stored in the shape’s geometry.

ERRORS, WARNINGS, AND NOTICES

GXSetShapeJustification

You can use the GXSetShapeJustification function to alter the alignment of the

style object associated with a particular shape.

void GXSetShapeJustification(gxShape target, fract justify);

target A reference to the shape whose alignment you want to alter.

justify The alignment you want to set in this shape. Possible values for this
parameter are described in “Alignment Values” on page 6-38.

DESCRIPTION

The GXSetShapeJustification function sets the alignment of the style object

associated with the shape specified by the target parameter. If a style object is shared

among shapes, GXSetShapeJustification copies the style object so that only the

shape in the target parameter is affected by the changes to the alignment value.

This function provides a convenient way to change the alignment of a shape without

calling the GXGetShapeStyle function to obtain a reference to the shape’s style object.

Errors
out_of_memory
style_is_nil

C H A P T E R 6

Typographic Styles

Typographic Styles Reference 6-51

The function returns information about the alignment setting of the style object associated

with the shape object. However, the glyph and layout shapes may have arrays of styles in

their geometries and therefore do not necessarily use the style object attached to the shape

object. In this case, you should use the GXGetStyleJustification (page 6-49) and

GXSetStyleJustification (page 6-49) functions to set the alignment of the styles

stored in the shape’s geometry.

ERRORS, WARNINGS, AND NOTICES

Getting and Setting the Font Variations of a Style Object

The font variations property of style objects specifies a particular variation coordinate to

be used with the style’s font. You use the gxFontVariation data type, which is

described in the chapter “Fonts Objects” of this book, when retrieving or setting font

variations for the user.

You can use the GXGetStyleFontVariations function to retrieve the font variations

from a style object and the GXSetStyleFontVariations function to specify the font

variations for a style object.

The GXGetShapeFontVariations and GXSetShapeFontVariations functions

provide a way to retrieve and specify the font variations for the style object associated

with a particular shape.

You should use the font variation functions described in the chapter “Fonts Objects” to

retrieve, add, or change font variation data in the font.

GXGetStyleFontVariations

You can use the GXGetStyleFontVariations function to determine the font

variations set by a style object.

long GXGetStyleFontVariations(gxStyle source,

gxFontVariation variations[]);

source A reference to the style object whose font variations you want to
determine.

variations The font variations set by the style object, returned by the function,
allocated by the application.

function result The number of font variations in the style object. The function returns 0 if
there are no font variations.

Errors
out_of_memory
style_is_nil
parameter_out_of_range

C H A P T E R 6

Typographic Styles

6-52 Typographic Styles Reference

DESCRIPTION

The GXGetStyleFontVariations function returns the number of font variations

associated with the style object. It returns the font variations in the variations

parameter, if it is not set to nil.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Font variations are described in the chapter “Fonts Objects” in this book.

GXSetStyleFontVariations

You can use the GXSetStyleFontVariations function to set or change the font

variation used by a style object.

void GXSetStyleFontVariations(gxStyle target, long count,

const gxFontVariation variations[]);

target A reference to the style object whose font variation you want to change.

count The number of font variations you are specifying.

variations The new font variation for the style object.

DESCRIPTION

The GXSetStyleFontVariations function sets the font variation of a style object.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Font variations are described in the chapter “Fonts Objects” in this book.

Errors
out_of_memory
style_is_nil

Errors
out_of_memory
style_is_nil
parameter_out_of_range (debugging version)

Notices (debugging version)
font_variations_already_set

C H A P T E R 6

Typographic Styles

Typographic Styles Reference 6-53

GXGetShapeFontVariations

You can use the GXGetShapeFontVariations function to determine the font

variations set for the style object of a particular QuickDraw GX typographic shape.

long GXGetShapeFontVariations(gxShape source,

gxFontVariation variations[]);

source A reference to the shape whose font variations you want to determine.

variations The font variations of the shape, returned by the function if it is not nil.

function result The number of font variations in the style object associated with the shape
object. The function returns 0 if there are no font variations.

DESCRIPTION

The GXGetShapeFontVariations function returns the number of font variations

associated with the style object of the shape object. The function also returns the

font variations.

The function returns information about the font variation setting of the style object

associated with the shape object. However, the glyph and layout shapes may have arrays

of styles in their geometries and therefore do not necessarily use the style object attached

to the shape object. In this case, you should use the GXGetStyleFontVariations

(page 6-51) and GXSetStyleFontVariations (page 6-52) functions to get the font

variation of the styles stored in the shape’s geometry.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Font variations are described in the chapter “Fonts Objects” in this book.

Errors
out_of_memory
style_is_nil

C H A P T E R 6

Typographic Styles

6-54 Typographic Styles Reference

GXSetShapeFontVariations

You can use the GXSetShapeFontVariations function to alter the font variations

associated with a particular shape.

void GXSetShapeFontVariations(gxShape target, long count,

const gxFontVariation variations[]);

target A reference to the shape whose font variations you want to alter.

count The number of font variations you are specifying.

variations The new font variations.

DESCRIPTION

The GXSetShapeFontVariations function sets the font variations of the style object

associated with the shape specified by the target parameter. If a style object is shared

among shapes, GXSetShapeFontVariations copies the style object so that only the

shape in the target parameter is affected by the changes to the font variations.

This function provides a convenient way to change the font variations of a shape without

calling the GXGetShapeStyle function to obtain a reference to the shape’s style object.

The function specifies the font variation setting of the style object associated with the

shape object. However, the glyph and layout shapes may have arrays of styles in their

geometries and therefore do not necessarily use the style object attached to the shape

object. In this case, you should use the GXGetStyleFontVariations (page 6-51) and

GXSetStyleFontVariations (page 6-52) functions to set the font variations of the

styles stored in the shape’s geometry.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Font variations are described in the chapter “Fonts Objects” in this book.

Errors
out_of_memory
style_is_nil
parameter_out_of_range (debugging version)

Notices (debugging version)
font_variations_already_set

C H A P T E R 6

Typographic Styles

Typographic Styles Reference 6-55

Retrieving the Elements in a Font Variation Suite

QuickDraw GX allows you to retrieve all the elements in a font variation suite. The font

variation suite contains complete information on the font variations specified for a shape

or style object. You can

■ retrieve the number of elements in a font variation suite for a style object with the
GXGetStyleFontVariationSuite function

■ retrieve the font variation suite for the style object associated with a specified shape
with the GXGetShapeFontVariationSuite function

The font variation suite is described in “Font Variations” on page 6-13. Font variations

are described in the chapter “Font Objects” in this book.

GXGetStyleFontVariationSuite

You can use the GXGetStyleFontVariationSuite function to retrieve the font

variation suite for a style object.

long GXGetStyleFontVariationSuite(gxStyle source,

gxFontVariation variations[]);

source A reference to the style object whose font variation suite you want
to retrieve.

variations An array of font variation structures. On return this array contains the
font variations for the style.

function result The number of elements in the font variation suite, which is equal to the
number of variation axes in a font.

DESCRIPTION

The GXGetStyleFontVariationSuite function returns the number of elements in

the font variation suite for the font specified by the style associated with the source object.

It returns the variations themselves in the variations parameter. If you pass nil for

the variations parameter, this function returns a valid result but returns no array. You

typically call this function twice, first with a nil value for variations in order to get

the right size of array to allocate and the second time to retrieve the array itself.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
shape_is_nil

C H A P T E R 6

Typographic Styles

6-56 Typographic Styles Reference

SEE ALSO

To get the font variation suite for a shape object, use the

GXGetShapeFontVariationSuite function, described in the next section.

Font Variations, including GXCountFontVariations, are described in the chapter

“Font Objects” in this book.

GXGetShapeFontVariationSuite

You can use the GXGetShapeFontVariationSuite function to retrieve the font

variation suite for the style object associated with a specified shape.

long GXGetShapeFontVariationSuite(gxShape source,

gxFontVariation variations[]);

source A reference to the shape object whose style object’s font variation suite
you want to retrieve.

variations An array of font variation structures. On return this array contains the
font variations for the style.

function result The number of elements in the font variation suite. The function returns 0
if there are no font variations.

DESCRIPTION

The GXGetShapeFontVariationSuite function returns the number of elements in the

font variation suite for the font specified by the style object associated with the source

shape. It returns the variations themselves in the variations parameter. If you pass nil

for the variations parameter, this function returns a valid result but returns no array.

You typically call this function twice, first with a nil value for variations in order to

get the right size of array to allocate and the second time to retrieve the array itself.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To get the font variation suite from a shape object, use the

GXGetStyleFontVariationSuite function, described on page 6-55.

Font Variations are described in the chapter “Font Objects” in this book.

Errors
out_of_memory
shape_is_nil

C H A P T E R 6

Typographic Styles

Typographic Styles Reference 6-57

Retrieving Font Metrics

QuickDraw GX allows you to retrieve font metrics for an object in several ways. You can

■ retrieve the font metrics for a style object, including line spacing and caret angle, with
the GXGetStyleFontMetrics function

■ retrieve the font metrics for a style object associated with a shape with the
GXGetShapeFontMetrics function

■ retrieve the font metrics for a style object associated with a shape, taking into account
the shape’s transform, with the GXGetShapeLocalFontMetrics function

■ retrieve the font metrics for a style object associated with a shape, taking into account
the mappings on a specified view port and view device, with the
GXGetShapeDeviceFontMetrics function

Font metrics are described in “Font Metrics” on page 6-14.

GXGetStyleFontMetrics

You can use the GXGetStyleFontMetrics function to retrieve the font metrics for a

style object, including line spacing and caret angle.

void GXGetStyleFontMetrics(gxStyle sourceStyle, gxPoint* before,

gxPoint* after, gxPoint* caretAngle,

 gxPoint* caretOffset);

sourceStyle
A reference to the style object whose font metrics you need.

before A pointer to a gxPoint structure. On return, the point specifies the
distance and direction to the previous line of text. For horizontal text,
this corresponds to the font’s ascent.

after A pointer to a gxPoint structure. On return, the point specifies the
distance and direction to the next line of text. For horizontal text, this
corresponds to the font’s descent.

caretAngle A pointer to a gxPoint structure. On return, the point specifies the
direction for the text selection caret.

caretOffset
A pointer to a gxPoint structure. On return, the point specifies the
direction and distance relative to the origin, where the text selection
caret should intersect the baseline of the text.

DESCRIPTION

The GXGetStyleFontMetrics function returns the font metrics of a style object,

including its line spacing and its caret angle. These values are returned as points

representing the vectors. The values of the vectors differentiate between horizontal and

vertical text. This function takes into account the point size, variations, and the settings

of the gxNoMetricsGridText and gxVerticalText text attributes.

C H A P T E R 6

Typographic Styles

6-58 Typographic Styles Reference

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The GXGetShapeFontMetrics function is described in the next section. The

GXGetShapeLocalFontMetrics function is described on page 6-59.

The GXGetShapeDeviceFontMetrics function is described on page 6-60.

GXGetShapeFontMetrics

You can use the GXGetShapeFontMetrics function to retrieve the font metrics for the

style object associated with a shape.

void GXGetShapeFontMetrics(gxShape source, gxPoint* before,

gxPoint* after, gxPoint* caretAngle,

 gxPoint* caretOffset);

source A reference to the shape object whose font metrics you need.

before A pointer to a gxPoint structure. On return, the point specifies the
distance and direction to the previous line of text. For horizontal text,
this corresponds to the font’s ascent.

after A pointer to a gxPoint structure. On return, the point specifies the
distance and direction to the next line of text. For horizontal text, this
corresponds to the font’s descent.

caretAngle A pointer to a gxPoint structure. On return, the point specifies the
direction for the text selection caret.

caretOffset
A pointer to a gxPoint structure. On return, the point specifies the
direction and distance relative to the shape’s origin, where the
text-selection caret should intersect the baseline of the text.

DESCRIPTION

The GXGetShapeFontMetrics function returns the font metrics of the style object

associated with the specified shape, including its line spacing and its caret angle. These

values are returned as points representing vectors. The values of the vectors differentiate

between horizontal and vertical text. This function is equivalent to calling the

GXGetStyleFontMetrics function with the result of GXGetShapeStyle.

Errors
illegal_type_for_shape (if not typographic) (debugging version)
shape_is_nil

C H A P T E R 6

Typographic Styles

Typographic Styles Reference 6-59

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The GXGetStyleFontMetrics function is described on page 6-57. The

GXGetShapeLocalFontMetrics function is described in the next section.

The GXGetShapeDeviceFontMetrics function is described on page 6-60.

GXGetShapeLocalFontMetrics

You can use the GXGetShapeLocalFontMetrics function to retrieve the font metrics

for the style object associated with a shape, taking into account the shape’s transform.

The results are expressed in local coordinates.

void GXGetShapeLocalFontMetrics(gxShape sourceShape,

gxPoint* before,

 gxPoint* after,

gxPoint* caretAngle,

 gxPoint* caretOffset);

sourceShape
A reference to the shape object whose font metrics you need.

before A pointer to a gxPoint structure. On return, the point specifies the
distance and direction to the previous line of text. For horizontal text, this
corresponds to the font’s ascent. If the parameter is nil, it is ignored.

after A pointer to a gxPoint structure. On return, the point specifies the
distance and direction to the next line of text. For horizontal text, this
corresponds to the font’s descent. If the parameter is nil, it is ignored.

caretAngle A pointer to a gxPoint structure. On return, the point specifies the
direction for the text-selection caret. If the parameter is nil, it is ignored.

caretOffset
A pointer to a gxPoint structure. On return, the point specifies the
direction and distance relative to the shape’s origin, where the text
selection caret should intersect the baseline of the text. If the parameter
is nil, it is ignored.

Errors
illegal_type_for_shape (if not typographic) (debugging version)
shape_is_nil

C H A P T E R 6

Typographic Styles

6-60 Typographic Styles Reference

DESCRIPTION

The GXGetShapeLocalFontMetrics function returns the font metrics for the style

object associated with the source shape, in local space. These values are returned as

points that represent vectors. The values of the vectors differentiate between horizontal

and vertical text and account for any mapping that may be applied to the shape through

its transform object.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The GXGetStyleFontMetrics function is described on page 6-57. The

GXGetShapeFontMetrics function is described on page 6-58.

The GXGetShapeDeviceFontMetrics function is described in the

next section.

GXGetShapeDeviceFontMetrics

You can use the GXGetShapeDeviceFontMetrics function to retrieve the font metrics

for the style object associated with a shape, taking into account the mappings on the

specified view port and view device. The result is expressed in device coordinates.

void GXGetShapeDeviceFontMetrics(gxShape sourceShape,

gxViewPort port,

gxViewDevice device,

gxPoint* before,

 gxPoint* after,

gxPoint* caretAngle,

 gxPoint* caretOffset);

sourceShape
A reference to the shape object whose font metrics you need.

port The view port whose mappings you need to take into account.

device The view device whose mappings you need to take into account.

before A pointer to a gxPoint structure. On return, the point specifies the
distance and direction to the previous line of text. For horizontal text,
this corresponds to the font’s ascent.

after A pointer to a gxPoint structure. On return, the point specifies the
distance and direction to the next line of text. For horizontal text, this
corresponds to the font’s descent.

Errors
illegal_type_for_shape (if not typographic) (debugging version)
shape_is_nil

C H A P T E R 6

Typographic Styles

Typographic Styles Reference 6-61

caretAngle A pointer to a gxPoint structure. On return, the point specifies the
direction for the text-selection caret.

caretOffset
A pointer to a gxPoint structure. On return, the point specifies the
direction and distance relative to the shape’s origin, where the text-
selection caret should intersect the baseline of the text.

DESCRIPTION

The GXGetShapeDeviceFontMetrics function returns the font metrics for the style

object associated with the source shape in device space. These values are returned as

points that represent vectors. The values of the vectors differentiate between horizontal

and vertical text and account for any mapping that may be on the shape’s transform as

well as the specified view port and view device.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The GXGetStyleFontMetrics function is described on page 6-57. The

GXGetShapeFontMetrics function is described on page 6-58.

The GXGetShapeLocalFontMetrics function is described on page 6-59.

Getting and Setting the Encoding of a Style Object

The encoding in a style is the combination of the platform, script, and language. Platforms,

scripts, and languages are described in the chapter “Fonts Objects” in this book.

You can use the GXGetStyleEncoding function to retrieve the platform, script, and

language information from a style object and the GXSetStyleEncoding function to

specify the platform, script, and language of a style object.

The GXGetShapeEncoding and GXSetShapeEncoding functions provide a way to

retrieve and specify the platform, script, and language for the style object associated

with a particular shape.

Text shapes contain only one encoding value. Glyphs shapes and layout shapes may

contain multiple encoding values, because these shapes may contain several different

styles in the styles arrays in the shapes’ geometries. Each style can contain a separate

encoding value.

Errors
illegal_type_for_shape (if not typographic) (debugging version)
shape_is_nil

C H A P T E R 6

Typographic Styles

6-62 Typographic Styles Reference

GXGetStyleEncoding

You can use the GXGetStyleEncoding function to determine the platform, script, and

language of a style object.

gxFontPlatform GXGetStyleEncoding(gxStyle source,

gxFontScript *script,

gxFontLanguage *language);

source A reference to the style object whose platform, script, or language you
want to determine.

script The style object’s script, returned by the function.

language The style object’s language, returned by the function.

function result The platform of the style object.

DESCRIPTION

The GXGetStyleEncoding function returns the style’s platform, script, and language.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The gxFontPlatform, gxFontScript, and gxFontLanguage data types are

discussed in the chapter “Fonts Objects” of this book.

GXSetStyleEncoding

You can use the GXSetStyleEncoding function to set or change the platform, script,

and language of a style object.

void GXSetStyleEncoding(gxStyle target, gxFontPlatform platform,

gxFontScript script,

gxFontLanguage language);

target A reference to the style object whose platform, script, or language you
want to change.

platform The new platform value.

Errors
out_of_memory
style_is_nil

C H A P T E R 6

Typographic Styles

Typographic Styles Reference 6-63

script The new script value.

language The new language value.

DESCRIPTION

The GXSetStyleEncoding function sets the platform, script, and language of the style

object. Default values for the platform, script, and language are gxMacintoshPlatform,

gxRomanScript, and gxNoLanguage, respectively.

The GXSetStyleEncoding function does not change or translate the character codes

in the shape. You cannot use GXSetStyleEncoding to convert a particular character

from one encoding to another, because a character found on one platform may not be

represented on another platform.

If you set the platform to the value gxGlyphPlatform, you should set the values of the

script and language parameters to gxNoScript and gxNoLanguage.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The gxFontPlatform, gxFontScript, and gxFontLanguage data types are

discussed in the chapter “Fonts Objects” of this book.

GXGetShapeEncoding

You can use the GXGetShapeEncoding function to determine the encoding set for the

style object of a particular QuickDraw GX typographic shape.

gxFontPlatform GXGetShapeEncoding(gxShape source,

 gxFontScript *script,

 gxFontLanguage *language);

source A reference to the shape whose platform you want to determine.

script The script of the style object, returned by the function.

language The language of the style object, returned by the function.

function result The platform of the style object used by the specified shape.

Errors
out_of_memory
style_is_nil
inconsistent_parameters (debugging version)

Notices (debugging version)
encoding_already_set

C H A P T E R 6

Typographic Styles

6-64 Typographic Styles Reference

DESCRIPTION

The GXGetShapeEncoding function returns the platform, script, and language of the

style object associated with the shape object.

The function returns information about the platform, script, and language settings

of the style object associated with the shape object. However, the glyph and layout

shapes may have arrays of styles in their geometries and therefore do not necessarily

use the style object attached to the shape object. In this case, you should use the

GXGetStyleEncoding (page 6-62) and GXSetStyleEncoding (page 6-62)

functions to determine the platform, scripts, and language the styles stored in the

shape’s geometry.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The gxFontPlatform, gxFontScript, and gxFontLanguage data types are

discussed in the chapter “Fonts Objects” of this book.

GXSetShapeEncoding

You can use the GXSetShapeEncoding function to alter the encoding of the style object

associated with a particular shape.

void GXSetShapeEncoding(gxShape target, gxFontPlatform platform,

gxFontScript script,

gxFontLanguage language);

target A reference to the shape whose platform you want to alter.

platform The platform of the style object. The gxFontPlatform data type is
discussed in the chapter “Fonts Objects” of this book.

script The script of the style object. The gxFontScript data type is discussed
in the chapter “Fonts Objects” of this book.

language The language of the style object. The gxFontLanguage data type is
discussed in the chapter “Fonts Objects” of this book.

Errors
out_of_memory
style_is_nil

C H A P T E R 6

Typographic Styles

Typographic Styles Reference 6-65

DESCRIPTION

The GXSetShapeEncoding function sets the style’s platform, script, and language

values for the shape named by the target parameter. The encoding specifies the way

the font interprets the text stream into a series of character codes. A font may support

one or more encodings.

If a style object is shared by more than one shape, GXSetShapeEncoding copies the

style object so that only the shape in the target parameter is affected by the changes to

the platform, script, and language values.

The function specifies the platform, script, and language settings for the style object

associated with the shape object. However, the glyph and layout shapes may have arrays

of styles in their geometries and therefore do not necessarily use the style object attached

to the shape object. In this case, you should use the GXGetStyleEncoding (page 6-62)

and GXSetStyleEncoding (page 6-62) functions to set the encoding of the styles

stored in the shape’s geometry.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The gxFontPlatform, gxFontScript, and gxFontLanguage data types are

discussed in the chapter “Fonts Objects” of this book.

Getting and Setting the Text Attributes of a Style Object

The text attributes property of style objects specifies how QuickDraw GX alters glyph

outlines or sets text to be horizontal or vertical. You use the gxTextAttributes data

type, which is described on page 6-38, when retrieving or setting text attributes.

You can use the GXGetStyleTextAttributes function to retrieve the text attributes

from a style object and the GXSetStyleTextAttributes function to specify the text

attributes of a style object.

The GXGetShapeTextAttributes and GXSetShapeTextAttributes functions

provide a way to retrieve and specify the text attributes for the style object associated

with a particular shape.

Errors
shape_is_nil
out_of_memory
inconsistent_parameters (debugging version)

Notices (debugging version)
style_platform_already_set

C H A P T E R 6

Typographic Styles

6-66 Typographic Styles Reference

GXGetStyleTextAttributes

You can use the GXGetStyleTextAttributes function to determine which text

attributes are set for a particular style object.

gxTextAttribute GXGetStyleTextAttributes(gxStyle source);

source A reference to the style object whose attributes you want to determine.

function result The text attributes of the style object.

DESCRIPTION

The GXGetStyleTextAttributes function returns the text attributes of the style

object specified by the source parameter.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

See “Text Attributes” on page 6-38 for a listing of text attributes.

GXSetStyleTextAttributes

You can use the GXSetStyleTextAttributes function to set or change the text

attributes of a style object.

void GXSetStyleTextAttributes(gxStyle target,

gxTextAttribute attributes);

target A reference to the style object whose text attributes you want to change.

attributes The new text attributes for the style.

DESCRIPTION

The GXSetStyleTextAttributes function sets the text attributes of the style object

specified by the target parameter to those specified in the attributes parameter.

You should always get the current settings of the text attributes before setting any of

them. The GXSetStyleTextAttributes function replaces all of the attributes

currently associated with the shape; if you want any attributes to remain the same,

you must include them in the call, unless you want to set them all explicitly.

Errors
shape_is_nil
out_of_memory

C H A P T E R 6

Typographic Styles

Typographic Styles Reference 6-67

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Text attributes are described on page 6-38.

GXGetShapeTextAttributes

You can use the GXGetShapeTextAttributes function to determine which text

attributes are set for the style object of a particular QuickDraw GX typographic shape.

gxTextAttribute GXGetShapeTextAttributes(gxShape source);

source A reference to the shape whose text attributes you want to determine.

function result The text attributes of the style object attached to the source specified
by shape.

DESCRIPTION

The GXGetShapeTextAttributes function returns the text attributes of the style

object associated with the shape specified by the source parameter.

This function provides a convenient way to determine the text attributes of a shape

without calling the GXGetShapeStyle function to obtain a reference to the shape’s

style object. However, the glyph and layout shapes may have arrays of styles in their

geometries and therefore do not necessarily use the style object attached to the shape

object. In this case, you should use the GXGetStyleTextAttribute and

GXSetStyleTextAttribute functions to determine the attributes of the styles stored

in the shape’s geometry.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

 See “Text Attributes” on page 6-38 for a listing of text attributes.

Errors
shape_is_nil
out_of_memory
parameter_out_of_range (debugging version)

Notices (debugging version)
text_attributes_already_set

Errors
shape_is_nil
out_of_memory

C H A P T E R 6

Typographic Styles

6-68 Typographic Styles Reference

GXSetShapeTextAttributes

You can use the GXSetShapeTextAttributes function to alter the text attributes of

the style object associated with a particular shape.

void GXSetShapeTextAttributes(gxShape target,

gxTextAttribute attributes);

target A reference to the shape whose text attributes you want to alter.

attributes The new set of text attributes.

DESCRIPTION

The GXSetShapeTextAttributes function sets the text attributes of the style object

associated with the shape specified by the target parameter. If a style object is shared

among shapes, GXSetShapeTextAttributes copies the style object so that only the

shape in the target parameter is affected by the changes to the text attributes.

This function provides a convenient way to set the style attributes of a shape without

calling the GXGetShapeStyle function to obtain a reference to the shape’s style object.

You can use this function in combination with the GXGetShapeTextAttributes

function (page 6-67) to set or clear single style attributes. However, the glyph and

layout shapes may have arrays of styles in their geometries and therefore do not

necessarily use the style object attached to the shape object. In this case, you should use

the GXGetStyleTextAttribute (page 6-66) and GXSetStyleTextAttribute

(page 6-66) functions to set the attributes of the styles stored in the shape’s geometry.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Text attributes are described on page 6-38.

Errors
shape_is_nil
out_of_memory
parameter_out_of_range (debugging version)

Notices (debugging version)
text_attributes_already_set

C H A P T E R 6

Typographic Styles

Summary of Typographic Styles 6-69

Summary of Typographic Styles

Constants and Data Types

enum gxTextAttributes {

gxAutoAdvanceText = 0x0001,

gxNoContourGridText = 0x0002,

gxNoMetricsGridText = 0x0004,

gxAnchorPointsText = 0x0008,

gxVerticalText = 0x0010,

gxNoOpticalScaleText = 0x0020

} ;

typedef long gxTextAttribute;

#define gxLeftJustify 0

#define gxCenterJustify (fract1/2)

#define gxRightJustify fract1

#define gxFillJustify -1

enum gxLayerFlags;{

gxUnderlineAdvanceLayer = 0x0001,

/* a gxLine is drawn through the advances */

gxSkipWhiteSpaceLayer = 0x0002,

/* except characters describing white space */

gxUnderlineIntervalLayer = 0x0004,

/* (+ gxStringLayer) a gxLine is drawn through the gaps

between advances */

gxUnderlineContinuationLayer = 0x0008,

/* (+ gxStringLayer) join this underline with

another face */

gxWhiteLayer = 0x0010,

/* the layer draws to white instead of black */

gxClipLayer = 0x0020,

/* the characters define a clip */

gxStringLayer = 0x0040

/* all characters in run are combined */

}

typedef long gxLayerFlag;

C H A P T E R 6

Typographic Styles

6-70 Summary of Typographic Styles

typedef struct {

gxShapeFill outlineFill;/* outline framed or filled */

gxLayerFlag flags; /* various additional effects */

gxStyle outlineStyle;/* outline */

gxTransform outlineTransform;/* italic, condense, extend */

gxPoint boldOutset;/* bold */

} gxFaceLayer;

typedef struct {

long faceLayers;/* layer to implement shadow */

gxMapping advanceMapping;/* algorithmic change to advance

width */

gxFaceLayer gxFaceLayer[gxAnyNumber];/* zero or more face

layers describing the face */

} gxTextFace;

Functions

Getting and Setting the Font of a Style Object

gxFont GXGetStyleFont (gxStyle source);

void GXSetStyleFont (gxStyle target, gxFont aFont);

gxFont GXGetShapeFont (gxShape source);

void GXSetShapeFont (gxShape target, gxFont aFont);

Getting and Setting the Text Face

long GXGetStyleFace (gxStyle source, gxTextFace *face);

void GXSetStyleFace (gxStyle target, const gxTextFace *face);

long GXGetShapeFace (gxShape source, gxTextFace *face);

void GXSetShapeFace (gxShape target, const gxTextFace *face);

Getting and Setting the Text Size of a Style Object

Fixed GXGetStyleTextSize (gxStyle source);

void GXSetStyleTextSize (gxStyle target, Fixed size);

Fixed GXGetShapeTextSize (gxShape source);

void GXSetShapeTextSize (gxShape target, Fixed size);

Getting and Setting the Alignment of a Style Object

fract GXGetStyleJustification
(gxStyle source);

void GXSetStyleJustification
(gxStyle target, fract justify);

C H A P T E R 6

Typographic Styles

Summary of Typographic Styles 6-71

fract GXGetShapeJustification
(gxShape source);

void GXSetShapeJustification(gxShape target, fract justify);

Getting and Setting the Style Font Variations of a Style Object

long GXGetStyleFontVariations
(gxStyle source, gxFontVariation variations[]);

void GXSetStyleFontVariations
(gxStyle target, long count,
const gxFontVariation variations[]);

long GXGetShapeFontVariations
(gxShape source, gxFontVariation variations[]);

void GXSetShapeFontVariations
(gxShape target, long count,
const gxFontVariation variations[]);

Retrieving the Elements in a Font Variation Suite

void GXGetStyleFontVariationSuite
(gxStyle source, gxFontVariation variations[]);

void GXGetShapeFontVariationSuite
(gxShape source, gxFontVariation variations[]);

Retrieving Font Metrics

void GXGetStyleFontMetrics (gxStyle sourceStyle, gxPoint* before,
gxPoint* after, gxPoint* caretAngle,
gxPoint* caretOffset);

void GXGetShapeFontMetrics (gxShape source, gxPoint* before, gxPoint* after,
gxPoint* caretAngle, gxPoint* caretOffset);

void GXGetShapeLocalFontMetrics
(gxShape sourceShape, gxPoint* before,
gxPoint* after, gxPoint* caretAngle,
gxPoint* caretOffset);

void GXGetShapeDeviceFontMetrics
(gxShape sourceShape, gxViewPort port,
gxViewDevice device, gxPoint* before,
gxPoint* after, gxPoint* caretAngle,
gxPoint* caretOffset);

C H A P T E R 6

Typographic Styles

6-72 Summary of Typographic Styles

Getting and Setting the Encoding of a Style Object

gxFontPlatform GXGetStyleEncoding
(gxStyle source, gxFontScript *script,
gxFontLanguage *language);

void GXSetStyleEncoding (gxStyle target, gxFontPlatform platform,
gxFontScript script, gxFontLanguage language);

gxFontPlatform GXGetShapeEncoding
(gxShape source, gxFontScript *script,
gxFontLanguage *language);

void GXSetShapeEncoding (gxShape target, gxFontPlatform platform,
gxFontScript script, gxFontLanguage language);

Getting and Setting the Text Attributes of a Style Object

gxTextAttribute GXGetStyleTextAttributes
(gxStyle source);

void GXSetStyleTextAttributes
(gxStyle target, gxTextAttribute attributes);

gxTextAttribute GXGetShapeTextAttributes
(gxShape source);

void GXSetShapeTextAttributes
(gxShape target, gxTextAttribute attributes);

Contents 7-1

C H A P T E R 7

Contents

Font Objects

About Font Objects 7-5

Font Object Properties 7-5

Names 7-6

Encodings 7-7

Font Descriptors 7-9

Font Variations 7-10

Font Instances 7-11

Font Features 7-12

QuickDraw GX Font Formats 7-12

How Font Objects Are Stored and Referenced 7-13

Font Attributes 7-14

Font Embedding 7-14

Font Tables 7-14

The List of Available Fonts 7-15

The Default Font 7-15

Using Font Objects 7-15

Getting Information About Available Fonts 7-15

Drawing With a Specific Font 7-17

Gaining Access to Font Properties 7-17

Getting a Font Name 7-17

Adding a Font Instance 7-18

Retrieving Font Features 7-19

Determining Font Variations 7-20

Retrieving Language-Specific Font Lists 7-20

Manipulating Font Tables 7-21

Font Objects Reference 7-21

Basic Constants and Data Types 7-22

The Font Object 7-22

Font Variations, Instances, and Descriptors 7-22

Font Names 7-23

C H A P T E R 7

7-2 Contents

Font Features 7-24

Font Platforms 7-25

QuickDraw GX Macintosh Scripts 7-26

Languages 7-28

Advanced Constants and Data Types 7-31

Font Storage Tags 7-31

Font Table Tags 7-32

Font Attributes 7-32

Basic Font Functions 7-32

Getting the List of Available Fonts 7-33

GXFindFonts 7-33

Counting Glyphs in a Font 7-34

GXCountFontGlyphs 7-35

Getting and Setting the Default Font 7-35

GXGetDefaultFont 7-35

GXSetDefaultFont 7-36

Manipulating Font Names 7-37

GXCountFontNames 7-37

GXGetFontName 7-38

GXFindFontName 7-39

GXNewFontNameID 7-40

GXSetFontName 7-41

GXDeleteFontName 7-42

Manipulating Font Encodings 7-43

GXCountFontEncodings 7-44

GXGetFontEncoding 7-44

GXFindFontEncoding 7-45

GXApplyFontEncoding 7-46

Manipulating Font Descriptors 7-48

GXCountFontDescriptors 7-48

GXGetFontDescriptor 7-49

GXFindFontDescriptor 7-50

GXSetFontDescriptor 7-51

GXDeleteFontDescriptor 7-52

Manipulating Font Variations 7-53

GXCountFontVariations 7-53

GXGetFontVariation 7-54

GXFindFontVariation 7-55

Manipulating Font Instances 7-56

GXCountFontInstances 7-56

GXGetFontInstance 7-56

GXSetFontInstance 7-57

GXDeleteFontInstance 7-59

Manipulating Font Features 7-60

GXCountFontFeatures 7-60

GXGetFontFeature 7-61

GXFindFontFeature 7-62

C H A P T E R 7

Contents 7-3

Advanced Font Functions 7-63

Adding, Removing, and Flattening Fonts 7-63

GXNewFont 7-64

GXDisposeFont 7-65

GXFlattenFont 7-65

Getting and Setting Basic Font Storage Information 7-66

GXGetFont 7-67

GXFindFont 7-67

GXSetFont 7-68

GXGetFontFormat 7-69

Manipulating Font Tables 7-70

GXCountFontTables 7-70

GXGetFontTable 7-71

GXGetFontTableParts 7-72

GXFindFontTable 7-73

GXFindFontTableParts 7-74

GXSetFontTable 7-75

GXSetFontTableParts 7-76

GXDeleteFontTable 7-77

Changing Font Data 7-78

GXChangedFont 7-78

Summary of Font Objects 7-79

C H A P T E R 7

About Font Objects 7-5

Font Objects

This chapter describes font objects and the functions you can use to manipulate them.

Read this chapter if you use any kind of font object for the QuickDraw GX shapes

you create.

Before reading this chapter, you should be familiar with the information in the chapter

“Introduction to QuickDraw GX Typography” in this book. You should also be familiar

with the information discussed in Inside Macintosh: QuickDraw GX Objects.

This chapter introduces QuickDraw GX font objects and describes their properties. It

then shows you how to create, dispose of, and manipulate these objects to

■ gain access to the system’s font list

■ specify in a style object how a font should be used––for example, specify encodings,
variations, and font features

■ edit a font and add your own fonts

This chapter also lists and cross-references font-related QuickDraw GX functions that are

described elsewhere in this book and in other parts of Inside Macintosh.

About Font Objects

Fonts are represented in QuickDraw GX as font objects. To draw or print text, you must

reference or use a font object.

Fonts come in a variety of formats and can be stored in many different ways. In

QuickDraw GX, fonts are consolidated into a single object type that hides the complexity

of the font data from your application. With QuickDraw GX, you can have a single object

type, as well as a single set of methods of accessing the font data.

Each QuickDraw GX font object encapsulates a particular style of text––for example,

Times Bold or Times Italic. The same font object is used for all point sizes.

A collection of QuickDraw GX font objects that share a common design is known as a

font family––for example, Times, which is composed of Times Roman, Times Bold,

Times Italic, and Times Bold Italic. By grouping all such fonts into a font family,

QuickDraw GX allows your application to display only family names in the Font menu,

thereby simplifying for the user the process of choosing a font.

The interface to each QuickDraw GX font object is entirely procedural––you cannot

access any information in the fonts directly. To manipulate the pieces of information in

the font object––for example, its properties––you must use QuickDraw GX functions.

Font Object Properties
QuickDraw GX font objects have six accessible properties, as shown in Figure 7-1. Note

that, because a font is an object and not a data structure, the order of the properties as

shown in Figure 7-1 is completely arbitrary.

C H A P T E R 7

Font Objects

7-6 About Font Objects

Figure 7-1 The QuickDraw GX font object and its accessible properties

The six accessible properties include

■ Names. Text in a font that contains information about the font.

■ Encodings. Internal conversion tables for interpreting a specific character set.

■ Descriptors. Identifying characteristics used to measure the stylistic attributes of
one font in comparison to another font––for example, whether one font is “bolder”
than another.

■ Variations. A setting along an axis. This can be the range, from minimum to maximum,
of each variation axis in a font.

■ Instances. A named font variation coordinate.

■ Features. A type that holds information about a font feature.

Every QuickDraw GX font object contains font names and encodings. The other proper-

ties shown in Figure 7-1 offer additional functionality but may not be present in every

font. In addition to these six accessible properties, a QuickDraw GX font object contains

other properties specific to the font format, depending on whether the format is

TrueType GX, Type 1 GX, or 'NFNT', or another format.

QuickDraw GX provides functions for manipulating each of these font object properties.

These functions are described in the section “Font Objects Reference” beginning on

page 7-21.

Names

Each QuickDraw GX font object contains a set of font names. Font names provide

specific information about a font, such as its family name, style, copyright date, version,

and manufacturer. Some font names can be used to build menus in your application––

for example, family and style––whereas other names are used to identify the font

C H A P T E R 7

Font Objects

About Font Objects 7-7

uniquely––for example, the unique and PostScript names. Here are some examples of

font names with predefined selectors:

■ Font family. This name is shared by all styles in a family. An example is “New York”.

■ Style. This stylistic variation distinguishes a font from other members of the same
family. Examples are “Regular”, “Italic”, “Bold”, or “Black”.

■ Unique name. This is the manufacturer’s name for the font. An example is “Apple
Computer New York Black 3.0 8/10/92”.

■ Full font name. An example is “New York Black”.

■ Copyright. This is the manufacturer’s copyright notice. An example of this is “©
Apple Computer, Inc. 1993.”

■ Version. This is the font manufacturer’s version number. An example is “3.0.”

■ PostScript name. This is the PostScript-legible name of the font. An example is
“NewYork-Black”.

■ Trademark. This the trademark holder’s name. An example is “Palatino is a registered
trademark of Linotype AG”.

■ Manufacturer. This is the font manufacturer’s name. An example is “Apple
Computer, Inc.”

Note

In addition to predefined name selectors, a font may contain other
names that describe parts of the font, such as ligatures or swashes.
However, these names do not have predefined name selectors. You
can gain access to these names through QuickDraw GX features and
variations, which are discussed later in this section. ◆

Font names are identified by a font’s platform, script, and language, which are discussed

in the next section.

A QuickDraw GX font object can have font names in any of the languages specified by the

gxFontLanguage enumeration. For example, a font manufacturer can store the English

name of a font as “Geneva Bold” and the French name of the font as “Geneva Gras.” The

currently defined languages are listed in “Languages” beginning on page 7-28.

Encodings

Each QuickDraw GX font object contains a certain number of character encodings. Each

encoding is an internal conversion table for interpreting a specific character set––that is,

a way to map a character code to a glyph code for that font.

Like font names, font encodings are also identified by platform, script, and language.

A platform describes what standard the character set was designed for, such as the

Macintosh computer or the Unicode standard. Possible platform values are listed in “Font

Platforms” on page 7-25. A custom platform is one whose encoding does not correspond

to a specific standard. A script is a writing system, or a set of characters with basic rules

of use in creating a visual depiction of one or many languages. For example, the Arabic

script can be used to depict written Arabic, Egyptian, or classical Arabic. Each script has a

C H A P T E R 7

Font Objects

7-8 About Font Objects

unique set of attributes. Roman script has a general left-to-right direction of text, whereas

Arabic script has a general right-to-left direction of text. Printed Roman characters are

relatively independent of each other; Arabic glyphs change shape depending on the

glyphs that surround them. Some writing systems, such as Roman and Cyrillic, are

basically alphabetic: glyphs symbolize discrete phonemic elements in the language.

Other writing systems, including Japanese Kana, are syllabic: the glyphs stand for

syllables in the language. Still other writing systems—namely, Japanese Kanji, Chinese

Hanzi, and Korean Hanja—include ideographic glyphs. In these systems, glyphs do not

represent pronunciation alone but are related to the component meanings of words. A

typical character set for an ideographic writing system can be quite large, ranging from

7000 to more than 30,000 characters. A written language refers to the whole body of

written words––and methods of combining words to create meaning––used by a particu-

lar group of people.

Figure 7-2 shows examples of alphabetic, syllabic, and ideographic representations

of characters.

Figure 7-2 Words with alphabetic, syllabic, and ideographic characters

In general, the encoding of a font won’t be identified by a specific language because

platform and script are enough to identify a character encoding. The exception to this

rule occurs in a few Macintosh scripts, where two or more languages in the same script

represent two different character sets. For example, Turkish and Croatian are both

languages in the Roman script but have different encodings.

Character Code Sizes

QuickDraw GX supports character code sizes larger than 7-bit ASCII codes (0-127).

These include

■ 16-bit character codes, as used by Microsoft and Unicode, in which each character is
stored as a 16-bit number

■ a mixed 8-/16-bit encoding, as used by Chinese, Japanese, and Korean scripts, in
which certain byte values are set aside to signal the first byte of a 2-byte character. The
value of the first byte specifies whether you include the value of the next byte as well.

■ 8-bit character codes, where each character is stored as an 8-bit number

C H A P T E R 7

Font Objects

About Font Objects 7-9

You can use a font’s encoding to find out what character code size it uses. Because each

encoding table in a font is identified by platform and script, each combination of

platform and script specifies the size of the character code that the table can translate.

Depending on platform and script, your application may need to generate character

codes of different sizes.

Table 7-1 enumerates the platforms and scripts that QuickDraw GX supports in relation

to character code sizes. Note that all are either 8- or 16-bit, but some scripts––such as

Chinese, Japanese, and Korean––use a mixed 8-/16-bit encoding.

To find out what encodings a font supports, you use the GXGetFontEncoding function,

described on page 7-44. To search for all the fonts that support a given encoding, you use

the GXFindFonts function, described on page 7-33.

Font Descriptors

Each font object within a family has a certain number of identifiable characteristics called

font descriptors, and these define such attributes in a font as its weight, width, italic

slant and optical point size––that is, the point size for which the font was designed. A

font descriptor is a data structure that allows your application to read and measure the

stylistic attributes of one font versus another font––to determine, for example, if one font

is “bolder” than another.

Font descriptors give numerical values for these stylistic attributes.

Table 7-2 lists some predefined descriptors. For more information about ornamental sets,

see the chapter “Layout Styles” in this book.

Table 7-1 Character code sizes among various platforms and scripts

Character
code size (bits) Platform Script

16 Unicode (All Unicode versions)

16 Custom Custom 16-bit script

16 Microsoft (All Microsoft scripts)

mixed 8/16 Macintosh Chinese

mixed 8/16 Macintosh Korean

mixed 8/16 Macintosh Japanese

mixed 8/16 Macintosh Simplified Chinese

mixed 8/16 Custom Custom 8-bit/16-bit script

8 Macintosh (Any Macintosh script not already listed previously)

8 Custom Custom 8-bit script

C H A P T E R 7

Font Objects

7-10 About Font Objects

Font Variations

For most fonts, a single list of descriptors is enough to describe its appearance. However,

some fonts are capable of generating a wide range of stylistic changes. Such a font

contains font variation axes, each of which describes a particular stylistic attribute and

the range of values that the font can use.

Font variation axes are named by the same tags used by descriptors––for example,

'wght'. Each axis has a minimum, maximum, and default value. The minimum and

maximum values determine the range of values that the variation axis covers. If a font

contains both a font descriptor and a font variation with the same tag, the default value

of the variation is equal to the descriptor.

In Figure 7-3, the variation axis 'wght' has a default value of 1.0, and minimum and

maximum values of 0.62 and 1.3. This font can create a range of glyphs of varying

thicknesses—from light to bold—that your application can draw.

Figure 7-3 Font variations along the 'wght' variation axis

Table 7-2 A list of predefined font descriptors

Descriptor Descriptor tag Description

Weight 'wght' The thickness of the line used to draw a glyph
of the font. A plain font might have a value
of 1.0.

Width 'wdth' The width or narrowness of the glyphs. A
plain font might have a value of 1.0.

Italic slant 'slnt' The number of degrees, from –90 to 90, by
which the glyphs lean. A plain font might
have a value of 0 degrees.

Optical point size 'opsz' The point size for which the font was
designed. A common value might be
12.0 points.

Nonalphabetic 'nalf' The value corresponding to a nonalphabetic
form provided by a font, The values are
identical to those for ornamental sets: dingbats
equal 1, Pi characters equal 2, fleurons equal 3,
decorative borders equal 4, international
symbols equal 5, and math symbols equal 6.
An undefined value or a value of 0 indicates
that the font is alphabetic.

C H A P T E R 7

Font Objects

About Font Objects 7-11

A font may also name specific values along a variation axis as font instances, described

in the next section.

In addition, your application can combine multiple style coordinates. For example, a font

may have a 'wght' axis and a ‘wdth’ axis. The user can then select any combination of

bold and condensed values––such as 75 percent bold and 50 percent condensed.

Figure 7-4 shows an example of a font variation with two axes. In Figure 7-4, the weight

axis has a minimum value of 0.48 and a maximum of 3.2, and the width axis has a

minimum of 0.62 and a maximum of 1.3.

Figure 7-4 Font variations for the 'wght' and 'wdth' axes

QuickDraw GX provides your application with functions that allow you to count the

number of font variation axes in a particular font and to specify a font variation by index

or by tag (such as 'wdth') in the font’s list of font variations.

Font Instances

A font instance is a named font variation coordinate. It is a setting identified by a type

designer that includes a value for each variation axis in the font. A font instance provides

that set of values with a name, which is stored in the names property of the font object.

For example, if a font has a weight variation axis whose default is 1.0 and whose maxi-

mum is 1.5, a font instance might be “Demibold” with a 'wght' axis value of 1.2.

Your application can make font instances available to the user as part of the user’s font

and style selection mechanism, along with other font and style selections.

C H A P T E R 7

Font Objects

7-12 About Font Objects

Font Features

QuickDraw GX fonts can include font features––changes to the selection of glyphs in the

font, such as automatic ligature formation and cursive connections between glyphs. Some

of these changes are essential for writing systems such as Arabic or Hindi that require

changes to glyphs and words depending on context; some are useful simply to enhance

the appearance of text. Apple Computer, Inc. has defined a standard set of font features.

Features are grouped into types; each feature type has some number of feature settings.
For example, in the lettercase feature type, the settings would represent all lowercase,

uppercase, or small caps. This means that in a style or shape object, you can specify

features with particular settings that modify what gets drawn.

Font features allow your application to draw different versions of a letter––for example,

small caps, inferiors, and ligatures.

The feature types and their feature settings are described in the chapter “Layout Styles”

in this book.

Note

Feature types and feature selectors are defined and listed in the
QuickDraw GX Font Feature Registry, a document maintained by
Apple Computer, Inc. To obtain the latest version of the feature registry,
please contact Apple Computer at the AppleLink address
FONTREGISTRY. ◆

QuickDraw GX Font Formats
QuickDraw GX provides a single, consistent application programming interface (API)

for all GX font objects. It also provides you with functions for finding a certain font and

then accessing its properties rather than requiring your application to interpret the font’s

data directly.

At the same time, the API gives you flexibility in your implementation of a font object––

for example, in your choice of font format and methods of storing and referencing fonts.

Font objects in QuickDraw GX can represent a variety of font formats, including but not

limited to

■ TrueType GX

■ Type 1 GX

■ 'NFNT'

Your application can use a font in any of these font formats. Because all fonts are

accessible through the same set of functions, your application should not need to know

the font’s format.

C H A P T E R 7

Font Objects

About Font Objects 7-13

How Font Objects Are Stored and Referenced

In the QuickDraw GX architecture, each font object has a storage type, describing the

method used to store the font. A font is stored in one of four ways:

■ with a resource ID

■ with a memory handle

■ with a file specification

■ as a 'FOND' resource

Along with its storage type, each font has a storage reference, which specifies the instance

of the storage type it uses.

You can determine how a font is stored simply by checking its associated storage type,

which is of the gxFontStorageTag type. Table 7-3 shows the storage types and what

each means.

Note

When QuickDraw GX is initialized, it searches the Fonts Folder for
resources of type 'sfnt' and 'FOND'. Then GXNewFont is called with
the 'sfnt' resources––after which, GXNewFont is called with each
'FOND' resource that does not reference any 'sfnt' resources. In this
way, when your application uses QuickDraw GX, all available 'sfnt'
resources and bitmap-only 'FOND' resources are already instantiated as
font objects. ◆

QuickDraw GX creates a list of fonts currently available in the system and identifies each

font object by a unique 4-byte ID. This font ID is the font object reference found in the

font property of the style object; it is also the same as the fontID parameter used in the

functions described in the “Font Objects Reference” section of this chapter. It is not,

however, the same as the storage reference in Table 7-3.

IMPORTANT

Although this font ID is a unique reference to a font, it is not guaranteed
to be unique across different applications, because it is regenerated each
time an application is launched. Therefore, your application should
never save this ID in a document; instead, it should use the font’s
unique name. ▲

Table 7-3 QuickDraw GX storage types

Storage tag Storage reference

gxResourceFontStorage Resource handle

gxHandleFontStorage Handle

gxFileFontStorage File reference

gxNfntFontStorage A 32-bit value with the txFace in the high-order
16 bits and the txFont in the low-order 16 bits.

C H A P T E R 7

Font Objects

7-14 About Font Objects

Font Attributes

Each font has a set of font attributes, which are a group of flags that modify the behavior

or identity of the font. These flags are defined in the gxFontAttributes enumeration.

Font Embedding

Font embedding refers to the technique of storing the font object’s binary data in a

document. The advantage of this technique is that the text in the document always

displays the correct font, even if it is moved to another computer. The disadvantage is

that this technique increases the size of the document.

Two QuickDraw GX functions implement font embedding: GXNewFont and

GXFlattenFont.

The GXNewFont function, described on page 7-64, takes the binary data of a font and

returns the font object. The GXFlattenFont function, described on page 7-65, takes a

font object and returns its binary data.

Font Tables
The information in a font object is organized into a series of tables, each identified by a

4-byte tag. Table 7-4 shows some of the standard tables.

QuickDraw GX provides functions for looking for a specific table, iterating through the

tables, and changing or deleting a table. These functions are described in “Advanced

Font Functions” beginning on page 7-63.

There are other tables that are private to that font’s format.

IMPORTANT

You should never alter the data in a font, including the font tables,
unless your application is a font editor or otherwise needs to change the
data in or a name of a font. Most applications, such as word processors,
do not need to change the data in a font. ▲

The tables of a TrueType GX font are described in QuickDraw GX Font Formats, available

from APDA. In most cases, a general-purpose application does not need to know or use

the formats of the font’s tables.

Table 7-4 Font tables and their contents

Storage table Attributes

'name' Font names

'cmap' Font encodings

'fdsc' Font descriptors

C H A P T E R 7

Font Objects

Using Font Objects 7-15

The List of Available Fonts
When you initialize a QuickDraw GX graphics client, QuickDraw GX creates font

objects for all of the fonts in the system Font folder. These become available as a list

to the application. You can access and retrieve this list of available fonts by calling the

GXFindFonts function, described in the following section “Using Font Objects” and

on page 7-33.

The Default Font
QuickDraw GX provides you with functions to manipulate the default font. When

you first create a typographic shape, for example, its style is initialized to have a font

reference of nil. If QuickDraw GX is passed a nil for the font parameter, it substitutes

the default font––initially, Helvetica, if it is available––for that parameter. To manipulate

the default font and change from Helvetica to a different font, you can use the

GXGetDefaultFont and GXSetDefaultFont functions, described on page 7-35 and

page 7-36, respectively.

Using Font Objects

In QuickDraw GX, you can perform a variety of operations with font objects. These

operations can be grouped into the following categories:

■ getting information about the available fonts in the system

■ gaining access to the properties of fonts

■ changing or deleting information stored in the tables of a font––but only for fonts
created by your application, not those stored in the system

Note

QuickDraw GX functions that begin with GXGet and GXFind are similar
in that they retrieve roughly the same information. However, the GXGet
functions find the information by its index in the font’s list of that type of
information and return or name a tag or a font name, whereas the GXFind
functions use a tag to find the information and return its index. ◆

Getting Information About Available Fonts
If you want to get the list of available fonts, you call GXFindFonts first to get the

number of fonts available, as shown in Listing 7-1. The function returns the number of

fonts that meet the search criteria. The GXFindFonts function, described on page 7-33,

allows you to get a list of available fonts or any subset of available fonts––from a single

font to a list of font families––in the system.

C H A P T E R 7

Font Objects

7-16 Using Font Objects

The function copies the fonts it finds into the final parameter, which serves as the buffer

references for your application. You can then create a buffer large enough to store the

font references and call GXFindFonts again, passing it the buffer (fontList) to get

the list.

Listing 7-1 Obtaining a list of available fonts in the system

/* return the number of fonts */

long count = GXFindFonts(nil, 0, 0, 0, 0, 0, nil, 1,

gxSelectToEnd, nil);

/* copy the fonts into the font list */

gxFont* fontList = (gxFont*)NewPtr(count * sizeof(gxFont));

GXFindFonts(nil, 0, 0, 0, 0, 0, nil, 1, count, fontList);

To get a reference to the second available font, you can call

GXFindFonts(nil, 0, 0, 0, 0, 0, nil, 0, 2, 1, &myFont);

To get the number of font families available, use

GXFindFonts(nil, gxFamilyFontName, 0, 0, 0, 0, nil, 0, 1,

 gxSelectToEnd, nil);

To get a reference to the second font family in the list of available font families, use

GXFindFonts(nil, gxFamilyFontName, 0, 0, 0, 0, nil, 0, 2, 1,

 &myFont)

To get information about the number of fonts available in a single font family, you call

count = GXFindFonts(myFontFamily, 0, 0, 0, 0, 0, nil, 0, 1,

gxSelectToEnd, nil);

where myFontFamily is a reference to the font whose family you want informa-

tion about.

Likewise, if you want a reference to the second font in a particular font family, call

GXFindFonts(myFontFamily, 0, 0, 0, 0, 0, nil, 0, 2, 1, &myFont);

C H A P T E R 7

Font Objects

Using Font Objects 7-17

Drawing With a Specific Font

To find a font by name, you use GXFindFonts. You call this function when you

open a document that specifies a font. For example, if you want a reference to the

font Chicago, use

GXFindFonts(nil, gxFullFontName, gxMacintoshPlatform,

gxRomanScript, gxEnglishLanguage, strlen("Chicago"),

"Chicago", 1, 1, &myFont);

Once you have found a specific font, you can use the following code to associate the font

object with the shape object, so that a particular shape uses that font:

GXSetShapeFont(myShape, myFont);

Now you can draw the shape.

GXDrawShape(myShape);

Gaining Access to Font Properties
This section describes how you can gain access to and manipulate various font properties.

Getting a Font Name

If your application needs the name of a font (for example, to display it in a menu), you

can use the GXGetFontName function.

If you want to get a font name by index (for example, if you are iterating through all font

names in the font), you can also call the GXGetFontName function to get the size of a

font name and then call it a second time to retrieve the name, as shown in Listing 7-2.

Note

If you are trying to get a font name by its meaning, platform,
script, and language, use GXFindFontName. ◆

Listing 7-2 Using the GXGetFontName function

long length = GXGetFontName(myFont, index, nil, nil, nil, nil,

nil);

unsigned char* name = NewPtr(length);

GXGetFontName(myFont, index, nil, nil, nil, nil, name);

C H A P T E R 7

Font Objects

7-18 Using Font Objects

To return the font’s full name as a C string, you can write the FindFontFullName

library function, as shown in Listing 7-3.

Listing 7-3 Extracting a full name as a C string

/* return the font's full name as a C string */

short GXFindFontFullName(gxFont fontID, char name[])

{

short length

length = FindFontName(fontID, gxFullFontName,

 gxMacintoshPlatform, gxRomanScript,

 gxEnglishLanguage,

 (unsigned char*)name, nil);

name[length] = 0;

return length;

}

Adding a Font Instance

If you add an attribute—for example, a font instance—to a font that has a font name, you

must also add the name for that attribute. To add the attribute name, you must get an

unused font name for the new name by using the GXNewFontNameID function.

Listing 7-4 shows one method of adding a new font instance and a font name for that

instance to a font. The function takes a font, a font name, and coordinates for the new

font instance. It gets a new gxFontName from the GXNewFontNameID function, adds

the new font name to the font using the GXSetFontName function, and then adds the

font instance to the font, using the GXSetFontInstance function to coordinate the new

font instance with its associated font name.

Listing 7-4 Adding a new font name to a font

void AddFontInstance(gxFont theFont, const char instanceName[],

 const gxFontVariation coord[])

{

gxFontName nameID;

nameID = GXNewFontNameID(theFont);

GXSetFontName(theFont, nameID, gxMacintoshPlatform,

 gxRomanScript, gxEnglishLanguage,

 strlen(instanceName),

 (unsigned char*)instanceName);

GXSetFontInstance(theFont, 0, nameID, coord);

}

C H A P T E R 7

Font Objects

Using Font Objects 7-19

The GXNewFontNameID function is described on page 7-40. The GXSetFontName

function is described on page 7-41. The GXSetFontInstance function is described on

page 7-57.

Retrieving Font Features

This section describes the code you can use for retrieving font features. This technique is

useful if your application needs to put in menus for features and instances. Listing 7-5

shows how you can retrieve an array of font features––in this case, ligature settings

available in the font.

Listing 7-5 Retrieving an array of ligature settings

/*

Return the array of ligature settings available

in this font, or nil if they are not available.

*/

gxFontFeatureSetting* ReturnLigatureSettings(gxFont fontID)

{

long index;

gxFontName nameID;

gxFontFeatureSetting* settings;

settings = nil;

nameID = GXFindFontFeature(fontID, ligaturesType, nil, &count,

 nil, &index);

if (nameID != 0)

{

settings = (gxFontFeatureSetting*)NewPtr(count *

sizeof(gxFontFeatureSetting));

GXGetFontFeature(fontID, index, nil, nil,

settings, nil);

}

return settings;

}

The GXFindFontFeature function is described on page 7-62. The GXGetFontFeature

function is described on page 7-61.

C H A P T E R 7

Font Objects

7-20 Using Font Objects

Determining Font Variations

Listing 7-6 show you how to determine whether a font has a variation axis. This technique

is useful if your application needs to put in sliders for font variations.

Listing 7-6 Determining font variations

/*

Determines whether font has a "weight" variation axis; if it does,

returns its maximum value.

*/

Fixed ReturnMaxWeightVariation(gxFont fontID)

{

long index;

Fixed max;

index = GXFindFontVariation(fontID, 'wght', nil, nil, &max,

 nil);

if (index == 0)

max = 0;// no 'wght' axis available

return max

}

The GXFindFontVariation function is described on page 7-55.

Retrieving Language-Specific Font Lists

Listing 7-7 shows you how to retrieve a language-specific font list. This technique is

useful, for example, if you need to add just Japanese fonts in a Font menu. Listing 7-7

shows an example of how you can return all the fonts that support Japanese characters.

Listing 7-7 Retrieving all fonts that support Japanese characters

/* return all of the fonts that support Japanese characters*/

long FindJapaneseFonts(gxFont fontList[])

{

long numJapaneseFonts = GXFindFonts(nil, gxNoFontName,

gxMacintoshPlatform, gxJapaneseScript, gxNoLanguage,

 0, nil, 1, gxSelectToEnd, fontList);

return numJapaneseFonts;

}

The GXFindFonts function is described on page 7-33.

C H A P T E R 7

Font Objects

Font Objects Reference 7-21

Manipulating Font Tables
To get the number of font tables in a font, you can use the GXCountFontTables

function, described on page 7-70. To get an entire font table that you specify by its

index in the font’s list of font tables, you use the GXGetFontTable function,

described on page 7-71. To get part of a font table that you specify by index, you use

the GXGetFontTableParts function, described on page 7-72.

To get an entire font table that you specify by its table tag, use GXFindFontTable.

To get part of a font table that you specify by table tag from a font, you use

GXFindFontTableParts.

To change part of an existing font table or add a new font table, use GXSetFontTable.

To delete a font table from a font permanently, you use GXDeleteFontTable.

IMPORTANT

You should never alter the data in a font, including the font tables,
unless your application is a font editor or otherwise needs to change the
data in a font. Most applications, such as word processors, do not need
to examine or change the data in a font. ▲

The tables of a TrueType GX font are described in QuickDraw GX Font Formats, available

from APDA.

If you need to take advantage of some of QuickDraw GX’s advanced font functions––for

example, if your application is a font editor––you can use the GXGetFontTable

function. This function allows you to retrieve the size of a particular font table and then

call it a second time to retrieve the actual data from the table, as shown in Listing 7-8.

Listing 7-8 Using the GXGetFontTable function to retrieve a table

long size = GXGetFontTable(fontID, index, nil, nil);

void* tableData = NewPtr(size);

GXGetFontTable(fontID, index, tableData, nil);

The GXGetFontTable function is described on page 7-71.

Font Objects Reference

This section describes the enumerations, constants, data types, and functions that are

specific to the QuickDraw GX font object.

“Basic Constants and Data Types” and “Advanced Constants and Data Types” list the

enumerated types and structures that provide information about fonts.

“Basic Font Functions” beginning on page 7-32 lists the QuickDraw GX functions you use

to manipulate QuickDraw GX fonts. “Advanced Font Functions” beginning on page 7-63

lists the QuickDraw GX functions you use to change the information a font contains.

C H A P T E R 7

Font Objects

7-22 Font Objects Reference

Basic Constants and Data Types

This section describes the constants and data types that you can use to provide basic

information about and retrieve basic information from QuickDraw GX font objects.

The data types discussed in this section include

■ the gxFont type, which you use to reference a font

■ the gxFontVariation type, which you use to reference font variation and font
instance information

■ the gxFontDescriptorTag type, which you use to reference a font descriptor

■ the gxFontVariationTag type, which you use to reference a variation axis

■ the gxFontName type which distinguishes the types of font names available in a font

■ the gxFontFeatureFlag enumeration, which you use to get information about a
particular font feature in the font––for example, whether the settings of that feature
are mutually exclusive

■ the gxFontFeature type, which is a reference to a specific font feature

■ the gxFontFeatureSetting type, which contains a setting of a font feature and the
name ID in the name table of that setting

■ the gxFontPlatform type, which identifies the platform for a name or encoding

■ the gxFontScript type, which specifies the script used by a platform

■ the gxFontLanguage type, which specifies the language used by a script

The Font Object

To gain access to font objects in QuickDraw GX, you use always functions. Your applica-

tion never gets a pointer or handle to the actual font data. To allow type checking,

QuickDraw GX defines the gxFont data type as a pointer to a structure.

typedef struct gxPrivateFontRecord *gxFont;

To obtain or alter information in a font object, you pass gxFont to a function. In general,

you should never need to change or gain access to the data in a font object directly.

Font Variations, Instances, and Descriptors

The gxFontVariation structure describes font variations, instances, and descriptors.

The gxFontVariationTag type identifies a variation axis.

struct gxFontVariation {

gxFontVariationTag name;

Fixed value;

} ;

typedef struct gxFontVariation gxFontDescriptor;

C H A P T E R 7

Font Objects

Font Objects Reference 7-23

Field descriptions

name The name of the variation axis, in a four-character tag. For example,
'wght' is the name of the weight variation axis.

value A coordinate along the variation axis specified by name.

You can get the minimum and maximum values for an axis using

the GXGetFontVariation function, described on page 7-54, or the

GXFindFontVariation function, described on page 7-55.

The gxFontDescriptor structure is identical to the gxFontVariation structure. The

gxFontDescriptorTag identifies a font descriptor. Note that descriptors are used to

identify the style of a simple font––that is, a font that does not have variations.

typedef long gxFontDescriptorTag

Font variations and instances, which use the variation axes, are discussed in “Font

Variations” on page 7-10.

The possible values for the name field of the gxFontVariation structure, whether it

describes a variation, instance, or descriptor, are described in “Font Variations” on

page 7-10.

Font Names

Font names are values in a font that contain information about the font. Each font name

is distinguished by a value from the gxFontName type.

enum gxFontNames {

gxNoFontName,

gxCopyrightFontName,

gxFamilyFontName,

gxStyleFontName,

gxUniqueFontName,

gxFullFontName,

gxVersionFontName,

gxPostscriptFontName,

gxTrademarkFontName,

gxManufacturerFontName

};

typedef long gxFontName;

Constant descriptions

gxNoFontName The font name is not specified. You can use this value with such
functions as GXFindFonts (page 7-33) to indicate that, during a
search for a font using other specific criteria, any font name
constitutes a match.

C H A P T E R 7

Font Objects

7-24 Font Objects Reference

gxCopyrightFontName
The manufacturer’s copyright.

gxFamilyFontName
The font family name, such as “Geneva”.

gxStyleFontName
The font style, such as “Bold”.

gxUniqueFontName
The manufacturer’s unique name for the font, such as “Apple
Computer Geneva Bold 3.0”.

gxFullFontName The full font name, such as “Geneva Bold”.

gxVersionFontName
The manufacturer’s version number, such as “3.0”. (The name does
not need to include the word “version.”)

gxPostscriptFontName
The PostScript-legible name of the font, such as “Geneva-Bold”.

gxTrademarkFontName
The trademark holder’s name.

gxManufacturerFontName
The name of the font’s manufacturer.

New font names are registered in QuickDraw GX Font Feature Registry, described on

page 7-12. Font names are described in “Names” on page 7-6.

Font Features

The gxFontFeature type identifies information about a specific font feature. The

possible values for a font feature are described in the chapter “Layout Shapes” in

this book.

typedef long gxFontFeature;

The gxFontFeatureFlag type defines font feature flags.

typedef long gxFontFeatureFlag;

Font feature flags provide information about a particular font feature, such as whether

the settings of the feature can be combined or are mutually exclusive.

#define gxMutuallyExclusiveFeature 0x8000

Flag descriptions

gxMutuallyExclusiveFeature
If this flag is set, the settings for this font feature in the font are
mutually exclusive. If this flag is not set, the settings can be
combined with each other. For example, a lettercase is exclusive,
whereas ligatures are nonexclusive.

You can determine the font feature flags of a font feature using the GXGetFontFeature

function, described on page 7-61 or the GXFindFontFeature function, described on

page 7-62.

C H A P T E R 7

Font Objects

Font Objects Reference 7-25

A font feature setting structure contains one setting of a font feature and its associated

name ID. A font feature may have one or more settings associated with it.

The GXGetFontFeature and GXFindFontFeature functions use the

gxFontFeatureSetting structure.

struct gxFontFeatureSetting {

unsigned short setting;

unsigned short nameID;

} ;

typedef long gxFontFeatureFlag;

Field descriptions

setting The font feature setting. The values for this field are described in the
chapter “Layout Shapes” in this book.

nameID A reference to the font name for this setting in the font.

To find a name for the font feature setting, you can use the GXGetFontName function,

described on page 7-38.

Font Platforms

A font platform marks the class of encoding table and character code set the font uses. A

font may contain multiple encoding tables. Each platform is distinguished by a value

from the gxFontPlatforms enumeration.

enum gxFontPlatforms {

gxGlyphPlatform = -1,

gxNoPlatform,

gxUnicodePlatform,

gxMacintoshPlatform,

gxReservedPlatform,

gxMicrosoftPlatform,

gxCustomPlatform

} ;

typedef long gxFontPlatform;

Constant descriptions

gxGlyphPlatform
This is a reserved value used by the QuickDraw GX graphics system.
A font never uses this setting. The graphics system uses this for
identifiers that store glyph codes rather than character codes.

gxNoPlatform The platform is not specified. You can use this value with such func-
tions as GXFindFonts, described on page 7-33, to indicate that,
during a search for a font using other specific criteria, any type of
platform constitutes a match.

C H A P T E R 7

Font Objects

7-26 Font Objects Reference

gxUnicodePlatform
The platform uses the Unicode character code specifications. For
more information about the Unicode encodings, see The Unicode
Standard: Worldwide Character Encoding, volumes 1 and 2, available
from Addison-Wesley.

gxMacintoshPlatform
The platform uses one of the Macintosh character code sets.

gxReservedPlatform
The platform is reserved for future use.

gxMicrosoftPlatform
This platform uses one of the Microsoft character code sets.

gxCustomPlatform
This is a nonstandard platform, specific to the font.

QuickDraw GX Macintosh Scripts

Script values, together with platform values and optionally language values, identify the

character encoding for a font. Each platform may define a set of script codes. For more

information about scripts and how they work, see “Encodings” on page 7-7.

The Macintosh platform defines a number of script codes for scripts used around the

world. The gxMacintoshScripts enumeration defines values for these script codes

used with the gxMacintoshScript type.

enum gxMacintoshScripts {
gxNoScript,

gxRomanScript,
gxJapaneseScript,

gxTraditionalChineseScript,
gxChineseScript = gxTraditionalChineseScript,

gxKoreanScript,
gxArabicScript,

gxHebrewScript,
gxGreekScript,

gxCyrillicScript,
gxRussianScript = gxCyrillicScript,

gxRSymbolScript,
gxDevanagariScript,

gxGurmukhiScript,
gxGujaratiScript,

gxOriyaScript,
gxBengaliScript,

gxTamilScript,
gxTeluguScript,

gxKannadaScript,
gxMalayalamScript,

gxSinhaleseScript,

C H A P T E R 7

Font Objects

Font Objects Reference 7-27

gxBurmeseScript,
gxKhmerScript,

gxThaiScript,
gxLaotianScript,

gxGeorgianScript,
gxArmenianScript,

gxSimpleChineseScript,
gxTibetanScript,

gxMongolianScript,
gxGeezScript,

gxEthiopicScript = gxGeezScript,
gxAmharicScript = gxGeezScript,

gxSlavicScript,
gxEastEuropeanRomanScript = gxSlavicScript,

gxVietnameseScript,
gxExtendedArabicScript,

gxSindhiScript = gxExtendedArabicScript,
gxUninterpretedScript

} ;

typedef long gxFontScript;

The gxNoScript value indicates that no particular script is specified. You can use this

value with such functions as GXFindFonts, described on page 7-33, to indicate that,

during a search for a font using other specific criteria, any type of script constitutes a

match. All other values in the gxMacintoshScripts enumeration refer to the names

of script systems from around the world.

The gxFontScript type identifies the script for a name or encoding. Each platform has

a corresponding enumeration of legal scripts.

