
Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York

Don Mills, Ontario Wokingham, England Amsterdam Bonn

Sydney Singapore Tokyo Madrid San Juan

Paris Seoul Milan Mexico City Taipei

I N S I D E M A C I N T O S H

QuickDraw GX Graphics

Apple Computer, Inc.

© 1994 Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.

Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
printing or clerical errors.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, LaserWriter, and
Macintosh are trademarks of Apple
Computer, Inc., registered in the United
States and other countries.

QuickDraw and TrueType are
trademarks of Apple Computer, Inc.

Adobe Illustrator, Adobe Photoshop,
and PostScript are trademarks of Adobe
Systems Incorporated, which may be
registered in certain jurisdictions.

FrameMaker is a registered trademark
of Frame Technology Corporation.

Helvetica and Palatino are registered
trademarks of Linotype Company.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Optrotech is a trademark of Orbotech
Corporation.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

ISBN 0-201-40673-X
1 2 3 4 5 6 7 8 9-CRW-9897969594
First Printing, March 1994

Library of Congress Cataloging-in-Publication Data

Inside Macintosh. QuickDraw GX graphics.
p. cm.

Includes index.
ISBN 0-201-40673-X
1. Macintosh (Computer)—Programming. 2. Computer graphics.

3. QuickDraw GX. I. Apple Computer, Inc. II. Title: QuickDraw GX graphics.
QA76.8.M3I53 1994
006.6’765—dc20 93-48597

CIP

iii

Contents

Figures, Tables, and Listings xi

Preface About This Book xxiii

What to Read xxv

Chapter Organization xxvi

Conventions Used in This Book xxvi

Special Fonts xxvi

Types of Notes xxvii

Numerical Formats xxvii

Type Definitions for Enumerations xxvii

Illustrations xxviii

Development Environment xxviii

Developer Products and Support xxviii

Chapter 1 Introduction to QuickDraw GX Graphics 1-1

About QuickDraw GX Graphics 1-4

Geometric Shapes 1-7

Geometric Shape Types 1-8

Geometric Shape Geometries 1-9

Geometric Shape Fills 1-10

Geometric Styles, Inks, and Transforms 1-11

Geometric Operations 1-14

Bitmap Shapes 1-17

Picture Shapes 1-20

Chapter 2 Geometric Shapes 2-1

About Geometric Shapes 2-5

The Geometric Properties of Shape Objects 2-7

Shape Type 2-7

Shape Geometry 2-9

Shape Fill 2-12

The Geometric Shape Types 2-16

Empty Shapes and Full Shapes 2-16

Point Shapes 2-16

Line Shapes 2-17

Curve Shapes 2-18

Rectangle Shapes 2-20

iv

Polygon Shapes 2-22

Path Shapes 2-25

Using Geometric Shapes 2-27

Creating and Drawing Empty Shapes and Full Shapes 2-28

Creating and Drawing Points 2-29

Creating and Drawing Lines 2-36

Creating and Drawing Curves 2-41

Creating and Drawing Rectangles 2-43

Creating and Drawing Polygons 2-45

Creating Polygons With a Single Contour 2-46

Creating Polygons With Multiple Contours 2-49

Creating Polygons With Crossed Contours 2-50

Creating and Drawing Paths 2-55

Creating Paths With a Single Contour 2-57

Creating Paths Using Only Off-Curve Points 2-59

Creating Paths With Multiple Contours 2-60

Converting Between Geometric Shape Types 2-65

Converting Shapes to Points, Lines, and Rectangles 2-66

Converting Shapes to Curve Shapes 2-71

Converting Shapes to Polygons and Paths 2-74

Replacing Geometric Points 2-79

Editing Polygon Parts 2-82

Editing Paths Parts 2-91

Editing Shape Parts 2-93

Applying Functions Described Elsewhere to Geometric Shapes 2-100

Shape-Related Functions Applicable to Geometric Shapes 2-100

Other Functions Applicable to Geometric Shapes 2-103

Geometric Shapes Reference 2-103

Data Types 2-104

The Point Structure 2-104

The Line Structure 2-105

The Curve Structure 2-105

The Rectangle Structure 2-106

Polygon Structures 2-106

Path Structures 2-107

Functions 2-108

Creating Geometric Shapes 2-109

Getting and Setting Shape Geometries 2-119

Editing Shape Geometries 2-135

Drawing Geometric Shapes 2-157

Summary of Geometric Shapes 2-163

Constants and Data Types 2-163

Functions 2-164

v

Chapter 3 Geometric Styles 3-1

About Geometric Styles 3-5

Shapes and Styles 3-5

Incorporating Stylistic Variations Into Shape Geometries 3-8

Style Properties 3-11

Default Style Objects 3-12

Curve Error 3-14

The Geometric Pen 3-15

Style Attributes 3-17

Pen Placement 3-18

Grids 3-20

Interactions Between Caps, Joins, Dashes, and Patterns 3-22

Caps 3-23

Joins 3-25

Dashes 3-27

Patterns 3-31

Interactions Between Caps, Joins, Dashes, and Patterns 3-33

Using Geometric Styles 3-35

Associating Styles With Shapes 3-36

Constraining Shape Geometries to Grids 3-40

Constraining Shapes to Device Grids 3-42

Using Curve Error When Converting Paths to Polygons 3-45

Using Curve Error When Reducing Shapes 3-49

Manipulating Pen Width and Placement 3-51

Adding Caps to a Shape 3-57

Adding Standard Caps to a Shape 3-59

Adding Joins to a Shape 3-61

Adding Standard Joins to a Shape 3-64

Dashing a Shape 3-66

Adjusting Dashes to Fit Contours 3-70

Insetting Dashes 3-73

Breaking and Bending Dashes 3-74

Wrapping Text to a Contour 3-80

Determining Dash Positions 3-81

Adding a Pattern to a Shape 3-86

Determining Pattern Positions 3-88

Combining Caps, Joins, Dashes, and Patterns 3-91

Geometric Styles Reference 3-96

Constants and Data Types 3-96

Style Objects 3-97

Style Attributes 3-98

The Cap Structure 3-99

Cap Attributes 3-101

The Join Structure 3-101

Join Attributes 3-102

vi

The Dash Structure 3-103

Dash Attributes 3-105

The Pattern Structure 3-106

Pattern Attributes 3-107

Functions 3-108

Getting and Setting Style Attributes 3-109

Getting and Setting Curve Error 3-114

Getting and Setting the Pen Width 3-119

Getting and Setting Caps 3-123

Getting and Setting Joins 3-129

Getting and Setting Dashes 3-134

Getting and Setting Patterns 3-142

Summary of Geometric Styles 3-149

Constants and Data Types 3-149

Functions for Manipulating Geometric Style Properties 3-151

Chapter 4 Geometric Operations 4-1

About Geometric Operations 4-4

Contours and Contour Direction 4-4

Reducing and Simplifying Shape Geometries 4-9

The Primitive Form of Shape Geometries 4-12

Geometric Information 4-16

Touching and Containing 4-18

Geometric Arithmetic 4-21

Using Geometric Operations 4-23

Determining and Reversing Contour Direction 4-23

Breaking Shape Contours 4-28

Eliminating Unnecessary Geometric Points 4-30

Simplifying Shapes 4-33

Converting a Shape to Primitive Form 4-38

Finding Geometric Information About a Shape 4-41

Finding the Length of a Contour 4-42

Finding the Point at a Certain Distance Along a Contour 4-42

Finding the Bounding Rectangle and Center Point of a Shape 4-43

Finding the Area of a Shape 4-45

Setting a Shape’s Bounding Rectangle 4-47

Insetting Shapes 4-50

Determining Whether Two Shapes Touch 4-53

Determining Whether One Shape Contains Another 4-58

Performing Geometric Arithmetic With Shapes 4-60

Geometric Operations Reference 4-67

Constants and Data Types 4-67

Contour Directions 4-67

vii

Functions 4-68

Determining and Reversing Contour Direction 4-68

Breaking Shape Contours 4-72

Reducing and Simplifying Shapes 4-74

Incorporating Style Information Into Shape Geometries 4-79

Finding Geometric Information About Shapes 4-83

Getting and Setting Shape Bounds 4-90

Insetting Shapes 4-94

Determining Whether Two Areas Touch 4-95

Determining Whether One Shape Contains Another 4-100

Performing Geometric Arithmetic With Shapes 4-104

Summary of Geometric Operations 4-117

Constants and Data Types 4-117

Functions 4-117

Chapter 5 Bitmap Shapes 5-1

About Bitmap Shapes 5-3

Bitmap Geometries 5-5

Bitmap Styles and Inks 5-8

Bitmap Transforms 5-10

Bitmaps and View Devices 5-12

Using Bitmap Shapes 5-14

Creating and Drawing Bitmaps 5-15

Creating Black-and-White Bitmaps 5-15

Creating Color Bitmaps 5-21

Dithering and Halftoning Bitmaps 5-30

Applying Transfer Modes to Bitmaps 5-32

Converting Other Types of Shapes to Bitmaps 5-34

Applying Transformations to Bitmaps 5-38

Mapping Bitmap Shapes 5-39

Clipping Bitmap Shapes 5-43

Creating Bitmaps With Disk-Based Pixel Images 5-44

Creating Bitmaps Offscreen 5-45

Editing Part of a Bitmap 5-53

Applying Functions Described Elsewhere to Bitmap Shapes 5-54

Functions That Post Errors or Warnings When Applied to Bitmap

Shapes 5-55

Shape-Related Functions Applicable to Bitmap Shapes 5-56

Geometric Operations Applicable to Bitmap Shapes 5-58

Style-Related Functions Applicable to Bitmap Shapes 5-59

Ink-Related Functions Applicable to Bitmap Shapes 5-59

Transform-Related Functions Applicable to Bitmap Shapes 5-59

View-Related Functions Applicable to Bitmap Shapes 5-61

viii

Bitmap Shapes Reference 5-61

Constants and Data Types 5-61

The Bitmap Geometry Structure 5-62

The Long Rectangle Structure 5-64

Constants For Bitmaps With Disk-Based Pixel Images 5-64

Bitmap Data Source Alias Structure 5-65

Functions 5-65

Creating Bitmaps 5-65

Getting and Setting Bitmap Geometries 5-68

Editing Bitmaps 5-71

Drawing Bitmaps 5-76

Checking Bitmap Colors 5-79

Summary of Bitmap Shapes 5-81

Constants and Data Types 5-81

Functions 5-82

Chapter 6 Picture Shapes 6-1

About Picture Shapes 6-3

Overriding Styles, Inks, and Transforms 6-8

Multiple References 6-10

Unique Items Shape Attribute 6-15

Picture Hierarchies 6-18

Transform Concatenation 6-19

About Hit-Testing Picture Shapes 6-24

Using Picture Shapes 6-26

Creating and Drawing Picture Shapes 6-27

Getting and Setting Picture Geometries 6-31

Adding Items to a Picture 6-32

Removing and Replacing Items in a Picture 6-35

Using Overriding Styles, Inks, and Transforms 6-38

Adding Multiple References 6-40

Adding Items With the Unique Items Attribute Set 6-43

Creating Picture Hierarchies 6-44

Hit-Testing Pictures 6-46

Applying Functions Described Elsewhere to Picture Shapes 6-52

Functions That Post Errors or Warnings When Applied to Pictures 6-52

Shape-Related Functions Applicable to Pictures 6-54

Geometric Operations Applicable to Pictures 6-55

Style-Related Functions Applicable to Pictures 6-55

Ink-Related Functions Applicable to Pictures 6-56

Transform-Related Functions Applicable to Pictures 6-56

Picture Shapes Reference 6-57

Functions 6-57

Creating Picture Shapes 6-57

Getting and Setting Picture Geometries 6-59

ix

Editing Picture Parts 6-63

Drawing Pictures 6-67

Hit-Testing Pictures 6-69

Summary of Picture Shapes 6-72

Functions 6-72

Glossary GL-1

Index IN-1

xi

Figures, Tables, and Listings

Color Plates

Color plates are immediately preceding the title page.

Color Plate 1 The effect of transfer modes on bitmap shapes
Color Plate 2 A blended color ramp bitmap
Color Plate 3 A bitmap with an eight-color color set
Color Plate 4 A color ramp bitmap
Color Plate 5 Transformed bitmaps
Color Plate 6 A bitmap drawn with and without a transfer mode

Preface About This Book xxiii

Figure P-1 Roadmap to the QuickDraw GX suite of books xxiv

Chapter 1 Introduction to QuickDraw GX Graphics 1-1

Figure 1-1 Shape object structure 1-5
Figure 1-2 The geometric shape types and examples of geometric shape

geometries 1-8
Figure 1-3 A polygon shape with a single polygon contour containing three

geometric points 1-10
Figure 1-4 Framed shapes versus solid shapes 1-11
Figure 1-5 Two condensed views of a polygon shape 1-12
Figure 1-6 The geometric style properties and some examples of their

effects 1-13
Figure 1-7 An example of reducing a shape 1-14
Figure 1-8 An example of simplifying a shape 1-14
Figure 1-9 Some examples of the geometric information available about a

shape 1-15
Figure 1-10 Some examples of the geometric arithmetic you can perform with

shapes 1-16
Figure 1-11 Sample bitmap shapes 1-17
Figure 1-12 A bitmap shape 1-18
Figure 1-13 Elements of a bitmap geometry 1-19
Figure 1-14 Sample picture shapes 1-20
Figure 1-15 A picture hierarchy 1-21

Table 1-1 Where to find information on shape-type conversion 1-6

Chapter 2 Geometric Shapes 2-1

Figure 2-1 A shape object 2-6
Figure 2-2 The geometric shape types and examples of geometric shape

geometries 2-8

xii

Figure 2-3 A polygon shape with a single contour containing three geometric
points 2-10

Figure 2-4 Framed shapes versus solid shapes 2-12
Figure 2-5 The various shape fills and examples of their effects 2-13
Figure 2-6 The even-odd rule and winding-number rule algorithms 2-14
Figure 2-7 The inverse even-odd shape fill 2-15
Figure 2-8 Two lines 2-17
Figure 2-9 A quadratic Bézier curve 2-18
Figure 2-10 Finding the midpoint of a curve 2-19
Figure 2-11 Dividing a curve into two smaller curves 2-20
Figure 2-12 A rectangle geometry shown framed and filled 2-21
Figure 2-13 A polygon shape with two polygon contours 2-23
Figure 2-14 A polygon drawn with the even-odd and winding shape fills 2-24
Figure 2-15 A path with two consecutive off-curve points 2-25
Figure 2-16 A path shape filled with the even-odd and winding shape

fills 2-26
Figure 2-17 A point 2-30
Figure 2-18 Two different point geometries 2-35
Figure 2-19 A line 2-37
Figure 2-20 Parallel lines 2-39
Figure 2-21 Nearly parallel lines 2-40
Figure 2-22 A curve 2-42
Figure 2-23 A rectangle 2-44
Figure 2-24 A framed rectangle 2-45
Figure 2-25 A polygon 2-47
Figure 2-26 A triangular polygon with inverse shape fill 2-47
Figure 2-27 A filled polygon with two separate contours 2-50
Figure 2-28 A framed polygon with a crossed contour 2-51
Figure 2-29 A solid polygon with a crossed contour 2-51
Figure 2-30 A polygon with an overlapping contour and closed-frame shape

fill 2-53
Figure 2-31 A polygon with an overlapping contour and even-odd shape

fill 2-53
Figure 2-32 A polygon with an overlapping contour and winding shape

fill 2-54
Figure 2-33 A path 2-58
Figure 2-34 A round path shape 2-60
Figure 2-35 A path shape with two concentric clockwise contours and

closed-frame shape fill 2-62
Figure 2-36 A path shape with two concentric clockwise contours and even-odd

shape fill 2-63
Figure 2-37 A path shape with two concentric clockwise contours and winding

shape fill 2-63
Figure 2-38 A path shape with an internal counterclockwise contour and

closed-frame shape fill 2-64
Figure 2-39 A path shape with even-odd or winding shape fill 2-65
Figure 2-40 A figure-eight path shape 2-67
Figure 2-41 A path shape before and after conversion to a rectangle

shape 2-68
Figure 2-42 A path shape before and after conversion to a line shape 2-69
Figure 2-43 A path shape before and after conversion to a point shape 2-70
Figure 2-44 A line shape before and after conversion to a curve shape 2-72

xiii

Figure 2-45 A rectangle shape before and after conversion to a curve
shape 2-73

Figure 2-46 A polygon shape before and after conversion to a curve
shape 2-74

Figure 2-47 A rectangle shape before and after conversion to a polygon
shape 2-75

Figure 2-48 A path shape before and after conversion to a polygon
shape 2-77

Figure 2-49 Polygon shape with two contours before and after conversion to a
path shape 2-79

