INSIDE MACINTOSH

QuickDraw GX Objects

[
rTw

Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid SanJuan

Paris Seoul Milan Mexico City Taipei

& Apple Computer, Inc.

© 1994 Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
printing or clerical errors.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, LaserWriter, and
Macintosh are trademarks of Apple
Computer, Inc., registered in the United
States and other countries.

Adobe Illustrator, Adobe Photoshop,
and PostScript are trademarks of Adobe
Systems Incorporated, which may be
registered in certain jurisdictions.
America Online is a service mark of
Quantum Computer Services, Inc.
CompusServe is a registered service
mark of CompusServe, Inc.

FrameMaker is a registered trademark
of Frame Technology Corporation.
Helvetica, Times, and Palatino are
registered trademarks of Linotype
Company.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Optrotech is a trademark of Orbotech
Corporation.

Pantone is a registered trademark of
Pantone, Inc.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THEENTIRERISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

ISBN 0-201-40675-6
1234567 89-CRW-9897969594
First Printing, April 1994

Library of Congress Cataloging-in-Publication Data

Inside Macintosh : QuickDraw GX object / [Apple Computer, Inc.].
p. cm.
Includes index.
ISBN 0-201-40675-6
1. Macintosh (Computer) 2. Computer graphics.
I. Apple Computer, Inc.
QA76.8.M3156228 1994
006.6'765—dc20

3. QuickDraw GX.

94-1843
CIP

Contents

Figures, Tables, and Listings xiii

Preface About This Book xix

What to Read XX
Chapter Organization XXi
Conventions Used in This Book XXii
Special Fonts XXii
Types of Notes XXii
Numerical Formats XXii
Type Definitions for Enumerations xxiii
Illustrations xxiii
Development Environment xxiii
Developer Products and Support XXiV

Chapter 1 Introduction to QuickDraw GX 11

What Is QuickDraw GX? 1-3
Color Graphics 1-4
Typography 1-5
Printing 1-6
What QuickDraw GX Is Not 1-7
QuickDraw GX Objects 1-7
How QuickDraw GX Defines Objects 1-8
Advantages of an Object-Based Structure 1-9
Kinds of QuickDraw GX Obijects 1-10
Shape Objects 1-10
Supporting Objects 1-11
Printing Objects 1-14
Obiject Properties 1-15
Default Objects and Default Properties 1-17
Adding Custom Behavior With Tag Objects 1-17
Objects and Memory 1-18
Application Memory and QuickDraw GX Memory 1-18
Sharing and Multiple Object References 1-19
Owner Count 1-20
Cloning 1-20
Automatic Loading and Unloading of Objects 1-21
Direct Access to Object Structure: Locking and Unlocking 1-22
External Storage of Objects: Flattening and Unflattening 1-23

Drawing and Hit-Testing Shapes 1-23
Drawing 1-24
Mapping and Clipping 1-24
View-Related Objects 1-25
The Drawing Sequence: Coordinate Conversion 1-28
Hit-Testing 1-32
Printing With QuickDraw GX 1-34
Core Printing Features 1-35
Custom Dialog Boxes and Page Formats 1-36
Advanced Printing Features 1-37
The QuickDraw GX Programming Environment 1-38
Setting Up QuickDraw GX Memory 1-38
Handling Errors 1-38
Debugging 1-39
Debugging and Non-Debugging Versions 1-39
Debugging With GraphicsBug 1-40
Programming Conventions and Consistencies 1-41
Object Behavior 1-41
Functions and Function Results 1-41
Function Parameters 1-42
Code Naming Conventions 1-44
Relationship to the Macintosh Toolbox 1-44
Summary Table and Diagram of QuickDraw GX Objects 1-45

Chapter 2 Shape Objects 21

About QuickDraw GX Shapes 2-5
About Shape Objects 2-7
Shape Properties 2-7
Shape Type 2-9
Shape Geometry 2-11
Shape Fill 2-13
Shape Attributes 2-16
Default Shapes 2-18
Modifying Shape Properties 2-19
Drawing Shapes 2-20
Hit-Testing Shapes 2-20
Saving and Restoring Shapes 2-22
Using Shape Objects 2-22
Creating and Manipulating Shape Objects 2-22
Getting and Setting the Default Shape Objects 2-23
Creating and Disposing of Shape Objects 2-24
Getting the Size of a Shape Object in Memory 2-25
Copying, Comparing, and Cloning Shape Obijects 2-25
Caching Shape Objects 2-27
Loading and Unloading Shape Objects 2-27

Chapter 3

Manipulating Shape Object Properties 2-28
Getting and Setting a Shape Object’s Type, Fill, and Attributes
Copying the Geometry From One Shape to Another 2-29
Getting and Setting a Shape Object’s Style, Ink, and Transform
Resetting a Shape Obiject’s Properties to Their Default Values
Manipulating a Shape Object’s Owner Count 2-31
Getting and Setting a Shape Object’s Tag References 2-32
Converting Shapes From One Type to Another 2-32
Directly Manipulating a Shape’s Geometry 2-34
Drawing and Hit-Testing Shapes 2-35
Drawing Shapes 2-35
Hit-Testing Shapes 2-36
Flattening and Unflattening Shapes 2-39
Shape-Related Functions Described Elsewhere 2-42
Shape Objects Reference 2-45
Constants and Data Types 2-45
The Shape Obiject 2-46
Shape Type 2-46
Shape Fill 2-46
Shape Attributes 2-47
Flatten Flags 2-48
The Spool Block 2-49
The Hit-Test Info Structure 2-50
Functions 2-51
Creating and Manipulating Shape Objects 2-52
Manipulating Shape Object Properties 2-65
Directly Manipulating a Shape’s Geometry 2-80
Drawing and Hit-Testing Shapes 2-84
Flattening and Unflattening Shape Objects 2-87
Application-Defined Spool Function 2-91
Summary of Shape Objects 2-93
Constants and Data Types 2-93
Functions 2-95
Application-Defined Spool Function 2-97

Style Objects 31

2-28

2-30
2-31

About Style Objects 3-3
Style Object Properties 3-4
The Default Style Object 3-6
Using Style Objects 3-7
Creating and Manipulating Style Objects 3-7
Creating and Deleting a Style Object 3-7
Copying, Comparing, and Cloning Style Objects 3-8
Loading and Unloading Style Objects 3-10

Manipulating Style Object Properties 3-10

Resetting a Style Object’s Default Properties 3-11
Getting and Setting Style Attributes and Text Attributes 3-11
Manipulating a Style Object’s Owner Count 3-11

Getting and Setting a Style Object’s Tag References

Style-Related Functions Described Elsewhere 3-14
Style Objects Reference 3-15
Constants and Data Types 3-16
The Style Object 3-16
Functions 3-16
Creating and Manipulating Style Objects 3-16
Manipulating Style Object Properties 3-21
Summary of Style Objects 3-26
Constants and Data Types 3-26
Functions 3-26

Chapter 4 Colors and Color-Related Objects 41

3-14

About Color in QuickDraw GX 4-5
Color Spaces 4-6
Luminance-Based Color Spaces 4-7
RGB-Based Color Spaces 4-9
CMYK Color Spaces 4-14
Universal Color Spaces 4-15
Indexed Color Spaces 4-22
Color Spaces With Alpha Channels 4-24
Color-Component Values, Color Values, and Colors
Color Conversion and Color Matching 4-26
Color Profiles 4-28
Color-Matching Methods 4-30
When Color Matching Occurs 4-31
About Color Set Objects 4-32
Color Set Properties 4-33
Color Values in a Color Set 4-34
Default Color Sets 4-34
About Color Profile Objects 4-35
Color Profile Properties 4-36
Profile Data 4-36
The Default Color Profile 4-37
Zero-Length Profiles 4-37
Using Colors and Color-Related Objects 4-38
Assigning Colors to Shapes 4-38
Assigning Color Profiles to Colors 4-39
Comparing and Testing Colors 4-40
Checking for Out-of-Gamut Colors 4-40
Checking Colors for Closeness and Color Space

Vi

4-25

4-40

Predicting Drawing Results 4-41
Converting and Matching Colors 4-41
Creating and Manipulating Color Set and Color Profile Objects 4-42
Creating and Disposing of a Color Set or Color Profile 4-42
Copying, Comparing, and Cloning Color Sets and Color Profiles 4-44
Loading and Unloading Color Sets and Color Profiles 4-45
Manipulating Object Properties of Color Sets and Color Profiles 4-46
Manipulating Owner Counts 4-46
Getting and Setting Tag References 4-47
Manipulating the Colors in a Color Set Object 4-47
Manipulating the Profile Data in a Color Profile Object 4-48
Colors and Color-Related Objects Reference 4-49
Constants and Data Types 4-50
Color-Component Values 4-50
Color Values 4-50
The Color Structure 4-53
Color Packing 4-54
Color Spaces 4-55
The Color Set Object 4-56
The gxSetColor Union 4-56
The Color Profile Object 4-57
Color Functions 4-57
Color Set Functions 4-62
Creating and Manipulating Color Set Objects 4-62
Manipulating Color Set Object Properties 4-69
Retrieving and Replacing Colors in a Color Set 4-73
Color Profile Functions 4-78
Creating and Manipulating Color Profile Objects 4-78
Manipulating Color Profile Object Properties 4-84
Retrieving and Replacing Profile Information 4-88
Summary of Colors and Color-Related Objects 4-94
Constants and Data Types 4-94
Color Functions 4-98
Color Set Functions 4-98
Color Profile Functions 4-99

Chapter 5 Ink Objects 51

About Ink Objects 5-5
Ink Properties 5-6
Color 5-7
Transfer Mode 5-8
Ink Attributes 5-9
The Default Ink Object 5-10

Vii

About Transfer Modes 5-11
Transfer Mode Types 5-11
Arithmetic Transfer Modes 5-12
Highlight Transfer Mode 5-15
Boolean Transfer Modes 5-16
Pseudo-Boolean Transfer Modes 5-18
Alpha-Channel Transfer Modes 5-20
Transfer Mode Color Space 5-25
Color Limits 5-27
Source Color Limits 5-31
Destination Color Limits 5-32
Result Color Limits 5-32
Transfer Mode Matrices 5-33
Flags 5-34
Transfer Component Flags 5-35
Transfer Mode Flags 5-35
Summary of Transfer Mode Operation 5-36
Using Ink Objects 5-38
Creating and Manipulating Ink Objects 5-38
Creating and Disposing of Ink Objects 5-38
Copying, Comparing, and Cloning Ink Objects 5-39
Loading and Unloading Ink Objects 5-40
Manipulating Ink Object Properties 5-40
Getting and Setting an Ink Object’s Attributes 5-40
Manipulating an Ink Object’s Owner Count 5-41
Getting and Setting an Ink Object’s Tag References 5-41
Getting and Setting an Ink Object’s Color 5-42
Getting and Setting an Ink Object’s Transfer Mode 5-43
Working With Transfer Modes 5-44
Simple Source-to-Destination Transfers 5-44
Drawing Selected Parts of the Source 5-45
Preserving Selected Parts of the Destination 5-45
Copying or Preserving Luminance 5-46
Modifying Luminance 5-47
Isolating and Modifying Color Ranges 5-47
Masking 5-48
Partial Transparency 5-48
Anti-Aliasing 5-49
Making Color Separations 5-49
Transfer Modes and Printing 5-49
Ink Objects Reference 5-50
Constants and Data Types 5-50
The Ink Object 5-50
Ink Attributes 5-51
Color Structure 5-51
Transfer Mode Structure 5-52
Transfer Mode Flags 5-53

viii

Transfer Component Structure 5-53

Component Modes (Transfer Mode Types) 5-55

Transfer Component Flags 5-55

Functions 5-56

Creating and Manipulating Ink Objects 5-56

Manipulating Ink Object Properties 5-60

Getting and Setting an Ink’s Color 5-68

Getting and Setting an Ink’s Transfer Mode 5-72
Summary of Ink Objects 5-77

Constants and Data Types 5-77

Functions 5-79

Chapter 6 Transform Objects 61

About Transform Objects 6-5
Transform Object Properties 6-6
Clip 6-7
Mapping 6-10
View Port List 6-11
Hit-Test Parameters 6-11
Default Transform Objects 6-14
Using Transform Objects 6-15
Creating and Manipulating Transform Objects 6-15
Creating and Disposing of Transform Objects 6-15
Copying, Comparing, and Cloning Transform Objects 6-16
Implicit Creation of Transform Objects 6-18
Loading and Unloading Transform Objects 6-18
Manipulating Transform Object Properties 6-19
Manipulating a Transform Object’s Owner Count 6-19
Getting and Setting a Transform Object’s Tag References 6-20
Resetting Default Transform Properties 6-20
Getting, Setting, and Modifying the Transform Clip 6-20
Moving, Scaling, Rotating, and Skewing Shapes 6-23
Modifying the Transform Mapping 6-24
Modifying Shape Geometry 6-26
Manipulating the View Port List 6-28
Setting Up Hit-Test Parameters 6-30
Transform Objects Reference 6-31
Constants and Data Types 6-31
The Transform Object 6-31
Shape Parts for Hit-Testing 6-32
Functions 6-32
Creating and Manipulating Transform Objects 6-33
Manipulating Transform Object Properties 6-38
Getting and Setting the Clip 6-43
Performing Geometric Operations on Transform Clips 6-48

Chapter 7

Getting and Setting the Mapping 6-53
Transforming Shapes by Modifying Transform Mappings 6-58
Transforming Shapes by Modifying Shape Geometries 6-65
Getting and Setting the View Port List 6-73
Getting and Setting the Hit-Test Parameters 6-77
Summary of Transform Objects 6-82
Constants and Data Types 6-82
Functions 6-83

View-Related Objects 71

About View Ports, View Devices, and View Groups 7-5
About View Port Objects 7-7
View Port Properties 7-7
View Port Clip and Mapping 7-9
Dither 7-10
Halftone 7-13
Parent and Child View Ports 7-18
View Port Attributes 7-20
The Default View Port Object 7-20
View Port Objects and Windows 7-21
About View Device Objects 7-24
View Device Properties 7-25
View Device Clip and Mapping 7-26
View Device Bitmap 7-26
View Device Attributes 7-27
The Default View Device Object 7-28
View Device Objects and Physical Devices 7-28
About View Group Obijects 7-29
View Groups Have No Properties 7-29
Onscreen and Offscreen View Groups 7-29
About Drawing, Coordinate Conversion, and Clipping 7-30
QuickDraw GX Coordinates 7-31
Geometry Space 7-32
Local Space 7-33
Global Space 7-34
Device Space 7-38
Using View-Related Obijects 7-39
Using View Ports 7-40
Creating and Manipulating View Port Objects 7-40
Manipulating View Port Object Properties 7-42
Getting and Setting a View Port’s Clip and Mapping 7-44
Setting Up the View Port Hierarchy for a Window 7-46
Supporting Scrolling in a Window 7-47
Identifying a View Port’s View Devices 7-49
Identifying a Shape’s View Ports 7-50

Measuring a Shape in Local Space 7-51

Using View Devices 7-52
Creating and Manipulating View Device Objects 7-52
Manipulating View Device Object Properties 7-54
Getting and Setting a View Device’s Clip and Mapping 7-56
Identifying a Shape’s View Devices 7-58
Measuring a Shape in Device Space 7-59
Hit-Testing a Shape on a Device 7-60

Using View Groups 7-60
Creating and Manipulating View Group Objects 7-61
Setting Up an Offscreen View Group 7-62
Measuring a Shape in Global Space 7-63

View-Related Objects Reference 7-65

Constants and Data Types 7-65
The View Port Object 7-65
The Halftone Structure 7-65
Dot Types 7-66
Tint Types 7-67
View Port Attributes 7-68
The View Device Object 7-68
View Device Attributes 7-68
The View Group Object 7-69
View Group Types 7-69

View Port Functions 7-69
Creating and Manipulating View Port Objects 7-70
Manipulating View Port Object Properties 7-74
Retrieving the View Devices That Intersect a View Port 7-94
Retrieving the View Ports That Intersect a Shape 7-95
Measuring a Shape in Local Coordinates 7-96

View Device Functions 7-97
Creating and Manipulating View Device Objects 7-97
Manipulating View Device Object Properties 7-102
Retrieving the View Devices That Intersect a Shape 7-115
Measuring a Shape in Device Coordinates 7-116
Measuring the Colors and Pattern Width of a Shape on a Device 7-118
Hit-Testing a Shape on a Device 7-120

View Group Functions 7-121
Creating and Disposing of View Group Objects 7-121
Getting the View Ports and View Devices of a View Group 7-123
Measuring a Shape in Global Coordinates 7-125

Summary of View-Related Objects 7-127

Constants and Data Types 7-127
View Port Functions 7-129
View Device Functions 7-130
View Group Functions 7-131

Xi

Chapter 8 Tag Objects 81

About Tag Objects 8-3
Tag Object Properties 8-4
Tag Types 8-5
Uses for Tag Objects 8-6
Using Tag Obijects 8-7
Creating and Manipulating Tag Objects 8-7
Creating and Deleting a Tag Object 8-8
Copying, Comparing, and Cloning Tag Objects 8-9
Loading and Unloading Tag Objects 8-9
Manipulating Tag Object Properties 8-9
Getting and Setting a Tag Object’s Tag Type and Contents
Manipulating a Tag Object’s Owner Count 8-11
Directly Manipulating Tag Object Contents 8-11
Attaching Tags to a QuickDraw GX Object 8-12
Tag Objects Reference 8-12
Constants and Data Types 8-13
The Tag Object 8-13
Functions 8-13
Creating and Manipulating Tag Objects 8-13
Manipulating Tag Object Properties 8-18
Directly Manipulating the Data in a Tag Object 8-21
Summary of Tag Objects 8-25
C Summary 8-25
Functions 8-25

Glossary cL-1

8-10

Index IN-1

Xil

Preface

Chapter 1

Chapter 2

Figures, Tables, and Listings

Color Plates

Color plates are immediately preceding the title page

Color Plate 1
Color Plate 2
Color Plate 3
Color Plate 4

Blend example with different operand values

Showing color transparency with an alpha channel
Applying color by preserving luminance in the destination
Color spaces

About This Book xvii

Figure P-1

Roadmap to the QuickDraw GX suite of books XX

Introduction to QuickDraw GX 1-1

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 1-6
Figure 1-7
Figure 1-8
Figure 1-9
Figure 1-10
Figure 1-11

Figure 1-12
Figure 1-13

Table 1-1
Table 1-2

Listing 1-1

Shape Objects

Several QuickDraw GX objects 1-8

A shape object and its referenced objects 1-12

Printing objects 1-14

Effects of mapping 1-25

How QuickDraw GX draws a shape 1-27

A rectangle in geometry space 1-29

A rectangle in local space (transform mapping applied)

A rectangle in global space (view port mapping applied)

A rectangle in device space (view device mapping applied)
Parts of a line for hit-testing 1-33

Dragging a document to a desktop printer icon on the
desktop 1-36

1-30
1-31
1-32

Printing a single document that has multiple formats 1-37

Properties of the basic QuickDraw GX objects 1-49

Convenience constants for parameters 1-43
QuickDraw GX objects 1-45

Sample GraphicsBug heap dump (HD) listing 1-40

2-1

Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5

Table 2-1
Table 2-2

Basic components of a QuickDraw GX shape 2-6
The shape object and its properties 2-7

Shape geometry for each type of QuickDraw GX shape
Even-odd and winding fills 2-14

Shape parts for hit-testing 2-21

Shape types 2-9
Shape fills 2-13

2-12

xiil

Chapter 3

Chapter 4

Xiv

Table 2-3
Table 2-4
Table 2-5
Table 2-6

Listing 2-1
Listing 2-2
Listing 2-3
Listing 2-4
Listing 2-5

Style Objects

Valid shape fills for each shape type 2-15

Shape attributes 2-16

Where to find information on shape-type conversion 2-33
Shape-related functions described elsewhere 2-42

Directly accessing a shape’s geometry 2-34
Hit-testing a line 2-38

Flattening a shape 2-39

Unflattening a shape 2-40

A spool function that parses shape data 2-41

3-1

Figure 3-1
Table 3-1
Table 3-2

Listing 3-1

The style object and its properties 3-4

Where to go for information on style object properties and
functions 3-6

Style-related functions described elsewhere 3-14

Building a style list by copying a style object 3-9

Colors and Color-Related Objects 4-1

Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7
Figure 4-8
Figure 4-9
Figure 4-10
Figure 4-11
Figure 4-12
Figure 4-13
Figure 4-14
Figure 4-15
Figure 4-16
Figure 4-17
Figure 4-18

Figure 4-19
Figure 4-20

Table 4-1

Table 4-2
Table 4-3
Table 4-4

Luminance color space 4-7

Storage formats for luminance-based color spaces 4-8
RGB color space 4-9

Storage formats for RGB color spaces 4-11

HSV color space and HLS color space 4-12

Storage formats for HSV color spaces 4-13

Colors in CMYK color space 4-14

Storage formats for CMYK color spaces 4-15

Yxy chromaticities 4-17

Storage formats for XYZ color spaces 4-20

The | and Q axes in YIQ color space 4-21

Storage formats for YIQ color spaces 4-22

Storage format for indexed color space 4-23
Showing color transparency with an alpha channel 4-24
Color gamuts for two devices (in Yxy space) 4-28
Profile chromaticities for a device (in Yxy space) 4-29
A profile response curve for a device 4-29
Maintaining lightness and maintaining saturation in color
matching 4-31

The color set object and its properties 4-33

The color profile object and its properties 4-36

Luminance-based color spaces supported by
QuickDraw GX 4-8

RGB color spaces supported by QuickDraw GX 4-10
HSV and HLS color spaces supported by QuickDraw GX 4-13
CMYK color spaces supported by QuickDraw GX 4-15

Chapter 5

Chapter 6

Table 4-5

Universal color spaces supported by QuickDraw GX 4-19

Table 4-6 Video color spaces supported by QuickDraw GX 4-21

Table 4-7 Indexed color space supported by QuickDraw GX 4-23

Ink Objects 5-1

Figure 5-1 The ink object and its properties 5-6

Figure 5-2 Arithmetic transfer modes 5-13

Figure 5-3 Blend example with different operand values 5-15

Figure 5-4 Highlight transfer mode 5-16

Figure 5-5 Boolean transfer modes (1-bit depth) 5-17

Figure 5-6 Pseudo-Boolean transfer modes 5-18

Figure 5-7 Alpha-channel transfer modes 5-21

Figure 5-8 Typical modes used to determine result opacity for the alpha
channel 5-23

Figure 5-9 Anti-aliasing 5-25

Figure 5-10 Automatic conversion of color values during a transfer mode
operation 5-26

Figure 5-11 Maximum and minimum color-component values in
RGB space 5-28

Figure 5-12 How minimum and maximum color limits affect drawing 5-29

Figure 5-13 How reversed minimum and maximum color limits affect
drawing 5-29

Figure 5-14 The effects of reversing maximum and minimum in a
color space 5-30

Figure 5-15 The effect of source color limits on drawing 5-31

Figure 5-16 The effect of destination color limits on drawing 5-32

Figure 5-17 The effect of result color limits on drawing 5-33

Figure 5-18 Summary of transfer mode operation 5-37

Figure 5-19 Applying color by preserving luminance in the destination 5-47

Table 5-1 Ink attributes 5-9

Transform Objects 6-1

Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4

Figure 6-5
Figure 6-6

Figure 6-7
Figure 6-8
Table 6-1

Table 6-2

The transform object and its properties 6-6
A transform clip 6-7
A framed transform clip 6-8

Converting a framed shape with a nonzero pen width into a
transform clip 6-8

Using a bitmap as a transform clip 6-9

Modifying a transform clip by subtracting it from another
shape 6-9

Effects of the transform mapping 6-10

Constructive geometry operations with a polygon clip and a
rectangle shape 6-22

Shape parts for hit-testing, from the gxShapeParts
enumeration 6-12

Constructive geometry operations between transform clips and
other shapes 6-21

XV

Chapter 7

XVi

Listing 6-1
Listing 6-2
Listing 6-3

Listing 6-4

Listing 6-5
Listing 6-6

Creating and disposing of a transform object 6-16
Cloning a transform to prevent it from being deleted 6-17

Modifying a shape’s transform with transform-mapping
calls only 6-25

Modifying a shape’s transform with transform-mapping and
shape-geometry calls 6-25

Modifying a shape’s geometry with shape-geometry calls 6-27
Getting and setting view ports 6-29

View-Related Objects 7-1

Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5
Figure 7-6
Figure 7-7
Figure 7-8
Figure 7-9
Figure 7-10
Figure 7-11
Figure 7-12
Figure 7-13
Figure 7-14
Figure 7-15
Figure 7-16
Figure 7-17

Figure 7-18
Figure 7-19

Table 7-1
Table 7-2
Table 7-3

Listing 7-1
Listing 7-2
Listing 7-3
Listing 7-4
Listing 7-5
Listing 7-6
Listing 7-7
Listing 7-8

Listing 7-9

Listing 7-10
Listing 7-11
Listing 7-12
Listing 7-13

Objects used by the drawing mechanism 7-6

View port object properties 7-8

Clipping and mapping in view ports 7-10

Halftone angle 7-14

Halftone frequency 7-15

Halftone dot types 7-16

Hierarchical view ports in a window 7-18

A view port hierarchy 7-19

View ports in windows 7-22

Adjusting a child view port's mapping to handle scrolling 7-23
View ports overlapping view devices 7-24

View device object properties 7-25

The QuickDraw GX coordinate plane 7-31

A shape geometry and a transform clip geometry 7-32
Applying the transform’s clip and mapping to a shape 7-33
Applying the child view port's mapping and clip to a shape 7-35
Applying the parent view port's mapping and clip to a

shape 7-36

Applying the view device’s mapping and clip to a shape 7-38
The shape as finally displayed 7-39

Dither levels and patterns 7-11
View port attributes 7-20
View device attributes 7-27

Changing a view port’s dither, halftone, and attributes 7-42
Copying the view ports from one view group to another 7-44
Changing a view port’s mapping 7-45

Setting a view port clip 7-46

Setting up a view port for a window 7-47

Supporting scrolling in a child view port 7-48

Setting a shape color for XOR highlighting 7-49

Locating the bounding rectangles of a list of shapes in a

view port 7-51

Creating a new view device 7-53

Copying the view devices from one view group to another 7-54
Returning the mapping from local to device space 7-57
Setting up a data structure for offscreen drawing 7-58
Setting up a data structure for offscreen drawing 7-61

Chapter 8

Listing 7-14

Setting up a view port and view group for offscreen
drawing 7-63

Listing 7-15 Returning the characteristics of an offscreen device area 7-64
Tag Objects 8-1

Figure 8-1 The tag object and its properties 8-4

Table 8-1 Defined tag types for tag objects 8-6

Listing 8-1 Adding data to a shape as a tag object 8-8

Listing 8-2 Retrieving the contents of a tag object 8-10

xvil

P REFACE

About This Book

QuickDraw GX is an integrated, object-based approach to graphics
programming on Macintosh computers. This book, Inside Macintosh:
QuickDraw GX Objects, gets you started by describing the object system
and showing you how to create and manipulate the fundamental
QuickDraw GX objects.

For application programming purposes, QuickDraw GX augments the

capabilities of some of the Macintosh system software managers documented

in other parts of Inside Macintosh. In situations where your application uses
QuickDraw GX for drawing, information in this book replaces much of
the information in Inside Macintosh: Imaging With QuickDraw. However,
QuickDraw and QuickDraw GX coexist without conflict, and you can use
both within the same program. Furthermore, for tasks outside the scope of
QuickDraw GX, such as managing cursors or hardware color tables, you
need to use QuickDraw.

Before you read this book, you should already be familiar with the
Macintosh Toolbox, as described in Inside Macintosh: Macintosh Toolbox
Essentials and Inside Macintosh: More Macintosh Toolbox. See the inside back
cover of this book for a diagram showing those books and the others that
make up the Inside Macintosh suite.

This book is the first reference book in the Inside Macintosh QuickDraw GX
suite; read it before reading other references, such as Inside Macintosh:
QuickDraw GX Graphics and Inside Macintosh: QuickDraw GX Typography.
Figure P-1 shows the suggested reading order for the QuickDraw GX
books.

For an alternative approach to learning QuickDraw GX, you can read
QuickDraw GX Programmer’s Overview before or along with this

book. QuickDraw GX Programmer’s Overview teaches QuickDraw GX
programming through building extensive code samples.

XiX

P REFACE

Figure P-1 Roadmap to the QuickDraw GX suite of books

What to Read

U liliti=s

="\,

G ik Dl G20
Grap hiz=s

="\,

Gy ik D G2E
Frinking

G ik Dl G20
Pri

L
ExkEnzio s
and
[y

XX

This book is for all QuickDraw GX programmers. You can read the chapters in
any order, except that the first chapter introduces concepts that the others
build on:

n

Chapter 1, “Introduction to QuickDraw GX,” provides an overview of
all of QuickDraw GX, concentrating especially on its capabilities for
managing and drawing objects. Read this chapter first.

Chapter 2, “Shape Obijects,” describes how to create and use
QuickDraw GX shapes, the basic objects that you draw. (To apply
shape objects to specific graphic and typographic tasks, the chapter
refers you to the books Inside Macintosh: QuickDraw GX Graphics and
Inside Macintosh: QuickDraw GX Typography, respectively.)

P

REFACE

Chapter 3, “Style Objects,” describes how to create and use QuickDraw GX
style objects, whose purpose is to modify the appearance or behavior of
shape objects. (To apply style objects to specific graphic and typographic
tasks, the chapter refers you to the books Inside Macintosh: QuickDraw GX
Graphics and Inside Macintosh: QuickDraw GX Typography, respectively.)

Chapter 4, “Colors and Color-Related Objects,” describes the QuickDraw
GX approach to color representation, and the objects that contain color
information. This chapter describes how to create and use color set objects,
which are used to implement indexed color spaces, and color profile
objects, which are used for color matching.

Chapter 5, “Ink Obijects,” describes how to create and use QuickDraw GX
ink objects, which specify the color and transfer mode used to draw a
shape.

Chapter 6, “Transform Objects,” describes how to create and use
QuickDraw GX transform objects, which are used to position and
transform the appearance of a shape, and to store information for
hit-testing.

Chapter 7, “View-Related Objects,” describes how to create and use view
ports, view devices, and view groups, which are QuickDraw GX objects
that work together to provide flexible capabilities in onscreen and offscreen
drawing.

Chapter 8, “Tag Obijects,” describes how to create and use QuickDraw GX
tag objects, which can contain any kind of information that you can use in
any way to extend the capabilities of other QuickDraw GX objects.

Other kinds of QuickDraw GX objects are described in other books. See the
chapter “Introduction to QuickDraw GX” for information and
cross-references.

The color plate at the front of this book shows full-color examples of some of
the figures found elsewhere in the book, in the chapters “Colors and
Color-Related Objects” and “Ink Objects.”

Chapter Organization

Most chapters in this book follow a standard general structure. For example,
the chapter “Transform Objects” contains these major sections:

n

“About Transform Objects.” This section provides an overview of
transform objects.

“Using Transform Objects.” This section describes how you can create and
manipulate transform objects using QuickDraw GX. It describes how to
use the most common functions, gives related user interface information,
provides code samples, and supplies additional information.

XXi

P REFACE

n “Transform Object Reference.” This section provides a complete reference
for transform objects by describing the constants, data types, and functions
that you use with transform objects. Each function description follows a
standard format, which gives the function declaration; a description of
every parameter; the function result, if any; and a list of errors, warnings,
and notices. Most function descriptions give additional information about
using the function and include cross-references to related information
elsewhere.

n “Summary of Transform Objects.” This shows the C interface for the
constants, data types, and functions associated with transform objects.

Conventions Used in This Book

XXii

This book uses various conventions to present certain types of information.

Special Fonts

All code listings, reserved words, and the names of data structures, constants,
fields, parameters, and functions are shown in Courier (thi s i s Courier).

When new terms are introduced, they are in boldface. These terms are also
defined in the glossary.

Types of Notes

There are several types of notes used in this book.

Note

A note formatted like this contains information that is interesting but
possibly not essential to an understanding of the main text. The wording
in the title may say something more descriptive than just “Note,” for
example “Terminology Note.” (An example appears on page 1-4.) u

IMPORTANT

A note like this contains information that is especially important. (An
example appears on page 2-35.) s

Numerical Formats

Hexadecimal numbers are shown in this format: 0x0008.

The numerical values of constants are shown in decimal, unless the constants
are flag or mask elements that can be summed, in which case they are shown
in hexadecimal.

P REFACE

Type Definitions for Enumerations

Enumeration declarations in this book are commonly followed by a type
definition that is not strictly part of the enumeration. You can use the type to
specify one of the enumerated values for a parameter or field. The type name
is usually the singular of the enumeration name, as in the following example:

enum gxDashAttri butes {

gxBendDash = 0x0001,
gxBr eakDash = 0x0002,
gxd i pDash = 0x0004,
gxLevel Dash = 0x0008,
gxAut oAdvanceDash = 0x0010

b
typedef |ong gxDashAttri bute;

[llustrations

This book uses several conventions in its illustrations.

In illustrations that show object properties, properties that are object
references are in italics. See, for example, Figure 2-2 in Chapter 2.

Obijects in diagrams, whether shown with their properties or without, are
represented by distinctive icons, such as these:

Skape obct Shyle obiect Ink o bjecd
. s
7

See, for example, Figure 1-1 in Chapter 1 and Figure 2-1 in Chapter 2.

Development Environment

The QuickDraw GX functions described in this book are available using
C interfaces. How you access these functions depends on the development
environment you are using.

Code listings in this book are shown in ANSI C. They suggest methods of
using various functions and illustrate techniques for accomplishing particular
tasks. Although most code listings have been compiled and tested, Apple
Computer, Inc., does not intend for you to use these code samples in your
applications.

xXiii

P REFACE

Developer Products and Support

XXIV

APDA is Apple’s worldwide source for over three hundred development
tools, technical resources, training products, and information for anyone
interested in developing applications on Apple platforms. Customers receive
the quarterly APDA Tools Catalog featuring all current versions of Apple
development tools and the most popular third-party development tools.
Ordering is easy; there are no membership fees, and application forms are not
required for most of our products. APDA offers convenient payment and
shipping options, including site licensing.

To order products or to request a complimentary copy of the APDA Tools
Catalog, contact

APDA

Apple Computer, Inc.

P.O. Box 319

Buffalo, NY 14207-0319

Telephone 800-282-2732 (United States)
800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDAorder

CompuServe 76666,2405

Internet APDA@applelink.apple.com

If you provide commercial products and services, call 408-974-4897 for
information on the developer support programs available from Apple.

CHAPTER 1

Introduction to
QuickDraw GX

Contents

What Is QuickDraw GX? 1-3
Color Graphics 1-4
Typography 1-5
Printing 1-6
What QuickDraw GX Is Not 1-7
QuickDraw GX Objects 1-7
How QuickDraw GX Defines Objects 1-8
Advantages of an Object-Based Structure 1-9
Kinds of QuickDraw GX Obijects 1-10
Shape Objects 1-10
Supporting Objects 1-11
Printing Objects 1-14
Object Properties 1-15
Default Objects and Default Properties 1-17
Adding Custom Behavior With Tag Objects 1-17
Objects and Memory 1-18
Application Memory and QuickDraw GX Memory 1-18
Sharing and Multiple Object References 1-19
Owner Count 1-20
Cloning 1-20
Automatic Loading and Unloading of Objects 1-21
Direct Access to Object Structure: Locking and Unlocking 1-22
External Storage of Objects: Flattening and Unflattening 1-23

Contents 1-1

1-2

CHAPTER 1

Drawing and Hit-Testing Shapes 1-23
Drawing 1-24
Mapping and Clipping 1-24
View-Related Objects 1-25
The Drawing Sequence: Coordinate Conversion 1-28
Hit-Testing 1-32
Printing With QuickDraw GX 1-34
Core Printing Features 1-35
Custom Dialog Boxes and Page Formats 1-36
Advanced Printing Features 1-37
The QuickDraw GX Programming Environment 1-38
Setting Up QuickDraw GX Memory 1-38
Handling Errors 1-38
Debugging 1-39
Debugging and Non-Debugging Versions 1-39
Debugging With GraphicsBug 1-40
Programming Conventions and Consistencies 1-41
Object Behavior 1-41
Functions and Function Results 1-41
Function Parameters 1-42
Code Naming Conventions 1-44
Relationship to the Macintosh Toolbox 1-44

Summary Table and Diagram of QuickDraw GX Objects 1-45

Contents

CHAPTER 1

Introduction to QuickDraw GX

This chapter introduces the QuickDraw GX object-based approach to graphics
programming. Any QuickDraw GX programming you do requires a basic understanding
of objects and how to manipulate them. Read this chapter before reading any other
chapter in this book, and before reading subsequent books in the QuickDraw GX suite,
such as Inside Macintosh: QuickDraw GX Graphics, Inside Macintosh: QuickDraw GX
Typography, and Inside Macintosh: QuickDraw GX Printing.

You can also start learning about QuickDraw GX by reading the book QuickDraw GX
Programmer’s Overview, either before or in conjunction with reading this chapter and the
rest of the QuickDraw GX suite. QuickDraw GX Programmer’s Overview introduces you to
QuickDraw GX concepts through designing and building code samples.

This chapter starts by outlining the features and advantages of QuickDraw GX. It then
describes

n the kinds of objects defined by QuickDraw GX

n how your application interacts with QuickDraw GX memory
n how to use objects to draw and hit-test shapes

n how to use objects to print documents

n how to program within the QuickDraw GX environment

The chapter concludes with a table and diagram summarizing QuickDraw GX objects
and their properties.

What Is QuickDraw GX?

QuickDraw GX is a programming environment and toolbox for powerful
two-dimensional color graphics programming. QuickDraw GX helps you create graphic
and typographic objects and display them on a variety of imaging devices, including
printers. The QuickDraw GX software architecture is based on objects and is compatible
with, but does not require, object-oriented programming techniques.

QuickDraw GX is a large system that provides many benefits. The rest of this section
summarizes some of those benefits, in terms of its three principal areas of application:
color graphics, typography, and printing.

What Is QuickDraw GX? 1-3

1-4

CHAPTER 1

Introduction to QuickDraw GX

Color Graphics

QuickDraw GX is a powerful graphics engine with integrated color support, a wide
range of graphics primitives, and sophisticated modes of drawing. It can manipulate
images in quite general ways, leading to many useful special effects. Highlights of the
graphics capabilities of QuickDraw GX include the following:

n Multiple types of graphic shapes. QuickDraw GX directly supports geometric shapes
(points, lines, rectangles, polygons, curves, and paths), bitmap shapes, and picture
shapes (shapes that are collections of other shapes).

n Multiple types of typographic shapes. QuickDraw GX directly supports text shapes,
glyph shapes, and layout shapes, which range from simple unstyled lines of text to
multilanguage, multifont text lines with sophisticated typographic features.

n Device independence. All positions and measurements in QuickDraw GX are
independent of the resolution of any imaging device.

n Flexible and powerful transformations. QuickDraw GX uses mathematical mappings
to easily manipulate positions, dimensions, and distortions of shapes.

n Easy stylistic variations. QuickDraw GX gives you great flexibility in setting shape
characteristics such as pen width, patterns, font, and text face.

n Device-independent colors. All colors in QuickDraw GX can be defined in a
device-independent way and then converted to device-specific colors on any device.

n Direct support for many color spaces, including luminance (for grayscale), RGB (for
monitors), YIQ (for color video broadcast), CMYK (for printing), CIE and related
device-independent color spaces (for colorimetrics).

n Automatic color matching. QuickDraw GX automatically uses color profiles and the
Macintosh ColorSync utilities to guarantee that a document’s colors as displayed on a
monitor match as closely as possible a printed copy of the same document. If you
need to, you can also manually control the color matching process.

n A sophisticated yet straightforward rendering mechanism. The mechanism allows
multiple simultaneous views of a single shape, with different scales and orientations,
on single or multiple devices, with simultaneous updating of all views if the shape is
edited.

Compatibility With QuickDraw

QuickDraw GX is does not replace the original QuickDraw
architecture built into the Macintosh toolbox. An application that

is not QuickDraw GX-aware is unaffected if QuickDraw GX is
installed on the system. A QuickDraw GX application can also use
standard QuickDraw calls and convert QuickDraw picture files into
QuickDraw GX shapes. See the Macintosh environment chapter of
Inside Macintosh: QuickDraw GX Environment and Ultilities for more
information. u

The color graphics capabilities of QuickDraw GX are described both in this book and in
Inside Macintosh: QuickDraw GX Graphics.

What Is QuickDraw GX?

CHAPTER 1

Introduction to QuickDraw GX

Typography

QuickDraw GX treats text both as text (a sequence of character codes that can be
displayed and edited) and as graphics, meaning that all of the color graphics capabilities
of QuickDraw GX are available for the display of text.

Each line of text can be a shape in QuickDraw GX. Using the typographic features of
QuickDraw GX, you can generate and manipulate fully editable, text-related shapes with
characteristics such as the following:

n Simplicity. Text can have a single font at a single size, with no changes in stylistic
variation along the line. This type of text is most useful in dialog boxes or other
situations where relatively unsophisticated string presentation is needed.

n Flexible alignment and justification. Text can be (1) left aligned, right aligned, or any
point of alignment in between (including centered); and (2) unjustified, fully justified,
or any level of justification in between.

n Multiple styles. Each glyph or any set of glyphs can be styled (given a font, size, or set
of typographic characteristics) independently of every other glyph.

n Independent glyph positions. Each glyph can have any style and be positioned
independently of every other glyph, so that text can be made to follow a curved path
or circle.

n Sophisticated layout. Text lines can exhibit great typographic sophistication, with
features such as kerning, tracking, shifting, ligature formation, and contextual glyph
substitution.

n Multilanguage text handling. Text can be properly formatted in any language
supported by a QuickDraw GX font, even contextual right-to-left languages such as
Arabic, or languages with large character sets such as Chinese. Multiple languages,
even with mixed text directions, can coexist on the same line.

n Vertical text. Text such as Japanese and Chinese can be written vertically, and
intermixed with properly oriented vertical Roman text.

Because a line of text is a QuickDraw GX shape, you can color it, fill it with a pattern,
scale it, rotate it, and transform it like any graphic shape—all the while maintaining its
identity and editability as a text line. You can also use certain typographic shapes, either
as-is or converted to purely geometric shapes, to perform further graphic operations
with them, such as clipping, dashing, and patterning.

QuickDraw GX also provides functions that help you manipulate sets of text lines, even
the most typographically sophisticated text lines, for word-processing tasks such as
hit-testing and line-breaking.

Much of the text-layout sophistication of QuickDraw GX depends on information in
tables in QuickDraw GX fonts, which have many features—some of which may be
enabled by default—that your application can use or disable, as desired.

The typographic capabilities of QuickDraw GX are described in detail in Inside
Macintosh: QuickDraw GX Typography.

What Is QuickDraw GX? 1-5

1-6

CHAPTER 1

Introduction to QuickDraw GX

Printing

QuickDraw GX includes an extensible, device-independent printing architecture that
provides a high level of support for both users and application developers, and that
makes creation of printing extensions and printer drivers fast and efficient. The printing
features of QuickDraw GX include the following:

n A consistent application printing interface, regardless of the type of printer used.

n A message-based printing system. Drivers, extensions, and even applications need
only respond to (override) a standard set of printing messages if they wish to add
specific functionality.

n A set of printing objects that controls the printing process. Use of multiple objects
means that, for example, different parts of a document can print on several printers
simultaneously, or a single document can have multiple page formats for printing.

n Support for desktop printers, which are represented by icons on the computer
desktop. The user can print a document by dragging it to the icon. Desktop printers
support printer sharing, and you can control jobs in the print queue of a desktop
printer.

n Customizable printing dialog boxes. In addition to standard print options, these
dialog boxes also provide additional controls such as the ability to select a paper tray.

n The capability of creating and reading portable digital documents (PDDs). These
documents can be viewed or printed on any computer that has QuickDraw GX
installed, without requiring the original application or fonts with which the document
was created. If QuickDraw GX is installed, any application—including those that are
not QuickDraw GX-aware—can create a PDD.

n Fast development of printing extensions that can work with any printer driver and
any application, to extend the printing capabilities available to the user.

n Fast development of printer drivers.

To implement the basic printing capabilities of QuickDraw GX, your application need
provide only a small amount of code, which executes in response to a few menu items
and a single printing message. With additional developmental effort, you can provide
highly customized capabilities. (Even if your application implements no QuickDraw GX
printing features at all, its users receive the benefit of desktop printers.)

The application printing interface to QuickDraw GX is described in Inside Macintosh:
QuickDraw GX Printing; the interface for printing extensions and printer drivers is
described in Inside Macintosh: QuickDraw GX Printing Extensions and Drivers.

What Is QuickDraw GX?

CHAPTER 1

Introduction to QuickDraw GX

What QuickDraw GX Is Not

QuickDraw GX is a powerful system, but it does have certain limitations. If your graphic
programming needs are outside of the capabilities of QuickDraw GX, you may wish to
implement them yourself or—where possible—use the built-in capabilities of the
platform on which your application runs. For example QuickDraw GX does not provide
explicit support for

n application-definable object methods

n a floating-point interface

n multiple colors or gradient fills in shapes (other than bitmaps)

n planar-pixel devices

n 3-D rendering

n cubic curves (but conversion library code is available)

n formatting of text units greater than a line, such as paragraphs

n tabs in text

n anti-aliasing (other than alpha-channel support in bitmaps)

n palette management (handled by system software on the Macintosh)
n cursor management (handled by system software on the Macintosh)

Also, on the Macintosh, QuickDraw GX does not completely replace either QuickDraw
or the Window Manager for drawing, and it does not completely replace the Script
Manager and international resources for non-Roman text-handling. QuickDraw GX
extends the capabilities of these managers, but in some instances you still need to use
their functions.

QuickDraw GX Objects

With QuickDraw GX you create and draw objects. Fundamental graphic shapes, such as
rectangles and curves, are objects. Lines of text are objects. Other pieces of information,
such as the color of a shape or the font used to draw a letter, are also kept in objects.
Fonts are objects. Even the information that is used to describe the printing
characteristics of a document is kept in objects.

Figure 1-1 names some of the common QuickDraw GX objects and shows their
relationships, in terms of which objects use the information in which other objects. This
chapter, this book, and much of the rest of the Inside Macintosh QuickDraw GX suite
describe what these and other QuickDraw GX objects are and how to use them.

QuickDraw GX Objects 1-7

CHAPTER 1

Introduction to QuickDraw GX

Figure 1-1 Several QuickDraw GX objects

1-8

. Cobr
boan obict

i

irr

Shape object ko bject
@: wetobjpck
obiecl

Tesrfors T:_w port

Tiew de v

objct

P

How QuickDraw GX Defines Objects

Obijects are specialized data structures. Some of the data structures used by operating
systems such as the Macintosh Operating System are public—that is, your application
can manipulate the values of their fields directly. Many of the data structures used by
QuickDraw GX, on the other hand, are not public. These private data structures are
called objects and the accessible pieces of information inside them are called properties.
Your application creates and modifies objects to perform tasks, but it may not
manipulate object properties directly. Instead, QuickDraw GX provides functions that
manipulate them for you.

QuickDraw GX does not provide pointers or handles for you to locate objects. Instead, it
provides reference values. To allow type checking in C and Pascal, QuickDraw GX
defines references as pointers to structures, although the reference is not guaranteed to
point to anything. For example, a shape object is identified by a shape reference:

typedef struct gxPrivateShapeRecord *gxShape;

The contents of the structure are private. To obtain information about an object, you
must send its reference as a parameter to a QuickDraw GX function.

QuickDraw GX Objects

CHAPTER 1

Introduction to QuickDraw GX

When you create an object, you call a GXNewObject function that returns a reference to
the object. Conversely, you can dispose of an object you no longer need by passing its
reference in a call to GXDi sposeObject. For example, you can create a picture shape
object by calling the GXNewShape function with a parameter that specifies that you want
the shape to be a picture type:

myShape = GXNewShape(gxPi ctureType);

In this example, my Shape is a reference to the shape object, returned by the function.
When you are finished with the object, you dispose of it like this:

GXDi sposeShape(nyShape) ;

QuickDraw GX objects exist in a memory area (QuickDraw GX memory) that is separate
from the application’s memory. For more information on QuickDraw GX memory, see
“Objects and Memory” beginning on page 1-18.

QuickDraw GX defines its objects in a device-independent manner. Because of that, and
because many of its data structures are private, the QuickDraw GX software and the
hardware on which it runs can evolve without disrupting existing applications.

Advantages of an Object-Based Structure

QuickDraw GX is currently implemented in the C programming language, which is not
in itself object-oriented. Nevertheless, using QuickDraw GX gives you some of the
fundamental programming advantages available with object-based systems.

QuickDraw GX objects are private. You do not usually have direct access to the internal
data in a QuickDraw GX object; you instead make function calls to manipulate the
information. This information hiding means that objects behave more consistently,
unwanted side effects are minimized, and QuickDraw GX itself can take care of
housekeeping tasks like tracking the current number of users of an object. It also means
that QuickDraw GX can locate objects in memory managed by a graphics accelerator—
memory that is not necessarily accessible to your application.

By analogy with the polymorphism of some object-oriented systems, QuickDraw GX
functions are organized so that a single function can apply to many types of objects. For
example, a single drawing command (GXDr awShape) draws any QuickDraw GX shape,
from a point to a curve to a bitmap to a line of text. Furthermore, there are many classes
of calls that, while defined individually for each kind of object they apply to (in order to
facilitate type-checking in Pascal and C), are completely parallel in function and in
syntax. For example, the functions GXGet ShapeTags, GXGet St yl eTags, and

GXGet | nkTags take the same parameter (an object reference) and perform the same
task (return a list of associated tag objects), but each for a different kind of object.

QuickDraw GX Objects 1-9

1-10

CHAPTER 1

Introduction to QuickDraw GX

QuickDraw GX objects can be shared. To save duplication and prevent the accumulation
of excessive numbers of objects in memory, QuickDraw GX allows multiple references to
a single object. QuickDraw GX tracks the number of references to an object. When you
are finished with an object, you dispose of it; QuickDraw GX then makes sure that the
object is not being used for any other purpose before actually deleting it from memory.

Creating a QuickDraw GX object is somewhat like instantiating a class in an
object-oriented system. When you first create a QuickDraw GX object it typically
has default values that you can use or change to suit your needs.

Object-manipulation functions are mostly consistent across all objects; categories
include GXNewObject (makes a new object), GXDi sposeObiject (deletes the object),
GXCopy ToObject (copies an object), GXEqual Object (tests two objects for equality),
and GXCl oneObject (makes a shared reference). Object-editing functions are
similarly consistent, and include GXGet ObjectProperty (to retrieve values) and
GXSet ObjectProperty (to assign values). By combining GXGet Object and GXSet Object
calls with index values and ranges, you can insert, delete, and replace all or parts

of arrays of values within an object.

The QuickDraw GX environment provides other consistencies to make programming
tasks more straightforward. Many are listed in the section “Programming Conventions
and Consistencies” beginning on page 1-41.

Kinds of QuickDraw GX Objects

There are about a dozen different kinds of QuickDraw GX objects that you can use,
beginning with the most fundamental object, the shape. Figure 1-1 on page 1-8 shows
some of those objects and how they relate to each other; this section describes them and
others.

Shape Objects

A shape is something that you can draw. Besides drawing it, you can also measure,
parse, move, rotate, distort, check for intersection and union, make bold, simplify, and
otherwise manipulate it. The fundamental purpose of QuickDraw GX is to create,
manipulate, and draw shapes.

A shape consists of a shape object and three other associated objects (style, ink, and
transform). A shape object consists of ageometry of a certain shape type (such as a line,
rectangle, bitmap, or text) and information about how the geometry is framed or filled
when drawn. A shape also has attributes, such as whether it should be stored in
accelerator-card memory, if present. It also has references to its other three related objects.

Shapes and shape objects in general are discussed in the chapter “Shape Objects” in this
book. More specifically, however, shapes are divided into types. There are two basic
categories of shape type: graphic and typographic.

QuickDraw GX Objects

CHAPTER 1

Introduction to QuickDraw GX

Graphic Shapes

Graphic shapes include geometric shapes, bitmap shapes, and picture shapes:

n Geometric shapes are the building blocks for drawing. Geometric shapes, alone or in
combination, make up the graphic elements supported by drawing programs. The
defined types of geometric shapes are point, line, rectangle, curve, polygon, and path.
There are two other special types of geometric shapes: empty and full. An empty
shape has no extent, and a full shape has the maximum possible extent.

n Bitmap shapes contain bit images or pixel images. QuickDraw GX bitmaps can be
black and white, grayscale, or color.

n Picture shapes are collections of other QuickDraw GX shapes. Picture shapes can
contain other picture shapes, in a hierarchy. Picture shapes allow you to override
some characteristics of the contained shapes.

Graphic shapes are described further in Inside Macintosh: QuickDraw GX Graphics.
That book also describes functions for performing geometric operations, such as
measurement, simplification, and constructive geometry, on graphic and typographic
shapes.

Typographic Shapes

Typographic shapes represent text items—individual glyphs, collections of glyphs, or
lines of text. The geometry of a typographic shape contains the text characters or glyphs
of the shape, plus other information. There are three kinds of typographic shapes:

n A text shape consists of a line of one or more characters or glyphs, all to be displayed
in the same font with the same typestyle.

n A glyph shape consists of one or more glyphs, each of which can be independently
located, rotated, sized, and styled.

n A layout shape consists of a line of text that can be in multiple languages, can have
multiple writing directions (including vertical), can include ligatures and other
contextual forms, and can display other sophisticated formatting and stylistic
properties.

Typographic shapes are described further in Inside Macintosh: QuickDraw GX Typography.

Supporting Objects

Several other QuickDraw GX objects exist in support of shape objects. They are

either directly or indirectly referenced by the shape object whose behavior they
affect. Figure 1-2 shows the three objects that are directly referenced by a shape object;
Figure 1-1 on page 1-8 includes these objects as well as additional objects referenced
indirectly by the shape object.

QuickDraw GX Objects 1-11

CHAPTER 1

Introduction to QuickDraw GX

1-12

Figure 1-2 A shape object and its referenced objects
Sk object
" ':.
[
Skape objpct hkobjct
Trmaen i
nhper b

Style Object

A style object describes certain characteristics affecting how a shape is drawn. For
geometric shapes, this includes information such as the thickness of the pen, the joins
between line segments, and any dash or pattern to apply to the shape. For typographic
shapes, it includes information such as the font, text size, and typeface of the text. For
layout shapes in particular, it includes information such as kerning behavior and
font-feature selection.

Style objects in general are described in the chapter “Style Objects” in this book. Style
objects used by graphic shapes are described in the geometric styles chapter of Inside

Macintosh: QuickDraw GX Graphics; style objects used by typographic shapes are
described in the typographic styles chapter of Inside Macintosh: QuickDraw GX

Typography.

Ink Object

An ink object describes a shape’s color and its transfer mode—how that color is applied
when the shape is drawn. Inks support many different kinds of color specification, and
many different transfer modes.

Ink objects are described in the chapter “Ink Objects” in this book.

QuickDraw GX Objects

CHAPTER 1

Introduction to QuickDraw GX

Transform Object

A transform object describes the clip and mapping applied to a shape when it is drawn.
The clip limits the extent of the shape; it can be described by any shape geometry, and
QuickDraw GX provides constructive geometry functions with which you can easily
manipulate clips by combining them with other shapes. The mappingisa3” 3 matrix
that defines translation, scaling, skewing, rotation, or perspective. Transforms also
describe information used for hit-testing a shape and its parts. Transforms have
references to one or more view ports, objects that describe where the shapes are drawn.

Transform objects are described in the chapter “Transform Objects” in this book.

Color Set Object and Color Profile Object

A color set object is like a color table; it contains an indexed set of colors. Color sets are
used when colors are specified by index instead of by direct color value. Bitmaps
commonly use color sets.

A color profile object contains color matching information. The information in a color
profile can be used to convert device-specific colors to device-independent colors, to
provide the most faithful reproduction of colors on different devices. QuickDraw GX can
automatically perform color matching with available color profiles whenever it draws.

Color sets and color profiles are described in the chapter “Color and Color-Related
Objects” in this book.

View Port Object, View Device Object, and View Group Object

A view port object is the location into which an application draws a shape. A view port
object has a clip and a mapping that define a window (or a part of a window, such as a
window pane). View ports can be arranged in a hierarchy.

A view device object typically describes a physical display device such as a monitor or
printer (or an area of memory for offscreen drawing). It has a mapping, a clip, and a
bitmap that describe the view device’s position, dimensions, pixel depth and colors, and
color profile.

A view group object describes an imaging world, the global space in which view ports
and view devices are located. Within a view group, view ports and view devices can
overlap each other in any combination; the intersection of each view port with a view
device determines what is actually drawn on that device.

View ports, view devices, and view groups are described in the chapter “View-Related
Objects” in this book.

Tag Object

A tag object is a general container for information that an application wants to add to a
QuickDraw GX object. Tag objects can have anything in them, from labels to alternate
drawing instructions to anything else you feel is useful. You can attach a tag object to the
tag list of most other kinds of objects (except other tag objects).

Tag objects are described in the chapter “Tag Objects” in this book.

QuickDraw GX Objects 1-13

CHAPTER 1

Introduction to QuickDraw GX

Font Object

A font object is the QuickDraw GX representation of an installed font. A font object
contains information about the font’s names, encodings, font variations, and other tables.
See the fonts chapter of Inside Macintosh: QuickDraw GX Typography for more information.

Graphics Client Object

A graphics client is the object representation of the QuickDraw GX memory allocated for
an application, which is separate from the application’s own memory. A graphics client
has no accessible properties, and in most cases your application never explicitly creates
one. See the memory management chapter of Inside Macintosh: QuickDraw GX
Environment and Utilities for more information.

Printing Objects

One category of QuickDraw GX objects exists to support printing. The printing objects
include those shown in Figure 1-3 plus several others. Figure 1-3 shows the three
principal QuickDraw GX printing objects (job, format, and paper-type), plus the three
collection objects they use.

Figure 1-3 Printing objects

1-14

Paperbype chjeck
-
Paperiype
Formal collecBon oo Becdinn

Note

Printing objects are different in some aspects from other QuickDraw GX
objects. Most importantly, they exist in application memory instead of
QuickDraw GX memory; this affects their behavior in several ways, as
noted in later sections of this chapter. u

Job Object, Format Object, and Paper-Type Object

The job object is the primary holder of printing information for a document. Every
printable document has a job object associated with it. The job object specifies
information such as the number of copies and the page range for printing, and includes
references to one or more format objects and two printer objects (one for formatting and
one for current output).

QuickDraw GX Objects

CHAPTER 1

Introduction to QuickDraw GX

The format object specifies information such as scaling and page dimensions for the
document, and includes a reference to a paper-type object.

The paper-type object specifies information such as a paper-type name (such as “US
Letter”) and the physical dimensions of the paper.

See the core printing features chapter of Inside Macintosh: QuickDraw GX Printing for
more information.

Collection Objects

The job object, format object, and paper type object also include references to collection
objects, which are objects managed by the Collection Manager, a part of system software
provided with QuickDraw GX. Collection objects can contain any type of data; for
printing, they hold additional useful information, such as specifications for halftoning,
that is not in the printing objects. The Collection Manager is described in the Collection
Manager chapter of Inside Macintosh: QuickDraw GX Environment and Ultilities.

Printer Object

The printer object is another printing object. It represents a physical printer and includes
a name and type, a driver name and type, and a reference to one or more view device
objects that describe the characteristics of the printer the application draws to when
printing. See the advanced printing features chapter of Inside Macintosh: QuickDraw GX
Printing for more information.

Print-File Object

A print-file object is a printing object that represents a print file, the file that is the
printable representation of a document. When it prints a document, QuickDraw GX first
creates a print file, and then uses that print file to create an image on a printer. See the
advanced printing features chapter of Inside Macintosh: QuickDraw GX Printing for more
information.

Object Properties

The accessible information in an object is its set of properties. Object properties are like
the fields of a structure, except that they are accessible only through function calls; you
cannot read them directly. Each property consists of a value or a list of values; the
definition of the property determines what it contains. For example, the shape type
property of a shape object contains a value, such as gxRect angl eType, that describes
the type of shape that it is.