The gxCustomScripts enumeration defines values for script codes used with the

gxCustomPlatform type. It is not related to other scripts.

enum gxCustomScripts {

gxCustom8bitScript =1

gxCustom816bitScript,

gxCustom16bitScript

};

typedef long gxFontScript;

The gxMicrosoftScripts enumeration defines values for script codes used with the

gxMicrosoftPlatform type.

enum gxMicrosoftScripts {

gxMicrosoftSymbolScript =1,

gxMicrosoftStandardScript

};

C H A P T E R 7

Font Objects

7-28 Font Objects Reference

Languages

The gxFontLanguage type names the language of a particular font name. It is used

primarily for names but also appears as the identifying block for an encoding.

The gxMacintoshLanguages enumeration lists the language values that can be used

with the gxFontLanguage type.

enum gxMacintoshLanguages {

gxNoLanguage,

gxEnglishLanguage,

gxFrenchLanguage,

gxGermanLanguage,

gxItalianLanguage,

gxDutchLanguage,

gxSwedishLanguage,

gxSpanishLanguage,

gxDanishLanguage,

gxPortugueseLanguage,

gxNorwegianLanguage,

gxHebrewLanguage,

gxJapaneseLanguage,

gxArabicLanguage,

gxFinnishLanguage,

gxGreekLanguage,

gxIcelandicLanguage,

gxMalteseLanguage,

gxTurkishLanguage,

gxCroatianLanguage,

gxTradChineseLanguage,

gxUrduLanguage,

gxHindiLanguage,

gxThaiLanguage,

gxKoreanLanguage,

gxLithuanianLanguage,

gxPolishLanguage,

gxHungarianLanguage,

gxEstonianLanguage,

gxLettishLanguage,

gxLatvianLanguage = gxLettishLanguage,

gxSaamiskLanguage,

gxLappishLanguage = gxSaamiskLanguage,

gxFaeroeseLanguage,

gxFarsiLanguage,

gxPersianLanguage = gxFarsiLanguage,

C H A P T E R 7

Font Objects

Font Objects Reference 7-29

gxRussianLanguage,

gxSimpChineseLanguage,

gxFlemishLanguage,

gxIrishLanguage,

gxAlbanianLanguage,

gxRomanianLanguage,

gxCzechLanguage,

gxSlovakLanguage,

gxSlovenianLanguage,

gxYiddishLanguage,

gxSerbianLanguage,

gxMacedonianLanguage,

gxBulgarianLanguage,

gxUkrainianLanguage,

gxByelorussianLanguage,

gxUzbekLanguage,

gxKazakhLanguage,

gxAzerbaijaniLanguage,

gxAzerbaijanArLanguage,

gxArmenianLanguage,

gxGeorgianLanguage,

gxMoldavianLanguage,

gxKirghizLanguage,

gxTajikiLanguage,

gxTurkmenLanguage,

gxMongolianLanguage,

gxMongolianCyrLanguage,

gxPashtoLanguage,

gxKurdishLanguage,

gxKashmiriLanguage,

gxSindhiLanguage,

gxTibetanLanguage,

gxNepaliLanguage,

gxSanskritLanguage,

gxMarathiLanguage,

gxBengaliLanguage,

gxAssameseLanguage,

gxGujaratiLanguage,

gxPunjabiLanguage,

gxOriyaLanguage,

gxMalayalamLanguage,

gxKannadaLanguage,

gxTamilLanguage,

C H A P T E R 7

Font Objects

7-30 Font Objects Reference

gxTeluguLanguage,

gxSinhaleseLanguage,

gxBurmeseLanguage,

gxKhmerLanguage,

gxLaoLanguage,

gxVietnameseLanguage,

gxIndonesianLanguage,

gxTagalogLanguage,

gxMalayRomanLanguage,

gxMalayArabicLanguage,

gxAmharicLanguage,

gxTigrinyaLanguage,

gxGallaLanguage,

gxOromoLanguage = gxGallaLanguage,

gxSomaliLanguage,

gxSwahiliLanguage,

gxRuandaLanguage,

gxRundiLanguage,

gxChewaLanguage,

gxMalagasyLanguage,

gxEsperantoLanguage,

gxWelshLanguage = 129,

gxBasqueLanguage,

gxCatalanLanguage,

gxLatinLanguage,

gxQuechuaLanguage,

gxGuaraniLanguage,

gxAymaraLanguage,

gxTatarLanguage,

gxUighurLanguage,

gxDzongkhaLanguage,

gxJavaneseRomLanguage,

gxSundaneseRomLanguage

} ;

typedef long gxFontLanguage;

The gxNoLanguage value indicates that no particular language is specified. You can use

this value with such functions as GXFindFonts, described on page 7-33, to indicate that,

during a search for a font using other specific criteria, any type of language constitutes

a match.

All other values in the gxMacintoshLanguages enumeration refer to the English

names of languages from around the world.

C H A P T E R 7

Font Objects

Font Objects Reference 7-31

Advanced Constants and Data Types

This section describes constants and data types that you can use for advanced operations

on QuickDraw GX font objects.

■ The gxFontStorageTag enumeration lists the ways you can store a
QuickDraw GX font.

■ The gxFontStorageReference type references the font from its particular
method of storage.

■ The gxFontFormatTag identifier specifies the particular format, and therefore the
particular font scaler, of the QuickDraw GX font.

■ The gxFontTableTag type references the names of font tables.

■ The gxFontAttribute enumeration specifies whether a font is a system font or an
application-specific font and whether it can be edited.

Font Storage Tags

Fonts can be stored as resources, handles, or files. You can determine how a font is stored

by checking its associated storage type, which is of the gxFontStorageTag type.

#define gxResourceFontStorage 0x72737263 /* 'rsrc' */

#define gxHandleFontStorage 0x686e646c /* 'hndl' */

#define gxFileFontStorage 0x62617373 /* 'bass' */

#define gxNfntFontStorage 0x6e666e74 /* 'nfnt' */

typedef long gxFontStorageTag;

Constant descriptions

gxResourceFontStorage
The font is stored in an 'sfnt' resource. The resource does not need
to be loaded.

gxHandleFontStorage
The font is stored in a nonpurgeable handle.

gxFileFontStorage
The font is stored in an open file.

gxNfntFontStorage
The font is stored in a 'FOND' resource that references only 'FONT'
and 'NFNT' resources.

The gxFontStorageReference type contains the reference to the resource, handle, or

file where the resource is stored. If the font is stored in a resource, the reference is a

handle to the resource; if the font is stored in a handle, the reference is the handle itself;

and if the font is stored in a file, the reference is the file reference number. If the font is

stored in an 'NFNT' resource, the reference is styleBits * 65536 + FONDResourceID.

typedef void *gxFontStorageReference;

C H A P T E R 7

Font Objects

7-32 Font Objects Reference

Font Table Tags

A font table tag is a 4-byte code that describes the type of table. For example, the table

tag 'kern' means the table is a kerning table. For portability, when your application

calls routines such as gxFindFontTable, you should specify tags in the hexadecimal

notation 0x6B65726E, because of byte-ordering concerns.

typedef long gxFontTableTag;

Font Attributes

Each font has a set of font attributes, which are a group of flags that modify the behavior

or identity of the font. These flags are defined in the gxFontAttributes enumeration.

enum gxFontAttributes {

gxSystemFontAttribute = 0x0001

gxReadOnlyFontAttribute = 0x0002

};

typedef long gxFontAttribute;

Constant descriptions

gxSystemFontAttribute
The font object was not created by the application but was created
by QuickDraw GX.

gxReadOnlyFontAttribute
The font object cannot be passed as a parameter to any of the
font-editing functions, for example, GXDeleteFontName.

Fonts created by calling GXNewFont are marked as nonsystem fonts. Fonts stored in

'NFNT' resources are always marked read-only and cannot be edited in QuickDraw GX.

To determine the font attributes of a specified font, you can use the GXGetFont

(page 7-67) or GXFindFont (page 7-67) function.

Basic Font Functions

This section describes the functions that access, retrieve, change, or delete information

about the fonts in the system. With these functions, you can

■ get a complete list of available fonts, or any subset of the list, such as a list only of
font families

■ determine what the default font for your application is and change it

■ retrieve, add, or delete font names

■ retrieve information about font encoding, features, and variations, without editing
the font

■ get and alter information about font descriptors and instances

C H A P T E R 7

Font Objects

Font Objects Reference 7-33

These functions describe ways of altering the tables of the font. The advanced functions

are useful mainly for font-related applications, such as font editors. In most cases,

general-purpose applications, such as word processors, do not need the advanced

functions.

Note

QuickDraw GX functions that begin with GXGet and GXFind are similar
in that they retrieve roughly the same information. However, the GXGet
functions find the information by its index in the font’s list of that type
of information and return a tag or a font name, whereas the GXFind
functions use a tag to find the information and return its index. ◆

Getting the List of Available Fonts

You can get the list of available fonts, or specified subsets of fonts or font families,

using GXFindFonts.

GXFindFonts

You can use the GXFindFonts function to get the list of available fonts or a list of fonts

that match a particular set of criteria.

long GXFindFonts(gxFont family, gxFontName meaning,

 gxFontPlatform platform, gxFontScript script,

 gxFontLanguage language, long nameLength,

 const unsigned char name[], long index,

 long count, gxFont fonts[]);

family A reference to the font whose font family determines the search range
GXFindFonts uses. If this value is nil, then GXFindFonts applies the
search criteria to all fonts, without regard to their families. If it is not nil,
the search is limited to members of this family.

meaning The kind of font name you want GXFindFonts to search for.

platform The platform of the font. The platform, script, and language
parameters identify the character set and language of the name.

script The script of the font.

language The language of the font.

nameLength
A byte count for the data stored in the name parameter.

name The actual name of the font you are searching for. If you are searching for
a particular font, you can include its name, such as “Geneva,” here.

index The number of the matching font to begin counting. A value of 1 means
GXFindFonts should start with the first matching font it finds.

C H A P T E R 7

Font Objects

7-34 Font Objects Reference

count The maximum number of matches you want GXFindFonts to return.
The function returns the actual number of matching fonts, which may be
less than or equal to the value of count. If you want all possible matches,
use the value gxSelectToEnd.

fonts A pointer to a buffer your application provides, into which GXFindFonts
copies the font references that match the given criteria. The function
returns, in the count parameter, the number of fonts that matched. If the
value of fonts is nil, GXFindFonts returns nothing in this parameter.

function result The number of fonts that match the search criteria.

DESCRIPTION

The GXFindFonts function takes search criteria (specified by the family, meaning,

name, platform, script, language, and index parameters) and returns both the

number of fonts that match those criteria and, if there are any matching fonts and the

value of fonts is not nil, the font references of the fonts that match.

The values of the nameLength and name parameters specify the actual data for the font

being searched for. Note that nameLength contains a byte count, which may not equal

the number of characters in the name.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Various ways of using the GXFindFonts function are described in “Getting Information

About Available Fonts” on page 7-15.

Font names are discussed in “Names” on page 7-6.

Platforms, scripts, languages, and encoding tables are discussed in “Encodings” on

page 7-7.

Counting Glyphs in a Font

If your application needs to know how many glyphs are in a font (for example, to make

waterfalls), it can count them with the GXCountFontGlyphs call.

Errors
count_is_less_than_one (debugging version)
index_is_less_than_one (debugging version)
inconsistent_parameters (debugging version)
parameter_out_of_range (debugging version)
out_of_memory
internal_font_error
illegal_font_parameter

C H A P T E R 7

Font Objects

Font Objects Reference 7-35

GXCountFontGlyphs

You can use the GXCountFontGlyphs function to count the number of glyphs in a font.

long GXCountFontGlyphs (gxFont fontID);

fontID A reference to the font whose glyphs you want to count.

function result The number of glyphs in the font.

DESCRIPTION

The GXCountFontGlyphs function retrieves the number of glyphs present in the font

referenced in the fontID parameter. Valid glyph codes for the font range from 0 to this

function’s result minus 1. Glyph codes can be set directly into a typographic shape and

then drawn.

ERRORS, WARNING, AND NOTICES

Getting and Setting the Default Font

When you first create a typographic shape, its style is initialized to have a font reference

of nil. When QuickDraw GX is passed nil for the font parameter, it substitutes

the default font for that parameter. To manipulate the default font, you can use

GXGetDefaultFont and GXSetDefaultFont. QuickDraw GX initializes this to

Helvetica, if it is available.

GXGetDefaultFont

You can use the GXGetDefaultFont function to retrieve the current default font for

your application.

gxFont GXGetDefaultFont(void);

function result A reference to the current application’s default font.

Errors
out_of_memory
internal_font_error
illegal_font_parameter

C H A P T E R 7

Font Objects

7-36 Font Objects Reference

DESCRIPTION

The GXGetDefaultFont function returns a reference to the application’s default font.

QuickDraw GX initializes it to a font, so the application does not need to set it.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

You can change the default font with GXSetDefaultFont, described next.

GXSetDefaultFont

You can use the GXSetDefaultFont function to set the default font for your application.

gxFont GXSetDefaultFont(gxFont fontID);

fontID A reference to the font you want as the default font of your application.

function result A reference to the previous default font.

DESCRIPTION

The GXSetDefaultFont function changes your application’s default font to the font

specified by fontID. Because there is no system-wide default font, GXSetDefaultFont

affects only the default font for the current application.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To determine the current default font for your application, use GXGetDefaultFont

(page 7-35).

Errors
out_of_memory
internal_font_error

Errors
out_of_memory
internal_font_error
illegal_font_parameter

C H A P T E R 7

Font Objects

Font Objects Reference 7-37

Manipulating Font Names

QuickDraw GX allows you to work with font names in several ways. You can

■ count the number of font names in a particular font (GXCountFontNames)

■ specify a font name by index (GXGetFontName)

■ specify a font name by type, platform, script, and language (GXFindFontName)

■ find an available ID for a new font name (GXNewFontID)

■ edit an existing font name, or create a new one in the font (GXSetFontName)

■ delete a font name permanently from a font (GXDeleteFontName)

GXCountFontNames

You can use the GXCountFontNames function to determine the number of font names

in a font.

long GXCountFontNames(gxFont fontID);

fontID A reference to the font whose font names you want to count.

function result The total number of entries in the names property of the font object. These
entries include strings such as the names of features, which just identify
specific aspects of the font.

DESCRIPTION

The GXCountFontNames function returns the total number of names in the font

referenced by fontID. This total includes each occurrence of each name, including

repetitions of the same name in different platforms, languages, or scripts, and other

strings such as the names of features. You can use this number to iterate through the

names in a font using the GXGetFontName function (described next).

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Font names are discussed in “Names” on page 7-6.

Errors
out_of_memory
internal_font_error
illegal_font_parameter

C H A P T E R 7

Font Objects

7-38 Font Objects Reference

GXGetFontName

You can use the GXGetFontName function to find a font name by its index.

long GXGetFontName(gxFont fontID, long index, gxFontName *name,

 gxFontPlatform *platform, gxFontScript *script,

 gxFontLanguage *language, unsigned char text[]);

fontID A reference to the font from which you want to extract font names.

index A value between 1 and the number of font names. (The number of font
names is returned by the GXCountFontNames function.)

name A pointer to the type of font name.

platform A pointer to the platform of the font name.

script A pointer to the script of the font name.

language A pointer to the language of the font name.

text On return, the text of the font name. If text is set to nil, the function
ignores it.

function result The byte length of the font name found. If no font name is found, the
function returns 0.

DESCRIPTION

The GXGetFontName function takes a font reference and an index in the list of font

names in the font and returns the font name and information about the name—its type,

platform, script, and language—if those parameters are not nil.

If the function returns 0, GXGetFontName did not find a font name or modify any of the

parameters.

Your application is responsible for allocating the memory for the text parameter.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The GXCountFontNames function is described on page 7-37.

To search for a font name by its type, platform, script, or language, use the

GXFindFontName function (described on page 7-39).

Font names are discussed in “Names” on page 7-6.

Errors
index_out_of_range (debugging version)
out_of_memory
internal_font_error
illegal_font_parameter

C H A P T E R 7

Font Objects

Font Objects Reference 7-39

Platforms, scripts, encoding tables, and languages are discussed in “Encodings” on

page 7-7.

GXFindFontName

You can use the GXFindFontName function to find a font name by its type, platform,

script, and language.

long GXFindFontName(gxFont fontID, gxFontName name,

gxFontPlatform platform, gxFontScript script,

gxFontLanguage language, unsigned char text[],

long *index);

fontID A reference to the font whose font names you want to search.

name The type of font name you are searching for.

platform The platform of the font name you are searching for.

script The script of the font name you are searching for.

language The language of the font name you are searching for.

text On return, the text of the font name. If you pass nil for this parameter,
the function ignores it.

index On return, a pointer to the index of the font name in the font’s list of font
names. If you pass nil for this parameter, the function ignores it.

function result The byte length of the font name. If no font name is found, the function
returns 0.

DESCRIPTION

The GXFindFontName function searches the specified font for a font name that matches

the values of the name, platform, script, and language parameters. If it finds a font

name, GXFindFontName fills out the text and index parameters with the font name

and its index in the font’s list of font names, if those parameters are not set to nil.

Your application is responsible for allocating the storage for the text parameter.

ERRORS, WARNINGS, AND NOTICES

Errors
inconsistent_parameters (debugging version)
out_of_memory
internal_font_error
illegal_font_parameter

Warnings
index_out_of_range

C H A P T E R 7

Font Objects

7-40 Font Objects Reference

SEE ALSO

To search for a font name by its index, use the GXGetFontName function, described on

page 7-38.

Font names are discussed in “Names” on page 7-6.

Platforms, scripts, languages, and encoding tables are discussed in “Encodings” on

page 7-7.

GXNewFontNameID

You can use the GXNewFontNameID function to get a font name ID that is currently

unused in a specific font. However, calling this function does not actually change

the font.

gxFontName GXNewFontNameID(gxFont fontID);

fontID A reference to the specific font for which you want to find a font name ID.

function result A font name ID that is currently available.

DESCRIPTION

The GXNewFontNameID function finds an available font name ID for the font you

specify. The function doesn’t reserve the font name ID for you; if you call the function

twice in succession, it may return the same font name ID both times. You can use this

font name ID with the GXSetFontName function (described next) to add a new font

name that does not have a conflicting font name ID.

One use for this function is adding a new font instance, which requires specifying a

variation coordinate and a name ID.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
internal_font_error
illegal_font_parameter

C H A P T E R 7

Font Objects

Font Objects Reference 7-41

GXSetFontName

You can use the GXSetFontName function to add a new font name to or change an

existing font name in a font.

long GXSetFontName(gxFont fontID, gxFontName name,

gxFontPlatform platform, gxFontScript script,

gxFontLanguage language, long nameLength,

const unsigned char text[]);

fontID A reference to the font for which you want to add or substitute a
font name.

name The type of font name.

platform The platform of the font name. The platform, script, and language
parameters identify the character set and language of the name.You
must include values for these parameters, because a font can store
multiple versions of the same name, each one in a different platform,
script, and language.

script The script of the font name.

language The language of the font name.

nameLength The byte count of the text in the name parameter, which may be different
from the character count, depending on the type of text.

text A pointer to the name you want to add to the font or substitute for
another font name. The text parameter can point to a list of 1-byte
character codes or 2-byte character codes for Kanji or Unicode.

function result The index of the name added or changed in the font’s list of font names.

DESCRIPTION

The GXSetFontName function adds a new font name or replaces an existing font name

with the text in the name parameter. The function replaces the font name only if name,

platform, script, and language match an existing name in the font; otherwise,

GXSetFontName adds a new entry to the font.

If you add font names to a font, QuickDraw GX enlarges the font data accordingly.

IMPORTANT

The GXSetFontName function permanently changes the data in the
font. In general, you should only call this function for fonts created by
your application using GXNewFont and not for a system font. ▲

C H A P T E R 7

Font Objects

7-42 Font Objects Reference

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The GXNewFont function is described on page 7-64.

To retrieve a font name by its index, use the GXGetFontName function, described on

page 7-38. To retrieve a font name by its platform, script, or language, use the

GXFindFontName function, described on page 7-39.

Font names are discussed in “Names” on page 7-6.

Platforms, scripts, languages, and encoding tables are discussed in “Encodings” on

page 7-7.

GXDeleteFontName

You can use the GXDeleteFontName function to delete a font name from a font.

long GXDeleteFontName(gxFont fontID, long index,

gxFontName name, gxFontPlatform platform,

gxFontScript script,

gxFontLanguage language);

fontID A reference to the font from which you want to delete a font name.

index The index of the font name in the font’s list of font names. If this value is
greater than 0, it represents the indexed location of the font name in the
font; if this value is 0, GXDeleteFontName identifies the font name by the
values of the meaning, platform, script, and language parameters.

name The type of font name you want to delete.

platform The platform of the font name. The platform, script, and language
parameters uniquely identify the character set and language of the font
name.You must include values for these parameters, because a font can
store multiple versions of the same name, each one in a different
platform, script, and language.

script The script of the font name.

language The language of the font name.

function result The index of the name deleted. If the function does not delete a name, it
returns 0.

Errors
parameter_out_of_range (debugging version)
inconsistent_parameters (debugging version
out_of_memory
internal_font_error
illegal_font_parameter
font_cannot_be_changed

C H A P T E R 7

Font Objects

Font Objects Reference 7-43

DESCRIPTION

The GXDeleteFontName function permanently deletes a font name from the font

referenced by the fontID parameter. You can identify the font name you want deleted

either by its index, or if index is equal to 0, by its meaning, platform, script, and

language parameters.

If you delete font names from a font, QuickDraw GX decreases the font data accordingly.

IMPORTANT

The GXDeleteFontName function permanently changes the data in the
font. In general, you should only call this function for fonts created by
your application using GXNewFont and never for a system font. ▲

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The GXNewFont function is described on page 7-64.

Font names are discussed in “Names” on page 7-6.

Platforms, scripts, languages, and encoding tables are discussed in “Encodings” on

page 7-7.

Manipulating Font Encodings

QuickDraw GX allows you to work with font encodings in several ways. You can

■ count the number of encoding tables in a font (GXCountFontEncodings)

■ specify by index the platform, script, and language values for an encoding table
(GXGetFontEncoding)

■ obtain the index for an encoding table that you specify by its platform, script, and
language values (GXFindFontEncoding)

■ obtain the glyph codes of a specific platform encoding that correspond to a string of
character codes (GXApplyFontEncoding)

Errors
out_of_memory
internal_font_error
illegal_font_parameter
font_cannot_be_changed
inconsistent_parameters (debugging version)

Warnings
font_table_not_found

C H A P T E R 7

Font Objects

7-44 Font Objects Reference

GXCountFontEncodings

You can use the GXCountFontEncodings function to retrieve the number of encoding

tables in a font.

long GXCountFontEncodings(gxFont fontID);

fontID A reference to the font whose encoding tables you want to count.

function result The number of supported encoding tables in the font.

DESCRIPTION

The GXCountFontEncodings function returns the number of supported encoding

tables in the font.

ERRORS, WARNINGS, AND NOTICES

GXGetFontEncoding

You can use the GXGetFontEncoding function to identify an encoding table in a font

by its index.

gxFontPlatform GXGetFontEncoding(gxFont fontID, long index,

gxFontScript *script,

gxFontLanguage* language);

fontID A reference to the font you want to search for a specific encoding table.

index A value between 1 and the number of supported encoding tables. (The
number of encoding tables is returned by CountFontEncodings.)

script On return, the script of the specified encoding table.

language On return, the language of the specified encoding table.

function result The table’s platform value.

Errors
out_of_memory
internal_font_error
illegal_font_parameter

C H A P T E R 7

Font Objects

Font Objects Reference 7-45

DESCRIPTION

The GXGetFontEncoding function identifies an encoding table in a font by its index.
If the script parameter is not set to nil, GXGetFontEncoding returns the

script value for that encoding table. If the language parameter is not set to nil,

GXGetFontEncoding returns the language value for that encoding table.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The GXCountFontEncodings function is described on page 7-44.

To search for an encoding table specified by platform, script, and language, use the

GXFindFontEncoding function, described next.

Platforms, scripts and encoding tables are discussed in “Encodings” on page 7-7.

GXFindFontEncoding

You can use the GXFindFontEncoding function to find the index of an encoding table

specified by platform, script, and language values.

long GXFindFontEncoding(gxFont fontID, gxFontPlatform platform,

gxFontScript script,

gxFontLanguage language);

fontID A reference to the font you want to search for a specific encoding table.

platform The platform of the encoding table.

script The script of the encoding table.

language The language of the encoding table.

function result The table’s index in the font’s list of encoding tables. If the function does
not find the specified encoding table, it returns 0.

Errors
out_of_memory
internal_font_error
illegal_font_parameter

Warnings
index_out_of_range

C H A P T E R 7

Font Objects

7-46 Font Objects Reference

DESCRIPTION

The GXFindFontEncoding function searches the specified font for an encoding table

that supports the specified platform, script, and language. If you specify a language, you

must also specify a script, although you can specify a script without a language.

If you specify a language without naming a script or specify a script without naming a

platform, GXFindFontEncoding returns the error inconsistent_parameters.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To search for an encoding table specified by index, use the GXGetFontEncoding

function, described on page 7-44.

Platforms are discussed in “Encodings” on page 7-7. The gxFontPlatform data type is

discussed in “Font Platforms” on page 7-25.

Scripts and encoding tables are discussed in “Encodings” on page 7-7. The

gxFontScript data type is discussed in “QuickDraw GX Macintosh Scripts” on

page 7-26.

GXApplyFontEncoding

You can use the GXApplyFontEncoding function to translate a list of character codes to

the glyph indices that correspond to a particular encoding table.

long GXApplyFontEncoding(gxFont fontID, long index, long* length,

const unsigned char text[], long count,

unsigned short glyphs[], char was16Bit[]);

fontID A reference to the font containing the encoding table you want to search.

index The index of the encoding table to be used.

length On entry, the maximum number of bytes of text you want the function to
process. On return, this parameter specifies the number of bytes in the
text parameter actually processed. This is useful for scripts such as
Kanji, which contain mixed 8-bit and 16-bit text. If you pass nil for this
parameter, the function ignores it.

Errors
inconsistent_parameters (debugging version)
out_of_memory
internal_font_error
illegal_font_parameter

Warnings
font_language_not_found

C H A P T E R 7

Font Objects

Font Objects Reference 7-47

text An array of character codes that GXApplyFontEncoding should
translate into glyph indices from the specified encoding table.

count The maximum number of glyphs in the glyphs parameter.

glyphs On return, an array of the resulting glyph codes. Your application must
maintain a buffer to hold this array.

was16bit An array of Boolean values, one for each glyph. Each value indicates
whether the glyph is a translation of an 8-bit or 16-bit character code. The
value true means the corresponding character code is 16-bit. If this
parameter is nil, the function ignores it.

function result The number of glyphs processed by the function.

DESCRIPTION

The GXApplyFontEncoding function takes a font reference and an array of character

codes from the text parameter and puts the array of corresponding glyph codes from

the specified encoding table in the glyphs parameter. Typographic shapes perform

this function automatically; thus, your application may never need to call this

function directly.

The GXApplyFontEncoding function returns glyph codes that are zero-based. Glyph

code 0 is the missing glyph.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To find an encoding table by its index, use the GXGetFontEncoding function,

described on page 7-44.

To find an encoding table by its platform, script, and language values, use the

GXFindFontEncoding function, described on page 7-45.

Errors
unknown_font_table_format
out_of_memory
internal_font_error
illegal_font_parameter
length_is_less_than_zero (debugging version)

Warnings
index_out_of_range

C H A P T E R 7

Font Objects

7-48 Font Objects Reference

Manipulating Font Descriptors

QuickDraw GX allows you to work with font descriptors in several ways. You can

■ count the number of font descriptors in a particular font
(GXCountFontDescriptors)

■ get a font descriptor that you specify by its index (GXGetFontDescriptor)

■ get a font descriptor that you specify by its tag, such as 'wdth'
(GXFindFontDescriptor)

■ add new information about a font descriptor, or create a new font descriptor
(GXSetFontDescriptor)

■ delete a font descriptor permanently from a font (GXDeleteFontDescriptor)

Font descriptors are described in “Font Descriptors” on page 7-9.

GXCountFontDescriptors

You can use the GXCountFontDescriptors function to get the number of descriptors

in a font.

long GXCountFontDescriptors(gxFont fontID);

fontID A reference to the font whose descriptors you want to count.

function result The number of descriptors in the font.

DESCRIPTION

The GXCountFontDescriptors function returns the number of different descriptors

available in the font. Each descriptor consists of a descriptor tag and a value.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
internal_font_error
illegal_font_parameter

C H A P T E R 7

Font Objects

Font Objects Reference 7-49

GXGetFontDescriptor

You can use the GXGetFontDescriptor function to return the font descriptor you

specify by index.

gxFontDescriptorTag GXGetFontDescriptor(gxFont fontID, long index,

Fixed* descriptorValue);

fontID A reference to the font from which you want to get the font descriptor
information.

index A value between 1 and the number of descriptors in a font. (The number
of descriptors is returned by GXCountFontDescriptors.)

descriptorValue
On return, the value assigned to this descriptor.

function result The descriptor tag of the specified descriptor.

DESCRIPTION

The GXGetFontDescriptor function returns the tag for the font descriptor you specify

by index. The function then copies the descriptor’s value into the descriptorValue

parameter, if descriptorValue is not set to nil.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The GXCountFontDescriptors function is described on page 7-48.

To retrieve a font descriptor specified by descriptor tag, use the

GXFindFontDescriptor function, described next.

Errors
out_of_memory
internal_font_error
illegal_font_parameter

Warnings
index_out_of_range

C H A P T E R 7

Font Objects

7-50 Font Objects Reference

GXFindFontDescriptor

You can use the GXFindFontDescriptor function to return the index and value for a

font descriptor you specify by tag.

long GXFindFontDescriptor(gxFont fontID,

gxFontDescriptorTag descriptorTag,

Fixed* descriptorValue);

fontID A reference to the font from which you want to get font descriptor
information.

descriptorTag
The descriptor tag you are searching for.

descriptorValue
On return, the value assigned to this descriptor.

function result The index of the specified descriptor. If the function does not find the
descriptor, it returns 0.

DESCRIPTION

The GXFindFontDescriptor function returns the index for the font descriptor you

specify by tag. If the function returns a positive index, it also returns the descriptor’s

value in the descriptorValue parameter, if descriptorValue is not set to nil.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

You can retrieve a font descriptor specified by index using the GXGetFontDescriptor

function, described on page 7-49.

Errors
out_of_memory
internal_font_error
illegal_font_parameter

C H A P T E R 7

Font Objects

Font Objects Reference 7-51

GXSetFontDescriptor

You can use the GXSetFontDescriptor function to add a new descriptor to or change

an existing descriptor in a font.

long GXSetFontDescriptor(gxFont fontID, long index,

gxFontDescriptorTag descriptorTag,

Fixed descriptorValue);

fontID A reference to the font you want to add a font descriptor to or change a
font descriptor in.

index The index of the descriptor in the font’s list of descriptors, if this value
is greater than 0. If it is 0, then GXSetFontDescriptor uses the
descriptorTag parameter.

descriptorTag
The tag of the descriptor you want to add or change. If the value of
index is greater than 0, this parameter should be set to 0.

descriptorValue
The value you want assigned to this descriptor.

function result The index of the descriptor that was changed or added.

DESCRIPTION

The GXSetFontDescriptor function changes the value of the descriptor in the font

you specify by tag. If no matching descriptor is found, GXSetFontDescriptor adds a

new descriptor to the font with the given descriptor tag and value.

If you add font descriptors to a font, QuickDraw GX is responsible for enlarging the font

data accordingly.

IMPORTANT

The GXSetFontDescriptor function permanently changes the data in
the font. In general, you should only call this function for fonts created
by your application using GXNewFont and never for a system font. ▲

ERRORS, WARNINGS, AND NOTICES

Errors
illegal_font_parameter
font_cannot_be_changed
inconsistent_parameters (debugging version)
out_of_memory
internal_font_error

Warnings
index_out_of_range

C H A P T E R 7

Font Objects

7-52 Font Objects Reference

GXDeleteFontDescriptor

You can use the GXDeleteFontDescriptor function to delete a font descriptor you

specify by index or tag.

long GXDeleteFontDescriptor(gxFont fontID, long index,

gxFontDescriptorTag descriptorTag);

fontID A reference to the font from which you want to delete a font descriptor.

index The index of the descriptor you want to delete. If this value is greater than
0 and the descriptorTag parameter is set to 0, the value of index is
the index of the descriptor in the font’s descriptor list. If this parameter is
set to 0 and the descriptorTag parameter contains a value other than
nil, GXDeleteFontDescriptor uses the value of the descriptorTag
parameter to search for the descriptor.

descriptorTag
The tag you want to delete.

function result The index of the deleted descriptor. If the function does not delete a
descriptor, it returns 0.

DESCRIPTION

The GXDeleteFontDescriptor function permanently deletes the specified descriptor

from the font. You can specify the descriptor either by the value of its index in the font’s

list of descriptors, or by its tag in the descriptorTag parameter, if the index

parameter is set to 0.

If you delete font descriptors from a font, QuickDraw GX is responsible for decreasing

the font data accordingly.

IMPORTANT

The GXDeleteFontDescriptor function permanently changes
the data in the font. In general, you should only call this function
for fonts created by your application using GXNewFont and never
for a system font. ▲

ERRORS, WARNINGS, AND NOTICES

Errors
illegal_font_parameter
font_cannot_be_changed
inconsistent_parameters (debugging version)
out_of_memory
internal_font_error

Warnings
font_table_not_found
index_out_of_range

C H A P T E R 7

Font Objects

Font Objects Reference 7-53

Manipulating Font Variations

QuickDraw GX allows you to work with font variations in several ways. You can

■ count the number of font variation axes in a particular font
(GXCountFontVariations)

■ get a font variation that you specify by its index in the font’s list of font variations
(GXGetFontVariation)

■ get a font variation that you specify by its tag (such as 'wdth') in the font’s list of
font variations (GXFindFontVariation)

You cannot add variations to or delete variations from a font because the format of a font

variation varies from one font format to another.

Font variations are described in “Font Variations” on page 7-10.

GXCountFontVariations

You can use the GXCountFontVariations function to get the number of variation

axes available for a font.

long GXCountFontVariations(gxFont fontID);

fontID A reference to the font containing the variations.

function result The number of variations in the font.

DESCRIPTION

The GXCountFontVariations function returns the number of different variation axes

available from the font.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
internal_font_error
illegal_font_parameter

C H A P T E R 7

Font Objects

7-54 Font Objects Reference

GXGetFontVariation

You can use the GXGetFontVariation function to get the tag for a specific variation

axis in a font you specify by index.

gxFontVariationTag GXGetFontVariation(gxFont theFont, long index,

Fixed* minValue,

Fixed* defaultValue,

Fixed* maxValue,

gxFontName* nameID);

theFont A reference to the font containing the font variation you want to find.

index The index of the variation you want in the list of variations in the font.

minValue On return, the minimum value for the variation.

defaultValue
On return, the default value for the variation. This value is exactly the
same as the font’s descriptor value for this tag.

maxValue On return, the maximum value for the variation.

nameID On return, the name ID for this variation in the font.

function result The tag for the variation specified.

DESCRIPTION

The GXGetFontVariation function returns the tag for the variation specified by the

index parameter. The function also returns the minimum value, default value, maxi-

mum value, and name ID of the variation, if those parameters are not set to nil. The

name ID identifies the name (for instance, “weight”) of the specified variation axis.

You can use the font name ID returned by GXGetFontVariation with the

GXFindFontName function (page 7-39) to retrieve the name for a given variation

from the font names property of the font object.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To search for a specific variation by its tag, use the GXFindFontVariation function,

described next.

Errors
out_of_memory
internal_font_error
illegal_font_parameter

Warnings
index_out_of_range

C H A P T E R 7

Font Objects

Font Objects Reference 7-55

GXFindFontVariation

You can use the GXFindFontVariation function to find a variation in a font you

specify by its tag.

long GXFindFontVariation(gxFont theFont,

gxFontTableTag variationTag,

Fixed* minValue, Fixed* defaultValue,

Fixed* maxValue, gxFontName* nameID);

theFont A reference to the font containing the font variation you want to find.

variationTag
The tag of the variation you are searching for.

minValue On return, the minimum value for the variation.

defaultValue
On return, the default value for the variation.

maxValue On return, the maximum value for the variation.

nameID On return, the ID of the name in the font for this variation.

function result The index of the variation specified.

DESCRIPTION

The GXFindFontVariation function returns the index for the variation specified by

variationTag. The function also returns the minimum value, default value, maximum

value, and name ID of the variation, if those parameters are not set to nil.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To retrieve a specific variation by its index, use the GXGetFontVariation function

(page 7-54).

You can use the font name ID returned by GXFindFontVariation with the

GXFindFontName function (page 7-39) to retrieve the name for a given variation

from the names property of the font object.

Errors
out_of_memory
internal_font_error
illegal_font_parameter

C H A P T E R 7

Font Objects

7-56 Font Objects Reference

Manipulating Font Instances

QuickDraw GX allows you to work with font instances in several ways. You can

■ count the number of font instances in a particular font (GXCountFontInstances)

■ get a specific font instance in the font’s list of font instances (GXGetFontInstance)

■ set information about a font instance, or create a new one in the font
(GXSetFontInstance)

■ delete a font instance permanently from a font (GXDeleteFontInstance)

Font instances are described in “Font Instances” on page 7-11.

GXCountFontInstances

You can use the GXCountFontInstances function to retrieve the number of font

instances available in a font.

long GXCountFontInstances(gxFont theFont);

theFont A reference to the font whose font instances you want to count.

function result The number of font instances in the font.

DESCRIPTION

The GXCountFontInstances function returns the number of font instances available

in the font.

ERRORS, WARNINGS, AND NOTICES

GXGetFontInstance

You can use the GXGetFontInstance function to get the font name for a font instance

you specify by index.

gxFontName GXGetFontInstance(gxFont theFont, long index,

gxFontVariation variation[]);

theFont A reference to the font whose font instance you want to retrieve.

Errors
out_of_memory
internal_font_error
illegal_font_parameter

C H A P T E R 7

Font Objects

Font Objects Reference 7-57

index The index number of the font instance you want.

variation On return, an array of the variation data for this instance.

function result The font name for the font instance specified.

DESCRIPTION

The GXGetFontInstance function returns the font name for the font instance specified

by the value of the index parameter. Then GXGetFontInstance copies the font

variation settings for that instance into the variation parameter, if variation is not

set to nil.

Each instance is always identified by a complete set of font variations. A font instance

contains a value for each font variation available, even if that value is only the default

font variation setting.

Your application must allocate enough memory in the variation parameter to

store as many font variations as are available; you can determine this number by

calling GXCountFontVariations. You can pass the variation parameter to

GXSetStyleFontVariation or GXSetShapeFontVariation if you want to draw

text with this font instance.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

See the chapter “Typographic Styles” in this book for information on the

GXSetStyleFontVariation or GXSetShapeFontVariation function, if

you want to draw text with this font instance.

GXSetFontInstance

You can use the GXSetFontInstance function to add a font instance to a font or

change an existing one.

long GXSetFontInstance(gxFont fontID, long index,

 gxFontName name,

 const gxFontVariation variation[]);

fontID A reference to the font in which to add or change a font instance.

Errors
out_of_memory
internal_font_error
illegal_font_parameter

Warnings
index_out_of_range

C H A P T E R 7

Font Objects

7-58 Font Objects Reference

index The index of the instance you want to change. If the value of index
is 0 and the value of name does not match any existing instance,
GXSetFontInstance creates a new instance. If the value of index
is greater than 0 or the value of name matches an existing instance,
GXSetFontInstance replaces the instance with the values of the
name and variation parameters.

name The font name of the instance you want to change.

variation An array of the variation data for the instance that you want to add to
the font.

function result The index of the new or changed font instance.

DESCRIPTION

The GXSetFontInstance function adds a new font instance to a font or replaces the

name and data for an existing instance.

The GXSetFontInstance function does not create the actual name for the instance;

it only stores the ID of the font name for that instance. You must also call the

GXSetFontName function if you are either changing the name of an existing instance

or adding a new instance.

Each instance must have a complete set of font variations. A font instance contains a

value for each font variation available, even if that value is only the default font

variation setting.

IMPORTANT

The GXSetFontInstance function permanently changes the data in
the font. In general, you should only call this function on fonts created
by your application using GXNewFont. ▲

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

If you call GXSetFontInstance to create a font instance, you should then call

GXSetFontName (page 7-41) to create the name for the instance. To get an unused

name ID for a new instance, call GXNewFontNameID page 7-40.

Errors
illegal_font_parameter
font_cannot_be_changed
parameter_out_of_range (debugging version)
out_of_memory
internal_font_error
inconsistent_parameters (debugging version)

Warnings
font_table_not_found

C H A P T E R 7

Font Objects

Font Objects Reference 7-59

GXDeleteFontInstance

You can use the GXDeleteFontInstance function to delete a font instance from a font.

long GXDeleteFontInstance(gxFont fontID, long index,

 gxFontName nameID);

fontID A reference to the font from which you want to delete a font instance.

index The index of the font instance you want to delete. If this value is
greater than 0, it specifies the instance to be deleted. If it is 0, then
GXDeleteFontInstance deletes the instance that matches the
value of nameID.

nameID The font name of the font instance you want to delete.

function result The index of the deleted instance. If the function does not delete a font
instance, it returns 0.

DESCRIPTION

The GXDeleteFontInstance function permanently removes the specified font

instance from the font and changes the index values for the following font instances.

IMPORTANT

The GXDeleteFontInstance function permanently changes the data
in the font. In general, you should only call this function for fonts
created by your application using GXNewFont. ▲

The GXDeleteFontInstance function does not delete the name of the instance. If you

call GXDeleteFontInstance, you should then call GXDeleteFontName to delete the

actual name.

ERRORS, WARNINGS, AND NOTICES

Errors
illegal_font_parameter
font_cannot_be_changed
inconsistent_parameters (debugging version)
parameter_out_of_range (debugging version)
out_of_memory
internal_font_error

Warnings
font_table_not_found

C H A P T E R 7

Font Objects

7-60 Font Objects Reference

Manipulating Font Features

QuickDraw GX allows you to work with font features in several ways. You can

■ determine the number of font features available in a font by
(GXCountFontFeatures)

■ get the name of a specific font feature by specifying its index in the font’s list of
features (GXGetFontFeature)

■ get a specific font feature from a font by specifying its feature type
(GXFindFontFeature)

You cannot add font features to or delete font features from a font.

Font features are described in the chapter “Layout Styles” in this book.

GXCountFontFeatures

You can use the GXCountFontFeatures function to determine the number of font

features available in a font.

long GXCountFontFeatures(gxFont fontID);

fontID A reference to the font whose features you want to count.

function result The number of font features types available in the font.

DESCRIPTION

You can use the GXCountFontFeatures function to determine the number of font

features available in a font.

Note
These are feature types and not feature type/feature selector pairs.
Thus, a font supporting only common and rare ligatures would
return 1 (for ligature type) and not 2 for the selectors. ◆

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
internal_font_error
illegal_font_parameter

C H A P T E R 7

Font Objects

Font Objects Reference 7-61

SEE ALSO

To iterate through all of the font features in a font, use GXGetFontFeature,

described next.

To search for a specific font feature, use the GXFindFontFeature function, described

on page 7-62.

GXGetFontFeature

You can use the GXGetFontFeature function to get the name of a specific font feature

by specifying its index in the font’s list of features.

gxFontName GXGetFontFeature(gxFont fontID, long index,

gxFontFeatureFlag* flags,

long* settingCount,

gxFontFeatureSetting settings[],

gxFontFeature* feature);

fontID A reference to the font from which you want to retrieve a font
feature name.

index The index of the font feature you are searching for.

flags Flags associated with the font feature specified. This is returned to the
caller if not nil.

settingCount
The number of settings for this font feature. This is returned to the caller if
not nil.

settings The settings of this font feature. This is returned to the caller if not nil.
Your application is responsible for the storage.

feature The font feature. Returned to the caller if not nil.

function result The name ID of the font feature.

DESCRIPTION

The GXGetFontFeature function takes a font and an index in the font’s list of font

features and returns the name ID of the feature. You can use this function to build a

menu of font features.

If the function result is not nil, you can use it to get the text of the feature’s name using

the GXFindFontName function. This function returns the text of the name of the feature

in a readable string, possibly in one or several encodings.

The application is responsible for allocating sufficient space for the settings variable,

based on the settings count.

C H A P T E R 7

Font Objects

7-62 Font Objects Reference

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The GXFindFontName function is described on page 7-39.

To search for a specific font feature, use the GXFindFontFeature function,

described next.

To get the number of font features available in the font, use the GXCountFontFeatures

function, described on page 7-60.

GXFindFontFeature

You can use the GXFindFontFeature function to get a specific font feature from a font

by specifying its feature type.

gxFontName GXFindFontFeature(gxFont fontID, gxFontFeature feature,

 gxFontFeatureFlag* flags,

 long* settingCount,

 gxFontFeatureSetting settings[],

 long* index);

fontID A reference to the font from which you want to retrieve a font
feature name.

feature The feature type of the desired feature.

flags On return, the feature’s flags. This is returned to the caller if not nil.

settingCount
The number of settings for the specified feature. This is returned to the
caller if not nil.

settings The settings for the specified feature. This is returned to the caller if
not nil.

index The index of the feature in the font. This is returned to the caller if
not nil.

function result The name ID of the feature in the font. If the font does not contain the
desired feature, the function returns 0.

Errors
out_of_memory
internal_font_error
illegal_font_parameter

Warnings
index_out_of_range

C H A P T E R 7

Font Objects

Font Objects Reference 7-63

DESCRIPTION

The GXFindFontFeature function takes a font ID and feature type, and returns the

name ID of the specified feature in the font.

You can use the GXFindFontName function with the function result to get a readable

string that is the name of the feature.

The application is responsible for allocating sufficient space for the settings variable,

based on the settings count.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The GXFindFontName function is described on page 7-39.

To iterate through all of the font features in a font, use the GXGetFontFeature

function, described on page 7-61.

To get the number of font features available in the font, use the GXCountFontFeatures

function, described on page 7-60.

Advanced Font Functions

The functions described in this section allow you to alter the basic tables of the font or

manipulate the font feature data in the font. These advanced font functions are useful

primarily for font-related applications, such as font editors. In most cases, general-

purpose applications, such as word processors, do not use these functions.

Adding, Removing, and Flattening Fonts

You can add a new font to the list of available fonts using GXNewFont and remove it

using GXDisposeFont. You can also flatten the shape of a font using GXFlattenFont.

Errors
out_of_memory
internal_font_error
illegal_font_parameter

C H A P T E R 7

Font Objects

7-64 Font Objects Reference

GXNewFont

You can use the GXNewFont function to create a font object and add it to the list of

available fonts.

gxFont GXNewFont(gxFontStorageTag storage,

 gxFontStorageReference reference,

 gxFontAttribute attributes);

storage The storage type of the font you are adding. Possible storage type values
are listed in “Font Storage Tags” on page 7-31.

reference The storage reference to the font data, usually an 'sfnt' resource.

attributes The attribute for the font you are adding.

function result A reference to the font you are adding.

DESCRIPTION

The GXNewFont function adds a font to the list of registered fonts. GXNewFont does not

make a copy of the font’s data or create a new resource, file, or handle. The font’s data is

specified in the reference parameter.

You must balance a call to GXNewFont with a call to GXDisposeFont, described next,

when your application no longer needs to use that font.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Storage types and storage references are discussed in “How Font Objects Are Stored and

Referenced” on page 7-13.

Errors
illegal_font_storage_type (debugging version)
illegal_font_storage_reference (debugging version)
illegal_font_attributes (debugging version)
out_of_memory
internal_font_error

C H A P T E R 7

Font Objects

Font Objects Reference 7-65

GXDisposeFont

You can use the GXDisposeFont function to remove a font from the list of

available fonts.

void GXDisposeFont(gxFont fontID);

fontID A reference to the font you want to remove from the list of
registered fonts.

DESCRIPTION

The GXDisposeFont function removes a font from the list of available fonts. The font

must be one you have added to the list.

IMPORTANT

You should not call GXDisposeFont for a system font. You should call
it only for fonts you have created or added by means of GXNewFont. ▲

The GXDisposeFont function frees private storage and caches allocated by the system.

Your application is responsible for disposing the actual font data.

ERRORS, WARNINGS, AND NOTICES

GXFlattenFont

You use the GXFlattenFont function to flatten all or part of a font object. You flatten a

font to be embed it into a spool file.

void GXFlattenFont(gxFont source, struct scalerStream* stream,

struct gxSpoolBlock* block);

source A reference to the font you want to flatten.

stream The scaler stream you want for the font.

block The spool block.

DESCRIPTION

The GXFlattenFont function takes a font, a gxScalerStream structure, and spool

block and flattens the font so that you can include the flattened font with a flattened

shape. The scalerStream structure is used only by font-scaling programs and is not

described here.

Errors
illegal_font_parameter

C H A P T E R 7

Font Objects

7-66 Font Objects Reference

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The gxSpoolBlock structure is described in the chapter “Shape Objects” in Inside
Macintosh: QuickDraw GX Objects.

Getting and Setting Basic Font Storage Information

You can get a font’s storage type, storage reference, and font attributes using the

GXGetFont function. You can then use these values to get the font ID using

the GXFindFont function. In addition, you can change a font’s storage type,

storage reference, and font attribute using the GXSetFont function.

Errors
out_of_memory
internal_font_error
illegal_font_parameter
unflattening_interrupted_by_client
null_font_scaler_context
null_font_scaler_input
invalid_font_scaler_context
invalid_font_scaler_input
invalid_font_scaler_font_data
font_scaler_newblock_failed
font_scaler_getfonttable_failed
font_scaler_bitmap_allocation_failed
font_scaler_outline_allocation_failed
required_font_scaler_table_missing
unsupported_font_scaler_outline_format
unsupported_font_scaler_stream_format
unsupported_font_scaler_font_format
font_scaler_hinting_error
font_scaler_rasterizer_error
font_scaler_internal_error
font_scaler_invalid_matrix
font_scaler_fixed_overflow
font_scaler_api_version_mismatch
font_scaler_streaming_aborted
unknown_font_scaler_error
spoolProcedure_is_nil (debugging version)
parameter_out_of_range (debugging version)
inconsistent_parameters (debugging version)

C H A P T E R 7

Font Objects

Font Objects Reference 7-67

GXGetFont

You can use the GXGetFont function to get a font’s storage type, storage reference, and

font attributes.

gxFontStorageTag GXGetFont(gxFont fontID,

gxFontStorageReference *reference,

gxFontAttribute *attributes);

fontID A reference to the font whose storage reference you want.

reference On return, a reference to the data of the font you specify. If you set this
parameter to nil, the function ignores it.

attributes The font attributes, returned by the function. If you set this parameter to
nil, the function ignores it.

function result The storage type of the font specified by fontID.

DESCRIPTION

The GXGetFont function returns the storage reference of the data storage type, and

attributes of the font you specify. You should call this function if your application needs

to know the font’s storage type or storage reference.

ERRORS, WARNINGS, AND NOTICES

GXFindFont

You can use the GXFindFont function to get a single font with a particular storage type

and storage reference.

gxFont GXFindFont(gxFontStorageTag storage,

gxFontStorageReference reference,

gxFontAttribute* attributes);

storage The storage type of the font you want to find.

reference The storage reference of the font you want to find.

attributes On return, the font attributes. If you set this parameter to nil, the
function ignores it.

function result A reference to the font that matches the values given in the storage and
reference parameters.

Errors
illegal_font_parameter

C H A P T E R 7

Font Objects

7-68 Font Objects Reference

DESCRIPTION

The GXFindFont function returns the font with the storage type and reference you

specify. If the attribute parameter is not nil, GXFindFont copies the font’s attributes

into it. If no matching font is found, GXFindFont returns nil.

ERRORS, WARNINGS, AND NOTICES

GXSetFont

You can use the GXSetFont function to change a font’s storage type, storage reference,

and font attributes.

void GXSetFont(gxFont fontID, gxFontStorageTag storage,

gxFontStorageReference reference,

gxFontAttribute attributes);

fontID A reference to the font whose storage information you want to change.

storage The storage type you want to assign to the font.

reference The storage reference you want to assign to the font.

attributes On return, the font attributes. If you set this parameter to nil, the
function ignores it.

DESCRIPTION

The GXSetFont function changes a font’s storage type and storage reference to the

values you provide. If you want to change only one of these values, you should call

GXGetFont to get the original storage reference or storage type values and include it

in the proper parameter of GXSetFont.

SPECIAL CONSIDERATIONS

You should not use the GXSetFont function on a system font object, because you

should not change the information of any font object other than those created by your

application.

Errors
illegal_font_storage_type (debugging version)
out_of_memory
illegal_font_parameter

C H A P T E R 7

Font Objects

Font Objects Reference 7-69

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The GXGetFont function is described on page 7-67.

GXGetFontFormat

You can use the GXGetFontFormat function to determine the internal format of a font.

gxFontFormatTag GXGetFontFormat(gxFont fontID);

fontID A reference to the font whose format you want.

function result The type of font scaler the font uses, in the form of a 4-byte tag.

DESCRIPTION

The GXGetFontFormat function returns a tag that specifies the font scaler of the font.

This tag corresponds to the type of font scaler QuickDraw GX uses when drawing this

font. Here are possible values:

Other tags may refer to other font scalers.

ERRORS, WARNINGS, AND NOTICES

Errors
illegal_font_storage_type (debugging version)
illegal_font_attributes (debugging version)
illegal_font_storage_reference (debugging version)
illegal_font_parameter

Scaler tag Font scaler

'true' TrueType

'typ1' Adobe Type 1

'nfnt' 'NFNT' bitmapped font

Errors
out_of_memory
internal_font_error

C H A P T E R 7

Font Objects

7-70 Font Objects Reference

Manipulating Font Tables

QuickDraw GX allows you to work with font tables in several ways. You can

■ get the number of font tables present in a particular font (GXCountFontTables)

■ retrieve part or all of a font table that you specify by index (GXGetFontTable,
GXGetFontTableParts)

■ retrieve part or all of a font table that you specify by table tag (GXFindFontTable,
GXFindFontTableParts)

■ add or change part or all of font table in a font (GXSetFontTable,
GXSetFontTableParts)

■ retrieve part or all of a font table (GXDeleteFontTable)

GXCountFontTables

You can use the GXCountFontTables function to get the number of font tables present

in a particular font.

long GXCountFontTables(gxFont fontID);

fontID A reference to the font whose font tables you want to count.

function result The number of tables in the font.

DESCRIPTION

The GXCountFontTables function returns the number of tables in the font named by

the fontID parameter.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To retrieve the size and data of an entire font table that you specify by index, use the

GXGetFontTable function, described next.

To retrieve the size and data of part of a font table that you specify by index, use

GXGetFontTableParts function, described on page 7-72.

To retrieve the size and data of an entire font table that you specify by table tag, use the

GXFindFontTable function, described on page 7-73.

Errors
out_of_memory
internal_font_error
illegal_font_parameter

C H A P T E R 7

Font Objects

Font Objects Reference 7-71

To retrieve the size and data of part of a font table that you specify by table tag, use the

The GXFindFontTableParts function, described on page 7-74.

GXGetFontTable

You can use the GXGetFontTable function to retrieve an entire font table that you

specify by index.

long GXGetFontTable(gxFont fontID, long index, void* tableData,

gxFontTableTag* tableTag);

fontID A reference to the font from which you want to retrieve the font table.

index The font table’s index in the font’s list of tables. The number of font tables
in the font is returned by GXCountFontTables.

tableData On return, the data of the specified font table, if this parameter is not nil.
Your application is responsible for allocating the memory for this
parameter.

tableTag On return, the tag of the table you are searching for, if this parameter is
not nil.

function result The size of the font table, in bytes. If the table is 0 bytes long, or if the
index is out of range, GXGetFontTable returns 0.

DESCRIPTION

The GXGetFontTable function takes an index between the values of 1 and the number

of tables in the font and returns the size of the font table.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The GXCountFontTables function is described on page 7-70.

To retrieve the size and data of part of a font table that you specify by index, use the

GXGetFontTableParts function, described on page 7-72.

To retrieve the size and data of an entire font table that you specify by table tag, use the

GXFindFontTable function, described on page 7-73.

Errors
out_of_memory
internal_font_error
illegal_font_parameter

Warnings
font_table_index_out_of_range

C H A P T E R 7

Font Objects

7-72 Font Objects Reference

To retrieve the size and data of part of a font table that you specify by table tag, use the

GXFindFontTableParts function, described on page 7-74.

GXGetFontTableParts

You can use the GXGetFontTableParts function to retrieve part of a font table you

specify by index.

long GXGetFontTableParts(gxFont fontID, long index, long offset,

 long length, void* tableData,

 gxFontTableTag* tableTag);

fontID A reference to the font from which you want to retrieve part of a
font table.

index The font table’s index in the font’s list of tables. The number of font tables
in the font is returned by GXCountFontTables.

offset The starting position in the table of the data you want to retrieve.

length The portion of the table you want to retrieve, in bytes.

tableData On return, the data of the specified font table, if this parameter is not
nil. Your application is responsible for allocating the memory for this
parameter.

tableTag The tag of the table you are searching for, returned by the function, if this
parameter is not nil.

function result The number of bytes returned.

DESCRIPTION

The GXGetFontTableParts function returns part of the table you specify using

an offset into the table and the number of bytes you want to retrieve. You can use

GXGetFontTableParts to read part of a font table that is too large to fit entirely

into memory.

If the value of the offset parameter added to the value of the length parameter is

greater than the total length of the table, GXGetFontTableParts returns only the

data from the offset value to the end of the table.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
internal_font_error
illegal_font_parameter

Warnings
font_table_index_out_of_range

C H A P T E R 7

Font Objects

Font Objects Reference 7-73

SEE ALSO

The GXCountFontTables function is described on page 7-70.

To retrieve the size and data of an entire font table that you specify by index, use the
GXGetFontTable function, described on page 7-71.

To retrieve the size and data of an entire font table that you specify by table tag, use the

GXFindFontTable function, described next.

To retrieve the size and data of part of a font table that you specify by table tag, use the

GXFindFontTableParts function, described on page 7-74.

GXFindFontTable

You can use the GXFindFontTable function to retrieve an entire font table that you

specify by table tag.

long GXFindFontTable(gxFont fontID, gxFontTableTag tableTag,

 void* tableData, long* index);

fontID A reference to the font from which you want to retrieve the font table.

tableTag The tag of the table you want to retrieve.

tableData On return, the table is copied into this buffer.

index On return, the index of the table in the font.

function result The size of the table, in bytes. If no table has a tag that matches the value
of tableTag, then the function returns 0.

DESCRIPTION

The GXFindFontTable function takes a font table tag and returns the size of that table,

in bytes. If the value of tableData is not nil, then GXFindFontTable copies the font

table into it. Your application is responsible for maintaining this buffer. If the index

parameter is not nil, then GXFindFontTable copies the table’s index into it.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To retrieve the size and data of part of a font table that you specify by table tag, use the

GXFindFontTableParts function, described next.

Errors
out_of_memory
internal_font_error
illegal_font_parameter

C H A P T E R 7

Font Objects

7-74 Font Objects Reference

To retrieve the size and data of an entire font table that you specify by index, use the

GXGetFontTable function, described on page 7-71.

To retrieve the size and data of part of a font table that you specify by index, use the

GXGetFontTableParts function, described on page 7-72.

GXFindFontTableParts

You can use the GXFindFontTableParts function to retrieve part of a font table you

specify by table tag.

long GXFindFontTableParts(gxFont fontID, gxFontTableTag tableTag,

long offset, long length,

void* tableData, long* index);

fontID A reference to the font from which you want to retrieve part of a
font table.

tableTag The tag of the table you want to retrieve.

offset The starting position in the table of the data you want to retrieve, in bytes.

length The amount of the table you want to retrieve, in bytes.

tableData On return, the table is copied into this buffer.

index On return, the index of the table in the font.

function result The number of bytes processed by the function.

DESCRIPTION

The GXFindFontTableParts function retrieves the part of the font table you specify

by table tag. The function result is the number of bytes processed. You can use this

function to read a table that is too large to fit in available memory.

If the value of offset added to the value of length exceeds the length of the table,

then only the bytes from the offset value to the end of the table are processed. If the

index parameter is not nil, then GXFindFontTableParts copies the table’s index

into it.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
internal_font_error
illegal_font_parameter

C H A P T E R 7

Font Objects

Font Objects Reference 7-75

SEE ALSO

To retrieve the size and data of an entire font table that you specify by table tag, use the

GXFindFontTable function, described page 7-73.

To retrieve the size and data of an entire font table that you specify by index, use the

GXGetFontTable function, described on page 7-71.

To retrieve the size and data of part of a font table that you specify by index, use the

GXGetFontTableParts function, described on page 7-72.

GXSetFontTable

You can use the GXSetFontTable function to add or change an entire font table in

a font.

long GXSetFontTable(gxFont fontID, long index,

 gxFontTableTag tableTag,

 long length, const void* tableData);

fontID A reference to the font in which you want to add or replace a table.

index The number of the table in the font’s list of tables. (The number of font
tables in the font is returned by GXCountFontTables.)

tableTag The tag of the table you want to add or replace.

length The length of the table you want to add or replace.

tableData A pointer to the new data for the table.

function result The index of the table added or changed.

DESCRIPTION

The GXSetFontTable function replaces the existing table with the data in the

tableData parameter or adds a new table. If the value of index is greater than 0

or the value of tableTag matches the table tag for an existing table, that table’s

data is resized to the value of the length parameter and replaced with the data in

the tableData parameter. If the value of index is 0 and the value of tableTag does

not match an existing table tag, GXSetFontTable adds a new table to the font with

the tag specified in tableTag and the data from the tableData parameter.

If you enlarge or decrease a font table, QuickDraw GX is responsible for enlarging or

decreasing the data in the font.

IMPORTANT

The GXSetFontTable function permanently changes the data in the
font. In general, you should only call this function for fonts created by
your application using GXNewFont. ▲

C H A P T E R 7

Font Objects

7-76 Font Objects Reference

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The GXCountFontTable function is described on page 7-70.

The GXNewFont function is described on page 7-64.

To change part of an existing font table instead of the entire table, use the

GXSetFontTableParts function described next.

GXSetFontTableParts

You can use the GXSetFontTableParts function to change part of a font table by

adding or replacing a part of the table.

long GXSetFontTableParts(gxFont fontID, long index,

gxFontTableTag tableTag, long offset,

long oldLength, long newLength,

const void* tableData);

fontID A reference to the font whose font table is to be affected.

index The index of the table in the list of font tables, if this value is greater
than 0. If it is 0, GXSetFontTableParts searches by the value of the
tableTag parameter.

tableTag The tag of the table you want to add to or change.

offset The number of bytes from the beginning of the table to the place where
you want to begin replacing data in the table.

oldLength The number of bytes you want to replace.

newLength The number of bytes you want to add to the table.

tableData The new data for the table.

function result The index of the table added or changed.

Errors
inconsistent_parameters (debugging version)
illegal_font_parameter
font_cannot_be_changed
out_of_memory
internal_font_error

Warnings
font_table_index_out_of_range

C H A P T E R 7

Font Objects

Font Objects Reference 7-77

DESCRIPTION

The GXSetFontTableParts function replaces part of the table you specify using an

offset from the beginning of the table, replacing the number of bytes in oldLength with

the number of bytes in newLength.

If you enlarge or decrease a font table, QuickDraw GX enlarges or decreases the font.

IMPORTANT

The GXSetFontTableParts function permanently changes the data in
the font. In general, you should only call this function for fonts created
by your application using GXNewFont. ▲

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To change the contents of an entire existing font table instead of just part of a font table,

use the GXSetFontTable function described on page 7-75.

GXDeleteFontTable

You can use the GXDeleteFontTable function to delete a table from a font.

long GXDeleteFontTable(gxFont fontID, long index,

 gxFontTableTag tableTag);

fontID A reference to the font from which you want to delete the font table.

index The index of the table you want to delete, if this value is greater than 0. If
this value is 0, GXDeleteFontTable uses the value of the tableTag
parameter to determine the correct table.

tableTag The table tag of the font table you want to delete, if the value of the
index parameter is 0.

function result The index of the table deleted. If the function does not delete a font table,
it returns 0.

Errors
illegal_font_parameter
font_cannot_be_changed
inconsistent_parameters (debugging version)
out_of_memory
internal_font_error

Warnings
font_table_index_out_of_range

C H A P T E R 7

Font Objects

7-78 Font Objects Reference

DESCRIPTION

The GXDeleteFontTable function deletes the table specified by index, if that value is

greater than 0, or by tableTag, if the value of index is 0.

If you delete a font table, QuickDraw GX decreases the size of the font.

IMPORTANT

The GXDeleteFontTable function permanently changes the data in
the font. In general, you should only call this function for fonts created
by your application using GXNewFont. ▲

ERRORS, WARNINGS, AND NOTICES

Changing Font Data

If you have changed the data in a font without using one of the QuickDraw GX font

functions described in this chapter, you must call GXChangedFont to alert the system

that you have changed the font.

GXChangedFont

You can use the GXChangedFont function if you have changed a font’s data and want to

alert the system that its private caches are invalid.

void GXChangedFont(gxFont fontID);

fontID A reference to the font you have changed.

DESCRIPTION

If you have changed a font’s data directly (without using one of the QuickDraw GX font

functions), you should call GXChangedFont to alert the system that its private caches

are invalid.

QuickDraw GX automatically calls GXChangedFont when you alter a font using one of

the system’s font-editing functions, such as GXSetFontTable.