Figure 2-50 A path shape with a flat top 2-81
Figure 2-51 A path shape with geometric points replaced 2-81
Figure 2-52 A polygon shape with two contours 2-83
Figure 2-53 A polygon shape extracted from a larger polygon shape 2-85
Figure 2-54 A polygon with two geometric points replaced by a single

geometric point 2-87
Figure 2-55 A polygon shape with one contour 2-87
Figure 2-56 A polygon shape edited with the gxBreakNeitherEdit flag

set 2-89
Figure 2-57 A polygon shape edited with the gxBreakLeftEdit flag

set 2-89
Figure 2-58 A polygon shape edited with the gxBreakRightEdit flag

set 2-90
Figure 2-59 A path shape with two curved contours 2-92
Figure 2-60 A path shape edited with GXSetPathParts 2-93
Figure 2-61 A path shape with a flat top 2-95
Figure 2-62 A path shape edited to have a pointy top 2-96
Figure 2-63 A path shape edited to have a round top 2-97
Figure 2-64 A diagonal line 2-99
Figure 2-65 An edited line 2-99

Table 2-1 Shape-related functions that exhibit special behavior with
geometric shapes 2-101

Listing 2-1 Drawing a point without creating a point shape 2-30
Listing 2-2 Creating a point shape with the GXNewPoint function 2-31
Listing 2-3 Creating a point shape with the GXNewShapeVector

function 2-32
Listing 2-4 Creating a point shape with the GXNewShape and GXSetPoint

functions 2-33
Listing 2-5 Using the GXSetPoint function to replace a point shape’s

geometry 2-34
Listing 2-6 Drawing a line without creating a line shape 2-37
Listing 2-7 Creating a line shape with the GXNewLine function 2-38
Listing 2-8 Drawing two parallel lines 2-39
Listing 2-9 Creating a curve shape 2-41
Listing 2-10 Creating a rectangle shape 2-43
Listing 2-11 Creating a framed rectangle 2-44
Listing 2-12 Drawing a triangular polygon 2-46
Listing 2-13 Creating a polygon with two contours 2-49
Listing 2-14 Creating a polygon with a crossed contour 2-50
Listing 2-15 Creating a polygon with an overlapping contour 2-52
Listing 2-16 Drawing a path shape 2-57

xiv

Listing 2-17 Creating a path using only off-curve control points 2-59
Listing 2-18 Creating a path with concentric contours 2-61
Listing 2-19 Creating a figure-eight path shape 2-67
Listing 2-20 Converting a line to a curve 2-71
Listing 2-21 Converting a rectangle to a curve 2-72
Listing 2-22 Converting a polygon shape to a curve shape 2-73
Listing 2-23 Converting a rectangle shape to a polygon shape 2-75
Listing 2-24 Converting a path shape to a polygon shape 2-76
Listing 2-25 Converting a polygon shape to a path shape 2-78
Listing 2-26 Replacing geometric points 2-80
Listing 2-27 Creating a polygon shape with two contours 2-82
Listing 2-28 Extracting part of a polygon shape 2-84
Listing 2-29 Replacing geometric points of a polygon shape 2-86
Listing 2-30 Inserting a geometric point in a polygon shape 2-88
Listing 2-31 Creating a path shape with two curved contours 2-91
Listing 2-32 Creating a path shape with one contour 2-94
Listing 2-33 Creating a diagonal line 2-98

Chapter 3 Geometric Styles 3-1

Figure 3-1 Style object with geometric properties highlighted 3-6
Figure 3-2 Shared style objects 3-7
Figure 3-3 Effects of the GXPrimitiveShape function on a line shape 3-9
Figure 3-4 Effects of the GXPrimitiveShape function on a rectangle

shape 3-10
Figure 3-5 The QuickDraw GX geometric pen 3-15
Figure 3-6 Differing pen widths 3-16
Figure 3-7 Pixels included in a hairline 3-16
Figure 3-8 A geometry with no hairline 3-17
Figure 3-9 Pen placement 3-18
Figure 3-10 Effect of the auto-inset style attribute 3-19
Figure 3-11 Effect of the auto-inset and inside-frame style attributes for a

crossed contour 3-19
Figure 3-12 Eliminating crossed contours 3-20
Figure 3-13 Constraining shapes to grids 3-21
Figure 3-14 Caps, joins, dashes, and patterns 3-22
Figure 3-15 A shape with caps 3-23
Figure 3-16 A shape with level caps 3-24
Figure 3-17 Standard cap shapes 3-24
Figure 3-18 A shape with joins 3-25
Figure 3-19 A shape with level joins 3-26
Figure 3-20 Standard joins 3-26
Figure 3-21 Sharp join with miter 3-27
Figure 3-22 A dashed shape 3-27
Figure 3-23 Scaling a dash shape 3-28
Figure 3-24 Effect of the clip dash attribute 3-29
Figure 3-25 Effects of breaking a dash 3-30
Figure 3-26 Effects of bending a dash 3-30
Figure 3-27 A shape with a pattern 3-31
Figure 3-28 Pattern placed on a nonrectilinear grid 3-32

xv

Figure 3-29 Effects of the port-align pattern attribute 3-32
Figure 3-30 Effects of the port-map pattern attribute 3-33
Figure 3-31 A shape with a cap, join, and pattern 3-34
Figure 3-32 A shape with a dash and a pattern 3-34
Figure 3-33 A shape with a clipped dash and a cap and join 3-35
Figure 3-34 Rectangle with thick pen 3-38
Figure 3-35 Scaled, but not constrained, V shape 3-41
Figure 3-36 Constrained V shape 3-42
Figure 3-37 Rotated star not constrained to device grid (magnified 200

percent) 3-44
Figure 3-38 Rotated star constrained to device grid (magnified 200

percent) 3-45
Figure 3-39 Polygon approximation of a circle with curve error of 1 3-46
Figure 3-40 Polygon approximation of a circle with curve error of 5 3-47
Figure 3-41 Polygon approximation of a circle with curve error of 10 3-47
Figure 3-42 Polygon resulting from a curve error of 0 3-48
Figure 3-43 Wavy line 3-50
Figure 3-44 Wavy line somewhat smoothed by curve error of 10 3-50
Figure 3-45 Wavy line smoothed by curve error of 15 3-50
Figure 3-46 Wavy line completely straightened by curve error of 20 3-50
Figure 3-47 A hairline figure eight 3-52
Figure 3-48 A thick figure eight 3-52
Figure 3-49 A figure eight with pen inset 3-53
Figure 3-50 A figure eight with pen outset 3-54
Figure 3-51 A reversed figure eight with pen outset 3-55
Figure 3-52 Uncrossed figure eight with pen outset 3-56
Figure 3-53 An arrow 3-59
Figure 3-54 Round and square caps 3-61
Figure 3-55 A square with diamond-shaped joins 3-63
Figure 3-56 A square with level joins 3-63
Figure 3-57 An angle with a sharp join 3-65
Figure 3-58 An angle with a truncated sharp join 3-65
Figure 3-59 A dashed curve 3-68
Figure 3-60 A curve with scaled dashes 3-68
Figure 3-61 A curve with clipped dashes 3-69
Figure 3-62 A curve with phased dashes 3-69
Figure 3-63 Circle dashed with diamonds 3-71
Figure 3-64 Circle with automatically advanced dashes 3-72
Figure 3-65 Circle with diamond dashes inset 3-73
Figure 3-66 Circle with diamond dashes moved toward the center 3-74
Figure 3-67 Dash shape with two contours 3-75
Figure 3-68 Circle dashed with double diamonds 3-76
Figure 3-69 Circle with dashes broken 3-77
Figure 3-70 Circle with hairline dashes 3-78
Figure 3-71 Circle with bent hairline dashes 3-79
Figure 3-72 Wrapped text 3-81
Figure 3-73 Dash positions for a clock 3-83
Figure 3-74 A clock shape 3-85
Figure 3-75 A rectangle with a pattern 3-87
Figure 3-76 A framed rectangle with a pattern 3-88
Figure 3-77 Shape with changing pattern 3-91

xvi

Figure 3-78 Angle shape with cap, join, and pattern 3-93
Figure 3-79 Angle shape with dash and pattern; caps and join ignored 3-94
Figure 3-80 Shape with cap, join, dash, and the clip dash attribute set 3-95

Listing 3-1 Adding style information by directly manipulating a style
object 3-37

Listing 3-2 Manipulating style information indirectly 3-39
Listing 3-3 Constraining a shape to a half-inch grid 3-40
Listing 3-4 Creating a shape with fractional geometric point positions 3-43
Listing 3-5 Converting a circle to a polygon 3-46
Listing 3-6 Creating a complicated contour 3-49
Listing 3-7 Defining a figure eight 3-51
Listing 3-8 Removing unwanted contour crossings 3-55
Listing 3-9 Creating an arrow 3-57
Listing 3-10 Adding round caps and square caps to a curve 3-60
Listing 3-11 Adding joins to a shape 3-61
Listing 3-12 Adding a sharp join to an angle shape 3-64
Listing 3-13 Creating a curve shape dashed with diamonds 3-66
Listing 3-14 Creating a dashed circle 3-70
Listing 3-15 Creating a dash with multiple contours 3-75
Listing 3-16 Wrapping text 3-80
Listing 3-17 Creating a circle with 12 dashes 3-82
Listing 3-18 Creating a clock shape 3-83
Listing 3-19 Patterning a shape 3-86
Listing 3-20 Changing a pattern throughout a patterned shape 3-89
Listing 3-21 Combining a cap, join, and pattern 3-92

Chapter 4 Geometric Operations 4-1

Figure 4-1 Line contours 4-5
Figure 4-2 A path shape with two contours 4-6
Figure 4-3 A path whose contour direction is not immediately obvious 4-7
Figure 4-4 A path whose inner contour has the same contour direction as its

outer contour 4-8
Figure 4-5 A path shape whose inner and outer contours have different

contour directions 4-8
Figure 4-6 Effects of reducing and simplifying shape geometries 4-10
Figure 4-7 How simplifying a shape can produce more predictable results

when drawing 4-11
Figure 4-8 Simple example of the GXPrimitiveShape function 4-13
Figure 4-9 More involved example of the GXPrimitiveShape

function 4-15
Figure 4-10 Geometric information available about a path shape 4-17
Figure 4-11 A path shape resized by changing its bounding rectangle 4-18
Figure 4-12 Testing whether one shape touches another 4-19
Figure 4-13 Testing whether one shape contains another 4-20
Figure 4-14 Geometric arithmetic with two solid shapes 4-21
Figure 4-15 Geometric arithmetic with a framed shape and a solid

shape 4-22
Figure 4-16 Geometric inversion 4-22

xvii

Figure 4-17 A polygon shape whose two contours have opposite contour
directions 4-25

Figure 4-18 A polygon shape with the direction of both contours
reversed 4-26

Figure 4-19 A polygon shape with the direction of the inner contour
reversed 4-27

Figure 4-20 A path shape with a single contour 4-29
Figure 4-21 A path shape broken into two contours 4-29
Figure 4-22 A polygon shape with unnecessary geometric points 4-31
Figure 4-23 A polygon shape with the unnecessary geometric points

removed 4-32
Figure 4-24 A polygon shape with a crossed contour 4-34
Figure 4-25 A polygon shape with no crossed contours 4-34
Figure 4-26 A path shape with two concentric clockwise contours and even-odd

shape fill 4-36
Figure 4-27 A path shape with two concentric contours with opposite contour

direction 4-36
Figure 4-28 A path shape with two concentric clockwise contours and winding

shape fill 4-37
Figure 4-29 A path shape simplified to a single clockwise contour 4-37
Figure 4-30 A hourglass-shaped polygon with a thick border 4-39
Figure 4-31 A polygon shape with style information incorporated into its

geometry 4-39
Figure 4-32 The primitive form of the polygon shape after simplification 4-40
Figure 4-33 A path with an outer clockwise contour and an inner

counterclockwise contour 4-42
Figure 4-34 Finding a specified point on a path contour 4-43
Figure 4-35 Finding the bounding rectangle and the center point of a

path 4-44
Figure 4-36 Finding the center point of two contours 4-44
Figure 4-37 Finding the area of a path, two contours with same contour

direction 4-45
Figure 4-38 Finding the area of a path, two contours with opposite contour

direction 4-46
Figure 4-39 Finding the area of a simplified path 4-46
Figure 4-40 A circular path 4-48
Figure 4-41 A circular path after bounding rectangle changed 4-48
Figure 4-42 A path shape with a transform mapping 4-49
Figure 4-43 A tight curve 4-51
Figure 4-44 An inset curve shape 4-51
Figure 4-45 An outset curve 4-52
Figure 4-46 A rectangle containing a circular path 4-54
Figure 4-47 A rectangle that touches a circular path shape 4-55
Figure 4-48 A rectangle and a circular path touching at a single point 4-56
Figure 4-49 A large circular path shape touching a smaller circular path

shape 4-57
Figure 4-50 A path shape with two contours and a smaller concentric rectangle

shape 4-59
Figure 4-51 A diamond-shaped polygon geometry and a circular path

geometry 4-61
Figure 4-52 The intersection of a diamond-shaped polygon and a circular

path 4-61

xviii

Figure 4-53 The union of a diamond-shaped polygon and a circular
path 4-62

Figure 4-54 The union of a framed diamond-shaped polygon and a circular
path 4-63

Figure 4-55 The result of subtracting a circular path from a diamond-shaped
polygon 4-63

Figure 4-56 The result of subtracting a diamond-shaped polygon from a circular
path 4-64

Figure 4-57 The result of the exclusive-OR operation on a polygon and a
path 4-65

Figure 4-58 An inverted diamond 4-66

Listing 4-1 Creating a polygon shape with two contours having opposite
contour directions 4-24

Listing 4-2 Creating a path shape with a single contour 4-28
Listing 4-3 Creating a polygon with redundant geometric points 4-31
Listing 4-4 Creating a polygon shape with a crossed contour 4-33
Listing 4-5 Creating a path shape with two clockwise contours 4-35
Listing 4-6 Creating an hourglass polygon shape with a thick pen

width 4-38
Listing 4-7 Creating a path shape with two contours having opposite contour

directions 4-41
Listing 4-8 Creating a circular path 4-47
Listing 4-9 Creating a tight curve shape 4-50
Listing 4-10 Creating a rectangle and a circular path shape 4-53
Listing 4-11 Creating a path shape with two contours and a smaller concentric

rectangle shape 4-58
Listing 4-12 Creating a diamond-shaped polygon and a circular path that

intersect 4-60

Chapter 5 Bitmap Shapes 5-1

Figure 5-1 A bitmap shape 5-4
Figure 5-2 A black-and-white bitmap geometry 5-6
Figure 5-3 A grayscale bitmap geometry 5-7
Figure 5-4 The effect of transfer modes on bitmap shapes 5-9
Figure 5-5 The effect of mappings on bitmap shapes 5-10
Figure 5-6 The effect of the gxMapTransformShape shape attribute on bitmap

mappings 5-11
Figure 5-7 Bitmaps and view devices 5-13
Figure 5-8 A black-and-white bitmap—32 bits wide 5-17
Figure 5-9 An example of unaligned bytes per row 5-19
Figure 5-10 An envelope with a shadow 5-20
Figure 5-11 A bitmap with a grayscale color set (four shades) 5-22
Figure 5-12 A bitmap with a grayscale color set (sixteen shades) 5-23
Figure 5-13 A bitmap with an eight-color color set 5-24
Figure 5-14 A color ramp from red to green 5-28
Figure 5-15 Dithered bitmaps 5-31
Figure 5-16 Halftoned bitmaps 5-32
Figure 5-17 A blended color ramp 5-34
Figure 5-18 A bitmap representation of a path shape 5-36
Figure 5-19 A bitmap and its bounding rectangle 5-36

xix

Figure 5-20 A bitmap drawn over a background 5-37
Figure 5-21 A bitmap with a transfer mode drawn over a background 5-38
Figure 5-22 A path shape converted to a bitmap shape 5-39
Figure 5-23 A path shape converted to a bitmap shape and then

skewed 5-39
Figure 5-24 A color ramp bitmap 5-40
Figure 5-25 A bitmap after multiple transformations 5-40
Figure 5-26 Scaled text 5-41
Figure 5-27 Scaled text and a scaled bitmap 5-42
Figure 5-28 A clipped bitmap 5-43
Figure 5-29 Multiple shapes drawn to a bitmap 5-51
Figure 5-30 An extracted bitmap 5-53
Figure 5-31 An edited bitmap 5-54

Table 5-1 Shape-editing functions that post errors or warnings when applied
to bitmaps 5-55

Table 5-2 Geometric operations that post errors or warnings when applied to
bitmaps 5-56

Table 5-3 Shape-related functions that exhibit special behavior when applied
to bitmaps 5-57