For most properties, QuickDraw GX provides GXCGet ObjectProperty and

GXSet ObjectProperty functions that allow you to get or set each accessible part of
the object. For example, the following statement returns a shape object’s type into
the nyShapeType variable:

myShapeType = GXGet ShapeType(nmyShape);

QuickDraw GX Objects 1-15

1-16

CHAPTER 1

Introduction to QuickDraw GX

Figure 1-13 on page 1-49 lists the accessible properties of the principal QuickDraw GX
objects other than printing objects. Note that, because they are properties and not fields,
their order in Figure 1-13 is arbitrary. The properties are explained in more detail in the
chapter that describes the object.

Some object properties are common to most kinds of objects. For example, many
objects have properties that are simply references to other objects. In addition,
many objects have attributes, an owner count, and a tag list. These four kinds of
common properties are summarized in this section.

References

Some properties consist of references to other objects. These references define a
relationship between the objects; the properties of the referenced object are like an
extension to the properties of the object containing the reference. For example, Figure 1-2
on page 1-12 shows three objects referenced by a shape object: a style object, an ink
object, and a transform object. Those three objects’ properties affect how the shape that
references them is drawn; the ink object, for example, defines the color of the shape.

Many objects contain references to other objects. Some object properties are individual
references, whereas other properties are arrays, or lists, of references to several objects.
The advantages of using object references are discussed in the section “Sharing and
Multiple Object References” beginning on page 1-19.

Note

In illustrations of object properties throughout the QuickDraw GX
documentation, properties that are object references (or lists of object
references) are represented in italics. See, for example, how the style, ink
and transform properties of the shape object are represented in

Figure 1-13 on page 1-49. u

Attributes

Some objects have an attributes property, which is a group of flags that you use to
modify the behavior of the object. In shapes, for example, these flags allow you to
specify—among other things—how QuickDraw GX stores the shape object and how
editing operations affect the shape object. In view ports, as another example, these flags
allow you to specify behavior such as whether or not to perform color matching when
drawing.

Owner Count

For objects that are shared, this property indicates how many references to the object
exist. For example, when you create a new shape object, QuickDraw GX sets the owner
count of the new shape to 1. If you add that shape to a picture, QuickDraw GX
increments the shape’s owner count by 1. If you dispose of the picture, QuickDraw GX
decrements the shape’s owner count by 1. Whenever the owner count of a shared object
reaches 0, the object is deleted and its memory released.

Owner counts are discussed further in the section “Sharing and Multiple Object
References” beginning on page 1-19.

QuickDraw GX Objects

CHAPTER 1

Introduction to QuickDraw GX

Tag List

This property is an array of references to custom information stored in tag objects. Tag
objects are discussed further in the section “Adding Custom Behavior With Tag Objects,”
on this page.

Default Objects and Default Properties

QuickDraw GX provides default versions for all types of shape objects, and default
values for the properties of other objects such as styles, inks, transforms, color sets,

and color profiles. Therefore, when you create an object with a GXNewObject call, its
properties are already set to match the default. For example, the default rectangle shape
object has an owner count of 1, a solid shape fill, corners at locations (0.0, 0.0) and

(0.0, 0.0), and a reference to the default ink object. If you want the new shape to have
different dimensions or to reference a different ink object, you can change those
properties after creating the shape.

The default shape objects are unique among QuickDraw GX default objects in that you
can change them. If you want every new shape of a certain type to start off with a
particular set of properties, you can change the properties of the default shape for that
shape type, and every new shape of that type that you create will have the new
properties.

You cannot change the default for most other objects. However, you can effectively
change the default for any object that is referenced directly or indirectly by a shape
object. For example, you can effectively create a new default ink object by first creating a
version of the ink object that has the properties you want, and then altering all default
shape objects to reference that ink object instead of the default ink object.

For objects for which there is no changeable default, there are nevertheless default values
that are applied to the object when it is first created.

Default color sets and color profiles

Color sets have changeable default versions, but they function
differently than default shapes. You can define a color set to be the
default associated with bitmaps of a given pixel depth. However, when
you create a color set using the GXNewCol or Set function, it has specific
properties that are unaffected by any previous definitions of defaults.

There is a single default color profile, applied by QuickDraw GX to
colors that do not have an attached profile. The default profile is not
directly changeable. u

Adding Custom Behavior With Tag Objects

A tag object is a special kind of object whose purpose is to allow any type of
application-defined information to be attached to a QuickDraw GX object. An object
such as a shape or transform can be “tagged” with data or code that provides extra
information about it or allows you to alter its behavior in specific situations.

QuickDraw GX Objects 1-17

CHAPTER 1

Introduction to QuickDraw GX

You can, for example, attach identifying strings to objects with tags. As another example,
you can alter the way an object is displayed on a particular imaging device (such as a
PostScript device) by attaching a tag to it that contains imaging commands specific to
that device.

A tag object is attached to its associated object by means of a tag list, a property that
most QuickDraw GX objects have. A tag list is an array of references to the tag objects
attached to an object. Objects can thus have more than one attached tag object.

Because tags are QuickDraw GX objects, they can be shared. Like other QuickDraw GX
objects, tags are accessible from objects in accelerator memory, they can be unloaded to
disk and reloaded automatically, and they can be flattened (see “External Storage of
Obijects: Flattening and Unflattening” on page 1-23). See the chapter “Tag Objects” in this
book for more information.

Objects and Memory

1-18

Obijects are structures in memory. The way QuickDraw GX manages memory is central
to its object orientation and to the advantages it provides you. QuickDraw GX has its
own memory, and gives you access to it only in restricted situations.

Application Memory and QuickDraw GX Memory

When you program with QuickDraw GX, you are concerned with at least two separate
memory heaps: the application heap, which holds your code and data structures, and a
part of QuickDraw GX memory called the graphics client heap, which holds the objects
you create with Quickdraw GX. As an application, you allocate variables and execute in
application memory. You can directly access any data structures in that heap. Much of
Macintosh system software, including the toolbox, can affect the application heap,
sometimes in unwanted ways (as during memory compaction).

QuickDraw GX rarely uses the application heap (except for storing printing-related
objects). It allocates its objects, structures, and variables in the graphics client heap.
QuickDraw GX memory is private; you cannot directly access the contents of the
graphics client heap except under special conditions. The graphics client heap does not
even have to be in the same physical address space as the application heap. For example,
QuickDraw GX can execute from and store objects in the memory on a graphics
accelerator card.

QuickDraw GX objects are private because they are in private memory. That means you
must make QuickDraw GX calls to access objects and their information, but it also means
that you can make almost any call without worrying that it might move application
memory.

Objects and Memory

CHAPTER 1

Introduction to QuickDraw GX

Typically, your application manages its own structures in the application heap, and
makes function calls to obtain or change the contents of the graphics client heap. For
example when you call a GXGet ObjectProperty function, QuickDraw GX places a copy
of the contents of an object’s property in your application’s heap. If you modify the
information, you can then call a GXSet ObjectProperty function to copy the new values
from your application’s heap back into the object in the graphics client heap.

If you are a Macintosh programmer, remember that QuickDraw GX memory is
completely separate, and you needn’t be concerned about its location or contents.
Macintosh Memory Manager functions cannot allocate, resize, or determine the size of
any QuickDraw GX object. To manage its memory, QuickDraw GX has its own internal
memory manager and memory management functions. See the memory management
chapter of Inside Macintosh: QuickDraw GX Environment and Utilities for more
information. See Inside Macintosh: Memory for information on the Macintosh Memory
Manager.

The QuickDraw GX memory manager may move objects, unload them to disk if
necessary, and reload them when they are needed again. To reference and use an object,
you needn’t be concerned with or even know whether it is in a loaded or unloaded state.
QuickDraw GX automatically loads any unloaded object when it is needed, even if that
means unloading another object to make room. See “Automatic Loading and Unloading
of Objects” on page 1-21 for more information.

Sharing and Multiple Object References

Object-based systems can use large amounts of memory, especially when an application
needs to create and use many objects. To minimize redundancy and excess memory use,
QuickDraw GX supports the sharing of objects.

For example, you may want to create a set of shape objects that are of different sizes and
geometries, but that all have the same color and are drawn with the same transfer mode.
You can create a single ink object with the desired color and transfer mode that all the
shapes can reference, without having to create a separate ink object for each shape. In
that situation there is one reference to the ink object for each shape that uses it.

Alternatively, your application can create data structures that contain object references,
and two or more structures can contain references to the same object. For example,
different palette structures can contain references to the same color set object that defines
the palette colors. In that situation there is one reference to the color set object for each
palette that uses it.

Sharing is not the same as making a copy. No matter how many references there are to
an object, it is still only a single object. When you change any aspect of a shared object,
those changes are reflected in every other object or data structure that references that
object.

Objects and Memory 1-19

1-20

CHAPTER 1

Introduction to QuickDraw GX

Object sharing provides at least three advantages:

n It reduces memory use. Some objects that are used by many other objects are quite
large. For example, a font, which can be a very large object, can be used by several
different styles. And each style can be used by several text shapes.

n It gives uniform behavior. For example, several shapes can share the same transform
object, which causes each shape to be drawn in a specific relationship to each other,
scaled and rotated in the same way, and so on.

n It allows quick and efficient changes to the characteristics of multiple objects that
share the same reference. For example, if several shape objects reference the same ink
object, you need only change the color in the ink object to change the color of all
shapes that reference the same ink.

Owner Count

The current number of references to an object is called its owner count. QuickDraw GX
tracks and manages owner counts for you, so in most cases you needn’t worry about
how many references there are to an object and whether or not to delete it from memory
when you no longer need it in a given context.

When you first create an object (with a call such as GXNewSt yl e), QuickDraw GX gives
it an initial owner count of 1. Whenever you attach that object to another object (with

a call such as GXSet ShapeSt yl e), QuickDraw GX does not duplicate it; instead, it
increases the object’s owner count by 1. Whenever you delete that object (with a call
such as GXDi sposeSt yl e) or any object that references it (with a call such as

GXDi sposeShape), QuickDraw GX decreases its owner count by 1.

QuickDraw GX uses the owner count to determine when an object is no longer

needed and can be deleted. If at any time the object’s owner count decreases to zero,
QuickDraw GX deletes it from QuickDraw GX memory. As far as your application is
concerned, you create and dispose of objects as you wish, and let QuickDraw GX decide
when to actually remove them from memory.

There can be cases, however, in which the owner count would normally become 0 but
you do not want the object to be deleted. In those cases, you can increase owner count
with the cloning capability of QuickDraw GX, described next.

Cloning

Although QuickDraw GX can correctly track owner counts as objects are created,
disposed of, and referenced from other objects, it cannot know how many references to a
given object exist in variables and data structures that you have created. In these
situations, it is up to you to manage the owner counts of the objects that you use. Also,
you may want to preserve a reference to an object that QuickDraw GX disposes of when
it disposes of or modifies another object. In such a case, you can make sure the owner
count of an object correctly reflects the number of references to it by cloning the object,
which means increasing its owner count.

Objects and Memory

CHAPTER 1

Introduction to QuickDraw GX

For example, if you create a color set object, it has an owner count of 1. If you dispose of
that color set, its owner count becomes zero and it is deleted by QuickDraw GX, as it
should be. On the other hand, if you assign a new ink object to a shape, that shape’s
original ink object is disposed of and the owner count of the new ink object is increased
by 1. If you had wanted to maintain a reference to the shape’s original ink object, you
could have cloned that ink before assigning the new ink to the shape. The original ink’s
owner count would remain above zero, and it would therefore not be deleted.

As another example, you may temporarily change the style object assigned to a shape,
intending to restore that style to the shape eventually. When you assign the new style
object, QuickDraw GX decrements the original style object’s owner count because it is no
longer used by the shape. If the original style is not used by another object, its owner
count would become 0 and QuickDraw GX would delete it. To prevent that from
occurring, you can clone the original style object before assigning the new one.

QuickDraw GX cannot determine when you are finished with an object once it is cloned.
If you clone an object, you are responsible for disposing of it when it is no longer needed.

Some Objects Cannot Be Cloned

Some objects have no owner count because they need to be able to be
deleted even when valid references to them remain. View-related objects
(view ports, view devices, and view groups) and fonts are examples of
such shared objects that cannot be cloned. For example, suppose a
transform object references a particular view port object associated with
a window. When the application closes the window, it disposes of the
view port. The view port object is deleted, even though a valid reference
to it still remains in the transform object. (Subsequent drawing to that
view port reference has no effect; QuickDraw GX ignores references to a
view-related object that does not exist.) u

Automatic Loading and Unloading of Objects

Another way that QuickDraw GX minimizes memory requirements is by moving objects
back and forth between memory and external storage as needed. If QuickDraw GX
needs additional memory to create new objects, it can unload objects that are already in
memory. When unloaded, an object is moved from computer memory to temporary
private storage on disk. When loaded, that object is restored to normal object form in
memory.

Typically, QuickDraw GX unloads objects that have not been accessed recently before
unloading objects that your application has been using frequently. Also, for shape
objects, QuickDraw GX provides flags that you can set to notify QuickDraw GX that you
want it to unload a given shape before all others, or unload it after all others, when more
memory is needed.

To reference and use an object, you needn’t be concerned with or even know whether it
is in a loaded or unloaded state. QuickDraw GX automatically loads any unloaded object
when it is needed, even if that means unloading another object to make room.

Objects and Memory 1-21

1-22

CHAPTER 1

Introduction to QuickDraw GX

For some purposes, such as measuring the storage size of an object, you may need to
have the object in memory. Conversely, in other situations you may wish to allow an
object to leave memory temporarily, to make more room in the QuickDraw GX heap.
QuickDraw GX provides functions (such as GXLoadShape and GXUnl oadShape) that
you can use to explicitly load or unload an object.

The GXLoadShape and GXUnl oadShape functions, and other loading and

unloading calls, are described in the memory management chapter of Inside Macintosh:
QuickDraw GX Environment and Utilities. The flags that affect the loading and unloading
priority for shapes are described under shape attributes in the chapter “Shape Objects”
in this book.

Direct Access to Object Structure: Locking and Unlocking

Normally, to modify a property of an object takes three steps. First, you make a function
call to obtain a copy of the information in application memory. Then you modify the
information. Finally, you make another function call to place that information back into
the object in QuickDraw GX memory.

As a convenience, QuickDraw GX allows you to directly access parts of certain objects in
QuickDraw GX memory in three specific situations: you can manipulate the geometric
structure of a shape object, you can manipulate the profile data of a color profile object,
and you can manipulate the contents of a tag object, without first having to work on
copies of the data in application memory.

This direct manipulation is convenient, especially if you want to avoid copying large
amounts of information, but it has a price. You must first lock the item you are accessing,
so that it cannot be moved while you are working on it. When you have finished your
alterations, you must be sure to unlock the item so that QuickDraw GX is free to relocate
it. In the case of shape geometry, you must then make an additional call to

QuickDraw GX to notify it that you have changed the shape.

Another drawback is that you cannot change the size of the item you are manipulating.
If you need to make a shape’s geometry or a tag’s contents larger or smaller, you need to
access the information in the normal way, through QuickDraw GX functions.

Remember also that locking an object fragments the QuickDraw GX heap, which can
result in lower performance and possibly an error condition. Furthermore, in
low-memory conditions, QuickDraw GX can actually unlock locked objects and move
them if it needs to.

For information about locking shape objects, see the chapter “Shape Objects” in this
book. For information about locking color profile objects, see the chapter “Colors and
Color-Related Objects” in this book. For information about locking tag objects, see the
chapter “Tag Objects” in this book.

Objects and Memory

CHAPTER 1

Introduction to QuickDraw GX

External Storage of Objects: Flattening and Unflattening

QuickDraw GX objects exist (as objects) only in memory. You must convert

a QuickDraw GX shape (a shape object and its referenced objects) into an equivalent
compressed description in order to save it to external storage, transmit it across a
network, or store it in the Clipboard. This process of converting objects to a compressed
format that is no longer object-based is called flattening. The flattened information is a
stream-based description with a public format, so that applications can share the data
and reconstruct the objects from which the flattened stream was generated.

The data of flattened objects follows the format defined in the stream format chapter

of Inside Macintosh: QuickDraw GX Environment and Utilities. To reconstruct a shape’s
object-based description from its flattened stream, you can manually create and initialize
a set of objects based on the information in the stream, or—if QuickDraw GX is
available—you can use QuickDraw GX functions to do it automatically.

Printing objects are also flattened and unflattened as the documents they are associated
with are closed and reopened. For more information, see the core printing features
chapter of Inside Macintosh: QuickDraw GX Printing.

Portable digital documents (PDDs) are specialized versions of print files, which are the
flattened versions of documents sent to printers. For more information, see “Printing
With QuickDraw GX” beginning on page 1-34, and the advanced printing features
chapter of Inside Macintosh: QuickDraw GX Printing.

Fonts are represented in QuickDraw GX as font objects, which are flattened for
transmission to printers or for external storage. A flattened font’s format, however, is not
related to the QuickDraw GX stream format. For more information, see the fonts chapter
of Inside Macintosh: QuickDraw GX Typography.

Drawing and Hit-Testing Shapes

Ultimately, you need QuickDraw GX to draw the shapes that you create with it, and you
may also need to respond to user manipulation of those drawn shapes. For that reason,
QuickDraw GX provides several drawing functions and several kinds of hit-testing
capabilities. This section summarizes the QuickDraw GX drawing process and the
QuickDraw GX approach to hit-testing.

Drawing and Hit-Testing Shapes 1-23

1-24

CHAPTER 1

Introduction to QuickDraw GX

Drawing

Drawing is the process of converting the internal representation of a shape into an image
on an output device. As noted in Figure 1-2 on page 1-12, a QuickDraw GX shape
consists of several other objects in addition to a shape object. When you draw a shape,
QuickDraw GX uses information from those objects and others to control how the shape
is rendered. It uses the information in this order:

n the geometry of the shape object

n stylistic and color information from the style object and ink object

n clipping and mapping information from the transform object

n mapping and clipping information from one or more view port objects

n mapping and clipping information from one or more view device objects

Drawing starts with geometry, a property of every shape object. The geometry defines
the intrinsic dimensions of the shape. Those dimensions can then be modified, in several
stages, until the rendered image appears on the screen or printer. The rest of this section
describes in more detail how a shape’s geometry is transformed as it passes through the
drawing steps.

Mapping and Clipping

Mapping and clipping are two of the principal modifications a shape undergoes as it is
prepared for drawing, and each occurs at several steps along the way.

A mapping isa3” 3 matrix that performs a mathematical transformation on a set of
two-dimensional points, such as the geometry of a shape. Given any shape, you can use
a mapping to control

n translating, or moving, the shape from one (X, y) location to another
n scaling the shape in the x-direction, y-direction, or both directions

n rotating the shape around any point

n skewing the shape

n changing the perspective of the shape

Figure 1-4 shows examples of the effects of mapping.

Drawing and Hit-Testing Shapes

CHAPTER 1

Introduction to QuickDraw GX

Figure 1-4 Effects of mapping

Rl
0AD

Criging

/N
|
PSS TR 7

Fotie Sk F‘er-ap-bcil.rt

The transform object, the view port object, and the view device object each has a
mapping as a property. Each object’s mapping can affect the location, orientation,
scale, and other distortion of the shape as it evolves from geometry to rendered image
(described under “The Drawing Sequence: Coordinate Conversion” beginning on
page 1-28). Mappings are described more fully in the chapter “Transform Objects” in
this book, and in the mathematics chapter of Inside Macintosh: QuickDraw GX
Environment and Utilities.

Clipping is the restriction of the visible part of a shape to a specific area. The clip is the
specific description of that visible area. Clips are often rectangles or similar simple
shapes, although QuickDraw GX permits clipping to any definable shape geometry
(rectangle, polygon, path, and so on), which allows for very sophisticated clipping
effects. Clips can even be glyph shapes and one-bit-per-pixel bitmaps. For the rules and
restrictions on clips, see the chapter “Transform Objects” in this book.

The transform object, the view port object, and the view device object each has a clip as a
property. Each object’s clip is applied at a specific point during the preparation of the
shape for drawing (described under “The Drawing Sequence: Coordinate Conversion”
beginning on page 1-28). Each further restricts the part of the shape that will ultimately
be visible.

View-Related Objects

The transform object associated with each QuickDraw GX shape contains a reference to
one or more view port objects. When you draw the shape, QuickDraw GX uses that view
port reference to determine at what position on which physical device or devices to draw
the shape. To do that requires that the view port and two other view-related objects, the
view group and view device, interact as follows:

Drawing and Hit-Testing Shapes 1-25

1-26

CHAPTER 1

Introduction to QuickDraw GX

n Aview port object represents a drawing environment. A view port is analogous to a
porthole on a ship. The view port has a mapping that defines the scale, orientation,
and location of the porthole, and a clip that prevents anything beyond the edges of the
porthole from being drawn. If you think of a view port as analogous to a Macintosh
graphics port, the view port mapping defines the location (in QuickDraw global
coordinates) of the port on the screen, and the clip defines the visible region of the
port. Unlike graphics ports, however, view ports are device independent, and their
mappings control much more than location: they can also define the scaling, rotation,
skewing, and other distortion of shapes drawn in the view port.

n Aview device object typically represents an actual, physical output device such as a
monitor or printer. It, too, has a mapping and a clip that define its location and its
visible (drawable) area. You can think of a view device as analogous to the Macintosh
screen, in which case the mapping defines the location of the screen origin (and the
size of the pixels too), and the clip defines the screen bounding rectangle. When a
shape is drawn, it appears on a view device if the shape’s view port intersects the
view device. The object that controls the relative positions of view ports and view
devices is the view group.

n Aview group object represents a coordinate plane that provides dimensions and
relative positions for view ports and view devices. A view group’s coordinates have a
specific dimension (unit distance is 1 point, or 1/72 inch). For all view devices that
represent actual physical devices, QuickDraw GX defines their locations in the
onscreen view group’s coordinate plane. Your application then defines the locations of
view ports on that plane, and thus controls whether or not the view ports are visible
on the view devices. A view group is equivalent to the QuickDraw coordinate plane
(or to an offscreen graphics world) on the Macintosh, and view group coordinates are
analogous to QuickDraw global coordinates. However, unlike with QuickDraw,
QuickDraw GX global coordinates have a specific dimension and are device
independent.

Figure 1-5 shows schematically how these objects interact as a shape is drawn. A shape
geometry that defines a vase, a gray color defined in the ink object, a thick pen width
defined in the style object, and a scaling in the transform object’s mapping combine to
make an elongated image of the vase. A portion of the vase appears on screen, where the
clips of the view port and view device overlap.

Drawing and Hit-Testing Shapes

CHAPTER 1

Introduction to QuickDraw GX

Figure 1-5 How QuickDraw GX draws a shape

¥iewr gqroap
=] e
Taasiom I ---------------------- _i
Skapeobpct _ object ¥iowr port : :
D g i
—a =P ’ ’ ’
T —f : ;
i Lieoeeee S i
Locmccccccccee- 4
hkobgct
— J
Ax diwplayed
=
Style o hiect
et
4 "

Figure 1-5 is a simple case in which a single shape and its transform are drawn to a
single view port that partially intersects a single view device in the same view group.
Quickdraw GX provides much greater flexibility, allowing for complex combinations of
shapes, transforms, view ports, view devices, and even view groups:

n Several shape objects can reference the same transform object, allowing these shapes
to be scaled, rotated, and otherwise changed in unison.

n Several transform objects can reference the same view port object, allowing shapes
that are transformed in different ways to appear in the same view port.

Drawing and Hit-Testing Shapes 1-27

1-28

CHAPTER 1

Introduction to QuickDraw GX

n A single transform object can reference several view port objects, allowing a single
shape to appear simultaneously (even with different scaling or orientation) in several
view ports.

n View ports can exist in a hierarchy, in which one view port “contains” another, and
thus its movement, scaling, and clipping affect view ports lower in the hierarchy.

n Within a view group, view ports and view devices can overlap in any combination.
Drawing occurs automatically wherever the visible portions of any view port and any
view device overlap.

n More than one view group can exist simultaneously, allowing for offscreen drawing.
Furthermore, the view ports referenced by the transform of a single shape need not all
be in the same view groups, allowing for simultaneous onscreen and offscreen
drawing of a shape.

For further discussion and illustration of these display possibilities, see the chapter
“View-Related Objects” in this book.

The Drawing Sequence: Coordinate Conversion

This section discusses the sequence of events, in terms of the mappings applied to a
shape, that occur in drawing. To understand the details of the transformations that take
place, you must understand the coordinate spaces whose relationships are determined
by the mappings contained in various objects.

The information given in this section is an abbreviated version of the discussion of
mapping and clipping in the chapter “View-Related Objects” in this book. Please see that
chapter for additional information, especially about the role of clipping in drawing.

QuickDraw GX Coordinates

A coordinate space in QuickDraw GX consists of a plane in which positions are
determined by coordinates. All coordinates in QuickDraw GX are specified with
fixed-point numbers in the range of —32,768.0 to approximately 32,768.0. Fixed-point
numbers and the functions for manipulating them are described in the mathematics
chapter of Inside Macintosh: QuickDraw GX Environment and Utilities. Coordinates are
always written in the order (X, y), and for any coordinate space the point (0.0, 0.0)
represents the origin of the space. Points that lie to the right of the origin increase in a
positive direction along the x-axis; points that lie below the origin increase in a positive
direction along the y-axis.

QuickDraw GX allows you to work in four coordinate spaces: geometry space, local
space, global space, and device space. You can work separately in each space as
appropriate; QuickDraw GX automatically converts among them when drawing. The
spaces are described in order of their transformation during drawing.

Drawing and Hit-Testing Shapes

CHAPTER 1

Introduction to QuickDraw GX

Geometry Space

QuickDraw GX starts the drawing process by using the values in a shape’s geometry.
Geometry space is the space within which the fundamental position and dimensions of
a shape object are defined. The numerical values in a shape’s geometry define the
shape’s dimensions in geometry space.

Suppose, for example, that the geometry of a rectangle consists of the points (0.0, 0.0)
and (180.0, 360.0), as shown in Figure 1-6. In geometry space, the rectangle’s origin is at
(0.0, 0.0), its height is twice its width, and its area is 64,800.0 units square. No distance
metric, such as points per inch, is defined for geometry space. Thus, the absolute size of
a shape is undefined in geometry space.

Figure 1-6 A rectangle in geometry space

(00,00 —

=

S 1200, 360.00

L

Geometry Space to Local Space

QuickDraw GX next modifies the shape’s geometry by applying first the clip and then
the mapping contained in the transform object attached to the shape. You typically use
the transform’s clip and mapping for application-specific purposes related to masking,
moving, and distorting shapes within a document.

Local space defines the location and dimensions of a shape after it has been modified by
the transform mapping (as well as the style properties and the transform clip). Because
mappings can translate, scale, rotate, skew, and otherwise distort geometries, the
dimensions of a shape in local space can be quite different from what they are in
geometry space.

For example, if the rectangle shape discussed in the previous section had an associated
transform whose mapping did nothing but scale the shape by 2.0 in the y-direction, its
coordinates in local space would be (0.0, 0.0) and (180.0, 720.0), as shown in Figure 1-7.
Its origin in local space would still be at (0.0, 0.0), but its height would be four times its
width, and its area would be 129,600.0 units square. Like geometry space, local space has
no distance metric. The absolute size of a shape is still undefined in local space.

Drawing and Hit-Testing Shapes 1-29

CHAPTER 1

Introduction to QuickDraw GX

Figure 1-7 A rectangle in local space (transform mapping applied)

1-30

00,00 — .

vl M (180 0, 2000

The transform object includes a reference to a view port object, and local space orients a
shape within its view port. Local space is the coordinate system interior to, or local to,
that view port—hence the name local. Thus, the rectangle example in this section would
have the same local coordinates—that is, the same position and shape within its view
port—no matter how the view port itself might be scaled or distorted by its own
mapping when it is converted to global space (described next).

Local Space to Global Space

QuickDraw GX next modifies the shape’s dimensions by applying first the mapping and
then the clip contained in the view port object attached to the shape’s transform. You
typically use the view port’s mapping to position the contents of the window you are
drawing into, and you use its clip to restrict drawing to the interior of the window.

Global space defines the location and dimensions of a shape after the mapping (and
clip) in its associated view port has been applied. Global space defines the real-world
location and dimensions of a shape: coordinate values in global space represent distance
in points (72 per inch) from the origin of the view group that the view port is part of.
(Because it is the view group that relates view ports to view devices, objects in global
space can have a specific spatial relationship with view devices, as described in the next
section.)

For example, if the view port associated with the rectangle shape discussed in the
previous sections had a mapping that did nothing but move the shape horizontally

by 200.0 and vertically by 200.0, the shape’s coordinates in global space would be
(200.0, 200.0) and (380.0, 920.0), as shown in Figure 1-8. Its origin in global space would
then be at (200.0 points, 200.0 points), its height would still be four times its width, and
its area would be 129,600.0 points square (25 square inches).

Drawing and Hit-Testing Shapes

CHAPTER 1

Introduction to QuickDraw GX

Figure 1-8 A rectangle in global space (view port mapping applied)
(00,00 | x
I
120 ple. (2.5 nche e
(200 0, 2000
L 720 pie. (10inchee)
v . (300, B0

Thus, once a shape’s dimensions have been converted from geometry space to local
space to global space, they have a specific size and location and spatial relationship to
other shapes in that view group. What remains for drawing, then, is for QuickDraw GX
to convert this absolute (but device-independent) information to device-specific
locations on output devices with specific pixel resolutions. That’s where device space
comes in.

Global Space to Device Space

Finally, QuickDraw GX modifies the shape’s dimensions by applying first the mapping
and then the clip of any view device object in the same view group as the view port.
Device space defines the location and dimensions of a shape as displayed on a particular
output device. The upper-left corner of the displayable area of a view device is at
coordinate (0.0, 0.0) in device space. Unit distance between coordinates in device space
represents one picture element, or pixel.

The view device’s mapping defines both its location in global space (as a translation
factor) and its pixel size (as a scaling factor). For example, if your device is a 600
dots-per-inch printer, QuickDraw GX converts global space to device space when
drawing by scaling each pixel by 8.33333, which is 600/72.

If the view device to which the rectangle shape discussed in the previous sections is
drawn has a mapping that specifies no translation and a scale factor of 8.33333 both
horizontally and vertically, that means that the view device’s upper left corner is at

(0.0, 0.0) in global space and its pixel resolution is 600 per inch. In device space, then, the
dimensions of the rectangle would be (1667.0, 1667.0) and (3167.0, 7667.0), as shown in
Figure 1-9.

Drawing and Hit-Testing Shapes 1-31

CHAPTER 1

Introduction to QuickDraw GX

1-32

Figure 1-9 A rectangle in device space (view device mapping applied)
(0.0,0.0 P
-+
1500 pixele (2.5 inchee)
(IBET 0, 1667 o =11
[G000 pixede {10 irche)
i’ (3167 0, TEET 10

Identity mapping

A mapping that contains values such that it has no effect at all when
applied to a shape is called the identity mapping. If the identity
mapping is used for all mappings involved in drawing, a shape’s
geometry directly defines its absolute size and position (in points), and
the shape is rendered on a view device at a resolution of 72 pixels per
inch. u

It is seldom necessary to work in device space unless you are manipulating or hit-testing
device bitmaps, because QuickDraw GX performs this kind of conversion for you. Most
commonly, you define shapes in geometry space (using shape geometry), you position
and modify them in local space (using the transform mapping), and you position and
scale their view ports in global space (using the view port mapping).

Hit-Testing

Hit-testing is the process of converting a point in the displayed representation of a shape
to a location in the shape object’s geometry. For example, when the user clicks the mouse
button, hit-testing can tell you what displayed shape, and which part of that shape, the
cursor was close to at the moment of clicking. You use hit-testing to select shapes or
specific parts of shapes for highlighting or user manipulation, or to position the caret in
text and to highlight text ranges. In a sense, hit-testing is the opposite of drawing,
because it is a conversion from display representation to internal representation.

When you hit-test a shape, QuickDraw GX generally allows you to determine which part
of a shape’s geometry corresponds (within a certain tolerance) to the point you are
testing against. Tolerance is the distance from a shape or shape part that a hit point can
be and still be considered a successful hit. QuickDraw GX provides the following
hit-testing functions:

Drawing and Hit-Testing Shapes

CHAPTER 1

Introduction to QuickDraw GX

n GXHi t Test Shape tests a point in local space against a shape’s geometry.
n GXHi t Test Pi ct ur e tests a point in local space against a picture shape.

n GXHi t Test Layout tests a point in local space against the text of a layout shape.
Note that you can also use GXHi t Test Shape to test layout shapes, but the kind of
information it returns is different from what GXHi t Test Layout returns.

n GXHi t Test Devi ce tests a pixel (a point in device space) against a shape’s geometry.

When you use a hit-testing function that returns a shape part, such as

GXHi t Test Shape, the parts of a shape’s geometry that you can hit-test for depend on
the kind of shape. For example, for a typographic shape, the possible parts could be the
bounding box, left side, right side, or side bearing of a glyph. For a line, the possible
parts include its bounding rectangle, its geometry, its pen area, and its edges. Figure 1-10
shows the parts of a line involved in a particular hit-test. Shape parts are described in
more detail in the chapter “Transform Objects” in this book.

Figure 1-10 Parts of a line for hit-testing

meomety and edge

Be draaon and hit Ehap-t F-:urh- and olaranes

When you set up a hit-test using GXHi t Test Shape, you specify a tolerance and you
also specify which parts of the shape to test against. The GXHi t Test Shape function
returns all specified parts that are within the distance of the hit point defined by the
tolerance. For example, if the hit point in Figure 1-10 is less than the tolerance away from
the geometry part, the function could determine that the hit point corresponds to the
bounds part, the geometry part, the pen part, and the edge part, depending on which of
those shape parts you specify in the test.

The GXHi t Test Shape function analyzes shape parts in a specific order, and returns the
distance from the hit point to the first part it encounters that is considered a hit. If you
want to know the distance the hit point is from the pen, for example, you need to
exclude both the bounds and the geometry parts from the test, because

GXHi t Test Shape tests those first.

Drawing and Hit-Testing Shapes 1-33

CHAPTER 1

Introduction to QuickDraw GX

The GXHi t Test Shape function is described in the chapter “Shape Objects” in this
book. The GXHi t Test Pi ct ur e function is described in the picture shapes chapter

of Inside Macintosh: QuickDraw GX Graphics. The GXHi t Test Layout function is
described in the layout carets, highlighting, and hit-testing chapter of Inside Macintosh:
QuickDraw GX Typography. The GXHi t Test Devi ce function is described in the chapter
“View-Related Objects” in this book.

Printing With QuickDraw GX

1-34

From the point of view of your application, printing with QuickDraw GX is not
fundamentally different from other types of drawing. The functions you use for drawing
to the screen are the same functions you use for sending images to a printer. The
printing component of QuickDraw GX allows you to draw shape objects and to use the
information in other objects (such as style, ink, transform, and color set) in the same way
you do when drawing to the screen. When printing, the printer is represented by view
port and view device objects, just as in other drawing.

To control these printing capabilities, your application creates printing-related
QuickDraw GX objects before it prints a document for the first time. Your application
flattens and stores those objects when it saves the document, and it retrieves and
unflattens those objects when it reopens the document. The objects include the job object
(the primary holder of printing information), the format object (specifying scaling and
page dimensions), and the paper-type object (specifying a paper-type name and
dimensions). These objects also include references to collection objects, which are
similar to QuickDraw GX objects but are managed by the Collection Manager. The
Collection Manager is described in the Collection Manager chapter of Inside Macintosh:
QuickDraw GX Environment and Utilities.

QuickDraw GX prepares an document for printing by spooling it, which means
flattening its shapes and storing them along with the associated printing objects as a
print file. To actually print the document, QuickDraw GX despools the print file and
sends its data to the printer. QuickDraw GX can also use the printing process create a
portable digital document (PDD), which is a kind of print file that contains sufficient
object and font information that it can be displayed or printed on any QuickDraw GX
system, regardless of what fonts or printers are installed.

QuickDraw GX printing is based on a message-passing architecture. For

example, QuickDraw GX sends a message when it wants to print a page, display a
dialog box on the user’s screen, or initialize a job object. Therefore, in addition to
manipulating printing objects and collection objects, your application needs to be able to
respond to QuickDraw GX messages for some basic printing actions, such as updating
windows behind dialog boxes.

Printing With QuickDraw GX

CHAPTER 1

Introduction to QuickDraw GX

Printing extensions and printer drivers also use printing messages. A printing extension
is an add-on software module that allows you to extend the printing functionality
provided by applications and printer drivers. A printer driver controls how the contents
of a document are spooled, rendered, and sent to a specific output device. The messaging
technology used with QuickDraw GX is described in the Message Manager chapter of
Inside Macintosh: QuickDraw GX Environment and Ultilities. How printing extensions and
printer drivers use printing messages, and information on how to write an extension or
driver, are described in Inside Macintosh: QuickDraw GX Printing Extensions and Drivers.

The rest of this section summarizes the QuickDraw GX printing features of most interest
to application developers. For more information on printing than is provided here, see
Inside Macintosh: QuickDraw GX Printing.

Core Printing Features

QuickDraw GX provides several core features you can use to implement basic printing
capabilities:

n You can create and manipulate common QuickDraw GX printing objects. For
example, you create a job object for every printable document, and that job object
references two printer objects: a formatting printer and an output printer.
QuickDraw GX allows a user to specify a formatting printer that is different from
the output printer, so that QuickDraw GX can consistently format to the device used
for final output, while permitting drafts to be printed on a different printer.

n You can print documents in either of two ways. If your application stores each page
as a single picture shape, you can print a page at a time with a single command.
Otherwise, you can print each page by drawing, in turn, all the shapes that make up
that page. QuickDraw GX captures those drawing commands and sends the images to
the printer.

n You can display QuickDraw GX printing dialog boxes. You use QuickDraw GX
functions to display these expandable, movable modal dialog boxes that allow
users to view windows that would otherwise be obscured, and you override a
QuickDraw GX printing message to permit updating of windows behind the dialog
box as it is moved. For general information on movable modal dialog boxes, see the
Dialog Manager chapter of Inside Macintosh: Macintosh Toolbox Essentials.

n You can support printing to desktop printers. A desktop printer is represented by an
icon on the user’s desktop. To print a document to a desktop printer, a user drags a
document to the desktop printer icon, or else selects it and chooses the Print
command from the Finder’s File menu. A user can create multiple desktop printers.
Figure 1-11 shows the document “My File” being printed to the desktop printer
“Gutenberg.”

Printing With QuickDraw GX 1-35

CHAPTER 1

Introduction to QuickDraw GX

Figure 1-11 Dragging a document to a desktop printer icon on the desktop

1-36

Ziterne 1 SMEIndlsE 1704

Correspondence

Custom Dialog Boxes and Page Formats

QuickDraw GX allows you to customize some of its printing features to address the
needs of your particular application:

n You can add panels to QuickDraw GX dialog boxes, to provide special features that
require additional user specification. For example, your application can add a panel
that provides special color options for the user to select, such as color separation and
color choices.

n You can manipulate the objects that handle page formatting, allowing users to specify
unique formats for individual pages of a printable document. For example, your
application can allow a user to create and print a single document that consists of an
address page on an envelope, a business letter on a page in portrait orientation, and a
spreadsheet on a page in landscape orientation. See Figure 1-12 for an example of this.

Printing With QuickDraw GX

CHAPTER 1

Introduction to QuickDraw GX

Figure 1-12 Printing a single document that has multiple formats

ZJ

3 M| [tteren
& I IT:J Tt
N
I " l

LTI LU

"I||}| |

=

Advanced Printing Features

QuickDraw GX includes several advanced printing features that allow your application
to provide additional capabilities for users and to optimize output for particular printers:

n You can use direct mode printing, which takes advantage of a printer’s built-in

features, such as fast text streaming with built-in fonts.

You can use alternative representations of QuickDraw GX objects. When printing,

QuickDraw GX translates the objects of a shape into device-specific information.

For optimum performance on particular devices, you can assign specialized tag
objects known as synonyms to printed shapes and associated objects, to provide an
alternative representation of the graphics objects. You can also use tag objects to select
specific printing options, such as pen table information, for vector devices.

You can display your own printing status information. QuickDraw GX allows you
to prevent the display of the standard QuickDraw GX Status dialog box during
printing and to substitute status information from your own application.

You can open and display the pages of a PDD or other print file. If

QuickDraw GX is installed, any application—including applications that are

not QuickDraw GX-aware—can create a document that can be viewed or printed
from any other computer that has QuickDraw GX installed. The PDD also provides
font security in that the font data is “locked” into the document and only the
minimum font information is contained therein.

Printing With QuickDraw GX 1-37

CHAPTER 1

Introduction to QuickDraw GX

The QuickDraw GX Programming Environment

1-38

QuickDraw GX is more than a framework for creating and manipulating objects; it is
also a programming environment with many features designed to aid application
development. This section describes some of these features and some ways to approach
programming with QuickDraw GX.

Setting Up QuickDraw GX Memory

Your application enters the QuickDraw GX environment by creating a graphics client.
A graphics client is an object that represents a memory environment set up for your
application by QuickDraw GX. It consists of a QuickDraw GX heap and the global
variables needed by QuickDraw GX. It represents your application’s individual
QuickDraw GX world.

Normally, each application creates and uses a single graphics client, although it is
possible to create and use more than one at a time. In most cases, you don’t even
explicitly set up a graphics client at all; one is created for you as you begin making
QuickDraw GX calls to create and use objects. For more information, see the memory
management chapter of Inside Macintosh: QuickDraw GX Environment and Utilities.

Handling Errors

In all but its printing component, QuickDraw GX uses a sophisticated, three-level system
for reporting diagnostic messages. The execution of a function may result in the
generation of an error, a warning, or a notice:

n Errors represent the most severe problems, and occur when a function is unable to
execute.

n Warnings occur when a function has completed but may have provided an incorrect
or unexpected result.

n Notices occur when unnecessary or redundant actions have been performed. (Notices
are available only in the debugging version of QuickDraw GX; see “Debugging and
Non-Debugging Versions” on page 1-39 for more information.)

Errors, warnings, and notices are not returned as function results. Instead, they are
posted, or stored by QuickDraw GX in locations accessible through function calls. To
determine whether, for example, an error has occurred, your application makes a specific
call (such as GXGet Gr aphi csEr r or) that returns not only the most recent error but also
the first error posted since the last time you called GXGet Gr aphi csError. For
information about these function calls, see the debugging chapter of Inside Macintosh:
QuickDraw GX Environment and Utilities.

The QuickDraw GX Programming Environment

CHAPTER 1

Introduction to QuickDraw GX

You can use the error-handling facilities of QuickDraw GX in the following ways:

n You can install an error-handling function that QuickDraw GX calls whenever an
error, warning, or notice occurs.

n You can post errors, warnings, or notices yourself from your own application’s
functions.

n You can tell QuickDraw GX to ignore specific warnings or notices. You can create and
manipulate a list of warnings and a list of notices to be ignored.

Functions within the printing component of QuickDraw GX do not use this system for
reporting diagnostics. Instead, most functions place errors directly into the job object
involved. Some printing functions return a function result of type OSEr r, that describes
a Macintosh error code. For more information, see the core printing features chapter of
Inside Macintosh: QuickDraw GX Printing.

Debugging

QuickDraw GX provides both a debugging and non-debugging version of the software.
In addition, QuickDraw GX provides a low-level debugger, similar to MacsBug, that
allows you to examine internal data structures. This section summarizes these
approaches to debugging. For more information, see the debugging chapter of Inside
Macintosh: QuickDraw GX Environment and Utilities.

Debugging and Non-Debugging Versions

There are two versions of QuickDraw GX. The debugging version is intended for
application development and is meant for use by software developers only. The
non-debugging version is intended for running completed applications and is the
publicly released version of QuickDraw GX.

The debugging version of QuickDraw GX provides extensive error handling. It posts all
three levels of diagnostic messages (errors, warnings, and notices), and it provides
special functions to assist in the posting, utilization, and control of debugging messages.
The debugging version allows you to perform validation checking on both

QuickDraw GX objects and your own application parameters at each function call.

The debugging version also includes the GXGet ShapeDr awkr r or function, which can
give you very specific information on why a particular shape may not have drawn
correctly.

The non-debugging version of QuickDraw GX has much less extensive error handling. It
reports only two levels of result messages (errors and warnings), and only a limited
number of them. In the non-debugging version, errors and warnings are mostly limited
to out-of-memory and range-checking messages.

The QuickDraw GX Programming Environment 1-39

CHAPTER 1

Introduction to QuickDraw GX

Debugging With GraphicsBug

GraphicsBug is a tool you can use to track down bugs in a QuickDraw GX application.
Its mode of use and its command set are analogous to MacsBug. GraphicsBug works
with both the debugging and non-debugging versions of QuickDraw GX.

You can use GraphicsBug to check the contents of QuickDraw GX memory and to
display and validate objects within memory. GraphicsBug does not allow you to create,
modify, or dispose of objects. Listing 1-1 shows a sample dump of the QuickDraw GX
heap created with GraphicsBug.

Listing 1-1 Sample GraphicsBug heap dump (HD) listing

Start Length D Typ Busy Mstr Ptr Tenp TBsy Di sk Object
00469728 0000010c+00 d 00000000 b heap header bl ock
00469834 0000003c+00 d 00000000 freeFil eLi st
00469870 0000005c+00 i 00470e68 t ext
004698cc 00000042+02 i 00470e64 t ext
00469910 000000a0+00 i 00470e60 style
004699b0 00000036+02 i 00470e5c i nk
004699e8 00000060+00 i 00470e58 transform
00469a48 000000c0+00 d 00000000 port
00469b08 00000038+00 i 00470e54 ful
00469b40 00007228 f 00000000 free bl ock
00470d68 00000110+00 d 00469728 b mast er poi nter bl ock
00470e78 0000000c+00 d 00469728 b heap trailer block
Total Bl ocks Total of Block Sizes
Free 0001 # 1 00007228 # 29224
Di rect 0002 # 2 00000318 # 792
I ndirect 0006 # 6 00000210 # 528
Sub Heaps 0000 # 0 00000000 # 0
Heap Size 0009 # 9 0000775c # 30556

The listing shows the objects that you create as well as private QuickDraw GX objects.
From the heap dump, you can look into the contents of these objects using additional
GraphicsBug commands. For a complete list of commands, type ? on the GraphicsBug
command line.

Note

Do not use GraphicsBug to make assumptions about the structure of
objects in memory; object structure is subject to change. u

For examples of the use of GraphicsBug in analyzing flattened shapes, see the stream
format chapter of Inside Macintosh: QuickDraw GX Environment and Utilities.

1-40 The QuickDraw GX Programming Environment

CHAPTER 1

Introduction to QuickDraw GX

Programming Conventions and Consistencies

The QuickDraw GX programming environment provides many consistent features and
conventions to make graphics software development more convenient and more
efficient. This section lists some of them.

Object Behavior

Many QuickDraw GX objects have similar features and consistent behavior, in ways
such as the following:

n In general, setting a property of an object causes action or new behavior only when
needed—which may not be immediately. For example, setting the gxDi skShape
attribute of a shape object, which instructs QuickDraw GX to write the shape to disk,
takes effect only as soon as QuickDraw GX needs memory space and looks for objects
to unload.

n QuickDraw GX handles object properties consistently; it does not change a property
once you have set it. For example, if you set an object reference toni | in order to use
the default version of an object, QuickDraw GX does not replace that ni | value with
an actual reference. If you later make another call to retrieve that reference, you will
get back the ni | value you originally set. (A minor exception to this rule occurs with
certain calls that assign arrays to the style object associated with typographic shapes;
QuickDraw GX may alter the order of elements in those arrays. See the layout styles
chapter in Inside Macintosh: QuickDraw GX Typography for more information.)

n Most objects can be explicitly moved into and out of memory, using GXLoadObject
and GXUnl oadObject functions. View-related objects and printing objects are
exceptions to this rule.

n Many objects can have tag objects attached to them, using GXGet ObjectTags and
GXSet ObjectTags functions. View group objects, printing objects, font objects, and tag
objects themselves are exceptions to this rule.

n Most objects can be shared, and thus have GXCl oneObject and GXGet ObjectOaner s
functions. View-related objects are exceptions to this rule; they are shared but they
have no owner count and cannot be cloned.

Functions and Function Results

QuickDraw GX functions are designed to operate in a consistent manner, as follows:

n Most QuickDraw GX functions do not return error codes as function results. Instead,
they return object references or pointers to structures. This makes nesting of calls
easier.

n Functions are consistently named and have consistent behavior across all
objects. Most objects have similarly behaving GXNewObject, GXDi sposeObject,
GXCopy ToObject, and GXEqual Object functions. The property-accessing
GXGet ObjectProperty and GXSet ObjectProperty functions behave consistently, using
index values and ranges for inserting, deleting, or replacing all or parts of arrays.

n All functions, except some printing functions that return an OSEr r value, return ni |
or zero as a function result if an error occurs.

The QuickDraw GX Programming Environment 1-41

1-42

CHAPTER 1

Introduction to QuickDraw GX

If a function posts an error, it does not modify any data or objects that are input
parameters to the function.

Functions of the form GXGet ObjectProperty that fill out an array that is passed as a
parameter typically return the number of elements in that array as a function result.
For example, the GXGet Tr ansf or nVi ewPor t s function, used to get the list of view
port references in a transform object, returns the number of elements in the list as its
function result. Thus, you commonly call such a function twice in a row: first to
determine the size of array to allocate, and second to obtain the filled-out array itself.

Many functions of the form GXSet ObjectProperty, which modify a property of a
particular object, have a parallel function of the form GXSet ShapeProperty, which
performs the same function but allows you to specify instead the shape object that
references the affected object. If the object whose property is changed is not shared by
more than one shape, the two functions have an identical effect. If, however the object
is shared, GXSet ShapeProperty makes a copy of the object before modifying it, so that
the other shapes using it are not affected unintentionally.

For example, the GXSet Tr ansf or nVi ewPor t s function assigns a list of view port
references to the specified transform object, and the GXSet ShapeVi ewPort s
function assigns a list of view port references to the transform object associated with
the specified shape. If the transform object is used by more than one shape,

GXSet Tr ansf or nVi ewPor t s has the effect of altering all shapes that use that
transform; GXSet ShapeVi ewPor t s, however, first makes a copy of the transform
and then alters it, so that other shapes are not affected.

When an out-of-memory condition occurs, it is rarely fatal. QuickDraw GX initially
posts an out _of _nenory error, but execution continues and subsequent attempts to
reference the object responsible for the error result in posting of object i s_ni | errors.

The debugging version of QuickDraw GX provides extensive error-checking and
validation capabilities to help you determine why a function call has failed.

Function Parameters

When passing parameters to a QuickDraw GX function, you can take advantage of the
following design consistencies and conveniences;

n The first parameter in any function call is the object or structure acted upon.

n Parameters whose names contain the word “source” are never modified by a function;

parameters whose names contain the word “target” may be modified.

n Whenever an array or structure is passed as a parameter to a function, the application

is responsible for allocating it. QuickDraw GX fills out structures, but it does not
allocate them.

n When a variable-sized array or structure is passed as a parameter to a function, it is

preceded in the parameter list by a size or count parameter.

The QuickDraw GX Programming Environment

CHAPTER 1

Introduction to QuickDraw GX

n In the C language definitions for QuickDraw GX functions, the term const preceding
a parameter that is an array, structure, or pointer indicates that QuickDraw GX reads
from, but does not write to, the data pointed to by the parameter.

n In general, passing ni | or zero for a parameter instructs QuickDraw GX to use its
default or most appropriate behavior for that situation. Thus you need to explicitly set
parameters only when you need specific, non-default behavior. To actually assign a
ni | value to a property, pass the constant gxSet ToNi | (see Table 1-1).

n In functions that use coordinates, the x-coordinate (horizontal axis) is specified before

the y-coordinate (vertical axis).

n For convenience in handling arrays and pointers in parameters, QuickDraw GX
provides several predefined constants, as listed in Table 1-1.

Table 1-1 Convenience constants for parameters
Constant Value Explanation
gxSel ect ToEnd -1 Used in a size or count parameter, to mean

gxSet ToNi | (voi d *)(-1)

gxNoAttri butes 0

gxCol or Val uel OXFFFF

gxAnyNunber 1

Implementation limits

“from the current position in the array to
the end of the array.”

Used in a parameter (where a function takes
more than one parameter) to assign

ani | value to a pointer or reference
property (simply passing ni | has no effect
on the property).

Used to clear the attributes property of an
object.

Used to specify the maximum value for a
color-component, which is interpreted to
mean 1.0

Used as an index in an array declaration to
indicate that the array is not of any specific
size.

Limits on valid parameter values or on the sizes of structures or
behaviors of objects may depend on the current implementation of
QuickDraw GX, and may be different from the fundamental limits
imposed by the programmatic interface itself. For example, a parameter
to a function may be a long, but the range of acceptable values for that
parameter may be much smaller than the full range of values that can fit

into a long. u

The QuickDraw GX Programming Environment

1-43

1-44

CHAPTER 1

Introduction to QuickDraw GX

Code Naming Conventions

QuickDraw GX uses these naming conventions to provide consistency across the
application interface:

n Function names begin with uppercase GX—for example, GXDr awShape. Important
exceptions are those in the Collection Manager and those that are mathematical
functions because those functions can be useful outside of the QuickDraw GX
environment.

n ldentifiers of constants and data types defined by QuickDraw GX begin with
lowercase gx—for example, gxW ndi ngFi | | and gxShapeType. One exception is
the type Fi xed, which represents a QuickDraw GX fixed-point number but does not
have a gx prefix. Types defined by the programming language itself, such as shor t,
do not have a gx prefix.

n Names of fields in data structures, and parameter names in function prototypes, begin
with lowercase letters and do not have a gx prefix.

n An enumeration that defines several constants is usually named with a plural
form—for example, gxDashAt t ri but es. Such an enumeration is commonly paired
with a type definition that is a singular form of the same name—for example,
gxDashAt tri but e. You can use the type to specify one of the enumerated values
for a parameter or field.

n Object attributes have suffixes that identify the kind of object they apply to. For
example, dash attributes specified by the gxDashAt t ri but es enumeration include
the attributes gxBendDash and gxAut oAdvanceDash.

Relationship to the Macintosh Toolbox

QuickDraw GX is in general designed to be platform independent. Within
the QuickDraw GX environment, the programming interface does not depend on
the existence of the Macintosh Toolbox or Macintosh hardware.

However, when running on a Macintosh computer, QuickDraw GX still must have an
interface with the Macintosh Toolbox. QuickDraw GX does not create windows, handle
menus, receive keystrokes or automatically track mouse movements (although it

does support hit-testing). Therefore, for basic input and output needs, QuickDraw GX
includes several sets of functions that carry information from the QuickDraw GX
environment to the Macintosh world and back:

n You can associate QuickDraw GX view ports with Macintosh windows, which
restricts a view port to the current size of the window and prevents drawing outside
the content area of the window. QuickDraw GX and the Macintosh Window Manager
then manage the view port for you such that, if the user moves the window, the view
port moves too, or if the user changes the size of a window, the drawable area in the
view port also changes.

n You can associate a QuickDraw GX view device with a Macintosh graphics device
(GDevi ce).

The QuickDraw GX Programming Environment

CHAPTER 1

Introduction to QuickDraw GX

n You can translate coordinate locations, including mouse locations, between the
integer-based QuickDraw global space and the fixed-point QuickDraw GX coordinate
spaces.

n You can convert QuickDraw calls to QuickDraw GX calls, in two ways. You can use
one set of functions to set up a situation whereby all QuickDraw calls are captured
and converted to QuickDraw GX shapes in a QuickDraw GX picture. You can use
another function to directly translate QuickDraw pictures to QuickDraw GX pictures.

See the Macintosh environment chapter of Inside Macintosh: QuickDraw GX Environment
and Utilities for information about these functions.

Summary Table and Diagram of QuickDraw GX Objects

QuickDraw GX provides at least 17 objects that you can manipulate. Table 1-2 lists these
objects and summarizes their characteristics. Following Table 1-2, Figure 1-13 on

page 1-49 diagrams the relationships among the basic QuickDraw GX objects, and shows
the object properties of each.

Table 1-2 QuickDraw GX objects

Object Description

Basic QuickDraw GX objects

Shape Defines the basic representation of a drawable entity. A shape
object describes a geometry of a certain type (such as a line,
rectangle, bitmap, or text) and how the geometry is framed or
filled when drawn. A shape also has references to its three
related objects: style, ink, and transform. See the chapter “Shape
Obijects” of this book for more information. Graphic shape types
are described in Inside Macintosh: QuickDraw GX Graphics;
typographic shape types are described in Inside Macintosh:
QuickDraw GX Typography.

Style Describes certain characteristics affecting how a shape is drawn.
For geometric shapes, this includes the thickness of the pen, the
starting and ending caps for line segments, joins between line
segments, and the dash or pattern to be applied to the shape.
For typographic shapes, it includes the font, text size, and
typeface of the text. See the chapter “Style Objects” in this book,
the geometric styles chapter of Inside Macintosh: QuickDraw GX
Graphics, and the typographic styles and layout styles chapters
of Inside Macintosh: QuickDraw GX Typography for more
information.

continued

Summary Table and Diagram of QuickDraw GX Objects 1-45

CHAPTER 1

Introduction to QuickDraw GX

Table 1-2 QuickDraw GX objects (continued)

Object
Ink

Transform

Color set

Color profile

View port

View device

Description

Describes a shape’s color and its transfer mode (how the color
is applied when the shape is drawn). Ink objects support many
different kinds of color specification, and many different
transfer modes. An ink object can reference a color set object or
color profile object or both. See the chapters “Ink Objects” and
“Color-Related Objects” in this book for more information.

Describes the clip and mapping applied to a shape when it is
drawn. The clip limits the extent of the shape when it is drawn;
it may be described by any primitive shape geometry (except
picture, text, layout, and multi-bit bitmap). The mapping
defines translation, scaling, skewing, rotation or perspective.
The transform object also describes the criteria used for
hit-testing the shape. Transforms have references to one or more
view port objects. See the chapter “Transform Objects” in this
book for more information.

Contains an indexed set of colors; analogous to a color table.
Color sets are used when colors are specified by index instead
of by direct color value. Bitmaps commonly use color sets. See
the chapter “Colors and Color-Related Objects™ in this book for
more information.

Contains color matching information. The information in a
color profile can be used to convert device-specific colors to
device-independent colors and back. To provide the most
faithful reproduction of colors on different devices,
QuickDraw GX automatically performs color matching with
available color profiles whenever it draws. See the chapter
“Colors and Color-Related Objects” in this book for more
information.

Defines the location into which a shape is drawn. A view port
object describes the clip and mapping associated with a
window (or a part of a window, such as a pane). The mapping
defines the location, scale, and orientation of the view port in
QuickDraw GX global coordinates. A view port specifies the
dithering or halftones used by every object that draws into this
window. View ports can be arranged in a hierarchy. See the
chapter “View-Related Objects” in this book for more
information.

Describes the clip, mapping, and bitmap associated with a
physical display device such as a monitor or printer. The
mapping describes the view device’s position and resolution

in QuickDraw GX global coordinates. The bitmap defines the
dimensions of the device, the number of bits per pixel, the color
representation of each pixel value, and the color profile. See the
chapter “View-Related Objects” in this book for more
information.

1-46 Summary Table and Diagram of QuickDraw GX Objects

CHAPTER 1

Introduction to QuickDraw GX

Table 1-2 QuickDraw GX objects (continued)

Object
View group

Tag

Printing objects
Job

Format

Paper type

Printer

Print file

Description

Describes an imaging world that is the global space in

which view ports and view devices are located. Within a

view group, view ports and view devices can overlap each other
in any combination; the intersection of each view port with a
view device determines what is actually visible on that device.
Multiple view groups allow for offscreen drawing, in which
view ports or view devices can have the same positions

without interfering with each other, since they are in different
coordinate spaces. See the chapter “View-Related Objects” in
this book for more information.