ERRORS, WARNINGS, AND NOTICES

Errors
illegal_font_parameter
font_cannot_be_changed
inconsistent_parameters (debugging version)
out_of_memory
internal_font_error

Warnings
font_table_index_out_of_range

Errors
illegal_font_parameter

C H A P T E R 7

Font Objects

Summary of Font Objects 7-79

Summary of Font Objects

Basic Constants and Data Types

The Font Object

typedef struct gxPrivateFontRecord *gxFont;

Font Variations, Instances, and Descriptors

typedef long gxFontVariationTag;

typedef long gxFontDescriptorTag;

struct gxFontVariation {

gxFontVariationTag name;

Fixed value;

} ;

typedef struct gxFontVariation gxFontDescriptor;

Font Names

enum gxFontNames {

gxNoFontName,

gxCopyrightFontName,

gxFamilyFontName,

gxStyleFontName,

gxUniqueFontName,

gxFullFontName,

gxVersionFontName,

gxPostscriptFontName,

gxTrademarkFontName,

gxManufacturerFontName,

gxLastReservedFontName = 256

} ;

typedef long gxFontName;

Font Feature Flags

#define gxMutuallyExclusiveFeature 0x8000

C H A P T E R 7

Font Objects

7-80 Summary of Font Objects

Font Features

typedef long gxFontFeature;

struct gxFontFeatureSetting {

unsigned short setting;

unsigned short nameID;

}

typedef long gxFontFeatureFlag;

Font Platforms

enum gxFontPlatforms {

gxGlyphPlatform = -1,

gxNoPlatform,

gxUnicodePlatform,

gxMacintoshPlatform,

gxReservedPlatform,

gxMicrosoftPlatform,

gxCustomPlatform,

} ;

typedef long gxFontPlatform;

QuickDraw GX Macintosh Scripts

enum gxUnicodeScripts {

gxUnicodeDefaultSemantics = 1,

gxUnicodeV1_1Semantics,

gxISO10646_1993Semantics

} ;

enum gxMacintoshScripts {

gxNoScript,

gxRomanScript,

gxJapaneseScript,

gxTraditionalChineseScript,

gxChineseScript = gxTraditionalChineseScript,

gxKoreanScript,

gxArabicScript,

gxHebrewScript,

gxGreekScript,

gxCyrillicScript,

gxRussianScript = gxCyrillicScript,

C H A P T E R 7

Font Objects

Summary of Font Objects 7-81

gxRSymbolScript,

gxDevanagariScript,

gxGurmukhiScript,

gxGujaratiScript,

gxOriyaScript,

gxBengaliScript,

gxTamilScript,

gxTeluguScript,

gxKannadaScript,

gxMalayalamScript,

gxSinhaleseScript,

gxBurmeseScript,

gxKhmerScript,

gxThaiScript,

gxLaotianScript,

gxGeorgianScript,

gxArmenianScript,

gxSimpleChineseScript,

gxTibetanScript,

gxMongolianScript,

gxGeezScript,

gxEthiopicScript = gxGeezScript,

gxAmharicScript = gxGeezScript,

gxSlavicScript,

gxEastEuropeanRomanScript = gxSlavicScript,

gxVietnameseScript,

gxExtendedArabicScript,

gxSindhiScript = gxExtendedArabicScript,

gxUninterpretedScript

} ;

typedef long gxFontScript;

enum gxCustomScripts {

gxCustom8bitScript =1,

gxCustom816bitScript,

gxCustom16bitScript

};

enum gxMicrosoftScripts {

gxMicrosoftSymbolScript =1,

gxMicrosoftStandardScript

};

C H A P T E R 7

Font Objects

7-82 Summary of Font Objects

QuickDraw GX Macintosh Languages

enum gxMacintoshLanguages {

gxNoLanguage,

gxEnglishLanguage,

gxFrenchLanguage,

gxGermanLanguage,

gxItalianLanguage,

gxDutchLanguage,

gxSwedishLanguage,

gxSpanishLanguage,

gxDanishLanguage,

gxPortugueseLanguage,

gxNorwegianLanguage,

gxHebrewLanguage,

gxJapaneseLanguage,

gxArabicLanguage,

gxFinnishLanguage,

gxGreekLanguage,

gxIcelandicLanguage,

gxMalteseLanguage,

gxTurkishLanguage,

gxCroatianLanguage,

gxTradChineseLanguage,

gxUrduLanguage,

gxHindiLanguage,

gxThaiLanguage,

gxKoreanLanguage,

gxLithuanianLanguage,

gxPolishLanguage,

gxHungarianLanguage,

gxEstonianLanguage,

gxLettishLanguage,

gxLatvianLanguage = gxLettishLanguage,

gxSaamiskLanguage,

gxLappishLanguage = gxSaamiskLanguage,

gxFaeroeseLanguage,

gxFarsiLanguage,

gxPersianLanguage = gxFarsiLanguage,

gxRussianLanguage,

gxSimpChineseLanguage,

gxFlemishLanguage,

gxIrishLanguage,

gxAlbanianLanguage,

C H A P T E R 7

Font Objects

Summary of Font Objects 7-83

gxRomanianLanguage,

gxCzechLanguage,

gxSlovakLanguage,

gxSlovenianLanguage,

gxYiddishLanguage,

gxSerbianLanguage,

gxMacedonianLanguage,

gxBulgarianLanguage,

gxUkrainianLanguage,

gxByelorussianLanguage,

gxUzbekLanguage,

gxKazakhLanguage,

gxAzerbaijaniLanguage,

gxAzerbaijanArLanguage,

gxArmenianLanguage,

gxGeorgianLanguage,

gxMoldavianLanguage,

gxKirghizLanguage,

gxTajikiLanguage,

gxTurkmenLanguage,

gxMongolianLanguage,

gxMongolianCyrLanguage,

gxPashtoLanguage,

gxKurdishLanguage,

gxKashmiriLanguage,

gxSindhiLanguage,

gxTibetanLanguage,

gxNepaliLanguage,

gxSanskritLanguage,

gxMarathiLanguage,

gxBengaliLanguage,

gxAssameseLanguage,

gxGujaratiLanguage,

gxPunjabiLanguage,

gxOriyaLanguage,

gxMalayalamLanguage,

gxKannadaLanguage,

gxTamilLanguage,

gxTeluguLanguage,

gxSinhaleseLanguage,

gxBurmeseLanguage,

gxKhmerLanguage,

gxLaoLanguage,

C H A P T E R 7

Font Objects

7-84 Summary of Font Objects

gxVietnameseLanguage,

gxIndonesianLanguage,

gxTagalogLanguage,

gxMalayRomanLanguage,

gxMalayArabicLanguage,

gxAmharicLanguage,

gxTigrinyaLanguage,

gxGallaLanguage,

gxOromoLanguage = gxGallaLanguage,

gxSomaliLanguage,

gxSwahiliLanguage,

gxRuandaLanguage,

gxRundiLanguage,

gxChewaLanguage,

gxMalagasyLanguage,

gxEsperantoLanguage,

gxWelshLanguage = 129,

gxBasqueLanguage,

gxCatalanLanguage,

gxLatinLanguage,

gxQuechuaLanguage,

gxGuaraniLanguage,

gxAymaraLanguage,

gxTatarLanguage,

gxUighurLanguage,

gxDzongkhaLanguage,

gxJavaneseRomLanguage,

gxSundaneseRomLanguage

} ;

typedef long gxFontLanguage;

#define gxLastCustomLanguage 256

Font Format Tag

typedef long gxFontFormatTag;

C H A P T E R 7

Font Objects

Summary of Font Objects 7-85

Advanced Constants and Data Types

Font Storage Tags and References

#define gxResourceFontStorage 0x72737263/* 'rsrc' */

#define gxHandleFontStorage 0x686e646c/* 'hndl' */

#define gxFileFontStorage 0x62617373/* 'bass' */

#define gxNfntFontStorage 0x6e666e74/* 'nfnt' */

typedef long gxFontStorageTag;

typedef void *gxFontStorageReference;

Font Table Tags

typedef long gxFontTableTag;

Font Attributes

enum gxFontAttributes {

gxSystemFontAttribute = 0x0001,

gxReadOnlyFontAtttribute = 0x0002

} ;

typedef long gxFontAttribute;

Basic Font Functions

Getting the List of Available Fonts

long GXFindFonts (gxFont family, gxFontName meaning,
gxFontPlatform platform, gxFontScript script,
gxFontLanguage language, long nameLength,
const unsigned char name[], long index,
long count, gxFont fonts[]);

Counting Glyphs in a Font

long GXCountFontGlyphs (gxFont fontID);

Getting and Setting the Default Font

gxFont GXGetDefaultFont (void);

gxFont GXSetDefaultFont (gxFont fontID);

C H A P T E R 7

Font Objects

7-86 Summary of Font Objects

Manipulating Font Names

long GXCountFontNames (gxFont fontID);

long GXGetFontName (gxFont fontID, long index, gxFontName *name,
gxFontPlatform *platform, gxFontScript *script,
gxFontLanguage *language,
unsigned char text[]);

long GXFindFontName (gxFont fontID, gxFontName name,
gxFontPlatform platform, gxFontScript script,
gxFontLanguage language, unsigned char text[],
long *index);

gxFontName GXNewFontNameID (gxFont fontID);

long GXSetFontName (gxFont fontID, gxFontName name,
gxFontPlatform platform, gxFontScript script,
gxFontLanguage language, long nameLength,
const unsigned char text[]);

long GXDeleteFontName (gxFont fontID, long index, gxFontName name,
gxFontPlatform platform, gxFontScript script,
gxFontLanguage language);

Manipulating Font Encodings

long GXCountFontEncodings (gxFont fontID);

gxFontPlatform GXGetFontEncoding
(gxFont fontID, long index,
gxFontScript *script,
gxFontLanguage* language);

long GXFindFontEncoding (gxFont fontID, gxFontPlatform platform,
gxFontScript script,
gxFontLanguage language);

long GXApplyFontEncoding (gxFont fontID, long index, long* length,
const unsigned char text[], long count,
unsigned short glyphs[], char was16Bit[]);

Manipulating Font Descriptors

long GXCountFontDescriptors (gxFont fontID);

gxFontDescriptorTag GXGetFontDescriptor
(gxFont fontID, long index,
Fixed* descriptorValue);

long GXFindFontDescriptor (gxFont fontID, gxFontDescriptorTag
descriptorTag, Fixed* descriptorValue);

long GXSetFontDescriptor (gxFont fontID, long index,
gxFontDescriptorTag descriptorTag,
Fixed descriptorValue);

C H A P T E R 7

Font Objects

Summary of Font Objects 7-87

long GXDeleteFontDescriptor (gxFont fontID, long index,
gxFontDescriptorTag descriptorTag);

Manipulating Font Variations

long GXCountFontVariations (gxFont fontID);

gxFontVariationTag GXGetFontVariation
(gxFont theFont, long index, Fixed* minValue,
Fixed* defaultValue, Fixed* maxValue,
gxFontName* nameID);

long GXFindFontVariation (gxFont theFont, gxFontTableTag variationTag,
Fixed* minValue, Fixed* defaultValue,
Fixed* maxValue, gxFontName* nameID);

Manipulating Font Instances

long GXCountFontInstances (gxFont, theFont);

gxFontName GXGetFontInstance(gxFont theFont, long index,
gxFontVariation variation[]);

long GXSetFontInstance (gxFont fontID, long index, gxFontName name,
const gxFontVariation variation[]);

long GXDeleteFontInstance (gxFont fontID, long index, gxFontName nameID);

Manipulating Font Features

long GXCountFontFeatures (gxFont fontID);

gxFontName GXGetFontFeature (gxFont fontID, long index,
gxFontFeatureFlag* flags, long* settingCount,
gxFontFeatureSetting settings[],
gxFontFeature* feature);

gxFontName GXFindFontFeature(gxFont fontID, gxFontFeature feature,
gxFontFeatureFlag* flags, long* settingCount,
gxFontFeatureSetting settings[], long* index);

Advanced Font Functions

Adding, Removing, and Flattening Fonts

gxFont GXNewFont (gxFontStorageTag storage,
gxFontStorageReference reference,
gxFontAttribute attributes);

void GXDisposeFont (gxFont fontID);

void GXFlattenFont (gxFont source,
struct gxScalerStream* stream,struct
gxSpoolBlock* block);

C H A P T E R 7

Font Objects

7-88 Summary of Font Objects

Getting and Setting Basic Font Storage Information

gxFontStorageTag GXGetFont (gxFont fontID,
gxFontStorageReference *reference,
gxFontAttribute *attributes);

gxFont GXFindFont (gxFontStorageTag storage,
gxFontStorageReference reference,
gxFontAttribute* attributes);

void GXSetFont (gxFont fontID, gxFontStorageTag storage,
gxFontStorageReference reference,
gxFontAttribute attributes);

gxFontFormatTag GXGetFontFormat
(gxFont fontID);

Manipulating Font Tables

long GXCountFontTables (gxFont fontID);

long GXGetFontTable (gxFont fontID, long index, void* tableData,
gxFontTableTag* tableTag);

long GXGetFontTableParts (gxFont fontID, long index, long offset,
long length, void* tableData,
gxFontTableTag* tableTag);

long GXFindFontTable (gxFont fontID, gxFontTableTag tableTag,
void* tableData, long* index);

long GXFindFontTableParts (gxFont fontID, gxFontTableTag tableTag,
long offset, long length, void* tableData,
long* index);

long GXSetFontTable (gxFont fontID, long index,
gxFontTableTag tableTag, long length,
const void* tableData);

long GXSetFontTableParts (gxFont fontID, long index,
gxFontTableTag tableTag, long offset,
long oldLength, long newLength,
const void* tableData);

long GXDeleteFontTable (gxFont fontID, long index,
gxFontTableTag tableTag);

Changing Font Data

void GXChangedFont (gxFont fontID);

Contents 8-1

C H A P T E R 8

Contents

Layout Styles

About Layout Styles 8-3

Style-Object Properties Used by Layout Shapes 8-4

Run Controls 8-5

With-Stream Shift and Cross-Stream Shift 8-6

With-Stream Kerning and Cross-Stream Kerning 8-8

Tracking 8-10

Optical Alignment 8-11

Hanging Glyphs 8-14

Imposed Width 8-15

Kerning Adjustments 8-16

Glyph Substitutions 8-18

Font Features 8-18

Feature Types, Feature Selectors, and the Feature Registry 8-19

Contextual Font Features 8-22

Noncontextual Font Features 8-34

Using Layout Styles 8-40

Initializing Style-Run Properties 8-41

Manipulating Run Controls 8-42

Using With-Stream and Cross-Stream Shift 8-42

Specifying Tracking Values 8-44

Preventing Optical Alignment 8-45

Inhibiting Hanging Glyphs 8-47

Imposing a Width on a Style Run 8-48

Using Kerning Adjustment Factors 8-49

Substituting Glyphs 8-51

Using Font Features 8-53

Specifying Levels of Ligature Formation 8-53

Specifying Different Types of Swashes 8-54

Specifying Different Kinds of Case Substitution 8-56

C H A P T E R 8

8-2 Contents

Layout Styles Reference 8-57

Constants and Data Types 8-57

Run Controls Structure 8-57

Run Control Flags 8-60

Direction Overrides 8-62

Kerning Adjustment Factors Structure 8-63

Kerning Adjustment Structure 8-63

Glyph Substitution Structure 8-64

Run-Feature Structure 8-65

Functions 8-66

Getting and Setting Run Controls 8-66

GXGetStyleRunControls 8-66

GXSetStyleRunControls 8-67

GXGetShapeRunControls 8-68

GXSetShapeRunControls 8-69

Customizing Kerning 8-70

GXGetStyleRunKerningAdjustments 8-70

GXSetStyleRunKerningAdjustments 8-72

GXGetShapeRunKerningAdjustments 8-73

GXSetShapeRunKerningAdjustments 8-74

Customizing Glyph Substitution 8-75

GXGetStyleRunGlyphSubstitutions 8-75

GXSetStyleRunGlyphSubstitutions 8-77

GXGetShapeRunGlyphSubstitutions 8-78

GXSetShapeRunGlyphSubstitutions 8-79

Customizing Font Features 8-80

GXGetStyleRunFeatures 8-80

GXSetStyleRunFeatures 8-82

GXGetShapeRunFeatures 8-83

GXSetShapeRunFeatures 8-84

Summary of Layout Styles 8-86

Constants and Data Types 8-86

Functions 8-87

C H A P T E R 8

About Layout Styles 8-3

Layout Styles

This chapter describes the properties and features of the style object that affect only

layout shapes. By manipulating style-object properties, you can override much of the

font-defined behavior of the glyphs in a style run of a layout shape. You can control

glyph positioning and spacing in several ways, you can modify kerning behavior, you

can substitute glyphs at the end of the layout process, and you can turn on or off a large

variety of font features available in QuickDraw GX fonts.

Much of the information in this chapter is optional. If the default, font-specified layout

behavior provided by QuickDraw GX is sufficient for your application’s needs, you do

not need to use the information or techniques given here, except possibly for the setting

of certain run controls that affect caret display and justification. If you do not create

layout shapes, you do not need the information in this chapter. Read this chapter only if

you create layout shapes and need to override the default QuickDraw GX handling of

text layout and display.

Before reading this chapter, you should be familiar with the information in the chapters

“Introduction to QuickDraw GX Typography,” “Typographic Shapes,” “Typographic

Styles,” and “Layout Shapes” in this book. You should also be familiar with the general

concepts of QuickDraw GX objects, as described in Inside Macintosh: QuickDraw GX Objects.

Some layout-related properties of the style object are not discussed in this chapter. Style-

object properties related to the display and positioning of carets are discussed in the

chapter “Layout Carets, Highlighting, and Hit-Testing” in this book. Properties related to

the justification of layout shapes, because they are commonly used to affect an entire line

at a time, are discussed in the chapter “Layout Line Control” in this book. All other style-

object properties that affect only layout shapes are described here.

This chapter starts by describing the layout-related properties of the style object. It then

describes how to use QuickDraw GX functions to

■ modify behavior by modifying the run controls structure

■ override kerning behavior

■ substitute individual glyphs when text of a style run is drawn

■ select font features for the style run

About Layout Styles

The general features of layout shapes are described in the chapter “Layout Shapes” in

this book. Because layout shapes consist of one or more style runs, each layout must

have one or more style objects associated with it. The properties of the style object that

are common to all typographic shapes—font, text size, text attributes, and so on—are

described in the chapter “Typographic Styles” in this book. The properties that are

specific to layout shapes are, for the most part, described here.

Much of the text-layout behavior in a style run is controlled by tables in the font for that

run. By manipulating the layout shape–related properties of the style object, you can

override that font-specified behavior for special purposes. This section discusses the

C H A P T E R 8

Layout Styles

8-4 About Layout Styles

style-run controls (known simply as run controls), kerning adjustments array, glyph

substitutions array, and run-features array properties and describes how they give you

the ability to modify layout behavior.

Style-Object Properties Used by Layout Shapes
Every layout shape references one or more style objects, one for each style run in the

shape. If a layout shape has more than one style run, the style objects for each run are

specified in the style list, an array of object references that is part of the layout shape’s

geometry. If the layout shape has only a single style run, its style object reference can be

either in a (one-element) style list or in the regular style reference that is a property of any

shape object. The shape’s style can also be used in the multiple-run case by specifying a

nil on the entry in the style list.

Figure 8-1 shows the properties of a style object. Properties in the left column of the dia-

gram are used primarily by the style objects of geometric shapes. Properties in the center

column are used by the style objects of all typographic shapes, including layout shapes.

Properties in the right column are used by the style objects of layout shapes only. (The

two properties across the bottom are used by the style objects of all shapes.)

Figure 8-1 Layout-specific properties of the style object discussed in this chapter

Each style run in a layout shape can have its own values for all of the above properties.

The upper four properties in the right column of the style object in Figure 8-1 (emphasized

in black) are meaningful only within the context of an individual style run, and are

therefore described in this chapter:

■ Run controls. A structure that controls a variety of formatting and display features for
a style run. See the section “Run Controls” beginning on page 8-5 for more information.

C H A P T E R 8

Layout Styles

About Layout Styles 8-5

■ Kerning adjustments array. An array that alters, for any number of glyph pairs, the
kerning behavior that would otherwise be used automatically in a style run. See the
section “Kerning Adjustments” beginning on page 8-16 for more information.

■ Glyph substitutions array. An array that allows you final control over glyph selection
during layout. You can specify any number of glyph pairs so that, wherever one glyph
of a pair would appear in a style run, QuickDraw GX substitutes the other glyph for
it. See the section “Glyph Substitutions” beginning on page 8-18 for more information.

■ Run-features array. An array that specifies whether to employ, and at what level,
various special typographic features provided by the font for a particular style run.
See the section “Font Features” beginning on page 8-18 for more information.

The remaining two properties, although defined independently for each style run, are

related to justification of entire lines of text. Because their effects are usually considered

in that context, rather than in the context of a single style run, they are not described in

this chapter:

■ Priority justification override. Each entry in the priority justification override structure
alters the standard justification behavior for all glyphs of a given justification priority.
For more information, see the discussions of priority justification overrides in the
chapter “Layout Line Control” in this book.

■ Glyph justification overrides array. The glyph justification overrides array alters the
standard justification behavior of one or more individual glyphs. For more information,
see the discussions of glyph justification overrides in the chapter “Layout Line Control”
in this book.

The rest of this section discusses run controls, kerning adjustments, glyph substitution,

and run features, also known as font features. Priority justification overrides and glyph

justification overrides are not discussed further in this chapter.

Run Controls
The run controls for a given style run are a collection of values and settings that control

various aspects of the layout process. The following run-control features are described in

this chapter:

■ with-stream and cross-stream shift, a uniform shifting of the positions of all glyphs
by the same amount, either parallel or perpendicular to the baseline

■ with-stream and cross-stream kerning, the automatic adjustment of the relative
positions of individual pairs or sets of glyphs; the adjustment can be parallel or
perpendicular to the baseline

■ tracking, the selection of a font-provided setting for “looseness” or “tightness” in the
spacing of glyphs, which may vary in a complex way with point size

■ optical alignment, the fine adjustment of glyph position at the line ends to give a
more even visual appearance to margins

■ hanging glyphs, a set of glyphs, usually punctuation, that typically extend beyond
the left and right margins of the text area and whose widths are not counted when
line length is measured

■ imposed width, the forcing of a specific width onto the glyphs of a style run, regardless
of its text content or other style properties

C H A P T E R 8

Layout Styles

8-6 About Layout Styles

The following features are also defined by the run controls, although they are principally

described in other chapters in this book:

■ Caret angle is the specification of the text caret (insertion-point marker) or the edges
of a highlight to be either always perpendicular to the baseline or always parallel to
the slant of the style run’s text. Caret angle is discussed in the chapter “Layout Carets,
Highlighting, and Hit-Testing” in this book.

■ Ligature splitting is the division of a ligature for hit-testing purposes into regions
corresponding to each of its component glyphs. For illustrations of how ligature
splitting affects display and highlighting, see the chapter “Layout Carets, Highlighting,
and Hit-Testing” in this book.

■ Baseline type is the specification of the fundamental baseline (such as Roman,
hanging, or ideographic centered) that the text of this style run is to use. Baseline
types are discussed in the chapter “Layout Line Control” in this book.

■ Direction override is the imposition of a left-to-right or right-to-left direction onto the
glyphs in this style run, regardless of their natural direction as specified in the font.
Glyph direction and direction overrides are discussed in the chapter “Layout Line
Control” in this book.

■ Postcompensation action is a set of processes (such as glyph stretching and ligature
decomposition) that occur at the end of the justification process, after glyph positions
have been calculated. You can prevent postcompensation action from occurring; see
the discussion of justification in the chapter “Layout Line Control” in this book.

■ Ligature decomposition is the breaking up of a ligature into its component glyphs
during justification, so that the individual glyphs may more evenly occupy the space
allotted to the ligature. Ligature decomposition occurs at a font-specified threshold
that you can change. See the discussion of justification in the chapter “Layout Line
Control” in this book.

The run controls for a style run are contained in the run controls structure, described on

page 8-57. The rest of this section discusses the run controls that affect shifting, kerning,

tracking, optical alignment, hanging glyphs, and imposed width.

With-Stream Shift and Cross-Stream Shift

Your application can specify two types of positional shifts that apply equally to all glyphs

in a style run. With-stream shift adds or removes space before or after each glyph in the

run, and can be used for manual kerning or letterspacing. Cross-stream shift raises or

lowers the entire style run (or shifts it sideways if it’s vertical text), and can be used for

superscript and subscript effects.

You can apply with-stream shift before (to the left of) or after (to the right of) the glyphs

of the style run, or both. A shift may be either positive or negative. Positive with-stream

shift moves the glyphs farther apart; negative shift moves them closer together. Positive

cross-stream shift moves the glyphs upward from the baseline (as in superscripts);

negative shift moves them downward (as in subscripts).

Figure 8-2 shows an example of a negative and a positive with-stream shift applied

before (to the left of) the glyphs of a style run. The glyphs “c” and “d” constitute a single

style run. The line is drawn first with no shift, then with a large negative with-stream

shift for that style run, and finally with an even larger positive with-stream shift.

C H A P T E R 8

Layout Styles

About Layout Styles 8-7

Figure 8-2 Negative and positive with-stream shift

Figure 8-3 illustrates the simultaneous use of with-stream and cross-stream shift. The

layout consists of two style runs of a single glyph each. On the left the layout is drawn

with no shifting. On the right, a negative with-stream shift is applied before the “2”, and

a positive cross-stream shift is applied to the “2”. The net result is a well-proportioned

and well-placed superscript. (There are other ways to make superscripts, including the

use of superiors; see Table 8-10 on page 8-32.)

Figure 8-3 Combining with-stream and cross-stream shift

When text is shifted in a with-stream direction, the boundary (caret position) between

pairs of glyphs is adjusted to be halfway between the advance width of the earlier glyph

and the origin of the later glyph, as shown in Figure 8-4.

Figure 8-4 Caret position between with-stream shifted glyphs

A sample function that makes use of both with-stream and cross-stream shift is shown in

Listing 8-2 on page 8-43.

Using with-stream and cross-stream shifts can give your application a full manual letter-

spacing capability. This kind of positioning control, however, works differently than the

automatic letterspacing capabilities of QuickDraw GX (kerning and tracking, described

in the following sections).

C H A P T E R 8

Layout Styles

8-8 About Layout Styles

With-Stream Kerning and Cross-Stream Kerning

Kerning is an automatic, fine adjustment to normal spacing that QuickDraw GX applies

to specific pairs or groups of glyphs, or to glyphs in specific contexts. It is commonly used

to increase the overlap between glyphs that “fit together” naturally. Unlike manual shift-

ing, kerning does not apply evenly to all glyphs in a style run. Also, kerning does not refer

to the apparent overlap that can be caused by glyphs that overhang their bounds (glyphs

that extend beyond their leading or trailing edges defined by the character origin and

advance width), as shown in Figure 8-5.

Figure 8-5 Apparent kerning caused by a glyph that extends beyond its advance width

QuickDraw GX uses information in font tables to determine how much to increase or

decrease the space between glyphs. In the general case, this amount can depend on more

than just the two adjacent glyphs: it can also depend on preceding or following glyphs,

or even on glyphs in other parts of the line. For example, the two pairs of glyphs in

Figure 8-6 might kern, but the triple would not--at least not in the same manner as the

two separate pairs.

Figure 8-6 When kerning can and cannot occur

C H A P T E R 8

Layout Styles

About Layout Styles 8-9

For determining caret positions, kerning offset is effectively split between glyphs in a

kerned pair. The example on the right in Figure 8-7 shows where the caret would appear

between the two kerned glyphs.

Figure 8-7 Caret position between two kerned glyphs

Cross-stream kerning allows the automatic movement of glyphs perpendicular to the

line orientation of the text. (For horizontal text, the automatic movement is vertical.) For

example, Figure 8-8 (right) shows how a hyphen between two uppercase glyphs could

be raised to reflect the centers of those characters.

Figure 8-8 Cross-stream kerning

Cross-stream kerning is required for scripts like Taliq (used in Urdu). It can also be used

to assist in the creation of automatic fractions. (See page 8-32 for additional discussion of

automatic fractions.)

Kerning Inhibit

Kerning inhibit is a feature of QuickDraw GX that allows you to partially or fully defeat

the font-specified kerning for all glyphs of a style run. You can specify that only a percen-

tage (from 100 percent down to 0) of the font-defined with-stream kerning amount is to

C H A P T E R 8

Layout Styles

8-10 About Layout Styles

be applied when QuickDraw GX draws the glyphs of a style run. Figure 8-9 shows the

same phrase written three times, first with normal kerning (top), then with only half the

normal kerning amount, and finally with no kerning at all.

Figure 8-9 Partially and fully inhibiting kerning

You also can completely override the font-specified kerning for individual pairs of glyphs

in a style run, giving them any value you wish. See “Kerning Adjustments” beginning on

page 8-16.

Tracking

Tracking is another glyph-positioning adjustment you can control. You can expand or

contract the spacings of all glyphs in a style run by applying a value to that style run.

This value, called the track setting, uses information defined by the font to specify

whether interglyph spacing is to be tightened or loosened.

Tracking is different from with-stream shifting because the actual amount of space added

or removed is controlled by the font, not by your application. The positional shifts are

the result of two-dimensional interpolation based on the track setting, the text size in

points, and the threshold values present in the font’s tracking table. These threshold

values are used to permit nonlinear tracking amounts: for example, a single track setting

can specify different sets of spacings for text below 8 points, from 8 to 12 points, from 12

to 15, from 15 to 36, and over 36 points, if the font designer wishes it.

Specifying a track setting of 0 means “space normally” according to the specifications of

the font designer. That does not necessarily mean that no adjustment to spacing occurs.

The font designer may decide that “normal spacing” includes some spacing adjustment

in certain point size ranges.

C H A P T E R 8

Layout Styles

About Layout Styles 8-11

Figure 8-10 shows the same phrase written three times in a particular font. At the top the

application specified a track setting of 0; in the middle, it specified a large positive track

setting (+2); and at the bottom it specified a large negative track setting (–2).

Figure 8-10 Tracking with track settings

The sample function that generated Figure 8-10 is shown in Listing 8-3 on page 8-45.

Optical Alignment

In multiline text, glyphs may seem to line up incorrectly at the margins. This is accounted

for by two factors. First, glyph advance widths contain a certain amount of extra white

space (side bearing) to account for the normal interglyph spacing, as shown in Figure 8-11.

Figure 8-11 Advance widths, including side bearings to allow for interglyph spacing

C H A P T E R 8

Layout Styles

8-12 About Layout Styles

This produces certain anomalies at line margins, because the side bearing varies with font

size. For example, if different sizes of a single glyph from the same font are left-aligned,

they may not line up exactly, as Figure 8-12 shows.

Figure 8-12 Misalignment caused by advance widths that vary with glyph size

The second problem is that due to optical effects, curved lines do not appear to line up

properly with straight lines. To make them appear to line up, some compensation must

occur. On baselines, for example, curved letters such as “C” or “S” are generally designed

to extend slightly below the baseline, so that they appear to line up with straight letters

such as “H”, as in Figure 8-13.

Figure 8-13 How curved letters extend below the baseline to align with straight letters

This same effect should happen at the edges of lines. On the left side of Figure 8-14, the

“O” in “Oregon” and the “C” in “Connecticut” appear to be indented compared to the

“H” and “D” glyphs. However, as shown by the vertical line on the right, the outlines of

the four glyphs are exactly aligned. The apparent indentation is an optical effect.

C H A P T E R 8

Layout Styles

About Layout Styles 8-13

Figure 8-14 Apparent misalignment of curved letters

To compensate for these effects, QuickDraw GX can apply optical alignment information

contained in the font. When determining the leading and trailing edges of a line of text,

QuickDraw GX uses the optical leading and trailing edges.

In Figure 8-15, the black arrow spans the distance from the origin to the advance width

of the glyph, defining the width of the glyph plus side bearings. The spaces between the

solid lines represent the side bearings, and the dashed lines represent the optical edges

of the glyph. Note that on each side the optical edge is further inset from the standard

edge by more than the amount of the side bearing.

Figure 8-15 The optical edges of a glyph

C H A P T E R 8

Layout Styles

8-14 About Layout Styles

Figure 8-16 shows the same text as Figure 8-14, except that on the left in Figure 8-16, the

glyphs appear to be aligned. However, as shown by the vertical line on the right, the

outlines of the four glyphs are not exactly aligned; the glyphs have been shifted to com-

pensate for optical effect.

Figure 8-16 Optical alignment at line edges

QuickDraw GX applies optical alignment by default. Your application can suppress

it by setting the flag gxNoOpticalAlignment in the run controls structure. The

gxNoOpticalAlignment flag is described on page 8-61.

Hanging Glyphs

One of the properties that QuickDraw GX understands about a glyph is whether it is

permitted to “hang” off one or both ends of a line. This property is font-specified, and

is usually true for “lightweight” punctuation, such as quotation marks or periods. This

permits automatic alignment of text lines such as that shown in Figure 8-17.

Figure 8-17 Automatic hanging punctuation

By default, QuickDraw GX uses this font-specific information to automatically hang

punctuation where appropriate. Your application has the ability to control the degree to

which this happens (or whether it happens at all). You can use hanging inhibit to control

the degree to which the hanging punctuation glyphs in a style run hang. A value of 0 (the

C H A P T E R 8

Layout Styles

About Layout Styles 8-15

default) indicates that the glyph should hang by the normal amount. A positive nonzero

value lessens the amount of hanging proportionally, down to a value of 1, which means

“no hanging at all.” Figure 8-18 shows the same line of (justified) text laid out with no

hanging inhibit (top), with an inhibit of 0.5 (middle), and with full inhibit (bottom).

Figure 8-18 Effects of hanging inhibit factor

You can also specify that all glyphs of a particular style run are to be hanging glyphs,

whether or not the font designer intended them to be. Figure 8-19 shows a line in which

the question mark, which is not normally a hanging glyph, is in its own style run and is

defined as hanging; it therefore extends beyond the margin.

Figure 8-19 Defining a nonhanging glyph as a hanging glyph

Imposed Width

If a picture or other graphic is to be embedded in a line of text, your application can create

a gap at a specific point in that line by using a single whitespace character as its own style

run and imposing a width on that style run, as shown in Figure 8-20. The specified glyph

always has the imposed width, regardless of the point size of the text, to within a single

pixel in device resolution.

C H A P T E R 8

Layout Styles

8-16 About Layout Styles

Figure 8-20 shows a layout shape in which one of the style runs consists of only the

whitespace character between the words “As” and “you”. The shape is drawn twice;

first with no imposed width and then with an imposed width on the whitespace char-

acter. By imposing a width on the style run, you can make the gap between the words

as large as you wish.

Figure 8-20 A style run with an imposed width in a line of text

The sample function that generated Figure 8-20 is shown in Listing 8-6 on page 8-48.

Kerning Adjustments
As described in the section “With-Stream Kerning and Cross-Stream Kerning” beginning

on page 8-8, QuickDraw GX uses font information to automatically kern pairs and groups

of glyphs contextually, and you can partially or fully inhibit that kerning by setting a

field in the run controls structure.

The kerning specified by QuickDraw GX-compatible fonts is sophisticated and should be

sufficient in nearly all situations. However, your application can exert additional

influence on kerning behavior if necessary. Using the kerning adjustments array in the

style object, you can override the normal kerning for individual pairs of glyphs.

Adjustments to kerning involve both a point-size factor and a scale factor. The adjust-

ment is ax + b where x is the automatic kerning value specified in the font, a is the scale

factor, and b is the product of the point-size factor (b') and the run’s point size (s). (The

value (b') is the value included in the data structure.) The adjustment is always added to

the normal, font-specified kerning in a given situation.

To apply the kerning adjustments, QuickDraw GX performs the following calculations.

Here x' represents the new kerning value after adjustments have been applied:

x' = x + (ax + b)

where

b = b' * s

So, with a scale factor of 1, you would get

x' = x + (x + b)

C H A P T E R 8

Layout Styles

About Layout Styles 8-17

which means that the final kerning value would be (2x + b). Therefore, to simply double

the font-specified kerning, use a scale factor of 1 and a point-size factor of 0. In general,

to multiply the font-specified kerning by any factor n, use a scale factor of (n -1) and a

point-size factor of 0.

With a scale factor of –1, you would get

x' = x + (-x + b)

which means that the final kerning value would be (b). Therefore, to replace the font-

specified kerning with your own constant value, use a scale factor of –1 and a point-size

factor that, when multiplied by the point size, yields the total kerning amount that

you want.

With a scale factor of 0, you would get

x' = x + (0x + b)

which means the final result will be (x + b). Therefore, to make a constant adjustment to

the kerning value, use a scale factor of 0 and a point-size factor that, when multiplied by

the point size, yields the additional kerning amount that you want.

Figure 8-21 shows an example in which the kerning for the “W A” glyph pair is adjusted

twice. The upper line is drawn with normal kerning. The middle line is drawn with a

scale factor of –0.5 and a point-size factor of 0, giving a result of half the normal kerning.

The bottom line is drawn with a scale factor of –1 and a point-size factor of +0.5, which

removes the normal kerning and adds a large constant value to the spacing.

Figure 8-21 Application-specified kerning adjustments

The sample function that generated Figure 8-21 is shown in Listing 8-7 on page 8-50.

C H A P T E R 8

Layout Styles

8-18 About Layout Styles

Glyph Substitutions
Your application can have final control over the glyphs chosen by QuickDraw GX when

it lays out a line. You can specify, in the glyph substitutions array of the style object,

specific glyphs that QuickDraw GX is to substitute for other specific glyphs before

drawing. Your application has the last say, because glyph substitutions specified in this

way always occur after all automatic glyph substitutions that QuickDraw GX performs

(except for substitutions that may occur during postcompensation action—see the

discussion of justification in the chapter “Layout Line Control” in this book).

Figure 8-22 shows a simple example for demonstration purposes, in which all lowercase

“æ” glyphs are replaced with “e” using glyph substitutions. More realistically, you might

use glyph substitutions to allow users to apply specific swash variants of glyphs, in

situations not provided for through other methods such as the smart-swash font features

described in Table 8-8 on page 8-30.

Figure 8-22 Application-controlled glyph substitution

The sample function that generated Figure 8-22 is shown in Listing 8-8 on page 8-52.

Font Features
Much of the text-layout capability of QuickDraw GX happens automatically. Tables in

QuickDraw GX–compatible fonts control the layout process in many ways. Thus, appli-

cations can get sophisticated linguistic and layout behavior without having to specify

parameters to control it, and without having to implement it themselves. As has been

shown in earlier sections in this chapter, automatic kerning, optical alignment, and place-

ment of hanging punctuation are examples of font-specified layout capabilities that occur

without your application’s intervention.

Another large category of layout capabilities controlled by QuickDraw GX–compatible

fonts is called font features. Font features are typographic and layout capabilities that can

be selected or deselected by an application, and that control many aspects of glyph

selection, ordering, and positioning. Font features include fundamental controls such as

whether or not contextual forms are to be used, and details of appearance such as whether

or not alternate forms of glyphs are to be used at the beginnings of words. To a large

extent, the appearance of a layout shape is a function of the number and kinds of font

features chosen.

C H A P T E R 8

Layout Styles

About Layout Styles 8-19

Font features are applied to each style run based on font defaults, modified by values in

the run-features array of the style object, if present. Because you specify these features

on a run-by-run basis, you can customize the layout of text with dissimilar fonts or even

different languages on a single line. There is no universally prescribed set of default

font features; each font picks which features to support and which ones to “turn on”

by default. But you can use the run-features array to turn on font features that are off by

default, or to turn off font features that you do not want.

Font vendors create tables that implement a set of font features from which your applica-

tion can pick and choose. The architecture of font features is open-ended; as font vendors

create new kinds of features, QuickDraw GX automatically takes advantage of them. An

initially defined standard set of features is described in this chapter; as new fonts add new

features, the defined set of font features will be expanded to accommodate them. Your

application can query fonts to determine the available set of features and their names,

using QuickDraw GX functions such as GXCountFontFeatures, GXGetFontFeature,

and GXFindFontFeature. See the chapter “Font Objects” in this book for more

information.

Feature Types, Feature Selectors, and the Feature Registry

Font features are grouped into categories called feature types, within which individual

feature selectors are used to define particular feature settings or selections. Feature types

and feature selectors are defined and listed in the QuickDraw GX Font Feature Registry, a

document maintained by Apple Computer, Inc. Although this chapter gives examples of

feature types and feature selectors, the specific set of features and their names as given

here may not be complete. The feature registry is the official document that defines them,

and it is evolving as new fonts are created.

To obtain the latest version of the feature registry, please contact Apple Computer, Inc., at

the AppleLink address FONTREGISTRY.

Table 8-1 lists examples of feature types that a font can support and that your application

can choose among when laying out text.

Table 8-1 Examples of feature types

Constant Explanation

allTypographicFeaturesType Specifies whether or not any font features are
to be applied at all. Table 8-2 on page 8-22 lists
the feature selectors related to this feature type.

ligaturesType Specifies the use of required ligatures and
other categories of optional ligatures. Table 8-3
on page 8-24 lists the feature selectors related
to this feature type.

cursiveConnectionType Specifies whether or not cursive connections
are to be used between glyphs. Table 8-4 on
page 8-26 lists the feature selectors related to
this feature type.

continued

C H A P T E R 8

Layout Styles

8-20 About Layout Styles

letterCaseType Specifies case changes, such as all uppercase,
all lowercase, and small caps, for scripts in
which case has meaning. Table 8-5 on
page 8-26 lists the feature selectors related to
this feature type.

verticalSubstitutionType Allows substitution of vertical forms of parti-
cular glyphs (such as parentheses) in vertical
runs of text. Table 8-6 on page 8-27 lists the
feature selectors related to this feature type.

linguisticRearrangementType Either permits or inhibits linguistic (Indic-
style) rearrangement of glyphs. Table 8-7 on
page 8-28 lists the feature selectors related to
this feature type.

smartSwashType Controls whether swash variants of glyphs are
to be substituted in specific places in the text,
such as at the beginnings or ends of words or
lines. Table 8-8 on page 8-30 lists the feature
selectors related to this feature type.

diacriticsType Controls whether diacritical marks are shown
or hidden. Table 8-9 on page 8-31 lists the
feature selectors related to this feature type.

verticalPositionType Controls the selection of superscript and sub-
script glyph sets. Table 8-10 on page 8-32 lists
the feature selectors related to this feature type.

fractionsType Controls automatic substitution or formation
of fractions. Table 8-11 on page 8-33 lists the
feature selectors related to this feature type.

overlappingCharactersType Controls whether long tails on glyphs are per-
mitted to collide with other glyphs. Table 8-12
on page 8-34 lists the feature selectors related
to this feature type.

characterShapeType Specifies for languages such as Chinese that
have both sets whether traditional or simpli-
fied characters are to be used. Table 8-13 on
page 8-35 lists the feature selectors related to
this feature type.

numberSpacingType Specifies whether to use fixed-width or propor-
tional-width glyphs for numerals. Table 8-14
on page 8-35 lists the feature selectors related
to this feature type.

continued

Table 8-1 Examples of feature types (continued)

Constant Explanation

C H A P T E R 8

Layout Styles

About Layout Styles 8-21

Within some feature types, you can choose only one of the available feature selectors,

such as whether numbers are to be proportional or fixed-width. With other feature types

you can turn “on” or “off” any number of feature selectors at once; for example, under

ligatures you can choose any combination of the available classes of ligatures that the

font supports.

Your application can select a group of features, place selectors for them in a run-features

array, and assign that array to a layout shape’s style object. QuickDraw GX will then use

those features, plus any font-specified features not overridden by your feature selections,

when it draws the layout shape.

numberCaseType Specifies whether to use numerals that do, or
do not, extend below the baseline. Table 8-15
on page 8-36 lists the feature selectors related
to this feature type.

styleOptionsType Specifies any of several named alternative
forms that may be available in the font, such
as engraved or cursive. Table 8-16 on page 8-37
lists the feature selectors related to this
feature type.

typographicExtrasType Controls several effects, such as substitution
of en dashes for hyphens, that are associated
with sophisticated typography. Table 8-17 on
page 8-37 lists the feature selectors related to
this feature type.

mathematicalExtrasType Controls several features, such as changing
asterisks to multiplication symbols, used for
typesetting mathematical expressions. Table
8-18 on page 8-38 lists the feature selectors
related to this feature type.

ornamentSetsType Specifies certain sets of non-alphanumeric
glyphs, such as decorative borders or musical
symbols. Table 8-19 on page 8-39 lists the
feature selectors related to this feature type.

characterAlternativesType Specifies, by number, any font-specific set of
alternate glyph forms. Table 8-20 on page 8-40
lists the feature selector related to this
feature type.

designComplexityType Specifies an overall complexity of appearance,
as defined by the font. Table 8-21 on page 8-40
lists the feature selectors related to this
feature type.

Table 8-1 Examples of feature types (continued)

Constant Explanation

C H A P T E R 8

Layout Styles

8-22 About Layout Styles

You can also turn font features on or off. Table 8-2 lists the feature selectors for the

allTypographicFeaturesType feature type; by specifying the selector

allTypeFeaturesOnSelector or allTypeFeaturesOffSelector for that

feature type, you can turn the entire set of features on or off. Note that if you turn all

font features off this way, you turn off all font features, including all the font-specified

defaults. (That may result in linguistically incorrect display.) If you turn font features

on, you turn on the font-specified defaults, modified by whatever feature settings you

have specified in the run-features array.

The rest of this section gives examples of the kinds of feature selectors that may be

available for some of the feature types listed in Table 8-1. Please consult the feature

registry for more up-to-date information.

Contextual Font Features

One class of font features is contextual, meaning that how (or if) the feature is applied to

a given glyph depends on the glyph’s position compared to adjacent glyphs. Much of

QuickDraw GX’s text-layout power results from its ability to apply sophisticated

contextual processing.

QuickDraw GX’s ability to automatically substitute one or more glyphs for one or more

other glyphs is called automatic form substitution. QuickDraw GX supports several

kinds of automatic form substitution, including ligatures, cursive contextual forms,

contextual case substitution, vertical substitution, rearrangement, automatic fraction

generation, and others.

Automatic Ligature and Contextual Form Generation

A ligature is a rendering form that represents a combination of two or more individual

characters. Examples include the “fi” ligature in English (Figure 8-23) and the miim-miim

ligature in Arabic (Figure 8-24).

Table 8-2 Feature selectors for the allTypographicFeaturesType font feature type

Constant Explanation

allTypeFeaturesOnSelector Tells QuickDraw GX to use the font features
specified in this style run’s run-features array
and the defaults specified by the font.

allTypeFeaturesOffSelector Tells QuickDraw GX to ignore all font features
specified either by the font or in this style run’s
run-features array.

C H A P T E R 8

Layout Styles

About Layout Styles 8-23

Figure 8-23 Ligatures in Roman text

Figure 8-24 A ligature in Arabic text

C H A P T E R 8

Layout Styles

8-24 About Layout Styles

A contextual form is an alternate appearance of a glyph that is used in certain contexts.

Arabic, for example, has different contextual forms of characters, depending on whether

they are at the beginning, the middle, or the end of a word. Figure 8-25 shows the forms

of the Arabic letter “ha” that appear alone, at the beginning, middle, or end of a word.

The same character code is used in each case; QuickDraw GX chooses the correct glyph

when laying out the text.

Figure 8-25 Versions of the Arabic letter “ha”

Ligatures

If the font supports the ligatures feature type, you can select features related to ligature

formation, such as those shown in Table 8-3.

Table 8-3 Feature selectors for the ligaturesType feature type

Constant Explanation

requiredLigaturesOnSelector
requiredLigaturesOffSelector

Allows or prevents the use of ligatures that
the font designates as required by the
language (such as certain Arabic ligatures).

commonLigaturesOnSelector
commonLigaturesOffSelector

Allows or prevents the use of ligatures
that the font designates as “common,” or
normally used (such as the “fi” ligature
in Roman text).

rareLigaturesOnSelector
rareLigaturesOffSelector

Allows or prevents the use of ligatures that
the font designates as “rare” (such as “ct” or
“ss” ligatures).

logosOnSelector
logosOffSelector

Allows or prevents the use of ligatures that
the font designates as logotypes (typically
used for trademarks or other special
display text).

rebusPicturesOnSelector
rebusPicturesOffSelector

Allows or prevents the use of rebuses
(pictures that represent words or syllables).

diphthongLigaturesOnSelector
diphthongLigaturesOffSelector

Specifies whether or not to replace diph-
thong sequences, such as “AE” and “oe”,
with their equivalent ligatures (“Æ” and
“œ” in this case).

C H A P T E R 8

Layout Styles

About Layout Styles 8-25

Figure 8-26 shows several levels of ligature formation specified through ligature feature

selectors. The sample function that generated Figure 8-26 is shown in Listing 8-9 on

page 8-53.

Figure 8-26 Levels of ligature formation controlled with ligature feature selectors

Figure 8-27 shows the results of selection (upper) and deselection (lower) of diphthong

ligatures.

Figure 8-27 Use of diphthong ligatures

Cursive Connection

All Arabic fonts use cursive connection, and some Roman fonts may also support cursive

connection. If a font supports the cursive connection feature type, you may be able to

select features that either disable cursive connection completely, enable letterforms that

connect in a noncontextual manner, or enable completely contextual, cursively connected

letterforms (as in Arabic). Table 8-4 lists the feature selectors for cursive connection.

C H A P T E R 8

Layout Styles

8-26 About Layout Styles

Figure 8-28 shows an example of noncontextual cursive connection in a Roman font.

Figure 8-28 Noncontextual cursive connection in a Roman font

Letter Case

In fonts for languages in which case is significant, QuickDraw GX allows you to specify

certain automatic case changes. If the font supports the letter case feature type, you can

select features that specify case changes such as those shown in Table 8-5.

Table 8-4 Feature selectors for the cursiveConnectionType feature type

Constant Explanation

unconnectedSelector Disables cursive connection.

partiallyConnectedSelector Specifies noncontextual cursive connection.

cursiveSelector Specifies fully contextual cursive connection.
For Arabic fonts, this selector is set by default.

Table 8-5 Feature selectors for the letterCaseType feature type

Constant Explanation

upperAndLowerCaseSelector Specifies no case conversion.

allCapsSelector Specifies conversion of all letters to
uppercase. (This feature is noncontextual.)

allLowerCaseSelector Specifies conversion of all letters to
lowercase. (This feature is noncontextual.)

smallCapsSelector Specifies conversion of all lowercase
letters to small caps. (This feature is
noncontextual.)

initialCapsSelector Specifies conversion of all lowercase
letters at the beginnings of words to
uppercase. (This feature is contextual.)

initialCapsAndSmallCapsSelector Specifies conversion of all lowercase
letters at the beginnings of words to
uppercase, and all other lowercase letters
to small caps. (This feature is contextual.)

C H A P T E R 8

Layout Styles

About Layout Styles 8-27

Figure 8-29 shows a phrase that is first drawn with no case conversion

(upperAndLowerCaseSelector), and then with the selectors allCapsSelector,

allLowerCaseSelector, and smallCapsSelector, respectively.

Figure 8-29 Case conversion

Note
Contrary to common perception, the small caps style is not simply the
use of capital letters in a smaller point size. If the font contains true
small caps glyphs, you can specify them with a letter case feature
selector, and QuickDraw GX will use them. ◆

Vertical Substitution

Vertical substitution is a glyph substitution in which the glyph for a given glyph code is

replaced by an alternate form in a vertical line. (This is not the same as rotating the glyph.)

Table 8-6 shows the feature selectors for vertical substitution.

Table 8-6 Feature selectors for the verticalSubstitutionType feature type

Constant Explanation

substituteVerticalFormsOnSelector
substituteVerticalFormsOffSelector

Allows or prevents the substitu-
tion of alternate glyph forms in
vertical lines.

C H A P T E R 8

Layout Styles

8-28 About Layout Styles

Figure 8-30 illustrates how vertical substitution works.

Figure 8-30 Vertical substitution forms in a font

For vertical substitution to happen, the vertically rotated forms must exist in the font and

must be indicated as such in the font’s tables; otherwise, no characters are substituted. If

the font supports the vertical substitution feature type, its default behavior is to perform

such substitutions; you may either prevent the substitution or allow it to occur.

Linguistic Rearrangement

Linguistic (Indic-style) rearrangement is a standard feature of Devanagari and other

South Asian scripts. However, users may not always want it to occur, preferring instead

to enter characters in an “already reversed” order. If a font supports the rearrangement

feature type, you can either allow the default behavior (which is to perform rearrange-

ment) or you can prevent it. Table 8-7 shows the feature selectors for rearrangement.

Table 8-7 Feature selectors for the linguisticRearrangementType feature type

Constant Explanation

linguisticRearrangementOnSelector
linguisticRearrangementOffSelector

Allows or prevents the automatic
rearrangement of certain glyphs as
required by language rules.

C H A P T E R 8

Layout Styles

About Layout Styles 8-29

Figure 8-31 shows two examples of the display of the word “hindi”, first with linguistic

rearrangement on and then with it off. Note that when rearrangement is off, the storage

order of the character codes in the source text must reflect display order, rather than

normal input order.

Figure 8-31 The word “hindi” drawn with rearrangement turned on (upper) and off (lower)

Swashes and Smart Swashes

A swash is a variation, often ornamental, of an existing glyph. Using font tables,

QuickDraw GX can identify and automatically substitute swashes for existing glyphs.

Alternatively, your application can allow the user to choose swash forms at the time

the layout is created.

C H A P T E R 8

Layout Styles

8-30 About Layout Styles

Collections of swash forms called smart swashes can be designated by the font designer

and put in swash tables. Smart swashes are contextual and swashes are not. If the font

supports the smart swashes feature type, you can select features that allow you to

specify sets of swashes, such as shown in Table 8-8.

Figure 8-32 shows the same phrase written four times: first without swash variants, then

with line initials, then with line finals, and finally with both line initials and line finals.

Figure 8-32 Specifying different swashes with feature selectors

Table 8-8 Feature selectors for the smartSwashType feature type

Constant Explanation

wordInitialSwashesOnSelector
wordInitialSwashesOffSelector

Allows or prevents the substitution of
swash variants that begin words.

wordFinalSwashesOnSelector
wordFinalSwashesOffSelector

Allows or prevents the substitution of
swash variants that end words.

lineInitialSwashesOnSelector
lineInitialSwashesOffSelector

Allows or prevents the substitution of
swash variants that begin lines.

lineFinalSwashesOnSelector
lineFinalSwashesOffSelector

Allows or prevents the substitution of
swash variants that end lines.

nonFinalSwashesOnSelector
nonFinalSwashesOffSelector

Allows or prevents the substitution of
swash variants that can occur at the
beginnings or interiors of words

C H A P T E R 8

Layout Styles

About Layout Styles 8-31

The sample function that generated Figure 8-32 is shown in Listing 8-10 on page 8-55.

Note

If you want your application to define its own set of swashes, it can use
glyph substitutions to replace the QuickDraw GX glyph choices with its
own. See the section “Glyph Substitutions” beginning on page 8-18. ◆

Diacritical Marks

A glyph with a diacritical mark is a form of ligature. For fonts whose glyphs can take

diacritical marks, QuickDraw GX allows you several display options. If the font supports

the diacritical marks feature type, you can specify that QuickDraw GX should show,

hide, or decompose diacritical marks, as shown in Table 8-9.

For Roman fonts the default setting is to show diacritical marks. In text for scripts in

which vowel marks are not normally shown, you can specify that marks be visible

in certain instances, such as for children’s text, or for pronunciation guides on rare

words. Figure 8-33 shows an example of Hebrew text drawn with and without its

diacritical marks.

Figure 8-33 Hebrew text with diacritical marks shown (upper) and hidden (lower)

Table 8-9 Feature selectors for the diacriticsType feature type

Constant Explanation

showDiacriticsSelector Specifies that QuickDraw GX is to form accent
ligatures on the glyphs they apply to.

hideDiacriticsSelector Specifies that QuickDraw GX is not to form
any accent ligatures.

decomposeDiacriticsSelector Specifies that QuickDraw GX is to display
marked glyphs as unmarked, followed by
the accent ligatures as stand-alone glyphs.

C H A P T E R 8

Layout Styles

8-32 About Layout Styles

Figure 8-34 shows an example of text drawn with and without its accents.

Figure 8-34 Accented forms

Vertical Position

For fonts that support the vertical position feature type, you can select features that

allow you to specify glyph variants related to vertical position, as shown in Table 8-10.

Fractions

There are several ways to generate fractions with QuickDraw GX. For a font that supports

the fractions feature type, you may be able to select between two different types of auto-

matic fraction generation, as shown in Table 8-11.

Table 8-10 Feature selectors for the verticalPositionType feature type

Constant Explanation

normalPositionSelector Specifies use of normally positioned glyph set.

superiorsSelector Specifies use of superiors: glyph variants that
are positioned above the baseline, used typically
for superscripts.

inferiorsSelector Specifies use of inferiors: glyph variants that
are positioned below the baseline, used typically
for subscripts.

ordinalsSelector Specifies contextual substitution of glyphs that
replace ordinal designations attached to numerals
(such as “1st” substituting for “1st”).

C H A P T E R 8

Layout Styles

About Layout Styles 8-33

Figure 8-35 shows the same fraction, drawn first with noFractionsSelector and

then with diagonalFractionsSelector.

Figure 8-35 Fractions

Note
To use the automatic fraction-generation capability, make sure that the
slash separating the numerator and denominator is the fraction slash
(character code 0xDA in the Standard Roman character set), not the
normal slash character (0x2F). Automatic fraction generation does not
occur unless the slash is a fraction slash. ◆

Prevention of Glyph Overlap

Some glyphs, especially certain initial swashes, have parts that extend well beyond their

advance widths. An initial “Q”, for example, may have a tail that extends underneath the

following “u”.

Table 8-11 Feature selectors for the fractionsType feature type

Constant Explanation

noFractionsSelector Specifies no substitution or construction of
fractions.

verticalFractionsSelector Specifies replacement of slash-separated
numeric sequences with predrawn fraction
glyphs, if present in the font.

diagonalFractionsSelector Specifies replacement of slash-separated numeric
sequences with pre-drawn fraction glyphs, or else
construction of fractions with numerators and
denominators, or superiors and inferiors.

C H A P T E R 8

Layout Styles

8-34 About Layout Styles

For fonts that support the glyph overlap feature type, you can specify that no glyph may

overlap the outline of the following glyph. If it does, a non-overlapping form of the

glyph is substituted. Table 8-12 lists the selectors for this feature.

In the case of Figure 8-36, for example, preventing glyph overlap means that the script

“Q” can remain because the following “u” has no descender to collide with it, whereas

the script “L” is replaced with a simpler form to avoid collision with the “y”.

Figure 8-36 Allowing and preventing glyph overlap

Noncontextual Font Features

Noncontextual font features include the selection of alternate glyph sets to give text a

different appearance, and glyph substitution for purposes of mathematical typesetting

or enhancing typographic sophistication.

Character Shape

The Chinese language can be represented with both a traditional and a simplified

character set, as shown in Figure 8-37. Chinese fonts that support the character shape

feature type allow you to select either set.

Table 8-12 Feature selectors for the overlappingCharactersType feature type

Constant Explanation

preventOverlapOnSelector
preventOverlapOffSelector

Prevents or allows the collision of an
extended part of one glyph with an
adjacent glyph.

C H A P T E R 8

Layout Styles

About Layout Styles 8-35

Figure 8-37 Traditional and simplified versions of a Chinese character

Note
Historically on the Macintosh, the difference has been handled by
having separate script systems for traditional Chinese and simplified
Chinese; while that is still the case, this font feature makes it possible
to have both glyph repertoires present in a single font. ◆

Table 8-13 lists the selectors for this feature.

Number Width

Many fonts support both proportional-width and fixed-width numerals, as shown in

Figure 8-38. In proportional-width numerals the “1” is narrower than the “0”, whereas in

fixed-width numerals they (and all the other numerals) have identical widths. Fixed-

width numerals are also called columnating because they align well in text that consists of

columns of numerical data. For fonts that support the number spacing feature type, you

can select either fixed-width or proportional-width numerals. Table 8-14 lists the selectors

for this feature.

Table 8-13 Feature selectors for the characterShapeType feature type

Constant Explanation

traditionalCharactersSelector Specifies the use of traditional characters.

simplifiedCharactersSelector Specifies the use of simplified characters.

Table 8-14 Feature selectors for the numberSpacingType feature type

Constant Explanation

monospacedNumbersSelector Specifies the use of fixed-width
(columnating) numerals.

proportionalNumbersSelector Specifies the use of proportional-
width numerals.

C H A P T E R 8

Layout Styles

8-36 About Layout Styles

Figure 8-38 shows both kinds of numerals.

Figure 8-38 Fixed-width and proportional-width numerals

Number Case

Some fonts support both lowercase (also called traditional or old-style) numerals, in

which some glyphs extend below the baseline, and uppercase (also called lining)

numerals, in which no glyphs extend below the baseline. For fonts that support the

number case feature type, you can select either kind of numeral. Table 8-15 lists the

selectors for this feature.

 Figure 8-39 shows both kinds of numerals.

Figure 8-39 Uppercase and lowercase numerals

Table 8-15 Feature selectors for the numberCaseType feature type

Constant Explanation

lowerCaseNumbersSelector Specifies the use of lowercase (old-style) numerals.

upperCaseNumbersSelector Specifies the use of uppercase (lining) numerals.

C H A P T E R 8

Layout Styles

About Layout Styles 8-37

Style Options

A QuickDraw GX–compatible font may offer named sets of noncontextual glyph substi-

tutions that give the text a specific style or appearance. You can select among sets, using

selectors such as those listed in Table 8-16.

You may be able to select more than one feature at a time from the list of alternate forms.

For example, a font may offer display, engraved, and engraved-display style options.

Typographic Extras

Fonts that support the typographic extras feature type allow you to specify certain small-

scale typographic conventions, using selectors such as those shown in Table 8-17.

Table 8-16 Feature selectors for the styleOptionsType feature type

Constant Explanation

noStyleOptionsSelector Specifies the use of the standard glyph set.

displayTextSelector Specifies the use of a glyph set that is designed for
best display at large sizes (over 24 point).

engravedTextSelector Specifies the use of a glyph set that has contrasting
strokes parallel to the main stroke, giving an
engraved effect.

illuminatedCapsSelector Specifies the use of a glyph set with complex decora-
tion surrounding the glyphs of capital letters.

titlingCapsSelector Specifies the use of a glyph set in which capital
letters have a special form for display in titles.

tallCapsSelector Specifies the use of a glyph set in which capital
letters have a taller form than is typical.

Table 8-17 Feature selectors for the typographicExtrasType feature type

Constant Explanation

hyphensToEmDashOnSelector
hyphensToEmDashOffSelector

Allows or prevents the automatic replacement
of two adjacent hyphens with an em dash.

hyphenToEnDashOnSelector
hyphenToEnDashOffSelector

Allows or prevents the automatic replacement
of the sequence space-hyphen-space (or the
hyphen in the sequence numeral-hyphen-
numeral) with an en-dash.

unslashedZeroOnSelector
unslashedZeroOffSelector

Allows or prevents the forced use of the un-
slashed zero glyph, regardless of whether the
font specifies the slashed zero as the default.

continued

C H A P T E R 8

Layout Styles

8-38 About Layout Styles

Mathematical Extras

Fonts that support the mathematical extras feature type allow you to specify certain

math-formatting conventions, using selectors such as those shown in Table 8-18.

Note

By convention, specifying the hyphenToMinusOnSelector
in the mathematical extras feature type overrides specifying the
hyphenToEnDashOnSelector in the typographic extras
feature type. ◆

formInterrobangOnSelector
formInterrobangOffSelector

Allows or prevents the automatic replacement
of the sequence “?!” or “!?” with the font’s
interrobang glyph.

smartQuotesOnSelector
smartQuotesOffSelector

Allows or prevents the automatic contextual
replacement of straight quotation marks with
curly ones.

Table 8-18 Feature selectors for the mathematicalExtrasType feature type

Constant Explanation

hyphenToMinusOnSelector
hyphenToMinusOffSelector

Allows or prevents the automatic replace-
ment of the sequence space-hyphen-space
(or the hyphen in the sequence numeral-
hyphen-numeral) with a minus sign
glyph (–).

asteriskToMultiplyOnSelector
asteriskToMultiplyOffSelector

Allows or prevents the automatic replace-
ment of the sequence space-asterisk-space
(or the asterisk in the sequence numeral-
asterisk-numeral) with a multiplication
sign glyph (×).

slashToDivideOnSelector
slashToDivideOffSelector

Allows or prevents the automatic replace-
ment of the sequence space-slash-space (or
the slash in the sequence numeral-slash-
numeral) with a division sign glyph (÷).

inequalityLigaturesOnSelector
inequalityLigaturesOffSelector

Allows or prevents the automatic replace-
ment of sequences such as “>=” and “<=”
with equivalent ligatures “≥” and “≤”.

exponentsOnSelector
exponentsOffSelector

Allows or prevents the automatic replace-
ment of the sequence exponentiation glyph—
numerals with the superior forms of the
numerals. An example of an exponentia-
tion glyph is “^”.

Table 8-17 Feature selectors for the typographicExtrasType feature type (continued)

Constant Explanation

C H A P T E R 8

Layout Styles

About Layout Styles 8-39

Ornament Sets

Fonts may include ornamental, nonalphabetic glyph sets used for various purposes. With

a font that supports the ornament set feature type, you may be able to select among those

glyph sets, using selectors such as those shown in Table 8-19.

Figure 8-40 shows an example of glyphs from an ornamental set.

Figure 8-40 Ornamental glyphs

Character Alternates

This feature type gives a font a very general way to provide different sets of glyphs. Sets

are numbered sequentially. For a font that supports the character alternates feature type,

you can select by number any of the sets it provides.

Table 8-19 Feature selectors for the ornamentSetsType feature type

Constant Explanation

noOrnamentsSelector Specifies the use of no ornamental glyph sets.

dingbatsSelector Specifies the use of dingbats: arrows, stars,
bullets, and so on.

piCharactersSelector Specifies the use of pi characters: related
nonalphabetic symbols, such as musical
notation glyphs.

fleuronsSelector Specifies the use of fleurons: ornaments such
as flowers, vines, and leaves.

decorativeBordersSelector Specifies the use of decorative borders:
glyphs used in interlocking patterns to
form text borders.

internationalSymbolsSelector Specifies the use of international symbols,
such as the barred circle representing “no”.

mathSymbolsSelector Specifies the use of mathematical symbols.

C H A P T E R 8

Layout Styles

8-40 Using Layout Styles

For example, a font with 20 ampersands could place them in 20 selectors under this feature

type. In general, however, named glyph sets provided through the styleOptionsType

feature type are preferable. Table 8-20 lists the only defined selector for this feature.

Design Complexity

Some fonts may have several glyph sets that represent different designs from the same

font-family, such as “plain” or “fancy.” For a font that supports the design complexity

feature type, design levels are numbered, and you can select any available level by

number or by selectors such as those shown in Table 8-21.

Using Layout Styles

This section describes how to get special layout effects by manipulating these properties

of the style object:

■ run controls structure

■ kerning adjustments array

■ glyph substitutions array

■ run features array

Not all style-object properties are demonstrated here. For examples of the use of decom-

position adjustment factors, baseline-type specification, and direction overrides, see the

chapter “Layout Line Control” in this book. For examples of the use of caret-angle speci-

Table 8-20 Feature selectors for the characterAlternativesType feature type

Constant Explanation

noAlternatesSelector Specifies the use of no character alternatives. This is
the first (default) setting for this feature type; others
are specified by number only.

Table 8-21 Feature selectors for the designComplexityType feature type

Constant Explanation

designLevel1Selector Specifies the basic glyph set.

designLevel2Selector Specifies an alternate glyph set.

designLevel3Selector Specifies an alternate glyph set.

designLevel4Selector Specifies an alternate glyph set.

designLevel5Selector Specifies an alternate glyph set.

C H A P T E R 8

Layout Styles

Using Layout Styles 8-41

fication and ligature splitting for caret positioning, see the chapter “Layout Carets,

Highlighting, and Hit-Testing” in this book.

Initializing Style-Run Properties
Listing 8-1 is a sample library function that sets up a style object for use by a layout

shape. It uses another library function, SetStyleNamedFont, and a library-defined

data structure, StyleRunOverrides, that incorporates all override features.

Listing 8-1 Setting up a style object for a layout shape

void SetLayoutStyle(gxStyle s, char *gxfontName, Fixed textSize,

gxTextAttribute attr,

gxRunControls *runControls,

gxRunFeature runFeatures[],

long runFeaturesCount,

StyleRunOverrides *overrides)

{

/* assign values to the style object that was passed in */

SetStyleNamedFont(s, (unsigned char*)gxfontName);

GXSetStyleTextSize(s, textSize);

GXSetStyleTextAttributes(s, attr);

/* if no run controls exist, assign them */

if (runControls) GXSetStyleRunControls(s, runControls);

/* if run features are passed in, assign them to the style */

if (runFeatures) GXSetStyleRunFeatures(s, runFeaturesCount,

runFeatures);

/* assign all style-run overrides that have been passed in */

if (overrides)

{

if (overrides->glyphSubstitutions)

GXSetStyleRunGlyphSubstitutions(s,

overrides->glyphSubstitutionsCount,

overrides->glyphSubstitutions);

if (overrides->kerningAdjustments)

GXSetStyleRunKerningAdjustments(s,

overrides->kerningAdjustmentsCount,

overrides->kerningAdjustments);

C H A P T E R 8

Layout Styles

8-42 Using Layout Styles

if (overrides->glyphJustOverrides)

GXSetStyleRunGlyphJustOverrides(s,

overrides->glyphJustOverridesCount,

overrides->glyphJustOverrides);

if (overrides->priorityJustOverride)

GXSetStyleRunPriorityJustOverride(s,

overrides->priorityJustOverride);

}

}

The GXSetStyleRunControls function is described on page 8-67. The

GXSetStyleRunFeatures function is described on page 8-82.

The GXSetStyleRunGlyphSubstitutions function is described on page 8-77.

The GXSetStyleRunKerningAdjustments function is described

on page 8-72. The GXSetStyleRunGlyphJustOverrides function and the

GXSetStyleRunPriorityJustOverride function are described in the chapter

“Layout Line Control” in this book.

Manipulating Run Controls
If a style run in your layout shape does not need to use run controls, it does not have to

include a run controls structure at all. Having no run controls structure is equivalent to

having one in which all values are set to 0.

If you do need to use run controls, then you should allocate a run controls structure,

initialize all its values to 0, assign whatever individual nonzero values you need, and

then attach it to a style object.

Using With-Stream and Cross-Stream Shift

You apply manual shifting to the glyphs of a style run by setting the

beforeWithStreamShift, afterWithStreamShift, or crossStreamShift

fields of the run controls structure for that style run. A value of 0 in any of the

fields indicates that no shifting is to be performed in that direction.

Listing 8-2 is a partial listing of a sample routine that creates a line of text and displays

it three times, with various values for with-stream and cross-stream shifting applied to

one of its style runs.

The layout shape created in this routine is layout; the length of the text string

myString is len; and the layout is first drawn at the location myPoint. This

routine uses the library function NewLayoutStyle to create and initialize its style

objects, which it stores in the array styleList. The run control’s style-run lengths

are contained in the array runLengths.

C H A P T E R 8

Layout Styles

Using Layout Styles 8-43

Listing 8-2 A sample that specifies with-stream and cross-stream shifting

void LetterSpacing(void)

{

char *myString = "AAABBBCCC";

.

.

.

/* set up the style runs and style objects for the shape */

runLengths[0] = runLengths[1] = runLengths[2] = 3;

regularStyle = NewLayoutStyle((char *) "\pTimes Roman",

ff(36), 0, nil, nil, 0, nil);

tweakedStyle = NewLayoutStyle((char *) "\pTimes Roman",

ff(36), 0, nil, nil, 0, nil);

styleList[0] = styleList[2] = regularStyle;

styleList[1] = tweakedStyle;

/* create the layout shape without run controls,and draw */

layout = GXNewLayout(1, &len, (void *) &myString,

3, runLengths, styleList,

0, nil, nil,

nil, &myPoint);

GXDrawShape(layout);

/* give 2nd style run a left-side with-stream shift,and draw */

InitializeRunControls(&runControls);

runControls.beforeWithStreamShift = ff(15);

GXSetStyleRunControls(tweakedStyle, &runControls);

GXMoveShape(layout, 0, ff(75));

GXDrawShape(layout);

/* give the style run a right-side with-stream shift,and draw */

runControls.beforeWithStreamShift = 0;

runControls.afterWithStreamShift = ff(15);

GXSetStyleRunControls(tweakedStyle, &runControls);

GXMoveShape(layout, 0, ff(75));

GXDrawShape(layout);

/* give the style run a cross-stream shift,and draw */

runControls.afterWithStreamShift = 0;

runControls.crossStreamShift = ff(15);

GXSetStyleRunControls(tweakedStyle, &runControls);

C H A P T E R 8

Layout Styles

8-44 Using Layout Styles

GXMoveShape(layout, 0, ff(75));

GXDrawShape(layout);

.

.

.

}

Figure 8-41 shows the results of executing the code in Listing 8-2. The

GXSetStyleRunControls function is described on page 8-67.

Figure 8-41 Result of with-stream and cross-stream shift applied to a style run

Specifying Tracking Values

You can specify a general “looseness” or “tightness” for the text of a style run by putting

a value in the track field of the style object’s run controls structure. The actual amount

of spreading or compression is controlled by the font, and can vary nonlinearly with

point size.

Listing 8-3 is a sample routine that creates a line of text and displays it three times, with

three different values for tracking. It defines and sets up variables in a similar manner

to Listing 8-2 on page 8-43, so those parts of this routine are not repeated here. The style

object used by the layout shape in this listing is myStyle; the length of the text string

myString is len; and the layout is first drawn at the location myPoint.

C H A P T E R 8

Layout Styles

Using Layout Styles 8-45

Listing 8-3 Using track settings to spread or compress text

void Tracking(void)

{

char *myString = "Tracking can be loose or tight";

.

.

.

/* create and draw layout with default tracking value */

layout = GXNewLayout(1, &len, (void *) &myString,

1, &len, &myStyle,

0, nil, nil, nil, &myPoint);

GXDrawShape(layout);

/* give it a track value of 2 (very loose),and redraw */

InitializeRunControls(&runControls);

runControls.track = ff(2);

GXSetStyleRunControls(myStyle, &runControls);

GXMoveShape(layout, 0, ff(50));

GXDrawShape(layout);

/* give it a track value of –2 (very tight), & redraw */

runControls.track = -ff(2);

GXSetStyleRunControls(myStyle, &runControls);

GXMoveShape(layout, 0, ff(50));

GXDrawShape(layout);

.

.

.

}

Figure 8-10 on page 8-11 shows the results of executing the code in Listing 8-3. The

GXSetStyleRunControls function is described on page 8-67.

Preventing Optical Alignment

QuickDraw GX automatically adjusts the positions of glyphs at line ends in order to

improve the apparent alignment of columns and multiple lines of text. You can prevent

that adjustment by setting the gxNoOpticalAlignment flag in the run controls

structure of the style object for the style run at the end of the line.

Listing 8-4 is a partial listing of a sample routine that draws a line of fully justified text

twice, once normally and once with optical alignment prevented. The layout shape

created in this routine is layout; it uses the layout options structure layoutOptions

C H A P T E R 8

Layout Styles

8-46 Using Layout Styles

and the run controls structure runControls. The style object used by the layout shape

is myStyle; the length of the text string myString is len; and the layout is first drawn

at the location myPoint.

Listing 8-4 Preventing optical alignment

void OpticalAlignment(void)

{

char *myString = "OHIO";

.

.

.

/* set the width and justification of the layout shape */

layoutOptions.width = ff(250);

layoutOptions.just = fract1;

/* draw lines at the margins, to better show the alignment */

myLine.first.x = myLine.last.x = myPoint.x;

myLine.first.y = 0;

myLine.last.y = ff(1000);

GXDrawLine(&myLine);

myLine.first.x = myLine.last.x = myPoint.x+layoutOptions.width;

GXDrawLine(&myLine);

/* create and draw the layout shape, with default alignment */

layout = GXNewLayout(1, &len, (void *) &myString,

1, &len, &myStyle, 0, nil, nil,

&layoutOptions, &myPoint);

GXDrawShape(layout);

/* prevent optical alignment, then redraw the shape */

InitializeRunControls(&runControls);

runControls.flags = gxNoOpticalAlignment;

GXSetStyleRunControls(myStyle, &runControls);

GXMoveShape(layout, 0, ff(85));

GXDrawShape(layout);

.

.

.

}

The GXSetStyleRunControls function is described on page 8-67.

C H A P T E R 8

Layout Styles

Using Layout Styles 8-47

Inhibiting Hanging Glyphs

Where alignment or justification of a line causes certain punctuation glyphs to be at a

line margin, QuickDraw GX by default places those glyphs outside the margin, and does

not account for their presence in calculating line length. Those glyphs are called hanging
glyphs; each font defines the set of glyphs that are allowed to hang outside the margins.

You can partially or fully inhibit hanging behavior by placing a value in the

hangingInhibitFactor field of the run controls structure of the style object for the

style run at the end of the line. A value of 0 allows hanging to occur normally; a value of

1 completely prevents hanging. Values in between mean that a proportional fraction

of the width of the hanging glyph is allowed to extend beyond the margin.

Listing 8-5 is a partial listing of a sample routine that draws a line of fully justified text

three times, first with punctuation hanging normally, then with it partially inhibited, and

finally with it fully inhibited.

The layout shape created in this routine is layout; it uses the layout options structure

layoutOptions and the run controls structure runControls. The style object used by

the layout shape is myStyle; the length of the text string myString is len; and the

layout is first drawn at the location myPoint.

