
Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York

Don Mills, Ontario Wokingham, England Amsterdam Bonn

Sydney Singapore Tokyo Madrid San Juan

Paris Seoul Milan Mexico City Taipei

I N S I D E  M A C I N T O S H

QuickDraw GX Objects



Apple Computer, Inc.

© 1994 Apple Computer, Inc.
All rights reserved. 

No part of this publication may be 
reproduced, stored in a retrieval 
system, or transmitted, in any form or 
by any means, mechanical, electronic, 
photocopying, recording, or otherwise, 
without prior written permission of 
Apple Computer, Inc. Printed in the 
United States of America.

No licenses, express or implied, are 
granted with respect to any of the 
technology described in this book. 
Apple retains all intellectual property 
rights associated with the technology 
described in this book. This book is 
intended to assist application 
developers to develop applications only 
for Apple Macintosh computers.

Every effort has been made to ensure 
that the information in this manual is 
accurate. Apple is not responsible for 
printing or clerical errors.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, LaserWriter, and 
Macintosh are trademarks of Apple 
Computer, Inc., registered in the United 
States and other countries.

Adobe Illustrator, Adobe Photoshop, 
and PostScript are trademarks of Adobe 
Systems Incorporated, which may be 
registered in certain jurisdictions.

America Online is a service mark of 
Quantum Computer Services, Inc.

CompuServe is a registered service 
mark of CompuServe, Inc.

FrameMaker is a registered trademark 
of Frame Technology Corporation.

Helvetica, Times, and Palatino are 
registered trademarks of Linotype 
Company.

ITC Zapf Dingbats is a registered 
trademark of International Typeface 
Corporation.

Optrotech is a trademark of Orbotech 
Corporation.

Pantone is a registered trademark of 
Pantone, Inc.

Simultaneously published in the United 
States and Canada.

LIMITED WARRANTY ON MEDIA AND 
REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS 
MANUAL, INCLUDING IMPLIED 
WARRANTIES OF MERCHANTABILITY 
AND FITNESS FOR A PARTICULAR 
PURPOSE, ARE LIMITED IN DURATION 
TO NINETY (90) DAYS FROM THE DATE 
OF THE ORIGINAL RETAIL PURCHASE 
OF THIS PRODUCT.

Even though Apple has reviewed this 
manual, APPLE MAKES NO WARRANTY 
OR REPRESENTATION, EITHER EXPRESS 
OR IMPLIED, WITH RESPECT TO THIS 
MANUAL, ITS QUALITY, ACCURACY, 
MERCHANTABILITY, OR FITNESS FOR A 
PARTICULAR PURPOSE. AS A RESULT, 
THIS MANUAL IS SOLD “AS IS,” AND 
YOU, THE PURCHASER, ARE ASSUMING 
THE ENTIRE RISK AS TO ITS QUALITY 
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE 
FOR DIRECT, INDIRECT, SPECIAL, 
INCIDENTAL, OR CONSEQUENTIAL 
DAMAGES RESULTING FROM ANY 
DEFECT OR INACCURACY IN THIS 
MANUAL, even if advised of the possibility 
of such damages.

THE WARRANTY AND REMEDIES SET 
FORTH ABOVE ARE EXCLUSIVE AND IN 
LIEU OF ALL OTHERS, ORAL OR 
WRITTEN, EXPRESS OR IMPLIED. No 
Apple dealer, agent, or employee is 
authorized to make any modification, 
extension, or addition to this warranty.

Some states do not allow the exclusion or 
limitation of implied warranties or liability 
for incidental or consequential damages, so 
the above limitation or exclusion may not 
apply to you. This warranty gives you 
specific legal rights, and you may also have 
other rights which vary from state to state.

ISBN 0-201-40675-6
1 2 3 4 5 6 7 8 9-CRW-9897969594
First Printing, April 1994

Library of Congress Cataloging-in-Publication Data

Inside Macintosh : QuickDraw GX object / [Apple Computer, Inc.].
p. cm.

Includes index.
ISBN 0-201-40675-6
1. Macintosh (Computer) 2. Computer graphics. 3. QuickDraw GX.

I. Apple Computer, Inc.
QA76.8.M3I56228 1994
006.6'765—dc20 94-1843

CIP



iii

Contents

Figures, Tables, and Listings xiii

Preface About This Book xix

What to Read xx

Chapter Organization xxi

Conventions Used in This Book xxii

Special Fonts xxii

Types of Notes xxii

Numerical Formats xxii

Type Definitions for Enumerations xxiii

Illustrations xxiii

Development Environment xxiii

Developer Products and Support xxiv

Chapter 1 Introduction to QuickDraw GX 1-1

What Is QuickDraw GX? 1-3

Color Graphics 1-4

Typography 1-5

Printing 1-6

What QuickDraw GX Is Not 1-7

QuickDraw GX Objects 1-7

How QuickDraw GX Defines Objects 1-8

Advantages of an Object-Based Structure 1-9

Kinds of QuickDraw GX Objects 1-10

Shape Objects 1-10

Supporting Objects 1-11

Printing Objects 1-14

Object Properties 1-15

Default Objects and Default Properties 1-17

Adding Custom Behavior With Tag Objects 1-17

Objects and Memory 1-18

Application Memory and QuickDraw GX Memory 1-18

Sharing and Multiple Object References 1-19

Owner Count 1-20

Cloning 1-20

Automatic Loading and Unloading of Objects 1-21

Direct Access to Object Structure: Locking and Unlocking 1-22

External Storage of Objects: Flattening and Unflattening 1-23



iv

Drawing and Hit-Testing Shapes 1-23

Drawing 1-24

Mapping and Clipping 1-24

View-Related Objects 1-25

The Drawing Sequence: Coordinate Conversion 1-28

Hit-Testing 1-32

Printing With QuickDraw GX 1-34

Core Printing Features 1-35

Custom Dialog Boxes and Page Formats 1-36

Advanced Printing Features 1-37

The QuickDraw GX Programming Environment 1-38

Setting Up QuickDraw GX Memory 1-38

Handling Errors 1-38

Debugging 1-39

Debugging and Non-Debugging Versions 1-39

Debugging With GraphicsBug 1-40

Programming Conventions and Consistencies 1-41

Object Behavior 1-41

Functions and Function Results 1-41

Function Parameters 1-42

Code Naming Conventions 1-44

Relationship to the Macintosh Toolbox 1-44

Summary Table and Diagram of QuickDraw GX Objects 1-45

Chapter 2 Shape Objects 2-1

About QuickDraw GX Shapes 2-5

About Shape Objects 2-7

Shape Properties 2-7

Shape Type 2-9

Shape Geometry 2-11

Shape Fill 2-13

Shape Attributes 2-16

Default Shapes 2-18

Modifying Shape Properties 2-19

Drawing Shapes 2-20

Hit-Testing Shapes 2-20

Saving and Restoring Shapes 2-22

Using Shape Objects 2-22

Creating and Manipulating Shape Objects 2-22

Getting and Setting the Default Shape Objects 2-23

Creating and Disposing of Shape Objects 2-24

Getting the Size of a Shape Object in Memory 2-25

Copying, Comparing, and Cloning Shape Objects 2-25

Caching Shape Objects 2-27

Loading and Unloading Shape Objects 2-27



v

Manipulating Shape Object Properties 2-28

Getting and Setting a Shape Object’s Type, Fill, and Attributes 2-28

Copying the Geometry From One Shape to Another 2-29

Getting and Setting a Shape Object’s Style, Ink, and Transform 2-30

Resetting a Shape Object’s Properties to Their Default Values 2-31

Manipulating a Shape Object’s Owner Count 2-31

Getting and Setting a Shape Object’s Tag References 2-32

Converting Shapes From One Type to Another 2-32

Directly Manipulating a Shape’s Geometry 2-34

Drawing and Hit-Testing Shapes 2-35

Drawing Shapes 2-35

Hit-Testing Shapes 2-36

Flattening and Unflattening Shapes 2-39

Shape-Related Functions Described Elsewhere 2-42

Shape Objects Reference 2-45

Constants and Data Types 2-45

The Shape Object 2-46

Shape Type 2-46

Shape Fill 2-46

Shape Attributes 2-47

Flatten Flags 2-48

The Spool Block 2-49

The Hit-Test Info Structure 2-50

Functions 2-51

Creating and Manipulating Shape Objects 2-52

Manipulating Shape Object Properties 2-65

Directly Manipulating a Shape’s Geometry 2-80

Drawing and Hit-Testing Shapes 2-84

Flattening and Unflattening Shape Objects 2-87

Application-Defined Spool Function 2-91

Summary of Shape Objects 2-93

Constants and Data Types 2-93

Functions 2-95

Application-Defined Spool Function 2-97

Chapter 3 Style Objects 3-1

About Style Objects 3-3

Style Object Properties 3-4

The Default Style Object 3-6

Using Style Objects 3-7

Creating and Manipulating Style Objects 3-7

Creating and Deleting a Style Object 3-7

Copying, Comparing, and Cloning Style Objects 3-8

Loading and Unloading Style Objects 3-10



vi

Manipulating Style Object Properties 3-10

Resetting a Style Object’s Default Properties 3-11

Getting and Setting Style Attributes and Text Attributes 3-11

Manipulating a Style Object’s Owner Count 3-11

Getting and Setting a Style Object’s Tag References 3-14

Style-Related Functions Described Elsewhere 3-14

Style Objects Reference 3-15

Constants and Data Types 3-16

The Style Object 3-16

Functions 3-16

Creating and Manipulating Style Objects 3-16

Manipulating Style Object Properties 3-21

Summary of Style Objects 3-26

Constants and Data Types 3-26

Functions 3-26

Chapter 4 Colors and Color-Related Objects 4-1

About Color in QuickDraw GX 4-5

Color Spaces 4-6

Luminance-Based Color Spaces 4-7

RGB-Based Color Spaces 4-9

CMYK Color Spaces 4-14

Universal Color Spaces 4-15

Indexed Color Spaces 4-22

Color Spaces With Alpha Channels 4-24

Color-Component Values, Color Values, and Colors 4-25

Color Conversion and Color Matching 4-26

Color Profiles 4-28

Color-Matching Methods 4-30

When Color Matching Occurs 4-31

About Color Set Objects 4-32

Color Set Properties 4-33

Color Values in a Color Set 4-34

Default Color Sets 4-34

About Color Profile Objects 4-35

Color Profile Properties 4-36

Profile Data 4-36

The Default Color Profile 4-37

Zero-Length Profiles 4-37

Using Colors and Color-Related Objects 4-38

Assigning Colors to Shapes 4-38

Assigning Color Profiles to Colors 4-39

Comparing and Testing Colors 4-40

Checking for Out-of-Gamut Colors 4-40

Checking Colors for Closeness and Color Space 4-40



vii

Predicting Drawing Results 4-41

Converting and Matching Colors 4-41

Creating and Manipulating Color Set and Color Profile Objects 4-42

Creating and Disposing of a Color Set or Color Profile 4-42

Copying, Comparing, and Cloning Color Sets and Color Profiles 4-44

Loading and Unloading Color Sets and Color Profiles 4-45

Manipulating Object Properties of Color Sets and Color Profiles 4-46

Manipulating Owner Counts 4-46

Getting and Setting Tag References 4-47

Manipulating the Colors in a Color Set Object 4-47

Manipulating the Profile Data in a Color Profile Object 4-48

Colors and Color-Related Objects Reference 4-49

Constants and Data Types 4-50

Color-Component Values 4-50

Color Values 4-50

The Color Structure 4-53

Color Packing 4-54

Color Spaces 4-55

The Color Set Object 4-56

The gxSetColor Union 4-56

The Color Profile Object 4-57

Color Functions 4-57

Color Set Functions 4-62

Creating and Manipulating Color Set Objects 4-62

Manipulating Color Set Object Properties 4-69

Retrieving and Replacing Colors in a Color Set 4-73

Color Profile Functions 4-78

Creating and Manipulating Color Profile Objects 4-78

Manipulating Color Profile Object Properties 4-84

Retrieving and Replacing Profile Information 4-88

Summary of Colors and Color-Related Objects 4-94

Constants and Data Types 4-94

Color Functions 4-98

Color Set Functions 4-98

Color Profile Functions 4-99

Chapter 5 Ink Objects 5-1

About Ink Objects 5-5

Ink Properties 5-6

Color 5-7

Transfer Mode 5-8

Ink Attributes 5-9

The Default Ink Object 5-10



viii

About Transfer Modes 5-11

Transfer Mode Types 5-11

Arithmetic Transfer Modes 5-12

Highlight Transfer Mode 5-15

Boolean Transfer Modes 5-16

Pseudo-Boolean Transfer Modes 5-18

Alpha-Channel Transfer Modes 5-20

Transfer Mode Color Space 5-25

Color Limits 5-27

Source Color Limits 5-31

Destination Color Limits 5-32

Result Color Limits 5-32

Transfer Mode Matrices 5-33

Flags 5-34

Transfer Component Flags 5-35

Transfer Mode Flags 5-35

Summary of Transfer Mode Operation 5-36

Using Ink Objects 5-38

Creating and Manipulating Ink Objects 5-38

Creating and Disposing of Ink Objects 5-38

Copying, Comparing, and Cloning Ink Objects 5-39

Loading and Unloading Ink Objects 5-40

Manipulating Ink Object Properties 5-40

Getting and Setting an Ink Object’s Attributes 5-40

Manipulating an Ink Object’s Owner Count 5-41

Getting and Setting an Ink Object’s Tag References 5-41

Getting and Setting an Ink Object’s Color 5-42

Getting and Setting an Ink Object’s Transfer Mode 5-43

Working With Transfer Modes 5-44

Simple Source-to-Destination Transfers 5-44

Drawing Selected Parts of the Source 5-45

Preserving Selected Parts of the Destination 5-45

Copying or Preserving Luminance 5-46

Modifying Luminance 5-47

Isolating and Modifying Color Ranges 5-47

Masking 5-48

Partial Transparency 5-48

Anti-Aliasing 5-49

Making Color Separations 5-49

Transfer Modes and Printing 5-49

Ink Objects Reference 5-50

Constants and Data Types 5-50

The Ink Object 5-50

Ink Attributes 5-51

Color Structure 5-51

Transfer Mode Structure 5-52

Transfer Mode Flags 5-53



ix

Transfer Component Structure 5-53

Component Modes (Transfer Mode Types) 5-55

Transfer Component Flags 5-55

Functions 5-56

Creating and Manipulating Ink Objects 5-56

Manipulating Ink Object Properties 5-60

Getting and Setting an Ink’s Color 5-68

Getting and Setting an Ink’s Transfer Mode 5-72

Summary of Ink Objects 5-77

Constants and Data Types 5-77

Functions 5-79

Chapter 6 Transform Objects 6-1

About Transform Objects 6-5

Transform Object Properties 6-6

Clip 6-7

Mapping 6-10

View Port List 6-11

Hit-Test Parameters 6-11

Default Transform Objects 6-14

Using Transform Objects 6-15

Creating and Manipulating Transform Objects 6-15

Creating and Disposing of Transform Objects 6-15

Copying, Comparing, and Cloning Transform Objects 6-16

Implicit Creation of Transform Objects 6-18

Loading and Unloading Transform Objects 6-18

Manipulating Transform Object Properties 6-19

Manipulating a Transform Object’s Owner Count 6-19

Getting and Setting a Transform Object’s Tag References 6-20

Resetting Default Transform Properties 6-20

Getting, Setting, and Modifying the Transform Clip 6-20

Moving, Scaling, Rotating, and Skewing Shapes 6-23

Modifying the Transform Mapping 6-24

Modifying Shape Geometry 6-26

Manipulating the View Port List 6-28

Setting Up Hit-Test Parameters 6-30

Transform Objects Reference 6-31

Constants and Data Types 6-31

The Transform Object 6-31

Shape Parts for Hit-Testing 6-32

Functions 6-32

Creating and Manipulating Transform Objects 6-33

Manipulating Transform Object Properties 6-38

Getting and Setting the Clip 6-43

Performing Geometric Operations on Transform Clips 6-48



x

Getting and Setting the Mapping 6-53

Transforming Shapes by Modifying Transform Mappings 6-58

Transforming Shapes by Modifying Shape Geometries 6-65

Getting and Setting the View Port List 6-73

Getting and Setting the Hit-Test Parameters 6-77

Summary of Transform Objects 6-82

Constants and Data Types 6-82

Functions 6-83

Chapter 7 View-Related Objects 7-1

About View Ports, View Devices, and View Groups 7-5

About View Port Objects 7-7

View Port Properties 7-7

View Port Clip and Mapping 7-9

Dither 7-10

Halftone 7-13

Parent and Child View Ports 7-18

View Port Attributes 7-20

The Default View Port Object 7-20

View Port Objects and Windows 7-21

About View Device Objects 7-24

View Device Properties 7-25

View Device Clip and Mapping 7-26

View Device Bitmap 7-26

View Device Attributes 7-27

The Default View Device Object 7-28

View Device Objects and Physical Devices 7-28

About View Group Objects 7-29

View Groups Have No Properties 7-29

Onscreen and Offscreen View Groups 7-29

About Drawing, Coordinate Conversion, and Clipping 7-30

QuickDraw GX Coordinates 7-31

Geometry Space 7-32

Local Space 7-33

Global Space 7-34

Device Space 7-38

Using View-Related Objects 7-39

Using View Ports 7-40

Creating and Manipulating View Port Objects 7-40

Manipulating View Port Object Properties 7-42

Getting and Setting a View Port’s Clip and Mapping 7-44

Setting Up the View Port Hierarchy for a Window 7-46

Supporting Scrolling in a Window 7-47

Identifying a View Port’s View Devices 7-49

Identifying a Shape’s View Ports 7-50



xi

Measuring a Shape in Local Space 7-51

Using View Devices 7-52

Creating and Manipulating View Device Objects 7-52

Manipulating View Device Object Properties 7-54

Getting and Setting a View Device’s Clip and Mapping 7-56

Identifying a Shape’s View Devices 7-58

Measuring a Shape in Device Space 7-59

Hit-Testing a Shape on a Device 7-60

Using View Groups 7-60

Creating and Manipulating View Group Objects 7-61

Setting Up an Offscreen View Group 7-62

Measuring a Shape in Global Space 7-63

View-Related Objects Reference 7-65

Constants and Data Types 7-65

The View Port Object 7-65

The Halftone Structure 7-65

Dot Types 7-66

Tint Types 7-67

View Port Attributes 7-68

The View Device Object 7-68

View Device Attributes 7-68

The View Group Object 7-69

View Group Types 7-69

View Port Functions 7-69

Creating and Manipulating View Port Objects 7-70

Manipulating View Port Object Properties 7-74

Retrieving the View Devices That Intersect a View Port 7-94

Retrieving the View Ports That Intersect a Shape 7-95

Measuring a Shape in Local Coordinates 7-96

View Device Functions 7-97

Creating and Manipulating View Device Objects 7-97

Manipulating View Device Object Properties 7-102

Retrieving the View Devices That Intersect a Shape 7-115

Measuring a Shape in Device Coordinates 7-116

Measuring the Colors and Pattern Width of a Shape on a Device 7-118

Hit-Testing a Shape on a Device 7-120

View Group Functions 7-121

Creating and Disposing of View Group Objects 7-121

Getting the View Ports and View Devices of a View Group 7-123

Measuring a Shape in Global Coordinates 7-125

Summary of View-Related Objects 7-127

Constants and Data Types 7-127

View Port Functions 7-129

View Device Functions 7-130

View Group Functions 7-131



xii

Chapter 8 Tag Objects 8-1

About Tag Objects 8-3

Tag Object Properties 8-4

Tag Types 8-5

Uses for Tag Objects 8-6

Using Tag Objects 8-7

Creating and Manipulating Tag Objects 8-7

Creating and Deleting a Tag Object 8-8

Copying, Comparing, and Cloning Tag Objects 8-9

Loading and Unloading Tag Objects 8-9

Manipulating Tag Object Properties 8-9

Getting and Setting a Tag Object’s Tag Type and Contents 8-10

Manipulating a Tag Object’s Owner Count 8-11

Directly Manipulating Tag Object Contents 8-11

Attaching Tags to a QuickDraw GX Object 8-12

Tag Objects Reference 8-12

Constants and Data Types 8-13

The Tag Object 8-13

Functions 8-13

Creating and Manipulating Tag Objects 8-13

Manipulating Tag Object Properties 8-18

Directly Manipulating the Data in a Tag Object 8-21

Summary of Tag Objects 8-25

C Summary 8-25

Functions 8-25

Glossary GL-1

Index IN-1



xiii

Figures, Tables, and Listings

Color Plates

Color plates are immediately preceding the title page

Color Plate 1 Blend example with different operand values
Color Plate 2 Showing color transparency with an alpha channel
Color Plate 3 Applying color by preserving luminance in the destination
Color Plate 4 Color spaces

Preface About This Book xvii

Figure P-1 Roadmap to the QuickDraw GX suite of books xx

Chapter 1 Introduction to QuickDraw GX 1-1

Figure 1-1 Several QuickDraw GX objects 1-8
Figure 1-2 A shape object and its referenced objects 1-12
Figure 1-3 Printing objects 1-14
Figure 1-4 Effects of mapping 1-25
Figure 1-5 How QuickDraw GX draws a shape 1-27
Figure 1-6 A rectangle in geometry space 1-29
Figure 1-7 A rectangle in local space (transform mapping applied) 1-30
Figure 1-8 A rectangle in global space (view port mapping applied) 1-31
Figure 1-9 A rectangle in device space (view device mapping applied) 1-32
Figure 1-10 Parts of a line for hit-testing 1-33
Figure 1-11 Dragging a document to a desktop printer icon on the 

desktop 1-36
Figure 1-12 Printing a single document that has multiple formats 1-37
Figure 1-13 Properties of the basic QuickDraw GX objects 1-49

Table 1-1 Convenience constants for parameters 1-43
Table 1-2 QuickDraw GX objects 1-45

Listing 1-1 Sample GraphicsBug heap dump (HD) listing 1-40

Chapter 2 Shape Objects 2-1

Figure 2-1 Basic components of a QuickDraw GX shape 2-6
Figure 2-2 The shape object and its properties 2-7
Figure 2-3 Shape geometry for each type of QuickDraw GX shape 2-12
Figure 2-4 Even-odd and winding fills 2-14
Figure 2-5 Shape parts for hit-testing 2-21

Table 2-1 Shape types 2-9
Table 2-2 Shape fills 2-13



xiv

Table 2-3 Valid shape fills for each shape type 2-15
Table 2-4 Shape attributes 2-16
Table 2-5 Where to find information on shape-type conversion 2-33
Table 2-6 Shape-related functions described elsewhere 2-42

Listing 2-1 Directly accessing a shape’s geometry 2-34
Listing 2-2 Hit-testing a line 2-38
Listing 2-3 Flattening a shape 2-39
Listing 2-4 Unflattening a shape 2-40
Listing 2-5 A spool function that parses shape data 2-41

Chapter 3 Style Objects 3-1

Figure 3-1 The style object and its properties 3-4

Table 3-1 Where to go for information on style object properties and 
functions 3-6

Table 3-2 Style-related functions described elsewhere 3-14

Listing 3-1 Building a style list by copying a style object 3-9

Chapter 4 Colors and Color-Related Objects 4-1

Figure 4-1 Luminance color space 4-7
Figure 4-2 Storage formats for luminance-based color spaces 4-8
Figure 4-3 RGB color space 4-9
Figure 4-4 Storage formats for RGB color spaces 4-11
Figure 4-5 HSV color space and HLS color space 4-12
Figure 4-6 Storage formats for HSV color spaces 4-13
Figure 4-7 Colors in CMYK color space 4-14
Figure 4-8 Storage formats for CMYK color spaces 4-15
Figure 4-9 Yxy chromaticities 4-17
Figure 4-10 Storage formats for XYZ color spaces 4-20
Figure 4-11 The I and Q axes in YIQ color space 4-21
Figure 4-12 Storage formats for YIQ color spaces 4-22
Figure 4-13 Storage format for indexed color space 4-23
Figure 4-14 Showing color transparency with an alpha channel 4-24
Figure 4-15 Color gamuts for two devices (in Yxy space) 4-28
Figure 4-16 Profile chromaticities for a device (in Yxy space) 4-29
Figure 4-17 A profile response curve for a device 4-29
Figure 4-18 Maintaining lightness and maintaining saturation in color 

matching 4-31
Figure 4-19 The color set object and its properties 4-33
Figure 4-20 The color profile object and its properties 4-36

Table 4-1 Luminance-based color spaces supported by 
QuickDraw GX 4-8

Table 4-2 RGB color spaces supported by QuickDraw GX 4-10
Table 4-3 HSV and HLS color spaces supported by QuickDraw GX 4-13
Table 4-4 CMYK color spaces supported by QuickDraw GX 4-15



xv

Table 4-5 Universal color spaces supported by QuickDraw GX 4-19
Table 4-6 Video color spaces supported by QuickDraw GX 4-21
Table 4-7 Indexed color space supported by QuickDraw GX 4-23

Chapter 5 Ink Objects 5-1

Figure 5-1 The ink object and its properties 5-6
Figure 5-2 Arithmetic transfer modes 5-13
Figure 5-3 Blend example with different operand values 5-15
Figure 5-4 Highlight transfer mode 5-16
Figure 5-5 Boolean transfer modes (1-bit depth) 5-17
Figure 5-6 Pseudo-Boolean transfer modes 5-18
Figure 5-7 Alpha-channel transfer modes 5-21
Figure 5-8 Typical modes used to determine result opacity for the alpha 

channel 5-23
Figure 5-9 Anti-aliasing 5-25
Figure 5-10 Automatic conversion of color values during a transfer mode 

operation 5-26
Figure 5-11 Maximum and minimum color-component values in 

RGB space 5-28
Figure 5-12 How minimum and maximum color limits affect drawing 5-29
Figure 5-13 How reversed minimum and maximum color limits affect 

drawing 5-29
Figure 5-14 The effects of reversing maximum and minimum in a 

color space 5-30
Figure 5-15 The effect of source color limits on drawing 5-31
Figure 5-16 The effect of destination color limits on drawing 5-32
Figure 5-17 The effect of result color limits on drawing 5-33
Figure 5-18 Summary of transfer mode operation 5-37
Figure 5-19 Applying color by preserving luminance in the destination 5-47

Table 5-1 Ink attributes 5-9

Chapter 6 Transform Objects 6-1

Figure 6-1 The transform object and its properties 6-6
Figure 6-2 A transform clip 6-7
Figure 6-3 A framed transform clip 6-8
Figure 6-4 Converting a framed shape with a nonzero pen width into a 

transform clip 6-8
Figure 6-5 Using a bitmap as a transform clip 6-9
Figure 6-6 Modifying a transform clip by subtracting it from another 

shape 6-9
Figure 6-7 Effects of the transform mapping 6-10
Figure 6-8 Constructive geometry operations with a polygon clip and a 

rectangle shape 6-22

Table 6-1 Shape parts for hit-testing, from the gxShapeParts 
enumeration 6-12

Table 6-2 Constructive geometry operations between transform clips and 
other shapes 6-21



xvi

Listing 6-1 Creating and disposing of a transform object 6-16
Listing 6-2 Cloning a transform to prevent it from being deleted 6-17
Listing 6-3 Modifying a shape’s transform with transform-mapping 

calls only 6-25
Listing 6-4 Modifying a shape’s transform with transform-mapping and 

shape-geometry calls 6-25
Listing 6-5 Modifying a shape’s geometry with shape-geometry calls 6-27
Listing 6-6 Getting and setting view ports 6-29

Chapter 7 View-Related Objects 7-1

Figure 7-1 Objects used by the drawing mechanism 7-6
Figure 7-2 View port object properties 7-8
Figure 7-3 Clipping and mapping in view ports 7-10
Figure 7-4 Halftone angle 7-14
Figure 7-5 Halftone frequency 7-15
Figure 7-6 Halftone dot types 7-16
Figure 7-7 Hierarchical view ports in a window 7-18
Figure 7-8 A view port hierarchy 7-19
Figure 7-9 View ports in windows 7-22
Figure 7-10 Adjusting a child view port’s mapping to handle scrolling 7-23
Figure 7-11 View ports overlapping view devices 7-24
Figure 7-12 View device object properties 7-25
Figure 7-13 The QuickDraw GX coordinate plane 7-31
Figure 7-14 A shape geometry and a transform clip geometry 7-32
Figure 7-15 Applying the transform’s clip and mapping to a shape 7-33
Figure 7-16 Applying the child view port’s mapping and clip to a shape 7-35
Figure 7-17 Applying the parent view port’s mapping and clip to a 

shape 7-36
Figure 7-18 Applying the view device’s mapping and clip to a shape 7-38
Figure 7-19 The shape as finally displayed 7-39

Table 7-1 Dither levels and patterns 7-11
Table 7-2 View port attributes 7-20
Table 7-3 View device attributes 7-27

Listing 7-1 Changing a view port’s dither, halftone, and attributes 7-42
Listing 7-2 Copying the view ports from one view group to another 7-44
Listing 7-3 Changing a view port’s mapping 7-45
Listing 7-4 Setting a view port clip 7-46
Listing 7-5 Setting up a view port for a window 7-47
Listing 7-6 Supporting scrolling in a child view port 7-48
Listing 7-7 Setting a shape color for XOR highlighting 7-49
Listing 7-8 Locating the bounding rectangles of a list of shapes in a 

view port 7-51
Listing 7-9 Creating a new view device 7-53
Listing 7-10 Copying the view devices from one view group to another 7-54
Listing 7-11 Returning the mapping from local to device space 7-57
Listing 7-12 Setting up a data structure for offscreen drawing 7-58
Listing 7-13 Setting up a data structure for offscreen drawing 7-61



xvii

Listing 7-14 Setting up a view port and view group for offscreen 
drawing 7-63

Listing 7-15 Returning the characteristics of an offscreen device area 7-64

Chapter 8 Tag Objects 8-1

Figure 8-1 The tag object and its properties 8-4

Table 8-1 Defined tag types for tag objects 8-6

Listing 8-1 Adding data to a shape as a tag object 8-8
Listing 8-2 Retrieving the contents of a tag object 8-10





xix

P R E F A C E  

About This Book

QuickDraw GX is an integrated, object-based approach to graphics 

programming on Macintosh computers. This book, Inside Macintosh: 
QuickDraw GX Objects, gets you started by describing the object system 

and showing you how to create and manipulate the fundamental 

QuickDraw GX objects.

For application programming purposes, QuickDraw GX augments the 

capabilities of some of the Macintosh system software managers documented 

in other parts of Inside Macintosh. In situations where your application uses 

QuickDraw GX for drawing, information in this book replaces much of 

the information in Inside Macintosh: Imaging With QuickDraw. However, 

QuickDraw and QuickDraw GX coexist without conflict, and you can use 

both within the same program. Furthermore, for tasks outside the scope of 

QuickDraw GX, such as managing cursors or hardware color tables, you 

need to use QuickDraw.

Before you read this book, you should already be familiar with the 

Macintosh Toolbox, as described in Inside Macintosh: Macintosh Toolbox 
Essentials and Inside Macintosh: More Macintosh Toolbox. See the inside back 

cover of this book for a diagram showing those books and the others that 

make up the Inside Macintosh suite.

This book is the first reference book in the Inside Macintosh QuickDraw GX 

suite; read it before reading other references, such as Inside Macintosh: 
QuickDraw GX Graphics and Inside Macintosh: QuickDraw GX Typography. 
Figure P-1 shows the suggested reading order for the QuickDraw GX 

books.

For an alternative approach to learning QuickDraw GX, you can read 

QuickDraw GX Programmer’s Overview before or along with this 

book. QuickDraw GX Programmer’s Overview teaches QuickDraw GX 

programming through building extensive code samples.



xx

P R E F A C E  

Figure P-1 Roadmap to the QuickDraw GX suite of books

What to Read

This book is for all QuickDraw GX programmers. You can read the chapters in 

any order, except that the first chapter introduces concepts that the others 

build on:

■ Chapter 1, “Introduction to QuickDraw GX,” provides an overview of 
all of QuickDraw GX, concentrating especially on its capabilities for 
managing and drawing objects. Read this chapter first.

■ Chapter 2, “Shape Objects,” describes how to create and use 
QuickDraw GX shapes, the basic objects that you draw. (To apply 
shape objects to specific graphic and typographic tasks, the chapter 
refers you to the books Inside Macintosh: QuickDraw GX Graphics and 
Inside Macintosh: QuickDraw GX Typography, respectively.)



xxi

P R E F A C E  

■ Chapter 3, “Style Objects,” describes how to create and use QuickDraw GX 
style objects, whose purpose is to modify the appearance or behavior of 
shape objects. (To apply style objects to specific graphic and typographic 
tasks, the chapter refers you to the books Inside Macintosh: QuickDraw GX 
Graphics and Inside Macintosh: QuickDraw GX Typography, respectively.)

■ Chapter 4, “Colors and Color-Related Objects,” describes the QuickDraw 
GX approach to color representation, and the objects that contain color 
information. This chapter describes how to create and use color set objects, 
which are used to implement indexed color spaces, and color profile 
objects, which are used for color matching.

■ Chapter 5, “Ink Objects,” describes how to create and use QuickDraw GX 
ink objects, which specify the color and transfer mode used to draw a 
shape.

■ Chapter 6, “Transform Objects,” describes how to create and use 
QuickDraw GX transform objects, which are used to position and 
transform the appearance of a shape, and to store information for 
hit-testing.

■ Chapter 7, “View-Related Objects,” describes how to create and use view 
ports, view devices, and view groups, which are QuickDraw GX objects 
that work together to provide flexible capabilities in onscreen and offscreen 
drawing.

■ Chapter 8, “Tag Objects,” describes how to create and use QuickDraw GX 
tag objects, which can contain any kind of information that you can use in 
any way to extend the capabilities of other QuickDraw GX objects.

Other kinds of QuickDraw GX objects are described in other books. See the 

chapter “Introduction to QuickDraw GX” for information and 

cross-references.

The color plate at the front of this book shows full-color examples of some of 

the figures found elsewhere in the book, in the chapters “Colors and 

Color-Related Objects” and “Ink Objects.” 

Chapter Organization

Most chapters in this book follow a standard general structure. For example, 

the chapter “Transform Objects” contains these major sections:

■ “About Transform Objects.” This section provides an overview of 
transform objects.

■ “Using Transform Objects.” This section describes how you can create and 
manipulate transform objects using QuickDraw GX. It describes how to 
use the most common functions, gives related user interface information, 
provides code samples, and supplies additional information.



xxii

P R E F A C E  

■ “Transform Object Reference.” This section provides a complete reference 
for transform objects by describing the constants, data types, and functions 
that you use with transform objects. Each function description follows a 
standard format, which gives the function declaration; a description of 
every parameter; the function result, if any; and a list of errors, warnings, 
and notices. Most function descriptions give additional information about 
using the function and include cross-references to related information 
elsewhere.

■ “Summary of Transform Objects.” This shows the C interface for the 
constants, data types, and functions associated with transform objects.

Conventions Used in This Book

This book uses various conventions to present certain types of information.

Special Fonts
All code listings, reserved words, and the names of data structures, constants, 

fields, parameters, and functions are shown in Courier (this is Courier).

When new terms are introduced, they are in boldface. These terms are also 

defined in the glossary.

Types of Notes
There are several types of notes used in this book. 

Note

A note formatted like this contains information that is interesting but 
possibly not essential to an understanding of the main text. The wording 
in the title may say something more descriptive than just “Note,” for 
example “Terminology Note.” (An example appears on page 1-4.) ◆

IMPORTANT

A note like this contains information that is especially important. (An 
example appears on page 2-35.) ▲

Numerical Formats
Hexadecimal numbers are shown in this format: 0x0008.

The numerical values of constants are shown in decimal, unless the constants 

are flag or mask elements that can be summed, in which case they are shown 

in hexadecimal.



xxiii

P R E F A C E  

Type Definitions for Enumerations
Enumeration declarations in this book are commonly followed by a type 

definition that is not strictly part of the enumeration. You can use the type to 

specify one of the enumerated values for a parameter or field. The type name 

is usually the singular of the enumeration name, as in the following example:

enum gxDashAttributes {

gxBendDash = 0x0001,

gxBreakDash = 0x0002,

gxClipDash = 0x0004,

gxLevelDash = 0x0008,

gxAutoAdvanceDash = 0x0010

};

typedef long gxDashAttribute;

Illustrations
This book uses several conventions in its illustrations.

In illustrations that show object properties, properties that are object 

references are in italics. See, for example, Figure 2-2 in Chapter 2.

Objects in diagrams, whether shown with their properties or without, are 

represented by distinctive icons, such as these:

See, for example, Figure 1-1 in Chapter 1 and Figure 2-1 in Chapter 2.

Development Environment

The QuickDraw GX functions described in this book are available using 

C interfaces. How you access these functions depends on the development 

environment you are using.

Code listings in this book are shown in ANSI C. They suggest methods of 

using various functions and illustrate techniques for accomplishing particular 

tasks. Although most code listings have been compiled and tested, Apple 

Computer, Inc., does not intend for you to use these code samples in your 

applications.



xxiv

P R E F A C E  

Developer Products and Support

APDA is Apple’s worldwide source for over three hundred development 

tools, technical resources, training products, and information for anyone 

interested in developing applications on Apple platforms. Customers receive 

the quarterly APDA Tools Catalog featuring all current versions of Apple 

development tools and the most popular third-party development tools. 

Ordering is easy; there are no membership fees, and application forms are not 

required for most of our products. APDA offers convenient payment and 

shipping options, including site licensing.

To order products or to request a complimentary copy of the APDA Tools 
Catalog, contact 

APDA 

Apple Computer, Inc. 

P.O. Box 319

Buffalo, NY 14207-0319

If you provide commercial products and services, call 408-974-4897 for 

information on the developer support programs available from Apple.

Telephone 800-282-2732 (United States)
800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511 

AppleLink APDA

America Online APDAorder

CompuServe 76666,2405

Internet APDA@applelink.apple.com



Contents 1-1

C H A P T E R  1

Introduction to 

Contents

QuickDraw GX

What Is QuickDraw GX? 1-3

Color Graphics 1-4

Typography 1-5

Printing 1-6

What QuickDraw GX Is Not 1-7

QuickDraw GX Objects 1-7

How QuickDraw GX Defines Objects 1-8

Advantages of an Object-Based Structure 1-9

Kinds of QuickDraw GX Objects 1-10

Shape Objects 1-10

Supporting Objects 1-11

Printing Objects 1-14

Object Properties 1-15

Default Objects and Default Properties 1-17

Adding Custom Behavior With Tag Objects 1-17

Objects and Memory 1-18

Application Memory and QuickDraw GX Memory 1-18

Sharing and Multiple Object References 1-19

Owner Count 1-20

Cloning 1-20

Automatic Loading and Unloading of Objects 1-21

Direct Access to Object Structure: Locking and Unlocking 1-22

External Storage of Objects: Flattening and Unflattening 1-23



C H A P T E R  1

1-2 Contents

Drawing and Hit-Testing Shapes 1-23

Drawing 1-24

Mapping and Clipping 1-24

View-Related Objects 1-25

The Drawing Sequence: Coordinate Conversion 1-28

Hit-Testing 1-32

Printing With QuickDraw GX 1-34

Core Printing Features 1-35

Custom Dialog Boxes and Page Formats 1-36

Advanced Printing Features 1-37

The QuickDraw GX Programming Environment 1-38

Setting Up QuickDraw GX Memory 1-38

Handling Errors 1-38

Debugging 1-39

Debugging and Non-Debugging Versions 1-39

Debugging With GraphicsBug 1-40

Programming Conventions and Consistencies 1-41

Object Behavior 1-41

Functions and Function Results 1-41

Function Parameters 1-42

Code Naming Conventions 1-44

Relationship to the Macintosh Toolbox 1-44

Summary Table and Diagram of QuickDraw GX Objects 1-45



C H A P T E R  1

What Is QuickDraw GX? 1-3

Introduction to QuickDraw GX

This chapter introduces the QuickDraw GX object-based approach to graphics 

programming. Any QuickDraw GX programming you do requires a basic understanding 

of objects and how to manipulate them. Read this chapter before reading any other 

chapter in this book, and before reading subsequent books in the QuickDraw GX suite, 

such as Inside Macintosh: QuickDraw GX Graphics, Inside Macintosh: QuickDraw GX 
Typography, and Inside Macintosh: QuickDraw GX Printing.                           

You can also start learning about QuickDraw GX by reading the book QuickDraw GX 
Programmer’s Overview, either before or in conjunction with reading this chapter and the 

rest of the QuickDraw GX suite. QuickDraw GX Programmer’s Overview introduces you to 

QuickDraw GX concepts through designing and building code samples. 

This chapter starts by outlining the features and advantages of QuickDraw GX. It then 

describes

■ the kinds of objects defined by QuickDraw GX

■ how your application interacts with QuickDraw GX memory

■ how to use objects to draw and hit-test shapes

■ how to use objects to print documents

■ how to program within the QuickDraw GX environment

The chapter concludes with a table and diagram summarizing QuickDraw GX objects 

and their properties.

What Is QuickDraw GX?

QuickDraw GX is a programming environment and toolbox for powerful 

two-dimensional color graphics programming. QuickDraw GX helps you create graphic 

and typographic objects and display them on a variety of imaging devices, including 

printers. The QuickDraw GX software architecture is based on objects and is compatible 

with, but does not require, object-oriented programming techniques.

QuickDraw GX is a large system that provides many benefits. The rest of this section 

summarizes some of those benefits, in terms of its three principal areas of application: 

color graphics, typography, and printing.



C H A P T E R  1

Introduction to QuickDraw GX

1-4 What Is QuickDraw GX?

Color Graphics
QuickDraw GX is a powerful graphics engine with integrated color support, a wide 

range of graphics primitives, and sophisticated modes of drawing. It can manipulate 

images in quite general ways, leading to many useful special effects. Highlights of the 

graphics capabilities of QuickDraw GX include the following:

■ Multiple types of graphic shapes. QuickDraw GX directly supports geometric shapes 
(points, lines, rectangles, polygons, curves, and paths), bitmap shapes, and picture 
shapes (shapes that are collections of other shapes). 

■ Multiple types of typographic shapes. QuickDraw GX directly supports text shapes, 
glyph shapes, and layout shapes, which range from simple unstyled lines of text to 
multilanguage, multifont text lines with sophisticated typographic features.

■ Device independence. All positions and measurements in QuickDraw GX are 
independent of the resolution of any imaging device. 

■ Flexible and powerful transformations. QuickDraw GX uses mathematical mappings 
to easily manipulate positions, dimensions, and distortions of shapes.

■ Easy stylistic variations. QuickDraw GX gives you great flexibility in setting shape 
characteristics such as pen width, patterns, font, and text face.

■ Device-independent colors. All colors in QuickDraw GX can be defined in a 
device-independent way and then converted to device-specific colors on any device.

■ Direct support for many color spaces, including luminance (for grayscale), RGB (for 
monitors), YIQ (for color video broadcast), CMYK (for printing), CIE and related 
device-independent color spaces (for colorimetrics).

■ Automatic color matching. QuickDraw GX automatically uses color profiles and the 
Macintosh ColorSync utilities to guarantee that a document’s colors as displayed on a 
monitor match as closely as possible a printed copy of the same document. If you 
need to, you can also manually control the color matching process.

■ A sophisticated yet straightforward rendering mechanism. The mechanism allows 
multiple simultaneous views of a single shape, with different scales and orientations, 
on single or multiple devices, with simultaneous updating of all views if the shape is 
edited.

Compatibility With QuickDraw

QuickDraw GX is does not replace the original QuickDraw 
architecture built into the Macintosh toolbox. An application that 
is not QuickDraw GX-aware is unaffected if QuickDraw GX is 
installed on the system. A QuickDraw GX application can also use 
standard QuickDraw calls and convert QuickDraw picture files into 
QuickDraw GX shapes. See the Macintosh environment chapter of 
Inside Macintosh: QuickDraw GX Environment and Utilities for more 
information. ◆

The color graphics capabilities of QuickDraw GX are described both in this book and in 

Inside Macintosh: QuickDraw GX Graphics. 



C H A P T E R  1

Introduction to QuickDraw GX

What Is QuickDraw GX? 1-5

Typography
QuickDraw GX treats text both as text (a sequence of character codes that can be 

displayed and edited) and as graphics, meaning that all of the color graphics capabilities 

of QuickDraw GX are available for the display of text.

Each line of text can be a shape in QuickDraw GX. Using the typographic features of 

QuickDraw GX, you can generate and manipulate fully editable, text-related shapes with 

characteristics such as the following:

■ Simplicity. Text can have a single font at a single size, with no changes in stylistic 
variation along the line. This type of text is most useful in dialog boxes or other 
situations where relatively unsophisticated string presentation is needed.

■ Flexible alignment and justification. Text can be (1) left aligned, right aligned, or any 
point of alignment in between (including centered); and (2) unjustified, fully justified, 
or any level of justification in between.

■ Multiple styles. Each glyph or any set of glyphs can be styled (given a font, size, or set 
of typographic characteristics) independently of every other glyph. 

■ Independent glyph positions. Each glyph can have any style and be positioned 
independently of every other glyph, so that text can be made to follow a curved path 
or circle.

■ Sophisticated layout. Text lines can exhibit great typographic sophistication, with 
features such as kerning, tracking, shifting, ligature formation, and contextual glyph 
substitution. 

■ Multilanguage text handling. Text can be properly formatted in any language 
supported by a QuickDraw GX font, even contextual right-to-left languages such as 
Arabic, or languages with large character sets such as Chinese. Multiple languages, 
even with mixed text directions, can coexist on the same line. 

■ Vertical text. Text such as Japanese and Chinese can be written vertically, and 
intermixed with properly oriented vertical Roman text.

Because a line of text is a QuickDraw GX shape, you can color it, fill it with a pattern, 

scale it, rotate it, and transform it like any graphic shape—all the while maintaining its 

identity and editability as a text line. You can also use certain typographic shapes, either 

as-is or converted to purely geometric shapes, to perform further graphic operations 

with them, such as clipping, dashing, and patterning.

QuickDraw GX also provides functions that help you manipulate sets of text lines, even 

the most typographically sophisticated text lines, for word-processing tasks such as 

hit-testing and line-breaking.

Much of the text-layout sophistication of QuickDraw GX depends on information in 

tables in QuickDraw GX fonts, which have many features—some of which may be 

enabled by default—that your application can use or disable, as desired.

The typographic capabilities of QuickDraw GX are described in detail in Inside 
Macintosh: QuickDraw GX Typography. 



C H A P T E R  1

Introduction to QuickDraw GX

1-6 What Is QuickDraw GX?

Printing
QuickDraw GX includes an extensible, device-independent printing architecture that 

provides a high level of support for both users and application developers, and that 

makes creation of printing extensions and printer drivers fast and efficient. The printing 

features of QuickDraw GX include the following:

■ A consistent application printing interface, regardless of the type of printer used.

■ A message-based printing system. Drivers, extensions, and even applications need 
only respond to (override) a standard set of printing messages if they wish to add 
specific functionality.

■ A set of printing objects that controls the printing process. Use of multiple objects 
means that, for example, different parts of a document can print on several printers 
simultaneously, or a single document can have multiple page formats for printing.

■ Support for desktop printers, which are represented by icons on the computer 
desktop. The user can print a document by dragging it to the icon. Desktop printers 
support printer sharing, and you can control jobs in the print queue of a desktop 
printer.

■ Customizable printing dialog boxes. In addition to standard print options, these 
dialog boxes also provide additional controls such as the ability to select a paper tray.

■ The capability of creating and reading portable digital documents (PDDs). These 
documents can be viewed or printed on any computer that has QuickDraw GX 
installed, without requiring the original application or fonts with which the document 
was created. If QuickDraw GX is installed, any application—including those that are 
not QuickDraw GX-aware—can create a PDD.

■ Fast development of printing extensions that can work with any printer driver and 
any application, to extend the printing capabilities available to the user.

■ Fast development of printer drivers.

To implement the basic printing capabilities of QuickDraw GX, your application need 

provide only a small amount of code, which executes in response to a few menu items 

and a single printing message. With additional developmental effort, you can provide 

highly customized capabilities. (Even if your application implements no QuickDraw GX 

printing features at all, its users receive the benefit of desktop printers.)

The application printing interface to QuickDraw GX is described in Inside Macintosh: 
QuickDraw GX Printing; the interface for printing extensions and printer drivers is 

described in Inside Macintosh: QuickDraw GX Printing Extensions and Drivers. 



C H A P T E R  1

Introduction to QuickDraw GX

QuickDraw GX Objects 1-7

What QuickDraw GX Is Not
QuickDraw GX is a powerful system, but it does have certain limitations. If your graphic 

programming needs are outside of the capabilities of QuickDraw GX, you may wish to 

implement them yourself or—where possible—use the built-in capabilities of the 

platform on which your application runs. For example QuickDraw GX does not provide 

explicit support for

■ application-definable object methods

■ a floating-point interface

■ multiple colors or gradient fills in shapes (other than bitmaps)

■ planar-pixel devices

■ 3-D rendering

■ cubic curves (but conversion library code is available)

■ formatting of text units greater than a line, such as paragraphs

■ tabs in text

■ anti-aliasing (other than alpha-channel support in bitmaps)

■ palette management (handled by system software on the Macintosh)

■ cursor management (handled by system software on the Macintosh)

Also, on the Macintosh, QuickDraw GX does not completely replace either QuickDraw 

or the Window Manager for drawing, and it does not completely replace the Script 

Manager and international resources for non-Roman text-handling. QuickDraw GX 

extends the capabilities of these managers, but in some instances you still need to use 

their functions.   

QuickDraw GX Objects

With QuickDraw GX you create and draw objects. Fundamental graphic shapes, such as 

rectangles and curves, are objects. Lines of text are objects. Other pieces of information, 

such as the color of a shape or the font used to draw a letter, are also kept in objects. 

Fonts are objects. Even the information that is used to describe the printing 

characteristics of a document is kept in objects. 

Figure 1-1 names some of the common QuickDraw GX objects and shows their 

relationships, in terms of which objects use the information in which other objects. This 

chapter, this book, and much of the rest of the Inside Macintosh QuickDraw GX suite 

describe what these and other QuickDraw GX objects are and how to use them.



C H A P T E R  1

Introduction to QuickDraw GX

1-8 QuickDraw GX Objects

Figure 1-1 Several QuickDraw GX objects

How QuickDraw GX Defines Objects
Objects are specialized data structures. Some of the data structures used by operating 

systems such as the Macintosh Operating System are public—that is, your application 

can manipulate the values of their fields directly. Many of the data structures used by 

QuickDraw GX, on the other hand, are not public. These private data structures are 

called objects and the accessible pieces of information inside them are called properties. 
Your application creates and modifies objects to perform tasks, but it may not 

manipulate object properties directly. Instead, QuickDraw GX provides functions that 

manipulate them for you. 

QuickDraw GX does not provide pointers or handles for you to locate objects. Instead, it 

provides reference values. To allow type checking in C and Pascal, QuickDraw GX 

defines references as pointers to structures, although the reference is not guaranteed to 

point to anything. For example, a shape object is identified by a shape reference:

typedef struct gxPrivateShapeRecord *gxShape;

The contents of the structure are private. To obtain information about an object, you 

must send its reference as a parameter to a QuickDraw GX function.



C H A P T E R  1

Introduction to QuickDraw GX

QuickDraw GX Objects 1-9

When you create an object, you call a GXNewObject function that returns a reference to 

the object. Conversely, you can dispose of an object you no longer need by passing its 

reference in a call to GXDisposeObject. For example, you can create a picture shape 

object by calling the GXNewShape function with a parameter that specifies that you want 

the shape to be a picture type:

myShape = GXNewShape(gxPictureType);

In this example, myShape is a reference to the shape object, returned by the function. 

When you are finished with the object, you dispose of it like this:

GXDisposeShape(myShape);

QuickDraw GX objects exist in a memory area (QuickDraw GX memory) that is separate 

from the application’s memory. For more information on QuickDraw GX memory, see 

“Objects and Memory” beginning on page 1-18.

QuickDraw GX defines its objects in a device-independent manner. Because of that, and 

because many of its data structures are private, the QuickDraw GX software and the 

hardware on which it runs can evolve without disrupting existing applications.

Advantages of an Object-Based Structure
QuickDraw GX is currently implemented in the C programming language, which is not 

in itself object-oriented. Nevertheless, using QuickDraw GX gives you some of the 

fundamental programming advantages available with object-based systems.

QuickDraw GX objects are private. You do not usually have direct access to the internal 

data in a QuickDraw GX object; you instead make function calls to manipulate the 

information. This information hiding means that objects behave more consistently, 

unwanted side effects are minimized, and QuickDraw GX itself can take care of 

housekeeping tasks like tracking the current number of users of an object. It also means 

that QuickDraw GX can locate objects in memory managed by a graphics accelerator—

memory that is not necessarily accessible to your application.

By analogy with the polymorphism of some object-oriented systems, QuickDraw GX 

functions are organized so that a single function can apply to many types of objects. For 

example, a single drawing command (GXDrawShape) draws any QuickDraw GX shape, 

from a point to a curve to a bitmap to a line of text. Furthermore, there are many classes 

of calls that, while defined individually for each kind of object they apply to (in order to 

facilitate type-checking in Pascal and C), are completely parallel in function and in 

syntax. For example, the functions GXGetShapeTags, GXGetStyleTags, and 

GXGetInkTags take the same parameter (an object reference) and perform the same 

task (return a list of associated tag objects), but each for a different kind of object.



C H A P T E R  1

Introduction to QuickDraw GX

1-10 QuickDraw GX Objects

QuickDraw GX objects can be shared. To save duplication and prevent the accumulation 

of excessive numbers of objects in memory, QuickDraw GX allows multiple references to 

a single object. QuickDraw GX tracks the number of references to an object. When you 

are finished with an object, you dispose of it; QuickDraw GX then makes sure that the 

object is not being used for any other purpose before actually deleting it from memory.

Creating a QuickDraw GX object is somewhat like instantiating a class in an 

object-oriented system. When you first create a QuickDraw GX object it typically 

has default values that you can use or change to suit your needs.

Object-manipulation functions are mostly consistent across all objects; categories 

include GXNewObject (makes a new object), GXDisposeObject (deletes the object), 

GXCopyToObject (copies an object), GXEqualObject (tests two objects for equality), 

and GXCloneObject (makes a shared reference). Object-editing functions are 

similarly consistent, and include GXGetObjectProperty (to retrieve values) and 

GXSetObjectProperty (to assign values). By combining GXGetObject and GXSetObject 
calls with index values and ranges, you can insert, delete, and replace all or parts 

of arrays of values within an object.

The QuickDraw GX environment provides other consistencies to make programming 

tasks more straightforward. Many are listed in the section “Programming Conventions 

and Consistencies” beginning on page 1-41.

Kinds of QuickDraw GX Objects 
There are about a dozen different kinds of QuickDraw GX objects that you can use, 

beginning with the most fundamental object, the shape. Figure 1-1 on page 1-8 shows 

some of those objects and how they relate to each other; this section describes them and 

others.

Shape Objects

A shape is something that you can draw. Besides drawing it, you can also measure, 

parse, move, rotate, distort, check for intersection and union, make bold, simplify, and 

otherwise manipulate it. The fundamental purpose of QuickDraw GX is to create, 

manipulate, and draw shapes.

A shape consists of a shape object and three other associated objects (style, ink, and 

transform). A shape object consists of a geometry of a certain shape type (such as a line, 

rectangle, bitmap, or text) and information about how the geometry is framed or filled 

when drawn. A shape also has attributes, such as whether it should be stored in 

accelerator-card memory, if present. It also has references to its other three related objects.

Shapes and shape objects in general are discussed in the chapter “Shape Objects” in this 

book. More specifically, however, shapes are divided into types. There are two basic 

categories of shape type: graphic and typographic.



C H A P T E R  1

Introduction to QuickDraw GX

QuickDraw GX Objects 1-11

Graphic Shapes

Graphic shapes include geometric shapes, bitmap shapes, and picture shapes:

■ Geometric shapes are the building blocks for drawing. Geometric shapes, alone or in 
combination, make up the graphic elements supported by drawing programs. The 
defined types of geometric shapes are point, line, rectangle, curve, polygon, and path. 
There are two other special types of geometric shapes: empty and full. An empty 
shape has no extent, and a full shape has the maximum possible extent.

■ Bitmap shapes contain bit images or pixel images. QuickDraw GX bitmaps can be 
black and white, grayscale, or color. 

■ Picture shapes are collections of other QuickDraw GX shapes. Picture shapes can 
contain other picture shapes, in a hierarchy. Picture shapes allow you to override 
some characteristics of the contained shapes. 

Graphic shapes are described further in Inside Macintosh: QuickDraw GX Graphics. 
That book also describes functions for performing geometric operations, such as 

measurement, simplification, and constructive geometry, on graphic and typographic 

shapes.

Typographic Shapes

Typographic shapes represent text items—individual glyphs, collections of glyphs, or 

lines of text. The geometry of a typographic shape contains the text characters or glyphs 

of the shape, plus other information. There are three kinds of typographic shapes:

■ A text shape consists of a line of one or more characters or glyphs, all to be displayed 
in the same font with the same typestyle. 

■ A glyph shape consists of one or more glyphs, each of which can be independently 
located, rotated, sized, and styled. 

■ A layout shape consists of a line of text that can be in multiple languages, can have 
multiple writing directions (including vertical), can include ligatures and other 
contextual forms, and can display other sophisticated formatting and stylistic 
properties. 

Typographic shapes are described further in Inside Macintosh: QuickDraw GX Typography.  

Supporting Objects

Several other QuickDraw GX objects exist in support of shape objects. They are 

either directly or indirectly referenced by the shape object whose behavior they 

affect. Figure 1-2 shows the three objects that are directly referenced by a shape object; 

Figure 1-1 on page 1-8 includes these objects as well as additional objects referenced 

indirectly by the shape object.



C H A P T E R  1

Introduction to QuickDraw GX

1-12 QuickDraw GX Objects

Figure 1-2 A shape object and its referenced objects

Style Object

A style object describes certain characteristics affecting how a shape is drawn. For 

geometric shapes, this includes information such as the thickness of the pen, the joins 

between line segments, and any dash or pattern to apply to the shape. For typographic 

shapes, it includes information such as the font, text size, and typeface of the text. For 

layout shapes in particular, it includes information such as kerning behavior and 

font-feature selection.

Style objects in general are described in the chapter “Style Objects” in this book. Style 

objects used by graphic shapes are described in the geometric styles chapter of Inside 
Macintosh: QuickDraw GX Graphics; style objects used by typographic shapes are 

described in the typographic styles chapter of Inside Macintosh: QuickDraw GX 
Typography. 

Ink Object

An ink object describes a shape’s color and its transfer mode—how that color is applied 

when the shape is drawn. Inks support many different kinds of color specification, and 

many different transfer modes.

Ink objects are described in the chapter “Ink Objects” in this book.



C H A P T E R  1

Introduction to QuickDraw GX

QuickDraw GX Objects 1-13

Transform Object

A transform object describes the clip and mapping applied to a shape when it is drawn. 

The clip limits the extent of the shape; it can be described by any shape geometry, and 

QuickDraw GX provides constructive geometry functions with which you can easily 

manipulate clips by combining them with other shapes. The mapping is a 3 × 3 matrix 

that defines translation, scaling, skewing, rotation, or perspective. Transforms also 

describe information used for hit-testing a shape and its parts. Transforms have 

references to one or more view ports, objects that describe where the shapes are drawn.

Transform objects are described in the chapter “Transform Objects” in this book.

Color Set Object and Color Profile Object

A color set object is like a color table; it contains an indexed set of colors. Color sets are 

used when colors are specified by index instead of by direct color value. Bitmaps 

commonly use color sets.

A color profile object contains color matching information. The information in a color 

profile can be used to convert device-specific colors to device-independent colors, to 

provide the most faithful reproduction of colors on different devices. QuickDraw GX can 

automatically perform color matching with available color profiles whenever it draws.

Color sets and color profiles are described in the chapter “Color and Color-Related 

Objects” in this book.

View Port Object, View Device Object, and View Group Object

A view port object is the location into which an application draws a shape. A view port 

object has a clip and a mapping that define a window (or a part of a window, such as a 

window pane). View ports can be arranged in a hierarchy.

A view device object typically describes a physical display device such as a monitor or 

printer (or an area of memory for offscreen drawing). It has a mapping, a clip, and a 

bitmap that describe the view device’s position, dimensions, pixel depth and colors, and 

color profile. 

A view group object describes an imaging world, the global space in which view ports 

and view devices are located. Within a view group, view ports and view devices can 

overlap each other in any combination; the intersection of each view port with a view 

device determines what is actually drawn on that device. 

View ports, view devices, and view groups are described in the chapter “View-Related 

Objects” in this book.

Tag Object

A tag object is a general container for information that an application wants to add to a 

QuickDraw GX object. Tag objects can have anything in them, from labels to alternate 

drawing instructions to anything else you feel is useful. You can attach a tag object to the 

tag list of most other kinds of objects (except other tag objects).

Tag objects are described in the chapter “Tag Objects” in this book.



C H A P T E R  1

Introduction to QuickDraw GX

1-14 QuickDraw GX Objects

Font Object

A font object is the QuickDraw GX representation of an installed font. A font object 

contains information about the font’s names, encodings, font variations, and other tables. 

See the fonts chapter of Inside Macintosh: QuickDraw GX Typography for more information.

Graphics Client Object

A graphics client is the object representation of the QuickDraw GX memory allocated for 

an application, which is separate from the application’s own memory. A graphics client 

has no accessible properties, and in most cases your application never explicitly creates 

one. See the memory management chapter of Inside Macintosh: QuickDraw GX 
Environment and Utilities for more information.

Printing Objects

One category of QuickDraw GX objects exists to support printing. The printing objects 

include those shown in Figure 1-3 plus several others. Figure 1-3 shows the three 

principal QuickDraw GX printing objects (job, format, and paper-type), plus the three 

collection objects they use.

Figure 1-3 Printing objects

Note

Printing objects are different in some aspects from other QuickDraw GX 
objects. Most importantly, they exist in application memory instead of 
QuickDraw GX memory; this affects their behavior in several ways, as 
noted in later sections of this chapter. ◆

Job Object, Format Object, and Paper-Type Object

The job object is the primary holder of printing information for a document. Every 

printable document has a job object associated with it. The job object specifies 

information such as the number of copies and the page range for printing, and includes 

references to one or more format objects and two printer objects (one for formatting and 

one for current output). 



C H A P T E R  1

Introduction to QuickDraw GX

QuickDraw GX Objects 1-15

The format object specifies information such as scaling and page dimensions for the 

document, and includes a reference to a paper-type object.

The paper-type object specifies information such as a paper-type name (such as “US 

Letter”) and the physical dimensions of the paper. 

See the core printing features chapter of Inside Macintosh: QuickDraw GX Printing for 

more information.

Collection Objects

The job object, format object, and paper type object also include references to collection 
objects, which are objects managed by the Collection Manager, a part of system software 

provided with QuickDraw GX. Collection objects can contain any type of data; for 

printing, they hold additional useful information, such as specifications for halftoning, 

that is not in the printing objects. The Collection Manager is described in the Collection 

Manager chapter of Inside Macintosh: QuickDraw GX Environment and Utilities.

Printer Object

The printer object is another printing object. It represents a physical printer and includes 

a name and type, a driver name and type, and a reference to one or more view device 

objects that describe the characteristics of the printer the application draws to when 

printing. See the advanced printing features chapter of Inside Macintosh: QuickDraw GX 
Printing for more information.

Print-File Object

A print-file object is a printing object that represents a print file, the file that is the 

printable representation of a document. When it prints a document, QuickDraw GX first 

creates a print file, and then uses that print file to create an image on a printer. See the 

advanced printing features chapter of Inside Macintosh: QuickDraw GX Printing for more 

information. 

Object Properties
The accessible information in an object is its set of properties. Object properties are like 

the fields of a structure, except that they are accessible only through function calls; you 

cannot read them directly. Each property consists of a value or a list of values; the 

definition of the property determines what it contains. For example, the shape type 

property of a shape object contains a value, such as gxRectangleType, that describes 

the type of shape that it is.

For most properties, QuickDraw GX provides GXGetObjectProperty and 

GXSetObjectProperty functions that allow you to get or set each accessible part of 

the object. For example, the following statement returns a shape object’s type into 

the myShapeType variable:

myShapeType = GXGetShapeType(myShape);



C H A P T E R  1

Introduction to QuickDraw GX

1-16 QuickDraw GX Objects

Figure 1-13 on page 1-49 lists the accessible properties of the principal QuickDraw GX 

objects other than printing objects. Note that, because they are properties and not fields, 

their order in Figure 1-13 is arbitrary. The properties are explained in more detail in the 

chapter that describes the object.

Some object properties are common to most kinds of objects. For example, many 

objects have properties that are simply references to other objects. In addition,

 many objects have attributes, an owner count, and a tag list. These four kinds of 

common properties are summarized in this section.

References

Some properties consist of references to other objects. These references define a 

relationship between the objects; the properties of the referenced object are like an 

extension to the properties of the object containing the reference. For example, Figure 1-2 

on page 1-12 shows three objects referenced by a shape object: a style object, an ink 

object, and a transform object. Those three objects’ properties affect how the shape that 

references them is drawn; the ink object, for example, defines the color of the shape. 

Many objects contain references to other objects. Some object properties are individual 

references, whereas other properties are arrays, or lists, of references to several objects. 

The advantages of using object references are discussed in the section “Sharing and 

Multiple Object References” beginning on page 1-19.

Note

In illustrations of object properties throughout the QuickDraw GX 
documentation, properties that are object references (or lists of object 
references) are represented in italics. See, for example, how the style, ink 
and transform properties of the shape object are represented in 
Figure 1-13 on page 1-49. ◆

Attributes

Some objects have an attributes property, which is a group of flags that you use to 

modify the behavior of the object. In shapes, for example, these flags allow you to 

specify—among other things—how QuickDraw GX stores the shape object and how 

editing operations affect the shape object. In view ports, as another example, these flags 

allow you to specify behavior such as whether or not to perform color matching when 

drawing.

Owner Count

For objects that are shared, this property indicates how many references to the object 

exist. For example, when you create a new shape object, QuickDraw GX sets the owner 

count of the new shape to 1. If you add that shape to a picture, QuickDraw GX 

increments the shape’s owner count by 1. If you dispose of the picture, QuickDraw GX 

decrements the shape’s owner count by 1. Whenever the owner count of a shared object 

reaches 0, the object is deleted and its memory released.

Owner counts are discussed further in the section “Sharing and Multiple Object 

References” beginning on page 1-19.



C H A P T E R  1

Introduction to QuickDraw GX

QuickDraw GX Objects 1-17

Tag List

This property is an array of references to custom information stored in tag objects. Tag 

objects are discussed further in the section “Adding Custom Behavior With Tag Objects,” 

on this page. 

Default Objects and Default Properties
QuickDraw GX provides default versions for all types of shape objects, and default 

values for the properties of other objects such as styles, inks, transforms, color sets, 

and color profiles. Therefore, when you create an object with a GXNewObject call, its 

properties are already set to match the default. For example, the default rectangle shape 

object has an owner count of 1, a solid shape fill, corners at locations (0.0, 0.0) and 

(0.0, 0.0), and a reference to the default ink object. If you want the new shape to have 

different dimensions or to reference a different ink object, you can change those 

properties after creating the shape.

The default shape objects are unique among QuickDraw GX default objects in that you 

can change them. If you want every new shape of a certain type to start off with a 

particular set of properties, you can change the properties of the default shape for that 

shape type, and every new shape of that type that you create will have the new 

properties.

You cannot change the default for most other objects. However, you can effectively 

change the default for any object that is referenced directly or indirectly by a shape 

object. For example, you can effectively create a new default ink object by first creating a 

version of the ink object that has the properties you want, and then altering all default 

shape objects to reference that ink object instead of the default ink object.

For objects for which there is no changeable default, there are nevertheless default values 

that are applied to the object when it is first created. 

Default color sets and color profiles

Color sets have changeable default versions, but they function 
differently than default shapes. You can define a color set to be the 
default associated with bitmaps of a given pixel depth. However, when 
you create a color set using the GXNewColorSet function, it has specific 
properties that are unaffected by any previous definitions of defaults.

There is a single default color profile, applied by QuickDraw GX to 
colors that do not have an attached profile. The default profile is not 
directly changeable. ◆

Adding Custom Behavior With Tag Objects
A tag object is a special kind of object whose purpose is to allow any type of 

application-defined information to be attached to a QuickDraw GX object. An object 

such as a shape or transform can be “tagged” with data or code that provides extra 

information about it or allows you to alter its behavior in specific situations.



C H A P T E R  1

Introduction to QuickDraw GX

1-18 Objects and Memory

You can, for example, attach identifying strings to objects with tags. As another example, 

you can alter the way an object is displayed on a particular imaging device (such as a 

PostScript device) by attaching a tag to it that contains imaging commands specific to 

that device.

A tag object is attached to its associated object by means of a tag list, a property that 

most QuickDraw GX objects have. A tag list is an array of references to the tag objects 

attached to an object. Objects can thus have more than one attached tag object.

Because tags are QuickDraw GX objects, they can be shared. Like other QuickDraw GX 

objects, tags are accessible from objects in accelerator memory, they can be unloaded to 

disk and reloaded automatically, and they can be flattened (see “External Storage of 

Objects: Flattening and Unflattening” on page 1-23). See the chapter “Tag Objects” in this 

book for more information. 

Objects and Memory

Objects are structures in memory. The way QuickDraw GX manages memory is central 

to its object orientation and to the advantages it provides you. QuickDraw GX has its 

own memory, and gives you access to it only in restricted situations.

Application Memory and QuickDraw GX Memory
When you program with QuickDraw GX, you are concerned with at least two separate 

memory heaps: the application heap, which holds your code and data structures, and a 

part of QuickDraw GX memory called the graphics client heap, which holds the objects 

you create with Quickdraw GX. As an application, you allocate variables and execute in 

application memory. You can directly access any data structures in that heap. Much of 

Macintosh system software, including the toolbox, can affect the application heap, 

sometimes in unwanted ways (as during memory compaction). 

QuickDraw GX rarely uses the application heap (except for storing printing-related 

objects). It allocates its objects, structures, and variables in the graphics client heap. 

QuickDraw GX memory is private; you cannot directly access the contents of the 

graphics client heap except under special conditions. The graphics client heap does not 

even have to be in the same physical address space as the application heap. For example, 

QuickDraw GX can execute from and store objects in the memory on a graphics 

accelerator card.

QuickDraw GX objects are private because they are in private memory. That means you 

must make QuickDraw GX calls to access objects and their information, but it also means 

that you can make almost any call without worrying that it might move application 

memory.



C H A P T E R  1

Introduction to QuickDraw GX

Objects and Memory 1-19

Typically, your application manages its own structures in the application heap, and 

makes function calls to obtain or change the contents of the graphics client heap. For 

example when you call a GXGetObjectProperty function, QuickDraw GX places a copy 

of the contents of an object’s property in your application’s heap. If you modify the 

information, you can then call a GXSetObjectProperty function to copy the new values 

from your application’s heap back into the object in the graphics client heap.

If you are a Macintosh programmer, remember that QuickDraw GX memory is 

completely separate, and you needn’t be concerned about its location or contents. 

Macintosh Memory Manager functions cannot allocate, resize, or determine the size of 

any QuickDraw GX object. To manage its memory, QuickDraw GX has its own internal 

memory manager and memory management functions. See the memory management 

chapter of Inside Macintosh: QuickDraw GX Environment and Utilities for more 

information. See Inside Macintosh: Memory for information on the Macintosh Memory 

Manager. 

The QuickDraw GX memory manager may move objects, unload them to disk if 

necessary, and reload them when they are needed again. To reference and use an object, 

you needn’t be concerned with or even know whether it is in a loaded or unloaded state. 

QuickDraw GX automatically loads any unloaded object when it is needed, even if that 

means unloading another object to make room. See “Automatic Loading and Unloading 

of Objects” on page 1-21 for more information. 

Sharing and Multiple Object References
Object-based systems can use large amounts of memory, especially when an application 

needs to create and use many objects. To minimize redundancy and excess memory use, 

QuickDraw GX supports the sharing of objects.

For example, you may want to create a set of shape objects that are of different sizes and 

geometries, but that all have the same color and are drawn with the same transfer mode. 

You can create a single ink object with the desired color and transfer mode that all the 

shapes can reference, without having to create a separate ink object for each shape. In 

that situation there is one reference to the ink object for each shape that uses it. 

Alternatively, your application can create data structures that contain object references, 

and two or more structures can contain references to the same object. For example, 

different palette structures can contain references to the same color set object that defines 

the palette colors. In that situation there is one reference to the color set object for each 

palette that uses it.

Sharing is not the same as making a copy. No matter how many references there are to 

an object, it is still only a single object. When you change any aspect of a shared object, 

those changes are reflected in every other object or data structure that references that 

object.



C H A P T E R  1

Introduction to QuickDraw GX

1-20 Objects and Memory

Object sharing provides at least three advantages:

■ It reduces memory use. Some objects that are used by many other objects are quite 
large. For example, a font, which can be a very large object, can be used by several 
different styles. And each style can be used by several text shapes. 

■ It gives uniform behavior. For example, several shapes can share the same transform 
object, which causes each shape to be drawn in a specific relationship to each other, 
scaled and rotated in the same way, and so on.

■ It allows quick and efficient changes to the characteristics of multiple objects that 
share the same reference. For example, if several shape objects reference the same ink 
object, you need only change the color in the ink object to change the color of all 
shapes that reference the same ink. 

Owner Count

The current number of references to an object is called its owner count. QuickDraw GX 

tracks and manages owner counts for you, so in most cases you needn’t worry about 

how many references there are to an object and whether or not to delete it from memory 

when you no longer need it in a given context. 

When you first create an object (with a call such as GXNewStyle), QuickDraw GX gives 

it an initial owner count of 1. Whenever you attach that object to another object (with 

a call such as GXSetShapeStyle), QuickDraw GX does not duplicate it; instead, it 

increases the object’s owner count by 1. Whenever you delete that object (with a call 

such as GXDisposeStyle) or any object that references it (with a call such as 

GXDisposeShape), QuickDraw GX decreases its owner count by 1. 

QuickDraw GX uses the owner count to determine when an object is no longer 

needed and can be deleted. If at any time the object’s owner count decreases to zero, 

QuickDraw GX deletes it from QuickDraw GX memory. As far as your application is 

concerned, you create and dispose of objects as you wish, and let QuickDraw GX decide 

when to actually remove them from memory.

There can be cases, however, in which the owner count would normally become 0 but 

you do not want the object to be deleted. In those cases, you can increase owner count 

with the cloning capability of QuickDraw GX, described next. 

Cloning

Although QuickDraw GX can correctly track owner counts as objects are created, 

disposed of, and referenced from other objects, it cannot know how many references to a 

given object exist in variables and data structures that you have created. In these 

situations, it is up to you to manage the owner counts of the objects that you use. Also, 

you may want to preserve a reference to an object that QuickDraw GX disposes of when 

it disposes of or modifies another object. In such a case, you can make sure the owner 

count of an object correctly reflects the number of references to it by cloning the object, 

which means increasing its owner count.



C H A P T E R  1

Introduction to QuickDraw GX

Objects and Memory 1-21

For example, if you create a color set object, it has an owner count of 1. If you dispose of 

that color set, its owner count becomes zero and it is deleted by QuickDraw GX, as it 

should be. On the other hand, if you assign a new ink object to a shape, that shape’s 

original ink object is disposed of and the owner count of the new ink object is increased 

by 1. If you had wanted to maintain a reference to the shape’s original ink object, you 

could have cloned that ink before assigning the new ink to the shape. The original ink’s 

owner count would remain above zero, and it would therefore not be deleted.

As another example, you may temporarily change the style object assigned to a shape, 

intending to restore that style to the shape eventually. When you assign the new style 

object, QuickDraw GX decrements the original style object’s owner count because it is no 

longer used by the shape. If the original style is not used by another object, its owner 

count would become 0 and QuickDraw GX would delete it. To prevent that from 

occurring, you can clone the original style object before assigning the new one.

QuickDraw GX cannot determine when you are finished with an object once it is cloned. 

If you clone an object, you are responsible for disposing of it when it is no longer needed. 

Some Objects Cannot Be Cloned

Some objects have no owner count because they need to be able to be 
deleted even when valid references to them remain. View-related objects 
(view ports, view devices, and view groups) and fonts are examples of 
such shared objects that cannot be cloned. For example, suppose a 
transform object references a particular view port object associated with 
a window. When the application closes the window, it disposes of the 
view port. The view port object is deleted, even though a valid reference 
to it still remains in the transform object. (Subsequent drawing to that 
view port reference has no effect; QuickDraw GX ignores references to a 
view-related object that does not exist.) ◆ 

Automatic Loading and Unloading of Objects
Another way that QuickDraw GX minimizes memory requirements is by moving objects 

back and forth between memory and external storage as needed. If QuickDraw GX 

needs additional memory to create new objects, it can unload objects that are already in 

memory. When unloaded, an object is moved from computer memory to temporary 

private storage on disk. When loaded, that object is restored to normal object form in 

memory.

Typically, QuickDraw GX unloads objects that have not been accessed recently before 

unloading objects that your application has been using frequently. Also, for shape 

objects, QuickDraw GX provides flags that you can set to notify QuickDraw GX that you 

want it to unload a given shape before all others, or unload it after all others, when more 

memory is needed.

To reference and use an object, you needn’t be concerned with or even know whether it 

is in a loaded or unloaded state. QuickDraw GX automatically loads any unloaded object 

when it is needed, even if that means unloading another object to make room.



C H A P T E R  1

Introduction to QuickDraw GX

1-22 Objects and Memory

For some purposes, such as measuring the storage size of an object, you may need to 

have the object in memory. Conversely, in other situations you may wish to allow an 

object to leave memory temporarily, to make more room in the QuickDraw GX heap. 

QuickDraw GX provides functions (such as GXLoadShape and GXUnloadShape) that 

you can use to explicitly load or unload an object.

The GXLoadShape and GXUnloadShape functions, and other loading and 

unloading calls, are described in the memory management chapter of Inside Macintosh: 
QuickDraw GX Environment and Utilities. The flags that affect the loading and unloading 

priority for shapes are described under shape attributes in the chapter “Shape Objects” 

in this book.

Direct Access to Object Structure: Locking and Unlocking
Normally, to modify a property of an object takes three steps. First, you make a function 

call to obtain a copy of the information in application memory. Then you modify the 

information. Finally, you make another function call to place that information back into 

the object in QuickDraw GX memory.

As a convenience, QuickDraw GX allows you to directly access parts of certain objects in 

QuickDraw GX memory in three specific situations: you can manipulate the geometric 

structure of a shape object, you can manipulate the profile data of a color profile object, 

and you can manipulate the contents of a tag object, without first having to work on 

copies of the data in application memory.

This direct manipulation is convenient, especially if you want to avoid copying large 

amounts of information, but it has a price. You must first lock the item you are accessing, 

so that it cannot be moved while you are working on it. When you have finished your 

alterations, you must be sure to unlock the item so that QuickDraw GX is free to relocate 

it. In the case of shape geometry, you must then make an additional call to 

QuickDraw GX to notify it that you have changed the shape.

Another drawback is that you cannot change the size of the item you are manipulating. 

If you need to make a shape’s geometry or a tag’s contents larger or smaller, you need to 

access the information in the normal way, through QuickDraw GX functions.

Remember also that locking an object fragments the QuickDraw GX heap, which can 

result in lower performance and possibly an error condition. Furthermore, in 

low-memory conditions, QuickDraw GX can actually unlock locked objects and move 

them if it needs to.

For information about locking shape objects, see the chapter “Shape Objects” in this 

book. For information about locking color profile objects, see the chapter “Colors and 

Color-Related Objects” in this book. For information about locking tag objects, see the 

chapter “Tag Objects” in this book. 



C H A P T E R  1

Introduction to QuickDraw GX

Drawing and Hit-Testing Shapes 1-23

External Storage of Objects: Flattening and Unflattening
QuickDraw GX objects exist (as objects) only in memory. You must convert 

a QuickDraw GX shape (a shape object and its referenced objects) into an equivalent 

compressed description in order to save it to external storage, transmit it across a 

network, or store it in the Clipboard. This process of converting objects to a compressed 

format that is no longer object-based is called flattening. The flattened information is a 

stream-based description with a public format, so that applications can share the data 

and reconstruct the objects from which the flattened stream was generated.

The data of flattened objects follows the format defined in the stream format chapter 

of Inside Macintosh: QuickDraw GX Environment and Utilities. To reconstruct a shape’s 

object-based description from its flattened stream, you can manually create and initialize 

a set of objects based on the information in the stream, or—if QuickDraw GX is 

available—you can use QuickDraw GX functions to do it automatically.

Printing objects are also flattened and unflattened as the documents they are associated 

with are closed and reopened. For more information, see the core printing features 

chapter of Inside Macintosh: QuickDraw GX Printing.

Portable digital documents (PDDs) are specialized versions of print files, which are the 

flattened versions of documents sent to printers. For more information, see “Printing 

With QuickDraw GX” beginning on page 1-34, and the advanced printing features 

chapter of Inside Macintosh: QuickDraw GX Printing.

Fonts are represented in QuickDraw GX as font objects, which are flattened for 

transmission to printers or for external storage. A flattened font’s format, however, is not 

related to the QuickDraw GX stream format. For more information, see the fonts chapter 

of Inside Macintosh: QuickDraw GX Typography.   

Drawing and Hit-Testing Shapes

Ultimately, you need QuickDraw GX to draw the shapes that you create with it, and you 

may also need to respond to user manipulation of those drawn shapes. For that reason, 

QuickDraw GX provides several drawing functions and several kinds of hit-testing 

capabilities. This section summarizes the QuickDraw GX drawing process and the 

QuickDraw GX approach to hit-testing.



C H A P T E R  1

Introduction to QuickDraw GX

1-24 Drawing and Hit-Testing Shapes

Drawing
Drawing is the process of converting the internal representation of a shape into an image 

on an output device. As noted in Figure 1-2 on page 1-12, a QuickDraw GX shape 

consists of several other objects in addition to a shape object. When you draw a shape, 

QuickDraw GX uses information from those objects and others to control how the shape 

is rendered. It uses the information in this order:

■ the geometry of the shape object

■ stylistic and color information from the style object and ink object 

■ clipping and mapping information from the transform object

■ mapping and clipping information from one or more view port objects

■ mapping and clipping information from one or more view device objects

Drawing starts with geometry, a property of every shape object. The geometry defines 

the intrinsic dimensions of the shape. Those dimensions can then be modified, in several 

stages, until the rendered image appears on the screen or printer. The rest of this section 

describes in more detail how a shape’s geometry is transformed as it passes through the 

drawing steps.

Mapping and Clipping

Mapping and clipping are two of the principal modifications a shape undergoes as it is 

prepared for drawing, and each occurs at several steps along the way.

A mapping is a 3 × 3 matrix that performs a mathematical transformation on a set of 

two-dimensional points, such as the geometry of a shape. Given any shape, you can use 

a mapping to control

■ translating, or moving, the shape from one (x, y) location to another

■ scaling the shape in the x-direction, y-direction, or both directions

■ rotating the shape around any point

■ skewing the shape

■ changing the perspective of the shape

Figure 1-4 shows examples of the effects of mapping.



C H A P T E R  1

Introduction to QuickDraw GX

Drawing and Hit-Testing Shapes 1-25

Figure 1-4 Effects of mapping 

The transform object, the view port object, and the view device object each has a 

mapping as a property. Each object’s mapping can affect the location, orientation, 

scale, and other distortion of the shape as it evolves from geometry to rendered image 

(described under “The Drawing Sequence: Coordinate Conversion” beginning on 

page 1-28). Mappings are described more fully in the chapter “Transform Objects” in 

this book, and in the mathematics chapter of Inside Macintosh: QuickDraw GX 
Environment and Utilities.

Clipping is the restriction of the visible part of a shape to a specific area. The clip is the 

specific description of that visible area. Clips are often rectangles or similar simple 

shapes, although QuickDraw GX permits clipping to any definable shape geometry 

(rectangle, polygon, path, and so on), which allows for very sophisticated clipping 

effects. Clips can even be glyph shapes and one-bit-per-pixel bitmaps. For the rules and 

restrictions on clips, see the chapter “Transform Objects” in this book.

The transform object, the view port object, and the view device object each has a clip as a 

property. Each object’s clip is applied at a specific point during the preparation of the 

shape for drawing (described under “The Drawing Sequence: Coordinate Conversion” 

beginning on page 1-28). Each further restricts the part of the shape that will ultimately 

be visible. 

View-Related Objects

The transform object associated with each QuickDraw GX shape contains a reference to 

one or more view port objects. When you draw the shape, QuickDraw GX uses that view 

port reference to determine at what position on which physical device or devices to draw 

the shape. To do that requires that the view port and two other view-related objects, the 

view group and view device, interact as follows:



C H A P T E R  1

Introduction to QuickDraw GX

1-26 Drawing and Hit-Testing Shapes

■ A view port object represents a drawing environment. A view port is analogous to a 
porthole on a ship. The view port has a mapping that defines the scale, orientation, 
and location of the porthole, and a clip that prevents anything beyond the edges of the 
porthole from being drawn. If you think of a view port as analogous to a Macintosh 
graphics port, the view port mapping defines the location (in QuickDraw global 
coordinates) of the port on the screen, and the clip defines the visible region of the 
port. Unlike graphics ports, however, view ports are device independent, and their 
mappings control much more than location: they can also define the scaling, rotation, 
skewing, and other distortion of shapes drawn in the view port.

■ A view device object typically represents an actual, physical output device such as a 
monitor or printer. It, too, has a mapping and a clip that define its location and its 
visible (drawable) area. You can think of a view device as analogous to the Macintosh 
screen, in which case the mapping defines the location of the screen origin (and the 
size of the pixels too), and the clip defines the screen bounding rectangle. When a 
shape is drawn, it appears on a view device if the shape’s view port intersects the 
view device. The object that controls the relative positions of view ports and view 
devices is the view group.

■ A view group object represents a coordinate plane that provides dimensions and 
relative positions for view ports and view devices. A view group’s coordinates have a 
specific dimension (unit distance is 1 point, or 1/72 inch). For all view devices that 
represent actual physical devices, QuickDraw GX defines their locations in the 
onscreen view group’s coordinate plane. Your application then defines the locations of 
view ports on that plane, and thus controls whether or not the view ports are visible 
on the view devices. A view group is equivalent to the QuickDraw coordinate plane 
(or to an offscreen graphics world) on the Macintosh, and view group coordinates are 
analogous to QuickDraw global coordinates. However, unlike with QuickDraw, 
QuickDraw GX global coordinates have a specific dimension and are device 
independent. 

Figure 1-5 shows schematically how these objects interact as a shape is drawn. A shape 

geometry that defines a vase, a gray color defined in the ink object, a thick pen width 

defined in the style object, and a scaling in the transform object’s mapping combine to 

make an elongated image of the vase. A portion of the vase appears on screen, where the 

clips of the view port and view device overlap.



C H A P T E R  1

Introduction to QuickDraw GX

Drawing and Hit-Testing Shapes 1-27

Figure 1-5 How QuickDraw GX draws a shape

Figure 1-5 is a simple case in which a single shape and its transform are drawn to a 

single view port that partially intersects a single view device in the same view group. 

Quickdraw GX provides much greater flexibility, allowing for complex combinations of 

shapes, transforms, view ports, view devices, and even view groups:

■ Several shape objects can reference the same transform object, allowing these shapes 
to be scaled, rotated, and otherwise changed in unison.

■ Several transform objects can reference the same view port object, allowing shapes 
that are transformed in different ways to appear in the same view port.



C H A P T E R  1

Introduction to QuickDraw GX

1-28 Drawing and Hit-Testing Shapes

■ A single transform object can reference several view port objects, allowing a single 
shape to appear simultaneously (even with different scaling or orientation) in several 
view ports.

■ View ports can exist in a hierarchy, in which one view port “contains” another, and 
thus its movement, scaling, and clipping affect view ports lower in the hierarchy.

■ Within a view group, view ports and view devices can overlap in any combination. 
Drawing occurs automatically wherever the visible portions of any view port and any 
view device overlap.

■ More than one view group can exist simultaneously, allowing for offscreen drawing. 
Furthermore, the view ports referenced by the transform of a single shape need not all 
be in the same view groups, allowing for simultaneous onscreen and offscreen 
drawing of a shape. 

For further discussion and illustration of these display possibilities, see the chapter 

“View-Related Objects” in this book. 

The Drawing Sequence: Coordinate Conversion

This section discusses the sequence of events, in terms of the mappings applied to a 

shape, that occur in drawing. To understand the details of the transformations that take 

place, you must understand the coordinate spaces whose relationships are determined 

by the mappings contained in various objects. 

The information given in this section is an abbreviated version of the discussion of 

mapping and clipping in the chapter “View-Related Objects” in this book. Please see that 

chapter for additional information, especially about the role of clipping in drawing.

QuickDraw GX Coordinates

A coordinate space in QuickDraw GX consists of a plane in which positions are 

determined by coordinates. All coordinates in QuickDraw GX are specified with 

fixed-point numbers in the range of –32,768.0 to approximately 32,768.0. Fixed-point 

numbers and the functions for manipulating them are described in the mathematics 

chapter of Inside Macintosh: QuickDraw GX Environment and Utilities. Coordinates are 

always written in the order (x, y), and for any coordinate space the point (0.0, 0.0) 

represents the origin of the space. Points that lie to the right of the origin increase in a 

positive direction along the x-axis; points that lie below the origin increase in a positive 

direction along the y-axis. 

QuickDraw GX allows you to work in four coordinate spaces: geometry space, local 

space, global space, and device space. You can work separately in each space as 

appropriate; QuickDraw GX automatically converts among them when drawing. The 

spaces are described in order of their transformation during drawing.



C H A P T E R  1

Introduction to QuickDraw GX

Drawing and Hit-Testing Shapes 1-29

Geometry Space

QuickDraw GX starts the drawing process by using the values in a shape’s geometry. 

Geometry space is the space within which the fundamental position and dimensions of 

a shape object are defined. The numerical values in a shape’s geometry define the 

shape’s dimensions in geometry space. 

Suppose, for example, that the geometry of a rectangle consists of the points (0.0, 0.0) 

and (180.0, 360.0), as shown in Figure 1-6. In geometry space, the rectangle’s origin is at 

(0.0, 0.0), its height is twice its width, and its area is 64,800.0 units square. No distance 

metric, such as points per inch, is defined for geometry space. Thus, the absolute size of 

a shape is undefined in geometry space.

Figure 1-6 A rectangle in geometry space

Geometry Space to Local Space

QuickDraw GX next modifies the shape’s geometry by applying first the clip and then 

the mapping contained in the transform object attached to the shape. You typically use 

the transform’s clip and mapping for application-specific purposes related to masking, 

moving, and distorting shapes within a document.

Local space defines the location and dimensions of a shape after it has been modified by 

the transform mapping (as well as the style properties and the transform clip). Because 

mappings can translate, scale, rotate, skew, and otherwise distort geometries, the 

dimensions of a shape in local space can be quite different from what they are in 

geometry space.

For example, if the rectangle shape discussed in the previous section had an associated 

transform whose mapping did nothing but scale the shape by 2.0 in the y-direction, its 

coordinates in local space would be (0.0, 0.0) and (180.0, 720.0), as shown in Figure 1-7. 

Its origin in local space would still be at (0.0, 0.0), but its height would be four times its 

width, and its area would be 129,600.0 units square. Like geometry space, local space has 

no distance metric. The absolute size of a shape is still undefined in local space.



C H A P T E R  1

Introduction to QuickDraw GX

1-30 Drawing and Hit-Testing Shapes

Figure 1-7 A rectangle in local space (transform mapping applied)

The transform object includes a reference to a view port object, and local space orients a 

shape within its view port. Local space is the coordinate system interior to, or local to, 

that view port—hence the name local. Thus, the rectangle example in this section would 

have the same local coordinates—that is, the same position and shape within its view 

port—no matter how the view port itself might be scaled or distorted by its own 

mapping when it is converted to global space (described next). 

Local Space to Global Space

QuickDraw GX next modifies the shape’s dimensions by applying first the mapping and 

then the clip contained in the view port object attached to the shape’s transform. You 

typically use the view port’s mapping to position the contents of the window you are 

drawing into, and you use its clip to restrict drawing to the interior of the window. 

Global space defines the location and dimensions of a shape after the mapping (and 

clip) in its associated view port has been applied. Global space defines the real-world 

location and dimensions of a shape: coordinate values in global space represent distance 

in points (72 per inch) from the origin of the view group that the view port is part of. 

(Because it is the view group that relates view ports to view devices, objects in global 

space can have a specific spatial relationship with view devices, as described in the next 

section.)

For example, if the view port associated with the rectangle shape discussed in the 

previous sections had a mapping that did nothing but move the shape horizontally 

by 200.0 and vertically by 200.0, the shape’s coordinates in global space would be 

(200.0, 200.0) and (380.0, 920.0), as shown in Figure 1-8. Its origin in global space would 

then be at (200.0 points, 200.0 points), its height would still be four times its width, and 

its area would be 129,600.0 points square (25 square inches).



C H A P T E R  1

Introduction to QuickDraw GX

Drawing and Hit-Testing Shapes 1-31

Figure 1-8 A rectangle in global space (view port mapping applied)

Thus, once a shape’s dimensions have been converted from geometry space to local 

space to global space, they have a specific size and location and spatial relationship to 

other shapes in that view group. What remains for drawing, then, is for QuickDraw GX 

to convert this absolute (but device-independent) information to device-specific 

locations on output devices with specific pixel resolutions. That’s where device space 

comes in. 

Global Space to Device Space

Finally, QuickDraw GX modifies the shape’s dimensions by applying first the mapping 

and then the clip of any view device object in the same view group as the view port. 
Device space defines the location and dimensions of a shape as displayed on a particular 

output device. The upper-left corner of the displayable area of a view device is at 

coordinate (0.0, 0.0) in device space. Unit distance between coordinates in device space 

represents one picture element, or pixel. 

The view device’s mapping defines both its location in global space (as a translation 

factor) and its pixel size (as a scaling factor). For example, if your device is a 600 

dots-per-inch printer, QuickDraw GX converts global space to device space when 

drawing by scaling each pixel by 8.33333, which is 600/72.

If the view device to which the rectangle shape discussed in the previous sections is 

drawn has a mapping that specifies no translation and a scale factor of 8.33333 both 

horizontally and vertically, that means that the view device’s upper left corner is at 

(0.0, 0.0) in global space and its pixel resolution is 600 per inch. In device space, then, the 

dimensions of the rectangle would be (1667.0, 1667.0) and (3167.0, 7667.0), as shown in 

Figure 1-9. 



C H A P T E R  1

Introduction to QuickDraw GX

1-32 Drawing and Hit-Testing Shapes

Figure 1-9 A rectangle in device space (view device mapping applied)

Identity mapping

A mapping that contains values such that it has no effect at all when 
applied to a shape is called the identity mapping. If the identity 
mapping is used for all mappings involved in drawing, a shape’s 
geometry directly defines its absolute size and position (in points), and 
the shape is rendered on a view device at a resolution of 72 pixels per 
inch. ◆

It is seldom necessary to work in device space unless you are manipulating or hit-testing 

device bitmaps, because QuickDraw GX performs this kind of conversion for you. Most 

commonly, you define shapes in geometry space (using shape geometry), you position 

and modify them in local space (using the transform mapping), and you position and 

scale their view ports in global space (using the view port mapping).     

Hit-Testing
Hit-testing is the process of converting a point in the displayed representation of a shape 

to a location in the shape object’s geometry. For example, when the user clicks the mouse 

button, hit-testing can tell you what displayed shape, and which part of that shape, the 

cursor was close to at the moment of clicking. You use hit-testing to select shapes or 

specific parts of shapes for highlighting or user manipulation, or to position the caret in 

text and to highlight text ranges. In a sense, hit-testing is the opposite of drawing, 

because it is a conversion from display representation to internal representation.

When you hit-test a shape, QuickDraw GX generally allows you to determine which part 

of a shape’s geometry corresponds (within a certain tolerance) to the point you are 

testing against. Tolerance is the distance from a shape or shape part that a hit point can 

be and still be considered a successful hit. QuickDraw GX provides the following 

hit-testing functions:



C H A P T E R  1

Introduction to QuickDraw GX

Drawing and Hit-Testing Shapes 1-33

■ GXHitTestShape tests a point in local space against a shape’s geometry.

■ GXHitTestPicture tests a point in local space against a picture shape. 

■ GXHitTestLayout tests a point in local space against the text of a layout shape. 
Note that you can also use GXHitTestShape to test layout shapes, but the kind of 
information it returns is different from what GXHitTestLayout returns. 

■ GXHitTestDevice tests a pixel (a point in device space) against a shape’s geometry.

When you use a hit-testing function that returns a shape part, such as 

GXHitTestShape, the parts of a shape’s geometry that you can hit-test for depend on 

the kind of shape. For example, for a typographic shape, the possible parts could be the 

bounding box, left side, right side, or side bearing of a glyph. For a line, the possible 

parts include its bounding rectangle, its geometry, its pen area, and its edges. Figure 1-10 

shows the parts of a line involved in a particular hit-test. Shape parts are described in 

more detail in the chapter “Transform Objects” in this book.

Figure 1-10 Parts of a line for hit-testing

When you set up a hit-test using GXHitTestShape, you specify a tolerance and you 

also specify which parts of the shape to test against. The GXHitTestShape function 

returns all specified parts that are within the distance of the hit point defined by the 

tolerance. For example, if the hit point in Figure 1-10 is less than the tolerance away from 

the geometry part, the function could determine that the hit point corresponds to the 

bounds part, the geometry part, the pen part, and the edge part, depending on which of 

those shape parts you specify in the test.

The GXHitTestShape function analyzes shape parts in a specific order, and returns the 

distance from the hit point to the first part it encounters that is considered a hit. If you 

want to know the distance the hit point is from the pen, for example, you need to 

exclude both the bounds and the geometry parts from the test, because 

GXHitTestShape tests those first.



C H A P T E R  1

Introduction to QuickDraw GX

1-34 Printing With QuickDraw GX

The GXHitTestShape function is described in the chapter “Shape Objects” in this 

book. The GXHitTestPicture function is described in the picture shapes chapter 

of Inside Macintosh: QuickDraw GX Graphics. The GXHitTestLayout function is 

described in the layout carets, highlighting, and hit-testing chapter of Inside Macintosh: 
QuickDraw GX Typography. The GXHitTestDevice function is described in the chapter 

“View-Related Objects” in this book. 

Printing With QuickDraw GX

From the point of view of your application, printing with QuickDraw GX is not 

fundamentally different from other types of drawing. The functions you use for drawing 

to the screen are the same functions you use for sending images to a printer. The 

printing component of QuickDraw GX allows you to draw shape objects and to use the 

information in other objects (such as style, ink, transform, and color set) in the same way 

you do when drawing to the screen. When printing, the printer is represented by view 

port and view device objects, just as in other drawing.

To control these printing capabilities, your application creates printing-related 

QuickDraw GX objects before it prints a document for the first time. Your application 

flattens and stores those objects when it saves the document, and it retrieves and 

unflattens those objects when it reopens the document. The objects include the job object 

(the primary holder of printing information), the format object (specifying scaling and 

page dimensions), and the paper-type object (specifying a paper-type name and 

dimensions). These objects also include references to collection objects, which are 

similar to QuickDraw GX objects but are managed by the Collection Manager. The 

Collection Manager is described in the Collection Manager chapter of Inside Macintosh: 
QuickDraw GX Environment and Utilities.

QuickDraw GX prepares an document for printing by spooling it, which means 

flattening its shapes and storing them along with the associated printing objects as a 

print file. To actually print the document, QuickDraw GX despools the print file and 

sends its data to the printer. QuickDraw GX can also use the printing process create a 

portable digital document (PDD), which is a kind of print file that contains sufficient 

object and font information that it can be displayed or printed on any QuickDraw GX 

system, regardless of what fonts or printers are installed.

QuickDraw GX printing is based on a message-passing architecture. For 

example, QuickDraw GX sends a message when it wants to print a page, display a 

dialog box on the user’s screen, or initialize a job object. Therefore, in addition to 

manipulating printing objects and collection objects, your application needs to be able to 

respond to QuickDraw GX messages for some basic printing actions, such as updating 

windows behind dialog boxes.



C H A P T E R  1

Introduction to QuickDraw GX

Printing With QuickDraw GX 1-35

Printing extensions and printer drivers also use printing messages. A printing extension 

is an add-on software module that allows you to extend the printing functionality 

provided by applications and printer drivers. A printer driver controls how the contents 

of a document are spooled, rendered, and sent to a specific output device. The messaging 

technology used with QuickDraw GX is described in the Message Manager chapter of 

Inside Macintosh: QuickDraw GX Environment and Utilities. How printing extensions and 

printer drivers use printing messages, and information on how to write an extension or 

driver, are described in Inside Macintosh: QuickDraw GX Printing Extensions and Drivers.

The rest of this section summarizes the QuickDraw GX printing features of most interest 

to application developers. For more information on printing than is provided here, see 

Inside Macintosh: QuickDraw GX Printing. 

Core Printing Features
QuickDraw GX provides several core features you can use to implement basic printing 

capabilities:

■ You can create and manipulate common QuickDraw GX printing objects. For 
example, you create a job object for every printable document, and that job object 
references two printer objects: a formatting printer and an output printer. 
QuickDraw GX allows a user to specify a formatting printer that is different from 
the output printer, so that QuickDraw GX can consistently format to the device used 
for final output, while permitting drafts to be printed on a different printer. 

■ You can print documents in either of two ways. If your application stores each page 
as a single picture shape, you can print a page at a time with a single command. 
Otherwise, you can print each page by drawing, in turn, all the shapes that make up 
that page. QuickDraw GX captures those drawing commands and sends the images to 
the printer.

■ You can display QuickDraw GX printing dialog boxes. You use QuickDraw GX 
functions to display these expandable, movable modal dialog boxes that allow 
users to view windows that would otherwise be obscured, and you override a 
QuickDraw GX printing message to permit updating of windows behind the dialog 
box as it is moved. For general information on movable modal dialog boxes, see the 
Dialog Manager chapter of Inside Macintosh: Macintosh Toolbox Essentials.

■ You can support printing to desktop printers. A desktop printer is represented by an 
icon on the user’s desktop. To print a document to a desktop printer, a user drags a 
document to the desktop printer icon, or else selects it and chooses the Print 
command from the Finder’s File menu. A user can create multiple desktop printers. 
Figure 1-11 shows the document “My File” being printed to the desktop printer 
“Gutenberg.”



C H A P T E R  1

Introduction to QuickDraw GX

1-36 Printing With QuickDraw GX

Figure 1-11 Dragging a document to a desktop printer icon on the desktop

Custom Dialog Boxes and Page Formats
QuickDraw GX allows you to customize some of its printing features to address the 

needs of your particular application:

■ You can add panels to QuickDraw GX dialog boxes, to provide special features that 
require additional user specification. For example, your application can add a panel 
that provides special color options for the user to select, such as color separation and 
color choices.

■ You can manipulate the objects that handle page formatting, allowing users to specify 
unique formats for individual pages of a printable document. For example, your 
application can allow a user to create and print a single document that consists of an 
address page on an envelope, a business letter on a page in portrait orientation, and a 
spreadsheet on a page in landscape orientation. See Figure 1-12 for an example of this.



C H A P T E R  1

Introduction to QuickDraw GX

Printing With QuickDraw GX 1-37

Figure 1-12 Printing a single document that has multiple formats

Advanced Printing Features
QuickDraw GX includes several advanced printing features that allow your application 

to provide additional capabilities for users and to optimize output for particular printers:

■ You can use direct mode printing, which takes advantage of a printer’s built-in 
features, such as fast text streaming with built-in fonts. 

■ You can use alternative representations of QuickDraw GX objects. When printing, 
QuickDraw GX translates the objects of a shape into device-specific information.
 For optimum performance on particular devices, you can assign specialized tag 
objects known as synonyms to printed shapes and associated objects, to provide an 
alternative representation of the graphics objects. You can also use tag objects to select 
specific printing options, such as pen table information, for vector devices.

■ You can display your own printing status information. QuickDraw GX allows you 
to prevent the display of the standard QuickDraw GX Status dialog box during 
printing and to substitute status information from your own application.

■ You can open and display the pages of a PDD or other print file. If 
QuickDraw GX is installed, any application—including applications that are 
not QuickDraw GX-aware—can create a document that can be viewed or printed 
from any other computer that has QuickDraw GX installed. The PDD also provides 
font security in that the font data is “locked” into the document and only the 
minimum font information is contained therein. 



C H A P T E R  1

Introduction to QuickDraw GX

1-38 The QuickDraw GX Programming Environment

The QuickDraw GX Programming Environment

QuickDraw GX is more than a framework for creating and manipulating objects; it is 

also a programming environment with many features designed to aid application 

development. This section describes some of these features and some ways to approach 

programming with QuickDraw GX.

Setting Up QuickDraw GX Memory
Your application enters the QuickDraw GX environment by creating a graphics client. 

A graphics client is an object that represents a memory environment set up for your 

application by QuickDraw GX. It consists of a QuickDraw GX heap and the global 

variables needed by QuickDraw GX. It represents your application’s individual 

QuickDraw GX world. 

Normally, each application creates and uses a single graphics client, although it is 

possible to create and use more than one at a time. In most cases, you don’t even 

explicitly set up a graphics client at all; one is created for you as you begin making 

QuickDraw GX calls to create and use objects. For more information, see the memory 

management chapter of Inside Macintosh: QuickDraw GX Environment and Utilities.

Handling Errors
In all but its printing component, QuickDraw GX uses a sophisticated, three-level system 

for reporting diagnostic messages. The execution of a function may result in the 

generation of an error, a warning, or a notice:

■ Errors represent the most severe problems, and occur when a function is unable to 
execute. 

■ Warnings occur when a function has completed but may have provided an incorrect 
or unexpected result. 

■ Notices occur when unnecessary or redundant actions have been performed. (Notices 
are available only in the debugging version of QuickDraw GX; see “Debugging and 
Non-Debugging Versions” on page 1-39 for more information.)

Errors, warnings, and notices are not returned as function results. Instead, they are 

posted, or stored by QuickDraw GX in locations accessible through function calls. To 

determine whether, for example, an error has occurred, your application makes a specific 

call (such as GXGetGraphicsError) that returns not only the most recent error but also 

the first error posted since the last time you called GXGetGraphicsError. For 

information about these function calls, see the debugging chapter of Inside Macintosh: 
QuickDraw GX Environment and Utilities.



C H A P T E R  1

Introduction to QuickDraw GX

The QuickDraw GX Programming Environment 1-39

You can use the error-handling facilities of QuickDraw GX in the following ways:

■ You can install an error-handling function that QuickDraw GX calls whenever an 
error, warning, or notice occurs. 

■ You can post errors, warnings, or notices yourself from your own application’s 
functions.

■ You can tell QuickDraw GX to ignore specific warnings or notices. You can create and 
manipulate a list of warnings and a list of notices to be ignored.

Functions within the printing component of QuickDraw GX do not use this system for 

reporting diagnostics. Instead, most functions place errors directly into the job object 

involved. Some printing functions return a function result of type OSErr, that describes 

a Macintosh error code. For more information, see the core printing features chapter of 

Inside Macintosh: QuickDraw GX Printing. 

Debugging
QuickDraw GX provides both a debugging and non-debugging version of the software. 

In addition, QuickDraw GX provides a low-level debugger, similar to MacsBug, that 

allows you to examine internal data structures. This section summarizes these 

approaches to debugging. For more information, see the debugging chapter of Inside 
Macintosh: QuickDraw GX Environment and Utilities.

Debugging and Non-Debugging Versions

There are two versions of QuickDraw GX. The debugging version is intended for 

application development and is meant for use by software developers only. The 

non-debugging version is intended for running completed applications and is the 

publicly released version of QuickDraw GX. 

The debugging version of QuickDraw GX provides extensive error handling. It posts all 

three levels of diagnostic messages (errors, warnings, and notices), and it provides 

special functions to assist in the posting, utilization, and control of debugging messages. 

The debugging version allows you to perform validation checking on both 

QuickDraw GX objects and your own application parameters at each function call. 

The debugging version also includes the GXGetShapeDrawError function, which can 

give you very specific information on why a particular shape may not have drawn 

correctly.

The non-debugging version of QuickDraw GX has much less extensive error handling. It 

reports only two levels of result messages (errors and warnings), and only a limited 

number of them. In the non-debugging version, errors and warnings are mostly limited 

to out-of-memory and range-checking messages.



C H A P T E R  1

Introduction to QuickDraw GX

1-40 The QuickDraw GX Programming Environment

Debugging With GraphicsBug

GraphicsBug is a tool you can use to track down bugs in a QuickDraw GX application. 

Its mode of use and its command set are analogous to MacsBug. GraphicsBug works 

with both the debugging and non-debugging versions of QuickDraw GX.

You can use GraphicsBug to check the contents of QuickDraw GX memory and to 

display and validate objects within memory. GraphicsBug does not allow you to create, 

modify, or dispose of objects. Listing 1-1 shows a sample dump of the QuickDraw GX 

heap created with GraphicsBug.

Listing 1-1 Sample GraphicsBug heap dump (HD) listing

 Start Length ∆ Typ Busy Mstr Ptr Temp TBsy Disk  Object

00469728 0000010c+00 d 00000000 b heap header block

00469834 0000003c+00  d 00000000 freeFileList

00469870 0000005c+00 i 00470e68 text

004698cc 00000042+02 i 00470e64 text

00469910 000000a0+00 i 00470e60 style

004699b0 00000036+02 i 00470e5c ink

004699e8 00000060+00 i 00470e58 transform

00469a48 000000c0+00 d 00000000 port

00469b08 00000038+00 i 00470e54 full

00469b40 00007228 f 00000000 free block

00470d68 00000110+00 d 00469728 b master pointer block

00470e78 0000000c+00 d 00469728 b heap trailer block

          Total Blocks    Total of Block Sizes

Free      0001  #     1    00007228    #    29224

Direct    0002  #     2    00000318    #      792

Indirect  0006  #     6    00000210    #      528

Sub Heaps 0000  #     0    00000000    #        0

Heap Size 0009  #     9    0000775c    #    30556

The listing shows the objects that you create as well as private QuickDraw GX objects. 

From the heap dump, you can look into the contents of these objects using additional 

GraphicsBug commands. For a complete list of commands, type ? on the GraphicsBug 

command line.

Note

Do not use GraphicsBug to make assumptions about the structure of 
objects in memory; object structure is subject to change. ◆

For examples of the use of GraphicsBug in analyzing flattened shapes, see the stream 

format chapter of Inside Macintosh: QuickDraw GX Environment and Utilities.  



C H A P T E R  1

Introduction to QuickDraw GX

The QuickDraw GX Programming Environment 1-41

Programming Conventions and Consistencies
The QuickDraw GX programming environment provides many consistent features and 

conventions to make graphics software development more convenient and more 

efficient. This section lists some of them.

Object Behavior

Many QuickDraw GX objects have similar features and consistent behavior, in ways 

such as the following:

■ In general, setting a property of an object causes action or new behavior only when 
needed—which may not be immediately. For example, setting the gxDiskShape 
attribute of a shape object, which instructs QuickDraw GX to write the shape to disk, 
takes effect only as soon as QuickDraw GX needs memory space and looks for objects 
to unload.

■ QuickDraw GX handles object properties consistently; it does not change a property 
once you have set it. For example, if you set an object reference to nil in order to use 
the default version of an object, QuickDraw GX does not replace that nil value with 
an actual reference. If you later make another call to retrieve that reference, you will 
get back the nil value you originally set. (A minor exception to this rule occurs with 
certain calls that assign arrays to the style object associated with typographic shapes; 
QuickDraw GX may alter the order of elements in those arrays. See the layout styles 
chapter in Inside Macintosh: QuickDraw GX Typography for more information.)

■ Most objects can be explicitly moved into and out of memory, using GXLoadObject 
and GXUnloadObject functions. View-related objects and printing objects are 
exceptions to this rule. 

■ Many objects can have tag objects attached to them, using GXGetObjectTags and 
GXSetObjectTags functions. View group objects, printing objects, font objects, and tag 
objects themselves are exceptions to this rule.

■ Most objects can be shared, and thus have GXCloneObject and GXGetObjectOwners 
functions. View-related objects are exceptions to this rule; they are shared but they 
have no owner count and cannot be cloned.

Functions and Function Results

QuickDraw GX functions are designed to operate in a consistent manner, as follows:

■ Most QuickDraw GX functions do not return error codes as function results. Instead, 
they return object references or pointers to structures. This makes nesting of calls 
easier.

■ Functions are consistently named and have consistent behavior across all 
objects. Most objects have similarly behaving GXNewObject, GXDisposeObject, 
GXCopyToObject, and GXEqualObject functions. The property-accessing 
GXGetObjectProperty and GXSetObjectProperty functions behave consistently, using 
index values and ranges for inserting, deleting, or replacing all or parts of arrays.

■ All functions, except some printing functions that return an OSErr value, return nil 
or zero as a function result if an error occurs. 



C H A P T E R  1

Introduction to QuickDraw GX

1-42 The QuickDraw GX Programming Environment

■ If a function posts an error, it does not modify any data or objects that are input 
parameters to the function.

■ Functions of the form GXGetObjectProperty that fill out an array that is passed as a 
parameter typically return the number of elements in that array as a function result. 
For example, the GXGetTransformViewPorts function, used to get the list of view 
port references in a transform object, returns the number of elements in the list as its 
function result. Thus, you commonly call such a function twice in a row: first to 
determine the size of array to allocate, and second to obtain the filled-out array itself.

■ Many functions of the form GXSetObjectProperty, which modify a property of a 
particular object, have a parallel function of the form GXSetShapeProperty, which 
performs the same function but allows you to specify instead the shape object that 
references the affected object. If the object whose property is changed is not shared by 
more than one shape, the two functions have an identical effect. If, however the object 
is shared, GXSetShapeProperty makes a copy of the object before modifying it, so that 
the other shapes using it are not affected unintentionally.

For example, the GXSetTransformViewPorts function assigns a list of view port 
references to the specified transform object, and the GXSetShapeViewPorts 
function assigns a list of view port references to the transform object associated with 
the specified shape. If the transform object is used by more than one shape, 
GXSetTransformViewPorts has the effect of altering all shapes that use that 
transform; GXSetShapeViewPorts, however, first makes a copy of the transform 
and then alters it, so that other shapes are not affected.

■ When an out-of-memory condition occurs, it is rarely fatal. QuickDraw GX initially 
posts an out_of_memory error, but execution continues and subsequent attempts to 
reference the object responsible for the error result in posting of object_is_nil errors. 

■ The debugging version of QuickDraw GX provides extensive error-checking and 
validation capabilities to help you determine why a function call has failed.

Function Parameters

When passing parameters to a QuickDraw GX function, you can take advantage of the 

following design consistencies and conveniences:

■ The first parameter in any function call is the object or structure acted upon.

■ Parameters whose names contain the word “source” are never modified by a function; 
parameters whose names contain the word “target” may be modified.

■ Whenever an array or structure is passed as a parameter to a function, the application 
is responsible for allocating it. QuickDraw GX fills out structures, but it does not 
allocate them.

■ When a variable-sized array or structure is passed as a parameter to a function, it is 
preceded in the parameter list by a size or count parameter.



C H A P T E R  1

Introduction to QuickDraw GX

The QuickDraw GX Programming Environment 1-43

■ In the C language definitions for QuickDraw GX functions, the term const preceding 
a parameter that is an array, structure, or pointer indicates that QuickDraw GX reads 
from, but does not write to, the data pointed to by the parameter.

■ In general, passing nil or zero for a parameter instructs QuickDraw GX to use its 
default or most appropriate behavior for that situation. Thus you need to explicitly set 
parameters only when you need specific, non-default behavior. To actually assign a 
nil value to a property, pass the constant gxSetToNil (see Table 1-1).

■ In functions that use coordinates, the x-coordinate (horizontal axis) is specified before 
the y-coordinate (vertical axis).

■ For convenience in handling arrays and pointers in parameters, QuickDraw GX 
provides several predefined constants, as listed in Table 1-1. 

Implementation limits

Limits on valid parameter values or on the sizes of structures or 
behaviors of objects may depend on the current implementation of 
QuickDraw GX, and may be different from the fundamental limits 
imposed by the programmatic interface itself. For example, a parameter 
to a function may be a long, but the range of acceptable values for that 
parameter may be much smaller than the full range of values that can fit 
into a long. ◆

Table 1-1 Convenience constants for parameters

Constant Value Explanation

gxSelectToEnd –1 Used in a size or count parameter, to mean 
“from the current position in the array to 
the end of the array.”

gxSetToNil (void *)(–1) Used in a parameter (where a function takes 
more than one parameter) to assign 
a nil value to a pointer or reference 
property (simply passing nil has no effect 
on the property).

gxNoAttributes 0 Used to clear the attributes property of an 
object.

gxColorValue1 0xFFFF Used to specify the maximum value for a 
color-component, which is interpreted to 
mean 1.0

gxAnyNumber 1 Used as an index in an array declaration to 
indicate that the array is not of any specific 
size. 



C H A P T E R  1

Introduction to QuickDraw GX

1-44 The QuickDraw GX Programming Environment

Code Naming Conventions

QuickDraw GX uses these naming conventions to provide consistency across the 

application interface:

■ Function names begin with uppercase GX—for example, GXDrawShape. Important 
exceptions are those in the Collection Manager and those that are mathematical 
functions because those functions can be useful outside of the QuickDraw GX 
environment.

■ Identifiers of constants and data types defined by QuickDraw GX begin with 
lowercase gx—for example, gxWindingFill and gxShapeType. One exception is 
the type Fixed, which represents a QuickDraw GX fixed-point number but does not 
have a gx prefix. Types defined by the programming language itself, such as short, 
do not have a gx prefix. 

■ Names of fields in data structures, and parameter names in function prototypes, begin 
with lowercase letters and do not have a gx prefix.

■ An enumeration that defines several constants is usually named with a plural 
form—for example, gxDashAttributes. Such an enumeration is commonly paired 
with a type definition that is a singular form of the same name—for example, 
gxDashAttribute. You can use the type to specify one of the enumerated values 
for a parameter or field.

■ Object attributes have suffixes that identify the kind of object they apply to. For 
example, dash attributes specified by the gxDashAttributes enumeration include 
the attributes gxBendDash and gxAutoAdvanceDash. 

Relationship to the Macintosh Toolbox
QuickDraw GX is in general designed to be platform independent. Within 

the QuickDraw GX environment, the programming interface does not depend on 

the existence of the Macintosh Toolbox or Macintosh hardware.

However, when running on a Macintosh computer, QuickDraw GX still must have an 

interface with the Macintosh Toolbox. QuickDraw GX does not create windows, handle 

menus, receive keystrokes or automatically track mouse movements (although it 

does support hit-testing). Therefore, for basic input and output needs, QuickDraw GX 

includes several sets of functions that carry information from the QuickDraw GX 

environment to the Macintosh world and back:

■ You can associate QuickDraw GX view ports with Macintosh windows, which 
restricts a view port to the current size of the window and prevents drawing outside 
the content area of the window. QuickDraw GX and the Macintosh Window Manager 
then manage the view port for you such that, if the user moves the window, the view 
port moves too, or if the user changes the size of a window, the drawable area in the 
view port also changes.

■ You can associate a QuickDraw GX view device with a Macintosh graphics device 
(GDevice). 



C H A P T E R  1

Introduction to QuickDraw GX

Summary Table and Diagram of QuickDraw GX Objects 1-45

■ You can translate coordinate locations, including mouse locations, between the 
integer-based QuickDraw global space and the fixed-point QuickDraw GX coordinate 
spaces.

■ You can convert QuickDraw calls to QuickDraw GX calls, in two ways. You can use 
one set of functions to set up a situation whereby all QuickDraw calls are captured 
and converted to QuickDraw GX shapes in a QuickDraw GX picture. You can use 
another function to directly translate QuickDraw pictures to QuickDraw GX pictures.

See the Macintosh environment chapter of Inside Macintosh: QuickDraw GX Environment 
and Utilities for information about these functions.   

Summary Table and Diagram of QuickDraw GX Objects

QuickDraw GX provides at least 17 objects that you can manipulate. Table 1-2 lists these 

objects and summarizes their characteristics. Following Table 1-2, Figure 1-13 on 

page 1-49 diagrams the relationships among the basic QuickDraw GX objects, and shows 

the object properties of each. 

Table 1-2 QuickDraw GX objects 

Object Description

Basic QuickDraw GX objects

Shape Defines the basic representation of a drawable entity. A shape 
object describes a geometry of a certain type (such as a line, 
rectangle, bitmap, or text) and how the geometry is framed or 
filled when drawn. A shape also has references to its three 
related objects: style, ink, and transform. See the chapter “Shape 
Objects” of this book for more information. Graphic shape types 
are described in Inside Macintosh: QuickDraw GX Graphics; 
typographic shape types are described in Inside Macintosh: 
QuickDraw GX Typography. 

Style Describes certain characteristics affecting how a shape is drawn. 
For geometric shapes, this includes the thickness of the pen, the 
starting and ending caps for line segments, joins between line 
segments, and the dash or pattern to be applied to the shape. 
For typographic shapes, it includes the font, text size, and 
typeface of the text. See the chapter “Style Objects” in this book, 
the geometric styles chapter of Inside Macintosh: QuickDraw GX 
Graphics, and the typographic styles and layout styles chapters 
of Inside Macintosh: QuickDraw GX Typography for more 
information. 

continued



C H A P T E R  1

Introduction to QuickDraw GX

1-46 Summary Table and Diagram of QuickDraw GX Objects

Ink Describes a shape’s color and its transfer mode (how the color 
is applied when the shape is drawn). Ink objects support many 
different kinds of color specification, and many different 
transfer modes. An ink object can reference a color set object or 
color profile object or both. See the chapters “Ink Objects” and 
“Color-Related Objects” in this book for more information.

Transform Describes the clip and mapping applied to a shape when it is 
drawn. The clip limits the extent of the shape when it is drawn; 
it may be described by any primitive shape geometry (except 
picture, text, layout, and multi-bit bitmap). The mapping 
defines translation, scaling, skewing, rotation or perspective. 
The transform object also describes the criteria used for 
hit-testing the shape. Transforms have references to one or more 
view port objects. See the chapter “Transform Objects” in this 
book for more information.

Color set Contains an indexed set of colors; analogous to a color table. 
Color sets are used when colors are specified by index instead 
of by direct color value. Bitmaps commonly use color sets. See 
the chapter “Colors and Color-Related Objects” in this book for 
more information.

Color profile Contains color matching information. The information in a 
color profile can be used to convert device-specific colors to 
device-independent colors and back. To provide the most 
faithful reproduction of colors on different devices, 
QuickDraw GX automatically performs color matching with 
available color profiles whenever it draws. See the chapter 
“Colors and Color-Related Objects” in this book for more 
information.

View port Defines the location into which a shape is drawn. A view port 
object describes the clip and mapping associated with a 
window (or a part of a window, such as a pane). The mapping 
defines the location, scale, and orientation of the view port in 
QuickDraw GX global coordinates. A view port specifies the 
dithering or halftones used by every object that draws into this 
window. View ports can be arranged in a hierarchy. See the 
chapter “View-Related Objects” in this book for more 
information.

View device Describes the clip, mapping, and bitmap associated with a 
physical display device such as a monitor or printer. The 
mapping describes the view device’s position and resolution 
in QuickDraw GX global coordinates. The bitmap defines the 
dimensions of the device, the number of bits per pixel, the color 
representation of each pixel value, and the color profile. See the 
chapter “View-Related Objects” in this book for more 
information.

Table 1-2 QuickDraw GX objects (continued)

Object Description



C H A P T E R  1

Introduction to QuickDraw GX

Summary Table and Diagram of QuickDraw GX Objects 1-47

View group Describes an imaging world that is the global space in 
which view ports and view devices are located. Within a 
view group, view ports and view devices can overlap each other 
in any combination; the intersection of each view port with a 
view device determines what is actually visible on that device. 
Multiple view groups allow for offscreen drawing, in which 
view ports or view devices can have the same positions 
without interfering with each other, since they are in different 
coordinate spaces. See the chapter “View-Related Objects” in 
this book for more information. 

Tag Contains any kind of information an application wants to add 
to a QuickDraw GX object. Tag objects are general containers 
that can have anything in them, from labels to alternate drawing 
instructions to anything else you feel is useful. You can attach 
a tag object to the tag list of most kinds of objects (except tag 
objects themselves). See the chapter “Tag Objects” in this 
book for more information.

Printing objects

Job Holds the primary printing information for a document. Every 
printable document has a job object associated with it. The job 
object specifies a number of copies and a page range, and 
includes references to one or more format objects and two 
printer objects. See the core printing features chapter of Inside 
Macintosh: QuickDraw GX Printing for more information.

Format Specifies page-formatting characteristics such as scaling and 
page dimensions, and includes a reference to a paper-type 
object. See the core printing features chapter of Inside Macintosh: 
QuickDraw GX Printing for more information.

Paper type Specifies a paper-type name (such as “US Letter”), the physical 
dimensions of the paper, and the printable area within it. See 
the core printing features chapter of Inside Macintosh: 
QuickDraw GX Printing for more information.

Printer Represents the capabilities of a physical printer and includes a 
name and type, a driver name and type, and a reference to one 
or more view device objects that represent imaging areas, and 
from which you can retrieve information. See the advanced 
printing features chapter of Inside Macintosh: QuickDraw GX 
Printing for more information.

Print file Represents the file that results from spooling, which is the 
preparation of a printable representation of a document. See 
the advanced printing features chapter of Inside Macintosh: 
QuickDraw GX Printing for more information.

continued

Table 1-2 QuickDraw GX objects (continued)

Object Description



C H A P T E R  1

Introduction to QuickDraw GX

1-48 Summary Table and Diagram of QuickDraw GX Objects

The following figure, Figure 1-13, shows the relationships among the basic 

QuickDraw GX objects and lists the properties of each object. The appropriate portion 

of this figure is reproduced in each chapter that describes a specific kind of object.

Note that, in Figure 1-13, properties that are references (or arrays of references) to other 

objects are shown in italics; for most of those properties, an arrow extends to the 

diagram of the referenced object. For clarity, however, some of the arrows are not shown. 

For example, no object’s tag list has an arrow pointing to the diagram of the tag object. 

For the same reason, the properties of the view port that reference other view ports have 

no attached arrows.

For a diagram showing all the properties of the printing objects, see the introductory 

chapter of Inside Macintosh: QuickDraw GX Printing. For a diagram showing the contents 

of the geometry of each type of shape object, see the chapter “Shape Objects” in this book.

Other objects

Font Represents an available font. A font object contains information 
about the font’s names, encodings, font variations, and other 
tables. See the fonts chapter of Inside Macintosh: QuickDraw GX 
Typography for more information.

Graphics client Represents the QuickDraw GX memory allocated for an 
application, which is separate form the memory the application 
itself occupies and allocates. Each QuickDraw GX application is 
represented by a graphics client object. A graphics client has no 
accessible properties. See the memory management chapter of 
Inside Macintosh: QuickDraw GX Environment and Utilities for 
more information.

Collection Contains any type of data in any structure. Used by printing 
objects to hold additional information such as halftoning 
specifications. Collection objects are not QuickDraw GX 
objects; they are managed by the Collection Manager. See 
the Collection Manager chapter of Inside Macintosh: 
QuickDraw GX Environment and Utilities for more 
information.

Table 1-2 QuickDraw GX objects (continued)

Object Description



C H A P T E R  1

Introduction to QuickDraw GX

Summary Table and Diagram of QuickDraw GX Objects 1-49

Figure 1-13 Properties of the basic QuickDraw GX objects





Contents 2-1

C H A P T E R  2

Contents

Shape Objects

About QuickDraw GX Shapes 2-5

About Shape Objects 2-7

Shape Properties 2-7

Shape Type 2-9

Shape Geometry 2-11

Shape Fill 2-13

Shape Attributes 2-16

Default Shapes 2-18

Modifying Shape Properties 2-19

Drawing Shapes 2-20

Hit-Testing Shapes 2-20

Saving and Restoring Shapes 2-22

Using Shape Objects 2-22

Creating and Manipulating Shape Objects 2-22

Getting and Setting the Default Shape Objects 2-23

Creating and Disposing of Shape Objects 2-24

Getting the Size of a Shape Object in Memory 2-25

Copying, Comparing, and Cloning Shape Objects 2-25

Caching Shape Objects 2-27

Loading and Unloading Shape Objects 2-27

Manipulating Shape Object Properties 2-28

Getting and Setting a Shape Object’s Type, Fill, and Attributes 2-28

Copying the Geometry From One Shape to Another 2-29

Getting and Setting a Shape Object’s Style, Ink, and Transform 2-30

Resetting a Shape Object’s Properties to Their Default Values 2-31

Manipulating a Shape Object’s Owner Count 2-31

Getting and Setting a Shape Object’s Tag References 2-32

Converting Shapes From One Type to Another 2-32

Directly Manipulating a Shape’s Geometry 2-34



C H A P T E R  2

2-2 Contents

Drawing and Hit-Testing Shapes 2-35

Drawing Shapes 2-35

Hit-Testing Shapes 2-36

Flattening and Unflattening Shapes 2-39

Shape-Related Functions Described Elsewhere 2-42

Shape Objects Reference 2-45

Constants and Data Types 2-45

The Shape Object 2-46

Shape Type 2-46

Shape Fill 2-46

Shape Attributes 2-47

Flatten Flags 2-48

The Spool Block 2-49

The Hit-Test Info Structure 2-50

Functions 2-51

Creating and Manipulating Shape Objects 2-52

GXGetDefaultShape 2-52

GXSetDefaultShape 2-53

GXNewShape 2-54

GXDisposeShape 2-55

GXGetShapeSize 2-56

GXCopyToShape 2-57

GXCopyDeepToShape 2-58

GXEqualShape 2-60

GXCloneShape 2-61

GXCacheShape 2-62

GXDisposeShapeCache 2-63

GXGetShapeCacheSize 2-64

Manipulating Shape Object Properties 2-65

GXGetShapeType 2-66

GXSetShapeType 2-66

GXSetShapeGeometry 2-67

GXGetShapeFill 2-68

GXSetShapeFill 2-69

GXGetShapeStyle 2-69

GXSetShapeStyle 2-70

GXGetShapeInk 2-71

GXSetShapeInk 2-71

GXGetShapeTransform 2-72

GXSetShapeTransform 2-73

GXGetShapeAttributes 2-74

GXSetShapeAttributes 2-74

GXResetShape 2-75

GXGetShapeOwners 2-76

GXGetShapeTags 2-77

GXSetShapeTags 2-78



C H A P T E R  2

Contents 2-3

Directly Manipulating a Shape’s Geometry 2-80

GXLockShape 2-80

GXUnlockShape 2-81

GXGetShapeStructure 2-82

GXChangedShape 2-83

Drawing and Hit-Testing Shapes 2-84

GXDrawShape 2-84

GXHitTestShape 2-86

Flattening and Unflattening Shape Objects 2-87

GXFlattenShape 2-88

GXUnflattenShape 2-90

Application-Defined Spool Function 2-91

MySpoolProc 2-91

Summary of Shape Objects 2-93

Constants and Data Types 2-93

Functions 2-95

Application-Defined Spool Function 2-97





C H A P T E R  2

About QuickDraw GX Shapes 2-5

Shape Objects

This chapter describes shape objects and the functions you can use to manipulate them. 