Contains any kind of information an application wants to add
to a QuickDraw GX object. Tag objects are general containers
that can have anything in them, from labels to alternate drawing
instructions to anything else you feel is useful. You can attach

a tag object to the tag list of most kinds of objects (except tag
objects themselves). See the chapter “Tag Objects” in this

book for more information.

Holds the primary printing information for a document. Every
printable document has a job object associated with it. The job
object specifies a number of copies and a page range, and
includes references to one or more format objects and two
printer objects. See the core printing features chapter of Inside
Macintosh: QuickDraw GX Printing for more information.

Specifies page-formatting characteristics such as scaling and
page dimensions, and includes a reference to a paper-type
object. See the core printing features chapter of Inside Macintosh:
QuickDraw GX Printing for more information.

Specifies a paper-type name (such as “US Letter”), the physical
dimensions of the paper, and the printable area within it. See
the core printing features chapter of Inside Macintosh:
QuickDraw GX Printing for more information.

Represents the capabilities of a physical printer and includes a
name and type, a driver name and type, and a reference to one
or more view device objects that represent imaging areas, and
from which you can retrieve information. See the advanced
printing features chapter of Inside Macintosh: QuickDraw GX
Printing for more information.

Represents the file that results from spooling, which is the
preparation of a printable representation of a document. See
the advanced printing features chapter of Inside Macintosh:
QuickDraw GX Printing for more information.

continued

Summary Table and Diagram of QuickDraw GX Objects 1-47

1-48

CHAPTER 1

Introduction to QuickDraw GX

Table 1-2 QuickDraw GX objects (continued)

Object Description

Other objects

Font Represents an available font. A font object contains information
about the font’s names, encodings, font variations, and other
tables. See the fonts chapter of Inside Macintosh: QuickDraw GX
Typography for more information.

Graphics client Represents the QuickDraw GX memory allocated for an
application, which is separate form the memory the application
itself occupies and allocates. Each QuickDraw GX application is
represented by a graphics client object. A graphics client has no
accessible properties. See the memory management chapter of
Inside Macintosh: QuickDraw GX Environment and Utilities for
more information.

Collection Contains any type of data in any structure. Used by printing
objects to hold additional information such as halftoning
specifications. Collection objects are not QuickDraw GX
objects; they are managed by the Collection Manager. See
the Collection Manager chapter of Inside Macintosh:
QuickDraw GX Environment and Utilities for more
information.

The following figure, Figure 1-13, shows the relationships among the basic
QuickDraw GX objects and lists the properties of each object. The appropriate portion
of this figure is reproduced in each chapter that describes a specific kind of object.

Note that, in Figure 1-13, properties that are references (or arrays of references) to other
objects are shown in italics; for most of those properties, an arrow extends to the
diagram of the referenced object. For clarity, however, some of the arrows are not shown.
For example, no object’s tag list has an arrow pointing to the diagram of the tag object.
For the same reason, the properties of the view port that reference other view ports have
no attached arrows.

For a diagram showing all the properties of the printing objects, see the introductory
chapter of Inside Macintosh: QuickDraw GX Printing. For a diagram showing the contents
of the geometry of each type of shape object, see the chapter “Shape Objects” in this book.

Summary Table and Diagram of QuickDraw GX Objects

CHAPTER 1

Introduction to QuickDraw GX

Figure 1-13

Properties of the basic QuickDraw GX objects

-

Pean widh Domd Fun condrole
Cap Tt foree Feming adpedn ende amar
oin Taxt eize Gyph ebeddtiors armyr
Dizeeh Migrimernt Fur feadresarrayr
Patlern Forit wrizfore Pricridr pedication
cirerride
Curre emar Erroding - -
Gyph pedication
Bitribarie e Textatribuies cirarricks AR
Cmaremr ot
Rll Tiag et
Eq!*_i,'o"-'e- | —
e) Color profile
Pk '-"‘t. - Inkco bt - obect
= 0F - § Teasio -
Trimaformes Jtﬂ = obipct Colar Protle dats
& Hribe rben
5 - Clip Trarefar mod Cmgrear oot
WA o -
Ty i
Vizarpoed Paet - Crarer count
Hitbeot parameter o Tag ¥et
Crareer oot
Tag Tk & Jj Cobract
o L .] object
¥iow growp object
£ ol Color epee
Color-walus arar
¥iew port ¥iew desine
obick | o biect Crareer count
. Tigr But
Clip Clp _-_ [:nhr
M 2pping Mapping an:[
Oidher Bitrn 20
Hal ftore 52 oy
Dzt afan pont B, Hribarbee Tag obct
Cinid e pot T Tar but
s Ta
12 oy nl:|u:l: g fpe
Atribosie e
Tagiit Condends r

Craner count

Summary Table and Diagram of QuickDraw GX Objects

1-49

CHAPTER 2

Shape Objects

Contents

About QuickDraw GX Shapes 2-5
About Shape Objects 2-7
Shape Properties 2-7
Shape Type 2-9
Shape Geometry 2-11
Shape Fill 2-13
Shape Attributes 2-16
Default Shapes 2-18
Modifying Shape Properties 2-19
Drawing Shapes 2-20
Hit-Testing Shapes 2-20
Saving and Restoring Shapes 2-22
Using Shape Objects 2-22
Creating and Manipulating Shape Objects 2-22
Getting and Setting the Default Shape Objects 2-23
Creating and Disposing of Shape Objects 2-24
Getting the Size of a Shape Object in Memory 2-25
Copying, Comparing, and Cloning Shape Objects 2-25
Caching Shape Objects 2-27
Loading and Unloading Shape Objects 2-27
Manipulating Shape Object Properties 2-28

Getting and Setting a Shape Object’s Type, Fill, and Attributes
Copying the Geometry From One Shape to Another 2-29
Getting and Setting a Shape Object’s Style, Ink, and Transform
Resetting a Shape Object’s Properties to Their Default Values
Manipulating a Shape Object’s Owner Count 2-31

Getting and Setting a Shape Object’s Tag References 2-32

Converting Shapes From One Type to Another 2-32
Directly Manipulating a Shape’s Geometry 2-34

Contents

2-28

2-30
2-31

2-1

CHAPTER 2

Drawing and Hit-Testing Shapes 2-35
Drawing Shapes 2-35
Hit-Testing Shapes 2-36
Flattening and Unflattening Shapes 2-39
Shape-Related Functions Described Elsewhere 2-42
Shape Objects Reference 2-45
Constants and Data Types 2-45
The Shape Obiject 2-46
Shape Type 2-46
Shape Fill 2-46
Shape Attributes 2-47
Flatten Flags 2-48
The Spool Block 2-49
The Hit-Test Info Structure 2-50
Functions 2-51
Creating and Manipulating Shape Objects 2-52
GXGet Def aul t Shape 2-52
GXSet Def aul t Shape 2-53
GXNewShape 2-54
GXDi sposeShape 2-55
GXGet ShapeSi ze 2-56
GXCopyToShape 2-57
GXCopyDeepToShape 2-58
GXEqual Shape 2-60
GXd oneShape 2-61
GXCacheShape 2-62
GXDi sposeShapeCache 2-63
GXGet ShapeCacheSi ze 2-64
Manipulating Shape Object Properties 2-65
GXGet ShapeType 2-66
GXSet ShapeType 2-66
GXSet ShapeCeonetry 2-67
GXGet ShapeFi | | 2-68
GXSet ShapeFi | | 2-69
GXGet ShapeStyl e 2-69
GXSet ShapeSt yl e 2-70
GXGet Shapel nk 2-71
GXSet Shapel nk 2-71
GXGet ShapeTransform 2-72
GXSet ShapeTransform 2-73
GXGet ShapeAttri butes 2-74
GXSet ShapeAttri but es 2-74
GXReset Shape 2-75
GXGet ShapeOmner s 2-76
GXCet ShapeTags 2-77
GXSet ShapeTags 2-78

Contents

CHAPTER 2

Directly Manipulating a Shape’s Geometry 2-80
GXLockShape 2-80
GXUnl ockShape 2-81
GXGet ShapeStructure 2-82
GXChangedShape 2-83

Drawing and Hit-Testing Shapes 2-84
GXDr awShape 2-84
GXHi t Test Shape 2-86

Flattening and Unflattening Shape Objects 2-87
GXFl at t enShape 2-88
GXUnf | at t enShape 2-90

Application-Defined Spool Function 2-91
My Spool Proc 2-91
Summary of Shape Objects 2-93

Constants and Data Types 2-93

Functions 2-95

Application-Defined Spool Function 2-97

Contents

2-3

CHAPTER 2

Shape Objects

This chapter describes shape objects and the functions you can use to manipulate them.
Read this chapter if you create or use any kind of QuickDraw GX shapes.

Before reading this chapter, you should be familiar with the information in the chapter
“Introduction to QuickDraw GX” in this book. For more information on graphic shapes,
see Inside Macintosh: QuickDraw GX Graphics. For more information on typographic
shapes see Inside Macintosh: QuickDraw GX Typography. Additional information relevant
to the storage of shape objects is in the stream format chapter of Inside Macintosh:
QuickDraw GX Environment and Utilities.

This chapter introduces the concept of a QuickDraw GX shape, and describes shape
objects and their properties. It then shows how to use general QuickDraw GX
shape-manipulation functions to

n create and manipulate shape objects
n manipulate shape object properties
n directly manipulate shape geometry

n draw and hit-test shapes

This chapter also lists and cross-references all shape-related QuickDraw GX functions
that are described elsewhere in this book and in other parts of Inside Macintosh.

About QuickDraw GX Shapes

Shapes are fundamental to the QuickDraw GX object architecture. To draw or printin
QuickDraw GX requires creating and manipulating QuickDraw GX shapes. A shape is a
drawable graphic or typographic entity that you create with QuickDraw GX objects.

Shapes come in two general categories: graphic and typographic. Graphic shapes are
further subdivided into geometric shapes (points, lines, rectangles, polygons, and so on),
bitmap shapes, and picture shapes. Typographic shapes are subdivided into text shapes,
glyph shapes, and layout shapes. Table 2-1 on page 2-9 describes all the types of shapes
recognized by QuickDraw GX.

This chapter discusses only shapes in general. The QuickDraw GX object architecture
allows you to perform many operations on a shape without regard for what type of
shape it is; those are the operations described here.

In the QuickDraw GX architecture, every shape includes four objects:

n Shape object. A shape object describes the geometric structure or text content of a
shape and contains references to the other objects that make up the shape.

n Style object. A style object defines much of the appearance of a shape, such as the size
of the pen with which it is drawn or the size of its text. See the chapter “Style Objects”
in this book for more information.

About QuickDraw GX Shapes 2-5

CHAPTER 2

Shape Objects

n Ink object. An ink object defines the color and transfer mode to use when drawing a
shape. See the chapter “Ink Objects” in this book for more information.

n Transform object. A transform object defines how the appearance of a shape is altered
(such as by clipping, scaling, or rotation) when it is drawn, and how the shape
responds to mouse clicks. A transform object also contains references to the view port
objects that describe where the shape is drawn. See the chapter “Transform Objects”
in this book for more information.

Figure 2-1 shows the four objects used to represent a QuickDraw GX shape.

Figure 2-1 Basic components of a QuickDraw GX shape

2-6

Ciyk object

b
= R 5

Chapeobject ko bjeck

-

Trassio s

object

The interface to each of these object types is entirely procedural—you cannot in most
cases access any information in the objects directly. You must manipulate the items of
information in an object, called the properties of the object, using QuickDraw GX
functions.

The rest of this chapter describes the data types and functions you can use to create and
manipulate shape objects and their properties.

Terminology Note

A QuickDraw GX shape is considered to be the combination of four
objects just described. A shape object is one of the objects that make up
the shape; it defines, among other characteristics, the shape’s geometry,
which is the description of the specific dimensions and location of the
kind of shape (line, curve, rectangle, and so on) that is to be drawn. u

About QuickDraw GX Shapes

CHAPTER 2

Shape Objects

About Shape Obijects

This section describes the contents of the shape object and summarizes some of the main
tasks you can perform with shapes.

QuickDraw GX identifies an individual shape object through a shape reference. To
obtain information about a shape object, you must send its reference as a parameter to a
QuickDraw GX function (except that you can determine if two references identify the
same shape object simply by comparing them for equality, and you can examine a
reference to see if itisni |).

Shapes are device-independent. Their location, resolution, color, and other properties are
not constrained by the characteristics of the display device to which they are drawn.

Shape Properties

The properties of a shape object for the most part define the basic geometric
characteristics of the shape. Shape objects have nine accessible properties, as shown in
Figure 2-2. Note that, because a shape is an object and not a data structure, the order of
the properties as shown in Figure 2-2 is completely arbitrary. Properties in italics are
references to other objects.

Figure 2-2 The shape object and its properties
B Shape objct
Siyk object

Type s .-.._II

e etnr =,9I

Rl 4

aiode hkobjet
——
Trangfornws .
Aribuiee Trasirm object
Cmareer count

Tz Fat

About Shape Objects 2-7

CHAPTER 2

Shape Objects

The first six properties are specific to shape objects alone. They determine a shape’s
geometric type, geometric structure, fill, and references to other objects:

n Type. A value that specifies what type of geometry the shape object has. The different
shape types include point, line, rectangle, text, glyphs, and so on. The section “Shape
Type” beginning on page 2-9 describes the different shape types, and “Getting and
Setting a Shape Object’s Type, Fill, and Attributes” beginning on page 2-28 discusses
how to manipulate this property.

n Geometry. A set of values that describes the specific graphic structure of the shape.
For example, the geometry of a point shape specifies the two coordinates of the point.
The geometry of a text shape specifies the sequence of characters or glyphs that it
contains. Inside Macintosh: QuickDraw GX Graphics discusses the geometries of graphic
shapes and Inside Macintosh: QuickDraw GX Typography discusses the geometries of
typographic shapes. See also Figure 2-3 on page 2-12 of this chapter for a summary of
shape geometries. The geometry property differs from other properties in one
important respect: you can edit it directly. See “Directly Manipulating a Shape’s
Geometry” beginning on page 2-34 for more details.

n Fill. A value that determines how a shape is filled or framed when drawn.
QuickDraw GX provides a number of different ways of filling a shape. For example, a
rectangle shape might have a solid fill, which indicates that the shape represents a
solid rectangle—that is, the entire area enclosed by the sides of the rectangle is
included in the shape. Alternatively, a rectangle shape might have a framed fill, which
indicates that the shape represents a hollow rectangle—only the lines connecting the
rectangle’s corners are included in this shape. The section “Shape Fill” beginning on
page 2-13 discusses types of shape fills, and the section “Getting and Setting a Shape
Object’s Type, Fill, and Attributes” beginning on page 2-28 discusses how to
manipulate the shape fill property of a shape object.

n Style, ink, and transform object references. References to the style object, ink object,
and transform object that are needed to complete the specification of the shape. The
section “Getting and Setting a Shape Object’s Style, Ink, and Transform” beginning on
page 2-30 discusses how to manipulate these references.

The remaining three shape properties are common to many QuickDraw GX objects
(including styles, inks, and others):

n Attributes. A group of flags that control certain aspects of the behavior of the object.
For a shape object, these flags allow you to specify where QuickDraw GX stores the
shape object and how editing operations affect the shape object. For example, the
gxMenor y Shape attribute specifies that QuickDraw GX should avoid writing the
shape object out to storage, and the gxMapTr ansf or nShape attribute indicates that
certain editing operations, such as the GXMoveShape function, are to affect the data in
the shape’s transform object rather than the data in the shape itself. The section
“Shape Attributes” beginning on page 2-16 describes the shape attribute flags, and the
section “Getting and Setting a Shape Object’s Type, Fill, and Attributes” beginning on
page 2-28 discusses how to manipulate the attributes property of a shape object.

About Shape Objects

CHAPTER 2

Shape Objects

n Owner count. A number that indicates how many references to the object exist. The
chapter “Introduction to QuickDraw GX” in this book includes general information
about owner counts, and “Manipulating a Shape Object’s Owner Count” beginning
on page 2-31 describes when and how to examine and alter a shape object’s owner

count.

n Tag list. A list of references to custom information about the object, stored in private
data structures called tag objects. The chapter “Tag Objects” in this book describes tag
objects in general and how you can use them to add custom information to objects.
The section “Getting and Setting a Shape Object’s Tag References” beginning on
page 2-32 discusses how to manipulate the tag objects associated with a shape object.

Shape Type

A shape object’s type property specifies what sort of geometry the shape has. Table 2-1
lists the defined constants for each shape type and describes what each one means. (Note
that the empty and full shape types are unusual, in that they have no specific geometry;
they are used for specialized operations other than drawing.) The constants are defined
in the gxShapeTypes enumeration.

Table 2-1 Shape types

Constant
gxEmpt yType

gxPoi nt Type

gxLi neType

gxCur veType

About Shape Objects

Value
1

Explanation

An empty shape. It has no geometry, no contents,
and no bounds. The intersection of two shapes that
do not touch is the empty shape. You can use empty
shapes as a starting point for collecting graphic
elements. This shape type is described in the
geometric shapes chapter of Inside Macintosh:
QuickDraw GX Graphics.

A point shape. Its geometry contains two fixed-point
coordinate values representing the location of the
point. This shape type is described in the geometric
shapes chapter of Inside Macintosh: QuickDraw GX
Graphics.

A line shape. Its geometry contains two point
geometries—the starting point and the ending point.
This shape type is described in the geometric shapes
chapter of Inside Macintosh: QuickDraw GX Graphics.

A curve shape. Its geometry contains three point
geometries—a starting point, an ending point, and

a control point—which together describe a quadratic
Bézier curve. This shape type is described in the
geometric shapes chapter of Inside Macintosh:
QuickDraw GX Graphics.

continued

2-9

CHAPTER 2

Shape Objects

Table 2-1 Shape types (continued)

Constant

gxRect angl eType

gxPol ygonType

gxPat hType

gxBi t mapType

gxText Type

gxd yphType

gxLayout Type

2-10 About Shape Objects

Value

5

10

11

Explanation

A rectangle shape. Its geometry contains four
fixed-point values—representing the coordinates
of the left, top, right, and bottom corners of the
rectangle. This shape type is described in the
geometric shapes chapter of Inside Macintosh:
QuickDraw GX Graphics.

A polygon shape. Its geometry includes any number
of separate multiple-point polygon contours, each
contour consisting of straight line segments
connecting its points. This shape type is described

in the geometric shapes chapter of Inside Macintosh:
QuickDraw GX Graphics.

A path shape. Its geometry includes any number of
separate multiple-point path contours, each contour
consisting of straight or curved line segments
connecting its points. This shape type is described
in the geometric shapes chapter of Inside Macintosh:
QuickDraw GX Graphics.

A bitmap shape. Its geometry contains information
about the bitmap’s size, shape, and color, as well as
the pixel image itself. This shape type is described in
the bitmap shapes chapter of Inside Macintosh:
QuickDraw GX Graphics.

A text shape. Its geometry contains a string of
characters to be drawn with uniform stylistic
properties such as font family, font size, and style.
This shape type is described in the text shapes
chapter of Inside Macintosh: QuickDraw GX

Typography.

A glyph shape. Its geometry contains a string of
glyphs, each of which may have its own typestyle
when drawn. This shape type is described in the
glyph shapes chapter of Inside Macintosh:
QuickDraw GX Typography.

A layout shape. Its geometry contains a string of
characters plus sophisticated formatting information
that affects how the text is displayed. This shape
type is described in the layout shapes chapter of
Inside Macintosh: QuickDraw GX Typography.

CHAPTER 2

Shape Objects

Table 2-1 Shape types (continued)

Constant Value Explanation

gxFul | Type 12 A full shape. It encompasses all of the
QuickDraw GX coordinate space. Inverting an
empty shape produces a full shape. The full shape
contains every other shape and no other shape
contains the full shape. You can use full shapes to
specify the largest possible clip area for maximum
visibility when drawing. This shape type is described
in the geometric shapes chapter of Inside Macintosh:
QuickDraw GX Graphics.

gxPi ct ureType 13 A picture shape. It is a collection of other shapes,
including possibly other picture shapes. This shape
type is described in the picture shapes chapter of
Inside Macintosh: QuickDraw GX Graphics.

Shape Geometry

Most shape geometries are defined in terms of points in a coordinate space.

QuickDraw GX coordinates are pairs of fixed-point numbers (of type Fi xed), as defined
in the mathematics chapter of Inside Macintosh: QuickDraw GX Environment and Utilities.
QuickDraw GX coordinate spaces are described in the chapter “View-Related Objects” in
this book.

Figure 2-3 summarizes the contents of the geometry property for each type of
QuickDraw GX shape (except empty and full types, which have no geometry). In the
figure, elements of the geometry that are references (or arrays of references) to other
objects are shown in italics. For a diagram showing all the properties of the basic
QuickDraw GX objects, see the chapter “Introduction to Objects” in this book. For a
diagram showing all the properties of the printing objects, see the introductory chapter
of Inside Macintosh: QuickDraw GX Printing.

About Shape Objects 2-11

CHAPTER 2

Shape Objects

Figure 2-3 Shape geometry for each type of QuickDraw GX shape
Pomlgeomedry Liwe geo meedry Polygon geo e iy
w ooordiraie Rretpoint Pbarin bear of eordoure
rooondirmie Ltk pecvirit Phari by o fpoirite Fret
on
7 Feinie g [e
Recinngle meedwy Cures geom
=3 g-bu- - =hry Purn ber of proire I
Corres poirit Fretpaint !] pbrgon
. Poinie
cpposite corer paint fi-cune control point 4
Laetpaint 2 2
B i g0 mendry Pl geomelry
Il Faveage burn bear o eordoore
-
Hadth Mar bar = fpcirte
Height Cartrol bite | et
Pixd wize
J Peine z
Byrle e per rov -
Tolor epace Purn bear of pooirie
. Tacored
Ol et Caortral b — cerriour
. ’
G gl £ Peirie £)
Text geomes by Layoubgeomebny Pichwre geomeetry .
Character count Testlergh P bear ofiteme
Text f Text Fhaps
Poeifion Posifon o g i
Side-run count . — Ficlure item 1
G geom Dt ik
bpk ebry Hderun lenghe
Characber coont iy
o ool | Sdetint Clasiding homa e .
Text Fhap
= L4 Levetun count i
Powid o
ofe Ay Lewad-run langthe Clumiding sels e e 2
Adrance bile [ret
i it Levreds 2rar Caeviding ik
Targenisamray
oot op foree Crasiding | ;
Al = nure ke —
Stedetint ,;’ 4’

2-12

About Shape Objects

CHAPTER 2

Shape Objects

The structures of individual shape geometries are specific to each shape type and thus
are not described here. See the chapters of Inside Macintosh: QuickDraw GX Graphics and
Inside Macintosh: QuickDraw GX Typography specified in Table 2-1 of the previous section
for more information.

Nevertheless, some of the functions that affect shape geometry are common to all types
of shapes, and are therefore described in this chapter. The section “Copying the
Geometry From One Shape to Another” beginning on page 2-29 discusses how to copy
the geometry between shapes. The section “Directly Manipulating a Shape’s Geometry”
beginning on page 2-34 discusses how to get direct access to a shape’s geometry—as a
data structure rather than as an object property—in order to modify it. Also, Figure 2-3
on page 2-12 of this chapter summarizes the contents of the geometry of each type of
QuickDraw GX shape.

Shape Fill

Each shape object has a fill property. The shape fill specifies how QuickDraw GX
interprets the geometry of the shape: how the shape is drawn, how the shape is
hit-tested, and how certain geometric operations, like intersection or union, interpret the
shape. Table 2-2 lists the defined constants for shape fill and describes what each one
means. (Note that some shape fills have two or more equivalent names.) The constants
are defined in the gxShapeFi | | s enumeration.

Table 2-2 Shape fills

Constant Value Explanation

gxNoFi | | 0 No fill—the shape is not filled at all.
QuickDraw GX does not draw a shape with
this shape fill and you may not perform
geometric operations on it. You can use this
shape fill to temporarily hide shapes or to
prevent parts of a picture from drawing.

gxOpenFr aneFi | | 1 Open-frame fill—the shape is outlined instead
of filled. With this shape fill, QuickDraw GX
interprets the shape as a connected series of
straight or curved lines from the starting point
of the shape geometry to the ending point
(but not back to the starting point again).

gxFrameFi | | 1 Framed fill (same as gxOpenFraneFi | |).

gxCl osedFraneFil | 2 Closed-frame fill—the shape is outlined
instead of filled. As with the open-frame fill,
QuickDraw GX interprets the shape as a series
of lines (or curves) from the starting point of
the shape geometry to the ending point.
However, in this case, QuickDraw GX also
includes a line (or curve) from the ending
point to the starting point, thus closing the
contour.

continued

About Shape Objects 2-13

CHAPTER 2

Shape Objects

Table 2-2 Shape fills (continued)

Constant
gxHol | owFi | |

gxEvenOddFi | |

gxSol i dFi |l
gxW ndi ngFi | |

gxl nver seEvenCddFi | |

gxl nverseSol i dFi | |

gxl nverseFill

gxl nver seW ndi ngFi | |

Figure 2-4 Even-odd and winding fills

Value
2

3

Explanation
Hollow fill (same as gxCl osedFraneFi | I').

Even-odd fill—the shape is filled using

the even-odd rule. See Figure 2-4 for an
illustration of this rule; see Inside Macintosh:
QuickDraw GX Graphics for further explanation.

Solid fill (same as gxEvenOddFi | |).

Winding fill—the shape is filled using

the winding-number rule. See Figure 2-4 on
page 2-14 for an illustration of this rule; see
Inside Macintosh: QuickDraw GX Graphics for
further explanation.

Inverse even-odd fill—the shape is filled in

an opposite manner from the even-odd rule;
everything not filled using the even-odd rule is
filled using this rule. See Inside Macintosh:
QuickDraw GX Graphics for further explanation.

Inverse solid fill
(same as gxl nver seEvenCddFi | I').

Inverse fill
(same as gxl nver seEvenCQddFi | I').

Inverse winding fill—the shape is filled using
the winding-number rule and then inverted.
See Inside Macintosh: QuickDraw GX Graphics
for further explanation.

Geom edry

Evenrodd fill Winding il

2-14 About Shape Objects

CHAPTER 2

Shape Objects

Note that framed fill, hollow fill, and solid fill are alternative names for open-frame fill,

closed-frame fill, and even-odd fill, respectively, and that both inverse solid fill and
inverse fill are alternate names for inverse even-odd fill.

Not all shape fills make sense for all shape types. Table 2-3 shows the acceptable shape
fills for each shape type (the alternative names are not listed). Note that empty and full

shapes are permitted to have certain fill types even though they have no geometry.

Table 2-3 Valid shape fills for each shape type

Shape types
Empty

Full

Point, line, curve

Rectangle

Polygon, path
Text, glyph, layout

Bitmap, picture

For additional examples of how different shape fills can affect the appearance of
different types and geometries of shapes, see the geometric shapes chapter of Inside

Valid shape fills

gxNoFi | |
gxl nver seEvenQddFi | |
gxl nver seW ndi ngFi | |

gxNoFi | |

gxEvenCddFi | |

gxW ndi ngFi | |

gxl nver seEvenCddFi | |
gxl nver seW ndi ngFi | |

gxNoFi | |
gxOpenFr anmeFi | |

gxNoFi | |

gxCl osedFr aneFi | |
gxEvenCddFi | |

gxW ndi ngFi | |

gxl nver seEvenCddFi | |
gxI nver seW ndi ngFi | |

any shape fill

gxNoFi | |
gxBEvenQddFi | |
gxW ndi ngFi | |

gxNoFi | |
gxEvenCddFi | |

Macintosh: QuickDraw GX Graphics.

About Shape Objects

2-15

CHAPTER 2

Shape Objects

Shape Attributes

Each shape object includes a property that is a set of attributes, a group of flags that
specify certain aspects of the shape’s behavior. Table 2-4 lists the defined shape attribute
constants and describes what each one means. The constants are defined in the
gxShapeAt t ri but es enumeration.

Table 2-4 Shape attributes

Constant Value Explanation

gxNoAttri butes 0x0000 No shape attributes are set. You can use
this attribute to clear or test against the
current value of a shape’s attributes.

gxDi r ect Shape 0x0001 QuickDraw GX is to load the shape into
directly accessible memory. Set this flag
for shape objects that you don’t want
stored in accelerator card memory, or
whose geometric structures you want
to manipulate directly (see “Directly
Manipulating a Shape’s Geometry”
beginning on page 2-34). The attributes
gxDi r ect Shape and gxRenot eShape
are exclusive; do not set them both.

gxRenot eShape 0x0002 QuickDraw GX is to load the shape into
remote memory (memory used by an
accelerator card), if possible. When this
flag is set, the shape might draw faster but
you might not be able to edit the shape’s
geometry directly (see “Directly
Manipulating a Shape’s Geometry”
beginning on page 2-34). The attributes
gxRenot eShape and gxDi r ect Shape
are exclusive; do not set them both.

gxCachedShape 0x0004 QuickDraw GX is to prepare the shape for
the fastest possible drawing by caching it
compressed in an offscreen bitmap. (See
“Caching Shape Objects” beginning on
page 2-27; also, compare this with using
the GXCacheShape function, described on
page 2-62.)

2-16 About Shape Objects

CHAPTER 2

Shape Objects

Table 2-4 Shape attributes (continued)

Constant
gxLockedShape

gxG oupShape

gxMapTr ansf or nShape

gxUni quel t ens Shape

gxl gnor ePl at f or nShape

About Shape Objects

Value
0x0008

0x0010

0x0020

0x0040

0x0080

Explanation

QuickDraw GX is to prohibit changes to
the shape’s geometry or the shape’s
disposal. You can use this flag in the
debugging version of QuickDraw GX to
prevent accidental modification of a shape
intended to be used as a constant. When
this flag is set, you cannot use the
geometry-editing functions described in
the geometric shapes chapter of Inside
Macintosh: QuickDraw GX Graphics and the
text, glyph, and layout shapes chapters of
Inside Macintosh: QuickDraw GX Typography.
However, you can still alter the shape’s
geometric structure by accessing it directly
(see “Directly Manipulating a Shape’s
Geometry” beginning on page 2-34).

QuickDraw GX is to group all shapes
within this shape as a single shape when
hit-testing. This attribute applies to picture
shapes only; for more information see the
picture shapes chapter of Inside Macintosh:
QuickDraw GX Graphics.

QuickDraw GX is to apply shape-
transforming operations to the shape’s
transform object rather than to the shape’s
geometry. This attribute is set by default
for bitmap shapes, picture shapes, and
layout shapes. See the chapter “Transform
Objects” in this book for more information
on applying transformations to shapes.

QuickDraw GX is to create a complete copy
of each shape added to this picture rather
than simply creating a reference to the
added shape. This attribute applies to
picture shapes only; for more information
see the picture shapes chapter of Inside
Macintosh: QuickDraw GX Graphics.

QuickDraw GX is to treat the codes in the
geometry of this shape as glyph codes
rather than character codes. This attribute
applies to typographic shapes only; for
more information see the typographic
shapes chapter of Inside Macintosh:
QuickDraw GX Typography.

continued

2-17

2-18

CHAPTER 2

Shape Objects

Table 2-4 Shape attributes (continued)

Constant Value
gxNoMetri csGi dShape 0x0100

gxDi skShape 0x0200
gxMenor yShape 0x0400
Default Shapes

Explanation

QuickDraw GX is not to use hints (special
display instructions) provided with the
font used for this shape. Set this attribute
if you intend to manipulate text as a path
shape; otherwise, the hinting can affect the
spacing between the contours in the path’s
geometry and can be undesirable if you
want to perform other operations such

as scaling. This attribute applies to
typographic shapes only; for more
information see the typographic shapes
chapter of Inside Macintosh: QuickDraw GX

Typography.

QuickDraw GX is to write this shape to
disk before all shapes that do not have

this attribute set when it needs to unload
shapes to minimize memory requirements.
The attributes gxDi skShape and
gxMenor yShape are exclusive; do not

set them both.

QuickDraw GX is to keep this shape
loaded in memory as long as possible.
When this attribute is set, QuickDraw GX
writes this shape out to disk after all
shapes are written that do not have

this attribute set. The attributes

gxMenor yShape and gxDi skShape are
exclusive; do not set them both.

When you first create a shape of a given shape type, QuickDraw GX provides an initial
value for each property; those initial values define the starting characteristics of the
shape. The shape QuickDraw GX creates is a copy of the default shape for that shape
type (such as a line, rectangle, or glyph). There is one default shape for each shape type.

These are the default properties:

n No geometry. All applicable values and counts are set to 0.

n A shape fill that depends on the shape type:

n The default empty shape has no fill.

n The default point, line, and curve shapes have open-frame fill.
n The default rectangle, polygon, path, full, bitmap, and picture shapes have

even-odd fill.

n The default text, glyph, and layout shapes have winding fill.

About Shape Objects

CHAPTER 2

Shape Objects

n Anil style reference, which is equivalent to a reference to the default style object.
See the chapter “Style Objects” in this book for a description of the default style object.
Graphic shapes all share a single common default style; each different type of
typographic shape (text, glyph, and layout) uses its own default style.

n Anil ink reference, which is equivalent to a reference to the default ink object. See
the chapter “Ink Objects” in this book for a description of the default ink object. All
shapes except bitmaps share a common default ink object.

n Ani | transform reference, which is equivalent to a reference to the default transform
object. See the chapter “Transform Objects” in this book for a description of the
default transform object. All shapes share a common default transform, with the
exception of the picture shape, which has its own default transform.

n No attributes set (except for bitmap, picture, and layout shapes, which have the
gxMapTr ansf or nShape attribute set).

n An owner count of 1.
n Anempty tag list.

After creating the shape, you can change its characteristics to customize it; for example,
you can give it a specific geometry. Or, if you want to create several shapes with the
same customized characteristics, you can change the default shape itself to suit your
purposes. If you do this, each shape that you create thereafter has the customized
characteristics. See the section “Getting and Setting the Default Shape Objects”
beginning on page 2-23, and the section “Resetting a Shape Object’s Properties to Their
Default Values” beginning on page 2-31, for more information.

Modifying Shape Properties

After you have created a shape of a given type, you can set its various properties in
order to make it useful for your purposes. Some generally applicable property-setting
functions, such as those that modify the attributes or owner count, are described in this
chapter. Others, more specific to individual shape types, are described in the appropriate
chapters of Inside Macintosh: QuickDraw GX Graphics and Inside Macintosh: QuickDraw GX

Typography.
In addition, however, QuickDraw GX provides several general-purpose functions that

directly affect the geometry or type of a shape. The functions of this type described in
this chapter allow you to

n copy the geometry from one shape into another, which can have the effect of changing
its type (see “Copying the Geometry From One Shape to Another” beginning on
page 2-29)

n directly manipulate shape geometry in QuickDraw GX memory (see “Directly
Manipulating a Shape’s Geometry” beginning on page 2-34)

n convert a shape of one type, such as a rectangle, to another, such as a line or a bitmap
(see “Converting Shapes From One Type to Another” beginning on page 2-32)

About Shape Objects 2-19

2-20

CHAPTER 2

Shape Objects

The functions that convert from one shape type to another are described in this chapter,
but the rules for and consequences of conversion among shape types are specific to each
shape type and thus are not described here. Table 2-5 on page 2-33 lists the chapters of
Inside Macintosh: QuickDraw GX Graphics and Inside Macintosh: QuickDraw GX Typography
where you can find this information.

Drawing Shapes

Two of the most fundamental and common operations you perform on shapes are
drawing and its complement, hit-testing (interpreting mouse clicks or otherwise relating
coordinate position to shape geometry).

You can draw a shape as soon as you have created it and set its properties (and those of
its related objects). The view ports listed in the transform object associated with the
shape determine where the drawn shape appears. Drawing takes into account all the
information in the shape’s transform, ink, style, and shape objects. This chapter describes
the basic drawing function that can draw any kind of shape. See “Drawing Shapes”
beginning on page 2-35 for more description and an example of drawing.

Hit-Testing Shapes

Hit-testing is the process of converting a point in the displayed representation of a shape
to a location in the shape object’s geometry. You can use hit-testing for shape selection,
highlighting, or positioning the caret in text.

When you hit-test a shape, you can in most cases determine which part of a shape’s
geometry corresponds (within a certain tolerance, or distance) to the point you are
testing against. For example, you can tell if a point is exactly on a line, or only close to it;
and you can tell which edge of which glyph in a line of text is closest to the hit point.

QuickDraw GX provides a general hit-testing capability for all shapes, a specialized
hit-test for testing picture shapes, another specialized hit-test for use with layout shapes,
and another specialized hit-test for comparing shapes to specific pixels on a display
device. See “Hit-Testing Shapes” beginning on page 2-36 for more information on the
specific functions.

When you use the general hit-testing function, it returns one or more shape parts, which
specify the parts of the shape’s geometry corresponding to the hit point. The parts of a
shape’s geometry for which you can hit-test depend on the kind of shape. For example,
for a typographic shape, the possible parts include those shown on the left side of
Figure 2-5:

n bounds: the bounding rectangle enclosing the entire typographic shape
n glyph bounds: the bounding box for an individual glyph

n glyph first part: the left half of the glyph

n glyph second part: the right half of the glyph

n side bearing: the space on either side of the glyph

About Shape Objects

CHAPTER 2

Shape Objects

As another example, the possible parts for a line include those shown on the right side of
Figure 2-5:

S

bounds: the bounding rectangle enclosing the start and end points of the line

S

edge: the start and end points and all the points between them on the line

S

pen: a polygon with half the width of the pen on each side of the line

geometry: the line’s edge plus all area enclosed by it (in this case none, because a line
encloses no area)

S

Figure 2-5 Shape parts for hit-testing

Geomnety and aedge

The shape parts that you can test for are defined in the gxShapePar t s enumeration,
shown on page 2-37 and described in more detail in the chapter “Transform Objects” in
this book. Before performing the hit-test, you set up—in the transform object of the
shape you are testing—a mask structure that defines all the shape parts that you want to
test for. QuickDraw GX tests only for those parts that you specify in the shape parts
mask.

For example, if the hit point on the right side of Figure 2-5 is within the tolerance of

the geometry part, the function will determine that it corresponds to the bounds, the
geometry, the pen, and the edge. If you want to test for geometry alone, then, you could
exclude all but geometry from the test. For hit-testing the text on the left side of

Figure 2-5, you might be interested only in whether the hit is within the bounding
rectangle of the shape and which side of which glyph it corresponds to, so you can
specify the shape parts appropriately.

When you set up the hit-test parameters, you also specify a tolerance. Tolerance is a
distance (in units of geometry space), and it defines a circular area centered on the hit
point. Any part that falls within that area is considered to correspond to the hit point.

About Shape Objects 2-21

CHAPTER 2

Shape Objects

Saving and Restoring Shapes

In memory, a QuickDraw GX shape consists of a shape object and (by reference) several
other objects, including a style, an ink, and a transform. The locations and internal
structures of those objects are private.

If you need to save a shape in a document or other external storage form, or transmit it
across a network, or otherwise preserve its information in a public format, you can
convert, or flatten, its object-based description into a stream-based description.
Conversely, you can restore the object-based description of an object from its flattened
form.

The flattened, stream-based format for most objects is documented in the stream format
chapter of Inside Macintosh: QuickDraw GX Environment and Utilities. (Fonts have their
own flattened format; see the font objects chapter of Inside Macintosh: QuickDraw GX
Typography for more information.) How to flatten and unflatten shape objects is
described in the section “Flattening and Unflattening Shapes” beginning on page 2-39
in this chapter.

Using Shape Objects

2-22

This section describes the basic shape-creation and shape-manipulation capabilities that
QuickDraw GX provides, capabilities that are independent of the specific type of shape
involved. For detailed information on using shapes of specific types, see the appropriate
chapters of Inside Macintosh: QuickDraw GX Graphics and Inside Macintosh: QuickDraw GX

Typography.

This section describes how you can

n create and manipulate shape objects

n manipulate shape object properties

n convert shapes from one type to another
n directly manipulate shape geometry

n flatten and unflatten shapes

n draw and hit-test shapes

Creating and Manipulating Shape Objects

This section describes how you can create and interact with shape objects as whole
entities—to create, dispose of, copy, compare, clone, cache, load, and unload them. It
also describes how to manipulate the default shapes. Manipulating the properties of
shapes is described under “Manipulating Shape Object Properties” beginning on
page 2-28.

Using Shape Objects

CHAPTER 2

Shape Objects

Getting and Setting the Default Shape Objects

QuickDraw GX defines a default shape object for each shape type. These defaults are the
templates QuickDraw GX uses when creating new shape objects, and you can change
them to suit your purposes. Note, however, that changing the geometry for a default
shape has no effect when subsequent shapes are created from the default one. A newly
created shape never contains a geometry.

You can use the GXCGet Def aul t Shape function to examine one of the default
shape objects and the GXSet Def aul t Shape function to replace one of the default shape
objects.

The properties common to all default shape objects are described under “Default
Shapes” on page 2-18. Default properties specific to graphic or typographic shapes are
described in Inside Macintosh: QuickDraw GX Graphics and Inside Macintosh:

QuickDraw GX Typography; respectively.

The following code fragment uses GXCGet Def aul t Shape to change the characteristics of
the ink object referenced by the default line shape. The code obtains a reference to the
default shape, and creates a temporary ink reference (t enpl nk) to the shape’s ink object.
It changes the temporary ink’s color and transfer mode (with library functions

Set | nkCommonCol or and Set | nkCommonTr ansf er), and then assigns the modified
ink back to the default shape:

tenpl nk = GXCopyTol nk(ni | , GXGet Shapel nk

(GXGet Def aul t Shape(gxLi neType)));
Set | nkCommonCol or (t enpl nk, gxBl ack);
Set | nkCommonTr ansf er (t enpl nk, gxXor Mbde) ;
GXSet Shapel nk(GXGet Def aul t Shape(gxLi neType), t enpl nk) ;
GXDi sposel nk(t enpl nk);

The code disposes of the temporary ink after assigning it to the default shape, because
that temporary reference is no longer needed.

Note

If you have created a shape object, and want to restore some of its
default values, you can use the GXReset Shape function. See the section
“Resetting a Shape Object’s Properties to Their Default Values”
beginning on page 2-31. u

The GXGet Def aul t Shape function is described on page 2-52. The
GXSet Def aul t Shape function is described on page 2-53.

Using Shape Objects 2-23

2-24

CHAPTER 2

Shape Objects

Creating and Disposing of Shape Objects

QuickDraw GX provides a number of ways for you to create a new shape object. This
section describes the GXNewShape function, which creates a copy of the default shape
for the shape type you specify. You can then customize the shape using the techniques
described in the section “Manipulating Shape Object Properties” beginning on page 2-28.
Other ways to create and customize specific types of shape objects are described in the
chapters that describe shapes in Inside Macintosh: QuickDraw GX Graphics and Inside
Macintosh: QuickDraw GX Typography. Note that you can also create a new shape by
copying an existing one: see the section “Copying, Comparing, and Cloning Shape
Objects” beginning on page 2-25.

Before you can create a shape or any other object, you need to be in the QuickDraw GX
environment. You are not required to make any calls to accomplish this, however;
QuickDraw GX sets up the environment for your application when you make your
first QuickDraw GX call. If you nevertheless wish to control your application’s
memory use in the QuickDraw GX environment, you can use the functions

GXNewGr aphi ¢csC i ent and GXEnt er Gr aphi cs, described in the memory
management chapter of Inside Macintosh: QuickDraw GX Environment and Utilities.

The following code fragment creates a rectangle shape (r ect Shape), assigns it a fill type
(closed-frame fill), and assigns its ink object a gray color (using the library function
Set ShapeConmmonCol or):

rect Shape = GXNewShape (gxRectangl eType);
GXSet ShapeFi | | (rect Shape, gxC osedFraneFill);
Set ShapeConmonCol or (rect Shape, gxG ay);

The following code fragment creates a picture shape (docPage) to represent the page of
a document that is to be printed. It sets the gxUni quel t ensShape shape attribute to
make sure each item in the picture has a unique reference:

docPage = GXNewShape(gxPi ctureType);
GXSet ShapeAt tri but es(docPage, gxUni quel t ensShape) ;

(Note that this method of assigning an attribute clears all other attributes, which may be
undesirable. In general, you would first call GXGet ShapeAt t ri but es, modify the
returned attributes as needed, and then call GXSet ShapeAt t ri but es to reassign them.)

To delete your application’s reference to a shape object, call the GXDi sposeShape
function. You must be sure to dispose of every shape that you create. For the docPage
shape you would make this call:

GXDi sposeShape(docPage) ;

Using Shape Objects

CHAPTER 2

Shape Objects

Note that calling GXDi sposeShape for a particular shape object may or may not
actually release the memory allocated for that object, depending on its owner count.
GXDi sposeShape decreases the shape object’s owner count by 1; if that brings the
owner count to 0, the shape is completely deleted and its memory released (and

the owner count of each object that the shape object references is then decremented).
See “Manipulating a Shape Object’s Owner Count” on page 2-31.

The GXNewShape function is described on page 2-54. The GXDi sposeShape function
is described on page 2-55.

Getting the Size of a Shape Object in Memory

Although the sizes of style, ink, and transform objects are relatively constant, shape
objects vary greatly in size, mostly due to the differences in their geometries. The
GXGet ShapeSi ze function allows you to find out how much memory a shape occupies.

The GXGet ShapeSi ze function returns only the amount of memory currently being

used to represent the shape. Because QuickDraw GX can automatically unload objects
from memory, the size returned by GXGet ShapeSi ze does not accurately reflect the size
of the object if it has been unloaded. You can call the GXLoadShape function before
calling GXGet ShapeSi ze to get a more accurate size, if necessary.

The GXGet ShapeSi ze function is described on page 2-56.

Copying, Comparing, and Cloning Shape Objects

You can use the GXCopy ToShape and GXCopyDeepToShape functions to copy all of the
information from one shape to another or to create a new copy of a shape. The two
functions are identical except that GXCopyDeepToShape copies more information for
these shape types: for bitmap shapes, it also copies the pixel image; for picture shapes, it
makes a new copy of each shape in the picture; and for glyph and layout shapes, it
copies the style list.

The following code fragment copies a shape to make a version having special visual
characteristics. It makes a temporary shape (t enpText Shape) that is a copy of a text
shape (t ext ShapeFr onPi ct ur e) within a picture shape representing a document
page. The GXCopyDeepToShape function is not needed in this case because a text
shape, unlike a glyph shape or layout shape, cannot have a style list to copy. The code
doubles the size of the text and moves it by 100 points vertically before inserting it back
into the page and disposing of the temporary reference.

Using Shape Objects 2-25

2-26

CHAPTER 2

Shape Objects

Note that this code makes use of the QuickDraw GX f f macro, a shorthand version of
the I nt ToFi xed macro. Both functions are described in the mathematics chapter of
Inside Macintosh: QuickDraw GX Environment and Utilities.

GXGet Pi cturePart s(t hePage, 2, 1, &textShapeFronPicture,
nil, nil, nil);
t enpText Shape = GXCopyToShape (nil, textShapeFronPicture);

GXScal eShape(t enpText Shape, ff(2), ff(2), 0, 0);
GXMobveShape(t enpText Shape, 0, ff(100));

GXSet Pi ctureParts(t hePage, 3, 0, 1, &t enpText Shape,
nil, nil, nil);
GXDi sposeShape(t enpText Shape) ;

You can test if two shape references refer to the same shape object by simply testing the
references for equality. You can also compare two different shape objects for equality
with the GXEqual Shape function. For two shapes to be equal, their fill properties must
be equal and their geometries must be identical. See the GXEqual | nk, GXEqual Styl e,
and GXEqual Tr ansf or mfunction descriptions in the chapters “Ink Objects,” “Style
Obijects,” and “Transform Objects,” respectively, in this book for the requirements for
equality. Shape copies created by GXCopy ToShape or GXCopyDeepToShape are always
equal to the shape from which they were copied.

Equivalent geometries are not identical

Some shapes have equivalent, but not identical, geometries, and are thus
not considered equal by GXEqual Shape. For example, two polygons
might have identical geometries, except that one has a duplicate point at
one of its corners. The shapes are equivalent in form, but their
geometries are not identical.You can remove such duplicate points with
the GXReduceShape function, described in the geometric operations
chapter of Inside Macintosh: QuickDraw GX Graphics. u

In certain circumstances, you may want to copy a reference to a shape object without
actually copying the shape object. For example, you may want two variables to refer to
the same shape object, so that editing one of them affects both. This is called cloning a
shape, rather than copying a shape. You can use the GXCl oneShape function to clone a
shape object.

Functionally, GXCl oneShape does nothing more than increase the owner count of a
shape object. For more information about cloning objects, see the chapter “Introduction
to Objects” in this book. For information on manipulating shape owner counts, see the
section “Manipulating a Shape Object’s Owner Count” beginning on page 2-31 of this
chapter.

The GXCopy ToShape function is described on page 2-57. The GXCopy DeepToShape
function is described on page 2-58. The GXEqual Shape function is described on
page 2-60. The GXCl oneShape function is described on page 2-61.

Using Shape Objects

CHAPTER 2

Shape Objects

Caching Shape Objects

Before QuickDraw GX draws any shape, it first performs some preliminary calculations
on the shape’s data (such as finding the shape’s bounds) and stores the information in a
shape cache.

In certain circumstances, you can improve the way drawing occurs on the screen by
requesting that QuickDraw GX create the caches before you actually draw the shapes.
For example, if you are drawing many shapes at once, you can cache all of the shapes
before you draw any of them. In this way, you can minimize the amount of time between
the appearance of the first shape and the completion of the last shape.

You can use the GXCacheShape function to create caches before drawing and you can

use the GXDi sposeShapeCache function to release the memory held by a shape cache.
The GXGet ShapeCacheSi ze function returns information about the size of the cache in
memory.

The GXCacheShape function works somewhat differently from the gxCachedShape
attribute (see Table 2-4 on page 2-16). Setting the gxCachedShape attribute causes
QuickDraw GX to cache and predraw a shape into a compressed offscreen bitmap the
first time it is drawn. Then, when you call GXDr awShape, the predrawn shape is simply
transferred to the screen. Setting the gxCachedShape attribute causes very fast drawing
but may greatly increase the memory required to store a shape, especially for large
shapes. Calling GXCacheShape does not increase the memory required to draw a shape.
For the fastest possible drawing (but the slowest preparation for drawing), set the
gxCachedShape attribute and also call GXCacheShape before drawing.

You are not required to use any of the functions in this section. QuickDraw GX
automatically creates shape caches when you draw a shape and automatically deletes
shape caches when memory is low. You only need to use these functions when you want
to improve your application’s drawing speed.

The GXCacheShape function is described on page 2-62; The GXDi sposeShapeCache
function is described on page 2-63; The GXGet ShapeCacheSi ze function is described
on page 2-64.

Loading and Unloading Shape Objects

Although you rarely need to, you can influence memory-allocation decisions involving
objects that you have created. If your application needs to have a shape object in
memory, it can force QuickDraw GX to load it into memory. When your application

no longer needs the shape object in a loaded state, it can instruct QuickDraw GX to
unload it.

You call the GXLoadShape function to make sure that a shape object is in memory; if
necessary, QuickDraw GX brings the object into memory from an unloaded state. You
can call the GXUnl oadShape function to instruct QuickDraw GX that it is free to unload
the shape object at any time.

Using Shape Objects 2-27

2-28

CHAPTER 2

Shape Objects

Rather than explicitly instructing QuickDraw GX to load or unload an object, you can
also set either the gxDi skShape or the gxMenor yShape attribute for the shape, which
permanently affects the priority with which QuickDraw GX loads or unloads the shape.
Shape attributes are described in Table 2-4 on page 2-16.

The GXLoadShape and GXUnl oadshape functions are described in the memory
management chapter of Inside Macintosh: QuickDraw GX Environment and Utilities.

Manipulating Shape Object Properties

This section describes how to manipulate the properties of shape objects, including those
that are references to other objects. In most cases, a pair of functions respectively get and
set a property. You call the GXGet ShapeProperty function to get a copy of the shape
property you need; you call the GXSet ShapeProperty function to assign a value to

a property.

For manipulating shape objects as a whole, see “Creating and Manipulating Shape
Objects” beginning on page 2-22.

Getting and Setting a Shape Object’s Type, Fill, and Attributes

The functions described in this section get and set shape properties that are numerical
values.

You can use the GXGet ShapeType function to find the shape type of an existing shape,
and the GXSet ShapeType function to convert an existing shape from one shape type
to another. The section “Converting Shapes From One Type to Another” beginning on
page 2-32 summarizes the kinds of shape conversions QuickDraw GX supports. Beyond
that section and the descriptions in Table 2-1 on page 2-9, this book does not discuss
specific shape types. See Inside Macintosh: QuickDraw GX Typography for more
information on the typographic shape types—text, glyph, and layout. (Note that

GXSet ShapeType even allows you to convert typographic shapes to graphic shapes
of certain types.) See Inside Macintosh: QuickDraw GX Graphics for more information on
graphic shape types.

The following code fragment determines the number of items (nunPar t s) in a picture
shape (t heShape). The code uses GXGet ShapeType to screen out any shape that is not
a picture shape:

typeO Shape = GXGet ShapeType(t heShape);
if (typeO Shape == gxPictureType)
nunParts = GXGet Pi cture(theShape, nil, nil, nil, nil);

You can use the GXGet ShapeFi | | function to find the fill of an existing shape, and the
GXSet ShapeFi | | function to set the fill of a shape when you create or modify it.
Beyond the descriptions in Table 2-2 on page 2-13, this book does not discuss specific
shape fills. See Inside Macintosh: QuickDraw GX Typography and Inside Macintosh:
QuickDraw GX Graphics for more information on the valid typographic and graphic
shape fills.

Using Shape Objects

CHAPTER 2

Shape Objects

You can use the GXGet ShapeAt t ri but es function to find the attributes of an existing
shape and the GXSet ShapeAt t ri but es function to set the attributes of a shape. Shape
attributes are described in the section “Shape Attributes” beginning on page 2-16.

The following code fragment is a drawing loop that rotates a text shape (t heText) six
times around the point (x, y) by 15 degrees each time, and adds the shape to a picture

(gt hePage) after each rotation. (It also changes the color at each rotation, for better
visibility of the overlapping text.) The loop sets the gxMapTr ansf or nShape attribute of
the shape, which assures that the shape geometry itself is not affected by the rotation,
and thus there is no loss of precision in the geometry with repeated rotations:

GXSet ShapeAt tri but es(theText, gxMapTransf or nShape);
for (loop = 0; loop < 6; |oop++)

{
GXSet ShapeCol or (t heText, &t ext Col or);
GXRot at eShape(t heText, ff(15), x, y);
GXSet Pi ctureParts(gthePage, 0, 0, 1, & heText, nil, nil, nil);
t ext Col or. el enent . hsv. hue += 0x0940;
}

Note that the gxUni quel t ens Shape attribute of gt hePage must be set for this to
work.

YoucanuseGXGet ShapeAt t ri but es incombination with the GXSet ShapeAttri but es
function to set and clear single attribute flags. For example, to clear the gxDi skShape
attribute of a shape referenced by the variable t ar get , you could use the following code:

GXSet ShapeAttri but es(target,
GXGet ShapeAttri butes(target) & ~gxDi skShape);

Conversely, to set the gxDi skShape attribute, you could use the following code:

GXSet ShapeAttri but es(target,
GXGet ShapeAttributes(target) | gxDi skShape);

The GXCGet ShapeType function is described on page 2-66. The GXSet ShapeType
function is described on page 2-66. The GXGet ShapeFi I | function is described
on page 2-68. The GXSet ShapeFi | | function is described on page 2-69.

The GXGet ShapeAt t ri but es function is described on page 2-74. The

GXSet ShapeAt tri but es function is described on page 2-74.

Copying the Geometry From One Shape to Another

Like type, fill, and attributes, geometry is a property of a shape object. However, you
access and manipulate a shape’s geometry somewhat differently from other properties.

Using Shape Objects 2-29

2-30

CHAPTER 2

Shape Objects

The GXSet ShapeGeonet ry function copies the geometry (and the shape type, if
the shapes are of different types) from one shape object into another. To make the
function call requires two object references, and no reference to or specification of
either object’s geometry. There is no associated GXGet ShapeGeonet ry call. Using
GXSet ShapeGeonet ry is a simple way to reuse an existing shape by turning it into
a copy of another shape. As with GXSet ShapeType, this book does not discuss the
specific rules for and consequences of converting one shape type to another with
GXSet ShapeGeonet ry. See Inside Macintosh: QuickDraw GX Graphics and Inside
Macintosh: QuickDraw GX Typography for conversion information for graphic and
typographic shape types.

To do more than simply copy geometries—to gain access to and actually manipulate
the contents of a shape’s geometry—requires another set of functions, including the
GXGet ShapeSt ruct ur e function. See the section “Directly Manipulating a Shape’s
Geometry” beginning on page 2-34. In most situations, however, you use functions
specific to a given shape type to manipulate that type of shape’s geometry. Those
kinds of functions are described, along with each shape type, in Inside Macintosh:
QuickDraw GX Graphics and Inside Macintosh: QuickDraw GX Typography.

To copy an entire object, rather than just its geometry, you can use the GXCopy ToShape
or GXCopyDeepToShape functions; see “Copying, Comparing, and Cloning Shape
Objects” on page 2-25.

The GXSet ShapeGeonet r y function is described on page 2-67.

Getting and Setting a Shape Object’s Style, Ink, and Transform

Every QuickDraw GX shape object has an associated style object, ink object, and
transform object. You can use the GXGet ShapesSt yl e, GXGet Shapel nk, and

GXCet ShapeTr ansf or mfunctions to determine which of each type of object is
referenced by a particular shape. Conversely, you can use the GXSet ShapeSt yl e,
GXSet Shapel nk, and GXSet ShapeTr ansf or mfunctions to change these references.

Because style objects can be shared among different QuickDraw GX shapes, the
GXGet ShapesSt yl e function can return a reference to the same style object for two
different shapes. Likewise, the GXGet Shapel nk and GXGet ShapeTr ansf or m
functions can return identical ink objects or transform objects for different shapes.

Calling GXSet ShapeSt yl e, GXSet Shapel nk, or GXSet ShapeTr ansf or mincrements
the owner count of the specified style, ink, or transform object by 1, and disposes of the
previously assigned style, ink, or transform. In certain cases, depending on how you
create such an object or assign it to a shape, you may need to modify that object’s owner
count explicitly; see “Manipulating a Shape Object’s Owner Count” on page 2-31.

The following code fragment draws a dashed version of a shape. The code first calls
GXGet ShapesSt yl e to obtain the style object attached to the shape t heShape; it then
clones the style and assigns a temporary reference (saveSt yl e) to the style. The code
then assigns different style properties to the shape and draws it. After drawing the
shape, the code restores the original style to the shape, using GXSet ShapeSt yl e:

Using Shape Objects

CHAPTER 2

Shape Objects

saveStyl e = GXO oneSt yl e(GXGet ShapeSt yl e(t heShape)) ;
GXSet ShapePen(t heShape, ff(1));

GXSet ShapeDash(t heShape, &dash);

GXDr awShape(t heShape) ;

GXSet ShapeSt yl e(t heShape, saveStyle);
GXDi sposeStyl e(saveStyl e);

As usual, after it is finished with the temporary reference saveSt yl e, the code disposes
of it. For more information and examples of cloning, see for example the discussions of
owner count in the chapter “Style Objects” in this book.

The GXCGet ShapesSt yl e function is described on page 2-69; the GXSet ShapeSt yl e
function is described on page 2-70. The GXGet Shapel nk functionis described on page 2-71;
the GXSet Shapel nk function is described on page 2-71. The GXGet ShapeTr ansf orm
function is described on page 2-72; the GXSet ShapeTr ansf or mfunction is described on
page 2-73.

Resetting a Shape Object’s Properties to Their Default Values

When you create a new shape with the GXNewShape function, QuickDraw GX creates
the new shape object by copying the appropriate default shape object. QuickDraw GX
does not create a new style, ink, or transform object for the new shape, however. Instead,
the new shape contains references to the same style, ink, and transform as the
corresponding default shape. You are free to install a new style, ink, or transform in

the shape using functions such as GXSet ShapeSt yl e, GXSet Shapel nk, and

GXSet ShapeTransform

If you do install a new style, ink, or transform in a shape and you want to revert back to
the default style, ink, and transform, you can use the GXReset Shape function. This
function also resets the shape’s attributes and fill properties to match the default shape,
but does not alter the shape’s geometry, owner count, or tag list.