Listing 8-5 Inhibiting hanging punctuation

void HangingPunctuation(void)
{

char *myString = "“It is ‘a great effect!’”";
.

.

.

/* set the width and justification of the layout shape */
InitializeLayoutOptions(&layoutOptions);

layoutOptions.width = ff(360);
layoutOptions.just = fract1;

/* draw lines at the margins, to better show the hanging */

myLine.first.x = myLine.last.x = myPoint.x;
myLine.first.y = 0;

myLine.last.y = ff(800);
GXDrawLine(&myLine);

myLine.first.x = myLine.last.x = myPoint.x+layoutOptions.width;
GXDrawLine(&myLine);

/* create and draw the layout shape, with normal hanging */

layout = GXNewLayout(1, &len, (void *) &myString,
1, &len, &myStyle, 0, nil, nil,

&layoutOptions, &myPoint);
GXDrawShape(layout);

C H A P T E R 8

Layout Styles

8-48 Using Layout Styles

/* partially inhibit hanging, then redraw */
InitializeRunControls(&runControls);

runControls.hangingInhibitFactor = fract1 / 2;
GXSetStyleRunControls(myStyle, &runControls);

GXMoveShape(layout, 0, ff(54));
GXDrawShape(layout);

/* fully inhibit hanging, then redraw */

runControls.hangingInhibitFactor = fract1;
GXSetStyleRunControls(myStyle, &runControls);

GXMoveShape(layout, 0, ff(54));
GXDrawShape(layout);

.

.

.
}

Figure 8-18 on page 8-15 shows the results of executing the code in Listing 8-5. The

GXSetStyleRunControls function is described on page 8-67.

Imposing a Width on a Style Run

You can use imposed width to allow embedding of a picture or other graphic item

within a line of text. Imposing a width on the glyphs of a style run forces them to each

have a specific width, regardless of their font and point size. You would most typically

use a style run consisting of a single whitespace glyph, and place an appropriate width

value (in points) in the imposedWidth field of the run controls structure of the style

object. Then you would set the gxImposeWidth bit in the flags field.

Listing 8-6 is a partial listing of a sample routine that draws a line of text containing

three style runs. The middle run consists of a single whitespace glyph, but the run has

an imposed width that forces it to take up a specific amount of space.

The layout shape created in this routine is layout; it uses the run controls structure

runControls. The style objects used by the layout shape are regularStyle and

imposedStyle, created with the library routine NewLayoutStyle. There are three

style runs, whose lengths are specified in the runLengths array and whose style objects

are specified in the styleList array. The length of the text string myString is len;

and the layout is drawn at the location myPoint.

Listing 8-6 Creating a line containing a style run with an imposed width

void ImposedWidth(void)
{

char *myString = "As you wish";
.

.

.

C H A P T E R 8

Layout Styles

Using Layout Styles 8-49

/* set up style-run lengths, create “regular” style object */
runLengths[0] = 2;

runLengths[1] = 1;
runLengths[2] = len - (runLengths[0] + runLengths[1]);

regularStyle = NewLayoutStyle((char *) "\pTekton Plus Regular",
ff(36), 0, nil, nil, 0, nil);

/* create “imposed” style object (without imposed width yet) */

InitializeRunControls(&runControls);
imposedStyle = NewLayoutStyle((char *) "\pTekton Plus Regular",

ff(36), 0, &runControls, nil, 0, nil);

/* assign a style object to each style run */
styleList[0] = styleList[2] = regularStyle;

styleList[1] = imposedStyle;

/* create and draw the layout the first time */
layout = GXNewLayout(1, &len, (void *) &myString,

3, runLengths, styleList,
0, nil, nil,

nil, &myPoint);
GXDrawShape(layout);

/* impose a width on second style run, move & redraw layout */

runControls.flags = gxImposeWidth;
runControls.imposedWidth = ff(144);

GXSetStyleRunControls(imposedStyle,&runControls);
GXMoveShape(layout, ff(0), ff(60));

GXDrawShape(layout);
.

.

.

}

Figure 8-20 on page 8-16 shows the results of executing the code in Listing 8-6.

Using Kerning Adjustment Factors
You can adjust the kerning that occurs between specific pairs of glyphs in a style run by

filling out kerning adjustment structures for those glyph pairs, and placing an array of

such structures in the kerning adjustments array of the style object for that style run.

Kerning adjustment involves both a scale factor and a point size factor, as discussed in

the section “Kerning Adjustments” beginning on page 8-16.

Listing 8-7 is a partial listing of a sample routine that draws a line of text three times. The

first time it draws the text normally; the second time it changes just the scale factor for

C H A P T E R 8

Layout Styles

8-50 Using Layout Styles

kerning between “A” and “W”; the third time it changes both the scale factor and the

point size factor for that glyph pair.

The layout shape created in this routine is layout; it uses the kerning adjustment

structure kerningAdjustment. The style object used by the layout shape is myStyle;

the length of the text string myString is len; and the layout is first drawn at the

location myPoint. The routine uses the functions GXGetLayoutGlyphs and

GXGetOffsetGlyphs to determine the glyph codes for the glyph pair, and it uses

the glyph codes array glyphcodes, as well as the parameters offsetState,

firstGlyph, and secondGlyph to manipulate those glyph codes.

Listing 8-7 Adjusting the kerning amount for a pair of glyphs

void KerningAdjustments(void)

{

char *myString = "WAVE AWAY.";

.

.

.

/*create and draw the layout the first time */

layout = GXNewLayout(1, &len, (void *) &myString,

1, &len, &myStyle,

0, nil, nil,

nil, &myPoint);

GXDrawShape(layout);

/*determine the glyph codes for the “A” and the “W” */

GXGetLayoutGlyphs(layout, glyphcodes, nil, nil, nil, nil, nil, nil);

GXGetOffsetGlyphs(layout, 1, false, &offsetState,

&firstGlyph, &secondGlyph);

/*

Place the glyph codes of the first and second glyphs of the layout

shape into the kerning adjustment structure. (The ‘-1’s in the

following lines convert from the 1-based space returned by

GXGetOffsetGlyphs to the zero-based space needed for array references.)

*/

kerningAdjustment.firstGlyph = glyphcodes[firstGlyph - 1];

kerningAdjustment.secondGlyph = glyphcodes[secondGlyph - 1];

/* first define a with-stream scale factor of –0.5, and nothing else */

kerningAdjustment.crossStreamFactors.scaleFactor = 0;

kerningAdjustment.crossStreamFactors.adjustmentPointSizeFactor = 0;

kerningAdjustment.withStreamFactors.scaleFactor = -(fract1 / 2);

kerningAdjustment.withStreamFactors.adjustmentPointSizeFactor = 0;

C H A P T E R 8

Layout Styles

Using Layout Styles 8-51

/* assign the adjustment to the layout, and redraw */

GXSetStyleRunKerningAdjustments(myStyle, 1, &kerningAdjustment);

GXMoveShape(layout, 0, ff(75));

GXDrawShape(layout);

/* define a with-stream scale factor of –1, point-size factor of +0.5 */

kerningAdjustment.withStreamFactors.scaleFactor = -fract1;

kerningAdjustment.withStreamFactors.adjustmentPointSizeFactor = fixed1 /2;

/* assign the new adjustment to the layout, and redraw */

GXSetStyleRunKerningAdjustments(myStyle, 1, &kerningAdjustment);

GXMoveShape(layout, 0, ff(75));

GXDrawShape(layout);

.

.

.

}

Figure 8-21 on page 8-17 shows the results of executing the code in Listing 8-7. The

GXSetStyleRunKerningAdjustments function is described on page 8-72.

Substituting Glyphs
You can force QuickDraw GX to substitute any specific glyph for any other specific

glyph in a style run when it draws a layout shape. The substitution occurs near the end

of the layout process, after any automatic substitution QuickDraw GX may otherwise

have performed (except for substitutions that may occur during postcompensation

action). (For more information on postcompensation action, see the chapter “Layout Line

Control” in this book.) You do this by specifying (by glyph code) one or more

substitution pairs in the glyph substitutions array of the style object for that style run.

Listing 8-8 on page 8-52 is a partial listing of a sample routine that draws a line of text,

and specifies that the glyph “æ” be replaced everywhere by the glyph “e”, and draws the

line once again.

The layout shape created in this routine is layout; it uses the glyph substitution

structure glyphSubst. The style object used by the layout shape is myStyle; the length

of the text string myString is len; and the layout is first drawn at the location myPoint.

The routine uses the function GXGetLayoutGlyphs to determine the glyph codes for

the substitution pair, using the string myTrialString (of length len0) that contains

the characters for the two glyphs; the routine places those glyph codes in the array

layoutGlyphs. The trial string is used because the actual glyph code for the “æ”

ligature cannot be assumed by the sample function. (Note that this function assumes

that the font supports diphthong ligatures and that the font has an “æ” ligature).

C H A P T E R 8

Layout Styles

8-52 Using Layout Styles

Listing 8-8 Using glyph substitutions to replace one glyph with another

void GlyphSubstitutions(void)
{

char *myTrialString = "eae";
char *myString = "orthopaedic encyclopaedia";

gxRunFeature runFeature[1];
short len, len0;

gxGlyphcode layoutGlyphs[2];
gxGlyphSubstitution glyphSubst;

/* create a style object that specifies diphthong ligatures */
runFeature[0].featureType = ligaturesType;

runFeature[0].featureSelector = diphthongLigaturesOnSelector;
myStyle = NewLayoutStyle((char*)

"\pTekton Plus Regular", ff(36),
0, nil, nil, 0, nil);

GXSetStyleRunFeatures(myStyle, 1, runFeature);
len0 = strlen(myTrialString);

/* get substitution-pair glyph codes from trial string */

layout = GXNewLayout(1, &len0, (void *) &myTrialString,
1, &len0, &myStyle,

0, nil, nil,
nil, nil);

GXGetLayoutGlyphs(layout, layoutGlyphs,
nil, nil, nil, nil, nil, nil);

glyphSubst.originalGlyph = layoutGlyphs[1]; /* the “æ” */
glyphSubst.substituteGlyph = layoutGlyphs[0]; /* the “e” */

GXDisposeShape(layout);
len = strlen(myString);

/* create and draw the layout shape without substitution */

layout = GXNewLayout(1, &len, (void *) &myString,
1, &len, &myStyle,

0, nil, nil,
nil, &myPoint);

GXDrawShape(layout);

/* apply the substitution, then redraw the layout */
GXSetStyleRunGlyphSubstitutions(myStyle, 1, &glyphSubst);

GXMoveShape(layout, 0, ff(54));
GXDrawShape(layout);

.

.

.
}

C H A P T E R 8

Layout Styles

Using Layout Styles 8-53

Figure 8-22 on page 8-18 shows the results of executing the code in Listing 8-8. The

GXSetStyleRunGlyphSubstitutions function is described on page 8-77.

Using Font Features
You can modify layout behavior by choosing font features from the set of features

supported by a given font. You do that by setting up a run-features array and assigning

it to a style object. The run-features array contains pairs of feature types and feature

selectors; each pair specifies a given setting for a given feature type.

Feature types and feature selectors are defined in the feature registry. See the section

“Font Features” beginning on page 8-18 for more information.

Specifying Levels of Ligature Formation

You can use the ligaturesType feature type to select whether or not to draw ligatures

when drawing text. You specify this feature type with ligaturesType and the desired

feature selector in a run-feature structure in the run-features array of the style object for

that style run.

Listing 8-9 is a partial listing of a sample routine that draws a line of text three times: once

with no ligatures, once with required and common ligatures, and once with required,

common, and rare ligatures.

The layout shape created in this routine is layout; it uses the run-features array

runFeature. The style object used by the layout shape is myStyle; the length of the

text string myString is len; and the layout is first drawn at the location myPoint. The

routine uses the function GXSetStyleRunFeatures to assign the run-features array

to the style object.

Listing 8-9 Specifying three levels of ligature formation

void Ligatures(void)

{

char *myString = "The fifty bisected offices";

.

.

.

/* set up run-features array by turning off all ligatures */

runFeature[0].featureType = ligaturesType;

runFeature[0].featureSelector = requiredLigaturesOffSelector;

runFeature[1].featureType = ligaturesType;

runFeature[1].featureSelector = commonLigaturesOffSelector;

runFeature[2].featureType = ligaturesType;

runFeature[2].featureSelector = rareLigaturesOffSelector;

C H A P T E R 8

Layout Styles

8-54 Using Layout Styles

/* create and draw the layout with no ligatures */

GXSetStyleRunFeatures(myStyle, 3, runFeature);

layout = GXNewLayout(1, &len, (void *) &myString,

1, &len, &myStyle,

0, nil, nil,

nil, &myPoint);

GXDrawShape(layout);

/* add required and common ligatures; redraw the layout */

runFeature[0].featureSelector = ligatureRequiredOnSelector;

runFeature[1].featureSelector = ligatureCommonOnSelector;

GXSetStyleRunFeatures(myStyle, 3, runFeature);

GXMoveShape(layout, 0, ff(75));

GXDrawShape(layout);

/* add rare ligatures; redraw the layout */

runFeature[2].featureSelector = ligatureRareOnSelector;

GXSetStyleRunFeatures(myStyle, 3, runFeature);

GXMoveShape(layout, 0, ff(75));

GXDrawShape(layout);

.

.

.

}

Figure 8-26 on page 8-25 shows the results of executing the code in Listing 8-9. The

GXSetStyleRunFeatures function is described on page 8-82.

Specifying Different Types of Swashes

You can use the smart swash feature type to select whether or not to use swash variants of

glyphs when drawing the text of a style run and to indicate which collections of swashes

to include. You specify this feature type with smartSwashType and the desired feature

selector in a run-feature structure in the run-features array of the style object for that

style run.

Listing 8-10 is a sample routine that draws a line of text four times: once with no swashes,

once with word-initial swashes only, once with word-final swashes only, and once with

both word-initial and word-final swashes.

The layout shape created in this routine is layout; it uses the run-features array

runFeature. The style object used by the layout shape is myStyle; the length of the

text string myString is len; and the layout is first drawn at the location myPoint. The

routine uses the function GXSetStyleRunFeatures to assign the run-features array

to the style object.

C H A P T E R 8

Layout Styles

Using Layout Styles 8-55

Listing 8-10 Specifying three different types of swashes

void SmartSwashes(void)
{

char *myString = "whale voyage";
.

.

.

/* create the layout shape, turn off swashes, and draw */
layout = GXNewLayout(1, &len, (void *) &myString,

1, &len, &myStyle,
0, nil, nil,

nil, &myPoint);

runFeature[0].featureType = smartSwashType;
runFeature[0].featureSelector = wordFinalSwashesOffSelector;

runFeature[1].featureType = smartSwashType;
runFeature[1].featureSelector = wordInitialSwashesOffSelector;

GXSetStyleRunFeatures(myStyle, 2, runFeature);
GXDrawShape(layout);

/* turn word-initial swashes on, and redraw */

runFeature[1].featureSelector = wordInitialSwashesOnSelector;
GXSetStyleRunFeatures(myStyle, 2, runFeature);

GXMoveShape(layout, 0, ff(54));
GXDrawShape(layout);

/* turn initials off and finals on, and redraw */

runFeature[0].featureSelector = wordFinalSwashesOnSelector;
runFeature[1].featureSelector = wordInitialSwashesOffSelector;

GXSetStyleRunFeatures(myStyle, 2, runFeature);
GXMoveShape(layout, 0, ff(54));

GXDrawShape(layout);

/* finally, turn both initials and finals on, and redraw */
runFeature[1].featureSelector = wordInitialSwashesOnSelector;

GXSetStyleRunFeatures(myStyle, 2, runFeature);
GXMoveShape(layout, 0, ff(54));

GXDrawShape(layout);
.

.

.

}

Figure 8-32 on page 8-30 shows the results of executing the code in Listing 8-10. The

GXSetStyleRunFeatures function is described on page 8-82.

C H A P T E R 8

Layout Styles

8-56 Using Layout Styles

Specifying Different Kinds of Case Substitution

You can use the letter case feature type to select among several types of noncontextual

and contextual case substitutions in the text of a style run. You specify this feature type

with letterCaseType and the desired feature selector in a run-feature structure in the

run-features array of the style object for that style run.

Listing 8-11 is a partial listing of a sample routine that draws a line of text four times:

once with no case substitution, once with all-caps substitution, once with all lowercase,

and once with small caps substituted for lowercase glyphs.

The layout shape created in this routine is layout; it uses the run-features array

runFeature. The style object used by the layout shape is myStyle; the length of the

text string myString is len; and the layout is first drawn at the location myPoint. The

routine uses the function GXSetStyleRunFeatures to assign the run-features array

to the style object.

Listing 8-11 Specifying three different kinds of case substitution

void CaseSubstitution(void)

{

char *myString = "QuickDraw GX rules";

.

.

.

/* create and draw the layout, with no case substitution */

layout = GXNewLayout(1, &len, (void *) &myString,

1, &len, &myStyle,

0, nil, nil,

nil, &myPoint);

GXDrawShape(layout);

/* specify all uppercase glyphs; redraw */

runFeature[0].featureType = letterCaseType;

runFeature[0].featureSelector = allCapsSelector;

GXSetStyleRunFeatures(myStyle, 1, runFeature);

GXMoveShape(layout, 0, ff(50));

GXDrawShape(layout);

/* specify all lowercase glyphs; redraw */

runFeature[0].featureSelector = allLowerCaseSelector;

GXSetStyleRunFeatures(myStyle, 1, runFeature);

GXMoveShape(layout, 0, ff(50));

GXDrawShape(layout);

C H A P T E R 8

Layout Styles

Layout Styles Reference 8-57

/* specify initial caps followed by small caps; redraw */

runFeature[0].featureSelector = smallCapsSelector;

GXSetStyleRunFeatures(myStyle, 1, runFeature);

GXMoveShape(layout, 0, ff(50));

GXDrawShape(layout);

.

.

.

}

Figure 8-29 on page 8-27 shows the results of executing the code in Listing 8-11. The

GXSetStyleRunFeatures function is described on page 8-82.

Layout Styles Reference

This section describes the functions that give you access to the layout-shape–specific

properties of the style object, and the constants and data structures used by those

functions and properties.

Constants and Data Types

This section describes the following data structures, and the data structures and constants

associated with them:

■ run controls structure

■ kerning adjustment structure

■ glyph substitution structure

■ run-feature structure

Each of the structures corresponds in some way to a property of the style object used

only by layout shapes.

Run Controls Structure

The run controls structure (type gxRunControls) is a property of every style object,

but it is used only by layout shapes. In layout shapes, the run controls structure for

each style run controls various features associated with text in that run. Your application

can fill out this structure and assign it directly or indirectly to a style object with the

GXSetStyleRunControls and GXSetShapeRunControls functions.

C H A P T E R 8

Layout Styles

8-58 Layout Styles Reference

struct gxRunControls {

gxRunControlFlags flags;

Fixed beforeWithStreamShift;

Fixed afterWithStreamShift;

Fixed crossStreamShift;

Fixed imposedWidth;

Fixed track;

fract hangingInhibitFactor;

fract kerningInhibitFactor;

Fixed decompositionAdjustmentFactor;

gxBaselineType baselineType;

} ;

Field descriptions

flags The run control flags for this style run. See “Run Control Flags”
on page 8-60 for a complete description of each bit flag in the
gxRunControlFlags value.

beforeWithStreamShift
The amount of space (in points, 72 per inch) that QuickDraw GX
should add to the left (or top, for vertical text) edge of all glyphs
in the style run. Positive values move the glyphs farther apart;
negative values move the glyphs closer together. See “With-Stream
Shift and Cross-Stream Shift” beginning on page 8-6 for more
information.

afterWithStreamShift
The amount of space (in points, 72 per inch) that QuickDraw GX
should add to the right (or bottom, for vertical text) edge of all
glyphs in the style run. Positive values move the glyphs farther
apart; negative values move the glyphs closer together. See
“With-Stream Shift and Cross-Stream Shift” beginning on page 8-6
for more information.

crossStreamShift
The distance (in points, 72 per inch) by which QuickDraw GX
moves glyphs perpendicular to the text stream—that is, vertically
for horizontal text and horizontally for vertical text. Cross-stream
shift can be used to create superscripts and subscripts. Positive
values shift horizontal text upward and vertical text to the right;
negative values shift downward or to the left. Each glyph in the
style run is shifted by the same amount from the baseline. See
“With-Stream Shift and Cross-Stream Shift” beginning on page 8-6
for more information.

imposedWidth The width (in points, 72 per inch) to be imposed on each glyph in
this style run, if the gxImposeWidth flag is set in the flags field
of this structure. This width is used regardless of the contents or
other settings for the style run. You can use this feature with a
single whitespace glyph when you want to have a gap of fixed
width in the line (for example, to place a graphic on the line). See
“Imposed Width” beginning on page 8-15 for more information.

C H A P T E R 8

Layout Styles

Layout Styles Reference 8-59

track The number that controls tracking, a set of font-defined adjustments
to interglyph positions. QuickDraw GX automatically uses tracking
information provided by the font; if you do not want tracking to
occur, specify the value gxNoTracking for this field. Specify
normal tracking with a value of 0; specify positive numbers for
looser tracking, and negative numbers for tighter tracking. For more
information on tracking, see “Tracking” beginning on page 8-10.

hangingInhibitFactor
A value between 0 and 1 specifying the degree to which hanging
punctuation glyphs in this style run extend beyond the text margin.
A value of 0 (the default) indicates that hanging punctuation glyphs
should hang by the normal amount. A positive nonzero value
lessens the amount of hanging proportionally; a value of 1 means
“no hanging at all.” See “Hanging Glyphs” beginning on page 8-14
for more information.

kerningInhibitFactor
A value between 0 and 1 specifying the relative proportion of the
font-specified kerning that is applied to this style run. A value of
zero means “kern normally.” A positive nonzero value propor-
tionally lessens the amount of kerning; a value of 1 means “no
kerning.” See “With-Stream Kerning and Cross-Stream Kerning”
beginning on page 8-8 for more information.

decompositionAdjustmentFactor
Additional control over the font-specified threshold at which
ligature decomposition occurs during justification. Values between
–1.0 and 1.0 are interpreted as a fractional adjustment. A value of 0
means no adjustment, 0.5 means to add an additional 50 percent to
the font-specified threshold, –0.25 means to subtract 25 percent from
that threshold, and so on. Values less than –1.0 are meaning-
less. For more information, see the discussion of ligature decom-
position and justification in the chapter “Layout Line Control” in
this book.

baselineType The baseline type to be assigned to this style run. Possible values
for this field are given in the discussion of baseline types in the
chapter “Layout Line Control” in this book. If you want the
default behavior (derived from font-specified characteristics), use
the value gxNoOverrideBaseline. A value of 0 specifies the
Roman baseline.

The GXSetStyleRunControls function is described on page 8-67; the

GXSetShapeRunControls function is described on page 8-69. To obtain the run

control values for a style run, use the GXGetStyleRunControls function, described

on page 8-66, or the GXGetShapeRunControls function, described on page 8-68.

C H A P T E R 8

Layout Styles

8-60 Layout Styles Reference

Run Control Flags

The run control flags are bit flags that make up a value in the flags field of the run

controls structure of the style object for each style run in a layout shape. The run control

flags affect the behavior of various parts of the layout process.

QuickDraw GX provides constants for all defined flag values. Any of the flag constants

may be combined to form a single value for the flags field. Note that most of the run

control flags have “No” as part of their name, such as gxNoOpticalAlignment. What

this means is that the default QuickDraw GX behavior is to optically align glyphs, and

only by setting this flag can you prevent that behavior from occurring.

#define gxNoLigatureSplits 0x80000000

#define gxNoCaretAngle 0x40000000

#define gxImposeWidth 0x20000000

#define gxNoCrossKerning 0x10000000

#define gxNoOpticalAlignment 0x08000000

#define gxForceHanging 0x04000000

#define gxNoSpecialJustification 0x02000000

#define gxDirectionOverrideMask 0x00000003

typedef unsigned long gxRunControlFlags;

Flag descriptions

gxNoLigatureSplits
Tells QuickDraw GX whether to treat ligatures as indivisible objects
for caret positioning. The default is false, which means that the
caret can occupy intermediate positions within the ligature that
correspond to the boundaries of the individual characters that make
up the ligature. If gxNoLigatureSplits is true and the caret
position is adjacent to a ligature, QuickDraw GX considers the next
valid caret position to be across the entire ligature rather than at any
point within it. For more information, see the discussion of ligature
splits and carets in the chapter “Layout Carets, Highlighting, and
Hit-Testing” in this book.

gxNoCaretAngle Tells QuickDraw GX whether to make all carets perpendicular
to the baseline, regardless of the slant of the text’s glyphs. If set,
this flag overrides the value of the highlightType parameter
in functions such as GXGetLayoutCaret and
GXGetLayoutHighlight. If this flag is not set, the angle of the
caret (and the edges of highlighting areas) depends on the intrinsic
angle of the font’s glyphs and whether the highlight type is
gxHighlightAverageAngle or gxHighlightStraight. For
more information, see the discussion of caret angle in the chapter
“Layout Carets, Highlighting, and Hit-Testing” in this book.

gxImposeWidth Tells QuickDraw GX whether to give each glyph in this style run a
certain amount of space, regardless of the textual content or other
layout effects. A style run with a single space glyph and with this
bit set to true can make a gap in the line so that it can contain a

C H A P T E R 8

Layout Styles

Layout Styles Reference 8-61

picture. If this flag is set to true, there should be a positive width
value in the imposedWidth field of the run controls structure. See
“Imposed Width” beginning on page 8-15 for more information.

gxNoCrossKerning
Tells QuickDraw GX whether to suppress automatic cross-stream
kerning for this style run. This flag has no effect on manual
cross-stream shifting specified in the crossStreamShift field in
the run controls structure. If you do not set this flag, QuickDraw GX
performs any normal automatic cross-stream kerning specified by
the font. See “With-Stream Kerning and Cross-Stream Kerning”
beginning on page 8-8 for more information.

gxNoOpticalAlignment
Tells QuickDraw GX whether to suppress normal line-edge optical
alignment for this style run. Optical alignment gives a more correct
visual appearance of the edges of a line of text, as aligned with
other lines of text surrounding it; for examples, see “Optical
Alignment” beginning on page 8-11. If you do not set this flag,
QuickDraw GX performs optical alignment automatically.

gxForceHanging Tells QuickDraw GX whether to designate all glyphs in the style
run as hanging punctuation characters, even if they wouldn’t
normally be. See “Hanging Glyphs” beginning on page 8-14 for
more information.

gxNoSpecialJustification
Tells QuickDraw GX whether to turn off any special justification
processes, known as postcompensation action, that are applied
after glyph positioning. Examples of a postcompensation actions
are ligature decomposition, addition of kashidas, and stretching of
glyphs. For more information, see the discussion of postcompen-
sation action and justification in the chapter “Layout Line Control”
in this book.

gxDirectionOverrideMask
Two bits containing the direction override value for the style run.
Nonzero values for these bits impose a direction onto all glyphs
in this style run, overriding the fundamental glyph directions
specified in the style run’s font. Constants for the
gxDirectionOverrideMask bits are defined in the
gxDirectionOverride enumeration; see the next section,
“Direction Overrides.”

You can ensure that you are assigning a valid value to the run control flags by perform-

ing an AND operation on the value gxAllRunControlFlags and your value before

assigning it to the flags field:

#define gxAllRunControlFlags (gxNoLigatureSplits|gxNoCaretAngle|

gxImposeWidth|gxNoCrossKerning|

gxNoOpticalAlignment|gxForceHanging|

gxNoSpecialJustification|

gxDirectionOverrideMask)

C H A P T E R 8

Layout Styles

8-62 Layout Styles Reference

Direction Overrides

In general, your application can let QuickDraw GX determine the proper direction for

any text within a style run. QuickDraw GX orders sequences of glyphs for display based

on glyph direction as specified in the font. However, you can override the directional

behavior of glyphs, on a style-run basis, for special effects. You specify the overriding

direction in the gxDirectionOverrideMask flag in the flags field of the style

object’s run controls structure.

The gxDirectionOverrides enumeration provides constants for the defined values

of the gxDirectionOverrideMask flag:

enum gxDirectionOverrides {

gxNoDirectionOverride = 0,

gxImposeLeftToRight = 1,

gxImposeRightToLeft = 2,

gxImposeArabic = 3

};

typedef unsigned short gxDirectionOverride;

Constant descriptions

gxNoDirectionOverride
Instructs QuickDraw GX to use the normal direction of the text in
the style run.

gxImposeLeftToRight
Instructs QuickDraw GX to force the text to be treated as left-
to-right.

gxImposeRightToLeft
Instructs QuickDraw GX to force the text to be treated as right
to left.

gxImposeArabic Instructs QuickDraw GX to force the text to be treated as Arabic
letters. Numbers interacting with gxImposeArabic behave
slightly differently from numbers interacting with letters in other
right-to-left scripts, such as Hebrew. See the discussion of the
Unicode reordering model in The Unicode Standard: Worldwide
Character Encoding, Version 1.0, Volume 1, for more information.

The purpose of a direction override is to permit applications to perform special

rendering effects, such as drawing Roman text right-to-left. It is not intended to control

text direction in general or the placement of blocks of text with respect to one another.

In general, the font-specified glyph direction controls text direction for individual

sequences of glyphs, and nested direction levels in the levels array of the layout shape

control the relative placement of the glyph sequences. A direction override overrides

glyph directions only, and affects an entire style run at a time. Glyph directions, direc-

tion levels, and the levels array are described in the chapter “Layout Line Control” in

this book.

C H A P T E R 8

Layout Styles

Layout Styles Reference 8-63

Kerning Adjustment Factors Structure

The kerning adjustment factors structure (type gxKerningAdjustmentFactors)

specifies the amount of an adjustment to automatic kerning. It is used in the

withStreamFactors and crossStreamFactors fields of the kerning adjustment

structure.

struct gxKerningAdjustmentFactors{

fract scaleFactor;

Fixed adjustmentPointSizeFactor;

};

Field descriptions

scaleFactor The scale factor. The font-specified automatic kerning value is
multiplied by this factor.

adjustmentPointSizeFactor
The point-size adjustment. This factor is multiplied by the current
point size and then added to the kerning value. This value can be
either positive or negative.

The total kerning adjustment, therefore, is

ax + b

where x is the automatic kerning value as specified in the font, a is scaleFactor, and b

is adjustmentPointSizeFactor multiplied by the style run’s point size.

For more discussion of the kerning adjustment formula, see “Kerning Adjustments”

beginning on page 8-16. For examples of the use of these factors, see “Using Kerning

Adjustment Factors” beginning on page 8-49.

Kerning Adjustment Structure

If you want to provide alterations to the kerning values that would otherwise be

automatically used in a run of text, use the kerning adjustment structure (type

gxKerningAdjustment). The kerning adjustment structure modifies the kerning

for an individual pair of glyphs.

struct gxKerningAdjustment {

gxGlyphcode firstGlyph;

gxGlyphcode secondGlyph;

struct gxKerningAdjustmentFactors withStreamFactors;

struct gxKerningAdjustmentFactors crossStreamFactors;

} ;

Field descriptions

firstGlyph The glyph code of the first glyph of the kerning pair.

secondGlyph The glyph code of the second glyph of the kerning pair.

C H A P T E R 8

Layout Styles

8-64 Layout Styles Reference

withStreamFactors
Withstream adjustments to the kerning.

crossStreamFactors
Cross-stream adjustments to the kerning.

You can assign an array of kerning adjustment structures to a style object

using the GXSetStyleRunKerningAdjustments function or the

GXSetShapeRunKerningAdjustments function. If the specified pair already kerns

(based on data in the font’s kerning table), the specified adjustments are added to it.

A value of gxResetCrossStreamFactor in the adjustmentPointSizeFactor

field of crossStreamFactors resets the cross-stream kerning to the baseline:

#define gxResetCrossStreamFactor gxNegativeInfinity

The GXGetStyleRunKerningAdjustments function is described on page 8-70. The

GXSetStyleRunKerningAdjustments function is described on page 8-72.

The GXSetShapeRunKerningAdjustments function is described on page 8-74.

Glyph Substitution Structure

Sometimes the glyph substitutions QuickDraw GX automatically performs on a layout

shape may not be appropriate for your needs. You can use the glyph substitution structure

(type gxGlyphSubstitution) to have final control over which glyphs appear in the

line. Substitutions specified with this structure always occur after all other substitutions

except for postcompensation action, so your application has the final say.

struct gxGlyphSubstitution {

gxGlyphcode originalGlyph;

gxGlyphcode substituteGlyph;

};

Field descriptions

originalGlyph The original glyph. This is the glyph that would result from the
layout process, in the absence of glyph substitution.

substituteGlyph
The glyph QuickDraw GX is to substitute for the original glyph.

In a given style run, your application can use the glyph substitution structure to specify

that, any time a particular glyph would appear, QuickDraw GX substitutes a different

glyph for it. You do this by supplying an array of glyph substitution structures to

the GXSetStyleRunGlyphSubstitutions function or the

GXSetShapeRunGlyphSubstitutions function.

The GXGetStyleRunGlyphSubstitutions function is described on page 8-75. The

GXSetStyleRunGlyphSubstitutions function is described on page 8-77.

The GXGetShapeRunGlyphSubstitutions function is described on page 8-78. The

GXSetShapeRunGlyphSubstitutions function is described on page 8-79.

C H A P T E R 8

Layout Styles

Layout Styles Reference 8-65

Run-Feature Structure

You can use the run-feature structure (type gxRunFeature) to specify the degree to

which a particular font feature is used within a style run.

struct gxRunFeature {

gxRunFeatureType featureType;

gxRunFeatureSelector featureSelector;

};

Field descriptions

featureType The type of font feature to affect.

featureSelector
The setting or selection for that feature type.

Font feature types include such categories as ligature formation and number style. Feature

selectors within those types include settings such as “do not use rare ligatures,” and “use

proportional-width numbers.” The gxRunFeatureType and gxRunFeatureSelector

types are defined as follows:

typedef unsigned short gxRunFeatureType;

typedef unsigned short gxRunFeatureSelector;

In a given style run, your application uses the run-feature structure to specify both the

type of font feature to employ and the level or style of employment (perhaps including

suppressing it entirely). You do this by supplying an array of run-feature structures to

the GXSetStyleRunFeatures function or the GXSetShapeRunFeatures function.

The GXGetStyleRunFeatures function is described on page 8-80. The

GXSetStyleRunFeatures function is described on page 8-82.

The GXGetShapeRunFeatures function is described on page 8-83. The

GXSetShapeRunFeatures function is described on page 8-84. Constants for

some of the defined values for the featureType and featureSelector fields

are listed in the section “Font Features” beginning on page 8-18.

Note

Constants for all supported feature types and feature selectors, along
with descriptions of the features, are found in the QuickDraw GX Font
Feature Registry. Please contact Apple Computer, Inc., at AppleLink
address FONTREGISTRY, for the most recent version of the
feature registry. ◆

C H A P T E R 8

Layout Styles

8-66 Layout Styles Reference

Functions

This section describes the functions that give you access to the layout-shape–specific

properties of the style object by using these functions, and by specifying either a style

object or a layout shape object, you can get or set

■ the run controls structure

■ the kerning adjustments array

■ the glyph substitutions array

■ the run-features array

Getting and Setting Run Controls

The functions in this section allow you to get or set the run controls property of a

specified style object or of the style object associated with a specified layout shape.

GXGetStyleRunControls

You can use the GXGetStyleRunControls function to retrieve the run controls

property from a style object.

long GXGetStyleRunControls(gxStyle source,

gxRunControls *runControls);

source A reference to the style object whose run controls you need.

runControls
A pointer to a run controls structure. On return, the structure contains the
run controls information for the style object referenced in the source
parameter. If the style object has no run controls structure, the structure
pointed to by this parameter is not modified.

function result The number of run controls structures for this style object. This value
can be 0 or 1 only, because a style object can have a maximum of one
run controls structure. If the style object does not have one, the function
result is 0.

DESCRIPTION

The GXGetStyleRunControls function retrieves the run controls structure, if any,

from the source style object. If a style object has no run controls structure, which is the

default state, its behavior is as if it had a run controls structure with values of 0 or nil

for all fields and flags (except that baselineType = gxRomanBaseline = 0).

C H A P T E R 8

Layout Styles

Layout Styles Reference 8-67

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

You assign a run controls structure to a style object using the GXSetStyleRunControls

function, described next. You retrieve the run controls property from the style object

associated with a shape object using the GXGetShapeRunControls function, described

on page 8-68.

The run controls structure is described on page 8-57.

GXSetStyleRunControls

You can use the GXSetStyleRunControls function to assign values to the run controls

property of a style object.

void GXSetStyleRunControls(gxStyle target,

const gxRunControls *runControls);

target A reference to the style object whose run controls you are assigning.

runControls
A pointer to a run controls structure containing the run controls you want
to assign to the style object referenced in the target parameter. If you
pass nil for this parameter, GXSetStyleRunControls removes all run
controls information from the style object.

DESCRIPTION

The GXSetStyleRunControls function assigns the specified run controls structure to

the target style object, replacing any existing run controls structure in the style.

If the run controls structure contains illegal values, such as an imposed width less than 0

or a baseline type beyond the defined range, GXSetStyleRunControls posts a

parameter_out_of_range error.

You can ensure that you are assigning a valid value to the run control flags by performing

an AND operation on the value gxAllRunControlFlags and your value before assign-

ing it to the flags field of the run controls structure.

ERRORS, WARNINGS, AND NOTICES

Errors
style_is_nil

Errors
style_is_nil
parameter_out_of_range

Notices (debugging version)
attributes_already_set

C H A P T E R 8

Layout Styles

8-68 Layout Styles Reference

SEE ALSO

You retrieve the run controls property from a style object using the

GXGetStyleRunControls function, described in the previous section. You

assign a run controls structure to the style object associated with a shape object

using the GXSetShapeRunControls function, described on page 8-69.

The run controls structure is described on page 8-57.

For an example of the use of this function, see Listing 8-2 on page 8-43. Other examples

occur in Listing 8-3 through Listing 8-5.

GXGetShapeRunControls

You can use the GXGetShapeRunControls function to retrieve the run controls

property from the style object associated with a shape.

long GXGetShapeRunControls(gxShape source,

gxRunControls *runControls);

source A reference to the shape object whose associated style object contains the
run controls information you need.

runControls
A pointer to a run controls structure. On return, the structure contains the
run controls information for the style object associated with the shape
object referenced in the source parameter. If the style object has no run
controls structure, the structure pointed to by this parameter is not
modified.

function result The number of run controls structures for the style object associated with
this shape object. This value can be 0 or 1 only, because a style object can
have a maximum of one run controls structure. If the style object does
not have one, the function result is 0.

DESCRIPTION

The GXGetShapeRunControls function retrieves the run controls structure from the

style object associated with the source shape object. If a style object has no run controls

structure, which is the default state, it behaves as if it had a run controls structure with

values of 0 or nil for all fields and flags.

Calling this function for the layout shape myLayout is equivalent to making the

following call:

GXGetStyleRunControls(GXGetShapeStyle(myLayout), &myRunControls);

This function acts only on the single style object that is referenced in the style property of

the shape object. It does not access any style object in the style list, which is part of the

geometry of a layout shape. (If, when calling the GXNewLayout function, for example,

C H A P T E R 8

Layout Styles

Layout Styles Reference 8-69

you pass nil for the styles parameter, no style list is created and the new layout

shape’s style object is referenced through the style property.) If your layout shape uses

more than one style object, and therefore uses a style list in its geometry, you need to

access those style objects directly with a function such as GXGetStyleRunControls.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

You assign a run controls structure to the style object associated with a shape object

using the GXSetShapeRunControls function, described next. You retrieve the run

controls property directly from a style object using the GXGetStyleRunControls

function, described on page 8-66.

The run controls structure is described on page 8-57.

GXSetShapeRunControls

You can use the GXSetShapeRunControls function to assign values to the run controls

property of a style object associated with a shape.

void GXSetShapeRunControls(gxShape target,

const gxRunControls *runControls);

target A reference to the shape object whose associated style object is to be
assigned the run controls information.

runControls
A pointer to a run controls structure that contains the run controls you
want to assign to the style object associated with the shape object
referenced in the target parameter. If you specify nil for this parameter,
GXSetShapeRunControls removes all run controls information from the
style object.

DESCRIPTION

GXSetShapeRunControls assigns the specified run controls structure to the style

object associated with the target shape, replacing any existing run controls structure in

the style.

Calling this function for the layout shape myLayout is equivalent to making the

following call:

GXSetStyleRunControls(GXGetShapeStyle(myLayout), &myRunControls);

Errors
shape_is_nil
parameter_is_nil

C H A P T E R 8

Layout Styles

8-70 Layout Styles Reference

This function acts only on the single style object that is referenced in the style property of

the shape object. It does not access any style object in the style list, which is part of the

geometry of a layout shape. (If, when calling the GXNewLayout function, for example,

you pass nil for the styles parameter, no style list is created and the new layout

shape’s style object is referenced through the style property.) If your layout shape uses

more than one style object, and therefore uses a style list in its geometry, you need to

access those style objects directly with a function such as GXSetStyleRunControls.

If the run controls structure contains illegal values, such as an imposed width less

than 0 or a baseline type beyond the defined range, GXSetShapeRunControls posts

a parameter_out_of_range error.

You can ensure that you are assigning a valid value to the run control flags by perform-

ing an AND operation on the value gxAllRunControlFlags and your value before

assigning it to the flags field of the run controls structure.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

You retrieve the run controls property from the style object associated with a shape

object using the GXGetShapeRunControls function, described in the previous

section. You assign a run controls structure directly to a style object using the

GXSetStyleRunControls function, described on page 8-67.

The run controls structure is described on page 8-57.

Customizing Kerning

The functions in this section allow you to get or set the kerning adjustments property of

a specified style object or of the style object associated with a specified layout shape.

GXGetStyleRunKerningAdjustments

You can use the GXGetStyleRunKerningAdjustments function to retrieve the array

of kerning adjustment structures from a style object.

long GXGetStyleRunKerningAdjustments(gxStyle source,

gxKerningAdjustment kerningAdjustments[]);

Errors
shape_is_nil
parameter_out_of_range

Notices (debugging version)
attributes_already_set

C H A P T E R 8

Layout Styles

Layout Styles Reference 8-71

source A reference to the style object whose kerning adjustments array you need.

kerningAdjustments
An array of kerning adjustment structures. On return, the array contains
the kerning adjustments for the style object referenced in the source
parameter. If you specify nil for this parameter, no information is
returned in it; however, the function result is still the correct number of
kerning adjustment structures for the style.

function result The number of kerning adjustment structures in the style object. If the
style object contains no kerning adjustment structures, the function
returns 0.

DESCRIPTION

The GXGetStyleRunKerningAdjustments function retrieves the kerning adjustments

array, if any, from the source style object. If the style has no kerning adjustment structures,

QuickDraw GX uses only font-specified kerning behavior when drawing.

To get the kerning adjustments themselves, you need to allocate an array to pass

in the kerningAdjustments parameter when calling this function. To get the

right size for the array, you can first call the function with a value of nil for the

kerningAdjustments parameter. Then use the function result to allocate an array of

the proper size, and call GXGetStyleRunKerningAdjustments a second time, this

time passing the array.

SPECIAL CONSIDERATIONS

Because QuickDraw GX can reorder the elements in a style object’s kerning adjustments

array, the order of elements returned in the kerningAdjustments parameter to this

function may differ from the order in which they were originally assigned to the style.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

You assign a kerning adjustments array to a style object using the

GXSetStyleRunKerningAdjustments function, described next. You retrieve

the kerning adjustments array from the style object associated with a shape object

using the GXGetShapeRunKerningAdjustments function, described on page 8-73.

The kerning adjustment structure is described on page 8-63.

Errors
style_is_nil

C H A P T E R 8

Layout Styles

8-72 Layout Styles Reference

GXSetStyleRunKerningAdjustments

You can use the GXSetStyleRunKerningAdjustments function to assign an array of

kerning adjustment structures to a style object.

void GXSetStyleRunKerningAdjustments(gxStyle target, long count,

const gxKerningAdjustment kerningAdjustments[]);

target A reference to the style object whose kerning adjustments array you
are assigning.

count The number of kerning adjustment structures to assign; the number of
elements in the kerning adjustments array.

kerningAdjustments
The array of kerning adjustment structures to assign to the style object. If
you specify nil for this parameter and 0 for the count parameter, the
function removes all kerning adjustment structures from the style object.

DESCRIPTION

The GXSetStyleRunKerningAdjustments function assigns the specified array of

kerning adjustment structures to the target style object.

If count is 0 and kerningAdjustments is non-nil, or if count is nonzero and

kerningAdjustments is nil, GXSetStyleRunKerningAdjustments posts

an inconsistent_parameters error.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

You retrieve the kerning adjustments array from a style object using the

GXGetStyleRunKerningAdjustments function, described in the previous section.

You assign a kerning adjustments array to the style object associated with a shape object

using the GXSetShapeRunKerningAdjustments function, described on page 8-74.

The kerning adjustment structure is described on page 8-63.

For an example of the use of this function, see Listing 8-7 on page 8-50.

Errors
style_is_nil
count_is_less_than_zero
inconsistent_parameters

Notices (debugging version)
attributes_already_set

C H A P T E R 8

Layout Styles

Layout Styles Reference 8-73

GXGetShapeRunKerningAdjustments

You can use the GXGetShapeRunKerningAdjustments function to retrieve the array

of kerning adjustment structures from the style object associated with a shape.

long GXGetShapeRunKerningAdjustments(gxShape source,

gxKerningAdjustment kerningAdjustments[]);

source A reference to the shape object whose associated style object contains the
kerning adjustments array you need.

kerningAdjustments
An array of kerning adjustment structures. On return, the array contains
the kerning adjustments for the style object associated with the shape
referenced in the source parameter. If you specify nil for this
parameter, no information is returned in it; however, the function result is
still the correct number of kerning adjustment structures for the style.

function result The number of kerning adjustment structures in the style object asso-
ciated with the shape. If the style object contains no kerning adjustment
structures, the function returns 0.

DESCRIPTION

The GXGetShapeRunKerningAdjustments function retrieves the kerning adjust-

ments array, if any, from the style object associated with the source shape. If the style has

no kerning adjustment structures, QuickDraw GX uses only font-specified kerning

behavior when drawing.

Calling this function for the layout shape myLayout is equivalent to making the

following call:

myCount = GXGetStyleRunKerningAdjustments(

GXGetShapeStyle(myLayout), myAdjustsArray);

To get the kerning adjustments themselves, you need to allocate an array to pass in the

kerningAdjustments parameter when calling this function. To get the right size for the

array, you can first call the function with a value of nil for the kerningAdjustments

parameter. Then use the function result to allocate an array of the proper size, and call

GXGetShapeRunKerningAdjustments a second time, this time passing the array.

This function acts only on the single style object that is referenced in the style property

of the shape object. It does not access any style object in the style list, which is part of

the geometry of a layout shape. (If, when calling the GXNewLayout function, for

example, you pass nil for the styles parameter, no style list is created and the new

layout shape’s style object is referenced through the style property.) If your layout

shape uses more than one style object, and therefore uses a style list in its geometry,

you need to access those style objects directly with a function such as

GXGetStyleRunKerningAdjustments.

C H A P T E R 8

Layout Styles

8-74 Layout Styles Reference

SPECIAL CONSIDERATIONS

Because QuickDraw GX can reorder the elements in a style object’s kerning adjustments

array, the order of elements returned in the kerningAdjustments parameter to this

function may differ from the order in which they were originally assigned to the style.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

You assign a kerning adjustments array to the style object associated with a shape

object using the GXSetShapeRunKerningAdjustments function, described next.

You retrieve the kerning adjustments array directly from a style object using the

GXGetStyleRunKerningAdjustments function, described on page 8-70.

The kerning adjustment structure is described on page 8-63.

GXSetShapeRunKerningAdjustments

You can use the GXSetShapeRunKerningAdjustments function to assign an array of

kerning adjustment structures to the style object associated with a shape.

void GXSetShapeRunKerningAdjustments(gxShape target, long count,

const gxKerningAdjustment kerningAdjustments[]);

target A reference to the shape object whose associated style object is to be
assigned the kerning adjustments array.

count The number of kerning adjustment structures to assign; the number of
elements in the kerning adjustments array.

kerningAdjustments
The array of kerning adjustment structures to assign to the style object
associated with the shape referenced in the target parameter. If you
specify nil for this parameter and 0 for the count parameter, the
function removes all kerning adjustment structures from the style object.

DESCRIPTION

The GXSetShapeRunKerningAdjustments function assigns the specified array of

kerning adjustment structures to the style object associated with the target shape.

Calling this function for the layout shape myLayout is equivalent to making the

following call:

GXSetStyleRunKerningAdjustments(GXGetShapeStyle(myLayout),

myCount, myAdjustsArray);

Errors
shape_is_nil

C H A P T E R 8

Layout Styles

Layout Styles Reference 8-75

This function acts only on the single style object that is referenced in the style property

of the shape object. It does not access any style object in the style list, which is part of

the geometry of a layout shape. (If, when calling the GXNewLayout function, for

example, you pass nil for the styles parameter, no style list is created and the new

layout shape’s style object is referenced through the style property.) If your layout

shape uses more than one style object, and therefore uses a style list in its geometry,

you need to access those style objects directly with a function such as

GXSetStyleRunKerningAdjustments.

If count is 0 and kerningAdjustments is non-nil, or if count is nonzero and

kerningAdjustments is nil, GXSetShapeRunKerningAdjustments posts

an inconsistent_parameters error.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

You retrieve the kerning adjustments array from the style object associated with a shape

object using the GXGetShapeRunKerningAdjustments function, described in the

previous section. You assign a kerning adjustments array directly to a style object using

the GXSetStyleRunKerningAdjustments function, described on page 8-72.

The kerning adjustment structure is described on page 8-63.

Customizing Glyph Substitution

The functions in this section allow you to get or set the glyph substitutions property of a

specified style object or of the style object associated with a specified layout shape.

GXGetStyleRunGlyphSubstitutions

You can use the GXGetStyleRunGlyphSubstitutions function to retrieve the array

of glyph substitution structures from a style object.

long GXGetStyleRunGlyphSubstitutions(gxStyle source,

gxGlyphSubstitution glyphSubstitutions[]);

source A reference to the style object whose glyph substitutions array you need.

Errors
shape_is_nil
count_is_less_than_zero
inconsistent_parameters

Notices (debugging version)
attributes_already_set

C H A P T E R 8

Layout Styles

8-76 Layout Styles Reference

glyphSubstitutions
An array of glyph substitution structures. On return, the array contains
the glyph substitution information for the style object referenced in the
source parameter. If you specify nil for this parameter, no information
is returned in it; however, the function result is still the correct number of
glyph substitution structures for the style.

function result The number of glyph substitution structures in the style object. If the style
object contains no glyph substitution structures, the function returns 0.

DESCRIPTION

The GXGetStyleRunGlyphSubstitutions function retrieves the glyph substitutions

array, if any, from the source style object. To get the glyph substitutions themselves, you

need to allocate an array to pass in the glyphSubstitutions parameter when calling

this function. To get the right size for the array, you can first call the function with a

value of nil for the glyphSubstitutions parameter. Then use the function result to

allocate an array of the proper size, and call GXGetStyleRunGlyphSubstitutions a

second time, this time passing the array.

SPECIAL CONSIDERATIONS

Because QuickDraw GX can reorder the elements in a style object’s glyph substitutions

array, the order of elements returned in the glyphSubstitutions parameter to this

function may differ from the order in which they were originally assigned to the style.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

You assign a glyph substitutions array to a style object using the

GXSetStyleRunGlyphSubstitutions function, described next. You retrieve

the glyph substitutions array from the style object associated with a shape object

using the GXGetShapeRunGlyphSubstitutions function, described on page 8-78.

The glyph substitution structure is described on page 8-64.

Errors
style_is_nil

C H A P T E R 8

Layout Styles

Layout Styles Reference 8-77

GXSetStyleRunGlyphSubstitutions

You can use the GXSetStyleRunGlyphSubstitutions function to assign an array of

glyph substitution structures to a style object.

void GXSetStyleRunGlyphSubstitutions(gxStyle target, long count,

const gxGlyphSubstitution glyphSubstitutions[]);

target A reference to the style object whose glyph substitutions array you
are assigning.

count The number of glyph substitution structures to assign; the number of
elements in the glyph substitutions array.

glyphSubstitutions
The array of glyph substitution structures to assign to the style object
referenced in the target parameter. If you specify nil for this parameter
and 0 for the count parameter, the function removes all glyph substitu-
tion structures from the style object.

DESCRIPTION

The GXSetStyleRunGlyphSubstitutions function assigns the specified array of

glyph substitution structures to the target style object.

If count is 0 and glyphSubstitutions is non-nil, or if count is nonzero and

glyphSubstitutions is nil, GXSetStyleRunGlyphSubstitutions posts

an inconsistent_parameters error.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

You retrieve the glyph substitutions array from a style object using the

GXGetStyleRunGlyphSubstitutions function, described in the previous section.

You assign a glyph substitutions array to the style object associated with a shape object

using the GXSetShapeRunGlyphSubstitutions function, described on page 8-79.

The glyph substitution structure is described on page 8-64.

For an example of the use of this function, see Listing 8-8 on page 8-52.

Errors
style_is_nil
count_is_less_than_zero
inconsistent_parameters

Notices (debugging version)
attributes_already_set

C H A P T E R 8

Layout Styles

8-78 Layout Styles Reference

GXGetShapeRunGlyphSubstitutions

You can use the GXGetShapeRunGlyphSubstitutions function to retrieve the array

of glyph substitution structures from the style object associated with a shape.

long GXGetShapeRunGlyphSubstitutions(gxShape source,

gxGlyphSubstitution glyphSubstitutions[]);

source A reference to the shape object whose associated style object contains the
glyph substitutions array you need.

glyphSubstitutions
An array of glyph substitution structures. On return, the array contains
the glyph substitution information for the style object associated with the
shape referenced in the source parameter. If you specify nil for this
parameter, no information is returned in it; however, the function result is
still the correct number of glyph substitution structures for the style.

function result The number of glyph substitution structures in the style object associated
with the shape. If the style object contains no glyph substitution
structures, the function returns 0.

DESCRIPTION

The GXGetShapeRunGlyphSubstitutions function retrieves the glyph substitutions

array, if any, from the style object associated with the source shape.

Calling this function for the layout shape myLayout is equivalent to making the

following call:

myCount = GXGetStyleRunGlyphSubstitutions(

GXGetShapeStyle(myLayout), mySubsArray);

To get the glyph substitutions themselves, you need to allocate an array to pass

in the glyphSubstitutions parameter when calling this function. To get the

right size for the array, you can first call the function with a value of nil for the

glyphSubstitutions parameter. Then use the function result to allocate an array

of the proper size, and call GXGetShapeRunGlyphSubstitutions a second time,

this time passing the array.

This function acts only on the single style object that is referenced in the style property

of the shape object. It does not access any style object in the style list, which is part of

the geometry of a layout shape. (If, when calling the GXNewLayout function, for

example, you pass nil for the styles parameter, no style list is created and the new

layout shape’s style object is referenced through the style property.) If your layout

shape uses more than one style object, and therefore uses a style list in its geometry,

you need to access those style objects directly with a function such as

GXGetStyleRunGlyphSubstitutions.

C H A P T E R 8

Layout Styles

Layout Styles Reference 8-79

SPECIAL CONSIDERATIONS

Because QuickDraw GX can reorder the elements in a style object’s glyph substitutions

array, the order of elements returned in the glyphSubstitutions parameter to this

function may differ from the order in which they were originally assigned to the style.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

You assign a glyph substitutions array to the style object associated with a shape

object using the GXSetShapeRunGlyphSubstitutions function, described next.

You retrieve the glyph substitutions array directly from a style object using the

GXGetStyleRunGlyphSubstitutions function, described on page 8-75.

The glyph substitution structure is described on page 8-64.

GXSetShapeRunGlyphSubstitutions

You can use the GXSetShapeRunGlyphSubstitutions function to assign an array of

glyph substitution structures to the style object associated with a shape.

void GXSetShapeRunGlyphSubstitutions(gxShape target, long count,

const gxGlyphSubstitution glyphSubstitutions[]);

target A reference to the shape object whose associated style object is to be
assigned the glyph substitutions array.

count The number of glyph substitution structures to assign; the number of
elements in the glyph substitutions array.

glyphSubstitutions
The array of glyph substitution structures to assign to the style object
associated with the shape referenced in the target parameter. If you
specify nil for this parameter and 0 for the count parameter, the
function removes all glyph substitution structures from the style object.

DESCRIPTION

The GXSetShapeRunGlyphSubstitutions function assigns the specified array of

glyph substitution structures to the style object associated with the source shape.

Calling this function for the layout shape myLayout is equivalent to making the

following call:

GXSetStyleRunGlyphSubstitutions(GXGetShapeStyle(myLayout),

myCount, mySubsArray);

Errors
shape_is_nil

C H A P T E R 8

Layout Styles

8-80 Layout Styles Reference

This function acts only on the single style object that is referenced in the style property

of the shape object. It does not access any style object in the style list, which is part of

the geometry of a layout shape. (If, when calling the GXNewLayout function, for

example, you pass nil for the styles parameter, no style list is created and the new

layout shape’s style object is referenced through the style property.) If your layout

shape uses more than one style object, and therefore uses a style list in its geometry,

you need to access those style objects directly with a function such as

GXSetStyleRunGlyphSubstitutions.

If count is 0 and glyphSubstitutions is non-nil, or if count is nonzero and

glyphSubstitutions is nil, GXSetShapeRunGlyphSubstitutions posts

an inconsistent_parameters error.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

You retrieve the glyph substitutions array from the style object associated with a shape

object using the GXGetShapeRunGlyphSubstitutions function, described in the

previous section. You assign a glyph substitutions array directly to a style object using

the GXSetStyleRunGlyphSubstitutions function, described on page 8-77.

The glyph substitution structure is described on page 8-64.

Customizing Font Features

The functions in this section allow you to get or set the run-features property of a

specified style object, or of the style object associated with a specified layout shape.

GXGetStyleRunFeatures

You can use the GXGetStyleRunFeatures function to retrieve the array of run-feature

structures from a style object.

long GXGetStyleRunFeatures(gxStyle source,

gxRunFeature runFeatures[]);

source A reference to the style object whose run-features array you need.

Errors
shape_is_nil
count_is_less_than_zero
inconsistent_parameters

Notices (debugging version)
attributes_already_set

C H A P T E R 8

Layout Styles

Layout Styles Reference 8-81

runFeatures
An array of run-feature structures. On return, the array contains the
run-feature information for the style object referenced in the source
parameter. If you specify nil for this parameter, no information is
returned in it; however, the function result is still the correct number
of run-feature structures for the style object.

function result The number of run-feature structures in the style object. If the style object
contains no run-feature structures, the function returns 0.

DESCRIPTION

The GXGetStyleRunFeatures function retrieves the run-features array, if any, from

the source style object. If the style has no run-features array, QuickDraw GX applies only

those features specified as defaults by the font when drawing.

To get the run features themselves, you need to allocate an array to pass in the

runFeatures parameter when calling this function. To get the right size for the array,

you can first call the function with a value of nil for the runFeatures parameter.

Then use the function result to allocate an array of the proper size, and call

GXGetStyleRunFeatures a second time, this time passing the array.

SPECIAL CONSIDERATIONS

Because QuickDraw GX can reorder the elements in a style object’s run-features array,

the order of elements returned in the runFeatures parameter to this function may

differ from the order in which they were originally assigned to the style.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

You assign a run-features array to a style object using the GXSetStyleRunFeatures

function, described next. You retrieve the run-features array from the style object

associated with a shape object using the GXGetShapeRunFeatures function, described

on page 8-83.

The run-feature structure is described on page 8-65.

Errors
style_is_nil

C H A P T E R 8

Layout Styles

8-82 Layout Styles Reference

GXSetStyleRunFeatures

You can use the GXSetStyleRunFeatures function to assign an array of run-feature

structures to a style object.

void GXSetStyleRunFeatures(gxStyle target, long count,

const gxRunFeature runFeatures[]);

target A reference to the style object whose run-features array you are assigning.

count The number of run-feature structures to assign; the number of elements in
the run-features array.

runFeatures
The array of run-feature structures to assign to the style object referenced
in the target parameter. If you specify nil for this parameter and 0 for
the count parameter, the function removes all run-feature structures
from the style object.

DESCRIPTION

The GXSetStyleRunFeatures function assigns the specified array of run-feature

structures to the target style object. Font features assigned through this function add to

or override the font-specified default features on an individual basis; simply specifying

a run-features array with a value other than nil does not remove the default features.

Specifying a nil run-features array and a value of 0 for the count parameter restores

the complete set of default features.

If count is 0 and runFeatures is non-nil, or if count is nonzero and runFeatures

is nil, GXSetStyleRunFeatures posts an inconsistent_parameters error.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

You retrieve the run-features array from a style object using the

GXGetStyleRunFeatures function, described in the previous section.

You assign a run-features array to the style object associated with a shape

object using the GXSetShapeRunFeatures function, described on page 8-84.

The run-feature structure is described on page 8-65.

For an example of the use of this function, see Listing 8-9 on page 8-53. Other examples

occur also in Listing 8-10 and Listing 8-11.

Errors
style_is_nil
count_is_less_than_zero
inconsistent_parameters

Notices (debugging version)
attributes_already_set

C H A P T E R 8

Layout Styles

Layout Styles Reference 8-83

GXGetShapeRunFeatures

You can use the GXGetShapeRunFeatures function to retrieve the array of run-feature

structures from the style object associated with a shape.

long GXGetShapeRunFeatures(gxShape source,

gxRunFeature runFeatures[]);

source A reference to the shape object whose associated style object contains the
run-features array you need.

runFeatures
An array of run-feature structures. On return, the array contains the
run-feature information for the style object associated with the shape
referenced in the source parameter. If you specify nil for this
parameter, no information is returned in it; however, the function result
is still the correct number of run-feature structures for the style object.

function result The number of run-feature structures in the style object associated with
the shape. If the style object contains no run-feature structures, the
function returns 0.

DESCRIPTION

The GXGetShapeRunFeatures function retrieves the run-features array, if any,

from the style object associated with the source shape. If the style has no run-features

array, QuickDraw GX applies only those features specified as defaults by the font

when drawing.

Calling this function for the layout shape myLayout is equivalent to making the

following call:

myCount = GXGetStyleRunFeatures(GXGetShapeStyle(myLayout),

myFeaturesArray);

To get the run features themselves, you need to allocate an array to pass in the

runFeatures parameter when calling this function. To get the right size for the

array, you can first call the function with a value of nil for the runFeatures

parameter. Then use the function result to allocate an array of the proper size, and

call GXGetShapeRunFeatures a second time, this time passing the array.

This function acts only on the single style object that is referenced in the style property

of the shape object. It does not access any style object in the style list, which is part of

the geometry of a layout shape. (If, when calling the GXNewLayout function, for

example, you pass nil for the styles parameter, no style list is created and the new

layout shape’s style object is referenced through the style property.) If your layout shape

uses more than one style object, and therefore uses a style list in its geometry, you need

to access those style objects directly with a function such as GXGetStyleRunFeatures.

C H A P T E R 8

Layout Styles

8-84 Layout Styles Reference

SPECIAL CONSIDERATIONS

Because QuickDraw GX can reorder the elements in a style object’s run-features array,

the order of elements returned in the runFeatures parameter to this function may

differ from the order in which they were originally assigned to the style.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

You assign a run-features array to the style object associated with a shape object using

the GXSetShapeRunFeatures function, described next. You retrieve the run-features

array directly from a style object using the GXGetStyleRunFeatures function,

described on page 8-80.

The run-feature structure is described on page 8-65.

GXSetShapeRunFeatures

You can use the GXSetShapeRunFeatures function to assign an array of run-feature

structures to the style object associated with a shape.

void GXSetShapeRunFeatures(gxShape target, long count,

const gxRunFeature runFeatures[]);

target A reference to the shape object whose associated style object is to be
assigned the run-features array.

count The number of run-feature structures to assign; the number of elements in
the run-features array.

runFeatures
The array of run-feature structures to assign to the style object associated
with the shape referenced in the target parameter. If you specify nil
for this parameter and 0 for the count parameter, the function removes
all run-feature structures from the style object.

DESCRIPTION

The GXSetShapeRunFeatures function assigns the specified array of run-feature

structures to the style object associated with the target shape. Font features assigned

through this function add to or override the font-specified default features on an

individual basis; simply specifying a run-features array with a value other than nil

does not remove the default features. Specifying a nil run-features array (and a value

of 0 for the count parameter) restores the complete set of default features.

Errors
shape_is_nil

C H A P T E R 8

Layout Styles

Layout Styles Reference 8-85

Calling this function for the layout shape myLayout is equivalent to making the

following call:

GXSetStyleRunFeatures(GXGetShapeStyle(myLayout), myCount,

 myFeaturesArray);

This function acts only on the single style object that is referenced in the style property of

the shape object. It does not access any style object in the style list, which is part of the

geometry of a layout shape. (If, when calling the GXNewLayout function, for example,

you pass nil for the styles parameter, no style list is created and the new layout

shape’s style object is referenced through the style property.) If your layout shape uses

more than one style object, and therefore uses a style list in its geometry, you need to

access those style objects directly with a function such as GXSetStyleRunFeatures.

If count is 0 and runFeatures is non-nil, or if count is nonzero and runFeatures

is nil, GXSetShapeRunFeatures posts an inconsistent_parameters error.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

You retrieve the run-features array from the style object associated with a shape

object using the GXGetShapeRunFeatures function, described in the previous

section. You assign a run-features array directly to a style object using the

GXSetStyleRunFeatures function, described on page 8-82.

The run-feature structure is described on page 8-65.

Errors
shape_is_nil
count_is_less_than_zero
inconsistent_parameters

Notices (debugging version)
attributes_already_set

C H A P T E R 8

Layout Styles

8-86 Summary of Layout Styles

Summary of Layout Styles

Constants and Data Types

Run Controls Structure

struct gxRunControls {

gxRunControlFlags flags;

Fixed beforeWithStreamShift;

Fixed afterWithStreamShift;

Fixed crossStreamShift;

Fixed imposedWidth;

Fixed track;

fract hangingInhibitFactor;

fract kerningInhibitFactor;

Fixed decompositionAdjustmentFactor;

gxBaselineType baselineType;

};

Run Control Flags

#define gxNoLigatureSplits 0x80000000

#define gxNoCaretAngle 0x40000000

#define gxImposeWidth 0x20000000

#define gxNoCrossKerning 0x10000000

#define gxNoOpticalAlignment 0x08000000

#define gxForceHanging 0x04000000

#define gxNoSpecialJustification 0x02000000

#define gxDirectionOverrideMask 0x00000003

typedef unsigned long gxRunControlFlags;

#define gxAllRunControlFlags (gxNoLigatureSplits|gxNoCaretAngle|

gxImposeWidth|gxNoCrossKerning|

gxNoOpticalAlignment|gxForceHanging|

gxNoSpecialJustification|

gxDirectionOverrideMask)

Direction Overrides

enum gxDirectionOverrides{

gxNoDirectionOverride = 0,

gxImposeLeftToRight = 1,

C H A P T E R 8

Layout Styles

Summary of Layout Styles 8-87

gxImposeRightToLeft = 2,

gxImposeArabic = 3

};

typedef unsigned short gxDirectionOverride;

Kerning Adjustment Factors Structure

struct gxKerningAdjustmentFactors {

fract scaleFactor;

Fixed adjustmentPointSizeFactor;

};

Kerning Adjustment Structure

struct gxKerningAdjustment {

gxGlyphcode firstGlyph;

gxGlyphcode secondGlyph;

struct gxKerningAdjustmentFactors withStreamFactors;

struct gxKerningAdjustmentFactors crossStreamFactors;

};

Glyph Substitution Structure

struct gxGlyphSubstitution {

gxGlyphcode originalGlyph;

gxGlyphcode substituteGlyph;

};

Run-Feature Structure

struct gxRunFeature {

gxRunFeatureType featureType;

gxRunFeatureSelector featureSelector;

};

Functions

Getting and Setting Run Controls

long GXGetStyleRunControls (gxStyle source, gxRunControls *runControls);

void GXSetStyleRunControls (gxStyle target,
const gxRunControls *runControls);

long GXGetShapeRunControls (gxShape source, gxRunControls *runControls);

void GXSetShapeRunControls (gxShape target,
const gxRunControls *runControls);

C H A P T E R 8

Layout Styles

8-88 Summary of Layout Styles

Customizing Kerning

long GXGetStyleRunKerningAdjustments
(gxStyle source,
gxKerningAdjustment kerningAdjustments[]);

void GXSetStyleRunKerningAdjustments
(gxStyle target, long count,
const gxKerningAdjustment
kerningAdjustments[]);

long GXGetShapeRunKerningAdjustments
(gxShape source,
gxKerningAdjustment kerningAdjustments[]);

void GXSetShapeRunKerningAdjustments
(gxShape target, long count,
const gxKerningAdjustment
kerningAdjustments[]);

Customizing Glyph Substitution

long GXGetStyleRunGlyphSubstitutions
(gxStyle source,
gxGlyphSubstitution glyphSubstitutions[]);

void GXSetStyleRunGlyphSubstitutions
(gxStyle target, long count,
const gxGlyphSubstitution
glyphSubstitutions[]);

long GXGetShapeRunGlyphSubstitutions
(gxShape source,
gxGlyphSubstitution glyphSubstitutions[])

void GXSetShapeRunGlyphSubstitutions
(gxShape target, long count,
const gxGlyphSubstitution
glyphSubstitutions[]);

Customizing Font Features

long GXGetStyleRunFeatures (gxStyle source, gxRunFeature runFeatures[]);

void GXSetStyleRunFeatures (gxStyle target, long count,
const gxRunFeature runFeatures[]);

long GXGetShapeRunFeatures (gxShape source, gxRunFeature runFeatures[]);

void GXSetShapeRunFeatures (gxShape target, long count,
const gxRunFeature runFeatures[]);

Contents 9-1

C H A P T E R 9

Contents

Layout Line Control

About Line Control and Line Measurement for Layout Shapes 9-3

Baselines 9-4

Baseline Types 9-4

Font and Application Control Over Baselines 9-5

Alignment of Multiple Baselines 9-6

Baselines for Vertical Text 9-8

Line Measurement 9-10

Line Length 9-10

Line Span 9-11

Line Breaking 9-11

Text Direction 9-13

Glyph Direction 9-13

Dominant Direction 9-15

The Levels Array of the Layout Shape Object 9-17

Forced Reordering With Nested Direction Levels 9-19

Justification 9-21

The Justification Model 9-21

Justification Properties of the Shape Object and Style Object 9-24

Priority Justification Override 9-26

Glyph Justification Overrides 9-26

Using Line Control and Line Measurement With Layout Shapes 9-27

Setting Baselines 9-27

Drawing Vertical Text 9-30

Determining Line Lengths 9-32

Determining Line Spans 9-33

Breaking Lines 9-33

Using Macintosh WorldScript for Line Breaking 9-37

Manipulating Nested Direction Levels 9-38

Overriding the Glyph Direction in a Style Run 9-42

Justifying Lines by Stretching and Shrinking 9-43

C H A P T E R 9

9-2 Contents

Displaying Partial Justification 9-46

Justification With White Space 9-46

Justification With Kashidas 9-48

Justification With Glyph Deformation 9-50

Justification and Ligature Decomposition 9-50

Changing the Behavior of Justification Priorities 9-51

Changing Justification Behavior of Individual Glyphs 9-55

Layout Line Control Reference 9-58

Constants and Data Types 9-58

Baseline Types 9-58

Baseline Deltas Array 9-59

Baseline Structure 9-59

Justification Priorities 9-60

Width Delta Structure 9-61

Justification Flags 9-62

Priority Justification Override Structure 9-63

Glyph Justification Override Structure 9-64

Functions 9-65

Manipulating Baselines 9-66

GXGetStyleBaselineDeltas 9-66

Measuring Line Span 9-67

GXGetLayoutSpan 9-67

GXSetLayoutSpan 9-68

Breaking Lines 9-69

GXGetLayoutBreakOffset 9-69

GXGetLayoutRangeWidth 9-71

GXNewLayoutFromRange 9-72

Overriding the Behaviors of Justification Priorities 9-73

GXGetStyleRunPriorityJustOverride 9-74

GXSetStyleRunPriorityJustOverride 9-75

GXGetShapeRunPriorityJustOverride 9-76

GXSetShapeRunPriorityJustOverride 9-77

Overriding the Justification Behaviors of Individual Glyphs 9-78

GXGetStyleRunGlyphJustOverrides 9-78

GXSetStyleRunGlyphJustOverrides 9-79

GXGetShapeRunGlyphJustOverrides 9-81

GXSetShapeRunGlyphJustOverrides 9-82

Summary of Layout Line Control 9-84

Constants and Data Types 9-84

Functions 9-86

C H A P T E R 9

About Line Control and Line Measurement for Layout Shapes 9-3

Layout Line Control

This chapter describes those features of layout shapes that help you lay out and manipu-

late an entire line of text. Line span, line length and line breaking, text direction, and

justification can affect the text of a whole line, regardless of the number or characteristics

of the individual style runs making up the line.