Table 5-4 Geometric operations that exhibit special behavior when applied to
bitmaps 5-58

Table 5-5 Transform-related functions that exhibit special behavior when
applied to bitmaps 5-60

Table 5-6 View-related functions that can be applied to bitmaps 5-61

Listing 5-1 Creating a black-and-white bitmap 5-15
Listing 5-2 A bit image with an even number of bytes per row 5-20
Listing 5-3 Defining a color set 5-23
Listing 5-4 Creating a color ramp 5-26
Listing 5-5 Creating a color ramp using the ramp library 5-28
Listing 5-6 Creating a color ramp using both the ramp and color

libraries 5-29
Listing 5-7 Halftoning a bitmap 5-31
Listing 5-8 Applying a transfer mode to a bitmap 5-33
Listing 5-9 Converting a path to a bitmap 5-35
Listing 5-10 Scaling text 5-41
Listing 5-11 Scaling a bitmap 5-42
Listing 5-12 Creating a black-and-white bitmap 5-46
Listing 5-13 Creating an offscreen bitmap 5-49
Listing 5-14 Creating an offscreen bitmap using the offscreen library 5-51

Chapter 6 Picture Shapes 6-1

Figure 6-1 A picture shape 6-4
Figure 6-2 A picture item 6-5
Figure 6-3 A picture geometry with two items 6-6
Figure 6-4 Condensed view of picture with two items 6-7
Figure 6-5 A picture shape with overrides 6-9
Figure 6-6 A picture containing multiple references to the same

shape 6-10

xx

Figure 6-7 A condensed view of a picture with multiple references 6-11
Figure 6-8 Multiple references with overriding transforms 6-12
Figure 6-9 Multiple references with overriding styles, inks, and

transforms 6-14
Figure 6-10 An empty picture shape and a polygon shape 6-15
Figure 6-11 Adding a polygon shape to a picture shape 6-16
Figure 6-12 Adding a shape to a picture twice 6-17
Figure 6-13 A condensed view of a picture hierarchy 6-18
Figure 6-14 A path shape and its transform 6-19
Figure 6-15 A picture with an overriding transform 6-20
Figure 6-16 Simple transform concatenation 6-21
Figure 6-17 Intricate transform concatenation 6-23
Figure 6-18 A picture shape and hit-test points 6-25
Figure 6-19 A picture of a house with a roof and a door 6-29
Figure 6-20 A picture of a house with a relocated door 6-32
Figure 6-21 A house with a lawn, walkway, and chimney 6-35
Figure 6-22 A house with chimney removed 6-36
Figure 6-23 A house with the chimney replaced 6-37
Figure 6-24 A house picture with an overriding style, ink, and transform 6-40
Figure 6-25 A house with four windows 6-42
Figure 6-26 A house with four windows and four unique overriding

transforms 6-44
Figure 6-27 A house rotated by 90 degrees two times 6-45
Figure 6-28 Grounds picture 6-47
Figure 6-29 House picture 6-47
Figure 6-30 Picture containing grounds picture and house picture 6-48
Figure 6-31 Hit-testing the picture of house and grounds 6-49
Figure 6-32 Hit-testing the picture at depth 2 and level 1 6-50

Table 6-1 Hit-testing a picture at different depths and levels 6-51
Table 6-2 Geometric operations that post errors or warnings when applied to

pictures 6-53
Table 6-3 Shape-related functions that exhibit special behavior when applied

to pictures 6-54
Table 6-4 Geometric operations that exhibit special behavior when applied to

pictures 6-55

Listing 6-1 Creating a simple picture of a house 6-28
Listing 6-2 Disposing of shapes contained in a picture before disposing of the

picture 6-30
Listing 6-3 Extracting and editing items from a picture 6-31
Listing 6-4 Defining new shapes for the house picture 6-33
Listing 6-5 Adding new shapes to the house picture 6-34
Listing 6-6 Removing an item from a picture 6-36
Listing 6-7 Replacing one shape with another 6-37
Listing 6-8 Creating style, ink, and transform objects 6-38
Listing 6-9 Creating a picture whose items have overriding styles, inks, and

transforms 6-39
Listing 6-10 Disposing of overriding style, ink, and transform objects before

drawing 6-40
Listing 6-11 Adding four items that reference the same shape to a house

picture 6-41

xxi

Listing 6-12 Disposing of the white rectangle and the three transform objects
before drawing 6-42

Listing 6-13 Adding unique items to a picture 6-43
Listing 6-14 Creating a picture hierarchy 6-45
Listing 6-15 Creating a picture hierarchy 6-46
Listing 6-16 Hit-testing a picture shape 6-49

xxiii

P R E F A C E

About This Book

QuickDraw GX is an integrated, object-based approach to graphics

programming on Macintosh computers. This book, Inside Macintosh:
QuickDraw GX Graphics, describes the data types and functions you use to

create graphic images.

For application programming purposes, QuickDraw GX augments the

capabilities of some of the Macintosh system software managers documented

in other parts of Inside Macintosh. In situations where your application uses

QuickDraw GX for drawing, information in this book replaces much of the

information in Inside Macintosh: Imaging With QuickDraw. QuickDraw and

QuickDraw GX coexist without conflict, however, and you can use both in the

same program. Furthermore, for tasks outside the scope of QuickDraw GX,

such as managing graphics ports, you need to use QuickDraw.

Before you read this book, you should already be familiar with information

described elsewhere in the Inside Macintosh QuickDraw GX suite of books.

In particular, you should be familiar with much of the information in

Inside Macintosh: QuickDraw GX Objects. You should read the information

about QuickDraw GX shapes and objects in the chapter “Introduction to

QuickDraw GX” in that book. You should also read the chapters “Shape

Objects,” “Style Objects,” “Ink Objects,” and “Transform Objects” in that book.

xxiv

P R E F A C E

For an alternative approach to learning QuickDraw GX, you can read

QuickDraw GX Programmer’s Overview before or along with this

book. QuickDraw GX Programmer’s Overview teaches QuickDraw GX

programming through building extensive code samples. Figure P-1 shows the

suggested reading order for the QuickDraw GX books.

Figure P-1 Roadmap to the QuickDraw GX suite of books

xxv

P R E F A C E

What to Read

This book describes three types of QuickDraw GX shapes you can use to

make graphic images:

■ geometric shapes

■ bitmap shapes

■ picture shapes

The other types of QuickDraw GX shapes (the typographic shapes) are

discussed in Inside Macintosh: QuickDraw GX Typography.

The chapters of this book cover these topics:

■ Geometric shapes, which are the building blocks for graphics. These
shapes, which include points, lines, curves, rectangles, polygons, and
paths, make up the graphic elements supported by most drawing
programs. The chapter “Geometric Shapes” in this book describes
geometric shapes in detail.

■ Geometric styles, which are the stylistic variations you can make
to geometric shapes. The chapter “Geometric Styles” in this book describes
these variations.

■ Geometric operations, which are the functions you can use to manipulate
geometric shapes and obtain geometric information about geometric
shapes. The chapter “Geometric Operations” in this book describes these
functions.

■ Bitmap shapes, which contain pixel images. These shapes allow you to
create graphics by specifying the color value of each pixel in the image. The
chapter “Bitmap Shapes” in this book describes bitmap shapes in detail.
This chapter also references a number of the color plates you can find at the
front of this book.

■ Picture shapes, which are collections of QuickDraw GX shapes, including
other picture shapes. You can find this type of shape described in the
chapter “Picture Shapes,” in this book.

xxvi

P R E F A C E

Chapter Organization

Most chapters in this book follow a standard general structure. For example,

the chapter “Geometric Shapes” contains these major sections:

■ “About Geometric Shapes.” This section provides an overview of
geometric shapes.

■ “Using Geometric Shapes.” This section describes how you can create and
manipulate geometric shapes using QuickDraw GX. It describes how to
use the most common functions, gives related user interface information,
provides code samples, and supplies additional information.

■ “Geometric Shapes Reference.” This section provides a complete reference
to geometric shapes by describing the constants, data types, and functions
that you use with geometric shapes. Each function description follows a
standard format, which gives the function declaration; a description of
every parameter; the function result, if any; and a list of errors, warnings,
and notices. Most function descriptions give additional information about
using the function and include cross-references to related information
elsewhere.

■ “Summary of Geometric Shapes.” This shows the C interface for the
constants, data types, and functions associated with geometric shapes.

Conventions Used in This Book

This book uses various conventions to present certain types of information.

Special Fonts
All code listings, reserved words, and the names of data structures, constants,

fields, parameters, and functions are shown in Courier (this is Courier).

When new terms are introduced, they are in boldface. These terms are also

defined in the glossary.

xxvii

P R E F A C E

Types of Notes
There are several types of notes used in this book.

Note

A note formatted like this contains information that is interesting but
possibly not essential to an understanding of the main text. The wording
in the title may say something more descriptive than just “Note,” for
example “Implementation Note.” (An example appears on page 2-22.) ◆

IMPORTANT

A note like this contains information that is especially important. (An
example appears on page 2-28.) ▲

Numerical Formats
Hexadecimal numbers are shown in this format: 0x0008.

The numerical values of constants are shown in decimal, unless the constants

are flag or mask elements that can be summed, in which case they are shown

in hexadecimal.

Type Definitions for Enumerations
Enumeration declarations in this book are commonly followed by a type

definition that is not strictly part of the enumeration. You can use the type to

specify one of the enumerated values for a parameter or field. The type name

is usually the singular of the enumeration name, as in the following example:

enum gxDashAttributes {

gxBendDash = 0x0001,

gxBreakDash = 0x0002,

gxClipDash = 0x0004,

gxLevelDash = 0x0008,

gxAutoAdvanceDash = 0x0010

};

typedef long gxDashAttribute;

xxviii

P R E F A C E

Illustrations
The following conventions are used in illustrations in this book.

In illustrations that show object properties, properties that are object

references are in italics.

In order to focus attention on the key part of some drawings, other parts are

printed in gray, rather than black.

This book also uses other conventions for representing shape objects, style

objects, ink objects, and transform objects.

See Figure 1-1, Figure 1-2, and Figure 1-6 in Chapter 1, “Introduction to

QuickDraw GX Graphics,” for examples of these conventions.

Development Environment

The QuickDraw GX functions described in this book are available using C

interfaces. How you access these functions depends on the development

environment you are using.

Code listings in this book are shown in ANSI C. They suggest methods of

using various functions and illustrate techniques for accomplishing particular

tasks. Although most code listings have been compiled and tested, Apple

Computer, Inc., does not intend for you to use these code samples in your

applications.

Developer Products and Support

APDA is Apple’s worldwide source for over three hundred development

tools, technical resources, training products, and information for anyone

interested in developing applications on Apple platforms. Customers receive

the quarterly APDA Tools Catalog featuring all current versions of Apple

development tools and the most popular third-party development tools.

Ordering is easy; there are no membership fees, and application forms are not

required for most of our products. APDA offers convenient payment and

shipping options, including site licensing.

xxix

P R E F A C E

To order products or to request a complimentary copy of the APDA Tools
Catalog, contact

APDA

Apple Computer, Inc.

P.O. Box 319

Buffalo, NY 14207-0319

If you provide commercial products and services, call 408-974-4897 for

information on the developer support programs available from Apple.

Telephone 800-282-2732 (United States)
800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDAorder

CompuServe 76666,2405

Internet APDA@applelink.apple.com

Contents 1-1

C H A P T E R 1

Introduction to

Contents

QuickDraw GX Graphics

About QuickDraw GX Graphics 1-4

Geometric Shapes 1-7

Geometric Shape Types 1-8

Geometric Shape Geometries 1-9

Geometric Shape Fills 1-10

Geometric Styles, Inks, and Transforms 1-11

Geometric Operations 1-14

Bitmap Shapes 1-17

Picture Shapes 1-20

C H A P T E R 1

1-3

Introduction to QuickDraw GX Graphics

This chapter introduces the main concepts found in the rest of this book and gives an

overview of the three types of QuickDraw GX shapes you can use to make graphic

images:

■ geometric shapes

■ bitmap shapes

■ picture shapes

The other types of QuickDraw GX shapes (the typographic shapes) are discussed in

Inside Macintosh: QuickDraw GX Typography.

You should be familiar with information described elsewhere in the Inside Macintosh:
QuickDraw GX books before you read this chapter. In particular, you should read the

information about QuickDraw GX shapes and objects in the chapter “Introduction to

QuickDraw GX” in Inside Macintosh: QuickDraw GX Objects. You should also read the

chapter “Shape Objects” in that book.

As you read this chapter and the other chapters in this book, you might want to be

familiar with the other information in Inside Macintosh: QuickDraw GX Objects—in

particular, you might also read the “Style Objects,” “Ink Objects,” and “Transform

Objects” chapters in that book.

The next section reviews the objects that make up a QuickDraw GX shape and

introduces the different types of graphic shapes. The remaining sections of this chapter

briefly discuss

■ the structure of geometric shapes

■ the contents of geometric shape geometries

■ the shape fill property and how it affects geometric shapes

■ the properties of the style object that modify geometric shapes

■ the geometric operations provided by QuickDraw GX

■ the structure of bitmap shapes

■ the structure of picture shapes

C H A P T E R 1

Introduction to QuickDraw GX Graphics

1-4 About QuickDraw GX Graphics

About QuickDraw GX Graphics

With QuickDraw GX, you create graphics by creating QuickDraw GX shapes. Graphics

shapes include geometric shapes, bitmap shapes, and picture shapes:

■ Geometric shapes are the building blocks for graphics. These shapes, which include
points, lines, curves, rectangles, polygons, and paths, make up the graphic elements
supported by most drawing programs. There are also two special types of geometric
shapes: empty shapes, which cover no area, and full shapes, which cover all area.

■ Bitmap shapes contain pixel images. These shapes allow you to create graphics by
specifying the color value of each pixel in the image.

■ Picture shapes are collections of QuickDraw GX shapes, including other picture
shapes.

All QuickDraw GX shapes share the same basic structure. They are all represented by a

shape object and its associated style, ink, and transform objects. Figure 1-1 shows the

four basic QuickDraw GX objects and lists the properties of each. This figure includes all

of the properties of these objects. However, this book examines only a subset of these

properties. Properties not examined in this book are grayed out.

C H A P T E R 1

Introduction to QuickDraw GX Graphics

About QuickDraw GX Graphics 1-5

Figure 1-1 Shape object structure

C H A P T E R 1

Introduction to QuickDraw GX Graphics

1-6 About QuickDraw GX Graphics

Like all shapes, geometric shapes are represented by a shape object in memory. Three of

the properties of the shape object—shape type, shape geometry, and shape

fill—and how they apply to geometric shapes in particular, are introduced in the

section “Geometric Shapes” beginning on page 1-7 and are fully discussed in the chapter

“Geometric Shapes” in this book.

Geometric shapes use the style object properties highlighted in Figure 1-1. These

properties are introduced in the section “Geometric Styles, Inks, and Transforms”

beginning on page 1-11 and are fully examined in the chapter “Geometric Styles” in this

book.

Geometric shapes also use the properties of their ink and transform objects. You can find

more information about these objects in the chapters “Ink Objects” and “Transform

Objects” in Inside Macintosh: QuickDraw GX Objects.

Bitmap shapes use their shape, style, ink, and transform objects, although they make

limited use of some of the properties of these objects. Bitmap shapes are introduced in

the section “Bitmap Shapes” beginning on page 1-17 and are fully examined in the

chapter “Bitmap Shapes” in this book.

Picture shapes use their shape and transform objects, but do not use their style or ink

objects. Picture shapes are introduced in the section “Picture Shapes” beginning on

page 1-20 and are fully examined in the chapter “Picture Shapes” in this book.

QuickDraw GX allows you to convert between the different types of shapes. Table 1-1

describes where to look in each book for information regarding each possible kind of

conversion.

Table 1-1 Where to find information on shape-type conversion

To a geometric
shape

To a bitmap
shape

To a picture
shape

To a typographic
shape

From a geometric
shape

See “Geometric
Shapes” in this book

See “Bitmap
Shapes” in
this book

See “Picture
Shapes” in
this book

(not possible)

From a bitmap
shape

(not possible) See “Bitmap
Shapes” in
this book

See “Picture
Shapes” in
this book

(not possible)

From a picture
shape

(not possible) See “Bitmap
Shapes” in
this book

See “Picture
Shapes” in
this book

(not possible)

From a
typographic
shape

See “Typographic
Shapes” in
QuickDraw GX
Typography

See “Bitmap
Shapes” in
this book

See “Picture
Shapes” in
this book

See “Typographic
Shapes” in
QuickDraw GX
Typography

C H A P T E R 1

Introduction to QuickDraw GX Graphics

Geometric Shapes 1-7

Geometric Shapes

QuickDraw GX provides eight types of geometric shapes—the basic building blocks

of QuickDraw GX graphics. These shapes include empty shapes, full shapes, points,

lines, rectangles, curves, polygons, and paths. You can use these shapes for drawing, for

calculating areas, for clipping, as elements of more complex graphics, and so on.