Read this chapter if you create or use any kind of QuickDraw GX shapes.

Before reading this chapter, you should be familiar with the information in the chapter 

“Introduction to QuickDraw GX” in this book. For more information on graphic shapes, 

see Inside Macintosh: QuickDraw GX Graphics. For more information on typographic 

shapes see Inside Macintosh: QuickDraw GX Typography. Additional information relevant 

to the storage of shape objects is in the stream format chapter of Inside Macintosh: 
QuickDraw GX Environment and Utilities.            

This chapter introduces the concept of a QuickDraw GX shape, and describes shape 

objects and their properties. It then shows how to use general QuickDraw GX 

shape-manipulation functions to 

■ create and manipulate shape objects

■ manipulate shape object properties

■ directly manipulate shape geometry

■ draw and hit-test shapes

This chapter also lists and cross-references all shape-related QuickDraw GX functions 

that are described elsewhere in this book and in other parts of Inside Macintosh.

About QuickDraw GX Shapes

Shapes are fundamental to the QuickDraw GX object architecture. To draw or print in 

QuickDraw GX requires creating and manipulating QuickDraw GX shapes. A shape is a 

drawable graphic or typographic entity that you create with QuickDraw GX objects.

Shapes come in two general categories: graphic and typographic. Graphic shapes are 

further subdivided into geometric shapes (points, lines, rectangles, polygons, and so on), 

bitmap shapes, and picture shapes. Typographic shapes are subdivided into text shapes, 

glyph shapes, and layout shapes. Table 2-1 on page 2-9 describes all the types of shapes 

recognized by QuickDraw GX.

This chapter discusses only shapes in general. The QuickDraw GX object architecture 

allows you to perform many operations on a shape without regard for what type of 

shape it is; those are the operations described here. 

In the QuickDraw GX architecture, every shape includes four objects:

■ Shape object. A shape object describes the geometric structure or text content of a 
shape and contains references to the other objects that make up the shape.

■ Style object. A style object defines much of the appearance of a shape, such as the size 
of the pen with which it is drawn or the size of its text. See the chapter “Style Objects” 
in this book for more information.



C H A P T E R  2

Shape Objects

2-6 About QuickDraw GX Shapes

■ Ink object. An ink object defines the color and transfer mode to use when drawing a 
shape. See the chapter “Ink Objects” in this book for more information.

■ Transform object. A transform object defines how the appearance of a shape is altered 
(such as by clipping, scaling, or rotation) when it is drawn, and how the shape 
responds to mouse clicks. A transform object also contains references to the view port 
objects that describe where the shape is drawn. See the chapter “Transform Objects” 
in this book for more information.

Figure 2-1 shows the four objects used to represent a QuickDraw GX shape.

Figure 2-1 Basic components of a QuickDraw GX shape

The interface to each of these object types is entirely procedural—you cannot in most 

cases access any information in the objects directly. You must manipulate the items of 

information in an object, called the properties of the object, using QuickDraw GX 

functions.

The rest of this chapter describes the data types and functions you can use to create and 

manipulate shape objects and their properties.

Terminology Note

A QuickDraw GX shape is considered to be the combination of four 
objects just described. A shape object is one of the objects that make up 
the shape; it defines, among other characteristics, the shape’s geometry, 
which is the description of the specific dimensions and location of the 
kind of shape (line, curve, rectangle, and so on) that is to be drawn. ◆



C H A P T E R  2

Shape Objects

About Shape Objects 2-7

About Shape Objects

This section describes the contents of the shape object and summarizes some of the main 

tasks you can perform with shapes.

QuickDraw GX identifies an individual shape object through a shape reference. To 

obtain information about a shape object, you must send its reference as a parameter to a 

QuickDraw GX function (except that you can determine if two references identify the 

same shape object simply by comparing them for equality, and you can examine a 

reference to see if it is nil).

Shapes are device-independent. Their location, resolution, color, and other properties are 

not constrained by the characteristics of the display device to which they are drawn.

Shape Properties
The properties of a shape object for the most part define the basic geometric 

characteristics of the shape. Shape objects have nine accessible properties, as shown in 

Figure 2-2. Note that, because a shape is an object and not a data structure, the order of 

the properties as shown in Figure 2-2 is completely arbitrary. Properties in italics are 

references to other objects.

Figure 2-2 The shape object and its properties



C H A P T E R  2

Shape Objects

2-8 About Shape Objects

The first six properties are specific to shape objects alone. They determine a shape’s 

geometric type, geometric structure, fill, and references to other objects:

■ Type. A value that specifies what type of geometry the shape object has. The different 
shape types include point, line, rectangle, text, glyphs, and so on. The section “Shape 
Type” beginning on page 2-9 describes the different shape types, and “Getting and 
Setting a Shape Object’s Type, Fill, and Attributes” beginning on page 2-28 discusses 
how to manipulate this property.

■ Geometry. A set of values that describes the specific graphic structure of the shape. 
For example, the geometry of a point shape specifies the two coordinates of the point. 
The geometry of a text shape specifies the sequence of characters or glyphs that it 
contains. Inside Macintosh: QuickDraw GX Graphics discusses the geometries of graphic 
shapes and Inside Macintosh: QuickDraw GX Typography discusses the geometries of 
typographic shapes. See also Figure 2-3 on page 2-12 of this chapter for a summary of 
shape geometries. The geometry property differs from other properties in one 
important respect: you can edit it directly. See “Directly Manipulating a Shape’s 
Geometry” beginning on page 2-34 for more details.

■ Fill. A value that determines how a shape is filled or framed when drawn. 
QuickDraw GX provides a number of different ways of filling a shape. For example, a 
rectangle shape might have a solid fill, which indicates that the shape represents a 
solid rectangle—that is, the entire area enclosed by the sides of the rectangle is 
included in the shape. Alternatively, a rectangle shape might have a framed fill, which 
indicates that the shape represents a hollow rectangle—only the lines connecting the 
rectangle’s corners are included in this shape. The section “Shape Fill” beginning on 
page 2-13 discusses types of shape fills, and the section “Getting and Setting a Shape 
Object’s Type, Fill, and Attributes” beginning on page 2-28 discusses how to 
manipulate the shape fill property of a shape object.

■ Style, ink, and transform object references. References to the style object, ink object, 
and transform object that are needed to complete the specification of the shape. The 
section “Getting and Setting a Shape Object’s Style, Ink, and Transform” beginning on 
page 2-30 discusses how to manipulate these references.

The remaining three shape properties are common to many QuickDraw GX objects 

(including styles, inks, and others):

■ Attributes. A group of flags that control certain aspects of the behavior of the object. 
For a shape object, these flags allow you to specify where QuickDraw GX stores the 
shape object and how editing operations affect the shape object. For example, the 
gxMemoryShape attribute specifies that QuickDraw GX should avoid writing the 
shape object out to storage, and the gxMapTransformShape attribute indicates that 
certain editing operations, such as the GXMoveShape function, are to affect the data in 
the shape’s transform object rather than the data in the shape itself. The section 
“Shape Attributes” beginning on page 2-16 describes the shape attribute flags, and the 
section “Getting and Setting a Shape Object’s Type, Fill, and Attributes” beginning on 
page 2-28 discusses how to manipulate the attributes property of a shape object.



C H A P T E R  2

Shape Objects

About Shape Objects 2-9

■ Owner count. A number that indicates how many references to the object exist. The 
chapter “Introduction to QuickDraw GX” in this book includes general information 
about owner counts, and “Manipulating a Shape Object’s Owner Count” beginning 
on page 2-31 describes when and how to examine and alter a shape object’s owner 
count.

■ Tag list. A list of references to custom information about the object, stored in private 
data structures called tag objects. The chapter “Tag Objects” in this book describes tag 
objects in general and how you can use them to add custom information to objects. 
The section “Getting and Setting a Shape Object’s Tag References” beginning on 
page 2-32 discusses how to manipulate the tag objects associated with a shape object.

Shape Type

A shape object’s type property specifies what sort of geometry the shape has. Table 2-1 

lists the defined constants for each shape type and describes what each one means. (Note 

that the empty and full shape types are unusual, in that they have no specific geometry; 

they are used for specialized operations other than drawing.) The constants are defined 

in the gxShapeTypes enumeration. 

Table 2-1 Shape types 

Constant Value Explanation

gxEmptyType 1 An empty shape. It has no geometry, no contents, 
and no bounds. The intersection of two shapes that 
do not touch is the empty shape. You can use empty 
shapes as a starting point for collecting graphic 
elements. This shape type is described in the 
geometric shapes chapter of Inside Macintosh: 
QuickDraw GX Graphics. 

gxPointType 2 A point shape. Its geometry contains two fixed-point 
coordinate values representing the location of the 
point. This shape type is described in the geometric 
shapes chapter of Inside Macintosh: QuickDraw GX 
Graphics.

gxLineType 3 A line shape. Its geometry contains two point 
geometries—the starting point and the ending point. 
This shape type is described in the geometric shapes 
chapter of Inside Macintosh: QuickDraw GX Graphics.

gxCurveType 4 A curve shape. Its geometry contains three point 
geometries—a starting point, an ending point, and 
a control point—which together describe a quadratic 
Bézier curve. This shape type is described in the 
geometric shapes chapter of Inside Macintosh: 
QuickDraw GX Graphics.

continued



C H A P T E R  2

Shape Objects

2-10 About Shape Objects

gxRectangleType 5 A rectangle shape. Its geometry contains four 
fixed-point values—representing the coordinates 
of the left, top, right, and bottom corners of the 
rectangle. This shape type is described in the 
geometric shapes chapter of Inside Macintosh: 
QuickDraw GX Graphics.

gxPolygonType 6 A polygon shape. Its geometry includes any number 
of separate multiple-point polygon contours, each 
contour consisting of straight line segments 
connecting its points. This shape type is described 
in the geometric shapes chapter of Inside Macintosh: 
QuickDraw GX Graphics.

gxPathType 7 A path shape. Its geometry includes any number of 
separate multiple-point path contours, each contour 
consisting of straight or curved line segments 
connecting its points. This shape type is described 
in the geometric shapes chapter of Inside Macintosh: 
QuickDraw GX Graphics.

gxBitmapType 8 A bitmap shape. Its geometry contains information 
about the bitmap’s size, shape, and color, as well as 
the pixel image itself. This shape type is described in 
the bitmap shapes chapter of Inside Macintosh: 
QuickDraw GX Graphics.

gxTextType 9 A text shape. Its geometry contains a string of 
characters to be drawn with uniform stylistic 
properties such as font family, font size, and style. 
This shape type is described in the text shapes 
chapter of Inside Macintosh: QuickDraw GX 
Typography.

gxGlyphType 10 A glyph shape. Its geometry contains a string of 
glyphs, each of which may have its own typestyle 
when drawn. This shape type is described in the 
glyph shapes chapter of Inside Macintosh: 
QuickDraw GX Typography.

gxLayoutType 11 A layout shape. Its geometry contains a string of 
characters plus sophisticated formatting information 
that affects how the text is displayed. This shape 
type is described in the layout shapes chapter of 
Inside Macintosh: QuickDraw GX Typography.

Table 2-1 Shape types (continued)

Constant Value Explanation



C H A P T E R  2

Shape Objects

About Shape Objects 2-11

Shape Geometry

Most shape geometries are defined in terms of points in a coordinate space. 

QuickDraw GX coordinates are pairs of fixed-point numbers (of type Fixed), as defined 

in the mathematics chapter of Inside Macintosh: QuickDraw GX Environment and Utilities. 
QuickDraw GX coordinate spaces are described in the chapter “View-Related Objects” in 

this book.

Figure 2-3 summarizes the contents of the geometry property for each type of 

QuickDraw GX shape (except empty and full types, which have no geometry). In the 

figure, elements of the geometry that are references (or arrays of references) to other 

objects are shown in italics. For a diagram showing all the properties of the basic 

QuickDraw GX objects, see the chapter “Introduction to Objects” in this book. For a 

diagram showing all the properties of the printing objects, see the introductory chapter 

of Inside Macintosh: QuickDraw GX Printing. 

gxFullType 12 A full shape. It encompasses all of the 
QuickDraw GX coordinate space. Inverting an 
empty shape produces a full shape. The full shape 
contains every other shape and no other shape 
contains the full shape. You can use full shapes to 
specify the largest possible clip area for maximum 
visibility when drawing. This shape type is described 
in the geometric shapes chapter of Inside Macintosh: 
QuickDraw GX Graphics. 

gxPictureType 13 A picture shape. It is a collection of other shapes, 
including possibly other picture shapes. This shape 
type is described in the picture shapes chapter of 
Inside Macintosh: QuickDraw GX Graphics.

Table 2-1 Shape types (continued)

Constant Value Explanation



C H A P T E R  2

Shape Objects

2-12 About Shape Objects

Figure 2-3 Shape geometry for each type of QuickDraw GX shape



C H A P T E R  2

Shape Objects

About Shape Objects 2-13

The structures of individual shape geometries are specific to each shape type and thus 

are not described here. See the chapters of Inside Macintosh: QuickDraw GX Graphics and 

Inside Macintosh: QuickDraw GX Typography specified in Table 2-1 of the previous section 

for more information.

Nevertheless, some of the functions that affect shape geometry are common to all types 

of shapes, and are therefore described in this chapter. The section “Copying the 

Geometry From One Shape to Another” beginning on page 2-29 discusses how to copy 

the geometry between shapes. The section “Directly Manipulating a Shape’s Geometry” 

beginning on page 2-34 discusses how to get direct access to a shape’s geometry—as a 

data structure rather than as an object property—in order to modify it. Also, Figure 2-3 

on page 2-12 of this chapter summarizes the contents of the geometry of each type of 

QuickDraw GX shape. 

Shape Fill

Each shape object has a fill property. The shape fill specifies how QuickDraw GX 

interprets the geometry of the shape: how the shape is drawn, how the shape is 

hit-tested, and how certain geometric operations, like intersection or union, interpret the 

shape. Table 2-2 lists the defined constants for shape fill and describes what each one 

means. (Note that some shape fills have two or more equivalent names.) The constants 

are defined in the gxShapeFills enumeration.

Table 2-2 Shape fills 

Constant Value Explanation

gxNoFill 0 No fill—the shape is not filled at all. 
QuickDraw GX does not draw a shape with 
this shape fill and you may not perform 
geometric operations on it. You can use this 
shape fill to temporarily hide shapes or to 
prevent parts of a picture from drawing.

gxOpenFrameFill 1 Open-frame fill—the shape is outlined instead 
of filled. With this shape fill, QuickDraw GX 
interprets the shape as a connected series of 
straight or curved lines from the starting point 
of the shape geometry to the ending point 
(but not back to the starting point again).

gxFrameFill 1 Framed fill (same as gxOpenFrameFill).

gxClosedFrameFill 2 Closed-frame fill—the shape is outlined 
instead of filled. As with the open-frame fill, 
QuickDraw GX interprets the shape as a series 
of lines (or curves) from the starting point of 
the shape geometry to the ending point. 
However, in this case, QuickDraw GX also 
includes a line (or curve) from the ending 
point to the starting point, thus closing the 
contour.

continued



C H A P T E R  2

Shape Objects

2-14 About Shape Objects

Figure 2-4 Even-odd and winding fills

gxHollowFill 2 Hollow fill (same as gxClosedFrameFill).

gxEvenOddFill 3 Even-odd fill—the shape is filled using 
the even-odd rule. See Figure 2-4 for an 
illustration of this rule; see Inside Macintosh: 
QuickDraw GX Graphics for further explanation.

gxSolidFill 3 Solid fill (same as gxEvenOddFill).

gxWindingFill 4 Winding fill—the shape is filled using 
the winding-number rule. See Figure 2-4 on 
page 2-14 for an illustration of this rule; see 
Inside Macintosh: QuickDraw GX Graphics for 
further explanation.

gxInverseEvenOddFill 5 Inverse even-odd fill—the shape is filled in 
an opposite manner from the even-odd rule; 
everything not filled using the even-odd rule is 
filled using this rule. See Inside Macintosh: 
QuickDraw GX Graphics for further explanation.

gxInverseSolidFill 5 Inverse solid fill 
(same as gxInverseEvenOddFill).

gxInverseFill 5 Inverse fill 
(same as gxInverseEvenOddFill).

gxInverseWindingFill 6 Inverse winding fill—the shape is filled using 
the winding-number rule and then inverted. 
See Inside Macintosh: QuickDraw GX Graphics 
for further explanation.

Table 2-2 Shape fills (continued)

Constant Value Explanation



C H A P T E R  2

Shape Objects

About Shape Objects 2-15

Note that framed fill, hollow fill, and solid fill are alternative names for open-frame fill, 

closed-frame fill, and even-odd fill, respectively, and that both inverse solid fill and 

inverse fill are alternate names for inverse even-odd fill.

Not all shape fills make sense for all shape types. Table 2-3 shows the acceptable shape 

fills for each shape type (the alternative names are not listed). Note that empty and full 

shapes are permitted to have certain fill types even though they have no geometry. 

For additional examples of how different shape fills can affect the appearance of 

different types and geometries of shapes, see the geometric shapes chapter of Inside 
Macintosh: QuickDraw GX Graphics. 

Table 2-3 Valid shape fills for each shape type

Shape types Valid shape fills

Empty gxNoFill 
gxInverseEvenOddFill 
gxInverseWindingFill

Full gxNoFill 
gxEvenOddFill
gxWindingFill 
gxInverseEvenOddFill 
gxInverseWindingFill

Point, line, curve gxNoFill 
gxOpenFrameFill

Rectangle gxNoFill
gxClosedFrameFill
gxEvenOddFill
gxWindingFill
gxInverseEvenOddFill
gxInverseWindingFill

Polygon, path any shape fill

Text, glyph, layout gxNoFill
gxEvenOddFill
gxWindingFill

Bitmap, picture gxNoFill
gxEvenOddFill 



C H A P T E R  2

Shape Objects

2-16 About Shape Objects

Shape Attributes

Each shape object includes a property that is a set of attributes, a group of flags that 

specify certain aspects of the shape’s behavior. Table 2-4 lists the defined shape attribute 

constants and describes what each one means. The constants are defined in the 

gxShapeAttributes enumeration.

Table 2-4 Shape attributes 

Constant Value Explanation

gxNoAttributes 0x0000 No shape attributes are set. You can use 
this attribute to clear or test against the 
current value of a shape’s attributes.

gxDirectShape 0x0001 QuickDraw GX is to load the shape into 
directly accessible memory. Set this flag 
for shape objects that you don’t want 
stored in accelerator card memory, or 
whose geometric structures you want 
to manipulate directly (see “Directly 
Manipulating a Shape’s Geometry” 
beginning on page 2-34). The attributes 
gxDirectShape and gxRemoteShape 
are exclusive; do not set them both.

gxRemoteShape 0x0002 QuickDraw GX is to load the shape into 
remote memory (memory used by an 
accelerator card), if possible. When this 
flag is set, the shape might draw faster but 
you might not be able to edit the shape’s 
geometry directly (see “Directly 
Manipulating a Shape’s Geometry” 
beginning on page 2-34). The attributes 
gxRemoteShape and gxDirectShape 
are exclusive; do not set them both.

gxCachedShape 0x0004 QuickDraw GX is to prepare the shape for 
the fastest possible drawing by caching it 
compressed in an offscreen bitmap. (See 
“Caching Shape Objects” beginning on 
page 2-27; also, compare this with using 
the GXCacheShape function, described on 
page 2-62.)



C H A P T E R  2

Shape Objects

About Shape Objects 2-17

gxLockedShape 0x0008 QuickDraw GX is to prohibit changes to 
the shape’s geometry or the shape’s 
disposal. You can use this flag in the 
debugging version of QuickDraw GX to 
prevent accidental modification of a shape 
intended to be used as a constant. When 
this flag is set, you cannot use the 
geometry-editing functions described in 
the geometric shapes chapter of Inside 
Macintosh: QuickDraw GX Graphics and the 
text, glyph, and layout shapes chapters of 
Inside Macintosh: QuickDraw GX Typography. 
However, you can still alter the shape’s 
geometric structure by accessing it directly 
(see “Directly Manipulating a Shape’s 
Geometry” beginning on page 2-34). 

gxGroupShape 0x0010 QuickDraw GX is to group all shapes 
within this shape as a single shape when 
hit-testing. This attribute applies to picture 
shapes only; for more information see the 
picture shapes chapter of Inside Macintosh: 
QuickDraw GX Graphics.

gxMapTransformShape 0x0020 QuickDraw GX is to apply shape- 
transforming operations to the shape’s 
transform object rather than to the shape’s 
geometry. This attribute is set by default 
for bitmap shapes, picture shapes, and 
layout shapes. See the chapter “Transform 
Objects” in this book for more information 
on applying transformations to shapes.

gxUniqueItemsShape 0x0040 QuickDraw GX is to create a complete copy 
of each shape added to this picture rather 
than simply creating a reference to the 
added shape. This attribute applies to 
picture shapes only; for more information 
see the picture shapes chapter of Inside 
Macintosh: QuickDraw GX Graphics. 

gxIgnorePlatformShape 0x0080 QuickDraw GX is to treat the codes in the 
geometry of this shape as glyph codes 
rather than character codes. This attribute 
applies to typographic shapes only; for 
more information see the typographic 
shapes chapter of Inside Macintosh: 
QuickDraw GX Typography. 

continued

Table 2-4 Shape attributes (continued)

Constant Value Explanation



C H A P T E R  2

Shape Objects

2-18 About Shape Objects

Default Shapes
When you first create a shape of a given shape type, QuickDraw GX provides an initial 

value for each property; those initial values define the starting characteristics of the 

shape. The shape QuickDraw GX creates is a copy of the default shape for that shape 

type (such as a line, rectangle, or glyph). There is one default shape for each shape type. 

These are the default properties:

■ No geometry. All applicable values and counts are set to 0.

■ A shape fill that depends on the shape type: 

■ The default empty shape has no fill.

■ The default point, line, and curve shapes have open-frame fill.

■ The default rectangle, polygon, path, full, bitmap, and picture shapes have 
even-odd fill.

■ The default text, glyph, and layout shapes have winding fill.

gxNoMetricsGridShape 0x0100 QuickDraw GX is not to use hints (special 
display instructions) provided with the 
font used for this shape. Set this attribute 
if you intend to manipulate text as a path 
shape; otherwise, the hinting can affect the 
spacing between the contours in the path’s 
geometry and can be undesirable if you 
want to perform other operations such 
as scaling. This attribute applies to 
typographic shapes only; for more 
information see the typographic shapes 
chapter of Inside Macintosh: QuickDraw GX 
Typography.

gxDiskShape 0x0200 QuickDraw GX is to write this shape to 
disk before all shapes that do not have 
this attribute set when it needs to unload 
shapes to minimize memory requirements. 
The attributes gxDiskShape and 
gxMemoryShape are exclusive; do not 
set them both.

gxMemoryShape 0x0400 QuickDraw GX is to keep this shape 
loaded in memory as long as possible. 
When this attribute is set, QuickDraw GX 
writes this shape out to disk after all 
shapes are written that do not have 
this attribute set. The attributes 
gxMemoryShape and gxDiskShape are 
exclusive; do not set them both. 

Table 2-4 Shape attributes (continued)

Constant Value Explanation



C H A P T E R  2

Shape Objects

About Shape Objects 2-19

■ A nil style reference, which is equivalent to a reference to the default style object. 
See the chapter “Style Objects” in this book for a description of the default style object. 
Graphic shapes all share a single common default style; each different type of 
typographic shape (text, glyph, and layout) uses its own default style. 

■ A nil ink reference, which is equivalent to a reference to the default ink object. See 
the chapter “Ink Objects” in this book for a description of the default ink object. All 
shapes except bitmaps share a common default ink object.

■ A nil transform reference, which is equivalent to a reference to the default transform 
object. See the chapter “Transform Objects” in this book for a description of the 
default transform object. All shapes share a common default transform, with the 
exception of the picture shape, which has its own default transform.

■ No attributes set (except for bitmap, picture, and layout shapes, which have the 
gxMapTransformShape attribute set).

■ An owner count of 1.

■ An empty tag list.

After creating the shape, you can change its characteristics to customize it; for example, 

you can give it a specific geometry. Or, if you want to create several shapes with the 

same customized characteristics, you can change the default shape itself to suit your 

purposes. If you do this, each shape that you create thereafter has the customized 

characteristics. See the section “Getting and Setting the Default Shape Objects” 

beginning on page 2-23, and the section “Resetting a Shape Object’s Properties to Their 

Default Values” beginning on page 2-31, for more information. 

Modifying Shape Properties
After you have created a shape of a given type, you can set its various properties in 

order to make it useful for your purposes. Some generally applicable property-setting 

functions, such as those that modify the attributes or owner count, are described in this 

chapter. Others, more specific to individual shape types, are described in the appropriate 

chapters of Inside Macintosh: QuickDraw GX Graphics and Inside Macintosh: QuickDraw GX 
Typography. 

In addition, however, QuickDraw GX provides several general-purpose functions that 

directly affect the geometry or type of a shape. The functions of this type described in 

this chapter allow you to

■ copy the geometry from one shape into another, which can have the effect of changing 
its type (see “Copying the Geometry From One Shape to Another” beginning on 
page 2-29) 

■ directly manipulate shape geometry in QuickDraw GX memory (see “Directly 
Manipulating a Shape’s Geometry” beginning on page 2-34) 

■ convert a shape of one type, such as a rectangle, to another, such as a line or a bitmap 
(see “Converting Shapes From One Type to Another” beginning on page 2-32)



C H A P T E R  2

Shape Objects

2-20 About Shape Objects

The functions that convert from one shape type to another are described in this chapter, 

but the rules for and consequences of conversion among shape types are specific to each 

shape type and thus are not described here. Table 2-5 on page 2-33 lists the chapters of 

Inside Macintosh: QuickDraw GX Graphics and Inside Macintosh: QuickDraw GX Typography 

where you can find this information. 

Drawing Shapes
Two of the most fundamental and common operations you perform on shapes are 

drawing and its complement, hit-testing (interpreting mouse clicks or otherwise relating 

coordinate position to shape geometry).

You can draw a shape as soon as you have created it and set its properties (and those of 

its related objects). The view ports listed in the transform object associated with the 

shape determine where the drawn shape appears. Drawing takes into account all the 

information in the shape’s transform, ink, style, and shape objects. This chapter describes 

the basic drawing function that can draw any kind of shape. See “Drawing Shapes” 

beginning on page 2-35 for more description and an example of drawing. 

Hit-Testing Shapes
Hit-testing is the process of converting a point in the displayed representation of a shape 

to a location in the shape object’s geometry. You can use hit-testing for shape selection, 

highlighting, or positioning the caret in text. 

When you hit-test a shape, you can in most cases determine which part of a shape’s 

geometry corresponds (within a certain tolerance, or distance) to the point you are 

testing against. For example, you can tell if a point is exactly on a line, or only close to it; 

and you can tell which edge of which glyph in a line of text is closest to the hit point.

QuickDraw GX provides a general hit-testing capability for all shapes, a specialized 

hit-test for testing picture shapes, another specialized hit-test for use with layout shapes, 

and another specialized hit-test for comparing shapes to specific pixels on a display 

device. See “Hit-Testing Shapes” beginning on page 2-36 for more information on the 

specific functions. 

When you use the general hit-testing function, it returns one or more shape parts, which 

specify the parts of the shape’s geometry corresponding to the hit point. The parts of a 

shape’s geometry for which you can hit-test depend on the kind of shape. For example, 

for a typographic shape, the possible parts include those shown on the left side of 

Figure 2-5:

■ bounds: the bounding rectangle enclosing the entire typographic shape

■ glyph bounds: the bounding box for an individual glyph

■ glyph first part: the left half of the glyph

■ glyph second part: the right half of the glyph

■ side bearing: the space on either side of the glyph



C H A P T E R  2

Shape Objects

About Shape Objects 2-21

As another example, the possible parts for a line include those shown on the right side of 

Figure 2-5:

■ bounds: the bounding rectangle enclosing the start and end points of the line

■ edge: the start and end points and all the points between them on the line

■ pen: a polygon with half the width of the pen on each side of the line

■ geometry: the line’s edge plus all area enclosed by it (in this case none, because a line 
encloses no area)

Figure 2-5 Shape parts for hit-testing

The shape parts that you can test for are defined in the gxShapeParts enumeration, 

shown on page 2-37 and described in more detail in the chapter “Transform Objects” in 

this book. Before performing the hit-test, you set up—in the transform object of the 

shape you are testing—a mask structure that defines all the shape parts that you want to 

test for. QuickDraw GX tests only for those parts that you specify in the shape parts 

mask.

For example, if the hit point on the right side of Figure 2-5 is within the tolerance of 

the geometry part, the function will determine that it corresponds to the bounds, the 

geometry, the pen, and the edge. If you want to test for geometry alone, then, you could 

exclude all but geometry from the test. For hit-testing the text on the left side of 

Figure 2-5, you might be interested only in whether the hit is within the bounding 

rectangle of the shape and which side of which glyph it corresponds to, so you can 

specify the shape parts appropriately. 

When you set up the hit-test parameters, you also specify a tolerance. Tolerance is a 

distance (in units of geometry space), and it defines a circular area centered on the hit 

point. Any part that falls within that area is considered to correspond to the hit point. 



C H A P T E R  2

Shape Objects

2-22 Using Shape Objects

Saving and Restoring Shapes
In memory, a QuickDraw GX shape consists of a shape object and (by reference) several 

other objects, including a style, an ink, and a transform. The locations and internal 

structures of those objects are private.

If you need to save a shape in a document or other external storage form, or transmit it 

across a network, or otherwise preserve its information in a public format, you can 

convert, or flatten, its object-based description into a stream-based description. 

Conversely, you can restore the object-based description of an object from its flattened 

form.

The flattened, stream-based format for most objects is documented in the stream format 

chapter of Inside Macintosh: QuickDraw GX Environment and Utilities. (Fonts have their 

own flattened format; see the font objects chapter of Inside Macintosh: QuickDraw GX 
Typography for more information.) How to flatten and unflatten shape objects is 

described in the section “Flattening and Unflattening Shapes” beginning on page 2-39 

in this chapter. 

Using Shape Objects

This section describes the basic shape-creation and shape-manipulation capabilities that 

QuickDraw GX provides, capabilities that are independent of the specific type of shape 

involved. For detailed information on using shapes of specific types, see the appropriate 

chapters of Inside Macintosh: QuickDraw GX Graphics and Inside Macintosh: QuickDraw GX 
Typography. 

This section describes how you can

■ create and manipulate shape objects

■ manipulate shape object properties

■ convert shapes from one type to another

■ directly manipulate shape geometry

■ flatten and unflatten shapes

■ draw and hit-test shapes

Creating and Manipulating Shape Objects
This section describes how you can create and interact with shape objects as whole 

entities—to create, dispose of, copy, compare, clone, cache, load, and unload them. It 

also describes how to manipulate the default shapes. Manipulating the properties of 

shapes is described under “Manipulating Shape Object Properties” beginning on 

page 2-28.



C H A P T E R  2

Shape Objects

Using Shape Objects 2-23

Getting and Setting the Default Shape Objects

QuickDraw GX defines a default shape object for each shape type. These defaults are the 

templates QuickDraw GX uses when creating new shape objects, and you can change 

them to suit your purposes. Note, however, that changing the geometry for a default 

shape has no effect when subsequent shapes are created from the default one. A newly 

created shape never contains a geometry.

You can use the GXGetDefaultShape function to examine one of the default 

shape objects and the GXSetDefaultShape function to replace one of the default shape 

objects.

The properties common to all default shape objects are described under “Default 

Shapes” on page 2-18. Default properties specific to graphic or typographic shapes are 

described in Inside Macintosh: QuickDraw GX Graphics and Inside Macintosh: 
QuickDraw GX Typography, respectively.

The following code fragment uses GXGetDefaultShape to change the characteristics of 

the ink object referenced by the default line shape. The code obtains a reference to the 

default shape, and creates a temporary ink reference (tempInk) to the shape’s ink object. 

It changes the temporary ink’s color and transfer mode (with library functions 

SetInkCommonColor and SetInkCommonTransfer), and then assigns the modified 

ink back to the default shape:

tempInk = GXCopyToInk(nil,GXGetShapeInk

(GXGetDefaultShape(gxLineType)));

SetInkCommonColor(tempInk, gxBlack);

SetInkCommonTransfer(tempInk, gxXorMode);

GXSetShapeInk(GXGetDefaultShape(gxLineType),tempInk);

GXDisposeInk(tempInk);

The code disposes of the temporary ink after assigning it to the default shape, because 

that temporary reference is no longer needed.

Note

If you have created a shape object, and want to restore some of its 
default values, you can use the GXResetShape function. See the section 
“Resetting a Shape Object’s Properties to Their Default Values” 
beginning on page 2-31. ◆

The GXGetDefaultShape function is described on page 2-52. The 

GXSetDefaultShape function is described on page 2-53.   



C H A P T E R  2

Shape Objects

2-24 Using Shape Objects

Creating and Disposing of Shape Objects

QuickDraw GX provides a number of ways for you to create a new shape object. This 

section describes the GXNewShape function, which creates a copy of the default shape 

for the shape type you specify. You can then customize the shape using the techniques 

described in the section “Manipulating Shape Object Properties” beginning on page 2-28. 

Other ways to create and customize specific types of shape objects are described in the 

chapters that describe shapes in Inside Macintosh: QuickDraw GX Graphics and Inside 
Macintosh: QuickDraw GX Typography. Note that you can also create a new shape by 

copying an existing one: see the section “Copying, Comparing, and Cloning Shape 

Objects” beginning on page 2-25. 

Before you can create a shape or any other object, you need to be in the QuickDraw GX 

environment. You are not required to make any calls to accomplish this, however; 

QuickDraw GX sets up the environment for your application when you make your 

first QuickDraw GX call. If you nevertheless wish to control your application’s 

memory use in the QuickDraw GX environment, you can use the functions 

GXNewGraphicsClient and GXEnterGraphics, described in the memory 

management chapter of Inside Macintosh: QuickDraw GX Environment and Utilities. 

The following code fragment creates a rectangle shape (rectShape), assigns it a fill type 

(closed-frame fill), and assigns its ink object a gray color (using the library function 

SetShapeCommonColor): 

rectShape = GXNewShape (gxRectangleType);

GXSetShapeFill (rectShape, gxClosedFrameFill);

SetShapeCommonColor (rectShape, gxGray);

The following code fragment creates a picture shape (docPage) to represent the page of 

a document that is to be printed. It sets the gxUniqueItemsShape shape attribute to 

make sure each item in the picture has a unique reference: 

docPage = GXNewShape(gxPictureType);

GXSetShapeAttributes(docPage, gxUniqueItemsShape);

(Note that this method of assigning an attribute clears all other attributes, which may be 

undesirable. In general, you would first call GXGetShapeAttributes, modify the 

returned attributes as needed, and then call GXSetShapeAttributes to reassign them.)

To delete your application’s reference to a shape object, call the GXDisposeShape 

function. You must be sure to dispose of every shape that you create. For the docPage 

shape you would make this call:

GXDisposeShape(docPage);



C H A P T E R  2

Shape Objects

Using Shape Objects 2-25

Note that calling GXDisposeShape for a particular shape object may or may not 

actually release the memory allocated for that object, depending on its owner count. 

GXDisposeShape decreases the shape object’s owner count by 1; if that brings the 

owner count to 0, the shape is completely deleted and its memory released (and 

the owner count of each object that the shape object references is then decremented). 

See “Manipulating a Shape Object’s Owner Count” on page 2-31. 

The GXNewShape function is described on page 2-54. The GXDisposeShape function 

is described on page 2-55.  

Getting the Size of a Shape Object in Memory

Although the sizes of style, ink, and transform objects are relatively constant, shape 

objects vary greatly in size, mostly due to the differences in their geometries. The 

GXGetShapeSize function allows you to find out how much memory a shape occupies. 

The GXGetShapeSize function returns only the amount of memory currently being 

used to represent the shape. Because QuickDraw GX can automatically unload objects 

from memory, the size returned by GXGetShapeSize does not accurately reflect the size 

of the object if it has been unloaded. You can call the GXLoadShape function before 

calling GXGetShapeSize to get a more accurate size, if necessary.

The GXGetShapeSize function is described on page 2-56.   

Copying, Comparing, and Cloning Shape Objects

You can use the GXCopyToShape and GXCopyDeepToShape functions to copy all of the 

information from one shape to another or to create a new copy of a shape. The two 

functions are identical except that GXCopyDeepToShape copies more information for 

these shape types: for bitmap shapes, it also copies the pixel image; for picture shapes, it 

makes a new copy of each shape in the picture; and for glyph and layout shapes, it 

copies the style list. 

The following code fragment copies a shape to make a version having special visual 

characteristics. It makes a temporary shape (tempTextShape) that is a copy of a text 

shape (textShapeFromPicture) within a picture shape representing a document 

page. The GXCopyDeepToShape function is not needed in this case because a text 

shape, unlike a glyph shape or layout shape, cannot have a style list to copy. The code 

doubles the size of the text and moves it by 100 points vertically before inserting it back 

into the page and disposing of the temporary reference.



C H A P T E R  2

Shape Objects

2-26 Using Shape Objects

Note that this code makes use of the QuickDraw GX ff macro, a shorthand version of 

the IntToFixed macro. Both functions are described in the mathematics chapter of 

Inside Macintosh: QuickDraw GX Environment and Utilities.

GXGetPictureParts(thePage, 2, 1, &textShapeFromPicture, 

nil, nil, nil);

tempTextShape = GXCopyToShape (nil, textShapeFromPicture);

GXScaleShape(tempTextShape, ff(2), ff(2), 0, 0);

GXMoveShape(tempTextShape, 0, ff(100));

GXSetPictureParts(thePage, 3, 0, 1, &tempTextShape, 

nil, nil, nil);

GXDisposeShape(tempTextShape);

You can test if two shape references refer to the same shape object by simply testing the 

references for equality. You can also compare two different shape objects for equality 

with the GXEqualShape function. For two shapes to be equal, their fill properties must 

be equal and their geometries must be identical. See the GXEqualInk, GXEqualStyle, 

and GXEqualTransform function descriptions in the chapters “Ink Objects,” “Style 

Objects,” and “Transform Objects,” respectively, in this book for the requirements for 

equality. Shape copies created by GXCopyToShape or GXCopyDeepToShape are always 

equal to the shape from which they were copied.

Equivalent geometries are not identical

Some shapes have equivalent, but not identical, geometries, and are thus 
not considered equal by GXEqualShape. For example, two polygons 
might have identical geometries, except that one has a duplicate point at 
one of its corners. The shapes are equivalent in form, but their 
geometries are not identical.You can remove such duplicate points with 
the GXReduceShape function, described in the geometric operations 
chapter of Inside Macintosh: QuickDraw GX Graphics. ◆

In certain circumstances, you may want to copy a reference to a shape object without 

actually copying the shape object. For example, you may want two variables to refer to 

the same shape object, so that editing one of them affects both. This is called cloning a 

shape, rather than copying a shape. You can use the GXCloneShape function to clone a 

shape object.

Functionally, GXCloneShape does nothing more than increase the owner count of a 

shape object. For more information about cloning objects, see the chapter “Introduction 

to Objects” in this book. For information on manipulating shape owner counts, see the 

section “Manipulating a Shape Object’s Owner Count” beginning on page 2-31 of this 

chapter.

The GXCopyToShape function is described on page 2-57. The GXCopyDeepToShape 

function is described on page 2-58. The GXEqualShape function is described on 

page 2-60. The GXCloneShape function is described on page 2-61.     



C H A P T E R  2

Shape Objects

Using Shape Objects 2-27

Caching Shape Objects

Before QuickDraw GX draws any shape, it first performs some preliminary calculations 

on the shape’s data (such as finding the shape’s bounds) and stores the information in a 

shape cache.

In certain circumstances, you can improve the way drawing occurs on the screen by 

requesting that QuickDraw GX create the caches before you actually draw the shapes. 

For example, if you are drawing many shapes at once, you can cache all of the shapes 

before you draw any of them. In this way, you can minimize the amount of time between 

the appearance of the first shape and the completion of the last shape.

You can use the GXCacheShape function to create caches before drawing and you can 

use the GXDisposeShapeCache function to release the memory held by a shape cache. 

The GXGetShapeCacheSize function returns information about the size of the cache in 

memory. 

The GXCacheShape function works somewhat differently from the gxCachedShape 

attribute (see Table 2-4 on page 2-16). Setting the gxCachedShape attribute causes 

QuickDraw GX to cache and predraw a shape into a compressed offscreen bitmap the 

first time it is drawn. Then, when you call GXDrawShape, the predrawn shape is simply 

transferred to the screen. Setting the gxCachedShape attribute causes very fast drawing 

but may greatly increase the memory required to store a shape, especially for large 

shapes. Calling GXCacheShape does not increase the memory required to draw a shape. 

For the fastest possible drawing (but the slowest preparation for drawing), set the 

gxCachedShape attribute and also call GXCacheShape before drawing.

You are not required to use any of the functions in this section. QuickDraw GX 

automatically creates shape caches when you draw a shape and automatically deletes 

shape caches when memory is low. You only need to use these functions when you want 

to improve your application’s drawing speed.

The GXCacheShape function is described on page 2-62; The GXDisposeShapeCache 

function is described on page 2-63; The GXGetShapeCacheSize function is described 

on page 2-64.   

Loading and Unloading Shape Objects

Although you rarely need to, you can influence memory-allocation decisions involving 

objects that you have created. If your application needs to have a shape object in 

memory, it can force QuickDraw GX to load it into memory. When your application 

no longer needs the shape object in a loaded state, it can instruct QuickDraw GX to 

unload it.

You call the GXLoadShape function to make sure that a shape object is in memory; if 

necessary, QuickDraw GX brings the object into memory from an unloaded state. You 

can call the GXUnloadShape function to instruct QuickDraw GX that it is free to unload 

the shape object at any time. 



C H A P T E R  2

Shape Objects

2-28 Using Shape Objects

Rather than explicitly instructing QuickDraw GX to load or unload an object, you can 

also set either the gxDiskShape or the gxMemoryShape attribute for the shape, which 

permanently affects the priority with which QuickDraw GX loads or unloads the shape. 

Shape attributes are described in Table 2-4 on page 2-16.

The GXLoadShape and GXUnloadshape functions are described in the memory 

management chapter of Inside Macintosh: QuickDraw GX Environment and Utilities.

Manipulating Shape Object Properties
This section describes how to manipulate the properties of shape objects, including those 

that are references to other objects. In most cases, a pair of functions respectively get and 

set a property. You call the GXGetShapeProperty function to get a copy of the shape 

property you need; you call the GXSetShapeProperty function to assign a value to 

a property.

For manipulating shape objects as a whole, see “Creating and Manipulating Shape 

Objects” beginning on page 2-22. 

Getting and Setting a Shape Object’s Type, Fill, and Attributes

The functions described in this section get and set shape properties that are numerical 

values.

You can use the GXGetShapeType function to find the shape type of an existing shape, 

and the GXSetShapeType function to convert an existing shape from one shape type 

to another. The section “Converting Shapes From One Type to Another” beginning on 

page 2-32 summarizes the kinds of shape conversions QuickDraw GX supports. Beyond 

that section and the descriptions in Table 2-1 on page 2-9, this book does not discuss 

specific shape types. See Inside Macintosh: QuickDraw GX Typography for more 

information on the typographic shape types—text, glyph, and layout. (Note that 

GXSetShapeType even allows you to convert typographic shapes to graphic shapes 

of certain types.) See Inside Macintosh: QuickDraw GX Graphics for more information on 

graphic shape types.

The following code fragment determines the number of items (numParts) in a picture 

shape (theShape). The code uses GXGetShapeType to screen out any shape that is not 

a picture shape:

typeOfShape = GXGetShapeType(theShape);

if (typeOfShape == gxPictureType)

numParts = GXGetPicture(theShape, nil, nil, nil, nil);

You can use the GXGetShapeFill function to find the fill of an existing shape, and the 

GXSetShapeFill function to set the fill of a shape when you create or modify it. 

Beyond the descriptions in Table 2-2 on page 2-13, this book does not discuss specific 

shape fills. See Inside Macintosh: QuickDraw GX Typography and Inside Macintosh: 
QuickDraw GX Graphics for more information on the valid typographic and graphic 

shape fills.



C H A P T E R  2

Shape Objects

Using Shape Objects 2-29

You can use the GXGetShapeAttributes function to find the attributes of an existing 

shape and the GXSetShapeAttributes function to set the attributes of a shape. Shape 

attributes are described in the section “Shape Attributes” beginning on page 2-16. 

The following code fragment is a drawing loop that rotates a text shape (theText) six 

times around the point (x, y) by 15 degrees each time, and adds the shape to a picture 

(gthePage) after each rotation. (It also changes the color at each rotation, for better 

visibility of the overlapping text.) The loop sets the gxMapTransformShape attribute of 

the shape, which assures that the shape geometry itself is not affected by the rotation, 

and thus there is no loss of precision in the geometry with repeated rotations: 

GXSetShapeAttributes(theText, gxMapTransformShape);

for (loop = 0; loop < 6; loop++) 

{

GXSetShapeColor(theText, &textColor);

GXRotateShape(theText, ff(15), x, y);

GXSetPictureParts(gthePage, 0, 0, 1, &theText, nil, nil, nil);

textColor.element.hsv.hue += 0x0940;

}

Note that the gxUniqueItemsShape attribute of gthePage must be set for this to 

work. 

You can use GXGetShapeAttributes in combination with the GXSetShapeAttributes 

function to set and clear single attribute flags. For example, to clear the gxDiskShape 

attribute of a shape referenced by the variable target, you could use the following code:

GXSetShapeAttributes(target, 

GXGetShapeAttributes(target) & ~gxDiskShape);

Conversely, to set the gxDiskShape attribute, you could use the following code:

GXSetShapeAttributes(target, 

GXGetShapeAttributes(target) | gxDiskShape);

The GXGetShapeType function is described on page 2-66. The GXSetShapeType 

function is described on page 2-66. The GXGetShapeFill function is described 

on page 2-68. The GXSetShapeFill function is described on page 2-69. 

The GXGetShapeAttributes function is described on page 2-74. The 

GXSetShapeAttributes function is described on page 2-74.   

Copying the Geometry From One Shape to Another

Like type, fill, and attributes, geometry is a property of a shape object. However, you 

access and manipulate a shape’s geometry somewhat differently from other properties.



C H A P T E R  2

Shape Objects

2-30 Using Shape Objects

The GXSetShapeGeometry function copies the geometry (and the shape type, if 

the shapes are of different types) from one shape object into another. To make the 

function call requires two object references, and no reference to or specification of 

either object’s geometry. There is no associated GXGetShapeGeometry call. Using 

GXSetShapeGeometry is a simple way to reuse an existing shape by turning it into 

a copy of another shape. As with GXSetShapeType, this book does not discuss the 

specific rules for and consequences of converting one shape type to another with 

GXSetShapeGeometry. See Inside Macintosh: QuickDraw GX Graphics and Inside 
Macintosh: QuickDraw GX Typography for conversion information for graphic and 

typographic shape types.

To do more than simply copy geometries—to gain access to and actually manipulate 

the contents of a shape’s geometry—requires another set of functions, including the 

GXGetShapeStructure function. See the section “Directly Manipulating a Shape’s 

Geometry” beginning on page 2-34. In most situations, however, you use functions 

specific to a given shape type to manipulate that type of shape’s geometry. Those 

kinds of functions are described, along with each shape type, in Inside Macintosh: 
QuickDraw GX Graphics and Inside Macintosh: QuickDraw GX Typography.

To copy an entire object, rather than just its geometry, you can use the GXCopyToShape 

or GXCopyDeepToShape functions; see “Copying, Comparing, and Cloning Shape 

Objects” on page 2-25. 

The GXSetShapeGeometry function is described on page 2-67.

Getting and Setting a Shape Object’s Style, Ink, and Transform

Every QuickDraw GX shape object has an associated style object, ink object, and 

transform object. You can use the GXGetShapeStyle, GXGetShapeInk, and 

GXGetShapeTransform functions to determine which of each type of object is 

referenced by a particular shape. Conversely, you can use the GXSetShapeStyle, 

GXSetShapeInk, and GXSetShapeTransform functions to change these references.  

Because style objects can be shared among different QuickDraw GX shapes, the 

GXGetShapeStyle function can return a reference to the same style object for two 

different shapes. Likewise, the GXGetShapeInk and GXGetShapeTransform 

functions can return identical ink objects or transform objects for different shapes.

Calling GXSetShapeStyle, GXSetShapeInk, or GXSetShapeTransform increments 

the owner count of the specified style, ink, or transform object by 1, and disposes of the 

previously assigned style, ink, or transform. In certain cases, depending on how you 

create such an object or assign it to a shape, you may need to modify that object’s owner 

count explicitly; see “Manipulating a Shape Object’s Owner Count” on page 2-31.

The following code fragment draws a dashed version of a shape. The code first calls 

GXGetShapeStyle to obtain the style object attached to the shape theShape; it then 

clones the style and assigns a temporary reference (saveStyle) to the style. The code 

then assigns different style properties to the shape and draws it. After drawing the 

shape, the code restores the original style to the shape, using GXSetShapeStyle:



C H A P T E R  2

Shape Objects

Using Shape Objects 2-31

saveStyle = GXCloneStyle(GXGetShapeStyle(theShape));

GXSetShapePen(theShape, ff(1));

GXSetShapeDash(theShape, &dash);

GXDrawShape(theShape);

GXSetShapeStyle(theShape, saveStyle);

GXDisposeStyle(saveStyle);

As usual, after it is finished with the temporary reference saveStyle, the code disposes 

of it. For more information and examples of cloning, see for example the discussions of 

owner count in the chapter “Style Objects” in this book.

The GXGetShapeStyle function is described on page 2-69; the GXSetShapeStyle 

function is described on page 2-70. The GXGetShapeInk function is described on page 2-71; 

the GXSetShapeInk function is described on page 2-71. The GXGetShapeTransform 

function is described on page 2-72; the GXSetShapeTransform function is described on 

page 2-73.   

Resetting a Shape Object’s Properties to Their Default Values

When you create a new shape with the GXNewShape function, QuickDraw GX creates 

the new shape object by copying the appropriate default shape object. QuickDraw GX 

does not create a new style, ink, or transform object for the new shape, however. Instead, 

the new shape contains references to the same style, ink, and transform as the 

corresponding default shape. You are free to install a new style, ink, or transform in 

the shape using functions such as GXSetShapeStyle, GXSetShapeInk, and 

GXSetShapeTransform.

If you do install a new style, ink, or transform in a shape and you want to revert back to 

the default style, ink, and transform, you can use the GXResetShape function. This 

function also resets the shape’s attributes and fill properties to match the default shape, 

but does not alter the shape’s geometry, owner count, or tag list.

The GXResetShape function is described on page 2-75. 

Manipulating a Shape Object’s Owner Count

The owner count of an object indicates the number of current references to that object. In 

general, QuickDraw GX manages owner counts for you. For example, when you create a 

new shape object you give it a variable name such as myShape. QuickDraw GX sets the 

owner count of the new shape to 1, because your application variable is the only current 

reference to the shape. As another example, when you add a shape to a picture, 

QuickDraw GX increments the shape’s owner count, corresponding to the new reference 

to the shape contained in the picture. 



C H A P T E R  2

Shape Objects

2-32 Using Shape Objects

The following code fragment is part of a routine that constructs a house image 

(gOurHouse) as a picture shape, building it out of individual geometric shapes. As each 

component shape (houseBorderShape and doorShape, in this fragment) is added to 

the picture shape, its owner count is increased; to balance that increase, and because that 

component shape’s reference is no longer needed, it is disposed of. 

GXSetShapeFill(houseBorderShape, gxHollowFill);

GXSetPictureParts(gOurHouse, 1, 0, 1, houseBorderShape, 

nil, nil, nil);

GXDisposeShape(houseBorderShape);

GXSetShapeFill(doorShape, gxHollowFill);

GXSetPictureParts(gOurHouse, 1, 0, 1, doorShape, 

nil, nil, nil);

GXDisposeShape(doorShape);

If you want to manage a shape’s owner count directly—for example, if you want to track 

object references that you place in your own data structures, or if you want to know 

whether a shape object is shared—you can use the GXGetShapeOwners function to 

determine the owner count of a shape, and the GXCloneShape and GXDisposeShape 

functions to change the owner count of a shape. The GXCloneShape function 

increments the shape’s owner count, and the GXDisposeShape function decrements the 

shape’s owner count, freeing the memory used by the shape if the owner count goes to 0.

The GXGetShapeOwners function is described on page 2-76. The GXCloneShape 

function is described on page 2-61.The GXDisposeShape function is described on 

page 2-55.   

Getting and Setting a Shape Object’s Tag References

You can examine the list of references to tag objects currently associated with a shape 

using the GXGetShapeTags function. Once you create a tag object, you can attach it to a 

shape object using the GXSetShapeTags function. You can attach as many tag objects as 

you like to a shape object.

Tag objects and the basic functions for manipulating them are described in the chapter 

“Tag Objects” in this book. That chapter also lists the common tag types defined and 

reserved by Apple Computer, Inc.

The GXGetShapeTags function is described on page 2-77. The GXSetShapeTags 

function is described on page 2-78.   

Converting Shapes From One Type to Another
QuickDraw GX allows you to change the types of the shape objects you have created. 

You use the GXGetShapeType function, described on page 2-66 of this chapter, to 

determine the type of a shape. To convert a shape to a new type, you use the 

GXSetShapeType function, described on page 2-66 of this chapter.



C H A P T E R  2

Shape Objects

Using Shape Objects 2-33

The rules for conversion among shape geometries are specific to each shape type and 

thus are not described here. See the appropriate chapters of Inside Macintosh: 
QuickDraw GX Graphics and Inside Macintosh: QuickDraw GX Typography for this 

information. Table 2-5 describes where to look in each book for information regarding 

each possible kind of conversion.

Another common kind of shape conversion is not from one shape type to another, 

but from standard object form into primitive form. Some functions, such as 

GXSetShapeClip, described in the chapter “Transform Objects” in this book, require 

a primitive shape to hold the clip shape. A primitive shape is a shape whose stylistic 

information has been incorporated into the shape’s geometry. For example, a horizontal 

line with a thick pen style becomes a rectangle when converted to a primitive shape. To 

make a shape into a clip, you first convert it to its primitive form with the function 

GXPrimitiveShape. For more information about primitive shapes in general, see 

the geometric operations chapter of Inside Macintosh: QuickDraw GX Graphics. For 

information on primitive shapes for typographic shapes, and the difference between 

using GXPrimitiveShape and GXSetShapeType to obtain a primitive shape, see the 

typographic shapes chapter of Inside Macintosh: QuickDraw GX Typography.     

Table 2-5 Where to find information on shape-type conversion

To a 
geometric shape

To a 
bitmap shape

To a 
picture shape

To a 
typographic shape

From a
geometric

shape

See “Geometric 
Shapes” in 
QuickDraw GX 
Graphics

See “Bitmap 
Shapes” in 
QuickDraw GX 
Graphics

See “Picture 
Shapes” in 
QuickDraw GX 
Graphics

(not possible)

From a
bitmap shape

See “Geometric 
Shapes” in 
QuickDraw GX 
Graphics

(no change)
See “Picture 
Shapes” in 
QuickDraw GX 
Graphics

(not possible)

From a
picture shape

See “Geometric 
Shapes” in 
QuickDraw GX 
Graphics

See “Bitmap 
Shapes” in 
QuickDraw GX 
Graphics

(no change) (not possible)

From a
typographic

shape

See “Typographic 
Shapes” in 
QuickDraw GX 
Typography

See “Bitmap 
Shapes” in 
QuickDraw GX 
Graphics

See “Picture 
Shapes” in 
QuickDraw GX 
Graphics

See “Typographic 
Shapes” in 
QuickDraw GX 
Typography



C H A P T E R  2

Shape Objects

2-34 Using Shape Objects

Directly Manipulating a Shape’s Geometry
The geometry of a shape object is its most central property. Unlike other properties, it 

can be made accessible to you as a structure that you can modify directly, in place in 

QuickDraw GX memory. QuickDraw GX provides a group of functions with which you 

can access a shape’s geometry and notify QuickDraw GX once you have modified it. 

Note that in most cases you don’t need to do this; QuickDraw GX provides many 

functions, specific to each type of shape, with which you can access and modify 

geometry. The functions described here are provided as an added convenience.

These functions do not provide you with information about the formats of the data 

structures that make up shape geometries; they simply give you a pointer to the 

geometry. How you manipulate that information depends on the type of shape whose 

geometry you are accessing. The structures of individual shape geometries are described 

in the shape-specific chapters of Inside Macintosh: QuickDraw GX Graphics and Inside 
Macintosh: QuickDraw GX Typography. 

Before accessing a shape’s geometry, you must set its gxDirectShape attribute to make 

sure that it is loaded into directly accessible memory. To access the geometry, you first 

call the GXLockShape function to make sure the shape object doesn’t move until you are 

finished with it. You then call the GXGetShapeStructure function, which returns a 

pointer to the shape’s geometry. You can then modify the geometry as needed. Once 

finished, you call GXUnlockShape to free the shape object for relocation in memory as 

needed. Finally, you must call GXChangedShape to notify QuickDraw GX that you have 

changed the geometry.

Listing 2-1 is a partial listing of a function that accesses the geometry of the path shape 

myShape, manipulating its geometry as a gxPaths structure in a buffer of size size.

Listing 2-1 Directly accessing a shape’s geometry

.

. /* set up the shape (not shown) */

.
/* set the direct shape attribute if not set */

GXSetShapeAttributes (myShape, 
GXGetShapeAttributes(myShape) | gxDirectShape);

/* lock and examine or change the shape */

GXLockShape(myShape);
shapeStruct = (gxPaths*)GXGetShapeStructure(myShape, &size);
.
. /* unlock the shape as soon as access no longer needed */

.
GXUnlockShape(myShape);

/* notify QuickDraw GX of a change only if geometry changed */

GXChangedShape(myShape);



C H A P T E R  2

Shape Objects

Using Shape Objects 2-35

IMPORTANT

Memory-handling complications can occur with locked objects. Locking 
an object fragments the QuickDraw GX heap, which can result in lower 
performance. Furthermore, if a fragmented-memory condition occurs 
during a call, QuickDraw GX may unlock all objects and restart the call. 
Therefore, be careful about performing memory-intensive operations 
while there are locked objects in QuickDraw GX memory; they may 
become unlocked and be moved. ▲

The GXLockShape function is described on page 2-80. The GXGetShapeStructure 

function is described on page 2-82. The GXUnlockShape function is described on 

page 2-81. The GXChangedShape function is described on page 2-83.   

Drawing and Hit-Testing Shapes
Drawing and hit-testing are common actions you may perform with any kind of shape. 

The most basic QuickDraw GX drawing function is GXDrawShape, although there are 

other functions for drawing specific types of shapes. Only GXDrawShape is described 

here.

The functions you use for hit-testing are GXHitTestShape, GXHitTestPicture, 

GXHitTestLayout, and GXHitTestDevice. Only GXHitTestShape is described 

here.

Drawing Shapes

Drawing a shape is the logical conclusion to creating it and setting its properties. Drawing 

occurs in the view port or view ports specified in the transform object associated with the 

shape. Drawing takes into account all the information in the shape’s transform, ink, style, 

and shape objects.

What it means to draw a specific type of shape and how changing the information in a 

shape alters its drawn appearance is described, along with each type of shape, in Inside 
Macintosh: QuickDraw GX Graphics and Inside Macintosh: QuickDraw GX Typography. 
Furthermore, for many shape types, QuickDraw GX provides specialized drawing 

functions, such as GXDrawLine and GXDrawGlyphs—described in those books—that 

allow you to create, draw, and dispose of an object with a single call.

At its most basic, though, creating and drawing a shape is as simple as the following 

listing for creating and drawing a path shape shows: 

gxShape myShape; /* allocate the variable */

myShape = GXNewShape(gxPathType); /* create the shape */

.

. /* set its properties */

.

GXDrawShape(myShape); /* draw it */

The GXDrawShape function is described on page 2-84. 



C H A P T E R  2

Shape Objects

2-36 Using Shape Objects

Hit-Testing Shapes

Hit-testing converts a coordinate location to a shape-geometry location. It can give you 

feedback on user actions involving a shape you have drawn. For example, you use 

hit-testing to select a shape the user has clicked the mouse over, to select a point within a 

shape, or to position the insertion point and draw the caret within the text of a 

typographic shape. 

QuickDraw GX provides a general hit-testing function for all shapes, plus specialized 

functions for hit-testing picture shapes, layout shapes, and pixels on a display device:

■ GXHitTestShape tests a point in local space against a shape’s geometry. The test 
tells you which part of a shape’s geometry—out of a specified set of parts—
corresponds (within the tolerance) to the point you are testing with. The 
GXHitTestShape function is described in this chapter.

■ GXHitTestPicture tests a point in local space against a picture shape. The test tells 
you which part of which shape within the picture corresponds (within the tolerance) 
to the point you are testing against (subject to the constraints on shape overlap and 
hierarchy that you provide). The GXHitTestPicture function is described in the 
picture shapes chapter of Inside Macintosh: QuickDraw GX Graphics.

■ GXHitTestLayout tests a point in local space against the text of a layout shape. The 
test tells you, along with other information, which character in the text corresponds to 
the point. Note that you use GXHitTestShape to test typographic shapes other than 
layout shapes, and you can use it for layout shapes also; it gives different kinds of 
information from GXHitTestLayout. The GXHitTestLayout function is described 
in the layout carets, highlighting, and hit-testing chapter of Inside Macintosh: 
QuickDraw GX Typography.

■ GXHitTestDevice tests a pixel (a point in device space) against a shape’s geometry. 
The test tells you whether or not any part of the shape’s geometry is within a certain 
distance of the pixel. The GXHitTestDevice function is described in the chapter 
“View-Related Objects” in this book.

When you hit-test a shape with GXHitTestShape, you must first set up the shape parts 

mask and the tolerance, two components of the hit-test parameters property of a shape’s 

transform object. You pass that information to GXHitTestShape, and QuickDraw GX 

returns information in the hit-test info structure.

The tolerance is a distance (in units of geometry space), and it defines a circular area 

centered on the hit point. Any part that falls within that area is considered to correspond 

to the hit point.

Shape Parts

When you use GXHitTestShape, it returns one or more shape parts, which specify the 

parts of the shape’s geometry corresponding to the hit point. The parts of a shape’s 

geometry for which you can hit-test depend on the kind of shape. The shape parts that 

you can test for are defined in the gxShapeParts enumeration. Before calling 

GXHitTestShape, you set up, in the transform object, a mask of all the shape parts that 

you want to test for. GXHitTestShape can test only for parts that you specify in the 

shape parts mask. These are the possible values to put into the mask:



C H A P T E R  2

Shape Objects

Using Shape Objects 2-37

enum gxShapeParts {  /* (in order of evaluation) */
gxNoPart = 0,   

gxBoundsPart = 0x0001,

gxGeometryPart = 0x0002,

gxPenPart = 0x0004,
gxCornerPointPart = 0x0008,

gxControlPointPart = 0x0010,

gxEdgePart = 0x0020,

gxJoinPart = 0x0040,
gxStartCapPart = 0x0080,

gxEndCapPart = 0x0100,

gxDashPart = 0x0200,

gxPatternPart = 0x0400,
gxGlyphBoundsPart = gxJoinPart,

gxGlyphFirstPart = gxStartCapPart,

gxGlyphLastPart = gxEndCapPart,

gxSideBearingPart = gxDashPart,
gxAnyPart = gxBoundsPart | gxGeometryPart | 

gxPenPart | gxCornerPointPart | gxControlPointPart | 

gxEdgePart | gxJoinPart | gxStartCapPart | 

gxEndCapPart | gxDashPart | gxPatternPart
} ;

typedef long gxShapePart;

These values are described in more detail in the chapter “Transform Objects” in this 

book. Note that values specifying join, cap, and dash parts in geometric shapes are used 

in typographic shapes to specify various glyph parts. Note also that you can specify no 

parts or all parts in the mask. You decide which shape parts are appropriate for your 

needs. 

Hit-Test Info Structure

When you call GXHitTestShape, it returns some information as a function result and 

other information in a hit-test info structure. The first three fields of the hit-test info 

structure give all the relevant information about the hit: 

struct gxHitTestInfo {
gxShapePart what;

long index;

Fixed distance;

gxShape which;
gxShape containerPicture;

long containerIndex;

long totalIndex;

};



C H A P T E R  2

Shape Objects

2-38 Using Shape Objects

The what field tells you which shape parts out of those specified in your mask were hit, 

if any. It is identical to the GXHitTestShape function result. 

The index field tells you the index number of the point in the geometry that is closest to 

the hit point. 

The distance field tells you how far, in geometry coordinates, the hit point is from the 

first shape part that was hit. GXHitTestShape analyzes shape parts in a specific order—

the order listed in the gxShapeParts enumeration. By carefully specifying shape parts, 

you can use GXHitTestShape to obtain specific distance information for a given part. 

For example, if you are hit-testing a line like that shown in Figure 2-5 on page 2-21, you 

can determine the distance from the hit point to the pen if you exclude both bounds and 

geometry from the test.

The remaining fields in the hit-test info structure are not used by GXHitTestShape. 

Hit-Testing Example

Listing 2-2 uses hit-testing to determine whether a point (aPoint) is contained in the 

geometry that represents a shape (gShape). The code sets up a shape-part mask (mask) 

specifying that only the geometry it to be tested for, and calls the GXSetShapeHitTest 

function to assign the mask, plus a tolerance of zero, to the shape’s transform. 

Listing 2-2 Hit-testing a line

gxShape pointShape;

gxPoint aPoint = {ff(50), ff(51)};

gxShapePart mask = gxGeometryPart;

gxShapePart resultMask;

gxHitTestInfo resultInfo;

pointShape = GXNewPoint(&aPoint);

GXSetShapeHitTest(gShape, mask, ff(0));

resultMask = GXHitTestShape(gShape, &aPoint, &resultInfo);

GXDisposeShape(pointShape);

The function result from GXHitTestShape tells which part of the shape was hit. 

Because only one part (gxGeometryPart) is specified and tolerance is 0, a successful 

hit is possible only if aPoint is actually within the geometry of the shape. 

In the event of a successful hit, GXHitTestShape also fills in a gxHitTestInfo 

structure (resultInfo parameter) that contains additional information about the hit.

The gxHitTestInfo structure is described on page 2-50. The GXHitTestShape 

function is described on page 2-86. Because the shape parts to test against are specified 

in a shape’s transform object, the list of defined QuickDraw GX shape parts, and the 

GXSetShapeHitTest function, are described in the chapter “Transform Objects” in 

this book.   



C H A P T E R  2

Shape Objects

Using Shape Objects 2-39

Flattening and Unflattening Shapes
In order to save a QuickDraw GX shape (shape object plus its referenced objects) to 

external storage, transmit it across a network, or save it to the Clipboard, you must 

convert it into an equivalent flattened, rather than object-based, description. The 

flattened information is a compressed and stream-based description with a public 

format so that applications can share the data and reconstruct the objects.

You can use the GXFlattenShape function to convert any shape (even a picture shape, 

which contains other shapes) into its flattened form. You can then store the data, examine 

it, or manipulate it as you wish; the data follows the format defined in the stream format 

chapter of Inside Macintosh: QuickDraw GX Environment and Utilities. 

To reconstruct a shape’s object-based description from its flattened stream, you can 

manually create and initialize a set of objects based on the information in the stream, 

but if QuickDraw GX is available, it is far easier and more efficient to use the 

GXUnflattenShape function to do it automatically.

To use the flattening or unflattening functions, you first allocate a structure called a 

spool block. The spool block contains needed information and points to a buffer that 

holds the flattened data. In the spool block, you are required to provide a pointer to a 

callback spool function that you provide. The spool function reads the stream data into 

the buffer or writes it to a file from the buffer.

Listing 2-3 is a library function that flattens a shape and returns a handle to the flattened 

data. It uses a spool-block structure (spool) embedded within a library-defined 

structure (block) of type UserSpool. The function sets up the spool-block structure, 

including placing into it a pointer to the spool function. It specifies nil for the buffer 

pointer and 0 for the buffer size, in which case QuickDraw GX allocates a default buffer 

for the task. When it calls GXFlattenShape, the function sets two flatten flags, so that 

both a list of fonts and a list of all the individual glyphs used is attached to the flattened 

shape.

Listing 2-3 Flattening a shape

Handle ShapeToHandle(gxShape source)

{

UserSpool block;

block.spool.spoolProcedure = (long (*)(gxSpoolCommand, 

struct gxSpoolBlock *)) HandleSpoolProc;

block.spool.buffer = nil;

block.spool.bufferSize = 0;

GXFlattenShape(source, 

gxFontListFlatten | gxFontGlyphsFlatten, 

&block.spool);

return block.data;

} 



C H A P T E R  2

Shape Objects

2-40 Using Shape Objects

Listing 2-4 is a library function that unflattens a shape from data referenced by a handle 

(source). Like Listing 2-3, it sets up a spool-block structure and places into it a pointer 

to the spool function. When it calls GXUnflattenShape, the function specifies the size 

of the flattened data and the list of view ports to be assigned to the unflattened shape’s 

transform object.

Listing 2-4 Unflattening a shape

gxShape HandleToShape(Handle source, long count, 

const gxViewPort portList[])

{

UserSpool block;

block.spool.spoolProcedure = (long (*)(gxSpoolCommand, 

struct gxSpoolBlock *)) HandleSpoolProc;

block.spool.buffer = nil;

block.spool.bufferSize = 0;

block.data = source;

return GXUnflattenShape(&block.spool, count, portList);

}

Your flattening/unflattening spool function responds to five commands from 

QuickDraw GX (described on page 2-92). In most cases it simply reads or writes a buffer 

of data at a time during the flattening or unflattening operation, and then closes up 

when the operation is finished. However, for special purposes you can write a spool 

function that parses the stream of data by reading information in the spool block and 

manipulating the size of the buffer that QuickDraw GX can read from or write into.

Listing 2-5 is a partial listing that shows the overall structure of a typical spool function 

for flattening and unflattening. This function, however, parses the stream as it is being 

flattened or unflattened. In the case of writing (flattening), the listing shows that the 

function sets the buffer size to equal the current operation size so that no more than a 

single operation can be flattened at once. Therefore, each time it is called, the spool file 

can read the fields of the spool block to determine the kind of information the current 

operation consists of and decide how large to make the buffer for the next write. 



C H A P T E R  2

Shape Objects

Using Shape Objects 2-41

Listing 2-5 A spool function that parses shape data

static long MyParseSpoolProc(spoolCommand command, 

gxSpoolBlock *block)

{

switch (command) {

case openReadSpool:

.

. /* spool function prepares for unflattening */

.

break;

case openWriteSpool:

.

. /* spool function prepares for flattening */

.

break;

case closeSpool:

.

. /* spool function closes up when finished */

.

break;

case readSpool:

.

. /* spool function parses and reads for unflattening */

.

break;

case writeSpool:

/* see if current operation < 32K (real buffer size) */

if (block->spool.operationSize < 32768)

/* set buffer size to operation size */

block->spool.bufferSize = block->spool.operationSize;

else

block->spool.bufferSize = 32000; /* don’t overflow */

. /*

. Spool function examines spool block, parses data, 

. writes flatttened data to disk

. */

break;

}

}



C H A P T E R  2

Shape Objects

2-42 Shape-Related Functions Described Elsewhere

The application sets up the conditions for this spool function by first allocating a 32 KB 

buffer, but setting the size field of the spool block to 1. This causes GXFlattenShape 

or GXUnflattenShape to read only a single byte into the buffer the first time through, 

after which the spool function can analyze that byte and proceed with parsing. (For 

simple reading or writing, your application typically sets the size field to the actual size 

of the buffer—32 KB in this case—and the spool function does not parse the stream at all).

The GXFlattenShape function is described on page 2-88. The GXUnflattenShape 

function is described on page 2-90. The spool block structure is described on page 2-49. 

The application-defined spool function is described on page 2-91. The flatten flags are 

described on page 2-48.  

Shape-Related Functions Described Elsewhere

Table 2-6 lists every QuickDraw GX function whose name contains the word Shape, but 

whose description is not found in this chapter. For each book and chapter, the table lists 

the shape-related functions described in that chapter. Table 2-6 is intended to help you 

locate the descriptions of functions you may have been searching for in this chapter. 

Table 2-6 Shape-related functions described elsewhere 

Book and chapter Shape functions described

Inside Macintosh: QuickDraw GX Objects [this book]

“Ink Objects” GXGetShapeColor
GXSetShapeColor
GXGetShapeInkAttributes
GXSetShapeInkAttributes
GXGetShapeTransfer
GXSetShapeTransfer

“Transform Objects” GXGetShapeClip
GXSetShapeClip
GXGetShapeHitTest
GXSetShapeHitTest
GXGetShapeMapping
GXSetShapeMapping
GXGetShapeViewPorts
GXSetShapeViewPorts
GXMapShape
GXMoveShape
GXMoveShapeTo
GXRotateShape
GXScaleShape
GXSkewShape



C H A P T E R  2

Shape Objects

Shape-Related Functions Described Elsewhere 2-43

“View-Related Objects” GXGetShapeDeviceArea
GXGetShapeDeviceBounds
GXGetShapeDeviceColors
GXGetShapeGlobalBounds
GXGetShapeGlobalViewPorts
GXGetShapeGlobalViewDevices
GXGetShapeLocalBounds

Inside Macintosh: QuickDraw GX Graphics

“Geometric Shapes” GXCountShapeContours
GXCountShapePoints
GXGetShapeFill
GXSetShapeFill
GXGetShapeIndex
GXGetShapeParts
GXSetShapeParts
GXGetShapePoints
GXSetShapePoints
GXNewShapeVector
GXSetShapeVector

“Geometric Styles” GXGetShapeCap
GXSetShapeCap
GXGetShapeCurveError
GXSetShapeCurveError
GXGetShapeDash
GXSetShapeDash
GXGetShapeDashPositions
GXGetShapeJoin
GXSetShapeJoin
GXGetShapePattern
GXSetShapePattern
GXGetShapePatternPositions
GXGetShapePen
GXSetShapePen
GXGetShapeStyleAttributes
GXSetShapeStyleAttributes

continued

Table 2-6 Shape-related functions described elsewhere (continued)

Book and chapter Shape functions described



C H A P T E R  2

Shape Objects

2-44 Shape-Related Functions Described Elsewhere

“Geometric Operations” GXContainsBoundsShape
GXContainsShape
GXDifferenceShape
GXExcludeShape
GXGetShapeArea
GXGetShapeBounds
GXSetShapeBounds
GXGetShapeCenter
GXGetShapeDirection
GXGetShapeLength
GXInsetShape
GXIntersectShape
GXInvertShape
GXReduceShape
GXReverseDifferenceShape
GXReverseShape
GXShapeLengthToPoint
GXSimplifyShape
GXTouchesBoundsShape
GXTouchesShape
GXUnionShape

“Bitmap Shapes” GXGetShapePixel
GXSetShapePixel

Inside Macintosh: QuickDraw GX Typography

“Typographic Styles” GXGetShapeDeviceFontMetrics
GXGetShapeEncoding
GXSetShapeEncoding
GXGetShapeFace
GXSetShapeFace
GXGetShapeFont
GXSetShapeFont
GXGetShapeTextSize
GXSetShapeTextSize
GXGetShapeJustification
GXSetShapeJustification
GXGetShapeFontMetrics
GXGetShapeFontVariations
GXSetShapeFontVariations
GXGetShapeFontVariationSuite
GXGetShapeLocalFontMetrics
GXGetShapeTextAttributes
GXSetShapeTextAttributes
GXGetShapeTypographicBounds

Table 2-6 Shape-related functions described elsewhere (continued)

Book and chapter Shape functions described



C H A P T E R  2

Shape Objects

Shape Objects Reference 2-45

Shape Objects Reference 

This section provides reference information about the data structures and functions that 

allow you to create and manipulate shape objects and alter their properties. It includes

■ type definitions of the data types, including enumerations, that are specific to shape 
objects

■ descriptions of the QuickDraw GX functions that operate on shape objects in general, 
independent of the type of shape involved

■ a description of an application-defined function used for flattening and unflattening 
shapes

Constants and Data Types

This section describes the constants and the data types that you use to obtain and 

provide information about shape objects.

“Layout Shapes” GXGetLayoutShapeParts
GXSetLayoutShapeParts

“Layout Styles” GXGetShapeRunControls
GXSetShapeRunControls
GXGetShapeRunFeatures
GXSetShapeRunFeatures
GXGetShapeRunGlyphSubstitutions
GXSetShapeRunGlyphSubstitutions
GXGetShapeRunKerningAdjustments
GXSetShapeRunKerningAdjustments

“Layout Line Control” GXGetShapeRunGlyphJustOverrides
GXSetShapeRunGlyphJustOverrides
GXGetShapeRunPriorityJustOverride
GXSetShapeRunPriorityJustOverride

Inside Macintosh: QuickDraw GX Environment and Utilities

“QuickDraw GX Debugging” GXGetShapeDrawError
GXValidateShape

Table 2-6 Shape-related functions described elsewhere (continued)

Book and chapter Shape functions described



C H A P T E R  2

Shape Objects

2-46 Shape Objects Reference

The Shape Object

QuickDraw GX provides you with access to an individual shape object through a 

gxShape reference:

typedef struct gxPrivateShapeRecord *gxShape;

In this type definition, gxShape is a type-checked reference, not an actual pointer to any 

defined structure. The contents of the shape object are private. 

Shape Type

A shape object’s shape type specifies what type of geometry the shape object has. 

Constants for all shape types are defined in the gxShapeTypes enumeration:

enum gxShapeTypes {

gxEmptyType = 1,

gxPointType,

gxLineType,

gxCurveType,

gxRectangleType,

gxPolygonType,

gxPathType,

gxBitmapType,

gxTextType,

gxGlyphType,

gxLayoutType,

gxFullType,

gxPictureType

};

typedef long gxShapeType;

The individual shape types are described further in Table 2-1 on page 2-9. 

Shape Fill

Each shape object has a shape fill property. The shape fill specifies how QuickDraw GX 

interprets the geometry of the shape: how the shape is drawn, how the shape is 

hit-tested, and how certain geometric operations, like the intersection operation, 

interpret the shape. 



C H A P T E R  2

Shape Objects

Shape Objects Reference 2-47

Constants for all shape fills are defined in the gxShapeFills enumeration:

enum gxShapeFills {

gxNoFill, /* shape not drawn */

gxOpenFrameFill, /* framed, one edge left open */

gxFrameFill = gxOpenFrameFill,

gxClosedFrameFill, /* framed, closed completely */

gxHollowFill = gxClosedFrameFill,

gxEvenOddFill, /* filled using even-odd rule */

gxSolidFill = gxEvenOddFill,

gxWindingFill, /* filled using winding-number rule */

gxInverseEvenOddFill, /* filled inverse of even-odd rule */

gxInverseSolidFill = gxInverseEvenOddFill,

gxInverseFill = gxInverseEvenOddFill,

gxInverseWindingFill /* filled inverse of winding-number */

};

typedef long gxShapeFill;

The individual shape fills are described further in Table 2-2 on page 2-13. 

Shape Attributes

Each shape object has a set of attributes. Shape attributes are a group of flags that 

modify the behavior of the shape object. Constants for all shape attributes are defined in 

the gxShapeAttributes enumeration:

enum gxShapeAttributes { 

gxNoAttributes, /* no attributes set */

gxDirectShape = 0x0001, /* prefer GX heap */

gxRemoteShape = 0x0002, /* prefer accel. memory */

gxCachedShape = 0x0004, /* optimize drawing */

gxLockedShape = 0x0008, /* lock shape geometry */

gxGroupShape = 0x0010, /* treat as single shape */

gxMapTransformShape = 0x0020, /* alter transform */

gxUniqueItemsShape = 0x0040, /* copy picture items */

gxIgnorePlatformShape = 0x0080, /* use glyph codes */

gxNoMetricsGridShape = 0x0100, /* don’t use hinting */

gxDiskShape = 0x0200, /* unload this first */

gxMemoryShape = 0x0400 /* unload this last */

};

typedef long gxShapeAttribute;

The individual shape attributes are described further in Table 2-4 on page 2-16. 



C H A P T E R  2

Shape Objects

2-48 Shape Objects Reference

Flatten Flags

The flatten flags are used in a parameter to the GXFlattenShape function, to control 

the amount of font and bitmap information to include in a flattened shape. The flatten 

flags are defined in the gxFlattenFlags enumeration:

enum gxFlattenFlags {

gxFontListFlatten = 0x01,

gxFontGlyphsFlatten = 0x02,

gxFontVariationsFlatten = 0x04,

gxBitmapAliasFlatten = 0x08

};

typedef long gxFlattenFlag;

Constant descriptions

gxFontListFlatten
Instructs the GXFlattenShape function to attach to the flattened 
shape a tag object containing a list of the fonts referenced in the 
shape.

gxFontGlyphsFlatten
Instructs the GXFlattenShape function to attach to the flattened 
shape a tag object containing a list of the specific glyphs used from 
each font referenced by the shape.

gxFontVariationsFlatten
Instructs the GXFlattenShape function to attach to the flattened 
shape a tag object containing variation-axis coordinates describing 
all font variations used by the flattened shape. 

gxBitmapAliasFlatten
Instructs the GXFlattenShape function to include with the 
flattened shape all image data from any bitmap shapes that are 
referenced by the shape. If this flag is not set, image data from 
bitmap shapes whose image data is disk-based is not included in 
the flattened shape, although the image data is not lost because a 
tag object specifying the file holding the image data is flattened 
along with the shape. 

For more information on flattening shapes, see “Flattening and Unflattening Shapes” 

beginning on page 2-39. The GXFlattenShape function is described on page 2-88. 

For information on font variations, see the font objects chapter of Inside Macintosh: 
QuickDraw GX Typography. For information on bitmap image data, see the bitmap shapes 

chapter of Inside Macintosh: QuickDraw GX Graphics. 



C H A P T E R  2

Shape Objects

Shape Objects Reference 2-49

The Spool Block

The spool block structure is set up by an application before calling GXFlattenShape or 

GXUnflattenShape. Both the application and QuickDraw GX use and place values 

into the spool block.

struct gxSpoolBlock {

gxSpoolProcPtr spoolProcedure;

void *buffer;

long bufferSize;

long count;

long operationSize;

long operationOffset;

gxGraphicsOpcode lastTypeOpcode;

gxGraphicsOpcode currentOperation;

gxGraphicsOpcode currentOperand;

unsigned char compressed;

};

Field descriptions

spoolProcedure A pointer to an application-defined function that either saves 
the flattened data or supplies the data for unflattening. The 
gxSpoolProcPtr type is defined as follows:

typedef long (*gxSpoolProcPtr)

(gxSpoolCommand command, 

struct gxSpoolBlock *block);

The format for the spool function is described on page 2-91. 

buffer A pointer to a buffer that holds the flattened data, after flattening or 
before unflattening. In either case the buffer is allocated by the 
application.

bufferSize The size of the buffer. (Set by the application.)

count The number of bytes of data read into or out of the buffer. (Set by 
QuickDraw GX.)

operationSize The size of the current operation in the flattened stream. It is equal 
to the size field of the operand of the current operation. For 
flattening, it is the amount of data that QuickDraw GX will place 
into the buffer to complete the current operation; for unflattening, 
it is the amount of information that the spool function must 
place in the buffer to complete the current operation. (Set by 
QuickDraw GX.)



C H A P T E R  2

Shape Objects

2-50 Shape Objects Reference

operationOffset
For flattening, the offset in bytes from the beginning of the current 
operation to the end of the data currently in the buffer. For 
unflattening, the offset in bytes from the beginning of the current 
operation to the start of the data that needs to be placed in the 
buffer. It is the amount of the current operation that has so far been 
flattened or is about to be unflattened. (Set by QuickDraw GX.)

lastTypeOpcode
The type of object currently being flattened or unflattened. It is one 
of the constants defined in the gxGraphicsNewOpcode 
enumeration. (Set by QuickDraw GX.)

currentOperation
The type of operation currently being flattened or unflattened. It is 
one of the constants defined in the gxGraphicsOperationOpcode 
enumeration. (Set by QuickDraw GX.)

currentOperand The type of data (within the current object) being flattened or 
unflattened. It is one of the constants defined in one of the data 
opcode enumerations, such as the gxShapeDataOpcode 
enumeration or the gxStyleDataOpcode enumeration. (Set 
by QuickDraw GX.)

compressed The type of compression applied to the current item. (Set by 
QuickDraw GX.)

General information about flattening shapes is found in the section “Flattening and 

Unflattening Shapes” beginning on page 2-39. The GXFlattenShape function is 

described on page 2-88. The GXUnflattenShape function is described on page 2-90. 

The QuickDraw GX stream format, including the opcodes it uses and the types of 

compression it supports, is described in the stream format chapter of Inside Macintosh: 
QuickDraw GX Environment and Utilities. 

The Hit-Test Info Structure

The hit-test info structure is a structure in which both the GXHitTestShape and 

GXHitTestPicture functions return information. GXHitTestShape uses only 

the first three fields; GXHitTestPicture uses all seven fields.

struct gxHitTestInfo {

gxShapePart what;

long index;

Fixed distance;

gxShape which;

gxShape containerPicture;

long containerIndex;

long totalIndex;

};



C H A P T E R  2

Shape Objects

Shape Objects Reference 2-51

Field descriptions

what The parts of the shape that were hit, if any. QuickDraw GX returns 
in this field a mask denoting all shape parts (out of those specified 
for the hit-test) that are within the tolerance of the hit-test from 
the hit point. Shape parts are defined in the gxShapeParts 
enumeration; the tolerance and the subset of shape parts to test for 
make up the hit-test parameters. All are described in the chapter 
“Transform Objects” in this book.

index The index of the nearest point in the geometry to the hit point. 
Every point in a shape’s geometry has an index number (indexes 
start at 1). 

distance The distance in geometry units from the hit point to the closest 
point on the shape part that was hit. (If no part was hit, this value is 
undefined.) If more than one shape part was hit, this is the distance 
to the first shape part encountered that is within the tolerance of the 
hit point. The order in which shape parts are examined during 
hit-testing is defined by the gxShapeParts enumeration, 
described in the chapter “Transform Objects” in this book.

which A reference to the specific shape that was hit. (Used only by 
GXHitTestPicture.)

containerPicture
A reference to the picture shape that immediately contains the 
specific shape that was hit. Note that this may be a picture shape 
contained at some level within the picture shape specified in the call 
to GXHitTestPicture. (Used only by GXHitTestPicture.) 

containerIndex The index number—within the immediately containing shape—of 
the specific shape that was hit. (Used only by GXHitTestPicture.)

totalIndex The index number—within the picture shape specified in the call to 
GXHitTestPicture—of the specific shape that was hit. (Used 
only by GXHitTestPicture.)

The GXHitTestShape function is described on page 2-86. The GXHitTestPicture 

function is described in the picture shapes chapter of Inside Macintosh: QuickDraw GX 
Graphics.   

Functions

This section describes the QuickDraw GX functions you can use to 

■ create and manipulate a shape object

■ manipulate the properties of a shape object, including converting a shape from one 
type to another

■ directly manipulate a shape’s geometry

■ flatten and unflatten a shape

■ draw and hit-test a shape



C H A P T E R  2

Shape Objects

2-52 Shape Objects Reference

Note
Shape-related QuickDraw GX functions not described in this section are 
listed and cross-referenced in Table 2-6 on page 2-42. ◆

Creating and Manipulating Shape Objects 

The functions described in this section allow you to work with shapes as objects in 

memory. With the functions in this section, you can 

■ determine the default shape object

■ create and dispose of a shape object

■ find the size of a shape object in memory

■ copy, clone, and compare shape objects

■ cache a shape object

GXGetDefaultShape

You can use the GXGetDefaultShape function to obtain a reference to the default 

shape object for a particular shape type.

gxShape GXGetDefaultShape(gxShapeType aType);

aType A shape type that specifies which default shape object to return.

function result A reference to the default shape for the shape type specified by the aType 
parameter.

DESCRIPTION

Note that the return value of this function is a reference to the actual default shape 

object, not a copy of it. If you edit the shape returned by this function, you alter the 

actual default shape object that the system uses when creating new shape objects. 

You can also alter a default shape object by using the GXSetDefaultShape function.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
illegal_type_for_shape (debugging version)



C H A P T E R  2

Shape Objects

Shape Objects Reference 2-53

SEE ALSO

Default shape objects are discussed in the section “Default Shapes” beginning on 

page 2-18.

The GXSetDefaultShape function is described in the next section.

To create a copy of a default shape object, use the GXNewShape function, described on 

page 2-54.

GXSetDefaultShape

You can use the GXSetDefaultShape function to replace the default shape object of a 

particular shape type.

void GXSetDefaultShape(gxShape target);

target A reference to the new default shape object.

DESCRIPTION

The GXSetDefaultShape function replaces an existing default shape with the shape 

specified by the target parameter. The shape type of the target shape determines which 

default shape is replaced. This function disposes of the old default shape and increments 

the owner count of the target shape. 

You can use the GXSetDefaultShape function to replace the style, ink, or transform of 

one of the default shapes by specifying a target shape with a different style, ink, or 

transform than the old default shape. When QuickDraw GX creates new shapes of the 

target shape’s shape type, the new shape will have the same ink, style, and transform as 

the target shape.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Default shape objects are discussed in the section “Default Shapes” beginning on 

page 2-18.

To create a copy of a default shape object, use the GXNewShape function, described in 

the next section. 

Errors
out_of_memory
shape_is_nil
illegal_type_for_shape (debugging version)



C H A P T E R  2

Shape Objects

2-54 Shape Objects Reference

GXNewShape

You can use the GXNewShape function to create a new shape of a specified shape type.

gxShape GXNewShape(gxShapeType aType);

aType The type of shape object to create.

function result A reference to a newly created copy of the default shape object of the type 
specified by the aType parameter.

DESCRIPTION

The GXNewShape function creates a copy of the default shape object of the type specified 

by the aType parameter and gives it an owner count of 1.

Although this function creates a copy of the default shape, it does not create a copy of 

the default shape’s style, ink, or transform. The new shape returned by this function 

contains references to same style, ink, and transform as the default shape. You can 

change the style, ink, and transform of the shape by using the functions 

GXSetShapeStyle, GXSetShapeInk, and GXSetShapeTransform.

You can use this function by itself to create empty and full shapes. For other shape 

types, you can use this function to create a shape and then you can customize the shape’s 

geometry by using additional functions, such as GXSetShapeGeometry or one of the 

shape-specific functions such as GXSetPoint, GXSetLine, GXSetPathParts, or 

GXSetGlyphParts. 

SPECIAL CONSIDERATIONS

If no error occurs, the GXNewShape function creates a shape object; you are responsible 

for disposing of that object when you no longer need it.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Shape types, including empty and full shapes, are described in the section “Shape Type” 

beginning on page 2-9. 

Default shape objects are discussed in the section “Default Shapes” beginning on 

page 2-18. To examine a default shape, use the GXGetDefaultShape function, 

described on page 2-52. To replace a default shape, use the GXSetDefaultShape 

function, described on page 2-53.

Errors
out_of_memory
illegal_type_for_shape (debugging version)



C H A P T E R  2

Shape Objects

Shape Objects Reference 2-55

The GXSetShapeStyle function is described on page 2-70; the GXSetShapeInk 

function is described on page 2-71; the GXSetShapeTransform function is described 

on page 2-73.

The GXSetShapeGeometry function is described on page 2-67. Other geometry-setting 

functions are described in the shape-specific chapters of Inside Macintosh: QuickDraw GX 
Graphics and Inside Macintosh: QuickDraw GX Typography.

For an example of the use of this function, see page 2-24. 

GXDisposeShape

You can use the GXDisposeShape function to release a reference to a shape.

void GXDisposeShape(gxShape target);

target A reference to the shape to dispose of.

DESCRIPTION

The GXDisposeShape function decrements the owner count of the shape specified by 

the target parameter and releases any memory used by the shape if the owner count 

goes to 0.

SPECIAL CONSIDERATIONS

You cannot dispose of a shape that is locked, either because the gxLockedShape 

attribute is set or because GXLockShape was called to lock the shape. Depending on 

how the shape became locked, you must call GXSetShapeAttributes or 
GXUnlockShape before calling GXDisposeShape on a locked shape.

ERRORS, WARNINGS, AND NOTICES

Errors
shape_is_nil
shape_access_not_allowed (debugging version)

Warnings
cannot_dispose_default_shape (debugging version)



C H A P T E R  2

Shape Objects

2-56 Shape Objects Reference

SEE ALSO

Owner counts are discussed in the section “Copying, Comparing, and Cloning Shape 

Objects” beginning on page 2-25, and in the section “Manipulating a Shape Object’s 

Owner Count” beginning on page 2-31. 

To examine the owner count of a shape, use the GXGetShapeOwners function, 

described on page 2-76. To increment the owner count of a shape, use the 

GXCloneShape function, described on page 2-61.

For an example of the use of this function, see page 2-24. 

GXGetShapeSize

You can use the GXGetShapeSize function to determine the amount of memory 

currently occupied by a shape object.

long GXGetShapeSize(gxShape source);

source A reference to the shape object to determine the current memory size of.

function result The number of bytes of memory currently occupied by the shape 
specified in the source parameter.

DESCRIPTION

The GXGetShapeSize function takes the source shape’s type, owner count, fill, 

attributes, and geometry into consideration. It does not include the memory used by the 

shape’s style, ink, transform, or tag objects, but does include the memory used by the 

references to them.

The function result also includes the size of some shape properties private to 

QuickDraw GX, but does not include the size of the shape cache or the size of any 

memory overhead used to represent the shape.

This function returns only the memory size currently used by the shape. For example, 

when a shape is unloaded to disk it uses less memory, and the result of this function 

reflects its smaller size. 

You can use the GXLoadShape function to load a shape into memory before determining 

its size.

ERRORS, WARNINGS, AND NOTICES

Errors
shape_is_nil



C H A P T E R  2

Shape Objects

Shape Objects Reference 2-57

SEE ALSO

To find the size of a shape’s cache, use the GXGetShapeCacheSize function, described 

on page 2-64.

The GXLoadShape function is described in the memory management chapter of Inside 
Macintosh: QuickDraw GX Environment and Utilities. 

For information about the memory size of graphic shapes, see the geometric shapes 

chapter of Inside Macintosh: QuickDraw GX Graphics. For information about the memory 

size of typographic shapes, see the typographic shapes chapter of Inside Macintosh: 
QuickDraw GX Typography. 

GXCopyToShape

The GXCopyToShape function copies the contents of one existing shape to another or 

else it creates a new shape and copies the contents of an existing shape to it. You can, for 

example, use this function to create a copy of a shape so that you can modify it without 

changing the original shape.

gxShape GXCopyToShape(gxShape target, gxShape source);

target A reference to the shape to copy the source shape’s contents into. If you 
specify nil for this parameter, the function creates a new shape.

source A reference to the shape to copy from.

function result A reference to the copy (that is, the target shape).

DESCRIPTION

The GXCopyToShape function copies the properties and the geometry of the shape 

specified by the source parameter into the shape specified by the target parameter. It 

also copies the references to the source shape’s ink, style, transform, and tags; that is, 

after the function returns, the target shape and the source shape share the same ink, 

style, transform, and tag objects. This function increments by 1 the owner counts of the 

source shape’s ink, style, transform, and tag objects, and disposes of the original ink, 

style, transform, and tags of the target shape.

If you specify nil for the target parameter, this function creates a new shape to copy 

the contents of the source shape into.

SPECIAL CONSIDERATIONS

If you specify nil for the target parameter and no error occurs, the GXCopyToShape 

function creates a new shape object; you are responsible for disposing of that object 

when you no longer need it.



C H A P T E R  2

Shape Objects

2-58 Shape Objects Reference

If the target shape is locked, the GXCopyToShape function posts a 

shape_access_not_allowed error. If you try to copy a picture into a shape that is 

contained in the picture, this function posts a picture_cannot_contain_itself 

error. If you try to copy a shape of one type into the default shape of another type, this 

function posts a cannot_dispose_default_shape warning. 

This function does not copy the pixel image of bitmap shapes, the shapes contained 

within picture shapes, or the set of style objects associated with glyph or layout shapes; 

instead, it copies the references to them. To obtain a complete copy of a bitmap shape, 

picture shape, glyph shape, or layout shape, use the GXCopyDeepToShape function.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To create a new shape that is a copy of the default shape instead of a copy of an existing 

shape, use the GXNewShape function, described on page 2-54.

The GXCopyDeepToShape function copies the pixel image of bitmap shapes and the 

shapes contained within picture shape; it is described in the next section. For more 

information about copying bitmap shapes and picture shapes, see Inside Macintosh: 
QuickDraw GX Graphics.

For information about copying typographic shapes, see the typographic shapes chapter 

of Inside Macintosh: QuickDraw GX Typography. 

GXCopyDeepToShape

The GXCopyDeepToShape function copies the contents of one existing shape to another, 

or creates a new shape and copies the contents of an existing shape to it. For bitmap 

shapes, picture shapes, glyph shapes, and layout shapes, GXCopyDeepToShape copies 

more information than the GXCopyToShape function does.

gxShape GXCopyDeepToShape(gxShape target, gxShape source);

target A reference to the shape to copy the source shape’s contents to. If you 
specify nil for this parameter, this function creates a new shape.

source A reference to the shape to copy from.

function result A reference to the copy (that is, the target shape).

Errors
out_of_memory
shape_is_nil
shape_access_not_allowed (debugging version)
picture_cannot_contain_itself (debugging version)

Warnings
cannot_dispose_default_shape (debugging version)



C H A P T E R  2

Shape Objects

Shape Objects Reference 2-59

DESCRIPTION

The GXCopyDeepToShape function copies the properties and the geometry of the shape 

specified by the source parameter into the shape specified by the target parameter. It 

also copies the references to the source shape’s ink, style, transform, and tags; that is, 

after the function returns, the target shape and the source shape share the same ink, 

style, and transform objects. This function increments by 1 the owner counts of the 

source shape’s ink, style, and transform, and disposes of the ink, style, and transform of 

the target shape.

If you specify nil for the target parameter, this function creates a new shape to copy 

the contents of the source shape into.

The GXCopyDeepToShape function is similar to the GXCopyToShape function except 

that it performs these additional operations:

■ For bitmap shapes, GXCopyDeepToShape also copies the complete pixel image.

■ For picture shapes, GXCopyDeepToShape also copies each shape in the source 
picture. If the source picture contains other picture shapes, their shapes are also 
recursively copied. The styles, inks, and transforms of the shapes within the picture 
are not copied; instead the copied shapes share references to the styles, inks, and 
transforms of the original shapes, and the GXCopyDeepToShape function increments 
by 1 the owner counts of the original styles, inks, and transforms.

■ For glyph and layout shapes, GXCopyDeepToShape also copies the set of style 
objects referenced in the style list that is part of the shape’s geometry.

Because the GXCopyDeepToShape function copies the pixel image of bitmap shapes 

and the shapes contained within picture shapes, you can use it to create a copy of a 

bitmap or a picture, and then modify the copy without changing the original bitmap or 

picture.

SPECIAL CONSIDERATIONS

If you specify nil for the target parameter and no error occurs, the 

GXCopyDeepToShape function creates a new shape object; you are responsible for 

disposing of that object when you no longer need it.

If you try to copy a picture into a shape that is contained in the picture, the 

GXCopyDeepToShape function posts a picture_cannot_contain_itself error. If 

the target shape is locked, this function posts a shape_access_not_allowed error. 

If you try to copy a shape of one type into the default shape of another type, this 

function posts a cannot_dispose_default_shape warning.



C H A P T E R  2

Shape Objects

2-60 Shape Objects Reference

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To create a new shape that is a copy of the default shape instead of a copy of an existing 

shape, use the GXNewShape function, described on page 2-54.

To make a copy of an existing shape without copying all information for bitmap shapes, 

picture shapes, glyph shape, and layout shapes, use the GXCopyToShape function, 

described in the previous section.

For information about copying typographic shapes, see the typographic shapes chapter 

of Inside Macintosh: QuickDraw GX Typography. 

GXEqualShape

You can use the GXEqualShape function to determine if two shapes are equal.

boolean GXEqualShape(gxShape one, gxShape two);

one A reference to one of the shapes to test for equality.

two A reference to the other shape to test for equality.

function result true if the shape specified by the one parameter is equal to the shape 
specified by the two parameter; false otherwise.

DESCRIPTION

The GXEqualShape function returns as its function result a Boolean value indicating 

whether the two QuickDraw GX shapes are equal. For two QuickDraw GX shapes to be 

equal, they must satisfy these requirements:

■ They must have the same shape type and fill, but they do not need to have the same 
attributes, owner count, or tag list.

■ Their geometries must have identical values; geometries that are equivalent but not 
identical are not considered to be equal. To eliminate false rejection of equivalent 
geometries, call the GXSimplifyShape function to simplify both shapes before you 
call GXEqualShape.

Errors
out_of_memory
shape_is_nil
shape_access_not_allowed (debugging version)
picture_cannot_contain_itself (debugging version)

Warnings
cannot_dispose_default_shape (debugging version)



C H A P T E R  2

Shape Objects

Shape Objects Reference 2-61

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Equivalent geometries are described in the section “Copying, Comparing, and Cloning 

Shape Objects” beginning on page 2-25. The GXSimplifyShape function is described in 

the geometric shapes chapter of Inside Macintosh: QuickDraw GX Graphics.

To make a copy of a shape object that is equal by the criteria of this function, use the 

GXCopyToShape function, described on page 2-57. 

GXCloneShape

You can use the GXCloneShape function to clone a shape—that is, to add a reference to 

it and increment its owner count.

gxShape GXCloneShape(gxShape source);

source A reference to the shape to clone.

function result A reference to the cloned shape.

DESCRIPTION

The GXCloneShape function returns a reference to the shape object specified by the 

source parameter and increments its owner count by 1. You typically use this function 

when you want to create another reference to an existing shape rather than create a 

distinct copy of the shape.

This function returns as its function result a reference to the shape—the same reference 

you pass in as the source parameter. Thus you can clone a shape with the following 

line of C code:

aShapeClone = GXCloneShape(aShape);

This line of code has almost the same affect as

aShapeClone = aShape;

that is, it sets the aShapeClone variable to reference the same shape object as the 

aShape variable. The difference is that GXCloneShape also increments the shape’s 

owner count. 

Errors
out_of_memory
shape_is_nil



C H A P T E R  2

Shape Objects

2-62 Shape Objects Reference

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Owner counts are discussed in the section “Copying, Comparing, and Cloning Shape 

Objects” beginning on page 2-25, and in the section “Manipulating a Shape Object’s 

Owner Count” beginning on page 2-31.

To examine the owner count of a shape, use the GXGetShapeOwners function, 

described on page 2-76. To decrement the owner count of a shape, use the 

GXDisposeShape function, described on page 2-55.   

GXCacheShape 

You can use the GXCacheShape function to prepare a shape for faster drawing. 

void GXCacheShape(gxShape source);

source A reference to the shape to build the cache for.

DESCRIPTION

The GXCacheShape function prepares a shape for drawing by performing the 

calculations necessary to draw the shape and storing them in a shape cache. Then, when 

you draw the shape, time is saved because those calculations have already been made.

Although you do not need to call this function before drawing, you can use it to improve 

the speed of drawing on the screen. 

To build a shape cache, use this function. To delete a shape cache, use the 

GXDisposeShapeCache function. To determine the amount of memory occupied by a 

shape cache, use the GXGetShapeCacheSize function.

SPECIAL CONSIDERATIONS

If you set the gxCachedShape attribute for a shape, QuickDraw GX automatically 

creates a cache and a compressed offscreen bitmap for the shape the first time it draws 

the shape. Unlike calling GXCacheShape, setting the gxCachedShape attribute can 

result in increased memory requirements for a shape.

Errors
shape_is_nil



C H A P T E R  2

Shape Objects

Shape Objects Reference 2-63

ERRORS, WARNINGS, AND NOTICES

Because it performs preliminary calculations involved in drawing, the GXCacheShape 

function can, in addition to the errors listed below, post any errors and warnings 

associated with the GXDrawShape function. Therefore, GXCacheShape can post 

font-related errors if it is caching text. 

SEE ALSO

Shape caches are discussed in the section “Caching Shape Objects” beginning on 

page 2-27. The gxCachedShape attribute is described in that section and also in 

Table 2-4 on page 2-16.

The GXGetShapeCacheSize function is described on page 2-64. The GXDisposeShapeCache 

function is described in the next section.

For information about the caching and drawing typographic shapes, see the typographic 

shapes chapter of Inside Macintosh: QuickDraw GX Typography.

GXDisposeShapeCache

You can use the GXDisposeShapeCache function to release the memory occupied by a 

shape’s cache.

void GXDisposeShapeCache(gxShape target);

target A reference to the shape whose cache is to be disposed of.

Errors
out_of_memory
shape_is_nil
number_of_contours_exceeds_implementation_limit
number_of_points_exceeds_implementation_limit
size_of_polygon_exceeds_implementation_limit
size_of_path_exceeds_implementation_limit
size_of_bitmap_exceeds_implementation_limit
pattern_lattice_out_of_range (debugging version)

Warnings
character_substitution_took_place
graphic_type_cannot_be_dashed (debugging version)
unable_to_traverse_open_contour_that_starts_or_ends_off_the_curve

(debugging version)
unable_to_draw_open_contour_that_starts_or_ends_off_the_curve

(debugging version)
face_override_style_font_must_match_style (debugging version)



C H A P T E R  2

Shape Objects

2-64 Shape Objects Reference

DESCRIPTION

The GXDisposeShapeCache function immediately releases the memory allocated to 

the cache of the shape indicated by the target parameter. This function releases only 

that memory allocated to the target shape’s cache. It does not release memory allocated 

to any related system caches or globals.

To build a shape cache, use the GXCacheShape function. To delete a shape cache, use 

this function. To determine the amount of memory occupied by a shape cache, use the 

GXGetShapeCacheSize function.

SPECIAL CONSIDERATIONS

You never need to call this function. QuickDraw GX disposes of caches automatically 

when it needs additional memory.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Shape caches are discussed in the section “Caching Shape Objects” beginning on 

page 2-27. The GXCacheShape function is described on page 2-62. The 

GXGetShapeCacheSize function is described in the next section.

GXGetShapeCacheSize

You can use the GXGetShapeCacheSize function to determine how much memory is 

allocated to a shape and its cache.

long GXGetShapeCacheSize(gxShape source);

source A reference to the shape object whose size in memory (including cache) is 
to be determined.

function result The approximate number of bytes of memory currently occupied by the 
shape and cache referenced in the source parameter.

DESCRIPTION

The GXGetShapeCacheSize function, like the GXGetShapeSize function, calculates 

the size of the source shape in memory, and does not include the memory used by the 

shape’s referenced tags, style, ink, or transform. However, unlike GXGetShapeSize, 

this function result also includes the size of the source shape’s current cache.

Errors
shape_is_nil



C H A P T E R  2

Shape Objects

Shape Objects Reference 2-65

This function returns only the memory size currently being used by the shape and its 

cache. If the shape is unloaded to disk, the result of this function indicates the smaller 

amount of memory used. If the shape has no cache, the result of this function is simply 

the memory size of the shape. You can use the GXLoadShape function to load a shape 

into memory before calling this function, to get the full size of the shape and cache.

In the interest of speed, this function provides only an approximation of the memory 

requirements of the shape’s cache. The actual memory requirements of the cache depend 

on many factors, such as memory overhead, and would be less efficient to calculate. You 

can use this function to determine an approximate size for the memory partition needed 

for a set of shapes to be loaded and cached at the same time.

To determine the amount of memory occupied by a shape and its cache, use this 

function. To build a shape cache, use the GXCacheShape function. To delete a shape 

cache, use the GXDisposeShapeCache function. 

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Shape caches are discussed in the section “Caching Shape Objects” beginning on 

page 2-27. The GXCacheShape function is described on page 2-62. The 

GXDisposeShapeCache function is described in the previous section.

The GXLoadShape function is described in the memory management chapter of 

Inside Macintosh: QuickDraw GX Environment and Utilities. 

To determine the amount of memory occupied by a shape without its cache, use the 

GXGetShapeSize function, described on page 2-56. 

Manipulating Shape Object Properties

This section describes the functions available for manipulating the properties of shape 

objects. The functions described in this section allow you to 

■ determine a shape object’s type, geometry, and fill

■ determine the style, ink, and transform objects associated with a shape

■ determine a shape object’s attributes

■ reset certain shape properties to their default values

■ find the owner count of a shape object

■ determine the tag objects associated with a shape object

Functions for direct manipulation of the geometry property of a shape object are 

described in the next section, “Directly Manipulating a Shape’s Geometry” beginning on 

page 2-80. 

Errors
shape_is_nil



C H A P T E R  2

Shape Objects

2-66 Shape Objects Reference

GXGetShapeType

You can use the GXGetShapeType function to determine the shape type of a shape 

object.

gxShapeType GXGetShapeType(gxShape source);

source A reference to the shape object to determine the shape type of.

function result The shape type of the source shape.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Shape types are described in the section “Shape Type” beginning on page 2-9. 

To assign a shape type to a shape object, use the GXSetShapeType function, described 

in the next section.

GXSetShapeType

You can use the GXSetShapeType function to convert a shape object from one shape 

type to another.

void GXSetShapeType(gxShape target, gxShapeType newType);

target A reference to the shape object to assign the new shape type to.

newType A reference to the shape type to be assigned to the shape.

DESCRIPTION

The GXSetShapeType function changes the type of the target shape to the shape type 

specified by newType. Many different kinds of conversions are possible: typographic 

types can be converted to other typographic types or to graphic types; graphic types can 

be converted to other graphic types. The results of the conversion differ in each case, 

depending on which type is converted to which other type. See Table 2-5 on page 2-33 

for a list of chapters that describe how conversion works for different shape types.

Errors
shape_is_nil



C H A P T E R  2

Shape Objects

Shape Objects Reference 2-67

ERRORS, WARNINGS, AND NOTICES

When you change a shape to a bitmap type, the GXSetShapeType function performs 

preliminary calculations on its data and thus may post, in addition to the errors listed 

below, errors associated with the GXDrawShape function. When you change a shape to a 

typographic type, GXSetShapeType may post font-related errors. 

SEE ALSO

What happens when you call GXSetShapeType to convert shapes of one type to 

another is described in Inside Macintosh: QuickDraw GX Graphics and Inside Macintosh: 
QuickDraw GX Typography. Table 2-5 on page 2-33 shows which specific chapters to read 

for detailed information on conversion among the various types of shapes.

Shape types are described in the section “Shape Type” beginning on page 2-9 of this 

chapter. 

To determine the shape type of a shape object, use the GXGetShapeType function, 

described in the previous section.   

GXSetShapeGeometry

You can use the GXSetShapeGeometry function to copy the geometry from one shape 

object to another.

void GXSetShapeGeometry(gxShape target, gxShape geometry);

target A reference to the shape to copy the new geometry into.

geometry A reference to the shape to copy the new geometry from.

DESCRIPTION

For two shape objects with the same shape type, the GXSetShapeGeometry function 

copies the geometry from the shape referenced by the geometry parameter to the shape 

referenced by the target parameter. If the type of the shape referenced in the 

geometry parameter is different from the type of the target shape, the target shape 

becomes the geometry shape’s type.

Errors
out_of_memory
shape_is_nil
illegal_type_for_shape (debugging version)
shape_access_not_allowed (debugging version)

Warnings
new_shape_contains_invalid_data (debugging version)

Notices (debugging version)
shape_type_already_set



C H A P T E R  2

Shape Objects

2-68 Shape Objects Reference

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To directly manipulate the contents of a shape’s geometry, see the section “Directly 

Manipulating a Shape’s Geometry” beginning on page 2-34; see also the descriptions of 

the GXLockShape, GXUnlockShape, GXGetShapeStructure, and GXChangedShape 

functions, beginning on page 2-80. 

Specific methods for setting and manipulating the geometries of graphic shapes are 

described in Inside Macintosh: QuickDraw GX Graphics. Methods for setting and 

manipulating the geometries of typographic shapes are described in Inside Macintosh: 
QuickDraw GX Typography. 

GXGetShapeFill

You can use the GXGetShapeFill function to retrieve the fill property of a shape object.

gxShapeFill GXGetShapeFill(gxShape source);

source A reference to the shape whose fill property you want to retrieve.

function result The fill of the source shape.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Shape fills are described in the section “Shape Fill” beginning on page 2-13. 

To assign a fill to a shape object, use the GXSetShapeFill function, described in the 

next section.

For more information on shape fill as it applies to geometric shapes, see the geometric 

shapes chapter of Inside Macintosh: QuickDraw GX Graphics. For more information on 

shape fill as it applies to typographic shapes, see the typographic shapes chapter of 

Inside Macintosh: QuickDraw GX Typography. 

Errors
out_of_memory
shape_is_nil
picture_cannot_contain_itself
shape_access_not_allowed (debugging version)

Errors
out_of_memory
shape_is_nil



C H A P T E R  2

Shape Objects

Shape Objects Reference 2-69

GXSetShapeFill

You can use the GXSetShapeFill function to change the fill property of a shape object.

void GXSetShapeFill(gxShape target, gxShapeFill newFill);

target A reference to the shape whose fill property you want to change.

newFill The new value for shape fill.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Shape fills are described in the section “Shape Fill” beginning on page 2-13. 

This function is further described for geometric shapes in the geometric shapes chapter 

of Inside Macintosh: QuickDraw GX Graphics, and for typographic shapes in the 

typographic shapes chapter of Inside Macintosh: QuickDraw GX Typography. 

To determine the shape fill of a shape object, use the GXGetShapeFill function, 

described in the previous section.

GXGetShapeStyle

You can use the GXGetShapeStyle function to determine the style object associated 

with a QuickDraw GX shape.

gxStyle GXGetShapeStyle(gxShape source);

source A reference to the shape object whose style object is to be determined.

function result A reference to the style object associated with the source shape object.

Errors
out_of_memory
shape_is_nil
shape_access_not_allowed (debugging version)
parameter_out_of_range (debugging version)
inconsistent_parameters (debugging version)

Notices (debugging version)
fill_already_set



C H A P T E R  2

Shape Objects

2-70 Shape Objects Reference

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The relationship of style objects to QuickDraw GX shapes is discussed in “About 

QuickDraw GX Shapes” beginning on page 2-5. Style objects themselves are further 

discussed in the chapter “Style Objects” in this book.

To change the style object associated with a QuickDraw GX shape, use the 

GXSetShapeStyle function, described in the next section. 

GXSetShapeStyle

You can use the GXSetShapeStyle function to change the style object associated with a 

QuickDraw GX shape.

void GXSetShapeStyle(gxShape target, gxStyle newStyle);

target A reference to the shape whose style object is to be changed.

newStyle A reference to the new style object to associate with the target shape.

DESCRIPTION

The GXSetShapeStyle function disassociates the style object already associated with 

the target shape and disposes of it. The function then assigns the style object 

referenced by the newStyle parameter to the target shape and increments by 1 the 

owner count of the new style object.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
shape_is_nil

Errors
out_of_memory
shape_is_nil
style_is_nil
shape_access_not_allowed (debugging version)

Notices (debugging version)
style_already_set



C H A P T E R  2

Shape Objects

Shape Objects Reference 2-71

SEE ALSO

The relationship of style objects to QuickDraw GX shapes is discussed in “About 

QuickDraw GX Shapes” beginning on page 2-5. Style objects themselves are further 

discussed in the chapter “Style Objects” in this book.

To determine the style object associated with a QuickDraw GX shape, use the 

GXGetShapeStyle function, described in the previous section. 

GXGetShapeInk

You can use the GXGetShapeInk function to determine the ink object associated with a 

shape object.

gxInk GXGetShapeInk(gxShape source);

source A reference to the shape whose ink object is to be determined.

function result A reference to the ink object associated with the source shape object.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The relationship of ink objects to QuickDraw GX shapes is discussed in “About 

QuickDraw GX Shapes” beginning on page 2-5. Ink objects themselves are further 

discussed in the chapter “Ink Objects” in this book.

To change the ink object associated with a QuickDraw GX shape, use the 

GXSetShapeInk function, described in the next section.

GXSetShapeInk

You can use the GXSetShapeInk function to change the ink object associated with a 

shape object.

void GXSetShapeInk(gxShape target, gxInk newInk);

target A reference to the shape whose ink object is to be changed.

newInk A reference to the new ink object to associate with the target shape.

Errors
out_of_memory
shape_is_nil



C H A P T E R  2

Shape Objects

2-72 Shape Objects Reference

DESCRIPTION

The GXSetShapeInk function disassociates the ink object already associated with the 

target shape and disposes of it. The function then assigns the ink object referenced by the 

newInk parameter to the target shape and increments the owner count of the new ink 

object. 

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The relationship of ink objects to QuickDraw GX shapes is discussed in “About 

QuickDraw GX Shapes” beginning on page 2-5. Ink objects themselves are further 

discussed in the chapter “Ink Objects” in this book.

To determine the ink object associated with a QuickDraw GX shape, use the 

GXGetShapeInk function, described in the previous section. 

GXGetShapeTransform

You can use the GXGetShapeTransform function to determine the transform object 

associated with a shape object.

gxTransform GXGetShapeTransform(gxShape source);

source A reference to the shape whose transform object is to be determined.

function result A reference to the transform object associated with the source shape 
object.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
shape_is_nil
ink_is_nil
shape_access_not_allowed (debugging version)

Notices (debugging version)
ink_already_set

Errors
out_of_memory
shape_is_nil



C H A P T E R  2

Shape Objects

Shape Objects Reference 2-73

SEE ALSO

The relationship of transform objects to QuickDraw GX shapes is discussed in “About 

QuickDraw GX Shapes” beginning on page 2-5. Transform objects themselves are further 

discussed in the chapter “Transform Objects” in this book.

To change the transform object associated with a QuickDraw GX shape, use the 

GXSetShapeTransform function, described in the next section.

GXSetShapeTransform

You can use the GXSetShapeTransform function to change the transform object 

associated with a shape object.

void GXSetShapeTransform(gxShape target, 

gxTransform newTransform);

target A reference to the shape whose transform object is to be changed.

newTransform
A reference to the new transform object to associate with the target shape.

DESCRIPTION

The GXSetShapeTransform function disassociates the transform object already 

associated with the target shape and disposes of it. GXSetShapeTransform then 

assigns the transform object referenced by the newTransform parameter to the target 

shape and increments by 1 the owner count of the new transform object.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The relationship of transform objects to QuickDraw GX shapes is discussed in “About 

QuickDraw GX Shapes” beginning on page 2-5. Transform objects themselves are further 

discussed in the chapter “Transform Objects” in this book.

To determine the transform object associated with a QuickDraw GX shape, use the 

GXGetShapeTransform function, described in the previous section. 

Errors
out_of_memory
shape_is_nil
transform_is_nil
shape_access_not_allowed (debugging version)

Notices (debugging version)
transform_already_set



C H A P T E R  2

Shape Objects

2-74 Shape Objects Reference

GXGetShapeAttributes

You can use the GXGetShapeAttributes function to examine which attributes of a 

shape object are set.

gxShapeAttribute GXGetShapeAttributes(gxShape source);

source A reference to the shape to find the attributes of.

function result The shape attributes of the source shape.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Shape attributes are described in the section “Shape Attributes” beginning on page 2-16, 

and in the section “Getting and Setting a Shape Object’s Type, Fill, and Attributes” 

beginning on page 2-28.

To change the attributes of a shape object, use the GXSetShapeAttributes function, 

described in the next section. 

For an example of the use of this function, see page 2-29. 

GXSetShapeAttributes

You can use the GXSetShapeAttributes function to set or clear the attributes for a 

particular shape object.

void GXSetShapeAttributes(gxShape target, gxShapeAttribute 

attributes);

target A reference to the shape object to change the attributes of.

attributes The new shape attributes to be assigned.

Errors
out_of_memory
shape_is_nil



C H A P T E R  2

Shape Objects

Shape Objects Reference 2-75

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Shape attributes are described in the section “Shape Attributes” beginning on page 2-16, 

and in the section “Getting and Setting a Shape Object’s Type, Fill, and Attributes” 

beginning on page 2-28.

To examine the attributes of a shape object, use the GXGetShapeAttributes function, 

described in the previous section.

For an example of the use of this function, see page 2-29. 

GXResetShape

You can use the GXResetShape function to reset the attributes, fill, style, ink, and 

transform of a shape to their default values.

void GXResetShape(gxShape target);

target A reference to the shape object whose properties you want to reset.

DESCRIPTION

The GXResetShape function resets the shape attributes and the shape fill of the shape 

object specified by the target parameter to match the shape attributes and shape fill of 

the corresponding default shape. The function also resets the style, ink, and transform 

references of the target shape to their default values.

The GXResetShape function does not change the target shape’s geometry, owner count, 

or tags.

After the GXResetShape function returns, the target shape references the same style, 

ink, and transform as the corresponding default shape object. The GXResetShape 

function increments by 1 the owner counts of the default style, ink, and transform, and 

disposes of the target shape’s original style, ink, and transform.

Errors
out_of_memory
shape_is_nil
parameter_out_of_range (debugging version)
inconsistent_parameters (debugging version)
shape_access_not_allowed (debugging version)

Warnings
picture_expected
cannot_set_unique_items_attribute_when_picture_contains_items



C H A P T E R  2

Shape Objects

2-76 Shape Objects Reference

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Default shape objects are described in the section “Default Shapes” beginning on 

page 2-18. 

To examine a default shape, use the GXGetDefaultShape function, described on 

page 2-52. To replace a default shape, use the GXSetDefaultShape function, described 

on page 2-53.

For information on resetting typographic shapes, see the typographic shapes chapter of 

Inside Macintosh: QuickDraw GX Typography. 

GXGetShapeOwners

You can use the GXGetShapeOwners function to determine the number of references to 

a particular shape object.

long GXGetShapeOwners(gxShape source);

source A reference to the shape to find the owner count of.

function result The owner count of the source shape.

DESCRIPTION

The GXGetShapeOwners function returns as its function result the current number of 

references to the shape object.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Owner counts for shape objects are discussed in the section “Copying, Comparing, and 

Cloning Shape Objects” beginning on page 2-25, and in the section “Manipulating a 

Shape Object’s Owner Count” beginning on page 2-31.

Errors
out_of_memory
shape_is_nil
shape_access_not_allowed (debugging version)

Errors
shape_is_nil



C H A P T E R  2

Shape Objects

Shape Objects Reference 2-77

To increment the owner count of a shape, use the GXCloneShape function, described on 

page 2-61. To decrement the owner count of a shape, use the GXDisposeShape 

function, described on page 2-55. 

GXGetShapeTags

You can use the GXGetShapeTags function to examine one or more of the tag objects 

associated with a shape object. 

long GXGetShapeTags(gxShape source, long tagType, long index, 

long count, gxTag items[]);

source A reference to the shape object to examine the tag list of.

tagType The type of tag object to search for. A value of 0 indicates that you want to 
look for all tag types.

index The (1-based) index of the first such tag reference to return.

count The number of tag references to return.

items An array to hold the returned tag references.

function result The number of tag references found that fit the criteria. 

DESCRIPTION

The GXGetShapeTags function searches the tag list of the source shape object for 

references to tag objects with the tag type specified by the tagType parameter. If you 

specify 0 for the tagType parameter, the GXGetShapeTags function searches all tag 

types. 

You can use the index and count parameters to specify which tag references of the 

appropriate type the GXGetShapeTags function should return. The index parameter 

indicates the first tag reference to return and the count parameter indicates how many 

tag references to return. The index parameter must be greater than 0. The count 

parameter must be greater than 0 or equal to the gxSelectToEnd constant (–1), which 

indicates that all tag references (starting with the tag reference indicated by the index 

parameter) should be returned.

If you pass a value other than nil for the items parameter, the GXGetShapeTags 

function returns in it the tag references that were found.



C H A P T E R  2

Shape Objects

2-78 Shape Objects Reference

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Tag objects are introduced in the chapter “Introduction to Objects” in this book. 

Functions to create and manipulate tags objects, and a list of reserved tag types, are 

described in the chapter “Tag Objects” in this book.

To change the set of tag references associated with a shape, use the GXSetShapeTags 

function, described next.

GXSetShapeTags

You can use the GXSetShapeTags function to add, remove, or replace tag objects 

associated with a shape object. 

void GXSetShapeTags(gxShape target, long tagType, long index, 

long oldCount, long newCount, 

const gxTag items[]);

target A reference to the shape object to alter the tag list of.

tagType The type of tag objects to replace. A value of 0 indicates that you want to 
replace tags of all types.

index The (1-based) index of the first tag reference (to a tag object of the 
appropriate type) to replace.

oldCount The number of tag references to replace. A value of 0 specifies that you 
want to insert tag references before the tag reference indicated by the 
index parameter, rather than replace tag references. A value of –1 (the 
gxSelectToEnd constant) specifies that all tag references of the 
requested type, starting with the tag reference indicated by the index 
parameter, should be replaced.

newCount The number of tag references to insert. A value of 0 specifies that there are 
no tag references to insert; the existing tag references that match the 
criteria you specify are removed from the source shape’s tag list and 
disposed of.

items An array of tag references to insert in the tag list.

Errors
out_of_memory
shape_is_nil
index_is_less_than_one (debugging version)
count_is_less_than_one (debugging version)

Warnings
index_out_of_range
count_out_of_range



C H A P T E R  2

Shape Objects

Shape Objects Reference 2-79

DESCRIPTION

The GXSetShapeTags function allows you to add tag references to a shape object’s tag 

list, to remove tag references from the list, or to replace tag references in the list with new 

tag references. In any of these three cases, the target parameter specifies the shape 

object to be modified, the newCount parameter specifies the number of tag references to 

add, and the items parameter provides the new tag references.

■ To add tag references, set the oldCount parameter to 0. Use the tagType and the 
index parameters to specify where to add the new tag references. (For example, if 
you specify nil for the tagType parameter and 1 for the index parameter, this 
function inserts the new tag references before the current tag references. If you specify 
a value other than nil for the tagType parameter and a value of 2 for the index 
parameter, the function inserts the new tag references before the second tag reference 
with a tag type matching the tagType parameter.)

■ To remove tag references, set the newCount parameter to 0 and the items parameter 
to nil. You can use the index and the oldCount parameters to specify which tag 
references (of the specified type) should be removed. The index parameter indicates 
the first tag reference (of the specified type) to remove and the oldCount parameter 
indicates how many tag references (of the specified type) to remove. 

■ To replace tag references, use the tagType, index, and oldCount parameters to 
indicate which tag references to replace, and use the newCount and items 
parameters to specify the new tag references to add. If newCount is greater than 
oldCount, the extra tag references are placed immediately adjacent to the last tag 
reference replaced.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Tag objects are introduced in the chapter “Introduction to Objects” in this book. 

Functions to create and manipulate tags objects, and a list of reserved tag types, are 

described in the chapter “Tag Objects” in this book.

To examine the set of tag references associated with a shape, use the GXGetShapeTags 

function, described in the previous section.   

Errors
out_of_memory
shape_is_nil
tag_is_nil
parameter_is_nil (debugging version)
inconsistent_parameters (debugging version)
parameter_out_of_range (debugging version)
index_is_less_than_zero (debugging version)
cannot_dispose_locked_tag (debugging version)

Warnings
index_out_of_range
count_out_of_range

Notices (debugging version)
tag_already_set



C H A P T E R  2

Shape Objects

2-80 Shape Objects Reference

Directly Manipulating a Shape’s Geometry 

This section describes the functions you use to directly manipulate the geometry of a 

shape object. Unlike most calls to QuickDraw GX objects, these functions give you direct 

access to the data of a geometry—in QuickDraw GX memory—without regard to the 

shape object it is part of. You typically call the functions in this order:

■ GXLockShape

■ GXGetShapeStructure

■ GXUnlockShape

■ GXChangedShape

GXLockShape

You can use the GXLockShape function to load a shape into memory and lock its 

geometry into a fixed memory location.

void GXLockShape(gxShape target);

target A reference to the shape to be loaded and locked.

DESCRIPTION

The GXLockShape function prevents a shape from being relocated. You must set the 

gxDirectShape attribute of the target shape before calling this function. 

To avoid fragmenting the QuickDraw GX heap, call the GXUnlockShape function as 

soon as possible after calling GXLockShape.

To directly edit a shape’s geometry, call GXLockShape followed by 

GXGetShapeStructure. After editing, call GXUnlockShape followed by 

GXChangedShape.

SPECIAL CONSIDERATIONS

The GXLockShape function is not related to the gxLockedShape shape attribute. If you 

set the gxLockedShape attribute, you cannot alter the shape’s geometry with functions 

such as GXSetPoint and GXSetRectangle, described in the geometric shapes chapter 

of Inside Macintosh: QuickDraw GX Graphics. Setting gxLockedShape has no effect on 

the direct manipulation of geometry using the calls described here.

In low memory conditions with fragmented memory, QuickDraw GX can unlock locked 

objects and relocate them. Be careful about making memory-intensive calls after locking 

an object.



C H A P T E R  2

Shape Objects

Shape Objects Reference 2-81

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The GXUnlockShape, GXGetShapeStructure, and GXChangedShape functions are 

described in the following three sections.

Shape attributes are described in the section “Shape Attributes” beginning on page 2-16. 

To set shape attributes, use the GXSetShapeAttributes function, described on 

page 2-74. 

GXUnlockShape

You can use the GXUnlockShape function to allow QuickDraw GX to relocate, 

compress, or unload a shape that has been locked.

void GXUnlockShape(gxShape target);

target A reference to the shape to unlock.

DESCRIPTION

The GXUnlockShape function releases a previously locked shape for relocation or 

other movement.

To directly edit a shape’s geometry, call GXLockShape followed by 

GXGetShapeStructure. After editing, call GXUnlockShape followed 

by GXChangedShape. Once you call GXUnlockShape, the shape’s geometry 

may be relocated and a pointer returned by GXGetShapeStructure may no 

longer be valid.

SPECIAL CONSIDERATIONS

To avoid fragmenting the QuickDraw GX heap, call the GXUnlockShape function as 

soon as possible after calling GXLockShape.

Errors
out_of_memory
shape_is_nil
graphic_type_does_not_have_a_structure (debugging version)

Notices (debugging version)
directShape_attribute_set_as_side_effect



C H A P T E R  2

Shape Objects

2-82 Shape Objects Reference

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The GXLockShape function is described in the previous section. The 

GXGetShapeStructure and GXChangedShape functions are described in the 

following two sections.

The GXDisposeShape function is described on page 2-55. 

GXGetShapeStructure

You can use the GXGetShapeStructure function to get a pointer to the geometry of a 

shape object.

void *GXGetShapeStructure(gxShape source, long *length);

source A reference to the shape object whose geometry you need access to.

length A pointer to a long value. On return, the value specifies the size in bytes 
of the shape’s geometry.

function result A pointer to the geometry of the source shape object.