The GXReset Shape function is described on page 2-75.

Manipulating a Shape Object’'s Owner Count

The owner count of an object indicates the number of current references to that object. In
general, QuickDraw GX manages owner counts for you. For example, when you create a
new shape object you give it a variable name such as ny Shape. QuickDraw GX sets the
owner count of the new shape to 1, because your application variable is the only current
reference to the shape. As another example, when you add a shape to a picture,
QuickDraw GX increments the shape’s owner count, corresponding to the new reference
to the shape contained in the picture.

Using Shape Objects 2-31

2-32

CHAPTER 2

Shape Objects

The following code fragment is part of a routine that constructs a house image

(gQur House) as a picture shape, building it out of individual geometric shapes. As each
component shape (houseBor der Shape anddoor Shape, in this fragment) is added to
the picture shape, its owner count is increased; to balance that increase, and because that
component shape’s reference is no longer needed, it is disposed of.

GXSet ShapeFi | | (houseBor der Shape, gxHol |l owFill);

GXSet Pi cturePart s(gQur House, 1, 0, 1, houseBorder Shape,
nil, nil, nil);

GXDi sposeShape(houseBor der Shape) ;

GXSet ShapeFi | | (door Shape, gxHol lowFill);

GXSet Pi cturePart s(gQur House, 1, 0, 1, door Shape,
nil, nil, nil);

GXDi sposeShape(door Shape) ;

If you want to manage a shape’s owner count directly—for example, if you want to track
object references that you place in your own data structures, or if you want to know
whether a shape object is shared—you can use the GXGet ShapeOaner s function to
determine the owner count of a shape, and the GXCl oneShape and GXDi sposeShape
functions to change the owner count of a shape. The GXCl oneShape function

increments the shape’s owner count, and the GXDi sposeShape function decrements the
shape’s owner count, freeing the memory used by the shape if the owner count goes to 0.

The GXCGet ShapeOaner s function is described on page 2-76. The GXCl oneShape
function is described on page 2-61.The GXDi sposeShape function is described on
page 2-55.

Getting and Setting a Shape Object’'s Tag References

You can examine the list of references to tag objects currently associated with a shape
using the GXCGet ShapeTags function. Once you create a tag object, you can attach it to a
shape object using the GXSet ShapeTags function. You can attach as many tag objects as
you like to a shape object.

Tag objects and the basic functions for manipulating them are described in the chapter
“Tag Obijects” in this book. That chapter also lists the common tag types defined and
reserved by Apple Computer, Inc.

The GXGet ShapeTags function is described on page 2-77. The GXSet ShapeTags
function is described on page 2-78.

Converting Shapes From One Type to Another

QuickDraw GX allows you to change the types of the shape objects you have created.
You use the GXCGet ShapeType function, described on page 2-66 of this chapter, to
determine the type of a shape. To convert a shape to a new type, you use the

GXSet ShapeType function, described on page 2-66 of this chapter.

Using Shape Objects

CHAPTER 2

Shape Objects

The rules for conversion among shape geometries are specific to each shape type and
thus are not described here. See the appropriate chapters of Inside Macintosh:
QuickDraw GX Graphics and Inside Macintosh: QuickDraw GX Typography for this
information. Table 2-5 describes where to look in each book for information regarding
each possible kind of conversion.

Table 2-5 Where to find information on shape-type conversion
Toa Toa Toa Toa
geometric shape bitmap shape picture shape typographic shape
From a See “Geometric See “Bitmap See “Picture
geometric Shapes” in Shapes” in Shapes” in (not possible)
shape QuickDraw GX QuickDraw GX QuickDraw GX
Graphics Graphics Graphics
From a See “Geometric See “Picture
bitmap shape Shapes” in (no change) Shapes” in (not possible)
QuickDraw GX QuickDraw GX
Graphics Graphics
From a See “Geometric See “Bitmap
picture shape Shapes” in Shapes” in (no change) (not possible)
QuickDraw GX QuickDraw GX
Graphics Graphics
From a See “Typographic See “Bitmap See “Picture See “Typographic
typographic Shapes” in Shapes” in Shapes” in Shapes” in
shape QuickDraw GX QuickDraw GX QuickDraw GX QuickDraw GX
Typography Graphics Graphics Typography

Another common kind of shape conversion is not from one shape type to another,

but from standard object form into primitive form. Some functions, such as

GXSet Shaped i p, described in the chapter “Transform Objects” in this book, require
a primitive shape to hold the clip shape. A primitive shape is a shape whose stylistic
information has been incorporated into the shape’s geometry. For example, a horizontal
line with a thick pen style becomes a rectangle when converted to a primitive shape. To
make a shape into a clip, you first convert it to its primitive form with the function
GXPri m ti veShape. For more information about primitive shapes in general, see
the geometric operations chapter of Inside Macintosh: QuickDraw GX Graphics. For
information on primitive shapes for typographic shapes, and the difference between
using GXPr i m ti veShape and GXSet ShapeType to obtain a primitive shape, see the
typographic shapes chapter of Inside Macintosh: QuickDraw GX Typography.

Using Shape Objects 2-33

CHAPTER 2

Shape Objects

Directly Manipulating a Shape’s Geometry

The geometry of a shape object is its most central property. Unlike other properties, it
can be made accessible to you as a structure that you can modify directly, in place in
QuickDraw GX memory. QuickDraw GX provides a group of functions with which you
can access a shape’s geometry and notify QuickDraw GX once you have modified it.
Note that in most cases you don’t need to do this; QuickDraw GX provides many
functions, specific to each type of shape, with which you can access and modify
geometry. The functions described here are provided as an added convenience.

These functions do not provide you with information about the formats of the data
structures that make up shape geometries; they simply give you a pointer to the
geometry. How you manipulate that information depends on the type of shape whose
geometry you are accessing. The structures of individual shape geometries are described
in the shape-specific chapters of Inside Macintosh: QuickDraw GX Graphics and Inside
Macintosh: QuickDraw GX Typography.

Before accessing a shape’s geometry, you must set its gxDi r ect Shape attribute to make
sure that it is loaded into directly accessible memory. To access the geometry, you first
call the GXLock Shape function to make sure the shape object doesn’t move until you are
finished with it. You then call the GXGet ShapeSt r uct ur e function, which returns a
pointer to the shape’s geometry. You can then modify the geometry as needed. Once
finished, you call GXUnl ockShape to free the shape object for relocation in memory as
needed. Finally, you must call GXChangedShape to notify QuickDraw GX that you have
changed the geometry.

Listing 2-1 is a partial listing of a function that accesses the geometry of the path shape
my Shape, manipulating its geometry as a gxPat hs structure in a buffer of size si ze.

Listing 2-1 Directly accessing a shape’s geometry

2-34

/* set up the shape (not shown) */
/* set the direct shape attribute if not set */
GXSet ShapeAt tri but es (myShape,

GXGet ShapeAt tri but es(myShape) | gxDirect Shape);

/* lock and exam ne or change the shape */
GXLockShape(nyShape) ;
shapeStruct = (gxPat hs*) GXCGet ShapeSt ruct ur e(myShape, &size);

/* unlock the shape as soon as access no | onger needed */
GXUnl ockShape(myShape) ;
/* notify QuickDraw GX of a change only if geonetry changed */
GXChangedShape(nyShape) ;

Using Shape Objects

CHAPTER 2

Shape Objects

IMPORTANT
Memory-handling complications can occur with locked objects. Locking
an object fragments the QuickDraw GX heap, which can result in lower
performance. Furthermore, if a fragmented-memory condition occurs
during a call, QuickDraw GX may unlock all objects and restart the call.
Therefore, be careful about performing memory-intensive operations
while there are locked objects in QuickDraw GX memory; they may
become unlocked and be moved. s

The GXLockShape function is described on page 2-80. The GXGet ShapeSt r uct ur e
function is described on page 2-82. The GXUnl ock Shape function is described on
page 2-81. The GXChangedShape function is described on page 2-83.

Drawing and Hit-Testing Shapes

Drawing and hit-testing are common actions you may perform with any kind of shape.
The most basic QuickDraw GX drawing function is GXDr awShape, although there are
other functions for drawing specific types of shapes. Only GXDr awShape is described
here.

The functions you use for hit-testing are GXHi t Test Shape, GXHi t Test Pi ct ur e,
GXHi t Test Layout , and GXHi t Test Devi ce. Only GXHi t Test Shape is described
here.

Drawing Shapes

Drawing a shape is the logical conclusion to creating it and setting its properties. Drawing
occurs in the view port or view ports specified in the transform object associated with the

shape. Drawing takes into account all the information in the shape’s transform, ink, style,

and shape objects.

What it means to draw a specific type of shape and how changing the information in a
shape alters its drawn appearance is described, along with each type of shape, in Inside
Macintosh: QuickDraw GX Graphics and Inside Macintosh: QuickDraw GX Typography.
Furthermore, for many shape types, QuickDraw GX provides specialized drawing
functions, such as GXDr awLi ne and GXDr aw@ yphs—described in those books—that
allow you to create, draw, and dispose of an object with a single call.

At its most basic, though, creating and drawing a shape is as simple as the following
listing for creating and drawing a path shape shows:

gxShape nyShape; /* allocate the variable */
myShape = GXNewShape(gxPat hType); /* create the shape */

/* set its properties */

GXDr awShape(ny Shape) ; [* draw it */

The GXDr awShape function is described on page 2-84.

Using Shape Objects 2-35

2-36

CHAPTER 2

Shape Objects

Hit-Testing Shapes

Hit-testing converts a coordinate location to a shape-geometry location. It can give you
feedback on user actions involving a shape you have drawn. For example, you use
hit-testing to select a shape the user has clicked the mouse over, to select a point within a
shape, or to position the insertion point and draw the caret within the text of a
typographic shape.

QuickDraw GX provides a general hit-testing function for all shapes, plus specialized
functions for hit-testing picture shapes, layout shapes, and pixels on a display device:

n GXHi t Test Shape tests a point in local space against a shape’s geometry. The test
tells you which part of a shape’s geometry—out of a specified set of parts—
corresponds (within the tolerance) to the point you are testing with. The
GXHi t Test Shape function is described in this chapter.

n GXHi t Test Pi ct ur e tests a point in local space against a picture shape. The test tells
you which part of which shape within the picture corresponds (within the tolerance)
to the point you are testing against (subject to the constraints on shape overlap and
hierarchy that you provide). The GXHi t Test Pi ct ur e function is described in the
picture shapes chapter of Inside Macintosh: QuickDraw GX Graphics.

n GXHi t Test Layout tests a point in local space against the text of a layout shape. The
test tells you, along with other information, which character in the text corresponds to
the point. Note that you use GXHi t Test Shape to test typographic shapes other than
layout shapes, and you can use it for layout shapes also; it gives different kinds of
information from GXHi t Test Layout . The GXHi t Test Layout function is described
in the layout carets, highlighting, and hit-testing chapter of Inside Macintosh:
QuickDraw GX Typography.

n GXHi t Test Devi ce tests a pixel (a point in device space) against a shape’s geometry.
The test tells you whether or not any part of the shape’s geometry is within a certain
distance of the pixel. The GXHi t Test Devi ce function is described in the chapter
“View-Related Objects” in this book.

When you hit-test a shape with GXHi t Test Shape, you must first set up the shape parts
mask and the tolerance, two components of the hit-test parameters property of a shape’s
transform object. You pass that information to GXHi t Test Shape, and QuickDraw GX
returns information in the hit-test info structure.

The tolerance is a distance (in units of geometry space), and it defines a circular area
centered on the hit point. Any part that falls within that area is considered to correspond
to the hit point.

Shape Parts

When you use GXHi t Test Shape, it returns one or more shape parts, which specify the
parts of the shape’s geometry corresponding to the hit point. The parts of a shape’s
geometry for which you can hit-test depend on the kind of shape. The shape parts that
you can test for are defined in the gxShapePar t s enumeration. Before calling

GXHi t Test Shape, you set up, in the transform object, a mask of all the shape parts that
you want to test for. GXHi t Test Shape can test only for parts that you specify in the
shape parts mask. These are the possible values to put into the mask:

Using Shape Objects

CHAPTER 2

Shape Objects

enum gxShapeParts {

[* (in order of evaluation) */

gxNoPar t 0,
gxBoundsPar t = 0x0001,
gxCeonet ryPart 0x0002,
gxPenPar t = 0x0004,
gxCor ner Poi nt Par t = 0x0008,
gxCont r ol Poi nt Part 0x0010,
gxEdgePart = 0x0020,
gxJoi nPart = 0x0040,
gxSt art CapPart = 0x0080,
gxEndCapPar t = 0x0100,
gxDashPar t 0x0200,
gxPatt er nPart = 0x0400,
gxd yphBoundsPar t = gxJoi nPart,

gxd yphFirst Part
gxd yphLast Part
gxSi deBeari ngPart
gxAnyPar t

typedef |ong gxShapePart;

gxSt art CapPart,
gxEndCapPart,

= gxDashPart,

= gxBoundsPart | gxCeonetryPart |
gxPenPart | gxCornerPointPart | gxControl PointPart |
gxEdgePart
gxEndCapPar t

gxJoi nPart | gxStartCapPart |
| gxDashPart | gxPatternPart

These values are described in more detail in the chapter “Transform Objects” in this
book. Note that values specifying join, cap, and dash parts in geometric shapes are used
in typographic shapes to specify various glyph parts. Note also that you can specify no
parts or all parts in the mask. You decide which shape parts are appropriate for your

needs.

Hit-Test Info Structure

When you call GXHi t Test Shape, it returns some information as a function result and
other information in a hit-test info structure. The first three fields of the hit-test info
structure give all the relevant information about the hit:

struct gxH tTestlnfo {
gxShapePar t what ;

| ong i ndex;

Fi xed di st ance;

gxShape whi ch;

gxShape cont ai ner Pi ct ur e;
| ong cont ai ner | ndex;

| ong t ot al | ndex;

b

Using Shape Objects 2-37

CHAPTER 2

Shape Objects

The what field tells you which shape parts out of those specified in your mask were hit,
if any. It is identical to the GXHi t Test Shape function result.

The i ndex field tells you the index number of the point in the geometry that is closest to
the hit point.

The di st ance field tells you how far, in geometry coordinates, the hit point is from the
first shape part that was hit. GXHi t Test Shape analyzes shape parts in a specific order—
the order listed in the gxShapePar t s enumeration. By carefully specifying shape parts,
you can use GXHi t Test Shape to obtain specific distance information for a given part.
For example, if you are hit-testing a line like that shown in Figure 2-5 on page 2-21, you
can determine the distance from the hit point to the pen if you exclude both bounds and
geometry from the test.

The remaining fields in the hit-test info structure are not used by GXHi t Test Shape.

Hit-Testing Example

Listing 2-2 uses hit-testing to determine whether a point (aPoi nt) is contained in the
geometry that represents a shape (gShape). The code sets up a shape-part mask (mask)
specifying that only the geometry it to be tested for, and calls the GXSet ShapeHi t Test
function to assign the mask, plus a tolerance of zero, to the shape’s transform.

Listing 2-2 Hit-testing a line

2-38

gxShape poi nt Shape;
gxPoi nt aPoint = {ff(50), ff(51)};
gxShapePar t mask = gxCeonetryPart;

gxShapePar t resul t Mask;
gxH t TestInfo resultlnfo;

poi nt Shape = GXNewPoi nt (&aPoi nt) ;

GXSet ShapeHi t Test (gShape, mask, ff(0));

resul t Mask = GXHit Test Shape(gShape, &aPoint, & esultlnfo);
GXDi sposeShape(poi nt Shape) ;

The function result from GXHi t Test Shape tells which part of the shape was hit.
Because only one part (gxGeormret r yPar t) is specified and tolerance is 0, a successful
hit is possible only if aPoi nt is actually within the geometry of the shape.

In the event of a successful hit, GXHi t Test Shape also fills in a gxHi t TestI nfo
structure (r esul t | nf o parameter) that contains additional information about the hit.

The gxHi t Test | nf o structure is described on page 2-50. The GXHi t Test Shape
function is described on page 2-86. Because the shape parts to test against are specified
in a shape’s transform object, the list of defined QuickDraw GX shape parts, and the
GXSet ShapeHi t Test function, are described in the chapter “Transform Objects” in
this book.

Using Shape Objects

CHAPTER 2

Shape Objects

Flattening and Unflattening Shapes

In order to save a QuickDraw GX shape (shape object plus its referenced objects) to
external storage, transmit it across a network, or save it to the Clipboard, you must
convert it into an equivalent flattened, rather than object-based, description. The
flattened information is a compressed and stream-based description with a public
format so that applications can share the data and reconstruct the objects.

You can use the GXFI at t enShape function to convert any shape (even a picture shape,
which contains other shapes) into its flattened form. You can then store the data, examine
it, or manipulate it as you wish; the data follows the format defined in the stream format
chapter of Inside Macintosh: QuickDraw GX Environment and Utilities.

To reconstruct a shape’s object-based description from its flattened stream, you can
manually create and initialize a set of objects based on the information in the stream,
but if QuickDraw GX is available, it is far easier and more efficient to use the

GXUnf | at t enShape function to do it automatically.

To use the flattening or unflattening functions, you first allocate a structure called a
spool block. The spool block contains needed information and points to a buffer that
holds the flattened data. In the spool block, you are required to provide a pointer to a
callback spool function that you provide. The spool function reads the stream data into
the buffer or writes it to a file from the buffer.

Listing 2-3 is a library function that flattens a shape and returns a handle to the flattened
data. It uses a spool-block structure (spool) embedded within a library-defined
structure (bl ock) of type User Spool . The function sets up the spool-block structure,
including placing into it a pointer to the spool function. It specifies ni | for the buffer
pointer and 0 for the buffer size, in which case QuickDraw GX allocates a default buffer
for the task. When it calls GXFI at t enShape, the function sets two flatten flags, so that
both a list of fonts and a list of all the individual glyphs used is attached to the flattened
shape.

Listing 2-3 Flattening a shape

Handl e ShapeToHandl e(gxShape source)

{
User Spool bl ock;
bl ock. spool . spool Procedure = (long (*) (gxSpool Command,
struct gxSpool Bl ock *)) Handl eSpool Proc;
bl ock. spool . buffer = nil;
bl ock. spool . buffer Si ze = 0;
GXFl at t enShape(sour ce,
gxFontLi stFl atten | gxFontd yphsFl atten,
&bl ock. spool) ;
return bl ock. dat a;
}

Using Shape Objects 2-39

CHAPTER 2

Shape Objects

Listing 2-4 is a library function that unflattens a shape from data referenced by a handle
(sour ce). Like Listing 2-3, it sets up a spool-block structure and places into it a pointer
to the spool function. When it calls GXUnf | at t enShape, the function specifies the size
of the flattened data and the list of view ports to be assigned to the unflattened shape’s
transform object.

Listing 2-4 Unflattening a shape

2-40

gxShape Handl eToShape(Handl e source, |ong count,
const gxViewPort portList[])

{
User Spool bl ock;
bl ock. spool . spool Procedure = (long (*) (gxSpool Command,
struct gxSpool Bl ock *)) Handl eSpool Proc;
bl ock. spool . buffer = nil;
bl ock. spool . bufferSi ze = 0;
bl ock. data = source;
return GXUnfl att enShape(&bl ock. spool, count, portList);
}

Your flattening/unflattening spool function responds to five commands from
QuickDraw GX (described on page 2-92). In most cases it simply reads or writes a buffer
of data at a time during the flattening or unflattening operation, and then closes up
when the operation is finished. However, for special purposes you can write a spool
function that parses the stream of data by reading information in the spool block and
manipulating the size of the buffer that QuickDraw GX can read from or write into.

Listing 2-5 is a partial listing that shows the overall structure of a typical spool function
for flattening and unflattening. This function, however, parses the stream as it is being
flattened or unflattened. In the case of writing (flattening), the listing shows that the
function sets the buffer size to equal the current operation size so that no more than a
single operation can be flattened at once. Therefore, each time it is called, the spool file
can read the fields of the spool block to determine the kind of information the current
operation consists of and decide how large to make the buffer for the next write.

Using Shape Objects

CHAPTER 2

Shape Objects

Listing 2-5 A spool function that parses shape data

static | ong MyParseSpool Proc(spool Command conmand,
gxSpool Bl ock *bl ock)

{
switch (command) ({
case openReadSpool :
/* spool function prepares for unflattening */
br eak;
case openWi teSpool :
/* spool function prepares for flattening */
br eak;
case cl oseSpool :
[* spool function closes up when finished */
br eak;
case readSpool :
/* spool function parses and reads for unflattening */
br eak;
case witeSpool:
/* see if current operation < 32K (real buffer size) */
i f (bl ock->spool.operationSize < 32768)
/* set buffer size to operation size */
bl ock- >spool . buffer Si ze = bl ock->spool . operationSi ze;
el se
bl ock- >spool . bufferSi ze = 32000; /* don't overflow */
/*
Spool function exam nes spool block, parses data,
wites flatttened data to disk
*/
br eak;
}
}

Using Shape Objects 2-41

CHAPTER 2

Shape Objects

The application sets up the conditions for this spool function by first allocating a 32 KB
buffer, but setting the si ze field of the spool block to 1. This causes GXFI at t enShape
orGXUnf | at t enShape to read only a single byte into the buffer the first time through,
after which the spool function can analyze that byte and proceed with parsing. (For
simple reading or writing, your application typically sets the si ze field to the actual size
of the buffer—32 KB in this case—and the spool function does not parse the stream at all).

The GXFI at t enShape function is described on page 2-88. The GXUnf | at t enShape
function is described on page 2-90. The spool block structure is described on page 2-49.
The application-defined spool function is described on page 2-91. The flatten flags are
described on page 2-48.

Shape-Related Functions Described Elsewhere

Table 2-6 lists every QuickDraw GX function whose name contains the word Shape, but
whose description is not found in this chapter. For each book and chapter, the table lists
the shape-related functions described in that chapter. Table 2-6 is intended to help you
locate the descriptions of functions you may have been searching for in this chapter.

Table 2-6 Shape-related functions described elsewhere

Book and chapter Shape functions described
Inside Macintosh: QuickDraw GX Objects [this book]

“Ink Objects” GXGet ShapeCaol or
GXSet ShapeCol or
GXGet Shapel nkAttri butes
GXSet Shapel nkAttri butes
GXGet ShapeTr ansf er
GXSet ShapeTr ansf er

“Transform Objects” GXGet Shaped i p
GXSet Shaped i p
GXGet ShapeHi t Test
GXSet ShapeHi t Test
GXGet ShapeMappi ng
GXSet ShapeMappi ng
GXGet ShapeVi ewPort s
GXSet ShapeVi ewPort s
GXMapShape
GXMoveShape
GXMoveShapeTo
GXRot at eShape
GXScal eShape
GXSkewshape

2-42 Shape-Related Functions Described Elsewhere

CHAPTER 2

Shape Objects

Table 2-6 Shape-related functions described elsewhere (continued)
Book and chapter Shape functions described
“View-Related Objects” GXGet ShapeDevi ceAr ea

GXGet ShapeDevi ceBounds
GXGet ShapeDevi ceCol ors
GXGet Shaped obal Bounds
GXGet Shaped obal Vi ewPort s
GXGet Shaped obal Vi ewDevi ces
GXGet ShapelLocal Bounds

Inside Macintosh: QuickDraw GX Graphics

“Geometric Shapes” GXCount ShapeCont our s
GXCount ShapePoi nt s
GXGet ShapeFi | |
GXSet ShapeFi | |
GXGet Shapel ndex
GXGet ShapeParts
GXSet ShapePart s
GXGet ShapePoi nt s
GXSet ShapePoi nt s
GXNewShapeVect or
GXSet ShapeVect or

“Geometric Styles” GXGet ShapeCap
GXSet ShapeCap
GXGet ShapeCur veErr or
GXSet ShapeCur veError
GXGet ShapeDash
GXSet ShapeDash
GXGet ShapeDashPosi ti ons
GXGet ShapeJdoi n
GXSet ShapeJoi n
GXGet ShapePat t ern
GXSet ShapePat t ern
GXGet ShapePat t er nPosi ti ons
GXGet ShapePen
GXSet ShapePen
GXGet ShapeStyl eAttri butes
GXSet ShapeStyl eAttri butes

continued

Shape-Related Functions Described Elsewhere 2-43

2-44

CHAPTER 2

Shape Objects

Table 2-6 Shape-related functions described elsewhere (continued)
Book and chapter Shape functions described
“Geometric Operations” GXCont ai nsBoundsShape

GXCont ai nsShape

GXDi f f er enceShape
GXExcl udeShape

GXGet ShapeAr ea

GXGet ShapeBounds
GXSet ShapeBounds
GXGet ShapeCent er
GXGet ShapeDi rection
GXGet ShapelLengt h

GXl nset Shape

GXI nt er sect Shape

GXl nvert Shape
GXReduceShape
GXRever seDi f f er enceShape
GXRever seShape
GXShapelLengt hToPoi nt
GXSi npl i f yShape
GXTouchesBoundsShape
GXTouchesShape

GXUni onShape

“Bitmap Shapes” GXGet ShapePi xel
GXSet ShapePi xel

Inside Macintosh: QuickDraw GX Typography

“Typographic Styles” GXGet ShapeDevi ceFont Metri cs
GXGet ShapeEncodi ng
GXSet ShapeEncodi ng
GXGet ShapeFace
GXSet ShapeFace
GXGet ShapeFont
GXSet ShapeFont
GXGet ShapeText Si ze
GXSet ShapeText Si ze
GXGet ShapeJustification
GXSet ShapeJusti fication
GXGet ShapeFont Metri cs
GXGet ShapeFont Vari ati ons
GXSet ShapeFont Vari ati ons
GXGet ShapeFont Vari ati onSuite
GXGet ShapelLocal Font Metri cs
GXGet ShapeText Attri but es
GXSet ShapeText Attri but es
GXGet ShapeTypogr aphi cBounds

Shape-Related Functions Described Elsewhere

CHAPTER 2

Shape Objects

Table 2-6 Shape-related functions described elsewhere (continued)
Book and chapter Shape functions described
“Layout Shapes” GXGet Layout ShapePart s
GXSet Layout ShapePart s
“Layout Styles” GXCet ShapeRunControl s

GXSet ShapeRunControl s
GXGet ShapeRunFeat ur es
GXSet ShapeRunFeat ur es
GXGet ShapeRund yphSubsti tuti ons
GXSet ShapeRund yphSubstituti ons
GXCet ShapeRunKer ni ngAdj ust ment s
GXSet ShapeRunKer ni ngAdj ust ment s

“Layout Line Control” GXGet ShapeRund yphJust Overri des
GXSet ShapeRund yphJust Overri des
GXGet ShapeRunPriorityJust Overri de
GXSet ShapeRunPriorityJust Overri de

Inside Macintosh: QuickDraw GX Environment and Ultilities

“QuickDraw GX Debugging” GXGet ShapeDr awkr r or
GXVal i dat eShape

Shape Objects Reference

This section provides reference information about the data structures and functions that
allow you to create and manipulate shape objects and alter their properties. It includes

n type definitions of the data types, including enumerations, that are specific to shape
objects

n descriptions of the QuickDraw GX functions that operate on shape objects in general,
independent of the type of shape involved

n adescription of an application-defined function used for flattening and unflattening
shapes

Constants and Data Types

This section describes the constants and the data types that you use to obtain and
provide information about shape objects.

Shape Objects Reference 2-45

CHAPTER 2

Shape Objects

The Shape Object

Shape Type

QuickDraw GX provides you with access to an individual shape object through a
gxShape reference:

typedef struct gxPrivateShapeRecord *gxShape;

In this type definition, gxShape is a type-checked reference, not an actual pointer to any
defined structure. The contents of the shape object are private.

A shape object’s shape type specifies what type of geometry the shape object has.
Constants for all shape types are defined in the gxShapeTypes enumeration:

enum gxShapeTypes {
gxEnptyType = 1,
gxPoi nt Type,
gxLi neType,
gxCurveType
gxRect angl eType,
gxPol ygonType,
gxPat hType,
gxBi t mapType
gxText Type,
gxa yphType,
gxLayout Type,
gxFul | Type,
gxPi ctureType

s
typedef | ong gxShapeType;

The individual shape types are described further in Table 2-1 on page 2-9.

Shape Fill
Each shape object has a shape fill property. The shape fill specifies how QuickDraw GX
interprets the geometry of the shape: how the shape is drawn, how the shape is
hit-tested, and how certain geometric operations, like the intersection operation,
interpret the shape.

2-46 Shape Objects Reference

CHAPTER 2

Shape Objects

Constants for all shape fills are defined in the gxShapeFi | | s enumeration:

enum gxShapeFil s {

gxNoFi I 1, /* shape not drawn */

gxQpenFraneFi | |, /* franmed, one edge |left open */
gxFrameFi | | = gxOpenFrameFil |,

gxC osedFraneFil |, /* framed, closed conpletely */

gxHol | owFi | | = gxd osedFraneFi | |,

gxEvenOddFi | I, /[* filled using even-odd rule */

gxSol i dFi || = gxEBEvenOddFi I |,

gxW ndi ngFi | I, [* filled using w nding-nunber rule */
gxl nver seEvenQddFi | |, /[* filled inverse of even-odd rule */

gxl nverseSol i dFi | | gxl nver seEvenCddFi I 1,
gxl nverseFil | gxl nver seEvenCddFi | |,
gxl nver seW ndi ngFi | | /[* filled inverse of w nding-nunmber */

b
typedef |ong gxShapeFill;

The individual shape fills are described further in Table 2-2 on page 2-13.

Shape Attributes

Each shape object has a set of attributes. Shape attributes are a group of flags that
modify the behavior of the shape object. Constants for all shape attributes are defined in
the gxShapeAt t ri but es enumeration:

enum gxShapeAttri butes {

gxNoAttri butes, /* no attributes set */
gxDi r ect Shape = 0x0001, [* prefer GX heap */
gxRenot eShape = 0x0002, /* prefer accel. nenory */
gxCachedShape = 0x0004, /* optimze drawi ng */
gxLockedShape = 0x0008, /* lock shape geometry */
gxG oupShape = 0x0010, /* treat as single shape */
gxMapTr ansf or nShape = 0x0020, [* alter transform*/
gxUni quel t ens Shape = 0x0040, /* copy picture itens */
gxl gnor ePl at f or nShape = 0x0080, /* use gl yph codes */
gxNoMetri csGri dShape = 0x0100, /[* don’t use hinting */
gxDi skShape = 0x0200, /[* unload this first */
gxMenor yShape = 0x0400 /* unload this last */

b
typedef | ong gxShapeAttri bute;

The individual shape attributes are described further in Table 2-4 on page 2-16.

Shape Objects Reference 2-47

CHAPTER 2

Shape Objects

Flatten Flags

2-48

The flatten flags are used in a parameter to the GXFI at t enShape function, to control
the amount of font and bitmap information to include in a flattened shape. The flatten
flags are defined in the gxFl at t enFl ags enumeration:

enum gxFl attenFl ags {
gxFont Li st Fl att en = 0x01,

gxFont d yphsFl atten = 0x02,
gxFont Vari ati onsFl atten = 0x04,
gxBi t mapAl i asFl atten = 0x08

H
typedef |ong gxFl attenFl ag;

Constant descriptions

gxFont Li st Fl att en
Instructs the GXFI at t enShape function to attach to the flattened
shape a tag object containing a list of the fonts referenced in the
shape.

gxFont d yphsFl atten
Instructs the GXFI at t enShape function to attach to the flattened
shape a tag object containing a list of the specific glyphs used from
each font referenced by the shape.

gxFont Vari ati onsFl atten
Instructs the GXFI at t enShape function to attach to the flattened
shape a tag object containing variation-axis coordinates describing
all font variations used by the flattened shape.

gxBi t mapAl i asFl atten
Instructs the GXFI at t enShape function to include with the
flattened shape all image data from any bitmap shapes that are
referenced by the shape. If this flag is not set, image data from
bitmap shapes whose image data is disk-based is not included in
the flattened shape, although the image data is not lost because a
tag object specifying the file holding the image data is flattened
along with the shape.

For more information on flattening shapes, see “Flattening and Unflattening Shapes”
beginning on page 2-39. The GXFI at t enShape function is described on page 2-88.

For information on font variations, see the font objects chapter of Inside Macintosh:
QuickDraw GX Typography. For information on bitmap image data, see the bitmap shapes
chapter of Inside Macintosh: QuickDraw GX Graphics.

Shape Objects Reference

CHAPTER 2

Shape Objects

The Spool Block

The spool block structure is set up by an application before calling GXFI at t enShape or
GXUnf | at t enShape. Both the application and QuickDraw GX use and place values

into the spool block.

struct gxSpool Bl ock {

gxSpool ProcPtr spool Procedur e;
voi d *puf fer;

| ong bufferSi ze;

| ong count;

| ong operationSi ze;

| ong

operationOfset;

gxG aphi csQpcode | ast TypeQpcode;
gxG aphi csOpcode current Operati on;
gxG aphi csQpcode current Oper and;
unsi gned char conpr essed;

b

Field descriptions

spool Procedur e A pointer to an application-defined function that either saves

buf fer

buf f er Si ze
count

operationSi ze

the flattened data or supplies the data for unflattening. The
gxSpool ProcPt r type is defined as follows:

typedef |ong (*gxSpool ProcPtr)
(gxSpool Conmand conmand,
struct gxSpool Bl ock *bl ock);

The format for the spool function is described on page 2-91.

A pointer to a buffer that holds the flattened data, after flattening or
before unflattening. In either case the buffer is allocated by the
application.

The size of the buffer. (Set by the application.)

The number of bytes of data read into or out of the buffer. (Set by
QuickDraw GX.)

The size of the current operation in the flattened stream. It is equal
to the size field of the operand of the current operation. For
flattening, it is the amount of data that QuickDraw GX will place
into the buffer to complete the current operation; for unflattening,
it is the amount of information that the spool function must

place in the buffer to complete the current operation. (Set by
QuickDraw GX.)

Shape Objects Reference 2-49

CHAPTER 2

Shape Objects

operati onOf f set
For flattening, the offset in bytes from the beginning of the current
operation to the end of the data currently in the buffer. For
unflattening, the offset in bytes from the beginning of the current
operation to the start of the data that needs to be placed in the
buffer. It is the amount of the current operation that has so far been
flattened or is about to be unflattened. (Set by QuickDraw GX.)

| ast TypeOpcode
The type of object currently being flattened or unflattened. It is one
of the constants defined in the gxGr aphi csNewOpcode
enumeration. (Set by QuickDraw GX.)

current Operation
The type of operation currently being flattened or unflattened. It is
one of the constants defined in the gxG- aphi csQOper at i onOpcode
enumeration. (Set by QuickDraw GX.)

current Operand The type of data (within the current object) being flattened or
unflattened. It is one of the constants defined in one of the data
opcode enumerations, such as the gxShapeDat aOpcode
enumeration or the gx St yl eDat aOpcode enumeration. (Set
by QuickDraw GX.)

compr essed The type of compression applied to the current item. (Set by
QuickDraw GX.)

General information about flattening shapes is found in the section “Flattening and
Unflattening Shapes” beginning on page 2-39. The GXFI at t enShape function is
described on page 2-88. The GXUnf | at t enShape function is described on page 2-90.
The QuickDraw GX stream format, including the opcodes it uses and the types of
compression it supports, is described in the stream format chapter of Inside Macintosh:
QuickDraw GX Environment and Utilities.

The Hit-Test Info Structure

The hit-test info structure is a structure in which both the GXHi t Test Shape and
GXHi t Test Pi ct ur e functions return information. GXHi t Test Shape uses only
the first three fields; GXHi t Test Pi ct ur e uses all seven fields.

struct gxH tTestlnfo {
gxShapePar t what ;

| ong i ndex;

Fi xed di st ance;

gxShape whi ch;

gxShape cont ai ner Pi ct ur e;
| ong cont ai ner | ndex;

| ong t ot al | ndex;

2-50 Shape Objects Reference

CHAPTER 2

Shape Objects

Field descriptions

what The parts of the shape that were hit, if any. QuickDraw GX returns
in this field a mask denoting all shape parts (out of those specified
for the hit-test) that are within the tolerance of the hit-test from
the hit point. Shape parts are defined in the gxShapePart s
enumeration; the tolerance and the subset of shape parts to test for
make up the hit-test parameters. All are described in the chapter
“Transform Objects” in this book.

i ndex The index of the nearest point in the geometry to the hit point.
Every point in a shape’s geometry has an index number (indexes
start at 1).

di st ance The distance in geometry units from the hit point to the closest

point on the shape part that was hit. (If no part was hit, this value is
undefined.) If more than one shape part was hit, this is the distance
to the first shape part encountered that is within the tolerance of the
hit point. The order in which shape parts are examined during
hit-testing is defined by the gxShapePar t s enumeration,
described in the chapter “Transform Objects” in this book.
whi ch A reference to the specific shape that was hit. (Used only by
GXHi t Test Pi cture.)
cont ai nerPi cture
A reference to the picture shape that immediately contains the
specific shape that was hit. Note that this may be a picture shape
contained at some level within the picture shape specified in the call
to GXHi t Test Pi ct ure. (Used only by GXHi t Test Pi ct ure.)
cont ai ner |l ndex The index number—within the immediately containing shape—of
the specific shape that was hit. (Used only by GXHi t Test Pi ct ure.)
t ot al | ndex The index number—within the picture shape specified in the call to
GXHi t Test Pi ct ur e—of the specific shape that was hit. (Used
only by GXHi t Test Pi ct ure.)

The GXHi t Test Shape function is described on page 2-86. The GXHi t Test Pi ct ure
function is described in the picture shapes chapter of Inside Macintosh: QuickDraw GX
Graphics.

Functions

This section describes the QuickDraw GX functions you can use to
n create and manipulate a shape object

n manipulate the properties of a shape object, including converting a shape from one
type to another

n directly manipulate a shape’s geometry
n flatten and unflatten a shape

n draw and hit-test a shape

Shape Objects Reference 2-51

CHAPTER 2

Shape Objects

Note

Shape-related QuickDraw GX functions not described in this section are
listed and cross-referenced in Table 2-6 on page 2-42. u

Creating and Manipulating Shape Objects

The functions described in this section allow you to work with shapes as objects in
memory. With the functions in this section, you can

n determine the default shape object

n create and dispose of a shape object

n find the size of a shape object in memory
n copy, clone, and compare shape objects

n cache a shape object

GXGetDefaultShape

You can use the GXGet Def aul t Shape function to obtain a reference to the default
shape object for a particular shape type.

gxShape GXGet Def aul t Shape(gxShapeType aType);

aType A shape type that specifies which default shape object to return.

function result A reference to the default shape for the shape type specified by the aType
parameter.

DESCRIPTION

Note that the return value of this function is a reference to the actual default shape
object, not a copy of it. If you edit the shape returned by this function, you alter the
actual default shape object that the system uses when creating new shape objects.

You can also alter a default shape object by using the GXSet Def aul t Shape function.

ERRORS, WARNINGS, AND NOTICES
Errors

out _of nenory
illegal type for_shape (debugging version)

2-52 Shape Objects Reference

SEE ALSO

CHAPTER 2

Shape Objects

Default shape objects are discussed in the section “Default Shapes” beginning on
page 2-18.

The GXSet Def aul t Shape function is described in the next section.

To create a copy of a default shape object, use the GXNewShape function, described on
page 2-54.

GXSetDefaultShape

DESCRIPTION

You can use the GXSet Def aul t Shape function to replace the default shape object of a
particular shape type.

voi d GXSet Def aul t Shape(gxShape target);

t ar get A reference to the new default shape object.

The GXSet Def aul t Shape function replaces an existing default shape with the shape
specified by thet ar get parameter. The shape type of the target shape determines which
default shape is replaced. This function disposes of the old default shape and increments
the owner count of the target shape.

You can use the GXSet Def aul t Shape function to replace the style, ink, or transform of
one of the default shapes by specifying a target shape with a different style, ink, or
transform than the old default shape. When QuickDraw GX creates new shapes of the
target shape’s shape type, the new shape will have the same ink, style, and transform as
the target shape.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors

out _of _nenory

shape_is_nil

illegal type for_shape (debugging version)

Default shape objects are discussed in the section “Default Shapes” beginning on
page 2-18.

To create a copy of a default shape object, use the GXNewShape function, described in
the next section.

Shape Objects Reference 2-53

CHAPTER 2

Shape Objects

GXNewShape

DESCRIPTION

You can use the GXNewShape function to create a new shape of a specified shape type.
gxShape GXNewShape(gxShapeType aType);

aType The type of shape object to create.

function result A reference to a newly created copy of the default shape object of the type
specified by the aType parameter.

The GXNewShape function creates a copy of the default shape object of the type specified
by the aType parameter and gives it an owner count of 1.

Although this function creates a copy of the default shape, it does not create a copy of
the default shape’s style, ink, or transform. The new shape returned by this function
contains references to same style, ink, and transform as the default shape. You can
change the style, ink, and transform of the shape by using the functions

GXSet ShapeSt yl e, GXSet Shapel nk, and GXSet ShapeTr ansf orm

You can use this function by itself to create empty and full shapes. For other shape

types, you can use this function to create a shape and then you can customize the shape’s
geometry by using additional functions, such as GXSet ShapeGeon®t r y or one of the
shape-specific functions such as GXSet Poi nt , GXSet Li ne, GXSet Pat hPart s, or
GXSet d yphParts.

SPECIAL CONSIDERATIONS

If no error occurs, the GXNewShape function creates a shape object; you are responsible
for disposing of that object when you no longer need it.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

2-54

Errors
out _of _nenory
illegal type for_shape (debugging version)

Shape types, including empty and full shapes, are described in the section “Shape Type”
beginning on page 2-9.

Default shape objects are discussed in the section “Default Shapes” beginning on
page 2-18. To examine a default shape, use the GXGet Def aul t Shape function,
described on page 2-52. To replace a default shape, use the GXSet Def aul t Shape
function, described on page 2-53.

Shape Objects Reference

CHAPTER 2

Shape Objects

The GXSet ShapeSt yl e function is described on page 2-70; the GXSet Shapel nk
function is described on page 2-71; the GXSet ShapeTr ansf or mfunction is described
on page 2-73.

The GXSet ShapeGeonet ry function is described on page 2-67. Other geometry-setting
functions are described in the shape-specific chapters of Inside Macintosh: QuickDraw GX
Graphics and Inside Macintosh: QuickDraw GX Typography.

For an example of the use of this function, see page 2-24.

GXDisposeShape

You can use the GXDi sposeShape function to release a reference to a shape.
voi d GXDi sposeShape(gxShape target);

t ar get A reference to the shape to dispose of.

DESCRIPTION
The GXDi sposeShape function decrements the owner count of the shape specified by
the t ar get parameter and releases any memory used by the shape if the owner count
goes to 0.

SPECIAL CONSIDERATIONS
You cannot dispose of a shape that is locked, either because the gxLockedShape
attribute is set or because GXLock Shape was called to lock the shape. Depending on
how the shape became locked, you must call GXSet ShapeAttri but es or
GXUnl ockShape before calling GXDi sposeShape on a locked shape.

ERRORS, WARNINGS, AND NOTICES

Errors

shape_is_nil

shape_access_not _al | owed (debugging version)
Warnings

cannot _di spose_def aul t _shape (debugging version)

Shape Objects Reference 2-55

SEE ALSO

CHAPTER 2

Shape Objects

Owner counts are discussed in the section “Copying, Comparing, and Cloning Shape
Objects” beginning on page 2-25, and in the section “Manipulating a Shape Object’s
Owner Count” beginning on page 2-31.

To examine the owner count of a shape, use the GXGet ShapeOaner s function,
described on page 2-76. To increment the owner count of a shape, use the
GXd oneShape function, described on page 2-61.

For an example of the use of this function, see page 2-24.

GXGetShapeSize

DESCRIPTION

You can use the GXGet ShapeSi ze function to determine the amount of memory
currently occupied by a shape object.

| ong GXGet ShapeSi ze(gxShape source);

source A reference to the shape object to determine the current memory size of.

function result The number of bytes of memory currently occupied by the shape
specified in the sour ce parameter.

The GXCGet ShapeSi ze function takes the source shape’s type, owner count, fill,
attributes, and geometry into consideration. It does not include the memory used by the
shape’s style, ink, transform, or tag objects, but does include the memory used by the
references to them.

The function result also includes the size of some shape properties private to
QuickDraw GX, but does not include the size of the shape cache or the size of any
memory overhead used to represent the shape.

This function returns only the memory size currently used by the shape. For example,
when a shape is unloaded to disk it uses less memory, and the result of this function
reflects its smaller size.

You can use the GXLoadShape function to load a shape into memory before determining
its size.

ERRORS, WARNINGS, AND NOTICES

2-56

Errors
shape_is_nil

Shape Objects Reference

CHAPTER 2

Shape Objects

SEE ALSO

To find the size of a shape’s cache, use the GXGet ShapeCacheSi ze function, described
on page 2-64.

The GXLoadShape function is described in the memory management chapter of Inside
Macintosh: QuickDraw GX Environment and Utilities.

For information about the memory size of graphic shapes, see the geometric shapes
chapter of Inside Macintosh: QuickDraw GX Graphics. For information about the memory
size of typographic shapes, see the typographic shapes chapter of Inside Macintosh:
QuickDraw GX Typography.

GXCopyToShape

The GXCopyToShape function copies the contents of one existing shape to another or
else it creates a new shape and copies the contents of an existing shape to it. You can, for
example, use this function to create a copy of a shape so that you can modify it without
changing the original shape.

gxShape GXCopyToShape(gxShape target, gxShape source);

t ar get A reference to the shape to copy the source shape’s contents into. If you
specify ni | for this parameter, the function creates a new shape.

source A reference to the shape to copy from.

function result A reference to the copy (that is, the target shape).

DESCRIPTION

The GXCopy ToShape function copies the properties and the geometry of the shape
specified by the sour ce parameter into the shape specified by the t ar get parameter. It
also copies the references to the source shape’s ink, style, transform, and tags; that is,
after the function returns, the target shape and the source shape share the same ink,
style, transform, and tag objects. This function increments by 1 the owner counts of the
source shape’s ink, style, transform, and tag objects, and disposes of the original ink,
style, transform, and tags of the target shape.

If you specify ni | for the t ar get parameter, this function creates a new shape to copy
the contents of the source shape into.

SPECIAL CONSIDERATIONS

If you specify ni | for the t ar get parameter and no error occurs, the GXCopy ToShape
function creates a new shape object; you are responsible for disposing of that object
when you no longer need it.

Shape Objects Reference 2-57

CHAPTER 2

Shape Objects

If the target shape is locked, the GXCopy ToShape function posts a
shape_access_not _al | owed error. If you try to copy a picture into a shape that is
contained in the picture, this function posts a pi ct ure_cannot _contai n_i tsel f
error. If you try to copy a shape of one type into the default shape of another type, this
function posts acannot _di spose_def aul t _shape warning.

This function does not copy the pixel image of bitmap shapes, the shapes contained
within picture shapes, or the set of style objects associated with glyph or layout shapes;
instead, it copies the references to them. To obtain a complete copy of a bitmap shape,
picture shape, glyph shape, or layout shape, use the GXCopyDeepToShape function.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors
out _of _nenory
shape_is_nil

shape_access_not _al | owed (debugging version)
pi cture_cannot _contain_itself (debugging version)
Warnings

cannot _di spose_def aul t _shape (debugging version)

To create a new shape that is a copy of the default shape instead of a copy of an existing
shape, use the GXNewShape function, described on page 2-54.

The GXCopyDeepToShape function copies the pixel image of bitmap shapes and the
shapes contained within picture shape; it is described in the next section. For more
information about copying bitmap shapes and picture shapes, see Inside Macintosh:
QuickDraw GX Graphics.

For information about copying typographic shapes, see the typographic shapes chapter
of Inside Macintosh: QuickDraw GX Typography.

GXCopyDeepToShape

2-58

The GXCopyDeepToShape function copies the contents of one existing shape to another,
or creates a new shape and copies the contents of an existing shape to it. For bitmap
shapes, picture shapes, glyph shapes, and layout shapes, GXCopyDeepToShape copies
more information than the GXCopy ToShape function does.

gxShape GXCopyDeepToShape(gxShape target, gxShape source);

t ar get A reference to the shape to copy the source shape’s contents to. If you
specify ni | for this parameter, this function creates a new shape.

source A reference to the shape to copy from.

function result A reference to the copy (that is, the target shape).

Shape Objects Reference

DESCRIPTION

CHAPTER 2

Shape Objects

The GXCopyDeepToShape function copies the properties and the geometry of the shape
specified by the sour ce parameter into the shape specified by the t ar get parameter. It
also copies the references to the source shape’s ink, style, transform, and tags; that is,
after the function returns, the target shape and the source shape share the same ink,
style, and transform objects. This function increments by 1 the owner counts of the
source shape’s ink, style, and transform, and disposes of the ink, style, and transform of
the target shape.

If you specify ni | for the t ar get parameter, this function creates a new shape to copy
the contents of the source shape into.

The GXCopyDeepToShape function is similar to the GXCopy ToShape function except
that it performs these additional operations:

n For bitmap shapes, GXCopyDeepToShape also copies the complete pixel image.

n For picture shapes, GXCopyDeepToShape also copies each shape in the source
picture. If the source picture contains other picture shapes, their shapes are also
recursively copied. The styles, inks, and transforms of the shapes within the picture
are not copied; instead the copied shapes share references to the styles, inks, and
transforms of the original shapes, and the GXCopy DeepToShape function increments
by 1 the owner counts of the original styles, inks, and transforms.

n For glyph and layout shapes, GXCopyDeepToShape also copies the set of style
objects referenced in the style list that is part of the shape’s geometry.

Because the GXCopyDeepToShape function copies the pixel image of bitmap shapes
and the shapes contained within picture shapes, you can use it to create a copy of a
bitmap or a picture, and then modify the copy without changing the original bitmap or
picture.

SPECIAL CONSIDERATIONS

If you specify ni | forthe t ar get parameter and no error occurs, the
GXCopyDeepToShape function creates a new shape object; you are responsible for
disposing of that object when you no longer need it.

If you try to copy a picture into a shape that is contained in the picture, the
GXCopyDeepToShape function posts a pi ct ure_cannot _contai n_i t sel f error. If
the target shape is locked, this function posts a shape_access_not _al | owed error.
If you try to copy a shape of one type into the default shape of another type, this
function posts a cannot _di spose_def aul t _shape warning.

Shape Objects Reference 2-59

CHAPTER 2

Shape Objects

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors
out _of _nenory
shape_is_nil

shape_access_not _al | owed (debugging version)
pi cture_cannot _contain_itself (debugging version)
Warnings

cannot _di spose_def aul t _shape (debugging version)

To create a new shape that is a copy of the default shape instead of a copy of an existing
shape, use the GXNewShape function, described on page 2-54.

To make a copy of an existing shape without copying all information for bitmap shapes,
picture shapes, glyph shape, and layout shapes, use the GXCopy ToShape function,
described in the previous section.

For information about copying typographic shapes, see the typographic shapes chapter
of Inside Macintosh: QuickDraw GX Typography.

GXEqualShape

DESCRIPTION

2-60

You can use the GXEqual Shape function to determine if two shapes are equal.
bool ean GXEqual Shape(gxShape one, gxShape two);

one A reference to one of the shapes to test for equality.
t wo A reference to the other shape to test for equality.

function result t r ue if the shape specified by the one parameter is equal to the shape
specified by the t wo parameter; f al se otherwise.

The GXEqual Shape function returns as its function result a Boolean value indicating
whether the two QuickDraw GX shapes are equal. For two QuickDraw GX shapes to be
equal, they must satisfy these requirements:

n They must have the same shape type and fill, but they do not need to have the same
attributes, owner count, or tag list.

n Their geometries must have identical values; geometries that are equivalent but not
identical are not considered to be equal. To eliminate false rejection of equivalent
geometries, call the GXSi npl i f yShape function to simplify both shapes before you
call GXEqual Shape.

Shape Objects Reference

CHAPTER 2

Shape Objects

ERRORS, WARNINGS, AND NOTICES

Errors
out _of _nenory
shape_is_nil

SEE ALSO

Equivalent geometries are described in the section “Copying, Comparing, and Cloning
Shape Objects” beginning on page 2-25. The GXSi npl i f yShape function is described in
the geometric shapes chapter of Inside Macintosh: QuickDraw GX Graphics.

To make a copy of a shape object that is equal by the criteria of this function, use the
GXCopy ToShape function, described on page 2-57.

GXCloneShape

You can use the GXCl oneShape function to clone a shape—that is, to add a reference to
it and increment its owner count.

gxShape GXC oneShape(gxShape source);

source A reference to the shape to clone.

function result A reference to the cloned shape.

DESCRIPTION

The GXA oneShape function returns a reference to the shape object specified by the
sour ce parameter and increments its owner count by 1. You typically use this function
when you want to create another reference to an existing shape rather than create a
distinct copy of the shape.

This function returns as its function result a reference to the shape—the same reference
you pass in as the sour ce parameter. Thus you can clone a shape with the following
line of C code:

aShapeCd one = GXO oneShape(aShape);
This line of code has almost the same affect as
aShaped one = aShape;

that is, it sets the aShapeC one variable to reference the same shape object as the
aShape variable. The difference is that GXCl oneShape also increments the shape’s
owner count.

Shape Objects Reference 2-61

CHAPTER 2

Shape Objects

ERRORS, WARNINGS, AND NOTICES

Errors
shape_is_nil

SEE ALSO
Owner counts are discussed in the section “Copying, Comparing, and Cloning Shape
Objects” beginning on page 2-25, and in the section “Manipulating a Shape Object’s
Owner Count” beginning on page 2-31.
To examine the owner count of a shape, use the GXGet ShapeOaner s function,
described on page 2-76. To decrement the owner count of a shape, use the
GXDi sposeShape function, described on page 2-55.

GXCacheShape
You can use the GXCacheShape function to prepare a shape for faster drawing.
voi d GXCacheShape(gxShape source);
source A reference to the shape to build the cache for.

DESCRIPTION

The GXCacheShape function prepares a shape for drawing by performing the
calculations necessary to draw the shape and storing them in a shape cache. Then, when
you draw the shape, time is saved because those calculations have already been made.

Although you do not need to call this function before drawing, you can use it to improve
the speed of drawing on the screen.

To build a shape cache, use this function. To delete a shape cache, use the
GXDi sposeShapeCache function. To determine the amount of memory occupied by a
shape cache, use the GXGet ShapeCacheSi ze function.

SPECIAL CONSIDERATIONS
If you set the gxCachedShape attribute for a shape, QuickDraw GX automatically
creates a cache and a compressed offscreen bitmap for the shape the first time it draws
the shape. Unlike calling GXCacheShape, setting the gxCachedShape attribute can
result in increased memory requirements for a shape.

2-62 Shape Objects Reference

CHAPTER 2

Shape Objects

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Because it performs preliminary calculations involved in drawing, the GXCacheShape
function can, in addition to the errors listed below, post any errors and warnings
associated with the GXDr awShape function. Therefore, GXCacheShape can post
font-related errors if it is caching text.

Errors

out _of nenory

shape_is_nil

nunber _of _contours_exceeds_i npl ementation_limnt
nunber _of _poi nts_exceeds_i npl enentation_limt
si ze_of pol ygon_exceeds_inplenentation_ limt
size_of path_exceeds_inplenentation limt
size_of bitmap_exceeds_inplementation limt

pattern_lattice_out_of_range (debugging version)
Warnings

character_substitution_took_place

graphi c_type_cannot _be dashed (debugging version)

unabl e to traverse_open_contour _that starts or_ends_off the curve
(debugging version)

unabl e_to_draw open_contour_that_starts_or_ends_off_the_curve
(debugging version)

face_override_style_font_must_match_style (debugging version)

Shape caches are discussed in the section “Caching Shape Objects” beginning on
page 2-27. The gxCachedShape attribute is described in that section and also in
Table 2-4 on page 2-16.

TheGXGet ShapeCacheSi zefunctionisdescribedonpage 2-64.TheGXDi sposeShapeCache
function is described in the next section.

For information about the caching and drawing typographic shapes, see the typographic
shapes chapter of Inside Macintosh: QuickDraw GX Typography.

GXDisposeShapeCache

You can use the GXDi sposeShapeCache function to release the memory occupied by a
shape’s cache.

voi d GXDi sposeShapeCache(gxShape target);

t ar get A reference to the shape whose cache is to be disposed of.

Shape Objects Reference 2-63

DESCRIPTION

CHAPTER 2

Shape Objects

The GXDi sposeShapeCache function immediately releases the memory allocated to
the cache of the shape indicated by the t ar get parameter. This function releases only
that memory allocated to the target shape’s cache. It does not release memory allocated
to any related system caches or globals.

To build a shape cache, use the GXCacheShape function. To delete a shape cache, use
this function. To determine the amount of memory occupied by a shape cache, use the
GXGet ShapeCacheSi ze function.

SPECIAL CONSIDERATIONS

You never need to call this function. QuickDraw GX disposes of caches automatically
when it needs additional memory.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors
shape_is_nil

Shape caches are discussed in the section “Caching Shape Objects” beginning on
page 2-27. The GXCacheShape function is described on page 2-62. The
GXGet ShapeCacheSi ze function is described in the next section.

GXGetShapeCacheSize

DESCRIPTION

2-64

You can use the GXGet ShapeCacheSi ze function to determine how much memory is
allocated to a shape and its cache.

| ong GXGet ShapeCacheSi ze(gxShape source);

source A reference to the shape object whose size in memory (including cache) is
to be determined.

function result The approximate number of bytes of memory currently occupied by the
shape and cache referenced in the sour ce parameter.

The GXGet ShapeCacheSi ze function, like the GXGet ShapeSi ze function, calculates
the size of the source shape in memory, and does not include the memory used by the
shape’s referenced tags, style, ink, or transform. However, unlike GXGet ShapeSi ze,
this function result also includes the size of the source shape’s current cache.

Shape Objects Reference

CHAPTER 2

Shape Objects

This function returns only the memory size currently being used by the shape and its
cache. If the shape is unloaded to disk, the result of this function indicates the smaller
amount of memory used. If the shape has no cache, the result of this function is simply
the memory size of the shape. You can use the GXLoadShape function to load a shape
into memory before calling this function, to get the full size of the shape and cache.

In the interest of speed, this function provides only an approximation of the memory
requirements of the shape’s cache. The actual memory requirements of the cache depend
on many factors, such as memory overhead, and would be less efficient to calculate. You
can use this function to determine an approximate size for the memory partition needed
for a set of shapes to be loaded and cached at the same time.

To determine the amount of memory occupied by a shape and its cache, use this
function. To build a shape cache, use the GXCacheShape function. To delete a shape
cache, use the GXDi sposeShapeCache function.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors
shape_is_nil

Shape caches are discussed in the section “Caching Shape Objects” beginning on
page 2-27. The GXCacheShape function is described on page 2-62. The
GXDi sposeShapeCache function is described in the previous section.

The GXLoadShape function is described in the memory management chapter of
Inside Macintosh: QuickDraw GX Environment and Ultilities.

To determine the amount of memory occupied by a shape without its cache, use the
GXCet ShapeSi ze function, described on page 2-56.

Manipulating Shape Object Properties

This section describes the functions available for manipulating the properties of shape
objects. The functions described in this section allow you to

n determine a shape object’s type, geometry, and fill

n determine the style, ink, and transform objects associated with a shape
n determine a shape object’s attributes

n reset certain shape properties to their default values

n find the owner count of a shape object

n determine the tag objects associated with a shape object

Functions for direct manipulation of the geometry property of a shape object are
described in the next section, “Directly Manipulating a Shape’s Geometry” beginning on
page 2-80.

Shape Objects Reference 2-65

CHAPTER 2

Shape Objects

GXGetShapeType

You can use the GXGet ShapeType function to determine the shape type of a shape
object.

gxShapeType GXGet ShapeType(gxShape source);

source A reference to the shape object to determine the shape type of.

function result The shape type of the source shape.