Although it is possible to create and draw a layout shape based solely on information

presented in the chapter “Layout Shapes” in this book, most applications need to use the

information presented here to take advantage of the layout capabilities that QuickDraw

GX provides. Read the information in this chapter if you create layout shapes and need

to control line characteristics. If you do not create layout shapes, you do not need the

information in this chapter.

Before reading this chapter, you should be familiar with the information in the chapters

“Introduction to QuickDraw GX Typography,” “Typographic Shapes,” “Typographic

Styles,” and “Layout Shapes” in this book. You should also be familiar with the general

concepts of QuickDraw GX objects, as described in Inside Macintosh: QuickDraw GX Objects.

Some of the information in this chapter concerns layout-related properties of the style

object. Most layout-related style properties are discussed in the chapter “Layout Styles”

in this book. Those discussed here, the justification-related properties, are presented in

this chapter because they are typically manipulated in the context of the line as a whole.

This chapter presents detailed information on text direction and nested direction levels,

even though the levels array of the layout shape is introduced earlier in this book, in the

chapter “Layout Shapes.” Text direction and nested direction levels can affect the entire

line, and therefore the details of how to manipulate them are presented here.

The chapter starts by describing how QuickDraw GX defines baselines, line measure-

ment, text direction, and justification. It then describes how to use QuickDraw GX

functions to

■ set baselines

■ determine line lengths and line spans

■ break lines

■ manipulate text direction, including nested direction levels in mixed-direction text

■ perform full and partial justification with a variety of justification techniques

■ change the justification behavior of classes of glyphs

■ change the justification behavior of individual glyphs

About Line Control and Line Measurement for Layout Shapes

Text-handling with layout shapes is line-based. The features of layout shapes are designed

mainly to allow you to lay out individual lines of text that uses complex formatting.

Although your application may work with paragraphs, sections, chapters, and other

larger text units, each line of your documents is at some point manipulated as a separate

layout shape.

C H A P T E R 9

Layout Line Control

9-4 About Line Control and Line Measurement for Layout Shapes

This section describes how QuickDraw GX defines and allows you to manipulate the

following line-based components in text layout:

■ baselines

■ line measurement and line breaking

■ text direction

■ justification

Baselines
A baseline is an imaginary line that is used to align glyphs in a line of text. A baseline

can coincide with various locations in a glyph, such as the bottom, middle, or top,

depending on what type of baseline it is. The baseline represents a stable platform,

giving a common point of alignment to glyphs of different shapes and sizes.

Baseline Types

There are several common types of baselines used to lay out text:

■ Roman baseline. The baseline used in most Roman scripts, as well as by Arabic and
Hebrew. Most of the glyph appears above the Roman baseline, sometimes with
portions below it, as with glyphs such as “y” or “j”. The baseline is near the bottom of
the entire row of glyphs:

■ Ideographic centered baseline. A baseline used by Chinese, Japanese, and Korean
ideographic scripts; glyphs are centered halfway on the line height:

■ Hanging baseline. The baseline used by Devanagari and similar scripts. Most of the
glyph is below the baseline, sometimes with portions above it, and the baseline is near
the top of the glyphs:

C H A P T E R 9

Layout Line Control

About Line Control and Line Measurement for Layout Shapes 9-5

■ Math baseline. A baseline used for setting mathematical expressions, centered on
operators such as the minus sign. Such operators usually appear at half the x-height
in a font:

QuickDraw GX supports vertical text, although not by using vertical baselines. All base-

lines in QuickDraw GX are horizontal, but you can specify text characteristics such that

the line is displayed properly when rotated to a vertical position. For more information,

see “Baselines for Vertical Text” beginning on page 9-8. Also, see the introductory discus-

sion of vertical text in the chapter “Layout Shapes” in this book.

QuickDraw GX supports a variety of baselines and allows you to mix text of various

baselines and sizes on a single line. QuickDraw GX baseline types are defined in the

gxBaselineType enumeration, described on page 9-58.

Font and Application Control Over Baselines

Each QuickDraw GX-compatible font specifies a baseline type for every glyph in the

font. It also specifies the positions of each baseline in the font’s own overall coordinate

system. This information is present only for the font as a whole; each glyph in the font

shares the same set of baseline positions, although different glyphs in a font may use

different baseline types within the set. Figure 9-1 shows where these baselines might be

for two glyphs from two different fonts.

C H A P T E R 9

Layout Line Control

9-6 About Line Control and Line Measurement for Layout Shapes

Figure 9-1 Baseline positions for two fonts

When you prepare to draw a line of text, you need to identify an overriding baseline (if

desired) for each style run, and you also need to identify offsets from the y-coordinate

of the layout shape’s position for each of the baseline types. QuickDraw GX provides a

routine to assist in this process. Figure 9-2 shows examples of a line with six style runs

rendered with two different sets of baseline information. Assume for this example that

the position of each shape is at the lower-left corner of the first ‘A’. The first line shows

the last three style runs having their baseline type overridden to the Roman baseline,

where the Roman baseline has a delta of zero from the shape’s position. The second line

shows the baseline type of the first three style runs overridden to the hanging baseline,

which has a nonzero delta from the shape’s position.

The information overriding the baseline for each style run is contained in the style’s run

controls, described on page 8-61. The information defining the baseline deltas is contained

in the gxBaselineDeltas array, described on page 9-59.

Alignment of Multiple Baselines

This section describes how QuickDraw GX makes use of the baseline deltas to lay out

text. If a layout shape comprises glyphs of only one baseline type, the alignment of the

glyphs is obvious. But if the text in the shape is of different sizes or uses several different

baseline types, it may not be obvious at first glance how best to line up the text:

■ One (incorrect) possibility might be to simply align all glyphs with a y-delta of 0. That
strategy works for text whose default baseline happens to be y = 0, but it does not
work for other text. Figure 9-2 shows the misalignment resulting from using a hanging
baseline for mixed-size Roman text and a Roman baseline for Devanagari text.

C H A P T E R 9

Layout Line Control

About Line Control and Line Measurement for Layout Shapes 9-7

Figure 9-2 How the same glyphs can align to different baselines

■ Another (incorrect) possibility is to line up each style run’s default baseline with the
primary baseline you have chosen for the layout. Figure 9-3 shows an example in
which the dominant style run is the leftmost and the default baseline type for the
layout shape is Roman. The text within each style run aligns with its own baseline
type: Roman text sits properly on its Roman baseline, Devanagari text hangs from its
baseline, and the Chinese text straddles its ideographic centered baseline. Each style
run is correct within itself, but the runs do not line up correctly because the baselines
should not be aligned.

Figure 9-3 Text with multiple baselines aligned to y = 0

C H A P T E R 9

Layout Line Control

9-8 About Line Control and Line Measurement for Layout Shapes

■ The best results occur when the default baseline for each style run is aligned with the
appropriate choice from the set of baselines as defined in the dominant style run. This
is the method that QuickDraw GX is designed to support. Figure 9-4 shows the same
text as Figure 9-3, but this time the Devanagari and Chinese text align with the hanging
and ideographic centered baseline types defined for the Roman baseline of the
Roman text.

Figure 9-4 Preferred alignment for multiple baselines

If you supply QuickDraw GX with the proper information about your text (what the

deltas are between the other baseline types and what baseline type each of your style

runs uses), it automatically aligns the baselines as shown in Figure 9-4, giving you the

best results for multilanguage layout.

Drop capitals

Drop capitals are large uppercase letters that drop below the main line
of text for aesthetic reasons. You can create a drop capital by setting the
baseline type for individual runs of letters to the hanging baseline type
in the run controls and by making sure the array of distances to the
various baselines is set up, as shown in Figure 9-16 on page 9-30. ◆

See the section “Setting Baselines” beginning on page 9-27 for more information on

baselines and how to control them.

Baselines for Vertical Text

As noted previously, vertical text in a layout shape is just a special case of horizontal text.

There is no vertical baseline and no vertical line direction in QuickDraw GX; a vertical

line is calculated and laid out as if it were horizontal.

When QuickDraw GX creates text that is to be displayed vertically (meaning the

gxVerticalText text attribute in its style object is set), it rotates the text’s individual

glyphs 90 degrees counterclockwise. It then sets the glyphs on a baseline (which at

this point is horizontal). If the glyphs do not have explicitly defined vertical metrics,

QuickDraw GX synthesizes a centered vertical baseline and places the glyphs on it.

Before drawing the shape, your application is responsible for setting its transform

object’s mapping to rotate it 90 degrees (clockwise), thus making it vertical and restoring

the glyphs to their proper orientation. You are also responsible for realigning the vertical

glyphs, if necessary.

For runs of text that are vertical, baseline alignment takes on a slightly different

meaning. Figure 9-5, for example, is a layout shape drawn three times, each consisting

C H A P T E R 9

Layout Line Control

About Line Control and Line Measurement for Layout Shapes 9-9

of two runs of text. The second run of text in each shape has the gxVerticalText

text attribute set. The first line shows the result of setting baselineType to

gxRomanBaseline, the second line shows the result of setting baselineType to

gxIdeographicCenterBaseline, and the third line shows the result of setting

baselineType to gxHangingBaseline. For all three lines, the baseline deltas were

derived from the horizontal run of text using the GXSetStyleBaselineDeltas call.

Figure 9-5 Creating vertical text in a layout shape

The sample code used to generate Figure 9-5 is Listing 9-2 on page 9-31. If you rotated

each shape produced by Listing 9-2 to a vertical position and then redrew it, you would

get the text shown in Figure 9-6.

Figure 9-6 Rotating vertical text in a layout shape

C H A P T E R 9

Layout Line Control

9-10 About Line Control and Line Measurement for Layout Shapes

For more information, see “Drawing Vertical Text” beginning on page 9-30 and Listing 9-2

on page 9-31.

Line Measurement
Measuring the dimensions of text lines is a standard process in performing text layout.

For QuickDraw GX layout shapes, line measurement can involve complex calculations.

For a horizontal line of text, line length is its width, and line span is its line height. For

a vertical line of text, line length is a height measurement, and line span is a width

measurement. Figure 9-7 illustrates length and span for both horizontal and vertical

lines. Because QuickDraw GX treats vertical text as if it were horizontal, the subsequent

examples in this section all assume horizontal lines (length is equivalent to width, and

span is equivalent to height).

Figure 9-7 Line length and line span

Line Length

Determining the length of a line of text is fundamental to all layout, and especially for line

breaking. You can use the width of the standard bounding rectangle or the typographic

bounding rectangle of the layout shape to get two possibly slightly different measures of

C H A P T E R 9

Layout Line Control

About Line Control and Line Measurement for Layout Shapes 9-11

its overall line length. QuickDraw GX also provides a function that gives you the length

of any range of text within a layout shape, up to and including the entire shape.

See the section “Determining Line Lengths” beginning on page 9-32 for more information.

Line Span

Because the typographic capabilities of QuickDraw GX are limited to laying out and

drawing single lines of text, any time you work with multiple lines you need to

determine how far to separate the lines to avoid overlap, truncation, or excess leading.

Whereas in simple text it is relatively easy to calculate line spacing based on a single

text-size value, such calculations can be very complex in layout shapes. To space lines

properly, you need to account for different text sizes in different style runs and the

possibility of cross-stream kerning, cross-stream shifting, and shifted baselines.

You can use the height of the standard bounding rectangle or the typographic bounding

rectangle of the layout shape to get two possibly slightly different measures of its line

span. QuickDraw GX also provides a function that returns the line span for any layout

shape, no matter how complex. QuickDraw GX uses that span when calculating the

shape of the caret and the height of highlight areas; you can use it to determine where to

place line starts.

QuickDraw GX also provides a function that allows you to set the line span for any

layout shape, in case you need to force a specific line spacing or caret height.

See the section “Determining Line Spans” beginning on page 9-33 for more information.

Line Breaking

If you work with text that can wrap to multiple lines, line breaking is a task of funda-

mental importance. Although QuickDraw GX provides several functions that help you

with line breaking, an important point to remember is that line-breaking decisions are still
up to your application. QuickDraw GX and the fonts it uses have no information about

morphology, or the internal structure of words. Your application, perhaps with the help

of the Macintosh WorldScript international resources, must decide where to end a line.

What QuickDraw GX can do is provide fast ways to determine line length at potential

break points, identify break points that are most efficient in terms of line layout, and

create new layout shapes for each line.

C H A P T E R 9

Layout Line Control

9-12 About Line Control and Line Measurement for Layout Shapes

Figure 9-8 shows the basic factors involved in the line-breaking decision. The text width

is the area between the margins, within which all displayed text must fit. If the line

length of your whole layout shape is less than the text width, there is no need to break

the line at all. But if it is greater, you need to break the line so that it fits within the text

width and also satisfies the requirements of the language.

Figure 9-8 Factors in line breaking

QuickDraw GX allows you to provide a set of hyphenation points, edge offsets in the

source text at which it is appropriate to break the line. If you do so, QuickDraw GX uses

that information in suggesting a line-break position. If you do not provide hyphenation

points, QuickDraw GX calculates a break position at the last whole glyph that fits within

the text width.

In returning a suggested break point, QuickDraw GX also notifies you of the closest

positions to that break point that are staked. A stake is an edge offset in the source text

at which point, if a decision is made to break the line there, the break will be “clean” in

terms of layout processing—that is, not in the middle of a ligature, or inside a kerning

pair, or between a pair of rearranged glyphs.

Staked offsets are separate from and largely independent of hyphenation points. The

best hyphenation point may be within a ligature (the word “offload” would break within

the “fl” ligature), so it may not be a staked position; a staked position (such as between

the “l” and “o” in “offload”) may not be an acceptable hyphenation point. QuickDraw

GX provides the information on staked positions to help you be most efficient in laying

out text during line breaking; it does not take the place of the morphological information

you must have to calculate proper hyphenation points.

See the section “Breaking Lines” beginning on page 9-33 for more information on line-

breaking and examples of line-breaking algorithms. See the section “Using Macintosh

WorldScript for Line Breaking” beginning on page 9-37 for information on using interna-

tional resources to help with line-breaking decisions.

C H A P T E R 9

Layout Line Control

About Line Control and Line Measurement for Layout Shapes 9-13

Text Direction
Displayed text always has a direction, which is the direction in which a person’s eyes

move when reading successive glyphs. Different languages have different directions,

and some individual languages support more than one direction. Text of Roman

languages typically has a left-to-right direction (although vertical text is used occasion-

ally); text in Chinese and Japanese may have a vertical direction, although left-to-right text

is also common (and right to left is possible). Arabic and Hebrew have a predominantly

right-to-left direction, although some text in both languages is written left to right.

Vertical text

Throughout this section and in much of the rest of this chapter, the
discussion is in terms of horizontal text lines. Because vertical text
in QuickDraw GX can be thought of as horizontal text in which the
individual glyphs are rotated 90 degrees, you can apply the discussions
here to vertical text by substituting “top-to-bottom” for “left-to-right,”
“width” for “height,” and “height” for “width.” ◆

Direction is multileveled; horizontal text of one direction may have embedded text of the

opposite direction, and the entire sequence may be embedded within a line of text that

has either direction. To help sort out the complications, QuickDraw GX defines two

direction-related concepts:

■ Glyph direction, the most fundamental and smallest-scale directionality. It is applied
to individual glyphs.

■ Dominant direction, a broader direction control imposed on groups of glyphs. (The
broadest control on text direction is line direction, and you can think of it as the
dominant direction for an entire line of text.)

This section describes those concepts and shows you how to control them properly when

laying out lines of mixed-direction text.

Glyph Direction

Every glyph in a font has a defined direction that determines how it is positioned in

relation to the previous and subsequent (in reading order) glyphs. That direction is

implied in the positions of the glyph’s leading and trailing edges; for example, if a

glyph’s leading edge is on its left side, that glyph has a left-to-right direction.

When QuickDraw GX draws a sequence of glyphs, it takes glyph direction into account

when calculating the order in which to display them. If a sequence of glyphs all have

left-to-right direction, the left-to-right display order in which QuickDraw GX displays

them matches the sequential order of their characters in the source text. If the sequence is

C H A P T E R 9

Layout Line Control

9-14 About Line Control and Line Measurement for Layout Shapes

all right-to-left glyphs, QuickDraw GX displays them in an order that is opposite to the

sequential order of their characters in the source text. Figure 9-9 shows examples of both

kinds of sequences.

Figure 9-9 How glyph direction affects display order

QuickDraw GX always displays consecutive groups of glyphs that have a common direc-

tion in the sequence determined by that direction, regardless of other direction properties

that may be imposed on the text. Your application has no control over this process, other

than to override it globally for an entire style run. You can impose a strong right-to-left or

left-to-right direction on all of the glyphs of a style run by setting a flag value in the run

controls structure of the style object. The run controls structure is described in the chapter

“Layout Styles” in this book.

Types of Glyph Direction

Because of the complications that arise in languages that support two directions and in

single lines with text of different languages and directions, QuickDraw GX recognizes

several types of directionality for glyphs. Most glyphs have a strong type of direction,

meaning that they are always read only in the direction defined for them. Glyphs with

strong left-to-right direction include most alphabetic, syllabic, and Han ideographic

glyphs for most languages. Glyphs with strong right-to-left direction include Arabic and

Hebrew alphabetic glyphs and punctuation.

C H A P T E R 9

Layout Line Control

About Line Control and Line Measurement for Layout Shapes 9-15

Glyphs of numbers and their associated symbols are considered to have a weak type of

direction. They typically are read left-to-right but are placed on the line as if they had the

direction of the adjacent glyphs. (See the next section, “Dominant Direction” beginning

on page 9-15, for a discussion of how glyph direction affects placement of blocks of

glyphs on the line.)

Glyphs with weak direction include European and Arabic numbers, European number

separators (such as the figure space, the period, and the slash), European number

terminators (such as the plus and minus signs, the percent sign, and currency symbols),

and the common number separators (the colon and the comma).

Neutral glyphs are glyphs without inherent direction. They generally take on the

direction of the surrounding text. Neutral glyphs include block separators (such as

the paragraph separator or line separator) and whitespace glyphs.

Normally, your application need not be concerned with the details of the type or class

of direction associated with a particular glyph, although QuickDraw GX uses it in

determining the reordering necessary to lay out a line of mixed-direction text. If you

need to, you can override direction by setting a value in the run controls structure of the

style object. Note, however, that the override applies to an entire style run, and that you

can override into one of the strong types only. The run controls structure is described in

the chapter “Layout Styles” in this book. For more information on direction classes and

how they affect text layout, see The Unicode Standard: Worldwide Character Encoding,
Version 1.0, Volume 1.

Dominant Direction

The dominant direction of a line (or any other text run) is the overall, controlling direc-

tion within which the individual glyph directions are set. Dominant direction does not

reverse glyph direction; it is a higher-level effect. If a Hebrew word is embedded in a line

of Roman text, the dominant direction for that line is left to right, but the Hebrew word

is still laid out right to left, as expected. Conversely, Roman text embedded in a line of

Hebrew, in which the dominant direction is right to left, is still displayed left to right.

For this reason, dominant direction has significance only in mixed-direction text. If all

the text on a line has a uniform glyph direction, such as the text shown in Figure 9-9 on

page 9-14, its display order is unchanged no matter what the dominant direction is.

Changing the dominant direction has no effect on the display of either line of text in

Figure 9-9.

In mixed-direction text, however, changing the dominant direction has a significant

effect. Figure 9-10 shows a layout shape whose source text consists of three Roman

characters followed by three Hebrew characters. In the upper display line, the dominant

direction is specified as left to right, implying that the Hebrew letters are embedded in a

line of Roman text. The Hebrew letters are laid out right to left, but the line as a whole

(the groups of letters of a given direction) is laid out left to right.

C H A P T E R 9

Layout Line Control

9-16 About Line Control and Line Measurement for Layout Shapes

The lower display line in Figure 9-10 shows the same text when the dominant direction

is specified as right to left, implying that the Roman letters are embedded in a line of

Hebrew text. The Roman letters are laid out left to right, but the line as a whole (the

groups of letters of a given direction) is laid out right to left.

Figure 9-10 How dominant direction affects display order

The QuickDraw GX text layout model accounts for dominant direction as well as glyph

direction, automatically performing any reordering needed for correct display of simple

mixed-direction lines of text such as those shown in Figure 9-10. Furthermore, in

QuickDraw GX the concept of dominant direction is not limited to line direction. Any

section of text in a layout shape can have a dominant direction, and dominant directions

exist in a nested hierarchy in which the line direction is simply the lowest nesting level.

This nesting of dominant directions allows you to preserve very complex multiple-

language formatting. You specify the nested hierarchy of direction levels in the levels

array of the layout shape. The levels array is introduced in the chapter “Layout Shapes”

in this book. The next two sections show how to use the levels array to perform complex

multilanguage formatting.

C H A P T E R 9

Layout Line Control

About Line Control and Line Measurement for Layout Shapes 9-17

The Levels Array of the Layout Shape Object

Figure 9-11 shows the geometry of the layout shape. Part of the geometry is the levels

array, represented by the properties level run count, level lengths array, and levels array.

It is in the levels array that you specify the dominant direction for the line of text in a

layout shape. It is also in the levels array that you can specify additional nested levels

of direction.

Figure 9-11 The levels array property of the layout shape

C H A P T E R 9

Layout Line Control

9-18 About Line Control and Line Measurement for Layout Shapes

Figure 9-12 demonstrates the simplest relationship between nesting level and text direc-

tion. It shows the same layout shape as displayed in Figure 9-10 on page 9-16.

■ If you specify a single direction-level run with a level of 0 for your entire layout shape
(or if your levels array is nil, the default), you are specifying a left-to-right dominant
direction for the line. The line is reordered and displayed as shown in the upper line
of Figure 9-12 (identical to the upper line of Figure 9-10).

■ If you specify a single direction-level run with a level of 1 for your entire layout shape,
you are specifying a right-to-left dominant direction for the line. The line is reordered
and displayed as shown in the lower line of Figure 9-12 (identical to the lower line of
Figure 9-10).

Figure 9-12 How nesting level relates to text direction

In fact, if you specify any even number for a level, QuickDraw GX considers text of that

level to have a dominant direction of left to right. Likewise, if you specify any odd

number for a level, QuickDraw GX considers text of that level to have a dominant

direction of right to left.

Note that a change in level need not accompany each change in glyph direction.

QuickDraw GX automatically reorders glyphs appropriately according to their

glyph directions.

Where a line contains more than one level of text, QuickDraw GX looks at the lowest
level to determine the dominant direction for the line. Figure 9-13 shows alternative

ways to specify the direction information shown in Figure 9-12 for the layout shape:

■ In the upper line of Figure 9-13, each run of text in a given direction has its own level.
The formatting of the display is identical to the upper line of Figure 9-12 because
QuickDraw GX notes that the lowest level on the line is an even number and therefore
orders the line from left to right.

C H A P T E R 9

Layout Line Control

About Line Control and Line Measurement for Layout Shapes 9-19

■ In the lower line of Figure 9-13, the runs of text are the same, except the Roman text
has a level of 2, not 0. In this case, the lowest level on the line is an odd number, and
QuickDraw GX therefore orders the line from right to left. The formatting of the
display is identical to the lower line of Figure 9-12.

Figure 9-13 Multiple nesting direction levels in one line

The use of levels other than 0 and 1 is unnecessary for this simple example, because you

can specify a single level for the entire line. In most situations, even with mixed-direction

text, you never need to use more than a single level run (with value 0 or 1) for your lay-

out shape. The next section, however, shows how you can use multiple nested direction

levels to prevent incorrect reordering in more complex situations.

Forced Reordering With Nested Direction Levels

This section shows one example of when the explicit use of nesting levels may be

necessary. Suppose, for example, that the following is a layout shape consisting of

the Arabic-language equivalent of the phrase “Arabic Macintosh”:

In this case, all glyphs have a right-to-left direction, and specification of nesting levels

(even for the dominant direction for the line) is unnecessary.

C H A P T E R 9

Layout Line Control

9-20 About Line Control and Line Measurement for Layout Shapes

Now, however, assume that the English-language phrase “(Macintosh)” is added between

the two Arabic words. To make sure that the line is ordered correctly when drawn, you

must specify a right-to-left dominant direction for the line. You can do that by giving the

entire layout a level of 1 (odd).The resulting layout is drawn correctly, as follows:

If you had not specified any level for the line, or if you had specified an even value, the

two Arabic words would have been reversed— equivalent to saying “Macintosh Arabic”

in English. The resulting layout would be drawn incorrectly, like this:

Finally, suppose that this predominantly Arabic phrase is made part of an

English-language sentence. To preserve the overall right-to-left ordering of the phrase,

you must give it an odd nesting level; to preserve the overall left-to-right ordering of the

sentence itself, you must give the English parts a lower, even nesting level. The resulting

layout is drawn correctly, as follows:

If you had simply given the entire sentence an even level (or specified no level at all), the

Arabic words would once again have been reversed, and the sentence would have been

incorrectly displayed, as follows:

Consider an even more complex example. Suppose you subsequently embedded the

entire sentence in a line of Arabic text. You would then need to assign a level of 1 to

those new (outer) Arabic parts and promote the levels 0 and 1 in the original sentence to

levels 2 and 3. This is because QuickDraw GX looks at the lowest level to determine the

overall line direction, which in this case would need be right to left (odd nesting level).

Your application can usually determine the intended dominant direction for a line when

text is being entered, either from a system setting or from a user selection. However, it

may not be able to generate these more complex nesting levels automatically without

C H A P T E R 9

Layout Line Control

About Line Control and Line Measurement for Layout Shapes 9-21

user intervention. Therefore, to give users control over the orderings of complex phrases,

you may want to allow them to set levels explicitly as they enter text, or to impose levels

on the text they have previously created.

For more information and examples, see the section “Manipulating Nested Direction

Levels” beginning on page 9-38.

Justification
Justification is the process of typographically fitting a line of text to a given width (or

height, in the case of vertical text). In QuickDraw GX, some of the information that

controls justification behavior is contained in the layout shape itself, whereas other

information is contained in the style objects associated with the layout shape.

This section presents the QuickDraw GX justification model, notes where the informa-

tion that controls it is stored, and discusses how to override aspects of it to produce

special justification effects.

The Justification Model

The QuickDraw GX justification model is very powerful and completely multilingual.

It supports the assignment of additional space to different classes of glyphs at different

priority levels, and includes facilities for handling complex kashida-like justification

such as is used in Arabic or script Roman. This section describes how the model works.

The justification gap is the difference in the length of a line of text before and after justifi-

cation. For full justification, it is the difference between the text width and the length

of the unjustified line (without considering hanging punctuation and optical effects,

described in the chapter “Layout Styles” in this book). If the line must be stretched to fit

the allotted space, the justification gap is positive and must be distributed among the

glyphs of the line as extra width. If the line must be shrunk to fit, the justification gap is

negative and that space must therefore be removed from the glyphs of the line. (See

Figure 9-14.) QuickDraw GX can handle both positive and negative justification gaps

and can even use different behaviors in the positive and negative cases.

Figure 9-14 Justification gap

C H A P T E R 9

Layout Line Control

9-22 About Line Control and Line Measurement for Layout Shapes

Remember that, as noted in the chapter “Layout Shapes” in this book, justification is a

continuous value that is specified in the just field of the layout options structure.

Figure 9-14 illustrates the justification gap for a line that is to be fully justified

(just = 1.0); the justification gap is the entire difference between line length and text

width. If the line were to be only partially justified, the justification gap would be

proportionally smaller. For example, if the line in Figure 9-14 were to be 50 percent

justified (just = 0.5), the justification gap would be half the amount shown in the

figure. QuickDraw GX supports partial or full justification, of both positive and negative

justification gap, in all situations.

Justification Priority, Grow Limits, and Shrink Limits

Justification as performed by QuickDraw GX is a multistage process. QuickDraw GX

does not have to, for example, assign intercharacter and interword white space in a fixed

proportion when stretching a line. Instead, QuickDraw GX recalculates glyph positions

in several passes, based on justification priority. Glyphs with higher priority are

processed earlier. If, after processing all glyphs of a given priority, more justification gap

remains, QuickDraw GX then processes glyphs of the next lower priority, and so on,

until all the needed justification gap is taken up. The defined justification priorities are

listed in Table 9-1.

Note

The justification priorities specify only the order in which glyphs
participate in justification. The names of the priorities suggest the
kinds of effects that are typical at each level, but the actual
justification technique that QuickDraw GX applies—for example,
addition of kashida extenders or white space—is defined for each
glyph by the font. ◆

As an example of the steps involved in justification, in Roman fonts the whitespace

glyphs typically have a higher justification priority than other glyphs. During justifica-

tion, QuickDraw GX first assigns extra (interword) space to those glyphs alone, until

Table 9-1 Justification priorities

Constant Value Explanation

gxKashidaPriority 0 The highest priority. Glyphs with
this priority are adjusted first.

gxWhiteSpacePriority 1 Glyphs with this priority are
adjusted after all glyphs with
priority gxKashidaPriority.

gxInterCharPriority 2 Glyphs with this priority are
adjusted after all glyphs with
higher priority.

gxNullJustificationPriority 3 Glyphs with this priority have the
lowest justification priority and are
adjusted last.

C H A P T E R 9

Layout Line Control

About Line Control and Line Measurement for Layout Shapes 9-23

either the entire justification gap is accounted for or a specified grow limit for the

justification of whitespace glyphs is reached. At that point, if more gap remains,

QuickDraw GX then starts assigning extra (intercharacter) space to other glyphs. For

this reason, intercharacter spacing need not occur as often as it does in proportional

justification models (or even at all, if your application wishes).

Tables in the glyphs’ font determine the assignment of justification priorities to glyphs
and the specification of limits to the amount of width that can be added for each priority.

Each glyph of a given priority can be stretched by a given amount on its right side and
by a possibly different amount on its left side, after which processing passes to the next

lower priority of glyph. (Note that “stretching” in this case can mean addition of white
space, addition of connecting glyphs, such as kashidas, actual stretching of the glyph

form itself, or other methods of taking up the space.) Likewise, each glyph of a given pri-
ority has shrink limits, used when the justification gap is negative. Shrink limits can be

different on the left and right sides of a glyph and different from the grow limits.

When it assigns a certain amount of space to a glyph (or subtracts space), QuickDraw

GX looks at the glyph’s left and right grow limits (or shrink limits) and adds the space

(or subtracts it) on each side, until those limits are reached.

Sometimes a justification gap remains even after QuickDraw GX has processed all priori-

ties of glyphs on the line and has stretched each by the maximum amount. In this case,

QuickDraw GX goes back to the highest priority glyphs on the line and distributes the re-

maining gap among them.

A font can specify that certain glyphs have unlimited gap absorption, meaning that, at

the point during justification at which they are processed, all remaining justification gap

is assigned to them.

The font also specifies, for each glyph, the actual technique of justification that must

be applied to it. For example, most glyphs in most Roman fonts grow by the addition of

white space to both sides of the glyph. Certain Arabic glyphs grow by the addition

of kashidas (extender bars) to their right sides only. Other glyphs in some fonts grow

by changing their shapes— for example, a hyphen might grow or shrink when the line

it is part of is justified. For examples of each of these kinds of justification, see the section

“Displaying Partial Justification” beginning on page 9-46.

Justification priorities are described further on page 9-60.

Postcompensation Action

Once QuickDraw GX has completed its processing and calculated the extra space to add

to all glyphs, it may either draw the line as it is, or it may perform postcompensation

action on it. Postcompensation action consists of addition, substitution, or modification

of glyphs as needed to complete the justification. In many cases, postcompensation

action is not needed; the existing glyphs are drawn in their revised positions, surrounded

by whitespace. However, there are several cases in which it is either necessary or useful:

■ Addition of kashidas. Justification in Arabic involves adding extension bars to the
right sides of certain glyphs. The justification calculations create the proper amount
of space to hold those extension bars; postcompensation action inserts the glyphs
for them. A similar postcompensation process adds connectors between glyphs for jus-
tified Roman text using cursive fonts.

C H A P T E R 9

Layout Line Control

9-24 About Line Control and Line Measurement for Layout Shapes

■ Changing glyph shape. Certain glyphs in some fonts contribute to the justification of
a line by actually deforming, rather than by having white space added on either side.
In that case, postcompensation action consists of deforming the glyph to fill its new
space. Deforming may be either by simple glyph stretching, which uses a text face
mechanism, or by glyph ductility, which uses a font variation mechanism. Text faces
are described in the chapter “Typographic Styles” in this book; font variations are
described in the chapter “Font Objects” in this book.

■ Ligature decomposition. Depending on the amount of white space surrounding a
ligature, postcompensation action may replace that ligature with its component glyphs,
after which QuickDraw GX recalculates the positions of all glyphs on the line.

■ Substitution of wider glyphs. Some fonts have wider versions of certain glyphs, such
as hyphens, that postcompensation action can substitute for the original glyphs.

Overriding Justification Behavior

If you want to provide custom justification behavior, your application can override any

of the font-specified priorities and limits in a given style run, either for an individual

glyph or for a whole priority of glyphs. Additionally, you can specify that a given glyph

or a given priority of glyph is to have unlimited gap absorption; in other words, when

that glyph or priority is processed during justification, all remaining justification gap

must be assigned to it, regardless of its specified shrink or grow limits.

Your application cannot in general override the kind of justification that takes

place for a given glyph—addition of white space, addition of a kashida, or stretching,

or ductility. You can, however, prevent postcompensation action by setting the

gxNoSpecialJustification flag in the run controls structure of the style run to

which the text belongs. You can also override the threshold at which ligature decomposi-

tion starts by placing an appropriate value in the decompositionAdjustmentFactor

field of the run controls structure of the style run to which the text belongs. The run

controls structure is described in the chapter “Layout Styles” in this book.

Justification Properties of the Shape Object and Style Object

Some of the information that controls justification behavior in QuickDraw GX is con-

tained in the layout shape itself, whereas other information is contained in the style

objects associated with that layout shape.

The just field of the layout options structure in the geometry of a layout shape contains

a fract value between 0 and 1.0 that defines whether and to what extent a layout shape

is to be justified. A value of 0 means no justification; a value of 1 means full justification;

values in between specify varying degrees of justification. The layout options structure is

described in the chapter “Layout Shapes” in this book.

Figure 9-15 shows the justification-related properties of the style object. Because each

style run in a layout shape has its own style object, these properties, unlike the just

value in the layout options structure, need not affect the entire layout shape.

C H A P T E R 9

Layout Line Control

About Line Control and Line Measurement for Layout Shapes 9-25

Figure 9-15 Justification-related properties of the style object

There are three principal layout-specific properties of the style object that control justifi-

cation behavior. Two of them are described in this chapter; both function as overrides to

font-specified default behavior:

■ Priority justification override structure. Each entry in this structure overrides the
behavior of all glyphs of a given justification priority. If this property is set to nil,
justification for each priority for this style run defaults to the font-specified behavior.
See the next section, “Priority Justification Override,” for more information on
this structure.

■ Glyph justification overrides array. This array overrides the justification behavior of
one or more individual glyphs. If this property is set to nil, justification for all glyphs
in the style run defaults to the font-specified behavior. See the section “Glyph
Justification Overrides” on page 9-26 for more information on this array.

Justification overrides basically have two effects: (1) changing the limits to which a given

glyph or class of glyphs can be stretched (or shrunk) during justification, and (2) chang-

ing the justification priority of the glyph or class of glyphs. Overrides do not change the

kind of justification that is applied—white space, kashida, glyph stretching, and so on.

One other layout-specific property of the style object, the run controls structure,

contains one field and one flag that affect justification behavior. The field is the

decompositionAdjustmentFactor field, and the flag is the

gxNoSpecialJustification flag. Both affect postcompensation action,

described on page 9-23. The run controls structure itself is described in the chapter

“Layout Styles” in this book.

C H A P T E R 9

Layout Line Control

9-26 About Line Control and Line Measurement for Layout Shapes

Priority Justification Override

The priority justification override structure specifies overriding justification behavior for

specific classes of glyphs in a given style run. The structure is organized by priority; for

each justification priority, it specifies the overriding behavior, if any. That behavior can

include changes to the grow or shrink limits for that priority and even a change in

priority value for that priority. The structure is a simple array of width delta structures,

one for each defined justification priority.

typedef struct {

gxWidthDeltaRecord deltas[gxNumberOfJustificationPriorities];

} gxPriorityJustificationOverride;

Each width delta structure specifies, for both the grow and shrink cases, limits to the

amount of space that can be added (or removed) from both the right and left sides of

each of the glyphs of the given justification priority. This is its format:

typedef struct {
Fixed beforeGrowLimit;

Fixed beforeShrinkLimit;
Fixed afterGrowLimit;

Fixed afterShrinkLimit;
gxJustificationFlags growFlags;

gxJustificationFlags shrinkFlags;
} gxWidthDeltaRecord;

The growFlags and shrinkFlags fields control whether or not to apply the limits

defined in the rest of the structure and whether or not to change other justification

behavior, such as the priority itself. The flags also control whether or not unlimited gap

absorption (see page 9-24) should be applied to the priority of glyphs specified in the

structure. The fields of the width delta structure are described in more detail in the

section “Width Delta Structure” beginning on page 9-61.

The priority justification override structure is described in more detail in the section

“Priority Justification Override Structure” beginning on page 9-63.

Glyph Justification Overrides

The glyph justification overrides array specifies overriding justification behavior for

individual glyphs in a given style run. It consists of an array of glyph justification

override structures, one for each glyph whose behavior is to be overridden.

The glyph justification override structure assigns an overriding justification priority

and behavior to a specific glyph in a style run. It contains a glyph code and a width

delta structure.

typedef struct {
gxGlyphcode glyph;

gxWidthDeltaRecord override;
} gxGlyphJustificationOverride;

C H A P T E R 9

Layout Line Control

Using Line Control and Line Measurement With Layout Shapes 9-27

The width delta structure in this case specifies overrides and flags for all instances of

a single glyph (specified by glyph code). The fields of the width delta structure are

described in more detail in the section “Width Delta Structure” beginning on page 9-61.

The glyph justification override structure is described in more detail in the section

“Glyph Justification Override Structure” beginning on page 9-64.

Using Line Control and Line Measurement
With Layout Shapes

This section shows how to use QuickDraw GX functions and structures to measure and

control the layout of text lines. In particular, it shows you how to

■ set multiple baselines

■ determine line lengths

■ determine line spans

■ break lines

■ manipulate nested direction levels

■ display continuous justification

■ change the behavior of justification priorities

■ change the justification behavior of glyphs

Setting Baselines
The section “Baselines” beginning on page 9-4 describes how QuickDraw GX uses font

information to lay out multiple-baseline text. To take advantage of the capabilities of

QuickDraw GX and thus get the best alignment when drawing a line of text that uses

multiple baselines, you can use the following procedure:

1. Decide which baseline type to align the text of each style run to. For example, you
may specify a Roman baseline for a Roman style run and a hanging baseline for a
Devanagari style run on the same line. Set each baseline type in the BaselineType
field of the run controls structure of the style object for that style run. (Actually, you
need make no explicit assignments if you use the default baseline for the text of each
style run.)

2. Determine the distances among baselines to be used for the entire line. Call the
GXGetStyleBaselineDeltas function to get the distances (based on the font
and text size of a style object, which may represent one of the style runs on the
line). Store the baseline deltas information in the baselineRec field of the layout
options structure.

When you draw the layout shape, QuickDraw GX aligns all baselines in all style runs

according to the information in the baseline deltas structure.

C H A P T E R 9

Layout Line Control

9-28 Using Line Control and Line Measurement With Layout Shapes

Listing 9-1 is a partial listing of a function that aligns the hanging baselines of two

different sizes of text to create drop capitals, for the string “Drop Caps”. The function

creates two different style objects, one for the drop capitals and one for the lowercase

letters. The function draws the line of text twice: once with the capitals at 70 points and

once with capitals at 110 points (the body text is at 40 points in both cases).

Listing 9-1 makes use of application-defined functions NewLayoutStyle,

InitializeRunControls, InitializeLayoutOptions, and

GXSetStyleTextSize to initialize some of the objects and structures used in the

listing. The length of the text string is len; the layout is drawn at the point myPoint.

The function calls the QuickDraw GX function GXGetStyleBaselineDeltas to

get the information needed for aligning the baselines.

Listing 9-1 Aligning baselines to create drop capitals

void BaselineAlignment(WindowPtr sampleWindow)

{

/* define and initialize variables */

char *myString = "Drop Caps";

gxLayoutOptions layoutOptions;

gxLineBaselineRecord lineBaselineRecord;

gxRunControls runControls;

gxShape layout;

short runLengths[4];

gxStyle dropCapsStyle, regularStyle, styleArray[4];

.

.

.

/* set the size of the text and each of the style runs */

runLengths[0] = runLengths[2] = 1;

runLengths[1] = 4;

runLengths[3] = 3;

/* style for lowercase letters is 40-pt, no run controls */

regularStyle = NewLayoutStyle((char *) "\pTimes Roman",

ff(40), 0, nil, nil, 0, nil);

/* set up hanging-baseline run controls for drop-cap style */

InitializeRunControls(&runControls);

runControls.baselineType = gxHangingBaseline;

C H A P T E R 9

Layout Line Control

Using Line Control and Line Measurement With Layout Shapes 9-29

/* style for drop caps is 70-pt, with run controls */

dropCapsStyle = NewLayoutStyle((char *) "\pTimes Roman",

ff(70), 0, &runControls, nil, 0, nil);

/*

Set up layout options structure for the layout shape; get

baseline distances from Roman, based on lowercase style.

*/

InitializeLayoutOptions(&layoutOptions);

GXGetStyleBaselineDeltas(regularStyle, gxRomanBaseline,

lineBaselineRecord.deltas);

layoutOptions.baselineRec = &lineBaselineRecord;

/* assign styles to each style run */

styleArray[0] = styleArray[2] = dropCapsStyle;

styleArray[1] = styleArray[3] = regularStyle;

/* create and draw a layout with the above text and styles */

layout = GXNewLayout(1, &len, (void *) &myString,

4, runLengths, styleArray,

0, nil, nil,

&layoutOptions, &myPoint);

GXDrawShape(layout);

/* now modify the size of the capitals, but nothing else */

GXSetStyleTextSize(dropCapsStyle, ff(110));

/*move the shape and draw again; the drop caps still line up */

GXMoveShape(layout, 0, ff(100));

GXDrawShape(layout);

.

.

.

}

Figure 9-16 shows the results of executing the function in Listing 9-1.

C H A P T E R 9

Layout Line Control

9-30 Using Line Control and Line Measurement With Layout Shapes

Figure 9-16 Drop capitals created by aligning baselines

The GXGetStyleBaselineDeltas function is described on page 9-66.

Drawing Vertical Text
Because there are no vertical baselines and no vertical line direction in QuickDraw GX,

you create a vertical line by using the layout shape’s transform object to rotate a hori-

zontal line before drawing it.

To draw a layout shape as a line of vertical text, follow these steps:

1. Set the gxVerticalText text attribute for all style runs of the layout shape. Setting
this text attribute has the effect of rotating each individual glyph by 90 degrees
counterclockwise.

2. Lay out and measure the line as if it were horizontal. Caret positions, hit-testing, and
measurements of line span and line length will be meaningful if you consider the line
as horizontal, with rotated glyphs.

3. Call the GXRotateShape function or GXRotateTransform function to rotate
the line 90 degrees clockwise when it is drawn. Because, for layout shapes, the
gxMapTransformShape attribute is set, calling GXRotateShape does not affect
the geometry of the layout itself; it changes only the mapping of the layout shape’s
transform object.

4. Draw the shape.

Listing 9-2 is a sample program that creates a layout shape several times, drawing it with

and without the gxVerticalText text attribute set and using several baseline types.

C H A P T E R 9

Layout Line Control

Using Line Control and Line Measurement With Layout Shapes 9-31

Listing 9-2 Creating and drawing vertical text

char *myString = “movemove”

InitializeRunControls(&controls);

controls.baselineType = gxRomanBaseline;

myStyles[0] = NewLayoutStyle((char *) "\pHoefler Text", ff(48),

0,

nil, nil, 0, nil);

myStyles[1] = NewLayoutStyle((char *) "\pHoefler Text", ff(48),

 gxVerticalText, &controls, nil, 0, nil);

GXGetStyleBaselineDeltas(myStyles[0], gxRomanBaseline,

 lbr.deltas);

options.baselineRec = &lbr;

myLens[0] = myLens[1] = 4;

layout = GXNewLayout(

1, &len, (void *) &myString,

2, myLens, myStyles,

0, nil, nil,

&options, &myPoint);

GXDrawShape(layout);

controls.baselineType = gxIdeographicCenterBaseline;

GXSetStyleRunControls(myStyles[1], &controls);

GXMoveShape(layout, 0, ff(80));

GXDrawShape(layout);

controls.baselineType = gxHangingBaseline;

GXSetStyleRunControls(myStyles[1], &controls);

GXMoveShape(layout, 0, ff(80));

GXDrawShape(layout);

For the results of Listing 9-2, see Figure 9-5 on page 9-9.

C H A P T E R 9

Layout Line Control

9-32 Using Line Control and Line Measurement With Layout Shapes

Some Asian languages use rotated Roman glyphs in the vertical text lines, as shown in

Figure 9-17. To create such an effect, follow the above steps but put the Roman text in a

separate style run and do not set the gxVerticalText text attribute for that style run.

When you rotate and draw the shape, the Roman glyphs will then be rotated 90 degrees

clockwise, as desired.

Figure 9-17 Rotated Roman glyphs in vertical text

Determining Line Lengths
You can determine the length of a line in a layout shape in at least three ways:

■ Call the GXGetShapeBounds function to determine the standard bounding rectangle
of the layout shape. This rectangle exactly encloses just the “inked” parts (the black
pixels) of the displayed glyphs. The width of the rectangle is the length of the line,
including any hanging punctuation and accounting for shifts due to optical alignment.

■ Call the GXGetShapeTypographicBounds function to determine the typographic
bounding rectangle of the layout shape. This rectangle spans the layout shape from
the lowest descent line to the highest ascent line, regardless of whether any glyphs
extend to those lines. The width of the rectangle extends from the origin of the first
glyph through the advance width of the last glyph.

■ Call the GXGetLayoutRangeWidth function, passing it a range that is the entire
layout shape. The width it returns is equivalent to the width of the typographic
bounds: it extends from the origin of the first glyph through the advance width of the
last glyph.

The GXGetLayoutRangeWidth function is described on page 9-71. The

GXGetShapeBounds function is described in the “Geometric Operations” chapter in

Inside Macintosh: QuickDraw GX Graphics. The GXGetShapeTypographicBounds

function is described in the chapter “Typographic Shapes” in this book.

C H A P T E R 9

Layout Line Control

Using Line Control and Line Measurement With Layout Shapes 9-33

Determining Line Spans
For drawing carets and highlighting areas, and for hit-testing, QuickDraw GX automati-

cally calculates the proper line span (distance from the lowest descender to the highest

ascender on the line) for a layout shape. Line span affects the height of caret shapes and

highlight areas that QuickDraw GX calculates and returns to you, through functions

such as GXGetLayoutCaret and GXGetLayoutHighlight. It also affects the area

sensitive to hits for purposes of hit-testing.

QuickDraw GX provides the GXGetLayoutSpan function so that you can determine

how far apart to space the text lines your application draws. (Line span plus any leading,

or extra gap, that you add equals the line-to-line distance in multiline text.) This function

returns the correct span for any line that is a layout shape. QuickDraw GX calculates a

line height for the given line according to all the information it has, including all text

sizes, manual and automatic position shifts, multiple baselines, and so on.

You can also use the functions GXGetShapeBounds and

GXGetShapeTypographicBounds to determine line span. The height of the rectangle

returned by GXGetShapeTypographicBounds is equivalent to the values returned by

GXGetLayoutSpan; the value returned by GXGetShapeBounds may be smaller, since

the bounding rectangle encloses only the black pixels of the displayed glyphs.

If your application wishes to set the line span manually and thus affect these results, use

the GXSetLayoutSpan. Note that if you alter the line span with GXSetLayoutSpan,

GXGetLayoutSpan returns the line span that you have set. If you need to recover the

line span as originally calculated by QuickDraw GX, you can call GXSetLayoutSpan

with a line span of 0.

For an example of the use of the GXGetLayoutSpan function for positioning line starts,

see Listing 9-3 on page 9-34.

The GXGetLayoutSpan function is described on page 9-67. The GXSetLayoutSpan

function is described on page 9-68. The GXGetShapeBounds function is described in

the chapter “Geometric Operations” in Inside Macintosh: QuickDraw GX Graphics. The

GXGetShapeTypographicBounds function is described in the chapter “Typographic

Shapes” in this book.

Breaking Lines
QuickDraw GX text formatting is line-based, not paragraph-based. To lay out multiple

lines of text, you need to determine for each line where to break the text, and then create

a layout shape for that line.

The QuickDraw GX functions most used for line breaking are

GXGetLayoutBreakOffset, GXGetLayoutRangeWidth, and

GXNewLayoutFromRange. The GXGetLayoutBreakOffset function tells you

at which point you can break a line if you want it to fit within a given text length.

The GXGetLayoutRangeWidth function gives you the length of a range of text

within a layout shape. GXNewLayoutFromRange function creates a new layout

shape from a range of text within an existing layout shape.

C H A P T E R 9

Layout Line Control

9-34 Using Line Control and Line Measurement With Layout Shapes

The typical procedure to follow for each line to be laid out is this:

1. Call GXGetLayoutBreakOffset, starting with the offset in the source text that starts
the line, to see how much will fit between the margins you specify.

2. Use the results of GXGetLayoutBreakOffset to determine the exact point in the
source text at which to break the line. You can use the results of the function directly,
or you can do additional forward or backward processing in the text to determine the
most meaningful break point. See, for example “Using Macintosh WorldScript for
Line Breaking” on page 9-37.

3. Optionally, check on your results by calling GXGetLayoutRangeWidth to compare
the display width of the new range of text with you margins. You can account for
extra characters such as hyphens when you make this calculation.

4. Call GXNewLayoutFromRange to create a new layout shape that represents the line.
The new shape can have extra display glyphs, such as hyphens, that are not part of
the source text.

Listing 9-3 is a library function (NewStyledParagraph) that creates a set of individual

layout shapes, each representing a single line, from a larger layout shape that represents

an entire paragraph. It calls GXGetLayoutBreakOffset to get initial line breaks and

then does some simple processing on the results to determine the actual breaks. Next it

calls GXNewLayoutFromRange to create a new layout shape for each line. When drawing

the lines, it calls GXGetLayoutSpan to determine how far apart to separate the lines.

(Leading between the lines is specified by the extraLineGap variable.)

Listing 9-3 uses several other library-defined functions for moving back and forth in the

source text, such as GetTextPiecePtr, GetPreviousOffset, and GetNextOffset.

It also constructs a library-defined data structure called a ParagraphRecord that

holds information about the paragraph, such as the number of lines and a reference

to each layout shape making up the paragraph. Some variables used here, such as

lineStartsCount, are global to this function.

Listing 9-3 Breaking a Roman layout shape into individual lines of a paragraph

ParagraphRecordHandle NewStyledParagraph(

long textRunCount,

const void *text[],

const short textRunLengths[],

long styleRunCount,

const gxStyle styles[],

const short styleRunLengths[],

long levelRunCount,

const short levels[],

const short levelRunLengths[],

long totalByteCount,

const gxLayoutOptions *layoutOptions,

Fixed lineHeight,

const gxPoint *firstOrigin)

C H A P T E R 9

Layout Line Control

Using Line Control and Line Measurement With Layout Shapes 9-35

{
/* define & initialize variables */

boolean startIsStaked;
gxByteOffset lineStarts[lineStartsCount],

newLineStart, nextStake,
nls2, priorStake, thisLineStart;

char *pChar, *pSav;
Fixed currLineDelta, lineAscent, lineDescent;

gxLayoutOptions specialOptions;
ParagraphRecordHandle paraHandle;

gxShape bigLayout, thisLine;
short i, level = 0, nextLineIndex;

/* set up for left-aligned, unjustified text */

specialOptions = *layoutOptions;
specialOptions.just = specialOptions.flush = 0;

specialOptions.width = 0;

/* first, create a “big” layout for the whole paragraph */
bigLayout = GXNewLayout(textRunCount, textRunLengths, text,

styleRunCount, styleRunLengths, styles,
levelRunCount, levelRunLengths, levels,

&specialOptions, firstOrigin);
/*

Next, compute all the line breaks for the paragraph
and store their offsets in a temporary array.

*/
thisLineStart = 0;

nextLineIndex = 0;
while (thisLineStart < totalByteCount &&

nextLineIndex < lineStartsCount - 1)
{

lineStarts[nextLineIndex++] = thisLineStart;

/*
There is no hyphenation array, so the break is marked at

the last glyph that fits on the line, regardless of
its position in a word.

*/
newLineStart = GXGetLayoutBreakOffset(bigLayout,

thisLineStart,
layoutOptions->width,

0, nil, &startIsStaked,
&priorStake, &nextStake);

if (newLineStart == totalByteCount) break;

C H A P T E R 9

Layout Line Control

9-36 Using Line Control and Line Measurement With Layout Shapes

/*
Backtrack to first prior space before end of line,

to rebreak line at word boundary. Your application
should substitute a more sophisticated line breaking

algorithm here.
*/

nls2 = newLineStart;
pSav = pChar = GetTextPiecePtr(text, textRunLengths,

GetPreviousOffset(bigLayout, newLineStart));
while (nls2 >= lineStarts[nextLineIndex-1] && *pChar != ' ')

pChar = GetTextPiecePtr(text, textRunLengths,
nls2 = GetPreviousOffset(bigLayout, nls2));

/* if we’ve backed all the way up to the beginning of the

line, use the line break originally returned from
GXGetLayoutBreakOffset. Otherwise, take the new offset.

*/
if (nls2 <= lineStarts[nextLineIndex-1])

thisLineStart = newLineStart;
else

{
if (pSav != pChar) nls2 = GetNextOffset(bigLayout, nls2);

thisLineStart = nls2;
}

}

/* put the last line-start entry beyond the end of the text */
lineStarts[nextLineIndex] = (short) totalByteCount;

/* now allocate space for the ParagraphRecord */

paraHandle = (ParagraphRecordHandle) NewHandle(
(Size) (sizeof(ParagraphRecord) +

nextLineIndex * sizeof(gxShape)));
(*paraHandle)->nLayouts = nextLineIndex; /* No. of lines */

/*

Now create layout shapes for each of the lines
and put them in the ParagraphRecord.

*/
specialOptions = *layoutOptions;

currLineDelta = 0;

C H A P T E R 9

Layout Line Control

Using Line Control and Line Measurement With Layout Shapes 9-37

for (i = 0; i < nextLineIndex; i++)
{

/* don't justify the last line */
if (i == nextLineIndex - 1) specialOptions.just = 0;

/* create the layout for this line */

thisLine = GXNewLayoutFromRange(bigLayout, lineStarts[i],
lineStarts[i+1], &specialOptions, nil);

/* move the line downward by the proper amount */

if (currLineDelta) GXMoveShape(thisLine, 0, currLineDelta);

/* add this line to the paragraph record */
(*paraHandle)->layouts[i] = thisLine;

/* calculate amount by which to move next line down */

if (lineHeight) currLineDelta += lineHeight;
else

{
GXGetLayoutSpan(thisLine, &lineAscent, &lineDescent);

currLineDelta += lineAscent + lineDescent + extraLineGap;
}

}
(*paraHandle)->totalHeight = currLineDelta;

GXDisposeShape(bigLayout); /* get rid of the big layout */

return paraHandle; /* use the paragraph record */
}

The GXGetLayoutBreakOffset function is described on page 9-69. The

GXGetLayoutRangeWidth function is described on page 9-71.

The GXNewLayoutFromRange function is described on page 9-72.

Using Macintosh WorldScript for Line Breaking

QuickDraw GX and the fonts it uses have no information on how to break words

according to the rules of any language. Your application must make the decision on

where to end a line meaningfully.

However, Macintosh system software includes a group of managers, extensions, and

resources known collectively as WorldScript. WorldScript was created to allow multi-

language text processing and includes the Script Manager, Text Utilities, Text Services

Manager, international resources, and other components. The typographic capabilities of

QuickDraw GX replace much of the functionality of WorldScript. Nevertheless, you may

still find parts of WorldScript useful to help you with line breaking.

C H A P T E R 9

Layout Line Control

9-38 Using Line Control and Line Measurement With Layout Shapes

The key WorldScript components for line breaking are the Text Utilities

FindWordBreaks procedure and the string-manipulation resource (type 'itl2'),

one of the WorldScript international resources. Every script system supplied with

Macintosh computers includes a string-manipulation resource; that resource contains

line-break information, specific to that script system, that the FindWordBreaks

procedure uses when breaking lines.

To use WorldScript along with QuickDraw GX for line breaking, you can use a procedure

like the following:

1. Use GXGetLayoutBreakOffset to determine the last glyph of the layout shape that
fits into the available width.

2. Pass the edge offset equivalent to the trailing edge of that glyph to the
FindWordBreaks procedure, passing also the script code that defines the
script system to which the text in that style run belongs.

3. In response, FindWordBreaks returns the edge offsets of the nearest word
boundaries before and after the offset you pass in, according to information in the
given script’s string-manipulation resource. Normally, you would use the “before”
offset to define the end of your line, although the “after” offset is also possible,
given the justification model’s handling of the shrink case.

Another possible approach is to analyze the last style run in your line before calling

GXGetLayoutBreakOffset. You could use FindWordBreaks repeatedly to build a

hyphenation array and then pass that array to GXGetLayoutBreakOffset; in that

case, GXGetLayoutBreakOffset will return an acceptable break point in the language

of that text.

IMPORTANT

Script codes for WorldScript are different from the script codes used in
the encoding property of QuickDraw GX style objects. For example, in
WorldScript, 0 is Roman script and 1 is Japanese; for QuickDraw GX, 0
is no script, 1 is Roman, and 2 is Japanese. Do not use any routines from
WorldScript that presuppose a GrafPort because QuickDraw GX does
not directly use GrafPorts. ▲

The FindWordBreaks procedure is described in the chapter “Text Utilities” in

Inside Macintosh: Text. The string-manipulation resource is described in the appendix

“International Resources” in Inside Macintosh: Text.

Manipulating Nested Direction Levels
To force a dominant direction on a line of text or on a phrase within a line, you can

assign it a direction level. You define a run for it and assign that run a level in the levels

array of the layout shape geometry.

■ For lines with uniform left-to-right text, or left-to-right text with isolated embedded
phrases of right-to-left text, you can ignore the levels array completely. Alternatively,
you can define one run for the entire layout and assign it any even value (0 is most
efficient).

C H A P T E R 9

Layout Line Control

Using Line Control and Line Measurement With Layout Shapes 9-39

■ For lines with uniform right-to-left text, or right-to-left text with isolated embedded
phrases of left-to-right text, you can define one run for the entire layout and assign it
any odd value (1 is most efficient).

■ For lines with complex (mixed-direction) phrases of one dominant direction embedded
in a line of opposite dominant direction, you need to define a direction run and level for
each phrase whose dominant direction must be preserved. An even level causes the
dominant direction for that phrase to be left to right; an odd level causes the dominant
direction to be right to left. The dominant direction of the line as a whole is defined by
the lowest level (odd or even) on the line.

QuickDraw GX permits up to 15 nested direction levels, although a line that uses more

than 2 or 3 is quite rare.

Listing 9-4 is a partial listing showing a simple, static example that defines a levels array

and assigns levels to it to preserve the proper ordering of a line of mixed-direction text.

The line combines Arabic and English and contains five phrases. The line is drawn at the

location posn.

Listing 9-4 Defining nested direction levels for a line of text

gxShape layout;

gxStyle timesStyle, helveticaStyle, baghdadStyle;

gxStyle textStyles[5];

char *textRuns[5];

short textLengths[5], totalLength;

static short levelRunLengths[3], levels[3];

/* define the 5 separate text strings for the line */

char *text1 = "He said “";

/*

The following is "Macintosh" in Arabic:

meem, alif, kaf, noon, tah, wau, shin

*/

static char text2[] =

{0xE5, 0xC7, 0xE3, 0xE6, 0xCA, 0xE8, 0xD4, 0};

char *text3 = " (Macintosh) ";

/*

The following is "Arabic" in Arabic:

alif, lam, ein, reh, beh, yeh

*/

static char text4[] = {0xC7, 0xE4, 0xD9, 0xD1, 0xC8, 0xEA, 0};

char *text5 = "” to me.";

.

.

.

C H A P T E R 9

Layout Line Control

9-40 Using Line Control and Line Measurement With Layout Shapes

/* Initialize the text runs to pass into GXNewLayout */

textRuns[0] = text1;

textRuns[1] = text2;

textRuns[2] = text3;

textRuns[3] = text4;

textRuns[4] = text5;

textLengths[0] = strlen (text1);

textLengths[1] = strlen (text2);

textLengths[2] = strlen (text3);

textLengths[3] = strlen (text4);

textLengths[4] = strlen (text5);

/*

Initialize the direction levels arrays: here’s where the

lengths of the nested direction levels are defined.

The first direction run is the first phrase; the second

direction run is the second 3 phrases; and the third

run is the last phrase.

*/

levelRunLengths[0] = textLengths[0];

levelRunLengths[1] = textLengths[1] + textLengths[2] +

textLengths[3];

levelRunLengths[2] = textLengths[4];

totalLength = levelRunLengths[0] + levelRunLengths[1] +

levelRunLengths[2];

/*

Define the levels for each of the direction runs. The

desired dominant direction is left to right; and so and the

first and last runs have a level of 0; the central phrase

 must remain right to left, so it has a level of 1.

*/

levels[0] = 0;

levels[1] = 1;

levels[2] = 0;

/* define some styles; first is 36 pt. Helvetica */

helveticaStyle = NewLayoutStyle((char *) "\pHelvetica",

ff(36), 0, nil,

nil, 0, nil);

C H A P T E R 9

Layout Line Control

Using Line Control and Line Measurement With Layout Shapes 9-41

/* second is 36 pt. Baghdad Plain (Arabic) */

baghdadStyle = NewLayoutStyle((char *) "\pBaghdad Plain",

ff(36), 0, nil,

 nil, 0, nil);

/* third is 36 pt. Times */

timesStyle = NewLayoutStyle((char *) "\pTimes Roman",

ff(36), 0, nil,

nil, 0, nil);

/* assign the styles to the style runs */

textStyles[0] = helveticaStyle;

textStyles[1] = baghdadStyle;

textStyles[2] = timesStyle;

textStyles[3] = baghdadStyle;

textStyles[4] = helveticaStyle;

/* now build and draw the layout */

layout = GXNewLayout(5, textLengths, (void *)textRuns,

5, textLengths, textStyles,

3, levelRunLengths, levels,

nil, &posn);

GXDrawShape (layout);

.

.

.

Figure 9-18 shows the results of executing the code in Listing 9-4. Compare this figure

and the levels defined in Listing 9-4 with the phrases and levels shown in the section

“Forced Reordering With Nested Direction Levels” beginning on page 9-19.

Figure 9-18 A text line with nested direction levels

The levels array is described in the chapter “Layout Shapes” in this book.

C H A P T E R 9

Layout Line Control

9-42 Using Line Control and Line Measurement With Layout Shapes

Overriding the Glyph Direction in a Style Run

Listing 9-5 shows an example of overriding the glyph direction in a style run, to make

the individual glyphs in a sequence appear in reverse order. This changing of glyph

direction is useful only for special effects; it is entirely different from imposing a

dominant direction on a text run, which you do by assigning a direction level to it.

The function in Listing 9-5 creates a layout shape named layout; the shape uses

a style object named myStyle. The function uses the library function

InitializeRunControls to initialize a run controls structure, and the library

function NewLayoutStyle to create and initialize a style object. The function initially

draws the shape at the point myPoint. The length of the string composing the layout

shape is len.

Listing 9-5 Overriding the glyph direction in a style run

{

char *myString = "QuickDraw GX";

gxRunControls runControls;

.

.

.

InitializeRunControls(&runControls);

/* create the style object and the layout shape */

myStyle = NewLayoutStyle((char *) "\pTimes Roman", ff(24),

0, nil, nil, 0, nil);

layout = GXNewLayout(1, &len, (void *) &myString,

1, &len, &myStyle,

0, nil, nil,

nil, &myPoint);

GXDrawShape(layout);

/* override the glyph direction in the run controls flags */

runControls.flags = gxImposeRightToLeft;

GXSetStyleRunControls(myStyle, &runControls);

GXMoveShape(layout, 0, ff(48));

GXDrawShape(layout);

.

.

.

}

C H A P T E R 9

Layout Line Control

Using Line Control and Line Measurement With Layout Shapes 9-43

Figure 9-19 shows the results of executing the code in Listing 9-5. Note that in this case

the dominant direction for the line is still left-to-right, but the individual glyph direc-

tions are now all right to left.

Figure 9-19 Results of overriding glyph direction

Justifying Lines by Stretching and Shrinking
Listing 9-6 shows a simple example of justifying lines of different lengths to a single text

width. The example first draws three unjustified lines. It then defines the text width to be

equal to the width of the middle-length line, and specifies full justification for all lines.

QuickDraw GX stretches or compresses the lines to fit.

The function in Listing 9-6 uses a single layout shape (layout) and a single style

object (myStyle) for all three lines. It uses the layout options structure

layoutOptions. It draws the first line at the location myPoint. It uses the function

GXGetShapeTypographicBounds to determine the (unjustified) width of the

middle text line.

Listing 9-6 A simple justification example

{

char *myString3 = "A shorter line of text";

char *myString = "A medium-length line of text";

char *myString2 = "A slightly lengthier line of text";

gxLine myLine;

gxPoint advance, myPoint;

short len;

gxRectangle bounds;

.

.

.

/* draw left margin */

myLine.first.x = myLine.last.x = myPoint.x;

myLine.first.y = ff(0);

myLine.last.y = ff(600);

GXDrawLine(&myLine);

C H A P T E R 9

Layout Line Control

9-44 Using Line Control and Line Measurement With Layout Shapes

/* set up and draw the short line, unjustified */

myStyle = NewLayoutStyle((char *) "\pSkia Regular", ff(24),

0, nil, nil, 0, nil);

layoutOptions.just = 0;

len = strlen(myString3);

layout = GXNewLayout(1, &len, (void *) &myString3,

1, &len, &myStyle,

0, nil, nil,

&layoutOptions, &myPoint);

GXDrawShape(layout);

/* draw middle line, unjustified */

len = strlen(myString);

GXSetLayout(layout, 1, &len, (void *) &myString, 0,

nil, nil, 0, nil, nil, nil, nil);

GXMoveShape(layout, 0, ff(36));

GXDrawShape(layout);

/* draw right margin at normal width of middle line */

GXGetShapeTypographicBounds(layout, &bounds);

myLine.first.x = myLine.last.x =

myPoint.x + bounds.right - bounds. left;

GXDrawLine(&myLine);

/* draw third line, unjustified */

len = strlen(myString2);

GXSetLayout(layout, 1, &len, (void *) &myString2, 0,

nil, nil, 0, nil, nil, nil, nil);

GXMoveShape(layout, 0, ff(36));

GXDrawShape(layout);

/* set width and justification of layout options structure */

layoutOptions.just = fract1;

layoutOptions.width = bounds.right - bounds. left;

/* draw all three lines again, fully justified this time */

len = strlen(myString3);

GXSetLayout(layout, 1, &len, (void *) &myString3, 0,

nil, nil, 0, nil, nil, &layoutOptions, nil);

GXMoveShape(layout, 0, ff(60));

GXDrawShape(layout);

C H A P T E R 9

Layout Line Control

Using Line Control and Line Measurement With Layout Shapes 9-45

len = strlen(myString);

GXSetLayout(layout, 1, &len, (void *) &myString, 0,

nil, nil, 0, nil, nil, &layoutOptions, nil);

GXMoveShape(layout, 0, ff(36));

GXDrawShape(layout);

len = strlen(myString2);

GXSetLayout(layout, 1, &len, (void *) &myString2, 0,

nil, nil, 0, nil, nil, &layoutOptions, nil);

GXMoveShape(layout, 0, ff(36));

GXDrawShape(layout);

.

.

.

}

Figure 9-20 shows the results of executing the code in Listing 9-6. The upper three lines are

not justified; the lower three lines are fully justified, to a width that matches the unjusti-

fied length of the second line. In the lower three lines, the third line is compressed, and the

first line is stretched, to accommodate the justification gap. The justified text in the lower

three lines does not include the periods because a period is considered a hanging glyph in

this font.

Figure 9-20 Unjustified (upper) and justified (lower) lines of different lengths

C H A P T E R 9

Layout Line Control

9-46 Using Line Control and Line Measurement With Layout Shapes

Displaying Partial Justification
Justification in QuickDraw GX is continuous, rather than just “on” or “off.” You specify

the amount of justification in the just field of the layout options structure in the layout

shape geometry. (Justification amounts between 0 and 100 percent are sometimes called

ragged justification.)

This section illustrates several different kinds of justification. It shows how they function

differently and how the appearance changes as justification increases from none to full.

In each case the application controls only the amount of justification that is applied. Font

settings control the kind of justification that is applied, and this justification happens

automatically.

Justification With White Space

Listing 9-7 is a partial listing of a sample function that illustrates how continuous justifi-

cation works in Roman text. It draws the same string of left-aligned text five times: once

unjustified, once 25 percent justified, once 50 percent justified, once 75 percent justified

and once fully justified. In this case, justification is achieved through addition of both

intercharacter and interword white space.

Listing 9-7 uses the library function NewLayoutStyle to create and initialize a style

object. It creates a layout shape named layout and a style object named myStyle.

It draws the first line at the location myPoint. The text string in the shape has the

length len.

Listing 9-7 Displaying partial justification using white space

{

/* define and initialize variables */

char *myString = "A line of text";

gxLine myLine;

.

.