DESCRIPTION

The GXGetShapeStructure function determines the size of a shape’s geometry and 

returns a pointer to the geometry in the QuickDraw GX heap. You can use the pointer to 

examine or change the geometry without copying the geometry into your application’s 

heap and back again. 

Before calling GXGetShapeStructure, you should first call GXLockShape to prevent 

the geometry from being relocated and you should set the gxDirectShape attribute to 

make the shape accessible in the QuickDraw GX heap. After you are finished examining 

or changing the geometry, call GXUnlockShape. If you change the shape’s geometry, 

you must call the GXChangedShape function to notify QuickDraw GX that the shape’s 

cache is no longer valid.

To edit a geometry, you need to know its structure. GXGetShapeStructure returns a 

pointer and a size only; it does not provide you with any information about the internal 

structure of the geometry. For example, if the source shape is a path, you must cast the 

function result to a gxPaths pointer. Such information is not described in this book.

Errors
shape_is_nil

Notices (debugging version)
shape_not_locked



C H A P T E R  2

Shape Objects

Shape Objects Reference 2-83

If you call this function for a shape that has no geometry (shape types gxEmptyType 

and gxFullType), the function posts a graphic_type_has_no_structure warning.

SPECIAL CONSIDERATIONS

If you do not set the gxDirectShape attribute or do not lock the shape, QuickDraw GX 

does them for you as a side effect of the GXGetShapeStructure function call. You 

must still call GXUnlockShape to unlock the shape and, if you wish, reset the attribute.

This function is rarely needed. In most instances, you can manipulate a shape’s 

geometry with calls to geometry-specific functions such as GXGetRectangle or 

GXGetGlyphTangents. This function is provided as a fast alternative to those 

functions, but be aware that it may fail in low-memory conditions; see “Special 

Considerations” under the description of the GXLockShape function, on page 2-80. 

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The GXLockShape and GXUnlockShape functions are described in the previous 

sections. The GXChangedShape function is described in the following section.

Shape types are described in the section “Shape Type” beginning on page 2-9. 

Shape geometry structures, and the functions for manipulating them, are described in 

the shape-specific chapters of Inside Macintosh: QuickDraw GX Graphics and Inside 
Macintosh: QuickDraw GX Typography.

GXChangedShape

You can use the GXChangedShape function to notify QuickDraw GX that you have 

directly edited the geometry of a shape.

void GXChangedShape(gxShape target);

target A reference to the shape object whose geometry you have directly edited.

Errors
out_of_memory
shape_is_nil
graphic_type_does_not_have_a_structure (debugging version)

Notices (debugging version)
lockShape_called_as_side_effect



C H A P T E R  2

Shape Objects

2-84 Shape Objects Reference

DESCRIPTION

The GXChangedShape function notifies QuickDraw GX that the geometry of the shape 

referenced by the target parameter has been modified. QuickDraw GX can then use 

that information to invalidate existing shape caches, if necessary.

You need to call this function only if you have directly edited a shape’s geometry by 

using the pointer returned by the GXGetShapeStructure function. If you edit a shape 

geometry using any other shape-editing function, you do not need to call 

GXChangedShape.

To directly edit a shape’s geometry, call GXLockShape followed by GXGetShapeStructure. 

After editing, call GXUnlockShape followed by GXChangedShape. 

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The GXLockShape, GXUnlockShape, and GXGetShapeStructure functions are 

described in the previous sections.

Shape caches are discussed in the section “Caching Shape Objects” beginning on 

page 2-27. 

Other functions for editing shape geometries are described in the shape-specific chapters 

of Inside Macintosh: QuickDraw GX Graphics and Inside Macintosh: QuickDraw GX 
Typography. 

Drawing and Hit-Testing Shapes

This section describes the basic QuickDraw GX functions for drawing and hit-testing 

shapes: GXDrawShape and GXHitTestShape.

GXDrawShape

You can use the GXDrawShape function to draw any shape. 

void GXDrawShape(gxShape source);

source A reference to the shape object of the shape to draw.

Errors
shape_is_nil



C H A P T E R  2

Shape Objects

Shape Objects Reference 2-85

DESCRIPTION

The GXDrawShape function draws the shape referenced by the source parameter, 

taking into account the properties specified in the shape’s style, ink, and transform 

objects. It draws the shape to the display device or devices specified indirectly in the 

shape’s transform object. 

As part of preparation for drawing, QuickDraw GX makes preliminary calculations and 

stores the results in caches. You can in some cases speed drawing by having the 

calculations and cache storage occur ahead of time; you can do that by setting the source 

shape’s gxCachedShape attribute or by calling the GXCacheShape function.

ERRORS, WARNINGS, AND NOTICES

In addition to the errors listed below, the GXDrawShape function can post font-related 

errors if it is drawing text. 

SEE ALSO

The GXDrawShape function as applied to geometric shapes, and other functions for 

drawing geometric shapes, are described in the geometric shapes chapter of Inside 
Macintosh: QuickDraw GX Graphics. The function as applied to typographic shapes, and 

other functions for drawing typographic shapes, are described in the text shapes, glyph 

shapes, and layout shapes chapters of Inside Macintosh: QuickDraw GX Typography.

Transform objects and their relation to display devices are described in the chapter 

“Transform Objects” in this book.

The gxCachedShape attribute is described in Table 2-4 on page 2-16. The 

GXCacheShape function is described on page 2-62. The differences between the two 

caching methods are described in the section “Caching Shape Objects” beginning on 

page 2-27. 

Errors
out_of_memory
shape_is_nil
number_of_contours_exceeds_implementation_limit
number_of_points_exceeds_implementation_limit
size_of_polygon_exceeds_implementation_limit
size_of_path_exceeds_implementation_limit
size_of_bitmap_exceeds_implementation_limit
pattern_lattice_out_of_range (debugging version)

Warnings
character_substitution_took_place
graphic_type_cannot_be_dashed (debugging version)
unable_to_traverse_open_contour_that_starts_or_ends_off_the_curve

(debugging version)
unable_to_draw_open_contour_that_starts_or_ends_off_the_curve

(debugging version)
face_override_style_font_must_match_style (debugging version)



C H A P T E R  2

Shape Objects

2-86 Shape Objects Reference

GXHitTestShape

You can use the GXHitTestShape function to convert a point in space (which may 

represent, for example, the location of a mousedown event) into a distance from a 

particular part of the geometry of a shape. 

gxShapePart GXHitTestShape(gxShape target, const gxPoint *test,

  gxHitTestInfo *result);

target A reference to the shape to hit-test.

test A pointer to a point structure specifying the location to hit-test the shape 
against. The location must be specified in the local coordinates of the 
shape. 

result A pointer to a gxHitTestInfo structure. On return, the structure 
contains detailed information about the hit-test.

function result The parts of the shape corresponding to the location specified in the test 
parameter (within the tolerance limits for the hit-test). 

DESCRIPTION

The GXHitTestShape function takes a shape reference and a point in geometry or local 

space and returns whether or not the point was within a certain distance (tolerance) of 

one of a set of specified parts of the shape. With this function you can, for example, 

respond to user actions such as mouse clicks or movements by highlighting or selecting 

parts of shapes. The tolerance and the shape parts are defined in the hit-test parameters 

of the shape’s transform object. The function returns the shape parts that were hit, or else 

the value gxNoPart if no tested part of the shape was hit. 

On return, the result parameter contains a filled-out gxHitTestInfo structure. Only 

the first three fields are filled out by GXHitTestShape: 

■ The what field describes the shape parts that were hit, if any. It is identical to the 
function result from this function.

■ The index field identifies, by (1-based) index, the nearest point in the geometry to the 
hit point.

■ The distance field describes the distance from the hit point to the closest point on 
the shape part that was hit. (If no part was hit, this value is undefined.) If more than 
one shape part was hit, this is the distance to the first shape part encountered that was 
within the tolerance of the hit point. The order in which shape parts are examined 
during hit-testing is defined by the gxShapeParts enumeration.



C H A P T E R  2

Shape Objects

Shape Objects Reference 2-87

ERRORS, WARNINGS, AND NOTICES

Because it performs many of the calculations involved in drawing, the 
GXHitTestShape function can post, in addition to the errors listed below, any 

errors and warnings associated with the GXDrawShape function. Therefore 

GXHitTestShape can post font-related errors if it is caching text. 

SEE ALSO

Hit-testing is discussed in the section “Drawing and Hit-Testing Shapes” beginning on 

page 2-35.

The gxHitTestInfo structure is described on page 2-50. 

The gxShapeParts enumeration and the gxShapePart mask are also described in the 

hit-test parameters section of the chapter “Transform Objects” in this book. 

Flattening and Unflattening Shape Objects

The two functions described in this section allow you to convert shapes into a 

compressed, stream-based format for storage or transmission, and to reconstruct shapes 

from their compressed form.

Errors
out_of_memory
shape_is_nil
parameter_is_nil (debugging version)
number_of_contours_exceeds_implementation_limit
number_of_points_exceeds_implementation_limit
size_of_polygon_exceeds_implementation_limit
size_of_path_exceeds_implementation_limit
size_of_bitmap_exceeds_implementation_limit
pattern_lattice_out_of_range (debugging version)

Warnings
character_substitution_took_place
graphic_type_cannot_be_dashed (debugging version)
unable_to_traverse_open_contour_that_starts_or_ends_off_the_curve

(debugging version)
unable_to_draw_open_contour_that_starts_or_ends_off_the_curve

(debugging version)
face_override_style_font_must_match_style (debugging version)



C H A P T E R  2

Shape Objects

2-88 Shape Objects Reference

GXFlattenShape

You can use the GXFlattenShape function to convert the object form of a shape—

including all the objects that it references—into a stream format that is public and 

suitable for storage and parsing.

void GXFlattenShape(gxShape source, gxFlattenFlag flags, 

struct gxSpoolBlock *block);

source A reference to the shape you wish to flatten.

flags A set of flags that specify whether or not to save additional information 
with the flattened file.

block A pointer to a spool block structure. QuickDraw GX uses information in 
the spool block to create and store the flattened data.

DESCRIPTION

The GXFlattenShape function creates a flattened version of the shape referenced by 

the source parameter and places it into a buffer pointed to by the spool block specified 

in the block parameter.

Before calling GXFlattenShape, you need to allocate a spool block structure and a 

buffer to hold the flattened data, and place a pointer to the buffer and a specification of 

its size into the spool block. You also place into the spool block a pointer to an 

application-defined spool function that writes the flattened data from the buffer to a file. 

The spool function responds to commands from QuickDraw GX to open, write, and 

close the file used to hold the flattened data.

If your spool block structure specifies nil for the buffer pointer and 0 for its size, 

QuickDraw GX allocates a default buffer (512 KB in version 1.0 of QuickDraw GX) for 

you. 

Upon completion of the function, QuickDraw GX writes into the spool block the number 

of bytes of flattened data it has placed into the buffer. It also writes other information 

into the spool block; your spool function can use that information if you want it to parse 

the flattened file as flattening occurs. Normally, however, for simple flattening of shapes, 

your application need not read any of the information returned in the spool block, and 

your spool function needs to read only the size of the flattened data in the buffer.

Note that flattening a shape causes flattened versions of all its referenced objects, such as 

its style, ink, and transform—and all of their referenced objects in turn—to be stored as 

well. To flatten a group of shapes, place them in a picture and flatten the picture.

If you set the gxFontListFlatten, gxFontGlyphsFlatten, or 

gxFontVariationsFlatten flag in the flags parameter when calling this function, 

GXFlattenShape creates a tag object and attaches it to the source shape. The tag object 

is of type 'flst' and lists the names of the fonts referenced in the shape, the individual 

glyphs used in the shape, or the descriptions of any font variations used in the shape, 

respectively.



C H A P T E R  2

Shape Objects

Shape Objects Reference 2-89

If you set the gxBitmapAliasFlatten flag in the flags parameter when calling this 

function, GXFlattenShape includes with the flattened shape all image data from any 

bitmap shapes that are referenced by the shape. If this flag is not set, image data from 

bitmap shapes whose image data is disk-based is not included in the flattened shape. 

That image data is not lost, however, because a tag object specifying the file holding the 

image data is flattened along with the shape.

The flattened stream created by GXFlattenShape consists of a series of opcodes and 

associated data, following the QuickDraw GX stream format.

SPECIAL CONSIDERATIONS

If the source shape already has a tag object of type 'flst' attached to it, 

GXFlattenShape replaces that tag with a new tag of type 'flst'; it also posts a 

tags_of_type_flst_removed warning.

If the block parameter is nil, this function returns a parameter_is_nil error. If 

the spool-function pointer in the spool block passed in the block parameter is 

nil, this function returns a spoolProcedure_is_nil error. If the spool function 

signals an error during either flattening or unflattening, QuickDraw GX posts an 

unflattening_interrupted_by_client error. If the spool function attempts to 

call GXFlattenShape, QuickDraw GX posts a procedure_not_reentrant error.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The spool block structure is described on page 2-49. The format for the 

application-defined spool function is described on page 2-91. 

The format for the flattened data, including all opcodes, is described in the stream 

format chapter of Inside Macintosh: QuickDraw GX Environment and Utilities.

To convert a flattened shape back to its object-based format, use the 

GXUnflattenShape function, described in the next section.

Errors
out_of_memory
shape_is_nil
procedure_not_reentrant
parameter_is_nil (debugging version)
spoolProcedure_is_nil
unflattening_interrupted_by_client
parameter_out_of_range (debugging version)
inconsistent_parameters (debugging version)

Warnings
tags_of_type_flst_removed (debugging version)



C H A P T E R  2

Shape Objects

2-90 Shape Objects Reference

GXUnflattenShape

You can use the GXUnflattenShape function to restore the object form of a shape—

including all the objects that it references—from a stream-based description created by 

the GXFlattenShape function.

gxShape GXUnflattenShape(struct gxSpoolBlock *block, long count, 

const gxViewPort portList[])

block A pointer to a spool block structure. QuickDraw GX uses information in 
the spool block to unflatten the data. 

count The number of view ports in the view port list (the number of elements in 
the portList array).

portList An array of references to view port objects. It is the list of view ports to 
assign to the transform object for the unflattened shape.

function result A reference to the newly created (unflattened) shape.

DESCRIPTION

The GXUnflattenShape function reconstructs a shape object and all its associated 

objects from stream data in a buffer pointed to by the spool block specified in the block 

parameter.

Before calling GXUnflattenShape, you need to allocate a spool block structure and 

buffer to hold the flattened data, and place a pointer to the buffer and a specification 

of its size into the spool block. You also place into the spool block a pointer to an 

application-defined spool function that reads the flattened data into the buffer. The spool 

function responds to commands from QuickDraw GX to open, read, and close the file 

containing the flattened data.

Note that unflattening a shape also causes creation of all its referenced objects, such as its 

style, ink, and transform, and all of their referenced objects. Unflattening a picture can 

cause the creation of many shape objects.

The flattened stream as read by GXUnflattenShape consists of a series of opcodes and 

associated data, following the QuickDraw GX stream format.

SPECIAL CONSIDERATIONS

If no error occurs, the GXUnflattenShape function creates one or more QuickDraw GX 

objects. You are responsible for disposing of those objects when you no longer need them.

If the spool function signals an error during either flattening or unflattening, 

QuickDraw GX posts an unflattening_interrupted_by_client error. If the 

spool function attempts to call GXUnflattenShape, QuickDraw GX posts a 

procedure_not_reentrant error.



C H A P T E R  2

Shape Objects

Shape Objects Reference 2-91

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The spool block structure is described on page 2-49. The format for the 

application-defined spool function is described on page 2-91. 

The format for the flattened data, including all opcodes, is described in the stream 

format chapter of Inside Macintosh: QuickDraw GX Environment and Utilities.

To convert a QuickDraw GX shape to its flattened form, use the GXFlattenShape 

function, described in the previous section. 

Application-Defined Spool Function

This section describes the interface to an application-defined function that can be used 

for saving and restoring shape objects.

MySpoolProc

The QuickDraw GX functions GXFlattenShape and GXUnflattenShape require the 

calling application to supply a pointer to a function that, respectively, saves flattened 

data or supplies data to be flattened. The flattening/unflattening spool function has the 

following interface:

long MySpoolProc(gxSpoolCommand command, 
struct gxSpoolBlock *block);

command A selector with which QuickDraw GX specifies the operation the spool 
function is to perform.

block A pointer to the spool block used for the current flattening or unflattening 
operation.

function result Zero if the unflattening or flattening operation can continue; nonzero if 
QuickDraw GX must abort the operation. 

Errors
out_of_memory
procedure_not_reentrant
parameter_is_nil (debugging version)
spoolProcedure_is_nil
unflattening_interrupted_by_client
font_not_found
parameter_out_of_range (debugging version)
inconsistent_parameters (debugging version)

Warnings
unrecognized_stream_version
bad_data_in_stream



C H A P T E R  2

Shape Objects

2-92 Shape Objects Reference

DESCRIPTION

The purpose of the flattening/unflattening spool function is to move flattened data into 

or out of memory as instructed by QuickDraw GX. You place a pointer to the spool 

function in the appropriate field of the spool block structure that you allocate before 

calling GXFlattenShape or GXUnflattenShape. 

Your spool function should respond to the command parameter and perform the 

appropriate operation. Constants for the recognized spool commands are defined in the 

gxSpoolCommands enumeration:

Your spool function’s function result is a status indicator to QuickDraw GX. If the 

operation must be aborted (for example, if a file error occurs), return a nonzero value as 

the function result. Otherwise, return 0 and the flattening or unflattening operation can 

continue.

For simple flattening and unflattening, your spool function need only read and write the 

amounts of data specified by QuickDraw GX. However, you can also write a spool 

function that actually parses the data stream during flattening and unflattening; see 

Listing 2-5 on page 2-41 for an example.

SPECIAL CONSIDERATIONS

During a flattening or unflattening procedure, a memory error can cause a restart of the 

function, which might not necessarily reset the stream back to its original position. 

Therefore, your open, read, and write routines must always be sure to set the stream to 

the correct position in the buffer each time. 

SEE ALSO

The spool block structure is described on page 2-49.

The GXFlattenShape function is described on page 2-88. The GXUnflattenShape 

function is described on page 2-90.   

Constant Value Explanation

gxOpenReadSpool 1 The spool function is to open the flattened file 
for reading into the buffer used by 
GXUnflattenShape.

gxOpenWriteSpool 2 The spool function is to open a file for receiving 
data from the buffer used by GXFlattenShape.

gxReadSpool 3 The spool function is to read the data into the 
buffer for use by GXUnflattenShape.

gxWriteSpool 4 The spool function is to write the data placed into 
the buffer by GXFlattenShape to the file.

gxCloseSpool 6 The spool function is to close the file.



C H A P T E R  2

Shape Objects

Summary of Shape Objects 2-93

Summary of Shape Objects

Constants and Data Types

The Shape Object

typedef struct gxPrivateShapeRecord *gxShape;

Shape Type

enum gxShapeTypes {

gxEmptyType = 1, /* empty shape; contained by all geometries */

gxPointType, /* point shape */

gxLineType, /* line shape */ 

gxCurveType, /* curve shape */

gxRectangleType, /* rectangle shape */

gxPolygonType, /* polygon shape; can represent multiple polygons */

gxPathType, /* path shape; can include lines and curves */

gxBitmapType, /* bitmap shape */

gxTextType, /* text shape; single size, encoding, and style */

gxGlyphType, /* glyph shape; can use multiple text styles */

gxLayoutType, /* layout shape; can include linguistic info */

gxFullType, /* full shape; includes all geometries */

gxPictureType /* picture shape; can contain other shapes */

};

typedef long gxShapeType;

Shape Fill

enum gxShapeFills {

gxNoFill,

gxOpenFrameFill,

gxFrameFill = gxOpenFrameFill,

gxClosedFrameFill,

gxHollowFill = gxClosedFrameFill,

gxEvenOddFill,

gxSolidFill = gxEvenOddFill,

gxWindingFill,

gxInverseEvenOddFill,



C H A P T E R  2

Shape Objects

2-94 Summary of Shape Objects

gxInverseSolidFill = gxInverseEvenOddFill,

gxInverseFill = gxInverseEvenOddFill,

gxInverseWindingFill

};

typedef long gxShapeFill;

Shape Attributes

enum gxShapeAttributes {

gxNoAttributes,

gxDirectShape = 0x0001, /* prefer shape data to be in GX heap */

gxRemoteShape = 0x0002, /* prefer shape data on accelerator */

gxCachedShape = 0x0004, /* pre-calculate to optimize drawing */

gxLockedShape = 0x0008, /* prevent changes to shape’s geometry */

gxGroupShape = 0x0010, /* treat as one shape for hit-testing */

gxMapTransformShape = 0x0020, /* alter transform, not shape geometry */ 

gxUniqueItemsShape = 0x0040, /* copy items added to picture shapes */

gxIgnorePlatformShape = 0x0080, /* assume glyph, not character, codes */

gxNoMetricsGridShape  = 0x0100, /* draw without font scaler’s hinting */

gxDiskShape = 0x0200, /* unload this shape first */

gxMemoryShape = 0x0400 /* unload this shape last */

};

typedef long gxShapeAttribute;

Flatten Flags

enum gxFlattenFlags{

gxFontListFlatten = 0x01, /* add a tag listing fonts used */

gxFontGlyphsFlatten = 0x02 /* add a tag listing glyphs used */

gxFontVariationsFlatten = 0x04, /* add a tag for font variations */

gxBitmapAliasFlatten = 0x08 /* flatten all bitmap image data */

};

typedef long gxFlattenFlag;

The Spool Block Structure

struct gxSpoolBlock {

/* these fields are read from (but not written to) by QuickDraw GX */

gxSpoolProcPtr spoolProcedure; /* pointer to spool function */

void *buffer; /* pointer to application buffer */

long bufferSize; /* bytes for QuickDraw GX to use */



C H A P T E R  2

Shape Objects

Summary of Shape Objects 2-95

/* these fields are written to (but not read from) by QuickDraw GX */

long count; /* bytes for app to read/write */

long operationSize; /* size including operand byte */

long operationOffset; /* offset within current operation */

gxGraphicsOpcode lastTypeOpcode; /* type of last created object */

gxGraphicsOpcode currentOperation; /* last op. emitted or interpreted */

gxGraphicsOpcode currentOperand; /* such as gxTransformTypeOpcode */

unsigned char compressed; /* a gxTwoBitCompressionValues */

};

The Hit-Test Info Structure

struct gxHitTestInfo {

gxShapePart what;

long index;

Fixed distance;

gxShape which;

gxShape containerPicture;

long containerIndex;

long totalIndex;

};

Spool Commands

enum gxSpoolCommands {

gxOpenReadSpool= 1,

gxOpenWriteSpool,

gxReadSpool,

gxWriteSpool,

gxCloseSpool,

};

typedef long gxSpoolCommand;

Functions

Creating and Manipulating Shape Objects

gxShape GXGetDefaultShape (gxShapeType aType);

void GXSetDefaultShape (gxShape target);

gxShape GXNewShape (gxShapeType aType);

void GXDisposeShape (gxShape target);

long GXGetShapeSize (gxShape source);



C H A P T E R  2

Shape Objects

2-96 Summary of Shape Objects

gxShape GXCopyToShape (gxShape target, gxShape source);

gxShape GXCopyDeepToShape (gxShape target, gxShape source);

boolean GXEqualShape (gxShape one, gxShape two);

gxShape GXCloneShape (gxShape source);

void GXCacheShape (gxShape source);

void GXDisposeShapeCache (gxShape target);

long GXGetShapeCacheSize (gxShape source);

Manipulating Shape Object Properties

gxShapeType GXGetShapeType (gxShape source);

void GXSetShapeType (gxShape target, gxShapeType newType);

void GXSetShapeGeometry (gxShape target, gxShape geometry);

gxShapeFill GXGetShapeFill (gxShape source);

void GXSetShapeFill (gxShape target, gxShapeFill newFill);

gxStyle GXGetShapeStyle (gxShape source);

void GXSetShapeStyle (gxShape target, gxStyle newStyle);

gxInk GXGetShapeInk (gxShape source);

void GXSetShapeInk (gxShape target, gxInk newInk);

gxTransform GXGetShapeTransform
(gxShape source);

void GXSetShapeTransform (gxShape target, gxTransform newTransform);

gxShapeAttribute GXGetShapeAttributes
(gxShape source);

void GXSetShapeAttributes (gxShape target, gxShapeAttribute attributes);

void GXResetShape (gxShape target);

long GXGetShapeOwners (gxShape source);

long GXGetShapeTags (gxShape source, long tagType, long index,
long count, gxTag items[]);

void GXSetShapeTags (gxShape target, long tagType, long index,
long oldCount, long newCount,
const gxTag items[]);



C H A P T E R  2

Shape Objects

Summary of Shape Objects 2-97

Directly Manipulating Shape Geometry

void GXLockShape (gxShape target);

void GXUnlockShape (gxShape target);

void *GXGetShapeStructure (gxShape source, long *length);

void GXChangedShape (gxShape target);

Drawing and Hit-Testing Shapes

void GXDrawShape (gxShape source);

gxShapePart GXHitTestShape (gxShape target, const gxPoint *test, 
gxHitTestInfo *result);

Flattening and Unflattening Shapes

void GXFlattenShape (gxShape source, gxFlattenFlag flags,
gxSpoolBlock *block);

gxShape GXUnflattenShape (struct gxSpoolBlock *block, long count, 
const gxViewPort portList[]);

Application-Defined Spool Function

long MySpoolProc (gxSpoolCommand command, 
struct gxSpoolBlock *block);





Contents 3-1

C H A P T E R  3

Contents

Style Objects

About Style Objects 3-3

Style Object Properties 3-4

The Default Style Object 3-6

Using Style Objects 3-7

Creating and Manipulating Style Objects 3-7

Creating and Deleting a Style Object 3-7

Copying, Comparing, and Cloning Style Objects 3-8

Loading and Unloading Style Objects 3-10

Manipulating Style Object Properties 3-10

Resetting a Style Object’s Default Properties 3-11

Getting and Setting Style Attributes and Text Attributes 3-11

Manipulating a Style Object’s Owner Count 3-11

Getting and Setting a Style Object’s Tag References 3-14

Style-Related Functions Described Elsewhere 3-14

Style Objects Reference 3-15

Constants and Data Types 3-16

The Style Object 3-16

Functions 3-16

Creating and Manipulating Style Objects 3-16

GXNewStyle 3-17

GXDisposeStyle 3-17

GXCopyToStyle 3-18

GXEqualStyle 3-19

GXCloneStyle 3-20

Manipulating Style Object Properties 3-21

GXResetStyle 3-21

GXGetStyleOwners 3-22

GXGetStyleTags 3-22

GXSetStyleTags 3-24



C H A P T E R  3

3-2 Contents

Summary of Style Objects 3-26

Constants and Data Types 3-26

Functions 3-26



C H A P T E R  3

About Style Objects 3-3

Style Objects

This chapter describes style objects and the functions you can use to manipulate them. 

Read this chapter if you create or use any kind of style objects for the QuickDraw GX 

shapes you create.      

Before reading this chapter, you should be familiar with the information in the chapter 

“Introduction to QuickDraw GX” in this book. You should also be familiar with shape 

objects, as discussed in the chapter “Shape Objects” in this book. 

For more information on style objects for graphic shapes, see the geometric styles 

chapter of Inside Macintosh: QuickDraw GX Graphics. For more information on style 

objects for typographic shapes, see the typographic styles chapter of Inside Macintosh: 
QuickDraw GX Typography.

This chapter introduces QuickDraw GX style objects and describes their properties. It 

then shows how to use general QuickDraw GX style-manipulation functions to

■ create and manipulate style objects

■ manipulate style object properties

This chapter also lists and cross-references all style-related QuickDraw GX functions that 

are described elsewhere in this book and in other parts of Inside Macintosh. 

About Style Objects

A style object exists to provide information about a shape. Each QuickDraw GX shape 

consists of a shape object, a style object, an ink object, and a transform object; the style 

object associated with a shape defines much of the shape’s appearance, such as the size 

of the pen with which it is drawn or the size of its text.

QuickDraw GX identifies an individual style object through a style reference. To obtain 

information about a style object, you must send its reference as a parameter to a 

QuickDraw GX function (except that you can determine if two references identify the 

same style object simply by comparing them for equality, and you can examine a 

reference to see if it is nil).

Styles are device independent. Their information is not affected by the properties of the 

display device to which the shapes they modify are drawn.

There are three categories of information that style objects contain: graphic, typographic, 

and common. The graphic information applies to style objects associated with graphic 

shapes, the typographic information applies to style objects associated with typographic 

shapes, and the common information applies to both. Because the information is stored 

separately, the same style object can apply to both kinds of shapes. The QuickDraw GX 

object architecture allows you to perform several operations on a style object without 

regard for what kind it is; those are the operations described in this chapter. Features and 

operations specific to styles for graphic shapes are described in Inside Macintosh: 
QuickDraw GX Graphics; those specific to styles for typographic shapes are described in 

Inside Macintosh: QuickDraw GX Typography.



C H A P T E R  3

Style Objects

3-4 About Style Objects

Style Object Properties
The interface to style objects is entirely procedural. You manipulate the information in a 

style object by modifying its properties using QuickDraw GX functions.

Style objects have 22 accessible properties, as shown in Figure 3-1. The properties are 

grouped into columns that reflect the category of shape that uses them. Note that, 

because a style is an object and not a data structure, the order of the properties as shown 

in Figure 3-1 is completely arbitrary. Properties in italics are references to other objects.

Figure 3-1 The style object and its properties

Seven properties pertain mostly to style objects associated with graphic shapes:

■ Pen width. The width of the pen used to draw the shape.

■ Cap. The shape (such as an arrowhead, or any other geometric shape) to draw at the 
start and end of each contour in the shape.

■ Join. The appearance (such as rounded or sharp, or any other geometric shape) of 
corners where a shape’s lines or contours meet.

■ Dash. The appearance of dashed lines or contours in a shape. The dashing capability 
is very general in QuickDraw GX; you can specify any geometric shape, or even a 
sequence of glyphs, for a dash.

■ Pattern. The pattern (actually, any geometric shape, glyph shape, or bitmap shape) to 
use in filling the geometry of the shape.

■ Curve error. The allowable error for operations such as converting a path shape to a 
polygon shape.



C H A P T E R  3

Style Objects

About Style Objects 3-5

■ Attributes. A set of flags that allow you to specify how QuickDraw GX places the pen 
and whether the shape is constrained to a grid when drawn. (The grid-constraining 
attributes can apply to typographic shapes also.)

Thirteen of the style object’s properties pertain only to styles associated with 

typographic shapes. The portion of a typographic shape to which a style object applies is 

called a style run. The first seven typographic style properties apply, for the most part, to 

all typographic shapes:

■ Font. The reference to the font to use in drawing the text of this style run. (In 
QuickDraw GX, a font is an object.)

■ Text face. The text face—the constructed stylistic variation from plain text—to apply 
when drawing the text of this style run.

■ Text size. The size, in typographic points (72 per inch), to draw the text of this style 
run.

■ Alignment. The alignment value to use when drawing the text of this style run. Text 
may be left-aligned, right-aligned, anywhere between the two alignments (such as 
centered), or fully justified. (This property is not used by layout shapes).

■ Font variations. The list of font variations—stylistic variations built into the font—
specified for drawing the text of this style run.

■ Encoding. The type of character encoding used to represent the text of this style run, 
as well as its script and language. 

■ Text attributes. A set of flags that allow you to specify how QuickDraw GX alters 
glyph outlines or chooses the proper metrics for horizontal or vertical text.

The remaining six of the thirteen typographic style properties apply to layout shapes 

only:

■ Run controls. A set of values and flags that control various aspects of how the text in 
this style run is displayed.

■ Kerning adjustments array. An array specifying changes to the font-specified kerning 
(positional adjustment) for pairs of glyphs in this style run.

■ Glyph substitutions array. An array specifying substitute glyphs for those that would 
normally be displayed in this style run.

■ Run features array. An array specifying the set of font features—typographic 
capabilities as defined by the font—to apply to the text of this style run.

■ Priority justification override. A structure that redefines the justification priorities 
and behaviors for whole classes of glyphs.

■ Glyph justification overrides array. An array that redefines the justification priorities 
and behaviors for individual glyphs.



C H A P T E R  3

Style Objects

3-6 About Style Objects

The two remaining style object properties pertain to all styles, for all shapes:

■ Owner count. The number of existing references to this style object.

■ Tag list. A list of references to custom information about this style object, stored in 
private data structures called tag objects. The chapter “Tag Objects” in this book 
describes tag objects in general and how you can use them to add custom information 
to objects.

QuickDraw GX provides functions to manipulate each of these style object properties. 

Table 3-1 shows where to go for that information, depending on the type of shape object 

that uses the style. 

As Table 3-1 shows, most style-object properties and functions are described elsewhere. 

Only those properties that pertain to all shapes—the owner count and tag list, and the 

functions that manipulate them—are described in this chapter. 

The Default Style Object
When QuickDraw GX first creates a style object, that object has default characteristics 

defined by QuickDraw GX. Every default style object has the following properties:

■ an empty tag list

■ an owner count of 1

All other properties are zero or nil, except that the value of the text size property is 12.0, 

and the scale value within the dash property is 1.0. The font property is nil, which 

means that QuickDraw GX uses the default font in drawing text; however, your 

application can control what font is used for the default. See the font objects chapter in 

Inside Macintosh: QuickDraw GX Typography for more information.

Table 3-1 Where to go for information on style object properties and functions

For style objects used by… Look in…

Graphic shapes Geometric styles chapter of QuickDraw GX Graphics

All typographic shapes Typographic styles chapter of QuickDraw GX Typography 

(For style attributes that can apply to typographic 
shapes, see also the geometric styles chapter of 
QuickDraw GX Graphics)

Layout shapes only Layout styles and layout line control chapters of 
QuickDraw GX Typography

All shapes This chapter



C H A P T E R  3

Style Objects

Using Style Objects 3-7

Unlike shape objects, whose default properties vary with type, there is only one 

single default style object for QuickDraw GX. If the shape objects you create reference 

the default style object, you need to explicitly set all graphic or typographic properties 

for that style after you create the shape. Also unlike shape objects, you cannot change the 

definition of the default style object. However, you can create a style object with specific 

properties, and then change the definition of the default shape object so that newly 

created shapes reference that customized style object. 

Using Style Objects

This section describes the basic style-creation and style-manipulation capabilities that 

QuickDraw GX provides, capabilities that are independent of the specific type of style 

object involved. For detailed information on using styles of specific types, see the 

appropriate chapters of Inside Macintosh: QuickDraw GX Graphics and Inside Macintosh: 
QuickDraw GX Typography. 

This section describes how you can

■ create and manipulate style objects

■ manipulate certain style object properties

Creating and Manipulating Style Objects
This section describes how you can create and interact with style objects as whole 

entities—to create, dispose of, copy, compare, and clone them. Manipulating the 

individual properties of style objects is described under “Manipulating Style Object 

Properties” beginning on page 3-10.

Creating and Deleting a Style Object

QuickDraw GX provides the GXNewStyle function to allow you to create a new style 

object. Before you can create a style object, you need to be in the QuickDraw GX 

environment. However, if you are not already in the QuickDraw GX environment, 

GXNewStyle calls the necessary functions for you. The functions for controlling 

memory use in the QuickDraw GX environment are described in the memory 

management chapter of Inside Macintosh: QuickDraw GX Environment and Utilities. 

Note that you can also create a new style object by copying an existing one: see the 

section “Copying, Comparing, and Cloning Style Objects” beginning on page 3-8.

To delete your application’s reference to a style object, call the GXDisposeStyle 

function. Calling GXDisposeStyle may or may not actually release the memory 

allocated for that style object, depending on the style’s owner count. GXDisposeStyle 

decreases the style object’s owner count by 1; if that brings the owner count to zero, the 

style is completely deleted and its memory released. See “Manipulating a Style Object’s 

Owner Count” beginning on page 3-11. 



C H A P T E R  3

Style Objects

3-8 Using Style Objects

Owner counts and what it means to dispose of an object are described in general in the 

chapter “Introduction to Objects” in this book.

The following code fragment defines and creates the style object myStyle, sets some of 

its properties, and disposes of it:

gxStyle myStyle;

.

.

.

myStyle = GXNewStyle ();

GXSetStylePen(myStyle, ff(2));

GXSetStyleAttributes(myStyle, gxOutsideFrameStyle);

.

.

.

if (myStyle != nil) GXDisposeStyle(myStyle);

The GXNewStyle function is described on page 3-17. The GXDisposeStyle function is 

described on page 3-17. 

Copying, Comparing, and Cloning Style Objects

You can use the GXCopyToStyle function to copy information from one style object to 

another or to create a new copy of a style object.

Listing 3-1 is a code fragment that changes the type of the shape myShape to a glyph 

shape with four distinct style runs, and then fills out the style list, an array of style-object 

references in the geometry of the glyph shape. (Glyph shapes and layout shapes have 

style-object references in their geometries in addition to the style property that every 

shape object has.) The code creates new copies of the style object originally referenced by 

myShape, each time assigning the style reference to a position in the styleSet array 

and then modifying some of the style’s properties. Finally, the code assigns the style list 

to the shape geometry.

The code in Listing 3-1 uses the library functions SetStyleCommonFont and 

SetStyleCommonFace to modify the font and text-face properties of the style objects it 

creates by copying. The text is defined in the string str, and the lengths of the style runs 

are defined in the runs array. (Each style run is defined to be one glyph long in this 

sample.)



C H A P T E R  3

Style Objects

Using Style Objects 3-9

Listing 3-1 Building a style list by copying a style object

GXSetShapeType(myShape, gxGlyphType);

/* use the default shape’s style for first style run */

styleSet[0] = nil;

/* use condensed Helvetica for the second style run */

styleSet[1] = GXCopyToStyle(nil, GXGetShapeStyle(myShape));

SetStyleCommonFont(styleSet[1], helveticaFont);

SetStyleCommonFace(styleSet[1], gxCondense);

/* use extended Times for the third style run */

styleSet[2] = GXCopyToStyle(nil, GXGetShapeStyle(myShape));

SetStyleCommonFont(styleSet[2], timesFont);

SetStyleCommonFace(styleSet[2], gxExtend);

/* use 20-pt. italic Helvetica for the fourth style run */

styleSet[3] = GXCopyToStyle(nil, GXGetShapeStyle(myShape));

SetStyleCommonFont(styleSet[3], helveticaFont);

SetStyleCommonFace(styleSet[3], gxItalic);

GXSetStyleTextSize(styleSet[3], ff(20));

/* set the size (number of glyphs) of each style run */

for (counter = 0; counter < strlen(str); counter++) {

runs[counter] = 1; /* each run is 1 glyph long */

styles[counter] = styleSet[counter & 3];

}

/* assign the styles array to the style list */

GXSetGlyphs(myShape, nil, nil, nil, nil, nil, runs, styles);

You can test if two style-object references refer to the same style object by simply testing 

the references for equality. You can also compare two different style objects for equality 

with the GXEqualStyle function. For two style objects to be equal, their graphic and 

typographic properties must have identical values, although their general object 

properties (owner count and tag list) do not need to be identical. Note that style object 

copies created with the GXCopyToStyle function are always equal to the style from 

which they were copied. 

In certain circumstances, you may want to copy a reference to a style object without 

actually copying the style object. For example, you may want two variables to refer to 

the same style object, so that editing one of them affects both. This is called cloning a 

style, rather than copying a style. You can use the GXCloneStyle function to clone 

a style object.



C H A P T E R  3

Style Objects

3-10 Using Style Objects

Functionally, GXCloneStyle does nothing more than increase the owner count of a 

style object. You can clone a style with a statement such as the following:

aStyleClone = GXCloneStyle(aStyle);

This code has almost the same effect as

aStyleClone = aStyle;

that is, it sets the aStyleClone variable to reference the same style object as the 

aStyle variable. The difference is that GXCloneStyle also increments the style’s 

owner count. 

For more information about cloning objects, see the chapter “Introduction to 

QuickDraw GX” in this book. For information on manipulating style owner counts, 

including examples of cloning styles, see the section “Manipulating a Style Object’s 

Owner Count” beginning on page 3-11 of this chapter.

The GXCopyToStyle function is described on page 3-18. The GXEqualStyle function 

is described on page 3-19. The GXCloneStyle function is described on page 3-20. 

Loading and Unloading Style Objects

Although you rarely need to, you can influence memory-allocation decisions involving 

objects that you have created. If your application needs to have a style object in memory, 

you can force QuickDraw GX to load it into memory. When your application no longer 

needs the style object in a loaded state, you can instruct QuickDraw GX to unload it.

You call the GXLoadStyle function to make sure that a style object is in memory; if 

necessary, QuickDraw GX brings the object into memory from an unloaded state. You 

can call the GXUnloadStyle function to instruct QuickDraw GX that it is free to unload 

the style object at any time. These functions are described in the memory management 

chapter of Inside Macintosh: QuickDraw GX Environment and Utilities. 

Manipulating Style Object Properties
Once you have created a style object, you can customize some of its features using the 

techniques described in this section. However, most of the functions you use to set style 

properties are described in the chapters that discuss style objects in Inside Macintosh: 
QuickDraw GX Graphics and Inside Macintosh: QuickDraw GX Typography.

This section describes how to manipulate those properties of style objects that are 

independent of the type of shape the style is associated with. You can reset a style’s 

properties back to their default values, you can determine the owner count, and you can 

get and set the tag list.

For manipulating style objects as a whole, see “Creating and Manipulating Style 

Objects” beginning on page 3-7. 



C H A P T E R  3

Style Objects

Using Style Objects 3-11

Resetting a Style Object’s Default Properties

When you create a new style object with the GXNewStyle function, QuickDraw GX 

creates a style object with default properties. If you have altered any of the style object’s 

properties using functions described in this chapter or in Inside Macintosh: QuickDraw GX 
Graphics or Inside Macintosh: QuickDraw GX Typography, you can reset the properties back 

to their default values using the GXResetStyle function.

Calling GXResetStyle returns all of the style’s graphic and typographic properties to 

their default values. It does not affect the style’s owner count or tag list.

The GXResetStyle function is described on page 3-21.

Getting and Setting Style Attributes and Text Attributes

A style object has two separate properties, attributes and text attributes, that consist of 

flags that affect style behavior. The attributes property of a style object affects mostly 

graphic shapes. You retrieve and assign attribute values, such as pen width, with the 

GXGetStyleAttributes and GXSetStyleAttributes functions. These functions, 

and the style attributes themselves, are described in the geometric styles chapter of 

Inside Macintosh: QuickDraw GX Graphics.

The text attributes property of a style object affects typographic shapes only. You 

retrieve and assign text attribute values, such as vertical-text selection, with the 

GXGetStyleTextAttributes and GXSetStyleTextAttributes functions, 

respectively. These functions, and the text attributes themselves, are described in the 

typographic styles chapter of Inside Macintosh: QuickDraw GX Typography.

Manipulating a Style Object’s Owner Count

The owner count of an object indicates the number of current references to that object. In 

general, QuickDraw GX manages owner counts for you. For example, when you create a 

new style object, QuickDraw GX sets the owner count of the new style to 1. When you 

assign an existing style object to a shape, QuickDraw GX increments the style’s owner 

count to correspond to the new reference to the style contained in the shape object. 

If you want to manage a style’s owner count directly—for example, if you want to track 

object references that you place in your own data structures, or if you want to know 

whether a style object is shared—you can use the GXGetStyleOwners function to 

determine the owner count of a style, and the GXCloneStyle and GXDisposeStyle 

functions to change the owner count of a style. The GXCloneStyle function increments 

the style’s owner count, and the GXDisposeStyle function decrements the style’s 

owner count, freeing the memory used by the style if the owner count goes to 0.

The GXGetStyleOwners function is described on page 3-22.

The following subsections discuss two common owner-count problems and how to 

avoid them. The problems are discussed in terms of style objects, but they apply equally 

well to other shared objects. 



C H A P T E R  3

Style Objects

3-12 Using Style Objects

Avoiding Excessive Owner Count

The following is one plausible, but incorrect, way to create a style object and assign it to 

(the style reference property of) a shape: 

GXSetShapeStyle(myShape, GXNewStyle());

After the execution of this statement, the owner count of the just-created style object is 2, 
not 1; creating the style object initialized its owner count to 1, and assigning it to the 

shape incremented its owner count to 2. If you were unaware of that, and deleted the 

shape object with the statement

GXDisposeShape(myShape);

the owner count of the style object would be decremented to 1, and the style would be 

left allocated in the heap when it should have been deleted. 

A better way to create and assign a style object is to allocate a variable and use it in the 

assignment:

myStyle = GXNewStyle();

GXSetShapeStyle(myShape, myStyle);

As before, the style object’s owner count is now 2. When you are finished with the 

variable reference to the style object, you can dispose of it:

GXDisposeStyle(myStyle);

That decreases the style’s owner count to 1. When you are finished with the shape object, 

dispose of it as before:

GXDisposeShape(myShape);

That decreases the style’s owner count to 0, and the style object is deleted as intended. 

Avoiding Insufficient Owner Count

The following is one plausible, but incorrect, way to temporarily assign a style object to a 

shape, referenced in this example by the variable myShape. These statements save the 

original style into a variable, create a new style object, and assign the new style to the 

shape: 

gxStyle myOldStyle = GXGetShapeStyle(myShape);

gxStyle myNewStyle = GXNewStyle();

GXSetShapeStyle(myShape, myNewStyle);



C H A P T E R  3

Style Objects

Using Style Objects 3-13

The first statement does not increase the owner count of the style referenced by 

myOldStyle; no new object is created and no additional references to myShape exist 

in any object. The second statement results in an owner count of 1 for the style 

referenced by myNewStyle. The third statement decrements the owner count of the 

style referenced by myOldStyle, and increments the owner count of the style referenced 

by myNewStyle (from 1 to 2).

Now suppose that you manipulate the new style object, draw the shape, and then wish 

to dispose of the new style and reassign the original style object back to the shape. You 

might expect to make two statements like this:

GXDisposeStyle(myNewStyle);

GXSetShapeStyle(myShape, myOldStyle);

As you would expect, disposing of myNewStyle decrements the owner count of the new 

style object from 2 to 1, and calling GXSetShapeStyle further decrements the owner 

count of the new style from 1 to 0, so that QuickDraw GX can delete it. However, the 

original style object, referenced by myOldStyle, may have been deleted by the original 

call to GXSetShapeStyle (because its owner count may have gone to 0 as a result of 

the call). If it has, myOldStyle will be nil and the new call to GXSetShapeStyle will 

fail.

A better way to temporarily save and restore a style object is to clone the original style 

before assigning the new style, as follows:

gxStyle myOldStyle = GXGetShapeStyle(myShape);

gxStyle myNewStyle = GXNewStyle();

GXCloneStyle(myOldStyle);

GXSetShapeStyle(myShape, myNewStyle);

The result of these statements is (assuming no other references to the style objects) an 

owner count of 2 for both the original and new style objects. Then, when the time comes 

to restore the original style object to the shape, you can make these statements:

GXDisposeStyle(myNewStyle);

GXSetShapeStyle(myShape, myOldStyle);

GXDisposeStyle(myOldStyle);

The first statement decrements the owner count of the new style from 2 to 1; the second 

statement decrements it from 1 to 0. The second statement increments the owner count of 

the original style from 1 to 2, so the third statement is added to bring it back down to 1, 

its original value. 



C H A P T E R  3

Style Objects

3-14 Style-Related Functions Described Elsewhere

Getting and Setting a Style Object’s Tag References

You can examine the list of references to tag objects currently associated with a style 

object using the GXGetStyleTags function. Once you create a tag object, you can attach 

it to a style object using the GXSetStyleTags function. You can attach as many tag 

objects as you like to a style object.

Tag objects and the basic functions for manipulating them are described in the chapter 

“Tag Objects” in this book. That chapter also lists the common tag types defined and 

reserved by Apple Computer, Inc.

The GXGetStyleTags function is described on page 3-22. The GXSetStyleTags 

function is described on page 3-24.  

Style-Related Functions Described Elsewhere

Table 3-2 lists functions whose names contain the word Style that are either not 

described in this chapter or are described in more detail elsewhere. For each book and 

chapter, the table lists the style-related functions described in that chapter. 

Table 3-2 Style-related functions described elsewhere 

Book and chapter Functions described

Inside Macintosh: QuickDraw GX Graphics

“Geometric Styles” GXGetStylePen
GXSetStylePen
GXGetStyleCap
GXSetStyleCap
GXGetStyleJoin
GXSetStyleJoin
GXGetStyleDash
GXGetStyleDash
GXGetStylePattern
GXSetStylePattern
GXGetStyleCurveError
GXSetStyleCurveError
GXGetStyleAttributes
GXSetStyleAttributes



C H A P T E R  3

Style Objects

Style Objects Reference 3-15

Style Objects Reference

This section provides reference information about the data structures and functions that 

allow you to create and manipulate style objects and alter their properties. It includes

■ a type definition of the data type that applies to style objects in general

■ descriptions of the QuickDraw GX functions that operate on style objects in general, 
independent of the type of shape involved

Inside Macintosh: QuickDraw GX Typography

“Typographic Styles” GXGetStyleFont
GXSetStyleFont
GXGetStyleFontMetrics
GXGetStyleFace
GXSetStyleFace
GXGetStyleTextSize
GXSetStyleTextSize
GXGetStyleJustification
GXSetStyleJustification
GXGetStyleFontVariations
GXSetStyleFontVariations
GXGetStyleFontVariationSuite
GXGetStyleEncoding
GXSetStyleEncoding
GXGetStyleTextAttributes
GXSetStyleTextAttributes

“Layout Styles” GXGetStyleRunControls
GXSetStyleRunControls
GXGetStyleRunKerningAdjustments
GXSetStyleRunKerningAdjustments
GXGetStyleRunGlyphSubstitutions
GXSetStyleRunGlyphSubstitutions
GXGetStyleRunFeatures
GXSetStyleRunFeatures

“Layout Line Control” GXGetStyleRunPriorityJustOverride
GXSetStyleRunPriorityJustOverride
GXGetStyleRunGlyphJustOverrides
GXSetStyleRunGlyphJustOverrides

Table 3-2 Style-related functions described elsewhere (continued)

Book and chapter Functions described



C H A P T E R  3

Style Objects

3-16 Style Objects Reference

Constants and Data Types

This section describes the data type that you use to gain access to style objects.

Style-related QuickDraw GX constants and data types not described in this section are 

related to geometric and typographic shapes, and are thus described in the geometric 

styles chapter of Inside Macintosh: QuickDraw GX Graphics and the typographic styles, 

layout styles, and layout line control chapters of Inside Macintosh: QuickDraw GX 
Typography.

The Style Object

QuickDraw GX provides you with access to an individual style object through a 

gxStyle reference:

typedef struct gxPrivateStyleRecord *gxStyle;

In this type definition, gxStyle is a type-checked reference, not an actual pointer to any 

defined structure. The contents of the style object are private.   

Functions

This section describes the QuickDraw GX functions you can use to 

■ create and manipulate a style object

■ manipulate the general object properties of a style object

Note

Style-related QuickDraw GX functions not described in this section are 
described in the chapters listed and cross-referenced in Table 3-2 on 
page 3-14. ◆

Creating and Manipulating Style Objects

This section describes the functions that manipulate styles as objects in memory. With 

the functions in this section, you can create, dispose of, copy, compare, and clone style 

objects.

To associate a style object with a QuickDraw GX shape object, use the 

GXGetShapeStyle and GXSetShapeStyle functions, described in the chapter “Shape 

Objects” in this book.



C H A P T E R  3

Style Objects

Style Objects Reference 3-17

GXNewStyle

You can use the GXNewStyle function to create a new style object with default 

properties.

gxStyle GXNewStyle(void);

function result A reference to a newly created copy of the default style object.

DESCRIPTION

The GXNewStyle function creates a style object with an owner count of 1. All other 

properties of the style are set to their default values:

■ An empty tag list.

■ An owner count of 1.

■ A text size of 12.0.

■ A scale value within the dash property of 1.0. 

■ No font specified.

All other properties are zero or nil.

SPECIAL CONSIDERATIONS

If no error occurs, the GXNewStyle function creates a style object; you are responsible 

for disposing of that object when you no longer need it.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

 Default style values are described in the section “The Default Style Object” on page 3-6. 

GXDisposeStyle

You can use the GXDisposeStyle function to release a reference to a style object.

void GXDisposeStyle(gxStyle target);

target A reference to the style object to dispose of.

Errors
out_of_memory



C H A P T E R  3

Style Objects

3-18 Style Objects Reference

DESCRIPTION

The GXDisposeStyle function decrements the owner count of the style specified by 

the target parameter and releases any memory used by the style if the owner count 

goes to 0.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Owner counts for style objects are discussed in the section “Copying, Comparing, and 

Cloning Style Objects” on page 3-8, and in the section “Manipulating a Style Object’s 

Owner Count” beginning on page 3-11. To examine the owner count of a style, use the 

GXGetStyleOwners function, described on page 3-22. 

GXCopyToStyle

You can use the GXCopyToStyle function to create a copy of an existing style object.

gxStyle GXCopyToStyle(gxStyle target, gxStyle source);

target A reference to the style object to copy the source style object’s contents 
into. If you specify nil for this parameter, this function creates a new 
style object.

source A reference to the style object whose contents you want to copy.

function result A reference to the copy (that is, the target style).

DESCRIPTION

The GXCopyToStyle function copies the contents of an existing style object to another, 

or it creates a new style object and copies the contents of an existing style object into it. 

The function copies the stylistic and typographic properties and the tag list (but not the 

owner count) of the style object specified by the source parameter into the style object 

specified by the target parameter. It clones, but does not copy, the tag objects in the tag 

list.

If you specify nil for the target parameter, the GXCopyToStyle function creates a 

new style object and copies the source properties, including tag list, into it. The function 

gives the new style object an owner count of 1.

You can use the GXCopyToStyle function to create a copy of a style object in order to 

modify it without changing the original.

Errors
style_is_nil



C H A P T E R  3

Style Objects

Style Objects Reference 3-19

SPECIAL CONSIDERATIONS

If you specify nil for the target parameter and no error occurs, the GXCopyToStyle 

function creates a style object; you are responsible for disposing of that object when you 

no longer need it.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To create a new style that is a copy of the default style instead of a copy of an existing 

style, use the GXNewStyle function, described on page 3-17.

To compare two style objects, use the GXEqualStyle function, described in the next 

section.

GXEqualStyle

You can use the GXEqualStyle function to determine if two style objects are equal.

boolean GXEqualStyle(gxStyle one, gxStyle two);

one A reference to one of the style objects to test for equality.

two A reference to the other style object to test for equality.

function result true if the style specified by the one parameter is equal to the style 
specified by the two parameter; false otherwise.

DESCRIPTION

The GXEqualStyle function returns as its function result a Boolean value indicating 

whether the two style objects are equal.

For two style objects to be equal, they must have identical properties, except that their 

common object properties (owner count and tag list) need not be identical.

Errors
out_of_memory
style_is_nil



C H A P T E R  3

Style Objects

3-20 Style Objects Reference

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To make a copy of a style object that is equal by the criteria of this function, use the 

GXCopyToStyle function, described in the previous section. 

GXCloneStyle

You can use the GXCloneStyle function to clone a style object—that is, to add a 

reference to it and increment its owner count.

gxStyle GXCloneStyle(gxStyle source);

source A reference to the style to clone.

function result A reference to the cloned style.

DESCRIPTION

The GXCloneStyle function increments the owner count of the style referenced in the 

source parameter. You typically use this function when you want to create another 

reference to an existing style rather than creating a distinct copy of the style.

This function returns as its function result a reference to the style—the same reference 

you pass in as the source parameter. The only other action that GXCloneStyle 

performs is to increment the style’s owner count. 

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Owner counts for style objects are discussed in the section “Copying, Comparing, and 

Cloning Style Objects” beginning on page 3-8, and in the section “Manipulating a Style 

Object’s Owner Count” beginning on page 3-11.

To examine the owner count of a style, use the GXGetStyleOwners function, described 

on page 3-22. To decrement the owner count of a style, use the GXDisposeStyle 

function, described on page 3-17. 

Errors
out_of_memory
style_is_nil

Errors
style_is_nil



C H A P T E R  3

Style Objects

Style Objects Reference 3-21

Manipulating Style Object Properties

This section describes the functions that allow you to manipulate certain properties of 

style objects—those properties that are independent of the kind of style object. The 

functions in this section allow you to reset some of the properties of a style object to their 

default values, find a style object’s owner count, and manipulate a style object’s tag list.

Functions that allow you to manipulate graphics-specific style properties are described 

in the geometric styles chapter of Inside Macintosh: QuickDraw GX Graphics; functions that 

allow you to manipulate typographic-specific style properties are described in the 

typographic styles chapter and layout styles chapter of Inside Macintosh: QuickDraw GX 
Typography.

GXResetStyle

You can use the GXResetStyle function to reset the properties of an existing style 

object to their default values.

void GXResetStyle(gxStyle target);

target A reference to the style object whose properties you want to reset.

DESCRIPTION

The GXResetStyle function resets all properties of the target style object, except owner 

count and tag list, to their default values. The owner count and tag list are unaffected.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Default properties of style objects are discussed in the section “The Default Style Object” 

on page 3-6. 

Errors
out_of_memory
style_is_nil



C H A P T E R  3

Style Objects

3-22 Style Objects Reference

GXGetStyleOwners

You can use the GXGetStyleOwners function to determine the number of references to 

a particular style.

long GXGetStyleOwners(gxStyle source); 

source A reference to the style to find the owner count of.

function result The owner count of the source style.

DESCRIPTION

The GXGetStyleOwners function returns as its function result the owner count of the 

style specified by the source parameter. The owner count is the current number of 

references to the style object.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Owner counts are discussed in the section “Copying, Comparing, and Cloning Style 

Objects” on page 3-8, and in the section “Manipulating a Style Object’s Owner Count” 

beginning on page 3-11.

To increment the owner count of a style, use the GXCloneStyle function, described on 

page 3-20. To decrement the owner count of a style, use the GXDisposeStyle function, 

described on page 3-17. 

GXGetStyleTags

You can use the GXGetStyleTags function to examine one or more of the tag objects 

associated with a style object.

long GXGetStyleTags(gxStyle source, long tagType, long index,

long count, gxTag items[]);

source A reference to the style object to examine the tag list of.

tagType The type of tag object to search for. A value of 0 indicates that you want to 
look for all tag types.

Errors
style_is_nil



C H A P T E R  3

Style Objects

Style Objects Reference 3-23

index The (1-based) index of the first such tag reference to return.

count The number of tag references to return.

items An array to hold the returned tag references.

function result The number of tag references found that fit the criteria.

DESCRIPTION

The GXGetStyleTags function searches the tag list of the source style object for 

references to tag objects with the tag type specified by the tagType parameter. If you 

specify 0 for the tagType parameter, the GXGetShapeTags function searches all tag 

types. 

You can use the index and the count parameters to specify which tag references of the 

appropriate type the GXGetStyleTags function should return. The index parameter 

indicates the first tag reference to return and the count parameter indicates how many 

tag references to return. The index parameter must be greater than 0. The count 

parameter must be greater than 0 or equal to the gxSelectToEnd constant (–1), which 

indicates that all tag references (starting with the tag reference indicated by the index 

parameter) should be returned.

The function result is the number of tag references found that fit the criteria. If you pass 

a value other than nil for the items parameter, the GXGetStyleTags function returns 

in it the tag references that were found.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Tag objects are introduced in the chapter “Introduction to Objects” in this book. 

Functions to create and manipulate tags objects, and a list of reserved tag types, are 

described in the chapter “Tag Objects” in this book.

To change the set of tag references associated with a style, use the GXSetStyleTags 

function, described in the next section.

Errors
out_of_memory
style_is_nil
index_is_less_than_one (debugging version)
count_is_less_than_one (debugging version)

Warnings
index_out_of_range
count_out_of_range



C H A P T E R  3

Style Objects

3-24 Style Objects Reference

GXSetStyleTags

You can use the GXSetStyleTags function to add, remove, or replace tag objects 

associated with a style object.

void GXSetStyleTags(gxStyle target, long tagType, long index, 

long oldCount, long newCount, 

const gxTag items[]);

target A reference to the style object to alter the tag list of.

tagType The type of tag objects to replace. A value of 0 indicates that you want to 
replace tags of all types.

index The (1-based) index of the first tag reference (to a tag object of the 
appropriate type) to replace.

oldCount The number of tag references to replace. A value of 0 specifies that you 
want to insert tag references before the tag reference indicated by the 
index parameter, rather than replace tag references. A value of –1 (the 
gxSelectToEnd constant) specifies that all tag references of the 
requested type, starting with the tag reference indicated by the index 
parameter, should be replaced.

newCount The number of tag references to insert. A value of 0 specifies that there are 
no tag references to insert; the existing tag references that match the 
criteria you specify in the tagType, index, and oldCount parameters 
are removed from the source shape’s tag list and disposed of.

items An array of tag references to insert in the tag list.

DESCRIPTION

The GXSetStyleTags function allows you add tag references to a style object’s tag list, 

to remove tag references from the list, or to replace tag references in the list with new tag 

references. In any of these three cases, the target parameter specifies the style object to 

be modified, the newCount parameter specifies the number of tag references to add, and 

the items parameter provides the new tag reference.

■ To add tag references, set the oldCount parameter to 0. Use the tagType and the 
index parameters to specify where to add the new tag references. (For example, if 
you specify nil for the tagType parameter and 1 for the index parameter, this 
function inserts the new tag references before the current tag references. If you specify 
a value other than nil for the tagType parameter and a value of 2 for the index 
parameter, the function inserts the new tag references before the second tag reference 
with a tag type matching the tagType parameter.)



C H A P T E R  3

Style Objects

Style Objects Reference 3-25

■ To remove tag references, set the newCount parameter to 0 and the items parameter 
to nil. You can use the index and the oldCount parameters to specify which tag 
references (of the specified type) should be removed. The index parameter indicates 
the first tag reference (of the specified type) to remove and the oldCount parameter 
indicates how many tag references (of the specified type) to remove. 

■ To replace tag references, use the tagType, index, and oldCount parameters to 
indicate which tag references to replace, and use the newCount and items 
parameters to specify the new tag references to add. If newCount is greater than 
oldCount, the extra tag references are placed immediately adjacent to the last tag 
reference replaced.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Tag objects are introduced in the chapter “Introduction to Objects” in this book. 

Functions to create and manipulate tags objects, and a list of reserved tag types, are 

described in the chapter “Tag Objects” in this book.

To examine the set of tag references associated with a style, use the GXGetStyleTags 

function, described in the previous section.    

Errors
out_of_memory
style_is_nil
tag_is_nil
parameter_is_nil (debugging version)
inconsistent_parameters (debugging version)
parameter_out_of_range (debugging version)
index_is_less_than_zero (debugging version)
cannot_dispose_locked_tag (debugging version)

Warnings
index_out_of_range
count_out_of_range

Notices (debugging version)
tag_already_set



C H A P T E R  3

Style Objects

3-26 Summary of Style Objects

Summary of Style Objects

Constants and Data Types

The style object

typedef struct gxPrivateStyleRecord *gxStyle;

Functions

Creating and Manipulating Style Objects

gxStyle GXNewStyle (void);

void GXDisposeStyle (gxStyle target);

gxStyle GXCopyToStyle (gxStyle target, gxStyle source);

boolean GXEqualStyle (gxStyle one, gxStyle two);

gxStyle GXCloneStyle (gxStyle source);

Manipulating Style Object Properties

void GXResetStyle (gxStyle target);

long GXGetStyleOwners (gxStyle source);

long GXGetStyleTags (gxStyle source, long tagType, long index,
long count, gxTag items[]);

void GXSetStyleTags (gxStyle target, long tagType, long index, 
long oldCount, long newCount, 
const gxTag items[]);



Contents 4-1

C H A P T E R  4

Colors and 

Contents

Color-Related Objects

About Color in QuickDraw GX 4-5

Color Spaces 4-6

Luminance-Based Color Spaces 4-7

RGB-Based Color Spaces 4-9

CMYK Color Spaces 4-14

Universal Color Spaces 4-15

Indexed Color Spaces 4-22

Color Spaces With Alpha Channels 4-24

Color-Component Values, Color Values, and Colors 4-25

Color Conversion and Color Matching 4-26

Color Profiles 4-28

Color-Matching Methods 4-30

When Color Matching Occurs 4-31

About Color Set Objects 4-32

Color Set Properties 4-33

Color Values in a Color Set 4-34

Default Color Sets 4-34

About Color Profile Objects 4-35

Color Profile Properties 4-36

Profile Data 4-36

The Default Color Profile 4-37

Zero-Length Profiles 4-37

Using Colors and Color-Related Objects 4-38

Assigning Colors to Shapes 4-38

Assigning Color Profiles to Colors 4-39



C H A P T E R  4

4-2 Contents

Comparing and Testing Colors 4-40

Checking for Out-of-Gamut Colors 4-40

Checking Colors for Closeness and Color Space 4-40

Predicting Drawing Results 4-41

Converting and Matching Colors 4-41

Creating and Manipulating Color Set and Color Profile Objects 4-42

Creating and Disposing of a Color Set or Color Profile 4-42

Copying, Comparing, and Cloning Color Sets and Color Profiles 4-44

Loading and Unloading Color Sets and Color Profiles 4-45

Manipulating Object Properties of Color Sets and Color Profiles 4-46

Manipulating Owner Counts 4-46

Getting and Setting Tag References 4-47

Manipulating the Colors in a Color Set Object 4-47

Manipulating the Profile Data in a Color Profile Object 4-48

Colors and Color-Related Objects Reference 4-49

Constants and Data Types 4-50

Color-Component Values 4-50

Color Values 4-50

The Color Structure 4-53

Color Packing 4-54

Color Spaces 4-55

The Color Set Object 4-56

The gxSetColor Union 4-56

The Color Profile Object 4-57

Color Functions 4-57

GXCheckColor 4-57

GXGetColorDistance 4-58

GXCombineColor 4-59

GXConvertColor 4-60

Color Set Functions 4-62

Creating and Manipulating Color Set Objects 4-62

GXGetDefaultColorSet 4-62

GXSetDefaultColorSet 4-63

GXNewColorSet 4-64

GXDisposeColorSet 4-65

GXCopyToColorSet 4-66

GXEqualColorSet 4-67

GXCloneColorSet 4-68

Manipulating Color Set Object Properties 4-69

GXGetColorSetOwners 4-69

GXGetColorSetTags 4-70

GXSetColorSetTags 4-71

Retrieving and Replacing Colors in a Color Set 4-73

GXGetColorSet 4-73

GXSetColorSet 4-74

GXGetColorSetParts 4-75

GXSetColorSetParts 4-76



C H A P T E R  4

Contents 4-3

Color Profile Functions 4-78

Creating and Manipulating Color Profile Objects 4-78

GXGetDefaultColorProfile 4-78

GXNewColorProfile 4-79

GXDisposeColorProfile 4-80

GXCopyToColorProfile 4-81

GXEqualColorProfile 4-82

GXCloneColorProfile 4-83

Manipulating Color Profile Object Properties 4-84

GXGetColorProfileOwners 4-84

GXGetColorProfileTags 4-85

GXSetColorProfileTags 4-86

Retrieving and Replacing Profile Information 4-88

GXGetColorProfile 4-88

GXSetColorProfile 4-89

GXLockColorProfile 4-90

GXUnlockColorProfile 4-91

GXGetColorProfileStructure 4-92

Summary of Colors and Color-Related Objects 4-94

Constants and Data Types 4-94

Color Functions 4-98

Color Set Functions 4-98

Color Profile Functions 4-99





C H A P T E R  4

About Color in QuickDraw GX 4-5

Colors and Color-Related Objects 

This chapter describes the QuickDraw GX color architecture and the objects and 

structures with which you manipulate colors. Read this chapter if your application does 

any color drawing or calculation, or if you create or modify bitmaps or color sets. Read 

this chapter also if you are creating a calibration program to generate color profiles.

Before reading this chapter, you should be familiar with the information in the chapter 

“Introduction to QuickDraw GX” in this book. You should also be familiar with shape 

objects, as discussed in the chapter “Shape Objects” in this book.      

This chapter constitutes the complete discussion of color for QuickDraw GX. Unlike for 

shape objects and style objects, there is no additional discussion of color-related objects 

in other books. However, additional information relevant to color is in the chapter “Ink 

Objects” in this book. 

QuickDraw GX uses color-matching methods provided by the Macintosh ColorSync 

Utilities. For information on ColorSync, its color-matching capabilities, and the structure 

of the color profiles it uses, see the ColorSync chapter of Inside Macintosh: Advanced Color 
Imaging and the Component Manager chapter of Inside Macintosh: More Macintosh Toolbox. 

For general information on color theory and color spaces, you may also want to read 

other books such as these: Measuring Color, by R.W.G. Hunt, John Wiley & Sons, 

New York, 1991; Illumination and Color in Computer Generated Imagery, by Roy Hall, 

Springer-Verlag, New York, 1989; and Computer Graphics: Principles and Practice, by 

J. Foley, A. van Dam, S. Feiner, and J. Hughes, Addison-Wesley, Reading, 1990.

This chapter introduces how color is represented in QuickDraw GX, and describes color 

set objects and color profile objects and their properties. It then shows how to use 

QuickDraw GX functions to

■ assign colors to shapes

■ compare, test, and convert colors

■ automatically use the color-matching capabilities of QuickDraw GX

■ create and manipulate color profiles for imaging devices

■ manipulate the colors of a bitmap that uses indexed colors

About Color in QuickDraw GX

In QuickDraw GX, color information about a shape is kept in the ink object associated 

with the shape object. A shape’s ink object describes both the color of the shape and the 

transfer mode with which the shape is drawn. Ink objects are described in the chapter 

“Ink Objects” in this book; colors are described in this chapter.

QuickDraw GX has a powerful, device-independent method for representing color 

in many different formats. Conversion among the formats is simple and direct, and in 

many cases automatic. QuickDraw GX also provides automatic manipulation of 

device-specific colors so that colors match consistently when scanned from or drawn to 

many different imaging devices. 



C H A P T E R  4

Colors and Color-Related Objects

4-6 About Color in QuickDraw GX

This section describes how color is represented and how you can manipulate color 

information. It presents the information in this order:

■ Colors are numerical values that make sense only in terms of specific color spaces. 
Color spaces are described first, under “Color Spaces” (next section). 

■ The mathematical values used by each color space are combined with other 
information to make a color structure. How color values relate to the color structure 
is described second, under “Color-Component Values, Color Values, and Colors” 
beginning on page 4-25.

■ Colors in a given color space or produced with a given input or display device 
commonly must be converted to another color space or matched to the color 
capabilities of another device. How QuickDraw GX accomplishes that task is 
described third, under “Color Conversion and Color Matching” beginning on 
page 4-26.

Color Spaces
A color space specifies how color information is represented. It defines a one-, two-, 

three-, or four-dimensional space whose dimensions, or components, represent intensity 

values. For example, RGB space is a three-dimensional color space whose components 

are the red, green, and blue intensities that make up a given color. Visually, these spaces 

are often represented by various solid shapes, such as cubes, cones, or polyhedra. See, 

for example, Color Plate 4 at the front of this book.

QuickDraw GX directly supports 28 different color spaces, to give you the convenience 

of working in whatever kinds of color data most suits your needs. The QuickDraw GX 

color spaces fall into several groups, or base families. They are

■ luminance-based color spaces, used for grayscale display and printing

■ RGB-based color spaces, used mainly for color video display 

■ CMYK-based color spaces, used mainly for color printing 

■ universal color spaces, used mainly for device-independent color measurements

All color spaces within a base family differ only in details of storage format or else are 

related to each other by very simple mathematical formulas. Conversion of color across 

base families is more complex, as described in the section “Color Conversion and Color 

Matching” beginning on page 4-26. 

Within a base family, some of the differences among color spaces relate to their packing, 
the number of bits used to store each color component. For example, RGB colors might 

be stored with 5, 8, or 16 bits per component. Each storage format is a different color 

space. Internally, QuickDraw GX always converts colors so that each component has 

16 bits; thus you can think of the 16-bit-per-component color spaces as the fundamental 

ones in each base family, and those with smaller storage spaces as packed 

(storage-compressed) versions.



C H A P T E R  4

Colors and Color-Related Objects

About Color in QuickDraw GX 4-7

Some QuickDraw GX color spaces have an alpha channel, an additional component that 

measures opacity or transparency. Alpha channels are described in the section “Color 

Spaces With Alpha Channels” beginning on page 4-24.

QuickDraw GX also supports a derived color space—indexed color space—in which 

colors are indirectly specified, using values that are indexed positions in a list. The colors 

in that list, however, must still belong to one of the base-family color spaces.

The gxColorSpaces enumeration, shown on page 4-55, lists the color spaces directly 

supported by QuickDraw GX. Each color space has its own format for representing color 

information. The rest of this section discusses those color spaces and their formats.

Luminance-Based Color Spaces

Luminance is a scale of lightness. Luminance-based color spaces, or gray spaces, 

typically have a single component, ranging from black to white, as shown in Figure 4-1. 

Luminance-based color spaces are used for black-and white and grayscale display and 

printing.

Figure 4-1 Luminance color space

A color is converted into luminance by evaluating its overall lightness. The luminance of 

a color expressed in RGB (see “RGB-Based Color Spaces” beginning on page 4-9), for 

example, can be calculated approximately with this formula:

luminance = 0.30 * red  + 0.59 * green + 0.11 * blue;

(QuickDraw GX provides a function for converting colors among different color spaces.) 

The luminance-based color spaces supported by QuickDraw GX (and defined in the 

gxColorSpaces enumeration) are gxGraySpace and gxGrayASpace. The A in 

gxGrayASpace stands for a second component called an alpha channel; see the section 

“Color Spaces With Alpha Channels” beginning on page 4-24 for more information.

Table 4-1 describes details of the storage formats for gxGraySpace and 

gxGrayASpace. In each of these spaces, the luminance is specified by a single 

number whose range varies from 0 to 65,535. The color black has a luminance value 

of 0, regardless of the color space. 



C H A P T E R  4

Colors and Color-Related Objects

4-8 About Color in QuickDraw GX

Figure 4-2 is a visual representation of the storage formats for the luminance-based color 

spaces.

Note

This figure and all subsequent storage-format figures in this chapter 
assume that data storage is “big-endian,” that is, that lower addresses 
correspond to higher-order bytes in a word or long word value. For 
processors whose storage model is different, the elements of the figures 
would be in a different order. These figures are presented for illustrative 
purposes only, and are not intended to specify details of storage order. ◆

Figure 4-2 Storage formats for luminance-based color spaces

Table 4-1 Luminance-based color spaces supported by QuickDraw GX

Constant
Enumeration
Value Explanation

gxGraySpace 0x000A 16 bits per component (gray only); component 
values range from 0 to 0xFFFF. Total storage size 
for each color value: 16 bits.

gxGrayASpace 0x008A 16 bits per component (gray and alpha); 
component values range from 0 to 0xFFFF. Total 
storage size for each color value: 32 bits. Alpha 
channels are described on page 4-24. 



C H A P T E R  4

Colors and Color-Related Objects

About Color in QuickDraw GX 4-9

QuickDraw GX does not support an 8-bit luminance-based color space because such a 

color space can be more conveniently represented as an indexed color space with a color 

set. Indexed color space is described in the section “Indexed Color Spaces” beginning on 

page 4-22; color sets are described in the section “When Color Matching Occurs” 

beginning on page 4-31.

RGB-Based Color Spaces

RGB-based color spaces are the most commonly used color spaces in computer graphics, 

primarily because they are directly supported by most color monitors. The groups of 

color spaces within the RGB base family include

■ RGB spaces

■ HSV and HLS spaces

RGB Spaces

Any color expressed in RGB space is some mixture of three primary colors red, green, 

and blue. Most RGB-based color spaces can be visualized as a cube, as in Figure 4-3, with 

corners of black, the three primaries (red, green, and blue), the three secondaries (cyan, 

magenta, and yellow), and white. See, for example, Figure 4-3; see also Color Plate 4 at 

the front of this book.

Figure 4-3 RGB color space



C H A P T E R  4

Colors and Color-Related Objects

4-10 About Color in QuickDraw GX

The RGB color spaces supported by QuickDraw GX (and defined in the 

gxColorSpaces enumeration) are gxRGBSpace, gxRGB16Space, gxRGB32Space, 

gxRGBASpace, and gxARGB32Space. See Table 4-2 and Figure 4-4 for storage-format 

details. In each of these spaces, a color value is represented by three or four color 

components, representing red, green, blue (and in some cases alpha); each component 

can vary in the number of bits used for its storage. The color black is represented by 

component values of 0 in the red, green, and blue components.

Table 4-2 RGB color spaces supported by QuickDraw GX

Constant
Enumeration
Value Explanation

gxRGBSpace 0x0001 16 bits per component (red, green, and blue); 
component values range from 0 to 0xFFFF. 
Total storage size for each color value: 48 bits.

gxRGB16Space 0x0501 5 bits per component (red, green, and blue); 
component values range from 0 to 0x1F. Total 
storage size for each color value: 16 bits (bit 15 
is not used).

gxRGB32Space 0x0801 8 bits per component (red, green, and blue); 
component values range from 0 to 0xFF. Total 
storage size for each color value: 32 bits 
(bits 24–31 are not used).

gxARGB32Space 0x1881 8 bits per component (red, green, blue, and 
alpha); component values range from 0 to 0xFF. 
Total storage size for each color value: 32 bits. 
Alpha channels are described on page 4-24.

gxRGBASpace 0x0081 16 bits per component (red, green, blue, and 
alpha); component values range from 0 to 
0xFFFF. Total storage size for each color value: 
64 bits. Alpha channels are described on 
page 4-24.



C H A P T E R  4

Colors and Color-Related Objects

About Color in QuickDraw GX 4-11

Figure 4-4 Storage formats for RGB color spaces

HSV and HLS Color Spaces

HSV space and HLS space are transformations of RGB space that allow colors to be 

described in terms more natural to an artist. The name HSV stands for hue, saturation, 
and value, and HLS stands for hue, lightness, and saturation. The two spaces can be 

thought of as being single and double cones, as shown in Figure 4-5. (See also Color 

Plate 4 at the front of this book for a slightly different representation of these color 

spaces.)



C H A P T E R  4

Colors and Color-Related Objects

4-12 About Color in QuickDraw GX

Figure 4-5 HSV color space and HLS color space

The components in HLS space are analogous, but not completely identical, to the 

components in HSV space:

■ The hue component in both color spaces is an angular measurement, analogous to 
position around a color wheel. A hue value of 0 indicates the color red; the color green 
is at a value corresponding to 120°, and the color blue is at a value corresponding to 
240°. Horizontal planes through the cones in Figure 4-5 are hexagons; the primaries 
and secondaries (red, yellow, green, cyan, blue, and magenta) occur at the vertices of 
the hexagons.

■ The saturation component in both color spaces describes color intensity. A saturation 
value of 0 (in the middle of a hexagon) means that the color is “colorless” (gray); a 
saturation value at the maximum (at the outer edge of a hexagon) means that the color 
is at maximum “colorfulness” for that hue angle and brightness. 

■ The value component (in HSV space) and the lightness component (in HLS space) 
describe brightness or luminance. In both color spaces, a value of 0 represents black. 
In HSV space, a maximum value for value means that the color is at its brightest. In 
HLS space, a maximum value for lightness means that the color is white, regardless of 
the current values of the hue and saturation components. The brightest, most intense 
color in HLS space occurs at a lightness value of exactly half the maximum.



C H A P T E R  4

Colors and Color-Related Objects

About Color in QuickDraw GX 4-13

The HLS and HSV color spaces supported by QuickDraw GX (and defined in the 

gxColorSpaces enumeration) are gxHSVSpace, gxHLSSpace, gxHSV32Space, 

and gxHLS32Space. See Table 4-3 and Figure 4-6 for details of storage format. 

Figure 4-6 shows storage formats for the supported HSV color spaces. Formats for the 

HLS spaces are identical.

Figure 4-6 Storage formats for HSV color spaces

Table 4-3 HSV and HLS color spaces supported by QuickDraw GX

Constant
Enumeration
Value Explanation

gxHSVSpace 0x0003 16 bits per component (hue, saturation, and 
value); component values range from 0 to 0xFFFF. 
Total storage size for each color value: 48 bits.

gxHLSSpace 0x0004 16 bits per component (hue, lightness, and 
saturation); component values range from 0 to 
0xFFFF. Total storage size for each color value: 
48 bits.

gxHSV32Space 0x0A03 10 bits per component (hue, saturation, and value); 
component values range from 0 to 0x3FF. Total 
storage size for each color value: 32 bits 
(bits 30–31 are not used).

gxHLS32Space 0x0A04 10 bits per component (hue, lightness, and 
saturation); component values range from 0 to 
0x3FF. Total storage size for each color value: 
32 bits (bits 30–31 are not used).



C H A P T E R  4

Colors and Color-Related Objects

4-14 About Color in QuickDraw GX

CMYK Color Spaces

CMYK space is a color space that models the way ink builds up in printing. The name 

CMYK refers to cyan, magenta, yellow, and black. Cyan, magenta, and yellow are the 

three primary colors in this color space, and red, green, and blue are the three 

secondaries. Theoretically black is not needed. However, when full-saturation cyan, 

magenta, and yellow inks are mixed equally on paper, the result is usually a dark brown, 

rather than black. Therefore, black ink is overprinted in darker areas to give a better 

appearance. Figure 4-7 shows how the primary colors in CMYK space mix to form other 

colors. (See also Color Plate 4 at the front of this book.)

Figure 4-7 Colors in CMYK color space

Theoretically, the relation between RGB values and CMY values in CMYK space is quite 

simple:

Cyan = 1.0 – red;

Magenta = 1.0 – green;

Yellow = 1.0 – blue;

(where red, green, and blue intensities are expressed as fractional values varying from 0 

to 1). In reality, the process of deriving the cyan, magenta, yellow, and black values from 

a color expressed in RGB space is complex, involving device-specific, ink-specific, and 

even paper-specific calculations of the amount of black to add in dark areas (black 
generation), and the amount of other ink to remove (undercolor removal) where black is 

to be printed. QuickDraw GX performs those calculations for you when converting 

among color spaces, commonly using color profiles as described in the section “Color 

Profiles” beginning on page 4-28. 



C H A P T E R  4

Colors and Color-Related Objects

About Color in QuickDraw GX 4-15

The CMYK color spaces supported by QuickDraw GX (and defined in the 

gxColorSpaces enumeration) are gxCMYKSpace and gxCMYK32Space. See 

Table 4-4 and Figure 4-8 for details of storage format. 

Figure 4-8 Storage formats for CMYK color spaces

Universal Color Spaces

Some color spaces allow color to be expressed in a device-independent way. Whereas 

RGB colors vary with monitor characteristics, and CMYK colors vary with printer and 

paper characteristics, universal colors are meant to be true representations of colors as 

perceived by the human eye. These color representations, called universal color spaces, 
result from work carried out in 1931 by the Commission Internationale d’Eclairage (CIE), 

and for that reason are also called CIE-based color spaces.

In addition, broadcast-video color space (YIQ) is based on device-independent color 

characteristics, in that its colors are measured in terms of a standard device. It is 

therefore considered universal and is discussed in this section.

Table 4-4 CMYK color spaces supported by QuickDraw GX

Constant
Enumeration
Value Explanation

gxCMYKSpace 0x0002 16 bits per component (cyan, magenta, yellow, 
and black); component values range from 0 to 
0xFFFF. Total storage size for each color value: 
64 bits.

gxCMYK32Space 0x0802 8 bits per component (cyan, magenta, yellow, 
and black); component values range from 0 
to 0xFF. Total storage size for each color value: 
64 bits.



C H A P T E R  4

Colors and Color-Related Objects

4-16 About Color in QuickDraw GX

XYZ Space

There are several CIE-based color spaces, but all are derived from the fundamental XYZ 
space. The XYZ space allows colors to be expressed as a mixture of the three tristimulus 
values X, Y, and Z. The term tristimulus comes from the fact that color perception results 

from the retina of the eye responding to three types of stimuli. After experimentation, the 

CIE set up a hypothetical set of primaries, XYZ, that correspond to the way the eye’s 

retina behaves. 

The CIE defined the primaries so that all visible light maps into a positive mixture of X, 

Y, and Z, and so that Y correlates approximately to the apparent lightness of a color. 

Generally, the mixtures of X, Y, and Z components used to describe a color are expressed 

as percentages ranging from 0% up to, in some cases, just over 100%. 

Other universal color spaces based on XYZ space are used primarily to relate some 

particular aspect of color or some perceptual color difference to XYZ values. 

Yxy Space

Yxy space expresses the XYZ values in terms of x and y chromaticity coordinates, 

somewhat analogous to the hue and saturation coordinates of HSV space. The 

coordinates are shown in the following formulas, used to convert XYZ into Yxy:

Y = Y

x = X / (X+Y+Z)

y = Y / (X+Y+Z)

Note that the Z tristimulus value is incorporated into the new coordinates, and does not 

appear by itself. Since Y still correlates to the lightness of a color, the other aspects of the 

color are found in the chromaticity coordinates x and y. This allows color variation in 

Yxy space to be plotted on a two-dimensional diagram. Figure 4-9 shows the layout of 

colors in the x and y plane of Yxy space. Color Plate 4 at the front of this book shows the 

same plot in color.



C H A P T E R  4

Colors and Color-Related Objects

About Color in QuickDraw GX 4-17

Figure 4-9 Yxy chromaticities

L*u*v* Space and L*a*b* Space

One problem with representing colors using the XYZ and Yxy color spaces is that they 

are perceptually nonlinear: it is not possible to accurately evaluate the perceptual 

closeness of colors based on their relative positions in XYZ or Yxy space. Colors that are 

close together in Yxy space may seem very different to observers, and colors that seem 

very similar to observers may be widely separated in Yxy space.

L*u*v* space is a nonlinear transformation of XYZ space in order to create a perceptually 

linear color space. L*a*b* space is a nonlinear transformation (a third-order 

approximation) of the Munsell color-notation system (not described here). Both are 

designed to match perceived color difference with quantitative distance in color space.

Both L*u*v* space and L*a*b* space represent colors relative to a reference white point, 
which is a specific definition of what is considered white light, represented in terms of 

XYZ space, and usually based on the whitest light that can be generated by a given 

device. (In that sense L*u*v* and L*a*b* are not completely device independent; two 

numerically equal colors are truly identical only if they were measured relative to the 

same white point.)

Measuring colors in relation to a white point allows for color measurement under a 

variety of illuminations. The luminance of the white point of the QuickDraw GX default 

color profile matches the luminance of the white point on the Apple 13-inch color 

monitor. Color profiles are described in the section “Color Conversion and Color 

Matching” beginning on page 4-26.



C H A P T E R  4

Colors and Color-Related Objects

4-18 About Color in QuickDraw GX

A primary benefit of using L*u*v* space and L*a*b* space is that the perceived 

difference between any two colors is proportional to the geometric distance in the color 

space between their color values. For applications where closeness of color needs to be 

quantified, such as in colorimetry, gemstone evaluation, or dye matching, use of L*u*v* 

space or L*a*b* space is common.

The formulas for transforming an XYZ color into an L*u*v* color are

if (Y/Yn > 0.008856)

L = 116.0 * (Y / Yn)1/3 - 16.0;

else

L = 903.3 * (Y / Yn);

u = 13.0 * L * (u' - u'n);

v = 13.0 * L * (v' - v'n);

where

u' = 4 * x / (X + 15*Y + 3*Z);

v' = 9 * y / (X + 15*Y + 3*Z);

and u'n, v'n, and Yn are the u', v', and Y values for the reference white point.

Similarly, the formulas for transforming an XYZ color into an L*a*b* color are

if (Y/Yn > 0.008856)

L = 116.0 * (Y / Yn)1/3 - 16.0;

else

L = 903.3 * (Y / Yn)

a = 500.0 * ( (X / Xn)
1/3 - (Y / Yn)

1/3 );

b = 500.0 * ( (Y / Yn)
1/3 - (Z / Zn)

1/3 );

where Xn, Yn, and Zn are the XYZ values for the reference white point. 

Formats for XYZ-Based Color Spaces

The universal color spaces supported by QuickDraw GX (and defined in the 

gxColorSpaces enumeration) are gxYXYSpace, gxXYZSpace, gxLUVSpace, 

gxLABSpace, gxYXY32Space, gxXYZ32Space, gxLUV32Space, and gxLAB32Space. 

See Table 4-5 and Figure 4-10 for details of storage format. Note that the ranges of values 

for the components differ significantly among the different color spaces.

Figure 4-10 shows storage formats for the supported XYZ color spaces. Formats for the 

Yxy, L*u*v*, and L*a*b* spaces are identical.



C H A P T E R  4

Colors and Color-Related Objects

About Color in QuickDraw GX 4-19

Table 4-5 Universal color spaces supported by QuickDraw GX

Constant
Enumeration
Value Explanation

gxYXYSpace 0x0005 16 bits per component (Y, x, and y); component 
values range from 0 (0%) to 0xFFFF (100%). Total 
storage size for each color value: 48 bits.

gxXYZSpace 0x0006 16 bits per component (X, Y, and Z). Component 
values range from 0 (0%) to 0xFFFF (200%; a 
value of 0x8000 represents 100%). Total storage 
size for each color value: 48 bits.

gxLUVSpace 0x0007 16 bits per component (L*, u*, and v*). The L* 
component values range from 0 (0%) to 0xFFFF 
(100% of white-point luminance). The u* and 
v* component values range from 0 (–1) to 
0xFFFF (+1). Total storage size for each color 
value: 48 bits.

gxLABSpace 0x0008 16 bits per component (L*, a*, and b*). The L* 
component values range from 0 (0%) to 0xFFFF 
(100% of white-point luminance). The a* and 
b* component values range from 0 (–1) to 
0xFFFF (+1). Total storage size for each color 
value: 48 bits.

gxYXY32Space 0x0A05 10 bits per component (Y, x, and y); component 
values range from 0 (0%) to 0x3FF (100%). Total 
storage size for each color value: 32 bits (bits 30 
and 31 not used).

gxXYZ32Space 0x0A06 10 bits per component (X, Y, and Z). Component 
values range from 0 (0%) to 0x3FF (200%; a value 
of 0x200 represents 100%). Total storage size for 
each color value: 32 bits (bits 30 and 31 not used).

gxLUV32Space 0x0A07 10 bits per component (L*, u*, and v*). The L* 
component values range from 0 (0%) to 0x3FF 
(100% of white-point luminance). The u* and 
v* component values range from 0 (–1) to 
0x3FF (+1). Total storage size for each color 
value: 32 bits (bits 30 and 31 not used).

gxLAB32Space 0x0A08 10 bits per component (L*, a*, and b*). The L* 
component values range from 0 (0%) to 0x3FF 
(100% of white-point luminance). The a* and 
b* component values range from 0 (–1) to 
0x3FF (+1). Total storage size for each color 
value: 32 bits (bits 30 and 31 not used).

NOTE Because u*, v*, a*, and b* are normally signed numbers between 1.0 and -1.0, 
you can convert them into shorts as follows: 
anUnsignedshort = ((aFloat + 1.0)/2) * 65535.0;



C H A P T E R  4

Colors and Color-Related Objects

4-20 About Color in QuickDraw GX

Figure 4-10 Storage formats for XYZ color spaces

Video Color Spaces

YIQ space is sometimes called video color space. It is based on the way a specific kind of 

RGB data is broken down for color television transmission. The three dimensions that 

describe these color spaces are Y, I, and Q, in which Y represents luminance and the 

other two components carry color information. 

Because the Y channel represents luminance it can be used alone; the Y channel is the 

only channel used in black and white television. The I and Q channels are called color 
difference channels: the Y channel is split between them. The notations “I” and “Q” stand 

for “in phase” and “in quadrature,” respectively, referring to the method by which all of 

the channels are combined into a signal for broadcast.

QuickDraw GX also defines NTSC and PAL color spaces. NTSC space corresponds to the 

color encoding used for color broadcasting in the United States, whereas PAL space 

corresponds to the color encoding used in Europe. NTSC and PAL have different screen 

resolutions, frequencies, and are otherwise incompatible, but in terms of how color 

values are calculated, NTSC space and PAL space are both identical to YIQ space. 

In YIQ space, the Y component can vary from 0 (black) to its maximum value (full 

luminance). I and Q are normally signed values, so they are centered around 0. 

Figure 4-11 illustrates how colors map into the I and Q dimensions of YIQ space.



C H A P T E R  4

Colors and Color-Related Objects

About Color in QuickDraw GX 4-21

Figure 4-11 The I and Q axes in YIQ color space

The video color spaces supported by QuickDraw GX (and defined in the 

gxColorSpaces enumeration) are gxYIQSpace, gxNTSCSpace, gxPALSpace, 

gxYIQ32Space, gxNTSC32Space, and gxPAL32Space. See Table 4-6 and 

Figure 4-12 for details of storage format. In each of these spaces, a color value is 

represented by Y, I, and Q color components. 

Table 4-6 Video color spaces supported by QuickDraw GX

Constant
Enumeration
Value Explanation

gxYIQSpace 0x0009 16 bits per component (Y, I, and Q); 
Y-component values range from 0 to 0xFFFF; 
I- and Q-component values range from –0x7FFF 
to +0x7FFF. Total storage size for each color 
value: 48 bits.

gxNTSCSpace 0x0009 (same as gxYIQSpace)

gxPALSpace 0x0009 (same as gxYIQSpace)

gxYIQ32Space 0x0A09 10 bits per component (Y, I, and Q); 
Y-component values range from 0 to 0x3FF; 
I- and Q-component values range from –0x1FF 
to +0x1FF. Total storage size for each color 
value: 32 bits (bits 30 and 31 are not used).

gxNTSC32Space 0x0A09 (same as gxYIQ32Space)

gxPAL32Space 0x0A09 (same as gxYIQ32Space)



C H A P T E R  4

Colors and Color-Related Objects

4-22 About Color in QuickDraw GX

Figure 4-12 shows storage formats for the supported YIQ color spaces. Formats for the 

NTSC and PAL spaces are identical.

Figure 4-12 Storage formats for YIQ color spaces

You can find more information on the theories of color and the various color spaces in 

the following publications:

Measuring Color, by R.W.G. Hunt, John Wiley & Sons, New York, 1987.

Illumination and Color in Computer Generated Imagery, by Roy Hall, Springer-Verlag, 

New York, 1989. 

Indexed Color Spaces

In situations where you use only a limited number of colors, it can be impractical or 

impossible to specify colors directly. For example, if you have a bitmap with only a few 

bits per pixel (1, 2, 4 or 8 for QuickDraw GX), each pixel is too small to contain a 

complete color specification; its color must be specified as an index into a list or table of 

color values. If you are using spot colors in printing or pen colors in plotting, it can be 

simpler and more precise to specify each color as an index into a list instead of an actual 

color value. Also, if you want to restrict the user to drawing with a specific set of colors, 

you can put them in a list and specify them by index.

Indexed space is the color space you use when drawing with indirectly specified colors. 

An indexed color value (a color specification in indexed color space) consists of an index 

value and a reference to a color set object. The color set contains a list of color values and 

a specification of the color space for those color values; the index value specifies which 

color to use from the list. Color values are defined in the section “Color-Component 

Values, Color Values, and Colors” beginning on page 4-25. Color set objects are 

described in the section “About Color Set Objects” beginning on page 4-32. 



C H A P T E R  4

Colors and Color-Related Objects

About Color in QuickDraw GX 4-23

QuickDraw GX supports the single indexed color space format gxIndexedSpace 

(defined in the gxColorSpaces enumeration). See Table 4-7 and Figure 4-4 for details 

of storage format. Although there is a single format for indexed color space, you can 

create any number of unique indexed color spaces, using different sets of colors from any 

of the defined color spaces. 

Figure 4-13 Storage format for indexed color space

Color spaces and bitmaps

Bitmaps commonly use indexed color space, but if pixel size is large 
enough a bitmap can specify colors directly in any color space. These are 
the restrictions on the use of color spaces with bitmaps:

■ Bitmaps with 1, 2, 4, or 8 bits per pixel must use gxIndexedSpace.

■ Bitmaps with 16 bits per pixel can use gxRGB16Space. They cannot use 
gxIndexedSpace. 

■ Bitmaps with 32 bits per pixel can use gxRGB32Space, gxARGB32Space, 
gxCMYK32Space, gxHSV32Space, gxHLS32Space, gxYXY32Space, 
gxXYZ32Space, gxLUV32Space, gxLAB32Space, gxYIQ32Space, 
gxNTSC32Space, or gxPAL32Space—that is, all defined 32-bit color spaces. 
They cannot use gxIndexedSpace. 

■ Hardware devices that have 24 bits of physical memory per pixel can support 
gxRGB32Space. Hardware devices that have 32 bits of physical memory per 
pixel can support gxRGB32Space plus all the other defined 32-bit color spaces.

Bitmaps are described further in the bitmap shapes chapter of Inside 
Macintosh: QuickDraw GX Graphics. ◆ 

Table 4-7 Indexed color space supported by QuickDraw GX

Constant
Enumeration
Value Explanation

gxIndexedSpace 0x000B Indicates that the color value is a (1-based) 
index into the referenced color set. Total 
storage size for each color value: 64 bits.



C H A P T E R  4

Colors and Color-Related Objects

4-24 About Color in QuickDraw GX

Color Spaces With Alpha Channels

QuickDraw GX supports the use of an alpha channel in one luminance-based color space 

(gxGrayASpace) and two RGB color spaces (gxRGBASpace and gxARGB32Space). An 
alpha channel is a component in a color space whose value typically determines the 

opacity of the color expressed by the other components. An alpha-channel value of 0 in a 

color means that the color is completely transparent, and a maximum value means that 

the color is completely opaque. A value in between means that the color is partially 

transparent.

How transparency is handled in drawing depends on the transfer mode used when the 

color is drawn. (Transfer modes are discussed in the chapter “Ink Objects” in this book.) 

Typically, however, transparency in a color being drawn—the source color— means that 

the existing color at the location where drawing occurs—the destination color—shows 

through. Where the source is completely opaque, the destination is completely covered 

and is invisible; where the source is completely transparent, the destination shows 

through unchanged and the source is invisible.

Figure 4-14 shows an example in which a uniform gray image (in gxGrayASpace) is 

drawn over a black-and-white image. The gray color of the source is uniform across the 

rectangle, but the alpha-channel value decreases from 0xFFFF on the left to 0 on the 

right. As the alpha value decreases rightward, more and more of the destination color 

shows through. (Color Plate 2 at the front of this book shows a similar drawing example 

in color.)

Figure 4-14 Showing color transparency with an alpha channel

For more information on using alpha channels to achieve particular drawing effects, see 

the chapter “Ink Objects” in this book.  



C H A P T E R  4

Colors and Color-Related Objects

About Color in QuickDraw GX 4-25

Color-Component Values, Color Values, and Colors
Each of the color spaces described in this chapter requires one or more numeric values in 

a particular format to specify a color. This section describes the data types and structures 

with which QuickDraw GX describes colors in its color spaces.

Each dimension, or component, in a color space has a color-component value. In the 

fundamental, unpacked QuickDraw GX color spaces—those with 16 bits per 

component—each color-component value is of type gxColorValue:

typedef unsigned short gxColorValue;

A color-component value can vary from 0 to 65,535 (0xFFFF), although the numerical 

interpretation of that range is different for different color spaces, as has been noted in 

Table 4-1 through Table 4-7. In most cases, color-component intensities are interpreted 

numerically as varying between 0 and 1.0; for that reason, QuickDraw GX provides the 

constant gxColorValue1 to represent 0xFFFF.

Depending on the color space used, one, two, three, or four color-component values 

combine to make a color value. A color value is a structure; it is the complete 

specification of a color in a given color space. QuickDraw GX supports 13 color-value 

formats, representing the fundamental 16-bits-per-component color spaces; all color 

operations in memory use one of those formats. The color-value formats are described in 

the section “Color Values” beginning on page 4-50. For example, an RGB color value has 

this format:

struct gxRGBColor{

gxColorValue red;

gxColorValue green;

gxColorValue blue;

};

This is exactly the storage format for colors in gxRGBSpace. However, colors stored in 

gxRGB16Space or gxRGB32Space have a packed storage format, and need to be 

converted to gxRGBColor format when they are used. QuickDraw GX takes care of this 

for you; as far as your application is concerned, you can always manipulate colors in the 

color space you have specified.



C H A P T E R  4

Colors and Color-Related Objects

4-26 About Color in QuickDraw GX

A color value plus a specification of the color space it belongs to (plus an 

optional reference to a color profile to use for color matching) constitute a color in 

QuickDraw GX. A color is defined by the gxColor structure:

struct gxColor{

gxColorSpace space;

gxColorProfile profile;

union {

struct gxCMYKColor cmyk;

struct gxRGBColor rgb;

struct gxRGBAColor rgba;

struct gxHSVColor hsv;

struct gxHLSColor hls;

struct gxXYZColor xyz;

struct gxYXYColor yxy;

struct gxLUVColor luv;

struct gxLABColor lab;

struct gxYIQColor yiq;

gxColorValue gray;

struct gxGrayAColor graya;

unsigned short pixel16;

unsigned long pixel32;

struct gxIndexedColor indexed;

gxColorValue component[4];

} element;

};

Each gxColor structure holds the specification of a single color. Note that, besides the 

basic color-value formats such as gxRGBColor and gxXYZColor, a QuickDraw GX 

color can contain a 16-bit or 32-bit pixel value or an indexed color value, and you can 

also access the color as an array of color-component values. Each of the color values in 

the element union of the gxColor structure is described in the section “The Color 

Structure” beginning on page 4-53. 

Color Conversion and Color Matching
Color support in QuickDraw GX is designed for device independence. You can work in 

whatever color space is most convenient for you, you can convert colors from one color 

space to another, and you can input and output colors with a variety of physical devices 

with minimum error and loss of information. 



C H A P T E R  4

Colors and Color-Related Objects

About Color in QuickDraw GX 4-27

You may want to explicitly convert from one color space to another for a variety of 

reasons, such as

■ to allow users to work in a more familiar context (perhaps HSV instead of RGB)

■ to convert device-dependent colors to device-independent colors (such as RGB to 
L*u*v)

■ to preview printed output onscreen (by converting RGB to CMYK)

■ to display on monochrome monitors or printers (by converting to gray space)

In addition, QuickDraw GX automatically converts colors from one space to another 

whenever necessary, such as when it displays a color that is defined in terms of one 

space on a device whose colors are defined in terms of another space.

When converting among color spaces within a base family (such as HSV to RGB) and for 

display on the same device, the conversion is exact and there is no loss or error. 

However, when converting across base families (such as RGB to CMYK, or HLS to XYZ), 

and when converting within the same family but across different display devices, device 

dependence is introduced and must be accounted for.

Different imaging devices (scanners, monitors, printers) work in different color spaces 

and each can have a different gamut, or range of colors that it can produce. Monitors 

from different manufacturers all display colors in RGB, but may have different RGB 

gamuts. Printers that work in CMYK space vary drastically in their gamuts, especially if 

they use different printing technologies. Even a single printer’s gamut can vary 

significantly with the ink or type of paper it uses. It’s easy to see that conversion from 

RGB colors on an individual monitor to CMYK colors on an individual printer using a 

particular paper type can lead to unpredictable results.

When an image is output to a particular device, the device displays only those colors 

that are within its gamut. Likewise, when an image is created by scanning, only those 

colors within the scanner’s gamut are saved. Devices with different gamuts cannot 

reproduce each others’ colors exactly, but careful shifting of the colors used on one 

device can improve the visual match when the image is displayed on another.

Figure 4-15 shows examples of two devices’ color gamuts, projected onto Yxy space. 

Both devices produce less than the total possible range of colors, and device B is 

restricted to a significantly smaller range than device A. The problem illustrated by 

Figure 4-15 is to be able to display the same image on both devices with a minimum of 

visual mismatch. The solution to the problem is the use of color profiles and 

color-matching methods.



C H A P T E R  4

Colors and Color-Related Objects

4-28 About Color in QuickDraw GX

Figure 4-15 Color gamuts for two devices (in Yxy space)

Color Profiles

Converting colors accurately across different input or display devices is called color 
matching. To perform color matching requires the use of a color profile for each device 

involved. A color profile describes the characteristics of a color space for a particular 

physical device in a particular state. A monitor, for example, might have a single color 

profile, whereas a printer might have a different profile for each paper type or ink type it 

uses. A color-matching method uses a color profile to convert a color in a given color 

space on a given device to or from another color space or device, perhaps a 

device-independent color space.

Different color profiles can have different kinds of information in them. However, any 

color profile has at least two parts: a set of profile chromaticities and a set of profile 

response curves. The profile chromaticities are color values that define the extremes of 

saturation that the device can produce for its primary and secondary colors (red, green, 

blue, cyan, magenta, yellow). Each color value is typically described in terms of a 

device-independent space such as XYZ. You can think of the profile’s chromaticities as 

defining points at the extremes of that device’s gamut, as shown in Figure 4-16. (The 

points in Figure 4-16 correspond to the limits of the gamut for device A in Figure 4-15.)



C H A P T E R  4

Colors and Color-Related Objects

About Color in QuickDraw GX 4-29

Figure 4-16 Profile chromaticities for a device (in Yxy space)

The profile response curves are graphs that describe how the profile chromaticities ramp 

from no intensity to full intensity (there are additional response curves for undercolor 

removal and black generation in CMYK space). The response curves are analogous to 

gamma curves for monitors or dot-pitch curves for printing. Figure 4-17 shows an 

example of a single response curve.

Figure 4-17 A profile response curve for a device



C H A P T E R  4

Colors and Color-Related Objects

4-30 About Color in QuickDraw GX

Color profiles contain additional information, such as a specification of how to apply the 

chromaticities and response curves for matching (see the next section, “Color-Matching 

Methods”), and a name string. They may also have custom information used by 

particular color-matching methods. QuickDraw GX uses color profiles following the 

format defined by the ColorSync Utilities. See the ColorSync Utilities chapter of Inside 
Macintosh: Advanced Color Imaging for more information.

Color profiles are optional; a given color structure may or may not contain a valid 

reference to a color profile. If a color profile reference is attached, QuickDraw GX uses it 

when converting or matching colors; if there is no attached profile, QuickDraw GX uses 

the default QuickDraw GX color profile; see “The Default Color Profile” on page 4-37.   

Color-Matching Methods

When colors consistent with one device’s gamut are displayed on a device with a 

different gamut, as in Figure 4-15 on page 4-28, a color-matching method attempts to 

minimize the perceived differences in the displayed colors between the two devices. The 

default Apple color-matching method, as used with the ColorSync Utilities, uses these 

three approaches:

■ Colorimetric matching. In this method, colors that fall within the gamuts of both 
devices are left unchanged. For example, to match an image from device A onto 
device B in Figure 4-15, only the colors in the gamut of A that fall outside the gamut of 
B are altered. Colorimetric matching allows some colors in both images to be exactly 
the same, which is useful when colors must match quantitatively. A disadvantage of 
colorimetric matching is that many colors may map to a single color. All colors 
outside the gamut of B in Figure 4-15, for example, would be converted to colors at 
the edge of its gamut, reducing the total number of colors in the image and possibly 
greatly altering its appearance. In colorimetric matching, colors outside the gamut are 
usually converted to colors with the same lightness, but different saturation, at the 
edge of the gamut. The left side of Figure 4-18 shows how colors are projected in 
colorimetric matching.

■ Perceptual matching. In this method, all the colors of a given gamut are shifted to fit 
within another gamut. The colors maintain their relative positions, so the relationship 
between colors is maintained. With realistic images such as scanned photographs, 
perceptual matching produces better results than colorimetric matching in most cases; 
in Figure 4-15, for example, the eye could compensate for the difference in gamuts 
between A and B, and a perceptually matched image on B would look very similar to 
the original image on A. A disadvantage of perceptual matching is that none of the 
original colors is unchanged in the copy.

■ Saturation matching. In some computer graphics, such as bar graphs and pie charts, 
the actual color displayed is less important than its vividness. In this method, the 
relative saturation of colors is maintained from gamut to gamut. Colors outside the 
gamut are usually converted to colors with the same saturation, but different 
lightness, at the edge of the gamut. The right side of Figure 4-18 shows how colors are 
projected in saturation matching.



C H A P T E R  4

Colors and Color-Related Objects

About Color in QuickDraw GX 4-31

Figure 4-18 Maintaining lightness and maintaining saturation in color matching

QuickDraw GX uses the Macintosh ColorSync Utilities for color matching. ColorSync 

color-matching methods are Component Manager components and support all three 

kinds of color-matching, and may support other kinds as well. QuickDraw GX color 

profile objects contain ColorSync color profile structures, and each structure specifies the 

kind of matching that should be performed with it.

For more information on ColorSync and color-matching methods, see the ColorSync 

Utilities chapter of Inside Macintosh: Advanced Color Imaging. For more information on 

Component Manager components, see the Component Manager chapter of Inside 
Macintosh: More Macintosh Toolbox. 

When Color Matching Occurs

Color profiles are associated with devices. For example, when a QuickDraw GX-aware 

scanning application creates a scanned image, it produces a bitmap and attaches a color 

profile object (containing profile information obtained from the scanner driver) to the 

bitmap. The color profile that is associated with a shape and describes the characteristics 

of the device on which the shape was created is called the source profile. If the colors in 

the bitmap are subsequently converted to another color space by the scanning 

application or by another QuickDraw GX application, QuickDraw GX uses that source 

profile to match the colors when converting. Bitmaps are described in the bitmap shapes 

chapter of Inside Macintosh: QuickDraw GX Graphics.



C H A P T E R  4

Colors and Color-Related Objects

4-32 About Color Set Objects

To display the bitmap requires using another color profile, which is attached to the view 

device object associated with the output device. (View device objects are described in the 

chapter “View-Related Objects” in this book.) That color profile is called the destination 
profile. If the bitmap is displayed on a monitor, QuickDraw GX uses the monitor’s color 

profile, along with the bitmap’s source profile, to match the bitmap’s colors to the 

monitor’s gamut. If the bitmap is printed, QuickDraw GX uses the printer’s profile to 

match the bitmap’s colors to the printer, including generating black and removing 

undercolors where appropriate.

QuickDraw GX color matching occurs automatically, whenever drawing takes place or 

whenever colors are converted from a color space in one base family to a color space in a 

different base family. Most applications need not know what profiles, if any, are attached 

to the colors they manipulate and draw. However, applications can explicitly use color 

profiles for purposes such as print previewing, or they can allow the user to create 

custom, modified profiles for special purposes on particular devices. In addition, 

specialized applications can calibrate display devices and produce color profiles whose 

information is stored in the devices’ drivers for use by QuickDraw GX. Such applications 

make use of the ColorSync Utilities to create their profiles.

Color matching is off by default

Color matching can slow drawing speed. For that reason, when you 
create a view port, the view port attribute gxEnableMatchPort is 
cleared by default. If you want matching to occur when you draw to the 
screen, you must first set gxEnableMatchPort. (Matching occurs 
when appropriate during printing, regardless of the state of the 
gxEnableMatchPort attribute.) View port attributes are discussed in 
the chapter “View-Related Devices” in this book. ◆

For more information on color profiles, see the section “About Color Profile Objects” 

beginning on page 4-35.   

About Color Set Objects

A color set is a QuickDraw GX object that contains a list of colors. Color sets exist to 

provide the colors for indexed color space. Bitmaps and other shapes that use indexed 

color space specify colors as indexes into a color set. Color sets are the QuickDraw GX 

equivalents to color tables in other graphics systems.

QuickDraw GX identifies an individual color set object through a color set reference. To 

obtain information about a color set object, you must send its reference as a parameter to 

a QuickDraw GX function (except that you can determine if two references identify the 

same color set object simply by comparing them for equality, and you can examine a 

reference to see if it is nil). 



C H A P T E R  4

Colors and Color-Related Objects

About Color Set Objects 4-33

Any QuickDraw GX color (gxColor structure) that contains an indexed color value 

includes a reference to a color set object. If a shape’s ink object has a color in indexed 

color space, the color includes a reference to a color set object. If the bitmap in a view 

device object uses indexed color values for its pixels, the bitmap includes a reference to a 

color set object. (View devices are described in the chapter “View-Related Objects” in this 

book.)

Color sets can be device independent because their colors, like any QuickDraw GX 

colors, can be matched across devices. The color information is valid for any display 

device on which the shapes the color sets apply to are drawn. 

Color Set Properties
The interface to color set objects is entirely procedural. You manipulate the information 

in a color set by modifying its properties using QuickDraw GX functions.

Color set objects have four accessible properties, as shown in Figure 4-19. Note that, 

because a color set is an object and not a data structure, the order of the properties as 

shown in Figure 4-19 is completely arbitrary. Properties in italics are references to other 

objects.

Figure 4-19 The color set object and its properties

These are the four accessible properties in a color set:

■ Color space. The color space of all the color values in the color set. A color set can 
have only a single color space, which cannot be gxIndexedSpace.

■ Color-value array. An array of color values (not gxColor structures). Only the types 
of color values specified in the gxSetColor union are valid in a color set.

■ Owner count. The number of existing references to this color set object.

■ Tag list. A list of references to custom information about this color set object, stored in 
private data structures called tag objects. The chapter “Tag Objects” in this book 
describes tag objects in general and how you can use them to add custom information 
to objects.



C H A P T E R  4

Colors and Color-Related Objects

4-34 About Color Set Objects

QuickDraw GX provides functions to manipulate each of these properties. Note that 

there is no color profile property for a color set; profile information for the colors in a 

color set is found in the bitmap structure—or the color structure in the ink object—to 

which the color set is attached. 

Color Values in a Color Set
The array of color values in a color set object can have up to 65,535 entries; each entry 

must be of one of the types defined in the gxSetColor union:

union gxSetColor{

gxCMYKColor cmyk;

gxRGBColor rgb;

gxRGBAColor rgba;

gxHSVColor hsv;

gxHLSColor hls;

gxXYZColor xyz;

gxYXYColor yxy;

gxLUVColor luv;

gxLABColor lab;

gxYIQColor yiq;

gxColorValue gray;

gxGrayAColor graya;

unsigned short pixel16;

unsigned long pixel32;

gxColorValue component[4];

};

The gxSetColor union is an abbreviated color structure (see page 4-53). It has no 

profile or space fields, because individual colors within a color set cannot have 

different color spaces, and because the color profiles for the color values are defined 

elsewhere—in the individual colors, bitmaps, or transfer modes that use this color set. 

Also, the gxSetColor union has no gxIndexedColor field because color sets cannot 

be recursive (that is, colors in a color set cannot refer to colors in other color sets).  

Default Color Sets
QuickDraw GX maintains several default color sets, one for each possible pixel size in 

bitmaps that use indexed space—1, 2, 4, and 8 bits. (Bitmaps with pixel sizes over 8 bits 

cannot use indexed space.) When you create a bitmap with a pixel size of 8 bits or less 

and specify nil for its color set, QuickDraw GX uses the appropriate default color set 

whenever you draw that bitmap.



C H A P T E R  4

Colors and Color-Related Objects

About Color Profile Objects 4-35

Each of the default color sets consists of a gray ramp, using color values in 

gxGraySpace that progress in order from white at an index value of 1 to black at 

the highest index value. For a pixel size of 1 bit, for example, the default color set 

consists of two colors: white and black. 

You do not create a copy of any of the default color sets by calling the GXNewColorSet 

function; that function requires you to supply a specific array of color values.

You can inspect and change any of the default color sets by using 

the GXGetDefaultColorSet function, described on page 4-62, and the 

GXSetDefaultColorSet function, described on page 4-63. Bitmaps are described 

in the bitmap shapes chapter of Inside Macintosh: QuickDraw GX Graphics.   

About Color Profile Objects

A color profile is a QuickDraw GX object that describes the color response of a specific 

device, class of device, or device configuration. As described in the section “Color 

Profiles” beginning on page 4-28, a color profile provides a quantitative description 

of a device’s color gamut in terms of standard, usually device-independent colors. 

QuickDraw GX uses color profiles for color matching when converting colors and when 

drawing shapes.

QuickDraw GX identifies a color profile object through a color profile reference. To 

obtain information about a color profile, you must send its reference as a parameter to a 

QuickDraw GX function (except that you can determine if two references identify the 

same color profile object simply by comparing them for equality, and you can examine a 

reference to see if it is nil).

Any QuickDraw GX color (gxColor structure), such as the color in a shape’s ink object, 

can include a reference to a color profile object. Any bitmap structure, including the 

bitmap in a view device object, can reference a color profile. (View devices are described 

in the chapter “View-Related Objects” in this book.) A transfer mode structure can 

also reference a color profile. If a color, bitmap, or transfer mode contains no specific 

reference to a color profile, QuickDraw GX uses a default profile when converting colors 

and when drawing.

Even though color profiles are inherently device-specific, QuickDraw GX uses them 

consistently and performs color matching when needed. Most applications need not pay 

attention to color profiles or try to associate them with specific devices except when first 

creating colors. If you create a color, you should attach to it a color profile that describes 

the characteristics of the device on which the color was created. If the device’s 

characteristics are equivalent to the Apple 13-inch color monitor—or if you never need to 

display or print the color on another device—you need not attach a profile.



C H A P T E R  4

Colors and Color-Related Objects

4-36 About Color Profile Objects

Color Profile Properties
The interface to color profile objects is entirely procedural. You manipulate the 

information in a color profile by modifying its properties using QuickDraw GX functions.

Color profile objects have three accessible properties, as shown in Figure 4-20. Note that, 

because a color profile is an object and not a data structure, the order of the properties as 

shown in Figure 4-20 is completely arbitrary. Properties in italics are references to other 

objects.

Figure 4-20 The color profile object and its properties

These are the three accessible properties in a color profile object:

■ Profile data. Information specific to the individual profile, that usually includes color 
values and a set of data that plots the response of the device—from zero intensity to 
full intensity—when it generates each of the specified colors.

■ Owner count. The number of existing references to this color profile object.

■ Tag list. A list of references to custom information about this color profile object, 
stored in private data structures called tag objects. The chapter “Tag Objects” in this 
book describes tag objects in general and how you can use them to add custom 
information to objects.

QuickDraw GX provides functions to manipulate each of these properties.

Profile Data
The profile data is the actual color profile information, in the form of a ColorSync color 

profile structure. A QuickDraw GX color profile object is a wrapper for a ColorSync 

profile.

ColorSync profiles are specified by the CMProfile structure, which consists of the 

following parts:

■ Header. A structure containing information such as the size, version, device type, and 
attributes of the profile. The header also contains the XYZ chromaticities of the 
device’s white point and black point, and an options field that specifies the type of 
color matching preferred (such as perceptual, colorimetric, or saturation matching).



C H A P T E R  4

Colors and Color-Related Objects

About Color Profile Objects 4-37

■ Profile chromaticities. A structure that contains the XYZ chromaticities for the six 
primary and secondary colors (red, green, blue, cyan, magenta, yellow) at the limits of 
the device’s gamut.

■ Profile response curves. A variable-sized array of response curves for each of the 
primary and secondary colors, plus gray (plus black generation and undercolor 
removal for printer profiles).

■ Name string. An international string, which consists of a Macintosh script code 
followed by a 63-byte text string, that identifies the profile. (Note that these are 
Macintosh script codes, which differ from QuickDraw GX script codes; Macintosh 
script codes are described in the Script Manager chapter of Inside Macintosh: Text.)

■ Custom data. Information used by custom color-matching methods. It may include 
other kinds of color values or response curves.

The details of the CMProfile structure, including explanations of some of the terms 

used here, are given in the ColorSync Utilities chapter of Inside Macintosh: Advanced Color 
Imaging. All parts of the structure except for the custom data are accessible through 

ColorSync function calls. QuickDraw GX defines no structures or types for the profile 

data of a color profile object, although you can access the information if you know its 

format. See “Manipulating the Profile Data in a Color Profile Object” beginning on 

page 4-48.   

The Default Color Profile
QuickDraw GX maintains a default color profile that it uses for color matching when no 

color profile is explicitly provided—that is, when the profile field of a color structure 

or bitmap structure is nil. The default color profile reflects the color response of the 

Apple 13-inch color monitor, as defined by ColorSync version 1.0.

You do not create a copy of the default color profile by calling the GXNewColorProfile 

function; that function requires you to supply profile data for the object you are creating. 

Also, you cannot change the characteristics of the default color profile object; there is no 

GXSetDefaultColorProfile function.

You can determine the actual profile chromaticities used for the default QuickDraw GX 

color profile by retrieving it and examining its profile data. 

Zero-Length Profiles
QuickDraw GX automatically performs color matching whenever it draws or converts 

colors, and if you specify a nil color profile reference in any situation, QuickDraw GX 

uses the default color profile rather than using no profile.

In some cases, however, you may want to prevent color matching from occurring for 

individual colors or shapes, such as when comparing or calibrating different devices. To 

do so, you can use a zero-length profile. A zero-length profile is a color profile object in 

which the profile data is of zero length. It is a valid QuickDraw GX object—its reference 

is not nil—but it contains no data. If you attach a zero-length profile to a color, 

QuickDraw GX performs no matching when that color is drawn or converted.



C H A P T E R  4

Colors and Color-Related Objects

4-38 Using Colors and Color-Related Objects

If, for example, you want to see how each attached device represents pure blue, you can 

specify pure blue for an ink’s color, attach a zero-length profile to it, and draw a shape 

with that color to each device. If instead you specify nil for the profile when creating 

a color, QuickDraw GX matches the color, using the default color profile and each 

device’s color profile, when drawing.

In the case of color conversions that require a profile (those between base families, such 

as from RGB to XYZ), QuickDraw GX uses the following conventions:

■ If both profiles are zero-length, QuickDraw GX uses the default profile as both the 
source and the destination profile.

■ If only one profile is zero-length, QuickDraw GX uses the other profile as both the 
source and the destination profile.

Note

To turn off color matching entirely when drawing to a view port, make 
sure that the gxEnableMatchPort attribute for that view port is 
cleared. (It is cleared by default.) View port attributes are discussed in 
the chapter “View-Related Devices” in this book. ◆

You can create a zero-length profile using the GXNewColorProfile function, described 

on page 4-79, or the GXSetColorProfile function, described on page 4-89.   

Using Colors and Color-Related Objects

This section describes how to create and use colors, color sets, and color profile. It shows 

how you can

■ assign colors to shapes and color profiles to colors

■ test and compare colors

■ convert colors from one color space to another, and apply color matching when 
converting and when scanning, displaying, or printing

■ create and manipulate color set objects, to support indexed colors

■ create and manipulate color profile objects, to support color matching

Assigning Colors to Shapes
Colors exist to affect the appearance of drawn shapes. QuickDraw GX shapes other than 

bitmaps and pictures get their color from the ink object that is part of the shape. One 

property of the ink object is color, a gxColor structure that describes the color of the 

associated shape.



C H A P T E R  4

Colors and Color-Related Objects

Using Colors and Color-Related Objects 4-39

To assign or change a shape’s color, therefore, you typically call the GXSetInkColor 

function for the ink associated with the shape whose color you are assigning. You can 

also call GXSetShapeColor, which performs the same task but allows you the 

convenience of specifying the shape object involved, rather than the ink object that 

actually contains the color information. (Conversely, to inspect the color of a shape, 

you call GXGetInkColor or GXGetShapeColor.) The GXSetInkColor, 

GXSetShapeColor, GXGetInkColor, and GXGetShapeColor functions are 

described in the chapter “Ink Objects” in this book.

Shapes that need more than one color are a special case. Bitmap shapes do not use the 

color information in their ink object. Instead, the color of each pixel in a bitmap shape 

is specified as a pixel value in the gxBitmap structure; depending on the storage size 

of each pixel, that pixel value may be an actual color value or it may be an index 

into a color set. To set the color of an individual pixel in a bitmap, you call the 

GXSetShapePixel function, specifying which pixel to modify and what its new 

color or new index value is. (Conversely, you can inspect the color of a pixel by 

calling GXGetShapePixel.)

Modifying the color values in a color set, as described in the section “Manipulating the 

Colors in a Color Set Object” on page 4-47, is another way to change the color or colors 

of a shape. In a bitmap using indexed color space, any pixels whose indexes refer to 

color values you have modified will be changed in appearance, even though their pixel 

values remain unchanged. You can use this technique to perform simple manipulations 

of a shape’s colors.

Bitmap shapes, the gxBitmap structure, and the functions GXSetShapePixel and 

GXGetShapePixel are described in the bitmap shapes chapter of Inside Macintosh: 
QuickDraw GX Graphics. 

Assigning Color Profiles to Colors
When the user creates or modifies shapes’ colors, you assign colors to the ink objects or 

pixels associated with those shapes. To assure proper color matching, you can assign a 

color profile to each color or bitmap that the user creates. Normally, the user works with 

a monitor attached to the system; you can find the profile for that monitor by examining 

the bitmap property of the view device associated with the view port the user draws 

into. You can attach that profile to the user’s colors. In the case of a single shape 

displayed on more than one device, you may have to pick (or allow the user to pick) 

which view device is the controlling one. In a gxColor structure or a gxBitmap 

structure, you place the color profile reference in the profile field. 

If you assign no color profile to a color or bitmap, Quickdraw GX uses the default color 

profile when drawing or converting. 

If you want to make sure that no matching occurs, assign a zero-length profile to the 

color or bitmap. A zero-length profile is a color profile object whose profile data is of 

zero length. 



C H A P T E R  4

Colors and Color-Related Objects

4-40 Using Colors and Color-Related Objects

Comparing and Testing Colors
QuickDraw GX provides several functions that allow you to analyze individual color 

values for various purposes. 

Checking for Out-of-Gamut Colors

If you have a color value that you want to test against a given color space or color set, 

you can use the GXCheckColor function. For example, you can use GXCheckColor to 

see if a given color is representable on a particular printer. If the color is not directly 

representable—that is, if it is out of gamut—you could alert the user to that fact. You 

could also call the GXConvertColor function to mimic the automatic color conversion 

that would take place in printing, to determine what color the printer would use to 

represent your given color.

Both GXCheckColor and GXConvertColor require the color space and color profile of 

the device the color is destined for. To get the color space and color profile of a printer, 

you can use the GXGetPrinterViewDevice and GXGetViewDeviceBitmap 

functions.

The GXCheckColor function is described on page 4-57. The GXConvertColor function 

is described on page 4-60. The GXGetPrinterViewDevice function is described in 

Inside Macintosh: QuickDraw GX Printing. The GXGetViewDeviceBitmap function is 

described in the chapter “View-Related Objects” in this book.

Checking Colors for Closeness and Color Space

If you want to compare a user-selected color with the range of colors in a color set, 

you can use the GXGetColorDistance function to determine how far the selected 

color is from any of the colors in the color set. If the selected color is close enough (in 

color-space distance) to one of the existing colors in the color set, you could call 

the GXConvertColor function to change the selected color to that closest color. 

Alternatively, you could call GXGetColorSetParts and GXSetColorSetParts to 

add the selected color to the color set or replace another color in the color set with the 

selected color.

As another example, suppose that you open a document containing shapes of various 

colors, and you want to save a grayscale version of that document. You might call 

GXCheckColor on each color in the document, and then GXConvertColor on each 

color whose color space is not already gxGraySpace. (You might also save the original 

color information as a tag object attached to each shape or ink, for later restoration.)

The GXGetColorDistance function is described on page 4-58. The GXConvertColor 

function is described on page 4-60.   The GXGetColorSetParts function is described 

on page 4-75; the GXSetColorSetParts function is described on page 4-76. The 

GXCheckColor function is described on page 4-57.



C H A P T E R  4

Colors and Color-Related Objects

Using Colors and Color-Related Objects 4-41

Predicting Drawing Results

You can preflight, or predict, the results of a drawing operation by using the 

GXCombineColor function. You supply a destination color, and GXCombineColor tells 

you what would happen if a shape using the ink object you specify were drawn to a 

destination of that color. This function is as much a test of transfer mode as it is of source 

and destination colors; you can use it to see how, or even if, drawing occurs under the 

conditions you specify. For example, if you are using the gxMigrateMode transfer 

mode, you may want to adjust the operand so that the result color exactly equals the 

source color for a particular destination color. You can call GXCombineColor with 

different operand values until you get the result you want, and then draw the actual 

shape. Transfer modes, operands, and source and destination colors are described in the 

chapter “Ink Objects” in this book.

The GXCombineColor function is described on page 4-59. 

Converting and Matching Colors
Although conversion among color spaces happens automatically whenever necessary 

during the drawing process, you can also explicitly convert colors if you need to. The 

following code fragment uses GXConvertColor to modify the hue of a shape, 

preserving its luminance and saturation. Such a technique is one way to perform color 

animation. The code gets the color of shape theShape, converts it to HSV space, 

increases the hue value just enough to make a perceptible difference, reassigns the color 

to the shape, and draws the shape:

gxColor oldColor;

GXGetShapeColor(theShape, &oldColor);

GXConvertColor(&oldColor, hsvSpace, nil, nil);

oldColor.element.hsv.hue += 0x300;

GXSetShapeColor(theShape, &oldColor);

GXDrawShape(theShape);

(Note that the final nil parameter in the call to GXConvertColor means that the 

converted color reassigned to the shape uses the default color profile, whether or not the 

original one did.)

Color matching happens automatically whenever you draw a shape or convert colors. If 

the profile reference in a color is nil, color correction still occurs when needed, as when 

converting from RGB to CMYK color space. In those cases, the default profile is used.

In some cases, you may want to prevent color matching from occurring for an individual 

color, such as when comparing or calibrating different devices. If you attach a 

zero-length profile to a color, QuickDraw GX performs no matching when that color is 

drawn or converted to another color space. 

To prevent color matching from occurring during all drawing to a given view port, clear 

the gxEnableMatchPort attribute of that view port. Note that, because color matching 

can slow down the drawing process, this attribute is cleared by default on all view ports. 



C H A P T E R  4

Colors and Color-Related Objects

4-42 Using Colors and Color-Related Objects

Therefore, if you want color matching to occur when drawing to the screen, you must 

explicitly set gxEnableMatchPort. Even if you do want matching to occur, you might 

still clear gxEnableMatchPort temporarily during scrolling or other repetitive 

drawing processes. (For printing, QuickDraw GX automatically takes care of making 

sure that color matching occurs when it is needed.)

If you want to specify a particular kind of color-matching method other than the one 

specified in the profile attached to the color you are matching, your application can 

either modify the information in the color profile object using QuickDraw GX calls, or 

make calls to the ColorSync Utilities to specify the one you want.

To allow the user to preview on the screen what printing would look like, you can mimic 

on the monitor the profile characteristics of the printer. You need to convert the color you 

are drawing to the color space of the printer—applying the printer’s color profile—and 

then convert that color back to the monitor’s color space—applying the monitor’s color 

profile—and then draw. One way to do that is to create an offscreen view group with the 

printer’s color space and color profile, and draw into a view port in that view group. 

Then, draw from the bitmap of the offscreen view port into the view port of the monitor.

Color matching is discussed in the section “Color Conversion and Color Matching” 

beginning on page 4-26. Color profiles, the default profile, and zero-length profiles are 

discussed in the section “About Color Profile Objects” beginning on page 4-35. The 

gxEnableMatchPort view port attribute is described in the chapter “View-Related 

Devices” in this book.   