ERRORS, WARNINGS, AND NOTICES

Errors
shape_is_nil

SEE ALSO
Shape types are described in the section “Shape Type” beginning on page 2-9.
To assign a shape type to a shape object, use the GXSet ShapeType function, described
in the next section.

GXSetShapeType

You can use the GXSet ShapeType function to convert a shape object from one shape
type to another.

voi d GXSet ShapeType(gxShape target, gxShapeType newType);

tar get A reference to the shape object to assign the new shape type to.
newType A reference to the shape type to be assigned to the shape.

DESCRIPTION

The GXSet ShapeType function changes the type of the target shape to the shape type
specified by newType. Many different kinds of conversions are possible: typographic
types can be converted to other typographic types or to graphic types; graphic types can
be converted to other graphic types. The results of the conversion differ in each case,
depending on which type is converted to which other type. See Table 2-5 on page 2-33
for a list of chapters that describe how conversion works for different shape types.

2-66 Shape Objects Reference

CHAPTER 2

Shape Objects

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

When you change a shape to a bitmap type, the GXSet ShapeType function performs
preliminary calculations on its data and thus may post, in addition to the errors listed
below, errors associated with the GXDr awShape function. When you change a shape to a
typographic type, GXSet ShapeType may post font-related errors.

Errors
out _of nenory
shape_is_nil

illegal type for_shape (debugging version)
shape_access_not _al | owed (debugging version)
Warnings

new shape contains_invalid data (debugging version)

Notices (debugging version)
shape_type_al ready_set

What happens when you call GXSet ShapeType to convert shapes of one type to
another is described in Inside Macintosh: QuickDraw GX Graphics and Inside Macintosh:
QuickDraw GX Typography. Table 2-5 on page 2-33 shows which specific chapters to read
for detailed information on conversion among the various types of shapes.

Shape types are described in the section “Shape Type” beginning on page 2-9 of this
chapter.

To determine the shape type of a shape object, use the GXGet ShapeType function,
described in the previous section.

GXSetShapeGeometry

DESCRIPTION

You can use the GXSet ShapeGeonet r y function to copy the geometry from one shape
object to another.

voi d GXSet ShapeCGeonet ry(gxShape target, gxShape geometry);

t ar get A reference to the shape to copy the new geometry into.
geonetry A reference to the shape to copy the new geometry from.

For two shape objects with the same shape type, the GXSet ShapeGeonet ry function
copies the geometry from the shape referenced by the geonet r y parameter to the shape
referenced by the t ar get parameter. If the type of the shape referenced in the

geonet ry parameter is different from the type of the target shape, the target shape
becomes the geometry shape’s type.

Shape Objects Reference 2-67

CHAPTER 2

Shape Objects

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors

out _of _nenory

shape_is_nil

pi cture_cannot _contain_itself

shape_access_not _al | owed (debugging version)

To directly manipulate the contents of a shape’s geometry, see the section “Directly
Manipulating a Shape’s Geometry” beginning on page 2-34; see also the descriptions of
the GXLockShape, GXUnl ockShape, GXCGet ShapesSt r uct ur e, and GXChangedShape
functions, beginning on page 2-80.

Specific methods for setting and manipulating the geometries of graphic shapes are
described in Inside Macintosh: QuickDraw GX Graphics. Methods for setting and
manipulating the geometries of typographic shapes are described in Inside Macintosh:
QuickDraw GX Typography.

GXGetShapefFill

You can use the GXGet ShapeFi I | function to retrieve the fill property of a shape object.
gxShapeFi | | GXGet ShapeFi | | (gxShape source);

source A reference to the shape whose fill property you want to retrieve.

function result The fill of the source shape.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

2-68

Errors
out _of _nenory
shape_is_nil

Shape fills are described in the section “Shape Fill” beginning on page 2-13.

To assign a fill to a shape object, use the GXSet ShapeFi | I function, described in the
next section.

For more information on shape fill as it applies to geometric shapes, see the geometric
shapes chapter of Inside Macintosh: QuickDraw GX Graphics. For more information on
shape fill as it applies to typographic shapes, see the typographic shapes chapter of
Inside Macintosh: QuickDraw GX Typography.

Shape Objects Reference

CHAPTER 2

Shape Objects

GXSetShapeFill

You can use the GXSet ShapeFi | | function to change the fill property of a shape object.
voi d GXSet ShapeFi | | (gxShape target, gxShapeFill newFill);

tar get A reference to the shape whose fill property you want to change.
newri | | The new value for shape fill.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors
out _of nenory
shape_is_nil

shape_access_not _al | owed (debugging version)
par anet er _out _of _range (debugging version)
i nconsi stent _paraneters (debugging version)

Notices (debugging version)
fill _already_set

Shape fills are described in the section “Shape Fill” beginning on page 2-13.

This function is further described for geometric shapes in the geometric shapes chapter
of Inside Macintosh: QuickDraw GX Graphics, and for typographic shapes in the
typographic shapes chapter of Inside Macintosh: QuickDraw GX Typography.

To determine the shape fill of a shape object, use the GXGet ShapeFi | | function,
described in the previous section.

GXGetShapeStyle

You can use the GXGet ShapeSt yl e function to determine the style object associated
with a QuickDraw GX shape.

gxStyl e GXGet ShapeStyl e(gxShape source);

source A reference to the shape object whose style object is to be determined.

function result A reference to the style object associated with the source shape object.

Shape Objects Reference 2-69

CHAPTER 2

Shape Objects

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors
out _of _nenory
shape_is_nil

The relationship of style objects to QuickDraw GX shapes is discussed in “About
QuickDraw GX Shapes” beginning on page 2-5. Style objects themselves are further
discussed in the chapter “Style Objects” in this book.

To change the style object associated with a QuickDraw GX shape, use the
GXSet ShapesSt yl e function, described in the next section.

GXSetShapeStyle

DESCRIPTION

You can use the GXSet ShapeSt yl e function to change the style object associated with a
QuickDraw GX shape.

voi d GXSet ShapeStyl e(gxShape target, gxStyle newStyle);

tar get A reference to the shape whose style object is to be changed.
newstyl e A reference to the new style object to associate with the t ar get shape.

The GXSet ShapesSt yl e function disassociates the style object already associated with
the t ar get shape and disposes of it. The function then assigns the style object
referenced by the newSt yl e parameter to the target shape and increments by 1 the
owner count of the new style object.

ERRORS, WARNINGS, AND NOTICES

2-70

Errors

out _of nenory

shape_is_nil

style_is_nil

shape_access_not _al | owed (debugging version)

Notices (debugging version)
styl e_al ready_set

Shape Objects Reference

SEE ALSO

CHAPTER 2

Shape Objects

The relationship of style objects to QuickDraw GX shapes is discussed in “About
QuickDraw GX Shapes” beginning on page 2-5. Style objects themselves are further
discussed in the chapter “Style Objects” in this book.

To determine the style object associated with a QuickDraw GX shape, use the
GXGet ShapesSt yl e function, described in the previous section.

GXGetShapelnk

You can use the GXGet Shapel nk function to determine the ink object associated with a

shape object.
gxl nk GXCGet Shapel nk(gxShape source);

source A reference to the shape whose ink object is to be determined.

function result A reference to the ink object associated with the source shape object.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors
out _of _nmenory
shape_is_nil

The relationship of ink objects to QuickDraw GX shapes is discussed in “About
QuickDraw GX Shapes” beginning on page 2-5. Ink objects themselves are further
discussed in the chapter “Ink Objects” in this book.

To change the ink object associated with a QuickDraw GX shape, use the
GXSet Shapel nk function, described in the next section.

GXSetShapelnk

You can use the GXSet Shapel nk function to change the ink object associated with a

shape object.
voi d GXSet Shapel nk(gxShape target, gxlnk new nk);

t ar get A reference to the shape whose ink object is to be changed.
new nk A reference to the new ink object to associate with the target shape.

Shape Objects Reference

2-71

DESCRIPTION

CHAPTER 2

Shape Objects

The GXSet Shapel nk function disassociates the ink object already associated with the
target shape and disposes of it. The function then assigns the ink object referenced by the
new nk parameter to the target shape and increments the owner count of the new ink
object.

ERRORS, WARNINGS, AND NOTICES

Errors

out _of nenory

shape_is_nil

ink_is nil

shape_access_not _al | owed (debugging version)

Notices (debugging version)
i nk_al ready_set

SEE ALSO
The relationship of ink objects to QuickDraw GX shapes is discussed in “About
QuickDraw GX Shapes” beginning on page 2-5. Ink objects themselves are further
discussed in the chapter “Ink Objects” in this book.
To determine the ink object associated with a QuickDraw GX shape, use the
GXGet Shapel nk function, described in the previous section.
GXGetShapeTransform

You can use the GXGet ShapeTr ansf or mfunction to determine the transform object
associated with a shape object.

gxTransf or m GXGet ShapeTr ansf or n{ gxShape source);

source A reference to the shape whose transform object is to be determined.

function result A reference to the transform object associated with the source shape
object.

ERRORS, WARNINGS, AND NOTICES

2-72

Errors
out _of nenory
shape_is_nil

Shape Objects Reference

SEE ALSO

CHAPTER 2

Shape Objects

The relationship of transform objects to QuickDraw GX shapes is discussed in “About
QuickDraw GX Shapes” beginning on page 2-5. Transform objects themselves are further
discussed in the chapter “Transform Objects” in this book.

To change the transform object associated with a QuickDraw GX shape, use the
GXSet ShapeTr ansf or mfunction, described in the next section.

GXSetShapeTransform

DESCRIPTION

You can use the GXSet ShapeTr ansf or mfunction to change the transform object
associated with a shape object.

voi d GXSet ShapeTr ansf or m(gxShape t ar get,
gxTransform newTransforn;

tar get A reference to the shape whose transform object is to be changed.

newTr ansf orm
A reference to the new transform object to associate with the target shape.

The GXSet ShapeTr ansf or mfunction disassociates the transform object already
associated with the target shape and disposes of it. GXSet ShapeTr ansf or mthen
assigns the transform object referenced by the newTr ansf or mparameter to the target
shape and increments by 1 the owner count of the new transform object.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors

out _of nenory

shape_is_nil

transform.is_nil

shape_access_not _al | owed (debugging version)

Notices (debugging version)
transform al ready_set

The relationship of transform objects to QuickDraw GX shapes is discussed in “About
QuickDraw GX Shapes” beginning on page 2-5. Transform objects themselves are further
discussed in the chapter “Transform Objects” in this book.

To determine the transform object associated with a QuickDraw GX shape, use the
GXGet ShapeTr ansf or mfunction, described in the previous section.

Shape Objects Reference 2-73

CHAPTER 2

Shape Objects

GXGetShapeAttributes

You can use the GXGet ShapeAt t ri but es function to examine which attributes of a
shape object are set.

gxShapeAttri but e GXGet ShapeAttri but es(gxShape source);

source A reference to the shape to find the attributes of.

function result The shape attributes of the source shape.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors
out _of _nenory
shape_is_nil

Shape attributes are described in the section “Shape Attributes” beginning on page 2-16,
and in the section “Getting and Setting a Shape Object’s Type, Fill, and Attributes”
beginning on page 2-28.

To change the attributes of a shape object, use the GXSet ShapeAt t ri but es function,
described in the next section.

For an example of the use of this function, see page 2-29.

GXSetShapeAttributes

2-74

You can use the GXSet ShapeAt t ri but es function to set or clear the attributes for a
particular shape object.

voi d GXSet ShapeAttri but es(gxShape target, gxShapeAttribute
attributes);

t ar get A reference to the shape object to change the attributes of.
attri but es The new shape attributes to be assigned.

Shape Objects Reference

CHAPTER 2

Shape Objects

ERRORS, WARNINGS, AND NOTICES

Errors
out _of _nenory
shape_is_nil

par anet er _out _of _range (debugging version)
i nconsi stent _paraneters (debugging version)
shape_access_not _al | owed (debugging version)
Warnings

pi cture_expect ed
cannot _set _unique_itens_attribute_when_picture_contains_itens

SEE ALSO
Shape attributes are described in the section “Shape Attributes” beginning on page 2-16,
and in the section “Getting and Setting a Shape Object’s Type, Fill, and Attributes”
beginning on page 2-28.

To examine the attributes of a shape object, use the GXGet ShapeAtt ri but es function,
described in the previous section.
For an example of the use of this function, see page 2-29.

GXResetShape
You can use the GXReset Shape function to reset the attributes, fill, style, ink, and
transform of a shape to their default values.
voi d GXReset Shape(gxShape target);
tar get A reference to the shape object whose properties you want to reset.

DESCRIPTION

The GXReset Shape function resets the shape attributes and the shape fill of the shape
object specified by thet ar get parameter to match the shape attributes and shape fill of
the corresponding default shape. The function also resets the style, ink, and transform
references of the target shape to their default values.

The GXReset Shape function does not change the target shape’s geometry, owner count,
or tags.

After the GXReset Shape function returns, the target shape references the same style,
ink, and transform as the corresponding default shape object. The GXReset Shape
function increments by 1 the owner counts of the default style, ink, and transform, and
disposes of the target shape’s original style, ink, and transform.

Shape Objects Reference 2-75

CHAPTER 2

Shape Objects

ERRORS, WARNINGS, AND NOTICES

Errors

out _of _nenory

shape_is_nil

shape_access_not _al | owed (debugging version)

SEE ALSO
Default shape objects are described in the section “Default Shapes” beginning on
page 2-18.
To examine a default shape, use the GXGet Def aul t Shape function, described on
page 2-52. To replace a default shape, use the GXSet Def aul t Shape function, described
on page 2-53.
For information on resetting typographic shapes, see the typographic shapes chapter of
Inside Macintosh: QuickDraw GX Typography.

GXGetShapeOwners
You can use the GXGet ShapeOaner s function to determine the number of references to
a particular shape object.
| ong GXGet ShapeOmner s(gxShape source);
source A reference to the shape to find the owner count of.
function result The owner count of the source shape.

DESCRIPTION

The GXGet ShapeOaner s function returns as its function result the current number of
references to the shape object.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

2-76

Errors
shape_is_nil

Owner counts for shape objects are discussed in the section “Copying, Comparing, and
Cloning Shape Objects” beginning on page 2-25, and in the section “Manipulating a
Shape Object’s Owner Count” beginning on page 2-31.

Shape Objects Reference

CHAPTER 2

Shape Objects

To increment the owner count of a shape, use the GXCl oneShape function, described on
page 2-61. To decrement the owner count of a shape, use the GXDi sposeShape
function, described on page 2-55.

GXGetShapeTags

You can use the GXGet ShapeTags function to examine one or more of the tag objects
associated with a shape object.

| ong GXGet ShapeTags(gxShape source, |ong tagType, |ong index,
| ong count, gxTag items[]);

source A reference to the shape object to examine the tag list of.

tagType The type of tag object to search for. A value of 0 indicates that you want to
look for all tag types.

i ndex The (1-based) index of the first such tag reference to return.
count The number of tag references to return.
itens An array to hold the returned tag references.

function result The number of tag references found that fit the criteria.

DESCRIPTION

The GXGet ShapeTags function searches the tag list of the sour ce shape object for
references to tag objects with the tag type specified by the t agType parameter. If you
specify 0 for the t agType parameter, the GXGet ShapeTags function searches all tag
types.

You can use the i ndex and count parameters to specify which tag references of the
appropriate type the GXGet ShapeTags function should return. The i ndex parameter
indicates the first tag reference to return and the count parameter indicates how many
tag references to return. The i ndex parameter must be greater than 0. The count
parameter must be greater than 0 or equal to the gxSel ect ToEnd constant (-1), which
indicates that all tag references (starting with the tag reference indicated by the i ndex
parameter) should be returned.

If you pass a value other than ni | for the i t ens parameter, the GXGet ShapeTags
function returns in it the tag references that were found.

Shape Objects Reference 2-77

CHAPTER 2

Shape Objects

ERRORS, WARNINGS, AND NOTICES

Errors

out _of _nenory

shape_is_nil

i ndex_is_|l ess_than_one (debugging version)
count _is |l ess than_one (debugging version)

Warnings
i ndex_out _of range
count _out _of _range

SEE ALSO
Tag objects are introduced in the chapter “Introduction to Objects” in this book.
Functions to create and manipulate tags objects, and a list of reserved tag types, are
described in the chapter “Tag Objects” in this book.
To change the set of tag references associated with a shape, use the GXSet ShapeTags
function, described next.
GXSetShapeTags
You can use the GXSet ShapeTags function to add, remove, or replace tag objects
associated with a shape object.
voi d GXSet ShapeTags(gxShape target, long tagType, |ong index,
| ong ol dCount, |ong newCount,
const gxTag items[]);
t ar get A reference to the shape object to alter the tag list of.
tagType The type of tag objects to replace. A value of 0 indicates that you want to
replace tags of all types.
i ndex The (1-based) index of the first tag reference (to a tag object of the
appropriate type) to replace.
ol dCount The number of tag references to replace. A value of 0 specifies that you
want to insert tag references before the tag reference indicated by the
i ndex parameter, rather than replace tag references. A value of -1 (the
gxSel ect ToEnd constant) specifies that all tag references of the
requested type, starting with the tag reference indicated by the i ndex
parameter, should be replaced.
newCount The number of tag references to insert. A value of 0 specifies that there are
no tag references to insert; the existing tag references that match the
criteria you specify are removed from the source shape’s tag list and
disposed of.
itens An array of tag references to insert in the tag list.
2-78 Shape Objects Reference

DESCRIPTION

CHAPTER 2

Shape Objects

The GXSet ShapeTags function allows you to add tag references to a shape object’s tag
list, to remove tag references from the list, or to replace tag references in the list with new
tag references. In any of these three cases, the t ar get parameter specifies the shape
object to be modified, the newCount parameter specifies the number of tag references to
add, and the i t enrs parameter provides the new tag references.

n To add tag references, set the ol dCount parameter to 0. Use the t agType and the
i ndex parameters to specify where to add the new tag references. (For example, if
you specify ni | for the t agType parameter and 1 for the i ndex parameter, this
function inserts the new tag references before the current tag references. If you specify
a value other than ni | for the t agType parameter and a value of 2 for the i ndex
parameter, the function inserts the new tag references before the second tag reference
with a tag type matching the t agType parameter.)

n To remove tag references, set the newCount parameter to 0 and the i t ens parameter
toni | . You can use thei ndex and the ol dCount parameters to specify which tag
references (of the specified type) should be removed. The i ndex parameter indicates
the first tag reference (of the specified type) to remove and the ol dCount parameter
indicates how many tag references (of the specified type) to remove.

n To replace tag references, use the t agType, i ndex, and ol dCount parameters to
indicate which tag references to replace, and use the newCount andit ens
parameters to specify the new tag references to add. If newCount is greater than
ol dCount , the extra tag references are placed immediately adjacent to the last tag
reference replaced.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors
out _of nenory
shape_is_nil

tag_is_nil

paraneter_is_nil (debugging version)
i nconsi stent _paraneters (debugging version)
par anet er _out _of range (debugging version)
index_is less than zero (debugging version)
cannot _di spose_I| ocked_t ag (debugging version)
Warnings

i ndex_out _of _range
count _out _of range

Notices (debugging version)
tag_al ready_set

Tag objects are introduced in the chapter “Introduction to Objects” in this book.
Functions to create and manipulate tags objects, and a list of reserved tag types, are
described in the chapter “Tag Objects” in this book.

To examine the set of tag references associated with a shape, use the GXGet ShapeTags
function, described in the previous section.

Shape Objects Reference 2-79

CHAPTER 2

Shape Objects

Directly Manipulating a Shape’s Geometry

This section describes the functions you use to directly manipulate the geometry of a
shape object. Unlike most calls to QuickDraw GX objects, these functions give you direct
access to the data of a geometry—in QuickDraw GX memory—without regard to the
shape object it is part of. You typically call the functions in this order:

n GXLockShape

n GXGet ShapeStructure
n GXUnl ockShape

n GXChangedShape

GXLockShape

DESCRIPTION

You can use the GXLock Shape function to load a shape into memory and lock its
geometry into a fixed memory location.

voi d GXLockShape(gxShape target);

tar get A reference to the shape to be loaded and locked.

The GXLockShape function prevents a shape from being relocated. You must set the
gxDi r ect Shape attribute of the target shape before calling this function.

To avoid fragmenting the QuickDraw GX heap, call the GXUnl ock Shape function as
soon as possible after calling GXLock Shape.

To directly edit a shape’s geometry, call GXLock Shape followed by
GXGet ShapeSt ruct ur e. After editing, call GXUnl ock Shape followed by
GXChangedShape.

SPECIAL CONSIDERATIONS

2-80

The GXLockShape function is not related to the gxLockedShape shape attribute. If you
set the gxLockedShape attribute, you cannot alter the shape’s geometry with functions
such as GXSet Poi nt and GXSet Rect angl e, described in the geometric shapes chapter
of Inside Macintosh: QuickDraw GX Graphics. Setting gxLockedShape has no effect on
the direct manipulation of geometry using the calls described here.

In low memory conditions with fragmented memory, QuickDraw GX can unlock locked
objects and relocate them. Be careful about making memory-intensive calls after locking
an object.

Shape Objects Reference

CHAPTER 2

Shape Objects

ERRORS, WARNINGS, AND NOTICES

Errors

out _of _nenory

shape_is_nil

graphi c_type_does_not _have_a_structure (debugging version)
Notices (debugging version)

di rect Shape_attri bute _set as _side_effect

SEE ALSO
The GXUnl ockShape, GXGet ShapeSt r uct ur e, and GXChangedShape functions are
described in the following three sections.

Shape attributes are described in the section “Shape Attributes” beginning on page 2-16.
To set shape attributes, use the GXSet ShapeAt t ri but es function, described on
page 2-74.

GXUnlockShape

You can use the GXUnl ock Shape function to allow QuickDraw GX to relocate,
compress, or unload a shape that has been locked.

voi d GXUnl ockShape(gxShape target);

t ar get A reference to the shape to unlock.

DESCRIPTION

The GXUnl ockShape function releases a previously locked shape for relocation or
other movement.

To directly edit a shape’s geometry, call GXLock Shape followed by

GXGet ShapeSt ruct ur e. After editing, call GXUnl ockShape followed

by GXChangedShape. Once you call GXUnl ock Shape, the shape’s geometry
may be relocated and a pointer returned by GXGet ShapeSt r uct ur e may no
longer be valid.

SPECIAL CONSIDERATIONS

To avoid fragmenting the QuickDraw GX heap, call the GXUnl ock Shape function as
soon as possible after calling GXLock Shape.

Shape Objects Reference 2-81

CHAPTER 2

Shape Objects

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors
shape_is_nil

Notices (debugging version)
shape_not _| ocked

The GXLockShape function is described in the previous section. The
GXGet ShapeSt ruct ur e and GXChangedShape functions are described in the
following two sections.

The GXDi sposeShape function is described on page 2-55.

GXGetShapeStructure

DESCRIPTION

2-82

You can use the GXGet ShapeSt r uct ur e function to get a pointer to the geometry of a
shape object.

voi d *GXGet ShapeSt ruct ure(gxShape source, long *l ength);

source A reference to the shape object whose geometry you need access to.

| ength A pointer to al ong value. On return, the value specifies the size in bytes
of the shape’s geometry.

function result A pointer to the geometry of the source shape object.

The GXGet ShapesSt r uct ur e function determines the size of a shape’s geometry and
returns a pointer to the geometry in the QuickDraw GX heap. You can use the pointer to
examine or change the geometry without copying the geometry into your application’s
heap and back again.

Before calling GXGet ShapeSt r uct ur e, you should first call GXLock Shape to prevent
the geometry from being relocated and you should set the gxDi r ect Shape attribute to
make the shape accessible in the QuickDraw GX heap. After you are finished examining
or changing the geometry, call GXUnl ock Shape. If you change the shape’s geometry,
you must call the GXChangedShape function to notify QuickDraw GX that the shape’s
cache is no longer valid.

To edit a geometry, you need to know its structure. GXGet ShapeSt r uct ur e returns a
pointer and a size only; it does not provide you with any information about the internal
structure of the geometry. For example, if the source shape is a path, you must cast the
function result to a gxPat hs pointer. Such information is not described in this book.

Shape Objects Reference

CHAPTER 2

Shape Objects

If you call this function for a shape that has no geometry (shape types gxEnmpt yType
and gxFul | Type), the function posts a gr aphi c_t ype_has_no_st r uct ur e warning.

SPECIAL CONSIDERATIONS

If you do not set the gxDi r ect Shape attribute or do not lock the shape, QuickDraw GX
does them for you as a side effect of the GXGet ShapeSt r uct ur e function call. You
must still call GXUnl ockShape to unlock the shape and, if you wish, reset the attribute.

This function is rarely needed. In most instances, you can manipulate a shape’s
geometry with calls to geometry-specific functions such as GXGet Rect angl e or
GXGet d yphTangent s. This function is provided as a fast alternative to those
functions, but be aware that it may fail in low-memory conditions; see “Special
Considerations” under the description of the GXLock Shape function, on page 2-80.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors

out _of nenory

shape_is_nil

graphi c_type_does_not _have_a_structure (debugging version)
Notices (debugging version)

| ockShape cal |l ed _as_si de_effect

The GXLockShape and GXUnl ockShape functions are described in the previous
sections. The GXChangedShape function is described in the following section.

Shape types are described in the section “Shape Type” beginning on page 2-9.

Shape geometry structures, and the functions for manipulating them, are described in
the shape-specific chapters of Inside Macintosh: QuickDraw GX Graphics and Inside
Macintosh: QuickDraw GX Typography.

GXChangedShape

You can use the GXChangedShape function to notify QuickDraw GX that you have
directly edited the geometry of a shape.

voi d GXChangedShape(gxShape target);

t ar get A reference to the shape object whose geometry you have directly edited.

Shape Objects Reference 2-83

DESCRIPTION

CHAPTER 2

Shape Objects

The GXChangedShape function notifies QuickDraw GX that the geometry of the shape
referenced by the t ar get parameter has been modified. QuickDraw GX can then use
that information to invalidate existing shape caches, if necessary.

You need to call this function only if you have directly edited a shape’s geometry by
using the pointer returned by the GXGet ShapeSt r uct ur e function. If you edit a shape
geometry using any other shape-editing function, you do not need to call
GXChangedShape.

Todirectlyeditashape’sgeometry,callGXLock ShapefollowedbyGXGet ShapeSt r uct ur e.
After editing, call GXUnl ockShape followed by GXChangedShape.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors
shape_is_nil

The GXLockShape, GXUnl ockShape, and GXGet ShapeSt r uct ur e functions are
described in the previous sections.

Shape caches are discussed in the section “Caching Shape Objects” beginning on
page 2-27.

Other functions for editing shape geometries are described in the shape-specific chapters
of Inside Macintosh: QuickDraw GX Graphics and Inside Macintosh: QuickDraw GX

Typography.

Drawing and Hit-Testing Shapes

This section describes the basic QuickDraw GX functions for drawing and hit-testing
shapes: GXDr awShape and GXHi t Test Shape.

GXDrawShape

2-84

You can use the GXDr awShape function to draw any shape.

voi d GXDr awShape(gxShape source);

source A reference to the shape object of the shape to draw.

Shape Objects Reference

DESCRIPTION

CHAPTER 2

Shape Objects

The GXDr awShape function draws the shape referenced by the sour ce parameter,
taking into account the properties specified in the shape’s style, ink, and transform
objects. It draws the shape to the display device or devices specified indirectly in the
shape’s transform object.

As part of preparation for drawing, QuickDraw GX makes preliminary calculations and
stores the results in caches. You can in some cases speed drawing by having the
calculations and cache storage occur ahead of time; you can do that by setting the source
shape’s gxCachedShape attribute or by calling the GXCacheShape function.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

In addition to the errors listed below, the GXDr awShape function can post font-related
errors if it is drawing text.

Errors

out _of nenory

shape_is_nil

nunber _of contours_exceeds_inplenentation_limnt
nunber _of _points_exceeds_i npl enentation_limt
si ze_of _pol ygon_exceeds_i npl ementation_limnt
size_of path_exceeds_inplenentation_limt
size_of bitmap_exceeds_inplenmentation limt

pattern_lattice_out_ of range (debugging version)
Warnings

character_substitution_took _place

graphi c_type_cannot _be_dashed (debugging version)

unabl e_to_traverse_open_contour_that_starts_or_ends_off_the_curve
(debugging version)

unabl e_to_draw open_contour_that starts or_ends_off _the curve
(debugging version)

face_override_style font_must_match_style (debugging version)

The GXDr awShape function as applied to geometric shapes, and other functions for
drawing geometric shapes, are described in the geometric shapes chapter of Inside
Macintosh: QuickDraw GX Graphics. The function as applied to typographic shapes, and
other functions for drawing typographic shapes, are described in the text shapes, glyph
shapes, and layout shapes chapters of Inside Macintosh: QuickDraw GX Typography.

Transform objects and their relation to display devices are described in the chapter
“Transform Objects” in this book.

The gxCachedShape attribute is described in Table 2-4 on page 2-16. The
GXCacheShape function is described on page 2-62. The differences between the two
caching methods are described in the section “Caching Shape Objects” beginning on
page 2-27.

Shape Objects Reference 2-85

CHAPTER 2

Shape Objects

GXHitTestShape

You can use the GXHi t Test Shape function to convert a point in space (which may
represent, for example, the location of a mousedown event) into a distance from a
particular part of the geometry of a shape.

gxShapePart GXHi t Test Shape(gxShape target, const gxPoint *test,
gxH t Testinfo *result);

t ar get A reference to the shape to hit-test.

t est A pointer to a point structure specifying the location to hit-test the shape
against. The location must be specified in the local coordinates of the
shape.

result A pointer to agxHi t Test | nf o structure. On return, the structure

contains detailed information about the hit-test.

function result The parts of the shape corresponding to the location specified in the t est
parameter (within the tolerance limits for the hit-test).

DESCRIPTION

The GXHi t Test Shape function takes a shape reference and a point in geometry or local
space and returns whether or not the point was within a certain distance (tolerance) of
one of a set of specified parts of the shape. With this function you can, for example,
respond to user actions such as mouse clicks or movements by highlighting or selecting
parts of shapes. The tolerance and the shape parts are defined in the hit-test parameters
of the shape’s transform object. The function returns the shape parts that were hit, or else
the value gxNoPart if no tested part of the shape was hit.

Onreturn, ther esul t parameter contains a filled-out gxHi t Test | nf o structure. Only
the first three fields are filled out by GXHi t Test Shape:

n The what field describes the shape parts that were hit, if any. It is identical to the
function result from this function.

n Thei ndex field identifies, by (1-based) index, the nearest point in the geometry to the
hit point.

n The di st ance field describes the distance from the hit point to the closest point on
the shape part that was hit. (If no part was hit, this value is undefined.) If more than
one shape part was hit, this is the distance to the first shape part encountered that was
within the tolerance of the hit point. The order in which shape parts are examined
during hit-testing is defined by the gxShapePar t s enumeration.

2-86 Shape Objects Reference

CHAPTER 2

Shape Objects

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Because it performs many of the calculations involved in drawing, the

GXHi t Test Shape function can post, in addition to the errors listed below, any
errors and warnings associated with the GXDr awShape function. Therefore
GXHi t Test Shape can post font-related errors if it is caching text.

Errors

out _of nenory

shape_is_nil

paraneter_is_nil (debugging version)
nunber _of _contours_exceeds_i npl ementation_limt

nunber _of points_exceeds_inplenentation linmt

si ze_of pol ygon_exceeds_inplenentation_ limt

size_of path_exceeds_ inplenentation limnt

size_of _bitmap_exceeds_inplenmentation_limt

pattern_lattice_out_of_range (debugging version)
Warnings

character _substitution_took place

graphi c_type_cannot _be_ dashed (debugging version)

unabl e to traverse_open_contour _that starts or_ends_off the curve
(debugging version)

unabl e_to_draw open_contour_that_starts_or_ends_off_the_curve
(debugging version)

face override style font_nust_match_style (debugging version)

Hit-testing is discussed in the section “Drawing and Hit-Testing Shapes” beginning on
page 2-35.

The gxHi t Test | nf o structure is described on page 2-50.

The gxShapePar t s enumeration and the gxShapePar t mask are also described in the
hit-test parameters section of the chapter “Transform Objects” in this book.

Flattening and Unflattening Shape Objects

The two functions described in this section allow you to convert shapes into a
compressed, stream-based format for storage or transmission, and to reconstruct shapes
from their compressed form.

Shape Objects Reference 2-87

CHAPTER 2

Shape Objects

GXFlattenShape

DESCRIPTION

2-88

You can use the GXFI at t enShape function to convert the object form of a shape—
including all the objects that it references—into a stream format that is public and
suitable for storage and parsing.

voi d GXFl att enShape(gxShape source, gxFlattenFlag flags,
struct gxSpool Bl ock *bl ock);

source A reference to the shape you wish to flatten.

flags A set of flags that specify whether or not to save additional information
with the flattened file.

bl ock A pointer to a spool block structure. QuickDraw GX uses information in

the spool block to create and store the flattened data.

The GXFI at t enShape function creates a flattened version of the shape referenced by
the sour ce parameter and places it into a buffer pointed to by the spool block specified
in the bl ock parameter.

Before calling GXFI at t enShape, you need to allocate a spool block structure and a
buffer to hold the flattened data, and place a pointer to the buffer and a specification of
its size into the spool block. You also place into the spool block a pointer to an
application-defined spool function that writes the flattened data from the buffer to a file.
The spool function responds to commands from QuickDraw GX to open, write, and
close the file used to hold the flattened data.

If your spool block structure specifies ni | for the buffer pointer and 0 for its size,
QuickDraw GX allocates a default buffer (512 KB in version 1.0 of QuickDraw GX) for
you.

Upon completion of the function, QuickDraw GX writes into the spool block the number
of bytes of flattened data it has placed into the buffer. It also writes other information
into the spool block; your spool function can use that information if you want it to parse
the flattened file as flattening occurs. Normally, however, for simple flattening of shapes,
your application need not read any of the information returned in the spool block, and
your spool function needs to read only the size of the flattened data in the buffer.

Note that flattening a shape causes flattened versions of all its referenced objects, such as
its style, ink, and transform—and all of their referenced objects in turn—to be stored as
well. To flatten a group of shapes, place them in a picture and flatten the picture.

If you set the gxFont Li st Fl att en, gxFont d yphsFl att en, or

gxFont Vari ati onsFl att en flag in the f | ags parameter when calling this function,
GXFI at t enShape creates a tag object and attaches it to the source shape. The tag object
isof type' fl st' and lists the names of the fonts referenced in the shape, the individual
glyphs used in the shape, or the descriptions of any font variations used in the shape,
respectively.

Shape Objects Reference

CHAPTER 2

Shape Objects

If you set the gxBi t mapAl i asFl att en flag in the f | ags parameter when calling this
function, GXFI at t enShape includes with the flattened shape all image data from any
bitmap shapes that are referenced by the shape. If this flag is not set, image data from
bitmap shapes whose image data is disk-based is not included in the flattened shape.
That image data is not lost, however, because a tag object specifying the file holding the
image data is flattened along with the shape.

The flattened stream created by GXFl at t enShape consists of a series of opcodes and
associated data, following the QuickDraw GX stream format.

SPECIAL CONSIDERATIONS

If the source shape already has a tag object of type ' f| st' attached to it,
GXFl at t enShape replaces that tag with a new tag of type ' fI st' ; it also posts a
tags_of type_flst_renmoved warning.

If the block parameter is ni | , this function returns apar anet er _i s_ni | error. If
the spool-function pointer in the spool block passed in the bl ock parameter is

ni | , this function returns aspool Procedure_i s_ni | error. If the spool function
signals an error during either flattening or unflattening, QuickDraw GX posts an
unfl atteni ng_i nterrupted by client error. If the spool function attempts to
call GXFI att enShape, QuickDraw GX posts a pr ocedur e_not _r eent r ant error.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors

out _of nenory

shape_is_nil

procedur e_not _reentrant

paraneter_is_nil (debugging version)
spool Procedure_is_nil

unflattening_interrupted by client

par anmet er _out _of _range (debugging version)
i nconsi stent _paraneters (debugging version)
Warnings

tags_of type_ flst_renoved (debugging version)

The spool block structure is described on page 2-49. The format for the
application-defined spool function is described on page 2-91.

The format for the flattened data, including all opcodes, is described in the stream
format chapter of Inside Macintosh: QuickDraw GX Environment and Utilities.

To convert a flattened shape back to its object-based format, use the
GXUnf | at t enShape function, described in the next section.

Shape Objects Reference 2-89

CHAPTER 2

Shape Objects

GXUnflattenShape

DESCRIPTION

You can use the GXUnf | at t enShape function to restore the object form of a shape—
including all the objects that it references—from a stream-based description created by
the GXFI at t enShape function.

gxShape GXUnfl attenShape(struct gxSpool Bl ock *bl ock, |ong count,
const gxViewPort portList[])

bl ock A pointer to a spool block structure. QuickDraw GX uses information in
the spool block to unflatten the data.

count The number of view ports in the view port list (the number of elements in
the port Li st array).

portLi st An array of references to view port objects. It is the list of view ports to
assign to the transform object for the unflattened shape.

function result A reference to the newly created (unflattened) shape.

The GXUnf | at t enShape function reconstructs a shape object and all its associated
objects from stream data in a buffer pointed to by the spool block specified in the bl ock
parameter.

Before calling GXUnf | at t enShape, you need to allocate a spool block structure and
buffer to hold the flattened data, and place a pointer to the buffer and a specification

of its size into the spool block. You also place into the spool block a pointer to an
application-defined spool function that reads the flattened data into the buffer. The spool
function responds to commands from QuickDraw GX to open, read, and close the file
containing the flattened data.

Note that unflattening a shape also causes creation of all its referenced objects, such as its
style, ink, and transform, and all of their referenced objects. Unflattening a picture can
cause the creation of many shape objects.

The flattened stream as read by GXUnf | at t enShape consists of a series of opcodes and
associated data, following the QuickDraw GX stream format.

SPECIAL CONSIDERATIONS

2-90

If no error occurs, the GXUnf | at t enShape function creates one or more QuickDraw GX
objects. You are responsible for disposing of those objects when you no longer need them.

If the spool function signals an error during either flattening or unflattening,
QuickDraw GX postsan unf |l att eni ng_i nterrupted_by_cl i ent error. If the
spool function attempts to call GXUnf | at t enShape, QuickDraw GX posts a
procedure_not _reentrant error.

Shape Objects Reference

CHAPTER 2

Shape Objects

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors

out _of _nenory

procedur e_not _reentrant

paraneter_is_nil (debugging version)
spool Procedure_is_nil

unflattening_interrupted by client

font _not _f ound

par anmet er _out _of _range (debugging version)
i nconsi stent _paraneters (debugging version)
Warnings

unrecogni zed_stream versi on
bad data in_stream

The spool block structure is described on page 2-49. The format for the
application-defined spool function is described on page 2-91.

The format for the flattened data, including all opcodes, is described in the stream
format chapter of Inside Macintosh: QuickDraw GX Environment and Utilities.

To convert a QuickDraw GX shape to its flattened form, use the GXFI at t enShape
function, described in the previous section.

Application-Defined Spool Function

This section describes the interface to an application-defined function that can be used
for saving and restoring shape objects.

MySpoolProc

The QuickDraw GX functions GXFI at t enShape and GXUnf | at t enShape require the
calling application to supply a pointer to a function that, respectively, saves flattened
data or supplies data to be flattened. The flattening/unflattening spool function has the
following interface:

| ong MySpool Proc(gxSpool Command conmand,
struct gxSpool Bl ock *bl ock);

command A selector with which QuickDraw GX specifies the operation the spool
function is to perform.

bl ock A pointer to the spool block used for the current flattening or unflattening
operation.

function result Zero if the unflattening or flattening operation can continue; nonzero if
QuickDraw GX must abort the operation.

Shape Objects Reference 2-91

DESCRIPTION

CHAPTER 2

Shape Objects

The purpose of the flattening/unflattening spool function is to move flattened data into
or out of memory as instructed by QuickDraw GX. You place a pointer to the spool
function in the appropriate field of the spool block structure that you allocate before
calling GXFI at t enShape or GXUnf | att enShape.

Your spool function should respond to the conmmand parameter and perform the
appropriate operation. Constants for the recognized spool commands are defined in the
gxSpool Commands enumeration:

Constant Value Explanation

gxQOpenReadSpool 1 The spool function is to open the flattened file
for reading into the buffer used by
GXUnf | at t enShape.

gxQpenW i t eSpool 2 The spool function is to open a file for receiving
data from the buffer used by GXFI at t enShape.

gxReadSpool 3 The spool function is to read the data into the
buffer for use by GXUnf | at t enShape.

gxW it eSpool 4 The spool function is to write the data placed into
the buffer by GXFI at t enShape to the file.

gxC oseSpool 6 The spool function is to close the file.

Your spool function’s function result is a status indicator to QuickDraw GX. If the
operation must be aborted (for example, if a file error occurs), return a nonzero value as
the function result. Otherwise, return 0 and the flattening or unflattening operation can
continue.

For simple flattening and unflattening, your spool function need only read and write the
amounts of data specified by QuickDraw GX. However, you can also write a spool
function that actually parses the data stream during flattening and unflattening; see
Listing 2-5 on page 2-41 for an example.

SPECIAL CONSIDERATIONS

SEE ALSO

2-92

During a flattening or unflattening procedure, a memory error can cause a restart of the
function, which might not necessarily reset the stream back to its original position.
Therefore, your open, read, and write routines must always be sure to set the stream to
the correct position in the buffer each time.

The spool block structure is described on page 2-49.

The GXFI at t enShape function is described on page 2-88. The GXUnf | at t enShape
function is described on page 2-90.

Shape Objects Reference

CHAPTER 2

Shape Objects

Summary of Shape Objects

Constants and Data Types

The Shape Object

typedef struct gxPrivateShapeRecord *gxShape;

Shape Type

enum gxShapeTypes {

gxEnmptyType = 1, /* enpty shape; contained by all geonetries */
gxPoi nt Type, /* point shape */

gxLi neType, /[* line shape */

gxCurveType, /* curve shape */

gxRect angl eType, /* rectangl e shape */

gxPol ygonType, /* pol ygon shape; can represent nultiple polygons */
gxPat hType, /* path shape; can include lines and curves */
gxBi t mapType, /* bitmap shape */

gxText Type, /* text shape; single size, encoding, and style */
gxd yphType, /* glyph shape; can use nmultiple text styles */
gxLayout Type, /* | ayout shape; can include linguistic info */
gxFul | Type, [* full shape; includes all geonetries */

gxPi ctureType /* picture shape; can contain other shapes */

b

typedef | ong gxShapeType;

Shape Fill

enum gxShapeFil s {
gxNoFi I I,
gxOpenFraneFi | I,
gxFranmeFi || = gxOpenFraneFill,
gxC osedFraneFil |,
gxHol l owFi | | = gxC osedFraneFil |
gxEvenOddFi | |,
gxSolidFill = gxEvenOQddFill
gxW ndi ngFi I I,
gxl nver seEvenCddFi | |,

Summary of Shape Objects

2-93

CHAPTER 2

Shape Objects

gxl nverseSolidFi Il = gxlnverseEvenCQddFil |,
gxlnverseFill = gxlnverseEvenOQddFill,
gxl nver seW ndi ngFi |

H

typedef |ong gxShapeFill;

Shape Attributes

enum gxShapeAttri butes {
gxNoAt tri butes,

gxDi r ect Shape = 0x0001, /* prefer shape data to be in GX heap */
gxRenot eShape = 0x0002, /* prefer shape data on accel erator */
gxCachedShape = 0x0004, /* pre-calculate to optim ze drawi ng */
gxLockedShape = 0x0008, /* prevent changes to shape’'s geonetry */
gxG oupShape = 0x0010, /* treat as one shape for hit-testing */

gxMapTr ansf or nShape 0x0020, [* alter transform not shape geonetry */
gxUni quel t ens Shape 0x0040, /* copy itens added to picture shapes */
gxl gnor ePl at f or nBhape = 0x0080, /* assune glyph, not character, codes */
gxNoMetri csG i dShape 0x0100, /* draw without font scaler’s hinting */
gxDi skShape 0x0200, /* unload this shape first */
gxMenor yShape 0x0400 /* unload this shape | ast */

H

typedef | ong gxShapeAttri bute;

Flatten Flags

enum gxFl at t enFl ags{

gxFont Li st Fl att en = 0x01, /* add a tag listing fonts used */
gxFont d yphsFl atten = 0x02 /* add a tag listing glyphs used */
gxFont Vari ati onsFl atten = 0x04, /* add a tag for font variations */
gxBi t mapAl i asFl atten = 0x08 /* flatten all bitmap i mage data */

H

typedef |ong gxFl attenFl ag;

The Spool Block Structure

struct gxSpool Bl ock {
/* these fields are read from (but not witten to) by Qui ckDraw GX */

gxSpool ProcPtr spool Procedur e; /* pointer to spool function */
voi d *buf fer; /* pointer to application buffer */
| ong buf ferSi ze; /* bytes for QuickDraw GX to use */

2-94 Summary of Shape Objects

CHAPTER 2

Shape Objects

/* these fields are witten to (but not read from by Qui ckDraw GX */

| ong count; /* bytes for app to read/wite */
| ong operati onSi ze; /* size including operand byte */
| ong operationCifset; /* offset within current operation */

gxG aphi csQpcode | ast TypeQpcode; /* type of |ast created object */
gxG aphi csOpcode currentQOperation; /* last op. enmitted or interpreted */
gxG aphi csQpcode current Oper and; /* such as gxTransfornTypeQpcode */
unsi gned char conpr essed; /* a gxTwoBit Conpr essi onVal ues */

b

The Hit-Test Info Structure

struct gxH tTestlnfo {
gxShapePar t what ;

| ong i ndex;

Fi xed di st ance;

gxShape whi ch;

gxShape cont ai ner Pi ct ur e;
| ong cont ai ner | ndex;

| ong t ot al | ndex;

b

Spool Commands

enum gxSpool Commands {
gxQOpenReadSpool = 1,
gxQpenW i t eSpool
gxReadSpool ,
gxWiteSpool ,
gxd oseSpool ,

b

typedef | ong gxSpool Command;

Functions

Creating and Manipulating Shape Obijects
gxShape GXGet Def aul t Shape (gxShapeType aType);

voi d GXSet Def aul t Shape (gxShape target);
gxShape GXNewShape (gxShapeType aType);
voi d GXDi sposeShape (gxShape target);
| ong GXGet ShapeSi ze (gxShape source);

Summary of Shape Objects 2-95

CHAPTER 2

Shape Objects

gxShape GXCopyToShape (gxShape target, gxShape source);
gxShape GXCopyDeepToShape (gxShape target, gxShape source);
bool ean GXEqual Shape (gxShape one, gxShape two);
gxShape GXC oneShape (gxShape source);

voi d GXCacheShape (gxShape source);

voi d GXDi sposeShapeCache (gxShape target);
| ong GXGet ShapeCacheSi ze (gxShape source);

Manipulating Shape Object Properties
gxShapeType GXGet ShapeType (gxShape source);

voi d GXSet ShapeType (gxShape target, gxShapeType newType);
voi d GXSet ShapeCeonetry (gxShape target, gxShape geonetry);
gxShapeFi | | GXGet ShapeFi | | (gxShape source);

voi d GXSet ShapeFi | | (gxShape target, gxShapeFill newFill);
gxStyl e GXGet ShapeStyl e (gxShape source);

voi d GXSet ShapeStyl e (gxShape target, gxStyle newStyle);
gxl nk GXGet Shapel nk (gxShape source);

voi d GXSet Shapel nk (gxShape target, gxlnk new nk);

gxTransf or m GXGet ShapeTr ansf orm
(gxShape source);

voi d GXSet ShapeTr ansform (gxShape target, gxTransform newlransform;

gxShapeAttri but e GXGet ShapeAttri butes
(gxShape source);

voi d GXSet ShapeAttri butes (gxShape target, gxShapeAttribute attributes);

voi d GXReset Shape (gxShape target);
| ong GXGet ShapeOmners (gxShape source);
| ong GXGet ShapeTags (gxShape source, |ong tagType, |ong index,

| ong count, gxTag itens[]);

voi d GXSet ShapeTags (gxShape target, |long tagType, |ong index,
| ong ol dCount, |ong newCount,
const gxTag itens[]);

2-96 Summary of Shape Objects

CHAPTER 2

Shape Objects

Directly Manipulating Shape Geometry

voi d GXLockShape (gxShape target);
voi d GXUnl ockShape (gxShape target);
voi d *GXGet ShapeStructure (gxShape source, long *length);
voi d GXChangedShape (gxShape target);

Drawing and Hit-Testing Shapes

voi d GXDr awShape (gxShape source);

gxShapePart GXHi t Test Shape (gxShape target, const gxPoint *test,
gxHi t TestInfo *result);

Flattening and Unflattening Shapes

voi d GXFl att enShape (gxShape source, gxFlattenFlag flags,
gxSpool Bl ock *bl ock) ;

gxShape GXUnfl attenShape (struct gxSpool Bl ock *bl ock, |ong count,
const gxViewPort portList[]);

Application-Defined Spool Function

| ong MySpool Proc (gxSpool Command comrand,
struct gxSpool Bl ock *bl ock);

Summary of Shape Objects

2-97

CHAPTER 3

Style Objects

Contents

About Style Objects 3-3
Style Object Properties 3-4
The Default Style Object 3-6
Using Style Objects 3-7
Creating and Manipulating Style Objects 3-7
Creating and Deleting a Style Object 3-7
Copying, Comparing, and Cloning Style Objects 3-8
Loading and Unloading Style Objects 3-10
Manipulating Style Object Properties 3-10
Resetting a Style Object’s Default Properties 3-11
Getting and Setting Style Attributes and Text Attributes
Manipulating a Style Object’s Owner Count 3-11
Getting and Setting a Style Object’s Tag References 3-14
Style-Related Functions Described Elsewhere 3-14
Style Objects Reference 3-15
Constants and Data Types 3-16
The Style Object 3-16
Functions 3-16
Creating and Manipulating Style Objects 3-16
GXNewsSt yl e 3-17
GXDi sposeStyl e 3-17
GXCopyToStyl e 3-18
GXEqual Styl e 3-19
GXd oneStyl e 3-20
Manipulating Style Object Properties 3-21
GXReset Styl e 3-21
GXGet St yl eOmner s 3-22
GXGet Styl eTags 3-22
GXSet St yl eTags 3-24

Contents

3-11

3-1

3-2

CHAPTER 3

Summary of Style Objects 3-26
Constants and Data Types
Functions 3-26

Contents

3-26

CHAPTER 3

Style Objects

This chapter describes style objects and the functions you can use to manipulate them.
Read this chapter if you create or use any kind of style objects for the QuickDraw GX
shapes you create.

Before reading this chapter, you should be familiar with the information in the chapter
“Introduction to QuickDraw GX” in this book. You should also be familiar with shape
objects, as discussed in the chapter “Shape Objects” in this book.

For more information on style objects for graphic shapes, see the geometric styles
chapter of Inside Macintosh: QuickDraw GX Graphics. For more information on style
objects for typographic shapes, see the typographic styles chapter of Inside Macintosh:
QuickDraw GX Typography.

This chapter introduces QuickDraw GX style objects and describes their properties. It
then shows how to use general QuickDraw GX style-manipulation functions to

n create and manipulate style objects

n manipulate style object properties

This chapter also lists and cross-references all style-related QuickDraw GX functions that
are described elsewhere in this book and in other parts of Inside Macintosh.

About Style Objects

A style object exists to provide information about a shape. Each QuickDraw GX shape
consists of a shape object, a style object, an ink object, and a transform object; the style
object associated with a shape defines much of the shape’s appearance, such as the size
of the pen with which it is drawn or the size of its text.

QuickDraw GX identifies an individual style object through a style reference. To obtain
information about a style object, you must send its reference as a parameter to a
QuickDraw GX function (except that you can determine if two references identify the
same style object simply by comparing them for equality, and you can examine a
reference to see if itisni |).

Styles are device independent. Their information is not affected by the properties of the
display device to which the shapes they modify are drawn.

There are three categories of information that style objects contain: graphic, typographic,
and common. The graphic information applies to style objects associated with graphic
shapes, the typographic information applies to style objects associated with typographic
shapes, and the common information applies to both. Because the information is stored
separately, the same style object can apply to both kinds of shapes. The QuickDraw GX
object architecture allows you to perform several operations on a style object without
regard for what kind it is; those are the operations described in this chapter. Features and
operations specific to styles for graphic shapes are described in Inside Macintosh:
QuickDraw GX Graphics; those specific to styles for typographic shapes are described in
Inside Macintosh: QuickDraw GX Typography.

About Style Objects 3-3

CHAPTER 3

Style Objects

Style Object Properties

The interface to style objects is entirely procedural. You manipulate the information in a
style object by modifying its properties using QuickDraw GX functions.

Style objects have 22 accessible properties, as shown in Figure 3-1. The properties are
grouped into columns that reflect the category of shape that uses them. Note that,
because a style is an object and not a data structure, the order of the properties as shown
in Figure 3-1 is completely arbitrary. Properties in italics are references to other objects.

Figure 3-1 The style object and its properties
Smpeobect Shyle o bipct
‘ I m
]
Peraidih Domd Run condrole
Cap Tt foree Faming acfusedn arbe 2arrar
in Texteize Ayph ebedibdiore amayr
Dizehy Bigron ent Fun feairee armyr
Patiern Fortrmfone | Prioniy jusiicadon
orarride
Cunre emor Ercadirg
alphjusiiczion
Bt ba e Textatribbes Girefrides Armr
Cmarezr count
Tag et

Seven properties pertain mostly to style objects associated with graphic shapes:
n Pen width. The width of the pen used to draw the shape.

n Cap. The shape (such as an arrowhead, or any other geometric shape) to draw at the
start and end of each contour in the shape.

n Join. The appearance (such as rounded or sharp, or any other geometric shape) of
corners where a shape’s lines or contours meet.

n Dash. The appearance of dashed lines or contours in a shape. The dashing capability
is very general in QuickDraw GX; you can specify any geometric shape, or even a
sequence of glyphs, for a dash.

n Pattern. The pattern (actually, any geometric shape, glyph shape, or bitmap shape) to
use in filling the geometry of the shape.

n Curve error. The allowable error for operations such as converting a path shape to a
polygon shape.

About Style Objects

CHAPTER 3

Style Objects

n

Attributes. A set of flags that allow you to specify how QuickDraw GX places the pen
and whether the shape is constrained to a grid when drawn. (The grid-constraining
attributes can apply to typographic shapes also.)

Thirteen of the style object’s properties pertain only to styles associated with
typographic shapes. The portion of a typographic shape to which a style object applies is
called a style run. The first seven typographic style properties apply, for the most part, to
all typographic shapes:

n

Font. The reference to the font to use in drawing the text of this style run. (In
QuickDraw GX, a font is an object.)

Text face. The text face—the constructed stylistic variation from plain text—to apply
when drawing the text of this style run.

Text size. The size, in typographic points (72 per inch), to draw the text of this style
run.

Alignment. The alignment value to use when drawing the text of this style run. Text
may be left-aligned, right-aligned, anywhere between the two alignments (such as
centered), or fully justified. (This property is not used by layout shapes).

Font variations. The list of font variations—stylistic variations built into the font—
specified for drawing the text of this style run.

Encoding. The type of character encoding used to represent the text of this style run,
as well as its script and language.

Text attributes. A set of flags that allow you to specify how QuickDraw GX alters
glyph outlines or chooses the proper metrics for horizontal or vertical text.

The remaining six of the thirteen typographic style properties apply to layout shapes
only:

n

Run controls. A set of values and flags that control various aspects of how the text in
this style run is displayed.

Kerning adjustments array. An array specifying changes to the font-specified kerning
(positional adjustment) for pairs of glyphs in this style run.

Glyph substitutions array. An array specifying substitute glyphs for those that would
normally be displayed in this style run.

Run features array. An array specifying the set of font features—typographic
capabilities as defined by the font—to apply to the text of this style run.

Priority justification override. A structure that redefines the justification priorities
and behaviors for whole classes of glyphs.

Glyph justification overrides array. An array that redefines the justification priorities
and behaviors for individual glyphs.

About Style Objects 3-5

3-6

CHAPTER 3

Style Objects

The two remaining style object properties pertain to all styles, for all shapes:
n Owner count. The number of existing references to this style object.

n Tag list. A list of references to custom information about this style object, stored in
private data structures called tag objects. The chapter “Tag Objects” in this book
describes tag objects in general and how you can use them to add custom information
to objects.

QuickDraw GX provides functions to manipulate each of these style object properties.
Table 3-1 shows where to go for that information, depending on the type of shape object
that uses the style.

Table 3-1 Where to go for information on style object properties and functions

For style objects used by... Look in...

Graphic shapes Geometric styles chapter of QuickDraw GX Graphics

All typographic shapes Typographic styles chapter of QuickDraw GX Typography

(For style attributes that can apply to typographic
shapes, see also the geometric styles chapter of
QuickDraw GX Graphics)

Layout shapes only Layout styles and layout line control chapters of
QuickDraw GX Typography

All shapes This chapter

As Table 3-1 shows, most style-object properties and functions are described elsewhere.
Only those properties that pertain to all shapes—the owner count and tag list, and the
functions that manipulate them—are described in this chapter.

The Default Style Object

When QuickDraw GX first creates a style object, that object has default characteristics
defined by QuickDraw GX. Every default style object has the following properties:

n an empty tag list
n an owner count of 1

All other properties are zero or ni | , except that the value of the text size property is 12.0,
and the scale value within the dash property is 1.0. The font property is ni | , which
means that QuickDraw GX uses the default font in drawing text; however, your
application can control what font is used for the default. See the font objects chapter in
Inside Macintosh: QuickDraw GX Typography for more information.

About Style Objects

CHAPTER 3

Style Objects

Unlike shape objects, whose default properties vary with type, there is only one

single default style object for QuickDraw GX. If the shape objects you create reference
the default style object, you need to explicitly set all graphic or typographic properties
for that style after you create the shape. Also unlike shape objects, you cannot change the
definition of the default style object. However, you can create a style object with specific
properties, and then change the definition of the default shape object so that newly
created shapes reference that customized style object.

Using Style Objects

This section describes the basic style-creation and style-manipulation capabilities that
QuickDraw GX provides, capabilities that are independent of the specific type of style
object involved. For detailed information on using styles of specific types, see the
appropriate chapters of Inside Macintosh: QuickDraw GX Graphics and Inside Macintosh:
QuickDraw GX Typography.

This section describes how you can
n create and manipulate style objects

n manipulate certain style object properties

Creating and Manipulating Style Objects

This section describes how you can create and interact with style objects as whole
entities—to create, dispose of, copy, compare, and clone them. Manipulating the
individual properties of style objects is described under “Manipulating Style Object
Properties” beginning on page 3-10.

Creating and Deleting a Style Object

QuickDraw GX provides the GXNewSt y| e function to allow you to create a new style
object. Before you can create a style object, you need to be in the QuickDraw GX
environment. However, if you are not already in the QuickDraw GX environment,
GXNewst yl e calls the necessary functions for you. The functions for controlling
memory use in the QuickDraw GX environment are described in the memory
management chapter of Inside Macintosh: QuickDraw GX Environment and Utilities.

Note that you can also create a new style object by copying an existing one: see the
section “Copying, Comparing, and Cloning Style Objects” beginning on page 3-8.

To delete your application’s reference to a style object, call the GXDi sposeStyl e
function. Calling GXDi sposeSt yl e may or may not actually release the memory
allocated for that style object, depending on the style’s owner count. GXDi sposeStyl e
decreases the style object’s owner count by 1; if that brings the owner count to zero, the
style is completely deleted and its memory released. See “Manipulating a Style Object’s
Owner Count” beginning on page 3-11.

Using Style Objects 3-7

3-8

CHAPTER 3

Style Objects

Owner counts and what it means to dispose of an object are described in general in the
chapter “Introduction to Objects” in this book.

The following code fragment defines and creates the style object ny St yl e, sets some of
its properties, and disposes of it:

gxStyle myStyl e;

myStyle = GXNewStyle ();
GXSet Styl ePen(nyStyle, ff(2));
GXSet Styl eAttributes(myStyl e, gxQutsideFrameStyle);

if (nyStyle !'= nil) GXDisposeStyle(nyStyle);

The GXNewsSt yl e function is described on page 3-17. The GXDi sposeSt yl e function is
described on page 3-17.