As with all types of QuickDraw GX shapes, a geometric shape is represented by a shape

object in QuickDraw GX memory. However, what defines a geometric shape—what

makes it different from other types of shapes—is how it uses the properties of the shape

object:

■ The shape type property specifies the type of the geometric shape—empty, full, point,
line, curve, rectangle, polygon, or path.

■ The geometry property specifies the positions of the points that define the shape—for
example, the end points of a line, or the corners of a rectangle.

■ The shape fill property specifies how the geometry of the shape is interpreted—for
example, as a framed outline or as a solid area.

■ The style property references a style object, which specifies modifications to the
geometric shape—for example, pen width, dashes, and patterns.

■ The ink and transform properties reference an ink and a transform object. The ink
object specifies the color and transfer mode applied to the shape when drawn. The
transform object specifies mapping transformations made to the shape, how the shape
is clipped, how the shape is hit-tested, and to what view ports the shape is finally
drawn.

■ The attributes, owner count, and tag list properties contain object-related information
about the shape. These properties affect how the shape object is maintained in
memory, when the memory held by the shape is freed, and other information you
might want to specify for a particular shape.

Geometric shapes use all of the shape properties—to understand geometric shapes fully,

you should be familiar with all of these properties, which are introduced in the chapter

“Shape Objects” in Inside Macintosh: QuickDraw GX Objects. The way that geometric

shapes use these properties differently from other types of shapes is described in this

book, particularly in the chapters “Geometric Shapes” and “Geometric Styles.”

C H A P T E R 1

Introduction to QuickDraw GX Graphics

1-8 Geometric Shapes

Geometric Shape Types
There are six basic types of geometric shapes and two special types. The basic geometric

shapes include points, lines, rectangles, curves, polygons, and paths; the two special

types are empty shapes and full shapes. Figure 1-2 lists the basic geometric shape types

and also shows a sample geometry for each of them. Each geometry is made up of

geometric points and edges that connect the geometric points. The next section,

“Geometric Shape Geometries,” introduces these concepts in more detail.

Figure 1-2 The geometric shape types and examples of geometric shape geometries

The empty shape and the full shape are not shown in this figure. An empty shape is

a shape that has no geometry and covers no area. A full shape is the inverse of an empty

shape—it covers all area. For a complete description of each type of geometric shape, see

the chapter “Geometric Shapes” in this book.

C H A P T E R 1

Introduction to QuickDraw GX Graphics

Geometric Shapes 1-9

Geometric Shape Geometries
Each type of geometric shape uses the geometry property of its shape object in a slightly

different manner. For example, empty shapes and full shapes store no information in

their geometry, because they require no further geometry information—their shape type

says it all.

However, for other types of geometric shapes, the shape type does not contain all the

geometry information necessary to define the shape. The geometries of these shapes

contain (x, y) coordinate pairs called geometric points—points that specify the location,

dimension, and form of the geometric shapes:

■ Point geometries contain one geometric point—an x-coordinate and a y-coordinate—
to specify the position of the point shape.

■ Line geometries contain two geometric points—one point to specify where the line
starts and one to specify where the line ends.

■ Rectangle geometries also contain two geometric points—one point to specify one
corner of the rectangle, and another point to specify the opposing corner.

■ Curve shapes store three geometric points in their geometry—one to specify where
the curve starts, another to specify where the curve ends, and another, called the
off-curve control point, to specify the tangents used to define the curve.

■ Polygon geometries are made up of zero, one, or more polygon contours. Each
polygon contour is series of geometric points connected by straight edges.

■ Path geometries are similiar to polygon geometries, but path geometries also store
information about which geometric points are on-curve and which are off-curve
control points. Therefore, path contours can have curves as well as straight lines.

For more information about the geometries of each geometric shape type, see the chapter

“Goemetric Shapes” in this book.

C H A P T E R 1

Introduction to QuickDraw GX Graphics

1-10 Geometric Shapes

Figure 1-3 shows a polygon shape with a single polygon contour made up of three

geometric points. This figure shows three views of the polygon geometry: as a list of

(x, y) coordinate pairs, as three geometric points plotted on a geometric grid, and as

three points connected by three straight lines. This third way of viewing geometries is

used frequently throughout this book, as it shows not only the geometric points, but also

the implied edges that connect them. Notice that geometric points have fixed-point

coordinates—you can specify fractional positions.

Figure 1-3 A polygon shape with a single polygon contour containing three geometric points

Geometric Shape Fills
The shape fill property specifies how QuickDraw GX interprets the geometric points of a

geometric shape’s geometry. There are two basic types of shape fills:

■ Framed fills. These shape fills indicate that QuickDraw GX should interpret the shape
as an outline—as a series of edges.

■ Solid fills. These shape fills indicate that QuickDraw GX should interpret the shape as
a solid area—the edges of the shape represent the boundaries of the area.

C H A P T E R 1

Introduction to QuickDraw GX Graphics

Geometric Shapes 1-11

Figure 1-4 shows an example of a polygon contour similar to the one in Figure 1-3, and

how QuickDraw GX might draw it with a framed fill and with a solid fill.

Figure 1-4 Framed shapes versus solid shapes

For more information about the various kinds of shape fills provided by QuickDraw GX,

see the chapter “Geometric Shapes” in this book.

Geometric Styles, Inks, and Transforms
Like all QuickDraw GX shapes, geometric shapes reference a style object, an ink object,

and a transform object. Figure 1-5 shows a condensed view of how a polygon shape

might use these four objects.

Instead of listing every property of each of these objects, the first half of Figure 1-5 (the

left side) depicts a single important property for each object:

■ For the shape object, it shows the polygon geometry.

■ For the style object, it shows the pen width.

■ For the ink object, it shows the color.

■ For the transform object, it shows the transformation mapping.

This condensed view of these objects is used frequently throughout this book to

highlight information important to a particular example.

C H A P T E R 1

Introduction to QuickDraw GX Graphics

1-12 Geometric Shapes

The second half of Figure 1-5 (the right side) shows an even more condensed view of the

polygon shape. In this view, all of the stylistic, color, and transform variations have been

incorporated into the shape itself—basically showing the shape as it is drawn. This

extremely condensed view is used occasionally throughout this book, particularly when

many shapes must appear in a single figure, as in the chapter “Picture Shapes.”

Figure 1-5 Two condensed views of a polygon shape

Because the ink and transform objects are used in the same way by geometric and

typographic shapes, these two objects are discussed in Inside Macintosh: QuickDraw GX
Objects, rather than in this book.

However, geometric shapes use their style objects in a very different way than

typographic shapes do.

The style object has three types of properties:

■ Object-related style properties, which are discussed in the chapter “Style Objects” in
Inside Macintosh: QuickDraw GX Objects. These properties apply to the style as an
object in memory.

■ Typographic style properties, which are discussed in the chapter “Typographic
Styles” in Inside Macintosh: QuickDraw GX Typography. These properties apply only to
typographic shapes.

■ Geometric style properties, which are discussed in the chapter “Geometric Styles” in
this book. These properties apply primarily to geometric shapes.

C H A P T E R 1

Introduction to QuickDraw GX Graphics

Geometric Shapes 1-13

The geometric style properties are the properties of the style object that specify

modifications to geometric shapes. With these properties, you can specify how wide

QuickDraw GX should draw a shape’s edges, whether the edges should be solid or

dashed, whether corners should be round or sharp, what pattern should fill a shape’s

area, and so on.

Figure 1-6 shows the geometric properties of the style object. This figure also gives

examples of the effects of these properties.

Figure 1-6 The geometric style properties and some examples of their effects

C H A P T E R 1

Introduction to QuickDraw GX Graphics

1-14 Geometric Shapes

Geometric Operations
QuickDraw GX provides functions that allow you to modify the geometries of geometric

shapes, obtain information about their geometries, and combine the geometries of

two shapes.

One such geometric operation allows you to remove unnecessary or redundant

geometric points from the shape’s geometry—this process is called reducing a geometry.

Figure 1-7 shows a polygon geometry with two unnecessary geometric points:

■ Point 2 lies on the same line as points 1 and 3, and therefore has no effect on the
geometry.

■ Points 4 and 5 lie on top of one another, and so only one of them is necessary for this
geometry.

Figure 1-7 An example of reducing a shape

In addition to unnecessary geometric points, a shape geometry can have a number of

other complicating qualities, such as crossed edges or overlapping contours.

QuickDraw GX provides a geometric operation that redefines a shape’s geometry to

eliminate these qualities. This process is called simplifying a shape. Figure 1-8 shows a

polygon contour with two edges that cross and the result of simplifying this shape.

Figure 1-8 An example of simplifying a shape

C H A P T E R 1

Introduction to QuickDraw GX Graphics

Geometric Shapes 1-15

As Figure 1-8 shows, simplifying the polygon geometry splits it into two contours: an

upper triangular contour with three geometric points, and a lower triangular contour

with three geometric points. Although the simplified geometry contains more geometric

points and more contours than the original, it does not contain any crossed edges.

You can find more about reducing and simplifying shape geometries in the chapter

“Geometric Operations” in this book. That chapter also describes many functions that

allow you to obtain information about geometric shapes and perform geometric

arithmetic on them. Figure 1-9 shows some examples of the different types of geometric

information that QuickDraw GX calculates for you.

Figure 1-9 Some examples of the geometric information available about a shape

You can find more about geometric information in the “Geometric Operations” chapter

of this book.

Another important type of geometric operation is geometric arithmetic. Figure 1-10

shows examples of intersection, union, difference, reverse difference, and exclusion

operations, which each return a result calculated by combining the geometries of two

shapes in different ways.

C H A P T E R 1

Introduction to QuickDraw GX Graphics

1-16 Geometric Shapes

Figure 1-10 Some examples of the geometric arithmetic you can perform with shapes

Other geometric operations provided by QuickDraw GX allow you to

■ alter the order of the geometric points specified in a shape’s geometry

■ break a single shape contour into multiple contours

■ calculate whether two shapes intersect

■ calculate whether one shape contains another shape

■ inset the geometric points of a shape’s geometry

■ scale the shape to fit in a new bounding rectangle

■ invert the geometry of a shape

These geometric operations are all discussed in the chapter “Geometric Operations” in

this book.

The chapter “Transform Objects” in Inside Macintosh: QuickDraw GX Objects describes a

related set of functions you can use to perform geometric modifications to a shape’s

geometry. These functions allow you to

■ move a shape

■ rotate a shape

■ scale a shape

■ skew a shape

■ perform any arbitrary mapping on a shape

Depending on the setting of a shape’s map-transform shape attribute, these functions

either modify the mapping matrix contained in the shape’s transform object or

recalculate the geometric points contained in the shape’s geometry directly.

C H A P T E R 1

Introduction to QuickDraw GX Graphics

Bitmap Shapes 1-17

Bitmap Shapes

Bitmap shapes allow you to create images for which you specify the color value of each

pixel. Geometric shapes create images with more flexibility—they can be rendered by

QuickDraw GX accurately at any output device resolution. However, you might still

want to use bitmap shapes for a number of reasons. For example, if you know the

resolution of an output device, you can create a bitmap shape to use as an offscreen

graphics buffer. As another example, since bitmaps allow you to specify multiple colors

within a single shape, you can use bitmaps to create gradients, or ramps—shapes that

fade from one color to another.

Figure 1-11 shows some sample bitmaps.

Figure 1-11 Sample bitmap shapes

Although there are many types of geometric shapes—points, lines, curves, and so on—

there is only one type of bitmap shape. Bitmap shapes make extensive use of their

geometry property. In fact, most of the information useful to bitmap shapes is stored in

their geometry—the values of the bitmap’s pixels, the dimensions of the bitmap, and the

color information used by the bitmap.

Bitmap shapes don’t make much use of their shape fill property, and they use very little

of their associated style object. In fact, the only pieces of information in a style object

used by bitmap shapes are the style attributes that determine whether the upper-left

corner of the bitmap should be constrained to an integer grid position.

Because bitmap shapes store their own color information in their geometries, they don’t

use the color property of their ink object. They do, however, use the transfer mode

property of their ink objects.

Bitmap shapes make full use of their transform objects. For example, you can scale, skew,

rotate, and clip bitmap shapes. You can also hit-test bitmap shapes, but you cannot

hit-test parts of a bitmap shape as you can for other types of shapes. For more

information about transform objects and hit-testing, see the chapter “Transform Objects”

and the chapter “Shape Objects” of Inside Macintosh: QuickDraw GX Objects.

C H A P T E R 1

Introduction to QuickDraw GX Graphics

1-18 Bitmap Shapes

Figure 1-12 shows a bitmap shape object and bitmap geometry.

Figure 1-12 A bitmap shape

As Figure 1-12 shows, a bitmap geometry contains a reference to a pixel image, which

contains the color values of each pixel in the bitmap. QuickDraw GX allows pixel images

to be stored in three locations:

■ in memory allocated by your application

■ in memory allocated and managed by QuickDraw GX

■ in a disk file

Each of these options presents different advantages and disadvantages. For example,

storing a pixel image in a disk file allows you to have large bitmaps without keeping the

entire pixel image in memory. However, QuickDraw GX provides only limited access to

this type of pixel image: it can read the image, but cannot make changes to it.

C H A P T E R 1

Introduction to QuickDraw GX Graphics

Bitmap Shapes 1-19

Different bitmap shapes may reference the same pixel image. You might want to use this

feature to draw the same pixel image with two different transfer modes, for example, or

to draw the same pixel image in two different color spaces.

The other fields of a bitmap geometry define the dimensions, color information, and

position of the bitmap’s pixel image. Figure 1-13 shows a sample bitmap geometry that

uses one bit to represent each pixel, and has four rows and ten columns. Since each row

of the pixel image requires only ten bits, the pixel image is padded so that each row is

represented by an even number of bytes.

Figure 1-13 Elements of a bitmap geometry

The color space and color set fields of the bitmap geometry allow you to specify how

QuickDraw GX should interpret the pixel values. In this example, pixel values of 0

represent white pixels and pixel values of 1 represent black pixels.

The color profile field specifies color-matching information. See the chapter

“Color-Related Objects” in Inside Macintosh: QuickDraw GX Objects for more information

about color values, color spaces, color sets, and color matching.

For more information about bitmap shapes, see the chapter “Bitmap Shapes” in this

book.

C H A P T E R 1

Introduction to QuickDraw GX Graphics

1-20 Picture Shapes

Picture Shapes

Picture shapes contain collections of other shapes. They allow you to gather disparate

elements together inside a single shape.

You can use picture shapes for many reasons, including to group a page of shapes

together for printing, to provide a grouping feature in a graphics application, or to

simplify your programming by gathering a number of shapes together and applying

modifications to the group as a whole.

Figure 1-14 shows three sample picture shapes:

■ The first picture shape combines a number of geometric shapes—rectangles,
polygons, and paths—into one picture.

■ The second picture shape includes a bitmap shape as well—the lawn is a gradient, or
ramp, which fades from dark to light.

■ The third picture shape includes typographic shapes in the picture as well.

Figure 1-14 Sample picture shapes

Like bitmap shapes, picture shapes make extensive use of their geometry property. A

picture shape uses its geometry property to store a list of references to the shapes to be

included the picture. Although each of these shapes has its own style, ink, and transform

object, picture shapes allow you to provide an overriding style, ink, and transform object

to use for each of these shapes.

C H A P T E R 1

Introduction to QuickDraw GX Graphics

Picture Shapes 1-21

Figure 1-15 shows a hierarchical view of the first picture shape shown in Figure 1-14.

The picture contains two items: each of which is a picture shape itself. The first item is a

picture that contains two items: the lawn and the walkway. The second item is a picture

that contains four items: the chimney, the house, the door, and the roof.

Figure 1-15 A picture hierarchy

Notice that the order the shapes appear in the geometry is the order in which

QuickDraw GX draws them, from back to front.

C H A P T E R 1

Introduction to QuickDraw GX Graphics

1-22 Picture Shapes

Since picture shapes contain other shapes, they don’t make much use of their shape fill

property, although you can specify a no-fill shape fill if you don’t want the picture to

appear when drawn.

Picture shapes also don’t make much use of their associated style or ink objects, since

each shape in the picture has its own style object and ink object, and, potentially, an

overriding style and ink object.

Picture shapes do make full use of their transform objects, however. For example, you

can scale, skew, rotate, and clip picture shapes as a whole, as well as separately for each

individual shape in the picture. QuickDraw GX also provides powerful tools for

hit-testing picture shapes.