Creating and Manipulating Color Set and Color Profile Objects
This section describes how you can create and interact with color set objects and color 

profile objects as whole entities—to create, dispose of, copy, compare, clone, load, and 

unload them. Because color sets and color profiles are QuickDraw GX objects, and you 

use similar sets of functions to manipulate them, they are considered together in each of 

the subsequent sections. Manipulating the individual properties of color sets and color 

profiles is described under “Manipulating Object Properties of Color Sets and Color 

Profiles” beginning on page 4-46.

Creating and Disposing of a Color Set or Color Profile

QuickDraw GX provides the GXNewColorSet function to allow you to create a new 

color set. You can also create a new color set that is a copy of an existing color set by 

calling GXCopyToColorSet. 

Once you have created a color set object, you can attach it to a color structure, bitmap 

structure, or transfer mode structure by putting a reference to it in the color or bitmap 

or transfer mode. Colors, bitmaps, and transfer modes also include a specification of 

the color space they use; if they use a color set, they must use gxIndexedSpace for 

their color space.



C H A P T E R  4

Colors and Color-Related Objects

Using Colors and Color-Related Objects 4-43

The following code fragment creates a simple color set (theSet) with two RGB colors: 

black and white. It assigns the color set to the bitmap structure theBits, which it then 

assigns to the bitmap shape theBitmap, which it finally assigns to the view device 

theDevice. The code then disposes of the color set and bitmap shape since those 

references are no longer needed:

gxSetColor theColors[2];

gxSetColor *pColor;

gxColorSet theSet;

gxBitmap theBits

gxShape theBitmap

.

. /* initialize theBits and theBitmap (not shown) */

.

pColor = &theColors[0];

pColor->rgb.red = pColor->rgb.green = 

pColor->rgb.blue = gxColorValue1;

pColor++;

pColor->rgb.red = pColor->rgb.green = pColor->rgb.blue = 0x0000;

theSet = GXNewColorSet(gxRGBSpace, 2, theColors);

theBits.set = theSet;

GXSetBitmap(theBitmap, &theBits, nil);

GXSetViewDeviceBitmap(theDevice, theBitmap);

GXDisposeColorSet(theSet);

GXDisposeShape(theBitmap);

Note

If you use GXNewColorSet to create a color set, and then assign it as a 
default color set with GXSetDefaultColorSet, be sure to dispose of 
your reference to that color set immediately after assigning it as the 
default. That way the new default color set will have the proper owner 
count of 1, as required by QuickDraw GX. ◆

For color profile objects, QuickDraw GX provides the GXNewColorProfile function 

(and the GXCopyToColorProfile function) to allow you to create new color profiles. If 

you have profile information that you want to attach to a color or to a bitmap, you can 

put that information in object form with GXNewColorProfile and attach it (by 

reference) to the color or bitmap. For simple drawing, you typically never have to do 

this, but you might want to create a color profile object in these special instances:

■ If you want to inhibit color matching for a particular color, you can create a 
zero-length profile (one with no profile data) and attach it to the color.

■ If you have access to a profile structure, either as a resource or through calls to the 
ColorSync Utilities, you can turn that structure into a QuickDraw GX color profile by 
creating a color profile object with that structure as the profile data. 



C H A P T E R  4

Colors and Color-Related Objects

4-44 Using Colors and Color-Related Objects

■ If your application is a scanning application, it can create a color profile object from 
information in the scanner’s driver and attach that profile to the bitmap shapes it 
creates. 

■ If your application is a calibration program that develops profile information for a 
device, it can create a color profile object to hold the profile information it generates 
during the calibration process and to display the results to the operator of the 
calibration program. 

If your program is a device driver, it contains profile information in the form of color 

profile resources; it does not need to create color profile objects. How device drivers 

store color profile information is described in the printing resources chapter of Inside 
Macintosh: QuickDraw GX Printing Extensions and Printer Drivers.

To delete your application’s reference to a color set or color profile object, call the 

GXDisposeColorSet or GXDisposeColorProfile function. Calling either function 

may or may not actually release the memory allocated for the object, depending on the 

object’s owner count. Both of these functions decrease the owner count of the color set or 

color profile by 1; if that brings the owner count to zero, the object is completely deleted 

and its memory released. See “Manipulating Owner Counts” on page 4-46. 

The GXNewColorSet function is described on page 4-64; the GXNewColorProfile 

function is described on page 4-79. The GXDisposeColorSet function is described on 

page 4-65; the GXDisposeColorProfile function is described on page 4-80.

Copying, Comparing, and Cloning Color Sets and Color Profiles

You can use the GXCopyToColorSet function to copy color information from one color 

set object to another or to create a new copy of an existing color set. You can use the 

GXCopyToColorProfile function to copy profile information from one color profile 

object to another or to create a new copy of an existing color profile.

You can test if two references refer to the same color set or color profile object by simply 

comparing the references for equality. You can also test two different color set or color 

profile objects for equality with the GXEqualColorSet and GXEqualColorProfile 

functions, respectively. For two color sets to be equal, their color spaces and colors must 

be identical; for two color profiles to be equal, their profile information and their 

attributes must be equal. In either case, the common object properties (owner count and 

tag list) do not need to be identical for the objects to be considered equal.

Object copies created with the GXCopyToColorSet and GXCopyToColorProfile 

functions are always equal, in terms of the criteria just listed, to the objects from which 

they were copied.

In certain circumstances, you may want to copy a reference to a color set or color profile 

without actually copying the object. For example, you may want two variables to refer to 

the same color set or color profile object, so that altering one of them affects both. This is 

called cloning an object, rather than copying it. You can use the GXCloneColorSet and 

GXCloneColorProfile functions to clone a color set or color profile, respectively.



C H A P T E R  4

Colors and Color-Related Objects

Using Colors and Color-Related Objects 4-45

Functionally, GXCloneColorSet and GXCloneColorProfile do nothing more than 

increase the owner count of the specified object. For more information about cloning 

objects, see the chapter “Introduction to Objects” in this book. For information on 

manipulating owner counts, see the section “Manipulating Owner Counts” on page 4-46.

The following code fragment initializes a bitmap structure to be used for offscreen 

drawing, assigns a color set object (commonColorSet) to it, and then creates a bitmap 

shape (shMap) with that bitmap. The code, for its own purposes of tracking owner count 

(not shown here), clones the color set rather than just assigning it to the bitmap shape. In 

general, cloning is not necessary when you assign a color set to a bitmap, because when 

you then call GXNewBitmap to create the bitmap shape (as this code fragment does), 

QuickDraw GX increases the color set’s owner count for you.

gxBitmap map;

gxPoint pt = {0, 0};

gxShape shMap = nil;

.

. /* set the bitmap’s width, height, and pixel size */

.

map.rowBytes = 0L;

map.image = nil;

map.space = gxIndexedSpace;

map.profile = nil;

map.set = GXCloneColorSet(commonColorSet);

shMap = GXNewBitmap(&map, &pt);

QuickDraw GX will decrease the owner count of the color set when the shape shMap is 

disposed of, but the application code will also need to call GXDisposeColorSet at 

some point, to balance the GXCloneColorSet call it makes here.

The GXCopyToColorSet function is described on page 4-66; the 

GXCopyToColorProfile function is described on page 4-81. The GXEqualColorSet 

function is described on page 4-67; the GXEqualColorProfile function is described 

on page 4-82. The GXCloneColorSet function is described on page 4-68; the 

GXCloneColorProfile function is described on page 4-83. 

Loading and Unloading Color Sets and Color Profiles

Although you rarely need to, you can influence memory-allocation decisions involving 

objects that you have created. If your application needs to have a color set object or color 

profile object in memory, it can force QuickDraw GX to load the object into memory. 

When your application no longer needs the color set or color profile in a loaded state, it 

can instruct QuickDraw GX to unload the object.



C H A P T E R  4

Colors and Color-Related Objects

4-46 Using Colors and Color-Related Objects

You call the GXLoadColorSet or GXLoadColorProfile function to make sure 

that a color set or color profile object is in memory; if it has been unloaded, 

QuickDraw GX brings it into memory. You can call the GXUnloadColorSet or 

GXUnloadColorProfile function to instruct QuickDraw GX that it is free to unload 

the color set or color profile at any time. These functions are described in the memory 

management chapter of Inside Macintosh: QuickDraw GX Environment and Utilities. 

Manipulating Object Properties of Color Sets and Color Profiles
This section describes how to manipulate the common object properties of color sets and 

color profiles: owner count and tag list. It also describes how to manipulate the colors of 

a color set and the profile data of a color profile.

For manipulating color sets and color profiles as whole objects, see “Creating and 

Manipulating Color Set and Color Profile Objects” beginning on page 4-42. 

Manipulating Owner Counts

The owner count of an object indicates the number of current references to that object. In 

general, QuickDraw GX manages owner counts for you. For example, when you create a 

new color set object, QuickDraw GX sets the owner count of the new color set to 1. If you 

assign that color profile object to a bitmap structure and then assign that bitmap 

structure to a bitmap shape, QuickDraw GX increments the color profile’s owner count, 

corresponding to the new reference to the color profile contained in the bitmap structure.

In some situations, as when switching color profiles or color sets among objects that 

reference them, you may want to directly manage their owner counts yourself. To do so, 

you can 

■ use the functions GXGetColorSetOwners or GXGetColorProfileOwners to 
determine the current owner count

■ use the functions GXCloneColorSet or GXCloneColorProfile to increment the 
owner count whenever you create a new reference to the object

■ use the functions GXDisposeColorSet or GXDisposeColorProfile to decrement 
the owner count, freeing the memory used by the color set or color profile if the 
owner count goes to 0

The code fragment on page 4-45 shows an example of an application explicitly managing 

the owner count of a color profile object.

The GXGetColorSetOwners function is described on page 4-69. The 

GXGetColorProfileOwners function is described on page 4-84.

In the chapter “Style Objects” in this book, the section on manipulating a style object’s 

owner count discusses two common owner-count problems and how to avoid them. The 

problems are discussed in terms of style objects, but they apply equally well to color sets 

and color profiles. Refer to that discussion if you find that the color-related objects you 

create have owner counts that are higher or lower than you expect. 



C H A P T E R  4

Colors and Color-Related Objects

Using Colors and Color-Related Objects 4-47

Getting and Setting Tag References

You can examine the list of references to tag objects currently associated with a 

color set object or color profile object by using the GXGetColorSetTags or 

GXGetColorProfileTags function. Once you create a tag object, you can attach 

it to its object using the GXSetColorSetTags or GXSetColorProfileTags function. 

You can attach as many tag objects as you like to a color set or color profile.

Tag objects and the basic functions for manipulating them are described in the chapter 

“Tag Objects” in this book. That chapter also lists the common tag types defined and 

reserved by Apple Computer, Inc.

The GXGetColorSetTags function is described on page 4-70; the 

GXGetColorProfileTags function is described on page 4-85. 

The GXSetColorSetTags function is described on page 4-71; the 

GXSetColorProfileTags function is described on page 4-86. 

Manipulating the Colors in a Color Set Object
If you are using indexed color space, you can gain access to the array of colors in the 

space’s color set or to any contiguous subset of the colors in the array. You can then 

inspect, rearrange, modify, or add or delete colors from the array.

For example, suppose you want to sort the colors in a color set so that they will 

display in a visually useful manner in a palette for the user. You could first call the 

GXGetColorSet function to get the array of colors. You could then sort the colors (say, 

by hue (H) in gxHSVSpace), and then return the array to the color set by calling the 

GXSetColorSet function.

Alternatively, suppose you already have a luminance-sorted array of colors in a color set, 

and you want to convert the first (darkest) color in the array to pure black. Instead of 

accessing the entire array, you can call GXGetColorSetParts to get only the first color 

in the array. You can then change that color to black, and reinsert it in the color set by 

calling GXSetColorSetParts. 

To add colors to or delete colors from a color set, call GXGetColorSet, modify the 

color-value array as needed, and then call GXSetColorSet to place the new array in 

the color set.

To change the color space of a color set, follow this sequence of calls:

■ Call GXGetColorSet to obtain the color-value array.

■ Call GXConvertColor on each color value in the array to convert the individual 
color values from one space to the other.

■ Call GXSetColorSet to place the same array in the color set, but with a different 
value specified for the color space. 

Remember that simply changing the color space of a color set does not convert the 

individual color values from one space to the other.



C H A P T E R  4

Colors and Color-Related Objects

4-48 Using Colors and Color-Related Objects

As an example of color-set manipulation, the following code fragment from a drawing 

routine matches each of the colors of a color set used by the shape matchShape to a 

specific color profile (qmsProfile). The code uses the GXGetColorSet function to fill 

out a temporary array of color values (mycolors) from the color set, converts each color 

(from RGB space with a nil profile to RGB space with qmsProfile, in this case) with 

the GXConvertColor function, and then reassigns the color values to the color set 

with the GXSetColorSet function.

gxSetColor mycolors[256];

oldColorCount = GXGetColorSet(GXGetShapeColorSet(matchShape), 

nil, mycolors);

for (i = 0; i < oldColorCount; i++) 

{

gxColor tmpColor;

tmpColor.space = gxRGBSpace;

tmpColor.profile = nil;

tmpColor.element.rgb = mycolors[i].rgb;

GXConvertColor(&tmpColor,gxRGBSpace, nil, qmsProfile);

mycolors[i].rgb = tmpColor.element.rgb;

}

GXSetColorSet(GXGetShapeColorSet(matchShape), gxRGBSpace, 

oldColorCount, mycolors);

The GXGetColorSet function is described on page 4-73. The GXSetColorSet function 

is described on page 4-74. The GXGetColorSetParts function is described on 

page 4-75. The GXSetColorSetParts function is described on page 4-76.     

Manipulating the Profile Data in a Color Profile Object
QuickDraw GX defines no structures or types for the profile data of a color profile object. 

For drawing or converting colors, most applications have no need to access or alter the 

data in a color profile object. For special needs, however, such as changing the type of 

match you want to perform, using a custom color-matching method, or inspecting the 

name of a profile, you can—with knowledge of the details of the CMProfile structure—

access and alter the profile data of an existing color profile object. Also, if your 

application is a calibration program that creates color profiles for devices, or if it is an 

imaging application that allows users to customize color profiles for specific uses, you 

need access to profile information in order to make or modify a color profile object.

One way to do this is to use ColorSync functions to manipulate a ColorSync profile 

directly, and then use the QuickDraw GX function GXNewColorProfile to convert it to 

a color profile object. ColorSync profiles are commonly in the ColorSync profiles folder 

on the user’s system, and ColorSync can provide you with a list of those profiles.



C H A P T E R  4

Colors and Color-Related Objects

Colors and Color-Related Objects Reference 4-49

More directly, you can call the GXGetColorProfile function to obtain the profile data 

for a given profile. Knowing the structure of a ColorSync color profile, you can then 

modify that information as needed, and return the altered data to the color profile object 

by calling the GXSetColorProfile function.

Note

If you alter the header of a ColorSync color profile to specify a particular 
color space in the dataType field, and then apply that profile to a color 
defined in terms of a different color space, QuickDraw GX ignores the 
new header data and specifies the color space implied by the color value 
you pass to the profile. ◆

Yet another approach is to directly modify the profile data of a color profile object 

in place, in QuickDraw GX memory. First, you call the GXLockColorProfile 

function to prevent the profile data from being relocated, and then you call 

GXGetColorProfileStructure to get a pointer to the profile data. After 

manipulating the data, you must call GXUnlockColorProfile to release the 

data for relocation. Remember that you cannot change the size of the profile data 

with these calls, only its contents; if your manipulations require a change in the 

size of the data, you must use GXGetColorProfile and GXSetColorProfile. 

IMPORTANT

Memory-handling complications can occur with locked objects. Locking 
an object fragments the QuickDraw GX heap, which can result in lower 
performance. Furthermore, if a fragmented-memory condition occurs 
during a call, QuickDraw GX may unlock all objects and restart the call. 
Therefore, be careful about performing memory-intensive operations 
while there are locked objects in QuickDraw GX memory; they may 
become unlocked without warning. ▲

The GXNewColorProfile function is described on page 4-79. The 

GXGetColorProfile function is described on page 4-88. The GXSetColorProfile 

function is described on page 4-89. The GXLockColorProfile function is described 

on page 4-90. The GXGetColorProfileStructure function is described on 

page 4-92.The GXUnlockColorProfile function is described on page 4-91.     

Colors and Color-Related Objects Reference

This section provides reference information to the data structures and functions that 

allow you to work with colors and create and manipulate color sets and color profiles, 

and to alter their properties. It describes

■ the constants and data types that define colors and color-related objects

■ the QuickDraw GX functions that operate on colors

■ the QuickDraw GX functions that operate on color sets

■ the QuickDraw GX functions that operate on color profiles



C H A P T E R  4

Colors and Color-Related Objects

4-50 Colors and Color-Related Objects Reference

Constants and Data Types

This section describes the constants and data types that define

■ colors and color spaces

■ color set objects 

■ color profile objects

Color-Component Values

Each color component in a color space (other than an indexed color space) is described 

by a numeric color-component value, defined by the gxColorValue type definition:

typedef unsigned short gxColorValue;

Color-component values can vary from 0 (no intensity) to 0xFFFF (maximum intensity). 

You can use the constant gxColorValue1 to represent 0xFFFF.

Color Values

Color-component values combine to form color values. Each color value is a complete 

specification of a single color in a given color space. QuickDraw GX recognizes the 

following ten fundamental types of color values:

■ CMYK color value. It contains color-component values for cyan, magenta, yellow, and 
black. It is defined by the gxCMYKColor type definition:

struct gxCMYKColor{

gxColorValue cyan;

gxColorValue magenta;

gxColorValue yellow;

gxColorValue black;

};

■ RGB color value. It contains color-component values for red, green, and blue. It is 
defined by the gxRGBColor type definition:

struct gxRGBColor{

gxColorValue red;

gxColorValue green;

gxColorValue blue;

};



C H A P T E R  4

Colors and Color-Related Objects

Colors and Color-Related Objects Reference 4-51

■ Alpha-channel RGB color value. It contains color-component values for red, green, 
and blue, plus a fourth (alpha) color-component value representing opacity. It is 
defined by the gxRGBAColor type definition:

struct gxRGBAColor{

gxColorValue red;

gxColorValue green;

gxColorValue blue;

gxColorValue alpha;

};

■ HSV color value. It contains color-component values for hue, saturation, and value. It 
is defined by the gxHSVColor type definition:

struct gxHSVColor{

gxColorValue hue;

gxColorValue saturation;

gxColorValue value;

};

■ HLS color value. It contains color-component values for hue, lightness, and 
saturation. It is defined by the gxHLSColor type definition:

struct gxHLSColor{

gxColorValue hue;

gxColorValue lightness;

gxColorValue saturation;

};

■ XYZ color value. It contains color-component values for the X, Y, and Z tristimulus 
values. It is defined by the gxXYZColor type definition:

struct gxXYZColor {

gxColorValue x;

gxColorValue y;

gxColorValue z;

};

■ Yxy color value. It contains color-component values for the Y, x, and y chromaticity 
axes. (Note that the Y component is identified in this color structure as capY.) It is 
defined by the gxYXYColor type definition:

struct gxYXYColor {

gxColorValue capY;

gxColorValue x;

gxColorValue y;

};



C H A P T E R  4

Colors and Color-Related Objects

4-52 Colors and Color-Related Objects Reference

■ L*u*v* color value. It contains color-component values for the L*, u*, and v* axes. It is 
defined by the gxLUVColor type definition:

struct gxLUVColor {

gxColorValue l;

gxColorValue u;

gxColorValue v;

};

■ L*a*b* color value. It contains color-component values for the L*, a*, and b* axes. It is 
defined by the gxLABColor type definition:

struct gxLABColor {

gxColorValue l;

gxColorValue a;

gxColorValue b;

};

■ YIQ color value. It contains color-component values for the Y, I, and Q axes. It is 
defined by the gxYIQColor type definition:

struct gxYIQColor{

gxColorValue y;

gxColorValue i;

gxColorValue q;

};

■ Grayscale color value. It contains a single color-component value for luminance. 

■ Alpha-channel grayscale color value, containing a color-component value for 
luminance, plus a second (alpha) color-component value representing opacity. It is 
defined by the gxGrayAColor type definition:

struct gxGrayAColor{

gxColorValue gray;

gxColorValue alpha;

};

■ Indexed color value. It contains an index value (of type gxColorIndex) and a 
reference to a color set object. The color is obtained by using the index value as an 
offset into the color set. Indexed color is defined by the gxIndexedColor type 
definition:

typedef long gxColorIndex;

struct gxIndexedColor{

gxColorIndex index;

gxColorSet set;

};



C H A P T E R  4

Colors and Color-Related Objects

Colors and Color-Related Objects Reference 4-53

The Color Structure

A color value, plus a specification of the color space it belongs to, plus an optional 

reference to a color profile to use for color matching, constitute a color in 

QuickDraw GX. A color is a structure defined by the gxColor type definition:

struct gxColor{

gxColorSpace space;

gxColorProfile profile;

union {

struct gxCMYKColor cmyk;

struct gxRGBColor rgb;

struct gxRGBAColor rgba;

struct gxHSVColor hsv;

struct gxHLSColor hls;

struct gxXYZColor xyz;

struct gxYXYColor yxy;

struct gxLUVColor luv;

struct gxLABColor lab;

struct gxYIQColor yiq;

gxColorValue gray;

struct gxGrayAColor graya;

unsigned short pixel16;

unsigned long pixel32;

struct gxIndexedColor indexed;

gxColorValue component[4];

} element;

};

Field descriptions

space The color space for this color.

profile A reference to a color profile to be used for color matching when 
drawing or when converting this color to another color space. If this 
field is nil, the default QuickDraw GX color profile is used for 
matching.

element The color value for this color.

The element field is a union that can contain any one of the following fields:

cmyk A CMYK color value.

rgb An RGB color value.

rgba An alpha-channel RGB color value.

hsv An HSV color value.

hls An HLS color value.

xyz An XYZ color value.

yxy A Yxy color value.



C H A P T E R  4

Colors and Color-Related Objects

4-54 Colors and Color-Related Objects Reference

luv An L*u*v* color value.

lab An L*a*b* color value.

yiq A YIQ color value.

gray A grayscale color value

graya An alpha-channel grayscale color value.

pixel16 A 16-bit pixel value, in gxRGB16Space format.

pixel32 A 32-bit pixel value, in any of the 32-bit color space formats.

indexed An indexed color value.

component An array of 4 undefined color-component values. Useful for 
indexing through the color one component at a time, as when 
working with different transfer modes for each color component.

Color Packing

You can store color values according to their standard definitions, or in packed format to 

save space. QuickDraw GX recognizes six kinds of color-value storage, defined in the 

gxColorPackingTypes enumeration:

enum gxColorPackingTypes{

gxNoColorPacking = 0x0000,

gxAlphaSpace = 0x0080,

gxWord5ColorPacking = 0x0500,

gxLong8ColorPacking = 0x0800,

gxLong10ColorPacking = 0x0a00,

gxAlphaFirstPacking = 0x1000 

};

Constant descriptions

gxNoColorPacking
No packing applied; colors are stored with 16 bits per component.

gxAlphaSpace An alpha channel is included in the color description. The alpha 
component follows the other components in storage.

gxWord5ColorPacking
Colors are stored with 5 bits per component. Unused bits in the 
storage space are the high-order bits.

gxLong8ColorPacking
Colors are stored with 8 bits per component. Unused bits in the 
storage space are the high-order bits. 

gxLong10ColorPacking
Colors are stored with 10 bits per component. Unused bits in the 
storage space are the high-order bits. 

gxAlphaFirstPacking
An alpha channel is included in the color description. The alpha 
component precedes the other components in storage.



C H A P T E R  4

Colors and Color-Related Objects

Colors and Color-Related Objects Reference 4-55

The color-packing values are flags that are added to color-space definitions to define 

different kinds of packed color spaces. Note that the specification of an alpha channel in 

a color space is achieved with a color-packing flag. To see how these values are applied 

to the definitions of color spaces, see the section “Color Spaces,” next.

When QuickDraw GX converts from an unpacked color space to a packed color space, 

the color-component values are truncated (low-order bits lost) to fit the packed format. 

When QuickDraw GX converts from a packed color space to an unpacked color space, 

the color-component values are shifted leftward (padded with zeros in the low-order 

bits) to fit the unpacked format.

Color Spaces

A color space defines how a color value is represented. Each color space specifies the 

number, order, and size of the color-component values that make up a color value in that 

space. QuickDraw GX recognizes 31 color spaces, defined in the gxColorSpace 

enumeration:

enum gxColorSpaces{

gxNoSpace = 0,

gxRGBSpace,

gxCMYKSpace,
gxHSVSpace,

gxHLSSpace,

gxYXYSpace,

gxXYZSpace,

gxLUVSpace,

gxLABSpace,

gxYIQSpace,

gxNTSCSpace = gxYIQSpace,

gxPALSpace = gxYIQSpace,

gxGraySpace,

gxIndexedSpace,

gxRGBASpace = gxRGBSpace + gxAlphaSpace,

gxGrayASpace = gxGraySpace + gxAlphaSpace,

gxRGB16Space = gxWord5ColorPacking + gxRGBSpace,

gxRGB32Space = gxLong8ColorPacking + gxRGBSpace,

gxARGB32Space = gxLong8ColorPacking + gxAlphaFirstPacking 

+ gxRGBASpace,

gxCMYK32Space = gxLong8ColorPacking + gxCMYKSpace,

gxHSV32Space = gxLong10ColorPacking + gxHSVSpace,

gxHLS32Space = gxLong10ColorPacking + gxHLSSpace,
gxYXY32Space = gxLong10ColorPacking + gxYXYSpace,

gxXYZ32Space = gxLong10ColorPacking + gxXYZSpace,

gxLUV32Space = gxLong10ColorPacking + gxLUVSpace,



C H A P T E R  4

Colors and Color-Related Objects

4-56 Colors and Color-Related Objects Reference

gxLAB32Space = gxLong10ColorPacking + gxLABSpace,

gxYIQ32Space = gxLong10ColorPacking + gxYIQSpace,

gxNTSC32Space = gxYIQ32Space,

gxPAL32Space = gxYIQ32Space,
};

typedef long gxColorSpace;

Note that color spaces from gxRGBASpace through gxYIQ32Space use color-packing 

flags in their definitions. Those flags are described in the previous section, “Color 

Packing.”

The individual color spaces are described in the section “Color Spaces” beginning on 

page 4-6. 

The Color Set Object

QuickDraw GX provides you with access to an individual color set object through a 

gxColorSet reference:

typedef struct gxPrivateColorSetRecord *gxColorSet;

In this type definition, gxColorSet is a type-checked reference, not an actual pointer to 

any defined structure. The contents of the color set object are private. 

The gxSetColor Union

A color set object is essentially an array of color values. The acceptable types of color 

values that it may contain are defined by the gxSetColor union:

union gxSetColor{

gxCMYKColor cmyk;

gxRGBColor rgb;

gxRGBAColor rgba;

gxHSVColor hsv;

gxHLSColor hls;

gxXYZColor xyz;

gxYXYColor yxy;

gxLUVColor luv;

gxLABColor lab;

gxYIQColor yiq;

gxColorValue gray;

gxGrayAColor graya;

unsigned short pixel16;

unsigned long pixel32;

gxColorValue component[4];

};



C H A P T E R  4

Colors and Color-Related Objects

Colors and Color-Related Objects Reference 4-57

The gxSetColor union is an abbreviated gxColor structure. The gxColor structure is 

described on page 4-53. 

The Color Profile Object

A color profile describes how to match a color with the colors in a color space. 

QuickDraw GX provides you with access to an individual color profile object through a 

gxColorProfile reference:

typedef struct gxPrivateProfileRecord *gxColorProfile;

In this type definition, gxColorProfile is a type-checked reference, not an actual 

pointer to any defined structure. The contents of the color profile object are private. 

Color profile objects contain color profile structures as defined by the Macintosh 

ColorSync Utilities. See Inside Macintosh: Advanced Color Imaging for more information.

Color Functions

The functions in this section manipulate color structures, allowing you to test a color, 

compare two colors, combine two colors, and convert a color from one color space to 

another. Colors are described in the section “Color-Component Values, Color Values, and 

Colors” beginning on page 4-25. The color structure (type gxColor) is described on 

page 4-53.

GXCheckColor

You can use the GXCheckColor function to determine if a color is either within a given 

gamut in a particular color space, or representable in a given color set. 

boolean GXCheckColor(const gxColor *source, gxColorSpace space, 

 gxColorSet aSet, gxColorProfile profile);

source A pointer to the color to check.

space The color space to check the source color against.

aSet A reference to a color set to check the source color against. This parameter 
must be nil if the space parameter is not gxIndexedSpace.

profile A reference to a color profile to check the source color against. 
GXCheckColor determines whether the source color is within the color 
gamut represented by this profile and the space color space.

function result true if the source color is contained in the specified color set, or if it is 
within the gamut of the specified color space and color profile; otherwise, 
false. 



C H A P T E R  4

Colors and Color-Related Objects

4-58 Colors and Color-Related Objects Reference

DESCRIPTION

The GXCheckColor function has two purposes. One is that you can use it to see if a 

given color exactly matches a color within a color set. For example, you can test whether 

a color matches a Pantone® or other spot color standard. To do this check, make sure that 

the space parameter specifies indexed color space and that the aSet parameter is not 

nil. 

You can also use the GXCheckColor function to see if a given color can be drawn on a 

given view device. The function converts the source color to the color space represented 

in the space parameter, using the color profile in the profile parameter. If the 

resulting color is out of the gamut represented by space and profile, the function 

returns false.

SPECIAL CONSIDERATIONS

If you are using this function to test a color against a color set, it is unlikely to find a 

match (which must be exact) unless the source color and the color set referenced in the 

aSet parameter are based on the same color space and use identical color profiles. 

ERRORS, WARNINGS, AND NOTICES

GXGetColorDistance

You can use the GXGetColorDistance function to determine the color-space distance 

between two colors.

Fixed GXGetColorDistance(const gxColor *target, 

const gxColor *source);

target A pointer to the target color.

source A pointer to the source color.

function result The color-space distance between the two colors.

Errors
out_of_memory
color_is_nil
colorSpace_out_of_range (debugging version)

Warnings
colorSet_index_out_of_range



C H A P T E R  4

Colors and Color-Related Objects

Colors and Color-Related Objects Reference 4-59

DESCRIPTION

The GXGetColorDistance function is useful in colorimetric applications and for 

judging perceived closeness of colors. It calculates how similar two colors are by 

determining the color-space distance between them. The distance calculation is 

performed in the color space of the target color. If the two colors are not in the same 

space, GXGetColorDistance converts the source color to the target color space before 

calculating the distance.

If the target color space is gxIndexedSpace, GXGetColorDistance uses the color 

space of the target color set.

The distance formula used is the standard Euclidean distance:

distance = Sqrt( (b0-a0)^2 + (b1-a1)^2 + ... );

SPECIAL CONSIDERATIONS

Because some of the color spaces are not linear, distances calculated in one space are not 

necessarily proportional to distances calculated in another space.

ERRORS, WARNINGS, AND NOTICES

GXCombineColor

You can use the GXCombineColor function to combine two colors with a transfer mode 

to get a result color for testing, without actually drawing.

gxColor *GXCombineColor(gxColor *target, gxInk operand);

target A pointer to the target color, which represents the destination color for 
drawing. On return, target points to the result color.

operand A reference to an ink object, which represents the source color and the 
transfer mode for drawing.

function result A pointer to the result color.

Errors
out_of_memory
color_is_nil
colorSpace_out_of_range (debugging version)

Warnings
colorSet_index_out_of_range



C H A P T E R  4

Colors and Color-Related Objects

4-60 Colors and Color-Related Objects Reference

DESCRIPTION

The GXCombineColor function lets you preview or predict the results of drawing 

without actually carrying out a drawing operation. The function applies the color and 

transfer mode of the ink object referenced in the operand parameter to the color 

specified in the target parameter. It calculates the result of drawing, with the ink’s 

color as the source color and the target color as the destination color. 

GXCombineColor modifies the target color to reflect the operation and also returns a 

pointer to the resulting color. If target or operand is nil, the function posts an error 

and returns nil.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Ink objects and transfer modes for drawing are described in the chapter “Ink Objects” in 

this book. 

GXConvertColor

You can use the GXConvertColor function to convert a color from one color space to 

another.

gxColor *GXConvertColor(gxColor *target, gxColorSpace space, 

 gxColorSet aSet, gxColorProfile profile);

target A pointer to the color to be converted. On return, target points to the 
converted color.

space The color space to convert the target color to.

aSet A reference to the color set to assign to the color space of the target color. 
This parameter must be nil if the space parameter is not 
gxIndexedSpace.

profile A reference to the color profile to assign to the converted color (that is, to 
use as the destination profile for the conversion). If you pass nil for this 
parameter, QuickDraw GX uses the default color profile.

function result A pointer to the converted color. 

Errors
out_of_memory
ink_is_nil
color_is_nil
colorSpace_out_of_range (debugging version)
invalid_transferMode_colorSpace (debugging version)

Warnings
colorSet_index_out_of_range



C H A P T E R  4

Colors and Color-Related Objects

Colors and Color-Related Objects Reference 4-61

DESCRIPTION

The GXConvertColor function converts a color from one color space to another. The 

target color is both the input and the output color for this function; the function modifies 

the target color to reflect the conversion and also returns a pointer to the converted color. 

If target is nil, the function posts an error and returns nil. 

If appropriate, GXConvertColor automatically performs color matching when 

converting the color. The color profile—if any—associated with the target color is used to 

correct the input color, and the color profile referenced in the profile parameter—if 

any—is used to create the final output color. If either color profile is nil, QuickDraw GX 

uses the default color profile in its place.

When converting to an indexed color space, GXConvertColor uses the color set 

specified by the aSet parameter as the color set for the returned color. It returns the 

closest existing color in the color set.

When converting from a color space without an alpha channel to one with an alpha 

channel, GXConvertColor gives the alpha channel value maximum opacity. When 

converting from a color space with an alpha channel to one without an alpha channel, 

the alpha-channel value is lost.

When converting from a color space with colors to a luminance-based (grayscale) color 

space, the color information is lost but GXConvertColor preserves luminance (overall 

lightness or brightness).

When converting between color spaces with different color packings (as from 

gxRGB32Space to gxRGB16Space or gxRGBSpace), GXConvertColor truncates or 

expands individual color-component values as appropriate.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Color spaces are described in the section “Color Spaces” beginning on page 4-6. Color 

matching is described in the section “Color Conversion and Color Matching” beginning 

on page 4-26, and in the section “Converting and Matching Colors” beginning on 

page 4-41. 

Errors
out_of_memory
color_is_nil
colorSpace_out_of_range (debugging version)

Warnings
colorSet_index_out_of_range



C H A P T E R  4

Colors and Color-Related Objects

4-62 Colors and Color-Related Objects Reference

Color Set Functions

This section describes the functions with which you create color set objects, manipulate 

color set object properties, and retrieve and replace colors in a color set.

Creating and Manipulating Color Set Objects

The functions in this section allow you to create and manipulate color sets as 

QuickDraw GX objects.

GXGetDefaultColorSet

You can use the GXGetDefaultColorSet function to obtain a reference to the default 

color set object for a given pixel depth.

gxColorSet GXGetDefaultColorSet(long pixelDepth);

pixelDepth The pixel size of the color set.

function result A reference to the default color set with the specified pixel depth.

DESCRIPTION

Note that the return value of this function is a reference to the actual default color set 

object, not a copy of it. If you edit the color set returned by this function, you alter the 

actual default object that the system uses when creating new color set objects. 

The valid values for pixelDepth are 1, 2, 4, and 8. Bitmaps with other pixel depths 

cannot use indexed color space.

You can also alter a default color set object using the GXSetDefaultColorSet 

function, described in the next section.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
invalid_pixelSize (debugging version)



C H A P T E R  4

Colors and Color-Related Objects

Colors and Color-Related Objects Reference 4-63

SEE ALSO

Default color set objects are discussed in the section “Default Color Sets” on page 4-34. 

To modify a default color set object, use the GXSetDefaultColorSet function, 

described next.

To create a new color set object, use the GXNewColorSet function, described on 

page 4-64.

GXSetDefaultColorSet

You can use the GXSetDefaultColorSet function to replace the default color set 

object for a particular pixel depth.

void GXSetDefaultColorSet(gxColorSet target, long pixelDepth);

target A reference to the color set object to make the new default.

pixelDepth The pixel size of the color set.

DESCRIPTION

The GXSetDefaultColorSet function replaces an existing default color set with the 

color set specified by the target parameter. The pixel depth of the target color set 

determines which default color set is replaced.

This function disposes of the old default color set and increments the owner count of the 

new default color set. 

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Default color set objects are discussed in the section “Default Color Sets” on page 4-34. 

To obtain a copy of a default color set object, use the GXGetDefaultColorSet 

function, described in the previous section.

To create a new color set object, use the GXNewColorSet function, described next. 

Errors
out_of_memory
colorSet_is_nil
invalid_colorSet_count (debugging version)
invalid_pixelSize (debugging version)



C H A P T E R  4

Colors and Color-Related Objects

4-64 Colors and Color-Related Objects Reference

GXNewColorSet

You can use the GXNewColorSet function to create a new color set object.

gxColorSet GXNewColorSet(gxColorSpace space, long count, 

const gxSetColor colors[]);

space The color space of the color set. You may not specify gxIndexedSpace 
for this parameter.

count The size of the color space; the number of color values it contains.

colors The array of color values that make up the color set.

function result A reference to the newly created color set object.

DESCRIPTION

The GXNewColorSet function creates a color set object with an owner count of 1 and 

returns a reference to it as the function result. You specify the number of colors in the 

color set in the count parameter, and pass the colors to the function in the colors 

array. Note that the array must contain color values of type gxSetColor. 

You do not use this function to obtain a copy of a default color set; the colors 

array must contain one or more elements. If it does not, GXNewColorSet posts a 

color_is_nil error. If you specify gxIndexedSpace for the space parameter, 

this function posts a colorSpace_out_of_range error.

SPECIAL CONSIDERATIONS

If no error occurs, the GXNewColorSet function creates a color set object; you are 

responsible for disposing of that object when you no longer need it. 

The current implementation of QuickDraw GX restricts the number of colors in a color 

set to a maximum of 65,535.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
color_is_nil
count_is_less_than_zero (debugging version)
colorSpace_out_of_range (debugging version)
number_of_colors_exceeds_implementation_limit



C H A P T E R  4

Colors and Color-Related Objects

Colors and Color-Related Objects Reference 4-65

SEE ALSO

The gxSetColor union is described on page 4-56. 

To obtain a copy of a default color set object, use the GXGetDefaultColorSet 

function, described on page 4-62.

GXDisposeColorSet

You can use the GXDisposeColorSet function to release a reference to a color set 

object.

void GXDisposeColorSet(gxColorSet target);

target A reference to the color set to dispose of.

DESCRIPTION

The GXDisposeColorSet function decrements the owner count of the color set 

specified by the target parameter and releases any memory used by the color set if the 

owner count goes to 0.

SPECIAL CONSIDERATIONS

If you attempt to dispose of a color set object used by an onscreen view device, this 

function posts a colorSet_access_restricted warning. 

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Owner counts are discussed in the section “Copying, Comparing, and Cloning Color 

Sets and Color Profiles” beginning on page 4-44, and in the section “Manipulating 

Owner Counts” beginning on page 4-46. To examine the owner count of a color set, use 

the GXGetColorSetOwners function, described on page 4-69. 

Errors
colorSet_is_nil

Warnings
colorSet_access_restricted (debugging version)



C H A P T E R  4

Colors and Color-Related Objects

4-66 Colors and Color-Related Objects Reference

GXCopyToColorSet

You can use the GXCopyToColorSet function to copy the contents of one existing color 

set to another, or to create a new color set and copy the contents of an existing color set 

into it.

gxColorSet GXCopyToColorSet(gxColorSet target, gxColorSet source);

target A reference to the color set to copy the source color set’s contents into. If 
you specify nil for this parameter, the function creates a new color set.

source A reference to the color set whose contents you want to copy.

function result A reference to the color set copy.

DESCRIPTION

The GXCopyToColorSet function copies the contents of an existing color set object to 

another or it creates a new color set object and copies the contents of an existing color set 

object to it. The function copies the color space and color values and tag list (but not the 

owner count) of the color set object specified by the source parameter into the color set 

object specified by the target parameter. It clones, but does not copy, the tag objects in 

the tag list.

If you specify nil for the target parameter, GXCopyToColorSet creates a new color 

set object and copies the source color set’s properties, including the owner count and tag 

list, into it. 

You can use the GXCopyToColorSet function to create a copy of a color set and then 

modify it without changing the original.

SPECIAL CONSIDERATIONS

If you specify nil for the target parameter and no error occurs, the 

GXCopyToColorSet function creates a color set object; you are responsible for 

disposing of that object when you no longer need it. 

If you specify a color set object used by an onscreen view device as the target, this 

function posts a colorSet_access_restricted warning.



C H A P T E R  4

Colors and Color-Related Objects

Colors and Color-Related Objects Reference 4-67

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To create a new color set that is not a copy of an existing color set, use the 

GXNewColorSet function, described on page 4-64.

To compare two color set objects, use the GXEqualColorSet function, described in the 

next section. 

GXEqualColorSet

You can use the GXEqualColorSet function to determine whether two color set objects 

are equal.

boolean GXEqualColorSet(gxColorSet one, gxColorSet two);

one A reference to one of the color sets to test for equality.

two A reference to the other color set to test for equality.

function result true if the two color sets are equal; false otherwise.

DESCRIPTION

The GXEqualColorSet function tests two color set objects for equality. For two color 

sets to be equal, they must have the same color space and identical color values—in the 

same order. Their owner counts and tag lists need not be identical.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To make a copy of a color set object that is equal by the criteria of this function, use the 

GXCopyToColorSet function, described in the previous section. 

Errors
out_of_memory
colorSet_is_nil

Warnings
colorSet_access_restricted (debugging version)

Errors
out_of_memory
colorSet_is_nil



C H A P T E R  4

Colors and Color-Related Objects

4-68 Colors and Color-Related Objects Reference

GXCloneColorSet

You can use the GXCloneColorSet function to clone a color set—that is, to add a 

reference to it and increment its owner count.

gxColorSet GXCloneColorSet(gxColorSet source);

source A reference to the color set to clone.

function result A reference to the cloned color set.

DESCRIPTION

The GXCloneColorSet function increments the owner count of the color set referenced 

in the source parameter. You typically use this function when you want to create 

another reference to an existing color set rather than creating a distinct copy of the color 

set.

This function returns as its function result a reference to the color set—the same 

reference you pass in as the source parameter. it also increments the color set’s owner 

count. 

SPECIAL CONSIDERATIONS

If you attempt to clone a color set object used by an onscreen view device, this function 

posts a colorSet_access_restricted warning.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Owner counts for color set objects are discussed in the section “Copying, Comparing, 

and Cloning Color Sets and Color Profiles” beginning on page 4-44, and in the section 

“Manipulating Owner Counts” beginning on page 4-46.

To examine the owner count of a color set, use the GXGetColorSetOwners function, 

described on page 4-69. To decrement the owner count of a color set, use the 

GXDisposeColorSet function, described on page 4-65. 

Errors
colorSet_is_nil

Warnings
colorSet_access_restricted (debugging version)



C H A P T E R  4

Colors and Color-Related Objects

Colors and Color-Related Objects Reference 4-69

Manipulating Color Set Object Properties

The functions described in this section allow you to manipulate the common object 

properties of color sets: owner count and tag list. Functions for manipulating the colors 

in a color set are described in the section “Retrieving and Replacing Colors in a Color 

Set” beginning on page 4-73.

GXGetColorSetOwners

You can use the GXGetColorSetOwners function to determine the number of 

references to a particular color set object.

long GXGetColorSetOwners(gxColorSet source);

source A reference to the color set object to find the owner count of.

function result The owner count of the color set object referenced in the source 
parameter.

DESCRIPTION

The GXGetColorSetOwners function returns the owner count of the referenced color 

set. The owner count is the current number of references to the color set object.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Owner counts for color set objects are discussed in the section “Copying, Comparing, 

and Cloning Color Sets and Color Profiles” beginning on page 4-44, and in the section 

“Manipulating Owner Counts” beginning on page 4-46.

Errors
colorSet_is_nil



C H A P T E R  4

Colors and Color-Related Objects

4-70 Colors and Color-Related Objects Reference

GXGetColorSetTags

You can use the GXGetColorSetTags function to examine one or more of the tag 

objects associated with a color set object.

long GXGetColorSetTags(gxColorSet source, long tagType, 

long index, long count, gxTag items[]);

source A reference to the color set object to examine the tag list of.

tagType The type of tag object to search for. A value of 0 indicates that you want to 
look for all tag types.

index The (1-based) index of the first such tag reference to return.

count The number of tag references to return

items An array to hold the returned tag references.

function result The number of tag references found that fit the criteria.

DESCRIPTION

The GXGetColorSetTags function searches the tag list of the source color set object 

for references to tag objects with the tag type specified by the tagType parameter. If you 

specify 0 for the tagType parameter, the GXGetColorSetTags function searches all 

tag types. 

You can use the index and the count parameters to specify which tag references of the 

appropriate type the GXGetColorSetTags function should return. The index 

parameter indicates the first tag reference to return and the count parameter indicates 

how many tag references to return. The index parameter must be greater than 0. The 

count parameter must be greater than 0 or equal to the gxSelectToEnd constant (–1), 

which indicates that all tag references (starting with the tag reference indicated by the 

index parameter) should be returned.

If you pass a value other than nil for the items parameter, the GXGetColorSetTags 

function returns in it the tag references that were found. Regardless of the value you pass 

for items, the function result is the number of tag references found that fit the criteria. 



C H A P T E R  4

Colors and Color-Related Objects

Colors and Color-Related Objects Reference 4-71

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Tag objects are discussed in the chapter “Tag Objects” in this book. 

To change the set of tag references associated with a color set object, use the 

GXSetColorSetTags function, described in the next section. 

GXSetColorSetTags

You can use the GXSetColorSetTags function to add, remove, or replace tag objects 

associated with a color set object.

void GXSetColorSetTags(gxColorSet target, long tagType, 

long index, long oldCount, 

long newCount, const gxTag items[]);

target A reference to the color set object to alter the tag list of.

tagType The type of tag objects to replace. A value of 0 indicates that you want to 
replace tags of all types.

index The (1-based) index of the first tag reference (to a tag object of the 
appropriate type) to replace.

oldCount The number of tag references to replace. A value of 0 specifies that you 
want to insert tag references before the tag reference indicated by the 
index parameter, rather than replace tag references. A value of –1 (the 
gxSelectToEnd constant) specifies that all tag references of the 
requested type, starting with the tag reference indicated by the index 
parameter, should be replaced.

newCount The number of tag references to insert. A value of 0 specifies that there are 
no tag references to insert; the existing tag references that match the 
criteria you specify are removed from the source color set’s tag list and 
disposed of.

items An array of tag references to insert in the tag list.

Errors
out_of_memory
colorSet_is_nil
index_is_less_than_one (debugging version)
count_is_less_than_one (debugging version)

Warnings
index_out_of_range
count_out_of_range



C H A P T E R  4

Colors and Color-Related Objects

4-72 Colors and Color-Related Objects Reference

DESCRIPTION

The GXSetColorSetTags function allows you add tag references to a color set object’s 

tag list, to remove tag references from the list, or to replace tag references in the list with 

new tag references. In any of these three cases, the target parameter specifies the color 

set object to be modified, the newCount parameter specifies the number of tag references 

to add, and the items parameter provides the new tag references.

■ To add tag references, set the oldCount parameter to 0. Use the tagType and the 
index parameters to specify where to add the new tag references. (For example, if 
you specify nil for the tagType parameter and 1 for the index parameter, this 
function inserts the new tag references before the current tag references. If you specify 
a value other than nil for the tagType parameter and a value of 2 for the index 
parameter, the function inserts the new tag references before the second tag reference 
with a tag type matching the tagType parameter.)

■ To remove tag references, set the newCount parameter to 0 and the items parameter 
to nil. You can use the index and the oldCount parameters to specify which tag 
references of the specified type should be removed. The index parameter indicates 
the first tag reference of the specified type to remove and the oldCount parameter 
indicates how many tag references of the specified type to remove. 

■ To replace tag references, use the tagType, index, and oldCount parameters to 
indicate which tag references to replace, and use the newCount and items 
parameters to specify the new tag references to add. If newCount is greater than 
oldCount, the extra tag references are placed immediately adjacent to the last tag 
reference replaced.

SPECIAL CONSIDERATIONS

If you attempt to modify the tag list of a color set object used by an onscreen view 

device, this function posts a colorSet_access_restricted warning.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
colorSet_is_nil
tag_is_nil
parameter_is_nil (debugging version)
inconsistent_parameters (debugging version)
parameter_out_of_range (debugging version)
index_is_less_than_zero (debugging version)
cannot_dispose_locked_tag (debugging version)

Warnings
index_out_of_range
count_out_of_range
colorSet_access_restricted (debugging version)

Notices (debugging version)
tag_already_set



C H A P T E R  4

Colors and Color-Related Objects

Colors and Color-Related Objects Reference 4-73

SEE ALSO

Tag objects are discussed in the chapter “Tag Objects” in this book. 

To examine the set of tag references associated with a color set object, use the 

GXGetColorSetTags function, described in the previous section.   

Retrieving and Replacing Colors in a Color Set

The functions described in this section allow you to manipulate the colors in a color set. 

Functions for manipulating the other properties of color sets are described in the section 

“Manipulating Color Set Object Properties” beginning on page 4-69.

GXGetColorSet

You can use the GXGetColorSet function to retrieve the color values from a color set 

object.

long GXGetColorSet(gxColorSet source, gxColorSpace *space, 

 gxSetColor colors[]);

source A reference to the color set object whose color values you want to retrieve.

space A pointer to a color space value. On return, specifies the color space for 
the source color set.

colors An array of gxSetColor color values. On return, contains the set of color 
values in the source color set.

function result The number of color values in the source color set.

DESCRIPTION

The GXGetColorSet function retrieves the color values from the source color set and 

returns them in the colors array. It also returns the color set’s color space in the 

location pointed to by the space parameter. The function result is the number of colors 

returned in the colors array.

Before calling GXGetColorSet, you must allocate an array of sufficient size to hold 

the color-value array of the color set. If instead you pass nil for the colors parameter, 

the function does not return any color values, but nonetheless returns (as its function 

result) the number of colors in the color set. Thus you can make an initial call to 

GXGetColorSet to determine the size of the array to allocate, and then call it once more 

to get the color values themselves.



C H A P T E R  4

Colors and Color-Related Objects

4-74 Colors and Color-Related Objects Reference

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To replace the entire array of color values in a color set object, use the GXSetColorSet 

function, described in the next section. To retrieve some of the color values in a color set 

object, use the GXGetColorSetParts function, described on page 4-75. To replace 

some of the color values in a color set object, use the GXSetColorSetParts function, 

described on page 4-76. 

The gxSetColor union is described on page 4-56. 

GXSetColorSet

You can use the GXSetColorSet function to replace the color values of a color set object.

void GXSetColorSet(gxColorSet target, gxColorSpace space, 

long count, const gxSetColor colors[]);

target A reference to the color set object whose color values you want to replace.

space The new color space for the color set referenced in the target parameter.

count The number of color values in the colors array.

colors The array of color values to assign to the color set.

DESCRIPTION

The GXSetColorSet function assigns the specified color space and color values to the 

target color set. If gxNoSpace is passed in the space parameter, the color space is 

unchanged. If the colors array is nil and if count is zero, the color set remains 

unchanged.

SPECIAL CONSIDERATIONS

If you attempt to modify the color values of a color set object used by an onscreen view 

device, this function posts a colorSet_access_restricted warning.

The current implementation of QuickDraw GX restricts the number of colors in a color 

set to a maximum of 65,535.

Errors
out_of_memory
colorSet_is_nil



C H A P T E R  4

Colors and Color-Related Objects

Colors and Color-Related Objects Reference 4-75

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To retrieve the entire array of color values from a color set object, use the 

GXGetColorSet function, described in the previous section. To retrieve some of the 

color values in a color set object, use the GXGetColorSetParts function, described 

in the next section. To replace some of the color values in a color set object, use the 

GXSetColorSetParts function, described on page 4-76. 

The gxSetColor union is described on page 4-56. 

GXGetColorSetParts

You can use the GXGetColorSetParts function to retrieve specified colors from a color 

set object.

long GXGetColorSetParts(gxColorSet source, long index, long count,

 gxColorSpace *space, gxSetColor data[]);

source A reference to the color set object whose color values you want to retrieve.

index The first color value to retrieve. To retrieve the first color value in the 
color set, specify 1 for this parameter.

count The number of color values to retrieve. Specify gxSelectToEnd to 
retrieve all color values in the color set including and beyond index.

space A pointer to a color space value. On return, specifies the color space for 
the source color set.

data An array of gxSetColor color values. On return, contains the specified 
subset of color values from the source color set.

function result The number of color values in the range specified by index and count.

Errors
out_of_memory
colorSet_is_nil
inconsistent_parameters (debugging version)
count_is_less_than_zero (debugging version)
colorSpace_out_of_range (debugging version)
number_of_colors_exceeds_implementation_limit

Warnings
colorSet_access_restricted (debugging version)



C H A P T E R  4

Colors and Color-Related Objects

4-76 Colors and Color-Related Objects Reference

DESCRIPTION

The GXGetColorSetParts function retrieves the specified color values from the source 

color set and returns them in the data array. It also returns the color set’s color space in 

the location pointed to by the space parameter. The function result is the number of 

color values copied into the data array.

Before calling GXGetColorSetParts, you must allocate an array of sufficient size to 

hold the specified number of color values. If instead you pass nil for the data 

parameter, the function does not return any color values, but nonetheless returns (as 

its function result) the number of colors in the specified range. Thus you can make an 

initial call to GXGetColorSetParts to determine the size of the array to allocate, and 

then call it once more to get the color values themselves.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To retrieve the entire array of color values from a color set object, use the 

GXGetColorSet function, described on page 4-73. To replace the entire array of color 

values in a color set object, use the GXSetColorSet function, described in the previous 

section. To replace some of the color values in a color set object, use the 

GXSetColorSetParts function, described in the next section. 

The gxSetColor union is described on page 4-56. 

GXSetColorSetParts

You can use the GXSetColorSetParts function to replace specified colors in a color set 

object.

void GXSetColorSetParts(gxColorSet target, long index, 

 long oldCount, long newCount, 

 const gxSetColor data[]);

target A reference to the color set object whose color values you want to modify. 

index The first color value to replace. To replace the first color value in the color 
set, specify 1 for this parameter.

Errors
out_of_memory
colorSet_is_nil
index_is_less_than_one (debugging version)
count_is_less_than_one (debugging version)

Warnings
index_out_of_range
count_out_of_range



C H A P T E R  4

Colors and Color-Related Objects

Colors and Color-Related Objects Reference 4-77

oldCount The number of color values to replace. Specify gxSelectToEnd to 
replace all color values in the color set including and beyond index.

newCount The number of new color values to add; that is, the number of color 
values in the data array.

data The array of color values to add to the color set.

DESCRIPTION

The GXSetColorSetParts function assigns the specified color values to the target 

color set, starting at the location specified by index after first removing the number of 

existing color values specified by oldCount.

This function does not accept the gxSetToNil constant for the data parameter. If you 

want to simply remove colors, pass 0 for newCount.

The current implementation of QuickDraw GX restricts the number of colors in a color 

set to a maximum of 65,535.

SPECIAL CONSIDERATIONS

If you attempt to modify the color values of a color set object used by an onscreen view 

device, this function posts a colorSet_access_restricted warning. 

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To retrieve the entire array of color values from a color set object, use the 

GXGetColorSet function, described on page 4-73. To replace the entire array of color 

values in a color set object, use the GXSetColorSet function, described on page 4-74. 

To retrieve some of the color values in a color set object, use the GXGetColorSetParts 

function, described in the previous section. 

The gxSetColor union is described on page 4-56.   

Errors
out_of_memory
colorSet_is_nil
inconsistent_parameters (debugging version)
index_is_less_than_zero (debugging version)
count_is_less_than_zero (debugging version)
number_of_colors_exceeds_implementation_limit

Warnings
index_out_of_range
count_out_of_range
colorSet_access_restricted (debugging version)



C H A P T E R  4

Colors and Color-Related Objects

4-78 Colors and Color-Related Objects Reference

Color Profile Functions

This section describes the functions with which you create color profile objects, 

manipulate color profile object properties, and retrieve and replace profile information.

Creating and Manipulating Color Profile Objects

The functions in this section allow you to create and manipulate color profiles as 

QuickDraw GX objects. For descriptions of functions that manipulate the properties of 

color profile objects, see the sections “Manipulating Color Profile Object Properties” 

beginning on page 4-84 and “Retrieving and Replacing Profile Information” beginning 

on page 4-88.

GXGetDefaultColorProfile

You can use the GXGetDefaultColorProfile function to obtain a reference to the 

default color profile object.

gxColorProfile GXGetDefaultColorProfile(void);

function result A reference to the default color profile.

DESCRIPTION

The default color profile is the color profile for the Apple 13-inch color monitor. When 

converting or matching colors, QuickDraw GX assumes the default color profile for any 

color, bitmap, or transfer mode whose color profile property is nil.

Note that the return value of this function is a reference to the actual default color profile 

object, not a copy of it. You should not make changes to the profile; if you edit it (for 

example, by calling GXLockProfile and GXGetProfileStructure), you alter the 

actual default profile that QuickDraw GX uses when creating new color profile objects. 

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory



C H A P T E R  4

Colors and Color-Related Objects

Colors and Color-Related Objects Reference 4-79

SEE ALSO

The default color profile object is discussed in the section “The Default Color Profile” 

beginning on page 4-37.

To create a copy of the default color profile object, you can use the 

GXCopyToColorProfile function, described on page 4-81.

To create a new color profile, use the GXNewColorProfile function, described next. 

GXNewColorProfile

You can use the GXNewColorProfile function to create a new color profile object. 

gxColorProfile GXNewColorProfile(long size, 

void *colorProfileData);

size The size in bytes of the profile data to assign to the new color profile 
object.

colorProfileData
A pointer to the profile data to assign to the new color profile object.

function result A reference to the newly created color profile object.

DESCRIPTION

The GXNewColorProfile function creates a color profile object with an owner count 

of 1 from the profile data that you supply. The new color profile object is not a copy of 

the default color profile. 

If you specify a nonzero value for the size parameter, you must pass a ColorSync color 

profile structure to GXNewColorProfile. The function does not check for the validity 

of the profile data, but if the colorProfileData parameter is nil and the size 

parameter is nonzero the function posts an error.

You can create a zero-length profile by passing 0 for the size parameter when calling 

this function. The effect of a zero-length profile is to inhibit color matching. 

SPECIAL CONSIDERATIONS

If no error occurs, the GXNewColorProfile function creates a color profile object; you 

are responsible for disposing of that object when you no longer need it. 



C H A P T E R  4

Colors and Color-Related Objects

4-80 Colors and Color-Related Objects Reference

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Zero-length profiles are described in the section “Zero-Length Profiles” on page 4-37. 

The format of the profile data in a color profile object is described in the section “Profile 

Data” beginning on page 4-36. The ColorSync Utilities are described in Inside Macintosh: 
Advanced Color Imaging. 

To obtain a reference to the default color profile, use the GXGetDefaultColorProfile 

function, described in the previous section.

GXDisposeColorProfile

You can use the GXDisposeColorProfile function to release a reference to a color 

profile object. 

void GXDisposeColorProfile(gxColorProfile target);

target  A reference to the color profile to dispose of.

DESCRIPTION

The GXDisposeColorProfile function decrements the owner count of the color 

profile object referenced in the target parameter and releases any memory used by the 

color profile if the owner count goes to 0.

SPECIAL CONSIDERATIONS

If you attempt to dispose of a color profile object used by an onscreen view device, this 

function posts a colorProfile_access_restricted warning.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
parameter_is_nil (debugging version)

Errors
colorProfile_is_nil

Warnings
colorProfile_access_restricted (debugging version)



C H A P T E R  4

Colors and Color-Related Objects

Colors and Color-Related Objects Reference 4-81

SEE ALSO

Owner counts are discussed in the section “Copying, Comparing, and Cloning Color 

Sets and Color Profiles” beginning on page 4-44, and in the section “Manipulating 

Owner Counts” beginning on page 4-46. To examine the owner count of a color profile, 

use the GXGetColorProfileOwners function, described on page 4-84. 

GXCopyToColorProfile

You can use the GXCopyToColorProfile function to copy the contents of an existing 

color profile object into another or to create a new color profile object and copy the 

contents of an existing color profile into it.

gxColorProfile GXCopyToColorProfile(gxColorProfile target,

 gxColorProfile source);

target A reference to the color profile to copy the source contents into. If you 
specify nil for this parameter, the GXCopyToColorProfile function 
creates a new color profile.

source A reference to the color profile object whose contents you want to copy.

function result A reference to the color profile copy.

DESCRIPTION

The GXCopyToColorProfile function either copies the contents of an existing color 

profile object to another or creates a new color profile object and copies the contents of 

an existing color profile object to it. The function copies the profile data and tag list (but 

not the owner count) of the color profile specified by the source parameter into the 

color profile specified by the target parameter. It clones, but does not copy, the tag 

objects in the tag list.

If you specify nil for the target parameter, GXCopyToColorProfile creates a new 

color profile object and copies the source properties, including the owner count and tag 

list, into it. 

You can use the GXCopyToColorProfile function to create a copy of a color profile 

and then modify it without changing the original.

SPECIAL CONSIDERATIONS

If you specify nil for the target parameter and no error occurs, the 

GXCopyToColorProfile function creates a color profile object; you are responsible 

for disposing of that object when you no longer need it. 

If you specify a color profile object used by an onscreen view device as the target, this 

function posts a colorProfile_access_restricted warning.



C H A P T E R  4

Colors and Color-Related Objects

4-82 Colors and Color-Related Objects Reference

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To create a new color profile that is not a copy of an existing color profile, use the 

GXNewColorProfile function, described on page 4-79.

To compare two color profile objects, use the GXEqualColorProfile function, 

described next. 

GXEqualColorProfile

You can use the GXEqualColorProfile function to determine whether two color 

profile objects are equal.

boolean GXEqualColorProfile(gxColorProfile one, 

gxColorProfile two);

one A reference to one of the color profiles to test for equality.

two A reference to the other color profile to test for equality.

function result true if the color profiles are equal; false otherwise.

DESCRIPTION

The GXEqualColorProfile function tests two color profile objects for equality. For 

two color profiles to be equal, they must have exactly the same profile data, although 

their owner counts and tag lists need not be identical.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To make a copy of a color profile object that is equal by the criteria of this function, use 

the GXCopyToColorProfile function, described in the previous section. 

Errors
out_of_memory
colorProfile_is_nil

Warnings
colorProfile_access_restricted (debugging version)

Errors
out_of_memory
colorProfile_is_nil



C H A P T E R  4

Colors and Color-Related Objects

Colors and Color-Related Objects Reference 4-83

GXCloneColorProfile

You can use the GXCloneColorProfile function to clone a color profile—that is, to 

add a reference to it and increment its owner count.

gxColorProfile GXCloneColorProfile(gxColorProfile source);

source A reference to the color profile to clone.

function result A reference to the cloned color profile.

DESCRIPTION

The GXCloneColorProfile function increments the owner count of the color profile 

referenced in the source parameter. You typically use this function when you want to 

create another reference to an existing color profile rather than creating a distinct copy of 

the color profile.

This function returns as its function result a reference to the color profile—the same 

reference you pass in as the source parameter. It also increments the color profile’s 

owner count. 

SPECIAL CONSIDERATIONS

If you attempt to clone a color profile object used by an onscreen view device, this 

function posts a colorProfile_access_restricted warning.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Owner counts for color profile objects are discussed in the section “Copying, Comparing, 

and Cloning Color Sets and Color Profiles” beginning on page 4-44, and in the section 

“Manipulating Owner Counts” beginning on page 4-46.

To examine the owner count of a color profile, use the GXGetColorProfileOwners 

function, described on page 4-84. To decrement the owner count of a color profile, use 

the GXDisposeColorProfile function, described on page 4-80. 

Errors
colorProfile_is_nil

Warnings
colorProfile_access_restricted (debugging version)



C H A P T E R  4

Colors and Color-Related Objects

4-84 Colors and Color-Related Objects Reference

Manipulating Color Profile Object Properties

The functions described in this section allow you to manipulate the common object 

properties of color profile objects: owner count and tag list. For descriptions of functions 

that manipulate the profile data of color profile objects, see the section “Retrieving and 

Replacing Profile Information” beginning on page 4-88. For descriptions of functions that 

allow you to create and manipulate color profiles as QuickDraw GX objects, see the 

section “Creating and Manipulating Color Profile Objects” beginning on page 4-78.

GXGetColorProfileOwners

You can use the GXGetColorProfileOwners function to determine the number of 

references to a particular color profile object.

long GXGetColorProfileOwners(gxColorProfile source);

source A reference to the color profile object to find the owner count of.

function result The owner count of the source color profile object.

DESCRIPTION

The GXGetColorProfileOwners function returns the owner count of the referenced 

color profile object. The owner count is the current number of references to the color 

profile object.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Owner counts for color profile objects are discussed in the section “Copying, Comparing, 

and Cloning Color Sets and Color Profiles” beginning on page 4-44, and in the section 

“Manipulating Owner Counts” beginning on page 4-46.

Errors
colorProfile_is_nil



C H A P T E R  4

Colors and Color-Related Objects

Colors and Color-Related Objects Reference 4-85

GXGetColorProfileTags

You can use the GXGetColorProfileTags function to examine one or more of the tag 

objects associated with a color profile object.

long GXGetColorProfileTags(gxColorProfile source, long tagType, 

 long index, long count, gxTag items[]);

source A reference to the color profile object to examine the tag list of.

tagType The type of tag object to search for. A value of 0 indicates that you want to 
look for all tag types.

index The (1-based) index of the first such tag reference to return.

count The number of tag references to return.

items An array to hold the returned tag references.

function result The number of tag references found that fit the criteria.

DESCRIPTION

The GXGetColorProfileTags function searches the tag list of the source color 

profile object for references to tag objects with the tag type specified by the tagType 

parameter. If you specify 0 for the tagType parameter, the GXGetColorProfileTags 

function searches all tag types. 

You can use the index and the count parameters to specify which tag references of the 

appropriate type the GXGetColorProfileTags function should return. The index 

parameter indicates the first tag reference to return and the count parameter indicates 

how many tag references to return. The index parameter must be greater than 0. The 

count parameter must be greater than 0 or equal to the gxSelectToEnd constant (–1), 

which indicates that all tag references (starting with the tag reference indicated by the 

index parameter) should be returned.

If you pass a value other than nil for the items parameter, the 

GXGetColorProfileTags function returns in it the tag references that 

were found. Regardless of the value you pass for items, the function result 

is the number of tag references found that fit the criteria. 

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
colorProfile_is_nil
index_is_less_than_one (debugging version)
count_is_less_than_one (debugging version)

Warnings
index_out_of_range
count_out_of_range



C H A P T E R  4

Colors and Color-Related Objects

4-86 Colors and Color-Related Objects Reference

SEE ALSO

Tag objects are discussed in the chapter “Tag Objects” in this book. 

To change the set of tag references associated with a color profile object, use the 

GXSetColorProfileTags function, described in the next section. 

GXSetColorProfileTags

You can use the GXSetColorProfileTags function to add, remove, or replace tag 

objects associated with a color profile object.

void GXSetColorProfileTags(gxColorProfile target, long tagType, 

long index, long oldCount, 

long newCount, const gxTag items[]);

target A reference to the color profile object to alter the tag list of.

tagType The type of tag objects to replace. A value of 0 indicates that you want to 
replace tags of all types.

index The (1-based) index of the first tag reference (to a tag object of the 
appropriate type) to replace.

oldCount The number of tag references to replace. A value of 0 specifies that you 
want to insert tag references before the tag reference indicated by the 
index parameter, rather than replace tag references. A value of –1 (the 
gxSelectToEnd constant) specifies that all tag references of the 
requested type, starting with the tag reference indicated by the index 
parameter, should be replaced.

newCount The number of tag references to insert. A value of 0 specifies that there are 
no tag references to insert; the existing tag references that match the 
criteria you specify are removed from the source color profile’s tag list 
and disposed of.

items An array of tag references to insert in the tag list.

DESCRIPTION

The GXSetColorProfileTags function allows you add tag references to a color 

profile object’s tag list, to remove tag references from the list, or to replace tag references 

in the list with new tag references. In any of these three cases, the target parameter 

specifies the color profile object to be modified, the newCount parameter specifies the 

number of tag references to add, and the items parameter provides the new tag 

references.



C H A P T E R  4

Colors and Color-Related Objects

Colors and Color-Related Objects Reference 4-87

■ To add tag references, set the oldCount parameter to 0. Use the tagType and the 
index parameters to specify where to add the new tag references. (For example, if 
you specify nil for the tagType parameter and 1 for the index parameter, this 
function inserts the new tag references before the current tag references. If you specify 
a value other than nil for the tagType parameter and a value of 2 for the index 
parameter, the function inserts the new tag references before the second tag reference 
with a tag type matching the tagType parameter.)

■ To remove tag references, set the newCount parameter to 0 and the items parameter 
to nil. You can use the index and the oldCount parameters to specify which tag 
references of the specified type should be removed. The index parameter indicates 
the first tag reference of the specified type to remove and the oldCount parameter 
indicates how many tag references of the specified type to remove. 

■ To replace tag references, use the tagType, index, and oldCount parameters 
to indicate which tag references to replace, and use the newCount and items 
parameters to specify the new tag references to add. If newCount is greater than 
oldCount, the extra tag references are placed immediately adjacent to the last tag 
reference replaced.

SPECIAL CONSIDERATIONS

If you attempt to modify the tag list of a color profile object used by an onscreen view 

device, this function posts a colorProfile_access_restricted warning.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Tag objects are discussed in the chapter “Tag Objects” in this book. 

To examine the set of tag references associated with a color profile object, use the 

GXGetColorProfileTags function, described in the previous section.   

Errors
out_of_memory
colorSet_is_nil
tag_is_nil
parameter_is_nil (debugging version)
inconsistent_parameters (debugging version)
parameter_out_of_range (debugging version)
index_is_less_than_zero (debugging version)
cannot_dispose_locked_tag (debugging version)

Warnings
index_out_of_range
count_out_of_range
colorProfile_access_restricted (debugging version)

Notices (debugging version)
tag_already_set



C H A P T E R  4

Colors and Color-Related Objects

4-88 Colors and Color-Related Objects Reference

Retrieving and Replacing Profile Information

The functions described in this section allow you to manipulate the profile data of 

color profile objects. For descriptions of functions that manipulate the common object 

properties of color profile object, see the section “Manipulating Color Profile Object 

Properties” beginning on page 4-84. For descriptions of functions that allow you to 

create and manipulate color profiles as QuickDraw GX objects, see the section “Creating 

and Manipulating Color Profile Objects” beginning on page 4-78.

GXGetColorProfile

You can use the GXGetColorProfile function to retrieve the profile data from a color 

profile object.

long GXGetColorProfile(gxColorProfile source, 

void *colorProfileData);

source A reference to the color profile object to get the profile data from.

colorProfileData
A pointer to a buffer. On return, the buffer contains the profile data for the 
source color profile.

function result The size in bytes of the source color profile’s profile data.

DESCRIPTION

The GXGetColorProfile function returns the profile data from the source color profile 

in the buffer pointed to by the responses parameter. It also returns the size of the 

profile data as the function result.

The profile data returned by this function is a ColorSync color profile structure (type 

CMProfile). 

If you specify nil for the colorProfileData parameter, this function does not return 

the profile data, but it nevertheless returns a correct value for the size of the profile 

response structure in the function result. Thus you can make an initial call to 

GXGetColorProfile to determine the size of buffer to allocate, and then call it once 

more to get the profile data itself.



C H A P T E R  4

Colors and Color-Related Objects

Colors and Color-Related Objects Reference 4-89

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To replace the profile data in a color profile object, use the GXSetColorProfile 

function, described in the next section.

The format of the profile data in a color profile object is described in the section “Profile 

Data” beginning on page 4-36. The ColorSync Utilities, including the CMProfile data 

type, are described in Inside Macintosh: Advanced Color Imaging. 

GXSetColorProfile

You can use the GXSetColorProfile function to assign profile data to a color profile 

object.

void GXSetColorProfile(gxColorProfile target,long size, 

void *colorProfileData);

target A reference to the color profile object whose profile data you want to 
change.

size The size in bytes of the profile data to assign to the target color profile.

colorProfileData
A pointer to the profile data.

DESCRIPTION

The GXSetColorProfile function assigns the specified profile data to the target color 

profile. If you specify a nonzero value for the size parameter, the pointer to the profile 

data must not be nil. It should be in the form of a valid ColorSync color profile 

structure (type CMProfile), although the function does not actually verify this.

If you pass 0 for the size parameter to this function, QuickDraw GX converts this 

profile into a zero-length profile, which you can use to inhibit color matching.

SPECIAL CONSIDERATIONS

If you attempt to alter the profile data of a color profile object used by an onscreen view 

device, this function posts a colorProfile_access_restricted warning.

Errors
out_of_memory
colorProfile_is_nil



C H A P T E R  4

Colors and Color-Related Objects

4-90 Colors and Color-Related Objects Reference

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To examine the profile data in a color profile object, use the GXGetColorProfile 

function, described in the previous section.

Zero-length profiles are described in the section “Zero-Length Profiles” on page 4-37. 

The format of the profile data in a color profile object is described in the section “Profile 

Data” beginning on page 4-36. The ColorSync Utilities, including the CMProfile data 

type, are described in Inside Macintosh: Advanced Color Imaging. 

GXLockColorProfile

You can use the GXLockColorProfile function to load a color profile object into 

memory and lock its profile data into a fixed memory location. 

void GXLockColorProfile (gxColorProfile source);

source A reference to the color profile to be loaded and locked.

DESCRIPTION

The GXLockColorProfile function prevents a color profile from being relocated, so 

that you can manipulate its profile data directly in QuickDraw GX memory rather than 

working with a copy of it in application memory. 

To directly edit the color profile, call GXLockColorProfile followed by 

GXGetColorProfileStructure; after editing, call GXUnlockColorProfile. 

SPECIAL CONSIDERATIONS

To avoid fragmenting the QuickDraw GX heap, call the GXUnlockColorProfile 

function as soon as possible after calling GXLockColorProfile.

In low memory situations with a fragmented heap, QuickDraw GX can unlock locked 

objects without warning. Be careful about making memory-intensive calls when you are 

working with a locked color profile.

Errors
out_of_memory
colorProfile_is_nil
inconsistent_parameters (debugging version)
parameter_out_of_range (debugging version)

Warnings
colorProfile_access_restricted (debugging version)



C H A P T E R  4

Colors and Color-Related Objects

Colors and Color-Related Objects Reference 4-91

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The GXUnlockColorProfile and GXGetColorProfileStructure functions are 

described in the next two sections.

GXUnlockColorProfile

You can use the GXUnlockColorProfile function to allow QuickDraw GX to relocate, 

compress, or unload a color profile object that has been locked.

void GXUnlockColorProfile (gxColorProfile source);

gxColorProfile
A reference to the color profile to be unlocked.

DESCRIPTION

To directly edit the color profile, call GXLockColorProfile followed by 

GXGetColorProfileStructure; after editing, call GXUnlockColorProfile. 

Once you call GXUnlockColorProfile, the profile data may be relocated and a 

pointer returned by GXGetColorProfileStructure may no longer be valid.

SPECIAL CONSIDERATIONS

To avoid fragmenting the QuickDraw GX heap, call the GXUnlockColorProfile 

function as soon as possible after calling GXLockColorProfile.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The GXLockColorProfile function is described in the previous section. The 

GXGetColorProfileStructure function is described next.

Errors
out_of_memory
colorProfile_is_nil

Errors
colorProfile_is_nil



C H A P T E R  4

Colors and Color-Related Objects

4-92 Colors and Color-Related Objects Reference

GXGetColorProfileStructure

You can use the GXGetColorProfileStructure function to get a pointer to the 

profile data of a color profile object.

void *GXGetColorProfileStructure(gxColorProfile source, 

long *length);

source A reference to the color profile object whose profile data you need access 
to.

length A pointer to a long value. On return, the value specifies the size in bytes 
of the profile data.

function result A pointer to the profile data of the source color profile.

DESCRIPTION

The GXGetColorProfileStructure function determines the size of the profile data 

in a color profile object and returns a pointer to the data in the QuickDraw GX heap. You 

can use the pointer to examine or change the profile data without copying the data into 

your application’s heap and back again. 

Before calling this function, call GXLockColorProfile to lock the profile data in 

memory; after editing the profile data, call GXUnlockColorProfile to free the profile 

data for relocation. 

The profile data returned by this function is a ColorSync color profile structure (type 

CMProfile). 

This function is useful even if you do not intend to edit a color profile. You can use it to 

simply read a specific piece of color profile data, such as the white point, without having 

to obtain a copy of the entire profile. 

SPECIAL CONSIDERATIONS

To avoid fragmenting the QuickDraw GX heap, call the GXUnlockColorProfile 

function as soon as possible after manipulating the profile data.

You cannot change the size of the profile data you access with this call. If your 

manipulations require a change in the size of the data, you must use 

GXGetColorProfile and GXSetColorProfile. 

This function is rarely needed. In most situations you do not need to alter the 

profile data of a color profile, and when you do you can use the functions 

GXGetColorProfile and GXSetColorProfile to make the needed changes.



C H A P T E R  4

Colors and Color-Related Objects

Colors and Color-Related Objects Reference 4-93

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The GXLockColorProfile and GXUnlockColorProfile functions are described in 

the previous two sections.

The format of the profile data in a color profile object is described in the section “Profile 

Data” beginning on page 4-36. The ColorSync Utilities, including the CMProfile data 

type, are described in Inside Macintosh: Advanced Color Imaging. 

To edit a copy of a color profile object’s profile data, rather than directly changing the 

data in QuickDraw GX memory, use the GXGetColorProfile function, described on 

page 4-88; to assign the edited data back to the profile, use the GXSetColorProfile 

function, described on page 4-89.     

Errors
out_of_memory
colorProfile_is_nil



C H A P T E R  4

Colors and Color-Related Objects

4-94 Summary of Colors and Color-Related Objects

Summary of Colors and Color-Related Objects

Constants and Data Types

Color-Component Values

typedef unsigned short gxColorValue;

Color Values

struct gxCMYKColor{

gxColorValue cyan;

gxColorValue magenta;

gxColorValue yellow;

gxColorValue black;

};

struct gxRGBColor{

gxColorValue red;

gxColorValue green;

gxColorValue blue;

};

struct gxRGBAColor{

gxColorValue red;

gxColorValue green;

gxColorValue blue;

gxColorValue alpha;

};

struct gxHSVColor{

gxColorValue hue;

gxColorValue saturation;

gxColorValue value;

};

struct gxHLSColor{

gxColorValue hue;

gxColorValue lightness;

gxColorValue saturation;

};



C H A P T E R  4

Colors and Color-Related Objects

Summary of Colors and Color-Related Objects 4-95

struct gxXYZColor {

gxColorValue x;

gxColorValue y;

gxColorValue z;

};

struct gxYXYColor {

gxColorValue capY;

gxColorValue x;

gxColorValue y;

};

struct gxLUVColor {

gxColorValue l;

gxColorValue u;

gxColorValue v;

};

struct gxLABColor {

gxColorValue l;

gxColorValue a;

gxColorValue b;

};

struct gxYIQColor{

gxColorValue y;

gxColorValue i;

gxColorValue q;

};

struct gxGrayAColor{

gxColorValue gray;

gxColorValue alpha;

};

typedef long gxColorIndex;

struct gxIndexedColor{

gxColorIndex index;

gxColorSet set;

};



C H A P T E R  4

Colors and Color-Related Objects

4-96 Summary of Colors and Color-Related Objects

The Color Structure

struct gxColor{

gxColorSpace space;

gxColorProfile profile;

union {

struct gxCMYKColor cmyk;

struct gxRGBColor rgb;

struct gxRGBAColor rgba;

struct gxHSVColor hsv;

struct gxHLSColor hls;

struct gxXYZColor xyz;

struct gxYXYColor yxy;

struct gxLUVColor luv;

struct gxLABColor lab;

struct gxYIQColor yiq;

gxColorValue gray;

struct gxGrayAColor graya;

unsigned short pixel16;

unsigned long pixel32;

struct gxIndexedColor indexed;

gxColorValue component[4];

} element;

};

Color Packing

typedef enum {

gxNoColorPacking = 0x0000, /* 16 bits/channel */

gxAlphaSpace = 0x0080, /* space includes alpha channel */

gxWord5ColorPacking = 0x0500, /* 5 bits/channel, right-justified */

gxLong8ColorPacking = 0x0800, /* 8 bits/channel, right-justified */

gxLong10ColorPacking = 0x0a00, /* 10 bits/channel, right-justified */

gxAlphaFirstPacking = 0x1000 /* alpha channel = 1st field in space */

} gxColorPackingTypes;

Color Spaces

enum gxColorSpaces{

gxNoSpace = 0,

gxRGBSpace,

gxCMYKSpace,

gxHSVSpace,

gxHLSSpace,



C H A P T E R  4

Colors and Color-Related Objects

Summary of Colors and Color-Related Objects 4-97

gxYXYSpace,

gxXYZSpace,

gxLUVSpace,

gxLABSpace,

gxYIQSpace,

gxNTSCSpace = gxYIQSpace,

gxPALSpace = gxYIQSpace,

gxGraySpace,

gxIndexedSpace,

gxRGBASpace = gxRGBSpace + gxAlphaSpace,

gxGrayASpace = gxGraySpace + gxAlphaSpace,

gxRGB16Space = gxWord5ColorPacking + gxRGBSpace,

gxRGB32Space = gxLong8ColorPacking + gxRGBSpace,

gxARGB32Space = gxLong8ColorPacking + gxAlphaFirstPacking 

+ gxRGBASpace,

gxCMYK32Space = gxLong8ColorPacking + gxCMYKSpace,

gxHSV32Space = gxLong10ColorPacking + gxHSVSpace,

gxHLS32Space = gxLong10ColorPacking + gxHLSSpace,

gxYXY32Space = gxLong10ColorPacking + gxYXYSpace,

gxXYZ32Space = gxLong10ColorPacking + gxXYZSpace,

gxLUV32Space = gxLong10ColorPacking + gxLUVSpace,

gxLAB32Space = gxLong10ColorPacking + gxLABSpace,

gxYIQ32Space = gxLong10ColorPacking + gxYIQSpace,

gxNTSC32Space = gxYIQ32Space,

gxPAL32Space = gxYIQ32Space,

};

typedef long gxColorSpace;

The Color Set Object

typedef struct gxPrivateColorSetRecord *gxColorSet;

The gxSetColor Union

union gxSetColor{

gxCMYKColor cmyk;

gxRGBColor rgb;

gxRGBAColor rgba;

gxHSVColor hsv;

gxHLSColor hls;

gxXYZColor xyz;

gxYXYColor yxy;

gxLUVColor luv;



C H A P T E R  4

Colors and Color-Related Objects

4-98 Summary of Colors and Color-Related Objects

gxLABColor lab;

gxYIQColor yiq;

gxColorValue gray;

gxGrayAColor graya;

unsigned short pixel16;

unsigned long pixel32;

gxColorValue component[4];

};

The Color Profile Object

typedef struct gxPrivateProfileRecord *gxColorProfile;

Color Functions

boolean GXCheckColor (const gxColor *source, gxColorSpace space, 
gxColorSet aSet, gxColorProfile profile);

Fixed GXGetColorDistance (const gxColor *target, const gxColor *source);

gxColor *GXCombineColor (gxColor *target, gxInk operand);

gxColor *GXConvertColor (gxColor *target, gxColorSpace space, 
gxColorSet aSet, gxColorProfile profile);

Color Set Functions

Creating and Manipulating Color Set Objects

gxColorSet GXGetDefaultColorSet
(long pixelDepth);

void GXSetDefaultColorSet (gxColorSet target, long pixelDepth);

gxColorSet GXNewColorSet (gxColorSpace space, long count, 
const gxSetColor colors[]);

void GXDisposeColorSet (gxColorSet target);

gxColorSet GXCopyToColorSet (gxColorSet target, gxColorSet source);

boolean GXEqualColorSet (gxColorSet one, gxColorSet two);

gxColorSet GXCloneColorSet (gxColorSet source);

Manipulating Color Set Object Properties

long GXGetColorSetOwners (gxColorSet source);

long GXGetColorSetTags (gxColorSet source, long tagType, long index, 
long count, gxTag items[]);



C H A P T E R  4

Colors and Color-Related Objects

Summary of Colors and Color-Related Objects 4-99

void GXSetColorSetTags (gxColorSet target, long tagType, long index, 
long oldCount, long newCount, 
const gxTag items[]);

Retrieving and Replacing Colors in a Color Set

long GXGetColorSet (gxColorSet source, gxColorSpace *space, 
gxSetColor colors[]);

void GXSetColorSet (gxColorSet target, gxColorSpace space, 
long count, const gxSetColor colors[]);

long GXGetColorSetParts (gxColorSet source, long index, long count, 
gxColorSpace *space, gxSetColor data[]);

void GXSetColorSetParts (gxColorSet target, long index, long oldCount, 
long newCount, const gxSetColor data[]);

Color Profile Functions

Creating and Manipulating Color Profile Objects

gxColorProfile GXGetDefaultColorProfile
(void);

gxColorProfile GXNewColorProfile
(const gxProfileRecord *profile, 
const gxProfileResponse *responses);

void GXDisposeColorProfile (gxColorProfile target);

gxColorProfile GXCopyToColorProfile
(gxColorProfile target, gxColorProfile source);

boolean GXEqualColorProfile (gxColorProfile one, gxColorProfile two);

gxColorProfile GXCloneColorProfile
(gxColorProfile source);

Manipulating Color Profile Object Properties

long GXGetColorProfileOwners(gxColorProfile source);

long GXGetColorProfileTags (gxColorProfile source, long tagType, 
long index, long count, gxTag items[]);

void GXSetColorProfileTags (gxColorProfile target, long tagType, 
long index, long oldCount, long newCount, 
const gxTag items[]);



C H A P T E R  4

Colors and Color-Related Objects

4-100 Summary of Colors and Color-Related Objects

Retrieving and Replacing Profile Information

long GXGetColorProfile (gxColorProfile source, 
gxProfileRecord *profile, 
gxProfileResponse *responses);

void GXSetColorProfile (gxColorProfile target,
const gxProfileRecord *profile, 
const gxProfileResponse *responses);

void GXLockColorProfile (gxColorProfile source);

void GXUnlockColorProfile (gxColorProfile source);

void *GXGetColorProfileStructure
(gxColorProfile source, long *length);



Contents 5-1

C H A P T E R  5

Contents

Ink Objects

About Ink Objects 5-5

Ink Properties 5-6

Color 5-7

Transfer Mode 5-8

Ink Attributes 5-9

The Default Ink Object 5-10

About Transfer Modes 5-11

Transfer Mode Types 5-11

Arithmetic Transfer Modes 5-12

Highlight Transfer Mode 5-15

Boolean Transfer Modes 5-16

Pseudo-Boolean Transfer Modes 5-18

Alpha-Channel Transfer Modes 5-20

Transfer Mode Color Space 5-25

Color Limits 5-27

Source Color Limits 5-31

Destination Color Limits 5-32

Result Color Limits 5-32

Transfer Mode Matrices 5-33

Flags 5-34

Transfer Component Flags 5-35

Transfer Mode Flags 5-35

Summary of Transfer Mode Operation 5-36

Using Ink Objects 5-38

Creating and Manipulating Ink Objects 5-38

Creating and Disposing of Ink Objects 5-38

Copying, Comparing, and Cloning Ink Objects 5-39

Loading and Unloading Ink Objects 5-40



C H A P T E R  5

5-2 Contents

Manipulating Ink Object Properties 5-40

Getting and Setting an Ink Object’s Attributes 5-40

Manipulating an Ink Object’s Owner Count 5-41

Getting and Setting an Ink Object’s Tag References 5-41

Getting and Setting an Ink Object’s Color 5-42

Getting and Setting an Ink Object’s Transfer Mode 5-43

Working With Transfer Modes 5-44

Simple Source-to-Destination Transfers 5-44

Drawing Selected Parts of the Source 5-45

Preserving Selected Parts of the Destination 5-45

Copying or Preserving Luminance 5-46

Modifying Luminance 5-47

Isolating and Modifying Color Ranges 5-47

Masking 5-48

Partial Transparency 5-48

Anti-Aliasing 5-49

Making Color Separations 5-49

Transfer Modes and Printing 5-49

Ink Objects Reference 5-50

Constants and Data Types 5-50

The Ink Object 5-50

Ink Attributes 5-51

Color Structure 5-51

Transfer Mode Structure 5-52

Transfer Mode Flags 5-53

Transfer Component Structure 5-53

Component Modes (Transfer Mode Types) 5-55

Transfer Component Flags 5-55

Functions 5-56

Creating and Manipulating Ink Objects 5-56

GXNewInk 5-56

GXDisposeInk 5-57

GXCopyToInk 5-58

GXEqualInk 5-59

GXCloneInk 5-59

Manipulating Ink Object Properties 5-60

GXResetInk 5-60

GXGetInkAttributes 5-61

GXSetInkAttributes 5-62

GXGetShapeInkAttributes 5-62

GXSetShapeInkAttributes 5-63

GXGetInkOwners 5-64

GXGetInkTags 5-65

GXSetInkTags 5-66



C H A P T E R  5

Contents 5-3

Getting and Setting an Ink’s Color 5-68

GXGetInkColor 5-68

GXSetInkColor 5-69

GXGetShapeColor 5-70

GXSetShapeColor 5-71

Getting and Setting an Ink’s Transfer Mode 5-72

GXGetInkTransfer 5-72

GXSetInkTransfer 5-73

GXGetShapeTransfer 5-74

GXSetShapeTransfer 5-75

Summary of Ink Objects 5-77

Constants and Data Types 5-77

Functions 5-79





C H A P T E R  5

About Ink Objects 5-5

Ink Objects

This chapter describes ink objects and the functions you can use to manipulate them. 

Read this chapter if you create or use any kind of ink object for the QuickDraw GX 

shapes you create. Read this chapter also if you want to understand how QuickDraw GX 

uses transfer modes in drawing shapes.

Before reading this chapter, you should be familiar with the information in the chapter 

“Introduction to QuickDraw GX” in this book. You should also be familiar with shapes, 

as discussed in the chapter “Shape Objects” in this book.                   

Although colors are contained in ink objects, they are not discussed here. Colors are 

discussed in the chapter “Colors and Color-Related Objects” in this book. Other than 

that chapter, this chapter constitutes the complete discussion of ink objects for 

QuickDraw GX. Unlike for shape objects and style objects, there is no separate 

discussion in other books of any specific graphic or typographic uses for inks.

This chapter introduces QuickDraw GX ink objects and describes their properties. It also 

describes how transfer modes work in QuickDraw GX. It then shows how to use the 

QuickDraw GX ink-manipulation functions to

■ create and manipulate ink objects

■ manipulate ink object properties

■ get and set an ink object’s color

■ work with transfer modes

About Ink Objects

An ink object exists to provide color information about a shape. Each QuickDraw GX 

shape consists of a shape object, a style object, an ink object, and a transform object; the 

ink object associated with a shape defines the color with which the shape is drawn, as 

well as the transfer mode used to draw it.

QuickDraw GX identifies an individual ink object through an ink reference. To obtain 

information about an ink object, you must send its reference as a parameter to a 

QuickDraw GX function (except that you can determine if two references identify the 

same ink object simply by comparing them for equality, and you can examine a reference 

to see if it is nil).

Inks are device independent. Their information is not affected by the properties of the 

display device to which the shapes they modify are drawn. When it draws a shape on a 

device, QuickDraw GX approximates as closely as possible the color specified by the 

shape’s ink. Device-specific color characteristics are accounted for by attaching color 

profiles to ink objects and by using a device’s color profile when drawing; see the 

chapter “Colors and Color-Related Objects” in this book for more information.



C H A P T E R  5

Ink Objects

5-6 About Ink Objects

Ink Properties
The interface to ink objects is entirely procedural. You manipulate the information in an 

ink object by modifying its properties using QuickDraw GX functions.

Ink objects have five accessible properties, as shown in Figure 5-1. Note that, because 

an ink is an object and not a data structure, the order of the properties as shown in 

Figure 5-1 is completely arbitrary. Properties in italics are references to other objects.

Figure 5-1 The ink object and its properties

These are the five accessible properties in an ink object:

■ Color. A data structure that specifies the color to use for drawing the shape associated 
with this ink object. Besides the numeric value of the color itself, the color structure 
includes a specification of the color space the color is defined in terms of, as well as 
optional references to two other QuickDraw GX objects, a color set and a color profile.

■ Transfer mode. The way, or mode, of transferring the color to its destination (the 
screen or printed page or other location into which the shape associated with this ink 
is drawn). Transfer mode is a specification (such as “copy” or “XOR” or “blend”) of 
the interaction between the color in this ink object and the existing color or colors of 
the destination. With transfer mode you can make a shape opaque or transparent, 
draw only part of it, change its color, or combine its color with the destination color in 
many different ways. 

The transfer mode also includes a specification of a color space and may include 
references to a color set and a color profile.

■ Attributes. A set of flags that allow you to control certain properties of view ports that 
affect how colors appear when a shape is drawn.

■ Owner count. The number of existing references to this ink object.

■ Tag list. A list of references to custom information about this ink object, stored in 
private data structures called tag objects. The chapter “Tag Objects” in this book 
describes tag objects in general and how you can use them to add custom information 
to objects.

QuickDraw GX provides functions to manipulate each of these ink object properties.



C H A P T E R  5

Ink Objects

About Ink Objects 5-7

Color

One main purpose of an ink object’s existence is to specify the color of a shape. Because 

there is only one ink object per shape, it follows that each QuickDraw GX shape can have 

only one color. The only exception to this is for bitmap shapes, which use pixel values 

rather than an ink object to specify colors. (Picture shapes have no color at all apart from 

the colors of their component shapes, and thus do not use their ink object.)

The color in an ink object is defined with a gxColor structure:

struct gxColor{

gxColorSpace space;

gxColorProfile profile;

union {

struct gxCMYKColor cmyk;

struct gxRGBColor rgb;

struct gxRGBAColor rgba;

struct gxHSVColor hsv;

struct gxHLSColor hls;

struct gxXYZColor xyz;

struct gxYXYColor yxy;

struct gxLUVColor luv;

struct gxLABColor lab;

struct gxYIQColor yiq;

gxColorValue gray;

struct gxGrayAColor graya;

unsigned short pixel16;

unsigned long pixel32;

struct gxIndexedColor indexed;

gxColorValue component[4];

} element;

};

The color structure specifies three characteristics of a color:

■ the color’s color space, which tells what kind of format the color has—such as 
red-green-blue (RGB), hue-saturation-value (HSV), or luminance (grayscale). 

■ a reference to a color profile object that contains information for converting the 
device-independent color in this ink object into color-corrected values on a particular 
output device. If the reference is nil, the QuickDraw GX default color profile is used. 

■ the numeric color values that (for the given color space) specify the color of this ink 
object. An individual color has one number for each dimension, or color component, 
in the color’s color space; for example, an RGB color value consists of three color 
component values. A color may consist of a maximum of four components.



C H A P T E R  5

Ink Objects

5-8 About Ink Objects

To set and manipulate the color of an ink object requires an understanding of how color 

works in QuickDraw GX. The color structure, color spaces, and color profiles are all 

described in detail in the chapter “Colors and Color-Related Objects” in this book. 

Transfer Mode

The transfer mode in an ink object is contained in a gxTransferMode structure:

struct gxTransferMode{

gxColorSpace space;

gxColorSet set;

gxColorProfile profile;

Fixed sourceMatrix[5][4];

Fixed deviceMatrix[5][4];

Fixed resultMatrix[5][4];

gxTransferFlag flags;

struct gxTransferComponent component[4];

};

Like the color structure just described, the transfer mode structure specifies a color 

space, and may contain a reference to a color profile object or a color set object, which 

contains an array of available colors. A transfer mode specifies its own color space 

because it can perform its operations according to its own definitions of color, 

independent of the color specifications in the rest of the ink object.

The transfer mode structure contains three 5 × 4 matrices (5 rows, 4 columns), the source 
matrix, device matrix, and result matrix, which it can use to transform colors for special 

effects, by blending proportions of the colors’ components. In addition, it contains a set 

of transfer mode flags that control several aspects of the transfer mode operation.

The structure also contains up to four transfer components, used along with the 

matrices in the transfer mode operation. Transfer components contain the actual 

specification of the mode of transfer to use when drawing. Transfer components are 

defined by the gxTransferComponent structure:

struct gxTransferComponent{

gxComponentMode mode;

gxComponentFlag flags;

gxColorValue sourceMinimum;

gxColorValue sourceMaximum;

gxColorValue deviceMinimum;

gxColorValue deviceMaximum;

gxColorValue clampMinimum;

gxColorValue clampMaximum;

gxColorValue operand;

};



C H A P T E R  5

Ink Objects

About Ink Objects 5-9

A transfer component contains a component mode specifying the type of transfer mode 

(like “copy” or “XOR”) to use, an operand to apply (if the type calls for an operand), a 

set of maximum and minimum color values, and a set of flags. There is one transfer 

component for each color component (dimension) in the transfer mode’s color space. 

Each of the transfer components in the transfer mode structure may specify a different 

component mode, which means that each dimension of a color space can be drawn with 

a different transfer mode when a shape is drawn.

How these parts of the transfer mode structure and transfer component structure define 

the transfer mode for drawing, and how you can use transfer modes to obtain the proper 

effect when drawing, are described in the section “About Transfer Modes” beginning on 

page 5-11. 

Ink Attributes

Each ink object has a set of ink attributes, a group of flags that affect the dithering and 

halftoning behavior when the shape associated with the ink is drawn. Dithering is the 

use of repeating patterns of differently colored pixels to simulate colors not available in a 

view device’s color space. Halftoning is the process of representing varying color 

intensity with evenly spaced dots of one color (but of different sizes) separated by a 

background of another color. The dither level and the halftone characteristics for all 

drawing to a view port are specified in the view port object, but you can use an ink 

object’s attributes to affect them for individual shapes that use that ink.

Ink attributes allow you to turn halftoning or dithering on or off, and to affect both the 

number of colors used in dithering and the alignment of the patterns of dithered pixels. 

Table 5-1 lists the ink attribute constants and describes what each one means. The 

constants are defined in the gxInkAttributes enumeration. 

Table 5-1 Ink attributes 

Constant Value Explanation

gxPortAlignDitherInk 0x0001 If set, QuickDraw GX aligns the dither 
pattern to the view device coordinates. 
If this attribute is clear (the default), 
QuickDraw GX aligns the dither pattern 
to the view port coordinates. 

gxForceDitherInk 0x0002 If set, QuickDraw GX forces the dithering 
operation to use exactly the number of 
colors specified by the view port’s 
dither level. If this attribute is clear, 
QuickDraw GX may use fewer colors (in a 
simpler dither pattern) when constructing 
the dither pattern.

continued



C H A P T E R  5

Ink Objects

5-10 About Ink Objects

IMPORTANT

Make sure that the gxPortAlignDitherInk attribute is cleared in 
ports associated with windows, so that if the window is dragged, 
updates using dithered drawing will match the existing parts of the 
drawing. (The attribute is clear by default.) ▲

Dithering, dither level, and halftones are described in more detail in the chapter 

“View-Related Devices” in this book.   

The Default Ink Object
When QuickDraw GX first creates an ink object, that object has default characteristics 

defined by QuickDraw GX. A default ink object has the following properties:

■ No attributes set.

■ An empty tag list.

■ An owner count of 1.

■ Color space set to gxRGBSpace with each color component set to 0, which represents 
black in this color space.

■ Transfer mode set to gxCopyMode, with identity transfer mode matrices, color limits 
of 0 to 0xFFFF, and all flags cleared. Copy mode is the default transfer mode assigned 
to all color components of an ink object, because it is most common and fastest.

Transfer modes, matrices, color limits, and flags are described in subsequent sections of 

this chapter. Color spaces and color components are described in the chapter “Colors 

and Color-Related Objects” in this book.

To reset an ink object to its default properties, use the GXResetInk function, described 

on page 5-60. 

gxSuppressDitherInk 0x0004 If set, QuickDraw GX ignores the view port 
dither level, if any, and draws without 
dithering. 

gxSuppressHalftoneInk 0x0008 If set, QuickDraw GX ignores the view 
port halftone, if any, and draws without 
creating a halftone.

Table 5-1 Ink attributes (continued)

Constant Value Explanation



C H A P T E R  5

Ink Objects

About Transfer Modes 5-11

About Transfer Modes

Basically, ink objects exist to specify two important characteristics of a shape: its color 

and the transfer mode to draw it with. Colors are described in the chapter “Colors and 

Color-Related Objects” in this book. Transfer modes are described here.

Transfer modes specify how a shape’s color is transferred onto a device. The color of a 

shape to be drawn (the source color) interacts with the existing color (the destination 
color) on the device it is drawn to. The color that results from that interaction is called 

the result color. The result color is the color of the destination after the drawing occurs.

Note that colors from different color spaces can be used. The source and destination 

colors are converted to the transfer mode’s color space, and the resulting color is then 

reconverted to the destination color space.

Bitmaps and the ink object

A bitmap shape does not use the color in its ink object, but it does use 
the ink’s transfer mode. Transfer modes work the same for the pixels of 
bitmaps as they do for colors in ink objects. For more information, see 
the bitmap shapes chapter of Inside Macintosh: QuickDraw GX Graphics. ◆

QuickDraw GX allows you to influence the transfer mode operation in very flexible and 

powerful ways. By manipulating different parts of the transfer mode structure, you can 

specify 

■ the type of transfer mode to apply to each color component

■ the color space in which to perform the transfer-mode calculations

■ limits on the values of color components that can be permitted in the source, 
destination, or result colors

■ values for the source, destination, or result matrices that can allow you to perform 
sophisticated transformations within and across color components

■ values for flags that affect several aspects of the transfer mode operation

The rest of this section discusses these five aspects of transfer modes. The section 

concludes with a summary diagram (Figure 5-18 on page 5-37) of the transfer mode 

process.

Transfer Mode Types
Transfer modes can be specified by type, also called component mode. Transfer mode 

types in QuickDraw GX are called component modes because QuickDraw GX allows 

each color component to have its own transfer mode type. In RGB color space, for 

example, the red component of the color may be drawn with a different transfer mode 

type than the blue component.



C H A P T E R  5

Ink Objects

5-12 About Transfer Modes

QuickDraw GX supports several conceptual categories of component modes:

■ arithmetic

■ Boolean

■ pseudo-Boolean

■ highlight

■ alpha-channel

The characteristics of and most typical uses for the component modes within each 

category are summarized in the following subsections.

Copy mode is the default

Even though QuickDraw GX supports 18 different component modes, 
most applications in most situations need only one, an arithmetic mode 
called copy mode. In copy mode, the source color completely replaces 
the destination color. Copy mode is the default transfer mode in 
QuickDraw GX; therefore, you need information about other transfer 
modes only if you want them for special effects. ◆

Arithmetic Transfer Modes

In arithmetic transfer modes, the numerical values of source and destination for a 

color component are combined arithmetically to determine the result value for that color 

component. In most color spaces, a color component value can vary from 0 (no intensity) 

to 0xFFFF (maximum intensity). You can also use the constant gxColorValue1 to 

represent maximum intensity (0xFFFF).

Figure 5-2 shows examples of drawing with the arithmetic transfer modes. In each case, 

the source image (left) combines with the destination image (center) to produce the 

result image (right). You can think of the images either as two bitmaps, or as two source 

shapes (cloud and background) that are drawn over two destination shapes (letter and 

background).

Each example shows how transfer mode affects drawing within a single color 

component (reflected as shades of gray in the figure, where black equals 0 and white 

equals 0xFFFF). The constant that specifies the transfer mode type is shown to the right 

of each example. Note also that two of the arithmetic transfer modes use an operand, a 

numerical value that affects the outcome of the transfer-mode operation. 



C H A P T E R  5

Ink Objects

About Transfer Modes 5-13

Figure 5-2 Arithmetic transfer modes



C H A P T E R  5

Ink Objects

5-14 About Transfer Modes

The constants that define transfer mode type are defined in the gxComponentModes 

enumeration. The arithmetic modes have the following values and meanings:

Constant Value Explanation

gxNoMode 0 No mode. No transfer occurs. For this component of 
the color, the destination is left as it was. This mode is 
useful for suppressing drawing when certain logical 
conditions are met, or for not drawing one color 
component while allowing other components to be 
drawn.

gxCopyMode 1 Copy mode. The source color component is copied to 
the destination. The destination component is ignored. 
This is the most common transfer mode, and is the 
default for QuickDraw GX.

gxAddMode 2 Add mode. The source color component is added to 
the destination component, but the result is not 
allowed to exceed the maximum value (0xFFFF or 
gxColorValue1; white in Figure 5-2).

gxBlendMode 3 Blend mode. The result is the average of the source 
and destination color components, weighted by a ratio 
specified by the operand component (0.5 in Figure 5-2). 
The operand varies from 0 (all destination) to 0xFFFF or 
gxColorValue1 (all source), although it is customary 
to interpret it as varying between 0 and 1. 

gxMigrateMode 4 Migrate mode. The destination color component is 
moved toward the source component by the value of 
the step specified in the operand component (0.25, or 
0x4000 in Figure 5-2). Migrate mode is similar to blend 
mode, except that the change in destination component 
is an absolute amount, rather than a proportion of the 
difference between it and the source component. If the 
source has a greater color component value than the 
destination, the migration is positive; if the destination 
has a greater value than the source, the migration is 
negative. In either case, the amount of migration cannot 
be greater than the difference between the destination 
and the source values.

gxMinimumMode 5 Minimum mode. The source component replaces the 
destination component only if the source component 
has a smaller value. (In Figure 5-2, drawing occurs only 
within the area occupied by the cloud.)

gxMaximumMode 6 Maximum mode. The source component replaces the 
destination component only if the source component 
has a larger value. (In Figure 5-2, drawing occurs only 
outside of the area occupied by the cloud.)



C H A P T E R  5

Ink Objects

About Transfer Modes 5-15

The operand parameter is used by blend mode to specify the ratio of source and 

destination component. It is used by migrate mode to specify the step size by which 

the destination component moves toward the source component. Figure 5-3 shows 

examples of the result of drawing with blend mode, using several different values for the 

operand. (Color Plate 1 at the front of this book shows the same example in color.)

Figure 5-3 Blend example with different operand values

Highlight Transfer Mode

The highlight transfer mode is used for highlighting in color applications. It is most 

commonly used to draw (and clear) a colored rectangle around a selection, without 

altering the color of the item or items selected. In text, it gives the effect of drawing over 

the letters with a highlighting pen.

Like some of the arithmetic transfer modes, highlight mode uses an operand to control 

the outcome of the highlighting operation. Highlight mode operates by replacing the 

source color with the operand color, and the operand color with the source color, in the 

destination.

The upper row of images in Figure 5-4 shows a simple example of the application of 

highlight mode. The operand value is represented with shading rather than as a number, 

to illustrate how its color affects colors in the image. The source shape is a white 

rectangle that is drawn over the two middle letters in the destination image. (The gray 

letters in the line of text in the destination image represent the same color-component 

value as the operand, and the white area around the letters in the destination represents 

the same color-component value as the source.) 



C H A P T E R  5

Ink Objects

5-16 About Transfer Modes

Figure 5-4 Highlight transfer mode

Note that black in the destination is unaffected, whereas white becomes gray and gray 

becomes white. A single constant specifies highlight mode, with the following value and 

meaning: 

In highlight mode, the source color can be thought of as the “background” color that is 

to be highlighted, and the operand color is the color of the highlighting pen. As the 

lower set of images in Figure 5-4 shows, redrawing a highlighted selection causes the 

source and operand colors to swap once more, effectively removing the highlighting.

The operand for highlight mode is a normal color component value that varies from 0 

(no intensity) to the maximum intensity permitted for that component (normally 0xFFFF, 

or gxColorValue1).

QuickDraw GX applies highlight mode only if all components in the color space specify 

it. An error occurs if some components specify highlight mode and others do not. 

Boolean Transfer Modes

In Boolean transfer modes, the result value for a color component is determined by bit 

operations performed on the source and destination component values. Boolean transfer 

modes are most common in black-and-white drawing; in any bit depth other than 1, they 

yield results that can be difficult to predict because they depend on the states of the 

individual bits in each color-component value.

Constant Value Explanation

gxHighlightMode 7 Highlight mode. The source component and operand 
component are swapped in the destination. Other 
components in the destination are ignored. 



C H A P T E R  5

Ink Objects

About Transfer Modes 5-17

Figure 5-5 shows examples of drawing with the Boolean transfer modes at a bit depth 

of 1. In each case, the source image combines with the destination image to produce the 

result image. In these examples, black represents a bit value of 0 (clear), and white 

represents a bit value of 1 (set). The constant that specifies the transfer mode type is 

shown to the right of each example.

Figure 5-5 Boolean transfer modes (1-bit depth)

The Boolean modes have the following values and meanings: 

Constant Value Explanation

gxAndMode 8 AND mode. The bits of the source color and destination color 
are combined using an AND operation. Only bits that are set 
in both source and destination remain set in the result.

gxOrMode 9 OR mode. The bits of the source color and destination color 
are combined using an OR operation. Bits that are set in 
either the source or the destination or in both are set in the 
result.

gxXorMode 10 XOR mode. The bits of the source color and destination color 
are combined using an exclusive-OR (XOR) operation. Bits 
that are set in the source but not the destination, and bits that 
are set in the destination but not the source, are set in the 
result. All other bits are cleared in the result.



C H A P T E R  5

Ink Objects

5-18 About Transfer Modes

Even though they are most easily explained in terms of single-bit depths, Boolean 

modes are not restricted to 1-bit drawing. They can be used with any kind of color 

values, and are useful for manipulating colors in an indexed color space. 

Pseudo-Boolean Transfer Modes

In pseudo-Boolean transfer modes, the result value for a color component is determined 

by normalizing the source and destination values and performing a simple arithmetic 

operation, to achieve consistent and predictable results analogous to 1-bit Boolean 

operations.

Figure 5-6 shows examples of drawing with the pseudo-Boolean transfer modes. In each 

case, the source image combines with the destination image to produce the result image. 

The constant that specifies the transfer mode type is shown to the right of each example.

Figure 5-6 Pseudo-Boolean transfer modes



C H A P T E R  5

Ink Objects

About Transfer Modes 5-19

The constants for the pseudo-Boolean component modes have the following values and 

meanings:

Note that the pseudo-Boolean and Boolean modes are similar in several ways:

■ The mode gxRampAndMode is similar to gxAndMode in that nonzero values occur in 
the result only where both source and destination are nonzero. 

■ The mode gxRampOrMode is similar to gxOrMode in that nonzero values occur in the 
result wherever either the source or the destination is nonzero.

■ The mode gxRampXorMode is similar to gxXorMode in that the result is close to zero 
wherever the source and destination are close to each other in value.

The difference between the pseudo-Boolean and Boolean modes is that, for multi-bit 

pixel depths, the results for gxRampAndMode, gxRampOrMode, and gxRampXorMode 

are predictable and vary smoothly and continuously with component intensity. For 1-bit 

depths, these modes are identical to their Boolean equivalents.

The pseudo-Boolean modes are commonly used as component modes for alpha channels 

in color spaces that have an alpha channel. See “Alpha-Channel Transfer Modes” (next). 

Constant Value Explanation

gxRampAndMode 11 Ramp-AND mode. The source and destination color 
components are treated as ranging from 0 to 1; their 
product (source × destination) is returned.

gxRampOrMode 12 Ramp-OR mode. The source and destination color 
components are treated as ranging from 0 to 1; the 
result of (source + destination – source ×  destination) 
is returned.

gxRampXorMode 13 Ramp-XOR mode. The source and destination color 
components are treated as ranging from 0 to 1; the result 
of (source + destination – 2 × source × destination) is 
returned.



C H A P T E R  5

Ink Objects

5-20 About Transfer Modes

Alpha-Channel Transfer Modes

Several QuickDraw GX color spaces (gxRGBASpace, gxARGB32Space and 

gxGrayASpace) have an alpha channel. This is an additional color component that 

controls the opacity or transparency of a color. For example, a red pixel in a source image 

can be completely opaque, in which case it typically retains its red color when drawn 

over a blue pixel in the destination image. Or, the pixel can be completely transparent, in 

which case it typically loses all its color and turns totally blue when drawn over a blue 

pixel. Or, it can have an opacity of, say, 0x7FFF (50%), in which case it typically turns 

magenta when drawn over a blue pixel.

Alpha channel values can be used to allow parts of one image to show through “holes” 

in another, to show translucency in objects that are drawn over other objects, and to 

perform anti-aliasing (smoothing of jagged edges) by giving feathered, semi-transparent 

borders to opaque objects. 

When assigning transfer modes to colors with an alpha channel, you typically use two 

different kinds of modes:

■ To get the proper result color for each color component, you use an alpha-channel 
transfer mode. These modes take alpha-channel values into account when calculating 
result values for the color components.

■ To get the proper result opacity for the alpha channel itself, you typically use an 
arithmetic or pseudo-Boolean transfer mode.

This section describes how the different modes within each category work to give you 

the results you want.

Modes for the Color Components

Figure 5-7 shows examples of how values for a color component might be calculated, 

given a source image and a destination image consisting of objects (or pixels) that differ 

in opacity. In each example, the source image (an opaque, light gray cloud against a 

transparent black background) combines with the destination image (an opaque, dark 

gray “A” on a transparent black background), to form the result image. The constant that 

specifies the transfer mode type is shown to the right of each example.



C H A P T E R  5

Ink Objects

About Transfer Modes 5-21

Each example shows how the alpha-channel transfer mode affects drawing within a 

single color component. The mode takes into account not only the source and destination 

color components, but the source and destination opacities as well. 

Figure 5-7 Alpha-channel transfer modes



C H A P T E R  5

Ink Objects

5-22 About Transfer Modes

The constants for the alpha-channel component modes have the following values and 

meanings: 

As Figure 5-7 shows, the gxOverMode mode is similar to the arithmetic transfer mode 

gxCopyMode, except that it allows for transparency in the source image. Likewise, the 

gxAtopMode mode is similar to gxCopyMode, but it preserves the transparency of 

the destination image by clipping the opaque source to the destination image. The 

gxExcludeMode mode is somewhat like the Boolean transfer mode gxXorMode, in 

that opaque parts of each image appear only where the other is not opaque. The 

gxFadeMode mode is like the arithmetic gxBlendMode, except that the operand that 

controls the blend ratio is determined by the relative opacities.

Note that the images shown in Figure 5-7 are very simple and their opacities are either 0 

(completely transparent) or gxColorValue1 (completely opaque). Because an alpha 

component can have a wide range of partial opacities, very sophisticated translucency 

and color-blending effects are possible, as well as the simple masking effects shown here.

The exact formulas for determining result color are the following. In these 

formulas, sA = source alpha-channel value; dA = destination alpha-channel value; 

sC = source color-component value; dC = destination color-component value; 

and rC = result color-component value. 

■ For gxOverMode:

rC = (sA x (sC - dA x dC) + dA x dC) / (sA + dA - sA x dA)

■ For gxAtopMode:

rC = dC + sA x (sC - dC)

Constant Value Explanation

gxOverMode 14 Over mode. The source color is copied to the 
destination, and the source transparency controls 
where the destination color shows through. Where 
both are transparent, no drawing occurs (result equals 
destination).

gxAtopMode 15 Atop mode. The source color is placed over the 
destination, but the resulting destination retains the 
original destination’s transparency. The effect is that 
opaque parts of the source are clipped to cover only 
opaque parts of the destination. 

gxExcludeMode 16 Exclude mode. The destination color remains visible 
only where the source is transparent, and the source 
color is copied anywhere the destination is transparent. 
Where both are transparent, no drawing occurs (result 
equals destination); where both are opaque, the result 
color is 0 (no intensity).

gxFadeMode 17 Fade mode. The source is blended with the destination, 
using the relative alpha values as the ratio for the blend. 
Where both are transparent, the result is the average 
of the source and the destination).



C H A P T E R  5

Ink Objects

About Transfer Modes 5-23

■ For gxExcludeMode:

rC = (sA x sC + dA x dC- sA x dA x (sC + dC)) / 
(sA + dA - sA x dA)

■ For gxFadeMode:

rC = sA x sC + dA x dC / (sA + dA) 

Modes for the Alpha Channel

For calculating the result value for the alpha channel itself, you typically use one of the 

arithmetic or pseudo-Boolean transfer modes presented in the previous sections—one 

that takes into account only the source and destination opacities. Figure 5-8 shows 

typical modes used and their effects on opacity, using the same images is those presented 

in Figure 5-7. In this figure, black represents complete transparency and white represents 

complete opacity. (If alpha-channel values between the two extremes existed in these 

examples, they would be shown in shades of gray.)

Figure 5-8 Typical modes used to determine result opacity for the alpha channel



C H A P T E R  5

Ink Objects

5-24 About Transfer Modes

Note from Figure 5-8 that the mode you use to determine the result opacity of the alpha 

channel usually depends on what alpha-channel mode you use to get color-component 

values:

■ Use gxRampOrMode to calculate result alpha-channel values if you want the opacities 
of both source and destination summed proportionally (in a pseudo-Boolean manner; 
see the description of gxRampOrMode on page 5-19) to achieve a result opacity. Thus, 
if you use gxOverMode for the color-components, you would typically use 
gxRampOrMode for the alpha channel.

■ Use gxNoMode to calculate result alpha-channel values if you want the opacity of the 
destination to remain unchanged. Thus, if you use gxAtopMode for the 
color-components, you would typically use gxNoMode for the alpha channel.

■ Use gxRampXorMode to calculate result alpha-channel values if you want a 
maximum result opacity where there is a maximum difference in opacities between 
source and destination. Thus, if you use gxExcludeMode for the color-components, 
you would typically use gxRampXorMode for the alpha channel.

■ Use gxAddMode to calculate result alpha-channel values if you want the result 
opacity to reflect the sum of the opacities of the source and destination (pinned to the 
maximum permitted value). Thus, if you use gxFadeMode for the color-components, 
you would typically use gxAddMode for the alpha channel.

Note

When converting a color from a color space that does not have an alpha 
channel to one that does, QuickDraw GX sets the alpha channel 
intensity to maximum (opaque). When a color is converted from a color 
space that does have an alpha channel to one that does not, the alpha 
channel is lost. ◆

Transparency Ramps and Anti-Aliasing

Two common applications for alpha-channel colors involve making objects or images 

partially opaque to give a translucent effect, and smoothing jagged edges on objects 

drawn at low resolution.

You can create a bitmap in which the alpha-channel values of the pixels vary smoothly in 

one or more directions, thus creating a transparency ramp that allows the destination 

image to show through the source image to varying degrees across the bitmap. Color 

Plate 2 at the front of this book, for example, shows the kind of effect that can be 

achieved with a simple alpha-channel ramp.

The smoothing of jagged edges on displayed objects is called anti-aliasing. You can 

perform anti-aliasing by modifying the alpha-channel values of the pixels surrounding 

the edges of an opaque object. You make an individual pixel more or less opaque, based 

on the proportion of that pixel that the object is computed to cover. 

In Figure 5-9, for example, the left image shows the computed position of the edge of a 

shape in a bitmap. The center image shows how that edge is displayed normally, given 

the resolution of the bitmap. The right image shows that edge as it might be displayed 

with anti-aliasing applied. The apparent jaggedness is decreased because pixels near the 

edge allow the background to show through to varying degrees.



C H A P T E R  5

Ink Objects

About Transfer Modes 5-25

Figure 5-9 Anti-aliasing

Transfer Mode Color Space
The space field in the transfer mode structure specifies the color space the transfer 

mode calculations take place in. This space does not need to be the same as the color 

space specified by the ink’s color, or the destination color space as specified by the view 

port or view device with which the ink is associated. The source and destination colors 

are converted into the color space that provides the context for the transfer, and the 

resulting color is then reconverted to the destination color space. Keep in mind that all 

transfer mode computations take place in the transfer mode’s color space. 

You needn’t convert color values among different spaces yourself in order to use a 

different transfer mode. The transfer mode operation automatically converts colors from 

the ink’s color space and the view device’s color space, manipulates them, and then 

converts the result color back to the view device’s color space for drawing. In creating 

shapes, you can work in whatever color space is convenient for you; when drawing, you 

can use any transfer mode color space you want; and neither color space need be the 

same as the color space used by the view device to which you are drawing.

Figure 5-10, for example, shows a source color in RGB space as specified in an ink object, 

a destination color in RGB space as specified by a monitor, and a transfer mode color 

space of HSV, as specified by the application. The component modes selected mean that 

the hue and saturation of the destination are preserved, but the value (lightness) of the 

source is maintained. QuickDraw GX automatically performs all necessary conversions.



C H A P T E R  5

Ink Objects

5-26 About Transfer Modes

Figure 5-10 Automatic conversion of color values during a transfer mode operation

The transfer mode color space defines how many components are required to perform 

the transfer mode operation. Monochromatic (grayscale) color spaces and indexed 

color space require only one component to be filled out. Alpha-channel spaces and 

CMYK space require four components to be filled out. All other spaces require three 

components to be filled out. (Color spaces are described in the chapter “Colors and 

Color-Related Objects” in this book.) 



C H A P T E R  5

Ink Objects

About Transfer Modes 5-27

Remember that if the transfer mode’s color space is gxIndexedSpace, the transfer 

mode structure must contain a reference to a color set object.

Note

Choosing a different color space can radically affect the behavior of a 
transfer mode. For example, if your transfer mode uses RGB space, 
and you have specified gxCopyMode for the component mode of 
component[0] and gxNoMode for the other components in the transfer 
mode structure, drawing will transfer only the red component of your 
source image to the destination, and leave the blue and green 
components of the destination as they are. If you then change the 
transfer mode color space to HSV and redraw, all hues in your source 
image will be transferred to the destination, but with the brightnesses 
and saturations of the original destination image. ◆ 

Color Limits
Transfer mode operations allow you to specify limits on the acceptable input values for 

the source or destination color, and on the acceptable output values for the result color. 

For example, in converting CMYK color to RGB, you may wish to limit the intensities to 

values that can be displayed without oversaturating the phosphors on a monitor’s 

screen. Or, to create a special effect, you may want to draw only the extreme light and 

dark portions of an image, leaving out its midrange entirely.

Each color component in the component field of the transfer mode structure can have a 

maximum and a minimum permitted value. The permissible ranges can be interpreted 

as shown in Figure 5-11. In the figure, the large cube represents all of RGB space; the 

small cube represents one possible example of the limits that could be imposed on 

allowable values for all three components.



C H A P T E R  5

Ink Objects

5-28 About Transfer Modes

Figure 5-11 Maximum and minimum color-component values in RGB space

In the case of source and destination colors, color values outside the range of acceptable 

values (that is, outside the small cube in Figure 5-11) are ignored; if any single 

component value is outside of its acceptable range, no drawing occurs at all for that 

color. In the case of the calculated colors that result from a given transfer mode 

operation, color values outside of the acceptable range are pinned to, or moved so that 

they don’t exceed, the nearest acceptable value (the closest edge of the small cube). See 

Figure 5-12. 



C H A P T E R  5

Ink Objects

About Transfer Modes 5-29

Figure 5-12 How minimum and maximum color limits affect drawing

For a given component, the maximum value for a color limit can be either greater or 

smaller than the minimum. If the maximum is less than the minimum, only the extreme 

color values (that is, values outside of the small cube area in Figure 5-11) are allowed. See 

Figure 5-13.

Figure 5-13 How reversed minimum and maximum color limits affect drawing

Each of the components in a color space can have its limits set entirely independently 

of the others. Figure 5-14 shows the effects of reversing, in turn, the maximum and 

minimum values for each of the three axes in RGB space.



C H A P T E R  5

Ink Objects

5-30 About Transfer Modes

Figure 5-14 The effects of reversing maximum and minimum in a color space

Where the words Min and Max are bold in Figure 5-14, the minimum is greater than the 

maximum. Refer to Figure 5-11 on page 5-28 for the positions of the color axes on the 

RGB cube in this figure: 

■ In drawing (A), all minimum limits are less than their respective maximums; the 
allowable color ranges form a small cube, just as in Figure 5-11. 

■ In drawing (B), the maximum on the red axis is less than the minimum; only red color 
values outside of the range of the small cube are permitted, whereas blue and green 
must still be within the limits of the small cube. The acceptable color values form two 
rectangular solids within RGB space. 



C H A P T E R  5

Ink Objects

About Transfer Modes 5-31

■ In drawing (C), the maximum and minimum on the green axis are also reversed; the 
acceptable color values form a more complicated set of solids.

■ In drawing (D), all maximum and minimum color limits are reversed. In that case, 
only color values at the outer corners of the color space (all components outside of the 
range of the small cube) are acceptable.

Source Color Limits

The sourceMinimum and sourceMaximum fields in a color component’s 

gxTransferComponent structure define the allowable range of values for source color 

in that component. Color values outside of the range cause no drawing to occur. If 

sourceMaximum is less than sourceMinimum, the range allowed consists of values less 

than sourceMaximum or greater than sourceMinimum. Figure 5-15 shows the effect of 

sourceMinimum and sourceMaximum on drawing using blend mode.

Figure 5-15 The effect of source color limits on drawing

Note in Figure 5-15 that, when sourceMinimum is less than sourceMaximum, only the 

cloud in the source image is within the source limits, so only the cloud is blended with 

the destination image to create the result. Conversely, when sourceMaximum is less 

than sourceMinimum, the cloud in the source image is outside the source limits, so it 

is the only part of the source that is not blended with the destination image when 

creating the result. 



C H A P T E R  5

Ink Objects

5-32 About Transfer Modes

Destination Color Limits

The deviceMinimum and deviceMaximum fields in a color component’s 

gxTransferComponent structure define the allowable range of values for destination 

color in that component. Destination color values outside of the range cause no drawing 

to occur for that color. If deviceMaximum is less than deviceMinimum, the range 

allowed consists of values less than deviceMaximum or greater than deviceMinimum. 

Figure 5-16 shows the effect of deviceMinimum and deviceMaximum on drawing 

using blend mode.

Figure 5-16 The effect of destination color limits on drawing

Note in Figure 5-16 that, when deviceMinimum is less than deviceMaximum, only the 

letter “A” in the destination image is within the destination limits, so the source is 

blended with the destination image only within the limits of the “A” to create the result. 

Conversely, when deviceMaximum is less than deviceMinimum, the “A” is outside the 

destination limits, so it is the only part of the destination not blended with the source to 

create the result. 

Result Color Limits

The clampMinimum and clampMaximum fields in a color component’s 

gxTransferComponent structure define the allowable range of values for the result 

color in that component. Color values outside of the range are pinned to the nearest 

clamp limit. If clampMaximum is less than clampMinimum, the range allowed consists 

of values less than clampMaximum or greater than clampMinimum. Figure 5-17 shows 

the effect of clampMinimum and clampMaximum on drawing using blend mode.



C H A P T E R  5

Ink Objects

About Transfer Modes 5-33

Figure 5-17 The effect of result color limits on drawing

Note in Figure 5-17 that, when clampMinimum is less than clampMaximum, extreme 

color values cannot occur in the result. The portions of the “A” outside of the cloud are 

darker than they would normally be with blend mode, and the portions of the cloud 

outside of the letter are lighter than they would normally be. Conversely, when 

clampMaximum is less than clampMinimum, midrange values are not possible in the 

result. The background in the result is lighter than it would normally be with blend 

mode, and the portions of the cloud outside of the “A” are darker than they would 

normally be.

Note

Pinning restricts the value of the computation, not necessarily the value 
allowed for the actual pixel. The pixel value is the closest found to the 
computation, which may be outside of the range of clampMinimum and 
clampMaximum. ◆   

Transfer Mode Matrices
QuickDraw GX provides three matrices in the transfer mode structure to give you great 

freedom in controlling, modifying, and combining source, destination, and result color 

components when performing a transfer mode operation.

The source matrix, device matrix, and result matrix provide a way of scaling, weighting, 

swapping, and averaging the components of a color space before or after the transfer 

mode operation. Each matrix is a 5 × 4 array that specifies the mixture of each of the (up 

to 4) components, plus an offset.



C H A P T E R  5

Ink Objects

5-34 About Transfer Modes

An identity matrix, one that has values of 1.0 along the diagonal and zero values 

elsewhere, has no effect. Here it is applied to a color in CMYK space:

The values for all color components after the matrix multiplication are the same as 

before. All transfer mode matrices in the default ink object are identity matrices.

The bottom row of the matrix specifies an offset value. The following matrix replaces 

c with 1/2 c + 1/2 m; it also scales k by 0.8 and adds 0.2 to it:

The source and device matrix are applied before the transfer mode calculation and after 

applying source minimum and source maximum. The result of the transfer mode 

calculation is run through the result matrix. The use of matrices allows you to apply 

sophisticated mapping operations—analogous to the scaling, rotation, translation, and 

distortion of shapes discussed in the chapter “Transform Objects” in this book—to the 

colors involved in a transfer mode operation. Matrices are also used to create color 

separations, and to map source color ranges to spot colors.

Note

Although color components are described by unsigned shorts (16-bit 
positive numbers), the math internal to transfer modes is performed 
with longs (32-bit signed numbers) to minimize overflow or roundoff 
error. As an example, elements in the source matrix could multiply by a 
large number, and elements in the result matrix could divide by a large 
number, without creating an overflow condition. ◆ 

Flags
QuickDraw GX provides two sets of flags in the transfer mode structure that control 

certain aspects of the transfer mode operation. One set operates on individual color 

components; the other set operates on the source or destination color as a whole, taking 

into account all of the components.

c m y k 1

1.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0

c y m k=

c m y k 1

0.5 0.0 0.0 0.0
0.5 1.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 0.8
0.0 0.0 0.0 0.2

0.5c 0.5m+( ) m y 0.8k 0.2+( )=



C H A P T E R  5

Ink Objects

About Transfer Modes 5-35

Transfer Component Flags

The transfer component flags are a set of flags in the gxTransferComponent structure 

(in the component field of the transfer mode structure) that alter the source, destination, 

or result value for an individual color component. There are two constants for these 

flags, defined in the gxComponentFlags enumeration:

Specifying gxOverResultComponent allows the result of transfers using gxAddMode 

to wrap around (from 0xFFFF to 0x0000) instead of remaining clamped at 0xFFFF.

Specifying gxReverseComponent allows you to apply a transfer mode backwards—

from the destination to the source—for a particular component. It is most useful for 

component modes that depend on order, like gxMigrateMode, or gxAddMode when 

used for subtraction. 

Transfer Mode Flags

The transfer mode flags are a set of flags in the flags field of the transfer mode 

structure. They affect how color limits are used and whether a single component mode is 

to be used for all color components. There are three values for the flags, defined in the 

gxTransferFlags enumeration:

Constant Value Explanation

gxOverResultComponent 0x01 QuickDraw GX performs an AND operation 
between the result color and 0xFFFF before 
clamping.

gxReverseComponent 0x02 QuickDraw GX reverses the source and 
destination values before performing the 
transfer mode operation.