Copying, Comparing, and Cloning Style Objects

You can use the GXCopy ToSt yl e function to copy information from one style object to
another or to create a new copy of a style object.

Listing 3-1 is a code fragment that changes the type of the shape ny Shape to a glyph
shape with four distinct style runs, and then fills out the style list, an array of style-object
references in the geometry of the glyph shape. (Glyph shapes and layout shapes have
style-object references in their geometries in addition to the style property that every
shape object has.) The code creates new copies of the style object originally referenced by
my Shape, each time assigning the style reference to a position in the st yl eSet array
and then modifying some of the style’s properties. Finally, the code assigns the style list
to the shape geometry.

The code in Listing 3-1 uses the library functions Set St yl eCormonFont and

Set St yl eConmonFace to modify the font and text-face properties of the style objects it
creates by copying. The text is defined in the string st r, and the lengths of the style runs
are defined in the r uns array. (Each style run is defined to be one glyph long in this
sample.)

Using Style Objects

CHAPTER 3

Style Objects

Listing 3-1 Building a style list by copying a style object

GXSet ShapeType(nyShape, gxd yphType);

/* use the default shape’s style for first style run */
styleSet[0] = nil;

/* use condensed Hel vetica for the second style run */
styleSet[1] = GXCopyToStyle(nil, GXGetShapeStyl e(mnyShape));
Set St yl eConmonFont (styl eSet[1], hel veti caFont);

Set Styl eConmonFace(styl eSet[1], gxCondense);

/* use extended Tines for the third style run */
styleSet[2] = GXCopyToStyle(nil, GXGetShapeStyl e(mnyShape));
Set Styl eConmonFont (styl eSet[2], tinmesFont);

Set Styl eConmonFace(styl eSet[2], gxExtend);

/* use 20-pt. italic Helvetica for the fourth style run */
styleSet[3] = GXCopyToStyle(nil, GXGetShapeStyl e(nyShape));
Set St yl eConmonFont (styl eSet[3], hel veti caFont);

Set Styl eConmonFace(styl eSet[3], gxltalic);

GXSet Styl eText Si ze(styl eSet[3], ff(20));

/* set the size (nunber of glyphs) of each style run */

for (counter = 0; counter < strlen(str); counter++) {
runsfcounter] = 1; [* each run is 1 glyph long */
styles[counter] = styleSet[counter & 3];

}

/* assign the styles array to the style list */

GXSet d yphs(nyShape, nil, nil, nil, nil, nil, runs, styles);

You can test if two style-object references refer to the same style object by simply testing
the references for equality. You can also compare two different style objects for equality
with the GXEqual St yl e function. For two style objects to be equal, their graphic and
typographic properties must have identical values, although their general object
properties (owner count and tag list) do not need to be identical. Note that style object
copies created with the GXCopyToSt yl e function are always equal to the style from
which they were copied.

In certain circumstances, you may want to copy a reference to a style object without
actually copying the style object. For example, you may want two variables to refer to
the same style object, so that editing one of them affects both. This is called cloning a
style, rather than copying a style. You can use the GXCl oneSt yl e function to clone
a style object.

Using Style Objects 3-9

3-10

CHAPTER 3

Style Objects

Functionally, GXCl oneSt yl e does nothing more than increase the owner count of a
style object. You can clone a style with a statement such as the following:

aStyl ed one = GXO oneStyl e(aStyl e);
This code has almost the same effect as
aStyl ed one = aStyl e;

that is, it sets the aSt yl eC one variable to reference the same style object as the
aSt yl e variable. The difference is that GXCl oneSt yl e also increments the style’s
owner count.

For more information about cloning objects, see the chapter “Introduction to
QuickDraw GX” in this book. For information on manipulating style owner counts,
including examples of cloning styles, see the section “Manipulating a Style Object’s
Owner Count” beginning on page 3-11 of this chapter.

The GXCopyToSt yl e function is described on page 3-18. The GXEqual St yl e function
is described on page 3-19. The GXCl oneSt yl e function is described on page 3-20.

Loading and Unloading Style Objects

Although you rarely need to, you can influence memory-allocation decisions involving
objects that you have created. If your application needs to have a style object in memory,
you can force QuickDraw GX to load it into memory. When your application no longer
needs the style object in a loaded state, you can instruct QuickDraw GX to unload it.

You call the GXLoadSt yl e function to make sure that a style object is in memory; if
necessary, QuickDraw GX brings the object into memory from an unloaded state. You
can call the GXUnl oadsSt yl e function to instruct QuickDraw GX that it is free to unload
the style object at any time. These functions are described in the memory management
chapter of Inside Macintosh: QuickDraw GX Environment and Utilities.

Manipulating Style Object Properties

Once you have created a style object, you can customize some of its features using the
techniques described in this section. However, most of the functions you use to set style
properties are described in the chapters that discuss style objects in Inside Macintosh:
QuickDraw GX Graphics and Inside Macintosh: QuickDraw GX Typography.

This section describes how to manipulate those properties of style objects that are
independent of the type of shape the style is associated with. You can reset a style’s
properties back to their default values, you can determine the owner count, and you can
get and set the tag list.

For manipulating style objects as a whole, see “Creating and Manipulating Style
Objects” beginning on page 3-7.

Using Style Objects

CHAPTER 3

Style Objects

Resetting a Style Object’s Default Properties

When you create a new style object with the GXNewSt yI e function, QuickDraw GX
creates a style object with default properties. If you have altered any of the style object’s
properties using functions described in this chapter or in Inside Macintosh: QuickDraw GX
Graphics or Inside Macintosh: QuickDraw GX Typography, you can reset the properties back
to their default values using the GXReset St yl e function.

Calling GXReset St yl e returns all of the style’s graphic and typographic properties to
their default values. It does not affect the style’s owner count or tag list.

The GXReset St yl e function is described on page 3-21.

Getting and Setting Style Attributes and Text Attributes

A style object has two separate properties, attributes and text attributes, that consist of
flags that affect style behavior. The attributes property of a style object affects mostly
graphic shapes. You retrieve and assign attribute values, such as pen width, with the
GXGet Styl eAttri but es and GXSet St yl eAt tri but es functions. These functions,
and the style attributes themselves, are described in the geometric styles chapter of
Inside Macintosh: QuickDraw GX Graphics.

The text attributes property of a style object affects typographic shapes only. You
retrieve and assign text attribute values, such as vertical-text selection, with the
GXGet Styl eText Attri but es and GXSet St yl eText Att ri but es functions,
respectively. These functions, and the text attributes themselves, are described in the
typographic styles chapter of Inside Macintosh: QuickDraw GX Typography.

Manipulating a Style Object’'s Owner Count

The owner count of an object indicates the number of current references to that object. In
general, QuickDraw GX manages owner counts for you. For example, when you create a
new style object, QuickDraw GX sets the owner count of the new style to 1. When you
assign an existing style object to a shape, QuickDraw GX increments the style’s owner
count to correspond to the new reference to the style contained in the shape object.

If you want to manage a style’s owner count directly—for example, if you want to track
object references that you place in your own data structures, or if you want to know
whether a style object is shared—you can use the GXCGet St yl eOaner s function to
determine the owner count of a style, and the GXCl oneSt yl e and GXDi sposeSt yl e
functions to change the owner count of a style. The GXO oneSt yl e function increments
the style’s owner count, and the GXDi sposeSt yl e function decrements the style’s
owner count, freeing the memory used by the style if the owner count goes to 0.

The GXGet St yl eOamner s function is described on page 3-22.

The following subsections discuss two common owner-count problems and how to
avoid them. The problems are discussed in terms of style objects, but they apply equally
well to other shared objects.

Using Style Objects 3-11

3-12

CHAPTER 3

Style Objects

Avoiding Excessive Owner Count

The following is one plausible, but incorrect, way to create a style object and assign it to
(the style reference property of) a shape:

GXSet ShapeSt yl e(myShape, GXNewStyl e());

After the execution of this statement, the owner count of the just-created style object is 2,
not 1; creating the style object initialized its owner count to 1, and assigning it to the
shape incremented its owner count to 2. If you were unaware of that, and deleted the
shape object with the statement

GXDi sposeShape(nyShape) ;

the owner count of the style object would be decremented to 1, and the style would be
left allocated in the heap when it should have been deleted.

A better way to create and assign a style object is to allocate a variable and use it in the
assignment:

myStyle = GXNewSt yl e();
GXSet ShapeSt yl e(myShape, nyStyl e);

As before, the style object’s owner count is now 2. When you are finished with the
variable reference to the style object, you can dispose of it:

GXDi sposeStyl e(nyStyl e);

That decreases the style’s owner count to 1. When you are finished with the shape object,
dispose of it as before:

GXDi sposeShape(nyShape) ;

That decreases the style’s owner count to 0, and the style object is deleted as intended.

Avoiding Insufficient Owner Count

The following is one plausible, but incorrect, way to temporarily assign a style object to a
shape, referenced in this example by the variable ny Shape. These statements save the
original style into a variable, create a new style object, and assign the new style to the
shape:

gxStyle nyd dStyle GXGet ShapeSt yl e(myShape) ;
gxStyle nmyNewStyle = GXNewStyl e();
GXSet ShapeSt yl e(myShape, nyNewsStyl e) ;

Using Style Objects

CHAPTER 3

Style Objects

The first statement does not increase the owner count of the style referenced by

myd dSt yl e; no new object is created and no additional references to my Shape exist

in any object. The second statement results in an owner count of 1 for the style
referenced by myNewsSt yl e. The third statement decrements the owner count of the
style referenced by myQ dSt yl e, and increments the owner count of the style referenced
by nyNewSt yl e (from 1 to 2).

Now suppose that you manipulate the new style object, draw the shape, and then wish
to dispose of the new style and reassign the original style object back to the shape. You
might expect to make two statements like this:

GXDi sposeSt yl e(nyNewSt yl e) ;
GXSet ShapeSt yl e(myShape, nyd dStyl e);

As you would expect, disposing of myNewSt yl e decrements the owner count of the new
style object from 2 to 1, and calling GXSet ShapeSt yl e further decrements the owner
count of the new style from 1 to 0, so that QuickDraw GX can delete it. However, the
original style object, referenced by mnyd dSt yl e, may have been deleted by the original
call to GXSet ShapeSt yl e (because its owner count may have gone to 0 as a result of
the call). If it has, myd dSt yl e will be ni | and the new call to GXSet ShapeSt yl e will
fail.

A better way to temporarily save and restore a style object is to clone the original style
before assigning the new style, as follows:

gxStyle nyd dStyle GXGet ShapeSt yl e(myShape) ;
gxStyl e nmyNewStyl e GXNewst yl e() ;

GXd oneStyl e(myd dStyl e) ;

GXSet ShapeSt yl e(myShape, nyNewstyl e) ;

The result of these statements is (assuming no other references to the style objects) an
owner count of 2 for both the original and new style objects. Then, when the time comes
to restore the original style object to the shape, you can make these statements:

GXDi sposeStyl e(nyNewsSt yl e) ;
GXSet ShapeSt yl e(myShape, nyd dStyl e);
GXDi sposeStyl e(nyd dStyl e);

The first statement decrements the owner count of the new style from 2 to 1; the second
statement decrements it from 1 to 0. The second statement increments the owner count of
the original style from 1 to 2, so the third statement is added to bring it back down to 1,
its original value.

Using Style Objects 3-13

CHAPTER 3

Style Objects

Getting and Setting a Style Object’s Tag References

You can examine the list of references to tag objects currently associated with a style
object using the GXGet St yl eTags function. Once you create a tag object, you can attach
it to a style object using the GXSet St yl eTags function. You can attach as many tag
objects as you like to a style object.

Tag objects and the basic functions for manipulating them are described in the chapter
“Tag Objects” in this book. That chapter also lists the common tag types defined and
reserved by Apple Computer, Inc.

The GXCGet St yl eTags function is described on page 3-22. The GXSet St yl eTags
function is described on page 3-24.

Style-Related Functions Described Elsewhere

3-14

Table 3-2 lists functions whose names contain the word St y| e that are either not
described in this chapter or are described in more detail elsewhere. For each book and
chapter, the table lists the style-related functions described in that chapter.

Table 3-2 Style-related functions described elsewhere

Book and chapter Functions described
Inside Macintosh: QuickDraw GX Graphics

“Geometric Styles” GXGet Styl ePen

GXSet St yl ePen

GXGet Styl eCap

GXSet Styl eCap

GXGet Styl eJoin

GXSet Styl eJoin

GXGet St yl eDash

GXGet St yl eDash

GXGet Styl ePattern
GXSet Styl ePattern
GXGet Styl eCurveError
GXSet St yl eCur veError
GXGet Styl eAttri butes
GXSet Styl eAttri butes

Style-Related Functions Described Elsewhere

CHAPTER 3

Style Objects
Table 3-2 Style-related functions described elsewhere (continued)
Book and chapter Functions described

Inside Macintosh: QuickDraw GX Typography

“Typographic Styles” GXGet St yl eFont
GXSet St yl eFont
GXGet Styl eFont Metri cs
GXGet Styl eFace
GXSet Styl eFace
GXGet Styl eText Si ze
GXSet St yl eText Si ze
GXGet Styl eJustification
GXSet Styl eJustification
GXGet Styl eFont Vari ati ons
GXSet St yl eFont Vari ati ons
GXGet Styl eFont Vari ati onSuite
GXGet St yl eEncodi ng
GXSet St yl eEncodi ng
GXGet Styl eText Attri butes
GXSet Styl eText Attri butes

“Layout Styles” GXGet St yl eRunControl s
GXSet St yl eRunControl s
GXCet St yl eRunKer ni ngAdj ust ment s
GXSet St yl eRunKer ni ngAdj ust ment s
GXGet St yl eRun@ yphSubsti tuti ons
GXSet St yl eRund yphSubstituti ons
GXGet St yl eRunFeat ur es
GXSet St yl eRunFeat ur es

“Layout Line Control” GXGet Styl eRunPriorityJustOverride
GXSet Styl eRunPriorityJust Override
GXGet St yl eRund@ yphJust Overri des
GXSet St yl eRun@ yphJust Overri des

Style Objects Reference

This section provides reference information about the data structures and functions that
allow you to create and manipulate style objects and alter their properties. It includes

n atype definition of the data type that applies to style objects in general

n descriptions of the QuickDraw GX functions that operate on style objects in general,
independent of the type of shape involved

Style Objects Reference 3-15

CHAPTER 3

Style Objects

Constants and Data Types

This section describes the data type that you use to gain access to style objects.

Style-related QuickDraw GX constants and data types not described in this section are
related to geometric and typographic shapes, and are thus described in the geometric
styles chapter of Inside Macintosh: QuickDraw GX Graphics and the typographic styles,
layout styles, and layout line control chapters of Inside Macintosh: QuickDraw GX
Typography.

The Style Object

Functions

QuickDraw GX provides you with access to an individual style object through a
gx St yl e reference:

typedef struct gxPrivateStyl eRecord *gxStyl e;

In this type definition, gxSt yl e is a type-checked reference, not an actual pointer to any
defined structure. The contents of the style object are private.

This section describes the QuickDraw GX functions you can use to
n create and manipulate a style object
n manipulate the general object properties of a style object

Note

Style-related QuickDraw GX functions not described in this section are
described in the chapters listed and cross-referenced in Table 3-2 on
page 3-14. u

Creating and Manipulating Style Objects

3-16

This section describes the functions that manipulate styles as objects in memory. With
the functions in this section, you can create, dispose of, copy, compare, and clone style
objects.

To associate a style object with a QuickDraw GX shape object, use the
GXGet ShapeSt yl e and GXSet ShapeSt yl e functions, described in the chapter “Shape
Objects” in this book.

Style Objects Reference

CHAPTER 3

Style Objects

GXNewStyle

You can use the GXNewSt yl e function to create a new style object with default
properties.

gxStyl e GXNewsStyl e(voi d);

function result A reference to a newly created copy of the default style object.

DESCRIPTION

The GXNewsSt yl e function creates a style object with an owner count of 1. All other
properties of the style are set to their default values:

n Anempty tag list.

n An owner count of 1.

n A textsize of 12.0.

n A scale value within the dash property of 1.0.
n No font specified.

All other properties are zeroorni | .

SPECIAL CONSIDERATIONS

If no error occurs, the GXNewsSt y| e function creates a style object; you are responsible
for disposing of that object when you no longer need it.

ERRORS, WARNINGS, AND NOTICES

Errors
out _of _nenory

SEE ALSO
Default style values are described in the section “The Default Style Object” on page 3-6.

GXDisposeStyle

You can use the GXDi sposeSt yl e function to release a reference to a style object.
voi d GXDi sposeStyl e(gxStyle target);

t ar get A reference to the style object to dispose of.

Style Objects Reference 3-17

DESCRIPTION

CHAPTER 3

Style Objects

The GXDi sposeSt yl e function decrements the owner count of the style specified by
the t ar get parameter and releases any memory used by the style if the owner count
goes to 0.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors
style_is_nil

Owner counts for style objects are discussed in the section “Copying, Comparing, and
Cloning Style Objects” on page 3-8, and in the section “Manipulating a Style Object’s
Owner Count” beginning on page 3-11. To examine the owner count of a style, use the
GXCet St yl eOwner s function, described on page 3-22.

GXCopyToStyle

DESCRIPTION

3-18

You can use the GXCopy ToSt yl e function to create a copy of an existing style object.
gxStyl e GXCopyToStyl e(gxStyle target, gxStyle source);

tar get A reference to the style object to copy the source style object’s contents
into. If you specify ni | for this parameter, this function creates a new
style object.

source A reference to the style object whose contents you want to copy.

function result A reference to the copy (that is, the target style).

The GXCopyToSt yl e function copies the contents of an existing style object to another,
or it creates a new style object and copies the contents of an existing style object into it.
The function copies the stylistic and typographic properties and the tag list (but not the
owner count) of the style object specified by the sour ce parameter into the style object
specified by the t ar get parameter. It clones, but does not copy, the tag objects in the tag
list.

If you specify ni | for the t ar get parameter, the GXCopyToSt yl e function creates a
new style object and copies the source properties, including tag list, into it. The function
gives the new style object an owner count of 1.

You can use the GXCopy ToSt yl e function to create a copy of a style object in order to
modify it without changing the original.

Style Objects Reference

CHAPTER 3

Style Objects

SPECIAL CONSIDERATIONS

If you specify ni | for the t ar get parameter and no error occurs, the GXCopyToSt yl e
function creates a style object; you are responsible for disposing of that object when you
no longer need it.

ERRORS, WARNINGS, AND NOTICES

Errors
out _of _nenory
style_is_nil

SEE ALSO

To create a new style that is a copy of the default style instead of a copy of an existing
style, use the GXNewSt y| e function, described on page 3-17.

To compare two style objects, use the GXEqual St yl e function, described in the next
section.

GXEqualStyle

You can use the GXEqual St yl e function to determine if two style objects are equal.
bool ean GXEqual Styl e(gxStyl e one, gxStyle two);

one A reference to one of the style objects to test for equality.
t wo A reference to the other style object to test for equality.

function result t r ue if the style specified by the one parameter is equal to the style
specified by the t wo parameter; f al se otherwise.

DESCRIPTION

The GXEqual St yl e function returns as its function result a Boolean value indicating
whether the two style objects are equal.

For two style objects to be equal, they must have identical properties, except that their
common object properties (owner count and tag list) need not be identical.

Style Objects Reference 3-19

CHAPTER 3

Style Objects

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors
out _of _nenory
style_is_nil

To make a copy of a style object that is equal by the criteria of this function, use the
GXCopyToSt yl e function, described in the previous section.

GXCloneStyle

DESCRIPTION

You can use the GXCl oneSt yl e function to clone a style object—that is, to add a
reference to it and increment its owner count.

gxStyl e GXO oneStyl e(gxStyl e source);

source A reference to the style to clone.

function result A reference to the cloned style.

The GXd oneSt yl e function increments the owner count of the style referenced in the
sour ce parameter. You typically use this function when you want to create another
reference to an existing style rather than creating a distinct copy of the style.

This function returns as its function result a reference to the style—the same reference
you pass in as the sour ce parameter. The only other action that GXCl oneStyl e
performs is to increment the style’s owner count.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

3-20

Errors
style_is_nil

Owner counts for style objects are discussed in the section “Copying, Comparing, and
Cloning Style Objects” beginning on page 3-8, and in the section “Manipulating a Style
Object’s Owner Count” beginning on page 3-11.

To examine the owner count of a style, use the GXCet St yl eOaner s function, described
on page 3-22. To decrement the owner count of a style, use the GXDi sposeSt yl e
function, described on page 3-17.

Style Objects Reference

CHAPTER 3

Style Objects

Manipulating Style Object Properties

This section describes the functions that allow you to manipulate certain properties of
style objects—those properties that are independent of the kind of style object. The
functions in this section allow you to reset some of the properties of a style object to their
default values, find a style object’s owner count, and manipulate a style object’s tag list.

Functions that allow you to manipulate graphics-specific style properties are described
in the geometric styles chapter of Inside Macintosh: QuickDraw GX Graphics; functions that
allow you to manipulate typographic-specific style properties are described in the
typographic styles chapter and layout styles chapter of Inside Macintosh: QuickDraw GX

Typography.

GXResetStyle

DESCRIPTION

You can use the GXReset St yl e function to reset the properties of an existing style
object to their default values.

voi d GXReset Styl e(gxStyle target);

t ar get A reference to the style object whose properties you want to reset.

The GXReset St yl e function resets all properties of the target style object, except owner
count and tag list, to their default values. The owner count and tag list are unaffected.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors
out _of _nenory
style_is_nil

Default properties of style objects are discussed in the section “The Default Style Object”
on page 3-6.

Style Objects Reference 3-21

CHAPTER 3

Style Objects

GXGetStyleOwners

DESCRIPTION

You can use the GXCGet St yl eOaner s function to determine the number of references to
a particular style.

| ong GXGet Styl eOmners(gxStyl e source);

source A reference to the style to find the owner count of.

function result The owner count of the source style.

The GXCGet St yl eOmner s function returns as its function result the owner count of the

style specified by the sour ce parameter. The owner count is the current number of
references to the style object.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors
style_is_nil

Owner counts are discussed in the section “Copying, Comparing, and Cloning Style
Objects” on page 3-8, and in the section “Manipulating a Style Object’s Owner Count”
beginning on page 3-11.

To increment the owner count of a style, use the GXCl oneSt yl e function, described on
page 3-20. To decrement the owner count of a style, use the GXDi sposeSt yl e function,
described on page 3-17.

GXGetStyleTags

3-22

You can use the GXGet St yl eTags function to examine one or more of the tag objects
associated with a style object.

| ong GXGet Styl eTags(gxStyl e source, long tagType, |ong index,
| ong count, gxTag items[]);

source A reference to the style object to examine the tag list of.

tagType The type of tag object to search for. A value of 0 indicates that you want to
look for all tag types.

Style Objects Reference

CHAPTER 3

Style Objects

i ndex The (1-based) index of the first such tag reference to return.
count The number of tag references to return.

itens An array to hold the returned tag references.

function result The number of tag references found that fit the criteria.

DESCRIPTION

The GXCGet St yl eTags function searches the tag list of the source style object for
references to tag objects with the tag type specified by the t agType parameter. If you
specify 0 for the t agType parameter, the GXGet ShapeTags function searches all tag

types.

You can use the i ndex and the count parameters to specify which tag references of the
appropriate type the GXGet St yl eTags function should return. The i ndex parameter
indicates the first tag reference to return and the count parameter indicates how many
tag references to return. The i ndex parameter must be greater than 0. The count
parameter must be greater than 0 or equal to the gxSel ect ToEnd constant (1), which
indicates that all tag references (starting with the tag reference indicated by the i ndex
parameter) should be returned.

The function result is the number of tag references found that fit the criteria. If you pass
a value other than ni | fortheit ens parameter, the GXCGet St yl eTags functionreturns
in it the tag references that were found.

ERRORS, WARNINGS, AND NOTICES

Errors

out _of nenory

style_is_nil

i ndex_i s_| ess_t han_one (debugging version)
count _is_less_than_one (debugging version)
Warnings

i ndex_out _of range

count _out _of range

SEE ALSO

Tag objects are introduced in the chapter “Introduction to Objects” in this book.
Functions to create and manipulate tags objects, and a list of reserved tag types, are
described in the chapter “Tag Objects” in this book.

To change the set of tag references associated with a style, use the GXSet St yl eTags
function, described in the next section.

Style Objects Reference 3-23

CHAPTER 3

Style Objects

GXSetStyleTags

DESCRIPTION

3-24

You can use the GXSet St yl eTags function to add, remove, or replace tag objects
associated with a style object.

voi d GXSet Styl eTags(gxStyle target, long tagType, |ong index,
| ong ol dCount, |ong newCount,
const gxTag items[]);

t ar get A reference to the style object to alter the tag list of.

tagType The type of tag objects to replace. A value of 0 indicates that you want to
replace tags of all types.

i ndex The (1-based) index of the first tag reference (to a tag object of the
appropriate type) to replace.

ol dCount The number of tag references to replace. A value of 0 specifies that you
want to insert tag references before the tag reference indicated by the
i ndex parameter, rather than replace tag references. A value of -1 (the
gxSel ect ToEnd constant) specifies that all tag references of the
requested type, starting with the tag reference indicated by the index
parameter, should be replaced.

newCount The number of tag references to insert. A value of 0 specifies that there are
no tag references to insert; the existing tag references that match the
criteria you specify in the t agType, i ndex, and ol dCount parameters
are removed from the sour ce shape’s tag list and disposed of.

itens An array of tag references to insert in the tag list.

The GXSet St yl eTags function allows you add tag references to a style object’s tag list,
to remove tag references from the list, or to replace tag references in the list with new tag
references. In any of these three cases, the t ar get parameter specifies the style object to
be modified, the newCount parameter specifies the number of tag references to add, and
the i t ens parameter provides the new tag reference.

n To add tag references, set the ol dCount parameter to 0. Use the t agType and the
i ndex parameters to specify where to add the new tag references. (For example, if
you specify ni | for the t agType parameter and 1 for the i ndex parameter, this
function inserts the new tag references before the current tag references. If you specify
a value other than ni | for the t agType parameter and a value of 2 for the i ndex
parameter, the function inserts the new tag references before the second tag reference
with a tag type matching the t agType parameter.)

Style Objects Reference

CHAPTER 3

Style Objects

n To remove tag references, set the newCount parameter to 0 and the i t ens parameter
toni | . You can use the i ndex and the ol dCount parameters to specify which tag
references (of the specified type) should be removed. The i ndex parameter indicates
the first tag reference (of the specified type) to remove and the ol dCount parameter

indicates how many tag references (of the specified type) to remove.

n To replace tag references, use the t agType, i ndex, and ol dCount parameters to
indicate which tag references to replace, and use the newCount andit ens
parameters to specify the new tag references to add. If newCount is greater than

ol dCount , the extra tag references are placed immediately adjacent to the last tag

reference replaced.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors

out _of nenory
style_is_nil

tag_is_nil
paraneter_is_nil

i nconsi stent _paraneters
par anmet er _out _of _range
index_is_less_than_zero
cannot _di spose_I| ocked_t ag

Warnings
i ndex_out _of _range
count _out _of range

Notices (debugging version)
tag_al ready_set

Tag objects are introduced in the chapter “Introduction to Objects” in this book.
Functions to create and manipulate tags objects, and a list of reserved tag types, are

(debugging version)
(debugging version)
(debugging version)
(debugging version)
(debugging version)

described in the chapter “Tag Objects” in this book.

To examine the set of tag references associated with a style, use the GXCet St yl eTags
function, described in the previous section.

Style Objects Reference

3-25

CHAPTER 3

Style Objects

Summary of Style Objects

Constants and Data Types

The style object

typedef struct gxPrivateStyl eRecord *gxStyl e;

Functions

Creating and Manipulating Style Objects

gxStyl e GXNewStyl e (void);

voi d GXDi sposeStyl e (gxStyle target);

gxStyl e GXCopyToStyl e (gxStyle target, gxStyle source);
bool ean GXEqual Styl e (gxStyle one, gxStyle two);
gxStyl e GXCl oneStyl e (gxStyle source);

Manipulating Style Object Properties

voi d GXReset Styl e (gxStyle target);
| ong GXGet Styl eOmners (gxStyle source);
| ong GXGet Styl eTags (gxStyle source, |long tagType, |ong index,

l ong count, gxTag itens[]);

voi d GXSet Styl eTags (gxStyle target, long tagType, |ong index,
| ong ol dCount, |ong newCount,
const gxTag items[]);

3-26 Summary of Style Objects

CHAPTER 4

Colors and
Color-Related Objects

Contents

About Color in QuickDraw GX 4-5
Color Spaces 4-6
Luminance-Based Color Spaces 4-7
RGB-Based Color Spaces 4-9
CMYK Color Spaces 4-14
Universal Color Spaces 4-15
Indexed Color Spaces 4-22
Color Spaces With Alpha Channels 4-24
Color-Component Values, Color Values, and Colors
Color Conversion and Color Matching 4-26
Color Profiles 4-28
Color-Matching Methods 4-30
When Color Matching Occurs 4-31
About Color Set Objects 4-32
Color Set Properties 4-33
Color Values in a Color Set 4-34
Default Color Sets 4-34
About Color Profile Objects 4-35
Color Profile Properties 4-36
Profile Data 4-36
The Default Color Profile 4-37
Zero-Length Profiles 4-37
Using Colors and Color-Related Objects 4-38
Assigning Colors to Shapes 4-38
Assigning Color Profiles to Colors 4-39

Contents

4-25

4-1

4-2

CHAPTER 4

Comparing and Testing Colors 4-40
Checking for Out-of-Gamut Colors 4-40
Checking Colors for Closeness and Color Space 4-40
Predicting Drawing Results 4-41
Converting and Matching Colors 4-41
Creating and Manipulating Color Set and Color Profile Objects 4-42
Creating and Disposing of a Color Set or Color Profile 4-42
Copying, Comparing, and Cloning Color Sets and Color Profiles 4-44
Loading and Unloading Color Sets and Color Profiles 4-45
Manipulating Object Properties of Color Sets and Color Profiles 4-46
Manipulating Owner Counts 4-46
Getting and Setting Tag References 4-47
Manipulating the Colors in a Color Set Object 4-47
Manipulating the Profile Data in a Color Profile Object 4-48
Colors and Color-Related Objects Reference 4-49
Constants and Data Types 4-50
Color-Component Values 4-50
Color Values 4-50
The Color Structure 4-53
Color Packing 4-54
Color Spaces 4-55
The Color Set Object 4-56
The gxSetColor Union 4-56
The Color Profile Object 4-57
Color Functions 4-57
GXCheckCol or 4-57
GXCet Col or Di st ance 4-58
GXConbi neCol or 4-59
GXConvert Col or 4-60
Color Set Functions 4-62
Creating and Manipulating Color Set Objects 4-62
GXCet Def aul t Col or Set 4-62
GXSet Def aul t Col or Set 4-63
GXNewCol or Set 4-64
GXDi sposeCol or Set 4-65
GXCopyToCol or Set 4-66
GXEqual Col or Set 4-67
GXd oneCol or Set 4-68
Manipulating Color Set Object Properties 4-69
GXCet Col or Set Onner s 4-69
GXGet Col or Set Tags 4-70
GXSet Col or Set Tags 4-71
Retrieving and Replacing Colors in a Color Set 4-73
GXCet Col or Set 4-73
GXSet Col or Set 4-74
GXCet Col or Set Part s 4-75
GXSet Col or Set Parts 4-76

Contents

CHAPTER 4

Color Profile Functions 4-78

Creating and Manipulating Color Profile Objects
GXGet Def aul t Col orProfile 4-78
GXNewCol or Profil e 4-79
GXDi sposeCol orProfile 4-80
GXCopyToCol or Profile 4-81
GXEqual Col orProfile 4-82
GXd oneCol orProfile 4-83

Manipulating Color Profile Object Properties
GXCet Col or Profi | eOaners 4-84
GXGet Col or Profi | eTags 4-85
GXSet Col or Profi | eTags 4-86

Retrieving and Replacing Profile Information
GXGet Col orProfile 4-88
GXSet Col orProfil e 4-89
GXLockCol orProfil e 4-90
GXUnl ockCol or Profil e 4-91
GXGet Col orProfil eStructure 4-92

4-78

4-84

4-88

Summary of Colors and Color-Related Objects 4-94

Constants and Data Types 4-94
Color Functions 4-98

Color Set Functions 4-98

Color Profile Functions 4-99

Contents

4-3

CHAPTER 4

Colors and Color-Related Objects

This chapter describes the QuickDraw GX color architecture and the objects and
structures with which you manipulate colors. Read this chapter if your application does
any color drawing or calculation, or if you create or modify bitmaps or color sets. Read
this chapter also if you are creating a calibration program to generate color profiles.

Before reading this chapter, you should be familiar with the information in the chapter
“Introduction to QuickDraw GX” in this book. You should also be familiar with shape
objects, as discussed in the chapter “Shape Objects” in this book.

This chapter constitutes the complete discussion of color for QuickDraw GX. Unlike for
shape objects and style objects, there is no additional discussion of color-related objects
in other books. However, additional information relevant to color is in the chapter “Ink
Objects” in this book.

QuickDraw GX uses color-matching methods provided by the Macintosh ColorSync
Utilities. For information on ColorSync, its color-matching capabilities, and the structure
of the color profiles it uses, see the ColorSync chapter of Inside Macintosh: Advanced Color
Imaging and the Component Manager chapter of Inside Macintosh: More Macintosh Toolbox.

For general information on color theory and color spaces, you may also want to read
other books such as these: Measuring Color, by R.W.G. Hunt, John Wiley & Sons,
New York, 1991; Illumination and Color in Computer Generated Imagery, by Roy Hall,
Springer-Verlag, New York, 1989; and Computer Graphics: Principles and Practice, by

J. Foley, A. van Dam, S. Feiner, and J. Hughes, Addison-Wesley, Reading, 1990.

This chapter introduces how color is represented in QuickDraw GX, and describes color
set objects and color profile objects and their properties. It then shows how to use
QuickDraw GX functions to

n assign colors to shapes

n compare, test, and convert colors

n automatically use the color-matching capabilities of QuickDraw GX
n create and manipulate color profiles for imaging devices

n manipulate the colors of a bitmap that uses indexed colors

About Color in QuickDraw GX

In QuickDraw GX, color information about a shape is kept in the ink object associated
with the shape object. A shape’s ink object describes both the color of the shape and the
transfer mode with which the shape is drawn. Ink objects are described in the chapter
“Ink Objects” in this book; colors are described in this chapter.

QuickDraw GX has a powerful, device-independent method for representing color

in many different formats. Conversion among the formats is simple and direct, and in
many cases automatic. QuickDraw GX also provides automatic manipulation of
device-specific colors so that colors match consistently when scanned from or drawn to
many different imaging devices.

About Color in QuickDraw GX 4-5

4-6

CHAPTER 4

Colors and Color-Related Objects

This section describes how color is represented and how you can manipulate color
information. It presents the information in this order:

n Colors are numerical values that make sense only in terms of specific color spaces.
Color spaces are described first, under “Color Spaces” (next section).

n The mathematical values used by each color space are combined with other
information to make a color structure. How color values relate to the color structure
is described second, under “Color-Component Values, Color Values, and Colors”
beginning on page 4-25.

n Colors in a given color space or produced with a given input or display device
commonly must be converted to another color space or matched to the color
capabilities of another device. How QuickDraw GX accomplishes that task is
described third, under “Color Conversion and Color Matching” beginning on
page 4-26.

Color Spaces

A color space specifies how color information is represented. It defines a one-, two-,
three-, or four-dimensional space whose dimensions, or components, represent intensity
values. For example, RGB space is a three-dimensional color space whose components
are the red, green, and blue intensities that make up a given color. Visually, these spaces
are often represented by various solid shapes, such as cubes, cones, or polyhedra. See,
for example, Color Plate 4 at the front of this book.

QuickDraw GX directly supports 28 different color spaces, to give you the convenience
of working in whatever kinds of color data most suits your needs. The QuickDraw GX
color spaces fall into several groups, or base families. They are

n luminance-based color spaces, used for grayscale display and printing

n RGB-based color spaces, used mainly for color video display

n CMYK-based color spaces, used mainly for color printing

n universal color spaces, used mainly for device-independent color measurements

All color spaces within a base family differ only in details of storage format or else are
related to each other by very simple mathematical formulas. Conversion of color across
base families is more complex, as described in the section “Color Conversion and Color
Matching” beginning on page 4-26.

Within a base family, some of the differences among color spaces relate to their packing,
the number of bits used to store each color component. For example, RGB colors might
be stored with 5, 8, or 16 bits per component. Each storage format is a different color
space. Internally, QuickDraw GX always converts colors so that each component has

16 bits; thus you can think of the 16-bit-per-component color spaces as the fundamental
ones in each base family, and those with smaller storage spaces as packed
(storage-compressed) versions.

About Color in QuickDraw GX

CHAPTER 4

Colors and Color-Related Objects

Some QuickDraw GX color spaces have an alpha channel, an additional component that
measures opacity or transparency. Alpha channels are described in the section “Color
Spaces With Alpha Channels” beginning on page 4-24.

QuickDraw GX also supports a derived color space—indexed color space—in which
colors are indirectly specified, using values that are indexed positions in a list. The colors
in that list, however, must still belong to one of the base-family color spaces.

The gxCol or Spaces enumeration, shown on page 4-55, lists the color spaces directly
supported by QuickDraw GX. Each color space has its own format for representing color
information. The rest of this section discusses those color spaces and their formats.

Luminance-Based Color Spaces

Luminance is a scale of lightness. Luminance-based color spaces, or gray spaces,
typically have a single component, ranging from black to white, as shown in Figure 4-1.
Luminance-based color spaces are used for black-and white and grayscale display and
printing.

Figure 4-1 Luminance color space

Bz Whife

A color is converted into luminance by evaluating its overall lightness. The luminance of
a color expressed in RGB (see “RGB-Based Color Spaces” beginning on page 4-9), for
example, can be calculated approximately with this formula:

luminance = 0.30 * red + 0.59 * green + 0.11 * bl ue;

(QuickDraw GX provides a function for converting colors among different color spaces.)

The luminance-based color spaces supported by QuickDraw GX (and defined in the
gxCol or Spaces enumeration) are gxGr ay Space and gxG ayASpace. The Ain
gxG ayASpace stands for a second component called an alpha channel; see the section
“Color Spaces With Alpha Channels” beginning on page 4-24 for more information.

Table 4-1 describes details of the storage formats for gxG- ay Space and

gxG ayASpace. In each of these spaces, the luminance is specified by a single
number whose range varies from 0 to 65,535. The color black has a luminance value
of 0, regardless of the color space.

About Color in QuickDraw GX 4-7

CHAPTER 4

Colors and Color-Related Objects

Table 4-1 Luminance-based color spaces supported by QuickDraw GX

Enumeration
Constant Value Explanation
gxG aySpace 0x000A 16 bits per component (gray only); component
values range from 0 to OXFFFF. Total storage size
for each color value: 16 bits.

gxG ayASpace 0x008A 16 bits per component (gray and alpha);
component values range from 0 to OxXFFFF. Total
storage size for each color value: 32 bits. Alpha
channels are described on page 4-24.

Figure 4-2 is a visual representation of the storage formats for the luminance-based color
spaces.

Note

This figure and all subsequent storage-format figures in this chapter
assume that data storage is “big-endian,” that is, that lower addresses
correspond to higher-order bytes in a word or long word value. For
processors whose storage model is different, the elements of the figures
would be in a different order. These figures are presented for illustrative
purposes only, and are not intended to specify details of storage order. u

Figure 4-2 Storage formats for luminance-based color spaces
1.5
r T
SRy
=i R Ty T B
1.5 1.5
£ LLN T
po 1 Alpha
CHEER RS pa O
L 1 |
A2bik 15 0

About Color in QuickDraw GX

CHAPTER 4

Colors and Color-Related Objects

QuickDraw GX does not support an 8-bit luminance-based color space because such a
color space can be more conveniently represented as an indexed color space with a color
set. Indexed color space is described in the section “Indexed Color Spaces” beginning on
page 4-22; color sets are described in the section “When Color Matching Occurs”
beginning on page 4-31.

RGB-Based Color Spaces

RGB-based color spaces are the most commonly used color spaces in computer graphics,
primarily because they are directly supported by most color monitors. The groups of
color spaces within the RGB base family include

n RGB spaces
n HSV and HLS spaces

RGB Spaces

Any color expressed in RGB space is some mixture of three primary colors red, green,
and blue. Most RGB-based color spaces can be visualized as a cube, as in Figure 4-3, with
corners of black, the three primaries (red, green, and blue), the three secondaries (cyan,
magenta, and yellow), and white. See, for example, Figure 4-3; see also Color Plate 4 at
the front of this book.

Figure 4-3 RGB color space

Wit

W el

About Color in QuickDraw GX 4-9

4-10

CHAPTER 4

Colors and Color-Related Objects

The RGB color spaces supported by QuickDraw GX (and defined in the

gxCol or Spaces enumeration) are gx RGBSpace, gxRGB16Space, gxRGB32Space,
gxRGBASpace, and gx ARGB32Space. See Table 4-2 and Figure 4-4 for storage-format
details. In each of these spaces, a color value is represented by three or four color
components, representing red, green, blue (and in some cases alpha); each component
can vary in the number of bits used for its storage. The color black is represented by
component values of 0 in the red, green, and blue components.

Table 4-2 RGB color spaces supported by QuickDraw GX

Constant
gxRGBSpace

gxRGEBl6Space

gxRGB32Space

gxARGEB32Space

gxRGBASpace

Enumeration
Value

0x0001

0x0501

0x0801

0x1881

0x0081

About Color in QuickDraw GX

Explanation

16 bits per component (red, green, and blue);
component values range from 0 to OxFFFF.
Total storage size for each color value: 48 bits.

5 bits per component (red, green, and blue);
component values range from 0 to Ox1F. Total
storage size for each color value: 16 bits (bit 15
is not used).

8 bits per component (red, green, and blue);
component values range from 0 to OxFF. Total
storage size for each color value: 32 bits

(bits 24-31 are not used).

8 bits per component (red, green, blue, and
alpha); component values range from 0 to OxFF.
Total storage size for each color value: 32 bits.
Alpha channels are described on page 4-24.

16 bits per component (red, green, blue, and
alpha); component values range from 0 to
OxFFFF. Total storage size for each color value:
64 bits. Alpha channels are described on

page 4-24.

CHAPTER 4

Colors and Color-Related Objects

Figure 4-4 Storage formats for RGB color spaces
16 16 15
r Ll " "
Red ArEan | Blu=
MESESpacs
1 5 5 g
i S A
Lk s]e]
gURGEL &Spacs
]]]
' T LT Ty ™
& | & |
MFGES 2 Space
]]]
.f' u T o ™
] CH I
UERGES 2opacs
15 15 15 15
i aTi A T ™
R Grasn Elus Blpha |
gHRGE ASpacs
L 1 1 1 |
£ bite 44 e 156 a
|:| Mot Ueed
HSV and HLS Color Spaces
HSV space and HLS space are transformations of RGB space that allow colors to be
described in terms more natural to an artist. The name HSV stands for hue, saturation,
and value, and HLS stands for hue, lightness, and saturation. The two spaces can be
thought of as being single and double cones, as shown in Figure 4-5. (See also Color
Plate 4 at the front of this book for a slightly different representation of these color
spaces.)
About Color in QuickDraw GX 4-11

CHAPTER 4

Colors and Color-Related Objects

Figure 4-5 HSV color space and HLS color space

Tauion

HSUapace HLSapaae

Hu= Hu=

"

4-12

The components in HLS space are analogous, but not completely identical, to the
components in HSV space:

n The hue component in both color spaces is an angular measurement, analogous to

position around a color wheel. A hue value of 0 indicates the color red; the color green
is at a value corresponding to 120°, and the color blue is at a value corresponding to
240°. Horizontal planes through the cones in Figure 4-5 are hexagons; the primaries
and secondaries (red, yellow, green, cyan, blue, and magenta) occur at the vertices of
the hexagons.

The saturation component in both color spaces describes color intensity. A saturation
value of 0 (in the middle of a hexagon) means that the color is “colorless” (gray); a
saturation value at the maximum (at the outer edge of a hexagon) means that the color
is at maximum “colorfulness” for that hue angle and brightness.

The value component (in HSV space) and the lightness component (in HLS space)
describe brightness or luminance. In both color spaces, a value of 0 represents black.
In HSV space, a maximum value for value means that the color is at its brightest. In
HLS space, a maximum value for lightness means that the color is white, regardless of
the current values of the hue and saturation components. The brightest, most intense
color in HLS space occurs at a lightness value of exactly half the maximum.

About Color in QuickDraw GX

CHAPTER 4

Colors and Color-Related Objects

The HLS and HSV color spaces supported by QuickDraw GX (and defined in the
gxCol or Spaces enumeration) are gxHSVSpace, gxHLSSpace, gxHSV32Space,
and gxHLS32Space. See Table 4-3 and Figure 4-6 for details of storage format.

Table 4-3 HSV and HLS color spaces supported by QuickDraw GX
Enumeration

Constant Value Explanation

gxHSVSpace 0x0003 16 bits per component (hue, saturation, and
value); component values range from 0 to OxFFFF.
Total storage size for each color value: 48 bits.

gxHLSSpace 0x0004 16 bits per component (hue, lightness, and
saturation); component values range from 0 to
OxFFFF. Total storage size for each color value:
48 bits.

gxHSV32Space 0x0A03 10 bits per component (hue, saturation, and value);
component values range from 0 to Ox3FF. Total
storage size for each color value: 32 bits
(bits 30-31 are not used).

gxHLS32Space 0x0A04 10 bits per component (hue, lightness, and

saturation); component values range from 0 to
Ox3FF. Total storage size for each color value:
32 bits (bits 30-31 are not used).

Figure 4-6 shows storage formats for the supported HSV color spaces. Formats for the

HLS spaces are identical.

Figure 4-6 Storage formats for HSV color spaces
16 16 16
1 1 1
r L1 Ll !
Hue | Sauredon Walue
HHIT Spacs
2 10 10 10
v ' N ' 14 ' y
[| H = W
UHSTE 2 Spacs
L 1 1 |
42 bile = 16 0
[] motuee

About Color in QuickDraw GX

4-13

CHAPTER 4

Colors and Color-Related Objects

CMYK Color Spaces

CMYK space is a color space that models the way ink builds up in printing. The name
CMYK refers to cyan, magenta, yellow, and black. Cyan, magenta, and yellow are the
three primary colors in this color space, and red, green, and blue are the three
secondaries. Theoretically black is not needed. However, when full-saturation cyan,
magenta, and yellow inks are mixed equally on paper, the result is usually a dark brown,
rather than black. Therefore, black ink is overprinted in darker areas to give a better
appearance. Figure 4-7 shows how the primary colors in CMYK space mix to form other
colors. (See also Color Plate 4 at the front of this book.)

Figure 4-7 Colors in CMYK color space

4-14

Elu=

A ey

i

Theoretically, the relation between RGB values and CMY values in CMYK space is quite
simple:

Cyan = 1.0 - red;
Magenta = 1.0 — green;
Yellow = 1.0 — blue;

(where red, green, and blue intensities are expressed as fractional values varying from 0
to 1). In reality, the process of deriving the cyan, magenta, yellow, and black values from
a color expressed in RGB space is complex, involving device-specific, ink-specific, and
even paper-specific calculations of the amount of black to add in dark areas (black
generation), and the amount of other ink to remove (undercolor removal) where black is
to be printed. QuickDraw GX performs those calculations for you when converting
among color spaces, commonly using color profiles as described in the section “Color
Profiles” beginning on page 4-28.

About Color in QuickDraw GX

CHAPTER 4

Colors and Color-Related Objects

The CMYK color spaces supported by QuickDraw GX (and defined in the
gxCol or Spaces enumeration) are gxCMYKSpace and gx CMYK32Space. See
Table 4-4 and Figure 4-8 for details of storage format.

Table 4-4 CMYK color spaces supported by QuickDraw GX

Enumeration
Constant Value Explanation

gxCMYKSpace 0x0002 16 bits per component (cyan, magenta, yellow,
and black); component values range from 0 to
OxFFFF. Total storage size for each color value:
64 bits.

gxCMYK32Space 0x0802 8 bits per component (cyan, magenta, yellow,
and black); component values range from 0
to OXFF. Total storage size for each color value:

64 bits.
Figure 4-8 Storage formats for CMYK color spaces
16 16 16 16
i il ar il]
CyRn Magenk Velow Elack:

T Fipaos

= = 5] 5]
i 1 il il]

o M W 8
R 2Spaca
L]]] |
54 bite 42 = 15 0

Universal Color Spaces

Some color spaces allow color to be expressed in a device-independent way. Whereas
RGB colors vary with monitor characteristics, and CMYK colors vary with printer and
paper characteristics, universal colors are meant to be true representations of colors as
perceived by the human eye. These color representations, called universal color spaces,
result from work carried out in 1931 by the Commission Internationale d’Eclairage (CIE),
and for that reason are also called CIE-based color spaces.

In addition, broadcast-video color space (YIQ) is based on device-independent color
characteristics, in that its colors are measured in terms of a standard device. It is
therefore considered universal and is discussed in this section.

About Color in QuickDraw GX 4-15

4-16

CHAPTER 4

Colors and Color-Related Objects

XYZ Space

There are several CIE-based color spaces, but all are derived from the fundamental XYZ
space. The XYZ space allows colors to be expressed as a mixture of the three tristimulus
values X, Y, and Z. The term tristimulus comes from the fact that color perception results
from the retina of the eye responding to three types of stimuli. After experimentation, the
CIE set up a hypothetical set of primaries, XYZ, that correspond to the way the eye’s
retina behaves.

The CIE defined the primaries so that all visible light maps into a positive mixture of X,
Y, and Z, and so that Y correlates approximately to the apparent lightness of a color.
Generally, the mixtures of X, Y, and Z components used to describe a color are expressed
as percentages ranging from 0% up to, in some cases, just over 100%.

Other universal color spaces based on XYZ space are used primarily to relate some
particular aspect of color or some perceptual color difference to XYZ values.

Yxy Space

Yxy space expresses the XYZ values in terms of x and y chromaticity coordinates,
somewhat analogous to the hue and saturation coordinates of HSV space. The
coordinates are shown in the following formulas, used to convert XYZ into Yxy:

Y=Y
X = X | (X+Y+2)
y = Y (X+Y+2)

Note that the Z tristimulus value is incorporated into the new coordinates, and does not
appear by itself. Since Y still correlates to the lightness of a color, the other aspects of the
color are found in the chromaticity coordinates x and y. This allows color variation in
Yxy space to be plotted on a two-dimensional diagram. Figure 4-9 shows the layout of
colors in the x and y plane of Yxy space. Color Plate 4 at the front of this book shows the
same plot in color.

About Color in QuickDraw GX

CHAPTER 4

Colors and Color-Related Objects

Figure 4-9 YXy chromaticities

be)

‘fedlown

R=d
Sran
Magert

L*u*v* Space and L*a*b* Space

One problem with representing colors using the XYZ and Yxy color spaces is that they
are perceptually nonlinear: it is not possible to accurately evaluate the perceptual
closeness of colors based on their relative positions in XYZ or Yxy space. Colors that are
close together in Yxy space may seem very different to observers, and colors that seem
very similar to observers may be widely separated in Yxy space.

L*u*v* space is a nonlinear transformation of XYZ space in order to create a perceptually
linear color space. L*a*b* space is a nonlinear transformation (a third-order
approximation) of the Munsell color-notation system (not described here). Both are
designed to match perceived color difference with quantitative distance in color space.

Both L*u*v* space and L*a*b* space represent colors relative to a reference white point,
which is a specific definition of what is considered white light, represented in terms of
XYZ space, and usually based on the whitest light that can be generated by a given
device. (In that sense L*u*v* and L*a*b* are not completely device independent; two
numerically equal colors are truly identical only if they were measured relative to the
same white point.)

Measuring colors in relation to a white point allows for color measurement under a
variety of illuminations. The luminance of the white point of the QuickDraw GX default
color profile matches the luminance of the white point on the Apple 13-inch color
monitor. Color profiles are described in the section “Color Conversion and Color
Matching” beginning on page 4-26.

About Color in QuickDraw GX 4-17

4-18

CHAPTER 4

Colors and Color-Related Objects

A primary benefit of using L*u*v* space and L*a*b* space is that the perceived

difference between any two colors is proportional to the geometric distance in the color
space between their color values. For applications where closeness of color needs to be
quantified, such as in colorimetry, gemstone evaluation, or dye matching, use of L*u*v*

space or L*a*b* space is common.

The formulas for transforming an XYZ color into an L*u*v* color are

if (Y Yn > 0.008856)

L =116.0 * (Y/ Ypl/3 - 16.0;
el se

L =903.3* (Y/ Yn);

u=130*L* (u - up);
v =13.0 * L * (v' - Vv'p);
where

U =4 % x| (X+ 15%Y + 3*2);
=9 %y [(X+ 15%Y + 3*2);

andu' p,v' ,and Yp are the u',v',and Y values for the reference white point.

Similarly, the formulas for transforming an XYZ color into an L*a*b* color are

if (Y/Yn > 0.008856)
L =116.0 * (Y/ Y13 - 16.0;

el se

L =903.3 * (Y/ Yp)

500.0 * ((X / X3 - (v vyl3y;

500.0 * ((Y/ Yy Y3 - (z1 zy)l3y;

a
b

where X, Yy, and Z, are the XYZ values for the reference white point.

Formats for XYZ-Based Color Spaces

The universal color spaces supported by QuickDraw GX (and defined in the
gxCol or Spaces enumeration) are gx YXYSpace, gxXYZSpace, gxLUVSpace,

gxLABSpace, gxYXY32Space, gxXYZ32Space, gxLUV32Space, and gxLAB32Space.
See Table 4-5 and Figure 4-10 for details of storage format. Note that the ranges of values

for the components differ significantly among the different color spaces.

Figure 4-10 shows storage formats for the supported XYZ color spaces. Formats for the

Yxy, L*u*v*, and L*a*b* spaces are identical.

About Color in QuickDraw GX

CHAPTER 4

Colors and Color-Related Objects

Table 4-5 Universal color spaces supported by QuickDraw GX

Enumeration
Constant Value Explanation

gxYXYSpace 0x0005 16 bits per component (Y, x, and y); component
values range from 0 (0%) to OxFFFF (100%). Total
storage size for each color value: 48 bits.

gxXYZSpace 0x0006 16 bits per component (X, Y, and Z). Component
values range from 0 (0%) to OXFFFF (200%; a
value of 0x8000 represents 100%). Total storage
size for each color value: 48 bits.

gxLUVSpace 0x0007 16 bits per component (L*, u*, and v*). The L*
component values range from 0 (0%) to OxFFFF
(100% of white-point luminance). The u* and
v* component values range from 0 (-1) to
OxXFFFF (+1). Total storage size for each color
value: 48 bits.

gxLABSpace 0x0008 16 bits per component (L*, a*, and b*). The L*
component values range from 0 (0%) to OxFFFF
(100% of white-point luminance). The a* and
b* component values range from 0 (-1) to
OxFFFF (+1). Total storage size for each color
value: 48 bits.

gxYXY32Space 0x0A05 10 bits per component (Y, x, and y); component
values range from 0 (0%) to 0x3FF (100%). Total
storage size for each color value: 32 bits (bits 30
and 31 not used).

gxXYZ32Space 0x0A06 10 bits per component (X, Y, and Z). Component
values range from 0 (0%) to Ox3FF (200%; a value
of 0x200 represents 100%). Total storage size for
each color value: 32 bits (bits 30 and 31 not used).

gxLUV32Space 0x0AO07 10 bits per component (L*, u*, and v*). The L*
component values range from 0 (0%) to Ox3FF
(100% of white-point luminance). The u* and
v* component values range from 0 (-1) to
Ox3FF (+1). Total storage size for each color
value: 32 bits (bits 30 and 31 not used).

gxLAB32Space 0x0A08 10 bits per component (L*, a*, and b*). The L*
component values range from 0 (0%) to Ox3FF
(100% of white-point luminance). The a* and
b* component values range from 0 (-1) to
Ox3FF (+1). Total storage size for each color
value: 32 bits (bits 30 and 31 not used).

NOTE Because u*, v*, a*, and b* are normally signed numbers between 1.0 and -1.0,
you can convert them into shorts as follows:
anUnsi gnedshort = ((aFloat + 1.0)/2) * 65535.0;

About Color in QuickDraw GX 4-19

CHAPTER 4

Colors and Color-Related Objects

Figure 4-10 Storage formats for XYZ color spaces

16 1 15
r LT L' 3
¥ | ¥ z
OIYE Spmos
5 10 10 10
T aa N 5
- v z
U B 2 Spaon
L 1 1 |
42 kit az 15 o
|:| Mot e

Video Color Spaces

Y1Q space is sometimes called video color space. It is based on the way a specific kind of
RGB data is broken down for color television transmission. The three dimensions that
describe these color spaces are Y, I, and Q, in which Y represents luminance and the
other two components carry color information.

Because the Y channel represents luminance it can be used alone; the Y channel is the
only channel used in black and white television. The | and Q channels are called color
difference channels: the Y channel is split between them. The notations “I” and “Q” stand
for “in phase” and “in quadrature,” respectively, referring to the method by which all of
the channels are combined into a signal for broadcast.

QuickDraw GX also defines NTSC and PAL color spaces. NTSC space corresponds to the
color encoding used for color broadcasting in the United States, whereas PAL space
corresponds to the color encoding used in Europe. NTSC and PAL have different screen
resolutions, frequencies, and are otherwise incompatible, but in terms of how color
values are calculated, NTSC space and PAL space are both identical to YIQ space.

In YIQ space, the Y component can vary from 0 (black) to its maximum value (full
luminance). | and Q are normally signed values, so they are centered around 0.
Figure 4-11 illustrates how colors map into the | and Q dimensions of YIQ space.

4-20 About Color in QuickDraw GX

CHAPTER 4

Colors and Color-Related Objects

Figure 4-11 The | and Q axes in YIQ color space

The video color spaces supported by QuickDraw GX (and defined in the

gxCol or Spaces enumeration) are gx Yl QSpace, gxNTSCSpace, gxPALSpace,
gx Yl @B2Space, gxNTSC32Space, and gxPAL32Space. See Table 4-6 and
Figure 4-12 for details of storage format. In each of these spaces, a color value is
represented by Y, I, and Q color components.

Table 4-6 Video color spaces supported by QuickDraw GX

Constant
gxYl QSpace

gxNTSCSpace
gxPALSpace
gxYl @B2Space

gxNTSC32Space
gxPAL32Space

Enumeration
Value Explanation

0x0009 16 bits per component (Y, I, and Q);
Y-component values range from 0 to OXFFFF;
I- and Q-component values range from —0x7FFF
to +Ox7FFF. Total storage size for each color
value: 48 bits.

0x0009 (same as gx Yl Space)
0x0009 (same as gx Yl QSpace)
0x0A09 10 bits per component (Y, I, and Q);

Y-component values range from 0 to 0x3FF;

I- and Q-component values range from —0x1FF
to +Ox1FF. Total storage size for each color
value: 32 bits (bits 30 and 31 are not used).

0x0A09 (same as gx Yl (B2Space)
0x0A09 (same as gx Yl (B2Space)

About Color in QuickDraw GX 4-21

CHAPTER 4

Colors and Color-Related Objects

Figure 4-12 shows storage formats for the supported YIQ color spaces. Formats for the
NTSC and PAL spaces are identical.

Figure 4-12 Storage formats for YIQ color spaces

15 15 15

¥ ! W ! W ! !
W | | o |
g:u:‘:cIlESpau::h

) 10 10 10
o ' W ! T4 ! !
L1 ¥ ! | & |
gHYTOE epaca
L 1 1]
42 bite az 15)

|:| Mot Leed

You can find more information on the theories of color and the various color spaces in
the following publications:

Measuring Color, by R.W.G. Hunt, John Wiley & Sons, New York, 1987.