InitializeLayoutOptions(&layoutOptions);

layoutOptions.width = ff(500);

/* draw two vertical lines to mark the margins */

myLine.first.x = myLine.last.x = myPoint.x;

myLine.first.y = 0;

myLine.last.y = ff(1000);

GXDrawLine(&myLine);

myLine.first.x = myLine.last.x = myPoint.x +

layoutOptions.width;

GXDrawLine(&myLine);

C H A P T E R 9

Layout Line Control

Using Line Control and Line Measurement With Layout Shapes 9-47

/* create and draw the layout shape (unjustified) */

myStyle = NewLayoutStyle((char *) "\pTimes Roman", ff(36), 0,

nil, nil, 0, nil);

layout = GXNewLayout(1, &len, (void *) &myString,

1, &len, &myStyle,

0, nil, nil,

nil, &myPoint);

GXDrawShape(layout);

/* give the shape 25% justification and redraw */

layoutOptions.just = fract1 / 4;

GXSetLayout(layout, 0, nil, nil, 0, nil, nil, 0, nil, nil,

&layoutOptions, nil);

GXMoveShape(layout, 0, ff(54));

GXDrawShape(layout);

/* give the shape 50% justification and redraw */

layoutOptions.just = fract1 / 2;

GXSetLayout(layout, 0, nil, nil, 0, nil, nil, 0, nil, nil,

&layoutOptions, nil);

GXMoveShape(layout, 0, ff(54));

GXDrawShape(layout);

/* give the shape 75% justification and redraw */

layoutOptions.just = 3 * (fract1 / 4);

GXSetLayout(layout, 0, nil, nil, 0, nil, nil, 0, nil, nil,

&layoutOptions, nil);

GXMoveShape(layout, 0, ff(54));

GXDrawShape(layout);

/* give the shape 100% (full) justification and redraw */

layoutOptions.just = fract1;

GXSetLayout(layout, 0, nil, nil, 0, nil, nil, 0, nil, nil,

&layoutOptions, nil);

GXMoveShape(layout, 0, ff(54));

GXDrawShape(layout);

.

.

.

}

Figure 9-21 shows the results of executing the code in Listing 9-7.

C H A P T E R 9

Layout Line Control

9-48 Using Line Control and Line Measurement With Layout Shapes

Figure 9-21 Five degrees of justification with white space

Justification With Kashidas

Listing 9-8 shows a few fragments of a sample function that illustrates how continuous

justification works in Arabic text. The function draws the same string of right-aligned

text five times: once unjustified, once 25 percent justified, once 50 percent justified, once

75 percent justified and once fully justified. In this case, justification is achieved through

addition of kashidas to certain glyphs.

The code in Listing 9-8 is essentially identical to that in Listing 9-7 on page 9-46, with the

exception of the fragments listed here. No different coding is necessary to cause Arabic

justification than is used to cause justification with white space.

Listing 9-8 Displaying partial justification with kashidas

static char arabicString[8] = {'\xE5', '\xC7', '\xE3', '\xE6',

'\xCA', '\xE8', '\xD4', 0};

void ExtenderBars(WindowPtr sampleWindow)

{

/* define and initialize variables */

char *myString = (char *) &arabicString[0];

gxLine myLine;

.

.

.

C H A P T E R 9

Layout Line Control

Using Line Control and Line Measurement With Layout Shapes 9-49

layoutOptions.flush = fract1; /* right-aligned */

.

.

.

/* create the style for the layout shape */

myStyle = NewLayoutStyle((char *) "\pDiwan", ff(36),

noMetricsGridText, nil, nil, 0, nil);

.

.

.

/* create the shape and draw it at various justifications */

.

.

.

}

Figure 9-22 shows the results of executing the function in Listing 9-8.

Figure 9-22 Five degrees of justification with kashidas

C H A P T E R 9

Layout Line Control

9-50 Using Line Control and Line Measurement With Layout Shapes

Justification With Glyph Deformation

Figure 9-23 shows the results of executing a sample program similar to the others in this

section. The figure shows a line of text drawn with successively increasing justification

values. In this case, all justification is by intercharacter space; however, one glyph (the hy-

phen) acts differently from the other glyphs. Instead of any glyphs gaining white space

on either side, the hyphen gradually stretches to take up all of the justification gap.

The font in this example uses glyph stretching, which employs a text face mechanism to

widen the glyph. Other fonts may use glyph ductility, which is a font-variation mecha-

nism, to achieve similar results.

Figure 9-23 Glyph stretching during increasing justification

The application does not specifically request or control this behavior; it is controlled by

the particular font used in this sample. However, because glyph stretching and glyph

ductility are part of postcompensation action, you can prevent them from happening by

setting the gxNoSpecialJustification flag in the run controls structure of the style

run to which the text belongs. Postcompensation action is described on page 9-23; the

run controls structure is described in the chapter “Layout Styles” in this book.

Justification and Ligature Decomposition

Figure 9-24 shows the results of executing another sample program that draws a line of

text with successively increasing justification values. In this case, justification is by both

interword and intercharacter space. But in addition, once the added white space reaches

a certain threshold (equivalent to somewhere between 50 percent and 75 percent justifica-

C H A P T E R 9

Layout Line Control

Using Line Control and Line Measurement With Layout Shapes 9-51

tion in this example), the “fi” and “fl” ligatures decompose into their component glyphs,

which then spread apart to take up the justification gap. Note that the “fi” ligature

decomposes before the “fl” ligature in this font.

Figure 9-24 Ligature decomposition during increasing justification

The application does not specifically request this behavior; the font governs ligature

decomposition during justification. However, you can control it in two ways. First,

because ligature decomposition is part of postcompensation action, you can prevent

it from happening by setting the gxNoSpecialJustification flag in the run

controls structure of the style run to which the text belongs. Second, you can

modify the threshold at which it occurs by placing a value in the

decompositionAdjustmentFactor field of the run controls structure. For more

information on the decompositionAdjustmentFactor field, see the chapter

“Layout Styles” in this book.

Postcompensation action is described on page 9-23. The run controls structure is

described in the chapter “Layout Styles” in this book.

The just field of the layout options structure is described in the chapter “Layout Shapes”

in this book.

Changing the Behavior of Justification Priorities
A priority justification override structure contains the optional overrides for all

priority levels that might occur within a single style run. The deltas array contains

the width delta structures for each priority level. This is the primary input to the

GXSetStyleRunPriorityJustOverride function.

C H A P T E R 9

Layout Line Control

9-52 Using Line Control and Line Measurement With Layout Shapes

For example, assume the user wants to override the normal (font-specified) justification

behavior so that intercharacter spacing has the same priority as interword spacing when

extra space must be distributed in the line. The following code fragment would produce

the desired effect. Assume that there is a priority justification override structure called

overrides, that the style to be affected is called targetStyle, and that the grow

limits for glyphs with whitespace priority are whiteSpaceBeforeLimit and

whiteSpaceAfterLimit.

myFlags = gxOverrideLimits | gxOverridePriority |

gxWhiteSpacePriority;

overrides.deltas[gxInterCharPriority].growFlags = myFlags;

overrides.deltas[gxInterCharPriority].beforeGrowLimit =

whiteSpaceBeforeLimit;

overrides.deltas[gxInterCharPriority].afterGrowLimit =

whiteSpaceAfterLimit;

GXSetStyleRunPriorityJustOverride(targetStyle, &overrides);

As another example, Listing 9-9 is a partial listing of a sample function that demonstrates

how to override justification priorities. It draws four strings, three of which are fully

justified, as four separate layout shapes. (All four strings have nearly the same number

of characters.) Two of the shapes have the default (font-specified) justification behavior.

A third layout shape has a justification priority override that forces all justification

adjustments to be made to interword spaces. A fourth has a justification priority override

that forces all justification adjustments to be made to intercharacter spaces.

Listing 9-9 uses the run-controls structure controls, the layout-options structure

layoutOptions, and the priority-justification override structures allToSpace and

allToChar. It draws the text lines starting at the location posn.

Listing 9-9 Overriding justification priorities

.

.

.

gxShape layout1, layout2, layout3, layout4;

gxStyle style1, style2, style3, style4;

gxPriorityJustificationOverride allToSpace, allToChar;

char *text1 =

"Unjustified text with no extra space applied to the line.";

char *text2 =

"Fully justified with interword and intercharacter space.";

C H A P T E R 9

Layout Line Control

Using Line Control and Line Measurement With Layout Shapes 9-53

char *text3 =

"Fully justified with the use of interword space alone.";

char *text4 =

"Fully justified with use of intercharacter space alone.";

.

.

.

/*

Set up the “all to space” override. Set unlimited gap

absorption for the grow flag for white space priority, so

 that white space characters will absorb all justification

 gap.

*/

allToSpace.deltas[whiteSpacePriority].growFlags |=

(overrideUnlimited | unlimitedGapAbsorption);

/*

Set up the “all to intercharacter” override. Set unlimited

gap absorption for the grow flag for intercharacter

priority,and then change the priority itself to kashida

(the highest priority). This forces all justification

gap to be distributed among intercharacter space, and not to

 white space.

*/

allToChar.deltas[interCharPriority].growFlags |=

(overrideUnlimited | unlimitedGapAbsorption |

overridePriority | kashidaPriority);

/* set up the positioning for the lines of text */

layoutOptions.width = ff(500); /* extra width */

layoutOptions.just = fract1; /* fully justified */

/* build a style object and a layout shape for each line */

len = strlen(text1);

style1 = NewLayoutStyle((char *) "\pTimes Roman", ff(14),

0, nil, nil, 0, nil);

layout1 = GXNewLayout(1, &len, (void *) &text1,

1, &len, &style1,

0, nil, nil,

nil, &posn);

C H A P T E R 9

Layout Line Control

9-54 Using Line Control and Line Measurement With Layout Shapes

posn.y += ff(30);

len = strlen(text2);

style2 = NewLayoutStyle((char *) "\pTimes Roman", ff(14),

0, nil, nil, 0, nil);

GXSetStyleRunControls(style2, &controls);

layout2 = GXNewLayout(1, &len, (void *) &text2,

1, &len, &style2,

0, nil, nil,

&layoutOptions, &posn);

posn.y += ff(30);

len = strlen(text3);

style3 = NewLayoutStyle((char *) "\pTimes Roman", ff(14),

0, nil, nil, 0, nil);

GXSetStyleRunPriorityJustOverride(style3, &allToSpace);

layout3 = GXNewLayout(1, &len, (void *) &text3,

1, &len, &style3,

0, nil, nil,

&layoutOptions, &posn);

posn.y += ff(30);

style4 = NewLayoutStyle((char *) "\pTimes Roman", ff(14),

0, nil, nil, 0, nil);

GXSetStyleRunPriorityJustOverride(style4, &allToChar);

layout4 = GXNewLayout(1, &len, (void *) &text4,

1, &len, &style4,

0, nil, nil,

&layoutOptions, &posn);

GXDrawShape (layout1);

GXDrawShape (layout2);

GXDrawShape (layout3);

GXDrawShape (layout4);

.

.

.

Figure 9-25 shows the results of executing the code in Listing 9-9.

C H A P T E R 9

Layout Line Control

Using Line Control and Line Measurement With Layout Shapes 9-55

Figure 9-25 Results of justification priority overrides on intercharacter and interword spacing

The GXSetStyleRunPriorityJustOverride function is described on page 9-75.

To retrieve the priority justification overrides for a style run, use the

GXGetStyleRunPriorityJustOverride function, described on page 9-74. To

retrieve the priority justification overrides for the style object associated with a

particular shape, use the GXGetShapeRunPriorityJustOverride function,

described on page 9-76. To set the priority justification overrides of the style object

associated with a particular shape, use the GXSetShapeRunPriorityJustOverride

function, described on page 9-77.

Changing Justification Behavior of Individual Glyphs
You can use one or more glyph justification override structures to assign an overriding

justification priority and behavior to one or more specific glyphs in a style run. This

section shows a single example, one involving the whitespace glyph.

Listing 9-10 is a partial listing of a sample function that illustrates how to use a glyph

justification override to alter whitespace behavior. The function draws the same string of

text three times: once unjustified, and twice fully justified. The first justified line shows

the default (font-specified) justification behavior. In the second justified line, the justifica-

tion of the whitespace glyph is overridden to force it to take up all justification gap.

The function in Listing 9-10 on page 9-56 creates a layout shape named layout and

a style object named myStyle. It uses the layout-options structure layoutOptions.

It draws the first line at the location myPoint. The text string in the shape has the

length len.

C H A P T E R 9

Layout Line Control

9-56 Using Line Control and Line Measurement With Layout Shapes

Listing 9-10 Overriding justification behavior of the whitespace glyph

void UnlimitedGapAbsorption(WindowPtr sampleWindow)
{

char *myString = "all to space";
gxGlyphcode glyphcodes[12];

gxGlyphJustificationOverride glyphJustOverride;
gxLine myLine;

unsigned short firstGlyph, secondGlyph;
.

.

.

layoutOptions.width = ff(320);
layoutOptions.just = 0;

/* draw two vertical lines to mark the margins */

myLine.first.x = myLine.last.x = myPoint.x;
myLine.first.y = 0;

myLine.last.y = ff(500);
GXDrawLine(&myLine);

myLine.first.x = myLine.last.x = myPoint.x +

layoutOptions.width;
GXDrawLine(&myLine);

/* create and draw the layout shape (unjustified) */

myStyle = NewLayoutStyle((char *) "\pTimes Roman", ff(36), 0,
nil, nil, 0, nil);

layout = GXNewLayout(1, &len, (void *) &myString,
1, &len, &myStyle,

0, nil, nil,
&layoutOptions, &myPoint);

GXDrawShape(layout);

/* give the shape full justification but default behavior */
layoutOptions.just = fract1;

GXSetLayout(layout, 0, nil, nil, 0, nil, nil, 0, nil, nil,
&layoutOptions, nil);

GXMoveShape(layout, 0, ff(54));
GXDrawShape(layout);

/*

Now override the default justification behavior to give
the glyph following edge offset 3—-which in this sample

is a whitespace glyph--unlimited gap absorption. Its

C H A P T E R 9

Layout Line Control

Using Line Control and Line Measurement With Layout Shapes 9-57

justification priority is higher than non-space glyphs,
so whitespace characters will absorb all justification.

*/

/* get an array of all the glyph codes in the line */
GXGetLayoutGlyphs(layout, glyphcodes, nil, nil, nil,

nil, nil, nil);

/* find the index of the glyph following offset 3 */
GXGetOffsetGlyphs(layout, 3, true, nil,

&firstGlyph, &secondGlyph);

/* override the justification of the next glyph’s glyphcode */
glyphJustOverride.glyph = glyphcodes[firstGlyph - 1];

glyphJustOverride.override.growFlags = overrideUnlimited +
unlimitedGapAbsorption;

glyphJustOverride.override.shrinkFlags = 0;
GXSetStyleRunGlyphJustOverrides(myStyle, 1,

&glyphJustOverride);

/* finally, redraw the shape */
GXMoveShape(layout, 0, ff(54));

GXDrawShape(layout);
.

.

.

}

Figure 9-26 shows the results of executing the code in Listing 9-10.

Figure 9-26 Results of overriding justification behavior of the whitespace glyph

C H A P T E R 9

Layout Line Control

9-58 Layout Line Control Reference

Layout Line Control Reference

This section describes the constants, data types, and functions with which you can

manipulate the layout of text lines using layout shapes.

Constants and Data Types

QuickDraw GX uses the constants and structures described in this section to define

baselines and to override justification behavior.

Baseline Types

Text of different scripts most naturally aligns with different baselines. The

gxBaselineType enumeration specifies the preferred baseline to use for text of

a given font in a particular style run. It is specified in the BaselineType field of

the run controls structure of each style run in a layout shape.

The baseline types enumeration provides constants for all defined baseline types. Your

application need never fill in this value in the run controls structure; if you instead

specify gxNoOverrideBaseline, QuickDraw GX determines the proper baseline type

for the style run from information in the style’s font.

enum {

gxRomanBaseline = 0,

gxIdeographicCenterBaseline,

gxIdeographicLowBaseline,

gxHangingBaseline,

gxMathBaseline,

gxLastBaseline = 31,

gxNumberOfBaselineTypes = gxLastBaseline + 1,

gxNoOverrideBaseline = 255

};

typedef unsigned long gxBaselineType;

Constant descriptions

gxRomanBaseline
The baseline used by most Roman-script languages.

gxIdeographicCenterBaseline
The most common baseline used by Chinese, Japanese, and Korean
ideographic scripts, in which the ideographs are centered halfway
through the line height.

C H A P T E R 9

Layout Line Control

Layout Line Control Reference 9-59

gxIdeographicLowBaseline
A baseline used by Chinese, Japanese, and Korean scripts. Similar to
gxIdeographicCenterBaseline, but with the glyphs lowered.
This baseline is most commonly used to align Roman glyphs within
ideographic fonts to Roman glyphs in Roman fonts.

gxHangingBaseline
The baseline used by Devanagari and related scripts, in which the
bulk of most glyphs is below the baseline. This baseline type is also
used for drop capitals in Roman scripts.

gxMathBaseline The baseline used for setting mathematics. It is centered on symbols
such as the minus sign (at half the x-height).

gxLastBaseline No baseline value may exceed this value. Baseline values between
gxMathBaseline and gxLastBaseline are reserved.

gxNumberOfBaselineTypes
The total number of baseline types (= gxLastBaseline + 1).

gxNoOverrideBaseline
Instructs QuickDraw GX to use the standard baseline value from
the current font.

For other information about and examples of various types of baselines, see “Baseline

Types” on page 9-4.

Baseline Deltas Array

The baseline deltas array (type gxBaselineDeltas) is used in the baseline structure,

described next. Also, the GXGetStyleBaselineDeltas function, described on

page 9-66, returns values in a baseline deltas array. Baseline deltas is an array of distances

(in points) between the various baseline types and y = 0.

typedef Fixed gxBaselineDeltas[gxNumberOfBaselineTypes];

Baseline Structure

The baseline structure (type gxLineBaselineRecord) controls the positions of

baselines with respect to one another in a line of text.

typedef struct {

gxBaselineDeltas deltas;

} gxLineBaselineRecord;

Field descriptions

deltas The offsets (in points) from y = 0 to every other baseline type for
this line. If you are filling in this structure manually, you need to fill
in only those values that correspond to the set of baselines present
on the line.

You can fill in this array by calling the GXGetStyleBaselineDeltas function,

described on page 9-66.

C H A P T E R 9

Layout Line Control

9-60 Layout Line Control Reference

Justification Priorities

Glyphs in a font can be assigned justification priorities by the font designer. In general,

QuickDraw GX applies justification to glyphs on a line in order of glyph priority, from

high to low. Your application can override these priorities to change the order in which

glyphs participate in justification. These are the defined justification priorities (lower

numbers represent higher priorities):

enum {

gxKashidaPriority = 0,

gxWhiteSpacePriority = 1,

gxInterCharPriority = 2,

gxNullJustificationPriority = 3,

gxNumberOfJustificationPriorities

};

typedef unsigned char gxJustificationPriority;

Constant descriptions

gxKashidaPriority
The highest priority. Typically used for kashidas (extension bars) in
Arabic. Glyphs with this priority are extended or compressed before
all other glyphs in the line.

gxWhiteSpacePriority
Typically assigned to whitespace (interword) glyphs. Glyphs with
this priority are extended or compressed, usually by the addition
or removal of white space, after all glyphs on the line with priority
gxKashidaPriority have been extended or compressed to the
maximum amount permitted.

gxInterCharPriority
Assigned to all glyphs that do not have gxKashidaPriority or
gxWhiteSpacePriority. Glyphs with this priority are extended
or compressed, typically by the addition or removal of white space,
after all glyphs on the line with priority gxWhiteSpacePriority
have been extended or compressed to the maximum amount
permitted.

gxNullJustificationPriority
Available as a priority for glyphs that you want to participate in
justification last of all.

gxNumberOfJustificationPriorities
The number of defined justification priorities. You can use this
value for range-checking, size allocation, or loop control.

C H A P T E R 9

Layout Line Control

Layout Line Control Reference 9-61

Note
The justification priorities have names that describe the types of glyphs
that typically have those priorities, but you can assign any priority to
any glyph. The actual kind of justification that QuickDraw GX applies—
for example, kashida or whitespace—is defined for each glyph by the
font. The priority specifies only the order in which glyphs participate in
justification. ◆

You can override the justification priority for an individual glyph in a style run by using

the glyph justification override structure, described on page 9-64. You can override the

behavior of all glyphs of a given justification priority for an entire style run in by using

the priority justification override structure, described on page 9-63. In each case, you

specify the justification priority in the growFlags or shrinkFlags field of one or more

width delta structures. The width delta structure is described next.

Width Delta Structure

A width delta structure contains all the information needed to override the distribution

behavior of a glyph or set of glyphs during justification. It is used in both the priority

justification override structure and the glyph justification override structure. In each case

the width delta structure can specify both a change in priority and a change in

distribution behavior.

typedef struct {

Fixed beforeGrowLimit;

Fixed beforeShrinkLimit;

Fixed afterGrowLimit;

Fixed afterShrinkLimit;

gxJustificationFlags growFlags;

gxJustificationFlags shrinkFlags;

} gxWidthDeltaRecord;

Field descriptions

beforeGrowLimit
The number of points by which a 1-point glyph can grow on the left
side (top side for vertical text). A value of 0.2, for example, means
that a 24-point glyph can have by no more than 4.8 points of extra
space added on the left or top side.

beforeShrinkLimit
The number of points by which a 1-point glyph can shrink on the
left or top side. If specified, this value should be negative.

afterGrowLimit The number of points by which a 1-point glyph can grow on the
right side (bottom for vertical text).

afterShrinkLimit
The number of points by which a 1-point glyph can shrink on the
right or bottom side. If specified, this value should be negative.

C H A P T E R 9

Layout Line Control

9-62 Layout Line Control Reference

growFlags Justification flags, used to control the overriding behavior when
justification entails lengthening the line.

shrinkFlags Justification flags, used to control the overriding behavior when
justification entails shortening the line.

A justification flag in the growFlags field controls whether or not the

beforeGrowLimit and afterGrowLimit values are applied to this style

run. Likewise, a flag in the shrinkFlags field controls whether or not the

beforeShrinkLimit and afterShrinkLimit values are applied. Your

application can thus selectively override certain cases (such as the grow case

only), while retaining default behavior for other cases. Justification flags are

described next.

Justification Flags

The justification flags control which aspects of the normal, font-specified justification

behavior of a glyph or set of glyphs are to be overridden. Justification flags make up two

fields in the width delta structure, described in the previous section.

enum {
gxOverridePriority = 0x8000,

gxOverrideLimits = 0x4000,

gxOverrideUnlimited = 0x2000,

gxUnlimitedGapAbsorption = 0x1000,
gxJustificationPriorityMask = 0x000F

gxAllJustificationFlags = gxOverridePriority|

 gxOverrideLimits|

 gxOverrideUnlimited|
 gxUnlimitedGapAbsorption|

 gxJustificationPriorityMask

};

typedef unsigned short gxJustificationFlags;

Constant descriptions

gxOverridePriority
This bit specifies whether or not QuickDraw GX overrides justi-
fication priority. If the bit is set, the justification priority in the
gxJustificationPriorityMask part of the justification flags
is used for the glyphs this width delta structure applies to. If it is
cleared, QuickDraw GX uses the default justification priority for
those glyphs. If it is cleared, the priority mask bits must also be set
to 0. The use of this flag is to determine whether QuickDraw GX
should use or override the default priority.

gxOverrideLimits
This bit specifies whether or not QuickDraw GX overrides grow
and shrink limits. If the bit is set, the grow and shrink limits in

C H A P T E R 9

Layout Line Control

Layout Line Control Reference 9-63

the width delta structure are used for the glyphs this width delta
structure applies to. If it is cleared, QuickDraw GX uses the default
grow and shrink limits for those glyphs. If it is cleared, the limits
values must also be set to 0. The use of this flag is to determine
whether QuickDraw GX should use or override the default priority.

gxOverrideUnlimited
This bit specifies whether or not QuickDraw GX applies the
gxUnlimitedGapAbsorption justification flag. If the bit is set,
the state of the gxUnlimitedGapAbsorption flag is taken into
account. If it is cleared, the gxUnlimitedGapAbsorption flag
must also be set to 0. The use of this flag is to determine whether
QuickDraw GX should use or override the default priority.

gxUnlimitedGapAbsorption
If this flag is set, QuickDraw GX distributes all remaining justifica-
tion gap to the glyphs this width delta structure applies to, even if
that would violate the grow or shrink limits. If this field is not zero,
you must also set the gxOverrideUnlimited bit.

gxJustificationPriorityMask
Identifies the new justification priority for the glyphs this width
delta structure applies to. Only a single valid justification priority
value, as defined on page 9-60, is permitted. If this flag is set, the
gxOverrideLimits bit must also be set.

All bits in the justification flags value not accounted for by the above constants must be

set to 0.

You set the gxOverridePriority, gxOverrideLimits, or gxOverrideUnlimited

bits to choose which aspects of font-specified justification behavior to override. For

example, to change the priority of white space glyphs to be the same as intercharacter

priority, set growFlags to have the gxOverridePriority bit and

gxJustificationPriorityMask to gxInterCharPriority. If you clear the

gxOverridePriority bit, the value in the gxJustificationPriorityMask flag

is ignored, and the font-specified justification priority applies. Note that you must

also clear the gxJustificationPriorityMask bits.

As another example, to change the grow limits of the glyphs to which a width delta

structure applies, set the gxOverrideLimits bit in the justification flags of the
growFlags field and specify the new grow limits in the beforeGrowLimit and

afterGrowLimit fields.

Priority Justification Override Structure

A priority justification override structure specifies overriding justification behavior for

all of the glyphs of a given style run. It contains an array of width delta structures, one

for each justification priority.

typedef struct {

gxWidthDeltaRecord deltas[gxNumberOfJustificationPriorities];

} gxPriorityJustificationOverride;

C H A P T E R 9

Layout Line Control

9-64 Layout Line Control Reference

Field descriptions

deltas The array of width delta structures. There is one width delta
structure for each priority level, in index order.

The width delta structure is described on page 9-61. This structure is the primary input

to the GXSetStyleRunPriorityJustOverride function.

Each width delta structure in the priority justification override structure specifies over-

rides for all glyphs of a given justification priority. Thus, for each priority, you can

■ Change the priority: assign all glyphs of one priority to another priority.

■ Change the behavior: leave the priority the same, but change the priority behavior of
all glyphs of that priority.

■ Change both: assign all glyphs of one priority to another priority, and change their
justification behavior from the defaults of either priority.

Note that if you change one priority to another and change the default behavior of all

glyphs of that priority, the behavior of other glyphs already having that priority is not

changed. For example, if you change all glyphs with a priority of

gxInterCharPriority to gxWhiteSpacePriority and give them special behavior,

glyphs that already have a priority of gxWhiteSpacePriority retain their default

behavior. Only gxInterCharPriority glyphs are overridden, and so the overriding

behavior applies to only those glyphs.

Unlimited gap absorption is a special case in that it applies across an entire line instead

of just to a single style run. If both the gxOverrideUnlimited bit and the

gxUnlimitedGapAbsorption flag are set in any width delta structure for the glyph

justification override structure of any style run on a line, QuickDraw GX distributes the

current justification gap among all instances of that glyph in all style runs on the line

Glyph Justification Override Structure

The glyph justification override structure assigns an overriding justification priority

and behavior to a specific glyph in a style run. It contains a glyph code and a width

delta structure.

typedef struct {

gxGlyphcode glyph;

gxWidthDeltaRecord override;

} gxGlyphJustificationOverride;

Field descriptions

glyph The glyph code that specifies the glyph in the font.

override The width delta structure to use for that glyph.

C H A P T E R 9

Layout Line Control

Layout Line Control Reference 9-65

The width delta structure is described on page 9-61. An array of glyph justification

override structures is the primary input to the GXSetStyleRunGlyphJustOverrides

function, described on page 9-79.

The width delta structure in the glyph justification override structure specifies overrides

for all instances of a single glyph (specified by glyph code). Thus, for that glyph, you can

■ change the glyph’s justification priority

■ change the glyph’s justification behavior: leave its priority the same, but make its
behavior different from that of other glyphs of the same priority

■ change both: give it a new priority, and change its justification behavior from the
defaults of either priority

Changing a glyph’s priority and giving it non-default behavior has no effect on the

behavior of other glyphs of either the old or new priority.

Unlimited gap absorption is a special case in that it applies across an entire line instead

of just to a single style run. If both the gxOverrideUnlimited bit and the

gxUnlimitedGapAbsorption flag are set in any width delta structure for the glyph

justification override structure of any style run on a line, QuickDraw GX distributes the

current justification gap among all instances of that glyph in all style runs on the line.

Functions

This section describes the functions with which you can manipulate characteristics of

lines of text in layout shapes. You can use these functions to

■ manipulate baselines

■ measure line span

■ break lines

■ override the behaviors of justification priorities

■ override the justification behaviors of individual glyphs

C H A P T E R 9

Layout Line Control

9-66 Layout Line Control Reference

Manipulating Baselines

The function described in this section allows you to retrieve the distances among

baselines for a given line of text.

GXGetStyleBaselineDeltas

You can use the GXGetStyleBaselineDeltas function to retrieve the distances from

y = 0 to each of the other baseline types.

void GXGetStyleBaselineDeltas(gxStyle baseStyle,

gxBaselineType baseType,

gxBaselineDeltas returnedDeltas);

baseStyle A reference to the style object whose baseline positions are to control
placement of all glyphs for the line of text.

baseType The primary baseline—that is, the baseline to have a y-delta of 0.

returnedDeltas
A gxBaselineDeltas array. On return, contains the distances from
y = 0 to each of the 32 baseline types.

DESCRIPTION

The GXGetStyleBaselineDeltas function constructs and returns an array of distances

from y = 0 to each of the 32 baseline types. The distances are computed based on the font

and text size specified in the style object you pass in the baseStyle parameter.

The style object you pass to this function typically represents the dominant style run on

the line: the style run whose baselines are used to control the placement of all glyphs on

the line. However, you can pass any style object reference; it need not represent any style

run actually present on the line.

If you put the results of this function in the layout options structure of the layout shape,

QuickDraw GX uses those baseline positions to draw all text on the line.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example of the use of this function, see Listing 9-1 on page 9-28.

Errors
style_is_nil
parameter_out_of_range

C H A P T E R 9

Layout Line Control

Layout Line Control Reference 9-67

Baseline types are described in the section “Baseline Types” on page 9-4. The baseline

type enumeration is described on page 9-58. The baseline deltas array is described on

page 9-59.

The layout options structure is described in the chapter “Layout Shapes” in this book.

Measuring Line Span

The functions described in this section allow you to get and set the span of a text line.

GXGetLayoutSpan

You can use the GXGetLayoutSpan function to retrieve the span of the text line for the

specified layout shape.

void GXGetLayoutSpan(gxShape layout, Fixed *lineAscent,

Fixed *lineDescent);

layout A reference to the layout shape whose line span you need.

lineAscent A pointer to a Fixed value. On return, the value is the distance, in points,
from y = 0 to the highest ascent line in this layout shape. If you pass nil
for this parameter, no value is returned in it.

lineDescent
A pointer to a Fixed value. On return, the value is the distance, in points,
from y = 0 to the lowest descent line in this layout shape. If you pass nil
for this parameter, no value is returned in it.

DESCRIPTION

The GXGetLayoutSpan function returns the line span (height for horizontal lines;

width for vertical lines) for the specified layout shape. The line span is the distance,

orthogonal to the baseline, from the lowest descent line to the highest ascent line in the

shape. In calculating line span, GXGetLayoutSpan takes into account all text sizes on

the line, as well as any cross-stream shifting, cross-stream kerning, multiple baselines,

and glyph substitution that may have occurred.

GXGetLayoutSpan returns its results in points, which for QuickDraw GX are exactly

72 per inch. (Standard typographic points are 72.27 per inch.)

You can use the information returned by this function to position lines of text when

drawing. QuickDraw GX uses line span to control the heights of carets and highlight

areas, and to define hit-testing regions; if you create your own carets or highlighting

shapes, you can use the results of this function for that purpose also.

C H A P T E R 9

Layout Line Control

9-68 Layout Line Control Reference

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example of the use of this function, see Listing 9-3 on page 9-34.

You can set the line span with the GXSetLayoutSpan function, described next.

GXSetLayoutSpan

You can use the GXSetLayoutSpan function to assign a span to the text line for the

specified layout shape.

void GXSetLayoutSpan(gxShape layout, Fixed lineAscent,

Fixed lineDescent);

layout A reference to the layout shape whose line span is to be set.

lineAscent
The distance, in points, from y = 0 to the highest ascent permitted in this
layout shape.

lineDescent
The distance, in points, from y = 0 to the lowest descent line for this
layout shape.

DESCRIPTION

The GXSetLayoutSpan function allows your application to specify the line span

(height for horizontal lines; width for vertical lines) of a layout shape.

QuickDraw GX uses line span to control the heights of carets and highlight areas, and to

define hit-testing regions. If you draw successive lines of text with a fixed line spacing,

you can use GXSetLayoutSpan to make sure that carets, highlights, and hit-testing areas

do not overlap from line to line. If you do not use the GXSetLayoutSpan function, then

all QuickDraw GX functions use a line span that corresponds to the largest ascent and

descent present in the line. That span is affected by such features as varying text sizes,

cross-stream shifting, cross-stream kerning, multiple baselines, and glyph substitution.

You specify the lineAscent and lineDescent parameters in points (72 per inch). The

lineAscent parameter is measured above (to the right of, for vertical text) the line’s

dominant baseline; lineDescent is measured below (to the left of, for vertical text) the

same baseline. In Roman text both values are generally positive.

Errors
shape_is_nil

C H A P T E R 9

Layout Line Control

Layout Line Control Reference 9-69

SPECIAL CONSIDERATIONS

If you call GXGetLayoutSpan after having altered the line span with

GXSetLayoutSpan, the result will be the line span that you have set. If you

need to recover the line span as originally calculated by QuickDraw GX, make

sure you save that information before calling GXSetLayoutSpan.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Functions whose results are affected by the result of this function include

GXGetLayoutCaret, GXGetLayoutHighlight, GXGetLayoutVisualHighlight,

and GXHitTestLayout. All are described in the chapter “Layout Carets, Highlighting,

and Hit-Testing” in this book.

To obtain the span of a line, use the GXGetLayoutSpan function, described in the

previous section.

Breaking Lines

The functions described in this section allow you to locate a line break

(GXGetLayoutBreakOffSet), determine the exact display width of the broken

line (GXGetLayoutRangeWidth), and make a new layout shape for it

(GXGetNewLayoutFromRange).

GXGetLayoutBreakOffset

You can use the GXGetLayoutBreakOffset function to determine the point at which

to break a line of text.

gxByteOffset GXGetLayoutBreakOffset(gxShape layout,

gxByteOffset startOffset,

Fixed lineWidth,
long hyphenationCount,

const gxByteOffset hyphenationPoints[],

boolean *startIsStaked,

gxByteOffset *priorStake,
gxByteOffset *nextStake);

layout A reference to the layout shape containing the text to be broken.

startOffset
The byte offset in the source text of the first character in the line.

Errors
shape_is_nil

C H A P T E R 9

Layout Line Control

9-70 Layout Line Control Reference

lineWidth The available display length, in points, for the line of text.

hyphenationCount
The number of entries in the hyphenationPoints parameter (the size
of the hyphenation array). If you pass nil for the hyphenationPoints
parameter, this parameter must be set to 0.

hyphenationPoints
An array of hyphenation points. A hyphenation point is an edge offset
that your application considers a preferred point for a line break. You may
pass nil for this parameter.

startIsStaked
A pointer to a Boolean value. On return, it indicates whether the edge
offset passed in the startOffset parameter is a staked position.

priorStake A pointer to a gxByteOffset value. On return, it specifies the edge
offset of the staked position in the source text that precedes the returned
offset.

nextStake A pointer to a gxByteOffset value. On return, it specifies the edge
offset of the staked position in the source text that follows the
returned offset.

function result The edge offset corresponding to the trailing edge of the last glyph that
fits completely into the display line, given the specified starting offset,
display length, and preferred hyphenation points. (Last means last in
input order, not display order.)

DESCRIPTION

The GXGetLayoutBreakOffset function returns the approximate edge offset

following the last character whose glyph fits completely on a line having the display

length specified by lineWidth. The offset is only approximate because, if a ligature

falls on the line boundary, GXGetLayoutBreakOffset does not divide the ligature

into component glyphs to get the exact offset.

You can pass a hyphenation array to the function in the hyphenationPoints param-

eter. The array consists of a set of edge offsets, each of which represents a preferred point

at which to break the line. The array must be sorted by increasing offset value. If you

pass a hyphenation array to this function and at least one of its values falls within the

range of the line being broken, the function result is one of the values in the array. If you

pass nil, the function result is the offset corresponding to the last glyph that physically

fits in the line width.

The startIsStaked, priorStake, and nextStake parameters help you define

staked offsets in your source text. A staked offset is one that forms a natural break in

terms of the text-layout processing performed by QuickDraw GX. Staked offsets reflect

typographic concerns (for instance, do not break up ligatures, rearranged sequences of

glyphs, or kerning sets) rather than adherence to the rules of hyphenation. (Technically,

it means that all state machines that control layout processing are in their ground state.)

C H A P T E R 9

Layout Line Control

Layout Line Control Reference 9-71

On return from this function, the startIsStaked parameter is set to true if the

starting offset corresponds to a staked value, and the priorStake and nextStake

parameters give the nearest staked offsets behind and ahead of the function result

(whether or not they fall within the limits of the line). A value of gxNoStake (–1) in

either one of these parameters means that QuickDraw GX has not found an adjacent

staked location on that line.

If you need to perform text layout with maximum efficiency, you can use this information

to start and end lines at staked offsets. Most applications, however, can pass nil for

startIsStaked, priorStake, and nextStake.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example of the use of this function, see Listing 9-3 on page 9-34.

After obtaining a line-break position, you can determine the exact width of the line up to

that position by calling the GXGetLayoutRangeWidth function, described next. Then

you can use the GXNewLayoutFromRange function, described on page 9-72, to create a

new layout shape from that range of text.

GXGetLayoutRangeWidth

You can use the GXGetLayoutRangeWidth function to return the exact display length

(width for horizontal text; height for vertical text) of a portion of the text in a layout shape.

Fixed GXGetLayoutRangeWidth(gxShape layout,

 gxByteOffset startOffset,

 gxByteOffset endOffset,

 gxShape supplementaryText);

layout A reference to the layout shape containing the text whose display length
is to be determined.

startOffset
The edge offset in the source text before the first character to include.

endOffset The edge offset in the source text after the last character to include.

Errors
shape_is_nil
parameter_out_of_range
count_is_less_than_zero
inconsistent_parameters

C H A P T E R 9

Layout Line Control

9-72 Layout Line Control Reference

supplementaryText
A reference to a layout shape that contains any text, such as a hyphen,
that you want to add to the text being measured by this function. Pass
nil for this parameter if you do not want to add any text.

function result The exact display length, in points, of the portion of the layout shape
between the two offsets you specify.

DESCRIPTION

The GXGetLayoutRangeWidth function takes two offsets within a layout shape and

returns the exact length, in points (72 per inch), of that portion of the layout shape. The

GXGetLayoutRangeWidth function can also take into account any supplementary text

you may want to add to this part of the layout shape, such as a hyphen or a more

complex structure.

For example, “Zuk-ker” is the correct hyphenation of the German word “Zucker.” Thus,

you need to delete the “c” and add a “k-”, instead of just adding a hyphen. In this case,

you set the endOffset parameter so that it doesn’t include the “c”, and you specify a

shape containing “k-” in the supplementaryText parameter.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Before calling GXGetLayoutRangeWidth, you can obtain a text range for line breaking

with the GXGetLayoutBreakOffset function, described on page 9-69. You can create a

new layout shape from that range of text by calling the GXNewLayoutFromRange

function, described next.

GXNewLayoutFromRange

You can use the GXNewLayoutFromRange function to create a new layout shape

from a range of text within an existing layout shape. Typically, the new shape

represents a single line of text whose limits have been determined by a call to the

GXGetLayoutBreakOffset function.

gxShape GXNewLayoutFromRange(gxShape layout,

 gxByteOffset startOffset,
 gxByteOffset endOffset,

 const gxLayoutOptions *layoutOptions,
 gxShape supplementaryText);

layout A reference to the layout shape containing the range of text to be used.

Errors
shape_is_nil
parameter_out_of_range

C H A P T E R 9

Layout Line Control

Layout Line Control Reference 9-73

startOffset
The edge offset in the source text before the first character to include in
the new shape.

endOffset The edge offset in the source text after the last character to include in the
new shape.

layoutOptions
A pointer to a layout options structure containing the layout options you
want to apply to the new layout shape.

supplementaryText
A reference to a layout shape that contains any text, such as a hyphen,
that you want to add to the new layout shape. Pass nil for this param-
eter if you do not want to add any text.

function result A reference to the new layout shape.

DESCRIPTION

The GXNewLayoutFromRange function takes a range of source text from a layout

shape plus any additional text you include, and returns a new layout shape.

You usually call the GXNewLayoutFromRange function after first calling the

GXGetLayoutBreakOffset function, and possibly the GXGetLayoutRangeWidth

function.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example of the use of this function, see Listing 9-3 on page 9-34.

You can obtain a text position for line breaking by calling the

GXGetLayoutBreakOffset function, described on page 9-69. After obtaining

a line-break position, you can determine the exact width of the line up to that

position by calling the GXGetLayoutRangeWidth function, described on page 9-71.

Overriding the Behaviors of Justification Priorities

The functions described in this section allow you to the override justification behavior of

classes of glyphs, based on justification priority. You can specify either the style object

whose behavior is to be changed (GXGetStyleRunPriorityJustOverride,
GXSetStyleRunPriorityJustOverride) or the shape object whose associated style

object is to be altered (GXGetShapeRunPriorityJustOverride,
GXSetShapeRunPriorityJustOverride).

Errors
shape_is_nil
parameter_out_of_range

C H A P T E R 9

Layout Line Control

9-74 Layout Line Control Reference

GXGetStyleRunPriorityJustOverride

You can use the GXGetStyleRunPriorityJustOverride function to retrieve a

priority justification override structure from a style object.

long GXGetStyleRunPriorityJustOverride(gxStyle source,

gxPriorityJustificationOverride

*priorityJustificationOverride);

source A reference to the style object whose priority justification override
structure you need.

priorityJustificationOverride
A pointer to a priority justification override structure. On return, the
structure contains the priority justification overrides for the style object.
You can pass nil for this parameter if you do not need to retrieve the
priority justification override structure itself.

function result If the style object has a priority justification override structure, this value
is 1. Otherwise, it is 0.

DESCRIPTION

The GXGetStyleRunPriorityJustOverride function returns the priority justifica-

tion override structure from the style object you specify in the source parameter.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To set the priority justification overrides for a style run, use the

GXSetStyleRunPriorityJustOverride function, described next.

To retrieve the priority justification overrides associated with a particular shape, use

the GXGetShapeRunPriorityJustOverride function, described on page 9-76.

To set the priority justification overrides associated with a particular shape, use the

GXSetShapeRunPriorityJustOverride function, described on page 9-77.

To retrieve the glyph justification overrides for a style run, use the

GXGetStyleRunGlyphJustOverrides function, described on page 9-78.

Errors
style_is_nil

C H A P T E R 9

Layout Line Control

Layout Line Control Reference 9-75

GXSetStyleRunPriorityJustOverride

You can use the GXSetStyleRunPriorityJustOverride function to assign a priority

justification override structure to a style object (or to remove it from the style object).

void GXSetStyleRunPriorityJustOverride(gxStyle target,

const gxPriorityJustificationOverride

*priorityJustificationOverride);

target A reference to the style object whose priority justification override
structure you want to modify.

priorityJustificationOverride
A pointer to the priority justification override structure to assign.

DESCRIPTION

The GXSetStyleRunPriorityJustOverride function copies the specified

gxPriorityJustificationOverride structure into the priority justification

override property of the style object specified in the target parameter.

If you pass nil for the priorityJustificationOverride parameter, the function

removes the priority justification override structure (if any) from the style object.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For examples of the use of this function, see the unnumbered code listing on page 9-52

and Listing 9-9 on page 9-52.

To retrieve the priority justification overrides for a style run, use the

GXGetStyleRunPriorityJustOverride function, described on page 9-74.

To retrieve the priority justification overrides associated with the style associated with

a particular shape, use the GXGetShapeRunPriorityJustOverride function,

described next. To set the priority justification overrides associated with the style

associated with a particular shape, use the GXSetShapeRunPriorityJustOverride

function, described on page 9-77.

To set the glyph justification overrides for a style run, use the

GXSetStyleRunGlyphJustOverrides function, described on page 9-79.

Errors
style_is_nil
inconsistent_parameters

Notices (debugging version)
attributes_already_set

C H A P T E R 9

Layout Line Control

9-76 Layout Line Control Reference

GXGetShapeRunPriorityJustOverride

You can use the GXGetShapeRunPriorityJustOverride function to retrieve the

priority justification override structure from the style object associated with a shape.

long GXGetShapeRunPriorityJustOverride(gxShape source,

gxPriorityJustificationOverride

*priorityJustificationOverride);

source A reference to the shape object whose associated style object contains the
priority justification override structure you need.

priorityJustificationOverride
A pointer to a priority justification override structure. On return, the
structure contains the priority justification overrides for the style object
associated with the specified shape. You can pass nil for this parameter
if you do not need to retrieve the priority justification override
structure itself.

function result If the style object associated with the specified shape has a priority
justification override structure, this value is 1. Otherwise, it is 0.

DESCRIPTION

The GXGetShapeRunPriorityJustOverride function returns the priority justifica-

tion override structure from the style object associated with the shape you specify in the

source parameter.

This function acts only on the single style object that is referenced in the style property

of the shape object. It does not access any style object in the style list, which is part of

the geometry of a layout shape. (If, when calling the GXNewLayout function, for

example, you pass nil for the styles parameter, no style list is created and the new

layout shape’s style object is referenced through the style property.) If your layout

shape uses more than one style object, and therefore uses a style list in its geometry,

you need to access those style objects directly with a function such as

GXGetStyleRunPriorityJustOverride.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To set the priority justification overrides associated with a particular shape, use the

GXSetShapeRunPriorityJustOverride function, described next.

To retrieve the priority justification overrides for a style run, use the

GXGetStyleRunPriorityJustOverride function, described on page 9-74.

Errors
shape_is_nil

C H A P T E R 9

Layout Line Control

Layout Line Control Reference 9-77

To set the priority justification overrides for a style run, use the

GXSetStyleRunPriorityJustOverride function, described on page 9-75.

To retrieve the glyph justification overrides associated with a particular shape, use the

GXGetShapeRunGlyphJustOverrides function, described on page 9-81.

GXSetShapeRunPriorityJustOverride

You can use the GXSetShapeRunPriorityJustOverride function to assign a priority

justification override structure to the style object associated with a shape (or to remove it

from the style object).

void GXSetShapeRunPriorityJustOverride(gxShape target, const

gxPriorityJustificationOverride

*priorityJustificationOverride);

target A reference to the shape object whose associated style object contains the
priority justification override structure you want to modify.

priorityJustificationOverride
 A pointer to the priority justification override structure to assign.

DESCRIPTION

The GXSetShapeRunPriorityJustOverride function copies the specified

gxPriorityJustificationOverride structure into the priority justification

override property of the style object associated with the shape specified in the

target parameter.

If you pass nil for the priorityJustificationOverride parameter, the function

removes the priority justification override structure (if any) from the style object.

This function acts only on the single style object that is referenced in the style property of

the shape object. It does not access any style object in the style list, which is part of the

geometry of a layout shape. (If, when calling the GXNewLayout function, for example,

you pass nil for the styles parameter, no style list is created and the new layout

shape’s style object is referenced through the style property.) If your layout shape uses

more than one style object, and therefore uses a style list in its geometry, you need to

access those style objects directly with a function such as

GXSetStyleRunPriorityJustOverride.

ERRORS, WARNINGS, AND NOTICES

Errors
shape_is_nil

Notices (debugging version)
attributes_already_set

C H A P T E R 9

Layout Line Control

9-78 Layout Line Control Reference

SEE ALSO

To retrieve the priority justification overrides associated with a particular shape, use the

GXGetShapeRunPriorityJustOverride function, described on page 9-76.

To retrieve the priority justification overrides for a style run, use the

GXGetStyleRunPriorityJustOverride function, described on page 9-74.

To set the priority justification overrides for a style run, use the

GXSetStyleRunPriorityJustOverride function, described on page 9-75.

To set the glyph justification overrides associated with a particular shape, use the

GXSetShapeRunGlyphJustOverrides function, described on page 9-82.

Overriding the Justification Behaviors of Individual Glyphs

The functions described in this section allow you to the override the justification

behavior of individual glyphs in a style run. You can specify either the style object

associated with the glyphs to be changed (GXGetStyleRunGlyphJustOverrides,

GXSetStyleRunGlyphJustOverrides) or the shape object whose style object is

associated with the glyphs (GXGetShapeRunGlyphJustOverrides,

GXSetShapeRunGlyphJustOverrides).

GXGetStyleRunGlyphJustOverrides

You can use the GXGetStyleRunGlyphJustOverrides function to retrieve an array

of glyph justification override structures from a style object.

long GXGetStyleRunGlyphJustOverrides(gxStyle source,

gxGlyphJustificationOverride

glyphJustificationOverrides[]);

source A reference to the style object whose array of glyph justification overrides
you need.

glyphJustificationOverrides
An array of glyph justification override structures. On return, the array
contains the glyph justification overrides for the style object. If you pass
nil for this parameter, nothing is returned in this array. However, the
function result is still the correct number of glyph justification override
structures in the style.

function result The number of glyph justification override structures in the style object.

DESCRIPTION

The GXGetStyleRunGlyphJustOverrides function returns the number of glyph

justification override structures currently contained in the style object you specify in the

source parameter.

C H A P T E R 9

Layout Line Control

Layout Line Control Reference 9-79

To get the overrides themselves, you need to allocate an array to pass in the

glyphJustificationOverrides parameter when calling this function. To get the

right size for the array, you can first call the function with a value of nil for the

glyphJustificationOverrides parameter. Then use the function result to allocate

an array of the proper size and call GXGetStyleRunGlyphJustOverrides a second

time, this time passing the array.

SPECIAL CONSIDERATIONS

Because QuickDraw GX can reorder the elements in a style object’s glyph-

justification overrides array, the order of elements returned in the

glyphJustificationOverrides parameter to this function may differ

from the order in which they were originally assigned to the style.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To set the glyph justification overrides for a style run, use the

GXSetStyleRunGlyphJustOverrides function, described next.

To retrieve the glyph justification overrides associated with a particular shape,

use the GXGetShapeRunGlyphJustOverrides function, described on page 9-81.

To set the glyph justification overrides associated with a particular shape, use the

GXSetShapeRunGlyphJustOverrides function, described on page 9-82.

To retrieve the priority justification overrides for a style run, use the

GXGetStyleRunPriorityJustOverride function, described on page 9-74.

GXSetStyleRunGlyphJustOverrides

You can use the GXSetStyleRunGlyphJustOverrides function to assign an array of

glyph justification override structures to a style object, or to remove all glyph justification

overrides from it.

void GXSetStyleRunGlyphJustOverrides(gxStyle target, long count,

const gxGlyphJustificationOverride

glyphJustificationOverrides[]);

target A reference to the style object whose glyph justification overrides you
want to modify.

count The number of glyph justification override structures you want to assign.

Errors
style_is_nil

C H A P T E R 9

Layout Line Control

9-80 Layout Line Control Reference

glyphJustificationOverrides
The array of glyph justification override structures to be assigned to the
style object.

DESCRIPTION

The GXSetStyleRunGlyphJustOverrides function copies an array of

gxGlyphJustificationOverride structures into the glyph justification

overrides property of the specified style object.

If you pass nil for the glyphJustificationOverrides parameter and 0 for

the count parameter, the function removes all glyph justification override structures

from the style object.

If count is 0 and glyphJustificationOverrides is non-nil, or if count

is nonzero and glyphJustificationOverrides is nil,

GXSetStyleRunGlyphJustOverrides posts an inconsistent_parameters error.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example of the use of this function, see Listing 9-9 on page 9-52.

To retrieve the glyph justification overrides for a style run, use the

GXGetStyleRunGlyphJustOverrides function, described on page 9-78.

To retrieve the glyph justification overrides associated with the style associated with a

particular shape, use the GXGetShapeRunGlyphJustOverrides function, described

next. To set the glyph justification overrides associated with the style associated with a

particular shape, use the GXSetShapeRunGlyphJustOverrides function, described

on page 9-82.

To set the priority justification overrides for a style run, use the

GXSetStyleRunPriorityJustOverride function, described on page 9-75.

Errors
style_is_nil
parameter_out_of_range
count_is_less_than_zero
inconsistent_parameters

Notices (debugging version)
attributes_already_set

C H A P T E R 9

Layout Line Control

Layout Line Control Reference 9-81

GXGetShapeRunGlyphJustOverrides

You can use the GXGetShapeRunGlyphJustOverrides function to retrieve an array

of glyph justification override structures from the style object referenced by a shape.

long GXGetShapeRunGlyphJustOverrides(gxShape source,

gxGlyphJustificationOverride

glyphJustificationOverrides[]);

source A reference to the shape object whose associated style object contains the
glyph justification overrides you need.

glyphJustificationOverrides
An array of glyph justification override structures. On return, the array
contains the glyph justification overrides for the style object associated
with the specified shape. If you pass nil for this parameter, nothing is
returned in this array. However, the function result is still the correct
number of glyph justification override structures in the style associated
with the shape.

function result The number of glyph justification override structures in the style object
associated with the specified shape.

DESCRIPTION

The GXGetShapeRunGlyphJustOverrides function returns the number of glyph

justification override structures currently contained in the style object of the shape you

specify in the source parameter.

To get the overrides themselves, you need to allocate an array to pass in the

glyphJustificationOverrides parameter when calling this function. To get

the right size for the array, you can first call the function with a value of nil for the

glyphJustificationOverrides parameter. Then use the function result to

allocate an array of the proper size and call GXGetShapeRunGlyphJustOverrides

a second time, this time passing the array.

This function acts only on the single style object that is referenced in the style property

of the shape object. It does not access any style object in the style list, which is part

of the geometry of a layout shape. (If, when calling the GXNewLayout function, for

example, you pass nil for the styles parameter, no style list is created and the new

layout shape’s style object is referenced through the style property.) If your layout

shape uses more than one style object, and therefore uses a style list in its geometry,

you need to access those style objects directly with a function such as

GXGetStyleRunGlyphJustOverrides.

C H A P T E R 9

Layout Line Control

9-82 Layout Line Control Reference

SPECIAL CONSIDERATIONS

Because QuickDraw GX can reorder the elements in a style object’s glyph-

justification overrides array, the order of elements returned in the

glyphJustificationOverrides parameter to this function may differ

from the order in which they were originally assigned to the style.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To set the glyph justification overrides associated with a particular shape, use the

GXSetShapeRunGlyphJustOverrides function, described next.

To retrieve the glyph justification overrides for a style run, use the

GXGetStyleRunGlyphJustOverrides function, described on page 9-78.

To set the glyph justification overrides for a style run, use the

GXSetStyleRunGlyphJustOverrides function, described on page 9-79.

To retrieve the priority justification overrides associated with a particular shape, use the

GXGetShapeRunPriorityJustOverride function, described on page 9-76.

GXSetShapeRunGlyphJustOverrides

You can use the GXSetShapeRunGlyphJustOverrides function to assign an array of

glyph justification override structures to the style object associated with a shape, or to

remove all glyph justification overrides from it.

void GXSetShapeRunGlyphJustOverrides(gxShape target, long count,

const gxGlyphJustificationOverride

glyphJustificationOverrides[]);

target A reference to the shape object whose style object contains the glyph
justification overrides you want to modify.

count The number of glyph justification override structures you want to assign.

glyphJustificationOverrides
The array of glyph justification override structures to be assigned to the
style object associated with the specified shape.

Errors
shape_is_nil

C H A P T E R 9

Layout Line Control

Layout Line Control Reference 9-83

DESCRIPTION

The GXSetShapeRunGlyphJustOverrides function copies an array of glyph

justification override structures into the glyph justification overrides property of the

style object associated with the shape you specify in the target parameter.

If you pass nil for the glyphJustificationOverrides parameter and 0 for the

count parameter, the function removes all glyph justification override structures from

the style object.

This function acts only on the single style object that is referenced in the style property of

the shape object. It does not access any style object in the style list, which is part of the

geometry of a layout shape. (If, when calling the GXNewLayout function, for example,

you pass nil for the styles parameter, no style list is created and the new layout

shape’s style object is referenced through the style property.) If your layout shape uses

more than one style object, and therefore uses a style list in its geometry, you need to

access those style objects directly with a function such as

GXSetStyleRunGlyphJustOverrides.

If count is 0 and glyphJustificationOverrides is non-nil, or if count is

nonzero and glyphJustificationOverrides is nil,

GXSetShapeRunGlyphJustOverrides posts an inconsistent_parameters error.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To retrieve the glyph justification overrides associated with a particular shape, use the

GXGetShapeRunGlyphJustOverrides function, described on page 9-81.

To retrieve the glyph justification overrides for a style run, use the

GXGetStyleRunGlyphJustOverrides function, described on page 9-78.

To set the glyph justification overrides for a style run, use the

GXSetStyleRunGlyphJustOverrides function, described on page 9-79.

To set the priority justification overrides associated with the style associated with a

particular shape, use the GXSetShapeRunPriorityJustOverride function,

described on page 9-77.

Errors
shape_is_nil
parameter_out_of_range
count_is_less_than_zero
inconsistent_parameters

Notices (debugging version)
attributes_already_set

C H A P T E R 9

Layout Line Control

9-84 Summary of Layout Line Control

Summary of Layout Line Control

Constants and Data Types

Baseline Types

enum {

gxRomanBaseline = 0,

gxIdeographicCenterBaseline,

gxIdeographicLowBaseline,

gxHangingBaseline,

gxMathBaseline,

gxLastBaseline = 31,

gxNumberOfBaselineTypes = gxLastBaseline + 1,

gxNoOverrideBaseline = 255

};

typedef unsigned long gxBaselineType;

Baseline Deltas Array

typedef Fixed gxBaselineDeltas[gxNumberOfBaselineTypes];

Baseline Structure

typedef struct {

gxBaselineDeltas deltas;

} gxLineBaselineRecord;

Justification Priorities

enum {

gxKashidaPriority = 0,

gxWhiteSpacePriority = 1,

gxInterCharPriority = 2,

gxNullJustificationPriority = 3,

gxNumberOfJustificationPriorities

};

typedef unsigned char gxJustificationPriority;

C H A P T E R 9

Layout Line Control

Summary of Layout Line Control 9-85

Width Delta Structure

typedef struct {

Fixed beforeGrowLimit;

Fixed beforeShrinkLimit;

Fixed afterGrowLimit;

Fixed afterShrinkLimit;

gxJustificationFlags growFlags;

gxJustificationFlags shrinkFlags;

} gxWidthDeltaRecord;

Justification Flags

enum {

gxOverridePriority = 0x8000,

gxOverrideLimits = 0x4000,

gxOverrideUnlimited = 0x2000,

gxUnlimitedGapAbsorption = 0x1000,

gxJustificationPriorityMask = 0x000F

gxAllJustificationFlags = gxOverridePriority|

 gxOverrideLimits|

 gxOverrideUnlimited|

 gxUnlimitedGapAbsorption|

 gxJustificationPriorityMask

};

typedef unsigned short gxJustificationFlags;

Priority Justification Override Structure

typedef struct {

gxWidthDeltaRecord deltas[gxNumberOfJustificationPriorities];

} gxPriorityJustificationOverride;

Glyph Justification Override Structure

typedef struct {

gxGlyphcode glyph;

gxWidthDeltaRecord override;

} gxGlyphJustificationOverride;

C H A P T E R 9

Layout Line Control

9-86 Summary of Layout Line Control

Functions

Manipulating Baselines

void GXGetStyleBaselineDeltas
(gxStyle baseStyle, gxBaselineType baseType,
gxBaselineDeltas returnedDeltas);

Measuring Line Span

void GXGetLayoutSpan (gxShape layout, Fixed *lineAscent,
Fixed *lineDescent);

void GXSetLayoutSpan (gxShape layout, Fixed lineAscent,
Fixed lineDescent);

Breaking Lines

gxByteOffset GXGetLayoutBreakOffset
(gxShape layout, gxByteOffset startOffset,
Fixed lineWidth, long hyphenationCount,
const gxByteOffset hyphenationPoints[],
boolean *startIsStaked,
gxByteOffset *priorStake,
gxByteOffset *nextStake);

Fixed GXGetLayoutRangeWidth (gxShape layout, gxByteOffset startOffset,
gxByteOffset endOffset,
gxShape supplementaryText);

gxShape GXNewLayoutFromRange(gxShape layout, gxByteOffset startOffset,
gxByteOffset endOffset,
const gxLayoutOptions *layoutOptions,
gxShape supplementaryText);

Overriding the Behaviors of Justification Priorities

long GXGetStyleRunPriorityJustOverride
(gxStyle source,
gxPriorityJustificationOverride
*priorityJustificationOverride);

void GXSetStyleRunPriorityJustOverride
(gxStyle target,
const gxPriorityJustificationOverride
*priorityJustificationOverride);

long GXGetShapeRunPriorityJustOverride
(gxShape source,
gxPriorityJustificationOverride
*priorityJustificationOverride);

C H A P T E R 9

Layout Line Control

Summary of Layout Line Control 9-87

void GXSetShapeRunPriorityJustOverride
(gxShape target,
const gxPriorityJustificationOverride
*priorityJustificationOverride);

Overriding the Justification Behaviors of Individual Glyphs

long GXGetStyleRunGlyphJustOverrides
(gxStyle source,
gxGlyphJustificationOverride
glyphJustificationOverrides[]);

void GXSetStyleRunGlyphJustOverrides
(gxStyle target, long count,
const gxGlyphJustificationOverride
glyphJustificationOverrides[]);

long GXGetShapeRunGlyphJustOverrides
(gxShape source,
gxGlyphJustificationOverride
glyphJustificationOverrides[]);

void GXSetShapeRunGlyphJustOverrides
(gxShape target, long count,
const gxGlyphJustificationOverride
glyphJustificationOverrides[]);

Contents 10-1

C H A P T E R 1 0

Layout Carets, Highlighting,

Contents

and Hit-Testing

About Carets, Highlighting, and Hit-Testing for Layout Shapes 10-3

Positioning in Source Text and Display Text 10-3

Caret Handling 10-6

Straight and Angled Carets 10-7

Split and Single Carets 10-8

Caret Position and Split Ligatures 10-10

Arrow Keys and Caret Movement 10-11

Highlighting 10-13

Visually Discontiguous and Contiguous Highlighting 10-14

Caret Angle and Tiled Highlighting 10-15

Hit-Testing 10-16

Using Carets, Highlighting, and Hit-Testing
With Layout Shapes 10-18

Drawing Carets 10-18

Getting the Caret Shape 10-19

Drawing the Cursor at the Correct Angle Within a Given Area 10-22

Positioning the Caret in Response to Arrow Keypresses 10-22

Positioning the Caret Within Ligatures 10-24

Drawing Highlighting 10-25

Highlighting Discontiguously in Mixed-Direction Text 10-26

Highlighting Contiguously in Mixed-Direction Text 10-27

Providing Dynamic Highlighting 10-28

Performing Hit-Testing 10-28

Layout Hit Info Structure 10-29

Mouse Tracking Area 10-30

Sample Hit-Test Function 10-30

C H A P T E R 1 0

10-2 Contents

Analyzing Glyphs 10-33

Determining the Direction of a Glyph 10-33

Determining the Offsets for Each Edge of a Ligature 10-33

Finding the Equivalent Glyphs to an Offset in the Source Text 10-34

Finding the Equivalent Offset to a Glyph in the Display Text 10-37

Layout Carets, Highlighting, and Hit-Testing Reference 10-40

Constants and Data Types 10-40

Highlighting Type 10-41

Caret Type 10-41

Layout Offset State 10-42

Layout Hit Info Structure 10-43

Functions 10-44

Manipulating Carets in a Layout Shape 10-44

GXGetLayoutCaret 10-44

GXGetCaretAngleArea 10-46

GXGetRightVisualOffset 10-47

GXGetLeftVisualOffset 10-48

Highlighting in a Layout Shape 10-49

GXGetLayoutHighlight 10-50

GXGetLayoutVisualHighlight 10-52

Hit-Testing in a Layout Shape 10-54

GXHitTestLayout 10-54

Converting Between Glyphs and Characters in a Layout Shape 10-56

GXGetOffsetGlyphs 10-56

GXGetGlyphOffset 10-58

GXGetCompoundCharacterLimits 10-59

Summary of Layout Carets, Highlighting, and Hit-Testing 10-61

Constants and Data Types 10-61

Functions 10-62

C H A P T E R 1 0

About Carets, Highlighting, and Hit-Testing for Layout Shapes 10-3

Layout Carets, Highlighting, and Hit-Testing

This chapter describes the relationship between character-code position in a layout

shape’s source text and glyph position in its corresponding display text. Your appli-

cation uses this information to draw carets, to highlight ranges of text, and to hit-test

(to convert from display-text location to source-text location).

Read the information in this chapter if you create layout shapes containing text that the

user can select or edit. You do not need the information here if you create only static

(unalterable) lines of text. Also, if your application creates only simple text that is

better represented by a text shape or glyph shape, you do not need the information in

this chapter.

Before reading this chapter, you should be familiar with the information in the chapters

“Introduction to QuickDraw GX Typography,” “Typographic Shapes,” “Typographic

Styles,” and “Layout Shapes” in this book. You should also be familiar with the general

concepts of QuickDraw GX objects, as described in Inside Macintosh: QuickDraw GX Objects.

The chapter starts by describing how QuickDraw GX defines locations in source text and

in display text of any typographic shape. The chapter next explores how the definition

of text locations affects caret handling, highlighting, and hit-testing for layout shapes. It

then describes how to use QuickDraw GX functions to

■ draw perpendicular or angled carets in single-direction or mixed-direction text

■ highlight single-direction or mixed-direction text in two different ways

■ hit-test any text in a layout shape

■ analyze glyphs for direction and for relationship to source-text position

About Carets, Highlighting, and Hit-Testing
for Layout Shapes

Editing text from a layout shape can be a complicated process. Preparing a line of text for

display can involve reversing text direction, rearranging glyphs, substituting glyphs,

creating ligatures, and moving or modifying glyphs for purposes of justification, kerning,

typestyle changes, and so on. Editing that line involves repeating these operations for the

edited text. However, QuickDraw GX helps you in this effort by eliminating your need to

track the details of conversion from source text to display text and back.

This section describes the relationship between character codes in the source text of a

layout shape and glyphs in its display text. It also explains how QuickDraw GX exploits

that relationship to help you with caret handling, highlighting, and hit-testing.

Positioning in Source Text and Display Text
By convention, QuickDraw GX stores text in a typographic shape as a sequence of

character codes, which are display-independent numeric representations of the funda-

mental characters that make up the text. Furthermore, these character codes are stored

in input order, that is, the order in which the characters are entered from a keyboard.

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

10-4 About Carets, Highlighting, and Hit-Testing for Layout Shapes

When it draws text, QuickDraw GX composes glyphs from those characters and draws

the glyphs in display order. Display order is uniformly left to right (or top to bottom for

vertical text) and may be very different from input order.

On the screen, the sequence of glyphs in a line of text is specified by glyph index, a

simple left-to-right (or top-to-bottom) ordering that starts with 1 for the leftmost glyph.

In Figure 10-1, for example, a line of text composed of six characters in memory (on the

left) is rendered onscreen with five glyphs (on the right).

In memory, the positions of character codes in the source text of a shape could also be

represented by index, but they are more commonly represented by edge offset. Edge
offset is the byte offset from the beginning of a shape’s source text to a point between

character codes in the sequence. Edge offset is zero-based. Figure 10-1 shows an edge

offset of 0 marks a point just before the first byte in the source text; an offset of 1 marks a

point between the first and second bytes, and so on.

Figure 10-1 Positioning conventions for source text and display text

Edge offset is slightly different from the typical notion of byte offset into a buffer, in that

a given edge offset is not associated with a unique byte value. An edge offset could refer

to either the byte preceding it or the byte following it. This concept is useful because

edge offset relates directly to caret position, a location on screen that is typically between

glyphs. (A caret is a vertical or slanted bar, appearing at a caret position in the display

text, that marks the point at which text is to be inserted or deleted.) Each caret position

relates directly to an edge offset; you can see in Figure 10-1 that the caret positions in the

display text are numbered according to their corresponding edge offsets in the source

text. A caret at any of the caret positions in Figure 10-1 means an insertion point in the

source text at the corresponding edge offset.

The text in Figure 10-1 is fairly simple; it is single-direction text, and all character codes

are 1 byte long. One complication is that the “f” and “i” characters are combined upon

display into the “fi” ligature. Because the ligature is a single glyph, there is no longer a

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

About Carets, Highlighting, and Hit-Testing for Layout Shapes 10-5

one-to-one correspondence between characters and glyphs. Also, there is one possible

caret position (at edge offset 3) that is within a glyph rather than at its edge. For the

purposes of drawing carets, highlighting, and hit-testing, QuickDraw GX permits you

either to allow or disallow caret positions within complex glyphs such as ligatures.

Figure 10-2 shows a slightly more complex example of a line of text from a layout shape.

In this layout, three characters of Roman text are followed by three Hebrew characters, in

turn followed by two Chinese characters. Note that, because Hebrew text is read from

right to left, the order of the Hebrew glyphs on the screen is the reverse of the order of

their character codes in the source text. (The line direction, or dominant text direction, of

this layout shape is left to right. If it were right to left, the order of the displayed charac-

ters would have been somewhat different. See the chapter “Layout Line Control” in this

book for a complete discussion of how line direction and different levels of direction

runs can cause complications in line layout.)

Figure 10-2 Edge offsets and glyph indexes in mixed-direction text

The reversal of the Hebrew text causes some complications in the relationship between

caret position and edge offset. Note in particular what happens at edge offset 3, the

boundary (in the source text) between the Roman “C” and the Hebrew “ .” In memory,

it is a single point that could allow for inserting a Roman character after the “C” or a

Hebrew character before the “ .” On screen, however, that insertion point splits into

two caret positions: one to the right of (that is, after) the “C,” and one to the right of (that

is, before) the “ .”

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

10-6 About Carets, Highlighting, and Hit-Testing for Layout Shapes

Within the run of Hebrew text, caret positions increase leftward, as would be expected

for right-to-left text. And at the boundary between the Hebrew text and the Chinese text

(here written horizontally and left to right), the additional change in direction means

that edge offset 6 also converts to two caret positions onscreen: one to the left of (that is,

after) the “ ,” and one to the left of (that is, before) the “ .”

In general, each direction boundary in the source text of a layout shape maps to two

different caret positions in the display text, and each direction boundary in the display

text maps to two different edge offsets in the source text. This indeterminacy causes

complications in caret drawing, highlighting, and hit-testing, as discussed further in

subsequent sections of this chapter. However, note that QuickDraw GX handles most of

the complications for you.

Figure 10-2 illustrates a second important complication. Note that the Chinese character

codes in the source text are each 2 bytes long. Because edge offsets are byte offsets, each

subsequent location between Chinese characters has an offset value that is 2 higher than

its predecessor. In Figure 10-2, edge offsets (and caret positions) 7 and 9 are invalid—

each refers to a point inside a single character.