Constant Value Explanation

gxRejectSourceTransfer 0x0001 Negate the results of sourceMinimum 
and sourceMaximum for all 
components. Accept only values 
outside of the specified ranges.

gxRejectDeviceTransfer 0x0002 Negate the results of deviceMinimum 
and deviceMaximum for all 
components. Accept only values 
outside of the specified ranges.

gxSingleComponentTransfer 0x0004 Use a single transfer component for 
all color components. Duplicate 
component[0] in the transfer mode 
structure for all components in the 
transfer mode’s color space.



C H A P T E R  5

Ink Objects

5-36 About Transfer Modes

Setting the gxRejectSourceTransfer or gxRejectDeviceTransfer flag causes an 

inversion of the acceptable color ranges for source or destination color, respectively. For 

example, in Figure 5-14 on page 5-30, setting the gxRejectSourceTransfer or 

gxRejectDeviceTransfer flag would cause the white (empty) portions of the large 

cubes that represent RGB space to be within range, instead of the gray (filled) portions.

The effect is similar to, although not exactly the same as, individually reversing the 

minimum and maximum values for the color components. If the transfer mode flag is 

cleared, drawing occurs only when all components are inside the allowed ranges—that 

is, inside the darker gray portions of the large cubes in Figure 5-14. With the flag set, 

drawing occurs any time at least one component is outside of its allowed range—that is, 

with values anywhere outside of the dark gray areas in Figure 5-14. 

The gxSingleComponentTransfer flag is provided as a convenience. You can set 

the flag when you don’t need the flexibility (and extra effort) of specifying different 

transfer modes for different color components. In this case you need set up only one 

gxTransferComponent structure, instead of one for each component in the transfer 

mode’s color space.   

Summary of Transfer Mode Operation
Figure 5-18 shows how all the parts of the transfer mode structure work together when a 

color is drawn. 

1. The source color is converted to the transfer mode’s color space, if they are not 
already the same. Each component of the source color is then compared to the 
acceptable range of source colors, modified if appropriate by the values of the transfer 
mode flags. The resulting source components are then multiplied by the source matrix 
to yield the corrected source components for the transfer mode operation.

2. The destination color is converted to the transfer mode’s color space, if necessary. 
Each component of the destination color is then compared to the acceptable range of 
destination colors, modified if appropriate by the values of the transfer mode flags. 
The resulting destination components are then multiplied by the device matrix to 
yield the corrected destination components for the transfer mode operation.

3. The pairs of source and destination components are each combined, according to the 
selected component mode, and the value of the operand if the component mode takes 
one. (Source and destination values for a component are swapped before combining if 
the gxReverseComponent component flag is set.)

4.  The components that result from the transfer mode operation are each multiplied by 
the results matrix to yield the corrected result components (and then ANDed with 
gxColorValue1 (0xFFFF) if the gxOverResultComponent flag is set for that 
component.) Each component is then pinned, if necessary, to the acceptable range of 
result colors. Finally, the result color is converted to the color space of the view device, 
and the color is drawn.



C H A P T E R  5

Ink Objects

About Transfer Modes 5-37

Figure 5-18 Summary of transfer mode operation



C H A P T E R  5

Ink Objects

5-38 Using Ink Objects

Using Ink Objects

This section describes how to create and use ink objects that support graphic or 

typographic shapes. This section describes how you can

■ create and manipulate ink objects

■ manipulate ink object properties

■ get and set an ink’s color

■ work with transfer modes to achieve particular graphic effects

Creating and Manipulating Ink Objects
This section describes how you can create and interact with ink objects as whole 

entities—to create, dispose of, copy, compare, and clone them. Manipulating the 

individual properties of ink objects is described under “Manipulating Ink Object 

Properties” beginning on page 5-40. 

Creating and Disposing of Ink Objects

QuickDraw GX provides the GXNewInk function to allow you to create a new ink object. 

You can also create a new ink object by copying an existing one with the GXCopyToInk 

function. Once you have created an ink object, you can customize its features using the 

techniques described in the section “Manipulating Ink Object Properties” beginning on 

page 5-40. 

To delete your application’s reference to an ink object, call the GXDisposeInk function, 

which may or may not actually release the memory allocated for that ink object, 

depending on the ink’s owner count. The GXDisposeInk function decreases the ink 

object’s owner count by 1; if that brings the owner count to zero, the ink is completely 

deleted and its memory released. See “Manipulating an Ink Object’s Owner Count” 

beginning on page 5-41. 

The following code fragment creates three ink objects in turn, gives each a color, assigns 

each to a shape (windowShape1, windowShape2, and windowShape3), adds each to a 

picture shape (gOurHouse), and then disposes of each ink reference because it is no 

longer needed. The code calls the library function SetInkCommonColor to assign 

colors to the individual ink objects.

gxInk redInk = GXNewInk();

SetInkCommonColor(redInk, red);  

GXSetPictureParts(gOurHouse, 0, 0, 1, &windowShape1, 

nil, &redInk, nil);

GXDisposeInk(redInk);



C H A P T E R  5

Ink Objects

Using Ink Objects 5-39

gxInk grayInk = GXNewInk();

SetInkCommonColor(grayInk, gxGray);  

GXSetPictureParts(gOurHouse, 0, 0, 1, &windowShape2, 

nil, &grayInk, nil);

GXDisposeInk(grayInk);

gxInk turquoiseInk = GXNewInk();

SetInkCommonColor(turquoiseInk, turquoise);  

GXSetPictureParts(gOurHouse, 0, 0, 1, &windowShape3, 

nil, &turquoiseInk, nil);

GXDisposeInk(turquoiseInk);

The GXNewInk function is described on page 5-56. The GXDisposeInk function is 

described on page 5-57. The GXSetPictureParts function is described in the picture 

shapes chapter of Inside Macintosh: QuickDraw GX Graphics. 

Copying, Comparing, and Cloning Ink Objects

You can use the GXCopyToInk function to copy information from one ink object to 

another or to create a new copy of an ink object.

You can test if two ink-object references refer to the same ink object by simply testing the 

references for equality. You can also compare two different ink objects for equality with 

the GXEqualInk function. For two ink objects to be equal, their attributes, colors, color 

spaces, and transfer modes must have identical values, although their general object 

properties (owner count and tag list) do not need to be identical. Ink object copies 

created with the GXCopyToInk function are always equal to the ink from which they 

were copied.

The following code fragment effectively changes the default ink for a certain shape type. 

It makes a copy (tempInk) of the default ink object, modifies its color and transfer 

mode, and then assigns the modified copy to the default shape object for line shapes. 

After it makes the assignment, the code disposes of tempInk. The code makes use of the 

library functions SetInkCommonColor and SetInkCommonTransfer to set the ink’s 

color and transfer mode.

tempInk = GXCopyToInk(nil,

GXGetShapeInk(GXGetDefaultShape(gxLineType)));

SetInkCommonColor(tempInk, gxBlack);

SetInkCommonTransfer(tempInk, xorMode);

GXSetShapeInk(GXGetDefaultShape(gxLineType),tempInk);

GXDisposeInk(tempInk);

In certain circumstances, you may want to copy a reference to an ink object without 

actually copying the ink object. For example, you may want two variables to refer to the 

same ink object, so that editing one of them affects both. This is called cloning an ink, 

rather than copying an ink. You can use the GXCloneInk function to clone an ink object.



C H A P T E R  5

Ink Objects

5-40 Using Ink Objects

Functionally, GXCloneInk does nothing more than increase the owner count of an ink 

object. For more information about cloning objects, see the chapter “Introduction to 

Objects” in this book. For information on manipulating ink owner counts, see the section 

“Manipulating an Ink Object’s Owner Count” beginning on page 5-41 of this chapter.

The GXCopyToInk function is described on page 5-58. The GXEqualInk function is 

described on page 5-59. The GXCloneInk function is described on page 5-59. 

Loading and Unloading Ink Objects

Although you rarely need to, you can influence memory-allocation decisions involving 

objects that you have created. If your application needs to have an ink object in memory, 

you can force QuickDraw GX to load it into memory. When your application no longer 

needs the ink object in a loaded state, you can instruct QuickDraw GX to unload it.

You call the GXLoadInk function to make sure that an ink object is in memory; if 

necessary, QuickDraw GX brings the object into memory from an unloaded state. You 

can call the GXUnloadInk function to instruct QuickDraw GX that it is free to unload 

the ink object at any time. These functions are described in the memory management 

chapter of Inside Macintosh: QuickDraw GX Environment and Utilities. 

Manipulating Ink Object Properties
This section describes how to manipulate the common object properties of ink objects: 

attributes, owner count, and tag list. 

To manipulate the color of an ink, see the section “Getting and Setting an Ink Object’s 

Color” beginning on page 5-42. To manipulate the transfer mode of an ink, see the 

section “Getting and Setting an Ink Object’s Transfer Mode” beginning on page 5-43.

For manipulating an ink object as a whole, see “Creating and Manipulating Ink Objects” 

beginning on page 5-38. 

Getting and Setting an Ink Object’s Attributes

You can use the GXGetInkAttributes function to find the attributes of an existing ink 

object, and the GXSetInkAttributes function to set the attributes of an ink. The 

following statements return the attributes for the source shape’s ink:

gxInkAttribute whatAttributes;

whatAttributes = GXGetInkAttributes(GXGetShapeInk(source));

As an example, to clear the gxSuppressHalftoneInk attribute of an ink referenced by 

the variable target, you could use the following statement:

GXSetInkAttributes(target, 

GXGetInkAttributes(target) & ~gxPortAlignDitherInk);



C H A P T E R  5

Ink Objects

Using Ink Objects 5-41

Conversely, to set the gxSuppressHalftoneInk attribute, you could use the following 

line of code:

GXSetInkAttributes(target, 

GXGetInkAttributes(target) | gxSuppressHalftoneInk); 

Ink attributes are described in the section “Ink Attributes” beginning on page 5-9. The 

GXGetInkAttributes function is described on page 5-61. The GXSetInkAttributes 

function is described on page 5-62.

Manipulating an Ink Object’s Owner Count

The owner count of an object indicates the number of current references to that object. In 

general, QuickDraw GX manages owner counts for you. For example, when you create a 

new ink object, QuickDraw GX sets the owner count of the new ink to 1. When you 

assign an existing ink object to a shape, QuickDraw GX increments the ink’s owner 

count, corresponding to the new reference to the ink contained in the shape object. 

If you want to manage an ink’s owner count directly, or if you want to know whether an 

ink object is shared, you can use the GXGetInkOwners function to determine the owner 

count of an ink, and the GXCloneInk and GXDisposeInk functions to change the 

owner count of an ink. The GXCloneInk function increments the ink’s owner count, and 

the GXDisposeInk function decrements the ink’s owner count, freeing the memory 

used by the ink if the owner count goes to 0.

The GXGetInkOwners function is described on page 5-64.

In the chapter “Style Objects” in this book, the section on manipulating a style object’s 

owner count discusses two common owner-count problems and how to avoid them. The 

problems are discussed in terms of style objects, but they apply equally well to ink and 

transform objects. Refer to that discussion if you find that ink objects you create have 

owner counts that are higher or lower than you expect. 

Getting and Setting an Ink Object’s Tag References

You can examine the list of references to tag objects currently associated with an ink 

object using the GXGetInkTags function. Once you create a tag object, you can attach it 

to an ink object using the GXSetInkTags function. You can attach as many tag objects 

as you like to an ink object.

Tag objects and the basic functions for manipulating them are described in the chapter 

“Tag Objects” in this book. That chapter also lists the common tag types defined and 

reserved by Apple Computer, Inc.

The GXGetInkTags function is described on page 5-65. The GXSetInkTags function is 

described on page 5-66.   



C H A P T E R  5

Ink Objects

5-42 Using Ink Objects

Getting and Setting an Ink Object’s Color 
You can use the GXGetInkColor function to retrieve the color (as a gxColor 

structure) of an existing ink object; you can use the GXGetShapeColor function to 

retrieve the color of the ink object associated with a particular shape. You can use 

the GXSetInkColor function to assign a color to an ink; you can use the 

GXSetShapeColor function to assign a color to the ink object associated with a 

particular shape.

To simply get the color of an existing ink (referenced here by myInk) requires defining a 

color structure, then calling the GXGetInkColor function to fill it:

gxColor myInkColor;

GXGetInkColor(myInk, &myInkColor);

If you want to obtain some part of the ink’s color structure, such as its color space, you 

could make calls like this:

gxColorSpace myInkSpace;

gxColor myInkColor;

myInkSpace = GXGetInkColor(myInk, &myInkColor)->space;

Conversely, to assign some portion of an ink’s color structure, such as its color profile 

(here called newProfile), you could make these calls:

gxColor myInkColor;

GXGetInkColor(myInk, &myInkColor);

myInkColor.profile = newProfile;

GXSetInkColor(myInk, &myInkColor);

You can give a shape a specific color by setting the individual values of its ink’s color 

components. For a shape (myShape) whose ink uses an RGB color space, you could do 

something like this (with numeric color values newRed, newBlue, and newGreen):

gxColor newColor;

newColor.space = gxRGBSpace;

newColor.profile = nil;

newColor.element.rgb.red = newRed;

newColor.element.rgb.green = newGreen;

newColor.element.rgb.blue = newBlue;

GXSetShapeColor(myShape, &newColor);

The GXGetInkColor function is described on page 5-68; the GXGetShapeColor 

function is described on page 5-70. The GXSetInkColor function is described on 

page 5-69; the GXSetShapeColor function is described on page 5-71.

Colors and how to program with them are not described further in this chapter; for 

complete information, see the chapter “Colors and Color-Related Objects” in this book.



C H A P T E R  5

Ink Objects

Using Ink Objects 5-43

Getting and Setting an Ink Object’s Transfer Mode
You can use the GXGetInkTransfer function to retrieve the transfer mode 

(as a gxTransferMode structure) of an existing ink object; you can use the 

GXGetShapeTransfer function to retrieve the transfer mode of the ink object 

associated with a particular shape. You can use the GXSetInkTransfer function 

to assign a transfer mode to an ink; you can use the GXSetShapeTransfer 

function to assign a transfer mode to the ink object associated with a particular shape.

To simply get the transfer mode of an existing ink (referenced here by myInk) requires 

defining a transfer mode structure, then calling GXGetInkTransfer to fill it: 

gxTransferMode myInkTransfer;

GXGetInkTransfer(myInk, &myInkTransfer);

If you want to obtain some part of the ink’s transfer mode structure, such as its color 

space, you could make calls like this:

gxTransferMode myInkTransfer;

gxColorSpace myTransferSpace;

myTransferSpace = GXGetInkTransfer(myInk, &myInkTransfer)->space;

Conversely, to set some portion of an ink’s transfer mode structure, such as one of its 

transfer component structures (in an array here called newComponents), you could 

make these calls:

gxTransferMode myInkTransfer;

GXGetInkTransfer(myInk, &myInkTransfer);

myInkTransfer.component[2] = newComponents[2];

GXSetInkTransfer(myInk, &myInkTransfer);

You can alter a shape’s transfer mode type by setting the component mode for one 

component of its ink’s transfer mode. For example, you can change the transfer mode 

type of the first color component of the shape myShape to gxMinimumMode with calls 

like this:

gxTransferMode myShapeTransfer;

GXGetShapeTransfer(myShape &myShapeTransfer);

myShapeTransfer.component[0].mode = gxMinimumMode;

GXSetShapeTransfer(myShape, &myShapeTransfer);

The GXGetInkTransfer function is described on page 5-72; the 

GXGetShapeTransfer function is described on page 5-74. The GXSetInkTransfer 

function is described on page 5-73; the GXSetShapeTransfer function is described on 

page 5-75.

Transfer modes and the transfer mode structure are described in the section 

“About Transfer Modes” beginning on page 5-11. The next section describes how to 

use transfer modes to get particular drawing effects.



C H A P T E R  5

Ink Objects

5-44 Using Ink Objects

Working With Transfer Modes
This section describes some of the ways to use transfer modes for drawing. Note that 

there are many ways to use transfer modes in drawing; this section mentions only a few 

of the more common possibilities. 

See “About Transfer Modes” beginning on page 5-11 for a discussion of the complex 

process by which QuickDraw GX performs transfer mode calculations.

Simple Source-to-Destination Transfers

To simply draw a color, shape, pattern, or bitmap to the destination, regardless of what 

the destination currently contains, use gxCopyMode for all color components. Use 

identity matrices and make sure all your source colors are within any color limits you are 

using. Clear all flags (except gxSingleComponentTransfer, if you are using it to 

make sure all your components use gxCopyMode with the same color limits and 

component flags). If your application is drawing or painting with a single color, 

gxCopyMode means that the color is applied without modification to all parts of the 

destination you are drawing to.

Copy mode is especially fast and efficient for drawing because the characteristics of the 

destination are not taken into account.

You can also use gxAddMode, gxBlendMode, or gxMigrateMode to draw the entire 

source, but in ways that combine the source and destination. If your application is 

drawing or painting with a single source color, these modes cause the drawn color or 

colors to be some combination of the source and the destination. For example, drawing a 

red apple onto a blue background, using gxAddMode in RGB space, results in a magenta 

apple against a blue background.

You can use gxBlendMode mode, for example, to lighten or darken all shapes in a 

picture by some ratio compared to the background (destination). The following code 

fragment sets the transfer mode of a shape (theShape) so that the shape’s color is 

blended in a given percentage (thePercentage, normalized to gxColorValue1) with 

the destination color.

gxTransferMode shapeTransfer;

GXGetShapeTransfer(theShape, &shapeTransfer);

/* use single-component transfer, blend mode */

shapeTransfer.flags = gxSingleComponentTransfer;

shapeTransfer.component[0].mode = gxBlendMode;

shapeTransfer.component[0].flags = 0;

shapeTransfer.component[0].sourceMinimum = 0;

shapeTransfer.component[0].sourceMaximum = gxColorValue1;

shapeTransfer.component[0].deviceMinimum = 0;

shapeTransfer.component[0].deviceMaximum = gxColorValue1;



C H A P T E R  5

Ink Objects

Using Ink Objects 5-45

shapeTransfer.component[0].clampMinimum = 0;

shapeTransfer.component[0].clampMaximum = gxColorValue1;

shapeTransfer.component[0].operand = 

((unsigned long)gxColorValue1) * thePercentage)/100;

GXSetShapeTransfer(theShape, &shapeTransfer);

Drawing Selected Parts of the Source

There are many ways to transfer only parts of the source image to the destination.

You can use gxMinimumMode to transfer only those parts of the source that are darker 

than the destination; if your application is drawing or painting with a single source 

color, gxMinimumMode has the effect of darkening and coloring the lighter parts of the 

destination. 

You can use gxMaximumMode to transfer only those parts of the source that are lighter 

than the destination; if your application is drawing or painting with a single source 

color, gxMaximumMode has the effect of lightening and coloring the darker parts of the 

destination.

You can use gxCopyMode but set source color limits so that only colors within certain 

ranges are transferred. If, for example, part of your source image is bright red, you can 

set a maximum limit on red intensity in the source; drawing will not occur where that 

bright red exists, and your destination image will “show through” in those places. You 

can work in HSV space and set limits on source luminance, so that, for example, your 

destination image will “show through” the highlights or the shadows of your source 

image after drawing.

If you are drawing in black and white, you can use gxAndMode or gxRampAndMode 

to transfer only those white parts of the source that are identical to the destination. 

Alternatively, you can use gxXorMode or gxRampXorMode to transfer only those white 

parts of the source that are different from the destination. The modes gxOrMode and 

gxRampOrMode transfer all of the white parts of the source to the destination. (For 

colors other than black and white, Boolean modes give unpredictable results, and 

pseudo-Boolean modes give results that look like blended versions of black-and-white 

Boolean.)

If you want to mask off parts of the source image that cannot be defined simply, in terms 

of color or intensity, you can use alpha-channel modes. See the section “Masking” on 

page 5-48.

Preserving Selected Parts of the Destination

Preserving parts of the destination image is equivalent to drawing only parts of the 

source, except that it is the characteristics of the destination, not the source, that 

determine where drawing does and does not occur.



C H A P T E R  5

Ink Objects

5-46 Using Ink Objects

The modes gxMinimumMode and gxMaximumMode base drawing on destination 

characteristics as well as on source characteristics, so you can pick mode and source 

colors to make sure that desired parts of the destination remain unchanged after 

drawing. For example, if your destination has bright blue letters on a black background, 

you can replace that background by drawing with gxMaximumMode and using any color 

or image darker than the letters. If you are working in HSV space, you could, for 

example, turn the background to a different color (of any intensity) by drawing with 

gxMaximumMode, and using a color (such as yellow) whose hue value is less than that of 

the blue letters. You could even leave the background black and change the color of the 

letters by specifying gxMinimumMode for the saturation component and using any 

source color less saturated than the blue of the letters.

You can use gxCopyMode but set destination color limits so that drawing occurs only 

where the destination colors are within certain ranges. If, for example, the black parts of 

your destination image must be preserved, you can set a minimum limit on the 

luminance of the destination; drawing will not occur where that black exists, letting the 

black parts of the destination “show through” the source image after drawing. If you 

want to preserve only the summer sky in a destination image, set the destination color 

limits to block drawing in the blue range.

If you are drawing in black and white, you can use gxAndMode or gxRampAndMode to 

preserve only those white parts of the destination that are identical to the source. 

Alternatively, you can use gxXorMode or gxRampXorMode to preserve only those white 

parts of the destination that are different from the source (and to turn black any white 

parts of the destination that are also white in the source). The modes gxOrMode and 

gxRampOrMode preserve all of the white parts of the destination, adding to them all of 

the white parts of the source. (For colors other than black and white, Boolean modes give 

unpredictable results, and pseudo-Boolean modes give results that look like blended 

versions of black-and-white Boolean.)

Copying or Preserving Luminance

In some cases you may want to alter the colors but not the lightness of an image, or you 

may want to apply a color, pattern, or texture to an object in a grayscale image. What 

you are doing is preserving the luminance in either the source or destination, while 

letting other color components vary when you draw.

If, for example, your source image is a picture of a teapot, and your destination image is 

a color or pattern, you can color the teapot by drawing (in HSV space) with gxNoMode 

in the hue and saturation components, and gxCopyMode in the value (intensity) 

component. 

Alternatively, if the color to apply is in the source image and the teapot is in the 

destination image, you could use gxCopyMode in the hue and saturation components, 

and gxNoMode in the value component. (Or you could draw as described in the previous 

paragraph, but set the gxReverseComponent flag in each component before drawing, 

although that is a less efficient way to draw.) Figure 5-19 shows an example of drawing 

by preserving destination luminance in that way. Color Plate 3 at the front of this book 

shows the same drawing sequence in color.



C H A P T E R  5

Ink Objects

Using Ink Objects 5-47

Figure 5-19 Applying color by preserving luminance in the destination

If your application is drawing or painting with a single source color, you can apply that 

color to the destination image—making it a single hue, but not otherwise changing the 

destination—by applying gxCopyMode to the hue component, and gxNoMode to the 

other components, including luminance.

Modifying Luminance

Modifying luminance can be used to make a dark image lighter or to make a light image 

darker, to increase its brightness range (contrast), or to create an overlay or blend of one 

image onto another, without affecting the hue or saturation of the destination. You can 

change the luminance of a destination image in several ways, most easily from within 

HSV or HLS color space. 

You can draw to the destination using a source image that has any hue or saturation but 

the desired luminance, using gxCopyMode for luminance and gxNoMode for the other 

components. (That’s the same as preserving the luminance of the source, as described in 

the previous section.)

You can draw to the destination with a source image whose luminance is equal to (or 

some multiple of, or some absolute amount above or below) the destination image, and 

use gxAddMode or gxCopyMode. The effect is to uniformly increase or decrease the 

luminance of the destination image. (Negative luminances are not permissible inputs to 

transfer mode calculations, although you can achieve the same effect by multiplying 

luminance by –1 in the transfer mode matrices.) The same effect can be achieved, 

however, by drawing with gxNoMode for all components and then applying the result 

matrix to add to the luminance or multiply it by some factor. 

Isolating and Modifying Color Ranges

You can restrict drawing to individual colors or ranges of colors in a number of ways. 

For example, in RGB space you can draw mostly the reds by specifying very restrictive 

low source color limits for the other components, although this method wouldn’t 

prevent dark non-red colors from being drawn. To draw mostly yellows, you could 

convert to CMYK space and do the same. 



C H A P T E R  5

Ink Objects

5-48 Using Ink Objects

In HSV space, you can set the source (or destination) color limits on the hue component, 

in order to draw (or preserve from drawing) an exact range of hues, independent of their 

brightness or saturation. You could, for instance, isolate greens in a source landscape 

image in order to draw fields and trees but not sky; or you could isolate flesh tones in a 

destination portrait image in order to change hair and clothing colors but not skin color.

You can change the colors in the range you have isolated by using the source, device, or 

result matrices to shift the hue component. Thus you could change green fields to shades 

of tan and brown, or even change tan and brown skin to shades of green. 

Masking

You can draw an irregular portion of a source image over a destination image, letting the 

destination show around the edges of the source portion and through holes in it, in 

several ways. In simple situations, selecting the right transfer mode can accomplish what 

you need, as discussed under “Drawing Selected Parts of the Source” on page 5-45 and 

“Preserving Selected Parts of the Destination” on page 5-45. 

Drawing parts of a complex image on a complex background usually requires the use of 

a mask image that controls what parts of the source get drawn and what parts do not. 

QuickDraw GX allows you to integrate a mask with any source or destination image by 

storing transparency information in the alpha channel of each pixel’s color.

You can make parts of your source image transparent and other parts opaque by placing 

either 0 or gxColorValue1, respectively, in the alpha-channel component of each 

pixel’s color. Then, when you draw your source image to the destination, use one of 

the alpha-channel transfer modes to get the masking effect you want. The mode 

gxOverMode is probably the most common transfer mode you’ll use; it’s like 

gxCopyMode with transparency added.

The destination image may have transparency also, and if you want to use the result 

image as a source image for subsequent drawing, you need to calculate the result 

alpha-channel values as well. With gxOverMode for the color components, the most 

likely mode to use on the alpha channel itself is gxRampOrMode. 

Partial Transparency

Besides masking, you can use alpha-channel values to draw images transparently over 

other images, to give a translucent “stained-glass” or ghostly effect, or to draw a pattern 

or texture as a transparent surface effect or shadow on an image.

In simple situations, just using gxBlendMode or gxMigrateMode might give the 

translucent effect you need; the intersection of a white rectangle and a black rectangle 

is gray, which might be enough. For more sophisticated effects, you can define 

alpha-channel values in your source image that let the destination image show through 

partially or completely, and then pick an alpha-channel transfer mode that is 

appropriate, given the transparency of both source and destination and the transparency 

you want the result to retain.



C H A P T E R  5

Ink Objects

Using Ink Objects 5-49

Anti-Aliasing

Alpha-channel values and alpha-channel modes are also used for anti-aliasing, a 

drawing technique that minimizes jagged edges around objects drawn on the screen. 

Type at large sizes is typically drawn with anti-aliasing to smooth its appearance.

For anti-aliasing, you first set alpha-channel values to create a mask that defines the 

opaque parts of your image. Then, at the edges of the opaque portions, you define a zone 

of partial transparency, one or more pixels wide, that creates a transition from opacity 

within to transparency without. The color and transparency of each pixel are commonly 

computed based on the portion of the pixel that the opaque object is calculated to cover. 

Figure 5-9 on page 5-25 shows an example of this effect. 

When you then draw the object with an alpha-channel transfer mode, its edges are 

feathered, with colors transitional between the source and destination colors. Diagonal 

lines and curves thus appear smoother and less jagged. 

Making Color Separations

Creating color separations from images is fundamentally straightforward with 

QuickDraw GX. For CMYK color separations, you can use a transfer mode structure that 

works with CMYK color space and draw your image four times, each time using 

gxCopyMode for all components but modifying the source matrix each time to pass 

through only the component that you want.

You can also create halftones for each separation. See the chapter “View-Related 

Devices” in this book for a discussion of halftones in QuickDraw GX.

Transfer Modes and Printing

Printers are imaging devices, and the printing components of QuickDraw GX support all 

transfer modes. When an image is printed, the original state of the destination (paper) is 

treated as if it were a white image—equivalent to 0xFFFF or gxColorValue1 in all 

components of RGB space, for example. QuickDraw GX then accumulates all drawing 

commands before actually printing the page. As it draws each shape on the page, 

QuickDraw GX combines the source image with the destination, which may be white or 

may reflect the results of previous drawing, according to the transfer mode selected. 

After the last shape is drawn, QuickDraw GX prints the result. Thus all transfer modes, 

and even alpha-channel values, can be accounted for in printing. 

Even vector devices such as plotters can support transfer modes. The color of each shape 

the plotter is to draw is combined with the destination according to whatever transfer 

mode is selected, and at the end the resulting color is printed using one of the available 

pen colors and patterns. 



C H A P T E R  5

Ink Objects

5-50 Ink Objects Reference

Printing in QuickDraw GX is optimized for certain transfer mode configurations. In 

general, printing is fastest using the default ink object’s transfer mode (gxCopyMode for 

all components, identity matrices, wide-open color limits). In addition, for fastest 

printing of 1-bit-per-pixel bitmaps, QuickDraw GX recognizes a special configuration 

that replicates the QuickDraw srcOr transfer mode on the Macintosh: gxCopyMode in all 

components and source color limits set so that only the “on” or “foreground” bits of the 

image are printed.

For more information on printing for applications, see Inside Macintosh: QuickDraw GX 
Printing. For more information on printing for printer drivers and extensions, see Inside 
Macintosh: QuickDraw GX Printing Extensions and Drivers.  

Ink Objects Reference

This section provides reference information about the data structures and functions that 

allow you to create and manipulate ink objects, and to work with transfer modes. It 

includes

■ descriptions of the constants and data types used by ink objects

■ descriptions of the QuickDraw GX functions that operate on ink objects, including 
those that manipulate ink color and transfer mode 

Constants and Data Types

This section describes the constants and data types that define

■ ink attributes

■ the color structure

■ transfer modes

The documentation for transfer modes is complete in this section; the documentation for 

colors is summary only. Additional reference information on colors is found in the 

chapter “Colors and Color-Related Objects” in this book.

The Ink Object

QuickDraw GX provides you with access to an individual ink object through an ink 

reference:

typedef struct gxPrivateInkRecord *gxInk;

In this type definition, gxInk is a type-checked reference, not an actual pointer to any 

defined structure. The contents of the ink object are private. 



C H A P T E R  5

Ink Objects

Ink Objects Reference 5-51

Ink Attributes

Each ink object has a set of ink attributes, defined in the gxInkAttributes 

enumeration. The attributes specify how to handle dithering and halftoning.

enum gxInkAttributes{

gxPortAlignDitherInk = 0x0001,

gxForceDitherInk = 0x0002,

gxSuppressDitherInk = 0x0004,

gxSuppressHalftoneInk= 0x0008

};

typedef long gxInkAttribute;

The individual ink attributes are described in the section “Ink Attributes” beginning on 

page 5-9. 

Color Structure

The color property of an ink object is specified with a color structure (type gxColor): 

struct gxColor{

gxColorSpace space;

gxColorProfile profile;

union {

struct gxCMYKColor cmyk;

struct gxRGBColor rgb;

struct gxRGBAColor rgba;

struct gxHSVColor hsv;

struct gxHLSColor hls;

struct gxCIEColor cie;

struct gxYIQColor yiq;

gxColorValue gray;

struct gxGrayaColor graya;

unsigned short pixel16;

unsigned long pixel32;

struct gxIndexedColor indexed;

gxColorValue component[4];

} element;

}; 

The fields of the color structure are described briefly in the section “Color” beginning on 

page 5-7 of this chapter, and defined in more detail in the chapter “Colors and 

Color-Related Objects” in this book. 



C H A P T E R  5

Ink Objects

5-52 Ink Objects Reference

Transfer Mode Structure

The transfer mode structure (data type gxTransferMode) specifies the transfer mode 

property of an ink object.

struct gxTransferMode{

gxColorSpace space;

gxColorSet set;

gxColorProfile profile;

Fixed sourceMatrix[5][4];

Fixed deviceMatrix[5][4];

Fixed resultMatrix[5][4];

gxTransferFlag flags;

struct gxTransferComponent component[4];

};

Field descriptions

space The color space used by this transfer mode. The color spaces 
defined by QuickDraw GX are listed in the color structure definition 
shown in the previous section, and are described in the chapter 
“Colors and Color-Related Objects” in this book. A transfer mode’s 
color space need not be the same as the color space of the ink object 
the transfer mode is part of.

set A reference to a color set, an object that defines a list of colors 
available for use by this transfer mode. This field has meaning only 
if the transfer mode’s color space is gxIndexedSpace; if the value 
in this field is nil, there is no color set associated with the transfer 
mode. Color sets are described in the chapter “Colors and 
Color-Related Objects” in this book.

profile A reference to a color profile, an object that specifies 
color-correction information. If the value in this field is nil, there is 
no color profile associated with the color space of this transfer 
mode. Color profiles are described in the chapter “Colors and 
Color-Related Objects” in this book.

sourceMatrix A 5 x 4 matrix that specifies how to transform the source color 
before applying the component modes to the components. See 
“Transfer Mode Matrices” beginning on page 5-33.

deviceMatrix A 5 x 4 matrix that specifies how to transform the destination color 
before applying the component modes to the components. See 
“Transfer Mode Matrices” beginning on page 5-33.

resultMatrix A 5 x 4 matrix that specifies how to transform the result color after 
applying the component modes to all components. See “Transfer 
Mode Matrices” beginning on page 5-33.

flags The transfer mode flags; they specify how to handle color limits and 
whether multiple transfer components are needed. The transfer 
mode flags are described in the section “Transfer Mode Flags” on 
page 5-35.



C H A P T E R  5

Ink Objects

Ink Objects Reference 5-53

component An array of four transfer component structures, each specifying the 
type of transfer mode to apply to a single color component of the 
transfer mode’s color space. The transfer component structure is 
described next. 

Transfer Mode Flags

The transfer mode flags are defined in the gxTransferFlags enumeration: 

enum gxTransferFlags{

gxRejectSourceTransfer = 0x0001, /* ≥ 1 source component 
must be out of range */

gxRejectDeviceTransfer = 0x0002, /* ≥ 1 device component 
must be out of range */

gxSingleComponentTransfer= 0x0004 /* transfer component[0] 

= all components */

};

typedef long gxTransferFlag;

The individual transfer mode flags are described in the section “Transfer Mode Flags” on 

page 5-35. 

Transfer Component Structure

There are up to four transfer component structures in a transfer mode structure. Each 

transfer component structure describes how the transfer mode operation is to be applied 

to a given component in the transfer mode’s color space. The transfer component 

structure is of data type gxTransferComponent:

struct gxTransferComponent{

gxComponentMode mode;

gxComponentFlag flags;

gxColorValue sourceMinimum;

gxColorValue sourceMaximum;

gxColorValue deviceMinimum;

gxColorValue deviceMaximum;

gxColorValue clampMinimum;

gxColorValue clampMaximum;

gxColorValue operand;

};



C H A P T E R  5

Ink Objects

5-54 Ink Objects Reference

Field descriptions

mode The component mode (type of transfer mode, such as gxCopyMode 
or gxBlendMode) to apply to this color component. Component 
modes are described in the section “Transfer Mode Types” 
beginning on page 5-11.

flags The component flags, which control clamping behavior and 
whether source and destination are to be reversed for this 
component. The component flags are described in the section 
“Transfer Component Flags” on page 5-35.

sourceMinimum The minimum acceptable value for source color in this color 
component. No drawing occurs if the source component value is 
below sourceMinimum. For more information, see “Color Limits” 
beginning on page 5-27, and “Source Color Limits” on page 5-31.

sourceMaximum The maximum acceptable value for source color in this color 
component. No drawing occurs if the source component value is 
greater than sourceMaximum. For more information, see “Color 
Limits” beginning on page 5-27, and “Source Color Limits” on 
page 5-31.

deviceMinimum The minimum acceptable value for destination color in this color 
component. No drawing occurs if the destination component value 
is below deviceMinimum. For more information, see “Color 
Limits” beginning on page 5-27, and “Destination Color Limits” on 
page 5-32.

deviceMaximum The maximum acceptable value for destination color in this color 
component. No drawing occurs if the destination component value 
is greater than deviceMaximum. For more information, see “Color 
Limits” beginning on page 5-27, and “Destination Color Limits” on 
page 5-32.

clampMinimum The minimum acceptable value for result color in this 
color component. If the result component value is below 
deviceMinimum, it is pinned, or clamped, to the value 
of deviceMinimum. For more information, see “Color Limits” 
beginning on page 5-27, and “Result Color Limits” on page 5-32.

clampMaximum The maximum acceptable value for result color in this 
color component. If the result component value is greater 
than deviceMaximum, it is pinned, or clamped, to the value of 
deviceMaximum. For more information, see “Color Limits” 
beginning on page 5-27, and “Result Color Limits” on page 5-32.

operand A value used as an input to the gxBlendMode, gxMigrateMode, 
and gxHighlightMode component modes. If you are using these 
modes, you must supply a proper value for operand. For more 
information, see “Arithmetic Transfer Modes” beginning on 
page 5-12, and “Highlight Transfer Mode” on page 5-15. 



C H A P T E R  5

Ink Objects

Ink Objects Reference 5-55

Component Modes (Transfer Mode Types)

QuickDraw GX supports the following types of transfer modes, defined in the 

gxComponentModes enumeration:

enum gxComponentModes{

gxNoMode = 0,

gxCopyMode,

gxAddMode,

gxBlendMode,

gxMigrateMode,

gxMinimumMode,

gxMaximumMode,

gxHighlightMode,

gxAndMode,

gxOrMode,

gxXorMode,

gxRampAndMode,

gxRampOrMode,

gxRampXorMode,

gxOverMode,

gxAtopMode,

gxExcludeMode,

gxFadeMode

};

typedef unsigned char gxComponentMode;

The individual component modes are described in the section “Transfer Mode Types” 

beginning on page 5-11. 

Transfer Component Flags

The transfer component flags are part of the transfer component structure (data type 

gxTransferComponent). The flags are defined in the gxComponentFlags 

enumeration: 

enum gxComponentFlags{

gxOverResultComponent= 0x01, /* AND result component with 

0xFFFF before clamping */

gxReverseComponent = 0x02 /* Reverse source and device 

components before mode */

};

typedef unsigned char gxComponentFlag;



C H A P T E R  5

Ink Objects

5-56 Ink Objects Reference

The individual transfer component flags are described in the section “Transfer 

Component Flags” on page 5-35.   

Functions

This section describes the QuickDraw GX functions you can use to 

■ create and manipulate an ink object

■ manipulate the common object properties of an ink object

■ get and set the color of an ink object

■ get and set the transfer mode of an ink object

Creating and Manipulating Ink Objects

This section describes the functions that manipulate inks as objects in memory. With the 

functions in this section, you can create and dispose of an ink object, and copy, compare, 

and clone ink objects.

To associate an ink object with a QuickDraw GX shape object, use the GXGetShapeInk 

and GXSetShapeInk functions, described in the chapter “Shape Objects” in this book.

GXNewInk

You can use the GXNewInk function to create a new ink object with default properties.

gxInk GXNewInk(void);

function result A reference to a newly created copy of the default ink object.

DESCRIPTION

The GXNewInk function creates an ink object with an owner count of 1. All other 

properties of the ink are set to their default values:

■ No attributes set.

■ An empty tag list.

■ An owner count of 1.

■ Color space set to gxRGBSpace with each color component set to 0, which represents 
black in this color space.

■ Transfer mode set to gxCopyMode, with identity transfer mode matrices, color limits 
of 0 to 0xFFFF (gxColorValue1), and all flags cleared.



C H A P T E R  5

Ink Objects

Ink Objects Reference 5-57

SPECIAL CONSIDERATIONS

If no error occurs, the GXNewInk function creates an ink object; you are responsible for 

disposing of that object when you no longer need it. 

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

 Default ink values are described in the section “The Default Ink Object” on page 5-10.

GXDisposeInk

You can use the GXDisposeInk function to release a reference to an ink object.

void GXDisposeInk(gxInk target);

target A reference to the ink object to dispose of.

DESCRIPTION

The GXDisposeInk function decrements the owner count of the ink object specified by 

the target parameter and releases any memory used by it if the owner count goes to 0.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Owner counts for ink objects are discussed in the section “Copying, Comparing, and 

Cloning Ink Objects” beginning on page 5-39, and in the section “Manipulating an Ink 

Object’s Owner Count” beginning on page 5-41. To examine the owner count of an ink, 

use the GXGetInkOwners function, described on page 5-64. 

Errors
out_of_memory

Errors
ink_is_nil



C H A P T E R  5

Ink Objects

5-58 Ink Objects Reference

GXCopyToInk

You can use the GXCopyToInk function to create a copy of an existing ink object.

gxInk GXCopyToInk(gxInk target, gxInk source);

target A reference to the ink object to copy the source contents into. If you 
specify nil for this parameter, the GXCopyToInk function creates a new 
ink object.

source A reference to the ink object whose contents you want to copy.

function result A reference to the copy (that is, the target ink).

DESCRIPTION

The GXCopyToInk function copies the contents of an existing ink object to another, or it 

creates a new ink object and copies the contents of an existing ink object to it. The 

function copies the color, transfer mode, attributes, and tag list (but not the owner count) 

of the ink object specified by the source parameter into the ink object specified by the 

target parameter. It clones, but does not copy, the tag objects in the tag list.

If you specify nil for the target parameter, the GXCopyToInk function creates a new 

ink object and copies the source properties, including owner count and tag list, into it. 

You can use the GXCopyToInk function to create a copy of an ink object so you can 

modify it without changing the original.

SPECIAL CONSIDERATIONS

If you specify nil for the target parameter and no error occurs, the GXCopyToInk 

function creates an ink object; you are responsible for disposing of that object when you 

no longer need it.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To create a new ink that is a copy of the default ink instead of a copy of an existing ink, 

use the GXNewInk function, described on page 5-56.

To compare two ink objects, use the GXEqualInk function, described in the next section.

Errors
out_of_memory
ink_is_nil



C H A P T E R  5

Ink Objects

Ink Objects Reference 5-59

GXEqualInk

You can use the GXEqualInk function to determine whether two ink objects are equal.

boolean GXEqualInk(gxInk one, gxInk two);

one A reference to one of the ink objects to test for equality.

two A reference to the other ink object to test for equality.

function result true if the ink specified by the one parameter is equal to the ink 
specified by the two parameter; otherwise false.

DESCRIPTION

The GXEqualInk function returns as its function result a Boolean value indicating 

whether the ink object specified by the one parameter is equal to the ink object specified 

by the two parameter.

For two ink objects to be equal, they must have identical colors, transfer modes, and 

attributes, although their owner count and tag list need not be identical.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To make a copy of an ink object that is equal by the criteria of this function, use the 

GXCopyToInk function, described in the previous section.

GXCloneInk

You can use the GXCloneInk function to clone an ink object—that is, to add a reference 

to it and increment its owner count.

gxInk GXCloneInk(gxInk source);

source A reference to the ink object to clone.

function result A reference to the cloned ink.

Errors
out_of_memory
ink_is_nil



C H A P T E R  5

Ink Objects

5-60 Ink Objects Reference

DESCRIPTION

The GXCloneInk function increments the owner count of the ink referenced in the 

source parameter. You typically use this function when you want to create another 

reference to an existing ink instead of creating a distinct copy of the ink.

This function returns as its function result a reference to the ink—the same reference you 

pass in as the source parameter. It also increments the ink’s owner count. 

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Owner counts for ink objects are discussed in the section “Copying, Comparing, and 

Cloning Ink Objects” beginning on page 5-39, and in the section “Manipulating an Ink 

Object’s Owner Count” beginning on page 5-41.

To examine the owner count of an ink, use the GXGetInkOwners function, described on 

page 5-64. To decrement the owner count of an ink, use the GXDisposeInk function, 

described on page 5-57. 

Manipulating Ink Object Properties

The functions described in this section allow you to 

■ reset an ink’s properties to their default values

■ manipulate the common object properties of an ink object: attributes, owner count, 
and tag list

GXResetInk

You can use the GXResetInk function to reset the properties of an ink to their default 

values.

void GXResetInk(gxInk target);

target A reference to the ink object whose properties you want to reset.

DESCRIPTION

The GXResetInk function resets the color, transfer mode, and attributes of the ink object 

specified by the target parameter to match the properties of the default ink object:

■ No attributes set.

Errors
ink_is_nil



C H A P T E R  5

Ink Objects

Ink Objects Reference 5-61

■ Color space set to gxRGBSpace with each color component set to 0, which represents 
black in this color space.

■ Transfer mode set to gxCopyMode, with identity transfer mode matrices, color limits 
of 0 to 0xFFFF (gxColorValue1), and all flags cleared.

The GXResetInk function does not change the target ink’s owner count or tag list.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Default ink properties are described in the section “The Default Ink Object” on page 5-10. 

GXGetInkAttributes

You can use the GXGetInkAttributes function to examine which attributes of an ink 

object are set.

gxInkAttribute GXGetInkAttributes(gxInk source);

source A reference to the ink to find the attributes of.

function result The ink attributes of the source ink object.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Ink attributes are described in the section “Ink Attributes” beginning on page 5-9.

To change the attributes of an ink object, use the GXSetInkAttributes function, 

described in the next section. 

To examine the attributes of the ink object associated with a specified shape, use the 

GXGetShapeInkAttributes function, described on page 5-62. 

Errors
out_of_memory
ink_is_nil

Errors
out_of_memory
ink_is_nil



C H A P T E R  5

Ink Objects

5-62 Ink Objects Reference

GXSetInkAttributes

You can use the GXSetInkAttributes function to set or clear the attributes of an ink 

object.

void GXSetInkAttributes(gxInk target, gxInkAttribute attributes);

target A reference to the ink object to change the attributes of.

attributes The new ink attributes to be assigned.

DESCRIPTION

The GXSetInkAttributes function sets the attributes of the ink object referenced in 

the target parameter to those specified in the attributes parameter. If you pass 

gxNoAttributes for the attributes parameter, all attributes are cleared.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Ink attributes are described in the section “Ink Attributes” beginning on page 5-9.

To examine the attributes of an ink object, use the GXGetInkAttributes function, 

described in the previous section. 

To change the attributes of the ink object associated with a specified shape, use the 

GXSetShapeInkAttributes function, described on page 5-63. 

GXGetShapeInkAttributes

You can use the GXGetShapeInkAttributes function to examine the attributes of the 

ink associated with a shape.

gxInkAttribute GXGetShapeInkAttributes(gxShape source);

source A reference to the shape whose ink object you want the attributes of.

function result The attributes of the ink object associated with the source shape object.

Errors
out_of_memory
ink_is_nil
parameter_out_of_range (debugging version)

Notices (debugging version)
attributes_already_set



C H A P T E R  5

Ink Objects

Ink Objects Reference 5-63

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To set the attributes of the ink object associated with a shape, use the 

GXSetShapeInkAttributes function, described next.

To examine the attributes of an ink object itself, use the GXGetInkAttributes 

function, described on page 5-61. 

Ink attributes are described in the section “Ink Attributes” beginning on page 5-9.

GXSetShapeInkAttributes

You can use the GXSetShapeInkAttributes function to set or clear attributes of the 

ink associated with a shape.

void GXSetShapeInkAttributes(gxShape target, 

gxInkAttribute attributes);

target A reference to the shape whose ink object you want to change the 
attributes of.

attributes The new ink attributes to be assigned.

DESCRIPTION

The GXSetShapeInkAttributes function assigns the ink attributes specified by the 

attributes parameter to the ink object associated with the shape referenced in the 

target parameter. It is almost equivalent to the following call:

GXSetInkAttributes(GXGetShapeInk(target),attributes);

The only difference is that, if the source shape’s ink object is shared with other shapes, 

GXSetShapeInkAttributes creates a new copy of the ink object, attaches it to the 

source shape, and changes the attributes of the copy. That way, calling this function does 

not produce side effects on other shapes.

Errors
out_of_memory
shape_is_nil



C H A P T E R  5

Ink Objects

5-64 Ink Objects Reference

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To examine the attributes of the ink object associated with a shape, use the 

GXGetShapeInkAttributes function, described in the previous section.

To set the attributes of an ink object itself, use the GXSetInkAttributes function, 

described on page 5-62. 

Ink attributes are described in the section “Ink Attributes” beginning on page 5-9. The 

GXSetInkAttributes function is described on page 5-62.

The GXGetShapeInk function is described in the chapter “Shape Objects” in this book.

GXGetInkOwners

You can use the GXGetInkOwners function to determine the number of references to a 

particular ink object.

long GXGetInkOwners(gxInk source);

source A reference to the ink to find the owner count of.

function result The owner count of the source ink object.

DESCRIPTION

The GXGetInkOwners function returns as its function result the current number of 

references to the ink object.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
shape_is_nil
parameter_out_of_range (debugging version)

Notices (debugging version)
attributes_already_set

Errors
ink_is_nil



C H A P T E R  5

Ink Objects

Ink Objects Reference 5-65

SEE ALSO

Owner counts for ink objects are discussed in the section “Copying, Comparing, and 

Cloning Ink Objects” beginning on page 5-39, and in the section “Manipulating an Ink 

Object’s Owner Count” beginning on page 5-41.

GXGetInkTags

You can use the GXGetInkTags function to examine one or more of the tag objects 

associated with an ink object.

long GXGetInkTags(gxInk source, long tagType, long index, 

 long count, gxTag items[]);

source A reference to the ink object whose tag list you want to examine.

tagType The type of tag object to search for. A value of 0 indicates that you want to 
look for all tag types.

index The (1-based) index of the first such tag reference to return.

count The number of tag references to return.

items An array to hold the returned tag references.

function result The number of tag references found that fit the criteria. 

DESCRIPTION

The GXGetInkTags function searches the tag list of the source ink object for references 

to tag objects with the tag type specified by the tagType parameter. If you specify 0 for 

the tagType parameter, the GXGetInkTags function searches all tag types. 

You can use the index and the count parameters to specify which tag references of the 

appropriate type the GXGetInkTags function should return. The index parameter 

indicates the first tag reference to return and the count parameter indicates how many 

tag references to return. The index parameter must be greater than 0. The count 

parameter must be greater than 0 or equal to the gxSelectToEnd constant (–1), which 

indicates that all tag references (starting with the tag reference indicated by the index 

parameter) should be returned.

The function result is the number of tag references found that fit the criteria. If you pass 

a value other than nil for the items parameter, the GXGetInkTags function returns in 

the items parameter the tag references that were found.

Typically, you call this function once with a nil value for the items parameter to 

determine the number of matching tag references. Then you allocate an appropriately 

sized array and call the function a second time to obtain the references themselves.



C H A P T E R  5

Ink Objects

5-66 Ink Objects Reference

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Tag objects are discussed in the chapter “Tag Objects” in this book. 

To change the set of tag references associated with an ink, use the GXSetInkTags 

function, described in the next section.

GXSetInkTags

You can use the GXSetInkTags function to add, remove, or replace tag objects 

associated with an ink object.

void GXSetInkTags(gxInk target, long tagType, long index, 

long oldCount, long newCount, 

const gxTag items[]);

target A reference to the ink object whose tag list you want to alter.

tagType The type of tag objects to replace. A value of 0 indicates that you want to 
replace tags of all types.

index The (1-based) index of the first tag reference (to a tag object of the 
appropriate type) to replace.

oldCount The number of tag references to replace. A value of 0 specifies that you 
want to insert tag references before the tag reference indicated by the 
index parameter, rather than replace tag references. A value of –1 (the 
gxSelectToEnd constant) specifies that all tag references of the 
requested type, starting with the tag reference indicated by the index 
parameter, should be replaced.

newCount The number of tag references to insert. A value of 0 specifies that there are 
no tag references to insert; the existing tag references that match the 
criteria you specify are removed from the source shape’s tag list and 
disposed of.

items An array of tag references to insert in the tag list.

Errors
out_of_memory
ink_is_nil
index_is_less_than_one (debugging version)
count_is_less_than_one (debugging version)

Warnings
index_out_of_range
count_out_of_range



C H A P T E R  5

Ink Objects

Ink Objects Reference 5-67

DESCRIPTION

The GXSetInkTags function allows you add tag references to an ink object’s tag list, to 

remove tag references from the list, or to replace tag references in the list with new tag 

references. In any of these three cases, the target parameter specifies the ink object to 

be modified, the newCount parameter specifies the number of tag references to add, and 

the items parameter provides the new tag references.

■ To add tag references, set the oldCount parameter to 0. Use the tagType and the 
index parameters to specify where to add the new tag references. (For example, if 
you specify nil for the tagType parameter and 1 for the index parameter, this 
function inserts the new tag references before the current tag references. If you specify 
a value other than nil for the tagType parameter and a value of 2 for the index 
parameter, the function inserts the new tag references before the second tag reference 
with a tag type matching the tagType parameter.)

■ To remove tag references, set the newCount parameter to 0 and the items parameter 
to nil. You can use the index and the oldCount parameters to specify which tag 
references (of the specified type) should be removed. The index parameter indicates 
the first tag reference (of the specified type) to remove and the oldCount parameter 
indicates how many tag references (of the specified type) to remove. 

■ To replace tag references, use the tagType, index, and oldCount parameters to 
indicate which tag references to replace, and use the newCount and items 
parameters to specify the new tag references to add. If newCount is greater than 
oldCount, the extra tag references are placed immediately adjacent to the last tag 
reference replaced.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Tag objects are discussed in the chapter “Tag Objects” in this book. 

To examine the set of tag references associated with an ink, use the GXGetInkTags 

function, described in the previous section.   

Errors
out_of_memory
ink_is_nil
tag_is_nil
parameter_is_nil (debugging version)
inconsistent_parameters (debugging version)
parameter_out_of_range (debugging version)
index_is_less_than_zero (debugging version)
cannot_dispose_locked_tag (debugging version)

Warnings
index_out_of_range
count_out_of_range

Notices (debugging version)
tag_already_set



C H A P T E R  5

Ink Objects

5-68 Ink Objects Reference

Getting and Setting an Ink’s Color

The functions described in this section allow you to get and set the color structure from a 

specified ink object, or from the ink object attached to a specified shape.

GXGetInkColor

You can use the GXGetInkColor function to examine the color of an ink object.

gxColor *GXGetInkColor(gxInk source, gxColor *data);

source A reference to the ink whose color you want.

data A pointer to a color structure. On return, the structure contains the color 
of the ink object.

function result The color of the source ink object.

DESCRIPTION

The GXGetInkColor function returns, as its function result and in the structure pointed 

to by the data parameter, the color of the ink referenced in the source parameter.

If the ink object reference or the pointer to the color structure is nil, an error is posted, 

and nil is returned as the function result.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Ink colors are introduced in the section “Color” beginning on page 5-7, and described 

fully in the chapter “Colors and Color-Related Objects” in this book. 

To assign a color to an ink object, use the GXSetInkColor function, described next. 

To examine the color of the ink object associated with a shape, use the 

GXGetShapeColor function, described on page 5-70.

Errors
out_of_memory
ink_is_nil
color_is_nil



C H A P T E R  5

Ink Objects

Ink Objects Reference 5-69

GXSetInkColor

You can use the GXSetInkColor function to assign a color to an ink object.

void GXSetInkColor(gxInk target, const gxColor *data);

target A reference to the ink to assign the color to.

data A pointer to a color structure containing the color to assign to the ink.

DESCRIPTION

The GXSetInkColor function assigns the color pointed to by the data parameter to the 

ink object referenced in the target parameter. If the color references a color set or color 

profile object, QuickDraw GX increases the owner count of the referenced object. 

SPECIAL CONSIDERATIONS

If the color space of the color pointed to by the data parameter is gxNoSpace, this 

function posts a colorSpace_out_of_range error.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Ink colors are introduced in the section “Color” beginning on page 5-7, and described 

fully in the chapter “Colors and Color-Related Objects” in this book. 

To examine the color of an ink object, use the GXGetInkColor function, described in the 

previous section. 

To assign a color to the ink object associated with a shape, use the GXSetShapeColor 

function, described on page 5-71.

Errors
out_of_memory
ink_is_nil
color_is_nil
colorSpace_out_of_range (debugging version)
colorSet_access_restricted (debugging version)
colorProfile_access_restricted (debugging version)

Notices (debugging version)
color_already_set



C H A P T E R  5

Ink Objects

5-70 Ink Objects Reference

GXGetShapeColor

You can use the GXGetShapeColor function to examine the color of an ink object 

associated with a shape.

gxColor *GXGetShapeColor(gxShape source, gxColor *data);

source A reference to the shape whose ink you want the color of.

data A pointer to a color structure. On return, the structure contains the color 
of the ink object associated with the shape.

function result The color of the ink object associated with the source shape object.

DESCRIPTION

The GXGetShapeColor function returns, as its function result and in the structure 

pointed to by the data parameter, the color of the ink object associated with the shape 

object referenced in the source parameter.

This call is equivalent to

myColor = GXGetInkColor(GXGetShapeInk(myShape),myColor);

If the shape object reference or the pointer to the color structure is nil, an error is 

posted, and nil is returned as the function result.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To assign a color to the ink object associated with a shape, use the GXSetShapeColor 

function, described next.

To examine the color of an ink object directly, use the GXGetInkColor function, 

described on page 5-68.

Ink colors are introduced in the section “Color” beginning on page 5-7, and described 

fully in the chapter “Colors and Color-Related Objects” in this book. 

The GXGetShapeInk function is described in the chapter “Shape Objects” in this book.

Errors
out_of_memory
shape_is_nil
color_is_nil



C H A P T E R  5

Ink Objects

Ink Objects Reference 5-71

GXSetShapeColor

You can use the GXSetShapeColor function to assign a color to the ink object 

associated with a shape.

void GXSetShapeColor(gxShape target, const gxColor *data);

target A reference to the shape whose ink object you want to assign the color to.

data A pointer to a color structure containing the color to assign to the shape’s 
ink object.

DESCRIPTION

The GXSetShapeColor function assigns the color pointed to by the data parameter to 

the ink object associated with the shape referenced in the target parameter. 

Calling this function is almost equivalent to

GXSetInkColor(GXGetShapeInk(myShape),theColor);

except that, if the source shape’s ink object is shared with other shapes, 

GXSetShapeColor creates a new copy of that ink object and attaches it to the source 

shape before changing its color. That way, calling this function does not produce any side 

effects on other shapes.

If the color pointed to by the data parameter references a color set or color profile object, 

QuickDraw GX increases the owner count of the referenced object.

SPECIAL CONSIDERATIONS

If you use this function to try to assign a color to a bitmap shape, the function posts an 

illegal_type_for_shape error. If the color space of the color pointed to by the data 

parameter is gxNoSpace, the function posts a colorSpace_out_of_range error.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
shape_is_nil
color_is_nil
colorSpace_out_of_range (debugging version)
colorSet_access_restricted (debugging version)
colorProfile_access_restricted (debugging version)
illegal_type_for_shape (debugging version)

Notices (debugging version)
color_already_set
color_is_nil



C H A P T E R  5

Ink Objects

5-72 Ink Objects Reference

SEE ALSO

To examine the color of the ink object associated with a shape, use the 

GXGetShapeColor function, described in the previous section. 

To assign a color to an ink object directly, use the GXSetInkColor function, described 

on page 5-69.

Ink colors are introduced in the section “Color” beginning on page 5-7, and described 

fully in the chapter “Colors and Color-Related Objects” in this book. Assigning colors to 

bitmaps is discussed in the bitmap shapes chapter of Inside Macintosh: QuickDraw GX 
Graphics.

The GXGetShapeInk function is described in the chapter “Shape Objects” in this book.

Getting and Setting an Ink’s Transfer Mode

The functions described in this section allow you to get and set the transfer mode 

structure from a specified ink object, or from the ink object attached to a specified shape.

GXGetInkTransfer

You can use the GXGetInkTransfer function to examine the transfer mode of an ink 

object.

gxTransferMode *GXGetInkTransfer(gxInk source, gxTransferMode 

*data);

source A reference to the ink whose transfer mode you want.

data A pointer to a transfer mode structure. On return, the structure contains 
the transfer mode of the ink object.

function result The transfer mode of the source ink object.

DESCRIPTION

The GXGetInkTransfer function returns, as its function result and in the structure 

pointed to by the data parameter, the transfer mode of the ink referenced in the source 

parameter.

If the ink object reference or the pointer to the transfer mode structure is nil, an error is 

posted, and nil is returned as the function result.



C H A P T E R  5

Ink Objects

Ink Objects Reference 5-73

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Transfer modes are described in the sections “About Transfer Modes” beginning on 

page 5-11, and “Working With Transfer Modes” beginning on page 5-44. 

To assign a transfer mode to an ink object, use the GXSetInkTransfer function, 

described next. 

To examine the transfer mode of the ink object associated with a shape, use the 

GXGetShapeTransfer function, described on page 5-74.

GXSetInkTransfer

You can use the GXSetInkTransfer function to assign a transfer mode to an ink object.

void GXSetInkTransfer(gxInk target, const gxTransferMode *data);

target A reference to the ink to assign the transfer mode to.

data A pointer to a transfer mode structure containing the transfer mode to 
assign to the ink.

DESCRIPTION

The GXSetInkTransfer function assigns the transfer mode pointed to by the data 

parameter to the ink object referenced in the target parameter. 

SPECIAL CONSIDERATIONS

The color space of the transfer mode pointed to by the data parameter cannot be 

gxNoSpace or any of the packed color spaces (such as, for example, gxRGB16Space). If 

you specify gxHighlightMode in some but not all components of the transfer mode, 

this function posts an inconsistent_parameters error.

Errors
out_of_memory
ink_is_nil
transferMode_is_nil



C H A P T E R  5

Ink Objects

5-74 Ink Objects Reference

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Transfer modes are described in the sections “About Transfer Modes” beginning on 

page 5-11, and “Working With Transfer Modes” beginning on page 5-44. 

To examine the transfer mode of an ink object, use the GXGetInkTransfer function, 

described in the previous section. 

To assign a transfer mode to the ink object associated with a shape, use the 

GXSetShapeTransfer function, described on page 5-75. 

Color spaces are described in the chapter “Colors and Color-Related Objects” in this 

book.

GXGetShapeTransfer

You can use the GXGetShapeTransfer function to examine the transfer mode of the 

ink object associated with a shape.

gxTransferMode *GXGetShapeTransfer(gxShape source, 

gxTransferMode *data);

source A reference to the shape whose ink object you want the transfer mode of.

data A pointer to a transfer mode structure. On return, the structure contains 
the transfer mode of the shape’s ink object.

function result The transfer mode of the ink object associated with the source shape 
object.

Errors
out_of_memory
ink_is_nil
transferMode_is_nil
parameter_out_of_range (debugging version)
inconsistent_parameters (debugging version)
invalid_transferMode_colorSpace (debugging version)
colorSpace_out_of_range (debugging version)
colorSet_access_restricted (debugging version)
colorProfile_access_restricted (debugging version)



C H A P T E R  5

Ink Objects

Ink Objects Reference 5-75

DESCRIPTION

The GXGetShapeTransfer function returns, as its function result and in the structure 

pointed to by the data parameter, the transfer mode of the ink object associated with the 

shape referenced in the source parameter.

If the shape object reference or the pointer to the transfer mode structure is nil, an error 

is posted, and nil is returned as the function result.

This function is equivalent to

theMode = GXGetInkTransfer(GXGetShapeInk(myShape),theMode);

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Transfer modes are described in the sections “About Transfer Modes” beginning on 

page 5-11, and “Working With Transfer Modes” beginning on page 5-44. 

To assign a transfer mode to the ink object associated with a shape, use the 

GXSetShapeTransfer function, described next. 

To examine the transfer mode of an ink object directly, use the GXGetInkTransfer 

function, described on page 5-72.

The GXGetShapeInk function is described in the chapter “Shape Objects” in this book.

GXSetShapeTransfer

You can use the GXSetShapeTransfer function to assign a transfer mode to the ink 

object associated with a shape.

void GXSetShapeTransfer(gxShape target, const gxTransferMode 

*data);

target A reference to the shape whose ink object you want to assign the transfer 
mode to.

data A pointer to a transfer mode structure containing the transfer mode to 
assign to the shape’s ink.

Errors
out_of_memory
shape_is_nil
transferMode_is_nil



C H A P T E R  5

Ink Objects

5-76 Ink Objects Reference

DESCRIPTION

The GXSetShapeTransfer function assigns the transfer mode pointed to by the 

data parameter to the ink object associated with the shape referenced in the target 

parameter. 

Calling this function is almost equivalent to:

GXSetInkTransfer(GXGetShapeInk(myShape),theMode);

except that, if the source shape’s ink object is shared with other objects, 

GXSetShapeTransfer creates a new copy of that ink object and assigns it to the shape 

before changing its transfer mode. That way, calling this function does not produce any 

side effects on other shapes.

SPECIAL CONSIDERATIONS

The color space of the transfer mode pointed to by the data parameter cannot be 

gxNoSpace or any of the packed color spaces (such as, for example, gxRGB16Space). If 

you specify gxHighlightMode in some but not all components of the transfer mode, 

this function posts an inconsistent_parameters error.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Transfer modes are described in the sections “About Transfer Modes” beginning on 

page 5-11, and “Working With Transfer Modes” beginning on page 5-44. 

To examine the transfer mode of the ink object associated with a shape, use the 

GXGetShapeTransfer function, described in the previous section. 

To assign a transfer mode to an ink object directly, use the GXSetInkTransfer 

function, described on page 5-73. 

The GXGetShapeInk function is described in the chapter “Shape Objects” in this book.

Errors
out_of_memory
shape_is_nil
transferMode_is_nil
parameter_out_of_range (debugging version)
inconsistent_parameters (debugging version)
invalid_transferMode_colorSpace (debugging version)
colorSet_access_restricted (debugging version)
colorSpace_out_of_range (debugging version)
colorProfile_access_restricted (debugging version)



C H A P T E R  5

Ink Objects

Summary of Ink Objects 5-77

Summary of Ink Objects

Constants and Data Types

The Ink Object

typedef struct gxPrivateInkRecord *gxInk;

Ink Attributes

enum gxInkAttributes{

gxPortAlignDitherInk = 0x0001,

gxForceDitherInk = 0x0002,
gxSuppressDitherInk = 0x0004,

gxSuppressHalftoneInk= 0x0008

};

typedef long gxInkAttribute;

The Color Structure

struct gxColor{

gxColorSpace space;

gxColorProfile profile;
union {

gxCMYKColor cmyk;

gxRGBColor rgb;

gxRGBAColor rgba;
gxHSVColor hsv;

gxHLSColor hls;

gxCIEColor cie;
gxYIQColor yiq;

gxColorValue gray;

gxGrayAColor graya;
unsigned short pixel16;

unsigned long pixel32;

gxIndexedColor indexed;

gxColorValue component[4];
} element;

};

typedef unsigned char gxComponentMode;



C H A P T E R  5

Ink Objects

5-78 Summary of Ink Objects

The Transfer Mode Structure

struct gxTransferMode{

gxColorSpace space;

gxColorSet set;

gxColorProfile profile;

Fixed sourceMatrix[5][4];

Fixed deviceMatrix[5][4];

Fixed resultMatrix[5][4];

gxTransferFlag flags;

struct gxTransferComponent component[4];

};

Transfer Mode Flags

enum gxTransferFlags{

gxRejectSourceTransfer = 0x0001, /* At least one source component 

must be out of range */

gxRejectDeviceTransfer = 0x0002, /* At least one device component 

must be out of range */

gxSingleComponentTransfer= 0x0004 /* duplicate gxTransferComponent[0] 

for all components in transfer */

};

typedef long gxTransferFlag;

The Transfer Component Structure

struct gxTransferComponent{

gxComponentMode mode;

gxComponentFlag flags;

gxColorValue sourceMinimum;

gxColorValue sourceMaximum;

gxColorValue deviceMinimum;

gxColorValue deviceMaximum;

gxColorValue clampMinimum;

gxColorValue clampMaximum;

gxColorValue operand;

};



C H A P T E R  5

Ink Objects

Summary of Ink Objects 5-79

Component Modes

enum gxComponentModes{

gxNoMode = 0,

gxCopyMode,

gxAddMode,

gxBlendMode,

gxMigrateMode,

gxMinimumMode,

gxMaximumMode,

gxHighlightMode,

gxAndMode,

gxOrMode,

gxXorMode,

gxRampAndMode,

gxRampOrMode,

gxRampXorMode,

gxOverMode,

gxAtopMode,

gxExcludeMode,

gxFadeMode

};

Transfer Component Flags

enum gxComponentFlags{

gxOverResultComponent= 0x01, /* AND the result component with 

0xFFFF before clamping */

gxReverseComponent = 0x02 /* Reverse source and device components 

before applying transfer mode */

};

typedef unsigned char gxComponentFlag;

Functions

Creating and Manipulating Ink Objects

gxInk GXNewInk (void);

void GXDisposeInk (gxInk target);

gxInk GXCopyToInk (gxInk target, gxInk source);

boolean GXEqualInk (gxInk one, gxInk two);

gxInk GXCloneInk (gxInk source);



C H A P T E R  5

Ink Objects

5-80 Summary of Ink Objects

Manipulating Ink Object Properties

void GXResetInk (gxInk target);

gxInkAttribute GXGetInkAttributes
(gxInk source);

void GXSetInkAttributes (gxInk target, gxInkAttribute attributes);

gxInkAttribute GXGetShapeInkAttributes
(gxShape source);

void GXSetShapeInkAttributes(gxShape target, gxInkAttribute attributes);

long GXGetInkOwners (gxInk source);

long GXGetInkTags (gxInk source, long tagType, long index, 
long count, gxTag items[]);

void GXSetInkTags (gxInk target, long tagType, long index, 
long oldCount, long newCount, 
const gxTag items[]);

Getting and Setting an Ink’s Color

gxColor *GXGetInkColor (gxInk source, gxColor *data);

void GXSetInkColor (gxInk target, const gxColor *data);

gxColor *GXGetShapeColor (gxShape source, gxColor *data);

void GXSetShapeColor (gxShape target, const gxColor *data);

Getting and Setting an Ink’s Transfer Mode

gxTransferMode *GXGetInkTransfer
(gxInk source, gxTransferMode *data);

void GXSetInkTransfer (gxInk target, const gxTransferMode *data);

gxTransferMode *GXGetShapeTransfer
(gxShape source, gxTransferMode *data);

void GXSetShapeTransfer (gxShape target, const gxTransferMode *data);



Contents 6-1

C H A P T E R  6

Contents

Transform Objects

About Transform Objects 6-5

Transform Object Properties 6-6

Clip 6-7

Mapping 6-10

View Port List 6-11

Hit-Test Parameters 6-11

Default Transform Objects 6-14

Using Transform Objects 6-15

Creating and Manipulating Transform Objects 6-15

Creating and Disposing of Transform Objects 6-15

Copying, Comparing, and Cloning Transform Objects 6-16

Implicit Creation of Transform Objects 6-18

Loading and Unloading Transform Objects 6-18

Manipulating Transform Object Properties 6-19

Manipulating a Transform Object’s Owner Count 6-19

Getting and Setting a Transform Object’s Tag References 6-20

Resetting Default Transform Properties 6-20

Getting, Setting, and Modifying the Transform Clip 6-20

Moving, Scaling, Rotating, and Skewing Shapes 6-23

Modifying the Transform Mapping 6-24

Modifying Shape Geometry 6-26

Manipulating the View Port List 6-28

Setting Up Hit-Test Parameters 6-30

Transform Objects Reference 6-31

Constants and Data Types 6-31

The Transform Object 6-31

Shape Parts for Hit-Testing 6-32



C H A P T E R  6

6-2 Contents

Functions 6-32

Creating and Manipulating Transform Objects 6-33

GXNewTransform 6-33

GXDisposeTransform 6-34

GXCopyToTransform 6-35

GXEqualTransform 6-36

GXCloneTransform 6-37

Manipulating Transform Object Properties 6-38

GXResetTransform 6-38

GXGetTransformOwners 6-39

GXGetTransformTags 6-40

GXSetTransformTags 6-41

Getting and Setting the Clip 6-43

GXGetTransformClip 6-43

GXSetTransformClip 6-44

GXGetShapeClip 6-45

GXSetShapeClip 6-46

Performing Geometric Operations on Transform Clips 6-48

GXUnionTransform 6-49

GXIntersectTransform 6-50

GXDifferenceTransform 6-51

GXReverseDifferenceTransform 6-52

GXExcludeTransform 6-53

Getting and Setting the Mapping 6-53

GXGetTransformMapping 6-54

GXSetTransformMapping 6-55

GXGetShapeMapping 6-56

GXSetShapeMapping 6-57

Transforming Shapes by Modifying Transform Mappings 6-58

GXMoveTransform 6-58

GXMoveTransformTo 6-59

GXScaleTransform 6-60

GXRotateTransform 6-62

GXSkewTransform 6-63

GXMapTransform 6-64

Transforming Shapes by Modifying Shape Geometries 6-65

GXMoveShape 6-66

GXMoveShapeTo 6-67

GXScaleShape 6-68

GXRotateShape 6-70

GXSkewShape 6-71

GXMapShape 6-72

Getting and Setting the View Port List 6-73

GXGetTransformViewPorts 6-73

GXSetTransformViewPorts 6-74

GXGetShapeViewPorts 6-75

GXSetShapeViewPorts 6-76



C H A P T E R  6

Contents 6-3

Getting and Setting the Hit-Test Parameters 6-77

GXGetTransformHitTest 6-78

GXSetTransformHitTest 6-79

GXGetShapeHitTest 6-80

GXSetShapeHitTest 6-81

Summary of Transform Objects 6-82

Constants and Data Types 6-82

Functions 6-83





C H A P T E R  6

About Transform Objects 6-5

Transform Objects

This chapter describes transform objects and the functions you can use to manipulate 

them. Read this chapter if you need to clip parts of a shape for drawing, modify the 

position or dimensions of a shape, modify the view ports to which a shape is drawn, or 

hit-test a shape.             

Before reading this chapter, you should be familiar with the information in the chapter 

“Introduction to QuickDraw GX” in this book. You should also be familiar with shape 

objects, as discussed in the chapter “Shape Objects” in this book. 

For specific information about how transform objects affect bitmap and picture shapes, 

see Inside Macintosh: QuickDraw GX Graphics. For specific information about how 

transform objects affect typographic shapes, see Inside Macintosh: QuickDraw GX 
Typography. For information about the mathematical foundation of transform mappings, 

see the mathematics chapter of Inside Macintosh: QuickDraw GX Environment and Utilities. 
For information about view ports, see the chapter “View-Related Objects” in this book.

This chapter introduces QuickDraw GX transform objects and describes their properties. 

It then shows how to use QuickDraw GX functions to

■ create and manipulate transform objects

■ manipulate transform object properties, including the clip, view port list, and hit-test 
parameters

■ perform mapping operations to change the translation, rotation, scale, skew, or 
perspective of transform objects and shape objects

About Transform Objects

A transform object exists to modify, or transform, the appearance or behavior of a shape. 

Each QuickDraw GX shape consists of a shape object, a style object, an ink object, and a 

transform object; the transform object specifies where the shape is drawn, how its 

appearance is transformed when drawn, and how the user can interact with the drawn 

shape. You can think of a transform object as a filter between the shape object and its 

drawing destination of one or more view ports. 

QuickDraw GX identifies an individual transform object through a transform reference. 
To obtain information about a transform object, you must send its reference as a 

parameter to a QuickDraw GX function (except that you can determine if two references 

identify the same transform object simply by comparing them for equality, and you can 

examine a reference to see if it is nil). 

A shape (other than a picture shape) always refers to a single transform object. Several 

shapes, however, can refer to the same transform object. When they do, the transform 

object is shared and its transformations apply to all of those shapes. If you use a function 

that directly manipulates the transform object, the behavior of all shape objects 

associated with it changes.



C H A P T E R  6

Transform Objects

6-6 About Transform Objects

Transform Object Properties
The interface to transform objects is entirely procedural. You manipulate the information 

in a transform object by modifying its properties using QuickDraw GX functions.

Transform objects have six accessible properties, as shown in Figure 6-1. Note that, 

because a transform is an object and not a data structure, the order of the properties 

shown in Figure 6-1 is completely arbitrary. Properties in italics are references to other 

objects.

Figure 6-1 The transform object and its properties

These are the six accessible properties in a transform object:

■ Clip. A reference to a specialized shape geometry that defines the visible area of the 
shape associated with this transform object. Only the parts of the shape that overlap 
with the clip remain visible when the shape is drawn. The transform clip is further 
described in the next section, “Clip.”

■ Mapping. A mathematical matrix that specifies the translation, scaling, rotation, 
skewing, and perspective of the shape associated with this transform object. The 
transform mapping is further described in the section “Mapping” on page 6-10. 

■ View port list. An array of references to the view ports that the shape associated with 
this transform object can be drawn to. The view port list is further described in the 
section “View Port List” on page 6-11. 

■ Hit-test parameters. Two values that provide criteria for hit-testing the shape 
associated with this transform object. The hit-test parameters specify what parts of the 
shape are to be tested for, and how close to a part a hit point must be to be considered 
successful. The hit-test parameters are further described in the section “Hit-Test 
Parameters” on page 6-11. 



C H A P T E R  6

Transform Objects

About Transform Objects 6-7

■ Owner count. The number of existing references to this transform object. General 
information about owner counts is in the chapter “Introduction to QuickDraw GX” in 
this book; the section “Copying, Comparing, and Cloning Transform Objects” 
beginning on page 6-16 describes when and how to examine and alter a transform 
object’s owner count.

■ Tag list. A list of references to custom information about this transform object, stored 
in private data structures called tag objects. The chapter “Tag Objects” in this book 
describes tag objects in general and how you can use them to add custom information 
to objects.

QuickDraw GX provides functions to manipulate each of these transform object 

properties.

Clip

The clip property of a transform object is a specialized shape geometry that functions as 

a mask to restrict the visibility of a shape when it is displayed or printed. The clip shape 

is equivalent to a primitive shape, a shape (of any type) whose geometry and fill 

properties by themselves define the shape. In other words, a primitive shape does not 

use any information from a style object or transform object to determine its location, 

dimension, or even pen thickness; all dimensional information about a primitive shape is 

in the shape object itself.

The filled or framed parts of a transform’s clip define the areas in which the shape 

attached to that transform show through. Figure 6-2 shows the effect of using 

a transform object to clip a shape representing a vase. The vase shape references a 

transform object whose clip property defines a clip shape consisting of four filled paths. 

Only the parts of the vase that intersect the filled paths are allowed to show through.

Figure 6-2 A transform clip



C H A P T E R  6

Transform Objects

6-8 About Transform Objects

If the clip were a framed path shape instead of the filled path shape shown in Figure 6-2, 

only the parts of a shape that intersect the frame itself would be visible. And because the 

pen width is 0 for a primitive shape, the frame would be of hairline width only; the parts 

of the shape both outside and inside the hairline frame would be clipped out, as shown 

in Figure 6-3.

Figure 6-3 A framed transform clip

To use a framed shape with nonzero pen width as a clip shape, you first convert it to a 

primitive shape, at which point it becomes a filled shape in which the filled areas 

correspond to the pen width in the original framed shape. Figure 6-4 shows an example 

of converting a framed shape with a nonzero pen width into a transform clip shape.

Figure 6-4 Converting a framed shape with a nonzero pen width into a transform clip

You can use a bitmap shape as a clip, but only if its pixel depth is 1—meaning that each 

pixel has a value of 0 or 1—and if its color profile is nil. When a transform clip is a 

bitmap, its individual pixels mask the shape that is drawn. A pixel with a value of 1 

allows the shape geometry to show through the area covered by that pixel, and a pixel 

with a value of 0 clips out the part of the shape covered by that pixel. Figure 6-4 shows 

an example. 



C H A P T E R  6

Transform Objects

About Transform Objects 6-9

Figure 6-5 Using a bitmap as a transform clip

For more information on bitmap shapes, see the bitmap shapes chapter of Inside 
Macintosh: QuickDraw GX Graphics. For more information on primitive shapes, see 

the geometric operations chapter of Inside Macintosh: QuickDraw GX Graphics.

QuickDraw GX provides functions that allow you to modify a transform clip by 

performing constructive geometry operations—such as union and intersection—between 

it and another shape. With these operations you can build a clip from one or more 

shapes. For example, you can start with the default clip shape, gxFullShape, which 

allows everything to show through, and use constructive geometry operations to restrict 

the visibility. Or you can start with an empty shape, gxEmptyShape, and use 

constructive geometry operations to increase visibility. Figure 6-6 shows one example 

(using reverse difference); the section “Getting, Setting, and Modifying the Transform 

Clip” beginning on page 6-20 describes the operations you can perform and the 

QuickDraw GX functions you use to modify a transform clip.

Figure 6-6 Modifying a transform clip by subtracting it from another shape



C H A P T E R  6

Transform Objects

6-10 About Transform Objects

Mapping

The mapping property is a 3 × 3 matrix that specifies one or more transformations that 

a transform object performs on its associated shape. It is the transforming aspect of 

the mapping property that gives the transform object its name. You can use the 

transform mapping to perform the following operations on a shape:

■ translation, which changes the position of the shape

■ scaling, which shrinks or enlarges the shape horizontally or vertically or both

■ rotation, which turns the shape about a fixed point

■ skewing, which distorts the shape progressively along a single axis

■ perspective, which distorts the shape to provide a three-dimensional appearance

Figure 6-7 shows examples of some of these transformations.

Figure 6-7 Effects of the transform mapping

You can combine one or more of the possible transformations in a single mapping 

matrix. For example, you can specify 200 percent scaling and 30-degree rotation in 

the same mapping. The identity mapping, which is a matrix whose elements have 

the value 1.0 along the diagonal and 0.0 elsewhere, specifies no transformation. An 

identity mapping applied to a shape leaves it unchanged. The identity mapping is the 

default mapping for a transform.

One important advantage of having a mapping property separate from a shape’s 

geometry is that you can change the visual appearance of a shape in many different 

ways and at many different times without ever changing the geometry of the shape 

itself. This minimizes the accumulation of errors, and also allows a set of identical shape 

geometries to result in many different appearances. QuickDraw GX provides functions 

with which you can easily modify the mapping of a transform object to perform 

translation, scaling, rotation, and skewing. See the section “Modifying the Transform 

Mapping” beginning on page 6-24 for more information and examples.

If you want to, however, you can also transform a shape by changing its geometry 

directly. Direct manipulation of shape geometry can be faster than modifying the 

transform object, and may be more appropriate when you want to change the 

fundamental nature of a shape. QuickDraw GX provides functions with which you 



C H A P T E R  6

Transform Objects

About Transform Objects 6-11

can directly modify the geometry of a shape object to perform translation, scaling, 

rotation, and skewing. See the section “Modifying Shape Geometry” beginning on 

page 6-26 for more information and examples.

For general information about the characteristics and capabilities of mappings, see the 

mathematics chapter of Inside Macintosh: QuickDraw GX Environment and Utilities. 

View Port List

The view port list property is an array of references to view port objects. The list 

specifies all of the view ports through which the shape associated with this transform 

object can be drawn. A transform object must have at least one view port reference in its 

view port list if any drawing is to occur. If it has more than one view port in the list, 

drawing occurs to all of its view ports simultaneously.

You may want to have several view ports in a list if you want the shapes associated with 

a transform object to display in several windows, or in different places in the same 

window. If you implement offscreen drawing, your transform object can reference both 

onscreen and offscreen view ports. 

The same view port can be in the view port list more than once. For example, you may 

wish to draw the same shape several times, using a transfer mode that accounts for the 

color already on the view device. The view port list controls the order in which a shape 

is drawn: the shape is drawn to the first view port in the list before it is drawn to the 

second one in the list, and so on. You can use that information to control the order in 

which colors are manipulated by the transfer mode you have chosen. For information 

about transfer modes, see the chapter “Ink Objects” in this book.

Like transform objects, view port objects have their own clip and mapping properties 

that affect how a shape appears when drawn. So also do view device objects. Note that 

view ports do not correspond to view devices; for example, you don’t need to have 

multiple view ports in the view port list property just because the computer has several 

screens. View ports and view devices are described in the chapter “View-Related 

Objects” in this book. 

For further information and examples of manipulating the view port list of a transform 

object, see “Manipulating the View Port List” beginning on page 6-28. 

Hit-Test Parameters

The hit-test parameters property of a transform object consists of two values that specify 

the criteria to be used for hit-testing shapes associated with this transform object. 

Hit-testing itself is introduced in the chapter “Introduction to QuickDraw GX” and 

described in more detail in the chapter “Shape Objects,” in this book.

The hit-testing functions GXHitTestShape and GXHitTestPicture use the hit-test 

parameters in the transform object. The hit-testing parameters consist of

■ a mask that specifies the parts of a shape that are to be tested for a hit

■ a value that specifies the tolerance, or distance from any of the parts, that a hit point 
can be and still be considered to represent a successful hit



C H A P T E R  6

Transform Objects

6-12 About Transform Objects

Shape-Parts Mask

The parts of a shape object that you can consider in hit-testing are shown in Table 6-1. 

They are defined in the gxShapeParts enumeration.

Table 6-1 Shape parts for hit-testing, from the gxShapeParts enumeration 

Constant Value Explanation

gxNoPart 0 Not in any part of the shape. This value is 
returned by a hit-testing function if no shape 
part was successfully hit.

gxBoundsPart 0x0001 Anywhere within the bounding rectangle of 
the shape. 

gxGeometryPart 0x0002 Anywhere within the geometry of the shape. 
If the shape is framed, this includes just the 
curves or lines that make up the contours; if the 
shape is filled, this includes all filled areas.

gxPenPart 0x0004 Anywhere in the pen swath. For example, 
if this shape’s style object has its 
gxCenterFrameStyle attribute set, this 
includes anywhere within half the pen 
width on either side of all curves or lines 
that make up the contours. 

gxCornerPointPart 0x0008 On any geometric (on-curve) point in the shape 
geometry

gxControlPointPart 0x0010 On any (off-curve) control point in the shape 
geometry.

gxEdgePart 0x0020 On the edge of the geometry; along any of the 
curves or lines that make up the contours.

gxJoinPart 0x0040 Within the geometry of a join that is part of the 
shape.

gxStartCapPart 0x0080 Within the geometry of a start cap that is part of 
the shape.

gxEndCapPart 0x0100 Within the geometry of an end cap that is part 
of the shape.

gxDashPart 0x0200 Within the geometry of a dash element that is 
part of the shape.

gxPatternPart 0x0400 Within the geometry of a pattern element that 
is part of the shape. 

gxGlyphBoundsPart 0x0040 (Same value as gxJoinPart.) For a 
typographic shape, anywhere within the 
bounding rectangle of an individual glyph.



C H A P T E R  6

Transform Objects

About Transform Objects 6-13

Tolerance

The tolerance is a value that describes how close the tested point must be to a shape part 

before that part is considered to have been hit. Tolerance is specified in the shape object’s 

geometry space (except that style-object information is included when testing for pen, 

joins, caps, dashes, patterns, and typographic shapes). The tolerance is dimensionless 

(it has no metric, such as inches), and can have any fixed-point value in the range of 

–32,767.0 to approximately 32,768.0. A tolerance of 0 means that the hit point must 

exactly coincide with a shape part for a successful hit.

For more information about coordinate spaces, see the chapter “View-Related Objects” in 

this book. 

gxGlyphFirstPart 0x0080 (Same value as gxStartCapPart.) For a 
typographic shape with horizontal text, 
anywhere within the left half of a glyph, 
including its left side bearing; for vertical text, 
anywhere in the top half of the glyph. “Left 
half” or “top half” means half the advance 
width: half of the distance from the left margin 
of the left side bearing to the right margin of the 
right side bearing.

gxGlyphLastPart 0x0100 (Same value as gxEndCapPart.) For a 
typographic shape with horizontal text, 
anywhere within the right half of a glyph, 
including its right side bearing; for vertical 
text, anywhere in the bottom half of the glyph. 
“Right half” or “bottom half” means half the 
advance width: half of the distance from the 
right margin of the right side bearing to the left 
margin of the left side bearing.

gxSideBearingPart 0x0200 (Same value as gxDashPart.) For a 
typographic shape, within a glyph side 
bearing.

gxAnyPart 0x07FF Any of the above parts. You can pass this value 
to a hit-testing function if you want it to test for 
all possible shape parts. 

NOTE Points, control points, contours, joins, caps, dashes, patterns, and other components of 
geometric shape geometries are described in the geometric shapes chapter of Inside Macintosh: 
QuickDraw GX Graphics. The gxCenterFrameStyle attribute and other style attributes that 
apply to geometric shapes are described in the geometric styles chapter of Inside Macintosh: 
QuickDraw GX Graphics.

Glyph bounding rectangles, side bearings, and advance widths are described in the introductory 
chapter of Inside Macintosh: QuickDraw GX Typography.

Table 6-1 Shape parts for hit-testing, from the gxShapeParts enumeration (continued)

Constant Value Explanation



C H A P T E R  6

Transform Objects

6-14 About Transform Objects

Setting Up the Parameters

Before calling GXHitTestShape or GXHitTestPicture, you set up the shape-parts 

mask in the transform object to specify the shape parts you are interested in testing for. 

Note that values specifying join, cap, and dash parts in geometric shapes are used in 

typographic shapes to specify various glyph parts instead. Note also that you can specify 

no parts or all parts in the mask. You also specify a tolerance, which should be 0 if the hit 

point must exactly coincide with a shape part for a successful hit. See “Setting Up 

Hit-Test Parameters” beginning on page 6-30 for more information and examples.

The GXHitTestShape function is described in the chapter “Shape Objects” in this book, 

with additional information for typographic shapes and typographic shape parts in the 

typographic shapes chapter of Inside Macintosh: QuickDraw GX Typography. The 

GXHitTestPicture function is described in the picture shapes chapter of Inside 
Macintosh: QuickDraw GX Graphics.   

Default Transform Objects
QuickDraw GX provides a default transform object for you. When you first create a 

shape, that shape’s transform reference is nil, which means that QuickDraw GX uses 

the default transform object as that shape’s transform. (This assumes that you have not 

modified the default shape object so that it references a specific transform; see the 

discussion of default shapes in the chapter “Shape Objects” in this book.)

Also, when you explicitly create a transform object, it is initially a copy of the default 

transform. These are the properties of the default transform object:

■ A clip shape that is a full shape. No clipping occurs when QuickDraw GX draws the 
shape associated with this transform; the clip has no effect.

■ A mapping that is the identity mapping. When drawing, QuickDraw GX does not 
change the position, scaling, skewing, rotation, or perspective of the shape associated 
with this transform; the mapping has no effect.

■ A view port list that contains a single default view port that covers all screen view 
devices. See the chapter “View-Related Objects” in this book for more information on 
the default view port.

■ Hit-test parameters that are

■ the default shape-parts mask, in which only the gxBoundsPart shape part is 
specified. QuickDraw GX considers the hit successful if the test point falls within 
the bounding rectangle of the shape associated with this transform.

■ the default hit-test tolerance, which is 0. The test point cannot be any distance 
outside of the bounding rectangle if the hit is to be considered successful.

■ An owner count of 1.

■ An empty tag list.

QuickDraw GX provides a function that allows you to reset a transform object to these 

default values at any time. See the section “Manipulating a Transform Object’s Owner 

Count” on page 6-19 for more information. 



C H A P T E R  6

Transform Objects

Using Transform Objects 6-15

Using Transform Objects

This section describes the basic transform-creation and transform-manipulation 

capabilities that QuickDraw GX provides. It describes how you can

■ create and manipulate transform objects

■ manipulate the common transform object properties

■ use geometric operations to modify a transform’s clip property

■ transform a shape by modifying its transform object’s mapping

■ transform a shape by modifying its geometry

■ manipulate a transform’s view port list

■ set up hit-testing parameters

Creating and Manipulating Transform Objects
This section describes how you can create and interact with transform objects as whole 

entities—to create, dispose of, copy, compare, and clone them. Manipulating the 

individual properties of transform objects is described under “Copying, Comparing, and 

Cloning Transform Objects” beginning on page 6-16 and in subsequent sections. 

Creating and Disposing of Transform Objects

QuickDraw GX provides the GXNewTransform function to allow you to create a new 

transform object. You can also create a new transform object by copying an existing one 

with the GXCopyToTransform function. Once you have created a transform object, you 

can modify its properties using functions such as those described in the section 

“Copying, Comparing, and Cloning Transform Objects” beginning on page 6-16. 

You need to explicitly create a transform object if you want a single nondefault transform 

to apply to several shapes. You can also indirectly cause the creation of a new transform 

object by modifying a transform property under certain conditions; see “Implicit 

Creation of Transform Objects” on page 6-18 for more information.

To delete your application’s reference to a transform object, call the 

GXDisposeTransform function, which may or may not actually release the memory 

allocated for that transform object, depending on the transform’s owner count. The 

function decreases the transform object’s owner count by 1; if that brings the owner 

count to zero, the transform is completely deleted and its memory released. For more 

discussion of transform-object owner counts, see “Manipulating a Transform Object’s 

Owner Count” on page 6-19.



C H A P T E R  6

Transform Objects

6-16 Using Transform Objects

Listing 6-1 is a code fragment that creates a transform object (myTransform) and 

assigns it to a shape object (myRectangle). 

Listing 6-1 Creating and disposing of a transform object

gxTransform myTransform;

gxShape myRectangle;

myTransform = GXNewTransform();

.

. /* set the transform object’s properties (not shown) */

.

myRectangle = GXNewRectangle(gxRectangleType);

GXSetShapeTransform(myRectangle, myTransform);

GXDisposeTransform(myTransform);

Notice that the code disposes of the myTransform reference to the transform object 

immediately after it is assigned to the shape. The code no longer needs the reference, and 

this decreases the transform’s owner count, allowing it to be deleted as soon as the shape 

no longer needs it. The proper place to call GXDisposeTransform is immediately after 

you have finished using a transform in your code, even if you know that another object’s 

use prevents the transform from being deleted at that time.

The GXNewTransform function is described on page 6-33. The GXDisposeTransform 

function is described on page 6-34. 

Copying, Comparing, and Cloning Transform Objects

You can use the GXCopyToTransform function to copy information from one transform 

object to another or to create a new copy of a transform object.

You can test if two transform-object references refer to the same transform object by 

simply testing the references for equality. You can also compare two different transform 

objects for equality with the GXEqualTransform function. For two transform objects to 

be equal, their clips, mappings, view port lists, and hit-test parameters must have 

identical values, although their owner count and tag list do not need to be identical. 

Transform object copies created with the GXCopyToTransform function are always 

equal, by these criteria, to the transform from which they were copied.

The following code fragment creates a copy (lineTransform) of the transform object 

associated with the default line shape. It then scales the line shape by changing 

its transform mapping. Finally, it recopies the original transform back into 

lineTransform to restore the unscaled values.



C H A P T E R  6

Transform Objects

Using Transform Objects 6-17

gxTransform lineTransform, savedTransform;

gxShape defaultLine;

defaultLine = GXGetDefaultShape(gxLineType);

lineTransform = GXGetShapeTransform(defaultLine);

savedTransform = GXCopyToTransform(nil, lineTransform);

GXScaleTransform(lineTransform, ff(2), ff(2), 0, 0);

.

. /* use the scaled transform (not shown) */

.

GXCopyToTransform(lineTransform,savedTransform);

GXDisposeTransform(savedTransform);

Note that the first call to GXCopyToTransform in the above code creates a new 

transform object, whereas the second call causes the contents of one transform to be 

copied into another. 

In certain circumstances, you may want to copy a reference to a transform object without 

actually copying the object itself. For example, you may want two variables to refer to 

the same transform object, so that editing one of them affects both. Or, you may want to 

preserve a reference to a transform so that it cannot be inadvertently deleted. This is 

called cloning a transform; you can use the GXCloneTransform function to clone a 

transform object.

Functionally, GXCloneTransform does nothing more than increase the owner count of 

a transform. The code in Listing 6-2 clones a shape’s original transform object to preserve 

it from being deleted, changes the shape’s transform object temporarily to perform 

several operations (not shown in the example), and then restores the original transform. 

In this example, the original transform object is called saved and the one that is used for 

the operations is called newXform.

Listing 6-2 Cloning a transform to prevent it from being deleted

gxTransform saved = GXGetShapeTransform(aShape);

GXCloneTransform(saved);

GXSetShapeTransform(aShape, newXform);

.

. /* use the new transform (not shown) */

.

GXSetShapeTransform(aShape, saved);

The saved transform object must be cloned because, in the process of associating a new 

transform object with a shape, the GXSetShapeTransform function decrements the 

owner count of the previously associated transform object. Cloning prevents the saved 

object from being deleted because cloning increments the owner count, which prevents 

the owner count of the saved transform object from going down to 0.



C H A P T E R  6

Transform Objects

6-18 Using Transform Objects

For more information about cloning objects, see the chapter “Introduction to Objects” in 

this book. For more information on manipulating transform owner counts, see the 

section “Manipulating a Transform Object’s Owner Count” beginning on page 6-19 of 

this chapter.

The GXCopyToTransform function is described on page 6-35. The 

GXCloneTransform function is described on page 6-37. The GXEqualTransform 

function is described on page 6-36. 

The GXScaleTransform function is described on page 6-60. The 

GXSetShapeTransform function is described in the chapter “Shape Objects” in this 

book. 

Implicit Creation of Transform Objects

QuickDraw GX provides two kinds of functions that modify transform properties:

■ The first kind, such as GXSetTransformClip and GXSetTransformMapping, 
takes a transform reference as a parameter; it directly alters a property of the 
transform and thus affects all shapes that use that transform. No new transform object 
is created when you call this kind of function.

■ The second kind, such as GXSetShapeClip and GXSetShapeMapping, takes a 
shape reference as a parameter; it alters a property of whatever transform object is 
used by that shape. To keep from inadvertently affecting other shapes that use the 
same transform, QuickDraw GX creates a copy of the transform object and modifies 
the copy if more than one shape object shares the transform. 

In addition, if you call a function that normally affects only a shape’s geometry, such as 

GXRotateShape, and the shape’s gxMapTransformShape attribute is also set, the 

shape’s transform mapping is changed instead; in that case, if the transform is shared by 

more than one object, QuickDraw GX creates a copy and modifies the copy.

The gxMapTransformShape attribute is described in the chapter “Shape Objects” in 

this book. How it affects the functions described in this chapter is discussed in the 

section “Moving, Scaling, Rotating, and Skewing Shapes” beginning on page 6-23. 

Loading and Unloading Transform Objects

Although you rarely need to, you can influence memory-allocation decisions involving 

objects that you have created. If your application needs to have a transform object in 

memory, you can force QuickDraw GX to load it into memory. When your application no 

longer needs the transform object in a loaded state, you can instruct QuickDraw GX to 

unload it.

You call the GXLoadTransform function to make sure that a transform object is in 

memory; if necessary, QuickDraw GX brings the object into memory from an unloaded 

state. You can call the GXUnloadTransform function to instruct QuickDraw GX that it 

is free to unload the transform object at any time. These functions are described in the 

memory management chapter of Inside Macintosh: QuickDraw GX Environment and 
Utilities. 



C H A P T E R  6

Transform Objects

Using Transform Objects 6-19

Manipulating Transform Object Properties
This section describes how to manipulate the common object properties of transform 

objects: owner count and tag list. It also describes how to restore a transform object’s 

properties to their default values. 

To manipulate the clip of an transform, see the section “Getting, Setting, and Modifying 

the Transform Clip” beginning on page 6-20. To manipulate the mapping of a transform, 

see the section “Moving, Scaling, Rotating, and Skewing Shapes” beginning on 

page 6-23. To manipulate the view port list of a transform, see the section “Manipulating 

the View Port List” beginning on page 6-28. To manipulate the hit-test parameters of a 

transform, see the section “Setting Up Hit-Test Parameters” beginning on page 6-30.

For manipulating a transform object as a whole, see “Creating and Manipulating 

Transform Objects” beginning on page 6-15. 

Manipulating a Transform Object’s Owner Count

The owner count of an object indicates the number of current references to that object. In 

general, QuickDraw GX manages owner counts for you. For example, when you create a 

new transform object, QuickDraw GX sets the owner count of the new transform to 1. 

When you assign an existing transform object to a shape, QuickDraw GX increments the 

transform’s owner count, corresponding to the new reference to the transform contained 

in the shape object. 

For example, in Listing 6-1 on page 6-16, the call to GXNewTransform to create the 

transform myTransform sets its owner count to 1; the subsequent call to 

GXSetShapeTransform increments the owner count of myTransform, so it is 2. The 

call to GXDisposeTransform decrements the owner count of myTransform, making 

it 1 again. The transform is not deleted, which is appropriate because it is still used by 

the shape. If you were to call GXSetShapeTransform again to associate a different 

transform object with the shape, or call GXDisposeShape when the shape is no longer 

needed, the owner count of myTransform would decrement again, this time to 0, and it 

would be deleted.

As another example, the code in Listing 6-2 on page 6-17 clones a transform object before 

removing its reference from a shape. The cloning increments the transform’s owner 

count, to ensure that the transform is not deleted when its owner count is decremented 

by the call to GXSetShapeTransform that removes it from the shape.

If you want to manage a transform’s owner count directly, or if you want to know 

whether a transform object is shared, you can use the GXGetTransformOwners 

function to determine the owner count of a transform, and the GXCloneTransform 

and GXDisposeTransform functions to change the owner count of a transform. The 

GXCloneTransform function increments the transform’s owner count, and the 

GXDisposeTransform function decrements the transform’s owner count, freeing the 

memory used by the transform if the owner count goes to 0.



C H A P T E R  6

Transform Objects

6-20 Using Transform Objects

In the chapter “Style Objects” in this book, the section on manipulating a style object’s 

owner count discusses two common owner-count problems and how to avoid them. The 

problems are discussed in terms of style objects, but they apply equally well to transform 

objects. Refer to that discussion if you find that transform objects you create have owner 

counts that are higher or lower than you expect.

The GXGetTransformOwners function is described on page 6-39. 

Getting and Setting a Transform Object’s Tag References

You can examine the list of references to tag objects currently associated with a transform 

object using the GXGetTransformTags function. Once you create a tag object, you can 

attach it to a transform object using the GXSetTransformTags function. You can attach 

as many tag objects as you like to a transform object.

Tag objects and the basic functions for manipulating them are described in the chapter 

“Tag Objects” in this book. That chapter also lists the common tag types defined and 

reserved by Apple Computer, Inc.

The GXGetTransformTags function is described on page 6-40. The 

GXSetTransformTags function is described on page 6-41.   

Resetting Default Transform Properties

If you explicitly create a new transform with the GXNewTransform function and then 

modify its properties, or if you indirectly modify the properties of a shared transform (by 

calling, for example, GXSetShapeMapping) and thereby cause QuickDraw GX to create 

a new transform, that new transform has nondefault properties. If you want to restore 

the default transform properties, you can call the GXResetTransform function. This 

function resets the transform’s clip, mapping, view port list, and hit-test parameters to 

their default values, but does not alter its owner count or tag list.

The GXResetTransform function is described on page 6-38. 

Getting, Setting, and Modifying the Transform Clip
The clip shape that you specify in a transform object controls the clipping of shapes 

associated with that transform. The transform clip must be a primitive shape; primitive 

shapes are described in the geometric operations chapter of Inside Macintosh: 
QuickDraw GX Graphics. QuickDraw GX provides a pair of functions 

(GXGetTransformClip, GXSetTransformClip) that get and set the clip of a 

specified transform, and another pair (GXGetShapeClip, GXSetShapeClip) that 

get and set the clip of the transform associated with a specified shape.



C H A P T E R  6

Transform Objects

Using Transform Objects 6-21

QuickDraw GX also provides another set of functions with which you can easily modify 

a clip shape using constructive geometry. Table 6-2 shows the constructive geometry 

operations you can perform between a transform clip and another shape, in order to 

modify the clip shape. 

To use constructive geometry operations, the clip shape and the shape with which to 

operate must meet these criteria:

■ The clip shape must be a primitive shape and cannot be a picture shape, text shape, or 
layout shape. (These criteria are automatically met if it is a clip shape.)

■ The shape with which to operate cannot be a bitmap shape or picture shape. It should 
also be a primitive shape, because only its geometry and fill properties are used in the 
operation. 

■ If the clip shape’s fill is even-odd fill or winding fill, or the inverse of these, the shape 
with which to operate must also be filled.

■ If the clip shape is frame filled, a pen width of 0 is implied, indicating a hairline width 
to the clip frame. Hairlines are described in the geometric styles chapter of Inside 
Macintosh: QuickDraw GX Graphics.

Figure 6-8 shows several examples of the effects of these operations with a polygon clip 

combined with a rectangle shape. The figure also shows which combinations of fill types 

are allowed for each operation. 

Table 6-2 Constructive geometry operations between transform clips and other shapes

Function Description

GXUnionTransform Modifies the clip shape to be the union of it 
with another shape. Described on page 6-49.

GXIntersectTransform Modifies the clip shape by intersecting it with 
another shape. Described on page 6-50.

GXDifferenceTransform Modifies the clip shape by subtracting another 
shape from it. Described on page 6-51.

GXReverseDifferenceTransform Modifies the clip shape by subtracting it from 
another shape. Described on page 6-52.

GXExcludeTransform Modifies the clip shape by combining it with 
another shape in an exclusive-OR (XOR) 
operation. Described on page 6-53.



C H A P T E R  6

Transform Objects

6-22 Using Transform Objects

Figure 6-8 Constructive geometry operations with a polygon clip and a rectangle shape

Note
Figure 6-8 does not show a filled clip with a framed shape because this 
combination of shapes generates an error for any constructive geometry 
operation. ◆

The following example shows how to create a clip using a constructive geometry 

operation. The clip is first created as a path shape and assigned to the transform object 

with GXSetTransformClip. That clip is then unioned with another path shape, using 

GXUnionTransform. The geometries of the paths (path1Geometry and 

path2Geometry) are not shown.



C H A P T E R  6

Transform Objects

Using Transform Objects 6-23

gxShape clipShape, pathShape;

gxTransform myTransform;

.

. /* get or create the transform (not shown) */

.

clipShape = GXNewPaths ((gxPaths *)path1Geometry);

GXSetTransformClip(myTransform, clipShape);

GXDisposeShape(clipShape);

pathShape = GXNewPaths ((gxPaths *)path2Geometry);

GXUnionTransform(myTransform, pathShape);

GXDisposeShape(pathShape);

Note that only the geometries of the two path shapes matter; style information is not 

considered. The GXGetTransformClip function is described on page 6-43. The 

GXSetTransformClip function is described on page 6-44.   

Moving, Scaling, Rotating, and Skewing Shapes
The mapping property of transform objects allows you to perform sophisticated 

transformations to your shape’s geometries. By altering the values of a transform’s 

mapping, you can move, scale, rotate, skew and create perspective effects on any shapes 

the transform applies to. However, determining the specific changes to the mapping 

matrix needed to achieve a desired transformational effect can involve complex 

calculations. As a convenience, QuickDraw GX provides several functions that perform 

the calculations necessary to achieve common transformations, without you having to 

know how the mapping matrix is altered.

The transformational functions that QuickDraw GX provides allow you to position, 

rotate, scale, and skew shapes. QuickDraw GX provides two kinds of such functions, one 

kind that operates on transform mappings, which is of the form GXActionTransform, 

and one kind that normally operates on shape geometries, which is of the form 

GXActionShape. If you use a function that operates on a transform’s mapping, the 

mapping is changed and all shapes that refer to the transform are affected. If you use a 

function that normally operates on a shape geometry, there are two possible results:

■ If the shape’s gxMapTransformShape attribute is cleared, the shape’s geometry is 
changed, as expected. Its transform mapping is unaffected.

■ If the shape’s gxMapTransformShape attribute is set, the function works exactly like 
a GXActionTransform function, changing the transform mapping instead of the 
shape geometry. An additional side effect is that, if the shape’s transform object is 
shared with other shapes, QuickDraw GX creates a copy of the transform and 
modifies the copy, to avoid affecting the other shapes.



C H A P T E R  6

Transform Objects

6-24 Using Transform Objects

If you move a shape to an absolute location, the location applies to a specific anchor 

point in the shape’s geometry and all other points in the geometry move in relation to 

this point. The point used depends on the kind of shape:

■ For points, lines, and curves, the anchor point is the first point in the shape’s geometry.

■ For rectangles, polygons, paths, and bitmaps, the anchor point is the top-left corner of 
the bounding rectangle.

■ For text, glyph, and layout shapes, the anchor point is the origin of the first glyph.

■ Other shapes (empty shapes, full shapes, and pictures) cannot be moved. 

However, remember that if the shape’s gxMapTransformShape attribute is set, calling 

a function that moves the shape has no effect on the geometry; it modifies the transform 

mapping instead. In that case, moving the shape to an absolute location means only that 

its transform mapping adds that location to whatever location the geometry already 

specifies.

Modifying the Transform Mapping

One way to transform a shape is by altering its transform object’s mapping property. 

This section shows several examples of that kind of transformation.

For example, you can move a shape to a relative or absolute location by modifying its 

transform. The GXMoveTransform function modifies the transform’s mapping to 

move a shape a specified distance from its current location in local coordinates. The 

GXMoveTransformTo function modifies the transform’s mapping to move a shape 

to an absolute location in local coordinate space.

The following example causes all shapes associated with the myTransform transform 

object to move to the upper-left corner of the bounding rectangle, bounds, of the 

rectangle aRectangle:

gxRectangle aRectangle, bounds;

.

. /* initialize the rectangle (not shown) */

.

GXGetShapeBounds(aRectangle, 0, &bounds);

GXMoveTransformTo(myTransform, bounds.left, bounds.top);

You can also modify a transform’s mapping to rotate, scale, or skew a shape around a 

specified point. Listing 6-3 rotates a shape’s transform mapping 90 degrees, and scales 

and skews the mapping. The shape’s center is used as the point around which to rotate, 

scale, and skew the transform.



C H A P T E R  6

Transform Objects

Using Transform Objects 6-25

Listing 6-3 Modifying a shape’s transform with transform-mapping calls only

Fixed hScale, vScale, xSkew, ySkew;

gxPoint center;

gxShape aShape;

gxTransform myTransform;

.

. /* initialize the shape and the rotate/scale/skew parameters */

.

/* find the shape’s center */

GXGetShapeCenter(aShape, 0, &center);

/* get the transform, rotate it around shape’s center */

myTransform = GXGetShapeTransform(aShape);

GXRotateTransform(myTransform, ff(90), center.x, center.y);

/* scale and skew the shape */

GXScaleTransform(myTransform, hScale, vScale, center.x, center.y);

GXSkewTransform(myTransform, xSkew, ySkew, center.x, center.y);

Listing 6-4 performs the same actions as Listing 6-3: rotating, scaling, and skewing a 

shape’s transform mapping. Like Listing 6-3, this code also affects only the transform 

mapping associated with the shape. This is despite the fact that it makes some calls 

(GXScaleShape and GXSkewShape) that would normally affect the shape’s 

geometry. Because the shape’s gxMapTransformShape attribute is set before the 

geometry-altering calls are made, those functions are forced to affect the transform 

mapping instead of the shape’s geometry.

Listing 6-4 Modifying a shape’s transform with transform-mapping and shape-geometry calls

Fixed hScale, vScale, xSkew, ySkew;

gxPoint center;

gxShape aShape;

gxTransform myTransform;

.

. /* initialize the shape and the rotate/scale/skew parameters */

.

/* find the shape’s center */

GXGetShapeCenter(aShape, 0, &center);

/* get the transform, rotate it around shape’s center */

myTransform = GXGetShapeTransform(aShape);

GXRotateTransform(myTransform, ff(90), center.x, center.y);



C H A P T E R  6

Transform Objects

6-26 Using Transform Objects

/* set the gxMapTransformShape attribute */

GXSetShapeAttributes(aShape, 

GXGetShapeAttributes(aShape) | gxMapTransformShape);

/* scale and skew the shape (but it affects mapping instead) */

GXScaleShape(aShape, hScale, vScale, center.x, center.y);

GXSkewShape(aShape, xSkew, ySkew, center.x, center.y);

You can also perform these transformations, as well as perspective-modifying 

operations, by directly manipulating the matrix elements of a transform’s mapping. You 

can use the functions GXGetTransformMapping or GXGetShapeMapping to obtain 

the mapping matrix, then modify the matrix as desired and reassign it to the transform 

with GXSetTransformMapping or GXSetShapeMapping. You can also create your 

own mapping matrix, and then multiply it (concatenate it) with the existing mapping of 

a transform object, using the functions GXMapTransform (or GXMapShape, if the 

shape’s gxMapTransformShape attribute is set). For more information about matrix 

manipulation, see the mathematics chapter of Inside Macintosh: QuickDraw GX 
Environment and Utilities.

The GXGetTransformMapping function is described on page 6-54; the 

GXSetTransformMapping function is described on page 6-55. 

The GXGetShapeMapping function is described on page 6-56; the 

GXSetShapeMapping function is described on page 6-57.

The GXMapTransform function is described on page 6-64; the GXMapShape function 

is described on page 6-72.

The GXMoveTransform function is described on page 6-58. The GXMoveTransformTo 

function is described on page 6-59. The GXScaleTransform function is described on 

page 6-60. The GXRotateTransform function is described on page 6-62. The 

GXSkewTransform function is described on page 6-63.    

Modifying Shape Geometry

A second way to transform a shape is by altering its geometry property. This section 

shows several examples of that kind of transformation.

You can move a shape to a relative or absolute location by modifying the shape’s 

geometry instead of its transform mapping. The GXMoveShape function modifies 

the geometry to move a shape a specified distance from its current location in local 

coordinates. The GXMoveShapeTo function modifies the geometry to move a shape to 

an absolute location in local coordinate space. In either case, the geometry is altered only 

if the shape’s gxMapTransformShape attribute is cleared; otherwise, the functions 

work just like GXMoveTransform and GXMoveTransformTo, and alter the mapping of 

the transform object attached to the shape.



C H A P T E R  6

Transform Objects

Using Transform Objects 6-27

The following example causes the shape myShape to move to the upper-left corner of 

the bounding rectangle, bounds, of the rectangle aRectangle:

gxRectangle aRectangle, bounds;

.

. /* initialize the rectangle (not shown) */

.

GXGetShapeBounds(aRectangle, 0, &bounds);

GXMoveShapeTo(myShape, bounds.left, bounds.top);

Listing 6-5 performs the same actions as Listing 6-3 and Listing 6-4: rotating, scaling, and 

skewing a shape. However, unlike either previous listing, this code alters the geometry 

of the shape itself. To ensure that the operations do not affect the shape’s transform 

mapping, the code clears the shape’s gxMapTransformShape attribute before making 

the geometry-altering calls.

Listing 6-5 Modifying a shape’s geometry with shape-geometry calls

Fixed hScale, vScale, xSkew, ySkew;

gxPoint center;

gxShape aShape;

.

. /* initialize the shape and the rotate/scale/skew parameters */

.

/* find the shape’s center */

GXGetShapeCenter(aShape, 0, &center);

/* clear the gxMapTransformShape attribute */

GXSetShapeAttributes(aShape, gxNoAttributes);

/* rotate shape around its center (affects geometry this time ) */

GXRotateShape(myShape, ff(90), center.x, center.y);

/* scale and skew the shape (affects geometry this time ) */

GXScaleShape(aShape, hScale, vScale, center.x, center.y);

GXSkewShape(aShape, xSkew, ySkew, center.x, center.y);

Note

Rotation of a shape’s geometry can change the shape’s type. For 
example, a rectangle may turn into a polygon when rotated. For more 
information, see the geometric shapes chapter of Inside Macintosh: 
QuickDraw GX Graphics. ◆



C H A P T E R  6

Transform Objects

6-28 Using Transform Objects

You can also perform these operations, as well as perspective-modifying operations, by 

applying a mapping directly to a shape’s geometry. You can create your own mapping 

matrix, and then apply it to a shape object using the GXMapShape function if the shape’s 

gxMapTransformShape attribute is cleared; if the attribute is set, this function affects 

the shape’s transform mapping instead. For more information about matrix 

manipulation, see the mathematics chapter of Inside Macintosh: QuickDraw GX 
Environment and Utilities.

The GXMapShape function is described on page 6-72.

The GXMoveShape function is described on page 6-66. The GXMoveShapeTo function is 

described on page 6-67. The GXScaleShape function is described on page 6-68. The 

GXRotateShape function is described on page 6-70. The GXSkewShape function is 

described on page 6-71.  

Manipulating the View Port List
The view port list property of the transform object specifies all the view ports to 

which shapes associated with the transform are drawn. QuickDraw GX provides a pair 

of functions (GXGetTransformViewPorts and GXSetTransformViewPorts) 

that get and set the view port list of a specified transform, and another pair 

(GXGetShapeViewPorts and GXSetShapeViewPorts) that get and set the 

view port list of the transform associated with a specified shape. View ports are 

described in the chapter “View-Related Objects” in this book.

When you create a window, you create one or more view ports. If you want the shapes 

that you subsequently create to be drawn in that window, you place references to one or 

more of those view ports in the view port list of the shapes’ transform object. 

You may also want to alter a view port list of an existing transform object. For example, 

you might temporarily create a pane or a separate window that shows a zoomed view of 

a currently displayed shape. As another example, you might want to draw an object both 

onscreen and offscreen simultaneously. 

Listing 6-6 is a partial listing of a function that adds a new view port (newPort) to 

the view port list of the transform object myTransform. The function calls the 

GXGetTransformViewPorts function twice, first to determine the number of view 

ports already in the list in order to allocate memory for it, and second to retrieve the list 

itself. Before adding the new view port, the function first checks the list and, if the view 

port is already in the list, does not add it. The function assigns the new view port to the 

last element in the list, and then calls GXSetTransformViewPorts to reassign the list 

to the transform. Finally, the code disposes of the view port list.



C H A P T E R  6

Transform Objects

Using Transform Objects 6-29

Listing 6-6 Getting and setting view ports

gxViewPort *ports, *portPtr;

gxViewPort newPort;

short portCount, count;

gxTransform myTransform;

.

. /* get the transform, set up the new view port (not shown) */

.

/* first, call to see how big the current view port list is */

portCount = GXGetTransformViewPorts(myTransform, nil);

/* accounting for new view port, allocate memory for the list */

portCount++;

ports = (gxViewPort *) NewPtr(portCount * sizeof(gxViewPort));

/* get the current list into memory */

GXGetTransformViewPorts(myTransform, ports);

/* check if the view port is already in the list */

portPtr = ports;

count = portCount;

while (--count > 0)         

{

/* if port is already in transform, release memory and leave */

if (*portPtr++ == newPort) 

{

DisposPtr((void *) ports);

return;

}

}

/* put view port in transform */

*portPtr = newPort;

GXSetTransformViewPorts(myTransform, portCount, ports);

/* clean up and leave */

DisposePtr((void *)ports);

return;



C H A P T E R  6

Transform Objects

6-30 Using Transform Objects

The GXGetTransformViewPorts function is described on page 6-73; 

the GXSetTransformViewPorts function is described on page 6-74. The 

GXGetShapeViewPorts function is described on page 6-75; 

the GXSetShapeViewPorts function is described on page 6-76. 

Setting Up Hit-Test Parameters
QuickDraw GX provides a pair of functions (GXGetTransformHitTest, 

GXSetTransformHitTest) that get and set the hit-test parameters of a specified 

transform, and another pair (GXGetShapeHitTest, GXSetShapeHitTest) that get 

and set the hit-test parameters of the transform associated with a specified shape.

The hit-test parameters are used by the functions GXHitTestShape and 

GXHitTestPicture. Before calling either function, you set up the shape-parts mask 

and define a tolerance, and assign them both to the transform object of the shape you are 

going to hit-test. The shape-parts mask consists of values from the gxShapeParts 

enumeration; see Table 6-1 on page 6-12 for descriptions of the individual values.

The GXHitTestShape and GXHitTestPicture functions return, in addition to an 

indication of which shape parts were hit during a hit-test, a distance from the hit point to 

one of the hit parts. If only one shape part was hit, the distance is the distance from the 

hit point to the nearest point on the hit part. But if more than one part was hit (for 

example, if a hit corresponded to both the bounding rectangle and the shape geometry), 

the distance returned is the distance to the first shape part—in order of processing by the 

function— that was hit. The order in which shape parts are processed is the order in 

which they appear in the gxShapeParts enumeration. Thus, if both bounding rectangle 

and geometry are tested for, and if both are hit, the distance returned is the distance to 

the bounding rectangle. You can use the processing order to set up the shape-parts mask 

to make sure that GXHitTestShape and GXHitTestPicture return the exact distance 

information you need.

The following example sets the shape-parts mask (mask) to include both the geometry 

and the corner points of the shape aShape. It also sets the tolerance to 0, meaning that if 

a hit point is any distance outside of the shape geometry or corner points, it is not 

considered a hit.

gxShapePart mask = gxGeometryPart | gxCornerPointPart;

GXSetShapeHitTest(aShape, mask, 0);



C H A P T E R  6

Transform Objects

Transform Objects Reference 6-31

For more information about shape parts and tolerance as a transform object property, see 

the section “Hit-Test Parameters” on page 6-11. For information about hit-testing with 

GXHitTestShape, see the chapter “Shape Objects” in this book. For information about 

hit-testing with GXHitTestPicture, see the picture shapes chapter of Inside Macintosh: 
QuickDraw GX Graphics. 

The GXGetTransformHitTest function is described on page 6-78; 

the GXSetTransformHitTest function is described on page 6-79. The 

GXGetShapeHitTest function is described on page 6-80; the GXSetShapeHitTest 

function is described on page 6-81. 

Transform Objects Reference

This section provides reference information to the constants, data types, and functions 

that allow you to create and manipulate transform objects and alter their properties. It 

includes

■ definitions of the constants and data types, including enumerations, that are specific 
to transform objects

■ descriptions of the QuickDraw GX functions that operate on transform objects

■ descriptions of the QuickDraw GX transformation functions that operate either on 
shape geometries or on transform mappings, depending on the state of the 
gxMapTransformShape attribute

Constants and Data Types

This section describes the data types that you use to obtain and provide information 

about transform objects.

The Transform Object

QuickDraw GX provides you with access to an individual transform object through a 

transform reference:

typedef struct gxPrivateTransformRecord *gxTransform;

In this type definition, gxTransform is a type-checked reference, not an actual pointer 

to any defined structure. The contents of the transform object are private. 



C H A P T E R  6

Transform Objects

6-32 Transform Objects Reference

Shape Parts for Hit-Testing

Each transform object specifies the parts of a shape on which hit-testing is performed. 

The choices are specified by the gxShapeParts enumeration. For determining distance 

to a hit part, the hit-testing functions evaluate shape parts in the order shown in the 

enumeration. 

enum gxShapeParts {  /* (in order of evaluation) */

gxNoPart = 0,   

gxBoundsPart = 0x0001,

gxGeometryPart = 0x0002,

gxPenPart = 0x0004,

gxCornerPointPart = 0x0008,

gxControlPointPart = 0x0010,

gxEdgePart = 0x0020,

gxJoinPart = 0x0040,

gxStartCapPart = 0x0080,

gxEndCapPart = 0x0100,

gxDashPart = 0x0200,

gxPatternPart = 0x0400,

gxGlyphBoundsPart = gxJoinPart,

gxGlyphFirstPart = gxStartCapPart,

gxGlyphLastPart = gxEndCapPart,

gxSideBearingPart = gxDashPart,

gxAnyPart = gxBoundsPart | gxGeometryPart | 

gxPenPart | gxCornerPointPart | gxControlPointPart | 

gxEdgePart | gxJoinPart | gxStartCapPart | 

gxEndCapPart | gxDashPart | gxPatternPart 

} ;

typedef long gxShapePart;

The individual shape parts are described in Table 6-1 on page 6-12. 

Functions

This section describes the QuickDraw GX functions you can use to

■ create and manipulate a transform object

■ manipulate the common object properties of a transform object

■ get and set the clip shape of a transform object

■ perform geometric operations on a transform clip

■ get and set the mapping matrix of a transform object



C H A P T E R  6

Transform Objects

Transform Objects Reference 6-33

■ apply transformation operations to a transform’s mapping

■ apply transformation operations directly to a shape’s geometry

■ get and set the view port list of a transform object

■ get and set the hit-test parameters of a transform object

Creating and Manipulating Transform Objects

This section describes the functions that manipulate transforms as objects in memory. 

With the functions in this section, you can create and dispose of a transform object, and 

copy, compare, and clone transform objects.

To associate a transform object with a QuickDraw GX shape, use the 

GXGetShapeTransform and GXSetShapeTransform functions, described in the 

chapter “Shape Objects” in this book.

GXNewTransform

You can use the GXNewTransform function to create a new transform object with 

default properties.

gxTransform GXNewTransform(void);

function result A reference to the newly created transform object.

DESCRIPTION

The GXNewTransform function creates a transform object with an owner count of 1. 

All other properties of the transform are set to their default values:

■ A clip that is a full shape.

■ A mapping that is the identity mapping.

■ A shape-parts mask specifying gxBoundsPart only, and a tolerance of 0.

■ A view port list containing a single view port covering all onscreen view devices.

■ The owner count is 1.

■ The tag list is empty.

SPECIAL CONSIDERATIONS

If no error occurs, the GXNewTransform function creates a transform object; you are 

responsible for disposing of that object when you no longer need it.



C H A P T E R  6

Transform Objects

6-34 Transform Objects Reference

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example of the use of this function, see Listing 6-1 on page 6-16.

Default transform properties are described in the section “Default Transform Objects” 

beginning on page 6-14. For general information on the properties of transform objects, 

see “Transform Object Properties” beginning on page 6-6.

To dispose of a transform object, use the GXDisposeTransform function, which is 

described in the next section.

To create a transform object that is identical to an existing one, use the 

GXCopyToTransform function, described on page 6-35.

GXDisposeTransform

You can use the GXDisposeTransform function to release a reference to a transform 

object.

void GXDisposeTransform(gxTransform target);

target The transform object to dispose of.

DESCRIPTION

The GXDisposeTransform function decrements the owner count of the transform 

object specified by the target parameter, and releases any memory used by the transform 

if the owner count goes to 0.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory

Errors
transform_is_nil

Warnings
cannot_dispose_default_transform (debugging version)



C H A P T E R  6

Transform Objects

Transform Objects Reference 6-35

SEE ALSO

For an example of the use of this function, see Listing 6-1 on page 6-16.

Owner counts for transform objects are discussed in the section “Copying, Comparing, 

and Cloning Transform Objects” beginning on page 6-16, and in the section 

“Manipulating a Transform Object’s Owner Count” beginning on page 6-19. 

To examine the owner count of a transform, use the GXGetTransformOwners function, 

described on page 6-39. To increment the owner count of a transform object, use the 

GXCloneTransform function, which is described on page 6-37. 

GXCopyToTransform

You can use the GXCopyToTransform function to create a copy of an existing transform 

object.

gxTransform GXCopyToTransform (gxTransform target, 

gxTransform source);

target A reference to the transform object to copy the source contents into. If you 
specify nil for this parameter, the GXCopyToTransform function 
creates a new transform object.

source A reference to the transform object whose contents you want to copy.

DESCRIPTION

The GXCopyToTransform function copies the contents of an existing transform object 

to another, or it creates a new transform object and copies the contents of an existing 

transform object to it. The function copies the clip, mapping, hit-test parameters, tag list 

and view port list (but not the owner count) of the source transform object into the target 

transform object. It clones, but does not copy, the tag objects in the tag list.

If you specify nil for the target parameter, the GXCopyToTransform function 

creates a new transform object and copies the properties of the source transform, 

including the tag list, to the new transform. 

You can use this function to create a copy of a transform object and then modify it 

without changing the original.

SPECIAL CONSIDERATIONS

If you specify nil for the target parameter and no error occurs, the 

GXCopyToTransform function creates a transform object; you are responsible for 

disposing of that object when you no longer need it.



C H A P T E R  6

Transform Objects

6-36 Transform Objects Reference

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example of the use of this function, see page 6-17.

To create a new transform object with default values, use the GXNewTransform 

function, described on page 6-33.

To compare transform objects for equality, use the GXEqualTransform function, 

described in the next section.

GXEqualTransform

You can use the GXEqualTransform function to determine if two transform objects 

are equal.

boolean GXEqualTransform(gxTransform one, gxTransform two);

one A reference to one of the transform objects to test for equality.

two A reference to the other transform object to test for equality.

function result true if the transform specified by the one parameter is equal to the 
transform specified by the two parameter; otherwise false.

DESCRIPTION

The GXEqualTransform function determines whether the transform object referenced 

by the one parameter is equal to the transform object referenced by the two parameter.

For two transform objects to be equal, they must have identical clip shape geometries, 

mappings, hit-test parameters, and view port lists. Their owner count and tag list need 

not be identical. 

SPECIAL CONSIDERATIONS

Note that for two clips to be identical means more than having identical dimensions. 

For example, a polygon clip might have the same dimensions as a path or rectangle, 

but shapes with different shape types are never identical. You can call the 

GXSimplifyShape function to convert the clips to their simplest form.

Errors
out_of_memory
transform_is_nil



C H A P T E R  6

Transform Objects

Transform Objects Reference 6-37

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To make a copy of a transform object that is equal by the criteria of this function, use the 

GXCopyToTransform function, described on page 6-35.

The GXSimplifyShape function is described in the geometric operations chapter of 

Inside Macintosh: QuickDraw GX Graphics.

GXCloneTransform

You can use the GXCloneTransform function to clone a transform object—that is, to 

add a reference to it and increment its owner count.

gxTransform GXCloneTransform(gxTransform source);

source A reference to the transform object to clone.

function result A copy of the reference to the source transform object.

DESCRIPTION

The GXCloneTransform function increments the owner count of the transform 

referenced by the source parameter. You typically use this function when you want to 

create another reference to an existing transform rather than creating a distinct copy of 

the transform.

This function returns as its function result a reference to the transform—the same 

reference you pass in as the source parameter. It also increments the transform’s owner 

count. 

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
transform_is_nil

Errors
transform_is_nil



C H A P T E R  6

Transform Objects

6-38 Transform Objects Reference

SEE ALSO

For an example of the use of this function, see Listing 6-2 on page 6-17.

Owner counts for transform objects are discussed in the section “Copying, Comparing, 

and Cloning Transform Objects” beginning on page 6-16, and in the section 

“Manipulating a Transform Object’s Owner Count” beginning on page 6-19.

To examine the owner count of a transform, use the GXGetTransformOwners function, 

described on page 6-39. To decrement the owner count of a transform, use the 

GXDisposeTransform function, described on page 6-34.

Manipulating Transform Object Properties

This section describes the functions that manipulate the object properties of transforms. 

The functions described in this section allow you to 

■ reset a transform object’s properties to their default values

■ manipulate the common object properties of a transform: owner count and tag list

GXResetTransform

You can use the GXResetTransform function to reset the properties of a transform 

object to their default values.

void GXResetTransform(gxTransform target);

target A reference to the transform object whose properties you want to reset.

DESCRIPTION

The GXResetTransform function resets the following properties of the target 

transform to the following default values:

■ The clip is a full shape.

■ The mapping is the identity mapping.

■ The shape-parts mask specifies gxBoundsPart, and the tolerance is 0.

■ The view port list contains a single view port covering all screen view devices.

This function does not change the target transform’s owner count or tag list.