Illumination and Color in Computer Generated Imagery, by Roy Hall, Springer-Verlag,
New York, 1989.

Indexed Color Spaces

In situations where you use only a limited number of colors, it can be impractical or
impossible to specify colors directly. For example, if you have a bitmap with only a few
bits per pixel (1, 2, 4 or 8 for QuickDraw GX), each pixel is too small to contain a
complete color specification; its color must be specified as an index into a list or table of
color values. If you are using spot colors in printing or pen colors in plotting, it can be
simpler and more precise to specify each color as an index into a list instead of an actual
color value. Also, if you want to restrict the user to drawing with a specific set of colors,
you can put them in a list and specify them by index.

Indexed space is the color space you use when drawing with indirectly specified colors.
An indexed color value (a color specification in indexed color space) consists of an index
value and a reference to a color set object. The color set contains a list of color values and
a specification of the color space for those color values; the index value specifies which
color to use from the list. Color values are defined in the section “Color-Component
Values, Color Values, and Colors” beginning on page 4-25. Color set objects are
described in the section “About Color Set Objects” beginning on page 4-32.

4-22 About Color in QuickDraw GX

CHAPTER 4

Colors and Color-Related Objects

QuickDraw GX supports the single indexed color space format gx| ndexedSpace
(defined in the gxCol or Spaces enumeration). See Table 4-7 and Figure 4-4 for details
of storage format. Although there is a single format for indexed color space, you can
create any number of unique indexed color spaces, using different sets of colors from any
of the defined color spaces.

Table 4-7 Indexed color space supported by QuickDraw GX

Enumeration
Constant Value Explanation

gxl ndexedSpace 0x000B Indicates that the color value is a (1-based)
index into the referenced color set. Total
storage size for each color value: 64 bits.

Figure 4-13 Storage format for indexed color space

Az Az
1 1
r A]
e Zolor e=t
U Tl S paas
[1 1 1 |
54 bile 42 Az 16]

Color spaces and bitmaps

Bitmaps commonly use indexed color space, but if pixel size is large
enough a bitmap can specify colors directly in any color space. These are
the restrictions on the use of color spaces with bitmaps:

n Bitmaps with 1, 2, 4, or 8 bits per pixel must use gxl ndexedSpace.

n Bitmaps with 16 bits per pixel can use gxRGB16Space. They cannot use
gxl ndexedSpace.

n Bitmaps with 32 bits per pixel can use gxRGB32Space, gxARGB32Space,
gxCMYK32Space, gxHSV32Space, gxHLS32Space, gxYXY32Space,
gxXYZ32Space, gxLUV32Space, gxLAB32Space, gxYl (B2Space,
gxNTSC32Space, or gxPAL32Space—that is, all defined 32-bit color spaces.
They cannot use gx| ndexedSpace.

n Hardware devices that have 24 bits of physical memory per pixel can support
gxRGB32Space. Hardware devices that have 32 bits of physical memory per
pixel can support gxRGB32Space plus all the other defined 32-bit color spaces.

Bitmaps are described further in the bitmap shapes chapter of Inside
Macintosh: QuickDraw GX Graphics. u

About Color in QuickDraw GX 4-23

CHAPTER 4

Colors and Color-Related Objects

Color Spaces With Alpha Channels

QuickDraw GX supports the use of an alpha channel in one luminance-based color space
(gxGr ayASpace) and two RGB color spaces (gx RGBASpace and gxARGB32Space). An
alpha channel is a component in a color space whose value typically determines the
opacity of the color expressed by the other components. An alpha-channel value of 0 in a
color means that the color is completely transparent, and a maximum value means that
the color is completely opaque. A value in between means that the color is partially
transparent.

How transparency is handled in drawing depends on the transfer mode used when the
color is drawn. (Transfer modes are discussed in the chapter “Ink Objects” in this book.)
Typically, however, transparency in a color being drawn—the source color— means that
the existing color at the location where drawing occurs—the destination color—shows
through. Where the source is completely opaque, the destination is completely covered
and is invisible; where the source is completely transparent, the destination shows
through unchanged and the source is invisible.

Figure 4-14 shows an example in which a uniform gray image (in gxGr ayASpace) is
drawn over a black-and-white image. The gray color of the source is uniform across the
rectangle, but the alpha-channel value decreases from OxFFFF on the left to 0 on the
right. As the alpha value decreases rightward, more and more of the destination color
shows through. (Color Plate 2 at the front of this book shows a similar drawing example
in color.)

Figure 4-14 Showing color transparency with an alpha channel

4-24

Pq:-m:lil:-:FFFF—l l_,u#,a=|:|

For more information on using alpha channels to achieve particular drawing effects, see
the chapter “Ink Objects” in this book.

About Color in QuickDraw GX

CHAPTER 4

Colors and Color-Related Objects

Color-Component Values, Color Values, and Colors

Each of the color spaces described in this chapter requires one or more numeric values in
a particular format to specify a color. This section describes the data types and structures
with which QuickDraw GX describes colors in its color spaces.

Each dimension, or component, in a color space has a color-component value. In the
fundamental, unpacked QuickDraw GX color spaces—those with 16 bits per
component—each color-component value is of type gxCol or Val ue:

typedef unsi gned short gxCol orVal ue;

A color-component value can vary from 0 to 65,535 (OxFFFF), although the numerical
interpretation of that range is different for different color spaces, as has been noted in
Table 4-1 through Table 4-7. In most cases, color-component intensities are interpreted
numerically as varying between 0 and 1.0; for that reason, QuickDraw GX provides the
constantgxCol or Val uel to represent OXFFFF.

Depending on the color space used, one, two, three, or four color-component values
combine to make a color value. A color value is a structure; it is the complete
specification of a color in a given color space. QuickDraw GX supports 13 color-value
formats, representing the fundamental 16-bits-per-component color spaces; all color
operations in memory use one of those formats. The color-value formats are described in
the section “Color Values” beginning on page 4-50. For example, an RGB color value has
this format:

struct gxRGBCol or{
gxCol or Val ue red,
gxCol or Val ue gr een,;
gxCol or Val ue bl ue;

H

This is exactly the storage format for colors in gxRGBSpace. However, colors stored in
gxRGB16Space or gxRGEB32Space have a packed storage format, and need to be
converted togxRGBCol or format when they are used. QuickDraw GX takes care of this
for you; as far as your application is concerned, you can always manipulate colors in the
color space you have specified.

About Color in QuickDraw GX 4-25

4-26

CHAPTER 4

Colors and Color-Related Objects

A color value plus a specification of the color space it belongs to (plus an
optional reference to a color profile to use for color matching) constitute a color in
QuickDraw GX. A color is defined by the gxCol or structure:

struct gxCol or {

gxCol or Space space;

gxCol orProfile profile;

uni on {
struct gxCMyKCol or cnyk;
struct gxRGBCol or rgb;
struct gxRGBACol or rgba;
struct gxHSVCol or hsv;
struct gxHLSCol or hl's;
struct gxXYZCol or XyZzZ;
struct gxYXYCol or YXY;
struct gxLUVCol or | uv;
struct gxLABCol or | ab;
struct gxYl QCol or yi q;
gxCol or Val ue gray;
struct gxG ayACol or graya,
unsi gned short pi xel 16;
unsi gned | ong pi xel 32;
struct gxl ndexedCol or i ndexed;
gxCol or Val ue conponent [4] ;

} el enent;

b

Each gxCol or structure holds the specification of a single color. Note that, besides the
basic color-value formats such as gxRGBCol or and gxXYZCol or, a QuickDraw GX
color can contain a 16-bit or 32-bit pixel value or an indexed color value, and you can
also access the color as an array of color-component values. Each of the color values in
the el enent union of the gxCol or structure is described in the section “The Color
Structure” beginning on page 4-53.

Color Conversion and Color Matching

Color support in QuickDraw GX is designed for device independence. You can work in
whatever color space is most convenient for you, you can convert colors from one color
space to another, and you can input and output colors with a variety of physical devices
with minimum error and loss of information.

About Color in QuickDraw GX

CHAPTER 4

Colors and Color-Related Objects

You may want to explicitly convert from one color space to another for a variety of
reasons, such as

n to allow users to work in a more familiar context (perhaps HSV instead of RGB)

n to convert device-dependent colors to device-independent colors (such as RGB to
L*u*v)

n to preview printed output onscreen (by converting RGB to CMYK)
n to display on monochrome monitors or printers (by converting to gray space)

In addition, QuickDraw GX automatically converts colors from one space to another
whenever necessary, such as when it displays a color that is defined in terms of one
space on a device whose colors are defined in terms of another space.

When converting among color spaces within a base family (such as HSV to RGB) and for
display on the same device, the conversion is exact and there is no loss or error.
However, when converting across base families (such as RGB to CMYK, or HLS to XY2Z),
and when converting within the same family but across different display devices, device
dependence is introduced and must be accounted for.

Different imaging devices (scanners, monitors, printers) work in different color spaces
and each can have a different gamut, or range of colors that it can produce. Monitors
from different manufacturers all display colors in RGB, but may have different RGB
gamuts. Printers that work in CMYK space vary drastically in their gamuts, especially if
they use different printing technologies. Even a single printer’s gamut can vary
significantly with the ink or type of paper it uses. It’s easy to see that conversion from
RGB colors on an individual monitor to CMYK colors on an individual printer using a
particular paper type can lead to unpredictable results.

When an image is output to a particular device, the device displays only those colors
that are within its gamut. Likewise, when an image is created by scanning, only those
colors within the scanner’s gamut are saved. Devices with different gamuts cannot
reproduce each others’ colors exactly, but careful shifting of the colors used on one
device can improve the visual match when the image is displayed on another.

Figure 4-15 shows examples of two devices’ color gamuts, projected onto Yxy space.
Both devices produce less than the total possible range of colors, and device B is
restricted to a significantly smaller range than device A. The problem illustrated by
Figure 4-15 is to be able to display the same image on both devices with a minimum of
visual mismatch. The solution to the problem is the use of color profiles and
color-matching methods.

About Color in QuickDraw GX 4-27

CHAPTER 4

Colors and Color-Related Objects

Figure 4-15 Color gamuts for two devices (in Yxy space)

4-28

10

(\ Dlasnc= 0,

Derice B

0 10

Color Profiles

Converting colors accurately across different input or display devices is called color
matching. To perform color matching requires the use of a color profile for each device
involved. A color profile describes the characteristics of a color space for a particular
physical device in a particular state. A monitor, for example, might have a single color
profile, whereas a printer might have a different profile for each paper type or ink type it
uses. A color-matching method uses a color profile to convert a color in a given color
space on a given device to or from another color space or device, perhaps a
device-independent color space.

Different color profiles can have different kinds of information in them. However, any
color profile has at least two parts: a set of profile chromaticities and a set of profile
response curves. The profile chromaticities are color values that define the extremes of
saturation that the device can produce for its primary and secondary colors (red, green,
blue, cyan, magenta, yellow). Each color value is typically described in terms of a
device-independent space such as XYZ. You can think of the profile’s chromaticities as
defining points at the extremes of that device’s gamut, as shown in Figure 4-16. (The
points in Figure 4-16 correspond to the limits of the gamut for device A in Figure 4-15.)

About Color in QuickDraw GX

CHAPTER 4

Colors and Color-Related Objects

Figure 4-16 Profile chromaticities for a device (in Yxy space)

(X‘\\\ creen

Yl

M =entz

LN o
.Z/
e el

Elu=

The profile response curves are graphs that describe how the profile chromaticities ramp
from no intensity to full intensity (there are additional response curves for undercolor
removal and black generation in CMYK space). The response curves are analogous to
gamma curves for monitors or dot-pitch curves for printing. Figure 4-17 shows an
example of a single response curve.

Figure 4-17 A profile response curve for a device

0 FFFF

D iricm
irdeprandent
color

oo ponent
ralue

Diewices irvber ity ——————————— -

About Color in QuickDraw GX 4-29

4-30

CHAPTER 4

Colors and Color-Related Objects

Color profiles contain additional information, such as a specification of how to apply the
chromaticities and response curves for matching (see the next section, “Color-Matching
Methods”), and a name string. They may also have custom information used by
particular color-matching methods. QuickDraw GX uses color profiles following the
format defined by the ColorSync Utilities. See the ColorSync Utilities chapter of Inside
Macintosh: Advanced Color Imaging for more information.

Color profiles are optional; a given color structure may or may not contain a valid
reference to a color profile. If a color profile reference is attached, QuickDraw GX uses it
when converting or matching colors; if there is no attached profile, QuickDraw GX uses
the default QuickDraw GX color profile; see “The Default Color Profile” on page 4-37.

Color-Matching Methods

When colors consistent with one device’s gamut are displayed on a device with a
different gamut, as in Figure 4-15 on page 4-28, a color-matching method attempts to
minimize the perceived differences in the displayed colors between the two devices. The
default Apple color-matching method, as used with the ColorSync Utilities, uses these
three approaches:

n Colorimetric matching. In this method, colors that fall within the gamuts of both
devices are left unchanged. For example, to match an image from device A onto
device B in Figure 4-15, only the colors in the gamut of A that fall outside the gamut of
B are altered. Colorimetric matching allows some colors in both images to be exactly
the same, which is useful when colors must match quantitatively. A disadvantage of
colorimetric matching is that many colors may map to a single color. All colors
outside the gamut of B in Figure 4-15, for example, would be converted to colors at
the edge of its gamut, reducing the total number of colors in the image and possibly
greatly altering its appearance. In colorimetric matching, colors outside the gamut are
usually converted to colors with the same lightness, but different saturation, at the
edge of the gamut. The left side of Figure 4-18 shows how colors are projected in
colorimetric matching.

n Perceptual matching. In this method, all the colors of a given gamut are shifted to fit
within another gamut. The colors maintain their relative positions, so the relationship
between colors is maintained. With realistic images such as scanned photographs,
perceptual matching produces better results than colorimetric matching in most cases;
in Figure 4-15, for example, the eye could compensate for the difference in gamuts
between A and B, and a perceptually matched image on B would look very similar to
the original image on A. A disadvantage of perceptual matching is that none of the
original colors is unchanged in the copy.

n Saturation matching. In some computer graphics, such as bar graphs and pie charts,
the actual color displayed is less important than its vividness. In this method, the
relative saturation of colors is maintained from gamut to gamut. Colors outside the
gamut are usually converted to colors with the same saturation, but different
lightness, at the edge of the gamut. The right side of Figure 4-18 shows how colors are
projected in saturation matching.

About Color in QuickDraw GX

CHAPTER 4

Colors and Color-Related Objects

Figure 4-18 Maintaining lightness and maintaining saturation in color matching

Tecion trough Whit
derice gam ut
[in HLE epaoe)
| 1
Rad Cran Red
Had:
M zinkining Mantining
lighirees sahration

QuickDraw GX uses the Macintosh ColorSync Utilities for color matching. ColorSync
color-matching methods are Component Manager components and support all three
kinds of color-matching, and may support other kinds as well. QuickDraw GX color
profile objects contain ColorSync color profile structures, and each structure specifies the
kind of matching that should be performed with it.

For more information on ColorSync and color-matching methods, see the ColorSync
Utilities chapter of Inside Macintosh: Advanced Color Imaging. For more information on
Component Manager components, see the Component Manager chapter of Inside
Macintosh: More Macintosh Toolbox.

When Color Matching Occurs

Color profiles are associated with devices. For example, when a QuickDraw GX-aware
scanning application creates a scanned image, it produces a bitmap and attaches a color
profile object (containing profile information obtained from the scanner driver) to the
bitmap. The color profile that is associated with a shape and describes the characteristics
of the device on which the shape was created is called the source profile. If the colors in
the bitmap are subsequently converted to another color space by the scanning
application or by another QuickDraw GX application, QuickDraw GX uses that source
profile to match the colors when converting. Bitmaps are described in the bitmap shapes
chapter of Inside Macintosh: QuickDraw GX Graphics.

About Color in QuickDraw GX 4-31

CHAPTER 4

Colors and Color-Related Objects

To display the bitmap requires using another color profile, which is attached to the view
device object associated with the output device. (View device objects are described in the
chapter “View-Related Objects” in this book.) That color profile is called the destination
profile. If the bitmap is displayed on a monitor, QuickDraw GX uses the monitor’s color
profile, along with the bitmap’s source profile, to match the bitmap’s colors to the
monitor’s gamut. If the bitmap is printed, QuickDraw GX uses the printer’s profile to
match the bitmap’s colors to the printer, including generating black and removing
undercolors where appropriate.

QuickDraw GX color matching occurs automatically, whenever drawing takes place or
whenever colors are converted from a color space in one base family to a color space in a
different base family. Most applications need not know what profiles, if any, are attached
to the colors they manipulate and draw. However, applications can explicitly use color
profiles for purposes such as print previewing, or they can allow the user to create
custom, modified profiles for special purposes on particular devices. In addition,
specialized applications can calibrate display devices and produce color profiles whose
information is stored in the devices’ drivers for use by QuickDraw GX. Such applications
make use of the ColorSync Utilities to create their profiles.

Color matching is off by default

Color matching can slow drawing speed. For that reason, when you
create a view port, the view port attribute gxEnabl eMat chPor t is
cleared by default. If you want matching to occur when you draw to the
screen, you must first set gxEnabl eMat chPor t . (Matching occurs
when appropriate during printing, regardless of the state of the
gxEnabl eMat chPor t attribute.) View port attributes are discussed in
the chapter “View-Related Devices” in this book. u

For more information on color profiles, see the section “About Color Profile Objects”
beginning on page 4-35.

About Color Set Obijects

4-32

A color set is a QuickDraw GX object that contains a list of colors. Color sets exist to
provide the colors for indexed color space. Bitmaps and other shapes that use indexed
color space specify colors as indexes into a color set. Color sets are the QuickDraw GX
equivalents to color tables in other graphics systems.

QuickDraw GX identifies an individual color set object through a color set reference. To
obtain information about a color set object, you must send its reference as a parameter to
a QuickDraw GX function (except that you can determine if two references identify the
same color set object simply by comparing them for equality, and you can examine a
reference to see if itisni |).

About Color Set Objects

CHAPTER 4

Colors and Color-Related Objects

Any QuickDraw GX color (gxCol or structure) that contains an indexed color value
includes a reference to a color set object. If a shape’s ink object has a color in indexed
color space, the color includes a reference to a color set object. If the bitmap in a view
device object uses indexed color values for its pixels, the bitmap includes a reference to a
color set object. (View devices are described in the chapter “View-Related Objects” in this
book.)

Color sets can be device independent because their colors, like any QuickDraw GX
colors, can be matched across devices. The color information is valid for any display
device on which the shapes the color sets apply to are drawn.

Color Set Properties

The interface to color set objects is entirely procedural. You manipulate the information
in a color set by modifying its properties using QuickDraw GX functions.

Color set objects have four accessible properties, as shown in Figure 4-19. Note that,
because a color set is an object and not a data structure, the order of the properties as
shown in Figure 4-19 is completely arbitrary. Properties in italics are references to other
objects.

Figure 4-19 The color set object and its properties

El‘! Color st obick
E

Codor o aC

Colormlue arrar

Omarear count

Tar &ut

These are the four accessible properties in a color set:

n Color space. The color space of all the color values in the color set. A color set can
have only a single color space, which cannot be gx| ndexedSpace.

n Color-value array. An array of color values (not gxCol or structures). Only the types
of color values specified in the gxSet Col or union are valid in a color set.

n Owner count. The number of existing references to this color set object.

n Tag list. A list of references to custom information about this color set object, stored in
private data structures called tag objects. The chapter “Tag Objects” in this book
describes tag objects in general and how you can use them to add custom information
to objects.

About Color Set Objects 4-33

4-34

CHAPTER 4

Colors and Color-Related Objects

QuickDraw GX provides functions to manipulate each of these properties. Note that
there is no color profile property for a color set; profile information for the colors in a
color set is found in the bitmap structure—or the color structure in the ink object—to
which the color set is attached.

Color Values in a Color Set

The array of color values in a color set object can have up to 65,535 entries; each entry
must be of one of the types defined in the gxSet Col or union:

uni on gxSet Col or {
gxCMYKCol or cnyk;

gxRGBCol or rgb;
gxRGBACol or r gba;
gxHSVCol or hsv;
gxHLSCol or hls;
gxXYZCol or XyZ;
gxYXYCol or yXY;
gxLUVCol or | uv;
gxLABCol or | ab;
gxYl QCol or yi Q;
gxCol or Val ue gray;
gxG ayACol or graya;
unsi gned short pixel 16;
unsi gned |l ong pi xel 32;

gxCol or Val ue

component [4] ;

b

The gxSet Col or union is an abbreviated color structure (see page 4-53). It has no
prof i | e orspace fields, because individual colors within a color set cannot have
different color spaces, and because the color profiles for the color values are defined
elsewhere—in the individual colors, bitmaps, or transfer modes that use this color set.
Also, the gxSet Col or union has no gxI ndexedCol or field because color sets cannot
be recursive (that is, colors in a color set cannot refer to colors in other color sets).

Default Color Sets

QuickDraw GX maintains several default color sets, one for each possible pixel size in
bitmaps that use indexed space—1, 2, 4, and 8 bits. (Bitmaps with pixel sizes over 8 bits
cannot use indexed space.) When you create a bitmap with a pixel size of 8 bits or less
and specify ni | for its color set, QuickDraw GX uses the appropriate default color set
whenever you draw that bitmap.

About Color Set Objects

CHAPTER 4

Colors and Color-Related Objects

Each of the default color sets consists of a gray ramp, using color values in

gxG aySpace that progress in order from white at an index value of 1 to black at
the highest index value. For a pixel size of 1 bit, for example, the default color set
consists of two colors: white and black.

You do not create a copy of any of the default color sets by calling the GXNewCol or Set
function; that function requires you to supply a specific array of color values.

You can inspect and change any of the default color sets by using

the GXCGet Def aul t Col or Set function, described on page 4-62, and the

GXSet Def aul t Col or Set function, described on page 4-63. Bitmaps are described
in the bitmap shapes chapter of Inside Macintosh: QuickDraw GX Graphics.

About Color Profile Objects

A color profile is a QuickDraw GX object that describes the color response of a specific
device, class of device, or device configuration. As described in the section “Color
Profiles” beginning on page 4-28, a color profile provides a quantitative description

of a device’s color gamut in terms of standard, usually device-independent colors.
QuickDraw GX uses color profiles for color matching when converting colors and when
drawing shapes.

QuickDraw GX identifies a color profile object through a color profile reference. To
obtain information about a color profile, you must send its reference as a parameter to a
QuickDraw GX function (except that you can determine if two references identify the
same color profile object simply by comparing them for equality, and you can examine a
reference to see if itisni |).

Any QuickDraw GX color (gxCol or structure), such as the color in a shape’s ink object,
can include a reference to a color profile object. Any bitmap structure, including the
bitmap in a view device object, can reference a color profile. (View devices are described
in the chapter “View-Related Objects” in this book.) A transfer mode structure can

also reference a color profile. If a color, bitmap, or transfer mode contains no specific
reference to a color profile, QuickDraw GX uses a default profile when converting colors
and when drawing.

Even though color profiles are inherently device-specific, QuickDraw GX uses them
consistently and performs color matching when needed. Most applications need not pay
attention to color profiles or try to associate them with specific devices except when first
creating colors. If you create a color, you should attach to it a color profile that describes
the characteristics of the device on which the color was created. If the device’s
characteristics are equivalent to the Apple 13-inch color monitor—or if you never need to
display or print the color on another device—you need not attach a profile.

About Color Profile Objects 4-35

CHAPTER 4

Colors and Color-Related Objects

Color Profile Properties

The interface to color profile objects is entirely procedural. You manipulate the
information in a color profile by modifying its properties using QuickDraw GX functions.

Color profile objects have three accessible properties, as shown in Figure 4-20. Note that,
because a color profile is an object and not a data structure, the order of the properties as
shown in Figure 4-20 is completely arbitrary. Properties in italics are references to other
objects.

Figure 4-20 The color profile object and its properties

Colbr profile
o bjpct

Frofle daba

Cmarear count
Tigr Piet

These are the three accessible properties in a color profile object:

n Profile data. Information specific to the individual profile, that usually includes color
values and a set of data that plots the response of the device—from zero intensity to
full intensity—when it generates each of the specified colors.

n Owner count. The number of existing references to this color profile object.

n Tag list. A list of references to custom information about this color profile object,
stored in private data structures called tag objects. The chapter “Tag Objects” in this
book describes tag objects in general and how you can use them to add custom
information to objects.

QuickDraw GX provides functions to manipulate each of these properties.

Profile Data

The profile data is the actual color profile information, in the form of a ColorSync color
profile structure. A QuickDraw GX color profile object is a wrapper for a ColorSync
profile.

ColorSync profiles are specified by the CMPr of i | e structure, which consists of the
following parts:

n Header. A structure containing information such as the size, version, device type, and
attributes of the profile. The header also contains the XYZ chromaticities of the
device’s white point and black point, and an options field that specifies the type of
color matching preferred (such as perceptual, colorimetric, or saturation matching).

4-36 About Color Profile Objects

CHAPTER 4

Colors and Color-Related Objects

n Profile chromaticities. A structure that contains the XYZ chromaticities for the six
primary and secondary colors (red, green, blue, cyan, magenta, yellow) at the limits of
the device’s gamut.

n Profile response curves. A variable-sized array of response curves for each of the
primary and secondary colors, plus gray (plus black generation and undercolor
removal for printer profiles).

n Name string. An international string, which consists of a Macintosh script code
followed by a 63-byte text string, that identifies the profile. (Note that these are
Macintosh script codes, which differ from QuickDraw GX script codes; Macintosh
script codes are described in the Script Manager chapter of Inside Macintosh: Text.)

n Custom data. Information used by custom color-matching methods. It may include
other kinds of color values or response curves.

The details of the CMPr of i | e structure, including explanations of some of the terms
used here, are given in the ColorSync Utilities chapter of Inside Macintosh: Advanced Color
Imaging. All parts of the structure except for the custom data are accessible through
ColorSync function calls. QuickDraw GX defines no structures or types for the profile
data of a color profile object, although you can access the information if you know its
format. See “Manipulating the Profile Data in a Color Profile Object” beginning on

page 4-48.

The Default Color Profile

QuickDraw GX maintains a default color profile that it uses for color matching when no
color profile is explicitly provided—that is, when the pr of i | e field of a color structure
or bitmap structure is ni | . The default color profile reflects the color response of the
Apple 13-inch color monitor, as defined by ColorSync version 1.0.

You do not create a copy of the default color profile by calling the GXNewCol or Profi | e
function; that function requires you to supply profile data for the object you are creating.
Also, you cannot change the characteristics of the default color profile object; there is no
GXSet Def aul t Col or Profi | e function.

You can determine the actual profile chromaticities used for the default QuickDraw GX
color profile by retrieving it and examining its profile data.

Zero-Length Profiles

QuickDraw GX automatically performs color matching whenever it draws or converts
colors, and if you specify a ni | color profile reference in any situation, QuickDraw GX
uses the default color profile rather than using no profile.

In some cases, however, you may want to prevent color matching from occurring for
individual colors or shapes, such as when comparing or calibrating different devices. To
do so, you can use a zero-length profile. Azero-length profile is a color profile object in
which the profile data is of zero length. It is a valid QuickDraw GX object—its reference
is notni | —but it contains no data. If you attach a zero-length profile to a color,
QuickDraw GX performs no matching when that color is drawn or converted.

About Color Profile Objects 4-37

CHAPTER 4

Colors and Color-Related Objects

If, for example, you want to see how each attached device represents pure blue, you can
specify pure blue for an ink’s color, attach a zero-length profile to it, and draw a shape
with that color to each device. If instead you specify ni | for the profile when creating
a color, QuickDraw GX matches the color, using the default color profile and each
device’s color profile, when drawing.

In the case of color conversions that require a profile (those between base families, such
as from RGB to XYZ), QuickDraw GX uses the following conventions:

n If both profiles are zero-length, QuickDraw GX uses the default profile as both the
source and the destination profile.

n If only one profile is zero-length, QuickDraw GX uses the other profile as both the
source and the destination profile.

Note

To turn off color matching entirely when drawing to a view port, make
sure that the gxEnabl eMVat chPor t attribute for that view port is
cleared. (It is cleared by default.) View port attributes are discussed in
the chapter “View-Related Devices” in this book. u

You can create a zero-length profile using the GXNewCol or Pr of i | e function, described
on page 4-79, or the GXSet Col or Pr of i | e function, described on page 4-89.

Using Colors and Color-Related Objects

4-38

This section describes how to create and use colors, color sets, and color profile. It shows
how you can

n assign colors to shapes and color profiles to colors
n testand compare colors

n convert colors from one color space to another, and apply color matching when
converting and when scanning, displaying, or printing

n create and manipulate color set objects, to support indexed colors

n create and manipulate color profile objects, to support color matching

Assigning Colors to Shapes

Colors exist to affect the appearance of drawn shapes. QuickDraw GX shapes other than
bitmaps and pictures get their color from the ink object that is part of the shape. One
property of the ink object is color, a gxCol or structure that describes the color of the
associated shape.

Using Colors and Color-Related Objects

CHAPTER 4

Colors and Color-Related Objects

To assign or change a shape’s color, therefore, you typically call the GXSet | nkCol or
function for the ink associated with the shape whose color you are assigning. You can
also call GXSet ShapeCol or, which performs the same task but allows you the
convenience of specifying the shape object involved, rather than the ink object that
actually contains the color information. (Conversely, to inspect the color of a shape,
you call GXGet | nkCol or or GXGet ShapeCol or.) The GXSet | nkCol or,

GXSet ShapeCol or, GXCGet | nkCol or, and GXGet ShapeCol or functions are
described in the chapter “Ink Objects” in this book.

Shapes that need more than one color are a special case. Bitmap shapes do not use the
color information in their ink object. Instead, the color of each pixel in a bitmap shape
is specified as a pixel value in the gxBi t map structure; depending on the storage size
of each pixel, that pixel value may be an actual color value or it may be an index

into a color set. To set the color of an individual pixel in a bitmap, you call the

GXSet ShapePi xel function, specifying which pixel to modify and what its new
color or new index value is. (Conversely, you can inspect the color of a pixel by
calling GXGet ShapePi xel .)

Modifying the color values in a color set, as described in the section “Manipulating the
Colors in a Color Set Object” on page 4-47, is another way to change the color or colors
of a shape. In a bitmap using indexed color space, any pixels whose indexes refer to
color values you have modified will be changed in appearance, even though their pixel
values remain unchanged. You can use this technique to perform simple manipulations
of a shape’s colors.

Bitmap shapes, the gxBi t map structure, and the functions GXSet ShapePi xel and
GXGet ShapePi xel are described in the bitmap shapes chapter of Inside Macintosh:
QuickDraw GX Graphics.

Assigning Color Profiles to Colors

When the user creates or modifies shapes’ colors, you assign colors to the ink objects or
pixels associated with those shapes. To assure proper color matching, you can assign a
color profile to each color or bitmap that the user creates. Normally, the user works with
a monitor attached to the system; you can find the profile for that monitor by examining
the bitmap property of the view device associated with the view port the user draws
into. You can attach that profile to the user’s colors. In the case of a single shape
displayed on more than one device, you may have to pick (or allow the user to pick)
which view device is the controlling one. In a gxCol or structure or agxBi t map
structure, you place the color profile reference in the pr of i | e field.

If you assign no color profile to a color or bitmap, Quickdraw GX uses the default color
profile when drawing or converting.

If you want to make sure that no matching occurs, assign a zero-length profile to the
color or bitmap. A zero-length profile is a color profile object whose profile data is of
zero length.

Using Colors and Color-Related Objects 4-39

4-40

CHAPTER 4

Colors and Color-Related Objects

Comparing and Testing Colors

QuickDraw GX provides several functions that allow you to analyze individual color
values for various purposes.

Checking for Out-of-Gamut Colors

If you have a color value that you want to test against a given color space or color set,
you can use the GXCheckCol or function. For example, you can use GXCheckCol or to
see if a given color is representable on a particular printer. If the color is not directly
representable—that is, if it is out of gamut—you could alert the user to that fact. You
could also call the GXConvert Col or function to mimic the automatic color conversion
that would take place in printing, to determine what color the printer would use to
represent your given color.

Both GXCheckCol or and GXConvert Col or require the color space and color profile of
the device the color is destined for. To get the color space and color profile of a printer,
you can use the GXGet Pri nt er Vi ewDevi ce and GXGet Vi ewDevi ceBi t map
functions.

The GXCheckCol or function is described on page 4-57. The GXConver t Col or function
is described on page 4-60. The GXGet Pr i nt er Vi ewDevi ce function is described in
Inside Macintosh: QuickDraw GX Printing. The GXGet Vi ewDevi ceBi t map function is
described in the chapter “View-Related Objects” in this book.

Checking Colors for Closeness and Color Space

If you want to compare a user-selected color with the range of colors in a color set,
you can use the GXGet Col or Di st ance function to determine how far the selected
color is from any of the colors in the color set. If the selected color is close enough (in
color-space distance) to one of the existing colors in the color set, you could call

the GXConvert Col or function to change the selected color to that closest color.
Alternatively, you could call GXGet Col or Set Part s and GXSet Col or Set Part s to
add the selected color to the color set or replace another color in the color set with the
selected color.

As another example, suppose that you open a document containing shapes of various
colors, and you want to save a grayscale version of that document. You might call
GXCheckCol or on each color in the document, and then GXConver t Col or on each
color whose color space is not already gxG ay Space. (You might also save the original
color information as a tag object attached to each shape or ink, for later restoration.)

The GXCGet Col or Di st ance function is described on page 4-58. The GXConvert Col or
function is described on page 4-60. The GXCet Col or Set Par t s function is described
on page 4-75; the GXSet Col or Set Par t s function is described on page 4-76. The
GXCheckCol or function is described on page 4-57.

Using Colors and Color-Related Objects

CHAPTER 4

Colors and Color-Related Objects

Predicting Drawing Results

You can preflight, or predict, the results of a drawing operation by using the

GXConbi neCol or function. You supply a destination color, and GXConbi neCol or tells
you what would happen if a shape using the ink object you specify were drawn to a
destination of that color. This function is as much a test of transfer mode as it is of source
and destination colors; you can use it to see how, or even if, drawing occurs under the
conditions you specify. For example, if you are using thegxM gr at eMbde transfer
mode, you may want to adjust the operand so that the result color exactly equals the
source color for a particular destination color. You can call GXCorbi neCol or with
different operand values until you get the result you want, and then draw the actual
shape. Transfer modes, operands, and source and destination colors are described in the
chapter “Ink Objects” in this book.

The GXCombi neCol or function is described on page 4-59.

Converting and Matching Colors

Although conversion among color spaces happens automatically whenever necessary
during the drawing process, you can also explicitly convert colors if you need to. The
following code fragment uses GXConver t Col or to modify the hue of a shape,
preserving its luminance and saturation. Such a technique is one way to perform color
animation. The code gets the color of shape t heShape, converts it to HSV space,
increases the hue value just enough to make a perceptible difference, reassigns the color
to the shape, and draws the shape:

gxCol or ol dCol or;

GXGet ShapeCaol or (t heShape, &ol dCol or);
GXConvert Col or (&ol dCol or, hsvSpace, nil, nil);
ol dCol or. el enent . hsv. hue += 0x300;

GXSet ShapeCol or (t heShape, &ol dCol or);

GXDr awShape(t heShape) ;

(Note that the final ni | parameter in the call to GXConvert Col or means that the
converted color reassigned to the shape uses the default color profile, whether or not the
original one did.)

Color matching happens automatically whenever you draw a shape or convert colors. If
the profile reference in a color is ni | , color correction still occurs when needed, as when
converting from RGB to CMYK color space. In those cases, the default profile is used.

In some cases, you may want to prevent color matching from occurring for an individual
color, such as when comparing or calibrating different devices. If you attach a
zero-length profile to a color, QuickDraw GX performs no matching when that color is
drawn or converted to another color space.

To prevent color matching from occurring during all drawing to a given view port, clear
the gxEnabl eMat chPor t attribute of that view port. Note that, because color matching
can slow down the drawing process, this attribute is cleared by default on all view ports.

Using Colors and Color-Related Objects 4-41

4-42

CHAPTER 4

Colors and Color-Related Objects

Therefore, if you want color matching to occur when drawing to the screen, you must
explicitly set gxEnabl eMat chPor t . Even if you do want matching to occur, you might
still clear gxEnabl eMat chPor t temporarily during scrolling or other repetitive
drawing processes. (For printing, QuickDraw GX automatically takes care of making
sure that color matching occurs when it is needed.)

If you want to specify a particular kind of color-matching method other than the one
specified in the profile attached to the color you are matching, your application can
either modify the information in the color profile object using QuickDraw GX calls, or
make calls to the ColorSync Utilities to specify the one you want.

To allow the user to preview on the screen what printing would look like, you can mimic
on the monitor the profile characteristics of the printer. You need to convert the color you
are drawing to the color space of the printer—applying the printer’s color profile—and
then convert that color back to the monitor’s color space—applying the monitor’s color
profile—and then draw. One way to do that is to create an offscreen view group with the
printer’s color space and color profile, and draw into a view port in that view group.
Then, draw from the bitmap of the offscreen view port into the view port of the monitor.

Color matching is discussed in the section “Color Conversion and Color Matching”
beginning on page 4-26. Color profiles, the default profile, and zero-length profiles are
discussed in the section “About Color Profile Objects” beginning on page 4-35. The
gxEnabl eMat chPor t view port attribute is described in the chapter “View-Related
Devices” in this book.

Creating and Manipulating Color Set and Color Profile Objects

This section describes how you can create and interact with color set objects and color
profile objects as whole entities—to create, dispose of, copy, compare, clone, load, and
unload them. Because color sets and color profiles are QuickDraw GX objects, and you
use similar sets of functions to manipulate them, they are considered together in each of
the subsequent sections. Manipulating the individual properties of color sets and color
profiles is described under “Manipulating Object Properties of Color Sets and Color
Profiles” beginning on page 4-46.

Creating and Disposing of a Color Set or Color Profile

QuickDraw GX provides the GXNewCol or Set function to allow you to create a new
color set. You can also create a new color set that is a copy of an existing color set by
calling GXCopyToCol or Set .

Once you have created a color set object, you can attach it to a color structure, bitmap
structure, or transfer mode structure by putting a reference to it in the color or bitmap
or transfer mode. Colors, bitmaps, and transfer modes also include a specification of
the color space they use; if they use a color set, they must use gxI ndexedSpace for
their color space.

Using Colors and Color-Related Objects

CHAPTER 4

Colors and Color-Related Objects

The following code fragment creates a simple color set (t heSet) with two RGB colors:
black and white. It assigns the color set to the bitmap structure t heBi t s, which it then
assigns to the bitmap shape t heBi t map, which it finally assigns to the view device

t heDevi ce. The code then disposes of the color set and bitmap shape since those
references are no longer needed:

gxSet Col or theCol ors[2];
gxSet Col or *pCol or;
gxCol or Set theSet;

gxBi t map theBits
gxShape t heBi t map

/[* initialize theBits and theBitnmap (not shown) */

pCol or = &t heCol ors[0];
pCol or->rgb.red = pCol or->rgb. green =
pCol or - >r gb. bl ue = gxCol or Val uel;
pCol or ++;
pCol or->rgb.red = pCol or->rgb. green = pCol or->rgb. bl ue = 0x0000;

t heSet = GXNewCol or Set (gxR@Space, 2, theCol ors);
theBits.set = theSet;

GXSet Bi t map(t heBi t map, & heBits, nil);

GXSet Vi ewDevi ceBi t map(t heDevi ce, theBitnap);

GXDi sposeCol or Set (t heSet) ;

GXDi sposeShape(t heBi t map) ;

Note

If you use GXNewCol or Set to create a color set, and then assign itas a
default color set with GXSet Def aul t Col or Set , be sure to dispose of
your reference to that color set immediately after assigning it as the
default. That way the new default color set will have the proper owner
count of 1, as required by QuickDraw GX. u

For color profile objects, QuickDraw GX provides the GXNewCol or Pr of i | e function
(and the GXCopyToCol or Pr of i | e function) to allow you to create new color profiles. If
you have profile information that you want to attach to a color or to a bitmap, you can
put that information in object form with GXNewCol or Pr of i | e and attach it (by
reference) to the color or bitmap. For simple drawing, you typically never have to do
this, but you might want to create a color profile object in these special instances:

n If you want to inhibit color matching for a particular color, you can create a
zero-length profile (one with no profile data) and attach it to the color.

n If you have access to a profile structure, either as a resource or through calls to the
ColorSync Utilities, you can turn that structure into a QuickDraw GX color profile by
creating a color profile object with that structure as the profile data.

Using Colors and Color-Related Objects 4-43

4-44

CHAPTER 4

Colors and Color-Related Objects

n If your application is a scanning application, it can create a color profile object from
information in the scanner’s driver and attach that profile to the bitmap shapes it
creates.

n If your application is a calibration program that develops profile information for a
device, it can create a color profile object to hold the profile information it generates
during the calibration process and to display the results to the operator of the
calibration program.

If your program is a device driver, it contains profile information in the form of color
profile resources; it does not need to create color profile objects. How device drivers

store color profile information is described in the printing resources chapter of Inside
Macintosh: QuickDraw GX Printing Extensions and Printer Drivers.

To delete your application’s reference to a color set or color profile object, call the

GXDi sposeCol or Set or GXDi sposeCol or Pr of i | e function. Calling either function
may or may not actually release the memory allocated for the object, depending on the
object’s owner count. Both of these functions decrease the owner count of the color set or
color profile by 1; if that brings the owner count to zero, the object is completely deleted
and its memory released. See “Manipulating Owner Counts” on page 4-46.

The GXNewCol or Set function is described on page 4-64; the GXNewCol or Profil e
function is described on page 4-79. The GXDi sposeCol or Set function is described on
page 4-65; the GXDi sposeCol or Prof i | e function is described on page 4-80.

Copying, Comparing, and Cloning Color Sets and Color Profiles

You can use the GXCopy ToCol or Set function to copy color information from one color
set object to another or to create a new copy of an existing color set. You can use the
GXCopyToCol or Prof i | e function to copy profile information from one color profile
object to another or to create a new copy of an existing color profile.

You can test if two references refer to the same color set or color profile object by simply
comparing the references for equality. You can also test two different color set or color
profile objects for equality with the GXEqual Col or Set and GXEqual Col or Profil e
functions, respectively. For two color sets to be equal, their color spaces and colors must
be identical; for two color profiles to be equal, their profile information and their
attributes must be equal. In either case, the common object properties (owner count and
tag list) do not need to be identical for the objects to be considered equal.

Obiject copies created with the GXCopyToCol or Set and GXCopyToCol or Profil e
functions are always equal, in terms of the criteria just listed, to the objects from which
they were copied.

In certain circumstances, you may want to copy a reference to a color set or color profile
without actually copying the object. For example, you may want two variables to refer to
the same color set or color profile object, so that altering one of them affects both. This is
called cloning an object, rather than copying it. You can use the GXCl oneCol or Set and
GXCd oneCol or Prof i | e functions to clone a color set or color profile, respectively.

Using Colors and Color-Related Objects

CHAPTER 4

Colors and Color-Related Objects

Functionally, GXCl oneCol or Set and GXCl oneCol or Pr of i | e do nothing more than
increase the owner count of the specified object. For more information about cloning
objects, see the chapter “Introduction to Objects” in this book. For information on
manipulating owner counts, see the section “Manipulating Owner Counts” on page 4-46.

The following code fragment initializes a bitmap structure to be used for offscreen
drawing, assigns a color set object (conmonCol or Set) to it, and then creates a bitmap
shape (shMap) with that bitmap. The code, for its own purposes of tracking owner count
(not shown here), clones the color set rather than just assigning it to the bitmap shape. In
general, cloning is not necessary when you assign a color set to a bitmap, because when
you then call GXNewBi t map to create the bitmap shape (as this code fragment does),
QuickDraw GX increases the color set’s owner count for you.

gxBi t map map;
gxPoi nt pt = {0, 0};
gxShape shMap = nil;

/* set the bitmap’s wi dth, height, and pixel size */

map. rowBytes = OL;

map. i mage = nil;

map. space = gxl ndexedSpace;

map. profile = nil;

map. set = GXO oneCol or Set (conmonCol or Set) ;
shMap = GXNewBi t map(&rap, &pt);

QuickDraw GX will decrease the owner count of the color set when the shape shiap is
disposed of, but the application code will also need to call GXDi sposeCol or Set at
some point, to balance the GXO oneCol or Set call it makes here.

The GXCopyToCol or Set function is described on page 4-66; the

GXCopyToCol or Profi | e function is described on page 4-81. The GXEqual Col or Set
function is described on page 4-67; the GXEqual Col or Pr of i | e function is described
on page 4-82. The GXCl oneCol or Set function is described on page 4-68; the

GXd oneCol or Prof i | e function is described on page 4-83.

Loading and Unloading Color Sets and Color Profiles

Although you rarely need to, you can influence memory-allocation decisions involving
objects that you have created. If your application needs to have a color set object or color
profile object in memory, it can force QuickDraw GX to load the object into memory.
When your application no longer needs the color set or color profile in a loaded state, it
can instruct QuickDraw GX to unload the object.

Using Colors and Color-Related Objects 4-45

4-46

CHAPTER 4

Colors and Color-Related Objects

You call the GXLoadCol or Set or GXLoadCol or Pr of i | e function to make sure

that a color set or color profile object is in memory; if it has been unloaded,
QuickDraw GX brings it into memory. You can call the GXUnl oadCol or Set or

GXUnl oadCol or Prof i | e function to instruct QuickDraw GX that it is free to unload
the color set or color profile at any time. These functions are described in the memory
management chapter of Inside Macintosh: QuickDraw GX Environment and Utilities.

Manipulating Object Properties of Color Sets and Color Profiles

This section describes how to manipulate the common object properties of color sets and
color profiles: owner count and tag list. It also describes how to manipulate the colors of
a color set and the profile data of a color profile.

For manipulating color sets and color profiles as whole objects, see “Creating and
Manipulating Color Set and Color Profile Objects” beginning on page 4-42.

Manipulating Owner Counts

The owner count of an object indicates the number of current references to that object. In
general, QuickDraw GX manages owner counts for you. For example, when you create a
new color set object, QuickDraw GX sets the owner count of the new color set to 1. If you
assign that color profile object to a bitmap structure and then assign that bitmap
structure to a bitmap shape, QuickDraw GX increments the color profile’s owner count,
corresponding to the new reference to the color profile contained in the bitmap structure.

In some situations, as when switching color profiles or color sets among objects that
reference them, you may want to directly manage their owner counts yourself. To do so,
you can

n use the functions GXGet Col or Set Oamner s or GXGet Col or Prof i | eOmner s to
determine the current owner count

n use the functions GXCl oneCol or Set or GXCl oneCol or Pr of i | e to increment the
owner count whenever you create a new reference to the object

n use the functions GXDi sposeCol or Set or GXDi sposeCol or Prof i | e to decrement
the owner count, freeing the memory used by the color set or color profile if the
owner count goes to 0

The code fragment on page 4-45 shows an example of an application explicitly managing
the owner count of a color profile object.

The GXGet Col or Set Oaner s function is described on page 4-69. The
GXCet Col or Prof i | eOaner s function is described on page 4-84.

In the chapter “Style Objects” in this book, the section on manipulating a style object’s
owner count discusses two common owner-count problems and how to avoid them. The
problems are discussed in terms of style objects, but they apply equally well to color sets
and color profiles. Refer to that discussion if you find that the color-related objects you
create have owner counts that are higher or lower than you expect.

Using Colors and Color-Related Objects

CHAPTER 4

Colors and Color-Related Objects

Getting and Setting Tag References

You can examine the list of references to tag objects currently associated with a

color set object or color profile object by using the GXGet Col or Set Tags or

GXGet Col or Prof i | eTags function. Once you create a tag object, you can attach

it to its object using the GXSet Col or Set Tags or GXSet Col or Pr of i | eTags function.
You can attach as many tag objects as you like to a color set or color profile.

Tag objects and the basic functions for manipulating them are described in the chapter
“Tag Objects” in this book. That chapter also lists the common tag types defined and
reserved by Apple Computer, Inc.

The GXCGet Col or Set Tags function is described on page 4-70; the
GXGet Col or Prof i | eTags function is described on page 4-85.
The GXSet Col or Set Tags function is described on page 4-71; the
GXSet Col or Prof i | eTags function is described on page 4-86.

Manipulating the Colors in a Color Set Object

If you are using indexed color space, you can gain access to the array of colors in the
space’s color set or to any contiguous subset of the colors in the array. You can then
inspect, rearrange, modify, or add or delete colors from the array.

For example, suppose you want to sort the colors in a color set so that they will

display in a visually useful manner in a palette for the user. You could first call the
GXGet Col or Set function to get the array of colors. You could then sort the colors (say,
by hue (H) in gxHSVSpace), and then return the array to the color set by calling the
GXSet Col or Set function.

Alternatively, suppose you already have a luminance-sorted array of colors in a color set,
and you want to convert the first (darkest) color in the array to pure black. Instead of
accessing the entire array, you can call GXGet Col or Set Part s to get only the first color
in the array. You can then change that color to black, and reinsert it in the color set by
calling GXSet Col or Set Part s.

To add colors to or delete colors from a color set, call GXGet Col or Set , modify the
color-value array as needed, and then call GXSet Col or Set to place the new array in
the color set.

To change the color space of a color set, follow this sequence of calls:
n Call GXGet Col or Set to obtain the color-value array.

n Call GXConvert Col or on each color value in the array to convert the individual
color values from one space to the other.

n Call GXSet Col or Set to place the same array in the color set, but with a different
value specified for the color space.

Remember that simply changing the color space of a color set does not convert the
individual color values from one space to the other.

Using Colors and Color-Related Objects 4-47

4-48

CHAPTER 4

Colors and Color-Related Objects

As an example of color-set manipulation, the following code fragment from a drawing
routine matches each of the colors of a color set used by the shape mat chShape to a
specific color profile (qnsPr of i | €). The code uses the GXGet Col or Set function to fill
out a temporary array of color values (mycol or s) from the color set, converts each color
(from RGB space with a ni | profile to RGB space with qnsPr of i | e, in this case) with
the GXConvert Col or function, and then reassigns the color values to the color set
with the GXSet Col or Set function.

gxSet Col or mnycol or s[256] ;
ol dCol or Count = GXGet Col or Set (GXGet ShapeCol or Set (mat chShape),

nil, mycol ors);
for (i = 0; i < oldColorCount; i++)
{
gxCol or tnpCol or;
t mpCol or . space = gxRCGBSpace;
tmpCol or. profile = nil;
t mpCol or. el enent.rgb = nycolors[i].rgb;
GXConvert Col or (& npCol or, gxR@Space, nil, gnsProfile);
mycol ors[i].rgb = tnpCol or. el enent . rgb;
}

GXSet Col or Set (GXGet ShapeCol or Set (mat chShape), gxRGBSpace,
ol dCol or Count, mycol ors);

The GXCGet Col or Set function is described on page 4-73. The GXSet Col or Set function
is described on page 4-74. The GXGet Col or Set Par t s function is described on
page 4-75. The GXSet Col or Set Par t s function is described on page 4-76.

Manipulating the Profile Data in a Color Profile Object

QuickDraw GX defines no structures or types for the profile data of a color profile object.
For drawing or converting colors, most applications have no need to access or alter the
data in a color profile object. For special needs, however, such as changing the type of
match you want to perform, using a custom color-matching method, or inspecting the
name of a profile, you can—with knowledge of the details of the CMPr of i | estructure—
access and alter the profile data of an existing color profile object. Also, if your
application is a calibration program that creates color profiles for devices, or if it is an
imaging application that allows users to customize color profiles for specific uses, you
need access to profile information in order to make or modify a color profile object.

One way to do this is to use ColorSync functions to manipulate a ColorSync profile
directly, and then use the QuickDraw GX function GXNewCol or Pr of i | e to convert it to
a color profile object. ColorSync profiles are commonly in the ColorSync profiles folder
on the user’s system, and ColorSync can provide you with a list of those profiles.

Using Colors and Color-Related Objects

CHAPTER 4

Colors and Color-Related Objects

More directly, you can call the GXGet Col or Pr of i | e function to obtain the profile data
for a given profile. Knowing the structure of a ColorSync color profile, you can then
modify that information as needed, and return the altered data to the color profile object
by calling the GXSet Col or Pr of i | e function.

Note

If you alter the header of a ColorSync color profile to specify a particular
color space in the dat aType field, and then apply that profile to a color
defined in terms of a different color space, QuickDraw GX ignores the
new header data and specifies the color space implied by the color value
you pass to the profile. u

Yet another approach is to directly modify the profile data of a color profile object
in place, in QuickDraw GX memory. First, you call the GXLockCol or Profil e
function to prevent the profile data from being relocated, and then you call
GXGet Col or Profi | eSt ruct ur e to get a pointer to the profile data. After
manipulating the data, you must call GXUnl ockCol or Pr of i | e to release the
data for relocation. Remember that you cannot change the size of the profile data
with these calls, only its contents; if your manipulations require a change in the
size of the data, you must use GXGet Col or Pr of i | e and GXSet Col or Profi | e.

IMPORTANT
Memory-handling complications can occur with locked objects. Locking
an object fragments the QuickDraw GX heap, which can result in lower
performance. Furthermore, if a fragmented-memory condition occurs
during a call, QuickDraw GX may unlock all objects and restart the call.
Therefore, be careful about performing memory-intensive operations
while there are locked objects in QuickDraw GX memory; they may
become unlocked without warning. s

The GXNewCol or Pr of i | e function is described on page 4-79. The

GXGet Col or Pr of i | e function is described on page 4-88. The GXSet Col or Profil e
function is described on page 4-89. The GXLockCol or Pr of i | e function is described
on page 4-90. The GXGet Col or Prof i | eSt r uct ur e function is described on

page 4-92.The GXUnl ockCol or Pr of i | e function is described on page 4-91.

Colors and Color-Related Obijects Reference

This section provides reference information to the data structures and functions that
allow you to work with colors and create and manipulate color sets and color profiles,
and to alter their properties. It describes

n the constants and data types that define colors and color-related objects
n the QuickDraw GX functions that operate on colors
n the QuickDraw GX functions that operate on color sets

n the QuickDraw GX functions that operate on color profiles

Colors and Color-Related Objects Reference 4-49

CHAPTER 4

Colors and Color-Related Objects

Constants and Data Types

This section describes the constants and data types that define
n colors and color spaces
n color set objects

n color profile objects

Color-Component Values

Each color component in a color space (other than an indexed color space) is described
by a numeric color-component value, defined by the gxCol or Val ue type definition:

typedef unsi gned short gxCol orVal ue;
Color-component values can vary from 0 (no intensity) to OXFFFF (maximum intensity).

You can use the constant gxCol or Val uel to represent OXFFFF.

Color Values

Color-component values combine to form color values. Each color value is a complete
specification of a single color in a given color space. QuickDraw GX recognizes the
following ten fundamental types of color values:

n CMYK color value. It contains color-component values for cyan, magenta, yellow, and
black. It is defined by the gxCMYKCol or type definition:

struct gxCMyKCol or {
gxCol or Val ue cyan;
gxCol or Val ue magent a;
gxCol or Val ue yel | ow,
gxCol or Val ue bl ack;

H

n RGB color value. It contains color-component values for red, green, and blue. It is
defined by the gxRGBCol or type definition:

struct gxRGBCol or{
gxCol or Val ue red;
gxCol or Val ue gr een;
gxCol or Val ue bl ue;

H

4-50 Colors and Color-Related Objects Reference

CHAPTER 4

Colors and Color-Related Objects

n Alpha-channel RGB color value. It contains color-component values for red, green,
and blue, plus a fourth (alpha) color-component value representing opacity. It is
defined by the gxRGBACol or type definition:

struct gxRGBACol or {
gxCol or Val ue red;
gxCol or Val ue gr een;
gxCol or Val ue bl ue;
gxCol or Val ue al pha;

b

n HSV color value. It contains color-component values for hue, saturation, and value. It
is defined by the gxHSVCol or type definition:

struct gxHSVCol or{
gxCol or Val ue hue;
gxCol or Val ue saturation;
gxCol or Val ue val ue;

b

n HLS color value. It contains color-component values for hue, lightness, and
saturation. It is defined by the gxHLSCol or type definition:

struct gxHLSCol or{
gxCol or Val ue hue;
gxCol or Val ue | i ght ness;
gxCol or Val ue saturati on;

b

n XYZ color value. It contains color-component values for the X, Y, and Z tristimulus
values. It is defined by the gxXYZCol or type definition:

struct gxXYZCol or {
gxCol or Val ue X;
gxCol or Val ue Y;
gxCol or Val ue Z;

b

n YXy color value. It contains color-component values for the Y, x, and y chromaticity
axes. (Note that the Y component is identified in this color structure as capY.) It is
defined by the gxYXYCol or type definition:

struct gxYXYCol or {
gxCol or Val ue capy;
gxCol or Val ue X;
gxCol or Val ue Y;

b

Colors and Color-Related Objects Reference 4-51

CHAPTER 4

Colors and Color-Related Objects

n L*u*v* color value. It contains color-component values for the L*, u*, and v* axes. It is
defined by the gxLUVCol or type definition:

struct gxLUVCol or {
gxCol or Val ue l;
gxCol or Val ue u;
gxCol or Val ue v;

H

n L*a*b* color value. It contains color-component values for the L*, a*, and b* axes. It is
defined by the gxLABCol or type definition:

struct gxLABCol or {
gxCol or Val ue l;
gxCol or Val ue a;
gxCol or Val ue b;

H

n YIQ color value. It contains color-component values for the Y, I, and Q axes. It is
defined by the gxYI QCol or type definition:

struct gxYl QCol or{
gxCol or Val ue Y;
gxCol or Val ue i
gxCol or Val ue q;

n Grayscale color value. It contains a single color-component value for luminance.

n Alpha-channel grayscale color value, containing a color-component value for
luminance, plus a second (alpha) color-component value representing opacity. It is
defined by the gxGr ayACol or type definition:

struct gxG ayACol or{
gxCol or Val ue gray;
gxCol or Val ue al pha;

b

n Indexed color value. It contains an index value (of type gxCol or | ndex) and a
reference to a color set object. The color is obtained by using the index value as an
offset into the color set. Indexed color is defined by the gxI ndexedCol or type
definition:

typedef | ong gxCol orl ndex;

struct gxlndexedCol or{
gxCol or | ndex i ndex;
gxCol or Set set;

H

4-52 Colors and Color-Related Objects Reference

CHAPTER 4

Colors and Color-Related Objects

The Color Structure

A color value, plus a specification of the color space it belongs to, plus an optional
reference to a color profile to use for color matching, constitute a color in
QuickDraw GX. A color is a structure defined by the gxCol or type definition:

struct gxCol or{

gxCol or Space space;
gxCol orProfile profile;
uni on {
struct gxCMyKCol or cnyk;
struct gxRGBCol or rgb;
struct gxRGBACol or rgba;
struct gxHSVCol or hsv;
struct gxHLSCol or hls;
struct gxXYZCol or Xyz;
struct gxYXYCol or yXY;
struct gxLUVCol or | uv;
struct gxLABCol or | ab;
struct gxYl QCol or yi q;
gxCol or Val ue gray;
struct gxG ayACol or graya,;
unsi gned short pi xel 16;
unsi gned | ong pi xel 32;
struct gxlndexedCol or i ndexed;
gxCol or Val ue component [4] ;
} el enent;
s
Field descriptions
space The color space for this color.
profile A reference to a color profile to be used for color matching when
drawing or when converting this color to another color space. If this
field is ni | , the default QuickDraw GX color profile is used for
matching.
el ement The color value for this color.

The el enment field is a union that can contain any one of the following fields:

cnyk
rgb
r gha
hsv
hl's
Xyz
yXy

A CMYK color value.

An RGB color value.

An alpha-channel RGB color value.
An HSV color value.

An HLS color value.

An XYZ color value.

A Yxy color value.

Colors and Color-Related Objects Reference 4-53

CHAPTER 4

Colors and Color-Related Objects

| uv An L*u*v* color value.