IMPORTANT

If you are going to support 2-byte characters in your text handling,
remember that successive valid edge offsets in the buffer that holds your
source text may differ by either 1 or 2. Even in 2-byte languages such as
Chinese, Japanese, and Korean, some character codes are only 1 byte
long. You cannot assume a single storage size for characters. QuickDraw
GX provides functions, such as the GXGetOffsetGlyphs function on
page 10-56, that help you determine the sizes of character codes. ▲

Caret Handling
A caret is a symbol that indicates where onscreen the next text-editing operation will

take place. The caret is commonly represented by a blinking vertical bar (|) in horizontal

text, a horizontal bar in vertical text, and a slanted bar in italic or otherwise slanted text.

Note

In Macintosh text processing, the caret is not the same as the cursor. The
cursor is a small icon (often an arrow or I-beam shape) that “shadows”
the movement of the mouse or other pointing device. The cursor is
controlled by the system, although your application can change its
appearance; the caret is controlled entirely by your application. When
the user clicks or holds the mouse button down while the cursor is
positioned within a line of text, your application sets the caret position
or extends the highlight to the cursor position. Otherwise, these
positions are independent of each other. ◆

The caret is the onscreen representation of the insertion point. The insertion point is that

point in the source text where character codes will be added or deleted when the next

editing operation occurs. An insertion point is specified by a single edge offset; the caret

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

About Carets, Highlighting, and Hit-Testing for Layout Shapes 10-7

occupies the onscreen caret position that corresponds to that edge offset. Figure 10-3

shows the basic relationship between insertion point, edge offset, and caret position for

single-direction text.

Figure 10-3 Insertion point and caret

Straight and Angled Carets

When the caret appears in italic text or text that has an intrinsic angle (for instance, ITC

Zapf Chancery®), you may wish, for the user’s convenience, to display an angled

(slanted) caret rather than a straight one. QuickDraw GX supports this capability by using

data present in fonts that identifies the intrinsic font angle. Your application can disable

this feature, if desired, on a per-run basis.

You can specify that a caret can be straight or angled, meaning that it is either perpen-

dicular to the baseline or at an angle to the baseline that equals the slant of the glyphs

between which the caret is drawn. If you choose an angled caret, QuickDraw GX

calculates the proper angle; at boundaries of text with different slant, QuickDraw GX

calculates an average angle for the caret.

In Figure 10-4, for example, the word “The” is italic, whereas the subsequent characters

are not. The angled caret is parallel to the slant of the italic text at the caret position

whose edge offset is 2; it has only half the slant at the caret position whose edge offset is

3; and it is vertical at caret positions with edge offsets of 4 and greater.

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

10-8 About Carets, Highlighting, and Hit-Testing for Layout Shapes

Figure 10-4 Angled and straight carets in single-direction text

Note also from Figure 10-4 that if you specify a straight (vertical) caret, it remains perpen-

dicular to the baseline even in italic text.

Drawing an angled cursor

You may also want to slant the cursor when it passes over areas of
slanted text. QuickDraw GX provides a function to help you do that
efficiently. See “Drawing the Cursor at the Correct Angle Within a Given
Area” beginning on page 10-22. ◆

Split and Single Carets

At direction boundaries in mixed-direction text, a single insertion point in memory can

require two caret positions onscreen, one for text entry in each direction. QuickDraw GX

supports two different methods for handling that situation: a split caret or a single caret.

Figure 10-5 shows examples of both caret types for an insertion point at the boundary

between Arabic and Roman text.

A split caret, or dual caret, is the preferred caret shape provided by QuickDraw GX for

use with mixed-direction text. A split caret consists of a high caret and a low caret, each

measuring half the line’s height. The two separate half-carets appear only when the

insertion point is at the boundary between two direction runs in a line of text. The high

(dominant) caret is displayed at the caret position for insertion of text whose direction

corresponds to the line direction (the dominant direction for the whole line of text). The

low caret is displayed at the caret position for insertion of text whose direction is counter

to the line direction. When the caret position is unambiguous (not on a direction

boundary), the primary and secondary carets are at the same position, so the user sees

one caret.

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

About Carets, Highlighting, and Hit-Testing for Layout Shapes 10-9

Figure 10-5 Split caret and single carets at a direction boundary in mixed-direction text

In Figure 10-5 (top), a split caret appears when the insertion point is at the direction

boundary at edge offset 3. Because the line direction for this example is left to right,

the high caret appears to the left of the space character before the word “light”, to allow

insertion of Roman characters before the space character. The low caret appears at the

far left of the line, to allow insertion of Arabic characters after the “ ”.

A single caret can also be used in mixed-direction text. It is either a left-to-right caret or

a right-to-left caret, which refers not to any difference in appearance but to difference in

location. When the caret position is unambiguous (not on a direction boundary), it is a

standard text-insertion caret. At a direction boundary, it is also a single caret that appears

at the place where the next text insertion or deletion will occur, given the application’s

specification of text direction.

In Figure 10-5 (middle and bottom), a single caret appears at either of two positions

when the insertion point is at the direction boundary at edge offset 3. If the current input

text direction is left to right (corresponding to Roman text entry), the caret appears to the

left of the ”l” character before the word “light”. If the current direction is right-to-left

(corresponding to Arabic text entry), the caret appears at the far left of the line. Note that

switching input directions repeatedly without entering any characters causes the caret to

jump between the two caret positions. Note that it is your responsibility to monitor the

user’s choice of keyboard or language and set the caret type appropriately.

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

10-10 About Carets, Highlighting, and Hit-Testing for Layout Shapes

Split carets and linguistic rearrangement

Split carets can arise in one other case: linguistic (Indic-style)
rearrangement. In this case, all the text is uniformly left to right,
but because the visual order of certain glyphs on the line is different
from the input order of the character codes in the source text, the
returned caret is split. The high caret is located at the caret position
with the numerically higher edge offset of the two for that character;
see Figure 10-6. ◆

Figure 10-6 Split caret with linguistically rearranged glyphs

Carets and vertical text

Vertical text is never reordered nor linguistically rearranged; its
display order (top to bottom) is always the same as its input order.
Therefore, text direction is always (the equivalent of) left to right,
and split carets cannot occur. ◆

Caret Position and Split Ligatures

For defining caret positions, you can treat ligatures as single, indivisible glyphs or you

can split them into subareas representing each of their component characters. If you

want ligatures to be treated as single glyphs, you set the gxNoLigatureSplits flag

in the run controls structure of the style run containing the ligatures. If you clear the

gxNoLigatureSplits flag, QuickDraw GX allows caret positions within the ligature,

as defined by the font. By default, the flag is cleared.

Figure 10-7 shows two examples of carets drawn at all valid caret positions in the word

“office”. In the upper example, ligature splits are permitted; in the lower example, they

are not.

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

About Carets, Highlighting, and Hit-Testing for Layout Shapes 10-11

Figure 10-7 Caret positions with and without ligature splits

For an example of the effect of setting and clearing the gxNoLigatureSplits flag, see

“Positioning the Caret Within Ligatures” beginning on page 10-24. Run controls are

explained in the chapter “Layout Styles” in this book.

Note
Whether or not you permit ligature splits, editing should still occur one
character at a time, not one glyph at a time. Thus, if the caret were
positioned to the right of an “fi” ligature, a single backspace should not
delete the whole ligature; it should delete only the “i”, leaving an “f”
glyph in place of the ligature. ◆

Arrow Keys and Caret Movement

When the user presses the Right Arrow key, the caret should move one character to the

right in horizontal text. When the user presses the Left Arrow key, the caret should move

one character to the left. If your layout shape has ligatures, mixed 1-byte and 2-byte

characters, mixed-direction text, or text that has undergone linguistic rearrangement,

determining the edge offset of the next caret position is not always obvious.

Figure 10-8 shows a line of mixed Roman and Arabic text in which the dominant direc-

tion is left to right. Suppose that the current insertion point is at edge offset 3 in the

source text. That offset represents a direction boundary; the high caret marks the point

for inserting Roman text, and the low caret marks the point for inserting Arabic text. If

the user presses the Left Arrow key, the high caret moves one space to the left. That puts

the caret across the direction boundary, and corresponds to moving several characters

backward in the (Arabic) source text, which puts the new edge offset at 1. For split carets,

the high caret should follow the arrows.

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

10-12 About Carets, Highlighting, and Hit-Testing for Layout Shapes

If instead the user presses the Right Arrow key, the high caret moves one space to the

right. That action puts the caret across the direction boundary and corresponds to

moving one character forward in the source text. The new edge offset is therefore 4.

Figure 10-8 Moving the caret with Left and Right Arrow keys

If the display text contains ligatures, caret movement in response to the pressing of an

arrow key can depend on whether caret positions within ligatures are valid. See “Caret

Position and Split Ligatures” on page 10-10.

QuickDraw GX provides functions that allow you to determine the proper edge offset of

the new insertion point when the user moves the caret position with the arrow keys. See

“Positioning the Caret in Response to Arrow Keypresses” beginning on page 10-22.

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

About Carets, Highlighting, and Hit-Testing for Layout Shapes 10-13

Highlighting
Highlighting is the display of portions of a line of text in inverse video or with a colored

background. Just as a caret is the onscreen representation of an insertion point in source

text, highlighting is the onscreen representation of a selection range in source text.

A selection range is the contiguous sequence of characters in memory that the next

editing operation (deletion or replacement) will affect. The onscreen glyphs correspond-

ing to those characters are commonly highlighted. The characters in a selection range are

always contiguous in memory, but their glyphs are not necessarily contiguous on screen.

Like insertion points and carets, selection ranges and highlighting are described by edge

offsets and caret positions. Figure 10-9 shows the simplest example of highlighting. The

text represents a layout shape with mixed Roman, Hebrew, and Chinese text in which

the dominant direction is left to right. A selection range from edge offsets 1 to 3 yields a

simple, contiguous highlighting rectangle. The rectangle encloses two glyphs that

correspond exactly to the two characters in the selection range.

Figure 10-9 Highlighting in single-direction text

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

10-14 About Carets, Highlighting, and Hit-Testing for Layout Shapes

Visually Discontiguous and Contiguous Highlighting

Complications arise in highlighting when a selection range crosses direction boundaries.

In Figure 10-10, which represents the same layout shape as Figure 10-9, the selection

range extends from offset 1 to offset 5. The equivalent highlighted area on the screen

consists of two separate rectangles. Note that the highlighted glyphs still correspond

exactly to the characters in the selection range. In more complicated layout shapes with

many direction boundaries and complex levels of direction runs, a single selection range

can become many discontiguous highlighted areas on the screen.

Figure 10-10 Discontiguous visual highlighting in mixed-direction text

The kind of highlighting shown in Figure 10-9 and Figure 10-10 is the most typical, and

QuickDraw GX takes care of calculating the contiguous or discontiguous highlighting

shapes that represent any selection range that you specify. However, for display sim-

plicity, you can also specify that a single visually contiguous highlighting shape be used

between two offsets, even if it crosses direction boundaries. Figure 10-11 shows an

example of this visually contiguous highlighting, using the same layout shape and the

same edge offsets as used by the selection range in Figure 10-10.

Note that the selection range represented by the highlighting in Figure 10-11 is not
equivalent to the selection range represented in Figure 10-10, even though the same

edge offsets apply in each case. (For contiguous highlighting, leading-edge information,

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

About Carets, Highlighting, and Hit-Testing for Layout Shapes 10-15

Figure 10-11 Contiguous visual highlighting in mixed-direction text

as discussed below under “Hit-Testing,” is also required.) In general, when contiguous

highlighting crosses direction boundaries in text, the selection range is discontiguous and

does not correspond exactly to the characters between the two edge offsets represented.

Caret Angle and Tiled Highlighting

Just as QuickDraw GX supports angled carets within text that has slanted glyphs, it also

allows you to slant the edges of highlighted areas in the same way. If you specify angled

carets, the edges of highlighted areas will also be angled, where appropriate. In that case,

your highlighting areas may be parallelograms or even trapezoids, instead of rectangles.

See, for example, Figure 10-19 on page 10-27.

It is usually important to make all possible highlighted areas in a line of text unique.

Every character’s highlighted area should be disjoint from all other characters’ areas,

with the union of all characters’ highlighted areas being exactly equal to the entire line’s

highlight area. In that case, there are no gaps or overlaps between adjacent highlight areas,

and there is never any uncertainty in the interpretation of a hit-test for any point within

the area of the line. Highlighting that meets these criteria is called tiled highlighting.

If you specify straight highlighting (by specifying straight carets), the highlighted areas

calculated by QuickDraw GX are always tiled. If you specify angled highlighting, the

highlighted areas calculated by QuickDraw GX are almost always tiled; only in cases of

extreme slant with superscripts or subscripts is tiling not maintained.

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

10-16 About Carets, Highlighting, and Hit-Testing for Layout Shapes

Hit-Testing
Hit-testing is the process of converting a location within a line of display text into an edge

offset in the source text of that line. Its purpose is to allow you to convert user actions on

displayed glyphs into editing operations on the characters of a typographic shape.

An important concept for hit-testing is that of leading and trailing edges. A glyph’s

leading edge is the edge of a glyph that is encountered first when reading text of that

glyph’s language. Its trailing edge is the edge encountered last. For glyphs of left-to-

right text, the leading edge is the left edge; for glyphs of right-to-left text, the leading

edge is the right edge.

Figure 10-12 shows the basics of hit-testing. The hit point (×) may represent, for example,

the location of a mouse click. In response, your application needs to find the correct edge

offset for subsequent text insertion and then draw a caret at the proper caret position.

Figure 10-12 Hit point and caret position in hit-testing

When used for hit-testing layout shapes, QuickDraw GX tells you which edge offset

corresponds to the hit point and whether the hit was on the leading edge or the trailing

edge of the hit glyph. In Figure 10-12, the hit point is within the area of the glyph “c”

and closer to its trailing edge than its leading edge. The logical place to draw the caret

is thus between glyphs “c” and “e.” In this case, QuickDraw GX returns an edge offset of

5 and a leading-edge value of false. You can then pass that edge offset back to another

QuickDraw GX function to obtain the correct caret to draw. QuickDraw GX returns a

polygon shape of the right size, angle, and position (caret position 5).

If the hit point had been within glyph “e,” near its leading edge, the returned edge

offset would still have been 5 (because the proper caret position would still be 5), but

the leading-edge value would have been true.

In single-direction text, the leading-edge value is not needed, but at direction boundaries

in mixed-direction text both the offset and the leading-edge value are needed to know

what kind of text insertion is expected—and where—in the source text. For a given

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

About Carets, Highlighting, and Hit-Testing for Layout Shapes 10-17

offset, if the leading edge value is true, the text to be inserted has the direction of the

source-text character following the edge offset. If the leading edge value is false, the text

to be inserted has the direction of the source-text character preceding the edge offset.

For example, Figure 10-13 shows mixed Roman and Hebrew text from the same layout

shape as shown in Figure 10-11 on page 10-15. Neighboring hit points on either side of a

direction boundary give two different results:

■ The first hit point yields an edge offset of 3, which could mean insertion of either
Roman text after the “c” or Hebrew text before the “ ”. The leading-edge designation
of false means that Roman text is to be entered at offset 3.

■ The second hit point is close to the first but yields an offset of 6. That offset could
mean insertion of either Hebrew text after the “ ” or left to right text before the
character starting at offset 6. The leading-edge designation of false means that in
this case Hebrew text is to be entered at offset 6.

Figure 10-13 Hit-testing in mixed-direction text

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

10-18 Using Carets, Highlighting, and Hit-Testing With Layout Shapes

For angled text, the hit point is projected to the baseline, parallel to the caret angle, to

determine the correct edge offset. As shown in Figure 10-14, the caret projection to the

baseline can yield a completely different caret position than a vertical projection would.

Figure 10-14 Projecting the hit point to the baseline

QuickDraw GX returns other information besides the offset and leading-edge value

when you use it for hit-testing layout shapes. You can use the information to tell how

close the hit point was to either edge of the hit glyph, what the edge offset of either side of

the hit glyph is, whether or not the hit point was actually within the area of the text line,

and what area around the hit point would yield the same edge offset. See “Performing

Hit-Testing” beginning on page 10-28 for more information and examples.

Using Carets, Highlighting, and Hit-Testing
With Layout Shapes

This section describes how to use QuickDraw GX functions to draw carets, to highlight,

to hit-test, and to analyze glyphs for their direction and for their relationship to charac-

ters in a layout shape’s source text.

Drawing Carets
QuickDraw GX provides functions that let you locate and draw a caret correctly in the

display text of any layout shape. This section shows you how to draw single and split

carets in simple and complex text, and how to change the caret position when the user

presses the Right or Left Arrow key.

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

Using Carets, Highlighting, and Hit-Testing With Layout Shapes 10-19

Getting the Caret Shape

The GXGetLayoutCaret function takes an edge offset in a layout shape and returns a

shape that represents a text caret. Determining the caret’s shape means determining its

position on the screen, its angle in italic or otherwise slanted text, and its height (to

correspond to the text size). In accordance with QuickDraw GX typographic conventions,

the caret is a single line when positioned between two characters of like directionality,

and possibly a split caret (a pair of short lines at different places) at the boundaries

between text of opposing direction.

The caret returned by GXGetLayoutCaret has all those properties automatically

specified. Because the caret is a shape object, it has associated style, ink, and transform

objects. The style and ink have the same default properties as those for any polygon

shape. You can specify details of a caret’s appearance, such as its thickness, color, and

transfer mode, by modifying its style or ink objects. The caret shape’s transform object is

always identical to the layout shape’s transform, so that the caret matches any moved,

scaled, or rotated text.

The GXGetLayoutCaret function generates a split caret at direction boundaries if you

specify gxSplitCaretType for the caretType parameter. When italic text occurs in a

line containing mixed directions and the caret is split, the top and bottom portions of the

caret may have different slants.

Listing 10-1 is a partial listing of a test function that creates and draws a layout shape

twice, with the text specified in the string myString (of byte length len). The function

then determines the caret shape for each edge offset in the layout shape’s source text

and draws the caret. The first time, it specifies gxHighlightAverageAngle in

GXGetLayoutCaret to ensure that if the text is angled, the caret will be angled also; the

second time, it specifies gxNoCaretAngle to make the caret vertical regardless of the

text slant. (Specifying gxSplitCaretType ensures that two carets are drawn for caret

positions at direction boundaries in mixed-direction text.)

Listing 10-1 Drawing angled and straight carets at all caret positions

char *myString = "Angled Text";

gxStyle myStyle;

gxPoint myPoint;

gxShape caret, highlight, layout;

short i, len = 0;

gxStyle myStyle;

.

.

.

len = strlen(myString);

myStyle = NewLayoutStyle((char *)

"\pZapf Chancery Medium Italic", ff(50),

0, nil, nil, 0, nil);

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

10-20 Using Carets, Highlighting, and Hit-Testing With Layout Shapes

layout = GXNewLayout(1, &len, (void *) &myString,

1, &len, &myStyle,

0, nil, nil,

nil, &myPoint);

GXDrawShape(layout);

for (i = 0; i <= len; i++)

{

caret = GXGetLayoutCaret(layout, i,

gxHighlightAverageAngle,

gxSplitCaretType, nil);

GXDrawShape(caret);

GXDisposeShape(caret);

}

GXMoveShape(layout, 0, ff(75));

GXDrawShape(layout);

for (i = 0; i <= len; i++)

{

caret = GXGetLayoutCaret(layout, i,

gxNoCaretAngle,

gxSplitCaretType, nil);

GXDrawShape(caret);

GXDisposeShape(caret);

}

The result is two lines of display text with carets drawn at each caret position, as shown

in Figure 10-15.

Figure 10-15 Drawing all possible caret positions in a layout shape’s text

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

Using Carets, Highlighting, and Hit-Testing With Layout Shapes 10-21

Listing 10-2 is a code fragment that demonstrates how to specify different caret types for

a given offset in a layout shape. The code first creates a new layout shape with two style

runs (one in Roman text and one in Arabic text; the text runs are specified in textPtrs,

their lengths are specified in runLengths, their style objects in styleArray). It then

draws the layout three times (starting at myPoint), each time drawing a caret at the

screen position corresponding to edge offset 4 in the source text—the boundary between

the Roman and Arabic text.

Listing 10-2 Drawing three different types of caret at one edge offset

/* create and draw a layout shape with two style runs */

layout = GXNewLayout(2, runLengths, (void *)textPtrs,

2, runLengths, styleArray,

0, nil, nil,

nil, &myPoint);

GXDrawShape(layout);

/* first draw a split caret at offset 4 */

caret = GXGetLayoutCaret(layout, 4, gxHighlightStraight,

gxSplitCaretType, nil);

GXDrawShape(caret);

/* move the layout shape downward and redraw */

GXMoveShape(layout, 0, ff(72));

GXDrawShape(layout);

/* next draw a left-to-right caret at offset 4 */

GXGetLayoutCaret(layout, 4, gxHighlightStraight,

gxLeftRightKeyboardCaret, caret);

GXDrawShape(caret);

/* move the layout shape downward and redraw */

GXMoveShape(layout, 0, ff(72));

GXDrawShape(layout);

/* finally draw a right-to-left caret at offset 4 */

GXGetLayoutCaret(layout, 4, gxHighlightStraight,

gxRightLeftKeyboardCaret, caret);

GXDrawShape(caret);

Figure 10-16 shows the results of executing this code. The layout is drawn with a split

caret, then with a left-to-right caret, and finally with a right-to-left caret. Your application

chooses which caret to draw during program execution; if you choose a single caret, you

should choose the one that corresponds to the current direction (left to right or right to

left) for text input by the user.

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

10-22 Using Carets, Highlighting, and Hit-Testing With Layout Shapes

Figure 10-16 Drawing different caret types at a single edge offset

The GXGetLayoutCaret function is described on page 10-44. The gxCaretType

enumeration is described on page 10-41. The GXNewLayout function is described in

the chapter “Layout Shapes” in this book.

Drawing the Cursor at the Correct Angle Within a Given Area

In addition to controlling the shape, location, and style of the caret, you may also want to

modify the cursor, as mouse movements cause it to pass over different parts of your text.

For example, you may want to slant the standard Macintosh “I-beam” cursor when it

passes over italic text.

You could do this by making repeated calls to GXGetLayoutCaret as the cursor

moves, and using the resulting shape to calculate the proper angle for the cursor. The

GXGetCaretAngleArea function returns the angle for the caret, and therefore for the

cursor, corresponding to a given point in the display text. The function also returns

the tracking area for that angle—the contiguous area in which the angle stays the same.

The GXGetLayoutCaret and GXGetCaretAngleArea functions are described on

page 10-44 and page 10-46, respectively.

Positioning the Caret in Response to Arrow Keypresses

When the user presses the Right Arrow key, the caret should move one position to the

right; when the user presses the Left Arrow key, the caret should move one position to

the left. You can use the GXGetRightVisualOffset and GXGetLeftVisualOffset

functions to determine where to place the caret when either the Right or Left Arrow key

is pressed.

These functions take an edge offset in the source text and return an offset that you can

pass to GXGetLayoutCaret (page 10-44) to get a caret at the next position. The

GXGetRightVisualOffset function returns the edge offset corresponding to the next

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

Using Carets, Highlighting, and Hit-Testing With Layout Shapes 10-23

caret position to the right (or down); GXGetLeftVisualOffset returns an edge offset

corresponding to the next caret position to the left (or up). If you are using a split caret

with your text, GXGetRightVisualOffset and GXGetLeftVisualOffset return a

edge offset corresponding to the position next to the dominant (high) caret.

Listing 10-3 is a portion of a key-down event handler for a layout-editing library. The

listing shows the response of the handler to arrow keypresses. In the left-arrow case, the

handler calls GXGetLeftVisualOffset to get the offset for the next caret position,

defines the selection range as that edge offset, and then highlights (draws the caret).

The function in Listing 10-3 uses the library-defined function and ShowHighlight to

redraw the highlighting or caret, and NewSelection to update the library’s layout data

structures.

Listing 10-3 A key-down handler using GXGetRightVisualOffset and
GXGetLeftVisualOffset

void LayoutEditKey(LayoutEditHandle handle, char key)
.
.
.

switch (key)

{

case leftArrow:

case rightArrow:

{

.

.

.

if (key == leftArrow)

newCaret = GXGetLeftVisualOffset(layout->layout,

layout->selectionRanges.ranges[0].minOffset);

else

newCaret = GXGetRightVisualOffset(layout->layout,

layout->selectionRanges.ranges[0].maxOffset);

NewSelection(layout, newCaret, newCaret);

ShowHighlight(layout);

break;

}

case backSpace:

{

.

.

.

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

10-24 Using Carets, Highlighting, and Hit-Testing With Layout Shapes

The GXGetRightVisualOffset and GXGetLeftVisualOffset functions are

described on page 10-47 and page 10-48, respectively.

Positioning the Caret Within Ligatures

You can specify that caret positions within a ligature are not to be permitted, meaning

that caret-drawing, highlighting, and hit-testing must consider that ligatures are

indivisible glyphs. You do this by setting the gxNoLigatureSplits flag in the run

controls structure of the style run containing the ligatures.

Listing 10-4 draws the same line of text twice, first without specifying any value for

gxNoLigatureSplits, and then with the flag set. It first creates the layout shape at

the location myPoint. The style object of the shape uses the run controls structure

runControls.

Listing 10-4 Preventing ligature splits for caret positioning

void LigatureSplits(WindowPtr sampleWindow)

{

char *myString = "flat fin";

short i, len = 0;

gxPoint myPoint;

gxRunControls runControls;

gxShape caret, layout;

gxStyle myStyle;

.

.

.

myStyle = NewLayoutStyle((char *) "\pTimes Roman", ff(60),

0, nil, nil, 0, nil);

layout = GXNewLayout(1, &len, (void *) &myString,

1, &len, &myStyle,

0, nil, nil,

nil, &myPoint);

GXDrawShape(layout);

for (i = 0; i < (len + 1); i++)

{

caret = GXGetLayoutCaret(layout, i,

gxHighlightAverageAngle,

gxSplitCaretType, nil);

GXDrawShape(caret);

GXDisposeShape(caret);

}

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

Using Carets, Highlighting, and Hit-Testing With Layout Shapes 10-25

runControls.flags = gxNoLigatureSplits;

GXSetStyleRunControls(myStyle, &runControls);

GXMoveShape(layout, 0, ff(75));

GXDrawShape(layout);

for (i = 0; i < (len + 1); i++)

{

caret = GXGetLayoutCaret(layout, i,

gxHighlightAverageAngle,

gxSplitCaretType, nil);

GXDrawShape(caret);

GXDisposeShape(caret);

}

.

.

.

Figure 10-17 shows the results of executing the code in Listing 10-4. In the upper line,

carets are drawn in the middle of the “fl” and “fi” ligatures; in the lower line, there are

no valid caret positions within the ligatures.

Figure 10-17 All caret positions drawn with (upper) and without (lower) ligature splits

Drawing Highlighting
Highlighting single-direction text in a layout shape is straightforward. You call the
GXGetLayoutHighlight function, passing it the two edge offsets between which you

want the highlight to appear; the function returns a rectangular or trapezoidal shape that

corresponds in size and location to the highlighted area. The with-stream edges of the

highlight shape (the right and left edges, in horizontal text) are perpendicular or slanted,

as appropriate, depending on whether the text is slanted and whether you have specified

angled highlighting.

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

10-26 Using Carets, Highlighting, and Hit-Testing With Layout Shapes

When you draw the highlight, you most typically use the highlight color specified by the

user and the gxHighlightMode transfer mode.

The following code fragment creates and draws a layout shape with five style runs, one

of which has a right-to-left text direction. It then highlights the area between edge offsets

4 and 13, all of which is within left-to-right text. In the call to GXGetLayoutHighlight,

it specifies gxHighlightAverageAngle to slant the edge of the highlight that abuts

slanted text. This code uses the library functions SetShapeCommonTransfer and

SetShapeCommonColor to set up the ink object for the highlight shape.

layout = GXNewLayout(5, textLengths, (void *) textRuns,

5, textLengths, textStyles,

0, nil, nil,

&layoutOptions, &posn);

GXDrawShape (layout);

/* make a highlight shape from offset 4 to offset 13 */

highlight = GXGetLayoutHighlight (layout, 4, 13,

gxHighlightAverageAngle, nil);

SetShapeCommonTransfer (highlight, gxHighlightMode);

SetShapeCommonColor (highlight, gxWhite);

GXDrawShape(highlight);

Figure 10-18 shows the results of the highlighting.

Figure 10-18 Contiguous highlighting from offsets 4 to 13 in single-direction text

Highlighting Discontiguously in Mixed-Direction Text

In mixed-direction text, highlighting is just as straightforward as in single-direction text,

although it can be more complex in appearance, and there are two possible highlights

you may want to generate. The GXGetLayoutHighlight function returns a high-

lighted area that corresponds exactly to the selection range defined by the two edge

offsets. The highlighting can be visually discontiguous when the selection range crosses

direction boundaries.

The following code fragment highlights the selection range between edge offsets 4 and

19—crossing a direction boundary—in the same layout shape created in the previous

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

Using Carets, Highlighting, and Hit-Testing With Layout Shapes 10-27

fragment. Like the previous example, this code calls GXGetLayoutHighlight and

specifies gxHighlightAverageAngle.

/* make a highlight shape from offset 4 to offset 19 */

highlight = GXGetLayoutHighlight (layout, 4, 19,

gxHighlightAverageAngle, nil);

SetShapeCommonTransfer (highlight, gxHighlightMode);

SetShapeCommonColor (highlight, gxWhite);

GXDrawShape(highlight);

Figure 10-19 shows the results of the highlighting. The selection range appears as two

separate highlighted trapezoids.

Figure 10-19 Discontiguous highlighting from offsets 4 to 19 in mixed-direction text

Highlighting Contiguously in Mixed-Direction Text

The highlight shape returned by GXGetLayoutHighlight corresponds exactly to the

selection range defined by the two offsets passed to it. However, the discontiguous

nature of the highlighting in mixed-direction text may confuse some users, especially

when the highlighting is dynamic—that is, when the highlighting is continually drawn

and redrawn as the user moves the cursor through the text while holding down the

mouse button.

You can obtain a simpler shape for highlighting by calling the

GXGetLayoutVisualHighlight function. The GXGetLayoutVisualHighlight

function always returns a single, visually contiguous highlighted area representing the

visual range between the caret positions and leading-edge states of the two specified

offsets, even when the text has mixed directions. Because the highlighted area is visually

contiguous, the selection range it defines does not always correspond exactly to the range

between the two offsets in the source text. If the user performs an editing operation (such

as deleting, cutting, or pasting) on a part of the text that is highlighted continuously, you

must be sure to replace the characters in the source text that represent the highlighted

glyphs exactly, and not simply all the characters between the offsets used to generate

that highlight.

The following code fragment again highlights the area between edge offsets 4 and

19 in the same layout shape created in the previous fragments. Unlike the previous

examples, however, this code calls GXGetLayoutVisualHighlight instead of

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

10-28 Using Carets, Highlighting, and Hit-Testing With Layout Shapes

GXGetLayoutHighlight. (Also, unlike the code that calls GXGetLayoutHighlight,

this code must specify whether to highlight from the leading edge or trailing edge of

the glyph corresponding to each offset.)

/* make contiguous highlighting from offset 4 to offset 19 */

highlight = GXGetLayoutVisualHighlight (layout,

4, true, 19, false,

gxHighlightAverageAngle, nil);

SetShapeCommonTransfer (highlight, gxHighlightMode);

SetShapeCommonColor (highlight, gxWhite);

GXDrawShape(highlight);

Figure 10-20 shows the results of the executing this code. Note that, even though the

offsets passed to the highlighting functions are the same, some glyphs that are not

highlighted in Figure 10-19 are highlighted Figure 10-20. Conversely, some glyphs that

are highlighted in Figure 10-19 are not highlighted Figure 10-20.

Figure 10-20 Contiguous highlighting from offsets 4 to 19 in mixed-direction text

Providing Dynamic Highlighting

Dynamic highlighting is the process of continually drawing and redrawing the high-

lighted area as the user moves the cursor through the text while holding down the

mouse button. Dynamic highlighting works in conjunction with hit-testing, described in

the next section.

If your application uses GXHitTestLayout for hit-testing, your hit-test function can

perform dynamic highlighting by making repeated calls to GXHitTestLayout (and

GXGetLayoutHighlight or GXGetLayoutVisualHighlight) as long as the mouse

button is held down. Listing 10-5 on page 10-31 shows an example of dynamic high-

lighting. (That example does not show the call to GXGetLayoutHighlight; that call

occurs in the application-defined function NewSelectionAndHighlight.)

Performing Hit-Testing
You can use the GXHitTestLayout function to determine the source-text offset corre-

sponding to a hit anywhere in the display text of a layout shape. The function returns (a)

the edge offset corresponding to the closest edge of the glyph beneath the hit point and

(b) the edge offset of the other edge of that same glyph.

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

Using Carets, Highlighting, and Hit-Testing With Layout Shapes 10-29

For example, in Figure 10-21, the source text for the word “office” has edge offsets 0

through 6, and the display text consists of five glyphs (including the “fi” ligature). Above

the glyphs, the numbers denote the edge offsets equivalent to the glyph edges.

Figure 10-21 GXHitTestLayout example

As you read the following sections, assume a hit occurs at the spot marked “×”,

above point P2, near the trailing edge of the “c.” The next section discusses how

GXHitTestLayout interprets the significance of the hit.

Layout Hit Info Structure

The GXHitTestLayout function returns information in a layout hit info structure, is

described on page 10-43. That structure gives all the relevant information about the hit.

In Figure 10-21, the offset closest to the hit is 5, so in this case the value of the

hitSideOffset field in the layoutHitInfo structure is 5. This value specifies

the edge offset corresponding to the caret position between the glyphs “c” and “e.”

The value of the nonHitSideOffset field is 4, which specifies the other side of

the “c” glyph. If the hit had occurred on the left side of the “e” glyph, the value of

hitSideOffset would still have been 5, but the value of nonHitSideOffset

would have been 6.

In this example, the value of the leadingEdge field in the layoutHitInfo structure

is false, because the hit occurred nearest the trailing edge of the glyph. If the hit had

occurred on the left side of the glyph, or if the glyph had right-to-left directionality and

the hit was on the right side, the leadingEdge field would have been true.

The layoutHitInfo structure contains two with-stream distances as well. In this

example, the value of the firstPartialDist field is the left-side partial distance:

the horizontal distance from the point P1 to the point P2 in this case. The value of

lastPartialDist is the right-side partial distance: the horizontal distance from the

point marked P2 to the point marked P3 in this case.

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

10-30 Using Carets, Highlighting, and Hit-Testing With Layout Shapes

The layoutHitInfo structure also contains, in the inLoose field, an indication of

whether or not the hit was actually within the area of the layout shape. In Figure 10-21,

the value of the inLoose field is true, because the value of the hit point specifies that

the hit occurred within the layout’s area. If the hit point had been at the same horizontal

position but above or below the line of text, all the returned information would have

been the same, except that the value of inLoose would have been false. The

GXHitTestLayout function projects the hit point to the baseline of the text so that

your application can highlight the text dynamically, even if the mouse cursor strays out

of the area of the layout shape while the mouse button is held down. (In multiline text,

if the cursor strays far enough out of the layout shape’s area, you would instead extend

the dynamic highlight into the layout shapes that represent the other lines the cursor is

passing over.)

If the hit had occurred in the middle of the “fi” ligature, the values of the two offsets

returned in the layoutHitInfo structure would depend on whether the ligature is

treated as a single glyph or as two partial glyphs; see “Caret Position and Split Ligatures”

on page 10-10. If you had specified that ligatures are to be treated as single glyphs, and

if the hit had occurred in the “fi” ligature in Figure 10-21, GXHitTestLayout would

return either 2 or 4 as the value of hitSideOffset, depending on whether the hit

point was closer to the “f” portion or the “i” portion of the ligature. If you had specified

that ligatures are to be split, and the hit were near the center of the ligature, the value

of hitSideOffset would be 3.

Mouse Tracking Area

The GXHitTestLayout function returns a modification of a shape that you pass it. The

shape defines the mouse tracking area for the returned edge offset (hitSideOffset).

The mouse tracking area is that area in the display text of the layout shape for which hits

will yield the same edge offset. For repositioning the caret or for providing dynamic

highlighting, for example, you can use the mouse tracking area to minimize the need for

calls to GXHitTestLayout. In other words, you need to call GXHitTestLayout to get

a new edge offset only when the mouse moves outside of this tracking area. You do not

need to pass a shape if you don’t wish to do mouse tracking in this way.

Sample Hit-Test Function

Listing 10-5 is a hit-test function from a layout-shape editing library. It demonstrates the

use of GXHitTestLayout to convert mouse clicks to offsets for the purpose of drawing

carets and highlighting. It also performs dynamic highlighting while the user holds

down the mouse button.

This function refers to the layout shape with a pointer (layout), and uses the library-

defined functions GetShapeViewPort (to get the layout’s view port),

NewSelectionAndHighlight (to update the selection range and highlight shape),

and DisposeShapeAt (to dispose of shapes).

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

Using Carets, Highlighting, and Hit-Testing With Layout Shapes 10-31

Listing 10-5 Using the GXHitTestLayout function

void LayoutEditClick(LayoutEditHandle handle, gxPoint hitDown)

/* lock the layout edit handle, initialize variables */

{

LayoutEditPtr layout = LockEditHandle(handle);

gxPoint lastPoint = hitDown;

SelectionOffset firstHitOffset, lastHitOffset;

gxLayoutHitInfo hitInfo;

boolean oldIsCaret, newIsCaret = true;

gxShape diffHighlight = nil, oldHighlight = nil;

gxViewPort layoutViewPort = GetShapeViewPort(layout->layout);

/* get the offset for the hit point */

GXHitTestLayout(layout->layout, &hitDown,

gxHighlightAverageAngle, &hitInfo, nil);

firstHitOffset = lastHitOffset =

(SelectionOffset) hitInfo.hitSideOffset;

/* erase the old highlight (stored in layout edit structure) */

GXDrawShape(layout->highlight);

/* make the selection a caret at firstHitOffset */

NewSelectionAndHighlight(layout, firstHitOffset,

firstHitOffset);

GXDrawShape(layout->highlight);

/*

Recompute the selection and the highlight as long as the

mouse button is still down.

*/

while (Button())

{

GXGetViewPortMouse(layoutViewPort, &hitDown);

/* continue if the mouse hasn't moved */

if (hitDown.x == lastPoint.x &&

hitDown.y == lastPoint.y) continue;

lastPoint = hitDown;

GXHitTestLayout(layout->layout, &hitDown,

gxHighlightAverageAngle, &hitInfo, nil);

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

10-32 Using Carets, Highlighting, and Hit-Testing With Layout Shapes

/* continue if the selection hasn't changed */

if (hitInfo.hitSideOffset == lastHitOffset) continue;

/* save the old highlight and calculate the new one */

oldIsCaret = newIsCaret;

lastHitOffset = (SelectionOffset) hitInfo.hitSideOffset;

newIsCaret = (lastHitOffset == firstHitOffset);

if (oldIsCaret != newIsCaret)

/*

If it has changed from a caret to a highlight

or vice versa, redraw the entire highlight or caret.

*/

{

GXDrawShape(layout->highlight); /* erase old */

NewSelectionAndHighlight(layout, firstHitOffset,

lastHitOffset);

GXDrawShape(layout->highlight); /* draw new */

}

else

/*

Otherwise, to reduce flicker, draw only the difference

between the new and the old highlight.

*/

{

oldHighlight = GXCopyToShape(oldHighlight,

layout->highlight);

NewSelectionAndHighlight(layout, firstHitOffset,

lastHitOffset);

diffHighlight = GXCopyToShape(diffHighlight,

layout->highlight);

GXExcludeShape(diffHighlight, oldHighlight);

GXDrawShape(diffHighlight); /* draw difference */

}

}

DisposeShapeAt(&diffHighlight);

DisposeShapeAt(&oldHighlight);

}

The layout hit info structure is described on page 10-43.

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

Using Carets, Highlighting, and Hit-Testing With Layout Shapes 10-33

Analyzing Glyphs
You can use the functions described in this chapter to analyze several aspects of the rela-

tionship between a glyph and its characters. You can determine the directionality of a

glyph, you can determine the edge offsets corresponding to both edges of a ligature, you

can convert a glyph index to an edge offset, and you can convert an edge offset to a

glyph index.

Determining the Direction of a Glyph

To determine the direction of a glyph in a complex layout shape that has mixed-direction

text and possibly several levels of direction runs, you can call the GXHitTestLayout

function for the left side of the glyph and test the value of the leadingEdge flag in the

gxLayoutHitInfo structure returned by the function. If the value of the flag is true,

the glyph is left to right; otherwise it is right to left. (Vertical text is always considered to

be left to right by QuickDraw GX.)

You can use the GXGetLayoutGlyphs function to obtain the location of any glyph in

the layout shape, and pass that information to GXHitTestLayout to get the flag value.

Determining the Offsets for Each Edge of a Ligature

You can use the GXGetCompoundCharacterLimits function to find the bounding

offsets equivalent to the leading and trailing edges of a character. The function is

especially useful for determining the bounding offsets of a ligature, which may represent

several characters.

For example, the text of a layout shape containing the word “office” is displayed in

Figure 10-22. The source text has edge offsets 0 through 6, the equivalent caret positions

for which are shown in the display text. If the “f,” “f,” and “i” characters are represented

by a single “ffi” ligature, then the display text itself consists of only four glyphs, with

glyph indices as shown.

Figure 10-22 Caret positions and glyph indexes for one display version of the word “office”

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

10-34 Using Carets, Highlighting, and Hit-Testing With Layout Shapes

You pass the GXGetCompoundCharacterLimits function a trial offset: an

edge offset bordering on or interior to the glyph of interest. The

GXGetCompoundCharacterLimits function returns a minimum offset and a

maximum offset representing the bounding edges of that glyph. If the trial offset is

between glyphs in the display text, GXGetCompoundCharacterLimits notifies

you of that condition and considers both bounding glyphs as a single glyph for the

purposes of computing minimum and maximum offset.

For example, if you call GXGetCompoundCharacterLimits for the text in the layout

shape shown in Figure 10-22, passing it in turn each possible offset, the function returns

the following results:

Finding the Equivalent Glyphs to an Offset in the Source Text

You can directly convert an edge offset into an identification of an individual glyph or

glyphs in the display text of a layout shape. This conversion is useful, for instance, if you

want to substitute one glyph for another or to perform a graphics operation on a glyph

at a particular offset.

The function shown in Listing 10-6 locates and draws a box around the glyph whose

trailing edge corresponds to edge offset 6 in the source text of a layout shape. It uses

the GXGetOffsetGlyphs function for that purpose. Depending on information in

the run-features array of the style object associated with the layout shape—which in

this case controls which ligatures may be formed—that one offset may correspond to

different glyphs. Listing 10-6 draws the layout shape and highlights the glyph at offset 6

three times, one for each of three different ligature settings.

The listing first creates the layout shape at the location myPoint, and uses the library-

defined function NewLayoutStyle to create a style object. The length of the string

is len.

Listing 10-6 Converting an edge offset to a glyph index

char *myString = "affected";

gxLayoutOffsetState offsetState;

gxRectangle boundingBoxes[20];

gxRunFeature runFeature[3];

Trial
offset

Minimum
offset

Maximum
offset

On
boundary?

0 0 1 true
1 0 4 true
2 1 4 false
3 1 4 false
4 1 5 true
5 4 6 true
6 5 6 true

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

Using Carets, Highlighting, and Hit-Testing With Layout Shapes 10-35

gxShape layout;

short len;

gxStyle myStyle;

unsigned short firstGlyph, secondGlyph;

.

.

.

/* set up the style object and run features array */

myStyle = NewLayoutStyle((char *) "\pHoefler Text", ff(36), 0,

nil, nil, 0, nil);

runFeature[0].featureType = ligaturesType;

runFeature[0].featureSelector = requiredLigaturesOffSelector;

runFeature[1].featureType = ligaturesType;

runFeature[1].featureSelector = commonLigaturesOffSelector;

runFeature[2].featureType = ligaturesType;

runFeature[2].featureSelector = rareLigaturesOffSelector;

GXSetStyleRunFeatures(myStyle, 3, runFeature);

/* create and draw the layout with no ligatures */

layout = GXNewLayout(1, &len, (void *) &myString,

1, &len, &myStyle,

0, nil, nil,

nil, &myPoint);

GXDrawShape(layout);

/*

Draw a frame around the glyph whose trailing edge corresponds

to edge offset 6. In this case, it’s glyph 6 (index = 6).

*/

GXGetOffsetGlyphs(layout, 6, false, &offsetState,

&firstGlyph, &secondGlyph);

GXGetGlyphMetrics(layout, nil, boundingBoxes, nil);

GXDrawRectangle(boundingBoxes + firstGlyph - 1,

gxClosedFrameFill);

GXDisposeShape(layout);

/* reinitialize the style; this time allow normal ligatures */

runFeature[0].featureSelector = requiredLigaturesOnSelector;

runFeature[1].featureSelector = commonLigaturesOnSelector;

GXSetStyleRunFeatures(myStyle, 3, runFeature);

myPoint.y += ff(50);

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

10-36 Using Carets, Highlighting, and Hit-Testing With Layout Shapes

/* re-create and redraw the layout a second time */

layout = GXNewLayout(1, &len, (void *) &myString,

1, &len, &myStyle,

0, nil, nil,

nil, &myPoint);

GXDrawShape(layout);

/*

Draw a frame again at the same offset and trailing edge;

now it encloses a ligature whose glyph index is 5.

*/

GXGetOffsetGlyphs(layout, 6, false, &offsetState,

&firstGlyph, &secondGlyph);

GXGetGlyphMetrics(layout, nil, boundingBoxes, nil);

GXDrawRectangle(boundingBoxes + firstGlyph - 1,

gxClosedFrameFill);

GXDisposeShape(layout);

/* Re-initialize the style; include all the optional ligatures */

runFeature[2].featureSelector = rareLigaturesOnSelector;

GXSetStyleRunFeatures(myStyle, 3, runFeature);

myPoint.y += ff(50);

/* re-create and redraw the layout a third time */

layout = GXNewLayout(1, &len, (void *) &myString,

1, &len, &myStyle,

0, nil, nil,

nil, &myPoint);

GXDrawShape(layout);

/*

Draw the frame once more at the same offset and trailing edge;

now it encloses the ligature whose glyph index is 4.

*/

GXGetOffsetGlyphs(layout, 6, false, &offsetState,

&firstGlyph, &secondGlyph);

GXGetGlyphMetrics(layout, nil, boundingBoxes, nil);

GXDrawRectangle(boundingBoxes + firstGlyph - 1,

gxClosedFrameFill);

.

.

.

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

Using Carets, Highlighting, and Hit-Testing With Layout Shapes 10-37

Figure 10-23 shows the results of executing the function in Listing 10-6. The same edge

offset results in a glyph with a different glyph index being framed in each case.

Figure 10-23 Using GXGetOffsetGlyphs to locate glyphs corresponding to known offsets

The function in Listing 10-6 uses the glyph index and a call to GXGetGlyphMetrics

for the purpose of getting the rectangle shape to draw around the proper glyph in

each case. If, after obtaining the glyph index, you need the actual glyph code that

identifies the glyph within its font, you can call the GXGetLayoutGlyphs function.

The GXGetLayoutGlyphs function is described in the chapter “Layout Shapes” in

this book. The GXGetGlyphMetrics function is described in the chapter “Typographic

Shapes” in this book.

Finding the Equivalent Offset to a Glyph in the Display Text

You can directly convert a glyph index (plus leading edge information) into an edge offset

in the source text of a layout shape. You may need this conversion, for instance, to obtain

the character code for a particular glyph, or to substitute one character for another in a

layout shape’s source text.

The function shown in Listing 10-7 locates the character associated with glyph 17 in a

layout shape’s display text and then highlights that character’s glyph. First it calls the

GXGetGlyphOffset function to get the offset for the leading edge of glyph 17 and

then calls GXGetLayoutHighlight to highlight the region from that offset to the

next. Like the function in Listing 10-6 on page 10-34, this function sets values in the run

features array of the layout shape’s style object to control which ligatures may be formed.

Listing 10-7 draws the layout shape and highlights glyph 17 three times, once for each of

three different ligature settings.

This listing draws the initial layout shape at the location myPoint, and uses

the library-defined functions NewLayoutStyle (to create a style object),

SetShapeCommonTransfer (to assign a special transfer mode for fast highlighting).

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

10-38 Using Carets, Highlighting, and Hit-Testing With Layout Shapes

Listing 10-7 Converting a glyph index to an edge offset

boolean leadingEdge, wasRealCharacter;

char *myString = "fly-fishing aeronaut";

gxByteOffset offset;

gxRunFeature runFeature[3];

gxShape highlight, layout;

short len = 0;

gxStyle myStyle;

.

.

.
len = strlen(myString);

/* set up the style object and run features array */

myStyle = NewLayoutStyle((char *) "\pTimes Roman", ff(36),

0, nil, nil, 0, nil);

runFeature[0].featureType = ligaturesType;

runFeature[0].featureSelector = requiredLigaturesOffSelector;

runFeature[1].featureType = ligaturesType;

runFeature[1].featureSelector = commonLigaturesOffSelector;

runFeature[2].featureType = ligaturesType;

runFeature[2].featureSelector = diphthongLigaturesOffSelector;

GXSetStyleRunFeatures(myStyle, 3, runFeature);

/* create and draw the layout, with no ligatures */

layout = GXNewLayout(1, &len, (void *) &myString,

1, &len, &myStyle,

0, nil, nil,

nil, &myPoint);

GXDrawShape(layout);

/*

Get the offset for left edge of glyph 17 (= “n”),

then highlight from that offset to the next offset.

(This simple example assumes a 1-byte character code.)

*/

GXGetGlyphOffset(layout, 17, true, &offset,

&leadingEdge, &wasRealCharacter);

highlight = GXGetLayoutHighlight(layout, offset, offset + 1,

gxHighlightAverageAngle, nil);

SetShapeCommonTransfer(highlight, gxHighlightMode);

GXDrawShape(highlight);

GXDisposeShape(layout);

GXDisposeShape(highlight);

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

Using Carets, Highlighting, and Hit-Testing With Layout Shapes 10-39

/* reinitialize the style; this time allow normal ligatures */

runFeature[0].featureSelector = requiredLigaturesOnSelector;

runFeature[1].featureSelector = commonLigaturesOnSelector;

GXSetStyleRunFeatures(myStyle, 3, runFeature);

myPoint.y += ff(50);

/* re-create and redraw the layout a second time */

layout = GXNewLayout(1, &len, (void *) &myString,

1, &len, &myStyle,

0, nil, nil,

nil, &myPoint);

GXDrawShape(layout);

/* locate and highlight glyph 17 again; this time it’s “u” */

GXGetGlyphOffset(layout, 17, true, &offset,

&leadingEdge, &wasRealCharacter);

highlight = GXGetLayoutHighlight(layout, offset, offset + 1,

gxHighlightAverageAngle, nil);

SetShapeCommonTransfer(highlight, gxHighlightMode);

GXDrawShape(highlight);

GXDisposeShape(layout);

GXDisposeShape(highlight);

/* reinitialize the style; allow all optional ligatures */

runFeature[2].featureSelector = diphthongLigaturesOnSelector;

GXSetStyleRunFeatures(myStyle, 3, runFeature);

myPoint.y += ff(50);

/* re-create and redraw the layout a third time */

layout = GXNewLayout(1, &len, (void *) &myString,

1, &len, &myStyle,

0, nil, nil,

nil, &myPoint);

GXDrawShape(layout);

/* locate and highlight glyph 17 once more; this time it’s “t” */

GXGetGlyphOffset(layout, 17, true, &offset,

&leadingEdge, &wasRealCharacter);

highlight = GXGetLayoutHighlight(layout, offset, offset + 1,

gxHighlightAverageAngle, nil);

SetShapeCommonTransfer(highlight, gxHighlightMode);

GXDrawShape(highlight);

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

10-40 Layout Carets, Highlighting, and Hit-Testing Reference

GXDisposeShape(layout);

GXDisposeShape(highlight);

.

.

.

Figure 10-24 shows the results of executing the function Listing 10-7. Note that in each

case, glyph 17 corresponds to a different offset in the source text.

Figure 10-24 Using GXGetGlyphOffset to locate a glyph’s character

Layout Carets, Highlighting, and Hit-Testing Reference

This section provides reference information to the constants, data structures, and

functions that allow you to

■ draw carets and highlighting properly in the display text of layout shapes

■ hit-test the display text of layout shapes

■ convert between edge offsets in the source text and glyph indexes in the display text
of layout shapes

Constants and Data Types

This section describes the gxHighlightType, gxCaretType, and

gxLayoutOffsetState enumerations, and the gxLayoutHitInfo structure.

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

Layout Carets, Highlighting, and Hit-Testing Reference 10-41

Highlighting Type

The gxHighlightType enumeration controls the shape that QuickDraw GX returns for

carets and highlighting in a layout shape.

enum {

gxHighlightStraight = 0,

gxHighlightAverageAngle = 1

};

typedef unsigned long gxHighlightType;

Constant descriptions

gxHighlightStraight
The highlighting is perpendicular to the baseline.

gxHighlightAverageAngle
The highlighting is slanted at the angle specified by the font for
slanted highlights, or at the average of the two angles at the
boundary between text of different slants.

Note

The run control flag gxNoCaretAngle can override the effects of the
highlight type selected. However, for basic layout highlighting, selecting
a highlight type using the gxHighlightType data type is sufficient.
For more information about run control flags, see the chapter “Layout
Styles” in this book. ◆

Caret Type

The gxCaretType enumeration controls the kind of caret that QuickDraw GX returns

via the GXGetLayoutCaret function (page 10-44).

enum {

gxSplitCaretType = 0,

gxLeftRightKeyboardCaret = 1,

gxRightLeftKeyboardCaret = 2

};

typedef unsigned long gxCaretType;

Constant descriptions

gxSplitCaretType
The preferred caret to use at all times. If all the text is unidirectional,
the caret always appears as one piece. It appears as two partial
carets at direction boundaries. When split, the high caret appears at
the caret location for insertion of text in the dominant direction; the
low caret appears at the caret location for insertion of text in the
opposite direction.

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

10-42 Layout Carets, Highlighting, and Hit-Testing Reference

gxLeftRightKeyboardCaret
A single caret that appears at the proper location for left-to-right
text entry.

gxRightLeftKeyboardCaret
A single caret that appears at the proper location for right-to-left
text entry.

In general, you should always use a split caret.The other two types of carets should be

used only when providing a choice of directionality for mixed-direction text. Note that,

if you select a single caret type, you must always synchronize it with the direction (left

to right or right to left) associated with the user’s current text-entry direction.

Layout Offset State

The layout offset state is one of the values returned by the GXGetOffsetGlyphs function

(page 10-56). It gives an indication of where the specified edge offset lies in relation to

adjacent characters in the source text.

enum {

gxOffset8_8 = 0,

gxOffset8_16 = 1,

gxOffset16_8 = 2,

gxOffset16_16 = 3,

gxOffsetInvalid = 4,

gxOffsetInsideLigature = 0x8000

};

typedef unsigned short gxLayoutOffsetState;

Constant descriptions

gxOffset8_8 The specified offset corresponds to the edge of a glyph and is the
boundary between two 8-bit characters.

gxOffset8_16 The specified offset corresponds to the edge of a glyph and is the
boundary between an 8-bit character code and a (following) 16-bit
character code.

gxOffset16_8 The specified offset corresponds to the edge of a glyph and is the
boundary between a 16-bit character code and a (following) 8-bit
character code.

gxOffset16_16 The specified offset corresponds to the edge of a glyph and is the
boundary between two 16-bit character codes.

gxOffsetInvalid
The specified offset is interior to a 16-bit character code.

gxOffsetInsideLigature
The specified offset corresponds to the interior of a ligature
glyph. This value can be returned in addition to another
gxLayoutOffsetState value.

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

Layout Carets, Highlighting, and Hit-Testing Reference 10-43

At offsets marking the beginning and end of the source text for the line, at which there is

only one bounding character, the layout offset state has the value gxOffset8_8 or

gxOffset16_16, depending on the size of the bounding character code.

Layout Hit Info Structure

The layout hit info structure (type gxLayoutHitInfo) contains the information that is

returned by the GXHitTestLayout function (page 10-54).

typedef struct {

Fixed firstPartialDist;

Fixed lastPartialDist;

gxByteOffset hitSideOffset;

gxByteOffset nonHitSideOffset;

boolean leadingEdge;

boolean inLoose;

} gxLayoutHitInfo;

Field descriptions

firstPartialDist
The (with-stream) distance from the left or top edge of the hit glyph
to the actual hit point.

lastPartialDist
The (with-stream) distance from the right or bottom edge of the hit
glyph to the actual hit point.

hitSideOffset The edge offset corresponding to one edge of the hit ligature (the
edge that is closer to the hit point). For example, you do not get the
offset from the other edge of the ligature. However, see also the
discussion of the gxNoLigatureSplits flag (below).

nonHitSideOffset
The edge offset corresponding to the other edge of the hit glyph
(the edge that is farther from the hit point). However, see also the
discussion of the gxNoLigatureSplits flag (below).

leadingEdge A Boolean value specifying whether the hit occurred closer to
the leading edge of the hit glyph (true), or closer to its trailing
edge (false).

inLoose A Boolean value specifying whether the hit occurred within the
highlighted area. This value is true if the hit occurred within the
highlighted area of the shape as a whole. In general, hits outside of
this area would not be considered hits within the text of the layout
shape. Nevertheless, even when the value of inLoose is false,
the layout hit info reflects the correct projection of the hit point
to the baseline in the layout shape. You can therefore use
GXHitTestLayout to perform dynamic highlighting, even when
the mouse drifts outside the line of text being highlighted.

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

10-44 Layout Carets, Highlighting, and Hit-Testing Reference

There is an interaction between the hitSideOffset and nonHitSideOffset fields

and the state of the gxNoLigatureSplits run controls flag (described in this book in

the chapter “Layout Styles”) associated with the style run in which the hit occurred. If the

hit occurred on a glyph that is a ligature (encompassing more than one character in the

source text), the gxNoLigatureSplits flag controls whether just the two outermost

offsets of the ligature are returned (flag is set) or whether the appropriate intermediate

offsets are generated (the default case, where the flag is clear).

Functions

This section describes the QuickDraw GX functions that allow you to

■ manipulate carets

■ highlight text

■ perform hit-testing

■ convert between characters and glyphs

Manipulating Carets in a Layout Shape

The functions described in this section allow you to obtain a caret shape, determine the

area within which a given caret shape is valid, and move the caret position properly

when an arrow key is pressed.

GXGetLayoutCaret

You can use the GXGetLayoutCaret function to obtain a shape that describes the caret

for a given edge offset in the source text of a layout shape.

gxShape GXGetLayoutCaret(gxShape layout, gxByteOffset offset,

 gxHighlightType highlightType,

 gxCaretType caretType, gxShape caret);

layout A reference to the layout shape whose caret you need to draw.

offset The edge offset defining the insertion point in the source text.

highlightType
The angle of caret to use (perpendicular or oblique), of type
gxHighlightType.

caretType The type of caret to use (single or split), of type gxCaretType.

caret A reference to a shape object. You may supply an existing caret shape here
for GXGetLayoutCaret to reuse; if you pass nil for this parameter,
GXGetLayoutCaret allocates a new shape to return in its function result.

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

Layout Carets, Highlighting, and Hit-Testing Reference 10-45

function result The shape describing the caret for the insertion point specified by the
offset parameter. If you pass an existing shape in the caret parameter,
GXGetLayoutCaret modifies the shape as necessary and returns it;
otherwise, GXGetLayoutCaret returns a new shape.

DESCRIPTION

The GXGetLayoutCaret function returns a shape that you can use to draw a caret

with correct form and locations in the display text of a layout shape, given the edge

offset value that you pass to the function. In simple horizontal single-direction text,

GXGetLayoutCaret returns a caret shape that is a vertical bar between two glyphs.

In italic text, the caret is angled (if you specify the oblique highlight type). At direction

boundaries in mixed-direction text (and in text that has undergone linguistic rearrange-

ment), the caret is split into two separate halves (if you specify a split caret in the

caretType parameter). If the input edge offset corresponds to an interior point

in a ligature, the resulting caret is located on the edge of the ligature if the

gxNoLigatureSplits flag (in the run controls structure of the style run that includes

the offset) is set; otherwise, the caret is located at a point within the ligature.

If you pass nil for the caret parameter, GXGetLayoutCaret creates a new caret

shape and returns it as the function result. You can also pass an existing caret shape to

save QuickDraw GX the overhead of disposing of one shape and creating another. If you

pass an existing shape, GXGetLayoutCaret does not change the shape’s fill or any of

its style or ink values. If GXGetLayoutCaret creates a new shape, however, it sets the

shape fill to frame fill. If the layout shape has a transform, the caret shape this function

returns has the same transform.

The highlightType parameter controls the angle of the with-stream edges of the

highlighting shape (the left and right edges for horizontal text). If the highlight type

is gxHighlightStraight, the highlighting shape has edges that are perpendicular

to the baseline, and the highlighting is always tiled (contiguous and nonambiguous

across boundaries of text with different slant). If the highlight type is

gxHighlightAverageAngle, the angle of the edge of the highlighting area is the

average of the slants of the two glyphs on either side of the edge. In this case also,

highlighting is usually tiled; highlighting is not tiled only in cases of extreme slant

coupled with superscripts or subscripts. (In such a case a triangular highlighting area

may result.)

ERRORS, WARNINGS, AND NOTICES

Errors
shape_is_nil
parameter_out_of_range

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

10-46 Layout Carets, Highlighting, and Hit-Testing Reference

SEE ALSO

For a description of how carets appear in a layout shape, see “Drawing Highlighting” on

page 10-25. Caret types are described on page 10-41. Highlighting types are described

on page 10-41.

For examples of the use of the GXGetLayoutCaret function, see page 10-19.

The gxNoLigatureSplits flag is described with the run controls structure in the

chapter “Layout Styles” in this book.

GXGetCaretAngleArea

You can use the GXGetCaretAngleArea function to get (a) the angle needed to draw

a cursor in italic text as well as (b) the area in the display text within which that angle

is valid.

gxShape GXGetCaretAngleArea(gxShape layout,

 const gxPoint *hitPoint,

 gxHighlightType highlightType,

 gxShape caretArea,

 short *returnedRise,

 short *returnedRun);

layout A reference to the layout shape whose caret-angle information you need.

hitPoint A pointer to a point structure that contains the location for which you
need the caret angle. The location is in local (view port) coordinates.

highlightType
The kind of caret (perpendicular or oblique) that would be drawn in this
text, of type gxHighlightType.

caretArea A reference to a shape object. You may supply an existing caret-area shape
here for GXGetCaretAngleArea to reuse; if you pass nil for this
param-eter, GXGetCaretAngleArea allocates a new shape to return in
its function result.

returnedRise
A pointer to a short value. On return, it contains the vertical component
of the caret angle.

returnedRun
A pointer to a short value. On return, it contains the horizontal
component of the caret angle.

function result The shape describing the caret area for the point specified by the
hitPoint parameter. The caret area is the area of the display text
within which the caret or cursor can move and retain the same
angle. If you pass an existing shape in the caretArea parameter,
GXGetCaretAngleArea modifies the shape as necessary and returns
it; otherwise, GXGetCaretAngleArea returns a new shape.

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

Layout Carets, Highlighting, and Hit-Testing Reference 10-47

DESCRIPTION

The GXGetCaretAngleArea function helps you draw the cursor (the small icon,

commonly an “I-beam” shape or arrow, that moves with mouse movements) at the

proper angle for any slanted or italic text. The function provides two kinds of informa-

tion. First, it returns the angle of the caret (and therefore the cursor) for caret positions in

the vicinity of the hit point. Second, it returns a shape describing the area within which

the cursor can move and retain the given angle.

The shape returned by GXGetCaretAngleArea can be used as a cursor-tracking area.

As long as the cursor does not move outside of it, the shape of the cursor need not

change. Thus, you can minimize the calls you need to make to GXGetCaretAngleArea

or GXGetLayoutCaret as the user moves the cursor across the text.

If you pass nil for the caretArea parameter, GXGetCaretAngleArea creates a new

caret-area shape and returns it as the function result. You can also pass an existing caret-

area shape to save QuickDraw GX the overhead of disposing of one shape and creating

another. If the layout shape has a transform, the caret-area shape this function returns

has the same transform.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Highlight types are described on page 10-41. The GXGetLayoutCaret function is

described in the previous section.

GXGetRightVisualOffset

You can use the GXGetRightVisualOffset function to determine the edge offset

corresponding to the next caret position to the right (or downward, for vertical text) in a

layout shape.

gxByteOffset GXGetRightVisualOffset(gxShape layout,

 gxByteOffset currentOffset);

layout A reference to the layout shape whose right visual offset you need.

currentOffset
The edge offset in the source text corresponding to the current caret
position in the display text.

function result The edge offset in the source text corresponding to the next rightward (or
downward) caret position in the display text.

Errors
shape_is_nil
parameter_out_of_range

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

10-48 Layout Carets, Highlighting, and Hit-Testing Reference

DESCRIPTION

The GXGetRightVisualOffset function determines the next caret position to the

right (or down) in the display text of a layout shape. This is where the caret would

move if the user pressed the Right or Down Arrow key. The function takes into account

the text direction (left to right or right to left). It also considers whether the text has

undergone linguistic rearrangement. If the caret passes through a ligature, the resulting

offset depends on whether the gxNoLigatureSplits flag is set. If so, the caret position

passes entirely across the ligature; if not, the caret position can be interior to the ligature.

If a split caret moves across a direction boundary, this function describes the movement

of the high (dominant) caret only.

SPECIAL CONSIDERATIONS

This function may not always work correctly for right-to-left carets (type

gxRightLeftKeyboardCaret) at direction boundaries in mixed-direction text.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example of how to use this function, see Listing 10-3 on page 10-23.

Caret types are described on page 10-41.

The gxNoLigatureSplits flag is described with the run controls structure in the

chapter “Layout Styles” in this book.

The complementary function GXGetLeftVisualOffset is described next.

GXGetLeftVisualOffset

You can use the GXGetLeftVisualOffset function to determine the edge offset

corresponding to the next caret position to the left (or upward, for vertical text) in a

layout shape.

gxByteOffset GXGetLeftVisualOffset(gxShape layout,

 gxByteOffset currentOffset);

layout A reference to the layout shape whose left visual offset you need.

currentOffset
The edge offset in the source text corresponding to the current caret
position in the display text.

Errors
shape_is_nil
parameter_out_of_range

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

Layout Carets, Highlighting, and Hit-Testing Reference 10-49

function result The edge offset in the source text corresponding to the next leftward (or
upward) caret position in the display text.

DESCRIPTION

The GXGetLeftVisualOffset function determines the next caret position to the left (or

upward) in the display text of a layout shape. This is where the caret would move to if the

user pressed the Left or Up Arrow key. The function takes into account the text direction

(left to right or right to left). It also considers whether the text has undergone linguistic

rearrangement. If the caret passes through a ligature, the resulting offset depends on

whether or not the gxNoLigatureSplits flag is set. If so, the caret position passes

entirely across the ligature; if not, the caret position can be interior to the ligature.

If a split caret moves across a direction boundary, this function describes the movement

of the high (dominant) caret only.

SPECIAL CONSIDERATIONS

This function may not always work correctly for right-to-left carets (type

gxRightLeftKeyboardCaret) at direction boundaries in mixed-direction text.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example of how to use this function, see Listing 10-3 on page 10-23.

Caret types are described on page 10-41.

The gxNoLigatureSplits flag is described with the run controls structure in the

chapter “Layout Styles” in this book.

The complementary function GXGetRightVisualOffset is described in the

previous section.

Highlighting in a Layout Shape

The functions described in this section allow you to highlight text and, for mixed-

direction text, allow you to choose whether or not to make your highlights visually

contiguous.

Errors
shape_is_nil
parameter_out_of_range

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

10-50 Layout Carets, Highlighting, and Hit-Testing Reference

GXGetLayoutHighlight

You can use the GXGetLayoutHighlight function to obtain a shape to use to draw

the highlighting corresponding to a selection range in a specified layout shape. If the

selection range includes text of different directions, the highlighting shape may be

discontiguous.

gxShape GXGetLayoutHighlight(gxShape layout,

 gxByteOffset startOffset,

 gxByteOffset endOffset,

 gxHighlightType highlightType,

 gxShape highlight);

layout A reference to the layout shape you want to highlight.

startOffset
The edge offset in the source text that marks the start of the selection
range. If this value is the same as endOffset, GXGetLayoutHighlight
generates a caret.

endOffset The edge offset marking the end of the selection range. If this value is the
same as startOffset, GXGetLayoutHighlight generates a caret. You
can specify gxSelectToEnd for this parameter to select to the end of the
text in the layout shape.

highlightType
The type of highlight to use (perpendicular or oblique), of type
gxHighlightType.

highlight A reference to a shape object. You may supply an existing highlight shape
here for GXGetLayoutHighlight to reuse; if you pass nil for this
parameter, GXGetLayoutHighlight allocates a new shape to return in
its function result.

function result The shape describing the highlight for the selection range specified by the
startOffset and endOffset parameters. If you pass an existing shape
in the highlight parameter, GXGetLayoutHighlight modifies the
shape as necessary and returns it; otherwise, GXGetLayoutHighlight
returns a new shape.

DESCRIPTION

The GXGetLayoutHighlight function calculates a shape corresponding to the area

covered by the glyphs corresponding to all the characters between the two edge offsets

startOffset and endOffset. For single-direction text this is usually a simple rectan-

gular or trapezoidal area, but for mixed-direction text the area that is returned may be

quite complex.

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

Layout Carets, Highlighting, and Hit-Testing Reference 10-51

If you pass nil for the highlight parameter, GXGetLayoutHighlight creates a

new highlight shape and returns it as the function result. You can also pass an existing

highlight shape to save the overhead of disposing of one shape and creating another.

If either of the offsets corresponds to a point interior to a ligature, the appearance of the

highlight depends on the state of the gxNoLigatureSplits flag in the run controls

structure of the style run containing the offset. If the flag is set, the highlight extends

across the entire ligature; if it is clear, only the portion of the ligature corresponding to

the included characters is highlighted.

The highlightType parameter controls the angle of the with-stream edges of the

highlighting shape (the left and right edges for horizontal text). If the highlight type is

gxHighlightStraight, the highlighting shape has edges that are perpendicular to

the baseline, and the highlighting is always tiled (contiguous and nonambiguous

across boundaries of text with different slant). If the highlight type is

gxHighlightAverageAngle, the angle of the edge of the highlighting area is the

average of the slants of the two glyphs on either side of the edge. In this case also,

highlighting is usually tiled. Highlighting is not tiled only in cases of extreme slant

coupled with superscripts or subscripts. (In such a case a triangular highlighting area

may result.)

If the layout shape has a transform, the highlight shape this function returns has the

same transform.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example of how to use this function, see page 10-26 and page 10-27.

For a description of how highlighting applies to a layout shape, see “Drawing

Highlighting” on page 10-25. Highlight types are described on page 10-41.

The gxNoLigatureSplits flag is described with the run controls structure in the

chapter “Layout Styles” in this book.