C H A P T E R  6

Transform Objects

Transform Objects Reference 6-39

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Default transform properties are described in the section “Default Transform Objects” 

beginning on page 6-14. For general information on the properties of transform objects, 

see “Transform Object Properties” beginning on page 6-6. 

GXGetTransformOwners

You can use the GXGetTransformOwners function to determine the number of 

references to a particular transform object.

long GXGetTransformOwners(gxTransform source);

source A reference to the transform object whose owner count you want to find.

function result The owner count of the source transform object.

DESCRIPTION

The GXGetTransformOwners function returns a value indicating the number of 

current references to the source shape.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Owner counts for transform objects are discussed in the section “Copying, Comparing, 

and Cloning Transform Objects” beginning on page 6-16, and in the section 

“Manipulating a Transform Object’s Owner Count” beginning on page 6-19. 

To increment the owner count of a transform object, use the GXCloneTransform 

function, described on page 6-37. To release a reference to a transform object, use the 

GXDisposeTransform function, described on page 6-34.

Errors
out_of_memory
transform_is_nil

Errors
transform_is_nil



C H A P T E R  6

Transform Objects

6-40 Transform Objects Reference

GXGetTransformTags

You can use the GXGetTransformTags function to examine one or more of the tag 

objects associated with a transform object.

long GXGetTransformTags(gxTransform source, long tagType, 

long index, long count, gxTag items[]);

source A reference to the transform object whose tag list you want to examine.

tagType The type of tag object to search for. A value of 0 indicates that you want to 
look for all tag types.

index The (1-based) index of the first such tag reference to return.

count The number of tag references to return.

items An array to hold the returned tag references.

function result The number of tag references found that match the criteria specified by 
the input parameters.

DESCRIPTION

The GXGetTransformTags function searches the tag list of the source transform object 

for references to tag objects with the tag type specified by the tagType parameter. If you 

specify 0 for this parameter, the function searches for all tag types.

You can use the index and the count parameters to specify which tag references of the 

appropriate type the GXGetInkTags function should return. The index parameter 

indicates the first tag reference to return and the count parameter indicates how many 

tag references to return. The index parameter must be greater than 0. The count 

parameter must be greater than 0 or equal to the gxSelectToEnd constant (–1), which 

indicates that all tag references (starting with the tag reference indicated by the index 

parameter) should be returned.

The function result is the number of tag references found that fit the criteria. If you pass 

a value other than nil for the items parameter, the GXGetInkTags function returns in 

the items parameter the tag references that were found.

Typically, you call this function once with a nil value for the items parameter to 

determine the number of matching tags. Then you allocate an appropriately sized tag 

reference array and call the function a second time to obtain references to the matching 

tags.



C H A P T E R  6

Transform Objects

Transform Objects Reference 6-41

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Tag objects are discussed in the chapter “Tag Objects” in this book. 

To change the set of tags associated with a transform, use the GXSetTransformTags 

function, described next.

GXSetTransformTags

You can use the GXSetTransformTags function to add, remove, or replace tag objects 

associated with a transform object.

void GXSetTransformTags(gxTransform target, long tagType, 

long index, long oldCount, long newCount,

const gxTag items[]);

target A reference to the transform object whose tag list you want to alter.

tagType The type of tag objects to replace. A value of 0 indicates that you want to 
replace tags of all types.

index The (1-based) index of the first tag reference (of the appropriate type) to 
replace.

oldCount The number of tag references to replace. A value of 0 specifies that you 
want to insert tag references before the tag reference indicated by the 
index parameter, rather than replace tag references. A value of –1 (the 
gxSelectToEnd constant) indicates that all tag references of the 
requested type (starting with the reference indicated by the index 
parameter), should be replaced.

newCount The number of tag references to insert. A value of 0 indicates that there 
are no tag references to insert; the existing tag references that match the 
selection criteria are removed from the target transform’s tag list and 
disposed of.

items An array of tag references to insert into the transform’s tag list.

Errors
out_of_memory
transform_is_nil
index_is_less_than_one (debugging version)
count_is_less_than_one (debugging version)

Warnings
index_out_of_range
count_out_of_range



C H A P T E R  6

Transform Objects

6-42 Transform Objects Reference

DESCRIPTION

The GXSetTransformTags function allows you add tag references to a transform 

object’s tag list, to remove tag references from the list, or to replace tag references in the 

list with new tag references. In any of these three cases, the target parameter specifies 

the ink object to be modified, the newCount parameter specifies the number of tag 

references to add, and the items parameter provides the new tag references.

■ To add tag references, set the oldCount parameter to 0. Use the tagType and the 
index parameters to specify where to add the new tag references. (For example, if 
you specify nil for the tagType parameter and 1 for the index parameter, this 
function inserts the new tag references before the current tag references. If you specify 
a value other than nil for the tagType parameter and a value of 2 for the index 
parameter, the function inserts the new tag references before the second tag reference 
with a tag type matching the tagType parameter.)

■ To remove tag references, set the newCount parameter to 0 and the items parameter 
to nil. You can use the index and the oldCount parameters to specify which tag 
references (of the specified type) should be removed. The index parameter indicates 
the first tag reference (of the specified type) to remove and the oldCount parameter 
indicates how many tag references (of the specified type) to remove. 

■ To replace tag references, use the tagType, index, and oldCount parameters to 
indicate which tag references to replace, and use the newCount and items 
parameters to specify the new tag references to add. If newCount is greater than 
oldCount, the extra tag references are placed immediately adjacent to the last tag 
reference replaced.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Tag objects are discussed in the chapter “Tag Objects” in this book. 

To examine the set of tags associated with a transform, use the GXGetTransformTags 

function, described in the previous section. 

Errors
out_of_memory
transform_is_nil
tag_is_nil
parameter_is_nil (debugging version)
inconsistent_parameters (debugging version)
parameter_out_of_range (debugging version)
index_is_less_than_zero (debugging version)
cannot_dispose_locked_tag (debugging version)

Warnings
index_out_of_range
count_out_of_range

Notices (debugging version)
tag_already_set



C H A P T E R  6

Transform Objects

Transform Objects Reference 6-43

Getting and Setting the Clip

This section describes the functions that allow you to manipulate the clip property of a 

transform object. The clip property is a reference to a shape object. See “Clip” on 

page 6-7 for more information.

GXGetTransformClip

You can use the GXGetTransformClip function to retrieve the clip property of a 

transform object.

gxShape GXGetTransformClip(gxTransform source);

source A reference to the transform object whose clip shape you want to 
determine.

function result A reference to a newly created shape object that is a copy of the source 
transform’s clip.

DESCRIPTION

The GXGetTransformClip function creates a new shape object, copies into it the 

geometry of the shape referenced in the clip property of the source transform, and 

returns a reference to the new shape as the function result.

Note that the returned shape object is a copy; you can alter it without affecting the clip 

property of the source transform. If you call this function and alter the clip shape it 

returns, you can then assign that changed clip shape back to the transform object by 

calling the GXSetTransformClip function.

SPECIAL CONSIDERATIONS

If no error occurs, the GXGetTransformClip function creates a shape object; you are 

responsible for disposing of that object when you no longer need it.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
transform_is_nil
parameter_is_nil (debugging version)



C H A P T E R  6

Transform Objects

6-44 Transform Objects Reference

SEE ALSO

For information about the clip property of transform objects, see “Clip” on page 6-7.

To change the information in the clip property of a transform object, use the 

GXSetTransformClip function, described next. 

If you want to manipulate the clip property of a transform associated with a specific 

shape, you can use the GXGetShapeClip function, described on page 6-45, or the 

GXSetShapeClip function, described on page 6-46.

GXSetTransformClip

You can use the GXSetTransformClip function to change a transform object’s clip 

property.

void GXSetTransformClip(gxTransform target, gxShape clip);

target A reference to the transform object whose clip shape you want to change.

clip A reference to a shape object containing the new clip shape information.

DESCRIPTION

The GXSetTransformClip function copies information from the shape 

object referenced by the clip parameter into the clip property of the transform object 

referenced by the target parameter. You can specify nil for the clip parameter, in 

which case this function sets the clip property of the target transform to a full clip (no 

transform clipping takes place).

The new clip shape, which you specify using the clip parameter, may be a geometric 

shape, a bitmap shape, or a glyph shape. It may not be a picture, text, or layout shape.

■ If you specify a geometric shape, it must be in primitive form—that is, all the stylistic 
information about the shape must be incorporated into the shape’s geometry—
because this function copies only the geometry-related information from the shape 
you specify. It does not copy the information contained in the shape’s style. You can 
convert a shape to its primitive form using the GXPrimitiveShape function, which 
is described in Inside Macintosh: QuickDraw GX Graphics. You can also specify an 
empty or full shape for a clip.

■ If you specify a bitmap shape, it must have a pixel size of 1 and its color profile 
reference must be nil. In the bitmap, pixel values of 0 obscure drawing; pixel values 
of 1 do not restrict visibility. 

■ If you specify a glyph shape, this function uses information from the glyph shape’s 
style object as well as its style list to determine the size, form, and position of the 
glyph outlines; those outlines are then used to clip drawing. The style list cannot have 
nil entries. A style object referenced by the glyph shape cannot be complex—that is, 
it cannot have a cap, join, dash, pattern, text face, font variation, tag list, or any of the 
properties used only by layout shapes.



C H A P T E R  6

Transform Objects

Transform Objects Reference 6-45

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example of the use of this function, see page 6-23.

For information about the clip property of transform objects, see “Clip” on page 6-7.

For information about primitive shapes, geometric shapes and bitmap shapes, see 

Inside Macintosh: QuickDraw GX Graphics. For information about glyph shapes, see Inside 
Macintosh: QuickDraw GX Typography.

To examine the clip shape of a transform object, use the GXGetTransformClip 

function, described in the previous section.

If you want to manipulate the clip property of a transform associated with a specific 

shape, you can use the GXGetShapeClip function, described next, or the 

GXSetShapeClip function, described on page 6-46.

GXGetShapeClip

You can use the GXGetShapeClip function to retrieve the clip property of a transform 

object associated with a specified shape.

gxShape GXGetShapeClip(gxShape source);

source A reference to the shape whose transform object you want to examine the 
clip property of.

function result A reference to a newly created shape encapsulating information copied 
from the clip property of the source shape’s transform object.

Errors
out_of_memory
transform_is_nil
shape_is_nil
shapeFill_not_allowed (debugging version)
colorProfile_must_be_nil (debugging version)
bitmap_pixel_size_must_be_1 (debugging version)
empty_shape_not_allowed (debugging version)
ignorePlatformShape_not_allowed (debugging version)
nil_style_in_glyph_not_allowed (debugging version)
complex_glyph_style_not_allowed (debugging version)
illegal_type_for_shape (debugging version)

Warnings
tags_in_shape_ignored (debugging version)

Notices (debugging version)
clip_already_set



C H A P T E R  6

Transform Objects

6-46 Transform Objects Reference

DESCRIPTION

The GXGetShapeClip function creates a new shape object, copies into it geometry 

information from the clip property of the source shape’s transform object, and returns a 

reference to the new shape as the function result.

Note that the returned shape object is a copy; you can alter it without affecting the clip 

property of the source shape’s transform. If you call this function and alter the clip shape 

it returns, you can then assign that changed clip shape back to the shape’s transform 

object by calling the GXSetShapeClip function.

SPECIAL CONSIDERATIONS

If no error occurs, the GXGetShapeClip function creates a shape object; you are 

responsible for disposing of that object when you no longer need it.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For information about the clip property of transform objects, see “Clip” on page 6-7.

To alter the clip property of a transform object associated with a particular shape, use the 

GXSetShapeClip function, described in the next section. 

If you want to manipulate the clip property of a particular transform object, you can 

use the GXGetTransformClip function, described on page 6-43, or the 

GXSetTransformClip function, described on page 6-44.

GXSetShapeClip

You can use the GXSetShapeClip function to change the clip property of a transform 

object associated with a specified shape.

void GXSetShapeClip(gxShape target, gxShape clip);

target A reference to the shape whose transform object you want to change the 
clip shape of.

clip A reference to a shape object containing the new clip shape information.

Errors
out_of_memory
shape_is_nil



C H A P T E R  6

Transform Objects

Transform Objects Reference 6-47

DESCRIPTION

The GXSetShapeClip function copies information from the shape object referenced by 

the clip parameter into the clip property of the transform object associated with the 

shape referenced by the target parameter. 

Calling this function is almost equivalent to

GXSetTransformClip(GXGetShapeTransform(myShape),theClip);

except that, if the source shape’s transform object is shared with other shapes, 

GXSetShapeClip creates a new copy of the transform object, attaches it to the source 

shape, and changes the clip of the copy. That way, calling this function does not produce 

side effects on other shapes.

You can specify nil for the clip parameter, in which case this function sets the clip 

property of the target shape’s transform to a full clip (no transform clipping takes place). 

The new clip shape, which you specify using the clip parameter, may be a geometric 

shape, a bitmap shape, or a glyph shape. It may not be a picture, text, or layout shape.

■ If you specify a geometric shape, it must be in primitive form—that is, all the stylistic 
information about the shape must be incorporated into the shape’s geometry—
because this function copies only the geometry-related information from the shape 
you specify. It does not copy the information contained in the shape’s style. You can 
convert a shape to its primitive form using the GXPrimitiveShape function, which 
is described in Inside Macintosh: QuickDraw GX Graphics.

■ If you specify a bitmap shape, it must have a pixel size of 1 and its color profile 
reference must be nil. In the bitmap, pixel values of 0 obscure drawing; pixel values 
of 1 do not restrict visibility. 

■ If you specify a glyph shape, this function uses information from the glyph shape’s 
style object as well as its style list to determine the size, form, and position of the 
glyph outlines; those outlines are then used to clip drawing. The style list cannot have 
nil entries. A style object referenced by the glyph shape cannot be complex—that is, 
it cannot have a cap, join, dash, pattern, text face, font variation, tag list, or any of the 
properties used only by layout shapes.



C H A P T E R  6

Transform Objects

6-48 Transform Objects Reference

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To retrieve the clip property of a transform object associated with a particular shape, use 

the GXGetShapeClip function, described in the previous section. 

To assign a clip directly to a transform object, use the GXSetTransformClip function, 

described on page 6-44.

For information about the clip property of transform objects, see “Clip” on page 6-7.

For information about primitive shapes, geometric shapes and bitmap shapes, see 

Inside Macintosh: QuickDraw GX Graphics. For information about glyph shapes, see Inside 
Macintosh: QuickDraw GX Typography.   

Performing Geometric Operations on Transform Clips

QuickDraw GX provides a number of functions that allow you to perform constructive 

geometry operations on the clip shapes of transform objects. Each of these functions 

replaces the clip property of a transform object with the result of an operation combining 

the original clip geometry with the geometry of another shape. The functions are

■ GXUnionTransform, which combines the transform clip with a shape geometry

■ GXIntersectTransform, which intersects the transform clip with a shape geometry 

■ GXDifferenceTransform, which subtracts a shape geometry from the transform 
clip

■ GXReverseDifferenceTransform, which subtracts the transform clip from a 
shape geometry

■ The GXExcludeTransform, which performs an exclusive-OR operation with the 
transform clip and a shape geometry 

Errors
out_of_memory
transform_is_nil
shape_is_nil
shapeFill_not_allowed (debugging version)
colorProfile_must_be_nil (debugging version)
bitmap_pixel_size_must_be_1 (debugging version)
empty_shape_not_allowed (debugging version)
ignorePlatformShape_not_allowed (debugging version)
nil_style_in_glyph_not_allowed (debugging version)
complex_glyph_style_not_allowed (debugging version)
illegal_type_for_shape (debugging version)

Warnings
tags_in_shape_ignored (debugging version)

Notices (debugging version)
clip_already_set



C H A P T E R  6

Transform Objects

Transform Objects Reference 6-49

GXUnionTransform

You can use the GXUnionTransform function to calculate the union of the geometry of 

the clip shape in a transform object with the geometry of a specified shape object, and 

then replace the transform’s clip geometry with the resulting geometry.

void GXUnionTransform(gxTransform target, gxShape operand);

target A reference to the transform object containing the clip property you want 
to modify. 

operand A reference to the shape containing the geometry you want to combine 
with the target transform’s clip. 

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example of the use of this function, see page 6-23.

For an illustration of the effects of the GXUnionTransform function on the transform 

clip, see Figure 6-8 on page 6-22. For a general description of constructive geometry 

operations, see the geometric operations chapter of Inside Macintosh: QuickDraw GX 
Graphics.

Errors
out_of_memory
transform_is_nil
shape_is_nil
number_of_contours_exceeds_implementation_limit
number_of_points_exceeds_implementation_limit
size_of_path_exceeds_implementation_limit
size_of_polygon_exceeds_implementation_limit
shapeFill_not_allowed (debugging version)
shape_access_not_allowed (debugging version)
clip_to_frame_shape_unimplemented (debugging version)
shape_may_not_be_a_bitmap (debugging version)
shape_may_not_be_a_picture (debugging version)

Warnings
character_substitution_took_place
unable_to_traverse_open_contour_that_starts_or_ends_off_the_curve

(debugging version)



C H A P T E R  6

Transform Objects

6-50 Transform Objects Reference

GXIntersectTransform

You can use the GXIntersectTransform function to calculate the intersection of the 

geometry of the clip shape in a transform object with the geometry of a specified shape 

object, and then replace the transform’s clip geometry with the resulting geometry.

void GXIntersectTransform(gxTransform target, gxShape operand);

target A reference to the transform object containing the clip property you want 
to modify. 

operand A reference to the shape containing the geometry you want to intersect 
with the target transform’s clip.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an illustration of the effects of the GXIntersectTransform function on the 

transform clip, see Figure 6-8 on page 6-22. For a general description of constructive 

geometry operations, see the geometric operations chapter of Inside Macintosh: 
QuickDraw GX Graphics.

Errors
out_of_memory
transform_is_nil
shape_is_nil
number_of_contours_exceeds_implementation_limit
number_of_points_exceeds_implementation_limit
size_of_path_exceeds_implementation_limit
size_of_polygon_exceeds_implementation_limit
shapeFill_not_allowed (debugging version)
shape_access_not_allowed (debugging version)
clip_to_frame_shape_unimplemented (debugging version)
shape_may_not_be_a_bitmap (debugging version)
shape_may_not_be_a_picture (debugging version)

Warnings
character_substitution_took_place
unable_to_traverse_open_contour_that_starts_or_ends_off_the_curve

(debugging version)



C H A P T E R  6

Transform Objects

Transform Objects Reference 6-51

GXDifferenceTransform

You can use the GXDifferenceTransform function to subtract the geometry of a 

specified shape object from the geometry of the clip shape in a transform object, and then 

replace the transform’s clip property with the resulting geometry.

void GXDifferenceTransform(gxTransform target, gxShape operand);

target A reference to the transform object containing the clip property you want 
to modify.

operand A reference to the shape containing the geometry you want to subtract 
from the target transform’s clip. 

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an illustration of the effects of the GXDifferenceTransform function on the 

transform clip, see Figure 6-8 on page 6-22. For a general description of constructive 

geometry operations, see the geometric operations chapter of Inside Macintosh: 
QuickDraw GX Graphics.

Errors
out_of_memory
transform_is_nil
shape_is_nil
number_of_contours_exceeds_implementation_limit
number_of_points_exceeds_implementation_limit
size_of_path_exceeds_implementation_limit
size_of_polygon_exceeds_implementation_limit
shapeFill_not_allowed (debugging version)
shape_access_not_allowed (debugging version)
clip_to_frame_shape_unimplemented (debugging version)
shape_may_not_be_a_bitmap (debugging version)
shape_may_not_be_a_picture (debugging version)

Warnings
character_substitution_took_place
unable_to_traverse_open_contour_that_starts_or_ends_off_the_curve

(debugging version)



C H A P T E R  6

Transform Objects

6-52 Transform Objects Reference

GXReverseDifferenceTransform

You can use the GXReverseDifferenceTransform function to subtract the geometry 

of the clip shape in a transform object from the geometry of a specified shape object, and 

then replace the transform’s clip property with the resulting geometry.

void GXReverseDifferenceTransform(gxTransform target, 

gxShape operand);

target A reference to the transform object containing the clip property you want 
to modify.

operand A reference to the shape containing the geometry from which you want to 
subtract the target transform’s clip. 

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an illustration of the effects of the GXReverseDifferenceTransform function on 

the transform clip, see Figure 6-8 on page 6-22. For a general description of constructive 

geometry operations, see the geometric operations chapter of Inside Macintosh: 
QuickDraw GX Graphics.

Errors
out_of_memory
transform_is_nil
shape_is_nil
number_of_contours_exceeds_implementation_limit
number_of_points_exceeds_implementation_limit
size_of_path_exceeds_implementation_limit
size_of_polygon_exceeds_implementation_limit
shapeFill_not_allowed (debugging version)
shape_access_not_allowed (debugging version)
clip_to_frame_shape_unimplemented (debugging version)
shape_may_not_be_a_bitmap (debugging version)
shape_may_not_be_a_picture (debugging version)

Warnings
character_substitution_took_place
unable_to_traverse_open_contour_that_starts_or_ends_off_the_curve

(debugging version)



C H A P T E R  6

Transform Objects

Transform Objects Reference 6-53

GXExcludeTransform

You can use the GXExcludeTransform function to perform an exclusive-OR operation 

between the geometry of the clip shape in a transform object and the geometry of a 

specified shape object, and then replace the transform’s clip property with the resulting 

geometry.

void GXExcludeTransform(gxTransform target, gxShape operand);

target A reference to the transform object containing the clip property you want 
to modify. 

operand A reference to the shape containing the geometry you want to combine 
with the target transform’s clip in an exclusive-OR operation.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an illustration of the effects of the GXExcludeTransform function on the transform 

clip, see Figure 6-8 on page 6-22. For a general description of constructive geometry 

operations, see the geometric operations chapter of Inside Macintosh: QuickDraw GX 
Graphics. 

Getting and Setting the Mapping

This section describes the functions you can use to manipulate a transform object’s 

mapping matrix.

Errors
out_of_memory
transform_is_nil
shape_is_nil
number_of_contours_exceeds_implementation_limit
number_of_points_exceeds_implementation_limit
size_of_path_exceeds_implementation_limit
size_of_polygon_exceeds_implementation_limit
shapeFill_not_allowed (debugging version)
shape_access_not_allowed (debugging version)
clip_to_frame_shape_unimplemented (debugging version)
shape_may_not_be_a_bitmap (debugging version)
shape_may_not_be_a_picture (debugging version)

Warnings
character_substitution_took_place
unable_to_traverse_open_contour_that_starts_or_ends_off_the_curve

(debugging version)



C H A P T E R  6

Transform Objects

6-54 Transform Objects Reference

GXGetTransformMapping

You can use the GXGetTransformMapping function to retrieve the mapping property 

of a transform object.

gxMapping *GXGetTransformMapping(gxTransform source, 

gxMapping *map);

source A reference to the transform object whose mapping you want to examine.

map A pointer to a mapping structure. On return, the structure contains the 
mapping matrix of the source transform.

function result A pointer to the mapping property of the source transform. (This value is 
the same as the value returned in the map parameter.)

DESCRIPTION

The GXGetTransformMapping function copies the mapping matrix information from 

the mapping property of the source transform object into the mapping structure pointed 

to by the map parameter. The function also returns as its function result a pointer to this 

mapping structure.

Note that the returned mapping is a copy; you can alter it without affecting the mapping 

property of the source transform. If you call this function and alter the mapping that it 

returns, you can then assign that changed mapping back to the transform object by 

calling the GXSetTransformMapping function.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For information about the mapping property of the transform object, see the section 

“Mapping” beginning on page 6-10. For information about mapping matrices in general, 

see the mathematics chapter of Inside Macintosh: QuickDraw GX Environment and Utilities.

Errors
out_of_memory
transform_is_nil
parameter_is_nil (debugging version)



C H A P T E R  6

Transform Objects

Transform Objects Reference 6-55

GXSetTransformMapping

You can use the GXSetTransformMapping function to assign a mapping to a 

transform object.

void GXSetTransformMapping(gxTransform target, 

const gxMapping *map);

target A reference to the transform object you want to assign the mapping to.

map A pointer to a mapping structure containing the matrix you want to 
assign as the mapping property of the target transform.

DESCRIPTION

The GXSetTransformMapping function copies information from the mapping 

structure pointed to by the map parameter into the mapping property of the transform 

object referenced by the target parameter. 

You can specify nil for the map parameter, in which case this function sets the mapping 

property of the target transform to the identity mapping. (An identity mapping has no 

transforming effect on shape geometries that it is applied to.)

SPECIAL CONSIDERATIONS

You may provide any values for the elements of the mapping structure pointed to by the 

map parameter, with one exception: the lower-right element of this matrix (element 

[2][2]) may not be 0.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For information about the mapping property of the transform object, see the section 

“Mapping” beginning on page 6-10. For information about mapping matrices in general, 

see the mathematics chapter of Inside Macintosh: QuickDraw GX Environment and Utilities. 

Errors
out_of_memory
transform_is_nil

Notices (debugging version)
mapping_unaffected



C H A P T E R  6

Transform Objects

6-56 Transform Objects Reference

GXGetShapeMapping

You can use the GXGetShapeMapping function to retrieve the mapping property of the 

transform object associated with a specified shape.

gxMapping *GXGetShapeMapping(gxShape source, gxMapping *map);

source A reference to the shape whose transform object contains the mapping 
property you want to examine.

map A pointer to the mapping structure. On return, the structure contains the 
mapping matrix of the source shape’s transform.

function result A pointer to the mapping property of the source shape’s transform. (This 
value is the same as the value returned in the map parameter.)

DESCRIPTION

The GXGetShapeMapping function copies the mapping matrix information from the 

mapping property of the source shape’s transform object into the mapping structure 

pointed to by the map parameter. The function also returns as its function result a pointer 

to this mapping structure.

Note that the returned mapping is a copy; you can alter it without affecting the mapping 

property of the source shape’s transform. If you call this function and alter the mapping 

that it returns, you can then assign that changed mapping back to the shape’s transform 

object by calling the GXSetShapeMapping function.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For information about the mapping property of the transform object, see the section 

“Mapping” beginning on page 6-10. For information about mapping matrices in general, 

see the mathematics chapter of Inside Macintosh: QuickDraw GX Environment and Utilities. 

Errors
out_of_memory
shape_is_nil
parameter_is_nil (debugging version)



C H A P T E R  6

Transform Objects

Transform Objects Reference 6-57

GXSetShapeMapping

You can use the GXSetShapeMapping function to assign a new mapping to the 

transform object associated with a specified shape.

void GXSetShapeMapping(gxShape target, const gxMapping *map);

target A reference to the shape whose transform you want to assign the 
mapping to.

map A pointer to a mapping structure containing the matrix you want to 
assign as the mapping property of the target shape’s transform.

DESCRIPTION

The GXSetShapeMapping function copies information from the mapping structure 

pointed to by the map parameter into the mapping property of the transform object 

associated with the shape referenced by the target parameter. 

Calling this function is almost equivalent to

GXSetTransformMapping(GXGetShapeTransform(myShape),theMapping);

except that, if the source shape’s transform object is shared with other shapes, 

GXSetShapeMapping creates a new copy of the transform object, attaches it to the 

source shape, and changes the mapping of the copy. That way, calling this function does 

not produce side effects on other shapes.

You can specify nil for the map parameter, in which case this function sets the mapping 

property of the target shape’s transform to the identity matrix. (An identity mapping has 

no transforming effect on shape geometries that it is applied to.)

SPECIAL CONSIDERATIONS

You can provide any values for the elements of the mapping structure pointed to by the 

map parameter, with one exception: the lower-right element of this matrix (element 

[2][2]) may not be 0.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
shape_is_nil

Notices (debugging version)
mapping_unaffected



C H A P T E R  6

Transform Objects

6-58 Transform Objects Reference

SEE ALSO

To assign a mapping directly to a transform object, use the GXSetTransformMapping 

function, described on page 6-55. 

For information about the mapping property of the transform object, see the section 

“Mapping” beginning on page 6-10. For information about mapping matrices in general, 

see the mathematics chapter of Inside Macintosh: QuickDraw GX Environment and Utilities. 

Transforming Shapes by Modifying Transform Mappings

The mapping property of transform objects allows you to perform sophisticated 

transformations to your shape’s geometries. To get and set the mapping property, use the 

functions described in the section “Getting and Setting the Mapping” beginning on 

page 6-53.

The functions described in this section perform the calculations necessary to achieve 

common matrix transformations, without you having to modify the mapping matrix 

directly:

■ GXMoveTransform alters a transform’s mapping to move a shape by a specified 
horizontal and vertical offset.

■ GXMoveTransformTo alters a transform’s mapping to move a shape to a specified 
position.

■ GXScaleTransform alters a transform’s mapping to scale a shape by specified 
horizontal and vertical factors around a specified origin.

■ GXRotateTransform alters a transform’s mapping to rotate a shape by a specified 
number of degrees around a specified origin.

■ GXSkewTransform alters a transform’s mapping to skew a shape by specified 
horizontal and vertical factors around a specified origin.

■ GXMapTransform concatenates (using matrix multiplication) a specified mapping 
matrix to the mapping matrix contained in a transform’s mapping property.

QuickDraw GX provides a corresponding set of functions that you can use to apply 

these common transformations directly to the geometry of a shape object, rather than to 

its transform mapping. They are described in the section “Transforming Shapes by 

Modifying Shape Geometries” beginning on page 6-65.

GXMoveTransform

You can use the GXMoveTransform function to alter the mapping property of a 

transform object so that it moves its associated shape by a specified horizontal and 

vertical distance.

void GXMoveTransform(gxTransform target, Fixed deltaX, 

Fixed deltaY);



C H A P T E R  6

Transform Objects

Transform Objects Reference 6-59

target A reference to the transform object whose mapping property you want to 
alter.

deltaX The horizontal distance.

deltaY The vertical distance.

DESCRIPTION

The GXMoveTransform function calculates a new mapping matrix for the transform 

object referenced by the target parameter. When applied to a shape, the new matrix 

performs the same mapping transformations on the shape as the original matrix, except 

that the new matrix also moves the shape horizontally by the distance specified in the 

deltaX parameter and vertically by the distance specified in the deltaY parameter.

The distances are specified in geometry space. 

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For information about mapping matrices in general, see the mathematics chapter of 

Inside Macintosh: QuickDraw GX Environment and Utilities.

To move a shape by altering its geometry, use the GXMoveShape function, described on 

page 6-66.

GXMoveTransformTo

You can use the GXMoveTransformTo function to alter the mapping property of a 

transform object so that it moves its associated shape to a specified position.

void GXMoveTransformTo(gxTransform target, Fixed x, Fixed y);

target A reference to the transform object whose mapping property you want to 
alter.

x The horizontal coordinate of the desired position.

y The vertical coordinate of the desired position.

Errors
out_of_memory
transform_is_nil

Warnings
move_transform_out_of_range

Notices (debugging version)
mapping_unaffected



C H A P T E R  6

Transform Objects

6-60 Transform Objects Reference

DESCRIPTION

The GXMoveTransformTo function calculates a new mapping matrix for the transform 

object referenced by the target parameter. When applied to a shape, the new mapping 

matrix performs the same mapping transformations on the shape as the original matrix, 

except that the new matrix moves the shape to the position specified by the x and y 

parameters.

The horizontal and vertical coordinates are specified in geometry space. However, the 

position they specify relates only to the translation values in the mapping itself; the 

values in a shape’s geometry are added to these values to determine the shape’s final 

position in local space.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example of the use of this function, see page 6-24.

For information about mapping matrices in general, see the mathematics chapter of 

Inside Macintosh: QuickDraw GX Environment and Utilities. 

To move a shape to a specified position by altering its geometry, use the 

GXMoveShapeTo function, described on page 6-67.

GXScaleTransform

You can use the GXScaleTransform function to alter the mapping property of a 

transform object so that it scales its associated shape by specified horizontal and vertical 

factors about a specified origin.

void GXScaleTransform(gxTransform target, Fixed hScale, 

Fixed vScale, Fixed xOffset, Fixed yOffset);

Errors
out_of_memory
transform_is_nil

Warnings
move_transform_out_of_range

Notices (debugging version)
mapping_unaffected



C H A P T E R  6

Transform Objects

Transform Objects Reference 6-61

target A reference to the transform object whose mapping property you want to 
alter.

hScale The horizontal scaling factor.

vScale The vertical scaling factor.

xOffset The horizontal coordinate of the origin to scale about.

yOffset The vertical coordinate of the origin to scale about.

DESCRIPTION

The GXScaleTransform function calculates a new mapping matrix for the transform 

object referenced by the target parameter. When applied to a shape, the new mapping 

matrix performs the same mapping transformations on the shape as the original matrix, 

but the new matrix also scales the shape horizontally by the factor indicated by the 

hScale parameter and vertically by the factor indicated by the vScale parameter. The 

new matrix scales the shape about the origin specified by the xOffset and yOffset 

parameters. (The origin is the point whose coordinates do not change as a result of the 

scaling operation.) 

A value of ff(1) for the hScale or vScale parameter indicates no change of scale in 

the corresponding direction. 

The coordinates of the origin are specified in local space. 

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For examples of the use of this function, see page 6-17 and Listing 6-3 on page 6-25.

For information about mapping matrices in general, see the mathematics chapter of 

Inside Macintosh: QuickDraw GX Environment and Utilities.

To scale a shape by altering its geometry, use the GXScaleShape function, described on 

page 6-68.

Errors
out_of_memory
transform_is_nil

Warnings
scale_transform_out_of_range

Notices (debugging version)
mapping_unaffected



C H A P T E R  6

Transform Objects

6-62 Transform Objects Reference

GXRotateTransform

You can use the GXRotateTransform function to alter the mapping property of a 

transform object so that it rotates its associated shape a specified number of degrees 

around a specified origin.

void GXRotateTransform(gxTransform target, Fixed degrees, 

Fixed xOffset, Fixed yOffset);

target A reference to the transform object whose mapping property you want to 
alter.

degrees The amount to rotate.

xOffset The horizontal coordinate of the origin to rotate around.

yOffset The vertical coordinate of the origin to rotate around.

DESCRIPTION

The GXRotateTransform function calculates a new mapping matrix for the transform 

object referenced by the target parameter. When applied to a shape, the new mapping 

matrix performs the same mapping transformations on the shape as the original matrix, 

but the new matrix also rotates the shape by the number of degrees specified in the 

degrees parameter around the origin specified by the xOffset and yOffset 

parameters.

The coordinates of the origin are specified in local space. 

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example of the use of this function, see Listing 6-3 on page 6-25.

For information about mapping matrices in general, see the mathematics chapter of 

Inside Macintosh: QuickDraw GX Environment and Utilities.

To rotate a shape by altering its geometry, use the GXRotateShape function, described 

on page 6-70.

Errors
out_of_memory
transform_is_nil

Warnings
rotate_transform_out_of_range

Notices (debugging version)
mapping_unaffected



C H A P T E R  6

Transform Objects

Transform Objects Reference 6-63

GXSkewTransform

You can use the GXSkewTransform function to alter the mapping property of a 

transform object so that it skews its associated shape about a specified origin by specified 

horizontal and vertical factors.

void GXSkewTransform(gxTransform target, Fixed xSkew, 

Fixed ySkew, Fixed xOffset, Fixed yOffset);

target A reference to the transform object whose mapping property you want to 
alter.

hSkew The amount to skew in the horizontal direction.

vSkew The amount to skew in the vertical direction.

xOffset The horizontal coordinate of the origin to skew about.

yOffset The vertical coordinate of the origin to skew about.

DESCRIPTION

The GXSkewTransform function calculates a new mapping matrix for the transform 

object referenced by the target parameter. When applied to a shape, the new mapping 

matrix performs the same mapping transformations on the shape as the original matrix, 

but the new matrix also skews the shape in the horizontal direction by the factor 

indicated by the hSkew parameter, and in the vertical direction by the factor indicated by 

the vSkew parameter. The new matrix skews the shape about the origin specified by the 

xOffset and yOffset parameters. (The origin is the point whose coordinates do not 

change as a result of the scaling operation.)

The skew factors are expressed as a proportional amount of shift in one direction with 

distance in the perpendicular direction. A value of 0 for the hSkew or vSkew parameter 

indicates no skewing in the corresponding direction. 

The coordinates of the origin are specified in local space. 

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
transform_is_nil

Warnings
skew_transform_out_of_range

Notices (debugging version)
mapping_unaffected



C H A P T E R  6

Transform Objects

6-64 Transform Objects Reference

SEE ALSO

For an example of the use of this function, see Listing 6-3 on page 6-25.

For information about mapping matrices in general, see the mathematics chapter of 

Inside Macintosh: QuickDraw GX Environment and Utilities.

To skew a shape by altering its geometry, use the GXSkewShape function, described on 

page 6-71. 

GXMapTransform

You can use the GXMapTransform function to apply a separate mapping matrix to the 

mapping of a transform object, so that its associated shape is additionally transformed 

according to the specifications of the matrix.

void GXMapTransform(gxTransform target, const gxMapping *map);

target A reference to the transform object whose mapping property you want to 
alter.

map A pointer to a mapping structure containing the information you want to 
incorporate into the target transform’s mapping.

DESCRIPTION

The GXMapTransform function calculates a new mapping matrix for the transform 

object referenced by the target parameter. It does so by concatenating the mappings 

(performing matrix multiplication). When applied to a shape, the transform’s new 

mapping matrix performs the same transformations as the transform’s original matrix as 

well as the transformations indicated by the matrix pointed to by the map parameter.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
transform_is_nil

Warnings
map_transform_out_of_range

Notices (debugging version)
mapping_unaffected



C H A P T E R  6

Transform Objects

Transform Objects Reference 6-65

SEE ALSO

For information about mapping matrices in general, see the mathematics chapter of 

Inside Macintosh: QuickDraw GX Environment and Utilities.

To use a mapping matrix to alter a shape’s geometry, use the GXMapShape function, 

described on page 6-72.   

Transforming Shapes by Modifying Shape Geometries

The functions described in this section perform the calculations necessary to achieve 

common matrix transformations of shapes. They are equivalent to the functions that 

modify transform mappings as described in the previous section, “Transforming Shapes 

by Modifying Transform Mappings” beginning on page 6-58; however, the functions in 

this section can perform their transformations by directly modifying a shape’s geometry 

rather than altering its transform’s mapping:

■ GXMoveShape alters a shape’s geometry to move it by a specified horizontal and 
vertical offset.

■ GXMoveShapeTo alters a shape’s geometry to move it to a specified position.

■ GXScaleShape alters a shape’s geometry to scale it by specified horizontal and 
vertical factors around a specified origin.

■ GXRotateShape alters a shape’s geometry to rotate it by a specified number of 
degrees around a specified origin.

■ GXSkewShape alters a shape’s geometry to skew it by specified horizontal and 
vertical factors around a specified origin.

■ GXMapShape alters a shape’s geometry by applying a specified mapping matrix to it.

(Note also that the function GXSetShapeBounds works in the same manner as the other 

functions listed here; it modifies a shape’s geometry to effect a scaling operation. 

However, GXSetShapeBounds is described in the geometric operations chapter of 

Inside Macintosh: QuickDraw GX Graphics.)

When applied to a shape object, each of these functions performs its transformation in 

one of two ways:

■ If the shape’s gxMapTransformShape attribute is cleared, these functions apply 
their mapping operations directly to the points of the shape object’s geometry. In this 
case, the shape’s transform mapping is unaffected. 

■ If the shape’s gxMapTransformShape attribute is set, these functions apply their 
mapping operations by altering the mapping property of the shape’s transform object, 
in the manner of the transform-altering functions described in the previous section. In 
this case, the shape’s geometry is unaffected.



C H A P T E R  6

Transform Objects

6-66 Transform Objects Reference

GXMoveShape

You can use the GXMoveShape function to move a shape by a specified horizontal and 

vertical distance.

void GXMoveShape(gxShape target, Fixed deltaX, Fixed deltaY);

target A reference to the shape you want to move.

deltaX The horizontal distance to move the shape.

deltaY The vertical distance to move the shape.

DESCRIPTION

The GXMoveShape function changes the position of the shape referenced by the target 

parameter horizontally by the distance specified in the deltaX parameter and vertically 

by the distance specified in the deltaY parameter.

This function moves the target shape by the specified offsets in one of two ways:

■ If the target shape’s gxMapTransformShape attribute is cleared, the function 
recalculates the control points of the shape’s geometry to effect the move.

■ If the target shape’s gxMapTransformShape attribute is set, this function is identical 
to the GXMoveTransform function; it recalculates the mapping matrix of the target 
shape’s transform object to effect the move. If the target shape shares this transform 
object with other shapes, QuickDraw GX makes a copy of the transform object, 
associates the copy with the target shape, and makes changes to the copy.

The target shape can be any shape type. However, if the target shape is an empty shape, 

a full shape, or a picture shape, this function has no effect unless the shape’s 

gxMapTransformShape attribute is set. Also, if the shape is a text, glyph, or layout 

shape and it contains no characters, this function has no effect.

The distances are specified in geometry coordinates. 

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
shape_is_nil
shape_access_not_allowed (debugging version)

Warnings
move_shape_out_of_range
graphic_type_cannot_be_moved

Notices (debugging version)
mapping_unaffected



C H A P T E R  6

Transform Objects

Transform Objects Reference 6-67

SEE ALSO

To move a shape by altering the mapping property of its transform object, you can also 

use the GXMoveTransform function, described on page 6-58.

GXMoveShapeTo

You can use the GXMoveShapeTo function to move a shape to a specified position. 

void GXMoveShapeTo(gxShape target, Fixed x, Fixed y);

target A reference to the shape you want to move.

x The horizontal coordinate of the position to move the shape to.

y The vertical coordinate of the position to move the shape to.

DESCRIPTION

The GXMoveShapeTo function moves the shape referenced by the target parameter to 

the position specified by the x and y parameters. The position corresponds to a specific 

point in the shape’s geometry:

■ For point, line, and curve shapes, the point (x, y) corresponds to the first point in the 
shape’s geometry.

■ For rectangle, polygon, path, and bitmap shapes, the point (x, y) corresponds to the 
top-left corner of the bounding rectangle.

■ For text, glyph, and layout shapes, the point (x, y) corresponds to the origin of the first 
glyph. If the shape contains no characters, this function has no effect.

■ Other shapes (empty shapes, full shapes, and pictures) cannot be moved.

This function relocates the target shape in one of two ways:

■ If the target shape’s gxMapTransformShape attribute is cleared, the function 
recalculates the control points of the shape’s geometry to effect the move.

■ If the target shape’s gxMapTransformShape attribute is set, this function is identical 
to the GXMoveTransformTo function; it recalculates the mapping matrix of the target 
shape’s transform object to effect the move. If the target shape shares this transform 
object with other shapes, QuickDraw GX makes a copy of the transform object, 
associates the copy with the target shape, and makes changes to the copy.

The target shape can be any shape type. However, if the target shape is an empty shape, 

a full shape, or a picture shape, this function has no effect unless the shape’s 

gxMapTransformShape attribute is set.

The horizontal and vertical coordinates are specified in geometry space. 



C H A P T E R  6

Transform Objects

6-68 Transform Objects Reference

SPECIAL CONSIDERATIONS

This function does not necessarily move the target shape to the position in local 

space specified by the x and y parameters. Furthermore, if the shape’s 

gxMapTransformShape attribute is set, this function does not necessarily move 

the shape to the same position it would if the gxMapTransformShape attribute 

were cleared:

■ With the attribute cleared, this function modifies shape geometry so that, in geometry 
space, the shape is at the position specified in the x and y parameters. However, the 
function ignores the transform mapping, so the shape’s resultant position in local 
space will be at (x, y) only if the transform mapping specifies no translation.

■ With the attribute set, this function ignores shape geometry and sets the translation 
values in the shape’s transform mapping to reflect the x and y parameters. Thus the 
shape’s resultant position in local space will be at (x, y) only if its position in 
geometry space is at (0.0, 0.0).

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example of the use of this function, see page 6-27.

To move a shape to a specified position by altering the mapping property of its 

transform object, you can also use the GXMoveTransformTo function, described on 

page 6-59. 

GXScaleShape

You can use the GXScaleShape function to scale a shape by specified horizontal and 

vertical factors about a specified origin.

void GXScaleShape(gxShape target, Fixed hScale, Fixed vScale,

Fixed xOffset, Fixed yOffset);

target A reference to the shape you want to scale.

hScale The horizontal scaling factor.

Errors
out_of_memory
shape_is_nil
shape_access_not_allowed (debugging version)

Warnings
move_shape_out_of_range
graphic_type_cannot_be_moved

Notices (debugging version)
mapping_unaffected



C H A P T E R  6

Transform Objects

Transform Objects Reference 6-69

vScale The vertical scaling factor.

xOffset The horizontal coordinate of the origin to scale the shape about.

yOffset The vertical coordinate of the origin to scale the shape about.

DESCRIPTION

The GXScaleShape function scales the shape referenced by the target parameter 

horizontally by the factor specified in the hScale parameter and vertically by the factor 

specified in the vScale parameter. The scaling is centered about the origin specified in 

the xOffset and yOffset parameters. (The origin is the point whose coordinates do 

not change as a result of the scaling operation.) 

This function scales the target shape in one of two ways:

■ If the target shape’s gxMapTransformShape attribute is cleared, the function 
recalculates the control points of the shape’s geometry to effect the scaling.

■ If the target shape’s gxMapTransformShape attribute is set, this function is identical 
to the GXScaleTransform function; it recalculates the mapping matrix of the target 
shape’s transform object to effect the scaling. If the target shape shares this transform 
object with other shapes, QuickDraw GX makes a copy of the transform object, 
associates the copy with the target shape, and makes changes to the copy.

The target shape can be any shape type. However, if the target shape is an empty shape, 

a full shape, or a picture shape, this function has no effect unless the shape’s 

gxMapTransformShape attribute is set.

The coordinates of the origin are specified in geometry space. 

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For examples of the use of this function, see Listing 6-4 on page 6-25 and Listing 6-5 on 

page 6-27.

To scale a shape by altering the mapping property of its transform object, you can also 

use the GXScaleTransform function, described on page 6-60.

Errors
out_of_memory
shape_is_nil
shape_access_not_allowed (debugging version)

Warnings
scale_shape_out_of_range
graphic_type_cannot_be_moved

Notices (debugging version)
mapping_unaffected



C H A P T E R  6

Transform Objects

6-70 Transform Objects Reference

GXRotateShape

You can use the GXRotateShape function to rotate a shape around a specified origin.

void GXRotateShape(gxShape target, Fixed degrees, 

 Fixed xOffset, Fixed yOffset);

target A reference to the shape you want to rotate.

degrees The number of degrees to rotate the shape.

xOffset The horizontal coordinate of the origin to rotate the shape around.

yOffset The vertical coordinate of the origin to rotate the shape around.

DESCRIPTION

The GXRotateShape function rotates the shape referenced by the target parameter by 

the number of degrees specified in the degrees parameter around the origin specified 

by the xOffset and yOffset parameters. 

This function rotates the target shape in one of two ways:

■ If the target shape’s gxMapTransformShape attribute is cleared, the function 
recalculates the control points of the shape’s geometry to effect the rotation.

■ If the target shape’s gxMapTransformShape attribute is set, this function is identical 
to the GXRotateTransform function; it recalculates the mapping matrix of the target 
shape’s transform object to effect the rotation. If the target shape shares this transform 
object with other shapes, QuickDraw GX makes a copy of the transform object, 
associates the copy with the target shape, and makes changes to the copy.

The target shape can be any shape type. However, if the target shape is an empty shape, 

a full shape, or a picture shape, this function has no effect unless the shape’s 

gxMapTransformShape attribute is set.

The coordinates of the origin are specified in geometry space. 

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
shape_is_nil
shape_access_not_allowed (debugging version)

Warnings
rotate_shape_out_of_range
graphic_type_cannot_be_moved

Notices (debugging version)
mapping_unaffected



C H A P T E R  6

Transform Objects

Transform Objects Reference 6-71

SEE ALSO

For an example of the use of this function, see Listing 6-4 on page 6-25.

To rotate a shape by altering the mapping property of its transform object, you can also 

use the GXRotateTransform function, described on page 6-62.

GXSkewShape

You can use the GXSkewShape function to skew a shape about a specified origin by 

specified horizontal and vertical factors.

void GXSkewShape(gxShape target, Fixed xSkew, Fixed ySkew, 

Fixed xOffset, Fixed yOffset);

target A reference to the shape you want to skew.

hSkew The amount to skew the shape horizontally.

vSkew The amount to skew the shape vertically.

xOffset The horizontal coordinate of the origin to skew the shape about.

yOffset The vertical coordinate of the origin to skew the shape about.

DESCRIPTION

The GXSkewShape function skews the shape referenced by the target parameter 

horizontally by the factor specified in the hSkew parameter and vertically by the factor 

specified in the vSkew parameter. The skewing is centered about the origin specified in 

the xOffset and yOffset parameters. (The origin is the point whose coordinates do 

not change as a result of the skewing operation.) 

The skew factors are expressed as a proportional amount of shift in one direction with 

distance in the perpendicular direction. A value of 0 for the hSkew or vSkew parameter 

indicates no skewing in the corresponding direction. 

This function skews the target shape in one of two ways:

■ If the target shape’s gxMapTransformShape attribute is cleared, the function 
recalculates the control points of the shape’s geometry to effect the skewing.

■ If the target shape’s gxMapTransformShape attribute is set, this function is identical 
to the GXSkewTransform function; it recalculates the mapping matrix of the target 
shape’s transform object to effect the skewing. If the target shape shares this transform 
object with other shapes, QuickDraw GX makes a copy of the transform object, 
associates the copy with the target shape, and makes changes to the copy.

The target shape can be any shape type. However, if the target shape is an empty shape, 

a full shape, or a picture shape, this function has no effect unless the shape’s 

gxMapTransformShape attribute is set.

The coordinates of the origin are specified in geometry space. 



C H A P T E R  6

Transform Objects

6-72 Transform Objects Reference

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For examples of the use of this function, see Listing 6-4 on page 6-25 and Listing 6-5 on 

page 6-27.

To skew a shape by altering the mapping property of its transform object, you can also 

use the GXSkewTransform function, described on page 6-63.

GXMapShape

You can use the GXMapShape function to apply an arbitrary mapping matrix to a shape.

void GXMapShape(gxShape target, const gxMapping *map);

target A reference to the shape you want to apply the mapping to.

map A pointer to a mapping structure containing the matrix you want to apply 
to the target shape.

DESCRIPTION

The GXMapShape function applies to the target shape the mapping transformations 

represented by the mapping matrix pointed to by the map parameter.

This function applies the mapping in one of two ways:

■ If the target shape’s gxMapTransformShape attribute is cleared, the function applies 
the mapping matrix directly to the points of the shape’s geometry.

■ If the target shape’s gxMapTransformShape attribute is set, this function is identical 
to the GXMapTransform function; it concatenates the target shape’s transform 
mapping with the mapping matrix pointed to by the map parameter. If the target 
shape shares its transform object with other shapes, QuickDraw GX makes a copy of 
the transform object, associates the copy with the target shape, and makes changes to 
the copy.

Errors
out_of_memory
shape_is_nil
shape_access_not_allowed (debugging version)

Warnings
skew_shape_out_of_range
graphic_type_cannot_be_moved

Notices (debugging version)
mapping_unaffected



C H A P T E R  6

Transform Objects

Transform Objects Reference 6-73

The target shape can be any shape type. However, if the target shape is an empty 

shape, a full shape, or a picture shape, this function has no effect unless the shape’s 

gxMapTransformShape attribute is set.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To apply a mapping matrix to the mapping property of a transform object, you can also 

use the GXMapTransform function, described on page 6-64. 

Getting and Setting the View Port List

This section describes the functions you can use to manipulate the view port list 

property of a transform object. For information about the view port list property, 

see “View Port List” on page 6-11. For general information about view ports, see the 

chapter “View-Related Objects” in this book.

GXGetTransformViewPorts

You can use the GXGetTransformViewPorts function to retrieve the view port list of a 

transform object.

long GXGetTransformViewPorts(gxTransform source, 

gxViewPort list[]);

source A reference to the transform object whose view port list you want to 
examine.

list An array of view port references. On return, the array contains the view 
port list of the source transform. 

function result The number of view ports in the source transform’s view port list.

Errors
out_of_memory
shape_is_nil
shape_access_not_allowed (debugging version)

Warnings
map_shape_out_of_range
graphic_type_cannot_be_moved

Notices (debugging version)
mapping_unaffected



C H A P T E R  6

Transform Objects

6-74 Transform Objects Reference

DESCRIPTION

The GXGetTransformViewPorts function copies the list of view port references in the 

source transform into the array referenced by the list parameter, and returns as the 

function result the total number of view port references in the list.

If you pass nil for the list parameter, the function returns the number of view ports as 

the function result, but does not return the references to the view ports. Thus you 

normally call this function twice: once to determine the size of view port array to 

allocate, and once to retrieve the array itself.

SPECIAL CONSIDERATIONS

This function returns all view port references in the source transform’s view port list, 

including any invalid ones (for view ports that have been disposed of).

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example of the use of this function, see Listing 6-6 on page 6-29.

To assign a view port list to a transform object, use the GXSetTransformViewPorts 

function, described next. 

To retrieve the view port list of the transform object associated with a specified shape, 

use the GXGetShapeViewPorts function, described on page 6-75. 

GXSetTransformViewPorts

You can use the GXSetTransformViewPorts function to assign a view port list to a 

transform object.

void GXSetTransformViewPorts(gxTransform target, long count,

const gxViewPort list[]);

target A reference to the transform object to which you want to assign the view 
port list.

count The number of entries in the new view port list; the size of the list array. 

list The new view port list; an array of references to the view ports you want 
to associate with the source transform. 

Errors
out_of_memory
transform_is_nil

Notices (debugging version)
transform_references_disposed_viewPort



C H A P T E R  6

Transform Objects

Transform Objects Reference 6-75

DESCRIPTION

The GXSetTransformViewPorts function replaces the view port list of the transform 

object referenced by the target parameter with the view port list contained in the list 

parameter. The count parameter specifies the number of view ports in the new list.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example of the use of this function, see Listing 6-6 on page 6-29.

To retrieve the view port list of a transform object, use the 

GXGetTransformViewPorts function, described in the previous section. 

To assign a view port list to the transform object associated with a specified shape, use 

the GXSetShapeViewPorts function, described on page 6-76. 

GXGetShapeViewPorts

You can use the GXGetShapeViewPorts function to retrieve the view port list of the 

transform object associated with a specific shape.

long GXGetShapeViewPorts(gxShape source, 

 gxViewPort list[]);

source A reference to the shape whose transform object contains the view port 
list you want to examine.

list An array of view port references. On return, the array contains the view 
port list of the source shape’s transform. 

function result The number of references in the view port list of the source shape’s 
transform.

Errors
out_of_memory
transform_is_nil
invalid_viewPort_reference
parameter_out_of_range (debugging version)

Notices (debugging version)
transform_viewPorts_already_set



C H A P T E R  6

Transform Objects

6-76 Transform Objects Reference

DESCRIPTION

The GXGetShapeViewPorts function copies references to the view ports associated 

with the source shape’s transform into the array referenced by the list parameter, and 

returns as the function result the total number of view port references in the list.

If you pass nil for the list parameter, the function returns the number of view ports as 

the function result, but does not return the references to the view ports. Thus you 

normally call this function twice: once to determine the size of view port array to 

allocate, and once to retrieve the array itself.

SPECIAL CONSIDERATIONS

This function returns all view port references in the source transform’s view port list, 

including any invalid ones (for view ports that have been disposed of).

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To assign a view port list to the transform object associated with a specified shape, use 

the GXSetShapeViewPorts function, described next. 

To retrieve the view port list of a transform object, use the 

GXGetTransformViewPorts function, described on page 6-73. 

GXSetShapeViewPorts

You can use the GXSetShapeViewPorts function to assign a view port list to the 

transform object associated with a particular shape.

void GXSetShapeViewPorts(gxShape target, long count,

const gxViewPort list[]);

target A reference to the shape object whose transform’s view port list you want 
to replace.

count The number of view port references in the new view port list; the size of 
the list array. 

list The new view port list; an array of references to the view ports you want 
to associate with the source shape’s transform. 

Errors
out_of_memory
shape_is_nil

Notices (debugging version)
transform_references_disposed_viewPort



C H A P T E R  6

Transform Objects

Transform Objects Reference 6-77

DESCRIPTION

The GXSetShapeViewPorts function replaces the view port list of the transform object 

associated with the shape referenced by the target parameter with the view port list 

specified by the list parameter. The count parameter specifies the number of view 

ports in the new list.

If the source shape shares its transform object with other shapes, this function first copies 

the transform, associates the copy with the source shape, and then makes changes to the 

copy.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To retrieve the view port list from the transform object associated with a specified shape, 

use the GXGetShapeViewPorts function, described in the previous section. 

To assign a view port list directly to a transform object, use the 

GXSetTransformViewPorts function, described on page 6-74. 

Getting and Setting the Hit-Test Parameters

This section describes the functions you can use to manipulate the hit-test parameters 

property of a transform object. For general information on the hit-test parameters 

property, see the section “Hit-Test Parameters” beginning on page 6-11.

For information on hit-testing and using the GXHitTestShape or GXHitTextPicture 

functions, see the chapter “Shape Objects” in this book. For additional information on 

GXHitTestPicture, see the picture shapes chapter of Inside Macintosh: QuickDraw GX 
Graphics.

Errors
out_of_memory
shape_is_nil
invalid_viewPort_reference
parameter_out_of_range (debugging version)

Notices (debugging version)
transform_viewPorts_already_set



C H A P T E R  6

Transform Objects

6-78 Transform Objects Reference

GXGetTransformHitTest

You can use the GXGetTransformHitTest function to retrieve the hit-test parameters 

of a transform object.

gxShapePart GXGetTransformHitTest(gxTransform source, 

Fixed *tolerance);

source A reference to the transform object whose hit-test parameters you want to 
examine.

tolerance A pointer to a Fixed value. On return, the value specifies the hit-test 
tolerance of the source transform.

function result The shape-parts mask of the source transform, specifying the shape parts 
to be tested for.

DESCRIPTION

The GXGetTransformHitTest function returns the contents of the hit-test parameters 

property of the transform object referenced by the source parameter. The shape-parts 

mask is returned as the function result and the hit-test tolerance is returned by the 

tolerance parameter.

Hit-test tolerance is specified in geometry units. You can specify nil for the tolerance 

parameter, in which case the hit-test tolerance is not returned.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For information about the hit-test parameters property, see “Hit-Test Parameters” 

beginning on page 6-11. To interpret the values in the shape-parts mask, see Table 6-1 on 

page 6-12. 

To assign hit-test parameters to a transform object, use the GXSetTransformHitTest 

function, described next.

To retrieve the hit-test parameters of the transform associated with a specified shape, use 

the GXGetShapeHitTest function, described on page 6-80.

Errors
out_of_memory
transform_is_nil



C H A P T E R  6

Transform Objects

Transform Objects Reference 6-79

GXSetTransformHitTest

You can use the GXSetTransformHitTest function to assign new hit-test parameters 

to a transform object.

void GXSetTransformHitTest(gxTransform target, gxShapePart mask, 

Fixed tolerance);

target A reference to the transform object whose hit-test parameters you want to 
assign.

mask The shape-parts mask to assign to the target transform.

tolerance The hit-test tolerance to assign to the target transform. It is measured in 
geometry units, and can be 0 or any positive number.

DESCRIPTION

The GXSetTransformHitTest function assigns the shape-parts mask contained in the 

mask parameter and the hit-test tolerance contained in the tolerance parameter to the 

transform object referenced by the target parameter. The tolerance value cannot be 

negative.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For information about the hit-test parameters property, see “Hit-Test Parameters” 

beginning on page 6-11. To interpret the values in the shape-parts mask, see Table 6-1 on 

page 6-12. 

To retrieve the hit-test parameters of a transform object, use the 

GXGetTransformHitTest function, described in the previous section.

To assign hit-test parameters to the transform associated with a specified shape, use the 

GXSetShapeHitTest function, described on page 6-81.

Errors
out_of_memory
transform_is_nil
parameter_out_of_range (debugging version)
tolerance_out_of_range (debugging version)



C H A P T E R  6

Transform Objects

6-80 Transform Objects Reference

GXGetShapeHitTest

You can use the GXGetShapeHitTest function to retrieve the hit-test parameters of the 

transform object associated with a particular shape.

gxShapePart GXGetShapeHitTest(gxShape source, 

Fixed *tolerance);

source A reference to the shape whose transform object contains the hit-test 
parameters you want to examine.

tolerance A pointer to a Fixed value. On return, the value specifies the hit-test 
tolerance of the source shape’s transform.

function result The shape-parts mask of the source shape’s transform.

DESCRIPTION

The GXGetShapeHitTest function returns the hit-test parameters from the transform 

object associated with the shape referenced by the source parameter. The shape-parts 

mask is returned as the function result and the hit-test tolerance is returned by the 

tolerance parameter.

Hit-test tolerance is specified in geometry units. You can specify nil for the tolerance 

parameter, in which case the hit-test tolerance is not returned.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For information about the hit-test parameters property, see “Hit-Test Parameters” 

beginning on page 6-11. To interpret the values in the shape-parts mask, see Table 6-1 on 

page 6-12. 

To assign hit-test parameters to the transform associated with a specified shape, use the 

GXSetShapeHitTest function, described next.

To retrieve the hit-test parameters of a specified transform object, use the 

GXGetTransformHitTest function, described on page 6-78.

Errors
out_of_memory
shape_is_nil



C H A P T E R  6

Transform Objects

Transform Objects Reference 6-81

GXSetShapeHitTest

You can use the GXSetShapeHitTest function to assign hit-test parameters to the 

transform object associated with a particular shape.

void GXSetShapeHitTest(gxShape target, gxShapePart mask, 

Fixed tolerance);

target A reference to the shape associated with the transform object whose 
hit-test parameters you want to assign.

mask The shape-parts mask to assign to the transform.

tolerance The hit-test tolerance to assign to the transform. It is measured in 
geometry units, and can be 0 or any positive number.

DESCRIPTION

The GXSetShapeHitTest function assigns the shape-parts mask contained in the mask 

parameter and the hit-test tolerance contained in the tolerance parameter to the 

transform object associated with the shape referenced by the target parameter. The 

tolerance value cannot be negative.

If the target shape shares its transform object with other shapes, this function first makes 

a copy of the transform object, associates it with the target shape, and then assigns the 

new hit-test parameters to the copy.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example of the use of this function, see page 6-30.

For information about the hit-test parameters property, see “Hit-Test Parameters” 

beginning on page 6-11. To interpret the values in the shape-parts mask, see Table 6-1 on 

page 6-12. 

To retrieve the hit-test parameters from the transform associated with a specified shape, 

use the GXGetShapeHitTest function, described in the previous section.

To assign hit-test parameters directly to a transform object, use the 

GXSetTransformHitTest function, described on page 6-79.   

Errors
out_of_memory
shape_is_nil
parameter_out_of_range (debugging version)
tolerance_out_of_range (debugging version)



C H A P T E R  6

Transform Objects

6-82 Summary of Transform Objects

Summary of Transform Objects

Constants and Data Types

The Transform Object

typedef struct gxPrivateTransformRecord *gxTransform;

Shape Parts for Hit-Testing

enum gxShapeParts {  /* (in order of evaluation) */

gxNoPart = 0,   

gxBoundsPart = 0x0001,

gxGeometryPart = 0x0002,

gxPenPart = 0x0004,

gxCornerPointPart = 0x0008,

gxControlPointPart = 0x0010,

gxEdgePart = 0x0020,

gxJoinPart = 0x0040,

gxStartCapPart = 0x0080,

gxEndCapPart = 0x0100,

gxDashPart = 0x0200,

gxPatternPart = 0x0400,

gxGlyphBoundsPart = gxJoinPart,

gxGlyphFirstPart = gxStartCapPart,

gxGlyphLastPart = gxEndCapPart,

gxSideBearingPart = gxDashPart,

gxAnyPart = gxBoundsPart | gxGeometryPart | 

gxPenPart | gxCornerPointPart | gxControlPointPart | 

gxEdgePart | gxJoinPart | gxStartCapPart | 

gxEndCapPart | gxDashPart | gxPatternPart 

} ;

typedef long gxShapePart;



C H A P T E R  6

Transform Objects

Summary of Transform Objects 6-83

Functions

Creating and Manipulating Transform Objects

gxTransform GXNewTransform (void);

void GXDisposeTransform (gxTransform target);

void GXCopyToTransform (gxTransform target, gxTransform source);

boolean GXEqualTransform (gxTransform one, gxTransform two);

gxTransform GXCloneTransform(gxTransform source);

Manipulating Transform Object Properties

void GXResetTransform (gxTransform target);

long GXGetTransformOwners (gxTransform source);

long GXGetTransformTags (gxTransform source, long tagType, 
long index, long count, gxTag items[]);

void GXSetTransformTags (gxTransform target, long tagType, 
long index, long oldCount, long newCount,
const gxTag items[]);

Getting and Setting a Transform’s Clip

void GXSetTransformClip (gxTransform target, gxShape clip);

gxShape GXGetTransformClip (gxTransform source);

gxShape GXGetShapeClip (gxShape source);

void GXSetShapeClip (gxShape target, gxShape clip);

Performing Geometric Arithmetic on Transform Clips

void GXUnionTransform (gxTransform target, gxShape operand);

void GXIntersectTransform (gxTransform target, gxShape operand);

void GXDifferenceTransform (gxTransform target, gxShape operand);

void GXReverseDifferenceTransform
(gxTransform target, gxShape operand);

void GXExcludeTransform (gxTransform target, gxShape operand);

Getting and Setting a Transform’s Mapping

gxMapping *GXGetTransformMapping
(gxTransform source, gxMapping *map);

void GXSetTransformMapping (gxTransform target const gxMapping *map);

gxMapping *GXGetShapeMapping(gxShape source, gxMapping *map);

void GXSetShapeMapping (gxShape target, const gxMapping *map);



C H A P T E R  6

Transform Objects

6-84 Summary of Transform Objects

Transforming Shapes by Modifying Transform Mappings

void GXMoveTransform (gxTransform target, Fixed deltaX, 
Fixed deltaY);

void GXMoveTransformTo (gxTransform target, Fixed x, Fixed y);

void GXScaleTransform (gxTransform target, Fixed hScale, 
Fixed vScale, Fixed xOffset, Fixed yOffset);

void GXRotateTransform (gxTransform target, Fixed degrees, 
Fixed xOffset, Fixed yOffset);

void GXSkewTransform (gxTransform target, Fixed xSkew, 
Fixed ySkew, Fixed xOffset, Fixed yOffset);

void GXMapTransform (gxTransform target, const gxMapping *map);

Transforming Shapes by Modifying Shape Geometries

void GXMoveShape (gxShape target, Fixed deltaX, Fixed deltaY);

void GXMoveShapeTo (gxShape target, Fixed x, Fixed y);

void GXScaleShape (gxShape target, Fixed hScale, Fixed vScale,
Fixed xOffset, Fixed yOffset);

void GXRotateShape (gxShape target, Fixed degrees, 
Fixed xOffset, Fixed yOffset);

void GXSkewShape (gxShape target, Fixed xSkew, Fixed ySkew, 
Fixed xOffset, Fixed yOffset);

void GXMapShape (gxShape target, const gxMapping *map);

Getting and Setting a Transform’s View Ports

long GXGetTransformViewPorts(gxTransform source, gxViewPort list[]);

void GXSetTransformViewPorts(gxTransform target, long count,
const gxViewPort list[]);

long GXGetShapeViewPorts (gxShape source, gxViewPort list[]);

void GXSetShapeViewPorts (gxShape target, long count,
const gxViewPort list[]);

Getting and Setting a Transform’s Hit-Test Parameters

gxShapePart GXGetTransformHitTest

(gxTransform source, Fixed *tolerance);

void GXSetTransformHitTest (gxTransform target, gxShapePart mask, 
Fixed tolerance);

gxShapePart GXGetShapeHitTest
(gxShape source, Fixed *tolerance);

void GXSetShapeHitTest (gxShape target, gxShapePart mask, 
Fixed tolerance);



Contents 7-1

C H A P T E R  7

Contents

View-Related Objects

About View Ports, View Devices, and View Groups 7-5

About View Port Objects 7-7

View Port Properties 7-7

View Port Clip and Mapping 7-9

Dither 7-10

Halftone 7-13

Parent and Child View Ports 7-18

View Port Attributes 7-20

The Default View Port Object 7-20

View Port Objects and Windows 7-21

About View Device Objects 7-24

View Device Properties 7-25

View Device Clip and Mapping 7-26

View Device Bitmap 7-26

View Device Attributes 7-27

The Default View Device Object 7-28

View Device Objects and Physical Devices 7-28

About View Group Objects 7-29

View Groups Have No Properties 7-29

Onscreen and Offscreen View Groups 7-29

About Drawing, Coordinate Conversion, and Clipping 7-30

QuickDraw GX Coordinates 7-31

Geometry Space 7-32

Local Space 7-33

Global Space 7-34

Device Space 7-38



C H A P T E R  7

7-2 Contents

Using View-Related Objects 7-39

Using View Ports 7-40

Creating and Manipulating View Port Objects 7-40

Manipulating View Port Object Properties 7-42

Getting and Setting a View Port’s Clip and Mapping 7-44

Setting Up the View Port Hierarchy for a Window 7-46

Supporting Scrolling in a Window 7-47

Identifying a View Port’s View Devices 7-49

Identifying a Shape’s View Ports 7-50

Measuring a Shape in Local Space 7-51

Using View Devices 7-52

Creating and Manipulating View Device Objects 7-52

Manipulating View Device Object Properties 7-54

Getting and Setting a View Device’s Clip and Mapping 7-56

Identifying a Shape’s View Devices 7-58

Measuring a Shape in Device Space 7-59

Hit-Testing a Shape on a Device 7-60

Using View Groups 7-60

Creating and Manipulating View Group Objects 7-61

Setting Up an Offscreen View Group 7-62

Measuring a Shape in Global Space 7-63

View-Related Objects Reference 7-65

Constants and Data Types 7-65

The View Port Object 7-65

The Halftone Structure 7-65

Dot Types 7-66

Tint Types 7-67

View Port Attributes 7-68

The View Device Object 7-68

View Device Attributes 7-68

The View Group Object 7-69

View Group Types 7-69

View Port Functions 7-69

Creating and Manipulating View Port Objects 7-70

GXNewViewPort 7-70

GXDisposeViewPort 7-71

GXCopyToViewPort 7-72

GXEqualViewPort 7-73

Manipulating View Port Object Properties 7-74

GXGetViewPortClip 7-74

GXSetViewPortClip 7-75

GXGetViewPortMapping 7-77

GXSetViewPortMapping 7-78

GXGetViewPortGlobalMapping 7-79

GXGetViewPortDither 7-80

GXSetViewPortDither 7-80

GXGetViewPortHalftone 7-81



C H A P T E R  7

Contents 7-3

GXSetViewPortHalftone 7-82

GXGetHalftoneDeviceAngle 7-83

GXGetViewPortParent 7-84

GXSetViewPortParent 7-84

GXGetViewPortChildren 7-86

GXSetViewPortChildren 7-87

GXGetViewPortViewGroup 7-88

GXSetViewPortViewGroup 7-88

GXGetViewPortAttributes 7-89

GXSetViewPortAttributes 7-90

GXGetViewPortTags 7-91

GXSetViewPortTags 7-92

Retrieving the View Devices That Intersect a View Port 7-94

GXGetViewPortViewDevices 7-94

Retrieving the View Ports That Intersect a Shape 7-95

GXGetShapeGlobalViewPorts 7-95

Measuring a Shape in Local Coordinates 7-96

GXGetShapeLocalBounds 7-96

View Device Functions 7-97

Creating and Manipulating View Device Objects 7-97

GXNewViewDevice 7-98

GXDisposeViewDevice 7-99

GXCopyToViewDevice 7-100

GXEqualViewDevice 7-101

Manipulating View Device Object Properties 7-102

GXGetViewDeviceClip 7-102

GXSetViewDeviceClip 7-103

GXGetViewDeviceMapping 7-105

GXSetViewDeviceMapping 7-106

GXGetViewDeviceBitmap 7-107

GXSetViewDeviceBitmap 7-108

GXGetViewDeviceViewGroup 7-109

GXSetViewDeviceViewGroup 7-109

GXGetViewDeviceAttributes 7-110

GXSetViewDeviceAttributes 7-111

GXGetViewDeviceTags 7-112

GXSetViewDeviceTags 7-113

Retrieving the View Devices That Intersect a Shape 7-115

GXGetShapeGlobalViewDevices 7-115

Measuring a Shape in Device Coordinates 7-116

GXGetShapeDeviceBounds 7-116

GXGetShapeDeviceArea 7-118

Measuring the Colors and Pattern Width of a Shape on a Device 7-118

GXGetShapeDeviceColors 7-119

Hit-Testing a Shape on a Device 7-120

GXHitTestDevice 7-120



C H A P T E R  7

7-4 Contents

View Group Functions 7-121

Creating and Disposing of View Group Objects 7-121

GXNewViewGroup 7-122

GXDisposeViewGroup 7-122

Getting the View Ports and View Devices of a View Group 7-123

GXGetViewGroupViewPorts 7-123

GXGetViewGroupViewDevices 7-124

Measuring a Shape in Global Coordinates 7-125

GXGetShapeGlobalBounds 7-125

Summary of View-Related Objects 7-127

Constants and Data Types 7-127

View Port Functions 7-129

View Device Functions 7-130

View Group Functions 7-131



C H A P T E R  7

About View Ports, View Devices, and View Groups 7-5

View-Related Objects

This chapter describes view-related objects—view ports, view devices, and view 

groups—and the functions you can use to manipulate them. Read this chapter to learn 

how to draw any of the QuickDraw GX shapes you create, and how to control the 

representations of those shapes on any output devices.

Before reading this chapter, you should be familiar with the information in the chapter 

“Introduction to QuickDraw GX” in this book. You should also be familiar with shape 

objects, as discussed in the chapter “Shape Objects” in this book, and transform objects, 

as discussed in the chapter “Transform Objects.” Additional information related to color 

drawing is found in the chapter “Color and Color-Related Objects.”             

This chapter constitutes the complete discussion of view-related objects for 

QuickDraw GX. Unlike for shape objects and style objects, there is no additional 

discussion of view ports, view devices, or view groups for graphic or typographic 

shapes in other books. The book Inside Macintosh: QuickDraw GX Environment and 
Utilities does, however, discuss drawing to Macintosh windows and how to relate a view 

port to a window. It also discusses matrix manipulation, which you can use to change 

the mapping property of a view port or view device.

This chapter introduces view ports, view devices, and view groups, discusses their 

properties, and shows how they are related to each other. It then discusses the different 

coordinate spaces you use to manipulate these objects. It then shows how to use 

QuickDraw GX functions to

■ use view ports: create and manipulate them; manipulate their properties, including 
clip, mapping, dither, halftone, and parent and child view ports; and analyze a shape 
in a view port

■ use view devices: create and manipulate them; manipulate their properties, including 
clip and mapping; and analyze a shape on a view device

■ use view groups: create and manipulate them; set them up for offscreen drawing; and 
analyze a shape in a view group

About View Ports, View Devices, and View Groups

The view-related objects in QuickDraw GX exist to support drawing. They work 

together to provide device-independent drawing destinations for an application, while 

at the same time allowing access to device characteristics and permitting drawing 

destinations and devices to be grouped and manipulated in flexible ways.

These are the view-related objects:

■ View port. A view port represents a drawing destination, such as the content area 
within a window. View port objects are device-independent, and have mapping and 
clipping properties that position, modify, and mask the shapes drawn into them. A 
shape’s transform object defines the view ports that the shape is drawn into.



C H A P T E R  7

View-Related Objects

7-6 About View Ports, View Devices, and View Groups

■ View device. A view device represents a physical device, such as a monitor or printer, 
on which objects are drawn. Each view device object has mapping and clipping 
properties that define its resolution, mask its visible area, and position it in relation to 
view ports and other view devices.

■ View group. A view group relates view ports and view devices to each other. Each 
view group object identifies a particular set of view ports and view devices; it also 
defines a coordinate space that positions view ports and view devices relative to each 
other. Drawing occurs in those locations where view ports and view devices within 
the same view group overlap.

Figure 7-1 shows the relationships among the view-related objects and the sequence of 

events that occur when a shape is drawn.

Figure 7-1 Objects used by the drawing mechanism



C H A P T E R  7

View-Related Objects

About View Port Objects 7-7

As Figure 7-1 shows, a shape’s geometry, initially modified by information contained in 

the shape’s style object and ink object, is further modified by the clip and the mapping of 

the transform object. That modified shape is then even further modified by the mapping 

and clip of one or more view ports, and modified once more by the mapping and clip of 

any view devices that intersect the view ports.

A shape cannot be drawn unless its transform object contains a reference to at least one 

view port. The transform object for the shape in Figure 7-1 references only one view port, 

so the shape is drawn only once. Transform objects are described in the chapter 

“Transform Objects” in this book.

Drawing occurs where the clip of a view port overlaps the clip of a view device within 

the same view group. The overlap is determined by the dimensions of the two clip 

shapes, both of which are defined in terms of the view group’s coordinate space. In this 

example, the position of the shape in the view port and the overlap between the view 

port and the view device mean that only part of the shape is rendered. 

The view group in Figure 7-1 represents a coordinate space for all view ports and view 

devices that may be visible to the user of your application. This particular view group is 

called the onscreen view group because the view devices represent actual screen 

devices. You can create view groups to draw offscreen as well. 

View-related objects are different from most other QuickDraw GX objects in several 

ways:

■ All the view-related objects can be shared, but they have no owner count and cannot 
be cloned. When you dispose of a view-related object, it is deleted from memory.

■ View ports can be arranged hierarchically, and you can attach a view port hierarchy to 
a Macintosh window to simplify clipping, moving, and scrolling documents in a 
window. 

■ QuickDraw GX creates view device objects for all physical screen devices for you; for 
drawing to the screen, you normally never need to create a new view device. 

About View Port Objects

A view port object represents the drawing destination for QuickDraw GX objects. A 

view port is analogous in some ways to a porthole on a ship, hence the name port. 
Objects seen through the porthole may have any extent, but only those parts within the 

boundaries of the porthole are visible.

View ports are device independent, and you normally need not take device 

characteristics such as pixel resolution into account when you draw. 

View Port Properties
The interface to view port objects is entirely procedural. You manipulate the information 

in a view port by modifying its properties using QuickDraw GX functions.



C H A P T E R  7

View-Related Objects

7-8 About View Port Objects

View port objects have nine accessible properties, as shown in Figure 7-2. Note that, 

because a view port is an object and not a data structure, the order of the properties as 

shown in Figure 7-2 is completely arbitrary. Properties in italics are references to other 

objects. 

Figure 7-2 View port object properties

These are the accessible properties of a view port:

■ Clip. A specialized shape geometry that controls the visibility of all shapes drawn to 
this view port. Only the parts of shapes that overlap with the clip remain visible when 
they are drawn. In the porthole analogy for a view port, the view port clip represents 
the transparent area of the porthole. The view port clip is further described in the next 
section, “View Port Clip and Mapping.”

■ Mapping. A mathematical matrix that specifies the translation, scaling, skewing, 
rotation, and perspective of all shapes drawn to this view port. The view port 
mapping is further described in the next section, “View Port Clip and Mapping.”

■ Dither. A value that specifies the dither setting of a view port. Dithering combines 
pixels of different colors to create the illusion of more colors than are actually 
supported by the hardware of an output device. For more information about the 
dither property, see the section “Dither” beginning on page 7-10. 

■ Halftone. A structure that specifies the halftone settings of the view port. Halftones 
use variable-sized dots of color to create the illusion of more colors than are actually 
supported by the hardware of an output device. For more information about the 
halftone property, see the section “Halftone” beginning on page 7-13.

■ Parent view port. A reference to the view port that is the parent of this one. View 
ports exist in a hierarchial relationship that simplifies attaching them to windows and 
moving groups of them as units. For more information about the parent view port and 
view port hierarchies, see the section “Parent and Child View Ports” on page 7-18.



C H A P T E R  7

View-Related Objects

About View Port Objects 7-9

■ Child view port list. A list of references to the view ports for which this view port is 
the immediate parent. View ports exist in a hierarchial relationship that simplifies 
attaching them to windows and moving groups of them as units. For more 
information about child view ports and view port hierarchies, see the section “Parent 
and Child View Ports” on page 7-18.

■ View group. A reference to the view group object to which this view port belongs. 
View groups are described in the section “About View Group Objects” beginning on 
page 7-29. 

■ Attributes. A set of flags that affect various characteristics of the shapes drawn to this 
view port. See the section “View Port Attributes” on page 7-20 for more information.

■ Tag list. A list of references to custom information about this view port object, stored 
in private structures called tag objects. The chapter “Tag Objects” in this book 
describes tag objects in general and how you can use them to add custom information 
to objects. 

QuickDraw GX provides functions to manipulate each of these view port object 

properties.

View Port Clip and Mapping

Like transform objects, view port objects have a clip property and a mapping property. A 

view port’s mapping and clip are applied to a shape after the transform clip and 

mapping have already been applied.

The clip and mapping properties for a view port follow the same general conventions as 

for transform objects. The clip property specifies a shape geometry that you use as a 

mask to restrict the visibility of a shape object when it is displayed or printed. The clip is 

equivalent to a primitive shape, a shape whose geometry and fill properties by 

themselves define the shape. Specifically, a clip can be a framed or filled geometric 

shape, a glyph shape, a 1-bit-per-pixel bitmap shape, or an empty or full shape. Primitive 

shapes are described in more detail in the geometric operations chapter of Inside 
Macintosh: QuickDraw GX Graphics.

The filled or framed parts of a view port clip define the areas in which a shape drawn to 

that view port show through. If the clip shape is a filled rectangle, for example, only the 

parts of a shape that are within the limits of that rectangle are visible. Commonly, view 

port clips are filled rectangles, because the visible parts of view ports commonly 

correspond to rectangular windows or panes of windows. 

The mapping property of a view port is a 3 × 3 matrix that specifies one or more 

transformations that a view port applies to all shapes drawn into it. You can use the view 

port mapping to perform operations such as the following:

■ translation, which changes the positions of shapes in the view port

■ scaling, which shrinks or enlarges shapes horizontally or vertically or both

■ rotation, which turns shapes about a fixed point

■ skewing, which distorts shapes progressively along a single axis

■ perspective, which distorts shapes to provide a three-dimensional effect



C H A P T E R  7

View-Related Objects

7-10 About View Port Objects

Most commonly, you use the view port mapping to position the view port (equivalent 

to positioning a window), and possibly to scale or rotate its contents. Skewing and 

perspective are less common, but you can use them for special effects. You can specify 

the identity mapping, a matrix whose elements have the value 1.0 along the diagonal 

and 0.0 elsewhere, to leave shapes drawn to this view port unchanged from the 

application of the transform mapping.

Figure 7-3 shows three different view ports in a single window, all used to display the 

same shape as that shown in Figure 7-1 on page 7-6. The shape is a vase, and its 

transform clip causes it to appear as wavy stripes.

Figure 7-3 Clipping and mapping in view ports

In Figure 7-3, each view port’s clip shape is a rectangle that defines its pane in the 

window. The upper left view port uses an identity mapping. The lower left view port’s 

mapping specifies a clockwise rotation. The right view port’s mapping specifies scaling 

(equal in x and y dimensions) that enlarges the shape. 

Dither

Dithering is a technique of assigning alternating colors to adjacent pairs or groups of 

pixels in a device’s bitmap to achieve the illusion of a color that cannot be represented 

directly. For example, if a device only supports three shades of blue, dithering allows 

QuickDraw GX to assign those colors in a specific order to adjacent pixels, so that the 

mix of shades in the combined pixels approximates a desired but unsupported shade.

Dithering works one way in shapes that have a uniform color, and another way in 

bitmaps.



C H A P T E R  7

View-Related Objects

About View Port Objects 7-11

Dithering of Shapes Other Than Bitmaps

The dither property of a view port specifies a dither level, which is the maximum 

number of colors that QuickDraw GX can use in dithering when it draws a shape. The 

dither level can be between 1 and 16; a dither level of 1, the simplest, is equivalent to no 

dithering. A level of 0 is not permitted. Dithering has no effect if the device resolution is 

32 bits per pixel. 

Table 7-1 shows the pixel patterns that can occur, depending on the dither level. A dither 

level of 1 provides a solid pattern, which is effectively no dithering. A dither level of 2 

provides a 2-by-2 repeating checkerboard pattern. A dither level of 3 provides a 3-by-3 

repeating stripe pattern. A dither level of 4 provides a 4-by-2 repeating pattern. Note that 

the effective resolution of an image decreases as dither level increases, because each set 

of pixels that make up a unit of the dither pattern function as a single, larger pixel of 

dithered color. 

Implementation Note

Version 1.0 of QuickDraw GX supports a maximum of 16 colors in a 
dither pattern, although 4 is the practical maximum dither level, 
especially for grayscale drawing. ◆

Table 7-1 Dither levels and patterns

Dither level Available patterns

1

2 Above patterns, plus:

3 Above patterns, plus:

4 Above patterns, plus:



C H A P T E R  7

View-Related Objects

7-12 About View Port Objects

QuickDraw GX does not necessarily use exactly the dither pattern specified by the 

dither property, unless the ink object attached to the shape drawn to the view port has 

its gxForceDitherInk attribute set. For example, if you specify a dither level of 4, 

QuickDraw GX may use any pattern from level 1 through level 4, as necessary, to 

create the illusion of additional colors. If the ink object’s gxForceDitherInk 

attribute is set, however, only the level-4 pattern is used. Conversely, if the ink 

object’s gxSuppressDitherInk attribute is set, no dithering occurs. Note also that 

you can affect the pixel alignment of the dither pattern with the ink object’s 

gxPortAlignDitherInk attribute. For more information about these ink attributes, 

see the chapter “Ink Objects” in this book.

QuickDraw GX uses information from the color profile for the view device object to 

determine the supported colors and it chooses the appropriate colors to use in the dither 

for you. Although the results of dithering are controlled by the view device, you specify 

the dither level in the view port object so that you can simulate its effect, on the 

computer that is running the application, for a device that may not actually be present. 

Dithering of Bitmaps

When you draw a bitmap shape, dithering works differently. Unlike with single-color 

shapes, dithering of bitmaps uses no specific pattern and recognizes no different dither 

levels. Dithering is off if the dither level is 1, and it is on if the dither level is greater than 

one.

Dithering of bitmaps uses the process of error diffusion, in which the error (the 

difference between the computed color of a given pixel and the nearest color available on 

the view device) is passed to adjacent pixels. The dithering algorithm starts at the top left 

of the visible part of the bitmap, and progresses through the bitmap, traveling left to 

right across one row of pixels and then right to left across the next lower row, and so on 

until the entire bitmap has been traversed. For each pixel, the algorithm adds the 

accumulated error (passed from the pixel above it and the pixel to the left of it) to the 

computed color, picks the closest available device color for that pixel, and passes the new 

error (the new computed color minus the available color) to the pixel to the right and the 

pixel below; half of the error goes to each. 

Not all dither-related ink attributes are applicable to dithering of bitmaps. Setting 

or clearing the gxPortAlignDitherInk attribute or the gxForceDitherInk 

attribute of the ink object attached to a bitmap shape has no effect. Setting the 

gxSuppressDitherInk attribute, however, does have the effect of turning off 

dithering, even for bitmaps.

Ink attributes are described in the chapter “Ink Objects” in this book. The bitmap shapes 

chapter of Inside Macintosh: QuickDraw GX Graphics shows an example of drawing a 

dithered bitmap. 



C H A P T E R  7

View-Related Objects

About View Port Objects 7-13

Drawbacks of Dithering

Dithering can provide good results in many cases, but it does have drawbacks:

■ Dithering slows down the drawing operation slightly for non-bitmap shapes, because 
of the overhead of determining the pattern in which colors are assigned. Dithering 
significantly slows down the drawing of bitmaps.

■ You cannot reliably use an ink transfer mode to reverse the effect of drawing a color 
that is dithered. Thus, transfer modes such as highlight mode may not be completely 
reversible where dithering occurs. 

■ In bitmap dithering, because QuickDraw GX determines which color to apply to a 
pixel using the color of the pixel next to it, a cumulative dithering error can occur due 
to the way a preceding pixel is changed by the dithering algorithm. 

■ Because clipping can interrupt the error diffusion in a bitmap dither, dithering a 
clipped shape can produce a different result from dithering the same unclipped shape. 
It can also mean that redrawing portions of an image, as when scrolling, can cause 
seams, or visible lines, between the separately drawn portions.

Note that dithering and halftones (described next) are mutually exclusive; if you choose 

both simultaneously, only a halftone is used. 

Halftone

A halftone is a pattern of alternating colors of variable intensities in a fixed cell size, 

used to represent a variety of colors. Halftoning, like dithering, provides a method of 

representing color by alternating the available colors on view devices that support only a 

limited number of colors. Unlike a dither pattern, however, a halftone’s fixed cell size 

means that its resolution is constant and adjacent halftones representing different colors 

mesh well. Also, unlike with dithers, you specify the colors that make up a halftone. If 

you use halftones, you should be familiar with how QuickDraw GX represents color, as 

described in the chapter “Color and Color-Related Objects” in this book. Also, note that 

dithering and halftones are mutually exclusive; if you choose both simultaneously, only 

a halftone is used.

A halftone consists of a pattern of variable-sized dots of one color against a background 

of another color. The halftone simulates a desired color (such as a specific intensity of 

gray), with the proper proportion of dot color (such as black) and background color 

(such as white). The colors are not limited to single components, however; a halftone can 

simulate beige, for example, by mixing pink with yellow. QuickDraw GX can attempt to 

reproduce any desired color by mixing the dot color and background color specified in a 

halftone. You can specify any color as the background and any other color as the dot 

color, and QuickDraw GX will find the best mixing proportion, given the specifications 

that you provide. Commonly, however, if you are using halftones you work with a single 

color component (such as blue for RGB space or yellow for CMYK space), and you 

specify that component as the dot color and black (for RGB) or white (for CMYK) as the 

background color. 



C H A P T E R  7

View-Related Objects

7-14 About View Port Objects

A halftone is described by several characteristics, specified in the gxHalftone structure:

struct gxHalftone{

Fixed angle; /* direction of halftone */

Fixed frequency; /* cells per inch */

gxDotType method; /* kind of pattern */

gxTintType tinting; /* tint calculation method*/

gxColor dotColor; /* color of dots */

gxColor backgroundColor; /* color of background */

gxColorSpace tintSpace; /* color space for tint */

};

The angle describes the orientation of the rows of dots in the halftone pattern. It is a 

fixed-point number between 0.0 and 360.0 that describes an angle, in degrees, clockwise 

from horizontal. Figure 7-4 shows several angles.

Figure 7-4 Halftone angle

Each cell in a halftone is an area that contains some proportion of background color and 

dot color. The frequency describes the size of the cells, in terms of numbers of dots per 

inch. You typically specify a frequency based on desired output quality and device 

resolution. Figure 7-5 shows examples of various frequencies.



C H A P T E R  7

View-Related Objects

About View Port Objects 7-15

Figure 7-5 Halftone frequency

The method, or dot type, describes the halftone pattern itself and how it is filled: the 

shapes of the dots, the pattern of their arrangement, and the way in which a dot fills its 

cell as it enlarges. The supported methods are defined in the gxDotTypes enumeration:

enum gxDotTypes{

gxRoundDot = 1,

gxSpiralDot,

gxSquareDot,

gxLineDot,

gxEllipticDot,

gxTriangleDot,

gxDispersedDot

};

typedef long gxDotType;



C H A P T E R  7

View-Related Objects

7-16 About View Port Objects

Figure 7-6 shows examples of these patterns.

Figure 7-6 Halftone dot types

The tinting, or tint type, specifies how the input color (the original color to which the 

halftone is applied) is to be approximated by a ratio of dot color and background color. 

The tint is a calculated value from zero to one: if the tint is zero, the halftone is 

composed only of the background color (the dots are infinitesimally small); if the tint is 

one, the halftone is composed entirely of the dot color (the dots fill their cells entirely). 



C H A P T E R  7

View-Related Objects

About View Port Objects 7-17

The tint color is the actual color represented by the combination of dot and background, 

and is therefore a weighted average of the dot color and background color. The tint color 

may be only an approximation to—or even just a single component of—the input color. 

The gxTintTypes enumeration, described on page 7-67, defines these tinting choices:

■ Luminance. The tint color is the input color’s luminance. The gray closest to the 
luminance of the input color is used to calculate the tint value. This tinting method is 
used for making grayscale halftones from grayscale or color images.

■ Color component. The tint color is some intensity of any one of the components of the 
input color. This tinting method is used for making halftoned color separations.

■ Color average. The tint color is the average of the components of the input color, 
determined by adding up the color components and dividing them by the number of 
components. This tint type is used with RGB only, and follows this formula:

tint = 1 — (R + G + B) / 3

Color average is different from luminance in that, for example, the luminance of an 
RGB color is not exactly the average of its component intensities. This tinting method 
is used for making grayscale halftones from color images.

■ Color mixture. The tint color is a point on the line (in color space) connecting the dot 
color and the background color. The orthogonal projection of the input color onto that 
line locates the tint color, and the tint (the proportion of dot to background) is defined 
by the position of that projection point on the line. This is the formula:

tint = 1 — D1 / (D1 + D2)

where

D1 = input color-dot color distance

D2 = input color-background color distance

This tinting method is used for getting the closest possible representation of any input 
color using any dot and background colors.

The dot color and background color are, respectively, the color of the dots and the color 

of the background used to form the halftone. In the halftone structure, they are full color 

specifications, not just single color-component values. In setting up a halftone structure, 

you need to specify these colors in a way that is meaningful considering the tint type 

you have chosen. For example, if you are creating a halftoned color separation, you 

typically use a dot color that is the same color as the color component specified in the 

tint type, and a background color of white.

The tint space describes the color space the input color is converted to before the tint 

value is determined. For instance, you can set the tint space to CMYK space to separate 

out the cyan portion of an image that may have been created in RGB space. It is not 

necessary for the input colors or the view device colors to be set to CMYK space, only 

the halftone.

Note that halftoning occurs for a shape only if its view port contains a valid halftone 

structure, and if its ink object’s gxSuppressHalftoneInk attribute is cleared. The 

gxSuppressHalftoneInk attribute is described in the chapter “Ink Objects” in 

this book. 



C H A P T E R  7

View-Related Objects

7-18 About View Port Objects

Parent and Child View Ports

Two view port properties, the parent view port and the child view port list, allow you to 

arrange view ports in a hierarchy. The primary advantage of this capability is that 

QuickDraw GX manages the positional relationships among several related view ports 

for you. 

In a view port object, the hierarchical relationship is represented by parent and child 

view port references. Each view port can reference one parent view port and any number 

of child view ports. When you move a view port by altering its clip and mapping, 

QuickDraw GX moves all its child view ports (and their child view ports, if any) 

accordingly. If the parent view port of your view port is attached to a window, 

QuickDraw GX moves your view port (and its children) to match movements of the 

parent whenever the user moves the window.

A view port hierarchy consists of a root view port, which is one with no parent view 

port, and all of its child view ports. If a child view port is also a parent view port, its 

children are part of the hierarchy too, and so on. Any parent view port in a hierarchy 

also defines a subhierarchy that consists of itself as the root, its child view ports, their 

child view ports, and so on.

Consider, for example, the window shown in Figure 7-7. Like in Figure 7-3 on page 7-10, 

it displays three different views of a vase. In this case, however, all the views are 

scrollable, which requires four view ports in a hierarchy.

Figure 7-7 Hierarchical view ports in a window



C H A P T E R  7

View-Related Objects

About View Port Objects 7-19

The four view ports associated with the window in Figure 7-7 are arranged in the simple 

hierarchy shown in Figure 7-8. 

Figure 7-8 A view port hierarchy

View port A encompasses the entire content area of the window. It does not have a 

parent, so it is the root of the hierarchy. View port A has three child view ports: B, C, 

and D. View ports B, C, and D all have the same parent, view port A. None of them, 

however, have child view ports of their own. 

This hierarchial organization allows QuickDraw GX to automatically move all view 

ports when the window is moved. It also allows you to support scrolling in view port B, 

C, or D with minimal effort. When the user scrolls pane B, for example, the translation in 

view port B’s mapping is changed to reflect the shape’s new position in the window. No 

changes are required to the other child view ports or to view port A to implement 

scrolling. See the section “View Port Objects and Windows” beginning on page 7-21 for 

more information on view port hierarchies and windows. 

When you set up a view port hierarchy, you create the root view port by calling the 

GXNewWindowViewPort function if you want the view port to be associated with a 

window, or the GXNewViewPort function otherwise. You create child view ports by 

calling the GXNewViewPort function for each, and then using the 

GXSetViewPortParent and GXSetViewPortChildren functions to organize them 

into a hierarchy.

The following rules apply when you set up a view port hierarchy:

■ You cannot create a circular relationship among view ports. For example, a parent 
view port cannot also be a child view port within its own hierarchy.

■ The view ports in a hierarchy must all be in the same view group. 



C H A P T E R  7

View-Related Objects

7-20 About View Port Objects

View Port Attributes

Each view port object has a set of attributes, a group of flags that specify different aspects 

of display behavior. View port attributes allow you to specify drawing in gray only, to 

constrain shapes to integral pixel locations, or to enable color matching for shapes drawn 

to the port. Table 7-2 lists the constants for the view port attribute and describes what 

each one means. The constants are defined in the gxPortAttributes enumeration. 

The Default View Port Object
When you first create a view port object, you must assign it to a specific view group. 

Other than that, the view port has these default properties:

■ No parent view port. 

■ An empty child view port list. 

■ A clip shape that is a full shape. The clip has no effect.

■ A mapping that is the identity mapping. The mapping has no effect.

Table 7-2 View port attributes

Constant Value Explanation

gxGrayPort 0x0001 If set, QuickDraw GX only allows grays to be 
drawn to the view port; it converts colors into a 
gray color space. Color spaces are described in 
the chapter “Color and Color-Related Objects” in  
this book.

gxAlwaysGridPort 0x0002 If set, QuickDraw GX sets the 
gxDeviceGridStyle style attribute for all 
shapes drawn to the view port. This has the effect 
of constraining a shape to integral pixel values, 
thus avoiding distortion due to rounding of 
fractional coordinates. For more information 
about the gxDeviceGridStyle attribute, see 
the geometric styles chapter of Inside Macintosh: 
QuickDraw GX Graphics.

gxEnableMatchPort 0x0004 If set, QuickDraw GX performs color matching 
for all shapes drawn to this view port. Note that  
you must set this attribute for color matching to 
occur; color matching is off by default in view 
ports. Color matching is described in the chapter  
“Color and Color-Related Objects” in this book.   



C H A P T E R  7

View-Related Objects

About View Port Objects 7-21

■ A dither level of 1. 

■ A nil halftone (no halftone).

■ No attributes set. 

■ An empty tag list. 

When you create a transform object, or if you just use the original default shape when 

you create a shape object, QuickDraw GX uses the default transform and assigns a 

default view port to the transform’s view port list. That view port is in the onscreen view 

group and has the default properties just listed. That means that you can simply create a 

shape object and immediately draw it to the screen, without creating any view port. 

However, for most application purposes you need to restrict drawing to the interiors of 

windows. To do that, you can create a view port each time the user opens a window, and 

then alter the default shape object for each shape type to make sure that it references a 

transform whose view port list includes that view port or a child view port of it. 

Alternatively, you can explicitly assign the proper view port to the transform of each 

shape after the shape is created. 

For more information about the onscreen view group, see “Onscreen and Offscreen View 

Groups” on page 7-29.

View Port Objects and Windows
In most cases on the Macintosh, when your application draws to the screen it draws into 

a Macintosh window. (You do not need a window for offscreen drawing or when 

printing.) Most of the view ports you create, therefore, are in some way associated with 

windows. QuickDraw GX allows you to associate a view port with a window, tying it to 

the window and establishing it as the root of a view port hierarchy. 

To attach a view port to a window, call the GXNewWindowViewPort function. This 

function sets up the view port so that drawing occurs only in the content area of the 

window (everything except for the title bar), effectively as if the view port’s clip were 

equal to the window’s visible region. When the user moves the window or changes its 

size, QuickDraw GX automatically moves the view port and adjusts its drawing limits to 

match the visible region. QuickDraw GX does not allow you to modify the clip or 

mapping of that view port. 

If you add child view ports to the view port hierarchy, they are also moved as the 

window is moved. However, if the window is changed in shape, you need to adjust the 

clips of the child view ports to coincide with the new window dimensions. 



C H A P T E R  7

View-Related Objects

7-22 About View Port Objects

Figure 7-9 shows a shape object drawn in two windows. In the window on the left, 

the shape is drawn directly to the window’s view port; in the window on the right, the 

shape is drawn to a child view port of the window’s view port. 

Figure 7-9 View ports in windows

One reason to draw only into a child view port is that it facilitates drawing tasks such as 

scrolling. Using a child view port helps to separate window management from content 

management when drawing. You use the parent view port for tracking window 

movement and visibility, and you manipulate the child view port’s properties directly, 

without concern for the position or visibility of the parent view port. To implement 

scrolling, for example, you can follow these steps:

1. Create a child view port for your window’s view port.

2. Draw your shapes to the child view port.

3. Alter the child view port’s mapping to reflect the translation caused by scrolling.

Figure 7-10 shows these steps schematically. Note that the scroll bars are part of the 

content area of the window, and adjusting them means drawing into the parent view 

port. Note also that the child view port clip is smaller than the content area of the 

window, so that drawing into it does not draw over the scroll bars.



C H A P T E R  7

View-Related Objects

About View Port Objects 7-23

Figure 7-10 Adjusting a child view port’s mapping to handle scrolling

You need not adjust the child view port’s clip after scrolling because the clip’s position is 

not changed when the mapping is altered; you need to adjust the clip only when the 

dimensions of the child view port’s drawing area are changed (such as when the 

window is resized). Remember also that you need to adjust the mapping of a child view 

port only when there is relative movement between the child view port and its parent; if 

the user simply moves the window, you do not need to adjust the child view port 

because QuickDraw GX handles this for you. 

For information about how clipping and mapping interact, see the section “About 

Drawing, Coordinate Conversion, and Clipping” beginning on page 7-30. 

For information about the GXNewWindowViewPort function, see the environment 

chapter of Inside Macintosh: QuickDraw GX Environment and Utilities. For an example that 

uses this function, see page 7-41.

Drawing is Not Restricted to Windows

QuickDraw GX view ports are not restricted to windows; you can 
draw anywhere in a coordinate space. This feature makes it easy to 
take complete control of a view device and draw anywhere on it. For 
example, you can support dragging of objects between windows in this 
way. On the other hand, because most QuickDraw GX applications 
must share a view device with windows from other applications, 
you typically want to restrict drawing to window content areas. ◆  



C H A P T E R  7

View-Related Objects

7-24 About View Device Objects

About View Device Objects

A view device object represents an output device such as a monitor or printer. When a 

shape is drawn, it appears on a view device, although its actual drawing destination is a 

view port. The intersection of the view port and view device determine where and how 

much of the shape is drawn. Figure 7-11 shows how a single view device can display 

more than one view port, and how a single view port can overlap more than one view 

device. 

Figure 7-11 View ports overlapping view devices

For drawing, you do not need to be concerned whether a view port overlaps one or more 

separate view devices; you just draw to the view port and QuickDraw GX handles it for 

you. On the other hand, if a view port does not intersect any device, the shapes drawn to 

the view port are not rendered at all.



C H A P T E R  7

View-Related Objects

About View Device Objects 7-25

View Device Properties
View device objects have six accessible properties, as shown in Figure 7-12. Note that, 

because a view device is an object and not a data structure, the order of the properties as 

shown in Figure 7-12 is completely arbitrary. Properties in italics are references to other 

objects.

Figure 7-12 View device object properties

These are the accessible properties:

■ Clip. A specialized shape geometry that defines the active imaging area of the view 
device. Only the parts of the view device’s bitmap that overlap with the clip can be 
drawn to. The view device clip is further described in the next section, “View Device 
Clip and Mapping.” 

■ Mapping. A mathematical matrix that specifies the translation, scaling, rotation, 
skewing, and perspective of shapes drawn on this view device. The view device 
mapping is further described in the next section, “View Device Clip and Mapping.” 

■ Bitmap. A bitmap structure that represents the imaging area of the view device. The 
view device bitmap is further described in the section “View Device Bitmap” on 
page 7-26. 

■ View group. A reference to the view group object to which this view device belongs. 
View groups are described in the section “About View Group Objects” beginning on 
page 7-29. 

■ Attributes. A set of flags that affect the state of activity and memory use of this view 
device. See the section “View Device Attributes” on page 7-27 for more information.

■ Tag list. A list of references to custom information about this view device object, 
stored in private structures called tag objects. The chapter “Tag Objects” in this book 
describes tag objects in general and how you can use them to add custom information 
to objects. 



C H A P T E R  7

View-Related Objects

7-26 About View Device Objects

Note that QuickDraw GX sets the properties for all onscreen view devices (view device 

objects that represent physical display devices present on the user’s system). You cannot 

change the properties of those view devices.

View Device Clip and Mapping

Like transforms and view ports, view device objects have a clip property and a mapping 

property. A view device’s mapping and clip are applied to a shape after those of the 

transform and the view port have already been applied.

The clip and mapping properties for a view device follow the same general conventions 

as for transform objects. The clip property specifies a mask that restricts the area on the 

device in which drawing or printing takes place. The clip is equivalent to a primitive 

shape, a shape whose geometry and fill properties by themselves define the shape. 

Specifically, a clip can be a framed or filled geometric shape, a glyph shape, a 

1-bit-per-pixel bitmap shape, or an empty or full shape. Primitive shapes are described in 

more detail in the geometric operations chapter of Inside Macintosh: QuickDraw GX 
Graphics.

The filled or framed parts of the clip define the areas in which drawing can occur. In 

most cases the view device clip is simply a filled rectangle, often covering exactly the 

imageable area of the device. You can, however, restrict drawing to a single portion of 

the device by making the clip shape smaller.

The mapping property of a view device is a 3 × 3 matrix that specifies one or more 

transformations that the view device applies to shapes drawn into it. You can use the 

view device mapping like other mappings, to perform translation, scaling, rotation, 

skewing, or perspective. However, in most cases the view device mapping is used only 

to position the view device relative to other view devices and view ports, and to define 

its pixel size (an identity mapping usually means that pixel size is 72 per inch). You 

normally do not need to modify a view device’s mapping, although it is possible for 

view device objects that you create yourself. 

View Device Bitmap

The bitmap property of a view device is stored as a bitmap structure (type gxBitmap) 

that represents the imaging area of the device. The bitmap specifies the height, width, 

and pixel depth of the view device. The upper left corner of the pixel image is the upper 

left corner of the imaging area of the device; if the view device object has an identity 

mapping, that also corresponds to location (0.0, 0.0) in the view group to which the view 

device belongs.

The bitmap also specifies, possibly by using a reference to a color set object, the color of 

each pixel and the set of available colors on the device. (Bitmaps with fewer than 16 bits 

per pixel must use a color set.) The bitmap may also include a reference to a color profile 

object that defines the color response characteristics of the device.



C H A P T E R  7

View-Related Objects

About View Device Objects 7-27

The end result of a drawing operation is the assignment of pixel values to the bitmap of 

a view device, followed by the transfer of those pixels to the screen or onto paper. In 

screen drawing or in printing, you can use transfer modes that either ignore or take into 

account the current pixel values of the bitmap, which themselves may be the products of 

previous drawing actions.

When you retrieve the bitmap property of a view device object, QuickDraw GX returns it 

to you as a bitmap shape that includes the information from the bitmap structure in the 

view device.

Bitmap shapes are described in the bitmap shapes chapter of Inside Macintosh: 
QuickDraw GX Graphics. Color set objects and color profile objects are described in 

the chapter “Color and Color-Related Objects” in this book. 

View Device Attributes

Each view device object has a set of attributes, a group of flags that influence device 

behavior. View device attributes allow you to make a device active or inactive, and to 

specify whether or not the pixel image needs to be stored in directly accessible memory. 

Table 7-3 lists the constants for the view device attributes and describes what each one 

means. The constants are defined in the gxDeviceAttributes enumeration. 

Table 7-3 View device attributes

Constant Value Explanation

gxDirectDevice 0x01 If set, QuickDraw GX puts the pixel image of the 
view device’s bitmap in directly accessible memory, 
if possible. 

gxRemoteDevice 0x02 If set, QuickDraw GX puts the pixel image of the 
view device’s bitmap in remote memory, such as on 
an accelerator card or video controller card, if 
possible.

gxInactiveDevice 0x04 If set, QuickDraw GX makes the device inactive, 
meaning that no drawing occurs on it. As an object, 
however, the device retains its existence and all its 
properties. QuickDraw GX sets this attribute for 
view device objects whose GDevice records mark 
them as inactive Macintosh graphics devices. The 
relation of graphics devices to view devices is 
described in the Macintosh environment chapter of 
Inside Macintosh: QuickDraw GX Environment and 
Utilities; the GDevice record itself is described in 
Inside Macintosh: Imaging with QuickDraw.   



C H A P T E R  7

View-Related Objects

7-28 About View Device Objects

The Default View Device Object
When you first create a view device object, you must assign it to a specific view group, 

and you must give it a reference to a bitmap shape—which you have set up—that 

describes the size, pixel depth, and location of the device’s imaging area. Otherwise, the 

view device has these default properties:

■ A clip shape that is a full shape. The clip has no effect.

■ A mapping that is the identity mapping. This means that the upper left corner of the 
imaging area is at (0.0, 0.0) in global space, and the device resolution is 72 pixels per 
inch.

■ No attributes set.

■ An empty tag list.

For view devices that you do not create, QuickDraw GX defines their properties to be 

consistent with the physical devices they represent. See “View Device Objects and 

Physical Devices” (next).

View Device Objects and Physical Devices
View device objects are different from some other QuickDraw GX objects in that 

QuickDraw GX creates all that you need for ordinary drawing. Unless you are drawing 

offscreen or want unusual onscreen effects, you do not have to create a view device.

At startup, QuickDraw GX creates a view device object for each physical display device 

attached to the system, assigning the device to the onscreen view group (see “Onscreen 

and Offscreen View Groups” on page 7-29). QuickDraw GX sets the view device 

mapping and clip properties to reflect the device’s pixel size, dimensions, and position in 

relation to other view devices. QuickDraw GX initializes the view device bitmap, 

assigning it a pixel image of appropriate size and pixel depth, and a color set and color 

profile based on information provided by the device’s driver. (If the user changes the 

relative positions of display devices by some means such as the Monitors control panel, 

QuickDraw GX automatically updates the mappings and clips of the view devices to 

reflect the change.)

If you need information about any display device, you can first obtain a list of all the 

view device objects in the onscreen view group. You can then use the object references in 

that list to examine the properties of each device as needed. 

View device objects are also associated with printers. To access the view device of a 

printer—if, for example, you want to mimic its characteristics with an offscreen view 

device—you use functions described in the advanced printing features chapter of Inside 
Macintosh: QuickDraw GX Printing. 

For offscreen drawing, you do need to create your own view device objects and initialize 

all of their properties, including their bitmaps. Note that if you create a bitmap for 

offscreen drawing whose characteristics exactly match those of an onscreen view device, 

you can quickly transfer the results of your offscreen drawing to the screen by simply 

drawing that bitmap onscreen. 



C H A P T E R  7

View-Related Objects

About View Group Objects 7-29

About View Group Objects

A view group object exists to relate view ports and view devices. It defines the set of 

view ports and view devices that can interact with each other, and it provides the basis 

for their relative positioning.

A view group represents a two-dimensional coordinate plane called global space. Global 

space imposes physical dimensions on and defines the spatial relationships among the 

view ports and view devices that belong to a view group. 

You can have several view groups. Each defines a drawing world, allowing you to 

separate groups of view ports and view devices and draw to each group without conflict.

View Groups Have No Properties
As QuickDraw GX objects, view groups have no directly accessible properties. A view 

group is more like an ID number than an object containing information. Although you 

can at any time obtain a list of view ports and view devices that belong to a given view 

group, you can think of that information as coming from the individual view port and 

view device objects in the group, rather than from the view group object itself.

Likewise, the dimensional and positioning information imposed by a view group is all 

contained in the mapping matrices of the individual view ports and view devices that 

belong to the view group. 

The only kinds of manipulation that you can perform directly on view group objects are 

creating them, disposing of them, and passing their references as function parameters.

Onscreen and Offscreen View Groups
QuickDraw GX creates one view group for you: the onscreen view group, whose 

reference is defined by the gxScreenViewDevices constant. It includes all physical 

screen devices. You draw to view ports in this view group for all onscreen drawing. If a 

transform object’s view port list property is not changed from its default value, the only 

view port in the list is the default view port, which is in this view group. Thus, by 

default, shapes are drawn onscreen to view ports and onto view devices in this view 

group.

You can also create any number of offscreen view groups. For example, you can build an 

image by creating an offscreen view group that mirrors the onscreen view group and 

draw into view ports and onto view devices exactly as the drawing is done with the 

onscreen view group. The only difference is that your shapes appear in the bitmap of 

your offscreen view devices instead of onscreen. When you are ready to transfer those 

drawn shapes to the screen, you can draw the bitmaps of the offscreen view devices as 

bitmap shapes into view ports in the onscreen view group. 



C H A P T E R  7

View-Related Objects

7-30 About Drawing, Coordinate Conversion, and Clipping

Clipping and Offscreen Drawing

For onscreen view ports attached to windows, QuickDraw GX takes care 
of restricting drawing to each window’s visible areas, even in cases 
where windows overlap. When you create an offscreen view group with 
offscreen view ports, you need to take care of all clipping yourself, 
including cases in which view ports in different hierarchies overlap and 
those in front must clip those behind. ◆

To help you track all view ports and view devices for all onscreen and offscreen view 

groups, QuickDraw GX provides another predefined view group reference, defined by 

the gxAllViewDevices constant. You use it to specify all view groups when you want 

a list of all view ports or all view devices in all view groups. You cannot use this constant 

to set a view port or view device because gxAllViewDevices does not actually refer to 

a specific view group.   

About Drawing, Coordinate Conversion, and Clipping

When you draw a QuickDraw GX shape, you are converting its internal representation 

into an image on an output device. QuickDraw GX uses information in the shape object 

and several other objects, including the view-related objects, to control how the shape is 

rendered. In brief, when you execute a drawing command QuickDraw GX follows this 

sequence of tasks:

1. It extracts the geometry of the shape object.

2. It applies stylistic and color information from the style object and ink object.

3. It applies the clip, and then the mapping, from the transform object.

4. It applies the mapping, and then the clip, from one or more view port objects.

5. It applies the mapping, and then the clip, from one or more view device objects.

The mapping operations specified in the transform, view port, and view device objects 

are concatenated during drawing, meaning that the operation is applied at one stage and 

the result is then used as input to the next calculation, and so on. Mapping is thus 

cumulative.

The clipping mechanism computes the intersection of the clip shapes of the transform 

object, view port objects, and view device objects. Each time a clip is applied, the 

visibility of a shape can only be further restricted.

The following sections discuss this process in more detail, describing how 

QuickDraw GX uses four separate coordinate spaces to specify a shape during the 

stages of the drawing process, and what effects you can control at each stage. 



C H A P T E R  7

View-Related Objects

About Drawing, Coordinate Conversion, and Clipping 7-31

QuickDraw GX Coordinates
All coordinates in QuickDraw GX are specified with fixed-point numbers in the range 

of –32,768.0 to approximately 32,768.0. Fixed-point numbers and the functions for 

manipulating them are described in the mathematics chapter of Inside Macintosh: 
QuickDraw GX Environment and Utilities. For any coordinate space, point (0.0, 0.0) 

represents the origin of the space. Points that lie to the right of the origin increase in a 

positive direction along the x-axis; points that lie below the origin increase in a positive 

direction along the y-axis. Coordinates are always written in the order (x, y). 

Figure 7-13 shows the general layout of the QuickDraw GX coordinate plane, with an 

expanded portion that shows a rectangle 200 units wide by 100 units high, whose 

upper-left corner is at the point (200.0, 100.0).

Figure 7-13 The QuickDraw GX coordinate plane

QuickDraw GX allows you to work in four coordinate spaces: geometry space, local 

space, global space, and device space. You can work separately in each space as 

appropriate for specific purposes; QuickDraw GX automatically converts among them 

when drawing.

The following discussion of coordinate spaces follows the progress of a drawing 

operation. It uses as an example the rendering of a single shape in a single window on a 

single view device. The shape, as finally displayed, is shown in Figure 7-19 on page 7-39. 

More complex possibilities, such as displaying in multiple windows and on multiple 

devices, are discussed as they arise.



C H A P T E R  7

View-Related Objects

7-32 About Drawing, Coordinate Conversion, and Clipping

Geometry Space
Geometry space is the space within which the position and dimensions of a shape object 

are first defined. QuickDraw GX starts the drawing process by using the values in a 

shape’s geometry; those values define the shape’s fundamental dimensions, and their 

coordinate space is called geometry space. 

No distance metric, such as points per inch, is defined for geometry space. Thus, the 

absolute size of a shape is undefined in geometry space. Also, every shape has its own 

geometry space; you cannot compare the sizes of two shapes based on their dimensions 

in geometry space alone. A rectangle 10 units wide in geometry space could end up ten 

times wider than a rectangle 100 units wide, once both have been drawn.

The left side of Figure 7-14 shows the geometry of a shape object, a filled path shape in 

the form of a vase. In geometry space, the vase is approximately 100 units by 100 units, 

and the upper-left corner of its bounding rectangle is at about (0.0, 0.0).

Figure 7-14 A shape geometry and a transform clip geometry

The right side of Figure 7-14 shows the geometry of the clip shape for a transform object. 

The clip shape is a filled path shape, of approximately the same dimensions and location 

as the vase shape. The next section shows how the clip shape modifies the appearance of 

the vase shape (assuming the vase shape object references the transform object 

containing this clip). 



C H A P T E R  7

View-Related Objects

About Drawing, Coordinate Conversion, and Clipping 7-33

Local Space
Local space defines the location and dimensions of a shape after it has been modified by 

the mapping property of its associated transform object. Because mappings can translate, 

scale, rotate, skew, and otherwise distort geometries, the dimensions of a shape in local 

space can be quite different from what they are in geometry space.

As the first stage of drawing a shape, QuickDraw GX modifies the shape’s geometry by 

applying information from the style object attached to the shape, and then applying first 

the clip and then the mapping contained in the transform object attached to the shape. 

Applying the mapping converts the shape from geometry space to local space. Because 

the transform clip is applied before the transform mapping, the dimensions of the clip 

shape are considered to be in geometry space. When you define the clip of a transform 

object, you size it and position it in terms of the dimensions of the shape’s geometry.

The left side of Figure 7-15 shows the same vase shape as in Figure 7-14, this time after 

the transform clip has been applied to it. At this point the shape is still in geometry 

space—its overall position and dimensions unchanged, but its appearance modified by 

the clip.

Figure 7-15 Applying the transform’s clip and mapping to a shape 

The right side of Figure 7-15 shows the vase shape after the transform mapping has been 

applied to it. In this particular example, the only effect of the transform mapping is to 

scale the shape by a factor of 2.0 in the vertical direction, about an origin at (0.0, 0.0) in 

geometry space. The vase is now in local space.



C H A P T E R  7

View-Related Objects

7-34 About Drawing, Coordinate Conversion, and Clipping

Local space, like geometry space, has no metric; the absolute size of a shape object is still 

undefined after the transform mapping has been applied. You can, however, compare the 

sizes of two shape objects that share the same transform object. For example, if two path 

shapes have the same geometry and reference the same transform object, they are the 

same size.

You typically use the transform’s clip and mapping for application-specific purposes 

related to moving, masking, and distorting shapes within a document. With the 

transform clip you define what parts of the shape geometry are to be visible, and with 

the transform mapping you choose how to move, orient, and distort that visible part of 

the shape, usually in relation to other shapes in the same document.

Several shape objects can reference the same transform object. This allows you to move, 

scale, rotate, and otherwise change an entire group of shapes in unison, by altering a 

single transform mapping. 

Some shape types have specific additional definitions of local space:

■ Picture shapes, which consist of a hierarchy of other shapes, can have more than one 
transform object. In such a case, QuickDraw GX performs clipping and mapping 
operations on all transforms in turn from the bottom of the hierarchy to the top; the 
result of all those mapping transformations is considered local space for the shape. 
See the picture shapes chapter of Inside Macintosh: QuickDraw GX Graphics for 
information about the transform hierarchy in picture shapes.

■ Glyph shapes can have mappings in their geometries (tangent array) and in their 
associated style objects (text faces). In such cases, QuickDraw GX applies those 
mappings before applying the clip and mapping of the transform object to convert the 
glyph shape to local space. See the glyph shapes and typographic styles chapters of 
Inside Macintosh: QuickDraw GX Typography for information about the tangent array 
and text face mappings.

The transform object includes a reference to at least one view port object, and local space 

orients a shape within its view port. Local space is the coordinate system local to that 

view port—hence its name. Thus, the vase example in this section would have the same 

local coordinates—its bounding rectangle would have corners at about (0.0, 0.0) and 

(100.0, 200.0)—no matter how the view port itself might be scaled or distorted by its own 

mapping when it is converted to global space. 

The fact that local space is the interior coordinate space of a view port means that you 

can compare the sizes of two shapes in local space even if they do not share the same 

transform—as long as they share the same view port. If two shapes have the same 

dimensions in local space and their transforms reference the same view port, they are the 

same size regardless of the actual values in their geometries or transform mappings.

Global Space
Global space contains the location and dimensions of a shape after the mapping in its 

associated view port has been applied. Global space defines the real-world location and 

dimensions of a shape; coordinate values in global space represent distance in points 

(72 per inch) from the origin of the view group that the view port is part of.



C H A P T E R  7

View-Related Objects

About Drawing, Coordinate Conversion, and Clipping 7-35

As this stage in drawing a shape, QuickDraw GX converts the shape from local space to 

global space. It modifies the shape’s dimensions by applying first the mapping and then 

the clip contained in the view port object attached to the shape’s transform. Because the 

view port clip is applied after the view port mapping, the dimensions of the clip shape 

are considered to be in global space. When you define the clip of a view port object, you 

size it and position it in terms of global space (the view port’s position compared to view 

devices), not local space (the shape’s position in its view port).

If the view port to which drawing occurs is a child view port in a view port hierarchy, 

QuickDraw GX performs mapping and clipping operations on all view ports in turn 

from that child view port through the top (root) view port; the result of all those 

mapping transformations is considered global space for the shape. See the section 

“Parent and Child View Ports” beginning on page 7-18 for information about view port 

hierarchies.

The example vase shape shown in the previous figures is drawn into the child view port 

of a simple two-level hierarchy. The left side of Figure 7-16 shows the vase shape after 

the child view port mapping has been applied to it. In this particular example, the effect 

of the view port mapping is to move the shape downward and to the left by 

approximately 50 units, representing a scrolling of the shape from its original position. 

There is no scale factor or other distortion in this case, so the dimensions of the shape are 

unchanged. The shape is not yet in global space, however, because another mapping 

(from the parent view port) must be applied.

Figure 7-16 Applying the child view port’s mapping and clip to a shape 



C H A P T E R  7

View-Related Objects

7-36 About Drawing, Coordinate Conversion, and Clipping

The right side of Figure 7-16 shows the vase shape after the child view port clip has been 

applied to it. The view port clip in this case is a rectangle that defines the visible portion 

of the child view port. As Figure 7-16 shows, the clip cuts out the left half of the vase 

(shaded gray), meaning that part of the shape has been scrolled out of view in its view 

port. The clip’s dimensions, although not yet in global space (because the parent view 

port mapping has not yet been applied), are “global” to the child view port; changing the 

child view port’s mapping, for example, does not change the position of its clip in 

relation to its parent view port. Therefore, to scroll a shape in a view port, you need only 

change the view port’s mapping, not its clip.

This example shows a single shape drawn into a single view port, but more complex 

arrangements are possible. For example, as shown in Figure 7-3 on page 7-10, a single 

transform object can reference several view port objects, allowing a single shape to 

appear simultaneously (perhaps with different scaling or orientation) in several view 

ports. 

Figure 7-17 completes the process of conversion from local to global space. The left side 

of Figure 7-17 shows the vase shape after the parent view port mapping has been 

applied to it. In this example, the effect of the view port mapping is to move the shape to 

the right and downward by approximately 50 units, representing the actual location of 

the shape in global space. Again, there is no scale factor or other distortion applied in 

this case, so the dimensions of the shape are unchanged. Because this view port is the 

root view port, the shape is now in global space and its dimensions can be measured. 

The visible part of the shape is approximately 50 points by 200 points in size, or about 

0.7 by 2.8 inches.

Figure 7-17 Applying the parent view port’s mapping and clip to a shape 



C H A P T E R  7

View-Related Objects

About Drawing, Coordinate Conversion, and Clipping 7-37

The right side of Figure 7-17 shows the vase shape after the parent view port clip has 

been applied to it. This view port clip is a rectangle that defines, in global space, the 

content area of the window to which the parent view port is attached. As is typical for a 

simple window that supports scrolling, the clips of the child view port and parent view 

port differ only by the areas of the scroll bars; the child view port clip fits inside the 

scroll bars so that drawing into it does not obliterate the scroll bars. In this case, the 

application of the parent view port clip has no effect on the visibility of the vase shape 

because the child view port clip is entirely contained within it.

As this example shows, you typically use the parent view port’s mapping to position 

the window you are drawing into, and its clip to restrict drawing to the interior of the 

window. You use mappings of child view ports to scroll, scale, or move shapes in 

relation to the parent view port, and you use their clips to restrict the shapes’ visibilities 

in relation to the parent view port. If a parent view port is attached to a window 

(through the GXNewWindowViewPort call), QuickDraw GX itself manipulates both the 

clip and mapping of the parent view port to make sure its location and drawable area 

correspond to the visible parts of the content area of the window. (Strictly speaking, 

QuickDraw GX prevents drawing from occurring outside of the visible part of the 

content area of the window, but it does not necessarily use the view port’s clip to do so; 

if you retrieve the clip of a window view port, it is not guaranteed to be equal to either 

the window’s port rectangle or its visible region.)

Global space is view-group space. Keep in mind these ways in which view groups and 

global space define the interactions among view ports and view devices:

■ Once a shape’s dimensions have been converted to global space, it has an absolute 
size and a specific spatial relationship to all other shapes in that view group, whether 
or not the shapes share the same local space (view port). 

■ Global-space dimensions are device-independent and therefore resolution 
independent; for typical drawing operations, you need never know the resolutions of 
the devices you are drawing to.

■ Within a view group, the clips of view ports and view devices can overlap in any 
combination. Drawing occurs automatically wherever the visible portions of any view 
port and any view device in that view group overlap.

■ More than one view group can exist simultaneously, allowing for offscreen drawing. 
Furthermore, the view ports referenced by the transform of a single shape need not all 
be in the same view group, allowing for simultaneous onscreen and offscreen drawing 
of a shape. 

To draw the device-independent shapes in a view group with maximum accuracy on 

view devices of varying positions and resolutions requires conversion from global space 

to device space, as described next. 



C H A P T E R  7

View-Related Objects

7-38 About Drawing, Coordinate Conversion, and Clipping

Device Space
Device space defines the location and dimensions of a shape as displayed on a particular 

output device. The upper-left corner of the displayable area of a view device is at 

coordinate (0.0, 0.0) in device space. Unit distance between coordinates in device space 

represents one picture element, or pixel. 

The view device’s mapping defines both its location in global space (as a translation 

factor) and its pixel size (as a scaling factor). For example, if your device is a 144 

pixels-per-inch high-resolution monitor, QuickDraw GX converts global space to device 

space when drawing by scaling each global-space point by 2.0, which is 144/72. By 

default, if there is a single view device in a view group, the translation value in its 

mapping is 0, meaning that point (0.0, 0.0) in device space is also point (0.0, 0.0) in global 

space. The view device’s clip is a (usually rectangular) shape representing the 

displayable area of the device. 

As the final stage in drawing a shape, QuickDraw GX converts the shape from global 

space to device space. It modifies the shape’s dimensions by applying first the mapping 

and then the clip of any view device object in the same view group whose clip overlaps 

the view port clip. 

The example vase shape shown in the previous figures is drawn onto a single view 

device. The left side of Figure 7-18 shows the vase shape after the view device mapping 

has been applied to it. In this example, the view device mapping specifies no translation, 

but the pixel resolution is 144 ppi so it scales the shape by 2.0. The shape is now in 

device space, and its visible part is approximately 100 by 400 pixels in size (which is still 

about 0.7 by 2.8 inches).

Figure 7-18 Applying the view device’s mapping and clip to a shape



C H A P T E R  7

View-Related Objects

Using View-Related Objects 7-39

The right side of Figure 7-18 shows the vase shape after the view device clip has been 

applied to it. The view device clip for the monitor represents its imaging area, exclusive 

of the menu bar. In this case, the view device clip cuts off part of the visible area of the 

view port, so the lower part of the vase shape (shaded gray in Figure 7-18) is not drawn 

on this device.

Figure 7-19 shows the example vase shape as actually displayed, after all clipping and 

coordinate conversions have been applied. The clipped and stretched vase shape is 

partially scrolled out of view in its window, and the lower part of the window is clipped 

by the bottom edge of the monitor.

Figure 7-19 The shape as finally displayed

It is seldom necessary to work in device space because QuickDraw GX performs this 

conversion for you. QuickDraw GX also handles modifications to the view device 

mappings to match the monitor configuration. For example, if you use the Monitors 

control panel to change the relative positions of monitors on a Macintosh system, 

QuickDraw GX handles the changes for you.   

Using View-Related Objects

View-related objects define the drawing environment for a QuickDraw GX application. 

Often, you set up your view ports, view devices and view groups when you set up other 

application structures. Because of the interrelationships between these objects, setting up 

an offscreen or onscreen environment and manipulating it involves creating and setting 

up several objects. 

This section describes how you can

■ create and use view ports, and analyze shapes in view ports

■ create and use view devices, and analyze shapes on view devices

■ create and use view groups for offscreen drawing, and analyze shapes in view groups



C H A P T E R  7

View-Related Objects

7-40 Using View-Related Objects

Using View Ports
This section demonstrates how to use QuickDraw GX view ports. It shows how you can

■ create and manipulate view port objects and their properties

■ get and set a view port’s clip and mapping

■ set up a view port hierarchy attached to a window

■ support scrolling in a window

■ identify the view devices of a view port and the view ports of a shape

■ measure a shape in the local space of a view port

Creating and Manipulating View Port Objects

QuickDraw GX provides several functions with which you can create a new view port. 

To create a view port that is the root view port of a hierarchy and is attached to 

a Macintosh window, you use the function GXNewWindowViewPort, described in the 

Macintosh environment chapter of Inside Macintosh: QuickDraw GX Environment and 
Utilities. To create child view ports for that root parent, or to create a root view port for 

offscreen drawing, you use the GXNewViewPort function. You can also create a new 

view port object by copying an existing one with the GXCopyToViewPort function; see 

Listing 7-2 on page 7-44 for an example of this method.