For more information about picture shapes, see the chapter “Picture Shapes” in this book.

Contents 2-1

C H A P T E R 2

Contents

Geometric Shapes

About Geometric Shapes 2-5

The Geometric Properties of Shape Objects 2-7

Shape Type 2-7

Shape Geometry 2-9

Shape Fill 2-12

The Geometric Shape Types 2-16

Empty Shapes and Full Shapes 2-16

Point Shapes 2-16

Line Shapes 2-17

Curve Shapes 2-18

Rectangle Shapes 2-20

Polygon Shapes 2-22

Path Shapes 2-25

Using Geometric Shapes 2-27

Creating and Drawing Empty Shapes and Full Shapes 2-28

Creating and Drawing Points 2-29

Creating and Drawing Lines 2-36

Creating and Drawing Curves 2-41

Creating and Drawing Rectangles 2-43

Creating and Drawing Polygons 2-45

Creating Polygons With a Single Contour 2-46

Creating Polygons With Multiple Contours 2-49

Creating Polygons With Crossed Contours 2-50

Creating and Drawing Paths 2-55

Creating Paths With a Single Contour 2-57

Creating Paths Using Only Off-Curve Points 2-59

Creating Paths With Multiple Contours 2-60

Converting Between Geometric Shape Types 2-65

Converting Shapes to Points, Lines, and Rectangles 2-66

C H A P T E R 2

2-2 Contents

Converting Shapes to Curve Shapes 2-71

Converting Shapes to Polygons and Paths 2-74

Replacing Geometric Points 2-79

Editing Polygon Parts 2-82

Editing Paths Parts 2-91

Editing Shape Parts 2-93

Applying Functions Described Elsewhere to Geometric Shapes 2-100

Shape-Related Functions Applicable to Geometric Shapes 2-100

Other Functions Applicable to Geometric Shapes 2-103

Geometric Shapes Reference 2-103

Data Types 2-104

The Point Structure 2-104

The Line Structure 2-105

The Curve Structure 2-105

The Rectangle Structure 2-106

Polygon Structures 2-106

Path Structures 2-107

Functions 2-108

Creating Geometric Shapes 2-109

GXNewShapeVector 2-109

GXNewPoint 2-111

GXNewLine 2-112

GXNewCurve 2-113

GXNewRectangle 2-114

GXNewPolygons 2-116

GXNewPaths 2-117

Getting and Setting Shape Geometries 2-119

GXSetShapeVector 2-119

GXGetPoint 2-121

GXSetPoint 2-122

GXGetLine 2-123

GXSetLine 2-124

GXGetCurve 2-125

GXSetCurve 2-126

GXGetRectangle 2-127

GXSetRectangle 2-129

GXGetPolygons 2-130

GXSetPolygons 2-131

GXGetPaths 2-132

GXSetPaths 2-133

Editing Shape Geometries 2-135

GXCountShapeContours 2-136

GXCountShapePoints 2-137

GXGetShapeIndex 2-139

GXGetShapePoints 2-140

GXSetShapePoints 2-142

GXGetPolygonParts 2-144

C H A P T E R 2

Contents 2-3

GXSetPolygonParts 2-145

GXGetPathParts 2-148

GXSetPathParts 2-149

GXGetShapeParts 2-152

GXSetShapeParts 2-154

Drawing Geometric Shapes 2-157

GXDrawPoint 2-158

GXDrawLine 2-158

GXDrawCurve 2-159

GXDrawRectangle 2-160

GXDrawPolygons 2-161

GXDrawPaths 2-162

Summary of Geometric Shapes 2-163

Constants and Data Types 2-163

Functions 2-164

C H A P T E R 2

About Geometric Shapes 2-5

Geometric Shapes

This chapter describes the geometric shapes. In particular, it shows you how you can

■ define geometries

■ create geometric shapes

■ manipulate their shape type, shape fill, and geometry properties

■ draw the shapes

Before you read this chapter, you should be familiar with some of the information in

Inside Macintosh: QuickDraw GX Objects. In particular, you should read the chapters

“Introduction to QuickDraw GX Objects” and “Shape Objects” in that book.

The next chapter, “Geometric Styles,” discusses the stylistic variations you can apply to

geometric shapes.

Chapter 4, “Geometric Operations,” describes the functions QuickDraw GX provides for

performing operations on the geometries of geometric shapes—operations such as

intersection, union, and so on.

For information about applying colors and transfer modes to geometric shapes, you

should read the chapter “Ink Objects” in Inside Macintosh: QuickDraw GX Objects.

For information about applying mapping transformations to geometric shapes, clipping

geometric shapes, and hit-testing geometric shapes, see the chapter “Transform Objects”

in Inside Macintosh: QuickDraw GX Objects.

About Geometric Shapes

QuickDraw GX represents shapes in memory using a shape object and an associated

style, ink, and transform object. QuickDraw GX uses these same objects to represent all

types of shapes—graphic as well as typographic.

A shape object has nine properties, which are like fields of a data structure with one

important exception: you cannot directly examine or change the information stored in a

property. Instead, you must use QuickDraw GX functions to examine or alter the value

of a property.

C H A P T E R 2

Geometric Shapes

2-6 About Geometric Shapes

Figure 2-1 shows a graphic representation of a shape object and its nine properties.

Figure 2-1 A shape object

The first three properties of a shape object—the shape type, shape geometry, and shape

fill—are called the geometric shape properties. These properties are examined in detail in

“The Geometric Properties of Shape Objects” beginning on page 2-7. In particular, that

section describes how these three properties are used by geometric shapes.

The next three properties of a shape object—the style, ink, and transform properties—are

references to the style, ink, and transform objects associated with the shape. Each of

these objects contains information that modifies the way QuickDraw GX draws the

shape. You can find more information about these objects in Inside Macintosh:
QuickDraw GX Objects. In addition, you can find specific information about how style

objects affect geometric shapes in Chapter 3, “Geometric Styles,” in this book.

The final three properties of a shape object—the shape attributes, the owner count,

and the tag list—are the object-related shape properties. You can find information about

these properties, and how they affect all types of shapes, in the chapter “Shape Objects”

in Inside Macintosh: QuickDraw GX Objects.

QuickDraw GX provides six basic types of geometric shapes and two special types. The

six basic types include points, lines, curves, rectangles, polygons, and paths; the two

special types include empty shapes and full shapes.

C H A P T E R 2

Geometric Shapes

About Geometric Shapes 2-7

Each of these shape types is examined in detail in “The Geometric Shape Types”

beginning on page 2-16. In particular, that section analyzes how each type of geometric

shape uses its shape geometry and shape fill, and also discusses the default

geometric shapes.

The Geometric Properties of Shape Objects
Every shape object has three geometric properties: the shape type, the shape geometry,

and the shape fill. For geometric shapes, these properties define

■ the type of shape—for example, a point, a line, or a curve

■ the coordinates of the shape—for example, the position where a line starts and ends,
or the positions of the corners of a rectangle

■ how the shape is filled—for example, whether the shape is framed (drawn as an
outline) or solid (drawn as a solid area)

The next three sections examine these properties in more detail.

Shape Type

The shape type property of a shape object specifies what type of shape the shape

object represents. There are thirteen different QuickDraw GX shape types: one for

bitmap shapes, one for picture shapes, three for typographic shapes, and eight for

geometric shapes. The eight geometric shape types are:

■ point

■ line

■ curve

■ rectangle

■ polygon

■ path

■ empty

■ full

The value of the shape type property affects the way QuickDraw GX interprets the other

properties of the shape. In particular, different types of shapes store substantially

different information in their geometry properties. For example, the geometry of a point

shape contains only an x-coordinate and a y-coordinate. The geometry of a line contains

an x-coordinate and a y-coordinate to define the beginning of the line and an

x-coordinate and a y-coordinate to define the end of the line. The geometry of a polygon

shape can contain many pairs of (x, y) coordinates.

C H A P T E R 2

Geometric Shapes

2-8 About Geometric Shapes

Figure 2-2 shows a shape object and lists six possible values for its shape type property.

This figure also shows a sample geometry for each of the shape types listed. Each

geometry is made up of geometric points (specified by (x, y) coordinate pairs) and edges

connecting the geometric points. The next section, “Shape Geometry,” discusses

geometric points and edges in more detail.

Figure 2-2 The geometric shape types and examples of geometric shape geometries

There are two types of geometric shapes not shown in this figure: the empty shape and

the full shape. An empty shape is a shape that has no geometry and covers no area. A

full shape is the inverse of an empty shape—it covers all area. You can find more

information about these shape types in “Empty Shapes and Full Shapes” beginning on

page 2-16.

C H A P T E R 2

Geometric Shapes

About Geometric Shapes 2-9

Shape Geometry

Each type of geometric shape uses the geometry property of its shape object in a slightly

different manner. For example, empty shapes and full shapes store no information in

their geometry, because they require no further geometric information—their shape type

says it all.

However, for other types of geometric shapes, the shape type does not contain all the

geometric information necessary to define the shape. The geometries of these shapes

contain (x, y) coordinate pairs called geometric points—points that specify the location,

dimension, and form of the geometric shapes:

■ Point geometries contain one geometric point—an x-coordinate and a y-coordinate—
to specify the position of the point shape. See “Point Shapes” on page 2-16 for more
information.

■ Line geometries contain two geometric points—one point to specify where the line
starts and one to specify where the line ends. See “Line Shapes” on page 2-17 for more
information.

■ Rectangle geometries also contain two geometric points—specifying the positions of
opposing corners of the rectangle. See “Rectangle Shapes” on page 2-20 for more
information.

■ Curve shapes store three geometric points in their geometry—one to specify where
the curve starts, another to specify where the curve ends, and another, called the
off-curve control point, to specify the tangents used to define the curve. See “Curve
Shapes” on page 2-18 for more information.

■ A polygon shape can contain multiple contours. A polygon contour is a series of
geometric points connected by straight lines—for example, a V-shape, a triangle, or a
hexagon.

■ A path geometry can also contain multiple contours, but each path contour can
contain curves as well as straight lines.

C H A P T E R 2

Geometric Shapes

2-10 About Geometric Shapes

Figure 2-3 shows a polygon shape with a two polygon contours made up of seven

geometric points total. This figure shows two views of the polygon geometry: as a list of

(x, y) coordinate pairs and as seven geometric points plotted on a geometric grid. This

second way of viewing geometries is used frequently throughout this book, as it shows

not only the geometric points, but also the implied edges that connect them. Typically,

the figures in this book do not show the grid, but just the points and edges.

Figure 2-3 A polygon shape with a single contour containing three geometric points

C H A P T E R 2

Geometric Shapes

About Geometric Shapes 2-11

Each geometric point in a geometry has a geometry index—if you consider the geometry

as a list of geometric points starting from the first geometric point of the first contour to

the last geometric point of the last contour, the geometry index of a particular geometric

point is its position in this list. For example, in the shape in Figure 2-3, the first point

(0.0, 100.0) has a geometry index of 1, the second point (50.0, 0.0) has a geometry index

of 2, and the third point (100.0, 100.0) has a geometry index of 3. The first point in the

second contour (0.0, 150.0) has a geometry index of 4, as it is the fourth geometric point

in the geometry. However, it has a contour index of 1, as it is the first point of its contour.

Similarly, the next point (100.0, 150.0) has a geometry index of 5 and a contour index of 2,

and so forth.

Notice that each of the three edges of the polygon contour in Figure 2-3 has a direction.

The first edge is pointing up and to the right; the second edge is pointing down and

to the right; the third edge is pointing to the left. QuickDraw GX takes into consideration

the direction that an edge is pointing in a number of circumstances:

■ When filling a shape. QuickDraw GX allows you to choose how a shape should be
filled. The next section, “Shape Fill,” discusses how the direction of an edge can affect
how QuickDraw GX fills a shape.

■ When determining the contour direction of a contour. In the example in Figure 2-3,
both polygon contours have a clockwise contour direction. If their geometric points
were reversed, the polygon contours would have a counterclockwise contour
direction.

■ When determining the inside or outside of a contour. QuickDraw GX normally
defines the right side of an edge to be the inside and the left side to be the outside.
Since the example in Figure 2-3 has a clockwise contour direction, the inside of the
contour corresponds to what you would expect the inside to be. If the contour had a
counterclockwise direction, the inside of the contour would correspond to what you
might expect the outside to be.

QuickDraw GX uses contour direction and the inside and outside of a shape when

applying certain stylistic variations, as described in Chapter 3, “Geometric Styles,” and

when performing certain geometric operations, as described in Chapter 4, “Geometric

Operations,” of this book.

For more details about the geometries of the various geometric shapes, see “The

Geometric Shape Types” beginning on page 2-16.

C H A P T E R 2

Geometric Shapes

2-12 About Geometric Shapes

Shape Fill

The shape fill property specifies how QuickDraw GX interprets the geometric points of a

geometric shape’s geometry during drawing and other operations. There are two basic

types of shape fills:

■ Framed fills. These shape fills indicate that QuickDraw GX should interpret the shape
as an outline—as a series of edges.

■ Solid fills. These shape fills indicate that QuickDraw GX should interpret the shape as
a solid area—the edges of the shape represent the boundaries of the area.

Figure 2-4 shows an example of a polygon contour similar to the one in Figure 2-3, and

how QuickDraw GX might draw it with a framed fill and with a solid fill.

Figure 2-4 Framed shapes versus solid shapes

QuickDraw GX actually provides seven types of shape fills:

■ no-fill shape fill

■ open-frame shape fill (also called frame fill)

■ closed-frame shape fill (also called hollow fill)

■ even-odd shape fill (also called solid fill)

■ winding shape fill

■ inverse even-odd shape fill (also called inverse fill and inverse solid fill)

■ inverse winding shape fill

C H A P T E R 2

Geometric Shapes

About Geometric Shapes 2-13

Figure 2-5 shows these shape fills and the effect they have on three sample geometries.

Figure 2-5 The various shape fills and examples of their effects

The no-fill shape fill specifies that QuickDraw GX should not draw the shape. You can

use this shape fill to hide a shape. You can specify the no-fill shape fill for any shape type.

The open-frame shape fill specifies that QuickDraw GX should draw a shape as a

connected set of edges. The closed-frame shape fill indicates that QuickDraw GX should

also connect the last geometric point of a contour to the first geometric point of that

contour.

The even-odd shape fill and the winding shape fill indicate that QuickDraw GX should

interpret the shape as a solid area—the edges of the shape represent the boundaries of

the area. These two shape fills differ in the algorithm they use to determine what area to

include in the shape.

The even-odd shape fill indicates that QuickDraw GX should use the even-odd rule to

determine what area lies inside a shape. As QuickDraw GX scans a shape horizontally, it

fills the area between every other pair of edges, as shown in Figure 2-6.

C H A P T E R 2

Geometric Shapes

2-14 About Geometric Shapes

The winding shape fill indicates that QuickDraw GX should use the winding-number
rule to determine what area lies inside a shape. As QuickDraw GX scans a shape

horizontally, it increments a counter the first time it crosses an edge of the shape. It also

notices whether the contour was directed up or down at that edge. As QuickDraw GX

continues to scan the shape horizontally, everytime it crosses another edge pointed in the

same direction (up or down), it increments the counter, and when it crosses an edge

pointing in the opposite direction (down or up), it decrements the counter. Wherever

along the horizontal scan line the counter is not zero, QuickDraw GX fills the area, as is

shown in Figure 2-6.

Figure 2-6 The even-odd rule and winding-number rule algorithms

C H A P T E R 2

Geometric Shapes

About Geometric Shapes 2-15

The inverse even-odd shape fill indicates the inverse of the even-odd shape fill, as shown

in Figure 2-7.

Figure 2-7 The inverse even-odd shape fill

Similarly, the inverse winding shape fill indicates the inverse of the winding shape fill.

Not all shape fills are appropriate for all types of geometric shapes. For example, a

rectangle shape can have a closed-frame shape fill but not an open-frame shape fill; a line

shape can only have an no-fill or an open-frame shape fill.

See the sections on each shape type, beginning on page 2-16, for a complete discussion of

the shape fills that are allowed for each shape type.

The shape fill does more than affect the way a shape is drawn; it affects the fundamental

behavior of a shape. Two shapes with the same geometry that have different shape fills

can exhibit vastly different geometric behaviors. For example, the shape fill can affect

■ stylistic variations, which are described in Chapter 3, “Geometric Styles,” in this book

■ shape measurements and other geometric operations, which are discussed in
Chapter 4, “Geometric Operations,” in this book (As an example, a polygon with the
closed-frame shape fill might simplify to a rectangle. However, the same polygon with
the open-frame fill might not simplify at all.)