Errors
shape_is_nil
parameter_out_of_range

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

10-52 Layout Carets, Highlighting, and Hit-Testing Reference

GXGetLayoutVisualHighlight

You can use the GXGetLayoutVisualHighlight function to obtain a shape that

describes a single, contiguous highlighting band corresponding to two edge offsets in a

specified layout shape. The shape is a solid connection between the beginning and end

glyphs—even across direction boundaries in the text or if it results in a visual highlight

that covers discontiguous text in the backing store.

gxShape GXGetLayoutVisualHighlight(gxShape layout,

 gxByteOffset startOffset,

 long startLeadingEdge,

 gxByteOffset endOffset,

 long endLeadingEdge,

 gxHighlightType highlightType,

 gxShape highlight);

layout A reference to the layout shape you want to highlight.

startOffset
The edge offset in the source text that marks the start of the
selection range. If this value is the same as endOffset,
GXGetLayoutVisualHighlight generates a caret.

startLeadingEdge
If this value is true, the highlight starts at the leading edge of the glyph
whose leading edge bounds the caret position corresponding to the
startOffset parameter. Otherwise, the highlight starts at the trailing
edge of the glyph whose trailing edge bounds the caret position corre-
sponding to the startOffset parameter.

endOffset The edge offset in the source text that marks the end of the selection
range. If this value is the same as startOffset,
GXGetLayoutVisualHighlight generates a caret. You can specify
gxSelectToEnd for this parameter to select to the end of the text in
the layout shape.

endLeadingEdge
If this value is true, the highlight ends at the leading edge of the glyph
whose leading edge bounds the caret position corresponding to the
endOffset parameter. Otherwise, the highlight ends at the trailing edge
of the glyph whose trailing edge bounds the caret position corresponding
to the endOffset parameter.

highlightType
The type of highlight to use (perpendicular or oblique), of type
gxHighlightType.

highlight A reference to a shape object. You may supply an existing highlight shape
here for GXGetLayoutVisualHighlight to reuse; if you pass nil for
this parameter, GXGetLayoutVisualHighlight allocates a new shape
to return in its function result.

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

Layout Carets, Highlighting, and Hit-Testing Reference 10-53

function result The shape describing the highlight for the selection range specified
by the startOffset and endOffset parameters, and given the
startLeadingEdge and endLeadingEdge constraints. If you
pass an existing shape in the highlight parameter,
GXGetLayoutVisualHighlight modifies the shape as necessary
and returns it; otherwise, GXGetLayoutVisualHighlight returns
a new shape.

DESCRIPTION

The GXGetLayoutVisualHighlight function calculates a shape that is a single,

contiguous highlighting rectangle (or trapezoid) between the glyphs corresponding to

the edge offsets startOffset and endOffset and the leading-edge states specified

in startLeadingEdge and endLeadingEdge.

The shape returned by GXGetLayoutVisualHighlight function is similar

to that returned by GXGetLayoutHighlight, except that the result of

GXGetLayoutVisualHighlight always represents the continuous visual

range between the two specified offsets and edges; it never consists of

discontiguous visual segments, even in mixed-direction text. (For single-direction

text, calling GXGetLayoutVisualHighlight yields the same results as calling

GXGetLayoutHighlight for the same start and end offsets.)

This function is most useful for mixed-direction text, where only a contiguous highlight

is desired. For dynamic highlighting as the user moves the cursor through the display

text, contiguous highlighting may be less confusing.

If you pass nil for the highlight parameter, GXGetLayoutVisualHighlight

creates a new highlight shape and returns it as the function result. You can also pass an

existing highlight shape to save QuickDraw GX the overhead of disposing of one shape

and creating another.

If either of the offsets corresponds to a point interior to a ligature, the appearance of the

highlight depends on the state of the gxNoLigatureSplits flag in the run controls

structure of the style run containing the offset. If the flag is set, the highlight extends

across the entire ligature; if it is clear, only the portion of the ligature corresponding to

the included characters is highlighted.

The highlightType parameter controls the angle of the with-stream edges of the

highlighting shape (the left and right edges for horizontal text). If the highlight type

is gxHighlightStraight, the highlighting shape has edges that are perpendicular

to the baseline, and the highlighting is always tiled (contiguous and nonambiguous

across boundaries of text with different slant). If the highlight type is

gxHighlightAverageAngle, the angle of the edge of the highlighting area is the

average of the slants of the two glyphs on either side of the edge. In this case also,

highlighting is usually tiled; highlighting is not tiled only in cases of extreme slant

coupled with superscripts or subscripts. (In such a case a triangular highlighting area

may result.)

If the layout shape has a transform, the highlight shape this function returns has the

same transform.

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

10-54 Layout Carets, Highlighting, and Hit-Testing Reference

SPECIAL CONSIDERATIONS

The highlight shape returned by this function, and therefore the selection range it

implies, do not in general correspond to the continuous set of characters between the

two edge offsets used as input to the function. Where contiguous highlighting crosses

direction boundaries, the resulting selection range is discontiguous and can be quite

complex, possibly involving characters beyond the range of edge offsets used as input.

For this reason, use of this function is not recommended.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example of how to use this function, see page 10-28.

For a description of how highlighting applies to a layout shape, see “Drawing

Highlighting” on page 10-25. Highlight types are described on page 10-41.

The gxNoLigatureSplits flag is described with the run controls structure in the

chapter “Layout Styles” in this book.

Hit-Testing in a Layout Shape

The function described in this section allows you to hit-test the text of any layout shape,

no matter how complex. For hit-testing of shapes other than layout shapes, you can use

the GXHitTestShape function, described in the shape objects chapter of Inside Macintosh:
QuickDraw GX Objects.

GXHitTestLayout

You can use the GXHitTestLayout function to convert a view port location (represent-

ing, for example, the position of a mouse-down event) into an edge offset in the source

text of a layout shape.

gxByteOffset GXHitTestLayout(gxShape layout,

 const gxPoint *hitDown,

 gxHighlightType highlightType,

 gxLayoutHitInfo *hitInfo,

 gxShape hitTrackingArea);

layout A reference to the layout shape to hit-test.

hitDown A pointer to a point structure that contains the location to test. The
location is in local (view port) coordinates.

Errors
shape_is_nil
parameter_out_of_range

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

Layout Carets, Highlighting, and Hit-Testing Reference 10-55

highlightType
The kind of highlight used (perpendicular or oblique), of type
highlightType.

hitInfo A pointer to a layout hit info structure. On return, the structure contains
the results of the hit-test. If you pass nil for this parameter, the hit info
structure is not filled out but the function result is still valid.

hitTrackingArea
A reference to a shape object. On return, the shape specifies the mouse
tracking area that corresponds to the specified hit point. You may supply
an existing shape here for GXHitTestLayout to reuse. Pass nil for this
parameter if you do not want GXHitTestLayout to return the hit-
tracking area.

function result The edge offset corresponding to the location where the hit occurred.
This value always equals the value of the hitSideOffset field of
gxLayoutHitInfo structure returned in the hitInfo parameter.

DESCRIPTION

The GXHitTestLayout function determines which part of which glyph in the display

text of a layout shape is closest to a particular location. It then returns in the hitInfo

parameter the equivalent source-text edge offset as the function result, and leading-edge

information.

You must specify the test location in the local coordinates of the view port in which the

text is displayed. For hit-testing of mouse-down events, you must convert mouse

coordinates (such as might be returned in an event record) to view port coordinates

(with a function such as GXQDGlobalToGXLocal or GXGetViewPortMouse) before

you call GXHitTestLayout.

The GXHitTestLayout function also returns a mouse tracking area, which specifies the

area in the display text within which the resulting edge offset is valid. For subsequent

hits anywhere within that area, there may be no need to call GXHitTestLayout again,

because the resulting edge offset will be the same. The hitTrackingArea parameter is

modified if it is not nil; if it is nil, it is not generated.

The hit info structure (returned in the hitInfo parameter) provides more than just

leading-edge information. It also returns the exact position of the hit point within the

hit glyph, two edge offsets corresponding to the two edges of the hit glyph, and an

indication of whether the hit point is actually outside the boundaries of the layout shape

(such as above or below, for horizontal text).

ERRORS, WARNINGS, AND NOTICES

Errors
shape_is_nil
parameter_is_nil
parameter_out_of_range

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

10-56 Layout Carets, Highlighting, and Hit-Testing Reference

SEE ALSO

For an example of how to use this function, see Listing 10-5 on page 10-31.

Coordinate systems and view ports are described in the chapter “View-Related Objects”

in Inside Macintosh: QuickDraw GX Objects. Functions such as GXQDGlobalToGXLocal

and GXGetViewPortMouse, which convert from Macintosh coordinates to QuickDraw

GX coordinates, are described in the chapter “The QuickDraw GX and the Macintosh

Environment” in Inside Macintosh: QuickDraw GX Environment and Utilities.

The GXHitTestShape function, used for hit-testing shapes other than layout shapes,

is described in the chapter “Shape Objects” in Inside Macintosh: QuickDraw GX Objects.
Typographic information returned by GXHitTestShape is described in the chapter

“Typographic Shapes” in this book.

Highlighting types are described on page 10-41. The layout hit info structure is described

on page 10-43.

Converting Between Glyphs and Characters in a Layout Shape

Functions described in this section allow you to convert glyphs to character codes and

back. The GXGetOffsetGlyphs and GXGetGlyphOffset functions map back and

forth between edge offsets in the source text and glyph indices in the display text of a

layout shape. The GXGetCompoundCharacterLimits function maps the edges of a

ligature glyph to offsets in the source text.

GXGetOffsetGlyphs

You can use the GXGetOffsetGlyphs function to determine which glyphs border the

caret positions corresponding to a particular edge offset in the source text.

void GXGetOffsetGlyphs(gxShape layout, gxByteOffset trial,

 long leadingEdge,

 gxLayoutOffsetState *offsetState,

 unsigned short *firstGlyph,

 unsigned short *secondGlyph);

layout A reference to the layout shape whose glyphs you want to identify.

trial An edge offset in the source text. The glyph or glyphs bounding the caret
positions corresponding to that offset are the glyphs to be returned.

leadingEdge
Specify true if you want the function to return in the firstGlyph
parameter the glyph corresponding to the character code following the
edge offset specified in the trial parameter; specify false if you want
the glyph corresponding to the character code preceding the edge offset.

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

Layout Carets, Highlighting, and Hit-Testing Reference 10-57

offsetState
A pointer to a layout offset state value. On return, it specifies the charac-
teristics (such as the sizes of the bounding character codes and whether
the offset corresponds to the interior of a glyph) of the edge offset speci-
fied in the trial parameter.

firstGlyph A pointer to a short value. On return, it contains the glyph index of
the glyph corresponding to the specified values in the trial and
leadingEdge parameters.

secondGlyph
A pointer to a short value. On return, it contains the glyph index of the
other glyph corresponding to the offset specified in the trial parameter.
In other words, it contains the glyph index that would have been returned
in the firstGlyph parameter if the leadingEdge parameter had had
the opposite value.

DESCRIPTION

The GXGetOffsetGlyphs function determines which glyph in the display text of a

layout shape corresponds to the specified edge offset and leading-edge state in the

source text. The function returns its result as a glyph index in the firstGlyph

parameter. (A glyph index is the 1-based position of a glyph in the left-to-right, or top-

to-bottom, display order of a layout shape’s display text.)

The function also returns, in the secondGlyph parameter, the glyph index of the other

glyph that bounds the caret position corresponding to the specified edge offset. Typically,

that is the bounding glyph whose leading-edge state is opposite to that of the glyph

returned in the firstGlyph parameter.

The GXGetOffsetGlyphs function also returns information on the nature of the

boundary at the specified edge offset, in the form of a layout offset state value. It tells

you the sizes of the bounding character codes, and whether the offset is interior to a

ligature or whether it is invalid (interior to a single character code).

In the case of an edge offset that corresponds to the interior of a compound glyph such

as a ligature, both firstGlyph and secondGlyph contain the same value: the index

of the glyph containing the offset. In the case of an invalid edge offset (between the two

bytes of a 16-bit character code), firstGlyph and secondGlyph both contain the

index of the glyph corresponding to that character.

You can call this function to perform a geometric operation on the glyph corresponding to

a known edge offset in the source text. You can get a copy of the glyph array that makes

up the display text of a layout shape by calling the GXGetLayoutGlyphs function.

ERRORS, WARNINGS, AND NOTICES

Errors
shape_is_nil
parameter_out_of_range

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

10-58 Layout Carets, Highlighting, and Hit-Testing Reference

SEE ALSO

For an example of how to use this function, see Listing 10-6 on page 10-34.

Layout offset state values are described on page 10-42.

The complementary function GXGetGlyphOffset is described next.

Glyph indexes are described in the section “Positioning in Source Text and Display Text”

beginning on page 10-3. The GXGetLayoutGlyphs function is described in the chapter

“Layout Shapes” in this book.

GXGetGlyphOffset

You can use the GXGetGlyphOffset function to find the edge offset in the source text

corresponding to a particular edge of a particular glyph in a layout shape.

void GXGetGlyphOffset(gxShape layout, long trial,

long onLeftTop, gxByteOffset *offset,
boolean *leadingEdge,

boolean *wasRealCharacter);

layout A reference to the layout shape containing the glyph whose correspond-
ing edge offset you need.

trial A (1-based) glyph index specifying the position of the glyph in the
display text.

onLeftTop A Boolean value indicating whether the trial parameter specifies the edge
offset corresponding to the left (or top, for vertical text) edge of the glyph
(true) or the edge offset corresponding to the right (or bottom, for
vertical text) edge of the glyph (false).

offset A pointer to a caret-offset value. On return, it contains the edge offset in
the source text corresponding to the glyph and edge specified in the
trial and onLeftTop parameters.

leadingEdge
A pointer to a Boolean value. On return, the value is true if the specified
edge of the specified glyph is the leading edge; otherwise the value
is false.

wasRealCharacter
A pointer to a Boolean value. On return, the value is true if the specified
glyph corresponds to one or more character codes in the source text;
otherwise the value is false.

DESCRIPTION

The GXGetGlyphOffset function determines which edge offset in the source text of a

layout shape corresponds to the specified edge of the specified glyph in the display text.

You specify the input glyph by index. (A glyph index is the 1-based position of a glyph

in the left-to-right, or top-to-bottom, display order of a layout shape’s display text.) The

function returns its result in the offset parameter.

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

Layout Carets, Highlighting, and Hit-Testing Reference 10-59

The function also returns, in the leadingEdge parameter, information indicating

whether the specified edge of the specified glyph is its leading edge. It also returns, in

the wasRealCharacter parameter, whether or not the specified glyph corresponds to

an actual character code in the source text. For example, no character codes correspond

to kashida glyphs. (If the value of wasRealCharacter is false, GXGetGlyphOffset

returns an offset corresponding to the right side of the glyph to the left of the

kashida glyph.)

You can call this function to perform an operation on the character code corresponding

to a known glyph in the display text. You can get a copy of the glyph array that makes

up the display text of a layout shape by calling the GXGetLayoutGlyphs function.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example of how to use this function, see Listing 10-7 on page 10-38.

The complementary function GXGetOffsetGlyphs is described in the previous section.

Glyph indexes are described in the section “Positioning in Source Text and Display Text”

beginning on page 10-3. The GXGetLayoutGlyphs function is described in the chapter

“Layout Shapes” in this book.

GXGetCompoundCharacterLimits

You can use the GXGetCompoundCharacterLimits function to find the edge offsets

that correspond to the leading and trailing edges of a particular glyph (itself specified by

edge offset).

void GXGetCompoundCharacterLimits(gxShape layout,

 gxByteOffset trial,

 gxByteOffset *minOffset,

 gxByteOffset *maxOffset,

 boolean *onBoundary);

layout A reference to the layout shape containing the glyph you want to analyze.

trial An edge offset in the source text. The glyph corresponding to that offset is
the glyph to be analyzed. If the offset is between glyphs, both glyphs
bounding that offset are taken into account: the glyph to be analyzed for
minOffset is the glyph corresponding to the character preceding the
trial offset, and the glyph to be analyzed for maxOffset is the glyph

Errors
shape_is_nil
parameter_out_of_range

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

10-60 Layout Carets, Highlighting, and Hit-Testing Reference

corresponding to the character following the trial offset. If the offset is
at the beginning (or end) of the source text, the glyph corresponding to
the first (or last) character in the text is the glyph to be analyzed.

minOffset A pointer to an edge-offset value. On return, it specifies the edge offset in
the source text corresponding to the leading edge of the glyph
corresponding to the character specified by the trial parameter.

maxOffset A pointer to a caret-offset value. On return, it specifies the edge offset in
the source text corresponding to the trailing edge of the glyph
corresponding to the character specified by the trial parameter.

onBoundary A pointer to a Boolean value. On return, it is true if the edge offset
specified in the trial parameter corresponds to a caret position between
glyphs in the display text. It is false if the offset corresponds to a caret
position in the interior of a compound glyph (such as a ligature).

DESCRIPTION

Given an edge offset in the source text of a layout shape, the

GXGetCompoundCharacterLimits function first determines which glyph in

the display text corresponds to that offset, and then returns the edge offsets

corresponding to both edges of the glyph. For a compound character such as

a ligature, GXGetCompoundCharacterLimits thus lets you determine which

characters make up the ligature.

The function returns the offsets in two parameters. The value of minOffset is the edge

offset that marks the leading edge of the glyph that includes (or precedes, if the value

of onBoundary is true) the trial offset. The value of maxOffset is the edge offset

that marks the trailing edge of the glyph that includes (or follows, if the value of

onBoundary is true) the trial offset.

If the trial offset precedes the first character or follows the last character in the source

text, GXGetCompoundCharacterLimits returns a value of true for onBoundary,

and returns edge offsets bounding the glyph corresponding to the first or last character,

respectively.

You can use GXGetCompoundCharacterLimits to determine whether a particular

edge offset corresponds to the interior of a ligature and, if it does, what the bounding

offsets of the characters making up that ligature are.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For information about related functions, see the descriptions of GXGetOffsetGlyphs

on page 10-56and GXGetGlyphOffset on page 10-58.

Errors
shape_is_nil
parameter_out_of_range

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

Summary of Layout Carets, Highlighting, and Hit-Testing 10-61

Summary of Layout Carets, Highlighting, and Hit-Testing

Constants and Data Types

Highlighting Type

enum {

gxHighlightStraight = 0,

gxHighlightAverageAngle = 1

};

typedef unsigned long gxHighlightType;

Caret Type

enum {

gxSplitCaretType = 0,

gxLeftRightKeyboardCaret = 1,

gxRightLeftKeyboardCaret = 2

 };

typedef unsigned long gxCaretType;

Layout Offset State

enum {

gxOffset8_8 = 0,

gxOffset8_16 = 1,

gxOffset16_8 = 2,

gxOffset16_16 = 3,

gxOffsetInvalid = 4,

gxOffsetInsideLigature = 0x8000

};

typedef unsigned short gxLayoutOffsetState;

Layout Hit Inf Structure

typedef struct {

Fixed firstPartialDist;

Fixed lastPartialDist;

gxByteOffset hitSideOffset;

gxByteOffset nonHitSideOffset;

boolean leadingEdge;

boolean inLoose;

} gxLayoutHitInfo;

C H A P T E R 1 0

Layout Carets, Highlighting, and Hit-Testing

10-62 Summary of Layout Carets, Highlighting, and Hit-Testing

Functions

Manipulating Carets in a Layout Shape

gxShape GXGetLayoutCaret (gxShape layout, gxByteOffset offset,
gxHighlightType highlightType,
gxCaretType caretType, gxShape caret) ;

gxShape GXGetCaretAngleArea (gxShape layout, const gxPoint *hitPoint,
gxHighlightType highlightType,
gxShape caretArea, short *returnedRise,
short *returnedRun);

gxByteOffset GXGetRightVisualOffset
(gxShape layout, gxByteOffset currentOffset);

gxByteOffset GXGetLeftVisualOffset
(gxShape layout, gxByteOffset currentOffset);

Highlighting in a Layout Shape

gxShape GXGetLayoutHighlight(gxShape layout, gxByteOffset startOffset,
gxByteOffset endOffset,
gxHighlightType highlightType,
gxShape highlight);

gxShape GXGetLayoutVisualHighlight
(gxShape layout, gxByteOffset startOffset,
long startLeadingEdge, gxByteOffset endOffset,
long endLeadingEdge,
gxHighlightType highlightType,
gxShape highlight);

Hit-Testing in a Layout Shape

gxByteOffset GXHitTestLayout(gxShape layout, const gxPoint *hitDown,
gxHighlightType highlightType,
gxLayoutHitInfo *hitInfo,
gxShape hitTrackingArea);

Converting Between Glyphs and Characters in a Layout Shape
void GXGetOffsetGlyphs (gxShape layout, gxByteOffset trial,

long leadingEdge,
gxLayoutOffsetState *offsetState,
unsigned short *firstGlyph,
unsigned short *secondGlyph);

void GXGetGlyphOffset (gxShape layout, long trial,
long onLeftTop, gxByteOffset *offset,
boolean *leadingEdge,
boolean *wasRealCharacter);

void GXGetCompoundCharacterLimits
(gxShape layout, gxByteOffset trial,
gxByteOffset *minOffset,
gxByteOffset *maxOffset, boolean *onBoundary);

GL-1

absolute position A specific position, given in
coordinates, for the origin of each character or
glyph in the glyph shape. Compare relative
position.

advance bits array An array that determines
whether the points in the positions array are
absolute or relative. The advance bits array
contains 1 bit for every character or glyph in
the shape.

advance height The distance from the top of a
glyph to the bottom of the glyph, including the
top-side bearing and bottom-side bearing.

advance width The full horizontal width of a
glyph as measured from its origin to the origin
of the next glyph on the line, including the side
bearings on both sides.

alignment The process of placing text in
relation to one or both margins.

alphabetic writing system The glyphs that
symbolize discrete phonemic elements in a
language. Compare syllabic writing system and
ideographic writing system.

angled caret A caret whose angle in relation
to the baseline of the display text is equivalent to
the slant of the glyphs making up the text.
Compare straight caret.

ascent line An imaginary horizontal line that
corresponds approximately to the tops of the
uppercase letters in the font. Uppercase letters
are chosen because, among the regularly used
glyphs in a font, these are generally the tallest.

automatic form substitution The process of
automatically substituting one or more glyphs
for one or more other glyphs.

baseline An imaginary line used to align glyphs
in a line of text.

baseline delta An array of distances (in points)
between the various baseline types and y = 0. See
baseline type.

baseline type The classification of baseline
used with a particular kind of text. See, for
example, Roman baseline.

bottom-side bearing The white space between
the bottom of the glyph and the visible ending of
the glyph.

bounding box The smallest rectangle that
entirely encloses the pixels or outline of a glyph.

byte offset The numbering of character codes
in source text. Compare edge offset.

caret A vertical or slanted blinking bar, appear-
ing at a caret position in the display text, that
marks the point at which text is to be inserted or
deleted. Compare split caret.

caret angle The angle of a caret or the edges of
a highlight. The caret angle can be perpendicular
to the baseline or parallel to the angle of the style
run’s text.

caret position A location on screen, typically
between glyphs, that relates directly to a caret
offset in the source text.

caret type A designation of the behavior of the
caret at direction boundaries in text. See split
caret, left-to-right caret, right-to-left caret.

character A symbol standing for a sound,
syllable, or notion used in writing; one of the
simple elements of a written language, for
example, the lowercase letter “a” or the number
“1”. Compare character code, glyph.

character code A numerical representation of
a character. Each writing system or language
has one or more character encodings, tables
that relate character codes to the characters
they represent. Most character codes have
either a 1-byte or 2-byte storage size.

character encoding An internal conversion
table for interpreting a specific character set.

Glossary

G L O S S A R Y

GL-2

contextual form An alternate form of a glyph
whose use depends on the glyph’s placement in
a word.

contiguous highlighting Highlighting that
consists of a single, contiguous shape across
direction boundaries, even when it does not
exactly match the selection range it corresponds
to. Compare discontiguous highlighting.

counter The oval in glyphs such as “p” or “d”.

cross-stream kerning The automatic movement
of glyphs perpendicular to the line orientation of
the text. Compare with-stream kerning.

cross-stream shift A type of positional shift
that applies equally to all glyphs in a style run
by raising or lowering the entire style run (or
shifts it sideways if it’s vertical text). Compare
with-stream shift.

cursor A small icon, often an arrow or an
I-beam shape, that moves with the mouse or
other pointing device. Compare caret.

descent line An imaginary horizontal line that
usually corresponds with the bottoms of the
descenders in a font. The descent line is the same
distance from the baseline for all glyphs in the
font, whether or not they have descenders.

direction See dominant direction, glyph
direction, line direction, text direction.

direction boundary A point between offsets in
memory or glyphs in a display, at which the
direction of stored or displayed text changes.

direction level A hierarchical ranking of domi-
nant direction in a line. Direction levels can be
nested so that complex mixed-direction format-
ting is preserved.

direction-level run A sequence of contiguous
glyphs that share the same text direction.

direction override A means of overriding the
directional behavior of glyphs, on a style-run
basis, for special effects.

discontiguous highlighting Highlighting that
exactly matches the selection range it
corresponds to. It may consist of discontiguous
areas when the selection range crosses direction
boundaries. Compare contiguous highlighting.

display order The left-to-right order in which
QuickDraw GX displays glyphs. Display order
determines the glyph index of each glyph in a
line and may differ from the input order of the
text. See glyph index; compare input order and
source text.

display text The visual representation of the
text of a typographic shape. Display text consists
of a sequence of glyphs, arranged in display
order. Compare source text.

dominant direction The direction in which
successive groups of glyphs are read. Dominant
direction is independent of glyph direction. See
also glyph direction, line direction.

drop capital A large uppercase letter that drops
below the main line of text for aesthetic reasons.

dual caret See split caret.

dynamic highlighting The process of contin-
ually drawing and redrawing the highlighted
area as the user moves the cursor through the
text while holding down the mouse button.

edge offset A byte offset into the source text of
a layout shape that specifies a position between
byte values. Edge offsets in source text are
related to caret positions in display text.
Compare caret position and byte offset.

face layers A structure that describes part of a
text face. Several face layers are combined to
form the visual composite of a glyph.

feature selectors A means of defining partic-
ular font features in a feature type. See also
feature type.

feature type A group of font features in a style
object that are applied to each style run based on
font defaults. See also feature selectors.

flat font list A list that QuickDraw GX creates
when you flatten a shape that contains fonts. This
list specifies which fonts were used in a shape,
which glyphs were used in a font, or both.

font A collection of glyphs that usually have
some element of design consistency such as the
shapes of the counters, the design of the stem,
stroke thickness, or the use of serifs.

font attributes A group of flags that modify the
behavior or identity of a font.

G L O S S A R Y

GL-3

font descriptors The identifiable characteristics
of each font object within a family, such as weight,
width, italic slant, and optical point size.

font embedding The technique of storing a font
object’s binary data in a document so that the text
in the document always displays the correct font.

font family A group of fonts that share certain
characteristics and a common family name.

font features The set of typographic and layout
capabilities that create a specific appearance for a
layout shape.

font instance A setting identified by the font’s
designer that matches specific values along the
available variation axes and gives those values
a name.

font name A set of specific information in a
font object about a font, such as its family name,
style, copyright date, version, and manufacturer.
Some font names are used to build menus in an
application, whereas other names are used to
identify the font uniquely.

font object An object type that hides the
complexity of font data from your application.

font variation An algorithmic way to produce
a range of typestyles along a particular varia-
tion axis.

font variation suite A complete listing of every
axis supported in a font in the order specified by
the font. Each axis is given a value in the listing.

glyph The distinct visual representation of a
character in a form that a screen or printer can
display. A glyph may represent one character
(the lowercase a), more than one character (the fi
ligature), part of a character (the dot over an i),
or a nonprinting character (the space character).
See also character.

glyph code A number that specifies a particular
glyph in a font. Fonts map character codes
to glyph codes, which in turn specify individual
glyphs.

glyph direction The direction in which
successive glyphs are read. Compare
dominant direction.

glyph ductility The ability to stretch the actual
form of a glyph during justification.

glyph index The order of a glyph in a line of
display text. The leftmost glyph in a line of text
has a glyph index of 1; each succeeding glyph to
the right has an index one greater than the
previous glyph. Compare glyph code, edge
offset.

glyph justification overrides array An array
that alters the standard justification behavior of
one or more individual glyphs.

glyph origin The point that QuickDraw GX
uses to position a glyph when drawing.

glyph shape A typographic shape that allows
you to vary the position, font, rotation, and scale
of each glyph in a line of text. Compare layout
shape and text shape. See typographic shapes.

glyph substitutions array An array of glyph
codes in a style object that defines which glyph to
substitute for another in a specific style run.

grow limit The maximum amount by which
glyphs of a given priority can be extended during
justification, before processing passes to glyphs
of lower priority. Compare shrink limit.

hanging baseline The baseline used by
Devanagari and similar scripts, where most
of the glyph is below the baseline.

hanging glyphs A set of glyphs, usually
punctuation, that typically extend beyond the
left and right margins of the text area and
whose widths are not counted when line length
is measured.

highlighting The display of text in inverse video
or with a colored background. Highlighting in
display text corresponds to a selection range in
source text.

highlight type The angular character of carets
and edges of highlighting areas. Highlighting
and carets are either straight or angled; see
angled caret, straight caret.

hit-testing The process of converting a location
within a line of display text into a caret offset in
the source text of that line.

hyphenation point An entry in an array of
edge offsets in the source text at which it is
appropriate to break a line of display text.

G L O S S A R Y

GL-4

ideographic centered baseline The baseline
used by Chinese, Japanese, and Korean ideo-
graphic scripts, in which glyphs are centered
halfway on the line height.

ideographic writing system The glyphs that
symbolize component meanings of words in a
language. Compare syllabic writing system and
alphabetic writing system.

imposed width A run control feature that
forces a specific width onto the glyphs of a style
run, regardless of its text content or other style
properties.

index See glyph index.

input order The order in which characters are
written or entered from a keyboard. The input
order of a line of text can differ from its display
order. Compare display order.

insertion point The point in the source text at
which text is to be inserted or deleted. An inser-
tion point is specified by a single caret position.
Compare caret; see also caret position.

justification The process of typographically
expanding or compressing a line of text to fit a
text width.

justification gap The difference in the length of
a line before and after justification.

justification priority The priority order in
which classes of glyphs are processed during
justification.

kashida An extension-bar glyph that is added
to certain Arabic glyphs during justification.

kerning An adjustment to the normal spacing
that occurs between two or more specifically
named glyphs, known as the kerning pair.

kerning adjustments array An array in the
style object that overrides the normal kerning for
individual pairs of glyphs by specifying a point-
size factor and scaling factor.

kerning pair Two specifically named glyphs
that are kerned together by a set amount. See
also kerning.

language The written and spoken methods of
combining words to create meaning used by a
particular group of people.

layer flag An element of a face layer that
describes the characteristics of one layer of a text
face. Layer flags are used primarily to determine
the underlining capabilities of the text face.

layout shape A typographic shape that allows
you to vary a layout shape in typographic
aspects. Compare glyph shape and text shape.
See typographic shapes.

leading edge The edge of a glyph that is
encountered first when reading text of that
glyph’s language. For glyphs of left-to-right
text, the leading edge is the left edge; for glyphs
of right-to-left text, the leading edge is the
right edge.

left-side bearing The white space between
the glyph origin and the visible beginning
of the glyph.

left-to-right caret A type of caret that, at direc-
tion boundaries, appears at the proper caret
position for inserting left-to-right text. Compare
right-to-left caret, split caret.

ligature Two or more glyphs connected to form
a single new glyph.

ligature decomposition The replacement of
ligatures with the glyphs for their component
characters during justification.

ligature splitting The process of separating a
ligature into its component glyphs.

line breaking The process of determining the
proper location at which to truncate a line of text
so that it fits within a given text width.

line direction The overall direction in which a
line of text is read. Line direction is the lowest
nested level of dominant direction on a line.

line length The distance, in points, from the
origin of the first glyph on a line through the
advance width of the last glyph.

line span The distance, in points, from the
lowest descender on a line to the highest ascender.

margins The left, right, top, and bottom sides of
the text area.

math baseline The baseline used for setting
mathematical expressions; it is centered on
operators such as the minus sign.

G L O S S A R Y

GL-5

mixed-direction text The combination of text
with both left-to-right and right-to-left directions
within a single line of text.

neutral type A glyph directionality in which
the glyph direction is always that of the
surrounding glyphs. Compare strong type,
weak type.

point size The size of a font’s glyphs as
measured from the baseline of one line of text to
the baseline of the next line of single-spaced text.
In the United States, point size is measured in
typographic points.

point size factor A specific point size that you
force onto a style run to create custom kerning.
See also scaling factor and kerning adjustments
array.

positions array An array that contains
positions for the origin of each character or glyph
in the shape. These positions, stored as points,
can be relative to the advance width of the
previous character or glyph, or they can be
absolute positions in coordinates.

postcompensation action The extra processing,
such as addition of kashidas and ligature
decomposition, that occurs after glyphs have
been repositioned during justification.

priority justification override array An array
that alters the standard justification behavior for
all glyphs of a given justification priority.

QuickDraw GX Font Feature Registry An
official document maintained by Apple Computer,
Inc., in which feature types and feature selectors
are defined and named.

relative position A position for the origin of
each character or glyph in the glyph shape given
in coordinates relative to the preceding character
or glyph. Compare absolute position.

right-side bearing The white space on the right
side of the glyph; this value may or may not be
equal to the value of the left-side bearing.

right-to-left caret A type of caret that, at
direction boundaries, appears at the proper caret
position for inserting right-to-left text. Compare
left-to-right caret, split caret.

Roman baseline The baseline used in most
Roman scripts and in Arabic and Hebrew.

run A sequence of glyphs that are contiguous
in memory and share a set of common attributes.

run controls structure An array that is a
property of every style object but is used only by
layout shapes. This structure controls various
features associated with text in a style run.

run features See font features.

scaling factor A specific scale that you force
onto a style run to create custom kerning. See
also point size factor and kerning adjustments
array.

script A method for depicting words visually.

selection range The contiguous sequence of
characters in the source text that mark where the
next editing operation is to occur. The glyphs
corresponding to those characters are commonly
highlighted on screen.

serif The fine lines stemming from and at an
angle to the upper and lower ends of the main
strokes of a letter—for example, the little “feet”
on the bottom of the vertical strokes in the upper-
case letter “M” in Times Roman typeface.

shape attributes A group of flags that modify
the behavior of a shape object.

shrink limit The maximum amount by which
glyphs of a given priority may be compressed
during justification, before processing passes to
glyphs of lower priority. Compare grow limit.

smart swash A variation of an existing
glyph (often ornamental) that is contextual.
Compare swash.

source text A stored sequence of character
codes that represents a line of text. Characters in
source text are stored in input order. Compare
display order, display text; see also input order.

split caret A type of caret that, at the boundary
between text of opposite directions, divides into
two parts: a high caret and a low caret, each
measuring half the line’s height. The two separate
half-carets merge into one in unidirectional text.
Compare left-to-right caret, right-to-left caret.

G L O S S A R Y

GL-6

stake An edge offset in the source text that
marks the point at which a line break would be
most efficient in terms of layout processing.

storage order See input order, display order,
source text.

storage reference A specification of the storage
type used to store a font. See storage type.

storage type The method used to store a font in
a font object. See storage reference.

straight caret A caret that is perpendicular to
the baseline of the display text, regardless of the
angle of the glyphs making up the text. Compare
angled caret.

strong type A glyph directionality that is
always left to right or right to left. Compare
weak type, neutral type.

style run A sequence of memory backing store
contiguous glyphs that share the same style.

swash A variation of an existing glyph (often
ornamental) that is noncontextual. Compare
smart swash.

syllabic writing system The glyphs that
symbolize syllables in a language. Compare
alphabetic writing system and ideographic
writing system.

tangents array An array that determines the
scaling and orientation of the characters or
glyphs in the shape. It contains one entry for each
character or glyph in the shape.

text A set of specific symbols that, when
displayed in a meaningful order, conveys
information.

text area The space on the display device
within which the text should fit.

text attributes The set of flags that allow you to
specify how QuickDraw GX alters glyph outlines
or chooses the proper metrics for horizontal or
vertical text.

text direction The direction in which reading
proceeds. Roman text has a left-to-right direction;
Hebrew and Arabic have a (predominantly)
right-to-left direction; Chinese and Japanese can
have a vertical direction.

text face An algorithmic way for your applica-
tion to produce typestyles.

text run A complete unit of text, made up of
character codes or glyph codes.

text shape A typographic shape object
containing a string of text associated with a
single style object. Compare glyph shape and
layout shape. See typographic shapes.

text width The area between the margins; it is
the length available for displaying a line of text.

tiled highlighting A highlighting mechanism
whereby the highlighted area corresponding to
every character in a line of text is unique, without
gaps or overlaps.

top-side bearing The white space between the
top of the glyph and the visible beginning of
the glyph.

tracking Kerning between all glyphs in the
shape, not just the kerning pairs already defined
by the font. You can increase or decrease inter-
glyph spacing by using a track number.
See kerning.

track setting A value that specifies the relative
tightness or looseness of interglyph spacing.

trailing edge The edge of a glyph that is
encountered last when reading text of that
glyph’s language. For glyphs of left-to-right text,
the trailing edge is the right edge; for glyphs of
right-to-left text, the trailing edge is the left edge.

typestyle A variant version of glyphs in the
same font family. Typical typestyles available
on the Macintosh computer include bold,
italic, underline, outline, shadow, condensed,
and extended.

typographic bounding rectangle The smallest
rectangle that encloses the full span of the glyphs
from the ascent line to the descent line.

typographic point A unit of measurement
describing the size of glyphs in a font. There are
72.27 typographic points per inch, as opposed to
72 points per inch in QuickDraw GX.

typographic shapes The QuickDraw GX shapes
that display text: text shapes, glyph shapes, and
layout shapes.

G L O S S A R Y

GL-7

unidirectional text A sequence of text that has
a single direction. Compare mixed-direction text.

unlimited gap absorption The assignment of
all justification gap to an individual glyph or
priority of glyphs, regardless of the specified
grow or shrink limits for that glyph or glyphs.

variation axis A range included in a font by the
font designer that allows a font to produce
different typestyles.

weak type A glyph directionality that depends
on context to determine whether it is left to
right or right to left. Compare strong type,
neutral type.

with-stream kerning The automatic movement
of glyphs parallel to the line orientation of the
text. Compare cross-stream kerning.

with-stream shift A positional shift that applies
equally to all glyphs in a style run by adding or
removing space before or after each glyph in the
run. Compare cross-stream shift.

WorldScript A group of Macintosh system
software managers, extensions, and resources
that facilitate multilanguage text processing.

x-height The position where the top of the
lowercase “x” in the font lies; this measurement
usually marks the height of the body of all
lowercase glyphs, excluding ascenders and
descenders, in the font.

IN-1

Index

Numerals

2-byte characters, support for 10-6

A

accessing font object properties 7-17 to 7-20
advance bits array 4-4, 4-5 to 4-6
advance heights of glyphs 1-10
advance widths of glyphs 1-9
alignment

of baselines 9-6 to 9-8, 9-27 to 9-30
as characteristic of layout shape 5-11 to 5-13, 5-24 to

5-26, 5-28
as property of style object 1-17, 6-4, 6-11 to 6-13,

6-38, 6-48 to 6-51
optical 8-5, 8-11 to 8-14, 8-45 to 8-46

alphabetic writing systems 7-8
angled carets 10-7, 10-15, 10-19, 10-41, 10-46
arrow keys and caret movement 10-11, 10-22, 10-47,

10-48
ascent lines of glyphs 1-9
attributes

font 7-14, 7-18, 7-32
text 6-4, 6-14 to 6-16, 6-25 to 6-34, 6-38, 6-65 to 6-68
typographic shape 2-22

B

baseline deltas array 9-59
baselines 5-16, 9-4 to 9-10

aligning 9-6 to 9-8, 9-27 to 9-30
defined 1-9, 1-13, 9-5
types of 9-4 to 9-5, 9-58 to 9-59
for vertical text 9-8 to 9-10

baseline structure 9-59
baseline types 8-59, 9-4 to 9-5, 9-58 to 9-59
bottom-side bearings of glyphs 1-10
bounding boxes of glyphs 1-9
bounding rectangles of shapes

for typographic shapes 2-7, 2-11
breaking lines. See line breaking

C

caret offsets. See edge offsets
caret positions 10-4, 10-10, 10-16, 10-24
carets 1-21, 10-4

drawing 10-18, 10-44
movement with arrow keys 10-11, 10-22, 10-47, 10-48
split and single 10-8, 10-10, 10-41
straight and angled 10-7, 10-15, 10-19, 10-41, 10-46

caret types 10-41
case

of letters 8-26 to 8-27
of numerals 8-36

case substitution 8-56 to 8-57
character codes 1-5
character code sizes 7-8 to 7-9
character count

as glyph shape property 4-4
as text shape property 3-4
as typographic shape property 2-6

character encodings 1-7, 6-4, 6-14, 7-7 to 7-9
characters

defined 1-4
columnating numerals 8-35
contextual forms 1-16, 8-24
contiguous highlighting 10-14, 10-27, 10-52
counters of glyphs 1-5
cross-stream kerning 1-18, 8-5, 8-8 to 8-9
cross-stream shift 8-5, 8-6 to 8-7, 8-42 to 8-44, 8-58
cursive glyphs 8-25
cursors 10-6

angle of 10-8, 10-22, 10-46

D

decomposition adjustment factor 8-59
decomposition of ligatures 9-50 to 9-51
default style object for typographic shapes, properties

of 6-16
descent lines of glyphs 1-9
descriptors

font 7-6, 7-9 to 7-10
diacritical marks 8-31
diphthong ligatures 8-24 to 8-25
direction boundaries 1-23, 10-14

I N D E X

IN-2

direction levels 5-5, 5-9, 9-17 to 9-21, 9-38 to 9-41
direction overrides 8-62
direction runs 1-15
direction. See text direction, direction levels
discontiguous highlighting 1-23, 10-14, 10-26, 10-50
display order 1-7. See also input order

and layout shape 5-6, 10-4
defined 1-7

display text 1-7, 10-3 to 10-6
dominant direction 9-13, 9-15 to 9-16

and direction-level value 9-17 to 9-19
and nested direction levels 9-19 to 9-21

dominant style run (for baseline alignment) 9-6
double-byte characters. See 2-byte characters,

support for
drawing

of carets 10-18 to 10-22
of glyph shapes 4-10 to 4-12
of text shapes 3-5, 3-9

drop capitals 1-14, 9-8, 9-28 to 9-30
ductility of glyphs 9-24, 9-50
dynamic highlighting 10-28

E

edge offsets 1-21, 10-4, 10-34 to 10-40, 10-56 to 10-60
embedding fonts 7-14
encoding

defined 1-5 to 1-7
as font object property 7-6 to 7-9
manipulating 6-61 to 6-65, 7-43 to 7-47
as style object property 6-14

extender bars (for justification). See kashidas
extras (font features)

mathematical 8-38
typographic 8-37

F

face layers 6-6 to 6-10, 6-19 to 6-25, 6-36 to 6-38
feature registry, for QuickDraw GX fonts 7-12, 7-24,

8-19, 8-65
features (in fonts). See font features
feature selectors 8-19
feature settings 7-12
feature types 7-12, 8-19
FindWordBreaks procedure

with QuickDraw GX 9-38
fixed-width numerals 8-35
flat font list 2-15
flattening

of typographic shapes 2-15

flushness. See alignment
font

as style object property 6-4, 6-5, 6-39 to 6-42
font attributes 7-14, 7-18, 7-32
font descriptors 7-6, 7-9 to 7-10
font encodings. See encoding
font families

defined 1-5, 7-5
as part of font name property 7-6

font features, QuickDraw GX
customizing 8-80 to 8-85
data structure for 7-24
defined 8-18 to 8-40
as font object property 7-6, 7-12
manipulating 7-19, 7-60 to 7-63, 8-53 to 8-57, 8-65
registry for 8-19, 8-65

font formats in QuickDraw GX 7-12 to 7-14
font instances

adding 7-18
data structure for 7-22
defined 1-10
manipulating 7-56 to 7-59
as property of font object 7-6, 7-11

font measurements, in typographic shapes 2-11, 2-24
font metrics 6-14, 6-57
font names 7-6 to 7-7
font object properties 7-5 to 7-12

accessing 7-17 to 7-20
descriptors 7-6, 7-9 to 7-10, 7-22, 7-48 to 7-52
encodings 7-7 to 7-9, 7-43 to 7-47
features. See font features
instances. See font instances
names 7-6, 7-17, 7-23, 7-37 to 7-43
variations. See font variations

font objects
creating 7-64
data structures for 7-22 to 7-32
default 7-15
deleting 7-65
functions for 7-32 to 7-78
properties of. See font object properties

fonts
baselines defined in 9-5
drawing with 7-17
embedding 7-14

font tables 7-14, 7-21, 7-70 to 7-78
font variations 6-4, 7-10 to 7-11

data structure for 7-22
defined 1-10
as font object property 7-6
manipulating 6-51 to 6-54, 7-20, 7-53 to 7-55
as style object property 6-13, 6-51 to 6-54

font variation suite 6-13, 6-55 to 6-56
fractions 8-32 to 8-33

I N D E X

IN-3

GA–GXA

glyph codes 1-6
glyph direction 9-13, 9-13 to 9-15, 9-42, 10-33
glyph ductility 9-23, 9-50
glyph indexes 10-4

defined 1-8
equivalent caret positions for 10-37 to 10-40, 10-58

glyph justification overrides array 9-26 to 9-27
glyph justification override structure 9-55 to 9-57, 9-64

to 9-65
glyph origins 1-9
glyphs

changing justification behavior of 9-55 to 9-57
defined 1-4
direction of 9-13, 9-13 to 9-15, 10-33
hanging 8-5, 8-14 to 8-15, 8-47 to 8-48
leading edge and trailing edge of 1-13, 10-16
measuring, in typographic shapes 2-24
offsets at edges of 1-21, 10-4, 10-33 to 10-40, 10-56 to

10-60
overlapping 8-33
positioning 4-16 to 4-18
rotating and scaling 4-6 to 4-8
tangents of 4-6 to 4-8, 4-18, 4-34 to 4-35

glyph shape properties 4-3
advance bits array 4-5 to 4-6, 4-16 to 4-18
getting and setting 4-25 to 4-38
positions array 4-5 to 4-6, 4-16 to 4-18, 4-32 to 4-33
style runs and style list 4-8 to 4-10, 4-15 to 4-16
tangents array 4-6 to 4-8, 4-18 to 4-21, 4-34 to 4-35

glyph shapes 2-4, 4-3
changing text of 4-13 to 4-15
creating and drawing 4-10 to 4-12, 4-22 to 4-25
defined 1-3
functions for 4-21 to 4-35
geometry of 4-3 to 4-4
getting and setting properties 4-25 to 4-35
properties of. See glyph shape properties
replacing style lists and style runs of 4-15 to 4-16

glyph substitutions 8-5, 8-18, 8-51 to 8-53
glyph substitutions array 8-5, 8-75 to 8-80
glyph substitution structure 8-51 to 8-53, 8-64
grow limits of glyphs 9-22
GXApplyFontEncoding function 7-46

GXB

gxBaseLineDeltas type 9-59
gxBaselineType type 9-58
GXBreakShape function

for typographic shapes 2-18
gxByteOffset type 5-30

GXC

gxCaretType enumeration 10-41
GXChangedFont function 7-78
GXContainsBoundsShape function

for typographic shapes 2-18
GXContainsShape function

for typographic shapes 2-18
GXCopyToShape function

for typographic shapes 2-17
GXCountFontDescriptors function 7-48
GXCountFontEncodings function 7-44
GXCountFontFeatures function 7-60
GXCountFontGlyphs function 7-35
GXCountFontInstances function 7-56
GXCountFontNames function 7-37
GXCountFontTables function 7-70
GXCountFontVariations function 7-53
GXCountShapeContours function

for typographic shapes 2-17
GXCountShapePoints function

for typographic shapes 2-17
gxCustomScripts enumeration 7-27

GXD

GXDeleteFontDescriptor function 7-52
GXDeleteFontInstance function 7-59
GXDeleteFontName function 7-42
GXDeleteFontTable function 7-77
GXDifferenceShape function

for typographic shapes 2-19
gxDirectionOverrides enumeration 8-62
gxDirectionOverride type 8-62
GXDisposeFont function 7-65
GXDrawGlyphs function 4-24
GXDrawLayout function 5-33
GXDrawShape function

for text shapes 3-6
GXDrawText function 3-6, 3-9

GXE, GXF

GXExcludeShape function
for typographic shapes 2-19

gxFaceLayer structure 6-36
GXFindFontDescriptor function 7-50
GXFindFontEncoding function 7-45
GXFindFontFeature function 7-62
GXFindFont function 7-67
GXFindFontName function 7-39

I N D E X

IN-4

GXFindFonts function 7-15, 7-33
GXFindFontTable function 7-73
GXFindFontTableParts function 7-74
GXFindFontVariation function 7-55
GXFlattenFont function 7-65
gxFontAttributes enumeration 7-32
gxFontDescriptor structure 7-23
gxFontDescriptorTag type 7-23
gxFontFeatureFlag enumeration 7-24
gxFontFeatureSetting structure 7-25
gxFontFeature type 7-24
gxFontLanguage type 7-28
gxFontNames enumeration 7-23
gxFontName type 7-23
gxFontPlatforms enumeration 7-25
gxFontPlatform type 7-25
gxFontScript type 7-27
gxFontStorageReference type 7-31
gxFontStorageTag type 7-31
gxFontTableTag structure 7-32
gxFontVariation structure 7-22
gxFontVariationTag type 7-22

GXG

GXGetCaretAngleArea function 10-22, 10-46
GXGetCompoundCharacterLimits function 10-33,

10-59
GXGetDefaultFont function 7-35
GXGetFontDescriptor function 7-49
GXGetFontEncoding function 7-44
GXGetFontFeature function 7-61
GXGetFontFormat function 7-69
GXGetFont function 7-67
GXGetFontInstance function 7-56
GXGetFontName function 7-38
GXGetFontTable function 7-71
GXGetFontTableParts function 7-72
GXGetFontVariation function 7-54
GXGetGlyphMetrics function 2-24
GXGetGlyphOffset function 10-37, 10-58
GXGetGlyphParts function 4-29
GXGetGlyphPositions function 4-32
GXGetGlyphs function 4-26
GXGetGlyphTangents function 4-34
GXGetLayoutBreakOffset function 9-33 to 9-37, 9-69
GXGetLayoutCaret function 10-19, 10-44
GXGetLayout function 5-34
GXGetLayoutGlyphs function 5-45
GXGetLayoutHighlight function 10-25, 10-26, 10-50
GXGetLayoutParts function 5-38
GXGetLayoutRangeWidth function 9-32, 9-33 to 9-37,

9-71

GXGetLayoutShapeParts function 5-42
GXGetLayoutSpan function 9-33, 9-37, 9-67
GXGetLayoutVisualHighlight function 10-27, 10-52
GXGetLeftVisualOffset function 10-22, 10-48
GXGetOffsetGlyphs function 10-34, 10-56
GXGetRightVisualOffset function 10-22, 10-47
GXGetShapeArea function

for typographic shapes 2-18
GXGetShapeBounds function

for typographic shapes 2-18, 9-32, 9-33
GXGetShapeCenter function

for typographic shapes 2-18
GXGetShapeDeviceFontMetrics function 6-60
GXGetShapeDirection function

for typographic shapes 2-18
GXGetShapeEncoding function 6-63
GXGetShapeFace function 6-44
GXGetShapeFont function 6-41
GXGetShapeFontMetrics function 6-58
GXGetShapeFontVariations function 6-53
GXGetShapeFontVariationSuite function 6-56
GXGetShapeIndex function

for typographic shapes 2-17
GXGetShapeJustification function 6-50
GXGetShapeLength function

for typographic shapes 2-18
GXGetShapeLocalFontMetrics function 6-59
GXGetShapePoints function

for typographic shapes 2-17
GXGetShapeRunControls function 8-68
GXGetShapeRunFeatures function 8-83
GXGetShapeRunGlyphJustOverrides function 9-81
GXGetShapeRunGlyphSubstitutions function 8-78
GXGetShapeRunKerningAdjustments function 8-73
GXGetShapeRunPriorityJustOverride function 9-76
GXGetShapeStyle function

for typographic shapes 2-17
GXGetShapeTextAttributes function 6-67
GXGetShapeTextSize function 6-47
GXGetShapeTypographicBounds function 2-26, 9-32,

9-33
GXGetStyleBaselineDeltas function 9-27 to 9-30,

9-66
GXGetStyleEncoding function 6-62
GXGetStyleFace function 6-43
GXGetStyleFont function 6-40
GXGetStyleFontMetrics function 6-57
GXGetStyleFontVariations function 6-51
GXGetStyleFontVariationSuite function 6-55
GXGetStyleJustification function 6-49
GXGetStyleRunControls function 8-66
GXGetStyleRunFeatures function 8-80
GXGetStyleRunGlyphJustOverrides function 9-78
GXGetStyleRunGlyphSubstitutions function 8-75
GXGetStyleRunKerningAdjustments function 8-70

I N D E X

IN-5

GXGetStyleRunPriorityJustOverride function 9-74
GXGetStyleTextAttributes function 6-66
GXGetStyleTextSize function 6-46
GXGetText function 3-11
GXGetTextParts function 3-13
gxGlyphcode type 9-64
gxGlyphJustificationOverride structure 9-64 to

9-65
gxGlyphSubstitution structure 8-64

GXH

gxHighlightType enumeration 10-41
GXHitTestLayout function 2-10, 10-29 to 10-32, 10-33,

10-54
GXHitTestShape function 2-9

GXI

GXInsetShape function
for typographic shapes 2-19

GXIntersectShape function
for typographic shapes 2-19

GXInvertShape function
for typographic shapes 2-19

GXJ, GXK

gxJustificationFlags enumeration 9-62
gxJustificationPriority enumeration 9-60
gxKerningAdjustmentFactors structure 8-63
gxKerningAdjustment structure 8-63

GXL

gxLayerFlags enumeration 6-37
gxLayoutHitInfo structure 10-29, 10-43
gxLayoutOffsetState enumeration 10-42
gxLayoutOptions structure 5-29
gxLineBaselineRecord structure 9-59

GXM

gxMacintoshLanguages enumeration 7-28
gxMacintoshScripts enumeration 7-26
GXMapShape function

for typographic shapes 2-21

gxMicrosoftScripts enumeration 7-27
GXMoveShape function

for typographic shapes 2-21
GXMoveShapeTo function

for typographic shapes 2-8, 2-21

GXN, GXO

GXNewFont function 7-64
GXNewFontNameID function 7-40
GXNewGlyphs function 4-22
GXNewLayoutFromRange function 9-33 to 9-37, 9-72
GXNewLayout function 5-31
GXNewText function 3-6, 3-8

GXP, GXQ

GXPrimitiveShape function
for typographic shapes 2-18

gxPriorityJustificationOverride structure 9-63
to 9-64

GXR

GXReduceShape function
for typographic shapes 2-18

GXReverseDifferenceShape function
for typographic shapes 2-19

GXReverseShape function
for typographic shapes 2-18

GXRotateShape function
for typographic shapes 2-21

gxRunControlFlags type 8-60
gxRunControls structure 8-58
gxRunFeatureSelector type 8-65
gxRunFeature structure 8-65
gxRunFeatureType type 8-65

GXS

GXScaleShape function
for typographic shapes 2-21

GXSetDefaultFont function 7-36
GXSetFontDescriptor function 7-51
GXSetFont function 7-68
GXSetFontInstance function 7-57
GXSetFontName function 7-41
GXSetFontTable function 7-75

I N D E X

IN-6

GXSetFontTableParts function 7-76
GXSetGlyphParts function 4-14, 4-30
GXSetGlyphPositions function 4-33
GXSetGlyphs function 4-27
GXSetGlyphTangents function 4-35
GXSetLayout function 5-36
GXSetLayoutParts function 5-40
GXSetLayoutShapeParts function 5-44
GXSetLayoutSpan function 9-33, 9-68
GXSetShapeBounds function

for typographic shapes 2-19
GXSetShapeEncoding function 6-64
GXSetShapeFace function 6-45
GXSetShapeFont function 6-42
GXSetShapeFontVariations function 6-54
GXSetShapeJustification function 6-50
GXSetShapeRunControls function 8-69
GXSetShapeRunFeatures function 8-84
GXSetShapeRunGlyphJustOverrides function 9-82
GXSetShapeRunGlyphSubstitutions function 8-79
GXSetShapeRunKerningAdjustments function 8-74
GXSetShapeRunPriorityJustOverride function 9-77
GXSetShapeTextAttributes function 6-68
GXSetShapeTextSize function 6-48
GXSetStyleEncoding function 6-62
GXSetStyleFace function 6-43
GXSetStyleFont function 6-40
GXSetStyleFontVariations function 6-52
GXSetStyleJustification function 6-49
GXSetStyleRunControls function 8-43 to 8-48, 8-67
GXSetStyleRunFeatures function 8-54 to 8-57, 8-82
GXSetStyleRunGlyphJustOverrides function 9-57,

9-79
GXSetStyleRunGlyphSubstitutions function 8-52,

8-77
GXSetStyleRunKerningAdjustments function 8-51,

8-72
GXSetStyleRunPriorityJustOverride

function 9-52, 9-75
GXSetStyleTextAttributes function 6-66
GXSetStyleTextSize function 6-46
GXSetText function 3-6, 3-12
GXSetTextParts function 3-6, 3-14
gxShapeAttributes enumeration

for typographic shapes 2-22
gxShapeAttribute type 2-22, 2-27
GXShapeLengthToPoint function

for typographic shapes 2-18
gxShapeParts enumeration

for typographic shapes 2-23 to 2-24
gxShapePart type 2-23, 2-28
GXSimplifyShape function

for typographic shapes 2-18
GXSkewShape function

for typographic shapes 2-21

GXT

gxTextAttributes enumeration 6-38
gxTextFace structure 6-36
GXTouchesBoundsShape function

for typographic shapes 2-19
GXTouchesShape function

for typographic shapes 2-19

GXU–GXZ

GXUnionShape function
for typographic shapes 2-19

gxWidthDeltaRecord structure 9-61 to 9-62

H

hanging baselines 9-4
hanging glyphs 8-5, 8-14 to 8-15, 8-47 to 8-48
hanging inhibit factor 8-59
highlighting in a layout shape 10-13, 10-25

contiguous 10-14, 10-27, 10-52
data type for 10-41
defined 1-23
discontiguous 10-14, 10-26, 10-50
dynamic 10-28
functions for 10-49 to 10-54
tiled 10-15

highlight types 10-41
hit points 10-16
hit-testing for typographic shapes 1-23 to 1-24, 2-9 to

2-10
data structure for 10-29, 10-43
in layout shapes 10-16 to 10-18, 10-28 to 10-32, 10-54

to 10-56
mouse-tracking area 10-30

hyphenation points 9-12

I

ideographic centered baselines 9-4
ideographic writing systems 7-8
imposed widths 8-5, 8-15 to 8-16, 8-48 to 8-49, 8-58
index. See glyph indexes
Indic-style rearrangement. See linguistic rearrangement
input order 1-7, 5-6, 10-3. See also display order
insertion points 10-6
international resources

and layout shapes 9-37 to 9-38

I N D E X

IN-7

J

justification 1-17, 5-13 to 5-14, 9-21 to 9-27, 9-46 to 9-57
with glyph ductility 9-23, 9-50
grow and shrink limits 9-22 to 9-23
with kashidas 9-23, 9-48 to 9-49
and ligature decomposition 9-50 to 9-51
overriding default behavior 9-26 to 9-27
partial 9-22, 9-46 to 9-51
postcompensation action 9-23 to 9-24, 9-50, 9-51
unlimited gap absorption 9-24, 9-55 to 9-57
with white space 9-23, 9-46 to 9-47

justification field of layout options structure 9-24
justification flags 9-62 to 9-63
justification gap 9-21
justification priorities 9-22

changing 9-51 to 9-55
data structure for 9-60 to 9-61

K

kashidas 5-13, 9-23, 9-48 to 9-49
kerning 1-18, 8-5, 8-8 to 8-10
kerning adjustment factors structure 8-49 to 8-51, 8-63
kerning adjustments array 8-5, 8-16 to 8-17, 8-70 to 8-75
kerning adjustment structure 8-63
kerning inhibit factor 8-9, 8-59
kerning pairs 1-18

L

languages 7-8
layer flags 6-8 to 6-10, 6-23 to 6-25, 6-37
layers, face 6-6 to 6-10, 6-19 to 6-25, 6-36 to 6-38
layout hit info structure 10-32, 10-43
layout offset state 10-42
layout options 5-10 to 5-16

alignment 5-11 to 5-13
baselines 5-16
justification 5-13 to 5-14
as layout shape property 5-5
width 5-10

layout options structure 5-29 to 5-30
layout shape properties 5-4 to 5-5

direction levels 5-9, 9-17 to 9-21, 9-38 to 9-41
glyph justification overrides array 9-26, 9-78 to 9-83.

See also glyph justification override structure
layout options 5-10, 5-24 to 5-26, 5-29 to 5-30
manipulating 5-34 to 5-45
priority justification override structure 9-26 to 9-27,

9-51 to 9-55, 9-60 to 9-61, 9-62, 9-73 to 9-78

style runs 5-7 to 5-8, 5-18 to 5-19
text runs 1-15, 5-6 to 5-7

layout shapes 2-4
creating and drawing 5-17 to 5-18, 5-30 to 5-34
data types for 5-28 to 5-30
default 5-17
defined 1-3, 5-3
functions for 5-30 to 5-47
geometry of 5-4, 5-34 to 5-38
properties of. See layout shape properties

leading edges of glyphs 1-13, 10-16
left-side bearings of glyphs 1-9
left-to-right carets 10-8, 10-21, 10-41
level-run count, as layout shape property 5-5
level-run lengths, as layout shape property 5-5
levels array 9-17 to 9-19, 9-38 to 9-41

as layout shape property 5-5
levels. See direction levels
ligatures

decomposition of 8-59, 9-50 to 9-51
defined 1-16
formation 8-22, 8-24 to 8-25, 8-53 to 8-54

ligature splitting 10-10
line breaking

in layout shapes 9-11 to 9-12, 9-33 to 9-37
with WorldScript 9-37 to 9-38

line directions 9-13, 9-16
line height of a font 1-9
line lengths 9-10 to 9-11, 9-32
line spans 9-10 to 9-11, 9-33
linguistic rearrangement 8-28, 10-10
lining numerals 8-36

M

margins 1-17. See also alignment
math baselines 9-5
mathematical extras 8-38
mouse-tracking area in a layout shape 10-30

N

nesting levels. See direction levels
neutral type of glyph directionality 9-15
number case 8-36
number width 8-35
numerals

fixed-width 8-35
lowercase 8-36
proportional-width 8-35
uppercase 8-36

I N D E X

IN-8

O

offsets
byte, of text 1-8, 1-13
edge, of glyphs 1-21, 10-4 to 10-6, 10-34 to 10-40,

10-56 to 10-60
old-style numerals 8-36
optical alignment 8-5, 8-11 to 8-14, 8-45 to 8-46
ornament sets 8-39
overlapping glyphs 8-33
owner count, as typographic shape property 2-7

P

partial justification 9-22, 9-46 to 9-51
phonetic order (input order) 5-6, 10-3
platforms 7-7
point size 1-8. See also text size
point-size factor 8-16
position

as layout shape property 5-4
as text shape property 3-4
as typographic shape property 2-6

positioning
of glyph shapes 4-16 to 4-18
of layout shapes 5-20
of typographic shapes 2-8 to 2-9

positions array 4-4, 4-5 to 4-6, 4-32 to 4-33
postcompensation action 8-61, 9-23 to 9-24, 9-50, 9-51
priority justification overrides array 9-78 to 9-83
priority justification override structure 9-26, 9-51 to

9-55, 9-63 to 9-64, 9-73 to 9-78
properties. See font object properties, typographic styles
proportional-width numerals 8-35

Q

QuickDraw GX Font Feature Registry 7-12, 7-24, 8-19,
8-65

R

registry (for QuickDraw GX font features) 7-12, 7-24,
8-19, 8-65

right-side bearings of glyphs 1-9
right-to-left carets 10-8, 10-21, 10-41
Roman baselines 9-4
run control flags 8-58, 8-60 to 8-61

run controls 8-5 to 8-16, 8-42 to 8-49, 8-57 to 8-59, 8-66
to 8-70

run controls structure 8-57 to 8-59
run-features array 8-5, 8-80 to 8-85
run features. See font features, run-features array,

run-features structure
run-feature structure 8-65
runs 1-15

S

scale factor 8-16
scripts

and encoding property of font object 7-7
selection ranges 1-23, 10-13
serifs 1-5
shape attributes for typographic shapes 2-22
shape objects. See typographic shapes
shapes. See glyph shapes; layout shapes; text shapes;

typographic shapes
shape types

glyph shapes 4-3 to 4-38
layout shapes 5-3 to 5-50
text shapes 3-3 to 3-16

shifting. See with-stream shift, cross-stream shift
shrink limits of glyphs 9-23
side bearings of glyphs 8-11
simplified characters 8-34
single carets 10-8, 10-44
slash, in fractions 8-33
small caps 8-27
smart swash glyphs 8-30 to 8-31, 8-54 to 8-55
source text 1-7, 5-6, 10-3 to 10-6
spans. See line spans
split carets 10-8, 10-10, 10-41
split ligatures 10-10
stakes 9-12
standard bounding rectangle. See bounding rectangles

of shapes
storage of text 1-7
storage order 1-7
storage type 7-13
straight carets 10-7, 10-41
strong types of glyph directionality 9-14, 9-15
style list

as glyph shape property 4-8, 4-15
as layout shape property 5-5

style objects
and layout shapes 8-4 to 8-5
properties of, for typographic shapes. See

typographic styles
typographic shapes associated with 2-7

style objects properties

I N D E X

IN-9

for typographic shapes. See typographic styles
style options feature type 8-37
style-run count, as layout shape property 5-4
style-run lengths, as layout shape property 5-4
style runs 1-15

dominant, for baseline alignment 9-6
in glyph shapes 4-8 to 4-10, 4-15 to 4-16
in layout shapes 5-7, 5-18 to 5-19

style-runs array, as glyph shape property 4-4
swash glyphs 8-29 to 8-31, 8-54 to 8-55
syllabic writing systems 7-8

T

tangents array 4-4, 4-6 to 4-8, 4-18 to 4-21, 4-34 to 4-35
text

defined 1-3
as glyph shape property 4-4
as layout shape property 5-4
as text shape property 3-4
as typographic shape property 2-6

text area 1-17
text attributes of typographic shapes 6-4, 6-14 to 6-17,

6-25 to 6-34, 6-38, 6-65 to 6-68
text direction 9-13 to 9-21, 9-38 to 9-41. See also

direction levels
defined 1-12
dominant direction 9-15 to 9-16
glyph direction 9-13 to 9-15, 9-42, 10-33

text faces 6-4, 6-5 to 6-10, 6-17 to 6-25, 6-36, 6-42 to 6-45
text length, as layout shape property 5-4
text measurements 1-8 to 1-10
text runs 1-15, 5-6 to 5-7
text shapes

creating and drawing 3-5 to 3-6, 3-8 to 3-10
defined 1-3, 2-3, 3-3
deleting all text of 3-7
functions for 3-8 to 3-16
geometry of 3-3
inserting text into 3-7
manipulating geometry of 3-10 to 3-15
replacing all text of 3-7
replacing some text of 3-7

text size 6-4, 6-10, 6-46 to 6-48
text storage 1-7 to 1-8
Text Utilities

and layout shapes 9-37 to 9-38
text width 9-12
tiled highlighting 10-15
top-side bearings of glyphs 1-10
tracking of glyphs 1-18, 8-5, 8-10 to 8-11, 8-44 to 8-45,

8-59. See also kerning
track settings 1-18, 8-10, 8-59

traditional characters 8-34
traditional numerals 8-36
trailing edges of glyphs 1-13, 10-16
two-byte characters, support for 10-6
typestyles 1-10 to 1-11
typographic bounding rectangles 2-7, 2-11
typographic extras 8-37
typographic features. See font features
typographic points 1-8
typographic shapes. See also glyph shapes; layout

shapes; text shapes
area of 2-10
bounding rectangle of 2-11
converting to other shape types 2-12 to 2-13
converting to primitive form 2-12
default characteristics of 2-6 to 2-7
defined 2-3
flattening 2-15
functions for 2-24 to 2-26
geometry of 2-6
glyph measurements of 2-11, 2-24
inserting into another shape 2-14 to 2-15
measuring 2-10
shape attributes of 2-6
types of 2-3 to 2-5

typographic styles 6-3 to 6-5
alignment 1-17, 6-11 to 6-13, 6-38, 6-48 to 6-51
data structures for 6-35 to 6-39
default 6-16
encodings. See encoding
font 6-5, 6-39 to 6-42
font variations. See font variations
functions for 6-39 to 6-68
glyph justification overrides array 9-25, 9-55, 9-64,

9-78 to 9-83
glyph substitutions 8-5, 8-18, 8-51 to 8-53
kerning adjustments 8-5, 8-16 to 8-17
priority justification override structure 9-25, 9-51,

9-60, 9-63, 9-73 to 9-78
typographic styles (continued)

run controls 8-5 to 8-16, 8-42 to 8-49, 8-57 to 8-59,
8-66 to 8-70

run-features array 8-5, 8-65, 8-80 to 8-85
text attributes 6-14 to 6-16, 6-25 to 6-34, 6-38, 6-65 to

6-68
text face 6-5 to 6-10, 6-17 to 6-25, 6-36, 6-42 to 6-45
text size 6-10, 6-46 to 6-48

U

unlimited gap absorption 9-24, 9-55 to 9-57

I N D E X

IN-10

V

variation axes 1-10, 6-13, 7-10 to 7-11, 7-20, 7-22, 7-54
vertical baselines 9-5
vertical position of glyphs 8-32
vertical substitution of glyphs 8-27
vertical text 5-7, 6-29, 9-5, 9-13, 9-30 to 9-32

baselines for 9-5, 9-8 to 9-10
drawing 9-30 to 9-32

W, X, Y, Z

weak types of glyph directionality 9-14, 9-15
white space

and justification 9-23, 9-46 to 9-47
width

advance, of glyph 1-9
of a layout shape 5-10, 9-10

width delta structure 9-26, 9-61 to 9-62
with-stream kerning 8-5, 8-8 to 8-10
with-stream shift 8-5, 8-6 to 8-7, 8-42 to 8-44, 8-58
WorldScript 9-37 to 9-38
writing systems

defined 1-7, 7-7

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages were created on an Apple
LaserWriter IINTX printer. Final page
negatives were output directly from
text files on an Optrotech SPrint 220
imagesetter. Line art was created using
Adobe™ Illustrator. PostScript™, the
page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino and display type is
Helvetica. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Apple Courier.

WRITERS

Linda Kyrnitszke, Tom Maremaa,
Diane Patterson, David Bice

DEVELOPMENTAL EDITORS

Anne Szabla, Antonio Padial

ILLUSTRATORS

Sandee Karr, Lisa Hymel

PRODUCTION EDITOR

Rex Wolf

PROJECT MANAGER

Trish Eastman

LEAD WRITER

David Bice

LEAD EDITOR

Laurel Rezeau

ART DIRECTORS

Barbara Smyth, Ruth Anderson

COVER DESIGNER

Barbara Smyth

Special thanks to Dave Opstad,
Mike Reed

Acknowledgments to Peter “Luke”
Alexander, Alex Beaman, Richard Becker,
Cary Clark, Matt Deatherage, Robert
Dierkes, Eric Mader, Buck Melton,
Ian Ritchie, Chris Yerga