Replacing the default view port

If your application draws only within windows, you may want to 
replace the default transform object (which references the default view 
port) for each shape type. You could replace it with a transform object 
that directly references a window view port (a view port attached to a 
Macintosh window). Alternatively, you could replace it with a transform 
that references a view port you have designated as the “current” view 
port; you could then redirect drawing to a window view port by 
assigning the window view port as the parent of the current view port. 
Or you could take a different approach and explicitly assign a child view 
port of a window view port to each shape as it is created, using the 
GXSetShapeViewPorts function. ◆ 

Once you have created a view port object, you can customize its features using the 

techniques described in the following section. 

You can test if two view port-object references refer to the same view port object by 

simply testing the references for equality. You can also test a view port for equality with 

another view port with the GXEqualViewPort function. For two view port objects to be 

equal, their mappings, clips, dithers, halftones, attributes, parent view ports, and view 

groups must be identical; if one view port is attached to a window, the other view port 

must be attached to the same window. The tag lists or child view ports of the view ports 

need not be identical. View port object copies created with the GXCopyToViewPort 

function are always equal to the view port from which they were copied.



C H A P T E R  7

View-Related Objects

Using View-Related Objects 7-41

To delete your application’s reference to a view port object, call the 

GXDisposeViewPort function. Because view port objects have no owner count, 

calling GXDisposeViewPort actually releases the memory allocated for that view port 

object, and invalidates all other references to it. Therefore, once you have disposed 

of a view port, other transform objects that reference that view port will have invalid 

view port references in their view port lists. This causes no error when you try to draw; 

drawing simply does not occur to view ports whose references are invalid.

The following code fragment first creates a Macintosh window (sampleWindow), and 

then uses GXNewWindowViewPort to create a view port attached to it. When it no 

longer needs them, the code disposes of the view port and then the window. The 

NewWindow function and its parameters, and the DisposeWindow function, are 

described in the Window Manager chapter of Inside Macintosh: Macintosh Toolbox 
Essentials. 

sampleWindow = NewWindow( nil, &windowRect, "\p", true, 

documentProc, (WindowPtr)-1L, true, 0L );

aViewPort = GXNewWindowViewPort(sampleWindow);

.

. /* use the window and view port */

.

GXDisposeViewPort(aViewPort);

DisposeWindow(sampleWindow);

The following line of code creates a view port that is not attached to a window. You 

might use this call to create a view port that is to be the child of another view port. The 

code assigns the new view port to the gxScreenViewDevices view group, the view 

group for all onscreen drawing:

myChildViewPort =  GXNewViewPort(gxScreenViewDevices);

A more general way to assign the view group parameter is to first call the 

GXGetViewPortViewGroup function to determine the view group of the intended 

parent view port, and use that result as the parameter for GXNewViewPort. See, for 

example, Listing 7-5 on page 7-47. 

The GXNewViewPort function is described on page 7-70. The GXCopyToViewPort 

function is described on page 7-72. The GXEqualViewPort function is described on 

page 7-73. The GXDisposeViewPort function is described on page 7-71. 



C H A P T E R  7

View-Related Objects

7-42 Using View-Related Objects

Manipulating View Port Object Properties

This section describes how to manipulate the dither, halftone, view group, attributes, 

and tag list properties of a view port object:

■ To manipulate the dither level, you use the functions GXGetViewPortDither and 
GXSetViewPortDither.

■ To manipulate the halftone structure, you use the functions 
GXGetViewPortHalftone and GXSetViewPortHalftone.

■ To manipulate the view group reference, you use the functions 
GXGetViewPortViewGroup and GXSetViewPortViewGroup.

■ To manipulate the view port attributes, you use the functions 
GXGetViewPortAttributes and GXSetViewPortAttributes.

■ To manipulate the view port tag list, you use the functions 
GXGetViewPortTags and GXSetViewPortTags.

How to manipulate other view port properties is described in subsequent sections, 

starting with “Getting and Setting a View Port’s Clip and Mapping” on page 7-44.

Getting and Setting a View Port’s Dither, Halftone, and Attributes

Listing 7-1 is an example of code that sets the dither level, halftone structure, and view 

port attributes of the view port myViewPort. For the halftone structure (myHalfTone), 

the code sets all of its values, including the background color and the dot color in HSV 

color space. The tint type selected, however, is luminance tint, meaning that only the 

lightness of the input color is used to calculate the proportion of dot and background to 

use for the halftone. The attributes specify a grayscale view port, meaning that the dot 

and background colors are also drawn in gray. 

Listing 7-1 Changing a view port’s dither, halftone, and attributes

gxViewPort myViewPort

gxHalftone myHalfTone;

GXSetViewPortAttributes(myViewPort, gxGrayPort);

GXSetViewPortDither (myViewPort, 4);

myHalfTone.angle = ff(6);

myHalfTone.frequency = ff(24);

myHalfTone.method = gxDispersedDot;

myHalfTone.tinting = gxLuminanceTint;

myHalfTone.tintSpace = gxHSVSpace;   



C H A P T E R  7

View-Related Objects

Using View-Related Objects 7-43

myHalfTone.backgroundColor.space = gxHSVSpace;

myHalfTone.backgroundColor.profile = nil;

myHalfTone.backgroundColor.element.hsv.value = 0xFFFF;

myHalfTone.backgroundColor.element.hsv.saturation = 0xCCCD;

myHalfTone.backgroundColor.element.hsv.hue = 0x8000;

myHalfTone.dotColor.space = gxHSVSpace;

myHalfTone.dotColor.profile = nil;

myHalfTone.dotColor.element.hsv.value = 0xFFFF;

myHalfTone.dotColor.element.hsv.saturation = 0xAD1C;

myHalfTone.dotColor.element.hsv.hue = 0xE4F9;

GXSetViewPortHalftone(myViewPort, &myHalfTone);

Note

Dithers and halftones are mutually exclusive. The halftone in this 
example overrides the dither, so dithering is not performed at 
drawing. ◆

The GXGetViewPortDither function is described on page 7-80; the 

GXSetViewPortDither function is described on page 7-80.

The GXGetViewPortHalftone function is described on page 7-81; the 

GXSetViewPortHalftone function is described on page 7-82. 

The GXGetViewPortAttributes function is described on page 7-89; the 

GXSetViewPortAttributes function is described on page 7-90. 

Getting and Setting a View Port’s View Group

Listing 7-2 demonstrates the use of the GXSetViewPortViewGroup function. It is part 

of a routine that creates an offscreen view group (newGroup) that is a copy of an existing 

view group (group). For each view port in the onscreen view group, the routine creates 

a copy. It then uses GXSetViewPortViewGroup to assign the proper view group to the 

new view port. (Listing 7-10 on page 7-54 shows another part of the same routine.)

The routine uses the count variable to decrement through the list of view ports 

(oldList, retrieved through two consecutive calls to GXGetViewGroupViewPorts) 

belonging to the onscreen view group. The code simultaneously builds, for its own 

purposes, a list (newList) of view ports for the offscreen view group, using 

GXCopyToViewPort and GXSetViewPortViewGroup to copy each view port into the 

offscreen view group and set its view group property.



C H A P T E R  7

View-Related Objects

7-44 Using View-Related Objects

Listing 7-2 Copying the view ports from one view group to another

long portCount = GXGetViewGroupViewPorts(group, nil);

long count = portCount;

gxViewPort *oldPortList = (void *)NewPtr(portCount * 

sizeof(gxViewPort));

gxViewPort *oldList = oldPortList;

gxViewPort *newPortList = (void *)NewPtr(portCount * 

sizeof(gxViewPort));

gxViewPort *newList = newPortList;

GXGetViewGroupViewPorts(group, oldPortList);

while (count-- > 0)

GXSetViewPortViewGroup(*newList++ = GXCopyToViewPort(nil, 

*oldList++), newGroup);

The GXGetViewPortViewGroup function is described on page 7-88. The 

GXSetViewPortViewGroup function is described on page 7-88.

Getting and Setting a View Port’s Tag References

You can examine the list of references to tag objects currently associated with a view port 

object using the GXGetViewPortTags function. Once you create a tag object, you can 

attach it to a view port object using the GXSetViewPortTags function. You can attach 

as many tag objects as you like to a view port object.

Tag objects and the basic functions for manipulating them are described in the chapter 

“Tag Objects” in this book. That chapter also lists the common tag types defined and 

reserved by Apple Computer, Inc.

The GXGetViewPortTags function is described on page 7-91. The 

GXSetViewPortTags function is described on page 7-92.   

Getting and Setting a View Port’s Clip and Mapping

The clip and mapping properties of a view port control the visibility and location of its 

contents. For onscreen view ports attached to Macintosh windows, you do not directly 

set the clip or mapping properties; you move or resize the window with Window 

Manager calls, and QuickDraw GX automatically updates the view port’s clip and 

mapping. For child view ports of window view ports, however, and for all offscreen 

view ports, you must set the clip and mapping yourself.

You use the functions GXGetViewPortMapping, and GXSetViewPortMapping to set 

a view port mapping to move the contents of the view port, such as when scrolling. You 

also set the view port mapping to provide scaled, rotated, or otherwise altered views of 

the view port’s contents. Listing 7-3 shows an example that uses those functions plus 

GXGetViewPortClip and GXScaleMapping to scale the view port myViewPort 

to 200 percent of its original size, about an origin at the center of the view port’s clip. 



C H A P T E R  7

View-Related Objects

Using View-Related Objects 7-45

Listing 7-3 Changing a view port’s mapping

gxViewPort myViewPort

gxMapping myViewPortMapping;

gxShape myViewPortFrame;

gxPoint center;

GXGetViewPortMapping(myViewPort, &myViewPortMapping);

myViewPortFrame = GXGetViewPortClip(myViewPort);

GXGetShapeCenter(myViewPortFrame, 0L, &center);

GXScaleMapping(&myViewPortMapping, ff(2), ff(2), 

center.x, center.y);

GXSetViewPortMapping(myViewPort, &myViewPortMapping);

GXDisposeShape(myViewPortFrame);

Note that, because the GXGetViewPortClip function creates a shape object, the code in 

Listing 7-3 disposes of the shape after using it. The GXGetShapeBounds function is 

described in the geometric operations chapter of Inside Macintosh: QuickDraw GX 
Graphics; the GXSetShapeMapping function is described in the mathematics chapter of 

Inside Macintosh: QuickDraw GX Environment and Utilities. 

Getting the global mapping

If a view port is a child view port in a hierarchy, its mapping converts 
from local space into the local space of its parent view port, not directly 
into global space. If you want to determine the resultant mapping 
obtained by concatenating the mappings of a view port and all its 
parents—a mapping from local space all the way into global space—you 
can use GXGetViewPortGlobalMapping, which is described on 
page 7-79. For an example of its use, see Listing 7-11 on page 7-57. ◆

You can use the GXSetViewPortClip function to set a view port clip to initialize or 

change the visible area of the view port. Listing 7-4 is a routine that sets up the clip of a 

child view port (gcontentViewPort) whose parent is the root view port attached to a 

Macintosh window (theWindow). The routine makes the clip the same size as the 

window’s content area, minus the width of the scroll bars on the window’s side and 

bottom.

The listing uses the application-defined function GetWindowBoundsShape to 

determine the rectangle shape corresponding to the content area of the window. That 

function retrieves a QuickDraw rectangle corresponding to the port rectangle of the 

window, and then converts it to a QuickDraw GX rectangle using the 

GXConvertQDPoint function.



C H A P T E R  7

View-Related Objects

7-46 Using View-Related Objects

Listing 7-4 Setting a view port clip

void ResetContentViewPortClip (WindowPtr theWindow)

{

gxRectangle viewRect;

gxShape contentViewPortClipShape;

/* get the size of the window port rect */

GetWindowBoundsShape(theWindow, &viewRect);

/* Adjust the rectangle to accommodate the scroll bars */

viewRect.right -= ff(kScrollBarWidth - 1);

viewRect.bottom -= ff(kScrollBarWidth - 1);

/* assign it as the clip shape */

contentViewPortClipShape = GXNewRectangle(&viewRect);

GXSetViewPortClip(gcontentViewPort, contentViewPortClipShape);

GXDisposeShape (contentViewPortClipShape);

}

The GXConvertQDPoint function is described in the Macintosh environment chapter 

of Inside Macintosh: QuickDraw GX Environment and Utilities. The GXNewRectangle 

function, which creates a rectangle shape, is described in the geometric shapes chapter of 

Inside Macintosh: QuickDraw GX Graphics.

The GXGetViewPortClip function is described on page 7-74; the 

GXSetViewPortClip function is described on page 7-75. 

The GXGetViewPortMapping function is described on page 7-77; the 

GXSetViewPortMapping function is described on page 7-78.   

Setting Up the View Port Hierarchy for a Window

Setting up a view port hierarchy means assigning the appropriate parent view port and 

child view port references to all view ports involved. The functions you use are 

GXGetViewPortParent, GXSetViewPortParent, GXGetViewPortChildren, and 

GXSetViewPortChildren. Take these steps to set up a simple hierarchy in which a 

child view port is used for drawing a window’s content:

1. Create the child view port in the window view port’s view group.

2. Create a clip shape and assign it to the child view port. Set the child view port’s 
mapping.

3. Assign the window view port as the parent of the child view port.

4. Dispose of the clip shape.

Note that you do not have to add the child view port to the window view port’s 

list of children; when you set the parent view port property of the child view port, 

QuickDraw GX adds the child view port to the parent’s list of child view ports. 



C H A P T E R  7

View-Related Objects

Using View-Related Objects 7-47

Listing 7-5 is an example that sets up such a hierarchy. It creates a view port with the 

GXNewViewPort function, and uses GXGetViewPortViewGroup to find out what 

view group to assign it to. The code assigns properties to the view port with 

GXSetViewPortClip, GXSetViewPortMapping, and GXSetViewPortParent. The 

window view port is windowParentViewPort, and the rectangle viewRect defines a 

clipping area that is the size of the window minus the area reserved for scroll bars.

Listing 7-5 Setting up a view port for a window

gxRectangle viewRect;

gxViewPort windowParentViewPort;

gxShape contentViewPortShape;

. /*

. Create window view port with GXNewWindowViewPort. Make 

. viewRect equal to port rectangle minus scroll bars.

*/

gcontentViewPort = GXNewViewPort

(GXGetViewPortViewGroup(windowParentViewPort));

contentViewPortShape = GXNewRectangle(&viewRect);

GXSetViewPortClip(gcontentViewPort, contentViewPortShape);

GXSetViewPortMapping(gcontentViewPort, nil);

GXSetViewPortParent(gcontentViewPort, windowParentViewPort);

GXDisposeShape (contentViewPortShape);

Once you have set up a hierarchy, if you want to draw into the child view port—and 

thus onscreen—you must place a reference to the child view port in a transform object’s 

view port list, and the shapes you draw must reference that transform.

The GXGetViewPortParent function is described on page 7-84; the 

GXSetViewPortParent function is described on page 7-84. 

The GXGetViewPortChildren function is described on page 7-86; the 

GXSetViewPortChildren function is described on page 7-87. 

Supporting Scrolling in a Window

To support scrolling in a view port attached to a Macintosh window, you need to create a 

child view port of the window view port, and draw into it rather than into its parent. 

QuickDraw GX prevents you from changing the mapping or clip of a view port directly 

attached to a Macintosh window.

When the user scrolls the window, you manipulate the child view port’s mapping to 

scroll the content. When the user resizes the window, you manipulate the child view 

port’s clip to fit the new window shape. When the user moves the window, you do 

nothing; QuickDraw GX takes care of positioning both parent and child view ports.



C H A P T E R  7

View-Related Objects

7-48 Using View-Related Objects

Listing 7-6 is an example of a scrolling routine that scrolls the contents of a child view 

port (gcontentViewPort) by specified vertical and horizontal amounts (hScroll 

and vScroll), in response to mouse-down events in the scroll bars of a window 

(theWindow). The event-dispatching routine calls this scrolling routine after it has 

calculated how much scrolling is required. After the scrolling routine executes, a 

separate routine (not shown) updates the appearance of the scroll bars.

Listing 7-6 Supporting scrolling in a child view port

void DoScroll(WindowPtr theWindow, short hScroll, short vScroll)

{

Rect scrollRect;

Point scrollPt;

RgnHandle myRgn;

gxMapping viewPortMapping;

if ((hScroll == 0) && (vScroll == 0)) return;

/* 

Get the child view port’s mapping, adjust it for the 

horizontal and vertical scroll, then reassign it to the 

view port. The next drawing action will then reflect the 

scrolled positions of shapes in the view port.

*/

GXGetViewPortMapping(gcontentViewPort, &viewPortMapping);

MoveMapping(&viewPortMapping, ff(hScroll), ff(vScroll));

GXSetViewPortMapping(gcontentViewPort, &viewPortMapping);

/* 

Shift the pixels representing the already drawn contents of 

window, so that less will have to be drawn when the window 

is updated. Only the parts scrolled into view (specified by 

the update region myRgn) will need to be redrawn. 

*/

scrollRect = theWindow->portRect;

scrollRect.right -= (kScrollBarWidth-1);

scrollRect.bottom -= (kScrollBarWidth-1);

SetPort(theWindow);

myRgn = NewRgn();

ScrollRect(&scrollRect, hScroll, vScroll, myRgn);



C H A P T E R  7

View-Related Objects

Using View-Related Objects 7-49

/* update origin position in app’s extended window record */

SetPt(&scrollPt, hScroll, vScroll);

AddPt(scrollPt, &((MyWindowPeek)theWindow)->origin);

/* redraw the window and dispose of the region handle */

DrawWindow(theWindow);

DisposeRgn(myRgn);

}

Identifying a View Port’s View Devices

The GXGetViewPortViewDevices function returns a list of all view devices that could 

be affected by shapes drawn in a given view port. Within the view group of the view 

port, all view device objects whose clip areas overlap the clip area of the view port 

appear in the list returned by this function. 

You can use GXGetViewPortViewDevices to determine whether a given view device 

can be affected by drawing into a given view port. You can also use it to examine the 

properties of all devices that you might draw to, perhaps in order to assign appropriate 

properties to offscreen view devices. 

Listing 7-7 is a library function (SetShapeFastXorTransfer) that uses another library 

function (SetInkFastXorTransfer) to set up a shape’s color and an XOR transfer 

mode so that drawing with that color will cause a specified highlight color to replace the 

background color in the destination. The SetInkFastXorTransfer function is not 

shown here. Listing 7-7 is shown because it uses GXGetViewPortViewDevices to get 

a list of the view devices a view port can draw to, although it actually uses only the first 

view device in the list.

Listing 7-7 Setting a shape color for XOR highlighting

void SetShapeFastXorTransfer(gxShape source, gxColor *background, 

gxColor *result)

{

long viewPortCount, viewDeviceCount;

void *buffer;

gxViewPort vp;

gxViewDevice vd;

gxInk inky;

/* get size of view port list, then allocate buffer for it */

viewPortCount = GXGetTransformViewPorts(

GXGetShapeTransform(source), nil);

buffer = NewPtr(sizeof(gxViewPort) * viewPortCount);



C H A P T E R  7

View-Related Objects

7-50 Using View-Related Objects

/* check for memory error (not shown), then get list itself */

GXGetTransformViewPorts(GXGetShapeTransform(source), 

(gxViewPort *)buffer);

    

/* get no. of view devices, then allocate buffer for list */

viewDeviceCount = GXGetViewPortViewDevices(

vp = *(gxViewPort *)buffer, nil);

.

. /* check for memory error (not shown), then get list itself */

.

GXGetViewPortViewDevices(vp, (gxViewDevice *)buffer);

vd = *(gxViewDevice *)buffer;

DisposePtr(buffer);

/* get shape’s ink; if shared, assign a copy of the ink */

if (GXGetInkOwners(inky = GXGetShapeInk(source)) > 1) 

{

GXSetShapeInk(source, inky = GXNewInk());

GXDisposeInk(inky);

}

/* set ink’s transfer mode and suppress dithering */

SetInkFastXorTransfer(inky, vd, vp, background, result);

GXSetShapeInkAttributes(source, 

GXGetShapeInkAttributes(source) | 

gxSuppressDitherInk);

}

The GXGetViewPortViewDevices function is described on page 7-94. 

Identifying a Shape’s View Ports

The GXGetShapeGlobalViewPorts function returns a list of all view ports that a 

shape could actually appear in if it were drawn. If a shape’s transform references a view 

port, and if that view port’s clip does not totally exclude the shape from the visible part 

of the view port, the view port appears in the list returned by this function. 

You can use GXGetShapeGlobalViewPorts to avoid the overhead of drawing shapes 

that cannot be visible. You can also use it as an input to the 

GXGetShapeGlobalViewDevices function to determine all the devices on which a 

given shape can appear.

The GXGetShapeGlobalViewPorts function is described on page 7-95. The 

GXGetShapeGlobalViewDevices function is described on page 7-115. 



C H A P T E R  7

View-Related Objects

Using View-Related Objects 7-51

Measuring a Shape in Local Space

The GXGetShapeLocalBounds function measures the bounding rectangle of a shape in 

local coordinates—that is, after the transform mapping has been applied to the shape 

geometry. You can use GXGetShapeLocalBounds to compare the positions and sizes of 

two shapes in the same view port, even if they do not share the same transform 

object. (To compare the positions and sizes of two shapes in different view ports, use 

the GXGetShapeGlobalBounds function; to measure a shape on a view device, use 

GXGetShapeDeviceBounds.)

Listing 7-8 is a function in a shape-editing program. It draws a gray box representing 

the bounding rectangle for each shape in a list of shapes passed to it. It calls 

GXGetShapeLocalBounds for each shape, and then defines and draws a rectangle 

shape whose geometry matches that bounding rectangle. Regardless of how each shape 

has been modified by its own transform mapping, GXGetShapeLocalBounds returns a 

rectangle (whose default transform has an identity mapping) that exactly matches the 

transformed shape’s bounding rectangle when drawn in the view port.

Listing 7-8 makes use of the library function SetShapeCommonColor to set the 

bounding rectangle’s color.

Listing 7-8 Locating the bounding rectangles of a list of shapes in a view port

void ShowLocalBounds(gxShape *p1stShape, long shapeCount)

{

register gxShape *pShape, rectShape;

gxRectangle bounds;

pShape = p1stShape + shapeCount - 1; /* no. of last shape */

/* define a framed gray rectangle shape for the bounds */

rectShape = GXNewShape(gxRectangleType);

GXSetShapeFill(rectShape, gxClosedFrameFill);

SetShapeCommonColor(rectShape, gxGray);

/* go through shape list, get and draw local bounds for each */

while (shapeCount--)

{

GXGetShapeLocalBounds(*pShape--, &bounds);

GXSetRectangle(rectShape, &bounds);

GXDrawShape(rectShape);

}

GXDisposeShape(rectShape);

}



C H A P T E R  7

View-Related Objects

7-52 Using View-Related Objects

The GXGetShapeLocalBounds function is described on page 7-96. 

The GXGetShapeGlobalBounds function is described on page 7-125; the 

GXGetShapeDeviceBounds function is described on page 7-116.   

Using View Devices
This section demonstrates how to use QuickDraw GX view devices. It shows how you 

can

■ create and manipulate view device objects and their properties

■ get and set a view device’s clip and mapping

■ identify the view devices of a shape

■ measure a shape in the device space of a view device

■ hit-test a shape on a device

Creating and Manipulating View Device Objects

Normally, your application needs to create view device objects only for offscreen 

drawing. QuickDraw GX creates view device objects for all attached screen devices at 

startup. If you do need to create a view device object, QuickDraw GX provides the 

GXNewViewDevice function, to which you must supply a view group reference and a 

bitmap shape representing the device’s imaging area and characteristics. You can also 

create a new view device object by copying an existing one, using the 

GXCopyToViewDevice function. 

Once you have created a view device object, you can customize its features using the 

techniques described in the following sections.

You can test if two view device-object references refer to the same view device object by 

simply testing the references for equality. You can also test a view device for equality 

with another view device with the GXEqualViewDevice function. For two view device 

objects to be equal, their clips, mappings, bitmap shapes, and attributes must be 

identical, and they must be in the same view group, represent the same Macintosh 

graphics device (same GDevice record), and point to the same pixel image, color set, 

and color profile. Their tag lists need not be identical. View device object copies created 

with the GXCopyToViewDevice function are always equal to the view device from 

which they were copied.

To delete your application’s reference to a view device object, call the 

GXDisposeViewDevice function. Because view device objects have no owner count, 

calling GXDisposeViewDevice actually releases the memory allocated for that view 

device object, and invalidates all other references to it. 



C H A P T E R  7

View-Related Objects

Using View-Related Objects 7-53

Listing 7-9 is a portion of a printer driver routine that sets up a default printing 

view device. It first sets up a bitmap structure with default values, and then creates 

a bitmap shape to pass to GXNewViewDevice. The view group for this view device 

is gxScreenViewDevices, because it is to be used for printing, not offscreen 

drawing.

Listing 7-9 Creating a new view device

gxBitmap aBitmap;

gxViewDevice vd;

aBitmap.pixelSize = 1;

aBitmap.rowBytes = 0;

aBitmap.width = 0;

aBitmap.height = 0;

aBitmap.image = nil;

aBitmap.space = gxNoSpace;

aBitmap.set = nil;

aBitmap.profile = nil;

theBitmap = GXNewBitmap(&aBitmap, nil);

./* error-check here (not shown) */

.

.

vd = GXNewViewDevice(gxScreenViewDevices, theBitmap);

./* error-check here (not shown) */

.

.

When the driver is finished with the view device, it disposes of it with this line:

GXDisposeViewDevice(vd);

Listing 7-10 demonstrates creating a new view device by using the 

GXCopyToViewDevice function. Like Listing 7-2 on page 7-44, it is part of a 

routine that creates an offscreen view group (newGroup) that is a copy of an 

existing view group (group). For each view device in the onscreen view group, 

the routine creates a copy and assigns it to the offscreen view group.

The routine decrements the count variable to control incrementing through the list 

of view devices (list) belonging to the onscreen view group.



C H A P T E R  7

View-Related Objects

7-54 Using View-Related Objects

Listing 7-10 Copying the view devices from one view group to another

long deviceCount = GXGetViewGroupViewDevices(group,nil); 

long count = deviceCount;

gxViewDevice *deviceList = (void *)NewPtr(deviceCount * 

sizeof(gxViewDevice));

gxViewDevice *list = deviceList;

GXGetViewGroupViewDevices(group, deviceList);

while (count-- > 0)

{

GXSetViewDeviceViewGroup(*list = GXCopyToViewDevice(nil, 

*list), newGroup);

list++;

}

The GXNewViewDevice function is described on page 7-98. The 

GXDisposeViewDevice function is described on page 7-99. 

The GXCopyToViewDevice function is described on page 7-100. The 

GXEqualViewDevice function is described on page 7-101. 

Manipulating View Device Object Properties

This section describes how to manipulate the bitmap, view group, and attributes 

properties of a view device object:

■ To manipulate the bitmap structure, you use the functions 
GXGetViewDeviceBitmap and GXSetViewDeviceBitmap.

■ To manipulate the view group reference, you use the functions 
GXGetViewDeviceViewGroup and GXSetViewDeviceViewGroup.

■ To manipulate the view device attributes, you use the functions 
GXGetViewDeviceAttributes and GXSetViewDeviceAttributes.

■ To manipulate the view device tag list, you use the functions 
GXGetViewDeviceTags and GXSetViewDeviceTags.

How to manipulate other view device properties is described in subsequent sections, 

starting with “Getting and Setting a View Device’s Clip and Mapping” on page 7-56.



C H A P T E R  7

View-Related Objects

Using View-Related Objects 7-55

Getting and Setting a View Device’s Bitmap

The following code fragment is a function that uses GXGetViewDeviceBitmap to gain 

access to a copy of the color set of a view device, clone its reference (so it won’t be 

deleted when its bitmap is disposed of), and then return it as a function result. The 

function needs the bitmap shape itself only temporarily, and therefore disposes of it after 

extracting the color set reference from it.

gxColorSet GetViewDeviceColorSet(gxViewDevice source)

{

register gxShape bitmapShape = 

GXGetViewDeviceBitmap(source);

register gxColorSet result = GetShapeColorSet(bitmapShape);

if (result)

GXCloneColorSet(result);

GXDisposeShape(bitmapShape);

return result;

}

The following code fragment is a function that uses GXSetViewDeviceBitmap to 

assign a color profile to a view device. The function disposes of its reference to the 

bitmap shape after assigning it to the view device.

void SetViewDeviceColorProfile(gxViewDevice target, 

gxColorProfile profile)

{

register gxShape bitmapShape = GXGetViewDeviceBitmap(target);

SetShapeColorProfile(bitmapShape, profile);

GXSetViewDeviceBitmap(target, bitmapShape);

GXDisposeShape(bitmapShape);

}

The GXGetViewDeviceBitmap function is described on page 7-107; the 

GXSetViewDeviceBitmap function is described on page 7-108.

Getting and Setting a View Device’s View Group

You can use the GXGetViewDeviceViewGroup function to retrieve the view group that 

a view device belongs to, and you can use the GXSetViewDeviceViewGroup to change 

the view group of a view device. Listing 7-10 on page 7-54 shows an example of using 

GXSetViewDeviceViewGroup to reassign the copy of a view device from one view 

group to another.

The GXGetViewDeviceViewGroup function is described on page 7-109; the 

GXSetViewDeviceViewGroup function is described on page 7-109.



C H A P T E R  7

View-Related Objects

7-56 Using View-Related Objects

Getting and Setting a View Device’s Attributes and Tag References

You can examine the attributes of a view device object using the 

GXGetViewDeviceAttributes function. You can set the attributes of a view device 

object using the GXSetViewDeviceAttributes function. By setting attributes, you 

can influence whether the device bitmap is placed on an accelerator card and whether 

the device is active or inactive.

You can examine the list of references to tag objects currently associated with a view 

device object using the GXGetViewDeviceTags function. Once you create a tag 

object, you can attach it to a view device object using the GXSetViewDeviceTags 

function. You can attach as many tag objects as you like to a view device object.

Tag objects and the basic functions for manipulating them are described in the chapter 

“Tag Objects” in this book. That chapter also lists the common tag types defined and 

reserved by Apple Computer, Inc.

The GXGetViewDeviceAttributes function is described on page 7-110; the 

GXSetViewDeviceAttributes function is described on page 7-111. View device 

attributes are described in the section “View Device Attributes” on page 7-27. 

The GXGetViewDeviceTags function is described on page 7-112. The 

GXSetViewDeviceTags function is described on page 7-113. 

Getting and Setting a View Device’s Clip and Mapping

The clip and mapping properties of a view device control its active imaging area, its 

scale (pixel size), and its position in global space. For onscreen view devices and printing 

view devices, you cannot change the clip or mapping properties; they are set by 

QuickDraw GX. For offscreen view devices, you can set the clip and mapping yourself. 

The functions you use are GXGetViewDeviceClip, GXSetViewDeviceClip, 

GXGetViewDeviceMapping, and GXSetViewDeviceMapping.

Listing 7-11 is a utility routine that returns a mapping matrix that converts from local 

space (or from the identity mapping, if the view port is nil) to device space (or to 

global space, if the view device is nil). It uses GXGetViewDeviceMapping to retrieve 

the view device’s mapping matrix. (If the view device is nil, the routine uses the 

mapping matrix returned by the GXGetViewPortGlobalMapping function.) The 

routine also makes use of the MapMapping function, described in the mathematics 

chapter of Inside Macintosh: QuickDraw GX Environment and Utilities.



C H A P T E R  7

View-Related Objects

Using View-Related Objects 7-57

Listing 7-11 Returning the mapping from local to device space

static void GetSpaceMapping(gxViewPort port, gxViewDevice device, 

gxMapping *map)

{

if (port)

GXGetViewPortGlobalMapping(port, map);

else

ResetMapping(map);

if(device) 

{

gxMapping temp;

MapMapping(map, GXGetViewDeviceMapping(device, &temp));

}

}

The following code fragment is part of a printer driver routine that sets up a default 

view device. This section of code rescales the mapping matrix (vdMapping) of the view 

device (vd) from the default resolution (72 ppi, as specified by the identity matrix) to the 

horizontal and vertical resolution of the printer (kHorizHighRes and kVertHighRes). 

To do the scaling, the code uses the ScaleMapping function, described in the 

mathematics chapter of Inside Macintosh: QuickDraw GX Environment and Utilities. It then 

uses GXSetViewDeviceMapping to assign the scaled mapping to the view device.

Fixed xScale;

Fixed yScale;

xScale = FixRatio(kHorizHighRes, 72);

yScale = FixRatio(kVertHighRes, 72);

ResetMapping(&vdMapping);

ScaleMapping(&vdMapping, xScale, yScale, ff(0), ff(0));

GXSetViewDeviceMapping(vd, &vdMapping);

The GXGetViewDeviceClip function is described on page 7-102; the 

GXSetViewDeviceClip function is described on page 7-103. 

The GXGetViewDeviceMapping function is described on page 7-105; the 

GXSetViewDeviceMapping function is described on page 7-106.     



C H A P T E R  7

View-Related Objects

7-58 Using View-Related Objects

Identifying a Shape’s View Devices

The GXGetShapeGlobalViewDevices function returns a list of all view devices that a 

shape would actually appear in if it were drawn. The function can test the shape against 

all the shape’s view ports, or you can specify a single view port for the test.

You can use GXGetShapeGlobalViewDevices to avoid the overhead of testing the 

drawing characteristics (such as the colors) of shapes on devices that they cannot be 

drawn to. 

Listing 7-12 is part of a library routine that sets up a data structure for offscreen drawing 

through a given view port. This part of the code creates a full shape—which covers all of 

coordinate space—and passes it to GXGetShapeGlobalViewDevices to derive a count 

of all view devices that could be drawn on through the given port. (Note that, for the 

purpose of retrieving all the view devices of a view port, you could also use the 

GXGetViewPortViewDevices function.) 

Listing 7-12 Setting up a data structure for offscreen drawing

viewPortBuffer NewViewPortBuffer(gxViewPort port)

{

viewPortBuffer buffersHandle;

viewPortBufferRecord *buffers;

gxTransform xform;

gxShape area;

long deviceCount;

short i;

NilParamReturnNil(port); /* error check port parameter */

area = GXNewShape(gxFullType);

xform = GXNewTransform();

GXSetTransformViewPorts(xform, 1, &port);

GXSetShapeTransform(area, xform);

GXDisposeTransform(xform);

deviceCount = GXGetShapeGlobalViewDevices(area, port, nil);

.

. /* continued as Listing 7-13 on page 7-61 */

.

The GXGetShapeGlobalViewDevices function is described on page 7-115. 



C H A P T E R  7

View-Related Objects

Using View-Related Objects 7-59

Measuring a Shape in Device Space

You can use view device functions to measure a shape on a device in three ways:

■ The GXGetShapeDeviceBounds function measures the position and size of the 
bounding rectangle of a shape on a device, in device coordinates.

■ The GXGetShapeDeviceArea function determines the area of a shape (in pixels) on 
a device.

■ The GXGetShapeDeviceColors function determines the colors with which a shape 
would be drawn on a device. 

The GXGetShapeDeviceBounds function determines whether any part of a shape 

intersects a view device, and if so, returns the bounding rectangle of that part of the 

shape in device coordinates. You can thus use GXGetShapeDeviceBounds to measure 

the size of a shape on a view device and to compare it with other shapes on the device. 

(To measure a shape in the local space of a view port, you can use the 

GXGetShapeLocalBounds function; to measure a shape in the global space of a view 

group, use GXGetShapeGlobalBounds.)

The following is a fragment of a function that converts a QuickDraw GX shape on a 

device into a QuickDraw picture. It uses GXGetShapeDeviceBounds to get the shape’s 

bounding rectangle on the device, converts that rectangle into a QuickDraw rect 

structure, further converts it to QuickDraw local coordinates, and uses that to define the 

picture bounding rectangle. After that, the function converts the shape itself (not shown).

GXGetShapeDeviceBounds(theShape, 0, 0, &shapeBounds);

picRect.left = FixedToInt(shapeBounds.left);

picRect.top  = FixedToInt(shapeBounds.top);

picRect.right  = FixedToInt(shapeBounds.right);

picRect.bottom  = FixedToInt(shapeBounds.bottom);

GlobalToLocal((Point*) &picRect.top);

GlobalToLocal((Point*) &picRect.bottom);

thePicture = OpenPicture(&picRect);

.

. /* convert the shape (not shown) */

.

The QuickDraw functions GlobalToLocal and OpenPicture, and the data types 

Point and Rect are described in Inside Macintosh: Imaging With QuickDraw. 

Note

You do not need to write special functions to convert 
QuickDraw pictures into QuickDraw GX shapes. You can use 
the QuickDraw-to-QuickDraw GX translator for that; see the 
Macintosh environment chapter of Inside Macintosh: QuickDraw GX 
Environment and Utilities. ◆



C H A P T E R  7

View-Related Objects

7-60 Using View-Related Objects

The GXGetShapeDeviceBounds function is described on page 7-116. The 

GXGetShapeDeviceArea function is described on page 7-118. 

The GXGetShapeDeviceColors function is described on page 7-119.

GXGetShapeGlobalBounds function is described on page 7-125. 

The GXGetShapeLocalBounds function, described on page 7-96. 

Hit-Testing a Shape on a Device

The GXHitTestDevice function is one of several hit-testing functions provided 

by QuickDraw GX. Hit-testing in general is described in the chapter “Introduction to 

QuickDraw GX” in this book; shape parts for hit-testing are described in the chapter 

“Transform Objects” in this book.

You use GXHitTestDevice instead of GXHitTestShape or GXHitTestPicture—or 

before them—when it is important to take into account whether a shape is actually 

visible on a device. Unlike GXHitTestShape and GXHitTestPicture, 

GXHitTestDevice accounts for clipping and does not return successful hits for shapes 

that are not actually drawn.

Another significant difference is that the tolerance for GXHitTestDevice defines a 

rectangular area of pixels, not the circular geometry area used by GXHitTestShape and 

GXHitTestPicture. Thus you can use the tolerance value for GXHitTestDevice as 

something like a clip area, expanding it to cover an entire window or contracting it to 

one or a few complete pixels.

What GXHitTestDevice does not do that GXHitTestShape and 

GXHitTestPicture do is analyze the parts of a shape. If you are hit-testing in order to 

highlight specific parts of a shape, for example, you can first call GXHitTestDevice to 

determine which shape was actually hit, and then call GXHitTestShape or 

GXHitTestPicture to determine the part or parts to highlight.

The GXHitTestDevice function is described on page 7-120. The GXHitTestShape 

function is described in the chapter “Shape Objects” in this book. The 

GXHitTestPicture function is described in the picture shapes chapter of Inside 
Macintosh: QuickDraw GX Graphics.  

Using View Groups
This section demonstrates how to use QuickDraw GX view groups. It shows how 

you can

■ create and manipulate view group objects

■ set up an offscreen drawing environment

■ measure a shape in a view group



C H A P T E R  7

View-Related Objects

Using View-Related Objects 7-61

Creating and Manipulating View Group Objects

QuickDraw GX provides the GXNewViewGroup function to allow you to create a new 

view group object, and the GXDisposeViewGroup function to delete it. Normally, you 

create a view group only for the purpose of offscreen drawing. 

Listing 7-13 is a continuation of the routine in Listing 7-12 on page 7-58 that sets up a 

data structure for offscreen drawing through a given view port. This part of the code fills 

in various fields of the buffers data structure and calls GXNewViewGroup to create an 

offscreen view group. In addition, it calls GXNewViewPort to create an offscreen view 

port (slavePort) in the new group, and GXGetShapeGlobalViewDevices to copy 

all drawable devices from the original onscreen view port (port) into a list in the data 

structure.

Listing 7-13 Setting up a data structure for offscreen drawing

.

. /* continued from Listing 7-12 on page 7-58 */

.

buffersHandle = (viewPortBuffer) NewHandle(sizeof

(viewPortBufferRecord) + (deviceCount - 1) * 

sizeof(gxViewDevice));

NilParamReturnNil(port); /* error-check the handle */

HLock((Handle) buffersHandle);

buffers = *buffersHandle;

buffers->group = GXNewViewGroup();

buffers->masterPort = port;

buffers->slavePort = GXNewViewPort(buffers->group);

buffers->area = area;

buffers->draw = GXNewShape(gxPictureType);

buffers->deviceCount = deviceCount;

GXSetViewPortDither(buffers->slavePort, 

GXGetViewPortDither(port));

GXGetShapeGlobalViewDevices(area, port, buffers->devices);

Once you have created a view group object, you can assign view ports and view 

devices to it with the GXSetViewPortViewGroup function (as described under 

“Manipulating View Port Object Properties” beginning on page 7-42) and the 

GXSetViewDeviceViewGroup function (as described under “Manipulating View 

Device Object Properties” beginning on page 7-54). 



C H A P T E R  7

View-Related Objects

7-62 Using View-Related Objects

At any time, you can retrieve a list of view ports or view devices that belong 

to a view group by calling the functions GXGetViewGroupViewPorts and 

GXGetViewGroupViewDevices. See Listing 7-2 on page 7-44 for an example of the 

use of GXGetViewGroupViewPorts; see Listing 7-10 on page 7-54 for an example of 

the use of GXGetViewGroupViewDevices. 

When you have finished using an offscreen view group, you delete it with the 

GXDisposeViewGroup function. For an example of the use of GXDisposeViewGroup, 

see page 7-63.

The GXNewViewGroup function is described on page 7-122. The GXDisposeViewGroup 

function is described on page 7-122. 

The GXGetViewGroupViewPorts function is described on page 7-123. The 

GXGetViewGroupViewDevices function is described on page 7-124.   

Setting Up an Offscreen View Group

This section shows how to set up a view port for offscreen drawing. Examples of most of 

the steps shown here have already been presented elsewhere in this chapter, although 

not all together. 

Offscreen drawing requires creating a new view group, so that drawing does not conflict 

with the screen devices view group. You must also create a view port to draw into. To set 

up the view port, you must create a view device object; however, for offscreen drawing 

the view device object need not correspond to any physical device. Follow this typical 

sequence of steps to set up an offscreen view group:

1. Create a new view group.

2. Create a new view device in this view group, specifying a bit map that represents the 
area that you may want to copy onscreen later.

3. Create a new view port in this view group.

4. Retrieve the bitmap as a shape object of its own, so that you can later draw it directly 
onscreen. 

5. Create a transform object for your shapes, and assign the view port to its view port list.

Listing 7-14 is a partial example of a routine that sets up an offscreen drawing 

environment. It does not show how the bitmap shape (bitShape) for the device is set 

up. See the bitmap shapes chapter of Inside Macintosh: QuickDraw GX Graphics for 

information on bitmap shapes.



C H A P T E R  7

View-Related Objects

Using View-Related Objects 7-63

Listing 7-14 Setting up a view port and view group for offscreen drawing

gxShape myDraw, bitShape;

gxTransform myXform;

gxViewDevice myDevice;

gxViewPort myPort;

gxViewGroup myGroup;

.

. /* set up bitmap shape for offscreen view device */

.

myGroup = GXNewViewGroup();

myDevice = GXNewViewDevice(myGroup, bitShape);

myPort = GXNewViewPort(myGroup);

myDraw = GXGetViewDeviceBitmap(myDevice);

myXform = GXNewTransform();

GXSetTransformViewPorts(myXform, 1, &myPort);

The myDraw shape represents your offscreen drawing buffer. Whenever you draw a 

shape that has myXform as its transform object, drawing takes place offscreen, in the 

pixel image associated with myDraw. If you added a view port in the onscreen view 

group to the view port list of myXform, drawing could take place both offscreen and 

onscreen simultaneously.

It is useful to have a direct reference to myDraw because you can draw it itself, which 

would have the effect of transferring the offscreen buffer onto the screen (if myDraw 

references a transform object that references onscreen view ports). 

When you are finished with offscreen drawing, you can dispose of the objects you have 

created:

GXDisposeShape(myDraw);

GXDisposeTransform(myXform);

GXDisposeViewGroup(myGroup);

You do not have to explicitly dispose of your offscreen view port or view device, because 

calling GXDisposeViewGroup causes QuickDraw GX to dispose of all of its view ports 

and view devices. 

Measuring a Shape in Global Space

The GXGetShapeGlobalBounds function measures the bounding rectangle of a shape 

in global coordinates—that is, after the transform mapping has been applied to the shape 

geometry, and after all view port mappings have been applied. You can thus use 

GXGetShapeGlobalBounds to compare the true positions and sizes of any two shapes 

in the same view group, even if they do not share the same view port or do not appear 

on the same view device. (To compare the positions and sizes of two shapes in the same 

view port, you can use the GXGetShapeLocalBounds function; to measure a shape on 

a view device, use GXGetShapeDeviceBounds.)



C H A P T E R  7

View-Related Objects

7-64 Using View-Related Objects

Listing 7-15 is a library function used in offscreen drawing. The function returns the 

device characteristics (a bitmap structure plus an offset) of a particular “area,” the 

intersection of an offscreen view device and an offscreen view port. Area-characteristics 

structures are used by this library to store device-specific drawing information for each 

area within the offscreen view port occupied by the pixel image of a device. This listing 

uses GXGetShapeGlobalBounds to determine the intersection of the specified shape 

(area) with the specified view device (device), which determines the size of the image 

stored in the area-characteristics structure (x).

Listing 7-15 Returning the characteristics of an offscreen device area

static areaCharacteristics GetAreaCharacteristics(gxShape area, 

gxViewDevice device, 

gxViewPort port)
{

areaCharacteristics x; /* a bitmap structure & location */

gxRectangle bounds;

gxShape bitShape;

gxMapping map;

.

.

. /* get device bitmap and shape bounds on device */

bitShape = GXGetViewDeviceBitmap(device);

GXGetShapeGlobalBounds(area, port, nil, &bounds);

/* fill out the area-characteristics structure */
GXGetBitmap(bitShape, &x.bits, nil);

if (x.bits.space == gxIndexedSpace)

GXCloneColorSet(x.bits.set);

if (x.bits.profile)

GXCloneColorProfile(x.bits.profile);

GXDisposeShape(bitShape);

x.offset.x = bounds.left;

x.offset.y = bounds.top;

x.bits.width = FixedRound(bounds.right) - 

FixedRound(bounds.left);

x.bits.height = FixedRound(bounds.bottom) - 

FixedRound(bounds.top);

/* map the area offset back to local space, store in x */

InvertMapping(&map, GXGetViewPortGlobalMapping(port, &map));

MapPoints(&map, 1, &x.offset);

return x;

}



C H A P T E R  7

View-Related Objects

View-Related Objects Reference 7-65

The GXGetShapeGlobalBounds function is described on page 7-125.

The GXGetShapeLocalBounds function is described on page 7-96. The 

GXGetShapeDeviceBounds function is described on page 7-116.   

View-Related Objects Reference

This section provides reference information to the structures and functions that allow 

you to create and manipulate view related objects and alter their properties. It includes

■ descriptions of the constants and data types that are specific to view port, view 
device, and view group objects

■ descriptions of the QuickDraw GX functions that operate on view port objects

■ descriptions of the QuickDraw GX functions that operate on view device objects

■ descriptions of the QuickDraw GX functions that operate on view group objects

Constants and Data Types

This section describes the data types that you use to obtain and provide information 

about view port, view device, and view group objects.

The View Port Object 

QuickDraw GX provides you with access to an individual view port object through a 

gxViewPort reference:

typedef struct gxPrivateViewPortRecord *gxViewPort;

In this type definition, gxViewPort is a type-checked reference, not an actual pointer to 

any defined structure. The contents of the view port object are private. 

The Halftone Structure

Halftones are described by the gxHalftone structure:

struct gxHalftone{

Fixed angle;

Fixed frequency;

gxDotType method;

gxTintType tinting;

gxColor dotColor;

gxColor backgroundColor;

gxColorSpace tintSpace;

};



C H A P T E R  7

View-Related Objects

7-66 View-Related Objects Reference

Field descriptions

angle The orientation of the rows of dots in the halftone pattern. It is a 
fixed-point number between 0.0 and 360.0 that describes an angle, 
in degrees, clockwise from horizontal.

frequency The size of the cells, in terms of numbers of dots per inch. It can be 
any positive value.

method The halftone pattern itself and how it is filled: the shapes of the 
dots, the pattern of their arrangement, and the way in which a dot 
fills its cell as it enlarges. The supported methods are defined in the 
gxDotTypes enumeration, described next.

tinting The type of calculation by which the input color is to be 
approximated by a ratio of dot color and background color. Tint 
types are defined in the gxTintTypes enumeration, described 
on page 7-67.

dotColor The color of the dots used to form the halftone.

backgroundColor
The color of the background used to form the halftone.

tintSpace The color space the input color is converted to before the halftone 
calculations are made.

The halftone structure is described further in the section “Halftone” beginning on 

page 7-13.

Dot Types

The gxDotTypes enumeration defines the possible halftone dot types:

enum gxDotTypes{

gxRoundDot = 1,

gxSpiralDot,

gxSquareDot,

gxLineDot,

gxEllipticDot,

gxTriangleDot,

gxDispersedDot

};

typedef long gxDotType;

The meaning of each dot type is evident from its name, except perhaps for 

gxDispersedDot. The gxDispersedDot dot type uses a seemingly random pattern 

of small dots that gradually fill up each cell as the tint value increases. For a visual 

representation of each of these dot types, see Figure 7-6 on page 7-16.



C H A P T E R  7

View-Related Objects

View-Related Objects Reference 7-67

Tint Types

The gxTintTypes enumeration defines the possible ways of calculating the tint color 

(the color to be represented by a ratio of dot and background color) for a halftone.

enum gxTintTypes{

gxNoTint,

gxLuminanceTint,

gxAverageTint,

gxMixtureTint,

gxComponent1Tint,

gxComponent2Tint,

gxComponent3Tint,

gxComponent4Tint

};

typedef long gxTintType;

Constant descriptions

gxNoTint No tint color. In a halftone structure with all fields set to 0, the 
tinting field has a value of gxNoTint. 

gxLuminanceTint The tint color is the input color’s luminance.

gxAverageTint The tint color is the average of all components of the input color.

gxMixtureTint Project the input color onto the foreground-background color axis in 
tint color space. That projection point is the tint color.

gxComponent1Tint
Use only component 1 of the input color as the tint color.

gxComponent2Tint
Use only component 2 of the input color as the tint color.

gxComponent3Tint
Use only component 3 of the input color as the tint color.

gxComponent4Tint
Use only component 4 of the input color as the tint color.

For more information about halftone tints, see the section “Halftone” beginning on 

page 7-13. 



C H A P T E R  7

View-Related Objects

7-68 View-Related Objects Reference

View Port Attributes

The view port attributes are a set of flags that modify the behavior of the view port 

object. Constants for all recognized view port attributes are defined in the 

gxPortAttributes enumeration:

enum gxPortAttributes {

gxGrayPort = 0x0001, /* convert to gray space */

gxAlwaysGridPort = 0x0002, /* use gxDeviceGridStyle */

gxEnableMatchPort = 0x0004 /* perform color matching */

};

typedef long gxPortAttribute;

The individual view port attributes are described in Table 7-2 on page 7-20. 

The View Device Object

QuickDraw GX provides you with access to an individual view device object through a 

gxViewDevice reference:

typedef struct gxPrivateViewDeviceRecord *gxViewDevice;

In this type definition, gxViewDevice is a type-checked reference, not an actual pointer 

to any defined structure. The contents of the view device object are private. 

View Device Attributes

The view device attributes are a set of flags that modify the behavior of the view device 

object. Constants for all recognized view device attributes are defined in the 

gxDeviceAttributes enumeration:

enum gxDeviceAttributes{

gxDirectDevice = 0x01, /* pixel image must be accessible */

gxRemoteDevice = 0x02, /* pixel image may be on card */

gxInactiveDevice = 0x04 /* device is inactive */

};

  typedef long gxDeviceAttribute;

The individual view device attributes are described in Table 7-3 on page 7-27. 



C H A P T E R  7

View-Related Objects

View-Related Objects Reference 7-69

The View Group Object

QuickDraw GX provides you with access to an individual view group object through a 

gxViewGroup reference:

typedef struct gxPrivateViewGroupRecord *gxViewGroup;

In this type definition, gxViewGroup is a type-checked reference, not an actual pointer 

to any defined structure. The contents of the view group object are private. 

View Group Types

QuickDraw GX provides two predefined view group references for you, defined by the 

following constants:

#define gxAllViewDevices ((gxViewGroup) 0)

#define gxScreenViewDevices ((gxViewGroup) 1)

Constant descriptions

gxAllViewDevices
Not an actual reference, this constant represents all view groups, 
both offscreen and onscreen. You can use this constant when you 
want to use the GXGetViewGroupViewPorts function or the 
GXGetViewGroupViewDevices function to determine all the 
view ports or all the view devices for all view groups. You cannot 
use this constant to set a view port or view device.

gxScreenViewDevices
A reference to the view group that includes view device objects 
for all physical display devices. Only by drawing to view ports in 
this view group can you perform onscreen drawing. This is the one 
view group that QuickDraw GX provides for you. 

View Port Functions

This section describes the QuickDraw GX functions you use with view port objects. 

Using the functions described here, you can

■ create and manipulate view port objects

■ manipulate view port object properties

■ retrieve the view devices that intersect a view port

■ retrieve the view ports that intersect a shape

■ measure a shape in a view port



C H A P T E R  7

View-Related Objects

7-70 View-Related Objects Reference

To associate a view port object directly with a QuickDraw GX transform object, use 

the GXGetTransformViewPorts and GXSetTransformViewPorts functions. To 

associate a view port object indirectly with a QuickDraw GX shape object, use the 

GXGetShapeViewPorts and GXSetShapeViewPorts functions. All four functions are 

described in the chapter “Transform Objects” in this book.

Creating and Manipulating View Port Objects

The functions described in this section allow you to create and manipulate view port 

objects. With the functions in this section, you can 

■ create and dispose of view ports

■ copy view ports

■ test view ports for equality

GXNewViewPort

You can use the GXNewViewPort function to create a new view port.

gxViewPort GXNewViewPort(gxViewGroup group);

group A reference to the view group in which to create the view port.

function result A reference to the newly created view port.

DESCRIPTION

The GXNewViewPort function creates a new view port with default properties and 

assigns it to the specified view group. All other properties are set to their default values:

■ no parent view port or child view port

■ a clip that is a full shape

■ a mapping that is the identity mapping

■ a dither level of 1

■ no halftone

■ no attributes set

■ an empty tag list

To create a view port in the onscreen view group, pass the value 

gxScreenViewDevices for the group parameter. To obtain an offscreen view 

group reference to pass to this function, use the GXNewViewGroup function.



C H A P T E R  7

View-Related Objects

View-Related Objects Reference 7-71

SPECIAL CONSIDERATIONS

If no error occurs, the GXNewViewPort function creates a view port object; you are 

responsible for disposing of that object when you no longer need it. 

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For examples of the use of this function, see page 7-41, Listing 7-5 on page 7-47, and 

Listing 7-14 on page 7-63.

To dispose of a view port, use the GXDisposeViewPort function, described next. To 

dispose of all the view ports in a view group, use the GXDisposeViewGroup function, 

described on page 7-122.

The gxScreenViewDevices view group reference is described in the section “View 

Group Types” on page 7-69. The GXNewViewGroup function is described on page 7-122. 

GXDisposeViewPort

You can use the GXDisposeViewPort function to delete a view port object.

void GXDisposeViewPort(gxViewPort target);

target A reference to the view port object to dispose of.

DESCRIPTION

The GXDisposeViewPort function disposes of the target view port. If the target view 

port is a parent, its children are removed from their position in the hierarchy and each is 

made the root of a new hierarchy. 

SPECIAL CONSIDERATIONS

If the target view port is a parent associated with a window, its child view ports lose 

their association with the window.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
invalid_viewGroup_reference

Errors
invalid_viewPort_reference



C H A P T E R  7

View-Related Objects

7-72 View-Related Objects Reference

SEE ALSO

For an example of the use of this function, see page 7-41.

For information about view port hierarchies, see “Parent and Child View Ports” 

beginning on page 7-18.

GXCopyToViewPort

You can use the GXCopyToViewPort function to create a copy of an existing view port 

object.

gxViewPort GXCopyToViewPort(gxViewPort target, gxViewPort source);

target A reference to the view port to copy the source contents into. If you 
specify nil for this parameter, the GXCopyToViewPort function creates 
a new view port object.

source A reference to the view port whose contents you want to copy.

function result A reference to the copy (that is, the target view port) of the source view 
port.

DESCRIPTION

The GXCopyToViewPort function copies the contents of an existing view port object to 

another, or it creates a new view port object and copies the contents of an existing view 

port object to it. The function copies the clip, mapping, dither, halftone, attributes, and 

tag list (but not the parent or child view ports) of the view port object specified by the 

source parameter into the view port object specified by the target parameter. It 

clones, but does not copy, the tag objects in the tag list. The target view port is placed in 

the same view group as the source view port. The target view port is not associated with 

any window, whether or not the source view port is associated with one.

If you specify nil for the target parameter, the GXCopyToViewPort function creates 

a new view port object and copies the source properties into it. 

You can use the GXCopyToViewPort function to create a copy of a view port object and 

then modify it without changing the original.

SPECIAL CONSIDERATIONS

If you specify nil for the target parameter and no error occurs, the 

GXCopyToViewPort function creates a view port object; you are responsible for 

disposing of that object when you no longer need it.



C H A P T E R  7

View-Related Objects

View-Related Objects Reference 7-73

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example of the use of this function, see Listing 7-2 on page 7-44.

To create a new view port that has default values instead of being a copy of an existing 

view port, use the GXNewViewPort function, described on page 7-70.

To compare two view port objects for equality, use the GXEqualViewPort function, 

described in the next section.

GXEqualViewPort

You can use the GXEqualViewPort function to determine whether two view port 

objects are equal.

boolean GXEqualViewPort(gxViewPort one, gxViewPort two);

one A reference to a view port to test for equality.

two A reference to another view port to test for equality.

function result true if the view port specified by the one parameter is equal to the view 
port specified by the two parameter; false otherwise.

DESCRIPTION

The GXEqualViewPort function returns as its function result a Boolean value 

indicating whether the view port object specified by the one parameter is equal to the 

view port object specified by the two parameter.

For two view port objects to be equal, they must have identical mappings, clips, dithers, 

halftones, and attributes. They also must have the same parent view port, if any, and 

(therefore) be in the same view group. If one view port is attached to a window, the other 

view port must be attached to the same window. The tag lists or child view ports of the 

view ports need not be identical.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
invalid_viewPort_reference
viewPort_is_a_window (debugging version)

Errors
invalid_viewPort_reference



C H A P T E R  7

View-Related Objects

7-74 View-Related Objects Reference

SEE ALSO

To make a copy of a view port object that is equal by the criteria of this function, use the 

GXCopyToViewPort function, described in the previous section. 

Manipulating View Port Object Properties

The functions described in this section allow you to manipulate the properties of the 

view port object. With these functions you can 

■ get and set a view port’s clip

■ get and set a view port’s mapping, and get its global mapping

■ get and set a view port’s dither and halftone, and get its halftone device angle

■ get and set a view port’s parent view port and list of child view ports

■ get and set a view port’s view group

■ get and set a view port’s attributes and tag list

GXGetViewPortClip

You can use the GXGetViewPortClip function to examine the clip property of a view 

port object.

gxShape GXGetViewPortClip(gxViewPort source);

source A reference to the view port whose clip you wish to examine.

function result A reference to a newly created shape object that is a copy of the source 
view port’s clip.

DESCRIPTION

The GXGetViewPortClip function returns a shape object whose geometry defines the 

clip associated with the view port. The function returns nil if there is no clip. The clip 

shape is a copy of the view port’s clip; changing this shape does not change the view 

port’s clip.

SPECIAL CONSIDERATIONS

If no error occurs, the GXGetViewPortClip function creates a shape object; you are 

responsible for disposing of that object when you no longer need it. 



C H A P T E R  7

View-Related Objects

View-Related Objects Reference 7-75

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example of the use of this function, see Listing 7-3 on page 7-45.

To set the view port’s clip, use the GXSetViewPortClip function, described next. 

GXSetViewPortClip

You can use the GXSetViewPortClip function to set the clip property of a view port 

object.

void GXSetViewPortClip(gxViewPort target, gxShape clip);

target A reference to the view port whose clip you wish to set.

clip A reference to a shape object whose geometry describes the clip to be 
assigned.

DESCRIPTION

The GXSetViewPortClip function copies information from the shape object referenced 

by the clip parameter into the clip property of the view port object referenced by the 

target parameter. You can specify nil for the clip parameter, in which case this 

function sets the clip property of the target view port to a full clip. (A full clip indicates 

that QuickDraw GX should not apply view port clipping to shapes drawn to this view 

port.)

Although a filled rectangle shape is most typical for a view port clip, the new clip shape 

may be a geometric shape, a bitmap shape, or a glyph shape. It may not be a picture, 

text, or layout shape. 

■ If you specify a geometric shape, it must be in primitive form—that is, all the stylistic 
information about the shape must be incorporated into the shape’s geometry—
because this function copies only the geometry-related information from the shape 
you specify. It does not copy the information contained in the shape’s style. You can 
convert a shape to its primitive form using the GXPrimitiveShape function, which 
is described in Inside Macintosh: QuickDraw GX Graphics. You can also specify an 
empty or full shape for a clip.

Errors
out_of_memory
invalid_viewPort_reference



C H A P T E R  7

View-Related Objects

7-76 View-Related Objects Reference

■ If you specify a bitmap shape, it must have a pixel size of 1 and its color profile 
reference must be nil. In the bitmap, pixel values of 0 obscure drawing; pixel values 
of 1 do not restrict visibility. The GXSetViewPortClip function copies the pixel 
image from the bitmap to the clip property of the target view port.

■ If you specify a glyph shape, this function uses information from the glyph shape’s 
style object as well as its style list to determine the size, form, and position of the 
glyph outlines; those outlines are then used to clip drawing. The style list cannot have 
nil entries. A style object referenced by the glyph shape cannot be complex—that is, 
it cannot have a cap, join, dash, pattern, text face, font variation, tag list, or any of the 
properties used only by layout shapes.

Because it is copied into the view port, changing the clip shape after calling 

GXSetViewPortClip does not affect the view port’s clip.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For examples of the use of this function, see Listing 7-4 on page 7-46 and Listing 7-5 on 

page 7-47.

For information about geometric shapes and bitmap shapes, see Inside Macintosh: 
QuickDraw GX Graphics. For information about glyph shapes, see Inside 
Macintosh: QuickDraw GX Typography.

To retrieve a copy of the view port clip, use the GXGetViewPortClip function, 

described in the previous section. 

Errors
out_of_memory
invalid_viewPort_reference
colorProfile_must_be_nil (debugging version)
bitmap_pixel_size_must_be_1 (debugging version)
empty_shape_not_allowed (debugging version)
ignorePlatformShape_not_allowed (debugging version)
nil_style_in_glyph_not_allowed (debugging version)
complex_glyph_style_not_allowed (debugging version)
illegal_type_for_shape (debugging version)
shapeFill_not_allowed (debugging version)
viewPort_is_a_window (debugging version)

Notices (debugging version)
clip_already_set
tags_in_shape_ignored



C H A P T E R  7

View-Related Objects

View-Related Objects Reference 7-77

GXGetViewPortMapping

You can use the GXGetViewPortMapping function to retrieve the mapping for a view 

port object.

gxMapping *GXGetViewPortMapping(gxViewPort source, 

gxMapping *map);

source A reference to the view port whose mapping you wish to examine.

map A pointer to a mapping structure. On return, this mapping contains a 
copy of the information from the mapping property of the source view 
port.

function result A pointer to a copy of the mapping property of the source view port. 
(This value is the same as the value returned in the map parameter.)

DESCRIPTION

The GXGetViewPortMapping function copies the mapping matrix information from 

the mapping property of the source view port object into the mapping structure pointed 

to by the map parameter. The function also returns as its function result a pointer to this 

mapping structure.

To make changes to the source view port’s mapping property, you can alter the 

information returned by this function, and then use the GXSetViewPortMapping 

function to reassign the altered mapping to the source view port.

If the source view port is the root view port of a view port hierarchy, this function gives 

the same results as GXGetViewPortGlobalMapping. 

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For examples of the use of this function, see Listing 7-3 on page 7-45 and Listing 7-6 on 

page 7-48.

To set a view port’s mapping, use the GXSetViewPortMapping function, described 

next. 

For information about the gxMapping structure, see the mathematics chapter of Inside 
Macintosh: QuickDraw GX Environment and Utilities.

Errors
invalid_viewPort_reference
parameter_is_nil (debugging version)



C H A P T E R  7

View-Related Objects

7-78 View-Related Objects Reference

GXSetViewPortMapping

You can use the GXSetViewPortMapping function to assign a mapping to a view port 

object.

void GXSetViewPortMapping(gxViewPort target, 

const gxMapping *map);

target A reference to the view port object you want to assign the mapping to.

map A pointer to a mapping structure containing the mapping matrix to 
assign to the target view port.

DESCRIPTION

The GXSetViewPortMapping function copies information from the mapping structure 

pointed to by the map parameter into the mapping property of the target view port. 

You can specify nil for the map parameter, in which case this function sets the mapping 

property of the target view port as follows:

■ If the clip shape is a full shape, which specifies no clipping, the function sets the 
mapping property to the identity mapping.

■ If a clip exists, the function sets the mapping’s translation component to the upper-left 
corner of the clip. It sets the other components of the mapping to identity.

You can provide arbitrary values for the elements of the mapping structure pointed to by 

the map parameter, with one exception: the lower-right element of the matrix (element 

[2][2]) may not be 0.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For examples of the use of this function, see Listing 7-3 on page 7-45 and Listing 7-5 on 

page 7-47.

To get a view port’s mapping, use the GXGetViewPortMapping function, described in 

the previous section. 

For information about the gxMapping structure, see the mathematics chapter of Inside 
Macintosh: QuickDraw GX Environment and Utilities.

Errors
invalid_viewPort_reference
viewPort_is_a_window (debugging version)



C H A P T E R  7

View-Related Objects

View-Related Objects Reference 7-79

GXGetViewPortGlobalMapping

You can use the GXGetViewPortGlobalMapping function to examine the resultant 

mapping after concatenating the mapping properties of a view port object with all its 

parent view ports.

gxMapping *GXGetViewPortGlobalMapping(gxViewPort source,

gxMapping *map);

source A reference to the view port whose global mapping you wish to examine.

map A pointer to a mapping. On return, this parameter contains the 
concatenation of all the mapping properties of this view port and the 
view ports from which it descends.

function result A pointer to a copy of the map parameter. (This value is the same as the 
value returned in the map parameter.)

DESCRIPTION

The GXGetViewPortGlobalMapping function returns the global mapping of the 

source view port in its view group. This mapping is the result of concatenating the view 

port’s mapping with that of its parent and that of its parent’s parent, and so on; the 

concatenation ascends the view port’s branch in the hierarchy, from its position to the 

root view port, inclusive.

This function is useful when you want to determine how a shape is mapped through the 

root view port into the view group; that is, what its position and dimensions are in 

global space.

If the source view port is the root view port of a view port hierarchy, this function gives 

the same results as GXGetViewPortMapping. 

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example of the use of this function, see Listing 7-11 on page 7-57.

To get a view port’s mapping without concatenating it with the mappings of parent view 

ports, use the GXGetViewPortMapping function, described on page 7-77. 

For a discussion of coordinate systems, global space, and view port hierarchies, see the 

section “Global Space” beginning on page 7-34. 

For information about the gxMapping structure, see the mathematics chapter of Inside 
Macintosh: QuickDraw GX Environment and Utilities.   

Errors
invalid_viewPort_reference



C H A P T E R  7

View-Related Objects

7-80 View-Related Objects Reference

GXGetViewPortDither

You can use the GXGetViewPortDither function to examine the dither level of a view 

port object.

long GXGetViewPortDither(gxViewPort source);

source A reference to the view port whose dither level you wish to examine.

function result The view port’s dither level.

DESCRIPTION

The GXGetViewPortDither function returns the view port dither level, which is a 

value between 0 and 16, inclusive. The values 0 and 1 both mean do not dither.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example of the use of this function, see Listing 7-13 on page 7-61.

To set the dither level, use the GXSetViewPortDither function, described next.

For information about the dither property, see “Dither” beginning on page 7-10.

GXSetViewPortDither

You can use the GXSetViewPortDither function to assign a dither level to a view port 

object.

void GXSetViewPortDither(gxViewPort target, long level);

target A reference to the view port whose dither level you wish to set.

level The new dither level.

DESCRIPTION

The GXSetViewPortDither function specifies the default dither level for the target 

view port. You can specify a level in the range of 0 to 16, inclusive. Levels 0 and 1 specify 

no dithering, otherwise the level specifies the maximum number of pixels in the dither 

pattern.

Errors
invalid_viewPort_reference



C H A P T E R  7

View-Related Objects

View-Related Objects Reference 7-81

SPECIAL CONSIDERATIONS

You can set the ink object’s attribute, gxSuppressDitherInk, if you want to ignore the 

view port’s dither level for shapes drawn with a specific ink. For more information about 

ink object attributes, see the chapter “Ink Objects” in this book.

Dithering does not occur on 32 bit-per-pixel devices, regardless of the dither level.

SPECIAL CONSIDERATIONS 

Version 1.0 of QuickDraw GX does not guarantee useful results for dither levels greater 

than 4.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For examples of the use of this function, see Listing 7-1 on page 7-42 and Listing 7-13 on 

page 7-61.

To get a view port’s dither level, use the GXGetViewPortDither function, described in 

the previous section.

For information about the dither property, see “Dither” beginning on page 7-10. 

GXGetViewPortHalftone

You can use the GXGetViewPortHalftone function to examine the halftone property 

of a view port object.

boolean GXGetViewPortHalftone(gxViewPort source, 

gxHalftone *data);

source A reference to the view port whose halftone you wish to examine.

data A pointer to a halftone structure. On return, the structure contains the 
view port’s halftone information.

function result true if the halftone exists; otherwise false.

Errors
invalid_viewPort_reference
parameter_out_of_range (debugging version)

Notices (debugging version)
dither_already_set



C H A P T E R  7

View-Related Objects

7-82 View-Related Objects Reference

DESCRIPTION

The GXGetViewPortHalftone function copies the view port’s halftone into the 

structure you provide, pointed to by the data parameter. If a halftone does not exist, 

the contents of the structure pointed to by the data parameter are not changed.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For information about the halftone property, see “Halftone” beginning on page 7-13.

To set the halftone of a view port, use the GXSetViewPortHalftone function, 

described next.

GXSetViewPortHalftone

You can use the GXSetViewPortHalftone function to assign a halftone property to a 

view port object.

void GXSetViewPortHalftone(gxViewPort target,

const gxHalftone *data);

target A reference to the view port whose halftone you wish to change.

data A pointer to a halftone structure containing the data with which to set the 
view port’s halftone property.

DESCRIPTION

The GXSetViewPortHalftone function sets the halftone for the target view port. If the 

data parameter is set to nil, halftones are not used when drawing to this view port. 

ERRORS, WARNINGS, AND NOTICES

Errors
invalid_viewPort_reference

Errors
invalid_viewPort_reference
frequency_parameter_out_of_range (debugging version)
tinting_parameter_out_of_range (debugging version)
method_parameter_out_of_range (debugging version)
space_may_not_be_indexed (debugging version)
colorSpace_out_of_range (debugging version)

Notices (debugging version)
halftone_already_set



C H A P T E R  7

View-Related Objects

View-Related Objects Reference 7-83

SEE ALSO

For an example of the use of this function, see Listing 7-1 on page 7-42.

For information about the halftone property, see “Halftone” beginning on page 7-13.

To set the halftone of a view port, use the GXGetViewPortHalftone function, 

described in the previous section. 

GXGetHalftoneDeviceAngle

You can use the GXGetHalftoneDeviceAngle function to determine the actual angle a 

halftone is drawn with on a particular view device.

Fixed GXGetHalftoneDeviceAngle(gxViewDevice source, 

const gxHalftone *data);

source A reference to the view device whose halftone angle you wish to examine.

data A pointer to a halftone structure that specifies the characteristics of a 
halftone.

function result The halftone angle as it would be drawn on the view device.

DESCRIPTION

The GXGetHalftoneDeviceAngle function returns the actual angle that the specified 

halftone would be drawn with on the source view device. The contents of the halftone 

structure pointed to by the data parameter are not changed.

The halftone angle on the view device may be different from the one you set with the 

GXSetViewPortHalftone function because the view device’s resolution interacts with 

the halftone frequency, which specifies the dot size in cells per inch, and the view 

device’s grid pattern.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For information about the halftone property, see “Halftone” beginning on page 7-13.

To get the halftone of a view port, use the GXGetViewPortHalftone function, 

described on page 7-81.

To obtain a list of view devices that intersect a view port, use the 

GXGetViewPortViewDevices function, described on page 7-94.   

Errors
invalid_viewDevice_reference



C H A P T E R  7

View-Related Objects

7-84 View-Related Objects Reference

GXGetViewPortParent

You can use the GXGetViewPortParent function to retrieve the parent view port of a 

view port object.

gxViewPort GXGetViewPortParent(gxViewPort source);

source A reference to the view port whose parent you want to examine.

function result A reference to the source view port’s parent view port.

DESCRIPTION

The GXGetViewPortParent function returns the parent view port of the source view 

port, or nil if the view port has no parent (that is, if it is the root view port in a 

hierarchy).

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For information about view port hierarchies and the parent view port property, see 

“Parent and Child View Ports” beginning on page 7-18. 

To set the parent of a view port, use the GXSetViewPortParent function, described 

next. 

To get the child view port list of a view port, use the GXGetViewPortChildren 

function, described on page 7-86. To set the child view port list of a view port, use the 

GXSetViewPortChildren function, described on page 7-87.

GXSetViewPortParent

You can use the GXSetViewPortParent function to assign a parent view port to a view 

port object.

void GXSetViewPortParent(gxViewPort target, gxViewPort parent);

target A reference to the view port whose parent you want to set.

parent A reference to the target view port’s new parent.

Errors
invalid_viewPort_reference



C H A P T E R  7

View-Related Objects

View-Related Objects Reference 7-85

DESCRIPTION

The GXSetViewPortParent function replaces the target’s parent view port with the 

view port specified in the parent parameter. It also adds the target view port to the 

parent’s list of child view ports. If the target view port is in a different view group from 

the new parent view port, the target view port is reassigned to the parent’s view group, 

which also causes the target’s child view ports to be assigned to the new parent’s view 

group as well. 

If you set the parent parameter to nil, this function sets the target view port to have 

no parent; the target view port then becomes the root of a new view port hierarchy.

SPECIAL CONSIDERATIONS

View port hierarchies cannot contain circular references; that is, a view port cannot have 

itself or any of its descendents as its parent.

You cannot assign a parent view port to a window view port (one attached to a 

Macintosh window).

The view ports in a hierarchy must all be in the same view group.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example of the use of this function, see Listing 7-5 on page 7-47.

For information about view port hierarchies and the parent view port property, see 

“Parent and Child View Ports” beginning on page 7-18. 

To get the parent of a view port, use the GXGetViewPortParent function, described in 

the previous section. 

To get the child view port list of a view port, use the GXGetViewPortChildren 

function, described next. To set the child view port list of a view port, use the 

GXSetViewPortChildren function, described on page 7-87. 

Errors
invalid_viewPort_reference
viewPort_is_a_window (debugging version)
viewPort_cannot_contain_itself (debugging version)



C H A P T E R  7

View-Related Objects

7-86 View-Related Objects Reference

GXGetViewPortChildren

You can use the GXGetViewPortChildren function to retrieve the list of child view 

ports of a view port object.

long GXGetViewPortChildren(gxViewPort source, gxViewPort list[]);

source A reference to the view port whose child view ports you wish to examine.

list An array of view port references. On return, contains the child view port 
list of the source view port.

function result The number of references in the child view port list of the source view 
port.

DESCRIPTION

The GXGetViewPortChildren function retrieves the list of child view ports of the 

source view port. It also returns, as its function result, the number of references in the 

list. The list and the number returned by this function do not include children of children. 

The view ports are placed in the list array in the order they were added as children.

If you set the list parameter to nil, GXGetViewPortChildren does not retrieve a 

list of references; it only returns the number of child view port objects. Therefore, you 

typically call this function twice: first to get the size of array to allocate for the list 

parameter, and second to retrieve the list itself.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For information about view port hierarchies and the child view port list property, see 

“Parent and Child View Ports” beginning on page 7-18. 

To set the child view port list of a view port, use the GXSetViewPortChildren 

function, described next. 

To get the parent of a view port, use the GXGetViewPortParent function, described on 

page 7-84. To set the parent of a view port, use the GXSetViewPortParent function, 

described in the previous section. 

Errors
invalid_viewPort_reference



C H A P T E R  7

View-Related Objects

View-Related Objects Reference 7-87

GXSetViewPortChildren

You can use the GXSetViewPortChildren function to assign a list of child view ports 

to a view port object.

void GXSetViewPortChildren(gxViewPort target, long count, 

 const gxViewPort list[]);

target A reference to the view port whose children you wish to set.

count The number of references in the child view port list.

list The array of view port references that is the new child view port list.

DESCRIPTION

The GXSetViewPortChildren function sets each of the view ports specified in the 

list parameter to have the target view port as its parent, and assigns the list as the 

child view port list of the target view port. Previous children of the target view port are 

assigned to have no parent. 

If the target parameter is set to nil, each view port in the list is assigned to have no 

parent. If a child view port in the list is in a different view group than the target view 

port’s view group, the child view port is changed to be in the view group of the target 

view port.

SPECIAL CONSIDERATIONS

View port hierarchies cannot contain circular references; that is, a view port cannot have 

itself or any of its ancestors as its child.

The view ports in a hierarchy must all be in the same view group.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For information about view port hierarchies and the child view port list property, see 

“Parent and Child View Ports” beginning on page 7-18. 

To get the child view port list of a view port, use the GXGetViewPortChildren 

function, described in the previous section. 

To get the parent of a view port, use the GXGetViewPortParent function, described on 

page 7-84. To set the parent of a view port, use the GXSetViewPortParent function, 

described on page 7-84. 

Errors
invalid_viewPort_reference
viewPort_cannot_contain_itself (debugging version)



C H A P T E R  7

View-Related Objects

7-88 View-Related Objects Reference

GXGetViewPortViewGroup

You can use the GXGetViewPortViewGroup function to determine the view group that 

a view port is part of.

gxViewGroup GXGetViewPortViewGroup(gxViewPort source);

source A reference to the view port whose view group you wish to examine.

function result A reference to the view group that the source view port is part of.

DESCRIPTION

The GXGetViewPortViewGroup returns a reference to the source view port’s view 

group. If it is the onscreen view group, the returned value is gxScreenViewDevices.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To set a view port’s view group, use the GXSetViewPortViewGroup function, 

described next.

The gxScreenViewDevices view group reference is described in the section “View 

Group Types” on page 7-69. 

GXSetViewPortViewGroup

You can use the GXSetViewPortViewGroup function to assign a view port object to a 

new view group.

void GXSetViewPortViewGroup(gxViewPort target, gxViewGroup group);

target A reference to the view port whose view group you wish to change.

group A reference to the view group to which the view port is to be assigned.

Errors
invalid_viewPort_reference



C H A P T E R  7

View-Related Objects

View-Related Objects Reference 7-89

DESCRIPTION

The GXSetViewPortViewGroup function assigns the target view port to the specified 

view group. Child view ports of the target view port are also assigned to that view group.

To assign a view port to the onscreen view group, pass the value 

gxScreenViewDevices for the group parameter. To obtain an offscreen view 

group reference to pass to this function, use the GXNewViewGroup function.

SPECIAL CONSIDERATIONS

The view ports in a hierarchy must all be in the same view group.

You cannot change the view group of a window view port (one attached to a Macintosh 

window).

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example of the use of this function, see Listing 7-2 on page 7-44.

To get a view port’s view group, use the GXGetViewPortViewGroup function, 

described in the previous section.

The gxScreenViewDevices view group reference is described in the section “View 

Group Types” on page 7-69. 

The GXNewViewGroup function is described on page 7-122. 

GXGetViewPortAttributes

You can use the GXGetViewPortAttributes function to examine which attributes of a 

view port object are set.

gxPortAttribute GXGetViewPortAttributes(gxViewPort source);

source A reference to the view port whose attributes you wish to examine.

function result The view port attributes of the source view port.

Errors
invalid_viewPort_reference
invalid_viewGroup_reference
viewPort_is_a_window (debugging version)

Notices (debugging version)
viewPort_already_in_viewGroup



C H A P T E R  7

View-Related Objects

7-90 View-Related Objects Reference

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

View port attributes are described in the section “View Port Attributes” on page 7-20.

To set a view port’s attributes, use the GXSetViewPortAttributes function, 

described next.

GXSetViewPortAttributes

You can use the GXSetViewPortAttributes function to set or clear the attributes of a 

view port object.

void GXSetViewPortAttributes(gxViewPort target, 

gxPortAttribute attributes);

target A reference to the view port whose attributes you wish to set.

attributes The new view port attributes to be assigned.

DESCRIPTION

The GXSetViewPortAttributes function sets the attributes of the view port object 

referenced in the target parameter to those specified in the attributes parameter. If 

you pass gxNoAttributes for the attributes parameter, all attributes are cleared.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example of the use of this function, see Listing 7-1 on page 7-42.

View port attributes are described in the section “View Port Attributes” on page 7-20.

To examine a view port’s attributes, use the GXGetViewPortAttributes function, 

described in the previous section. 

Errors
invalid_viewPort_reference

Errors
invalid_viewPort_reference
parameter_out_of_range (debugging version)

Notices (debugging version)
attributes_already_set



C H A P T E R  7

View-Related Objects

View-Related Objects Reference 7-91

GXGetViewPortTags

You can use the GXGetViewPortTags function to examine one or more of the tag 

objects associated with a view port object.

long GXGetViewPortTags(gxViewPort source, long tagType, 

long index, long count, gxTag items[]);

source A reference to the view port whose tag list you want to examine.

tagType The type of tag object to search for. A value of 0 indicates that you want to 
look for all tag types.

index The (1-based) index of the first such tag reference to return.

count The number of tag references to return.

items An array to hold the returned tag references.

function result The number of tag references found that fit the criteria. 

DESCRIPTION

The GXGetViewPortTags function searches the tag list of the source view port object 

for references to tag objects with the tag type specified by the tagType parameter. If you 

specify 0 for the tagType parameter, the GXGetViewPortTags function searches all 

tag types. 

You can use the index and the count parameters to specify which tag references of the 

appropriate type the GXGetViewPortTags function should return. The index 

parameter indicates the first tag reference to return and the count parameter indicates 

how many tag references to return. The index parameter must be greater than 0. The 

count parameter must be greater than 0 or equal to the gxSelectToEnd constant (–1), 

which indicates that all tag references (starting with the tag reference indicated by the 

index parameter) should be returned.

The function result is the number of tag references found that fit the criteria. If you pass 

a value other than nil for the items parameter, the GXGetViewPortTags function 

returns in it the tag references that were found.

Typically, you call this function once with a nil value for the items parameter to 

determine the number of matching tag references. Then you allocate an appropriately 

sized array and call the function a second time to obtain the references themselves.



C H A P T E R  7

View-Related Objects

7-92 View-Related Objects Reference

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Tag objects are discussed in the chapter “Tag Objects” in this book. 

To change the set of tag references associated with a view port, use the 

GXSetViewPortTags function, described next.

GXSetViewPortTags

You can use the GXSetViewPortTags function to add, remove, or replace tag objects 

associated with a view port object.

void GXSetViewPortTags(gxViewPort target, long tagType, 

long index, long oldCount, 

long newCount, const gxTag items[]);

target A reference to the view port whose tag list you want to alter.

tagType The type of tag objects to replace. A value of 0 indicates that you want to 
replace tags of all types.

index The (1-based) index of the first tag reference (to a tag object of the 
appropriate type) to replace.

oldCount The number of tag references to replace. A value of 0 specifies that you 
want to insert tag references before the tag reference indicated by the 
index parameter, rather than replace tag references. A value of –1 (the 
gxSelectToEnd constant) specifies that all tag references of the 
requested type, starting with the tag reference indicated by the index 
parameter, should be replaced.

newCount The number of tag references to insert. A value of 0 specifies that there are 
no tag references to insert; the existing tag references that match the 
criteria you specify are removed from the source shape’s tag list and 
disposed of.

items An array of tag references to insert in the tag list.

Errors
out_of_memory
invalid_viewPort_reference
index_is_less_than_one (debugging version)
count_is_less_than_one (debugging version)

Warnings
index_out_of_range
count_out_of_range



C H A P T E R  7

View-Related Objects

View-Related Objects Reference 7-93

DESCRIPTION

The GXSetViewPortTags function allows you add tag references to a view port 

object’s tag list, to remove tag references from the list, or to replace tag references in the 

list with new tag references. In any of these three cases, the target parameter specifies 

the view port object to be modified, the newCount parameter specifies the number of tag 

references to add, and the items parameter provides the new tag references.

■ To add tag references, set the oldCount parameter to 0. Use the tagType and the 
index parameters to specify where to add the new tag references. (For example, if 
you specify nil for the tagType parameter and 1 for the index parameter, this 
function inserts the new tag references before the current tag references. If you specify 
a value other than nil for the tagType parameter and a value of 2 for the index 
parameter, the function inserts the new tag references before the second tag reference 
with a tag type matching the tagType parameter.)

■ To remove tag references, set the newCount parameter to 0 and the items parameter 
to nil. You can use the index and the oldCount parameters to specify which tag 
references (of the specified type) should be removed. The index parameter indicates 
the first tag reference (of the specified type) to remove and the oldCount parameter 
indicates how many tag references (of the specified type) to remove. 

■ To replace tag references, use the tagType, index, and oldCount parameters to 
indicate which tag references to replace, and use the newCount and items 
parameters to specify the new tag references to add. If newCount is greater than 
oldCount, the extra tag references are placed immediately adjacent to the last tag 
reference replaced.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Tag objects are discussed in the chapter “Tag Objects” in this book. 

To examine the set of tag references associated with a view port, use the 

GXGetViewPortTags function, described in the previous section.   

Errors
out_of_memory
invalid_viewPort_reference
tag_is_nil
parameter_is_nil (debugging version)
inconsistent_parameters (debugging version)
parameter_out_of_range (debugging version)
index_is_less_than_zero (debugging version)
cannot_dispose_locked_tag (debugging version)

Warnings
index_out_of_range
count_out_of_range

Notices (debugging version)
tag_already_set



C H A P T E R  7

View-Related Objects

7-94 View-Related Objects Reference

Retrieving the View Devices That Intersect a View Port

The function described in this section allows you to determine the view devices that a 

view port can draw to.

GXGetViewPortViewDevices

You can use the GXGetViewPortViewDevices function to determine all of the view 

device objects that shapes drawn to a view port can display on.

long GXGetViewPortViewDevices(gxViewPort source, 

gxViewDevice list[]);

source A reference to the view port whose view devices you wish to examine.

list An array of view device references. On return, contains the references to 
the view devices that the source view port can draw to.

function result The number of view device references in the list array.

DESCRIPTION

The GXGetViewPortViewDevices function determines which view devices can 

display the contents of the source view port, and places a list of references to those view 

devices in the list parameter. It also returns the number of view devices in the list. The 

view devices returned are those, in the same view group as the view port, whose clip 

areas intersect the view port’s clip area. 

If you set the list parameter to nil, GXGetViewPortViewDevices does not return a 

list of references; it only returns the number of view device references that would be in 

the list. Thus, you typically call this function twice: first to get the size of array to allocate 

for the list parameter, and second to retrieve the list itself. 

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example of the use of this function, see Listing 7-7 on page 7-49.

Errors
invalid_viewPort_reference



C H A P T E R  7

View-Related Objects

View-Related Objects Reference 7-95

Retrieving the View Ports That Intersect a Shape

The function described in this section allows you to determine which view ports can 

display a shape object.

GXGetShapeGlobalViewPorts

You can use the GXGetShapeGlobalViewPorts function to determine all of the view 

ports that intersect the area of a shape.

long GXGetShapeGlobalViewPorts(gxShape source, gxViewPort list[]);

source A reference to the shape whose view ports you wish to examine.

list An array of view port references. On return, contains the references to the 
view ports that the shape can draw to.

function result The number of view port references in the list array.

DESCRIPTION

The GXGetShapeGlobalViewPorts function retrieves a list of the view ports that the 

source shape may draw to. If a view port is specified in the transform object associated 

with the shape, and if the transformed shape is not completely clipped by the view 

port’s clip shape, the view port is put in the list returned by this function. The view ports 

need not all be in the same view group.

If you set the list parameter to nil, GXGetShapeGlobalViewPorts does not fill 

out the list of references; it only returns the number of view port references that would 

be in the list (which may be 0). Thus, you typically call this function twice: first to get the 

size of array to allocate for the list parameter, and second to retrieve the list itself. 

As one application of this function, you could first call GXGetShapeGlobalViewPorts 

to determine the view ports to which a shape is drawn. You then could use the view 

ports in calls to GXGetShapeGlobalViewDevices, to determine the view devices a 

given shape would be drawn to.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The GXGetShapeGlobalViewDevices function is described on page 7-115. 

Errors
out_of_memory
shape_is_nil



C H A P T E R  7

View-Related Objects

7-96 View-Related Objects Reference

Measuring a Shape in Local Coordinates

The function described in this section allows you to measure the size of a shape as it 

appears in its view ports—in local coordinates, after its transform mapping has been 

applied. Other QuickDraw GX functions are available to measure shapes in other 

contexts:

■ To determine a shape’s bounding rectangle in global coordinates, use the 
GXGetShapeGlobalBounds function, described on page 7-125. 

■ To determine a shape’s bounding rectangle on a view device, use the 
GXGetShapeDeviceBounds function, described on page 7-116.

■ To determine a shape’s bounding rectangle in geometry-space coordinates, use the 
GXGetShapeBounds function, described in the geometric operations chapter of Inside 
Macintosh: QuickDraw GX Graphics. 

GXGetShapeLocalBounds

You can use the GXGetShapeLocalBounds function to determine the bounding 

rectangle of a shape in local coordinates.

gxRectangle *GXGetShapeLocalBounds(gxShape source, 

gxRectangle *bounds);

source A reference to the shape whose bounding rectangle you wish to 
determine in local coordinates.

bounds A pointer to a rectangle structure. On return, it contains the dimensions of 
the bounding rectangle.

function result A rectangle that defines the bounds of the shape in local coordinates. (It is 
the same as the rectangle returned in the bounds parameter.)

DESCRIPTION

The GXGetShapeLocalBounds function returns the bounding rectangle of the source 

shape after the shape’s transform mapping and style have been applied. The dimensions 

of the rectangle are in the shape’s local coordinates. The rectangle pointed to by the 

bounds parameter also receives the bounding rectangle in local coordinates.



C H A P T E R  7

View-Related Objects

View-Related Objects Reference 7-97

To determine a shape’s bounding rectangle in geometry-space coordinates, use the 

GXGetShapeBounds function. To determine a shape’s bounding rectangle in global 

coordinates, use the GXGetShapeGlobalBounds function. To determine a shape’s 

bounding rectangle on a view device, use the GXGetShapeDeviceBounds function.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example of the use of this function, see Listing 7-8 on page 7-51.

The GXGetShapeBounds function is described in the geometric operations chapter of 

Inside Macintosh: QuickDraw GX Graphics. The GXGetShapeGlobalBounds function is 

described on page 7-125. The GXGetShapeDeviceBounds function is described on 

page 7-116.

For information about coordinate spaces, see the section “About Drawing, Coordinate 

Conversion, and Clipping” beginning on page 7-30.   

View Device Functions

This section describes the QuickDraw GX functions you use with view device objects. 

Using the functions described here, you can 

■ create and manipulate view device objects and their properties

■ retrieve the view devices that intersect a shape

■ measure and analyze a shape on a device, including hit-testing a shape on a device

Creating and Manipulating View Device Objects

The functions described in this section allow you to create and manipulate view device 

objects. With the functions in this section, you can

■ create and dispose of view devices

■ copy view devices

■ test view devices for equality

Errors
out_of_memory
shape_is_nil
parameter_is_nil (debugging version)



C H A P T E R  7

View-Related Objects

7-98 View-Related Objects Reference

GXNewViewDevice

You can use the GXNewViewDevice function to create a new view device object.

gxViewDevice GXNewViewDevice (gxViewGroup group, 

 gxShape bitmapShape);

group A reference to the view group in which to create the view device.

bitmapShape
A reference to a bitmap shape that defines the view device’s imaging area.

function result A reference to the newly created view device object.

DESCRIPTION

The GXNewViewDevice function creates a new view device object in the specified view 

group. The bitmapShape parameter references a bitmap shape whose bitmap structure 

specifies the height, width, and pixel depth (bits per pixel) of the device, plus any color 

set or color profile used by the device. The remaining properties have default values:

■ a clip that is a full shape

■ a mapping that is the identity mapping

■ no attributes set

■ an empty tag list

To obtain an offscreen view group reference to pass to this function, use the 

GXNewViewGroup function. To create a view device in the onscreen view group, pass 

the value gxScreenViewDevices for the group parameter. 

SPECIAL CONSIDERATIONS

The bitmap shape that you pass to this function cannot not have a disk-based pixel 

image.

If no error occurs, the GXNewViewDevice function creates a view device object; you are 

responsible for disposing of that object when you no longer need it. 

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
shape_is_nil
invalid_viewGroup_reference
illegal_type_for_shape (debugging version)



C H A P T E R  7

View-Related Objects

View-Related Objects Reference 7-99

SEE ALSO

For examples of the use of this function, see Listing 7-9 on page 7-53 and Listing 7-14 on 

page 7-63.

To dispose of a view device, use the GXDisposeViewDevice function, described 

next. To dispose of all the view devices in a view group, use the GXDisposeViewGroup 

function, described on page 7-122.

For information about bitmap shapes and the bitmap structure, see the bitmap shapes 

chapter of Inside Macintosh: QuickDraw GX Graphics.

The GXNewViewGroup function is described on page 7-122. The 

gxScreenViewDevices view group reference is described in the section 

“View Group Types” on page 7-69. 

GXDisposeViewDevice

You can use the GXDisposeViewDevice function to delete a view device object.

void GXDisposeViewDevice(gxViewDevice target);

target A reference to the view device.

DESCRIPTION

The GXDisposeViewDevice function disposes of the view device and all associated 

memory structures, including the view device’s clip shape, bitmap, color set, and color 

profile. 

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example of the use of this function, see page 7-53.

To dispose of all the view devices in a view group, use the GXDisposeViewGroup 

function, described on page 7-122. 

Errors
invalid_viewDevice_reference



C H A P T E R  7

View-Related Objects

7-100 View-Related Objects Reference

GXCopyToViewDevice

You can use the GXCopyToViewDevice function to create a copy of an existing view 

device object.

gxViewDevice GXCopyToViewDevice (gxViewDevice target, 

 gxViewDevice source);

target A reference to the view device to copy the source contents into. If you 
specify nil for this parameter, the GXCopyToViewDevice function 
creates a new view device object.

source A reference to the view device whose contents you want to copy.

function result A reference to the view device that is a copy of the source view device.

DESCRIPTION

The GXCopyToViewDevice function copies the contents of an existing view device 

object to another, or it creates a new view device object and copies the contents of an 

existing view device object to it. The function copies the clip, mapping, bitmap shape 

(including color space, color profile reference, and color set reference), attributes, and tag 

list from the source view device. It clones, but does not copy, the tag objects in the tag list.

In copying the bitmap, the GXCopyToViewDevice function does not copy the pixel 

image itself, just the properties of the bitmap shape. For the color set and color profile 

properties of the bitmap, and tag objects, GXCopyToViewDevice copies only the 

references, not the objects themselves.

If you specify nil for the target parameter, the GXCopyToViewDevice function 

creates a new view port object and copies the properties of the source view device into it. 

SPECIAL CONSIDERATIONS

If you attempt to copy to a screen device, this function posts a 

viewDevice_access_restricted error.

If you specify nil for the target parameter and no error occurs, the 

GXCopyToViewDevice function creates a view device object; you are responsible 

for disposing of that object when you no longer need it.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
invalid_viewDevice_reference
viewDevice_access_restricted (debugging version)



C H A P T E R  7

View-Related Objects

View-Related Objects Reference 7-101

SEE ALSO

To create a new view device that has default properties instead of being a copy of an 

existing view device, use the GXNewViewDevice function, described on page 7-98.

To compare two view device objects for equality, use the GXEqualViewDevice 

function, described next.

GXEqualViewDevice

You can use the GXEqualViewDevice function to determine whether two view device 

objects are equal.

boolean GXEqualViewDevice(gxViewDevice one, gxViewDevice two);

one A reference to one view device to test for equality.

two A reference to another view device to test for equality.

function result true if the view device specified by the one parameter is equal to the 
view device specified by the two parameter; false otherwise.

DESCRIPTION

The GXEqualViewDevice function returns as its function result a Boolean value 

indicating whether the view device object specified by the one parameter is equal to the 

view device object specified by the two parameter.

For two view device objects to be equal, they must have identical clips, mappings, 

bitmap shapes, and attributes. They also must be in the same view group, represent the 

same Macintosh graphics device (same GDevice record), and point to the same pixel 

image, color set, and color profile. The view device objects are not equal if they point to 

different but equivalent pixel images, color sets, or color profiles. The tag lists of the 

view devices need not be identical.

ERRORS, WARNINGS, AND NOTICES

Errors
invalid_viewDevice_reference



C H A P T E R  7

View-Related Objects

7-102 View-Related Objects Reference

SEE ALSO

To make a copy of a view device object that is equal by the criteria of this function, use 

the GXCopyToViewDevice function, described in the previous section.

Macintosh graphics devices and the GDevice record are described in Inside Macintosh: 
Imaging With QuickDraw. The relationship of view devices to GDevice records is 

discussed in the Macintosh environment chapter of Inside Macintosh: QuickDraw GX 
Environment and Utilities. 

Manipulating View Device Object Properties

The functions described in this section allow you to create and manipulate view device 

objects. With these functions, you can get and set a view device’s

■ clip

■ mapping

■ bitmap

■ view group

■ attributes

■ tag list

GXGetViewDeviceClip

You can use the GXGetViewDeviceClip function to examine the clip property of a 

view device object.

gxShape GXGetViewDeviceClip(gxViewDevice source);

source A reference to the view device whose clip you wish to examine.

function result A reference to a shape object whose geometry defines the view device’s 
clip.

DESCRIPTION

The GXGetViewDeviceClip function returns a shape object that defines the geometry 

of the clip associated with the view device. The function returns nil if there is no clip. 

The clip shape is a copy of the view device’s clip; changing this shape does not change 

the view device’s clip.



C H A P T E R  7

View-Related Objects

View-Related Objects Reference 7-103

SPECIAL CONSIDERATIONS

If no error occurs, the GXGetViewDeviceClip function creates a shape object; you are 

responsible for disposing of that object when you no longer need it. 

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To set a view device’s clip, use the GXSetViewDeviceClip function, described next. 

GXSetViewDeviceClip

You can use the GXSetViewDeviceClip function to set the clip property of a view 

device object.

void GXSetViewDeviceClip(gxViewDevice target, gxShape clip);

target A reference to the view device whose clip you wish to set.

clip A reference to a shape object whose geometry describes the clip to be 
assigned.

DESCRIPTION

The GXSetViewDeviceClip function copies information from the shape 

object referenced by the clip parameter into the clip property of the view device object 

referenced by the target parameter. You can specify nil for the clip parameter, in 

which case this function sets the clip property of the target view device to a full clip. (A 

full clip indicates that QuickDraw GX is not to apply view device clipping to shapes that 

reference this view device.)

Although a filled rectangle is the most common clip shape for a view device, the new 

clip shape may be a geometric shape, a bitmap shape, or a glyph shape. It may not be a 

picture, text, or layout shape. 

■ If you specify a geometric shape, it must be in primitive form—that is, all the stylistic 
information about the shape must be incorporated into the shape’s geometry—
because this function copies only the geometry-related information from the shape 
you specify. It does not copy the information contained in the shape’s style. You can 
convert a shape to its primitive form using the GXPrimitiveShape function, which 
is described in Inside Macintosh: QuickDraw GX Graphics. You can also specify an 
empty or full shape for a clip.

Errors
out_of_memory
invalid_viewDevice_reference



C H A P T E R  7

View-Related Objects

7-104 View-Related Objects Reference

■ If you specify a bitmap shape, it must have a pixel size of 1 and its color profile 
reference must be nil. In the bitmap, pixel values of 0 obscure drawing; pixel values 
of 1 do not restrict visibility. The GXSetViewDeviceClip function copies the pixel 
image from the bitmap to the clip property of the target view device.

■ If you specify a glyph shape, this function uses information from the glyph shape’s 
style object as well as its style list to determine the size, form, and position of the 
glyph outlines; those outlines are then used to clip drawing. The style list cannot have 
nil entries. A style object referenced by the glyph shape cannot be complex—that is, 
it cannot have a cap, join, dash, pattern, text face, font variation, tag list, or any of the 
properties used only by layout shapes.

You only need to call this function if you want to restrict the part of the device that 

displays your view ports—for example, to clip out the area reserved for live video in 

your offscreen copy of an onscreen view device.

Because it is copied into the view device object, changing the clip shape after calling 

GXSetViewDeviceClip does not affect the view device’s clip. 

SPECIAL CONSIDERATIONS

You cannot change the clip of a view device in the onscreen view group.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For information about geometric shapes and bitmap shapes, see Inside Macintosh: 
QuickDraw GX Graphics. For information about glyph shapes, see Inside 
Macintosh: QuickDraw GX Typography.

To retrieve a copy of the clip property, use the GXGetViewDeviceClip function, 

described in the previous section. 

Errors
out_of_memory
invalid_viewDevice_reference
colorProfile_must_be_nil (debugging version)
bitmap_pixel_size_must_be_1 (debugging version)
empty_shape_not_allowed (debugging version)
ignorePlatformShape_not_allowed (debugging version)
nil_style_in_glyph_not_allowed (debugging version)
complex_glyph_style_not_allowed (debugging version)
illegal_type_for_shape (debugging version)
shapeFill_not_allowed (debugging version)
viewDevice_access_restricted (debugging version)

Notices (debugging version)
clip_already_set
tags_in_shape_ignored



C H A P T E R  7

View-Related Objects

View-Related Objects Reference 7-105

GXGetViewDeviceMapping

You can use the GXGetViewDeviceMapping function to examine the mapping 

property of a view device object.

gxMapping *GXGetViewDeviceMapping(gxViewDevice source, 

gxMapping *map);

source A reference to the view device whose mapping you wish to examine.

map A pointer to a mapping structure. On return, the structure contains a copy 
of the mapping matrix of the source view device.

function result A pointer to the mapping matrix of the source view device. (This value is 
the same as the value returned in the map parameter.)

DESCRIPTION

The GXGetViewDeviceMapping function copies the mapping matrix information from 

the mapping property of the source view device object into the mapping structure 

pointed to by the map parameter. The function also returns as its function result a pointer 

to this mapping structure.

To make changes to the source view device’s mapping property, you can alter the 

information returned by this function, and then use the GXSetViewDeviceMapping 

function to reassign the altered mapping to the source view device.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example of the use of this function, see Listing 7-11 on page 7-57.

To set a view device’s mapping, use the GXSetViewDeviceMapping function, 

described next. 

For information about the gxMapping structure, see the mathematics chapter of Inside 
Macintosh: QuickDraw GX Environment and Utilities.

Errors
invalid_viewDevice_reference
parameter_is_nil (debugging version)



C H A P T E R  7

View-Related Objects

7-106 View-Related Objects Reference

GXSetViewDeviceMapping

You can use the GXSetViewDeviceMapping function to assign a mapping to a view 

device object.

void GXSetViewDeviceMapping(gxViewDevice target, 

const gxMapping *map);

target A reference to the view device object you want to assign the mapping to.

map A pointer to a mapping structure containing the mapping matrix to 
assign to the target view device.

DESCRIPTION

The GXSetViewDeviceMapping function copies the mapping structure pointed to by 

the map parameter into the mapping property of the target view device. 

You can specify nil for the map parameter. If you do, the mapping is set to a translation 

that prevents the view device from overlapping any other view device in the view 

device’s view group. This translation may cause the view device to move to an area 

adjacent to, but not overlapping, other view devices in this view group.

You can provide arbitrary values for the elements of the mapping structure pointed to by 

the map parameter, with one exception: the lower-right element of this matrix (element 

[2][2]) may not be 0.

SPECIAL CONSIDERATIONS

You cannot change the mapping of a view device in the onscreen view group.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example of the use of this function, see page 7-57.

To retrieve a view device’s mapping, use the GXGetViewDeviceMapping function, 

described in the previous section. 

For information about the gxMapping structure, see the mathematics chapter of Inside 
Macintosh: QuickDraw GX Environment and Utilities. 

Errors
invalid_viewDevice_reference
viewDevice_access_restricted (debugging version)



C H A P T E R  7

View-Related Objects

View-Related Objects Reference 7-107

GXGetViewDeviceBitmap

You can use the GXGetViewDeviceBitmap function to retrieve the bitmap property of 

a view device object.

gxShape GXGetViewDeviceBitmap(gxViewDevice source);

source A reference to the view device whose bitmap you wish to examine.

function result A bitmap shape object that is a copy of the information in the view 
device’s bitmap property.

DESCRIPTION

The GXGetViewDeviceBitmap function returns a bitmap shape that is a copy of the 

bitmap representing the imaging area of the specified device. The pixel image pointer in 

the bitmap structure of the bitmap shape may be nil if, for example, the image is on 

disk. The pointer is not nil if the image is associated with an onscreen device or was 

supplied by an application. 

The shape returned by this function is a copy of the device’s bitmap, so if you alter it you 

must reassign it to the view device with the GXSetViewDeviceBitmap function. 

However, the pixel image of the bitmap shape returned by this function is not a copy; it 

is the same pixel image as that used by the view device. Thus if you draw to the view 

device you modify the pixel image of the returned shape, and likewise if you modify the 

pixel image of the returned shape you modify the pixel image of the view device. You 

can take advantage of this fact to draw an offscreen bitmap directly to an onscreen view 

device. 

SPECIAL CONSIDERATIONS

If no error occurs, the GXGetViewDeviceBitmap function creates a shape object; you 

are responsible for disposing of that object when you no longer need it. 

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For examples of the use of this function, see page 7-55 and Listing 7-14 on page 7-63. 

To set a view devices’s bitmap property, use the GXSetViewDeviceBitmap function, 

described next. 

For information about bitmap shapes, the bitmap structure, and pixel images, see the 

bitmap shapes chapter of Inside Macintosh: QuickDraw GX Graphics.

Errors
out_of_memory
invalid_viewDevice_reference



C H A P T E R  7

View-Related Objects

7-108 View-Related Objects Reference

GXSetViewDeviceBitmap

You can use the GXSetViewDeviceBitmap function to set the bitmap property of a 

view device object.

void GXSetViewDeviceBitmap(gxViewDevice target, 

gxShape bitmapShape);

target A reference to the view device whose bitmap you wish to set.

bitmapShape
A reference to a bitmap shape object that specifies the new bitmap.

DESCRIPTION

The GXSetViewDeviceBitmap function sets the bitmap property in the view device to 

contain the information in the shape specified in the bitmapShape parameter. Only the 

bitmap structure in the geometry of the bitmap shape is copied into the view device. 

SPECIAL CONSIDERATIONS

The bitmap shape you supply to this function cannot have a disk-based pixel image.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example of the use of this function, see page 7-55.

To retrieve the bitmap property of a view device, use the GXGetViewDeviceBitmap 

function, described in the previous section. 

For information about bitmap shapes, see the bitmap shapes chapter of Inside Macintosh: 
QuickDraw GX Graphics. 

Errors
out_of_memory
invalid_viewDevice_reference
parameter_is_nil (debugging version)
illegal_type_for_shape (debugging version)
viewDevice_access_restricted (debugging version)



C H A P T E R  7

View-Related Objects

View-Related Objects Reference 7-109

GXGetViewDeviceViewGroup

You can use the GXGetViewDeviceViewGroup function to determine the view group 

that a view device is part of.

gxViewGroup GXGetViewDeviceViewGroup(gxViewDevice source);

source A reference to the view device whose view group you wish to examine.

function result A reference to the view group that the source view device is part of.

DESCRIPTION

The GXGetViewDeviceViewGroup function returns a reference to the source view 

device’s view group. If it is the onscreen view group, the returned value is 

gxScreenViewDevices.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To set a view device’s view group, use the GXSetViewDeviceViewGroup function, 

described next.

The gxScreenViewDevices view group reference is described in the section “View 

Group Types” on page 7-69. 

GXSetViewDeviceViewGroup

You can use the GXSetViewDeviceViewGroup function to assign a view device object 

to a specified view group.

void GXSetViewDeviceViewGroup(gxViewDevice target, 

gxViewGroup group);

target A reference to the view device whose view group you wish to change.

group A reference to the view group to which the view device is to be assigned.

Errors
invalid_viewDevice_reference



C H A P T E R  7

View-Related Objects

7-110 View-Related Objects Reference

DESCRIPTION

The GXSetViewDeviceViewGroup function changes the target view device to the 

specified view group. 

SPECIAL CONSIDERATIONS

You cannot assign a view device to the onscreen view group; do not specify 

gxScreenViewDevices for the group parameter. Also, you cannot change the view 

group of a view device already in the onscreen view group.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example of the use of this function, see Listing 7-10 on page 7-54.

To get a view device’s view group, use the GXGetViewDeviceViewGroup function, 

described in the previous section.

The gxScreenViewDevices view group reference is described in the section “View 

Group Types” on page 7-69. 

GXGetViewDeviceAttributes

You can use the GXGetViewDeviceAttributes function to determine which 

attributes of a view device object are set.

gxDeviceAttribute GXGetViewDeviceAttributes(gxViewDevice source);

source A reference to the view device whose attributes you wish to examine.

function result The view device attributes of the source view device.

ERRORS, WARNINGS, AND NOTICES

Errors
invalid_viewDevice_reference
invalid_viewGroup_reference
viewDevice_access_restricted (debugging version)

Notices (debugging version)
viewDevice_already_in_viewGroup

Errors
invalid_viewDevice_reference



C H A P T E R  7

View-Related Objects

View-Related Objects Reference 7-111

SEE ALSO

View device attributes are described in the section “View Device Attributes” on 

page 7-27.

To set a view device’s attributes, use the GXSetViewDeviceAttributes function, 

described next.

GXSetViewDeviceAttributes

You can use the GXSetViewDeviceAttributes function to set or clear the attributes 

of a view device object.

void GXSetViewDeviceAttributes(gxViewDevice target, 

gxDeviceAttribute attributes);

target A reference to the view device whose attributes you wish to set.

attributes A reference to the view port’s attributes.

DESCRIPTION

The GXSetViewDeviceAttributes function sets the attributes of the view device 

object referenced in the target parameter to those specified in the attributes 

parameter. If you pass gxNoAttributes for the attributes parameter, all attributes 

are cleared.

You cannot change the attributes of a view device in the onscreen view group.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

View device attributes are described in the section “View Device Attributes” on 

page 7-27.

To get a view device’s attributes, use the GXGetViewDeviceAttributes function, 

described in the previous section. 

Errors
invalid_viewDevice_reference
parameter_out_of_range (debugging version)
viewDevice_access_restricted (debugging version)

Notices (debugging version)
attributes_already_set



C H A P T E R  7

View-Related Objects

7-112 View-Related Objects Reference

GXGetViewDeviceTags

You can use the GXGetViewDeviceTags function to examine one or more of the tag 

objects associated with a view device object.

long GXGetViewDeviceTags(gxViewDevice source, long tagType, 

long index, long count, gxTag items[]);

source A reference to the view device object whose tag list you want to examine.

tagType The type of tag object to search for. A value of 0 indicates that you want to 
look for all tag types.

index The (1-based) index of the first such tag reference to return.

count The number of tag references to return.

items An array to hold the returned tag references.

function result The number of tag references found that fit the criteria. 

DESCRIPTION

The GXGetViewDeviceTags function searches the tag list of the source view device 

object for references to tag objects with the tag type specified by the tagType parameter. 

If you specify 0 for the tagType parameter, the GXGetViewDeviceTags function 

searches all tag types. 

You can use the index and the count parameters to specify which tag references of the 

appropriate type the GXGetViewDeviceTags function should return. The index 

parameter indicates the first tag reference to return and the count parameter indicates 

how many tag references to return. The index parameter must be greater than 0. The 

count parameter must be greater than 0 or equal to the gxSelectToEnd constant (–1), 

which indicates that all tag references (starting with the tag reference indicated by the 

index parameter) should be returned.

The function result is the number of tag references found that fit the criteria. If you pass 

a value other than nil for the items parameter, the GXGetViewDeviceTags function 

returns in it the tag references that were found.

Typically, you call this function once with a nil value for the items parameter to 

determine the number of matching tag references. Then you allocate an appropriately 

sized array and call the function a second time to obtain the references themselves.



C H A P T E R  7

View-Related Objects

View-Related Objects Reference 7-113

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Tag objects are discussed in the chapter “Tag Objects” in this book. 

To change the set of tag references associated with a view device, use the 

GXSetViewDeviceTags function, described next.

GXSetViewDeviceTags

You can use the GXSetViewDeviceTags function to add, remove, or replace tag objects 

associated with a view device object.

void GXSetViewDeviceTags(gxViewDevice target, long tagType, 

  long index, long oldCount, long newCount,

  const gxTag items[]);

target A reference to the view device object whose tag list you want to alter.

tagType The type of tag objects to replace. A value of 0 indicates that you want to 
replace tags of all types.

index The (1-based) index of the first tag reference (to a tag object of the 
appropriate type) to replace.

oldCount The number of tag references to replace. A value of 0 specifies that you 
want to insert tag references before the tag reference indicated by the 
index parameter, rather than replace tag references. A value of –1 (the 
gxSelectToEnd constant) specifies that all tag references of the 
requested type, starting with the tag reference indicated by the index 
parameter, should be replaced.

newCount The number of tag references to insert. A value of 0 specifies that there are 
no tag references to insert; the existing tag references that match the 
criteria you specify are removed from the source shape’s tag list and 
disposed of.

items An array of tag references to insert in the tag list.

Errors
out_of_memory
invalid_viewDevice_reference
index_is_less_than_one (debugging version)
count_is_less_than_one (debugging version)

Warnings
index_out_of_range
count_out_of_range



C H A P T E R  7

View-Related Objects

7-114 View-Related Objects Reference

DESCRIPTION

The GXSetViewDeviceTags function allows you add tag references to a view device 

object’s tag list, to remove tag references from the list, or to replace tag references in the 

list with new tag references. In any of these three cases, the target parameter specifies 

the view port device to be modified, the newCount parameter specifies the number of 

tag references to add, and the items parameter provides the new tag references.

■ To add tag references, set the oldCount parameter to 0. Use the tagType and the 
index parameters to specify where to add the new tag references. (For example, if 
you specify nil for the tagType parameter and 1 for the index parameter, this 
function inserts the new tag references before the current tag references. If you specify 
a value other than nil for the tagType parameter and a value of 2 for the index 
parameter, the function inserts the new tag references before the second tag reference 
with a tag type matching the tagType parameter.)

■ To remove tag references, set the newCount parameter to 0 and the items parameter 
to nil. You can use the index and the oldCount parameters to specify which tag 
references (of the specified type) should be removed. The index parameter indicates 
the first tag reference (of the specified type) to remove and the oldCount parameter 
indicates how many tag references (of the specified type) to remove. 

■ To replace tag references, use the tagType, index, and oldCount parameters 
to indicate which tag references to replace, and use the newCount and items 
parameters to specify the new tag references to add. If newCount is greater than 
oldCount, the extra tag references are placed immediately adjacent to the last tag 
reference replaced.

You cannot change the tag list of a view device in the onscreen view group.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
invalid_viewDevice_reference
tag_is_nil
parameter_is_nil (debugging version)
inconsistent_parameters (debugging version)
parameter_out_of_range (debugging version)
index_is_less_than_zero (debugging version)
cannot_dispose_locked_tag (debugging version)

Warnings
index_out_of_range
count_out_of_range

Notices (debugging version)
tag_already_set



C H A P T E R  7

View-Related Objects

View-Related Objects Reference 7-115

SEE ALSO

Tag objects are discussed in the chapter “Tag Objects” in this book. 

To examine the set of tag references associated with a view port, use the 

GXGetViewDeviceTags function, described in the previous section.   

Retrieving the View Devices That Intersect a Shape

The function described in this section allows you to get the view devices on which a 

shape appears.

GXGetShapeGlobalViewDevices

You can use the GXGetShapeGlobalViewDevices function to determine which view 

devices intersect the area of a shape.

long GXGetShapeGlobalViewDevices(gxShape source, gxViewPort port,

gxViewDevice list[]);

source A reference to the shape whose view devices you wish to retrieve.

port A reference to a view port that the shape is drawn to.

list An array of view device references. On return, the array lists the view 
devices that the shape is drawn on.

function result The number of view devices that the shape is drawn on.

DESCRIPTION

The GXGetShapeGlobalViewDevices function retrieves a list of view devices that the 

source shape is drawn on, through the specified view port. The view port must be in the 

view port list of the shape’s transform object. A returned view device object must have a 

clip that intersects the clip of the specified view port, and the shape drawn to the view 

port must also intersect the view device clip.

If the port parameter is set to nil, all view ports in the view port list of the shape’s 

transform object are used. 

If you set the list parameter to nil, GXGetShapeGlobalViewDevices does not fill 

out the list of references; it only returns the number of view device references that would 

be in the list (which may be 0). Thus, you typically call this function twice: first to get the 

size of array to allocate for the list parameter, and second to retrieve the list itself.

As one application of this function, you could call GXGetShapeGlobalViewPorts to 

determine the view ports to which a shape is drawn. You then could use one of these 

view ports in a call to GXGetShapeGlobalViewDevices to determine the view 

devices that the shape would be drawn to.



C H A P T E R  7

View-Related Objects

7-116 View-Related Objects Reference

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For examples of the use of this function, see Listing 7-12 on page 7-58 and Listing 7-13 on 

page 7-61.

The GXGetShapeGlobalViewPorts function is described on page 7-95. 

Measuring a Shape in Device Coordinates

The functions described in this section allow you to get a shape’s bounding rectangle 

and its area, as measured on a view device. Other QuickDraw GX functions are available 

to measure shapes in other contexts:

■ To determine a shape’s bounding rectangle in local coordinates, use the 
GXGetShapeLocalBounds function, described on page 7-96. 

■ To determine a shape’s bounding rectangle in global coordinates, use the 
GXGetShapeGlobalBounds function, described on page 7-125. 

■ To determine a shape’s bounding rectangle in geometry-space coordinates, use the 
GXGetShapeBounds function, described in the geometric operations chapter of Inside 
Macintosh: QuickDraw GX Graphics. 

GXGetShapeDeviceBounds

You can use the GXGetShapeDeviceBounds function to determine the bounding 

rectangle for the visible part of a shape on a view device.

boolean GXGetShapeDeviceBounds(gxShape source, gxViewPort port,

gxViewDevice device, 

gxRectangle *bounds);

source A reference to the shape whose bounding rectangle you wish to test for 
inclusion on a device.

port A reference to a view port to which the shape is drawn.

device A reference to the view device that the shape displays on.

bounds A pointer to a rectangle structure. On return the structure contains the 
bounding rectangle, in device coordinates, for the part of the shape that 
appears on the device.

function result true if the bounding rectangle overlaps the view device clip; false if it 
does not.

Errors
out_of_memory
shape_is_nil
invalid_viewPort_reference



C H A P T E R  7

View-Related Objects

View-Related Objects Reference 7-117

DESCRIPTION

The GXGetShapeDeviceBounds function returns a value specifying whether the 

bounding rectangle of the shape drawn to the specified view port is within the clip area 

of the specified view device. The view port and view device must be in the same view 

group. The view port must be in the view port list of the shape’s transform object. 

You can specify nil for the port parameter, in which case 

GXGetShapeDeviceBounds includes all view ports in the view port list of 

the source shape’s transform. You can specify nil for the device parameter, in 

which case GXGetShapeDeviceBounds includes any view device that intersects 

any of the specified view ports.

Unless you pass nil for the bounds parameter, the function also returns in the bounds 

parameter the part of the shape’s bounding rectangle that displays on the device. The 

rectangle shape is defined in device coordinates. 

To determine a shape’s bounding rectangle in geometry-space coordinates, use the 

GXGetShapeBounds function. To determine a shape’s bounding rectangle in local 

coordinates, use the GXGetShapeLocalBounds function. To determine a shape’s 

bounding rectangle in global coordinates, use the GXGetShapeGlobalBounds function.

SPECIAL CONSIDERATIONS

If the bounding rectangle of the source shape spans more than one device, this function 

posts an unable_to_get_bounds_on_multiple_devices warning.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example of the use of this function, see page 7-59.

To calculate the area of a shape on a device, use the GXGetShapeDeviceArea function, 

described next.

The GXGetShapeBounds function is described in the geometric operations chapter of 

Inside Macintosh: QuickDraw GX Graphics. The GXGetShapeLocalBounds function is 

described on page 7-96. The GXGetShapeGlobalBounds function is described on 

page 7-125.

For information about coordinate spaces, see the section “About Drawing, Coordinate 

Conversion, and Clipping” beginning on page 7-30. 

Errors
out_of_memory
shape_is_nil
invalid_viewPort_reference
invalid_viewDevice_reference
inconsistent_parameters (debugging version)

Warnings
unable_to_get_bounds_on_multiple_devices



C H A P T E R  7

View-Related Objects

7-118 View-Related Objects Reference

GXGetShapeDeviceArea

You can use the GXGetShapeDeviceArea function to calculate the area of a shape on a 

given view device.

long GXGetShapeDeviceArea(gxShape source, gxViewPort port, 

gxViewDevice device);

source A reference to the shape whose area on the device you want to determine.

port A reference to a view port that the shape is drawn to.

device A reference to the view device for which you wish to calculate the area.

function result The number of pixels that represent the shape on the device.

DESCRIPTION

The GXGetShapeDeviceArea function returns the number of pixels covered by the 

source shape in the view port on the specified view device. The shape object cannot be a 

bitmap or picture shape. The view port must be in the view port list of the shape’s 

transform object. 

This function accounts for just the pixels that would actually be affected if the shape 

were drawn. Spaces inside of framed or filled geometric shapes, or spaces within and 

between glyphs of typographic shapes, do not contribute to the calculated area.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To determine the bounding rectangle of a shape on a device, use the 

GXGetShapeDeviceBounds function, described in the previous section.

To determine the area of a shape in geometry-space coordinates, use the 

GXGetShapeArea function, described in the geometric operations chapter of 

Inside Macintosh: QuickDraw GX Graphics. 

Measuring the Colors and Pattern Width of a Shape on a Device

The function described in this section allows you to determine the exact colors and size 

of pattern that QuickDraw GX will use to draw a shape on a given view device.

Errors
out_of_memory
shape_is_nil
invalid_viewPort_reference
invalid_viewDevice_reference
illegal_type_for_shape (debugging version)



C H A P T E R  7

View-Related Objects

View-Related Objects Reference 7-119

GXGetShapeDeviceColors

You can use the GXGetShapeDeviceColors function to determine the set of colors 

with which a shape will be drawn on a given view device, as well as the width of any 

repeating pattern with which the shape will be drawn.

gxColorSet GXGetShapeDeviceColors(gxShape source, 

gxViewPort port, 

gxViewDevice device, 

long *width);

source A reference to the shape whose colors you wish to determine.

port A reference to a view port to which the shape is drawn.

device A reference to the view device on which the shape is drawn.

width A pointer to a long value. On return, the value is the width of the 
repeated pattern formed by dithering or halftoning, or by the pattern—if 
any—specified in the shape’s style object.

function result A reference to a color set that contains the colors with which the shape 
can be drawn.

DESCRIPTION

The GXGetShapeDeviceColors function returns a color set containing the colors that 

the shape would be drawn with through the view port onto the view device. The view 

port must be in the view port list of the shape’s transform object. If no shape sharing the 

ink of the source shape intersects the view port and view device, the function returns 

nil.

The GXGetShapeDeviceColors function returns only the number of unique colors in 

the dither pattern or the halftone pattern, not the size of the dither or the halftone. It also 

does not take transfer modes into account, or the colors already on the view device.

This function does not check that the shape actually intersects the view device; you may 

want to call the GXGetShapeGlobalViewDevices function first. The shape object 

cannot be a bitmap or picture shape.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
shape_is_nil
invalid_viewPort_reference
invalid_viewDevice_reference



C H A P T E R  7

View-Related Objects

7-120 View-Related Objects Reference

SEE ALSO

For information about color sets, see “When Color Matching Occurs” beginning on 

page 4-31.

For information about dithers and halftones, see the sections “Dither” beginning on 

page 7-10 and “Halftone” beginning on page 7-13. 

Patterns and the style object are described in the geometric styles chapter of Inside 
Macintosh: QuickDraw GX Graphics.

To determine the view devices that a shape is displayed on, use the 

GXGetShapeGlobalViewDevices function, described on page 7-115. 

Hit-Testing a Shape on a Device

The function described in this section allows you to hit-test a shape in relation to the 

pixels of a view device.

GXHitTestDevice

You can use the GXHitTestDevice function to determine whether a point in device 

space is within a given tolerance of a shape displayed on that device.

gxShape GXHitTestDevice(gxShape target, gxViewPort port, 

gxViewDevice device, const gxPoint *test, 

const gxPoint *tolerance);

target A reference to the shape to hit-test.

port A reference to a view port that the shape is drawn to.

device A reference to the view device on which the shape is drawn.

test A pointer to a point structure specifying the location, in device 
coordinates (pixels), to hit-test the shape against. 

tolerance A pointer to a point structure specifying a rectangular shape whose size 
specifies the distance, in pixels, from the target shape that the test point 
can be and still be considered a successful hit.

function result A reference to the target shape if the shape was hit; otherwise nil. 

DESCRIPTION

The GXHitTestDevice function returns the target shape within the specified view port 

if the hit is successful, otherwise it returns nil. All clipping, from transform through 

view port and view device, is taken into account in determining whether a hit is possible.

The test point represents a pixel location in view device coordinates. The tolerance 

represents a rectangular area of pixels, defining the “radius” of the total tolerance area. 



C H A P T E R  7

View-Related Objects

View-Related Objects Reference 7-121

You can think of four such rectangles as making up a larger rectangle centered on the hit 

point; if the distance from the hit point to the shape is within that larger rectangle, the 

hit is considered successful.

Negative values for the tolerance are permitted.

If the port parameter is set to 0, all view ports on the view device are tested. If the 

device parameter is set to 0, all view devices intersected by the view port are tested. If 

both port and device parameters are set to 0, all view ports that the shape is drawn to 

and all view devices drawn to by the target shape are tested.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To hit-test individual parts of a shape’s geometry, use the GXHitTestShape function, 

described in the chapter “Shape Objects” in this book. To hit-test the parts of a picture 

shape, use the GXHitTestPicture function, described in the picture shapes chapter of 

Inside Macintosh: QuickDraw GX Graphics. To hit-test the text of a layout shape, use the 

GXHitTestLayout function, described in the layout carets chapter of Inside Macintosh: 
QuickDraw GX Typography.

For more information on GXHitTestDevice and how it relates to the other hit-testing 

functions, see “Hit-Testing a Shape on a Device” on page 7-60.   

View Group Functions

This section describes the QuickDraw GX functions you use with view group objects. 

Using the functions described here, you can 

■ create and dispose of view group objects

■ determine the view ports and view devices that belong to a view group

■ measure a shape in a view group’s global space

Creating and Disposing of View Group Objects

The functions described in this section allow you to create and dispose of view groups. 

Errors
out_of_memory
shape_is_nil
parameter_is_nil (debugging version)



C H A P T E R  7

View-Related Objects

7-122 View-Related Objects Reference

GXNewViewGroup

You can use the GXNewViewGroup function to create a new view group object.

gxViewGroup GXNewViewGroup(void);

function result A reference to the new view group.

DESCRIPTION

The GXNewViewGroup function returns a unique view group reference. You can then 

use the new view group to create view ports and view devices that share the same global 

space. QuickDraw GX provides an onscreen view group, gxScreenViewDevices, for 

you. You only need to create offscreen view groups.

SPECIAL CONSIDERATIONS

If no error occurs, the GXNewViewGroup function creates a view group object; you are 

responsible for disposing of that object when you no longer need it. 

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For examples of the use of this function, see Listing 7-13 on page 7-61 and Listing 7-14 on 

page 7-63.

For information about view groups, see “About View Group Objects” beginning on 

page 7-29.

To dispose of a view group, use the GXDisposeViewGroup function, described next.

GXDisposeViewGroup

You can use the GXDisposeViewGroup function to delete a view group object.

void GXDisposeViewGroup(gxViewGroup target);

target A reference to the view group.

Errors
out_of_memory



C H A P T E R  7

View-Related Objects

View-Related Objects Reference 7-123

DESCRIPTION

The GXDisposeViewGroup function deletes the view group, as well as all view devices 

and view ports that belong to that view group. If you create an offscreen view group 

with several view ports and view devices, you needn’t dispose of those view ports and 

view devices when you are finished, as long as you dispose of the view group itself. 

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example of the use of this function, see page 7-63.

For information about view groups, see “About View Group Objects” beginning on 

page 7-29. 

Getting the View Ports and View Devices of a View Group

The functions described in this section allow you to find out what view ports and view 

devices belong to a view group.

GXGetViewGroupViewPorts

You can use the GXGetViewGroupViewPorts function to retrieve a list of the view 

ports that are associated with a view group object.

long GXGetViewGroupViewPorts(gxViewGroup source, 

gxViewPort list[]);

source A reference to the view group whose view ports you wish to examine.

list An array of view port references. On return, the array contains a list of 
references to the view ports belonging to the source view group.

function result The number of view port references in the list array.

DESCRIPTION

The GXGetViewGroupViewPorts function fills out a list of all the view ports in the 

source view group and returns, as its function result, the number of view ports in the list.

If you pass gxAllViewDevices for the source parameter, this function returns all 

view ports in all view groups.

Errors
invalid_viewGroup_reference



C H A P T E R  7

View-Related Objects

7-124 View-Related Objects Reference

If you set the list parameter to nil, GXGetViewGroupViewPorts does not fill out 

the list of references; it only returns the number of view port references that would be 

in the list. Thus, you typically call this function twice: first to get the size of array to 

allocate for the list parameter, and second to retrieve the list itself.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To get a list of all the view devices in a view group, use the 

GXGetViewGroupViewDevices function, described next. 

GXGetViewGroupViewDevices

You can use the GXGetViewGroupViewDevices function to retrieve a list of the view 

devices that are associated with a view group object.

long GXGetViewGroupViewDevices(gxViewGroup source, 

gxViewDevice list[]);

source A reference to the view group whose view devices you wish to examine.

list An array of view device references. On return, the array contains a list of 
references to the view devices belonging to the source view group.

function result The number of view device references in the list array.

DESCRIPTION

The GXGetViewGroupViewDevices function fills out a list of all the view devices in 

the source view group and returns, as its function result, the number of view devices 

in the list.

If you pass gxAllViewDevices for the source parameter, this function returns all 

view devices in all view groups.

If you set the list parameter to nil, GXGetViewGroupViewDevices does not fill out 

the list of references; it only returns the number of view device references that would be 

in the list. Thus, you typically call this function twice: first to get the size of array to 

allocate for the list parameter, and second to retrieve the list itself.