■ hit-testing, which is described in the chapter “Transform Objects” and the chapter
“Shape Objects” in Inside Macintosh: QuickDraw GX Objects

For examples of how shape fill affects the behavior of shapes, see

■ “Polygon Shapes” beginning on page 2-22

■ “Path Shapes” beginning on page 2-25

■ “Creating and Drawing Polygons” beginning on page 2-45

■ “Creating and Drawing Paths” beginning on page 2-55

C H A P T E R 2

Geometric Shapes

2-16 About Geometric Shapes

The Geometric Shape Types
QuickDraw GX provides eight types of geometric shapes: empty shapes, full shapes,

point shapes, line shapes, curve shapes, rectangle shapes, polygon shapes, and path

shapes.

The following sections examine each of these shape types in detail. In particular, these

sections discuss how the different types of shapes use their geometry and shape fill

properties, and what the default values are for properties of each type of shape.

Empty Shapes and Full Shapes

Empty shapes and full shapes are the only geometric shapes with no information stored

in the geometry property.

An empty shape is a shape with no geometry. When you draw an empty shape, nothing

appears. You can use an empty shape when creating other types of shapes. For example,

you can create an empty shape and then build it into a polygon shape, adding one

contour at a time.

A full shape is a shape that covers the largest area possible. When you draw a full shape,

QuickDraw GX fills in the entire drawable area of the full shape’s view port (paying

attention to the clipping information stored in the full shape’s transform). You can use a

full shape when erasing an area.

Point Shapes

The point shape is the simplest of the geometric shapes. Its geometry consists of a single

geometric point—a single (x, y) coordinate pair.

Point shapes must always have the open-frame shape fill or the no-fill shape fill.

A point shape’s style determines how QuickDraw GX draws the point. If a point’s style

has a pen width of 0, which is the default pen width, QuickDraw GX draws the point as

a single pixel on the output device. If the style has a pen width greater than 0,

QuickDraw GX draws the point only if the style also has a start cap. The next chapter,

“Geometric Styles,” discusses these aspects of the style object in more detail.

When you create a new point shape, QuickDraw GX makes a copy of the default point

shape. The default point shape has these properties:

■ owner count: 1

■ tag list: no tags

■ shape attributes: no attributes

■ shape type: point type

■ shape fill: open-frame fill

■ geometry: (0.0, 0.0)

C H A P T E R 2

Geometric Shapes

About Geometric Shapes 2-17

You may change the properties of the default point shape, which effectively changes the

behavior of the functions that create point shapes. However, when creating a new point

shape, QuickDraw GX always initializes the owner count to 1 and the geometry to

(0.0, 0.0), even if you have specified other values for the default point shape.

For examples of creating and drawing point shapes, see “Creating and Drawing Points”

beginning on page 2-29.

Line Shapes

The geometry of a line shape consists of two geometric points: a first point and a last

point. Because the points are ordered, a line points in a certain direction.

Line shapes must always have the open-frame shape fill or the no-fill shape fill.

Figure 2-8 shows two line shapes. The geometries of these two lines have the same

geometric points, but in the opposite order. Therefore, the two lines point in opposite

directions.

Figure 2-8 Two lines

If a line shape uses the default style information, the direction of the line does not affect

how QuickDraw GX draws the line. However, when you add stylistic variations (such as

pen width, pen placement, and dashes) to a line shape, the direction of the line can affect

how QuickDraw GX draws the line. See the next chapter, “Geometric Styles,” for

information about how you can add stylistic variations to a line.

When you create a new line shape, QuickDraw GX makes a copy of the default line

shape. The default line shape has these properties:

■ owner count: 1

■ tag list: no tags

■ shape attributes: no attributes

C H A P T E R 2

Geometric Shapes

2-18 About Geometric Shapes

■ shape type: line type

■ shape fill: open-frame fill

■ geometry: (0.0, 0.0), (0.0, 0.0)

You may change the properties of the default line shape, which effectively changes the

behavior of the functions that create line shapes. However, when creating a new line

shape, QuickDraw GX always initializes the owner count to 1 and the geometry to

(0.0, 0.0), (0.0, 0.0), even if you have specified other values for the default line shape.

For examples of creating and drawing line shapes without stylistic variations, see

“Creating and Drawing Lines” beginning on page 2-36.

For examples of creating and drawing lines with stylistic variations, see the next chapter,

“Geometric Styles.”

Curve Shapes

The geometry of a curve shape consists of three geometric points: a first point, a last

point, and an off-curve control point that determines the tangents of the curve. The curve

described by these three points is a quadratic Bézier curve—the same type of curve used

to describe TrueType fonts.

Because a curve’s geometric points are ordered, a curve has direction. As with line

shapes, direction affects the drawing of a curve only after you apply stylistic variations,

which are discussed in the next chapter, “Geometric Styles.”

Curve shapes must always have the open-frame shape fill or no fill shape fill.

Figure 2-9 shows an example of a curve shape. In this example, the first point is

(50.0, 50.0), the last point is (200.0, 50.0) and the off-curve control point is (100.0, 150.0).

Figure 2-9 A quadratic Bézier curve

C H A P T E R 2

Geometric Shapes

About Geometric Shapes 2-19

Quadratic Bézier curves have the following characteristics:

■ A line connecting the first point and the off-curve control point describes the tangent
of the curve at the first point.

■ A line connecting the off-curve control point and the last point describes the tangent
of the curve at the last point.

■ The curve is always contained by the triangle formed by the three geometric points.

■ The midpoint of the curve is halfway between the off-curve control point and the
point midway between the first point and last point, as shown in Figure 2-10.

Figure 2-10 Finding the midpoint of a curve

You can divide a quadratic Bézier curve into two smaller quadratic Bézier curves:

■ One smaller curve extends from the first point to the midpoint of the original curve.
The new off-curve control point is the point midway between the first point and the
original off-curve control point.

■ The other smaller curve extends from the midpoint to the last point of the original
curve. The new off-curve control point is the point midway between the original
off-curve control point and the last point.

C H A P T E R 2

Geometric Shapes

2-20 About Geometric Shapes

Figure 2-11 shows a curve divided into two smaller curves.

Figure 2-11 Dividing a curve into two smaller curves

When you create a new curve shape, QuickDraw GX makes a copy of the default curve

shape. The default curve shape has these properties:

■ owner count: 1

■ tag list: no tags

■ shape attributes: no attributes

■ shape type: curve type

■ shape fill: open-frame fill

■ geometry: (0.0, 0.0), (0.0, 0.0), (0.0, 0.0)

You may change the properties of the default curve shape, which effectively changes the

behavior of the functions that create curve shapes. However, when creating a new curve

shape, QuickDraw GX always initializes the owner count to 1 and the geometry to

(0.0, 0.0), (0.0, 0.0), (0.0, 0.0), even if you have specified other values for the default curve

shape.

For examples of creating and drawing curve shapes without stylistic variations, see

“Creating and Drawing Curves” beginning on page 2-41.

For examples of creating and drawing curves with stylistic variations, see the next

chapter, “Geometric Styles.”

Rectangle Shapes

The geometry of a rectangle shape consists of two geometric points. Typically, these

geometric points represent the upper-left and lower-right corners of the rectangle;

however, you can specify any corner as the first geometric point and the diagonally

opposite corner as the second geometric point.

C H A P T E R 2

Geometric Shapes

About Geometric Shapes 2-21

Rectangle shapes can have any shape fill except the open-frame shape fill.

Figure 2-12 shows a rectangle geometry and how that rectangle is drawn with a

closed-frame shape fill and how it is drawn with an even-odd shape fill.

Figure 2-12 A rectangle geometry shown framed and filled

Note

Although you may specify a rectangle’s geometric points in any order,
QuickDraw GX functions that calculate rectangles always return
rectangles with the upper-left corner as the first geometric point and the
lower-right corner as the second geometric point. ◆

When you create a new rectangle shape, QuickDraw GX makes a copy of the default

rectangle shape. The default rectangle shape has these properties:

■ owner count: 1

■ tag list: no tags

■ shape attributes: no attributes

■ shape type: rectangle type

■ shape fill: even-odd fill

■ geometry: (0.0, 0.0), (0.0, 0.0)

You may change the properties of the default rectangle shape, which effectively changes

the behavior of the functions that create rectangle shapes. However, when creating a new

rectangle shape, QuickDraw GX always initializes the owner count to 1 and the

geometry to (0.0, 0.0), (0.0, 0.0), even if you have specified other values for the default

rectangle shape.

For examples of creating and drawing rectangle shapes without stylistic variations, see

“Creating and Drawing Rectangles” beginning on page 2-43.

For examples of creating and drawing rectangles with stylistic variations, see the next

chapter, “Geometric Styles.”

C H A P T E R 2

Geometric Shapes

2-22 About Geometric Shapes

Polygon Shapes

A polygon contour is a series of geometric points connected by straight lines. A polygon
shape may include any number of polygon contours.

Implementation Note

In version 1.0 of QuickDraw GX, a single polygon contour can have
between 1 and 32,767 geometric points. The geometry of a polygon
shape can have between 0 and 32,767 polygon contours. The total size of
a polygon geometry may not exceed 2,147,483,647 bytes. ◆

Polygon shapes may have any shape fill.

Figure 2-13 shows a polygon shape that contains two separate contours. The shape is

shown four times:

■ as a polygon shape geometry

■ as drawn with the open-frame shape fill

■ as drawn with the closed-frame shape fill

■ as drawn with even-odd shape fill

C H A P T E R 2

Geometric Shapes

About Geometric Shapes 2-23

Figure 2-13 A polygon shape with two polygon contours

The first contour in Figure 2-13 has four geometric points and the second contour has

three geometric points.

C H A P T E R 2

Geometric Shapes

2-24 About Geometric Shapes

The index of a geometric point within its contour is called its contour index. The

geometric points in the first contour in Figure 2-13 have contour indexes ranging from 1

to 4, and the geometric points in the second contour in Figure 2-13 have contour indexes

ranging from 1 to 3. These contour indexes are shown in the top part of the figure.

Since contours and geometric points are ordered, each geometric point can be numbered

from the first geometric point of the first contour to the last geometric point of the last

contour. This number is called a geometric point’s geometry index. Since the polygon

geometry in Figure 2-13 has seven geometric points total, these points have geometry

indexes ranging from 1 to 7. You use geometry indexes and contour indexes of geometric

points when editing polygon geometries. For examples, see “Editing Polygon Parts”

beginning on page 2-82.

If the contours of a polygon shape cross over one another, or if a polygon shape contains

contours that lie within other contours, the even-odd shape fill and the winding shape

fill may fill the polygon shape differently, as shown in Figure 2-14.

Figure 2-14 A polygon drawn with the even-odd and winding shape fills

When you create a new polygon shape, QuickDraw GX makes a copy of the default

polygon shape. The default polygon shape has these properties:

■ owner count: 1

■ tag list: no tags

■ shape attributes: no attributes

■ shape type: polygon type

■ shape fill: even-odd fill

■ geometry: 0 contours, 0 points

C H A P T E R 2

Geometric Shapes

About Geometric Shapes 2-25

You may change the properties of the default polygon shape, which effectively changes

the behavior of the functions that create polygon shapes. However, when creating a new

polygon shape, QuickDraw GX always initializes the owner count to 1 and the geometry

to 0 contours with 0 points, even if you have specified other values for the default

polygon shape.

For examples of creating and drawing polygon shapes without stylistic variations, see

“Creating and Drawing Polygons” beginning on page 2-45.

For examples of creating and drawing polygons with stylistic variations, see the next

chapter, “Geometric Styles.”

Path Shapes

A path contour, like a polygon contour, is defined by a series of geometric points.

However, a path contour can contain off-curve control points as well as on-curve points;

therefore, a path contour can contain curves as well as straight lines. A path shape may

include any number of path contours.

Implementation Note

In version 1.0 of QuickDraw GX, a single path contour can have between
0 and 32,767 geometric points. The geometry of a path shape can
between 0 and 32,767 polygon contours. The total size of a path
geometry may not exceed 2,147,483,647 bytes. ◆

Every path contains an array of control bits that specify which geometric points are on

curve and which geometric points are off curve. QuickDraw GX connects two

consecutive on-curve points with a straight line. If two on-curve points have an off-curve

point between them, QuickDraw GX connects the two on-curve points with a quadratic

Bézier curve, using the geometric point between them as the off-curve control point.

QuickDraw GX allows a path to have two or more consecutive off-curve control points.

In this case, each pair of consecutive off-curve points implies an on-curve point midway

between them, as represented by the small hollow circle in Figure 2-15.

Figure 2-15 A path with two consecutive off-curve points

C H A P T E R 2

Geometric Shapes

2-26 About Geometric Shapes

Path shapes may have any shape fill—including open-frame shape fill. However, a path

may not have the open-frame shape fill if the first point or the last point of any path

contour is an off-curve point.

If the contours of a path shape cross over one another, or if a path shape contains

contours that lie within other contours, the even-odd shape fill and the winding shape

fill may fill the path shape differently, as shown in Figure 2-16.

Figure 2-16 A path shape filled with the even-odd and winding shape fills

Contour direction affects how QuickDraw GX fills a path when the path has the winding

shape fill. In the example in Figure 2-16, if the inner contour has the opposite contour

direction from the outer contour, the winding shape fill works in the same manner as the

even-odd shape fill. For more information, see the next section, “Shape Fill.” For

examples, see “Creating and Drawing Paths” beginning on page 2-55.

When you create a new path shape, QuickDraw GX makes a copy of the default path

shape. The default path shape has these properties:

■ owner count: 1

■ tag list: no tags

■ shape attributes: no attributes

■ shape type: path type

■ shape fill: even-odd fill

■ geometry: 0 contours, 0 points

C H A P T E R 2

Geometric Shapes

Using Geometric Shapes 2-27

You may change the properties of the default path shape, which effectively changes the

behavior of the functions that create path shapes. However, when creating a new path

shape, QuickDraw GX always initializes the owner count to 1 and the geometry to 0

contours with 0 points, even if you have specified other values for the default paths

shape.

For examples of creating and drawing path shapes without stylistic variations, see

“Creating and Drawing Paths” beginning on page 2-55.

For examples of creating and drawing paths with stylistic variations, see the next

chapter, “Geometric Styles.”

Using Geometric Shapes

This section shows you how to create, edit, and draw geometric shapes. In particular,

this section shows you how to

■ create and draw empty and full shapes

■ create point, line, curve, rectangle, polygon, and path shapes

■ draw points, lines, curves, rectangles, polygons, and paths

■ create framed and solid shapes

■ convert a shape from one shape type to another

■ replace the geometry of a shape

■ replace geometric points within a shape’s geometry

■ insert geometric points into and remove geometric points from a shape’s geometry

All of the sample functions in this section create geometric shapes with default style, ink,

and transform information. All shapes are black; framed shapes have one-pixel-wide

contours; and the shapes are not rotated, skewed, and so on. For examples of the many

stylistic variations you can apply to geometric shapes, see Chapter 3 of this book,

“Geometric Styles.” For information about inks and transforms, see Inside Macintosh:
QuickDraw GX Objects.

Many of the sample functions in this section create geometric shapes and, to do so, they

specify geometric points for the shapes’ geometries. Since a geometric point contains two

fixed-point values (of type Fixed), the sample functions in this section must convert

integer constants to fixed-point constants when specifying a geometric point.

QuickDraw GX provides the GXIntToFixed macro, which performs this conversion by

shifting the integer value 16 bits to the left:

#define GXIntToFixed(a) ((Fixed)(a) << 16)

C H A P T E R 2

Geometric Shapes

2-28 Using Geometric Shapes

QuickDraw GX also provides the ff macro as a convenient alias:

#define ff(a) GXIntToFixed(a)

A few of the sample functions in this section specify fractional values for geometric point

coordinates. To convert a floating-point value (of type float) to a fixed-point value

(type Fixed), QuickDraw GX provides the GXFloatToFixed macro:

#define GXFloatToFixed(a) ((Fixed)((float)(a) * fixed1))

and the synonymous fl macro:

#define fl(a) GXFloatToFixed(a)

IMPORTANT

The GXIntToFixed macro has substantially faster performance
than the GXFloatToFixed macro. Whenever possible, you should
choose the GXIntToFixed macro over the GXFloatToFixed macro. ▲

Creating and Drawing Empty Shapes and Full Shapes
To create an empty shape or a full shape, you use the function GXNewShape, which is

described in full in the chapter “Shape Objects” of Inside Macintosh: QuickDraw GX
Objects.

To create an empty shape, you could define a shape reference and then call the

GXNewShape function:

gxShape anEmptyShape;

anEmptyShape = GXNewShape(gxEmptyType);

Although you can draw this shape with the GXDrawShape function, nothing will

appear. However, you can use empty shapes for other purposes. For example, you can

create an empty shape and then add geometric points to it using the SetShapeParts

function, building other types of shapes as you add points. See “Editing Shape Parts”

beginning on page 2-93 for examples of this function.