I ab An L*a*b* color value.

yi q A YIQ color value.

gray A grayscale color value

graya An alpha-channel grayscale color value.

pi xel 16 A 16-bit pixel value, in gxRGB16Space format.

pi xel 32 A 32-bit pixel value, in any of the 32-bit color space formats.
i ndexed An indexed color value.

component An array of 4 undefined color-component values. Useful for

indexing through the color one component at a time, as when
working with different transfer modes for each color component.

Color Packing

4-54

You can store color values according to their standard definitions, or in packed format to
save space. QuickDraw GX recognizes six kinds of color-value storage, defined in the
gxCol or Packi ngTypes enumeration:

enum gxCol or Packi ngTypes{

gxNoCaol or Packi ng = 0x0000,
gxAl phaSpace = 0x0080,
gxWor d5Col or Packi ng = 0x0500,
gxLong8Col or Packi ng = 0x0800,
gxLong10Col or Packi ng = 0x0a00,
gxAl phaFi rst Packing = 0x1000

b

Constant descriptions

gxNoCol or Packi ng
No packing applied; colors are stored with 16 bits per component.

gxAl phaSpace An alpha channel is included in the color description. The alpha
component follows the other components in storage.

gxWer d5Col or Packi ng
Colors are stored with 5 bits per component. Unused bits in the
storage space are the high-order bits.

gxLong8Col or Packi ng
Colors are stored with 8 bits per component. Unused bits in the
storage space are the high-order bits.

gxLongl0Col or Packi ng
Colors are stored with 10 bits per component. Unused bits in the
storage space are the high-order bits.

gxAl phaFi r st Packi ng
An alpha channel is included in the color description. The alpha
component precedes the other components in storage.

Colors and Color-Related Objects Reference

CHAPTER 4

Colors and Color-Related Objects

The color-packing values are flags that are added to color-space definitions to define

different kinds of packed color spaces. Note that the specification of an alpha channel in
a color space is achieved with a color-packing flag. To see how these values are applied
to the definitions of color spaces, see the section “Color Spaces,” next.

When QuickDraw GX converts from an unpacked color space to a packed color space,
the color-component values are truncated (low-order bits lost) to fit the packed format.
When QuickDraw GX converts from a packed color space to an unpacked color space,

the color-component values are shifted leftward (padded with zeros in the low-order

bits) to fit the unpacked format.

Color Spaces

A color space defines how a color value is represented. Each color space specifies the

number, order, and size of the color-component values that make up a color value in that

space. QuickDraw GX recognizes 31 color spaces, defined in the gxCol or Space

enumeration:

enum gxCol or Spaces{

gxNoSpace
gxRGBSpace,
gxCMYKSpace,
gxHSVSpace,
gxHLSSpace,
gxYXYSpace,
gxXYZSpace,
gxLUWVSpace,
gxLABSpace,
gxYl QSpace,
gxXNTSCSpace
gxPALSpace
gxG aySpace,
gxl ndexedSpace,
gxRGBASpace
gxG ayASpace
gxRGB16Space
gxRGEB32Space
gxARGB32Space

gxCMYK32Space
gxHSV32Space
gxHLS32Space
gxYXY32Space
gxXYZ32Space
gxLUV32Space

gxYl QSpace,
gxYl QSpace,

gxRGBSpace + gxAl phaSpace,
gxG aySpace + gxAl phaSpace,
= gxWor d5Col or Packi ng + gxRGBSpace,
gxLong8Col or Packi ng + gxRGBSpace,

gxLong8Col or Packi ng + gxAl phaFi r st Packi ng

+ gxRGBASpace,

gxLong8Col or Packi ng + gxCMyKSpace,

gxLongl0Col or Packi ng
gxLong10Col or Packi ng

= gxLongl10Col or Packi ng

gxLong10Col or Packi ng
gxLong10Col or Packi ng

Colors and Color-Related Objects Reference

+
+
+
+
+

gxHSVSpace,
gxHLSSpace,
gxYXYSpace,
gxXYZSpace,
gxLUWVSpace,

4-55

CHAPTER 4

Colors and Color-Related Objects

gxLAB32Space = gxLongl10Col or Packi ng + gxLABSpace,
gxYl (B2Space = gxLongl0Col or Packi ng + gxYl Space,
gXNTSC32Space = gxYl B2Space,

gxPAL32Space gxYl B2Space,

H
typedef | ong gxCol or Space;

Note that color spaces from gxRGBASpace through gx Yl @B2Space use color-packing
flags in their definitions. Those flags are described in the previous section, “Color
Packing.”

The individual color spaces are described in the section “Color Spaces” beginning on
page 4-6.

The Color Set Object

QuickDraw GX provides you with access to an individual color set object through a
gxCol or Set reference:

typedef struct gxPrivateCol or Set Record *gxCol or Set ;

In this type definition, gxCol or Set is a type-checked reference, not an actual pointer to
any defined structure. The contents of the color set object are private.

The gxSetColor Union

4-56

A color set object is essentially an array of color values. The acceptable types of color
values that it may contain are defined by the gxSet Col or union:

uni on gxSet Col or {
gxCMYKCol or cnyk;

gxRGBCol or rgb;
gxRGBACol or rgba;
gxHSVCol or hsv;
gxHLSCol or hl's;
gxXYZCol or XyZz;
gxYXYCol or yXY;
gxLUVCol or | uv;
gxLABCol or | ab;
gxYI QCol or yi q;

gxCol or Val ue gray;

gxG ayACol or graya,;

unsi gned short pixel 16;

unsi gned |1 ong pixel 32;
gxCol or Val ue conponent [4] ;

H

Colors and Color-Related Objects Reference

CHAPTER 4

Colors and Color-Related Objects

The gxSet Col or union is an abbreviated gxCol or structure. ThegxCol or structure is
described on page 4-53.

The Color Profile Object

A color profile describes how to match a color with the colors in a color space.
QuickDraw GX provides you with access to an individual color profile object through a
gxCol or Profi | e reference:

typedef struct gxPrivateProfil eRecord *gxCol orProfile;

In this type definition, gxCol or Prof i | e is a type-checked reference, not an actual
pointer to any defined structure. The contents of the color profile object are private.

Color profile objects contain color profile structures as defined by the Macintosh
ColorSync Utilities. See Inside Macintosh: Advanced Color Imaging for more information.

Color Functions

The functions in this section manipulate color structures, allowing you to test a color,
compare two colors, combine two colors, and convert a color from one color space to
another. Colors are described in the section “Color-Component Values, Color Values, and
Colors” beginning on page 4-25. The color structure (type gxCol or) is described on

page 4-53.

GXCheckColor

You can use the GXCheckCol or function to determine if a color is either within a given
gamut in a particular color space, or representable in a given color set.

bool ean GXCheckCol or (const gxCol or *source, gxCol or Space space,
gxCol or Set aSet, gxColorProfile profile);

source A pointer to the color to check.
space The color space to check the source color against.
aSet A reference to a color set to check the source color against. This parameter

mustbeni | if the space parameter is not gxl ndexedSpace.

profile A reference to a color profile to check the source color against.
GXCheckCol or determines whether the source color is within the color
gamut represented by this profile and the space color space.

function result t r ue if the source color is contained in the specified color set, or if it is
within the gamut of the specified color space and color profile; otherwise,
fal se.

Colors and Color-Related Objects Reference 4-57

CHAPTER 4

Colors and Color-Related Objects

DESCRIPTION

The GXCheckCol or function has two purposes. One is that you can use it to see if a
given color exactly matches a color within a color set. For example, you can test whether
a color matches a Pantone® or other spot color standard. To do this check, make sure that
the space parameter specifies indexed color space and that the aSet parameter is not
nil.

You can also use the GXCheckCol or function to see if a given color can be drawn on a
given view device. The function converts the source color to the color space represented
in the space parameter, using the color profile in the pr of i | e parameter. If the
resulting color is out of the gamut represented by space and pr of i | e, the function
returnsf al se.

SPECIAL CONSIDERATIONS

If you are using this function to test a color against a color set, it is unlikely to find a
match (which must be exact) unless the source color and the color set referenced in the
aSet parameter are based on the same color space and use identical color profiles.

ERRORS, WARNINGS, AND NOTICES

Errors

out _of _nenory

color _is nil

col or Space_out _of _range (debugging version)

Warnings
col or Set _i ndex_out _of range

GXGetColorDistance

You can use the GXGet Col or Di st ance function to determine the color-space distance
between two colors.

Fi xed GXGet Col or Di st ance(const gxCol or *target,
const gxCol or *source);

t ar get A pointer to the target color.
source A pointer to the source color.

function result The color-space distance between the two colors.

4-58 Colors and Color-Related Objects Reference

DESCRIPTION

CHAPTER 4

Colors and Color-Related Objects

The GXGet Col or Di st ance function is useful in colorimetric applications and for
judging perceived closeness of colors. It calculates how similar two colors are by
determining the color-space distance between them. The distance calculation is
performed in the color space of the target color. If the two colors are not in the same
space, GXGet Col or Di st ance converts the source color to the target color space before
calculating the distance.

If the target color space is gx| ndexedSpace, GXCet Col or Di st ance uses the color
space of the target color set.

The distance formula used is the standard Euclidean distance:

di stance = Sgrt((b0-a0)”2 + (bl-a1)72 + ...);

SPECIAL CONSIDERATIONS

Because some of the color spaces are not linear, distances calculated in one space are not
necessarily proportional to distances calculated in another space.

ERRORS, WARNINGS, AND NOTICES

Errors

out _of nenory

color_is nil

col or Space_out _of _range (debugging version)

Warnings
col or Set _i ndex_out _of _range

GXCombineColor

You can use the GXConbi neCol or function to combine two colors with a transfer mode
to get a result color for testing, without actually drawing.

gxCol or *GXCombi neCol or (gxCol or *target, gxlnk operand);

t ar get A pointer to the target color, which represents the destination color for
drawing. On return, t ar get points to the result color.

oper and A reference to an ink object, which represents the source color and the
transfer mode for drawing.

function result A pointer to the result color.

Colors and Color-Related Objects Reference 4-59

DESCRIPTION

CHAPTER 4

Colors and Color-Related Objects

The GXCombi neCol or function lets you preview or predict the results of drawing
without actually carrying out a drawing operation. The function applies the color and
transfer mode of the ink object referenced in the oper and parameter to the color
specified in the t ar get parameter. It calculates the result of drawing, with the ink’s
color as the source color and the target color as the destination color.

GXConbi neCol or modifies the target color to reflect the operation and also returns a
pointer to the resulting color. Ift ar get oroper and is ni |, the function posts an error
and returnsni | .

ERRORS, WARNINGS, AND NOTICES

Errors

out _of nenory

ink is nil

color_is_nil

col or Space_out _of _range (debugging version)
i nval i d_transferMdde_col or Space (debugging version)

Warnings
col or Set _i ndex_out _of range

SEE ALSO
Ink objects and transfer modes for drawing are described in the chapter “Ink Objects” in
this book.
GXConvertColor
You can use the GXConver t Col or function to convert a color from one color space to
another.
gxCol or *GXConvert Col or (gxCol or *target, gxCol or Space space,
gxCol or Set aSet, gxColorProfile profile);
t ar get A pointer to the color to be converted. On return, t ar get points to the
converted color.
space The color space to convert the target color to.
aSet A reference to the color set to assign to the color space of the target color.
This parameter must be ni | if the space parameter is not
gxl ndexedSpace.
profile A reference to the color profile to assign to the converted color (that is, to
use as the destination profile for the conversion). If you pass ni | for this
parameter, QuickDraw GX uses the default color profile.
function result A pointer to the converted color.
4-60 Colors and Color-Related Objects Reference

CHAPTER 4

Colors and Color-Related Objects

DESCRIPTION

The GXConvert Col or function converts a color from one color space to another. The
target color is both the input and the output color for this function; the function modifies
the target color to reflect the conversion and also returns a pointer to the converted color.
If t ar get isni |, the function posts an error and returns ni | .

If appropriate, GXConvert Col or automatically performs color matching when
converting the color. The color profile—if any—associated with the target color is used to
correct the input color, and the color profile referenced in the pr of i | e parameter—if
any—is used to create the final output color. If either color profile is ni | , QuickDraw GX
uses the default color profile in its place.

When converting to an indexed color space, GXConvert Col or uses the color set
specified by the aSet parameter as the color set for the returned color. It returns the
closest existing color in the color set.

When converting from a color space without an alpha channel to one with an alpha
channel, GXConvert Col or gives the alpha channel value maximum opacity. When
converting from a color space with an alpha channel to one without an alpha channel,
the alpha-channel value is lost.

When converting from a color space with colors to a luminance-based (grayscale) color
space, the color information is lost but GXConver t Col or preserves luminance (overall
lightness or brightness).

When converting between color spaces with different color packings (as from
gxRGEB32Space togxRGB16Space or gxRESpace), GXConver t Col or truncates or
expands individual color-component values as appropriate.

ERRORS, WARNINGS, AND NOTICES

Errors

out _of nenory

color_is_nil

col or Space_out _of _range (debugging version)
Warnings

col or Set _i ndex_out _of _range

SEE ALSO

Color spaces are described in the section “Color Spaces” beginning on page 4-6. Color
matching is described in the section “Color Conversion and Color Matching” beginning
on page 4-26, and in the section “Converting and Matching Colors” beginning on

page 4-41.

Colors and Color-Related Objects Reference 4-61

CHAPTER 4

Colors and Color-Related Objects

Color Set Functions

This section describes the functions with which you create color set objects, manipulate
color set object properties, and retrieve and replace colors in a color set.

Creating and Manipulating Color Set Objects

The functions in this section allow you to create and manipulate color sets as
QuickDraw GX objects.

GXGetDefaultColorSet

You can use the GXGet Def aul t Col or Set function to obtain a reference to the default
color set object for a given pixel depth.

gxCol or Set GXCGet Def aul t Col or Set (|1 ong pi xel Dept h) ;

pi xel Dept h The pixel size of the color set.

function result A reference to the default color set with the specified pixel depth.

DESCRIPTION

Note that the return value of this function is a reference to the actual default color set
object, not a copy of it. If you edit the color set returned by this function, you alter the
actual default object that the system uses when creating new color set objects.

The valid values for pi xel Dept h are 1, 2, 4, and 8. Bitmaps with other pixel depths
cannot use indexed color space.

You can also alter a default color set object using the GXSet Def aul t Col or Set
function, described in the next section.

ERRORS, WARNINGS, AND NOTICES
Errors

out _of _nmenory
i nval i d_pi xel Si ze (debugging version)

4-62 Colors and Color-Related Objects Reference

SEE ALSO

CHAPTER 4

Colors and Color-Related Objects

Default color set objects are discussed in the section “Default Color Sets” on page 4-34.
To modify a default color set object, use the GXSet Def aul t Col or Set function,
described next.

To create a new color set object, use the GXNewCol or Set function, described on
page 4-64.

GXSetDefaultColorSet

DESCRIPTION

You can use the GXSet Def aul t Col or Set function to replace the default color set
object for a particular pixel depth.

voi d GXSet Def aul t Col or Set (gxCol or Set target, |ong pixel Depth);

t ar get A reference to the color set object to make the new default.
pi xel Dept h The pixel size of the color set.

The GXSet Def aul t Col or Set function replaces an existing default color set with the
color set specified by the t ar get parameter. The pixel depth of the t ar get color set
determines which default color set is replaced.

This function disposes of the old default color set and increments the owner count of the
new default color set.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors

out _of nenory

colorSet_is_nil

i nval i d_col or Set _count (debugging version)
i nval i d_pi xel Si ze (debugging version)

Default color set objects are discussed in the section “Default Color Sets” on page 4-34.
To obtain a copy of a default color set object, use the GXGet Def aul t Col or Set
function, described in the previous section.

To create a new color set object, use the GXNewCol or Set function, described next.

Colors and Color-Related Objects Reference 4-63

CHAPTER 4

Colors and Color-Related Objects

GXNewColorSet

DESCRIPTION

You can use the GXNewCol or Set function to create a new color set object.

gxCol or Set GXNewCol or Set (gxCol or Space space, |ong count,
const gxSet Col or colors[]);

space The color space of the color set. You may not specify gxl ndexedSpace
for this parameter.

count The size of the color space; the number of color values it contains.

colors The array of color values that make up the color set.

function result A reference to the newly created color set object.

The GXNewCol or Set function creates a color set object with an owner count of 1 and
returns a reference to it as the function result. You specify the number of colors in the
color set in the count parameter, and pass the colors to the function in the col or s

array. Note that the array must contain color values of type gxSet Col or.

You do not use this function to obtain a copy of a default color set; the col or s
array must contain one or more elements. If it does not, GXNewCol or Set posts a
col or _i s_nil error. If you specify gxI ndexedSpace for the space parameter,
this function posts a col or Space_out _of _r ange error.

SPECIAL CONSIDERATIONS

If no error occurs, the GXNewCol or Set function creates a color set object; you are
responsible for disposing of that object when you no longer need it.

The current implementation of QuickDraw GX restricts the number of colors in a color
set to a maximum of 65,535.

ERRORS, WARNINGS, AND NOTICES

4-64

Errors

out _of nenory

color_is_nil

count _is_less_than_zero (debugging version)
col or Space_out _of _range (debugging version)
nunber _of col ors_exceeds_inplenentation limt

Colors and Color-Related Objects Reference

SEE ALSO

CHAPTER 4

Colors and Color-Related Objects

The gxSet Col or union is described on page 4-56.

To obtain a copy of a default color set object, use the GXGet Def aul t Col or Set
function, described on page 4-62.

GXDisposeColorSet

DESCRIPTION

You can use the GXDi sposeCol or Set function to release a reference to a color set
object.

voi d GXDi sposeCol or Set (gxCol or Set target);

t ar get A reference to the color set to dispose of.

The GXDi sposeCol or Set function decrements the owner count of the color set
specified by the t ar get parameter and releases any memory used by the color set if the
owner count goes to 0.

SPECIAL CONSIDERATIONS

If you attempt to dispose of a color set object used by an onscreen view device, this
function postsacol or Set _access_restri ct ed warning.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors
colorSet _is nil

Warnings
col or Set _access_restricted (debugging version)

Owner counts are discussed in the section “Copying, Comparing, and Cloning Color
Sets and Color Profiles” beginning on page 4-44, and in the section “Manipulating
Owner Counts” beginning on page 4-46. To examine the owner count of a color set, use
the GXGet Col or Set Omner s function, described on page 4-69.

Colors and Color-Related Objects Reference 4-65

CHAPTER 4

Colors and Color-Related Objects

GXCopyToColorSet

DESCRIPTION

You can use the GXCopy ToCol or Set function to copy the contents of one existing color
set to another, or to create a new color set and copy the contents of an existing color set
into it.

gxCol or Set GXCopyToCol or Set (gxCol or Set target, gxCol orSet source);

t ar get A reference to the color set to copy the source color set’s contents into. If
you specify ni | for this parameter, the function creates a new color set.

source A reference to the color set whose contents you want to copy.

function result A reference to the color set copy.

The GXCopyToCol or Set function copies the contents of an existing color set object to
another or it creates a new color set object and copies the contents of an existing color set
object to it. The function copies the color space and color values and tag list (but not the
owner count) of the color set object specified by the sour ce parameter into the color set
object specified by the t ar get parameter. It clones, but does not copy, the tag objects in
the tag list.

If you specify ni | for the t ar get parameter, GXCopyToCol or Set creates a new color
set object and copies the source color set’s properties, including the owner count and tag
list, into it.

You can use the GXCopy ToCol or Set function to create a copy of a color set and then
modify it without changing the original.

SPECIAL CONSIDERATIONS

4-66

If you specify ni | for the t ar get parameter and no error occurs, the
GXCopyToCol or Set function creates a color set object; you are responsible for
disposing of that object when you no longer need it.

If you specify a color set object used by an onscreen view device as the target, this
function postsacol or Set _access_restri ct ed warning.

Colors and Color-Related Objects Reference

CHAPTER 4

Colors and Color-Related Objects

ERRORS, WARNINGS, AND NOTICES

Errors
out _of _nenory
colorSet is nil

Warnings
col or Set _access_restricted (debugging version)

SEE ALSO

To create a new color set that is not a copy of an existing color set, use the
GXNewCol or Set function, described on page 4-64.

To compare two color set objects, use the GXEqual Col or Set function, described in the
next section.

GXEqualColorSet

You can use the GXEqual Col or Set function to determine whether two color set objects
are equal.

bool ean GXEqual Col or Set (gxCol or Set one, gxCol or Set two);

one A reference to one of the color sets to test for equality.
t wo A reference to the other color set to test for equality.

function result t r ue if the two color sets are equal; f al se otherwise.

DESCRIPTION

The GXEqual Col or Set function tests two color set objects for equality. For two color
sets to be equal, they must have the same color space and identical color values—in the
same order. Their owner counts and tag lists need not be identical.

ERRORS, WARNINGS, AND NOTICES

Errors
out _of _nenory
colorSet is nil

SEE ALSO

To make a copy of a color set object that is equal by the criteria of this function, use the
GXCopyToCol or Set function, described in the previous section.

Colors and Color-Related Objects Reference 4-67

CHAPTER 4

Colors and Color-Related Objects

GXCloneColorSet

DESCRIPTION

You can use the GXCl oneCol or Set function to clone a color set—that is, to add a
reference to it and increment its owner count.

gxCol or Set GXd oneCol or Set (gxCol or Set source);

source A reference to the color set to clone.

function result A reference to the cloned color set.

The GXO oneCol or Set function increments the owner count of the color set referenced
in the sour ce parameter. You typically use this function when you want to create
another reference to an existing color set rather than creating a distinct copy of the color
set.

This function returns as its function result a reference to the color set—the same
reference you pass in as the sour ce parameter. it also increments the color set’s owner
count.

SPECIAL CONSIDERATIONS

If you attempt to clone a color set object used by an onscreen view device, this function
postsacol or Set _access_restri ct ed warning.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

4-68

Errors
colorSet _is nil

Warnings
col or Set _access_restricted (debugging version)

Owner counts for color set objects are discussed in the section “Copying, Comparing,
and Cloning Color Sets and Color Profiles” beginning on page 4-44, and in the section
“Manipulating Owner Counts” beginning on page 4-46.

To examine the owner count of a color set, use the GXGet Col or Set Omner s function,
described on page 4-69. To decrement the owner count of a color set, use the
GXDi sposeCol or Set function, described on page 4-65.

Colors and Color-Related Objects Reference

CHAPTER 4

Colors and Color-Related Objects

Manipulating Color Set Object Properties

The functions described in this section allow you to manipulate the common object
properties of color sets: owner count and tag list. Functions for manipulating the colors
in a color set are described in the section “Retrieving and Replacing Colors in a Color
Set” beginning on page 4-73.

GXGetColorSetOwners

DESCRIPTION

You can use the GXGet Col or Set Owner s function to determine the number of
references to a particular color set object.

| ong GXGet Col or Set Omner s(gxCol or Set source);

source A reference to the color set object to find the owner count of.

function result The owner count of the color set object referenced in the sour ce
parameter.

The GXGet Col or Set Oaner s function returns the owner count of the referenced color
set. The owner count is the current number of references to the color set object.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors
colorSet _is_nil

Owner counts for color set objects are discussed in the section “Copying, Comparing,
and Cloning Color Sets and Color Profiles” beginning on page 4-44, and in the section
“Manipulating Owner Counts” beginning on page 4-46.

Colors and Color-Related Objects Reference 4-69

CHAPTER 4

Colors and Color-Related Objects

GXGetColorSetTags

DESCRIPTION

4-70

You can use the GXGet Col or Set Tags function to examine one or more of the tag
objects associated with a color set object.

| ong GXGet Col or Set Tags(gxCol or Set source, |ong tagType,
| ong i ndex, long count, gxTag itens[]);

source A reference to the color set object to examine the tag list of.

tagType The type of tag object to search for. A value of 0 indicates that you want to
look for all tag types.

i ndex The (1-based) index of the first such tag reference to return.
count The number of tag references to return
itens An array to hold the returned tag references.

function result The number of tag references found that fit the criteria.

The GXCGet Col or Set Tags function searches the tag list of the sour ce color set object
for references to tag objects with the tag type specified by the t agType parameter. If you
specify 0 for the t agType parameter, the GXGet Col or Set Tags function searches all

tag types.

You can use the i ndex and the count parameters to specify which tag references of the
appropriate type the GXGet Col or Set Tags function should return. The i ndex
parameter indicates the first tag reference to return and the count parameter indicates
how many tag references to return. The i ndex parameter must be greater than 0. The
count parameter must be greater than 0 or equal to the gxSel ect ToEnd constant (-1),
which indicates that all tag references (starting with the tag reference indicated by the

i ndex parameter) should be returned.

If you pass a value other than ni | for the i t ens parameter, the GXGet Col or Set Tags
function returns in it the tag references that were found. Regardless of the value you pass
fori t ens, the function result is the number of tag references found that fit the criteria.

Colors and Color-Related Objects Reference

CHAPTER 4

Colors and Color-Related Objects

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors

out _of _nenory

colorSet _is nil

i ndex_is_|l ess_than_one (debugging version)
count _is |l ess than_one (debugging version)

Warnings
i ndex_out _of range
count _out _of _range

Tag objects are discussed in the chapter “Tag Objects” in this book.

To change the set of tag references associated with a color set object, use the
GXSet Col or Set Tags function, described in the next section.

GXSetColorSetTags

You can use the GXSet Col or Set Tags function to add, remove, or replace tag objects
associated with a color set object.

voi d GXSet Col or Set Tags(gxCol or Set target, |ong tagType,
| ong i ndex, |ong ol dCount,
| ong newCount, const gxTag itens[]);

t ar get A reference to the color set object to alter the tag list of.

tagType The type of tag objects to replace. A value of 0 indicates that you want to
replace tags of all types.

i ndex The (1-based) index of the first tag reference (to a tag object of the
appropriate type) to replace.

ol dCount The number of tag references to replace. A value of 0 specifies that you
want to insert tag references before the tag reference indicated by the
i ndex parameter, rather than replace tag references. A value of -1 (the
gxSel ect ToEnd constant) specifies that all tag references of the
requested type, starting with the tag reference indicated by the i ndex
parameter, should be replaced.

newCount The number of tag references to insert. A value of 0 specifies that there are
no tag references to insert; the existing tag references that match the
criteria you specify are removed from the source color set’s tag list and
disposed of.

items An array of tag references to insert in the tag list.

Colors and Color-Related Objects Reference 4-71

CHAPTER 4

Colors and Color-Related Objects

DESCRIPTION

The GXSet Col or Set Tags function allows you add tag references to a color set object’s
tag list, to remove tag references from the list, or to replace tag references in the list with
new tag references. In any of these three cases, the t ar get parameter specifies the color
set object to be modified, the newCount parameter specifies the number of tag references
to add, and the i t enrs parameter provides the new tag references.

n To add tag references, set the ol dCount parameter to 0. Use the t agType and the
i ndex parameters to specify where to add the new tag references. (For example, if
you specify ni | for the t agType parameter and 1 for the i ndex parameter, this
function inserts the new tag references before the current tag references. If you specify
a value other than ni | for the t agType parameter and a value of 2 for the i ndex
parameter, the function inserts the new tag references before the second tag reference
with a tag type matching the t agType parameter.)

n To remove tag references, set the newCount parameter to 0 and the i t ens parameter
toni | . You can use the i ndex and the ol dCount parameters to specify which tag
references of the specified type should be removed. The i ndex parameter indicates
the first tag reference of the specified type to remove and the ol dCount parameter
indicates how many tag references of the specified type to remove.

n To replace tag references, use the t agType, i ndex, and ol dCount parameters to
indicate which tag references to replace, and use the newCount andi t ens
parameters to specify the new tag references to add. If newCount is greater than
ol dCount , the extra tag references are placed immediately adjacent to the last tag
reference replaced.

SPECIAL CONSIDERATIONS

If you attempt to modify the tag list of a color set object used by an onscreen view
device, this function posts a col or Set _access_restri ct ed warning.

ERRORS, WARNINGS, AND NOTICES

Errors
out _of nenory
colorSet_is_nil

tag_is_nil

paraneter_is_nil (debugging version)
i nconsi stent _paraneters (debugging version)
par anet er _out _of range (debugging version)
index_is less than_zero (debugging version)
cannot _di spose_I| ocked_t ag (debugging version)
Warnings

i ndex_out _of _range
count _out _of range
col or Set _access_restricted (debugging version)

Notices (debugging version)
tag_al ready_set

4-72 Colors and Color-Related Objects Reference

SEE ALSO

CHAPTER 4

Colors and Color-Related Objects

Tag objects are discussed in the chapter “Tag Objects” in this book.

To examine the set of tag references associated with a color set object, use the
GXGet Col or Set Tags function, described in the previous section.

Retrieving and Replacing Colors in a Color Set

The functions described in this section allow you to manipulate the colors in a color set.
Functions for manipulating the other properties of color sets are described in the section
“Manipulating Color Set Object Properties” beginning on page 4-69.

GXGetColorSet

DESCRIPTION

You can use the GXGet Col or Set function to retrieve the color values from a color set
object.

| ong GXGet Col or Set (gxCol or Set source, gxCol or Space *space,
gxSet Col or colors[]);

source A reference to the color set object whose color values you want to retrieve.

space A pointer to a color space value. On return, specifies the color space for
the source color set.

col ors An array of gxSet Col or color values. On return, contains the set of color
values in the source color set.

function result The number of color values in the source color set.

The GXCGet Col or Set function retrieves the color values from the source color set and
returns them in the col or s array. It also returns the color set’s color space in the
location pointed to by the space parameter. The function result is the number of colors
returned in the col or s array.

Before calling GXGet Col or Set , you must allocate an array of sufficient size to hold
the color-value array of the color set. If instead you pass ni | for the col or s parameter,
the function does not return any color values, but nonetheless returns (as its function
result) the number of colors in the color set. Thus you can make an initial call to

GXGet Col or Set to determine the size of the array to allocate, and then call it once more
to get the color values themselves.

Colors and Color-Related Objects Reference 4-73

CHAPTER 4

Colors and Color-Related Objects

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors
out _of _nenory
colorSet is nil

To replace the entire array of color values in a color set object, use the GXSet Col or Set
function, described in the next section. To retrieve some of the color values in a color set
object, use the GXGet Col or Set Par t s function, described on page 4-75. To replace
some of the color values in a color set object, use the GXSet Col or Set Par t s function,
described on page 4-76.

The gxSet Col or union is described on page 4-56.

GXSetColorSet

DESCRIPTION

You can use the GXSet Col or Set function to replace the color values of a color set object.

voi d GXSet Col or Set (gxCol or Set target, gxCol or Space space,
| ong count, const gxSetColor colors[]);

t ar get A reference to the color set object whose color values you want to replace.
space The new color space for the color set referenced in the t ar get parameter.
count The number of color values in the col or s array.

colors The array of color values to assign to the color set.

The GXSet Col or Set function assigns the specified color space and color values to the
target color set. If gxNoSpace is passed in the space parameter, the color space is
unchanged. If the col or s array is ni | and if count is zero, the color set remains
unchanged.

SPECIAL CONSIDERATIONS

4-74

If you attempt to modify the color values of a color set object used by an onscreen view
device, this function posts a col or Set _access_restri ct ed warning.

The current implementation of QuickDraw GX restricts the number of colors in a color
set to a maximum of 65,535.

Colors and Color-Related Objects Reference

CHAPTER 4

Colors and Color-Related Objects

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors
out _of _nenory
colorSet _is nil

i nconsi stent _paraneters (debugging version)
count _is less than zero (debugging version)
col or Space_out _of range (debugging version)
nunber of col ors_exceeds_inplenentation limt

Warnings

col or Set _access_restricted (debugging version)

To retrieve the entire array of color values from a color set object, use the

GXGet Col or Set function, described in the previous section. To retrieve some of the
color values in a color set object, use the GXGet Col or Set Par t s function, described
in the next section. To replace some of the color values in a color set object, use the
GXSet Col or Set Par t s function, described on page 4-76.

The gxSet Col or union is described on page 4-56.

GXGetColorSetParts

You can use the GXGet Col or Set Par t s function to retrieve specified colors from a color
set object.

| ong GXGet Col or Set Part s(gxCol or Set source, |ong index, |ong count,
gxCol or Space *space, gxSetCol or datal]);

source A reference to the color set object whose color values you want to retrieve.

i ndex The first color value to retrieve. To retrieve the first color value in the
color set, specify 1 for this parameter.

count The number of color values to retrieve. Specify gxSel ect ToEnd to
retrieve all color values in the color set including and beyond i ndex.

space A pointer to a color space value. On return, specifies the color space for
the source color set.

dat a An array of gxSet Col or color values. On return, contains the specified
subset of color values from the source color set.

function result The number of color values in the range specified by i ndex and count .

Colors and Color-Related Objects Reference 4-75

DESCRIPTION

CHAPTER 4

Colors and Color-Related Objects

The GXCGet Col or Set Part s function retrieves the specified color values from the source
color set and returns them in the dat a array. It also returns the color set’s color space in
the location pointed to by the space parameter. The function result is the number of
color values copied into the dat a array.

Before calling GXCGet Col or Set Part s, you must allocate an array of sufficient size to
hold the specified number of color values. If instead you pass ni | for the dat a
parameter, the function does not return any color values, but nonetheless returns (as

its function result) the number of colors in the specified range. Thus you can make an
initial call to GXGet Col or Set Part s to determine the size of the array to allocate, and
then call it once more to get the color values themselves.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors

out _of _nenory

colorSet _is nil

i ndex_is_|l ess_than_one (debugging version)
count _is |l ess than_one (debugging version)
Warnings

i ndex_out _of range

count _out _of _range

To retrieve the entire array of color values from a color set object, use the

GXGet Col or Set function, described on page 4-73. To replace the entire array of color
values in a color set object, use the GXSet Col or Set function, described in the previous
section. To replace some of the color values in a color set object, use the

GXSet Col or Set Par t s function, described in the next section.

The gxSet Col or union is described on page 4-56.

GXSetColorSetParts

4-76

You can use the GXSet Col or Set Par t s function to replace specified colors in a color set
object.

voi d GXSet Col or Set Part s(gxCol or Set target, |ong index,
| ong ol dCount, |ong newCount,
const gxSet Col or datal]);

tar get A reference to the color set object whose color values you want to modify.

i ndex The first color value to replace. To replace the first color value in the color
set, specify 1 for this parameter.

Colors and Color-Related Objects Reference

DESCRIPTION

CHAPTER 4

Colors and Color-Related Objects

ol dCount The number of color values to replace. Specify gxSel ect ToEnd to
replace all color values in the color set including and beyond i ndex.

newCount The number of new color values to add; that is, the number of color
values in the dat a array.

dat a The array of color values to add to the color set.

The GXSet Col or Set Par t s function assigns the specified color values to the target
color set, starting at the location specified by i ndex after first removing the number of
existing color values specified by ol dCount .

This function does not accept the gxSet ToNi | constant for the dat a parameter. If you
want to simply remove colors, pass 0 for newCount .

The current implementation of QuickDraw GX restricts the number of colors in a color
set to a maximum of 65,535.

SPECIAL CONSIDERATIONS

If you attempt to modify the color values of a color set object used by an onscreen view
device, this function posts a col or Set _access_restri ct ed warning.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors
out _of _nmenory
colorSet _is nil

i nconsi stent_paraneters (debugging version)
index_is less than zero (debugging version)
count _i s_| ess_than_zero (debugging version)

nunber _of _col ors_exceeds_i nmpl enentation_limt

Warnings

i ndex_out _of range

count _out _of range

col or Set _access_restricted (debugging version)

To retrieve the entire array of color values from a color set object, use the

GXGet Col or Set function, described on page 4-73. To replace the entire array of color
values in a color set object, use the GXSet Col or Set function, described on page 4-74.
To retrieve some of the color values in a color set object, use the GXGet Col or Set Part s
function, described in the previous section.

The gxSet Col or union is described on page 4-56.

Colors and Color-Related Objects Reference 4-77

CHAPTER 4

Colors and Color-Related Objects

Color Profile Functions

This section describes the functions with which you create color profile objects,
manipulate color profile object properties, and retrieve and replace profile information.

Creating and Manipulating Color Profile Objects

The functions in this section allow you to create and manipulate color profiles as
QuickDraw GX objects. For descriptions of functions that manipulate the properties of
color profile objects, see the sections “Manipulating Color Profile Object Properties”
beginning on page 4-84 and “Retrieving and Replacing Profile Information” beginning
on page 4-88.

GXGetDefaultColorProfile

You can use the GXGet Def aul t Col or Pr of i | e function to obtain a reference to the
default color profile object.

gxCol or Profil e GXGet Def aul t Col or Profil e(void);

function result A reference to the default color profile.

DESCRIPTION

The default color profile is the color profile for the Apple 13-inch color monitor. When
converting or matching colors, QuickDraw GX assumes the default color profile for any
color, bitmap, or transfer mode whose color profile property is ni | .

Note that the return value of this function is a reference to the actual default color profile
object, not a copy of it. You should not make changes to the profile; if you edit it (for
example, by calling GXLockPr of i | e and GXGet Prof i | eSt ruct ur e), you alter the
actual default profile that QuickDraw GX uses when creating new color profile objects.

ERRORS, WARNINGS, AND NOTICES

Errors
out _of _nenory

4-78 Colors and Color-Related Objects Reference

CHAPTER 4

Colors and Color-Related Objects

SEE ALSO

The default color profile object is discussed in the section “The Default Color Profile”
beginning on page 4-37.

To create a copy of the default color profile object, you can use the
GXCopyToCol or Prof i | e function, described on page 4-81.

To create a new color profile, use the GXNewCol or Pr of i | e function, described next.

GXNewColorProfile

You can use the GXNewCol or Pr of i | e function to create a new color profile object.

gxCol or Profil e GXNewCol orProfil e(l ong size,
void *col orProfil eDat a);

si ze The size in bytes of the profile data to assign to the new color profile
object.

col orProfil eData
A pointer to the profile data to assign to the new color profile object.

function result A reference to the newly created color profile object.

DESCRIPTION
The GXNewCol or Pr of i | e function creates a color profile object with an owner count
of 1 from the profile data that you supply. The new color profile object is not a copy of
the default color profile.

If you specify a nonzero value for the si ze parameter, you must pass a ColorSync color
profile structure to GXNewCol or Pr of i | e. The function does not check for the validity
of the profile data, but if the col or Pr of i | eDat a parameter is ni | and the si ze
parameter is nonzero the function posts an error.

You can create a zero-length profile by passing 0 for the si ze parameter when calling
this function. The effect of a zero-length profile is to inhibit color matching.

SPECIAL CONSIDERATIONS

If no error occurs, the GXNewCol or Pr of i | e function creates a color profile object; you
are responsible for disposing of that object when you no longer need it.

Colors and Color-Related Objects Reference 4-79

CHAPTER 4

Colors and Color-Related Objects

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors
out _of _nenory
paraneter_is_nil (debugging version)

Zero-length profiles are described in the section “Zero-Length Profiles” on page 4-37.

The format of the profile data in a color profile object is described in the section “Profile
Data” beginning on page 4-36. The ColorSync Utilities are described in Inside Macintosh:
Advanced Color Imaging.

To obtain a reference to the default color profile, use the GXGet Def aul t Col or Profil e
function, described in the previous section.

GXDisposeColorProfile

DESCRIPTION

You can use the GXDi sposeCol or Prof i | e function to release a reference to a color
profile object.

voi d GXDi sposeCol orProfil e(gxCol orProfile target);

tar get A reference to the color profile to dispose of.

The GXDi sposeCol or Profi | e function decrements the owner count of the color
profile object referenced in the t ar get parameter and releases any memory used by the
color profile if the owner count goes to 0.

SPECIAL CONSIDERATIONS

If you attempt to dispose of a color profile object used by an onscreen view device, this
function postsacol or Profil e_access_restri ct ed warning.

ERRORS, WARNINGS, AND NOTICES

4-80

Errors
colorProfile_is nil

Warnings
colorProfil e_access_restricted (debugging version)

Colors and Color-Related Objects Reference

SEE ALSO

CHAPTER 4

Colors and Color-Related Objects

Owner counts are discussed in the section “Copying, Comparing, and Cloning Color
Sets and Color Profiles” beginning on page 4-44, and in the section “Manipulating
Owner Counts” beginning on page 4-46. To examine the owner count of a color profile,
use the GXGet Col or Pr of i | eOaner s function, described on page 4-84.

GXCopyToColorProfile

DESCRIPTION

You can use the GXCopy ToCol or Pr of i | e function to copy the contents of an existing
color profile object into another or to create a new color profile object and copy the
contents of an existing color profile into it.

gxCol or Profil e GXCopyToCol or Profil e(gxCol orProfile target,
gxCol or Profil e source);

t ar get A reference to the color profile to copy the source contents into. If you
specify ni | for this parameter, the GXCopyToCol or Pr of i | e function
creates a new color profile.

source A reference to the color profile object whose contents you want to copy.

function result A reference to the color profile copy.

The GXCopyToCol or Pr of i | e function either copies the contents of an existing color
profile object to another or creates a new color profile object and copies the contents of
an existing color profile object to it. The function copies the profile data and tag list (but
not the owner count) of the color profile specified by the sour ce parameter into the
color profile specified by the t ar get parameter. It clones, but does not copy, the tag
objects in the tag list.

If you specify ni | for the t ar get parameter, GXCopyToCol or Pr of i | e creates a new
color profile object and copies the source properties, including the owner count and tag
list, into it.

You can use the GXCopy ToCol or Pr of i | e function to create a copy of a color profile
and then modify it without changing the original.

SPECIAL CONSIDERATIONS

If you specify ni | for the t ar get parameter and no error occurs, the
GXCopyToCol or Prof i | e function creates a color profile object; you are responsible
for disposing of that object when you no longer need it.

If you specify a color profile object used by an onscreen view device as the target, this
function postsacol or Profil e_access_restrict ed warning.

Colors and Color-Related Objects Reference 4-81

CHAPTER 4

Colors and Color-Related Objects

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors
out _of _nenory
colorProfile _is _nil

Warnings
colorProfil e _access restricted (debugging version)

To create a new color profile that is not a copy of an existing color profile, use the
GXNewCol or Pr of i | e function, described on page 4-79.

To compare two color profile objects, use the GXEqual Col or Pr of i | e function,
described next.

GXEqualColorProfile

DESCRIPTION

You can use the GXEqual Col or Pr of i | e function to determine whether two color
profile objects are equal.

bool ean GXEqual Col or Profil e(gxCol orProfil e one,
gxCol orProfile two);

one A reference to one of the color profiles to test for equality.

t wo A reference to the other color profile to test for equality.

function result t r ue if the color profiles are equal; f al se otherwise.

The GXEqual Col or Prof i | e function tests two color profile objects for equality. For

two color profiles to be equal, they must have exactly the same profile data, although
their owner counts and tag lists need not be identical.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

4-82

Errors
out _of nenory
colorProfile_is_nil

To make a copy of a color profile object that is equal by the criteria of this function, use
the GXCopyToCol or Pr of i | e function, described in the previous section.

Colors and Color-Related Objects Reference

CHAPTER 4

Colors and Color-Related Objects

GXCloneColorProfile

DESCRIPTION

You can use the GXC oneCol or Pr of i | e function to clone a color profile—that is, to
add a reference to it and increment its owner count.

gxCol or Profil e GXO oneCol or Profil e(gxCol or Profil e source);

source A reference to the color profile to clone.

function result A reference to the cloned color profile.

The GXO oneCol or Prof i | e function increments the owner count of the color profile
referenced in the sour ce parameter. You typically use this function when you want to
create another reference to an existing color profile rather than creating a distinct copy of
the color profile.

This function returns as its function result a reference to the color profile—the same
reference you pass in as the sour ce parameter. It also increments the color profile’s
owner count.

SPECIAL CONSIDERATIONS

If you attempt to clone a color profile object used by an onscreen view device, this
function postsacol or Profil e_access_restrict ed warning.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors
colorProfile_is nil

Warnings
colorProfile_access_restricted (debugging version)

Owner counts for color profile objects are discussed in the section “Copying, Comparing,
and Cloning Color Sets and Color Profiles” beginning on page 4-44, and in the section
“Manipulating Owner Counts” beginning on page 4-46.

To examine the owner count of a color profile, use the GXGet Col or Prof i | eOaner s
function, described on page 4-84. To decrement the owner count of a color profile, use
the GXDi sposeCol or Prof i | e function, described on page 4-80.

Colors and Color-Related Objects Reference 4-83

CHAPTER 4

Colors and Color-Related Objects

Manipulating Color Profile Object Properties

The functions described in this section allow you to manipulate the common object
properties of color profile objects: owner count and tag list. For descriptions of functions
that manipulate the profile data of color profile objects, see the section “Retrieving and
Replacing Profile Information” beginning on page 4-88. For descriptions of functions that
allow you to create and manipulate color profiles as QuickDraw GX objects, see the
section “Creating and Manipulating Color Profile Objects” beginning on page 4-78.

GXGetColorProfileOwners

DESCRIPTION

You can use the GXGet Col or Pr of i | eOmner s function to determine the number of
references to a particular color profile object.

| ong GXGet Col or Profi| eOmners(gxCol orProfile source);

source A reference to the color profile object to find the owner count of.

function result The owner count of the source color profile object.

The GXCGet Col or Pr of i | eOaner s function returns the owner count of the referenced

color profile object. The owner count is the current number of references to the color
profile object.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

4-84

Errors
colorProfile_is_nil

Owner counts for color profile objects are discussed in the section “Copying, Comparing,
and Cloning Color Sets and Color Profiles” beginning on page 4-44, and in the section
“Manipulating Owner Counts” beginning on page 4-46.

Colors and Color-Related Objects Reference

CHAPTER 4

Colors and Color-Related Objects

GXGetColorProfileTags

You can use the GXGet Col or Pr of i | eTags function to examine one or more of the tag
objects associated with a color profile object.

| ong GXGet Col or Profil eTags(gxCol orProfil e source, |ong tagType,
I ong i ndex, long count, gxTag itens[]);

source A reference to the color profile object to examine the tag list of.

tagType The type of tag object to search for. A value of 0 indicates that you want to
look for all tag types.

i ndex The (1-based) index of the first such tag reference to return.
count The number of tag references to return.
itens An array to hold the returned tag references.

function result The number of tag references found that fit the criteria.

DESCRIPTION

The GXGet Col or Pr of i | eTags function searches the tag list of the sour ce color
profile object for references to tag objects with the tag type specified by the t agType
parameter. If you specify 0 for the t agType parameter, the GXGet Col or Pr of i | eTags
function searches all tag types.

You can use the i ndex and the count parameters to specify which tag references of the
appropriate type the GXGet Col or Pr of i | eTags function should return. The i ndex
parameter indicates the first tag reference to return and the count parameter indicates
how many tag references to return. The i ndex parameter must be greater than 0. The
count parameter must be greater than 0 or equal to the gxSel ect ToEnd constant (-1),
which indicates that all tag references (starting with the tag reference indicated by the

i ndex parameter) should be returned.

If you pass a value other than ni | for the i t ens parameter, the

GXGet Col or Prof i | eTags function returns in it the tag references that
were found. Regardless of the value you pass fori t ens, the function result
is the number of tag references found that fit the criteria.

ERRORS, WARNINGS, AND NOTICES

Errors

out _of _nmenory

colorProfile_is nil

i ndex_is_|ess_than_one (debugging version)
count _is | ess than_one (debugging version)

Warnings
i ndex_out _of _range
count _out _of _range

Colors and Color-Related Objects Reference 4-85

SEE ALSO

CHAPTER 4

Colors and Color-Related Objects

Tag objects are discussed in the chapter “Tag Objects” in this book.

To change the set of tag references associated with a color profile object, use the
GXSet Col or Prof i | eTags function, described in the next section.

GXSetColorProfileTags

DESCRIPTION

4-86

You can use the GXSet Col or Pr of i | eTags function to add, remove, or replace tag
objects associated with a color profile object.

voi d GXSet Col or Profil eTags(gxCol orProfile target, |ong tagType,
I ong index, |ong ol dCount,
| ong newCount, const gxTag itens[]);

tar get A reference to the color profile object to alter the tag list of.

tagType The type of tag objects to replace. A value of 0 indicates that you want to
replace tags of all types.

i ndex The (1-based) index of the first tag reference (to a tag object of the
appropriate type) to replace.

ol dCount The number of tag references to replace. A value of 0 specifies that you
want to insert tag references before the tag reference indicated by the
i ndex parameter, rather than replace tag references. A value of -1 (the
gxSel ect ToEnd constant) specifies that all tag references of the
requested type, starting with the tag reference indicated by the i ndex
parameter, should be replaced.

newCount The number of tag references to insert. A value of 0 specifies that there are
no tag references to insert; the existing tag references that match the
criteria you specify are removed from the source color profile’s tag list
and disposed of.

items An array of tag references to insert in the tag list.

The GXSet Col or Pr of i | eTags function allows you add tag references to a color
profile object’s tag list, to remove tag references from the list, or to replace tag references
in the list with new tag references. In any of these three cases, the t ar get parameter
specifies the color profile object to be modified, the newCount parameter specifies the
number of tag references to add, and the i t ens parameter provides the new tag
references.

Colors and Color-Related Objects Reference

CHAPTER 4

Colors and Color-Related Objects

n To add tag references, set the ol dCount parameter to 0. Use the t agType and the
i ndex parameters to specify where to add the new tag references. (For example, if
you specify ni | for the t agType parameter and 1 for the i ndex parameter, this
function inserts the new tag references before the current tag references. If you specify
a value other than ni | for the t agType parameter and a value of 2 for the i ndex
parameter, the function inserts the new tag references before the second tag reference
with a tag type matching the t agType parameter.)

n To remove tag references, set the newCount parameter to 0 and the i t ens parameter
toni | . You can use the i ndex and the ol dCount parameters to specify which tag
references of the specified type should be removed. The i ndex parameter indicates
the first tag reference of the specified type to remove and the ol dCount parameter
indicates how many tag references of the specified type to remove.

n To replace tag references, use the t agType, i ndex, and ol dCount parameters
to indicate which tag references to replace, and use the newCount andi t ens
parameters to specify the new tag references to add. If newCount is greater than
ol dCount , the extra tag references are placed immediately adjacent to the last tag
reference replaced.

SPECIAL CONSIDERATIONS

If you attempt to modify the tag list of a color profile object used by an onscreen view
device, this function posts a col or Profi | e_access_restri ct ed warning.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors
out _of _nenory
colorSet _is nil

tag_is_nil

paraneter _is_nil (debugging version)
i nconsi stent_paraneters (debugging version)
par anet er _out _of _range (debugging version)
i ndex_is_less_than_zero (debugging version)
cannot _di spose_I| ocked_t ag (debugging version)
Warnings

i ndex_out _of range
count _out _of range
colorProfile_access_restricted (debugging version)

Notices (debugging version)
tag_al ready_set

Tag objects are discussed in the chapter “Tag Objects” in this book.

To examine the set of tag references associated with a color profile object, use the
GXGet Col or Prof i | eTags function, described in the previous section.

Colors and Color-Related Objects Reference 4-87

CHAPTER 4

Colors and Color-Related Objects

Retrieving and Replacing Profile Information

The functions described in this section allow you to manipulate the profile data of

color profile objects. For descriptions of functions that manipulate the common object
properties of color profile object, see the section “Manipulating Color Profile Object
Properties” beginning on page 4-84. For descriptions of functions that allow you to
create and manipulate color profiles as QuickDraw GX objects, see the section “Creating
and Manipulating Color Profile Objects” beginning on page 4-78.

GXGetColorProfile

DESCRIPTION

4-88

You can use the GXGet Col or Pr of i | e function to retrieve the profile data from a color
profile object.

| ong GXGet Col or Profil e(gxCol orProfil e source,
void *col orProfil eDat a);

source A reference to the color profile object to get the profile data from.

col orProfil eData
A pointer to a buffer. On return, the buffer contains the profile data for the
source color profile.

function result The size in bytes of the source color profile’s profile data.

The GXGet Col or Pr of i | e function returns the profile data from the source color profile
in the buffer pointed to by the r esponses parameter. It also returns the size of the
profile data as the function result.

The profile data returned by this function is a ColorSync color profile structure (type
CwvProfil e).

If you specify ni | for the col or Pr of i | eDat a parameter, this function does not return
the profile data, but it nevertheless returns a correct value for the size of the profile
response structure in the function result. Thus you can make an initial call to

GXGet Col or Pr of i | e to determine the size of buffer to allocate, and then call it once
more to get the profile data itself.

Colors and Color-Related Objects Reference

CHAPTER 4

Colors and Color-Related Objects

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors
out _of _nenory
colorProfile _is _nil

To replace the profile data in a color profile object, use the GXSet Col or Profi | e
function, described in the next section.

The format of the profile data in a color profile object is described in the section “Profile
Data” beginning on page 4-36. The ColorSync Utilities, including the CMPr of i | e data
type, are described in Inside Macintosh: Advanced Color Imaging.

GXSetColorProfile

DESCRIPTION

You can use the GXSet Col or Pr of i | e function to assign profile data to a color profile
object.

voi d GXSet Col or Profil e(gxCol orProfile target,|ong size,
void *col orProfil ebData);

t ar get A reference to the color profile object whose profile data you want to
change.
si ze The size in bytes of the profile data to assign to the target color profile.

col orProfil eData
A pointer to the profile data.

The GXSet Col or Pr of i | e function assigns the specified profile data to the target color
profile. If you specify a nonzero value for the si ze parameter, the pointer to the profile
data must not be ni | . It should be in the form of a valid ColorSync color profile
structure (type CVPr of i | e), although the function does not actually verify this.

If you pass 0 for the si ze parameter to this function, QuickDraw GX converts this
profile into a zero-length profile, which you can use to inhibit color matching.

SPECIAL CONSIDERATIONS

If you attempt to alter the profile data of a color profile object used by an onscreen view
device, this function posts a col or Profi | e_access_restri ct ed warning.

Colors and Color-Related Objects Reference 4-89

CHAPTER 4

Colors and Color-Related Objects

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors
out _of _nenory
colorProfile _is _nil

i nconsi stent _paraneters (debugging version)
par anet er _out _of range (debugging version)
Warnings

colorProfile_access_restricted (debugging version)

To examine the profile data in a color profile object, use the GXGet Col or Profi |l e
function, described in the previous section.

Zero-length profiles are described in the section “Zero-Length Profiles” on page 4-37.

The format of the profile data in a color profile object is described in the section “Profile
Data” beginning on page 4-36. The ColorSync Ultilities, including the CMPr of i | e data
type, are described in Inside Macintosh: Advanced Color Imaging.

GXLockColorProfile

DESCRIPTION

You can use the GXLockCol or Pr of i | e function to load a color profile object into
memory and lock its profile data into a fixed memory location.

voi d GXLockCol orProfile (gxCol orProfile source);

source A reference to the color profile to be loaded and locked.

The GXLockCol or Prof i | e function prevents a color profile from being relocated, so
that you can manipulate its profile data directly in QuickDraw GX memory rather than
working with a copy of it in application memory.

To directly edit the color profile, call GXLockCol or Pr of i | e followed by
GXGet Col or Profi | eSt ruct ur e; after editing, call GXUnl ockCol or Profil e.

SPECIAL CONSIDERATIONS

4-90

To avoid fragmenting the QuickDraw GX heap, call the GXUnl ockCol or Profil e
function as soon as possible after calling GXLockCol or Profi | e.

In low memory situations with a fragmented heap, QuickDraw GX can unlock locked
objects without warning. Be careful about making memory-intensive calls when you are
working with a locked color profile.

Colors and Color-Related Objects Reference

CHAPTER 4

Colors and Color-Related Objects

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors
out _of _nenory
colorProfile_is _nil

The GXUnl ockCol or Pr of i | e and GXGet Col or Pr of i | €St ruct ur e functions are
described in the next two sections.

GXUnlockColorProfile

DESCRIPTION

You can use the GXUnl ockCol or Pr of i | e function to allow QuickDraw GX to relocate,
compress, or unload a color profile object that has been locked.

voi d GXUnl ockCol orProfile (gxCol orProfile source);

gxCol orProfile
A reference to the color profile to be unlocked.

To directly edit the color profile, call GXLockCol or Pr of i | e followed by
GXGet Col or Profi | eSt ruct ur e; after editing, call GXUnl ockCol or Profil e.

Once you call GXUnl ockCol or Pr of i | e, the profile data may be relocated and a
pointer returned by GXGet Col or Prof i | eSt ruct ur e may no longer be valid.

SPECIAL CONSIDERATIONS

To avoid fragmenting the QuickDraw GX heap, call the GXUnl ockCol or Profil e
function as soon as possible after calling GXLockCol or Profi | e.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors
colorProfile_is_nil

The GXLockCol or Prof i | e function is described in the previous section. The
GXCGet Col or Profil eStruct ur e function is described next.

Colors and Color-Related Objects Reference 4-91

CHAPTER 4

Colors and Color-Related Objects

GXGetColorProfileStructure

DESCRIPTION

You can use the GXGet Col or Profi | eStruct ur e function to get a pointer to the
profile data of a color profile object.

voi d *GXGet Col orProfil eStructure(gxCol orProfile source,
| ong *l ength);

source A reference to the color profile object whose profile data you need access
to.
| ength A pointer to al ong value. On return, the value specifies the size in bytes

of the profile data.

function result A pointer to the profile data of the source color profile.

The GXGet Col or Profi | eSt ruct ur e function determines the size of the profile data
in a color profile object and returns a pointer to the data in the QuickDraw GX heap. You
can use the pointer to examine or change the profile data without copying the data into
your application’s heap and back again.

Before calling this function, call GXLockCol or Pr of i | e to lock the profile data in
memory; after editing the profile data, call GXUnl ockCol or Pr of i | e to free the profile
data for relocation.

The profile data returned by this function is a ColorSync color profile structure (type
CVvProfil e).

This function is useful even if you do not intend to edit a color profile. You can use it to
simply read a specific piece of color profile data, such as the white point, without having
to obtain a copy of the entire profile.

SPECIAL CONSIDERATIONS

4-92

To avoid fragmenting the QuickDraw GX heap, call the GXUnl ockCol or Profil e
function as soon as possible after manipulating the profile data.

You cannot change the size of the profile data you access with this call. If your
manipulations require a change in the size of the data, you must use
GXGet Col or Prof i | e and GXSet Col or Profi |l e.

This function is rarely needed. In most situations you do not need to alter the
profile data of a color profile, and when you do you can use the functions
GXCet Col or Profi | e and GXSet Col or Pr of i | e to make the needed changes.

Colors and Color-Related Objects Reference

CHAPTER 4

Colors and Color-Related Objects

ERRORS, WARNINGS, AND NOTICES

Errors
out _of _nenory
colorProfile_is _nil

SEE ALSO

The GXLockCol or Prof i | e and GXUnl ockCol or Pr of i | e functions are described in
the previous two sections.

The format of the profile data in a color profile object is described in the section “Profile
Data” beginning on page 4-36. The ColorSync Utilities, including the CMPr of i | e data
type, are described in Inside Macintosh: Advanced Color Imaging.

To edit a copy of a color profile object’s profile data, rather than directly changing the
data in QuickDraw GX memory, use the GXCGet Col or Pr of i | e function, described on
page 4-88; to assign the edited data back to the profile, use the GXSet Col or Profil e
function, described on page 4-89.

Colors and Color-Related Objects Reference 4-93

CHAPTER 4

Colors and Color-Related Objects

Summary of Colors and Color-Related Objects

Constants and Data Types

Color-Component VValues

typedef unsi gned short gxCol orVal ue;

Color Values

struct gxCMyKCol or {
gxCol or Val ue cyan
gxCol or Val ue magent a;
gxCol or Val ue yel | ow,
gxCol or Val ue bl ack

b

struct gxRGBCol or{
gxCol or Val ue red;
gxCol or Val ue green
gxCol or Val ue bl ue;

b

struct gxRGBACol or {
gxCol or Val ue red;
gxCol or Val ue green
gxCol or Val ue bl ue;
gxCol or Val ue al pha;

H

struct gxHSVCol or{
gxCol or Val ue hue;
gxCol or Val ue saturation
gxCol or Val ue val ue;

H

struct gxHLSCol or{
gxCol or Val ue hue;
gxCol or Val ue I'i ght ness;
gxCol or Val ue saturation

H

4-94