Errors
invalid_viewGroup_reference



C H A P T E R  7

View-Related Objects

View-Related Objects Reference 7-125

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example of the use of this function, see Listing 7-10 on page 7-54.

To get a list of all the view ports in a view group, use the GXGetViewGroupViewPorts 

function, described in the previous section. 

Measuring a Shape in Global Coordinates

The function described in this section allows you to determine the bounding rectangle of 

a shape in the global coordinates of its view group. Other QuickDraw GX functions are 

available to measure shapes in other contexts:

■ To determine a shape’s bounding rectangle in local coordinates, use the 
GXGetShapeLocalBounds function, described on page 7-96. 

■ To determine a shape’s bounding rectangle on a view device, use the 
GXGetShapeDeviceBounds function, described on page 7-116.

■ To determine a shape’s bounding rectangle in geometry-space coordinates, use the 
GXGetShapeBounds function, described in the geometric operations chapter of Inside 
Macintosh: QuickDraw GX Graphics. 

GXGetShapeGlobalBounds

You can use the GXGetShapeGlobalBounds function to determine the bounding 

rectangle of a shape in global coordinates.

boolean GXGetShapeGlobalBounds(gxShape source, 

gxViewPort port,

gxViewGroup group,

gxRectangle *bounds);

source A reference to the shape whose bounding rectangle you wish to 
determine in global coordinates.

port A reference to a view port to which the shape is drawn.

group A reference to the view group that defines the global coordinates.

bounds A pointer to a rectangle structure. On return, the structure contains the 
bounding rectangle for the shape, in the global coordinates of the 
specified view group.

function result true if the bounding rectangle appears in global space; false if it 
does not.

Errors
invalid_viewGroup_reference



C H A P T E R  7

View-Related Objects

7-126 View-Related Objects Reference

DESCRIPTION

The GXGetShapeGlobalBounds function returns a value that specifies whether the 

bounding rectangle of the shape drawn to the specified view port appears anywhere in 

the global space of the specified view group. The view port must belong to the view 

group, and it must be referenced in the view port list of the shape’s transform object. 

The GXGetShapeGlobalBounds function also returns in the bounds parameter the 

bounding rectangle of that part of the shape that can be drawn through the specified 

view port. The function returns the bounding rectangle after the shape’s transform clip, 

mapping and style have been applied, and after all view port mappings and clips have 

been applied, from the view port specified in the port parameter to the root view port 

in the view port hierarchy (if any). The dimensions of the rectangle are in the global 

coordinates of the view group.

If you specify nil for the port parameter, GXGetShapeGlobalBounds includes all 

view ports specified in the source shape’s transform’s view port list. If you specify nil 

for the group parameter, GXGetShapeGlobalBounds includes all view groups of all 

specified view ports.

To determine a shape’s bounding rectangle in geometry-space coordinates, use the 

GXGetShapeBounds function. To determine a shape’s bounding rectangle in local 

coordinates, use the GXGetShapeLocalBounds function. To determine a shape’s 

bounding rectangle in device coordinates, use the GXGetShapeDeviceBounds 

function.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example of the use of this function, see Listing 7-15 on page 7-64.

The GXGetShapeBounds function is described in the geometric operations chapter of 

Inside Macintosh: QuickDraw GX Graphics. The GXGetShapeLocalBounds function is 

described on page 7-96. The GXGetShapeDeviceBounds function is described on 

page 7-116.   

Errors
out_of_memory
shape_is_nil
invalid_viewPort_reference
invalid_viewGroup_reference
parameter_is_nil (debugging version)

Notices (debugging version)
transform_references_disposed_viewPort



C H A P T E R  7

View-Related Objects

Summary of View-Related Objects 7-127

Summary of View-Related Objects

Constants and Data Types

The View Port Object

typedef struct gxPrivateViewPortRecord *gxViewPort;

The Halftone Structure

struct gxHalftone{

Fixed angle;

Fixed frequency;

gxDotType method;

gxTintType tinting;

gxColor dotColor;

gxColor backgroundColor;

gxColorSpace tintSpace;

};

Dot Types

enum gxDotTypes{

gxRoundDot = 1,

gxSpiralDot,

gxSquareDot,

gxLineDot,

gxEllipticDot,

gxTriangleDot,

gxDispersedDot

};

typedef long gxDotType;

Tint Types

enum gxTintTypes{

gxNoTint,

gxLuminanceTint,

gxAverageTint,



C H A P T E R  7

View-Related Objects

7-128 Summary of View-Related Objects

gxMixtureTint,

gxComponent1Tint,

gxComponent2Tint,

gxComponent3Tint,

gxComponent4Tint

};

typedef long gxTintType;

View Port Attributes

enum gxPortAttributes {

gxGrayPort = 0x0001, /* convert to gray space */

gxAlwaysGridPort = 0x0002, /* use gxDeviceGridStyle */

gxEnableMatchPort = 0x0004 /* perform color matching */

};

typedef long gxPortAttribute;

The View Device Object

typedef struct gxPrivateViewDeviceRecord *gxViewDevice;

View Device Attributes

enum gxDeviceAttributes{

gxDirectDevice = 0x01, /* pixel image must be accessible */

gxRemoteDevice = 0x02, /* pixel image may be on card */

gxInactiveDevice = 0x04 /* device is inactive */

};

  typedef long gxDeviceAttribute;

The View Group Object

typedef struct gxPrivateViewGroupRecord *gxViewGroup;

View Group Types

#define gxAllViewDevices ((gxViewGroup) 0)

#define gxScreenViewDevices ((gxViewGroup) 1)



C H A P T E R  7

View-Related Objects

Summary of View-Related Objects 7-129

View Port Functions

Creating and Manipulating View Port Objects

gxViewPort GXNewViewPort (gxViewGroup group);

void GXDisposeViewPort (gxViewPort target);

gxViewPort GXCopyToViewPort (gxViewPort target, gxViewPort source);

boolean GXEqualViewPort (gxViewPort one, gxViewPort two);

Manipulating View Port Object Properties

gxShape GXGetViewPortClip (gxViewPort source);

void GXSetViewPortClip (gxViewPort target, gxShape clip);

gxMapping *GXGetViewPortMapping
(gxViewPort source, gxMapping *map);

void GXSetViewPortMapping (gxViewPort target, const gxMapping *map);

gxMapping *GXGetViewPortGlobalMapping
(gxViewPort source, gxMapping *map);

long GXGetViewPortDither (gxViewPort source);

void GXSetViewPortDither (gxViewPort target, long level);

boolean GXGetViewPortHalftone
(gxViewPort source, gxHalftone *data);

void GXSetViewPortHalftone (gxViewPort target, const gxHalftone *data);

Fixed GXGetHalftoneDeviceAngle
(gxViewDevice source, const gxHalftone *data);

gxViewPort GXGetViewPortParent
(gxViewPort source);

void GXSetViewPortParent (gxViewPort target, gxViewPort parent);

long GXGetViewPortChildren (gxViewPort source, gxViewPort list[]);

void GXSetViewPortChildren (gxViewPort target, long count, 
const gxViewPort list[]);

gxViewGroup GXGetViewPortViewGroup
(gxViewPort source);

void GXSetViewPortViewGroup (gxViewPort target, gxViewGroup group);

gxPortAttribute GXGetViewPortAttributes
(gxViewPort source);

void GXSetViewPortAttributes(gxViewPort target, 
gxPortAttribute attributes);

long GXGetViewPortTags (gxViewPort source, long tagType, long index, 
long count, gxTag items[]);



C H A P T E R  7

View-Related Objects

7-130 Summary of View-Related Objects

void GXSetViewPortTags (gxViewPort target, long tagType, long index, 
long oldCount, long newCount, 
const gxTag items[]);

Retrieving the View Devices That Intersect a View Port

long GXGetViewPortViewDevices(gxViewPort source, gxViewDevice list[]);

Retrieving the View Ports That Intersect a Shape

long GXGetShapeGlobalViewPorts
(gxShape source, gxViewPort list[]);

Measuring a Shape in Local Coordinates

gxRectangle *GXGetShapeLocalBounds
(gxShape source, gxRectangle *bounds);

View Device Functions

Creating and Manipulating View Device Objects

gxViewDevice GXNewViewDevice(gxViewGroup group, gxShape bitmapShape);

void GXDisposeViewDevice (gxViewDevice target);

gxViewDevice GXCopyToViewDevice
(gxViewDevice target, gxViewDevice source);

boolean GXEqualViewDevice (gxViewDevice one, gxViewDevice two);

Manipulating View Device Object Properties

gxShape GXGetViewDeviceClip (gxViewDevice source);

void GXSetViewDeviceClip (gxViewDevice target, gxShape clip);

gxMapping *GXGetViewDeviceMapping
(gxViewDevice source, gxMapping *map);

void GXSetViewDeviceMapping (gxViewDevice target, const gxMapping *map);

gxShape GXGetViewDeviceBitmap
(gxViewDevice source);

void GXSetViewDeviceBitmap (gxViewDevice target, gxShape bitmapShape);

gxViewGroup GXGetViewDeviceViewGroup
(gxViewDevice source);

void GXSetViewDeviceViewGroup
(gxViewDevice target, gxViewGroup group);

gxDeviceAttribute GXGetViewDeviceAttributes
(gxViewDevice source);



C H A P T E R  7

View-Related Objects

Summary of View-Related Objects 7-131

void GXSetViewDeviceAttributes
(gxViewDevice target, gxDeviceAttribute 
attributes);

long GXGetViewDeviceTags (gxViewDevice source, long tagType, long index, 
long count, gxTag items[]);

void GXSetViewDeviceTags (gxViewDevice target, long tagType, long index, 
long oldCount, long newCount, 
const gxTag items[]);

Retrieving the View Devices That Intersect a Shape

long GXGetShapeGlobalViewDevices
(gxShape source, gxViewPort port, 
gxViewDevice list[]);

Measuring a Shape in Device Coordinates

boolean GXGetShapeDeviceBounds
(gxShape source, gxViewPort port, 
gxViewDevice device, gxRectangle *bounds);

long GXGetShapeDeviceArea (gxShape source, gxViewPort port, 
gxViewDevice device);

Measuring the Colors and Pattern Width of a Shape on a Device

gxColorSet GXGetShapeDeviceColors
(gxShape source, gxViewPort port, 
gxViewDevice device, long *width);

Hit-Testing a Shape on a Device

gxShape GXHitTestDevice (gxShape target, gxViewPort port, 
gxViewDevice device, const gxPoint *test, 
const gxPoint *tolerance);

View Group Functions 

Creating and Disposing of View Group Objects

gxViewGroup GXNewViewGroup (void);

void GXDisposeViewGroup (gxViewGroup target);



C H A P T E R  7

View-Related Objects

7-132 Summary of View-Related Objects

Getting the View Ports and View Devices of a View Group

long GXGetViewGroupViewPorts(gxViewGroup source, gxViewPort list[]);

long GXGetViewGroupViewDevices
(gxViewGroup source, gxViewDevice list[]);

Measuring a Shape in Global Space

boolean GXGetShapeGlobalBounds
(gxShape source, gxViewPort port, 
gxViewGroup group, gxRectangle *bounds);



Contents 8-1

C H A P T E R  8

Contents

Tag Objects

About Tag Objects 8-3

Tag Object Properties 8-4

Tag Types 8-5

Uses for Tag Objects 8-6

Using Tag Objects 8-7

Creating and Manipulating Tag Objects 8-7

Creating and Deleting a Tag Object 8-8

Copying, Comparing, and Cloning Tag Objects 8-9

Loading and Unloading Tag Objects 8-9

Manipulating Tag Object Properties 8-9

Getting and Setting a Tag Object’s Tag Type and Contents 8-10

Manipulating a Tag Object’s Owner Count 8-11

Directly Manipulating Tag Object Contents 8-11

Attaching Tags to a QuickDraw GX Object 8-12

Tag Objects Reference 8-12

Constants and Data Types 8-13

The Tag Object 8-13

Functions 8-13

Creating and Manipulating Tag Objects 8-13

GXNewTag 8-13

GXDisposeTag 8-14

GXCopyToTag 8-15

GXEqualTag 8-16

GXCloneTag 8-17

Manipulating Tag Object Properties 8-18

GXGetTag 8-18

GXSetTag 8-19

GXGetTagOwners 8-20



C H A P T E R  8

8-2 Contents

Directly Manipulating the Data in a Tag Object 8-21

GXLockTag 8-21

GXUnlockTag 8-22

GXGetTagStructure 8-23

Summary of Tag Objects 8-25

C Summary 8-25

Functions 8-25



C H A P T E R  8

About Tag Objects 8-3

Tag Objects

This chapter describes tag objects and the functions you can use to manipulate them. Tag 

objects encapsulate application-defined information that can provide information about 

or modify the behavior of the QuickDraw GX objects associated with those tag objects. 

Read this chapter if you need to create or modify tag objects. Other chapters in this book 

describe the functions you use to add tag objects to or delete tag objects from specific 

other kinds of QuickDraw GX objects, such as shapes or styles.

Before reading this chapter, you should be familiar with the information in the chapter 

“Introduction to QuickDraw GX” in this book.

This chapter introduces QuickDraw GX tag objects and describes their properties. It then 

shows how to use the QuickDraw GX tag-manipulation functions to

■ create and manipulate tag objects

■ manipulate tag object properties

■ directly manipulate tag contents

About Tag Objects

A tag object is a private data structure whose purpose is to allow any kind of 

application-defined information to be attached to a QuickDraw GX object. An object 

such as a shape or transform can be “tagged” with data or code that alters its behavior in 

specific situations or provides extra information about it. For example, you can attach 

identifying strings to objects with tags, or you can alter the way an object is displayed on 

a particular imaging device by attaching a tag to it that contains imaging commands 

specific to that device. For example, QuickDraw GX uses tag objects to hold PostScript 

commands used for printing to PostScript devices.

QuickDraw GX identifies an individual tag object through a tag reference. To obtain 

information about a tag object, you must send its reference as a parameter to a 

QuickDraw GX function (except that you can determine if two references identify the 

same tag object simply by comparing them for equality, and you can examine a reference 

to see if it is nil).

Tag objects are further identified by tag type, a designation that you can use to identify 

the tag object’s purpose and format. 

A tag object is attached to its associated object by means of a tag list, a property that 

most QuickDraw GX objects have. A tag list is an array of references to the tag objects 

attached to an object. Objects can thus have more than one attached tag object. You 

cannot attach a tag object to a printing object, a font object, a graphics client object, or a 

tag object itself; there is no tag list property for those objects.



C H A P T E R  8

Tag Objects

8-4 About Tag Objects

Because tags are QuickDraw GX objects, they can be shared. A single tag object can be 

attached to more than one other object; the owner count of the tag object tells you how 

many references to it exist. Tags also have all the other advantages of QuickDraw GX 

objects: they are accessible from objects in accelerator memory, they can be unloaded to 

disk and reloaded automatically, and they can be flattened and included in a spool file. 

Tag Object Properties
The interface to tag objects is entirely procedural. You manipulate the information in a 

tag object by modifying its properties using QuickDraw GX functions.

Tag objects have four accessible properties, as shown in Figure 8-1. Note that, because 

a tag is an object and not a data structure, the order of the properties as shown in 

Figure 8-1 is completely arbitrary.

Figure 8-1 The tag object and its properties

These are the four accessible properties of a tag object:

■ Tag type. A 4-byte value that specifies the type of this tag object. On the Macintosh 
computer, tag types are typically represented with four-character mnemonics, such as 
'DAVE'.

■ Size. The size in bytes of the contents of the tag object.

■ Contents. The data that makes up this tag object. QuickDraw GX is unconcerned with 
the nature of the data; you can place whatever information you wish into the contents 
of a tag object.

■ Owner count. The number of existing references to this tag object.

QuickDraw GX provides functions to manipulate each of these tag object properties.



C H A P T E R  8

Tag Objects

About Tag Objects 8-5

Tag Types
Tag objects have types in order to identify their purpose. For example, if you want to 

identify a circle that is approximated by a QuickDraw GX path shape, you might attach 

to it a tag of type 'CRCL'. Then, whenever your application scales a path shape, it can 

first check to see if there is a tag object of type 'CRCL' attached to that shape. If there is, 

your application can make sure that the scaling preserves the circularity of the result. If 

your application has its own circle-drawing function, it can call that function instead of 

calling GXDrawShape to draw the circle.

The creator of a tag object can give it any 4-byte type value, although it is customary to 

make it a value that can be represented with four 1-byte ASCII characters. Apple 

Computer, Inc., reserves all tag types that can be represented with lowercase characters 

only, such as 'dave'. There are no other restrictions, except that a tag type cannot be 0. 

If you intend your tag type to be exportable (usable by other applications), you can be 

certain that it will not conflict with other applications’ tag types if you use your 

application’s creator type, as registered with Macintosh Developer Technical Support, as 

your tag type.

Note

A four-character tag type is not portable. On systems other than the 
Macintosh, the tag type may print or display quite differently, and one 
with the same appearance may have a very different numeric value. For 
maximum portability, it is best to define tag types with hexadecimal 
values, such as 

#define daveTag 0x44415645 /* 'DAVE' */

In this way, the tag type daveTag will be correct regardless of the 
architecture of the machine it is defined on. ◆

Some tag types have already been defined for specific purposes. QuickDraw GX uses tag 

objects for printing synonyms, which include data such as PostScript commands that 

replace the QuickDraw GX drawing commands for printing on PostScript printers. 

QuickDraw GX also uses tag objects to list fonts and individual glyphs used by flattened 

shapes. There are several currently defined tag types for printing synonyms, one for 

flattened fonts and glyphs, plus other tag types for various other purposes. Table 8-1 lists 

some of the currently defined tag types. 



C H A P T E R  8

Tag Objects

8-6 About Tag Objects

Uses for Tag Objects
Tags were originally devised as generalized, object-based equivalents to QuickDraw 

picture comments. Picture comments are used for sending PostScript commands during 

printing and for other purposes. A tag is like a structured comment: it has a specific type, 

it is attached to a specific item (an object), and it has a specific scope (that object). 

Tag objects can, however, be used for more than picture comments. For example, tags 

can provide general information. For a large, complex document that can be represented 

as a single picture shape, it may be important to know what application originally 

created the shape, or what ranges of properties (colors, pixel depths, page sizes, and so 

on) may be found in it. The shape may contain one or more references to tag objects that 

hold that information. 

Table 8-1 Defined tag types for tag objects

 Tag type Constant Explanation

'flst' gxFlatFontListItemTag Tag object contains a list of fonts used 
by the associated object (a flattened 
shape). 

'bfil' gxBitmapFileAliasTagType Tag object contains an alias record 
specifying the file that holds the pixel 
image for the associated bitmap 
shape object. 

'post' gxPostScriptTag Tag object contains PostScript 
instructions replacing the 
information in the associated 
object.

'psct' gxPostControlTag Tag object contains a control flag plus 
font and encoding information for a 
PostScript printer.

'sdsh' gxDashSynonymTag Tag object contains dash information 
to be used by the PostScript setdash 
operator.

'lcap' gxLineCapSynonymTag Tag object contains cap information 
to be used by the PostScript setlinecap 
operator.

'half' gxFormathalftoneTag Tag object contains halftone 
information to be used by a 
PostScript printer.

'ptrn' gxPatternSynonymTag Tag object contains pattern 
information to be used by vector 
devices.

'cubx' gxCubicSynonymTag Tag object contains a cubic Bézier 
representation of a curve or path.   



C H A P T E R  8

Tag Objects

Using Tag Objects 8-7

You can also use tags to attach identifying strings to objects, for debugging or 

other purposes. You could name shapes with strings like “oval” or “topographic 

contour 3242”; you could name ink objects with strings like “cobalt blue” or “blend 

mode.” You could also use tag objects to attach user comments or descriptions to shapes.

Tag objects may also provide alternate behavior for an object when it is used outside the 

QuickDraw GX environment. For example, QuickDraw GX uses tag objects to store 

PostScript commands for drawing shapes to PostScript printers.

If you want to be able to draw a shape object on a system that uses a different coordinate 

system from QuickDraw GX, you could calculate and store the alternate coordinates in a 

tag attached to the shape. If you are working in a completely different graphics system 

that is a superset of QuickDraw GX, you could store that system’s graphics information 

as tag objects attached to the QuickDraw GX objects you create.

IMPORTANT

In most cases, an application-created tag object cannot change the 
behavior of its associated object within the QuickDraw GX environment. 
No geometric operations, no drawing operations, and no testing 
operations (such as GXEqualShape) take the existence of tag objects 
into account. (One minor exception is GXFlattenShape; see its 
description in the chapter “Shape Objects” in this book. A second 
exception is that drawing a bitmap whose pixel image is disk-based 
requires QuickDraw GX to use information in a tag object.) Other than 
that, tag objects can alter behavior only where graphics operations are 
overridden (as in printing), or where your application itself changes an 
operation based on the contents of a tag object. ▲

Using Tag Objects

This section describes how to create and manipulate tag objects and their contents. It 

describes how you can

■ create and manipulate tag objects

■ manipulate tag object properties

■ directly manipulate tag contents

Creating and Manipulating Tag Objects
This section describes how you can create and interact with tag objects as whole entities. 

To manipulate tag object properties, use the functions described in the section 

“Manipulating Tag Object Properties” beginning on page 8-9. 



C H A P T E R  8

Tag Objects

8-8 Using Tag Objects

Creating and Deleting a Tag Object

QuickDraw GX provides the GXNewTag function to allow you to create a new tag object. 

When you create the tag object, you provide its contents and you specify its tag type. 

Once you have created the tag object, you can attach it to any QuickDraw GX object 

(except another tag object) by making a call such as GXSetShapeTags, GXSetInkTags, 

or GXSetColorProfileTags.

Except when it overrides its own functions (as during printing), QuickDraw GX does not 

access or use the internal structure of the tag object you create; its contents and function 

are entirely up to you. Nor does QuickDraw GX make any restrictions on the tag type 

designation you provide, except that it cannot be zero. QuickDraw GX does not make 

any use of tag type except to use it for retrieving and replacing tag objects according to 

your instructions.

To delete your application’s reference to a tag object, call the GXDisposeTag function. 

Calling GXDisposeTag may or may not actually release the memory allocated for the 

object, depending on the object’s owner count. The function decreases the owner count 

of the tag object by 1; if that brings the owner count to zero, the object is completely 

deleted and its memory released. See “Manipulating a Tag Object’s Owner Count” on 

page 8-11. Owner counts and what it means to dispose of an object are described in 

general in the chapter “Introduction to Objects” in this book.

Listing 8-1 is a library function that takes an arbitrary amount of data, makes it into a tag 

object of a given tag type, and attaches it to a specified shape. The function uses the 

GXNewTag function to create the tag object, and the GXDisposeTag function to dispose 

of its reference to the tag object after attaching it to the shape.

Listing 8-1 Adding data to a shape as a tag object

void AddShapeUser(gxShape source, const void *data, 

long length, long type)

{

gxTag tempItem;

tempItem = GXNewTag(type, length, data);

GXSetShapeTags(source, 0, 0, 0, 1, &tempItem);

GXDisposeTag(tempItem);

}

The GXNewTag function is described on page 8-13. The GXDisposeTag function is 

described on page 8-14. 



C H A P T E R  8

Tag Objects

Using Tag Objects 8-9

Copying, Comparing, and Cloning Tag Objects

You can use the GXCopyToTag function to copy the information from one tag object to 

another or to create a new copy of an existing tag object. 

You can test if two references refer to the same tag object by simply testing the references 

for equality. You can also compare two different tag objects for equality with the 

GXEqualTag functions. For two tag objects to be equal, their tag types and contents 

must be identical, although their owner counts need not be.

Object copies created with the GXCopyToTag function are always equal, by the criteria 

of GXEqualTag, to the objects from which they were copied.

In certain circumstances, you may want to copy a reference to a tag object without 

actually copying the object. This is called cloning, and you can use the GXCloneTag 

function to clone a tag object. Functionally, GXCloneTag does nothing more than 

increase the owner count of the tag object. For more information about cloning objects, 

see the chapter “Introduction to Objects” in this book. For information on manipulating 

owner counts, see the section “Manipulating a Tag Object’s Owner Count” on page 8-11.

The GXCopyToTag function is described on page 8-15. The GXEqualTag function is 

described on page 8-16. The GXCloneTag function is described on page 8-17.

Loading and Unloading Tag Objects

Although you rarely need to, you can influence memory-allocation decisions involving 

objects that you have created. If your application needs to have a tag object in memory, 

you can force QuickDraw GX to load the tag object into memory. When your application 

no longer needs the tag object in a loaded state, you can instruct QuickDraw GX to 

unload it.

You call the GXLoadTag function to make sure that a tag object is in memory; if 

necessary, QuickDraw GX brings the object into memory from an unloaded state. You 

can call the GXUnloadTag function to instruct QuickDraw GX that it is free to unload 

the tag object at any time. These functions are described in the memory management 

chapter of Inside Macintosh: QuickDraw GX Environment and Utilities.

Manipulating Tag Object Properties
This section describes how to manipulate the object properties of tag objects: tag type, 

contents, and owner count. To create and interact with tag objects as whole entities, use 

the functions described in the previous section, “Creating and Manipulating Tag 

Objects” beginning on page 8-7.



C H A P T E R  8

Tag Objects

8-10 Using Tag Objects

Getting and Setting a Tag Object’s Tag Type and Contents

Fundamentally, tag objects are nothing but holders for whatever information or data that 

you want to attach to a QuickDraw GX object. If you want to access that information to 

inspect it or modify it, you can set up a buffer and call the GXGetTag function for a 

given tag object. GXGetTag places a copy of the tag object’s information in your buffer, 

and it also returns the tag type of the tag object.

You can then modify the information in the buffer in any way you need to, and you can 

also change the tag type of the object, if desired. (Tag types that can be represented as 

four lowercase characters, such as 'abcd', are reserved by Apple Computer, Inc.) To 

return the modified contents or tag type to the tag object they came from, you then call 

the GXSetTag function.

Listing 8-2 is a library function that retrieves the data of the first tag object of a specified 

tag type or index attached to a given shape. If you specify an index and a buffer length to 

put the data in, the function returns the contents and tag type of the found tag. The 

function result is the number of tags found that fit the criteria you specify. The function 

uses the GXGetTag function to retrieve the tag object’s contents.

Listing 8-2 Retrieving the contents of a tag object

long GetShapeUser(gxShape source, void *data, long *length, long 

requestedType, long *foundType, long index)

{

if( index ) /* if index nonzero, get specific tag */

{

gxTag tempItem;

if( GXGetShapeTags(source, requestedType, 

index, 1, &tempItem) )

{

long tempLength = GXGetTag(tempItem, foundType, data);

if( length )

*length = tempLength;

return 1; /* no. of tags fund */

} else

return 0;

}

else /* otherwise just get tags of req. type */

return GXGetShapeTags(source, requestedType, 

1, gxSelectToEnd, nil);

}

The GXGetTag function is described on page 8-18.



C H A P T E R  8

Tag Objects

Using Tag Objects 8-11

Using the GXGetTag and GXSetTag functions involves working with a copy of the tag 

object’s contents in a buffer in application memory. You can also gain direct access to a 

tag object’s contents (but not tag type) in QuickDraw GX memory, if desired. See the 

section “Directly Manipulating Tag Object Contents” beginning on page 8-11. 

Manipulating a Tag Object’s Owner Count

The owner count of an object indicates the number of current references to that object. In 

general, QuickDraw GX manages owner counts for you. For example, when you create a 

new tag object, QuickDraw GX sets the owner count of the new tag object to 1, which 

corresponds to the variable your application uses to reference the tag object. As another 

example, when you assign an existing tag object to a shape or transform (or any other 

object), QuickDraw GX increments the tag object’s owner count, corresponding to the 

new reference to the tag object contained in the style or transform.

If you want to directly manage the owner count of a tag object yourself, or if you want to 

know whether a tag object is shared, you can 

■ use the function GXGetTagOwners to determine the current owner count

■ use the function GXCloneTag to increment the owner count, whenever you create a 
new reference to the object

■ use the function GXDisposeTag to decrement the owner count, deleting the tag 
object and freeing the memory used by it if the owner count goes to 0

The GXGetTagOwners function is described on page 8-20.

Note

In the chapter “Style Objects” in this book, the section on manipulating a 
style object’s owner count discusses two common owner-count 
problems and how to avoid them. The problems are discussed in terms 
of style objects, but they apply equally well to tag objects. Refer to that 
discussion if you find that tag objects you create have owner counts that 
are higher or lower than you expect. ◆ 

Directly Manipulating Tag Object Contents
Unlike with most properties of most objects, QuickDraw GX allows you to directly 

manipulate a tag object’s contents in QuickDraw GX memory. This capability is provided 

as a convenience, so that you do not have to make a copy of the data; you can achieve 

the same results by working with a copy of the information in application memory and 

then replacing it in the object, using the GXGetTag and GXSetTag functions. See 

“Getting and Setting a Tag Object’s Tag Type and Contents” on page 8-10 for information 

on working with GXGetTag and GXSetTag.

As with GXGetTag and GXSetTag, the direct-manipulation functions do not provide 

you with information about the format or organization of the contents of a tag object; 

they simply give you a pointer to the contents. How you manipulate that information 

depends on the type of tag you are accessing. 



C H A P T E R  8

Tag Objects

8-12 Tag Objects Reference

Working with data in QuickDraw GX memory requires that you lock the data before 

accessing it so that it cannot be relocated or unloaded from memory until you are 

finished. You first call the GXLockTag function to make sure the tag object doesn’t move 

until you are finished with it. You then call the GXGetTagStructure function, which 

returns a pointer to and the size of the shape’s contents. You can then modify the data as 

needed. Once finished, you call GXUnlockTag to free the tag object for relocation as 

needed by QuickDraw GX.

IMPORTANT

Memory-handling complications can occur with locked objects. Locking 
an object fragments the QuickDraw GX heap, which can result in lower 
performance. Furthermore, if a fragmented-memory condition occurs 
during a call, QuickDraw GX may unlock all objects and restart the call. 
Therefore, be careful about performing memory-intensive operations 
while there are locked objects in QuickDraw GX memory; they may 
become unlocked without warning. ▲

The GXLockTag function is described on page 8-21. The GXGetTagStructure function 

is described on page 8-23. The GXUnlockTag function is described on page 8-22.   

Attaching Tags to a QuickDraw GX Object
Most QuickDraw GX objects (other than tag objects themselves) can have one or more 

attached tag objects. Each object has a property called a tag list, which is an array of 

references to tag objects. You can retrieve and assign tag references with QuickDraw GX 

functions. For example, to retrieve one or more of the tags attached to a shape object, you 

call the GXGetShapeTags function. To add one or more tags to a shape object’s tag list, 

you call the GXSetShapeTags function. 

Besides tag objects, other objects that you cannot directly attach tags to include printing 

objects, font objects, and graphics client objects.

The GXGetShapeTags and GXSetShapeTags functions are described in the chapter 

“Shape Objects” in this book; the equivalent calls for other kinds of objects are described 

in the chapters that document those objects. 

Tag Objects Reference

This section provides reference information to the data structures and functions that 

allow you to create and manipulate tag objects and alter their properties.



C H A P T E R  8

Tag Objects

Tag Objects Reference 8-13

Constants and Data Types

This section describes the data type that you use to gain access to tag objects.

The Tag Object

QuickDraw GX provides you with access to an individual tag object through a gxTag 

reference:

typedef struct gxPrivateTagRecord *gxTag;

In this type definition, gxTag is a type-checked reference, not an actual pointer to any 

defined structure. The contents of the tag object are private. 

Functions

This section describes the functions with which you can

■ create and manipulate tag objects

■ manipulate tag object properties, including the contents of the tag object

■ directly manipulate the contents of a tag object, in-place in QuickDraw GX memory

Creating and Manipulating Tag Objects

The functions in this section allow you to create and manipulate tags as QuickDraw GX 

objects.

GXNewTag

You can use the GXNewTag function to create a new tag object.

gxTag GXNewTag(long tagType, long length, const void *data);

tagType A 4-byte identifier specifying the type of tag object to be created.

length The length in bytes of the data to place in the tag object.

data A pointer to the data to place in the tag object.

function result A reference to the newly created tag object.



C H A P T E R  8

Tag Objects

8-14 Tag Objects Reference

DESCRIPTION

The GXNewTag function creates a tag object, with an owner count of 1, containing 

whatever data you supply. The tag type is an application-defined, 4-byte tag (commonly 

expressed on the Macintosh with four characters, such as 'Cary') that you supply to 

specify the type of data contained in the tag object. You cannot supply a value of 0.

You can specify a value of zero for the length parameter, in which case GXNewTag 

creates the tag object but places no data into it. (In that case, the data pointer must be 

nil, or else GXNewTag posts an inconsistent_parameters error.)

SPECIAL CONSIDERATIONS

You cannot specify a tag type of zero. Apple Computer, Inc., reserves all tag types that 

can be expressed as four lowercase characters (such as 'atag').

Tag types expressed as four characters may not be portable to systems other than the 

Macintosh; tag types defined numerically are portable.

If no error occurs, the GXNewTag function creates a tag object; you are responsible for 

disposing of that object when you no longer need it.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

 Currently defined tag types for tag objects are listed in Table 8-1 on page 8-6. 

GXDisposeTag

You can use the GXDisposeTag function to release a reference to a tag object.

void GXDisposeTag(gxTag target);

target A reference to the tag object to dispose of.

Errors
out_of_memory
type_is_nil
inconsistent_parameters



C H A P T E R  8

Tag Objects

Tag Objects Reference 8-15

DESCRIPTION

The GXDisposeTag function decrements the owner count of the tag object specified by 

the target parameter. GXDisposeTag deletes the tag object and releases any memory 

used by it if the owner count goes to zero.

SPECIAL CONSIDERATIONS

If you attempt to alter a tag object associated with a screen view device, this function 

posts a tag_access_restricted error.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Owner counts for tag objects are discussed in the section “Copying, Comparing, and 

Cloning Tag Objects” beginning on page 8-9, and in the section “Manipulating a Tag 

Object’s Owner Count” beginning on page 8-11.

To examine the owner count of a tag object, use the GXGetTagOwners function, 

described on page 8-18. To increment the owner count of a tag, use the GXCloneTag 

function, described on page 8-17. 

GXCopyToTag

You can use the GXCopyToTag function to copy the contents of one existing tag object 

into another, or to create a new tag object and copy the contents of an existing tag object 

into it.

gxTag GXCopyToTag(gxTag target, gxTag source);

target A reference to the tag object to copy into. If you specify nil for this 
parameter, the GXCopyToTag function creates a new tag object.

source A reference to the tag object whose contents you want to copy.

function result A reference to the copy (that is, the target tag object).

Errors
tag_is_nil
cannot_dispose_locked_tag (debugging version)
tag_access_restricted (debugging version)



C H A P T E R  8

Tag Objects

8-16 Tag Objects Reference

DESCRIPTION

The GXCopyToTag function copies the contents of an existing tag object to another, or it 

creates a new tag object and copies the contents of an existing tag object to it. The 

function copies the tag type and contents (but not the owner count) of the tag object 

specified by the source parameter into the tag object specified by the target 

parameter. 

If you specify nil for the target parameter, the GXCopyToTag function creates a new 

tag object and copies the source tag object’s tag type, contents, and owner count into it.

You can use the GXCopyToTag function to create a copy of a tag object and then modify 

it without changing the original.

SPECIAL CONSIDERATIONS

If you specify nil for the target parameter and no error occurs, the GXCopyToTag 

function creates a tag object; you are responsible for disposing of that object when you 

no longer need it.

If you attempt to alter a tag object associated with a screen view device, this function 

posts a tag_access_restricted error.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To create a new tag object that is not a copy of an existing tag object, use the GXNewTag 

function, described on page 8-13.

To compare two tag objects, use the GXEqualTag function, described in the next section.

GXEqualTag

You can use the GXEqualTag function to determine whether two tag objects are equal.

boolean GXEqualTag(gxTag one, gxTag two);

one A reference to one of the tag objects to test for equality.

two A reference to the other tag object to test for equality.

function result true if the two tag objects are equal; false otherwise.

Errors
out_of_memory
tag_is_nil
tag_access_restricted (debugging version)



C H A P T E R  8

Tag Objects

Tag Objects Reference 8-17

DESCRIPTION

The GXEqualTag function returns true if the two specified tag objects are equal. For 

two tag objects to be equal, they must have identical tag types and contents, although 

their owner counts need not be identical.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To make a copy of a tag object that is equal by the criteria of this function, use the 

GXCopyToTag function, described in the previous section. 

GXCloneTag

You can use the GXCloneTag function to clone a tag object—that is, to add a reference to 

it and increment its owner count.

gxTag GXCloneTag(gxTag source);

source A reference to the tag object to clone.

function result A reference to the cloned tag object.

DESCRIPTION

The GXCloneTag function increments the owner count of the tag object referenced in 

the source parameter. You typically use this function when you want to create another 

reference to an existing tag object instead of creating a distinct copy of the tag.

This function returns as its function result a reference to the tag object—the same 

reference you pass in as the source parameter. It also increments the tag object’s owner 

count. 

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
tag_is_nil

Errors
tag_is_nil
tag_access_restricted (debugging version)



C H A P T E R  8

Tag Objects

8-18 Tag Objects Reference

SEE ALSO

Owner counts for tag objects are discussed in the section “Copying, Comparing, and 

Cloning Tag Objects” beginning on page 8-9, and in the section “Manipulating a Tag 

Object’s Owner Count” beginning on page 8-11.

To examine the owner count of a tag object, use the GXGetTagOwners function, 

described on page 8-20. To decrement the owner count of a tag, use the GXDisposeTag 

function, described on page 8-14. 

Manipulating Tag Object Properties

The functions in this section allow you to manipulate the object properties of tag objects: 

their tag types, contents, and owner counts.

GXGetTag

You can use the GXGetTag function to retrieve the tag type and contents of a tag object.

long GXGetTag(gxTag source, long *tagType, void *data);

source A reference to the tag object whose contents you want to retrieve.

tagType A pointer to a value specifying a tag object type. On return, specifies the 
type of tag object referenced in the source parameter.

data A pointer to a buffer. On return, the buffer holds the contents of the 
source tag object.

function result The size in bytes of the contents of the source tag object.

DESCRIPTION

The GXGetTag function returns the tag type and contents of the source tag object in the 

tagType and data parameters, respectively. Its function result is the size of the 

information returned in the data array. 

Before calling GXGetTag, you must allocate an array of sufficient size to hold the 

contents of the tag object. If instead you pass nil for the data parameter, GXGetTag 

does not return the tag contents, but nonetheless returns (as its function result) the size 

of the contents. Thus you can make an initial call to GXGetTag to determine the size of 

buffer to allocate, and then call GXGetTag once more to get the contents.

The GXGetTag function is different from the GXGetTagStructure function in that 

it returns a copy of the tag object’s contents in a buffer that you have allocated in 

application memory. The GXGetTagStructure gives you direct access to the contents 

of a tag object in QuickDraw GX memory.



C H A P T E R  8

Tag Objects

Tag Objects Reference 8-19

Although GXGetTag returns the contents of a tag object, it returns no information other 

than size about the format or organization of the tag’s contents. You must know the 

internal structure of a tag object’s contents in order to manipulate it.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To replace the tag type and contents of a tag object, use the GXSetTag function, 

described in the next section.

The GXGetTagStructure function is described on page 8-23. 

GXSetTag

You can use the GXSetTag function to replace the tag type or contents of a tag object.

void GXSetTag(gxTag target, long tagType, long length, 

const void *data);

target A reference to the tag object whose contents you want to replace.

tagType The new tag type to assign to the tag object referenced in the target 
parameter. If you pass 0 for this parameter, the tag type remains 
unchanged. 

length The length in bytes of the new data to place in the tag object. If you pass 0 
for this parameter, the contents of the tag object remain unchanged and 
the data parameter is ignored.

data A pointer to the new data to place in the tag object. If you pass nil for 
this parameter, the contents of the tag object (up to the length specified by 
length) remain unchanged.

DESCRIPTION

The GXSetTag function assigns the specified tag type and contents to the target tag 

object. You can set three of its parameters for different purposes: 

■ To change only the tag type and not the contents of a tag object, pass 0 in the length 
parameter, nil in the data parameter, and a nonzero value for tagType. 

■ To change only the contents and not the tag type, pass 0 in the tagType parameter, 
and valid values for length and data.

Errors
out_of_memory
tag_is_nil



C H A P T E R  8

Tag Objects

8-20 Tag Objects Reference

■ To resize the tag object without changing its contents or type, pass the new size in the 
length parameter, nil in the data parameter, and 0 in the tagType parameter. If 
the new size of the contents is smaller than the previous size, the data is truncated to 
fit the new size. If the new size is greater than the previous size, the tag object is 
resized accordingly, but a new_tag_contains_invalid_data warning is posted.

Note that calling GXSetTag is different from using the GXGetTagStructure function 

to manipulate the contents of a tag object. Unlike GXGetTagStructure, GXSetTag 

allows you to change the size of the tag object.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To retrieve the tag type and contents of a tag object, use the GXGetTag function, 

described in the previous section.

To directly manipulate the contents of a tag object in QuickDraw GX memory, rather 

than replacing its entire contents and tag type, use the GXGetTagStructure function, 

described on page 8-23. 

GXGetTagOwners

You can use the GXGetTagOwners function to determine the number of references to a 

particular tag object.

long GXGetTagOwners(gxTag source);

source A reference to the tag object to find the owner count of.

function result The owner count of the tag object referenced in the source parameter.

DESCRIPTION

The GXGetTagOwners function returns the owner count of the referenced tag object. 

The owner count is the current number of references to the tag object.

Errors
out_of_memory
tag_is_nil
inconsistent_parameters (debugging version)
tag_access_restricted (debugging version)

Warnings
new_tag_contains_invalid_data



C H A P T E R  8

Tag Objects

Tag Objects Reference 8-21

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Owner counts for tag objects are discussed in the section “Copying, Comparing, and 

Cloning Tag Objects” beginning on page 8-9, and in the section “Manipulating a Tag 

Object’s Owner Count” beginning on page 8-11.

To increment the owner count of a tag, use the GXCloneTag function, described on 

page 8-17. To decrement the owner count of a tag, use the GXDisposeTag function, 

described on page 8-14.  

Directly Manipulating the Data in a Tag Object

This section describes the functions you use to directly manipulate the contents of a tag 

object in QuickDraw GX memory.

GXLockTag

You can use the GXLockTag function to load a tag object into QuickDraw GX memory 

and lock its contents into a fixed memory location.

void GXLockTag(gxTag target);

target A reference to the tag object to be loaded and locked.

DESCRIPTION

The GXLockTag function prevents a tag object from being relocated. To directly edit a 

tag’s contents, you must first call GXLockTag. You can then call GXGetTagStructure 

and edit the tag’s contents. After editing, you must call GXUnlockTag to release the tag 

for relocation.

SPECIAL CONSIDERATIONS

To avoid fragmenting the QuickDraw GX heap, you should call the GXUnlockTag 

function as soon as possible after calling GXLockTag.

You can nest calls to these direct-access routines, but be sure to call GXUnlockTag as 

many times as you call GXLockTag. Version 1.0 of QuickDraw GX prohibits more than 

255 nested calls to GXLockTag.

Errors
tag_is_nil



C H A P T E R  8

Tag Objects

8-22 Tag Objects Reference

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The GXUnlockTag function is described in the next section. The GXGetTagStructure 

function is described on page 8-23. 

GXUnlockTag

You can use the GXUnlockTag function to allow QuickDraw GX to relocate, flatten, or 

unload a tag object.

void GXUnlockTag(gxTag target);

target A reference to the tag object to unlock.

DESCRIPTION

The GXUnlockTag function frees a previously locked tag object for relocation. 

To directly edit a tag’s contents, you must first call GXLockTag. You can then 

call GXGetTagStructure and edit the tag’s contents. After editing, you must call 

GXUnlockTag.

You cannot dispose of a tag that is locked. You must first call GXUnlockTag on a locked 

tag object before calling GXDisposeTag.

SPECIAL CONSIDERATIONS

To avoid fragmenting the QuickDraw GX heap, you should call the GXUnlockTag 

function as soon as possible after calling GXLockTag.

You can nest calls to these direct-access routines, but be sure to call GXUnlockTag as 

many times as you call GXLockTag.

RESULT CODE

Errors
out_of_memory
tag_is_nil

Errors
tag_is_nil

Notices (debugging version)
tag_not_locked



C H A P T E R  8

Tag Objects

Tag Objects Reference 8-23

SEE ALSO

The GXLockTag function is described in the previous section. The 

GXGetTagStructure function is described in the next section.

The GXDisposeTag function is described on page 8-14. 

GXGetTagStructure

You can use the GXGetTagStructure function to get a pointer to the contents of a tag 

object.

void *GXGetTagStructure(gxTag source, long *length);

source A reference to the tag object whose contents you need access to.

length A pointer to a value. On return, contains the size in bytes of the contents 
of the tag object referenced in the source parameter.

function result A pointer to the contents of the source tag object.

DESCRIPTION

The GXGetTagStructure function returns a pointer to the contents of the tag object 

referenced in the source parameter. To directly edit a tag’s contents, you must first call 

GXLockTag. You can then call GXGetTagStructure and edit the tag’s contents. After 

editing, you must call GXUnlockTag.

The GXGetTagStructure function is different from the GXGetTag function in that it 

gives you direct access to the contents of a tag object in QuickDraw GX memory. The 

GXGetTag function returns a copy of the tag object’s contents in a buffer that you have 

allocated in application memory. 

To edit the contents of a tag object, you need to know its format and organization. 

GXGetTagStructure returns a pointer and a size only; it does not provide you with 

any information about the internal structure of the tag’s contents.

This function does not provide access to tag type information.

SPECIAL CONSIDERATIONS

Note that using the GXGetTagStructure is different from calling GXSetTag, in that it 

does not allow you to change the size of the tag object.

This function is available for your convenience, in that you do not have to make a copy 

of the tag object’s data, but is rarely needed. In most cases you can use the GXGetTag 

and GXSetTag functions to manipulate tag contents.



C H A P T E R  8

Tag Objects

8-24 Tag Objects Reference

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The GXLockTag function is described on page 8-21. The GXUnlockTag function is 

described in the previous section.

The GXGetTag function is described on page 8-18. The GXSetTag function is described 

on page 8-19.   

Errors
out_of_memory
tag_is_nil

Notices (debugging version)
lockTag_called_as_side_effect



C H A P T E R  8

Tag Objects

Summary of Tag Objects 8-25

Summary of Tag Objects

C Summary

Functions

Creating and Manipulating Tag Objects

gxTag GXNewTag (long tagType, long length, const void *data);

void GXDisposeTag (gxTag target);

gxTag GXCopyToTag (gxTag target, gxTag source);

boolean GXEqualTag (gxTag one, gxTag two);

gxTag GXCloneTag (gxTag source);

Manipulating Tag Object Properties

long GXGetTag (gxTag source, long *tagType, void *data);

void GXSetTag (gxTag target, long tagType, long length, 
const void *data);

long GXGetTagOwners (gxTag source);

Directly Manipulating the Data in a Tag Object

void GXLockTag (gxTag target);

void GXUnlockTag (gxTag target);

void *GXGetTagStructure (gxTag source, long *length);





GL-1

add mode A transfer mode type in which the 
source color component is added to the 
destination component, but the result is not 
allowed to exceed the maximum value (0xFFFF).

alignment A style object property. It is the 
alignment value to use when drawing the text of 
a shape. Text may be left-aligned, right-aligned, 
anywhere in the continuum between the two 
alignments (such as centered), or fully justified. 
(Layout shapes support continuous justification 
as well as continuous alignment.)

alpha channel A color component in some 
color spaces whose value represents the opacity 
of the color defined in the other components.

alpha-channel transfer modes Transfer mode 
types in which the result color is achieved by 
considering the alpha channel values as well as 
the color-component values of the source and 
destination.

AND mode A transfer mode type in which 
the bits of the source color component and 
destination color component are combined using 
an AND operation. 

angle The angle from horizontal made by the 
pattern of dots in a halftone.

anti-aliasing The smoothing of jagged edges 
on a displayed shape by modifying the 
transparencies of individual pixels along the 
shape’s edge.

application heap or application memory The 
part of computer memory directly accessible by 
an application, and in which its code and data 
structures reside. Compare QuickDraw GX 
memory, graphics client heap.

arithmetic transfer modes Transfer mode types 
in which the result color is achieved by using 
arithmetic operations on the source and 
destination color-component values.

atop mode A transfer mode type in which the 
source color is placed over the destination, but 
the resulting destination retains the original 
destination’s transparency.

attributes A property of many QuickDraw GX 
objects. It is a set of flags that control various 
aspects of that object’s behavior.

background color The color of the area 
between the dots of a halftone.

base family A group of closely related color 
spaces, across which color conversion can take 
place without the use of color profiles. RGB and 
HSV color spaces, for example, are all in the RGB 
base family.

bitmap shape A shape type that represents a 
pixel image. The geometry of a bitmap shape 
includes a bitmap structure. 

bitmap structure A data structure that 
describes a pixel image.

black generation In CMYK color calculation, 
the substitution of black ink for areas with high 
intensities of cyan, magenta, and yellow. See also 
undercolor removal. 

blend mode A transfer mode type in which the 
result is the average of the source and destination 
color components, weighted by a ratio specified 
by the operand component. 

Boolean transfer modes Transfer mode types in 
which the result color is achieved by using 
Boolean operations on the bits of the source and 
destination color-component values.

cap A style object property. It is the shape (such 
as an arrowhead, or any other geometric shape) 
to draw at the start and end of each contour in 
the shape.

child view port For a given view port, a view 
port immediately below it in the view port 
hierarchy.

Glossary



G L O S S A R Y

GL-2

child view port list A view port object 
property. A view port’s child view port list is an 
array of references to the child view ports of that 
view port.

chromaticity An intensity-independent color 
designation, represented by a pair of values 
(chromaticity coordinates) for the x and y 
components in Yxy space.

CIE Commission Internationale d’Eclairage, an 
organization that carried out experimental work 
that resulted in the definition of the XYZ and Yxy 
color spaces.

clip A property of a transform object, view port 
object, or view device object. It is a primitive 
shape, bitmap shape, or glyph shape that 
controls the visibility of a shape object.

clone To create another current reference to an 
existing object. The effect of cloning an object is 
to increase its owner count by 1.

closed-frame fill A shape fill that connects the 
points of the geometry from the start point 
through the end point and on to the start point 
again. Same as hollow fill.

CMYK color space A color space whose four 
components measure the cyan, magenta, yellow, 
and black elements of a color. Used mostly for 
printing.

Collection Manager A part of system software, 
related to QuickDraw GX, that manages 
collection objects.

collection object A kind of object, managed by 
the Collection Manager, that is used to hold any 
kind of information. Several QuickDraw GX 
printing objects have properties that are 
references to collection objects.

color A QuickDraw GX data structure—also a 
property of an ink object—that specifies a color in 
terms of a particular color space and the values 
for each of the color’s components within that 
color space. A color structure can also contain a 
reference to a color profile object.

color-average tint A halftone tint type in which 
the tint color is specified by the average of all the 
components of the input color. 

color component An individual dimension, or 
component, of a color space. For example, RGB 
space has three components: red, green, and blue.

color-component value A value representing 
the intensity of a single color component.

color conversion The conversion of a color 
value from one color space to another. If the color 
spaces are not in the same base family, accurate 
color conversion requires color matching.

colorimetric matching A color-matching 
method in which colors common to the gamuts 
of both devices are maintained across the match. 
Compare perceptual matching, saturation 
matching.

color-mixture tint A halftone tint type in which 
the tint color is specified by the mixture of dot 
color and background color closest to the input 
color.

color matching A method of accurately 
converting colors in one color space to another 
color space, or from display on one device to 
display on another device. Color matching 
requires the use of color profiles and a 
color-matching method.

color-matching method A specific algorithm 
for matching colors. Different algorithms have 
different purposes. See, for example, colorimetric 
matching, perceptual matching, saturation 
matching.

color packing The storing of colors in formats 
that are smaller than the unpacked formats. 
Whereas unpacked colors may require 48 or 64 
bits to describe a color value, packed formats 
may require only 16 or 32 bits.

color profile A QuickDraw GX object 
associated with a transfer mode, color, or bitmap 
data structure and used for color matching. A 
color profile usually describes the color response 
curve of a display device in terms of an objective 
standard.

color set A QuickDraw GX object associated 
with a transfer mode or bitmap data structure. A 
color set defines the individual colors available 
for drawing a shape.



G L O S S A R Y

GL-3

color space A specification of a particular 
method for color representation, such as RGB or 
HSV. QuickDraw GX recognizes over 30 different 
color space definitions.

ColorSync Utilities A part of Macintosh 
system software that manages color matching, 
color profiles, and the drawing of matched 
colors. QuickDraw GX color profile objects 
contain ColorSync color profiles, and QuickDraw 
GX uses the Color Sync Utilities to perform its 
color matching. 

color value A structure that holds the full 
specification of a single color in a particular color 
space. For example, an RGB color value consists 
of three color-component values: one each for 
red, green, and blue. A color value is itself a 
component of a color structure.

color-value array A property of a color set 
object; it is the array of color values that 
constitute the colors of the color set.

component See color component.

component mode A transfer mode type, as 
applied to a single color component. It is the 
specification of the kind of transfer mode—such 
as copy mode or XOR mode—to apply to that 
color component when drawing a shape or pixel.

component tint A halftone tint type in which 
the tint color is specified by the value of one 
component of the input color.

concatenate To add (through matrix 
multiplication) the effects of one mapping matrix 
to another, as when the mappings of view ports 
in a view port hierarchy are concatenated to 
convert from local space to global space.

constructive geometry Mathematical 
operations, such as intersection and union, that 
construct new shape geometries out of input 
shape geometries. 

coordinate plane See coordinate space.

coordinate space or coordinate system A 
planar region defined by all possible values for a 
pair of fixed-point coordinates. The coordinate 
spaces supported by QuickDraw GX include 
geometry space, local space, global space, and 
device space.

copy mode A transfer mode type in which 
the source color component is copied to the 
destination, and the destination component is 
ignored.

curve error A style object property. It is the 
allowable error for operations such as converting 
a path shape to a polygon shape.

curve shape A shape type that represents a 
quadratic Bézier curve.

dash A style object property. It is the 
appearance of dashed lines or contours in a 
shape. The dashing capability is very general in 
QuickDraw GX; you can specify any geometric 
shape, or even a sequence of glyphs, for a dash.

direct mode A fast printing mode that uses 
information built into the printer.

default object (1) For most kinds of objects, an 
object with the properties of a newly created 
object. When it creates an object, QuickDraw GX 
assigns it the default properties for that kind of 
object. (2) For color sets, the color set to assign as 
the default to a bitmap shape of a given pixel 
depth. (3) For color profiles, the profile to use for 
color matching when no profile is specified.

desktop printer A printer accessible through an 
icon on the user’s desktop. The user prints to a 
desktop printer by dragging the icon of a 
document to the printer icon.

despool To open a print file and send its data to 
a device for printing. Compare spool. 

destination color The preexisting color of the 
destination onto which a shape or pixel is to be 
drawn. Compare source color, result color.

destination color limits In a transfer mode, 
limits on the permissible values for destination 
color to use in transfer-mode calculations. 
Compare source color limits, result color limits.

destination profile The color profile attached to 
the device on which a color is to be drawn. 
Compare source profile.

device coordinates Paired values that specify a 
size or location in device space. 



G L O S S A R Y

GL-4

device matrix A 5 × 4 matrix, part of the 
transfer mode structure, that allows you to 
manipulate the components of the destination 
color.

device space The coordinate system that 
defines the position and scale (pixel size) of a 
specific view device. Compare geometry space, 
local space, global space.

direct memory Memory directly addressable by 
an application or by QuickDraw GX. Compare 
remote memory.

dispose To delete a reference to an object. When 
an application no longer needs an object, it 
disposes of the object. That action deletes the 
object from memory if there are no other current 
references to the object; otherwise, disposing of 
an object merely decreases its owner count by 1.

dither or dither level A property of a view port 
object. It specifies the number of colors that can 
be dithered together when drawing a shape to 
that view port.

dithering A color-display technique in which 
different colors are placed in adjacent pixels to 
achieve the affect of a single color intermediate 
between the displayed colors.

dot color The color of the dots of a halftone.

dot type The shape of dot employed in a 
halftone pattern, such as round, line, or triangle.

empty shape A shape type that has no 
geometry, no contents, and no bounds. 

encoding A style object property. It is the type 
of character encoding used to represent the text 
of a shape, as well as its script and language. 

error A diagnostic message posted by 
QuickDraw GX when a function cannot complete 
successfully.

error diffusion A process of dithering for 
bitmaps in which the error (the difference 
between the computed color of a given pixel and 
the nearest color available on the view device) is 
passed to adjacent pixels.

even-odd fill A shape fill that follows the 
even-odd rule. Same as solid fill.

exclude mode A transfer mode type in which 
the destination color remains visible only where 
the source is transparent, and the source color is 
copied anywhere the destination is transparent.

fade mode A transfer mode type in which the 
source is blended with the destination, using the 
relative alpha values as the ratio for the blend.

fill See shape fill.

flatten To convert the private, object-based 
description of an object or set of objects into a 
public-format data stream suitable for file or 
clipboard storage. Compare unflatten; see also 
stream format.

font A style object property. It is the reference 
to the font to use in drawing the text of a shape.

font variations A style object property. It is the 
list of font variations—stylistic variations built 
into the font—available for drawing the text of a 
shape.

format object A printing object that specifies 
page-formatting characteristics.

framed fill See open-frame fill.

frequency The size of cells in a halftone 
pattern, in cells per inch.

full shape A shape type that represents a shape 
that encompasses all of coordinate space. 

fully justified See justification.

gamut The limits of the colors that a device can 
produce. Different devices have different gamuts, 
so color matching is necessary when converting 
colors from one device to another.

geometric operations Mathematical operations 
on the geometries of shape objects. See also 
constructive geometry.

geometry A property of a QuickDraw GX 
shape object. It is the specification of the actual 
size, position, and form of the shape. For 
example, for a rectangle shape, the geometry 
specifies the locations (in local coordinates) of the 
rectangle’s upper-left and lower-right corners.

geometry coordinates Paired values that 
specify a size or location in geometry space. 



G L O S S A R Y

GL-5

geometry space The coordinate system 
represented by the geometry of a shape object. 
Compare local space, global space, device space.

global coordinates Paired values that specify a 
size or location in global space. 

global space The coordinate system, used by a 
view group, resulting from the application of 
the view port mapping shape dimensions 
measured in local space. A view port’s location, 
for example, is described in global coordinates. 
Compare geometry space, local space, device 
space.

glyph justification overrides array A style 
object property used only by layout shapes. It is 
an array that redefines the justification priorities 
and behaviors for individual glyphs.

glyph shape A shape type that represents a set 
of characters or glyphs, each of which is drawn 
with independent style, location, and orientation.

glyph substitutions array A style object 
property used only by layout shapes. It is an 
array specifying substitute glyphs for those that 
would normally be displayed in a style run.

GraphicsBug A tool for debugging QuickDraw 
GX applications; its mode of use and command 
set are analogous to those of MacsBug. 

graphics client A reference to a block of 
memory (the graphics client heap) used for an 
application’s objects.

graphics client heap The part of computer 
memory in which QuickDraw GX allocates its 
objects and data structures. Compare application 
heap.

grayscale Consisting entirely of shades of gray.

gray space A color space whose single 
component is the lightness or brightness of a 
color. Same as luminance color space.

hairline The thinnest possible line that can be 
drawn on a device.

halftone A QuickDraw GX data structure—also 
a property of a view port object—that specifies a 
pattern and a set of colors. A halftone is used to 
achieve a greater range of colors than may be 
available on a display device. See also angle, 

background color, dot color, dot type, 
frequency, tint type.

hierarchy See view port hierarchy.

highlight mode A transfer mode type in which 
the source component and operand component 
are swapped in the destination. Other component 
values in the destination are ignored.

hit point In hit-testing, the point (commonly 
corresponding to a mouse-down location) to be 
tested for coincidence with a shape or part of a 
shape.

hit-test info structure A structure, filled out by 
a hit-testing function, that contains the results 
of a hit-test. 

hit-testing The conversion of a specific 
geometric location, such as pixel position in a 
view port, to logical location (part, control point, 
or glyph) in the geometry of a shape object. 
Hit-testing is used to highlight or activate parts 
of geometric shapes or to highlight or draw a 
caret within the displayed text of a typographic 
shape.

hit-test parameters A property of a transform 
object. They consist of a shape-parts mask and a 
tolerance that together specify the conditions of a 
hit-test.

HLS color space A color space whose three 
components measure the hue, lightness, and 
saturation of a color.

hollow fill See closed-frame fill.

HSV color space A color space whose three 
components measure the hue, saturation, and 
value (similar to lightness) of a color.

identity mapping A mapping matrix in which 
all elements are 0 except those along the 
diagonal, which are 1.0. An identity mapping 
leaves unchanged whatever it is applied to. 

indexed color space A color space whose single 
component defines an index into a list of color 
values in a color set.

ink A QuickDraw GX object associated with a 
shape object. An ink object contains information 
that affects the color of a shape and the transfer 
mode with which it is drawn.



G L O S S A R Y

GL-6

inverse even-odd fill A shape fill that is the 
inverse of even-odd fill.

inverse fill See inverse even-odd fill.

inverse solid fill See inverse even-odd fill.

inverse winding fill A shape fill that is the 
inverse of winding fill.

job object A printing object that holds the 
primary printing information for a document.

join A style object property. It is the appearance 
(such as rounded or sharp, or any other 
geometric shape) of corners where a shape’s 
lines or contours meet.

justification The process of adding space or 
otherwise increasing the spacing of glyphs to 
align text with both its left and right margins. 
Justification is a form of alignment, and is 
incremental; text that is completely fills the space 
between both margins is fully justified. 

kerning adjustments array A style object 
property. It is an array specifying changes to the 
font-specified kerning for pairs of glyphs in a 
style run. (This property is used by layout shapes 
only.)

L*a*b* space A universal color space, designed 
to create perceptually linear gradations between 
colors, that is a nonlinear transformation of the 
Munsell color-notation system.

layout shape A shape type that represents a 
line of text that can be drawn using sophisticated 
typographic formatting and glyph substitutions.

line shape A shape type that represents a 
straight line.

load To return an unloaded QuickDraw GX 
object from external storage to memory. 
QuickDraw GX automatically and transparently 
loads and unloads objects in the course of 
managing memory; an application need never 
know whether an object it accesses is currently 
loaded or unloaded.

local coordinates Paired values that specify a 
size or location in local space. 

local space The coordinate system, interior to a 
view port, resulting from the application of the 
transform mapping to the geometry of a shape 
object. Compare geometry space, global space, 
device space.

lock To prevent an object in the QuickDraw GX 
heap from being moved. You can lock some 
QuickDraw GX objects and manipulate their 
properties directly, instead of using functions to 
copy them into and out of application memory. 
See also unlock.

luminance color space A color space whose 
single component is the lightness or brightness of 
a color. Same as gray space.

luminance tint A halftone tint type in which 
the tint color is specified by the luminance of the 
input color.

L*u*v* space A universal color space, designed 
to create perceptually linear gradations between 
colors, that is a nonlinear transformation of XYZ 
space.

mapping A 3 × 3 matrix—a property of a 
transform object, view port object, and view 
device object—that specifies the translation, 
rotation, or distortion to be applied to a shape 
when it is drawn.

maximum mode A transfer mode type in 
which the source component replaces the 
destination component only if the source 
component has a larger value. 

message A command sent by QuickDraw GX 
to accomplish printing-related tasks.

Message Manager A part of system software, 
related to QuickDraw GX, that manages 
messages.

method See dot type.

migrate mode A transfer mode type in which 
the destination color component is moved 
toward the source component by the value of the 
step specified in the operand component. 

minimum mode A transfer mode type in which 
the source component replaces the destination 
component only if the source component has a 
smaller value.



G L O S S A R Y

GL-7

notice A diagnostic message posted by 
QuickDraw GX when a function is called 
unnecessarily.

object A private QuickDraw GX data structure. 
An object has specific properties and is accessed 
through a reference.

object sharing The use of the same object by 
several owners, such as application variables or 
other objects. Many QuickDraw GX objects can 
be shared. See also owner count, clone. 

offscreen drawing The process of drawing into 
an offscreen buffer in preparation for later 
transfer of the drawn image to the screen.

onscreen view group The view group, created 
by QuickDraw GX, that includes all view devices 
for physical display devices.

open-frame fill A shape fill that connects the 
points of the geometry from start point to end 
point (but not back to the start point again). Same 
as framed fill.

operand A numerical value used with some 
transfer mode types (such as blend mode) to 
affect the outcome of the transfer-mode operation.

OR mode A transfer mode type in which the 
bits of the source color component and 
destination color component are combined 
using an OR operation. 

out of gamut Said of a color that cannot be 
represented on a given device.

over mode A transfer mode type in which the 
source color is copied to the destination, and the 
source transparency controls where the 
destination color shows through. 

owner A variable, structure, or QuickDraw GX 
object that references an object. Many objects can 
be referenced by more than one variable, and can 
thus have multiple owners.

owner count A property of some QuickDraw 
GX objects; it is the number of current references 
to the object.

paper-type object A printing object that 
specifies the type and dimensions of the paper 
printed to.

parent view port A property of a view port 
object. A view port’s parent is that view port 
immediately above it in the view port hierarchy.

path shape A shape type that represents one or 
more path contours, each of which is a set of 
contiguous line segments that can be curved or 
straight.

pattern A style object property. It is the pattern 
(actually, any geometric shape, glyph shape, or 
bitmap shape) to use in filling the geometry of 
the shape.

pen width A style object property. It is the 
width of the pen used to draw the shape.

perceptual matching A color-matching method 
in which all colors produced on the source device 
are shifted to fit the gamut of the destination 
device, even those already within the gamut of 
the destination device. Compare colorimetric 
matching, saturation matching.

perspective The altering of a two-dimensional 
image to give the impression of a third 
dimension. A mapping can be used to alter the 
perspective of a shape.

picture shape A shape type that represents a 
collection of other shapes.

point shape A shape type that represents a 
single point.

polygon shape A shape type that represents 
one or more polygon contours, each of which is a 
set of contiguous straight-line segments.

portable digital document (PDD) A 
specialized print file that contains all 
information, including font information, 
needed to reconstruct and draw the shapes it 
contains. 

post For an error, warning, or notice, to place in 
an accessible location. QuickDraw GX posts an 
error, for example, when a function cannot 
complete successfully.

primitive shape A shape in which the stylistic 
information is incorporated into the shape’s 
geometry.



G L O S S A R Y

GL-8

printer driver A software module that controls 
how the contents of a document are spooled, 
rendered, and sent to a specific output device.

printer object A printing object that represents 
the capabilities of a physical printer.

print file The spooled version of a QuickDraw 
GX shape or set of shapes that is the intermediate 
stage in printing. A print file consists of a stream 
of flattened QuickDraw GX objects. See also 
portable digital document.

print-file object See print file.

printing extension A software module 
that extends the printing capabilities of 
QuickDraw GX applications and printer drivers.

printing objects QuickDraw GX objects used 
for printing. Printing objects include the job 
object, format object, paper-type object, and 
others.

priority justification override A style object 
property used only by layout shapes. It is a 
structure that redefines the justification priorities 
and behaviors for whole classes of glyphs.

profile chromaticities A set of color values in a 
color profile, giving the device-independent 
colors representing the full intensities of the 
primary colors on the device.

profile data A property of a color profile object; 
it consists of a ColorSync color profile structure.

profile response curves A set of curves in a 
color profile representing the color response of a 
device as the color intensity ranges from zero to 
maximum.

property An item or set of data in a QuickDraw 
GX object. A property of an object is analogous to 
a field (or member) of a data structure; however, 
a field is accessed though its name, whereas a 
property is accessed through a function.

pseudo-Boolean transfer modes Transfer mode 
types in which the result color is achieved by 
normalizing the source and destination values 
and performing simple arithmetic operations 
whose results are analogous to 1-bit Boolean 
operations.

QuickDraw GX A sophisticated graphics 
programming system that is based on objects and 
provides powerful graphic and typographic 
capabilities, as well as convenient and flexible 
printing features.

QuickDraw GX memory The parts of 
computer memory used by QuickDraw GX, 
including the graphics client heap. Compare 
application heap.

ramp-AND mode A transfer mode type in 
which the source and destination color 
components are normalized, and their product 
(source × destination) is the result. 

ramp-OR mode A transfer mode type in which 
the source and destination color components are 
normalized, and the result of (source + 
destination – source ×  destination) is the result.

ramp-XOR mode A transfer mode type in 
which the source and destination color 
components are normalized, and the result of 
(source + destination – 2 × source × destination) 
is the result.

rectangle shape A shape type that represents a 
single rectangle. 

reference A longword value, neither a pointer 
nor a handle, through which an application 
accesses a QuickDraw GX object. References are 
created by QuickDraw GX and passed to 
applications.

reference white point See white point.

remote memory Memory, such as that on an 
accelerator card, that is not directly addressable. 
Compare direct memory.

result color The color of the destination after 
drawing has occurred. Compare source color, 
destination color.

result color limits In a transfer mode, limits on 
the permissible values for result color to achieve 
in transfer-mode calculations. Compare source 
color limits, destination color limits.

result matrix A 5 × 4 matrix, part of the transfer 
mode structure, that allows you to manipulate 
the components of the result color after it is 
calculated.



G L O S S A R Y

GL-9

RGB color space A color space whose three 
components measure the intensity of red, green, 
and blue. Used mostly for color video.

rotate To turn about a point. A mapping can be 
used to rotate a shape about a fixed origin.

run controls A style object property used only 
by layout shapes. It is a set of values and flags 
that control various aspects of how the text in a 
style run is displayed.

run features array A style object property used 
only by layout shapes. It is an array specifying 
the set of font features—typographic capabilities 
as defined by the font—to apply to the text of a 
style run.

saturation matching A color-matching method 
in which colors from the source device are shifted 
to fit the gamut of the destination device in such 
a way that their saturation (vividness) is 
preserved. Compare colorimetric matching, 
perceptual matching.

scale To proportionally enlarge or shrink. A 
mapping can be used to scale the geometry of a 
shape, about a fixed origin, either horizontally or 
vertically.

shape (1) A graphic or typographic item (such 
as a geometric shape, a bitmap, or a line of text) 
created and drawn with QuickDraw GX. (2) A set 
of QuickDraw GX objects that, taken together, 
describe the type and characteristics of such a 
graphic or typographic item. A shape consists of 
a shape object, a style object, an ink object, and a 
transform object.

shape cache A cache created and maintained 
by QuickDraw GX for storing the results of 
intermediate calculations made prior to drawing 
a shape.

shape fill A property of a shape object. The 
shape fill specifies whether and how QuickDraw 
GX fills in the outlines of a shape that it draws.

shape object A QuickDraw GX object that, 
along with several other objects, describes a 
QuickDraw GX shape. A shape object specifies 
the fundamental type and contents of a shape.

shape part A designation of a part of a shape 
or its geometry (such as bounding rectangle or 
corner point) that can be considered in 
hit-testing. See also tolerance.

shape-parts mask For hit-testing, the list of 
shape parts to be tested against the hit point. See 
also tolerance.

shape type A property of a shape object. The 
shape type specifies the classification (such as 
point, line, bitmap, or text) of a particular shape.

sharing See object sharing.

skew To progressively distort in a shearing 
manner. A mapping can be used to skew a shape, 
about a fixed origin, either horizontally or 
vertically.

solid fill See even-odd fill.

source color The color of a shape or pixel that is 
to be drawn. Compare destination color, result 
color.

source color limits In a transfer mode, limits on 
the permissible values for source color to use in 
transfer-mode calculations. Compare destination 
color limits, result color limits.

source matrix A 5 × 4 matrix, part of the 
transfer mode structure, that allows you to 
manipulate the components of the source color.

source profile the color profile attached to a 
color that is to be drawn or converted. The source 
profile reflects the characteristics of the device on 
which the color was originally created. Compare 
destination profile.

spool To flatten a QuickDraw GX shape or 
collection of shapes, and save it to a print file in 
preparation for printing. Compare despool. 

spool block A data structure used in 
conjunction with a spool function for flattening 
and unflattening QuickDraw GX objects.

spool function An application-supplied 
function that uses a spool block to accept 
flattened data from QuickDraw GX or 
prepare flattened data for unflattening into 
objects.



G L O S S A R Y

GL-10

stream format The public format available for 
describing QuickDraw GX objects. Objects in 
stream format are considered flattened, and can 
be interpreted or reconstructed by parsing. 
Flattened objects are unflattened when they are 
converted back to object format.

style A QuickDraw GX object associated with a 
shape object. It contains information that affects 
the visual appearance of a shape when it is 
drawn.

synonym A particular kind of tag object, used 
by QuickDraw GX to provide an alternate 
representation of an object for printing.

tag list A property of many QuickDraw GX 
objects. It is an array of references to tag objects 
associated with the object.

tag object A QuickDraw GX object whose 
purpose, structure, and content are entirely 
controlled by the application creating it. Tag 
objects exist to allow custom information and 
behavior to be attached to standard QuickDraw 
GX objects. Tag objects are classified by tag type; 
objects reference their tag objects through a tag 
list.

tag type A longword data type (equivalent to 
OSType) that can be represented by four 1-byte 
characters, such as 'appl'. Tag types specify the 
formats of tag objects.

text face A style object property. It is the text 
face—the constructed stylistic variation from 
plain text—to apply when drawing the text of a 
shape.

text shape A shape type that represents a line 
of characters drawn in a single font and style.

text size A style object property. It is the size, in 
typographic points (72 per inch), to draw the text 
of a shape.

tint The area ratio of dot color to background 
color that describes the tint color in a halftone.

tint color The actual resultant color produced 
by a halftone; it is a mixture of the dot color and 
the background color, in proportions specified by 
the tint ratio. 

tint space The color space used by a halftone.

tint type The calculation method, such as 
luminance tint or color mixture tint, used to 
determine the tint color and the tint in a halftone. 

tolerance For hit-testing, a value that specifies 
how close to a shape part a hit point must be for 
the hit-test to be considered successful.

transfer mode A QuickDraw GX data 
structure—also a property of an ink object—that 
controls the interaction between the color of a 
shape and the colors of the background at the 
location where the shape is drawn.

transfer mode type A specification of the kind 
of transfer mode—such as copy mode or XOR 
mode—to apply when drawing a shape or pixel. 
In QuickDraw GX, same as component mode.

transform A QuickDraw GX object associated 
with a shape object. A transform object contains 
information that affects the visual appearance of 
a shape when it is drawn and specifies how the 
associated shape objects’ geometries will be 
represented in a view port.

translate To move an item. A mapping can be 
used to translate, or move, a shape by a given 
amount or to a given location.

tristimulus values The three components of 
XYZ space, designed to mimic the three kinds of 
light response of the human retina. 

type See shape type.

undercolor removal In CMYK color 
calculation, the removal of some or all of the 
cyan, magenta, and yellow inks where black ink 
is to be substituted. See also black generation. 

unflatten To convert the public, stream-based 
description of an object or set of objects into the 
private, native QuickDraw GX object-based 
format. Compare flatten; see also stream format.

universal color spaces Color spaces whose 
colors are device-independent. Universal colors 
can be compared without the use of color profiles.



G L O S S A R Y

GL-11

unload To move a QuickDraw GX object from 
memory to temporary external storage. 
QuickDraw GX automatically and transparently 
loads and unloads objects in the course of 
managing memory; an application need never 
know whether an object it accesses is currently 
loaded or unloaded.

unlock To free a previously locked object in the 
QuickDraw GX heap so that it can be moved. See 
also lock.

view device A QuickDraw GX object associated 
with a view port object. It describes the 
characteristics of a given physical display device 
such as a monitor or a printer.

view group A QuickDraw GX object that 
consists of a grouping of view ports and view 
devices.

view port A QuickDraw GX object associated 
with a transform object. It describes the 
characteristics of the drawing environment for 
individual QuickDraw GX shapes.

view port hierarchy An ordered arrangement 
of view ports that allows for such features as 
windows within windows, including multiple 
windows within a single window.

view port list A property of a transform object. 
It is an array of references to the view ports that 
the shapes associated with that transform can be 
drawn to.

visible region In a Macintosh window, the part 
of a window that can be drawn into; defined by 
the visRgn field in the graphics port record. In 
view ports attached to windows, QuickDraw GX 
restricts drawing to the window’s visible region.

warning A diagnostic message posted by 
QuickDraw GX when a function completes 
successfully but may have produced an 
unexpected result.

white point A specific definition of what is 
considered white light, represented in terms of 
Yxy, and usually based on the whitest light that 
can be generated by a given device. Colors in 
some color spaces are defined in comparison to a 
reference white point. See also Yxy color space.

winding fill A shape fill that follows the 
winding-number rule.

XOR mode A transfer mode type in which 
the bits of the source color component and 
destination color component are combined using 
an exclusive-OR operation.

XYZ color space A universal color space whose 
three components (the tristimulus values X, Y, 
and Z) are means to reflect the fundamental 
response of the human eye to color.

YIQ color space A universal color space, used 
for color television transmission, whose 
components are Y, I, and Q. Y represents 
luminance and the other two components carry 
color information. 

Yxy color space A universal color space whose 
three components (the chromaticity coordinates 
Y, x, and y) are derived from XYZ color space.

zero-length profile A color profile object that 
contains no profile data. You can specify a 
zero-length profile in situations in which you do 
not want color matching to occur.





IN-1

Index

A

absolute location for a shape 6-24, 6-67
accelerator memory 2-16
add mode

defined 5-14
examples of using 5-44, 5-47
for calculating alpha-channel values 5-24

alignment
as style object property 3-5

alpha-channel color spaces 4-24
alpha channels 4-24, 5-20
alpha-channel transfer modes 5-20 to 5-25, 5-48 to 

5-49. See also atop mode, exclude mode, fade 
mode, over mode

AND mode 5-17
angle

of a halftone 7-14
of a halftone on a device 7-83

anti-aliasing 5-24 to 5-25, 5-49
application heap 1-18
arithmetic transfer modes 5-12 to 5-15. See also add 

mode, blend mode, copy mode, migrate mode, 
maximum mode, minimum mode, no mode

atop mode 5-22
attributes

as ink object properties. See ink attributes
as shape object property. See shape attributes
as style object property. See style attributes, style text 

attributes
as view device property. See view device attributes
as view port property. See view port attributes
defined 1-16

B

background color, for a halftone 7-17
base families for color spaces 4-6
bitmaps

and ink objects 5-11
as view device property 7-25, 7-26 to 7-27, 7-55, 

7-107 to 7-108
color spaces for 4-23

bitmap shapes 2-10
defined 1-11

bitmap structure 7-26
black generation 4-14, 4-29

blend mode
defined 5-14
examples of using 5-15, 5-44, 5-45, 5-48

Boolean transfer modes 5-16 to 5-18. See also AND 
mode, OR mode, XOR mode

C

caches for shapes 2-16
cap

as style object property 3-4
child view port list

as view port property 7-9, 7-18 to 7-19
functions for 7-86 to 7-87
setting up 7-46 to 7-47

chromaticities. See profile chromaticities
chromaticity 4-16
clamping. See pinning
clipping 1-25
clips 1-25

and drawing 7-30 to 7-39
and primitive shapes 2-33, 6-7
as transform object property. See transform clip
as view device property. See view device clip
as view port property. See view port clip

cloning objects 1-20 to 1-21. See also kinds of 
under objects

closed-frame fill 2-13
CMProfile structure 4-36
CMYK space 4-14 to 4-15
Collection Manager 1-15
collection objects 1-34

defined 1-15
color components 4-6, 4-25
color-component value 4-25, 4-50
color conversion 4-26 to 4-30, 4-41 to 4-42, 4-60
colorimetric matching 4-30
color limits for transfer modes 5-27 to 5-33, 

5-47 to 5-48, 5-54
destination 5-32, 5-54
result 5-32 to 5-33, 5-54
source 5-31, 5-54

color matching 4-26 to 4-32, 4-41 to 4-42, 7-20
and ColorSync Utilities 4-31, 4-32, 4-42

color-matching methods 4-28, 4-30 to 4-31
color packing 4-6, 4-54



I N D E X

IN-2

color profile objects 4-28 to 4-30, 4-35 to 4-38, 
4-41 to 4-49, 4-78 to 4-93. See also color profiles

and ColorSync Utilities 4-30, 4-36 to 4-37, 4-48
assigning to colors 4-39
constants and data types for 4-57
copying, comparing, and cloning 4-44 to 4-45, 

4-81 to 4-83
creating and disposing of 4-42 to 4-44, 4-79 to 4-81
default 4-37
defined 1-13, 4-57
functions for 4-78 to 4-93
loading and unloading 4-45 to 4-46
locking and unlocking 4-49, 4-90 to 4-93
manipulating profile data in 4-48 to 4-49, 4-88 to 4-93
manipulating properties of 4-46 to 4-49, 4-84 to 4-87
properties of. See color profile properties
zero-length profiles 4-37 to 4-38

color profile properties 4-36 to 4-37, 4-84 to 4-87
default values for 4-37
owner count 4-36, 4-46, 4-84
profile data 4-36, 4-36 to 4-37, 4-48 to 4-49, 

4-88 to 4-93
tag list 4-36, 4-47, 4-85 to 4-87

color profiles 4-28. See also color profile objects
colors 4-5 to 4-32, 4-38 to 4-42, 4-57 to 4-61. 

See also color profile objects, color spaces, 
color set objects, color structure

as ink object property 5-6, 5-7 to 5-8
assigning 4-38 to 4-39
color-component value 4-25, 4-50
color value 4-25, 4-50 to 4-52
comparing and testing 4-40 to 4-41
constants and data types for 4-50 to 4-56
converting 4-26 to 4-30, 4-31 to 4-32, 4-41 to 4-42, 

4-60
functions for 4-57 to 4-61, 5-68 to 5-72
getting, for a shape on a device 7-119 to 7-120
getting and setting 5-42
in a color set 4-47 to 4-48, 4-56
matching 4-26 to 4-32, 4-41 to 4-42, 7-20
out of gamut 4-27, 4-40

color separations 5-49
color set objects 4-32 to 4-35, 4-42 to 4-49, 4-62 to 4-77

colors in 4-56
constants and data types for 4-56 to 4-57
copying, comparing, and cloning 4-44 to 4-45, 

4-66 to 4-68
creating and disposing of 4-42 to 4-44, 4-64 to 4-65
default 4-34 to 4-35
defined 1-13, 4-56
functions for 4-62 to 4-77
loading and unloading 4-45 to 4-46
manipulating properties of 4-46 to 4-48, 4-69 to 4-73
manipulating the colors in 4-47 to 4-48, 4-73 to 4-77
properties of. See color set properties

color set properties 4-33 to 4-34
color space 4-33
color-value array 4-33, 4-34, 4-47 to 4-48, 4-73 to 4-77
default values for 4-34 to 4-35
owner count 4-33, 4-46, 4-69
tag list 4-33, 4-47, 4-70 to 4-73

color spaces 4-6 to 4-24, 4-55 to 4-56. See also colors
alpha-channel 4-24
as color set property 4-33
base families for 4-6
CMYK 4-14 to 4-15
for bitmaps 4-23
for transfer modes 5-25 to 5-27
HLS 4-11 to 4-13
HSV 4-11 to 4-13
indexed 4-22 to 4-23
L*a*b* 4-17 to 4-18, 4-18 to 4-20
L*u*v* 4-17 to 4-18, 4-18 to 4-20
luminance 4-7 to 4-9
NTSC 4-20 to 4-22
PAL 4-20 to 4-22
RGB 4-9 to 4-11
XYZ 4-16, 4-18 to 4-20
YIQ 4-20 to 4-22
Yxy 4-16 to 4-17, 4-18 to 4-20

color structure 4-26, 4-53, 5-7 to 5-8, 5-51
ColorSync Utilities

and color matching 4-31, 4-32, 4-42
and color profiles 4-30, 4-36 to 4-37, 4-48
and the default color profile 4-37

color-value array, as color set property 4-33, 4-34
color values 4-25, 4-50, 4-52
Commission Internationale d’Eclairage (CIE) 4-15
component modes 5-11 to 5-25. See also transfer modes

alpha-channel 5-20 to 5-25, 5-48 to 5-49
atop mode 5-22
exclude mode 5-22
fade mode 5-22
over mode 5-22, 5-48

arithmetic 5-12 to 5-15
add mode. See add mode
blend mode. See blend mode
copy mode. See copy mode
maximum mode 5-14, 5-45, 5-46
migrate mode 5-14, 5-44, 5-48
minimum mode 5-14, 5-45, 5-46
no mode. See no mode

Boolean 5-16 to 5-18
AND mode 5-17
OR mode 5-17, 5-45, 5-46
XOR mode 5-17, 5-45, 5-46

defined 5-9, 5-11, 5-55
highlight mode 5-15 to 5-16, 7-13



I N D E X

IN-3

pseudo-Boolean 5-18 to 5-19
ramp-AND mode 5-19, 5-45
ramp-OR mode. See ramp-OR mode
ramp-XOR mode. See ramp-XOR mode

components. See color components
concatenation of mappings 6-26, 7-30, 7-45
constructive geometry operations

on transform clips 6-21 to 6-23, 6-48 to 6-53
conventions and consistencies in programming

1-41 to 1-44
coordinates and coordinate spaces 1-28 to 1-32, 

7-31 to 7-39
device space 1-31 to 1-32, 7-38 to 7-39
geometry space 1-29, 7-32
global space 1-30 to 1-31, 7-34 to 7-37
local space 1-29 to 1-30, 7-33 to 7-34

copy mode
and printing 5-50
as default 5-12
defined 5-14
examples of using 5-44, 5-45, 5-46, 5-47

creating objects 1-9. See also kinds of under objects
curve error

as style object property 3-4
curve shapes 1-11, 2-9

D

dash
as style object property 3-4

debugging 1-39 to 1-40
debugging version of QuickDraw GX 1-39
with GraphicsBug 1-40

deep copying 2-25, 2-58
default objects 1-17
desktop printer 1-35
despooling 1-34
destination color 4-24, 5-11
destination color limits 5-32, 5-54
device angle, of a halftone 7-83
device matrix 5-8, 5-33 to 5-34
device space 1-31 to 1-32, 7-38 to 7-39

measuring a shape in 7-59 to 7-60, 7-116 to 7-118
dialog boxes, for printing 1-35

adding panels to 1-36
printing status dialog box 1-37

direct memory 2-16
direct-mode printing 1-37
disposing of objects 1-9. See also kinds of under objects
dither

ink attributes and 5-9 to 5-10

dithering 5-9, 7-10
for bitmaps 7-12 to 7-13
for shapes other than bitmaps 7-11 to 7-12

dither level. See dithers
dithers

as view port property 7-8
characteristics of 7-10 to 7-13
forced 5-9, 7-12
functions for 7-80 to 7-81
manipulating 7-42 to 7-43
maximum supported level 7-11
patterns for 7-11

dot color, for a halftone 7-17
dot type, for a halftone 7-15 to 7-16, 7-66
drawing

and coordinate spaces 1-28 to 1-32, 7-31 to 7-39
and shape caches 2-16
basic operation of 1-24 to 1-28, 2-20, 2-35, 7-30
functions for 2-84 to 2-85
offscreen 7-29 to 7-30, 7-62 to 7-63

drivers, printer 1-35

E

empty shapes 1-11, 2-9
encoding

as style object property 3-5
environment (Macintosh). See Macintosh environment
environment (programming). See programming 

environment
error diffusion 7-12. See also dithering
error handling 1-38 to 1-39
errors

defined 1-38
handlers for 1-39
posting 1-39

even-odd fill 2-14
exclude mode 5-22
exclusive-OR mode. See XOR mode
extensions, printing 1-35

F

fade mode 5-22
ff macro 2-26
fill. See shape fills
flatten flags 2-48
flattening 1-23, 2-22, 2-39 to 2-42

constants and data types for 2-48 to 2-50
functions for 2-87 to 2-92



I N D E X

IN-4

font
as style object property 3-5

font objects
defined 1-14

font variations
as style object property 3-5

format objects
defined 1-15

framed fill. See open-frame fill
frequency, of a halftone 7-14 to 7-15
full shapes 1-11, 2-11

GA–GW

gamuts 4-27
geometric operations. See constructive geometry 

operations
geometric shapes. See also point shapes, line shapes, 

rectangle shapes, curve shapes, polygon shapes, 
path shapes, empty shapes, full shapes

defined 1-11
geometry. See shape geometry
geometry space 1-29, 7-32
global mapping, of a view port 7-79
global space 1-30 to 1-31, 7-34 to 7-37

measuring a shape in 7-63 to 7-65, 7-125 to 7-126
glyph justification overrides array

as style object property 3-5
glyph shapes 2-10

defined 1-11
local space for 7-34

glyph substitutions array
as style object property 3-5

graphics 1-4
GraphicsBug 1-40
graphics client heap 1-18
graphics client objects

defined 1-14, 1-38
graphic shapes. See also geometric shapes, 

bitmap shapes, picture shapes
defined 1-11

grouping shapes 2-17

GXA

gxAddMode transfer mode 5-14
gxAllViewDevices view group 7-30
gxAndMode transfer mode 5-17
gxAnyNumber constant 1-43
gxARGB32Space color space 4-10
gxAtopMode transfer mode 5-22

GXB

gxBlendMode transfer mode 5-14

GXC

gxCachedShape shape attribute 2-27
GXCacheShape function 2-27, 2-62
GXChangedShape function 2-34 to 2-35, 2-83
GXCheckColor function 4-40, 4-57
GXCloneColorProfile function 4-83
GXCloneColorSet function 4-45, 4-68
GXCloneInk function 5-59
GXCloneShape function 2-26, 2-61
GXCloneStyle function 3-9, 3-13, 3-20
GXCloneTag function 8-17
GXCloneTransform function 6-17, 6-37
gxCMYK32Space color space 4-15
gxCMYKColor structure 4-50
gxCMYKSpace color space 4-15
gxColorIndex structure 4-52
gxColorPackingTypes enumeration 4-54
gxColorProfile type 4-57
gxColorSet type 4-56
gxColorSpaces enumeration 4-55
gxColor structure 4-53, 5-51
gxColorValue1 constant 1-43
gxColorValue type 4-50
GXCombineColor function 4-41, 4-59
gxComponentFlags enumeration 5-55
gxComponentModes enumeration 5-55
GXConvertColor function 4-40, 4-41, 4-48, 4-60
GXCopyDeepToShape function 2-25 to 2-26, 2-58
gxCopyMode transfer mode 5-14
GXCopyToColorProfile function 4-81
GXCopyToColorSet function 4-66
GXCopyToInk function 5-39, 5-58
GXCopyToShape function 2-25 to 2-26, 2-57
GXCopyToStyle function 3-8, 3-18
GXCopyToTag function 8-15
GXCopyToTransform function 6-17, 6-35
GXCopyToViewDevice function 7-100
GXCopyToViewPort function 7-44, 7-72

GXD

gxDeviceAttributes enumeration 7-68
gxDeviceAttribute type 7-68
GXDifferenceTransform function 6-21 to 6-23, 6-51
gxDirectShape shape attribute 2-34
GXDisposeColorProfile function 4-80



I N D E X

IN-5

GXDisposeColorSet function 4-43, 4-65
GXDisposeInk function 5-38, 5-57
GXDisposeShapeCache function 2-27, 2-63
GXDisposeShape function 2-25, 2-55
GXDisposeStyle function 3-7, 3-17
GXDisposeTag function 8-8, 8-14
GXDisposeTransform function 6-16, 6-34
GXDisposeViewDevice function 7-53, 7-99
GXDisposeViewGroup function 7-63, 7-122
GXDisposeViewPort function 7-41, 7-71
gxDotTypes enumeration 7-66
gxDotType type 7-66
GXDrawShape function 2-35, 2-84

GXE

gxEnableMatchPort attribute 7-20
GXEqualColorProfile function 4-82
GXEqualColorSet function 4-67
GXEqualInk function 5-59
GXEqualShape function 2-26, 2-60
GXEqualStyle function 3-9, 3-19
GXEqualTag function 8-16
GXEqualTransform function 6-36
GXEqualViewDevice function 7-101
GXEqualViewPort function 7-73
gxExcludeMode transfer mode 5-22
GXExcludeTransform function 6-21 to 6-23, 6-53

GXF

gxFadeMode transfer mode 5-22
gxFlattenFlags enumeration 2-48
gxFlattenFlag type 2-48
GXFlattenShape function 2-39, 2-88
gxForceDitherInk attribute 7-12

GXG

GXGetColorDistance function 4-40, 4-58
GXGetColorProfile function 4-88
GXGetColorProfileOwners function 4-46, 4-84
GXGetColorProfileStructure function 4-92
GXGetColorProfileTags function 4-85
GXGetColorSet function 4-48, 4-73
GXGetColorSetOwners function 4-46, 4-69
GXGetColorSetParts function 4-75
GXGetColorSetTags function 4-70
GXGetDefaultColorProfile function 4-78

GXGetDefaultColorSet function 4-62
GXGetDefaultShape function 2-23, 2-52
GXGetHalftoneDeviceAngle function 7-83
GXGetInkAttributes function 5-40, 5-61
GXGetInkColor function 5-42, 5-68
GXGetInkOwners function 5-41, 5-64
GXGetInkTags function 5-41, 5-65
GXGetInkTransfer function 5-43, 5-72
GXGetShapeAttributes function 2-29, 2-74
GXGetShapeCacheSize function 2-27, 2-64
GXGetShapeClip function 6-45
GXGetShapeColor function 5-70
GXGetShapeDeviceArea function 7-118
GXGetShapeDeviceBounds function 7-59, 7-116
GXGetShapeDeviceColors function 7-119
GXGetShapeFill function 2-28, 2-68
GXGetShapeGlobalBounds function 7-64, 7-125
GXGetShapeGlobalViewDevices function 7-58, 7-61, 

7-115
GXGetShapeGlobalViewPorts function 7-95
GXGetShapeHitTest function 6-80
GXGetShapeInkAttributes function 5-62
GXGetShapeInk function 2-30, 2-71
GXGetShapeLocalBounds function 7-51, 7-96
GXGetShapeMapping function 6-56
GXGetShapeOwners function 2-32, 2-76
GXGetShapeSize function 2-25, 2-56
GXGetShapeStructure function 2-34 to 2-35, 2-82
GXGetShapeStyle function 2-30 to 2-31, 2-69
GXGetShapeTags function 2-32, 2-77, 8-10
GXGetShapeTransfer function 5-74
GXGetShapeTransform function 2-30, 2-72
GXGetShapeType function 2-28, 2-32, 2-66
GXGetShapeViewPorts function 6-75
GXGetStyleOwners function 3-11, 3-22
GXGetStyleTags function 3-14, 3-22
GXGetTag function 8-10, 8-18
GXGetTagOwners function 8-20
GXGetTagStructure function 8-23
GXGetTransformClip function 6-43
GXGetTransformHitTest function 6-78
GXGetTransformMapping function 6-54
GXGetTransformOwners function 6-39
GXGetTransformTags function 6-20, 6-40
GXGetTransformViewPorts function 6-29, 6-73
GXGetViewDeviceAttributes function 7-110
GXGetViewDeviceBitmap function 7-55, 7-63, 7-107
GXGetViewDeviceClip function 7-102
GXGetViewDeviceMapping function 7-57, 7-105
GXGetViewDeviceTags function 7-112
GXGetViewDeviceViewGroup function 7-109
GXGetViewGroupViewDevices function 7-54, 7-124
GXGetViewGroupViewPorts function 7-44, 7-123
GXGetViewPortAttributes function 7-89
GXGetViewPortChildren function 7-86



I N D E X

IN-6

GXGetViewPortClip function 7-45, 7-74
GXGetViewPortDither function 7-61, 7-80
GXGetViewPortGlobalMapping function 7-57, 7-79
GXGetViewPortHalftone function 7-81
GXGetViewPortMapping function 7-45, 7-48, 7-77
GXGetViewPortParent function 7-84
GXGetViewPortTags function 7-91
GXGetViewPortViewDevices function 7-50, 7-94
GXGetViewPortViewGroup function 7-88
gxGrayAColor structure 4-52
gxGrayASpace color space 4-8
gxGraySpace color space 4-8

GXH

gxHalftone structure 7-65
gxHighlightMode transfer mode 5-16
GXHitTestDevice function 7-60, 7-120
gxHitTestInfo structure 2-50
GXHitTestShape function 2-38, 2-86
gxHLS32Space color space 4-13
gxHLSColor structure 4-51
gxHLSSpace color space 4-13
gxHSV32Space color space 4-13
gxHSVColor structure 4-51
gxHSVSpace color space 4-13

GXI–GXK

gxIndexedSpace color space 4-23
gxInkAttributes enumeration 5-51
gxInk type 5-50
GXIntersectTransform function 6-21 to 6-23, 6-50

GXL

gxLAB32Space color space 4-19
gxLABColor structure 4-52
gxLABSpace color space 4-19
GXLoadInk function 5-40
GXLoadShape function 2-27
GXLoadStyle function 3-10
GXLoadTransform function 6-18
GXLockColorProfile function 4-90
GXLockShape function 2-34 to 2-35, 2-80
GXLockTag function 8-21
gxLUV32Space color space 4-19
gxLUVColor structure 4-52
gxLUVSpace color space 4-19

GXM

GXMapShape function 6-72
GXMapTransform function 6-64
gxMapTransformShape attribute 2-17, 6-25, 6-26
gxMaximumMode transfer mode 5-14
gxMigrateMode transfer mode 5-14
gxMinimumMode transfer mode 5-14
GXMoveShape function 6-66
GXMoveShapeTo function 6-27, 6-67
GXMoveTransform function 6-58
GXMoveTransformTo function 6-24, 6-59

GXN

GXNewColorProfile function 4-79
GXNewColorSet function 4-43, 4-64
GXNewInk function 5-38, 5-56
GXNewShape function 2-24, 2-54
GXNewStyle function 3-7, 3-17
GXNewTag function 8-8, 8-13
GXNewTransform function 6-16, 6-33
GXNewViewDevice function 7-53, 7-63, 7-98
GXNewViewGroup function 7-61, 7-63, 7-122
GXNewViewPort function 7-41, 7-47, 7-63, 7-70
GXNewWindowViewPort function 7-40, 7-41
gxNoAttributes constant 1-43
gxNoMode transfer mode 5-14
gxNTSC32Space color space 4-21
gxNTSCSpace color space 4-21

GXO

gxOrMode transfer mode 5-17
gxOverMode transfer mode 5-22

GXP, GXQ

gxPAL32Space color space 4-21
gxPALSpace color space 4-21
gxPortAttributes enumeration 7-68
gxPortAttribute type 7-68

GXR

gxRampAndMode transfer mode 5-19
gxRampOrMode transfer mode 5-19



I N D E X

IN-7

gxRampXorMode transfer mode 5-19
GXResetInk function 5-60
GXResetShape function 2-31, 2-75
GXResetStyle function 3-11, 3-21
GXResetTransform function 6-20, 6-38
GXReverseDifferenceTransform function

6-21 to 6-23, 6-52
gxRGB16Space color space 4-10
gxRGB32Space color space 4-10
gxRGBAColor structure 4-51
gxRGBASpace color space 4-10
gxRGBColor structure 4-50
gxRGBSpace color space 4-10
GXRotateShape function 6-27, 6-70
GXRotateTransform function 6-25, 6-62

GXS

GXScaleShape function 6-26, 6-27, 6-68
GXScaleTransform function 6-17, 6-25, 6-60
gxSelectToEnd constant 1-43
GXSetColorProfile function 4-89
GXSetColorProfileTags function 4-86
GXSetColorSet function 4-48, 4-74
GXSetColorSetParts function 4-76
GXSetColorSetTags function 4-71
gxSetColor union 4-56
GXSetDefaultColorSet function 4-43, 4-63
GXSetDefaultShape function 2-23, 2-53
GXSetInkAttributes function 5-40, 5-62
GXSetInkColor function 5-42, 5-69
GXSetInkTags function 5-41, 5-66
GXSetInkTransfer function 5-43, 5-73
GXSetShapeAttributes function 2-29, 2-74
GXSetShapeClip function 6-46
GXSetShapeColor function 5-42, 5-71
GXSetShapeFill function 2-28, 2-69
GXSetShapeGeometry function 2-30, 2-67
GXSetShapeHitTest function 6-30, 6-81
GXSetShapeInkAttributes function 5-63
GXSetShapeInk function 2-30, 2-71
GXSetShapeMapping function 6-57
GXSetShapeStyle function 2-30, 2-70
GXSetShapeTags function 2-32, 2-78, 8-8
GXSetShapeTransfer function 5-43, 5-75
GXSetShapeTransform function 2-30, 2-73
GXSetShapeType function 2-32 to 2-33, 2-66
GXSetShapeViewPorts function 6-76
GXSetStyleTags function 3-14, 3-24
GXSetTag function 8-19
gxSetToNil constant 1-43
GXSetTransformClip function 6-23, 6-44
GXSetTransformHitTest function 6-79

GXSetTransformMapping function 6-55
GXSetTransformTags function 6-20, 6-41
GXSetTransformViewPorts function 6-29, 6-74
GXSetViewDeviceAttributes function 7-111
GXSetViewDeviceBitmap function 7-55, 7-108
GXSetViewDeviceClip function 7-103
GXSetViewDeviceMapping function 7-57, 7-106
GXSetViewDeviceTags function 7-113
GXSetViewDeviceViewGroup function 7-54, 7-109
GXSetViewPortAttributes function 7-42, 7-90
GXSetViewPortChildren function 7-87
GXSetViewPortClip function 7-46, 7-47, 7-75
GXSetViewPortDither function 7-42, 7-61, 7-80
GXSetViewPortHalftone function 7-43, 7-82
GXSetViewPortMapping function 7-45, 7-47, 7-78
GXSetViewPortParent function 7-47, 7-84
GXSetViewPortTags function 7-92
GXSetViewPortViewGroup function 7-44, 7-88
gxShapeAttributes enumeration 2-47
gxShapeAttribute type 2-47
gxShapeFills enumeration 2-47
gxShapeFill type 2-47
gxShapeParts enumeration 6-32
gxShapePart type 6-32
gxShape type 2-46
gxShapeTypes enumeration 2-46
gxShapeType type 2-46
GXSkewShape function 6-26, 6-27, 6-71
GXSkewTransform function 6-25, 6-63
gxSpoolBlock structure 2-49
gxSpoolProcPtr type 2-49
gxStyle type 3-16

GXT

gxTag data type 8-13
gxTintTypes enumeration 7-67
gxTintType type 7-67
gxTransferComponent structure 5-53
gxTransferFlags enumeration 5-53
gxTransferMode structure 5-52
gxTransform type 6-31

GXU

GXUnflattenShape function 2-40 to 2-42, 2-90
GXUnionTransform function 6-23, 6-49
GXUnloadInk function 5-40
GXUnloadShape function 2-27
GXUnloadStyle function 3-10
GXUnloadTransform function 6-18



I N D E X

IN-8

GXUnlockColorProfile function 4-91
GXUnlockShape function 2-34 to 2-35, 2-81
GXUnlockTag function 8-22

GXV, GXW

gxViewDevice type 7-68
gxViewGroup type 7-69
gxViewPort type 7-65

GXX

gxXorMode transfer mode 5-17
gxXYZ32Space color space 4-19
gxXYZColor structure 4-51
gxXYZSpace color space 4-19

GXY, GXZ

gxYIQ32Space color space 4-21
gxYIQColor structure 4-52
gxYIQSpace color space 4-21
gxYXY32Space color space 4-19
gxYXYColor structure 4-51
gxYXYSpace color space 4-19

H

hairlines 6-8, 6-21
halftones

angle 7-14
as view port property 7-8
background color 7-17
characteristics of 7-13 to 7-17
constants and data types for 7-65 to 7-67
device angle 7-83
dot color 7-17
dot type 7-15 to 7-16, 7-66
frequency 7-14 to 7-15
functions for 7-81 to 7-83
ink attributes and 5-10
manipulating 7-42 to 7-43
tint and tint color 7-16 to 7-17
tint space 7-17
tint types 7-16 to 7-17, 7-67

halftone structure 7-14, 7-65 to 7-66
halftoning 5-9, 7-13
handlers for errors, warnings, or notices 1-39

hierarchies of view ports 7-18 to 7-19, 7-21 to 7-23, 
7-46 to 7-47

highlight transfer mode 5-15 to 5-16, 7-13
hit point 1-32
hit-test info structure 2-36, 2-37 to 2-38, 2-50 to 2-51
hit-testing

basic operation of 1-32 to 1-34, 2-20 to 2-21, 
2-36 to 2-38

constants and data types for 2-50 to 2-51
functions for 2-36, 2-86 to 2-87
hit-test info structure 2-36, 2-37 to 2-38, 2-50 to 2-51
of a shape on a device 7-60, 7-120 to 7-121
parameters for. See hit-test parameters

hit-test parameters 2-36
as transform object property 6-6, 6-11 to 6-14
getting and setting 6-77 to 6-81
setting up 6-14, 6-30 to 6-31
shape parts 1-32, 2-20 to 2-21
shape parts mask 2-36 to 2-37, 6-12 to 6-13
tolerance 1-32, 2-21, 6-13

HLS space 4-11 to 4-13
hollow fill. See closed-frame fill
HSV space 4-11 to 4-13
hue 4-12

I

identity mapping 1-32, 6-10
ignoring warnings or notices 1-39
implementation limits 1-43
indexed color spaces 4-22 to 4-23
ink attributes

as ink object property 5-6
list of 5-9 to 5-10, 5-51
manipulating 5-40 to 5-41, 5-61 to 5-64

ink object properties 5-6 to 5-10
attributes. See ink attributes
color. See colors
default values for 5-10, 5-60
owner count 5-6, 5-41, 5-64
tag list 5-6, 5-41, 5-65 to 5-67
transfer mode. See transfer modes, component modes

ink objects 5-5 to 5-80
as shape object property 2-8, 2-30 to 2-31, 2-71 to 2-72
constants and data types for 5-50 to 5-56
copying, comparing, and cloning 5-39 to 5-40, 

5-58 to 5-60
creating and disposing of 5-38 to 5-39, 5-56 to 5-57
default 5-10
defined 1-12, 5-50
functions for 5-56 to 5-76
loading and unloading 5-40
manipulating properties of 5-40 to 5-41, 5-61 to 5-67



I N D E X

IN-9

manipulating the color of 5-42, 5-68 to 5-72
manipulating the transfer mode of 5-43, 5-72 to 5-76
properties of. See ink object properties
resetting default properties 5-60

inverse even-odd fill 2-14
inverse fill. See inverse even-odd fill
inverse solid fill. See inverse even-odd fill
inverse winding fill 2-14

J

job objects
defined 1-14

join
as style object property 3-4

K

kerning adjustments array
as style object property 3-5

L

L*a*b* space 4-17 to 4-18, 4-18 to 4-20
L*u*v* space 4-17 to 4-18, 4-18 to 4-20
layout shapes 2-10

defined 1-11
lightness, in HLS space 4-12
line shapes 1-11, 2-9
local space 1-29 to 1-30, 7-33 to 7-34

measuring a shape in 7-51 to 7-52, 7-96 to 7-97
locking

color profiles 4-49, 4-90
shapes 2-17, 2-80
tag objects 8-11 to 8-12, 8-21

luminance 4-7, 5-47
luminance-based color spaces 4-7 to 4-9

M

Macintosh environment and QuickDraw GX
1-44 to 1-45

mappings 1-24 to 1-25, 6-10 to 6-11
and drawing 7-30 to 7-39
as transform object property. See transform mapping
as view device property. See view device mapping

as view port property. See view port mapping
changing perspective with 6-10
concatenating 6-26, 7-30, 7-45
identity 1-32, 6-10
rotation with 6-10
scaling with 6-10
skewing with 6-10
translation with 6-10

map-transform shape attribute. See 
gxMapTransformShape attribute

matrices for transfer modes 5-33 to 5-34, 5-47 to 5-48
matrices. See mappings
maximum mode 5-14, 5-45, 5-46
memory

and objects 1-18 to 1-23
application heap 1-18
direct vs. remote (accelerator) 2-16
graphics client heap 1-18

memory management 1-18 to 1-19, 1-38
migrate mode 5-14, 5-44, 5-48
minimum mode 5-14, 5-45, 5-46
moving a shape. See translation operations
MySpoolProc application-defined function 2-91

N

no fill (shape fill) 2-13
no mode

defined 5-14
examples of using 5-47, 5-49
for calculating alpha-channel values 5-24

non-debugging version of QuickDraw GX 1-39
notices

defined 1-38
handlers for 1-39
ignoring 1-39
posting 1-39

NTSC space 4-20 to 4-22

O

object properties 1-15 to 1-17
attributes 1-16
default 1-17
defined 1-8, 2-6
owner count 1-16, 1-20
references 1-16
tag list 1-17

object references 1-16, 1-19 to 1-20
defined 1-8



I N D E X

IN-10

objects 1-7 to 1-49. See also collection objects
and memory 1-18 to 1-23
cloning 1-20 to 1-21
creating 1-9
default 1-17
defined 1-8
disposing of 1-9
flattening 1-23
kinds of. See color profile objects, color set objects, 

font objects, graphics client objects, ink objects, 
printing objects, shape objects, style objects, tag 
objects, transform objects, view device objects, 
view group objects, view port objects

loading and unloading 1-21 to 1-22
locking and unlocking 1-22
properties 1-15 to 1-17
references to 1-19 to 1-20
sharing 1-19 to 1-20
summary diagram of 1-49
unflattening 1-23

object sharing 1-19 to 1-20
offscreen drawing 7-29 to 7-30, 7-62 to 7-63
offscreen view groups 7-29 to 7-30, 7-62 to 7-63
onscreen view group 7-7, 7-29 to 7-30
open-frame fill 2-13
operand 5-12
OR mode 5-17, 5-45, 5-46
out-of-gamut colors 4-27, 4-40
over mode 5-22, 5-48
owner count 1-20

as color profile property 4-36, 4-46, 4-84
as color set property 4-33, 4-46, 4-69
as ink object property 5-6, 5-41, 5-64
as shape object property 2-9, 2-31 to 2-32, 2-76 to 2-77
as style object property 3-6, 3-11 to 3-13, 3-22
as tag object property 8-4, 8-11, 8-20, 8-21
as transform object property 6-7, 6-19 to 6-20, 6-39
defined 1-16

P

packing, color 4-6, 4-54
PAL space 4-20 to 4-22
panels, adding to printing dialog boxes 1-36
paper-type objects

defined 1-15
parent view port

as view port property 7-8, 7-18 to 7-19
functions for 7-84 to 7-85
setting up 7-46 to 7-47

path shapes 1-11, 2-10

pattern
as style object property 3-4

PDD. See portable digital document
pen width

as style object property 3-4
perceptual matching 4-30
perspective operations 6-10
picture shapes

defined 1-11, 2-11
local space for 7-34
unique items in 2-17

pinning, of colors 5-28, 5-32 to 5-33, 5-54
point shapes 1-11, 2-9
polygon shapes 1-11, 2-10
portable digital document (PDD) 1-34, 1-37
posting errors, warnings, and notices 1-38
primitive shapes 2-33, 6-7
printer drivers 1-35
printer objects

defined 1-15
print file objects 1-34
print-file objects. See also portable digital document

defined 1-15
print files 1-37
printing 1-6, 1-34 to 1-37. See also printing objects, 

printing dialog boxes
transfer modes and 5-49 to 5-50

printing dialog boxes 1-35
adding panels to 1-36
status dialog box 1-37

printing extensions 1-35
printing modes 1-37
printing objects. See also job objects, format objects, 

paper-type objects, printer objects, print-file 
objects

defined 1-14 to 1-15
printing status dialog box 1-37
priority justification override

as style object property 3-5
profile chromaticities 4-28
profile data, as color profile property 4-36, 4-36 to 4-37, 

4-48 to 4-49, 4-88 to 4-93
profile response curves 4-29
programming environment 1-38 to 1-45

conventions and consistencies 1-41 to 1-44
debugging. See debugging
error handling 1-38 to 1-39
implementation limits 1-43. See also Macintosh 

environment
setting up QuickDraw GX memory 1-38

properties. See object properties
pseudo-Boolean transfer modes 5-18 to 5-19. 

See also ramp-AND mode, ramp-OR mode, 
ramp-XOR mode



I N D E X

IN-11

Q

QuickDraw GX, general features of 1-3 to 1-7
compatibility with QuickDraw 1-4
debugging and non-debugging versions 1-39
graphics 1-4
limitations to 1-7
printing 1-6
programming conventions and consistencies

1-41 to 1-44
QuickDraw GX memory 1-18 to 1-19
relationship to Macintosh environment 1-44 to 1-45
typography 1-5

R

ramp-AND mode 5-19, 5-45
ramp-OR mode

defined 5-19
examples of using 5-45, 5-46, 5-48
for calculating alpha-channel values 5-24

ramp-XOR mode
defined 5-19
examples of using 5-45, 5-46
for calculating alpha-channel values 5-24

rectangle shapes 1-11, 2-10
references. See object references
remote memory 2-16
result color 5-11
result color limits 5-32 to 5-33, 5-54
result matrix 5-8, 5-33 to 5-34
RGB-based color spaces 4-9 to 4-13
RGB space 4-9 to 4-11
rotation operations 6-10

causing change in shape type 6-27
using shape geometry 6-27 to 6-28, 6-70
using transform mapping 6-24 to 6-26, 6-62

run controls
as style object property 3-5

run features array
as style object property 3-5

S

saturation 4-12
saturation matching 4-30
scaling operations 6-10

using shape geometry 6-27 to 6-28, 6-68
using transform mapping 6-24 to 6-26, 6-60

scrolling, in a view port 7-19, 7-22 to 7-23, 7-47 to 7-49

shape attributes
as shape object property 2-8
list of 2-16 to 2-18, 2-47
manipulating 2-28 to 2-29, 2-74 to 2-75

shape caches 2-16
shape fills

as shape object property 2-8
closed-frame fill 2-13
even-odd fill 2-14
inverse even-odd fill 2-14
inverse winding fill 2-14
list of 2-13 to 2-15, 2-46 to 2-47
manipulating 2-28 to 2-29, 2-68 to 2-69
no fill 2-13
open-frame fill 2-13
valid shape types for 2-15
winding fill 2-14

shape geometry 1-10
as shape object property 2-8
contents of 2-11 to 2-13
copying between shapes 2-29 to 2-30, 2-67 to 2-68
directly manipulating 2-34 to 2-35, 2-80 to 2-84

shape object properties 2-7 to 2-9
attributes. See shape attributes
default values for 2-18 to 2-19, 2-23, 2-31, 2-75 to 2-76
fill. See shape fills
geometry. See shape geometry
ink reference 2-8, 2-30 to 2-31, 2-71 to 2-72
owner count 2-9, 2-31 to 2-32, 2-76 to 2-77
style reference 2-8, 2-30 to 2-31, 2-69 to 2-71
tag list 2-9, 2-32, 2-77 to 2-79
transform reference 2-8, 2-30 to 2-31, 2-72 to 2-73
type. See shape types

shape objects 2-5 to 2-97. See also shapes
absolute location for 6-24, 6-67
caching 2-27, 2-62 to 2-65
changing the default 2-23, 2-52 to 2-53
colors of, on a view device 7-119 to 7-120
constants and data types for 2-45 to 2-51
copying, comparing, and cloning 2-25 to 2-26, 

2-57 to 2-62
copying geometry of 2-29 to 2-30, 2-67 to 2-68
coverting shape type of 2-33, 2-66 to 2-67
creating and disposing of 2-24 to 2-25, 2-54 to 2-56
default 2-18 to 2-19
defined 1-10 to 1-11, 2-46
directly manipulating geometry of 2-34 to 2-35, 

2-80 to 2-84
drawing. See drawing
flattening. See flattening
functions for 2-51 to 2-92
grouping 2-17
hit-testing on a view device 7-60, 7-120 to 7-121
hit-testing. See hit-testing
loading and unloading 2-18, 2-27 to 2-28



I N D E X

IN-12

shape objects (continued)
locking and unlocking 2-17, 2-34 to 2-35, 2-80 to 2-84
manipulating owner count of 2-31 to 2-32, 

2-61 to 2-62, 2-76 to 2-77
manipulating properties of 2-19 to 2-20, 2-28 to 2-32, 

2-65 to 2-79
measuring

in device space 7-59 to 7-60, 7-116 to 7-118
in global space 7-63 to 7-65, 7-125 to 7-126
in local space 7-51 to 7-52, 7-96 to 7-97

memory size of 2-25, 2-56 to 2-57
primitive 2-33, 6-7
printing 1-34 to 1-37
properties of. See shape object properties
resetting to default values 2-31, 2-75 to 2-76
saving and restoring. See flattening, unflattenting
transforming. See transforming shapes
types of. See shape types
unflattening. See unflattening
view devices of 7-58, 7-115 to 7-116
view ports of 7-50, 7-95

shape parts, for hit-testing 1-32, 2-20 to 2-21, 
2-36 to 2-37, 6-12 to 6-13

shapes. See also shape objects
component objects of 2-5 to 2-6
defined 2-5

shape types 1-10
as shape object property 2-8
bitmap shapes 1-11, 2-10
converting between 2-33, 2-66 to 2-67
curve shapes 1-11, 2-9
empty shapes 1-11, 2-9
full shapes 1-11, 2-11
geometric 1-11
glyph shapes 1-11, 2-10
graphic 1-11
layout shapes 1-11, 2-10
line shapes 1-11, 2-9
list of 2-9 to 2-11, 2-46
manipulating 2-28 to 2-29, 2-66 to 2-67
path shapes 1-11, 2-10
picture shapes 1-11, 2-11
point shapes 1-11, 2-9
polygon shapes 1-11, 2-10
rectangle shapes 1-11, 2-10
text shapes 1-11, 2-10
typographic 1-11
valid shape fills for 2-15

skewing operations 6-10
using shape geometry 6-27 to 6-28, 6-71
using transform mapping 6-24 to 6-26, 6-63

solid fill. See even-odd fill
source color 4-24, 5-11
source color limits 5-31, 5-54

source matrix 5-8, 5-33 to 5-34
spaces. See coordinates and coordinate spaces, 

color spaces
spool block structure 2-49 to 2-50
spool function, for flattening and unflattening 2-49, 

2-91 to 2-92
spooling 1-34. See also spool block structure, 

spool function
style attributes. See also style text attributes

as style object property 3-5
manipulating 3-11

style object properties 3-4 to 3-6, 3-10 to 3-14, 
3-21 to 3-25

alignment 3-5
attributes. See style attributes
cap 3-4
curve error 3-4
dash 3-4
default values for 3-6 to 3-7, 3-11, 3-21
encoding 3-5
font 3-5
font variations 3-5
glyph justification overrides array 3-5
glyph substitutions array 3-5
join 3-4
kerning adjustments array 3-5
owner count 3-6, 3-11 to 3-13, 3-22
pattern 3-4
pen width 3-4
priority justification override 3-5
run controls 3-5
run features array 3-5
tag list 3-6, 3-14, 3-22 to 3-25
text attributes. See style text attributes
text face 3-5
text size 3-5

style objects 3-3 to 3-26
as shape object property 2-8, 2-30 to 2-31, 2-69 to 2-71
constants and data types for 3-16
copying, comparing, and cloning 3-8 to 3-10, 

3-18 to 3-20
creating and disposing of 3-7 to 3-8, 3-16 to 3-18
default 3-6 to 3-7, 3-11, 3-21
defined 1-12, 3-16
functions for 3-16 to 3-25
loading and unloading 3-10
manipulating owner count of 3-11 to 3-13, 3-22
manipulating properties of 3-10 to 3-14, 3-21 to 3-25
properties of. See style object properties

style text attributes. See also style attributes
as style object property 3-5
manipulating 3-11

synonyms 1-37



I N D E X

IN-13

T

tag contents, as tag object property 8-4
tag list 8-3

as color profile property 4-36, 4-47, 4-85 to 4-87
as color set property 4-33, 4-47, 4-70 to 4-73
as ink object property 5-6, 5-41, 5-65 to 5-67
as shape object property 2-9, 2-32, 2-77 to 2-79
as style object property 3-6, 3-14, 3-22 to 3-25
as transform object property 6-7, 6-20, 6-40 to 6-42
as view device property 7-25, 7-56, 7-112 to 7-115
as view port property 7-9, 7-91 to 7-93
defined 1-17, 1-18

tag object properties 8-4
contents 8-4, 8-10 to 8-11, 8-11 to 8-12, 8-18, 8-20
owner count 8-4, 8-11, 8-20, 8-21
size 8-4, 8-18, 8-20
tag type 8-4, 8-5 to 8-6, 8-10 to 8-11

tag objects 8-3 to 8-25
attaching to other objects 8-12
constants and data types for 8-13
copying, comparing, and cloning 8-9, 8-15 to 8-18
creating and disposing of 8-8, 8-13 to 8-15
defined 1-13, 1-17, 8-13
directly manipulating contents of 8-11 to 8-12, 

8-21 to 8-24
functions for 8-13 to 8-24
loading and unloading 8-9
locking and unlocking 8-11 to 8-12, 8-21 to 8-24
manipulating properties of 8-9 to 8-12, 8-18 to 8-21
properties of. See tag object properties
QuickDraw GX behavior and 8-7
uses for 1-17 to 1-18, 8-6 to 8-7

tag size, as tag object property 8-4
tag types 8-3

as tag object property 8-4, 8-5 to 8-6
list of 8-5 to 8-6

text attributes. See style text attributes
text face

as style object property 3-5
text shapes 2-10

defined 1-11
text size

as style object property 3-5
tint and tint color, for a halftone 7-16 to 7-17
tint space, for a halftone 7-17
tint types, for a halftone 7-16 to 7-17, 7-67
tolerance, for hit-testing 1-32, 2-21, 6-13
transfer component flags 5-35, 5-55 to 5-56
transfer component structure 5-8, 5-53 to 5-54
transfer mode flags 5-8, 5-35 to 5-36, 5-53
transfer modes 5-11 to 5-37, 5-44 to 5-50. 

See also transfer mode structure
and printing 5-49 to 5-50
as ink object property 5-6, 5-8 to 5-9

color limits for 5-27 to 5-33, 5-54
destination 5-32, 5-54
result 5-32 to 5-33, 5-54
source 5-31, 5-54

color space for 5-25 to 5-27
flags 5-34 to 5-36
functions for 5-72 to 5-76
getting and setting 5-43
matrices in 5-33 to 5-34
summary of operation 5-36 to 5-37
types of. See component modes

transfer mode structure 5-8 to 5-9, 5-52 to 5-53
transform clip

as transform object property 6-6
characteristics of 6-7 to 6-9
constructive geometry operations on 6-21 to 6-23, 

6-48 to 6-53
functions for 6-43 to 6-53
getting and setting 6-20, 6-43 to 6-48

transforming shapes. See also translation operations, 
scaling operations, rotation operations, skewing 
operations, perspective operations

by altering shape geometry 2-17, 6-26 to 6-28, 
6-65 to 6-73

by altering transform mapping 2-17, 6-23 to 6-26, 
6-58 to 6-65

by applying a mapping to the geometry 6-72
transform mapping

applying another mapping to 6-64
as transform object property 6-6
characteristics of 6-10 to 6-11
functions for 6-53 to 6-65

transform object properties 6-6 to 6-14
clip. See transform clip
default values for 6-14, 6-20, 6-38
hit-test parameters. See hit-test parameters
mapping. See transform mapping
owner count 6-7, 6-19 to 6-20, 6-39
tag list 6-7, 6-20, 6-40 to 6-42
view port list. See view port list

transform objects 6-5 to 6-84
as shape object property 2-8, 2-30 to 2-31, 2-72 to 2-73
constants and data types for 6-31 to 6-32
copying, comparing, and cloning 6-16 to 6-18, 

6-35 to 6-38
creating and disposing of 6-15 to 6-16, 6-18, 

6-33 to 6-35
default 6-14
defined 1-13, 6-31
functions for 6-32 to 6-81
loading and unloading 6-18
manipulating properties of 6-19 to 6-20, 6-38 to 6-48, 

6-54 to 6-58
manipulating the clip of 6-48 to 6-53



I N D E X

IN-14

transform objects (continued)
manipulating the view port list of 6-28 to 6-30, 

6-73 to 6-77
modifying the mapping of 6-23 to 6-26, 6-58 to 6-65
properties of. See transform object properties
resetting default properties 6-20, 6-38

translation operations 6-10
using shape geometry 6-26 to 6-27, 6-66 to 6-68
using transform mapping 6-24, 6-58 to 6-60

tristimulus values 4-16
type. See shape type
typographic shapes. See also text shapes, glyph shapes, 

layout shapes
defined 1-11

typography 1-5

U

undercolor removal 4-14, 4-29
unflattening 1-23, 2-22, 2-39 to 2-42

constants and data types for 2-48 to 2-50
functions for 2-87 to 2-92

unique items in a picture shape 2-17
universal color spaces 4-15 to 4-22
unlocking

color profiles 4-49, 4-91
shapes 2-17, 2-81
tag objects 8-11 to 8-12, 8-22

V

value, in HSV space 4-12
video color spaces 4-20 to 4-22
view device attributes

as view device property 7-25
functions for 7-110 to 7-111
list of 7-27, 7-68
manipulating 7-56

view device clip
as view device property 7-25, 7-26
functions for 7-102 to 7-104
manipulating 7-56 to 7-57

view device mapping
as view device property 7-25, 7-26
functions for 7-105 to 7-106
manipulating 7-56 to 7-57

view device objects 7-24 to 7-28, 7-52 to 7-60, 
7-97 to 7-121

colors of a shape on 7-119 to 7-120
constants and data types for 7-68

copying and comparing 7-52 to 7-54, 7-100 to 7-102
creating and disposing of 7-52 to 7-54, 7-98 to 7-99
default 7-28
defined 1-13, 1-26, 7-5 to 7-7, 7-68
functions for 7-97 to 7-121
halftone angle on 7-83
hit-testing a shape on 7-60, 7-120 to 7-121
identifying, for a shape 7-58, 7-115 to 7-116
identifying, for a view port 7-49 to 7-50, 7-94
manipulating properties of 7-54 to 7-57, 

7-102 to 7-115
measuring a shape in device space 7-59 to 7-60, 

7-116 to 7-118
properties of. See view device properties

view device properties 7-25 to 7-27, 7-54 to 7-57
attributes. See view device attributes
bitmap 7-25, 7-26 to 7-27, 7-55, 7-107 to 7-108
clip. See view device clip
default values for 7-28
mapping. See view device mapping
tag list 7-25, 7-56, 7-112 to 7-115
view group 7-25, 7-55, 7-109 to 7-110

view group objects 7-29 to 7-30, 7-60 to 7-65, 
7-121 to 7-126

as view device property 7-25, 7-55, 7-109 to 7-110
as view port property 7-9, 7-88 to 7-89
constants and data types for 7-69
creating and disposing of 7-61 to 7-62, 7-122 to 7-123
defined 1-13, 7-5 to 7-7, 7-69
functions for 7-121 to 7-126
measuring a shape in global space 7-63 to 7-65, 

7-125 to 7-126
offscreen 7-29 to 7-30, 7-62 to 7-63
onscreen 7-7, 7-29 to 7-30
view devices of 7-62, 7-124 to 7-125
view ports of 7-62, 7-123 to 7-124

view port attributes
as view port property 7-9
functions for 7-89 to 7-90
list of 7-20, 7-68
manipulating 7-42 to 7-43

view port clip
as view port property 7-8, 7-9 to 7-10
functions for 7-74 to 7-76
manipulating 7-44 to 7-46

view port list
as transform object property 6-6, 6-11
functions for 6-73 to 6-77
manipulating 6-28 to 6-30

view port mapping
as view port property 7-8, 7-9 to 7-10
functions for 7-77 to 7-79
manipulating 7-44 to 7-45



I N D E X

IN-15

view port objects 7-7 to 7-23, 7-40 to 7-52, 7-69 to 7-97
and windows 7-21 to 7-23
constants and data types for 7-65 to 7-68
copying and comparing 7-40 to 7-41, 7-72 to 7-74
creating and disposing of 7-40 to 7-41, 7-70 to 7-72
default 7-20 to 7-21
defined 1-13, 1-26, 7-5 to 7-7, 7-65
functions for 7-69 to 7-97
getting the global mapping of 7-79
halftone angle on a device 7-83
hierarchies of 7-18 to 7-19, 7-21 to 7-23, 7-46 to 7-47
identifying, for a shape 7-50, 7-95
manipulating properties of 7-42 to 7-46, 7-74 to 7-93
measuring a shape in local space 7-51 to 7-52, 

7-96 to 7-97
properties of. See view port properties
scrolling support 7-47 to 7-49
view devices of 7-49 to 7-50, 7-94

view port properties 7-7 to 7-20, 7-42 to 7-46
attributes. See view port attributes
child view port list. See child view port list
clip. See view port clip
default values for 7-20 to 7-21
dither. See dither
halftone. See halftones
mapping. See view port mapping
parent view port. See parent view port
tag list 7-9, 7-91 to 7-93
view group 7-9, 7-88 to 7-89

W

warnings
defined 1-38
handlers for 1-39
ignoring 1-39
posting 1-39

white point 4-17
winding fill 2-14

X

XOR mode 5-17, 5-45, 5-46
XYZ space 4-16, 4-18 to 4-20

Y

YIQ space 4-20 to 4-22
Yxy space 4-16 to 4-17, 4-18 to 4-20

Z

zero-length profiles 4-37 to 4-38



T H E  A P P L E  P U B L I S H I N G  S Y S T E M

This Apple manual was written, edited, 
and composed on a desktop publishing 
system using Apple Macintosh 
computers and FrameMaker software. 
Proof pages were created on an Apple 
LaserWriter Pro printer. Final page 
negatives were output directly from text 
files on an Optrotech SPrint 220 
imagesetter. Line art was created 
using Adobe™ Illustrator and 
Adobe Photoshop. PostScript™, the 
page-description language for the 
LaserWriter, was developed by Adobe 
Systems Incorporated.

Text type is Palatino® and display type is 
Helvetica®. Bullets are ITC Zapf 
Dingbats®. Some elements, such as 
program listings, are set in Apple Courier.

WRITERS

David Bice, Gary McCue

DEVELOPMENTAL EDITOR

Sanborn Hodgkins

ILLUSTRATORS

Sandee Karr, Lisa Hymel, Barbara Carey, 
Bruce Lee, Mai-Ly Pham

PRODUCTION EDITOR

Lorraine Findlay

PROJECT MANAGER

Trish Eastman

LEAD WRITER

David Bice

LEAD EDITOR

Laurel Rezeau

LEAD ILLUSTRATOR

Ruth Anderson

ART DIRECTOR /COVER DESIGNER

Barbara Smyth

Special thanks to Cary Clark, 
Josh Horwich, Chris Yerga

Acknowledgments to 
Pete “Luke” Alexander, Tom Dowdy, 
Pablo Fernicola, Dave Good, 
Dave Hersey, Gary Hillerson, 
Wendy Krafft, Marq Laube, Dan Lipton, 
Dave Opstad, Diane Patterson, 
Rich Pettijohn, Laine Rapin, Mike Reed