C H A P T E R 2

Geometric Shapes

Using Geometric Shapes 2-29

To create a full shape, you can use this code:

gxShape aFullShape;

aFullShape = GXNewShape(gxFullType);

You can then draw the full shape to cover the entire area of the shape’s view ports. For

example, you could use the full shape to erase an area, or you could set the color of the

full shape and draw it to create a colored background before drawing other shapes.

Creating and Drawing Points
QuickDraw GX provides a number of methods to create and draw geometric shapes. In

general, to draw a shape you must first define a geometry. You can then draw the shape

in one of two ways:

■ You can draw the geometry directly—without having to create a shape object.

■ You can create a shape object to encapsulate the geometry and then draw the shape.

The first sample function in this section, shown in Listing 2-1, uses the first method—it

draws a point without creating a point shape.

To draw the point, this sample function first defines a point geometry, which is

represented by a point structure (of type gxPoint):

struct gxPoint {

Fixed x;

Fixed y;

};

The value in the x field specifies horizontal distance from the origin; greater values

indicate distances further to the right. The value in the y field specifies vertical distance

from the origin; greater values indicate distances further down.

Note

The coordinates of a shape’s geometry go through a number of
transformations before the shape is actually drawn. Where the shape is
drawn depends not only on the values of the shape’s geometry, but also
on the shape’s associated transform and view port objects. If you use the
default transform and view port information, the coordinates in a
shape’s geometry represent units of 1/72 inch and the origin is the
upper-left corner of the view port. See Inside Macintosh: QuickDraw GX
Objects for more information about the coordinate systems of
QuickDraw GX. ◆

C H A P T E R 2

Geometric Shapes

2-30 Using Geometric Shapes

Since each coordinate of a point must be a fixed-point value, the sample function in

Listing 2-1 uses the GXIntToFixed macro to convert integer constants to fixed-point

constants.

The sample function then draws the point using the GXDrawPoint function. The

GXDrawPoint function takes a pointer to a gxPoint structure as its only parameter and

draws the corresponding point. When drawing the point, it uses the style, ink, and

transform information associated with the default point shape.

Listing 2-1 Drawing a point without creating a point shape

void DrawASinglePoint(void)

{

static gxPoint aPointGeometry = {GXIntToFixed(5),

GXIntToFixed(5)};

GXDrawPoint(&aPointGeometry);

}

QuickDraw GX provides the ff macro as an alias for the GXIntToFixed macro. In the

example in Listing 2-1, the point coordinates could be specified with this line of code:

static gxPoint aPointGeometry = {ff(5), ff(5)};

The rest of the examples in “Using Geometric Shapes” use this convenient alternative.

Figure 2-17 shows the result of the sample function from Listing 2-1.

Figure 2-17 A point

C H A P T E R 2

Geometric Shapes

Using Geometric Shapes 2-31

Listing 2-1 defines the point at location (5.0, 5.0), which lies at the intersection of two

infinitely thin grid lines, and therefore is infinitely thin itself. However, when

QuickDraw GX draws this point shape, it draws it as a single pixel—the pixel lying

down and to the right of the point itself, as shown in Figure 2-17. QuickDraw GX only

draws this single-pixel type of point, called a hairline point, if the pen width property of

the style object associated with the point shape has a value of 0, which is the default

value for this property. If the pen width is greater than 0.0, QuickDraw GX does not

draw the point, unless it has a start cap, in which case only the start cap is drawn. For

more information about the pen width property and cap property of style objects and

how they affects the drawing of point shapes, see the chapter “Geometric Styles,” in this

book.

Although you may sometimes want to draw a shape without creating a shape object for

it, you will frequently want to create a shape object before drawing a shape. Creating a

shape object has many advantages; for example, it allows you to provide custom style,

ink, and transform information before drawing the shape.

QuickDraw GX provides three main methods for creating geometric shapes:

■ You can call a type-specific function, such as GXNewPoint, which requires you to
provide a pointer to the shape’s desired geometric structure.

■ You can call the GXNewShapeVector function, which requires you to specify the
shape type and provide a pointer to the shape’s desired geometric structure.

■ You can call the GXNewShape function, which requires you to specify the desired
shape type, and then call a type-specific function, such as GXSetPoint, to set the
geometry.

The sample functions in Listing 2-2, Listing 2-3, and Listing 2-4 show how to create a

point shape using these three methods.

Listing 2-2 uses the GXNewPoint function to create a point shape given a pointer to a

point geometry.

Listing 2-2 Creating a point shape with the GXNewPoint function

void CreatePointShape(void)

{

gxShape aPointShape;

static gxPoint aPointGeometry = {ff(5), ff(5)};

aPointShape = GXNewPoint(&aPointGeometry);

GXDrawShape(aPointShape);

GXDisposeShape(aPointShape);

}

C H A P T E R 2

Geometric Shapes

2-32 Using Geometric Shapes

Listing 2-3 uses the GXNewShapeVector function to create a point shape. The

GXNewShapeVector function requires two parameters:

■ the shape type of the shape you want to create

■ an array of fixed-point values that represent the shape’s geometry

In this example, the desired shape type is gxPointType and the geometry is specified

as an array of two fixed-point values representing the coordinates of the point’s

geometry. When using the GXNewShapeVector function to create shapes more

complicated than point shapes, you need to provide more values in this array.

Listing 2-3 Creating a point shape with the GXNewShapeVector function

void CreatePointShape(void)

{

gxShape aPointShape;

static Fixed aPointGeometry[] = {ff(5), ff(5)};

aPointShape = GXNewShapeVector(gxPointType, aPointGeometry);

GXDrawShape(aPointShape);

GXDisposeShape(aPointShape);

}

Listing 2-4 creates a point shape using the GXNewShape function. The GXNewShape

function requires only that you specify the type of shape to create. You do not have to

specify any values for the geometric points of the shape’s geometry—the GXNewShape

function initializes the point geometry to (0.0, 0.0).

C H A P T E R 2

Geometric Shapes

Using Geometric Shapes 2-33

To set the values of the point shape’s geometry once it’s created, the sample function in

Listing 2-4 uses the GXSetPoint function. This function takes a reference to the shape

and a pointer to the desired geometry as its parameters.

Listing 2-4 Creating a point shape with the GXNewShape and GXSetPoint functions

void CreatePointShape(void)

{

gxShape aPointShape;

static gxPoint aPointGeometry = {ff(5), ff(5)};

aPointShape = GXNewShape(gxPointType);

GXSetPoint(aPointShape, &aPointGeometry);

GXDrawShape(aPointShape);

GXDisposeShape(aPointShape);

}

The sample functions in Listing 2-2, Listing 2-3, and Listing 2-4 all use the

GXDrawShape function to draw the point after the point shape has been created. The

resulting point is the same for all three examples; it appears as shown in Figure 2-17.

C H A P T E R 2

Geometric Shapes

2-34 Using Geometric Shapes

You can use the GXSetPoint function to replace a point shape’s geometry any number

of times. The sample function in Listing 2-5 creates a point shape, sets its geometry using

the GXSetPoint function, draws the point, replaces its geometry using the

GXSetPoint function, and draws the point again.

Listing 2-5 Using the GXSetPoint function to replace a point shape’s geometry

void ReplacePointShapeGeometry(void)

{

gxShape aPointShape;

static gxPoint aPointGeometry = {ff(5), ff(5)};

static gxPoint anotherPointGeometry = {ff(13), ff(8)};

aPointShape = GXNewShape(gxPointType);

GXSetPoint(aPointShape, &aPointGeometry);

GXDrawShape(aPointShape);

GXSetPoint(aPointShape, &anotherPointGeometry);

GXDrawShape(aPointShape);

GXDisposeShape(aPointShape);

}

C H A P T E R 2

Geometric Shapes

Using Geometric Shapes 2-35

Figure 2-18 depicts the results of this sample function.

Figure 2-18 Two different point geometries

C H A P T E R 2

Geometric Shapes

2-36 Using Geometric Shapes

Most of the sample functions discussed in “Using Geometric Shapes” create shape

objects. If you create a shape object using any of the methods discussed, you are

responsible for disposing of the shape when you no longer need it. You can do this using

the GXDisposeShape function, which decrements the owner count of the shape and

frees the memory occupied by that shape if the shape’s owner count becomes 0. The

examples of this section dispose of the point shape by calling

GXDisposeShape(aPointShape);

Since the GXNewPoint, GXNewShapeVector, and GXNewShape functions all return a

shape with an owner count of 1, calling the GXDisposeShape function in the three

previous examples would decrement the owner count to 0 and therefore purge the point

shape from memory. For a complete discussion of creating and disposing of shapes, see

Inside Macintosh: QuickDraw GX Objects.

For more information about point shapes, see “Point Shapes” on page 2-16 and “The

Point Structure” on page 2-104.

For information about the functions you can use to create and draw points, see the

description of the GXNewPoint function on page 2-111 and the GXDrawPoint function

on page 2-158.

Creating and Drawing Lines
You can draw lines and create line shapes with QuickDraw GX in much the same way

as you draw points and create point shapes. Typically, you first define a line geometry,

which is encapsulated in a gxLine structure:

struct gxLine {

struct gxPoint first;

struct gxPoint last;

};

C H A P T E R 2

Geometric Shapes

Using Geometric Shapes 2-37

Once you’ve defined a line geometry, you can draw the corresponding line without

creating a line shape by using the GXDrawLine function, as shown in Listing 2-6.

Listing 2-6 Drawing a line without creating a line shape

void DrawASingleLine(void)

{

static gxLine aLineGeometry = {{ff(50), ff(50)},

 {ff(150), ff(150)}};

GXDrawLine(&aLineGeometry);

}

This sample function defines a line geometry, using the ff macro (which is an alias for

the GXIntToFixed macro) to convert integer constants to fixed-point coordinate values.

It then uses the GXDrawLine function to draw the line. The GXDrawLine function uses

the style, ink, and transform information from the default line shape when drawing the

line. The result is shown in Figure 2-19.

Figure 2-19 A line

C H A P T E R 2

Geometric Shapes

2-38 Using Geometric Shapes

As with the point shape in Figure 2-17, the line shape in Figure 2-19 is infinitely thin, but

is drawn one-pixel wide—a hairline—because the default value of the pen width

property of the style object is 0, which indicates that QuickDraw GX should draw the

line at the thinnest perceivable resolution.

Another method of drawing a line is to encapsulate the line geometry in a line shape and

then use the GXDrawShape function to draw the line. This method allows you to specify

different style, ink, and transform information for the line. The sample function in

Listing 2-7 uses this method: it creates a line shape using the GXNewLine function and

then draws the line using the GXDrawShape function.

Listing 2-7 Creating a line shape with the GXNewLine function

void CreateLineShape(void)

{

gxShape aLineShape;

static gxLine aLineGeometry = {ff(50), ff(50),

 ff(150), ff(150)};

aLineShape = GXNewLine(&aLineGeometry);

GXDrawShape(aLineShape);

GXDisposeShape(aLineShape);

}

You can also use the GXNewShape or GXNewShapeVector functions to create a line

shape. For example, to create the same line shape using the GXNewShape function, you

could replace this line of code in the previous example:

aLineShape = GXNewLine(&aLineGeometry);

with these lines of code:

aLineShape = GXNewShape(gxLineType);

GXSetLine(aLineShape, &aLineGeometry);

In either case, the line shape would be the same, and would appear as shown in

Figure 2-19.

The sample function in Listing 2-8 shows how to use the GXSetLine function to change

the geometry of an existing line shape.

C H A P T E R 2

Geometric Shapes

Using Geometric Shapes 2-39

Listing 2-8 Drawing two parallel lines

void DrawParallelLines(void)

{

gxShape aLineShape;

static gxLine aLineGeometry = {ff(50), ff(50),

 ff(57), ff(100)};

static gxLine anotherLineGeometry = {ff(60), ff(50),

 ff(67), ff(100)};

aLineShape = GXNewShape(gxLineType);

GXSetLine(aLineShape, &aLineGeometry);

GXDrawShape(aLineShape);

GXSetLine(aLineShape, &anotherLineGeometry);

GXDrawShape(aLineShape);

GXDisposeShape(aLineShape);

}

This sample function creates and draws a line shape, changes its geometry, and then

draws it again. The results are shown in Figure 2-20.

Figure 2-20 Parallel lines

C H A P T E R 2

Geometric Shapes

2-40 Using Geometric Shapes

As with any geometric shape, you can specify fractional values for a line shape’s

geometric points. Although specifying a fractional part does not move the start pixel or

the end pixel of line (unless rounding occurs), it can affect how the line is drawn. When

QuickDraw GX draws a line with fractional endpoint coordinates, rather than integer

endpoint coordinates, it may choose different pixels to represent the line, even if

the endpoints remain on the same pixels in both cases. By choosing a different “stair

step” pattern to represent the line, QuickDraw GX can give the illusion of very slight

changes in line angles. As an example, if in the previous example you replace the second

definition:

static gxLine anotherLineGeometry = {ff(60), ff(50),

 ff(67), ff(100)};

with a slightly modified version:

static gxLine anotherLineGeometry = {fl(59.6), ff(50),

 fl(67.4), ff(100)};

QuickDraw GX chooses different pixels to represent the second line, giving the

appearance of a slightly different angle, as shown in Figure 2-21.

Figure 2-21 Nearly parallel lines

For more information about line shapes, see “Line Shapes” on page 2-17 and “The Line

Structure” on page 2-105.

For information about the functions you can use to create and draw lines, see the

description of the GXNewLine function on page 2-112 and the GXDrawLine function on

page 2-158.

C H A P T E R 2

Geometric Shapes

Using Geometric Shapes 2-41

Creating and Drawing Curves
You can create and draw curve shapes with QuickDraw GX the same way you create and

draw points and lines. Typically, you first define a curve geometry, which is

encapsulated in a gxCurve structure:

struct gxCurve {

struct gxPoint first;

struct gxPoint control;

struct gxPoint last;

};

The first and last fields determine the start point and the end point of the curve. The

point specified in the control field lies off the curve and determines the tangents of the

curve. (The off-curve control point could actually be on the curve—that is, directly

between the first and last points—in which case the curve is a straight line.)

Once you’ve defined a curve geometry, you can create a curve shape using the

GXNewCurve function and draw it using the GXDrawShape function, as shown in

Listing 2-9.

Listing 2-9 Creating a curve shape

void CreateCurve(void)

{

gxShape aCurveShape;

static gxCurve aCurveGeometry = {ff(50), ff(50), /* on */

 ff(100), ff(150), /* off */

 ff(200), ff(50)}; /* on */

aCurveShape = GXNewCurve(&aCurveGeometry);

GXDrawShape(aCurveShape);

GXDisposeShape(aCurveShape);

}

C H A P T E R 2

Geometric Shapes

2-42 Using Geometric Shapes

Figure 2-22 shows the curve shape geometry, which includes the first and last points, the

off-curve control point, and the tangents implied by these geometric points. This figure

also shows the curve as drawn. It is drawn as a hairline (one-pixel wide) with the

open-frame shape fill, which reflects the default values for curve shapes.

Figure 2-22 A curve

You could draw the same curve without creating a curve shape by calling the

GXDrawCurve function:

GXDrawCurve(&aCurveGeometry);

You could also create the curve shape using the GXNewShape function described in

Inside Macintosh: QuickDraw GX Objects or the GXNewShapeVector function described

on page 2-109.

Curves have a direction that depends on the order of the points in the geometry. For

example, you could reverse the direction of the curve in Figure 2-22 by reversing the

order of the points in the geometry definition from Listing 2-9:

static gxCurve aCurveGeometry = {ff(200), ff(50), /* on curve */

 ff(100), ff(150), /* off curve */

 ff(50), ff(50)}; /* on curve */

Changing the direction of this curve would not change its appearance. However, curve

direction can affect the appearance of a curve when you apply certain stylistic variations,

such as dashing, to the curve. The next chapter, “Geometric Styles,” discusses these

stylistic variations. Also, when a curve is part of a path shape, the direction of the curve

can affect the way the path is drawn. See “Creating and Drawing Paths” beginning on

page 2-55 for examples of how the direction of a curve can affect drawing.

For more information about curve shapes, see “Curve Shapes” on page 2-18 and “The

Curve Structure” on page 2-105. For information about the functions you can use to

create and draw curves, see the description of the GXNewCurve function on page 2-113

and the GXDrawCurve function on page 2-159.

C H A P T E R 2

Geometric Shapes

Using Geometric Shapes 2-43

Creating and Drawing Rectangles
You can create rectangle shapes and draw rectangles with QuickDraw GX the same

way you create and draw points, lines, and curves. Typically, you first define a rectangle

geometry, which is encapsulated in a gxRectangle structure:

struct gxRectangle {

Fixed left;

Fixed top;

Fixed right;

Fixed bottom;

};

Note

QuickDraw GX allows you to specify rectangle coordinates out of
order—that is, you can specify any corner of the rectangle using the first
two fields of the rectangle structure and the opposing corner using the
third and fourth fields of the rectangle structure. ◆

Once you’ve defined a rectangle geometry, you can draw the corresponding rectangle

without creating a rectangle shape by using the GXDrawRectangle function or you can

create a rectangle shape and draw it with the GXDrawShape function, as shown in

Listing 2-10.

Listing 2-10 Creating a rectangle shape

void CreateRectangle(void)

{

gxShape aRectangleShape;

static gxRectangle aRectangleGeometry = {ff(50), ff(50),

 ff(150), ff(100)};

aRectangleShape = GXNewRectangle(&aRectangleGeometry);

GXDrawShape(aRectangleShape);

GXDisposeShape(aRectangleShape);

}

This sample function uses the ff macro (which is an alias for the IntegerToFixed

macro) to convert integer constants to the fixed-point coordinate values needed to

define a rectangle geometry. It then creates a rectangle shape using the

GXNewRectangle function (although it could use the GXNewShape function or

C H A P T E R 2

Geometric Shapes

2-44 Using Geometric Shapes

the GXNewShapeVector function instead) and draws the rectangle using the

GXDrawShape function. The result is shown in Figure 2-23.

Figure 2-23 A rectangle

Notice that the rectangle is solid rather than framed. The GXNewRectangle function

returns a new rectangle shape with the same shape fill property as the default rectangle

shape, which is the even-odd shape fill.

Note

Although initially QuickDraw GX sets the shape fill property of the
default rectangle shape to be even-odd shape fill, you may change
the default shape fill for rectangles by using the GXGetDefaultShape
function to obtain a reference to the default rectangle and then using the
GXSetShapeFill function to change its shape fill. You can similarly
change the default shape fill for any shape type. ◆

To create a framed rectangle, you can use the GXSetShapeFill function to change the

shape fill from even-odd to closed-frame, as shown in Listing 2-11.

Listing 2-11 Creating a framed rectangle

void CreateFramedRectangle(void)

{

gxShape aRectangleShape;

static gxRectangle aRectangleGeometry = {ff(150), ff(100),

 ff(50), ff(50)};

aRectangleShape = GXNewRectangle(&aRectangleGeometry);

GXSetShapeFill(aRectangleShape, gxClosedFrameFill);

GXDrawShape(aRectangleShape);

}

C H A P T E R 2

Geometric Shapes

Using Geometric Shapes 2-45

Figure 2-24 shows the result of Listing 2-11.

Figure 2-24 A framed rectangle

In general, a rectangle can have any shape fill except open-frame shape fill. For more

information about rectangle shapes, see “Rectangle Shapes” on page 2-20 and “The

Rectangle Structure” on page 2-106.

For more information about the shape fill property, see “Shape Fill” beginning on

page 2-12.

For information about the functions you can use to create and draw rectangles, see the

description of the GXNewRectangle function on page 2-114 and the

GXDrawRectangle function on page 2-160.

Creating and Drawing Polygons
A polygon contour is a series of points connected by straight lines. QuickDraw GX

defines the gxPolygon structure to encapsulate a polygon contour:

struct gxPolygon {

long vectors;

struct gxPoint vector[gxAnyNumber];

};

The vectors field indicates the number of points in the polygon and the vector array

contains the points themselves. (The constant gxAnyNumber is used as a placeholder,

since a polygon contour can have any number of geometric points.)

The polygon shape type allows you to group any number of polygon contours within a

single QuickDraw GX shape. The gxPolygons structure encapsulates the

multiple-polygon geometry:

struct gxPolygons {

long contours;

struct gxPolygon contour[gxAnyNumber];

};

C H A P T E R 2

Geometric Shapes

2-46 Using Geometric Shapes

The contours field indicates the total number of contours (in other words, the total

number of separate polygons), and the contour array contains the polygon contour

geometries.

Implementation Note

In version 1.0 of QuickDraw GX, a single path contour can have between
0 and 32,767 geometric points. The geometry of a path shape can
between 0 and 32,767 polygon contours. The total size of a path
geometry may not exceed 2,147,483,647 bytes. ◆

Creating Polygons With a Single Contour

Since a gxPolygons structure is of variable length and every element in it is of type

long, you can define a polygon geometry as an array of long values. For example, the

definition

long aPolygonGeometry[] = {1, /* number of contours */

 3, /* number of points */

 ff(50), ff(50),

 ff(100), ff(80),

 ff(50), ff(110)};

defines a polygon geometry with one contour (that is, with one polygon). The polygon

contains three points; it is a triangle.

Most QuickDraw GX functions that create or draw polygon shapes expect a pointer to a

gxPolygons structure as one of the parameters. Therefore, you must cast an array of

long values to the correct type before sending it to one of these functions. As an example,

you can cast the aPolygonGeometry array to the correct type with this expression:

(gxPolygons *) aPolygonGeometry

The sample function in Listing 2-12 shows how to use this geometry to draw a triangle.

Listing 2-12 Drawing a triangular polygon

void DrawTriangle(void)

{

static long aPolygonGeometry[] = {1, /* number of contours */

 3, /* number of points */

 ff(50), ff(50),

 ff(100), ff(80),

 ff(50), ff(110)};

GXDrawPolygons((gxPolygons *) aPolygonGeometry, gxEvenOddFill);

}

C H A P T E R 2

Geometric Shapes

Using Geometric Shapes 2-47

This sample function defines the aPolygonGeometry array, casts it to a

gxPolygons pointer, and sends it to the GXDrawPolygons function. Unlike the

GXDrawPoint, GXDrawLine, GXDrawCurve, and GXDrawRectangle functions,

the GXDrawPolygons function takes a second parameter—the shape fill to use when

drawing the polygon shape. In this example, the parameter is set to the even-odd shape

value and the resulting polygon is shown in Figure 2-25.

Figure 2-25 A polygon

You can specify any type of shape fill for polygon shapes. For example, if you specify the

inverse even-odd shape fill:

GXDrawPolygons((gxPolygons *) aPolygonGeometry,

gxInverseEvenOddFill);

QuickDraw GX draws the graphic shown in Figure 2-26. The black portion of the

drawing would be clipped according to the information in the default polygon shape’s

transform object. If no clipping information is specified there, the drawing would extend

to the full range of the shape’s view port.

Figure 2-26 A triangular polygon with inverse shape fill

C H A P T E R 2

Geometric Shapes

2-48 Using Geometric Shapes

For information on clipping and view ports, see Inside Macintosh: QuickDraw GX Objects.

Although this example draws the polygon without creating a polygon shape, it could

instead create a polygon shape with the GXNewPolygons function:

aPolygonShape = GXNewPolygons((gxPolygons *) aPolygonGeometry);

and then draw it using the GXDrawShape function:

GXDrawShape(aPolygonShape);

You can also create polygon shapes using the GXNewShape function:

aPolygonShape = GXNewShape(gxPolygonType);

GXSetPolygons(aPolygonShape, (gxPolygons *) aPolygonGeometry);

or by using the GXNewShapeVector function:

aPolygonShape = GXNewShapeVector(gxPolygonType, aPolygonGeometry);

Notice that in this case you do not have to cast the aPolygonGeometry array to be a

pointer to a gxPolygons structure. The GXNewShapeVector function expects an array

of long values.

Although the GXDrawPolygons function (shown in Listing 2-12) allows you to specify a

shape fill, the GXDrawShape function does not. If you create a polygon shape and you

want it to have a different shape fill than the default polygon shape, you must indicate

the desired shape fill using the GXSetShapeFill function—for example,

GXSetShapeFill(aPolygonShape, gxInverseEvenOddFill);

For more information about shape fills, see “Shape Fill” beginning on page 2-12.

C H A P T E R 2

Geometric Shapes

Using Geometric Shapes 2-49

Creating Polygons With Multiple Contours

The sample function in Listing 2-13 shows how a single polygon shape can contain more

than one polygon contour. The polygon shape defined in this example includes the

triangle from the previous example as well as a second, entirely separate, triangle.

Listing 2-13 Creating a polygon with two contours

void DrawTwoTriangles(void)

{

gxShape aPolygonsShape;

static long aPolygonsGeometry[] = {2, /* number of contours */

 3, /* number of points */

 ff(50), ff(50),

 ff(100), ff(80),

 ff(50), ff(110),

 3, /* number of points */

 ff(200), ff(50),

 ff(150), ff(80),

 ff(200), ff(110)};

aPolygonsShape = GXNewPolygons((gxPolygons *)

 aPolygonsGeometry);

GXDrawShape(aPolygonsShape);

GXDisposeShape(aPolygonsShape);

}

C H A P T E R 2

Geometric Shapes

2-50 Using Geometric Shapes

This sample function results in the drawing shown in Figure 2-27.

Figure 2-27 A filled polygon with two separate contours

For more information about polygon shapes and multiple contours, see “Polygon

Shapes” beginning on page 2-22.

Creating Polygons With Crossed Contours

Since a polygon contour is defined as an array of geometric points connected by straight

lines, it is possible for the lines that make up a polygon contour to cross over each other.

The sample function in Listing 2-14 creates such a polygon.

Listing 2-14 Creating a polygon with a crossed contour

void CreateCrossedContour(void)

{

gxShape aPolygonsShape;

static long aPolygonsGeometry[] = {1, /* number of contours */

 4, /* number of points */

 ff(50), ff(50),

 ff(150), ff(110),

 ff(150), ff(50),

 ff(50), ff(110)};

aPolygonsShape = GXNewPolygons((gxPolygons *)

 aPolygonsGeometry);

GXSetShapeFill(aPolygonsShape, gxClosedFrameFill);

C H A P T E R 2

Geometric Shapes

Using Geometric Shapes 2-51

GXDrawShape(aPolygonsShape);

GXDisposeShape(aPolygonsShape);

}

Figure 2-28 shows the geometry of the resulting polygon contour as well as how the

contour appears when drawn with the closed-frame shape fill.

Figure 2-28 A framed polygon with a crossed contour

You can change the shape fill of this polygon by removing this line of code from the

sample function in Listing 2-14:

GXSetShapeFill(aPolygonsShape, gxClosedFrameFill);

If you don’t specify a shape fill, the GXNewPolygons function uses the shape fill from

the default polygon, which is the even-odd shape fill (unless you change it using the

GXGetDefaultShape and GXSetShapeFill functions). The polygon resulting from

an even-odd shape fill is shown in Figure 2-29.

Figure 2-29 A solid polygon with a crossed contour

Notice that QuickDraw GX fills both sections of this polygon.

C H A P T E R 2

Geometric Shapes

2-52 Using Geometric Shapes

It is possible to create a polygon with a contour that overlaps in such a way that

QuickDraw GX does not fill all sections of the polygon. The sample function in

Listing 2-15 creates such a polygon.

Listing 2-15 Creating a polygon with an overlapping contour

void CreateOverlappingContour(void)

{

gxShape aPolygonShape;

static long aPolygonGeometry[] = {1, /* number of contours */

 6, /* number of points */

 ff(50), ff(50),

 ff(100), ff(80),

 ff(25), ff(150),

 ff(25), ff(10),

 ff(100), ff(80),

 ff(50), ff(110)};

aPolygonShape = GXNewPolygons((gxPolygons *) aPolygonGeometry);

GXSetShapeFill(aPolygonShape, gxHollowFill);

GXDrawShape(aPolygonShape);

GXDisposeShape(aPolygonShape);

}

C H A P T E R 2

Geometric Shapes

Using Geometric Shapes 2-53

Figure 2-30 shows the geometry of the resulting polygon contour as well as how the

contour appears when drawn with the closed-frame shape fill.

Figure 2-30 A polygon with an overlapping contour and closed-frame shape fill

If you specified the even-odd shape fill for this polygon, instead of the closed-frame

shape fill, the resulting shape would appear as in Figure 2-31.

Figure 2-31 A polygon with an overlapping contour and even-odd shape fill

C H A P T E R 2

Geometric Shapes

2-54 Using Geometric Shapes

Notice that QuickDraw GX fills in the polygon but does not fill in the area contained in

the inner loop. The algorithm used by QuickDraw GX to fill in shapes with the even-odd

shape fill doesn’t fill loops within the shape. (It would, however, fill another loop inside

the first loop.)

The winding shape fill works differently. If you specify the winding shape fill for this

polygon using the call

GXSetShapeFill(aPolygonShape, gxWindingFill);

QuickDraw GX draws the polygon as shown in Figure 2-32.

Figure 2-32 A polygon with an overlapping contour and winding shape fill

As you can see, the winding shape fill causes QuickDraw GX to hide the inner loop—it

fills in the entire polygon, outer loop and inner.

C H A P T E R 2

Geometric Shapes

Using Geometric Shapes 2-55

It is possible, however, to define a polygon in such a way that QuickDraw GX does not

fill the inner loop even when you specify the winding shape fill. Unlike the even-odd

shape fill, which never fills an inner loop, winding shape fill considers contour direction

when filling a shape:

■ If the inner loop and the outer loop have the same contour direction, winding shape
fill causes QuickDraw GX to fill the inner loop as well as the outer loop, as shown in
Figure 2-32.

■ If the inner loop and the outer loop have opposite contour directions, winding shape
fill causes QuickDraw GX to fill the outer loop, but not the inner loop. The next
section gives an example using path shapes.

For more information about contour direction and shape-filling algorithms, see “Shape

Fill” beginning on page 2-12.

For more information about polygon shapes, see “Polygon Shapes” on page 2-22 and

“Polygon Structures” on page 2-106.

For information about the functions you can use to create and draw polygons, see the

description of the GXNewPolygons function on page 2-116 and the GXDrawPolygons

function on page 2-161.

Creating and Drawing Paths
Like a polygon contour, a path contour is a series of connected points. However, whereas

a polygon contour is made up of straight lines, a path contour can contain both straight

lines and curves. Therefore, the geometric points that make up a path contour can be

on-curve points or off-curve control points. QuickDraw GX defines the gxPath structure

to encapsulate a path contour geometry:

struct gxPath {

long vectors;

long controlBits[gxAnyNumber];

struct gxPoint vector[gxAnyNumber];

};

C H A P T E R 2

Geometric Shapes

2-56 Using Geometric Shapes

The vectors field indicates the number of geometric points in the path and the vector

array contains the geometric points themselves. The controlBits array specifies

which geometric points are on-curve points and which are off-curve control points. A

value of 0 indicates an on-curve point and a value of 1 indicates an off-curve point. For

example, a controlBits field with the value

0x55555555 /* 0101 0101 0101 0101 ... */

indicates that every other point is an off-curve control point; the first point is on curve,

the second point is off, and so on. As another example, a controlBits field value of

0x00000000 /* 0000 0000 0000 0000 ... */

indicates all points are on curve, which effectively creates a polygon.

Notice that the controlBits array allows you to specify sequential off-curve control

points. For example, a controlBits value of

0xFFFFFFFF /* 1111 1111 1111 1111 ... */

indicates that all points are off curve. When you indicate that two control points in a row

are off curve, QuickDraw GX assumes an on-curve point midway between them. (The

example in Listing 2-17 on page 2-59 gives an example.)

Like the polygon shape, the path shape allows you to group any number of contours

within a single QuickDraw GX shape. The gxPaths structure encapsulates the

multiple-path geometry:

struct gxPaths {

long contours;

struct gxPath contour[gxAnyNumber];

};

The contours field indicates the total number of contours (in other words, the total

number of separate paths), and the contour array contains the path geometries.

C H A P T E R 2

Geometric Shapes

Using Geometric Shapes 2-57

Creating Paths With a Single Contour

Since a gxPaths structure is of variable length and every element in it is of type long,

you can define a path geometry as an array of long values. The sample function in

Listing 2-16 shows how to define a path geometry as an array of long values, and then

draw a path shape using the GXDrawPaths function. Since the GXDrawPaths function

expects its first parameter to be a pointer to a gxPaths structure, the sample function

casts the array of long values to the appropriate type using the expression

(gxPaths *) aPathGeometry

before sending the information to the GXDrawPaths function.

Listing 2-16 Drawing a path shape

void DrawAPathShape(void)

{

static long aPathGeometry[] = {1, /* number of contours */

 6, /* number of points */

 0x48000000, /* 0100 1000 */

 ff(50), ff(100), /* on */

 ff(0), ff(75), /* off */

 ff(50), ff(50), /* on */

 ff(150), ff(50), /* on */

 ff(200), ff(75), /* off */

 ff(150), ff(100)}; /* on */

GXDrawPaths((gxPaths *) aPathGeometry, gxOpenFrameFill);

}

C H A P T E R 2

Geometric Shapes

2-58 Using Geometric Shapes

The path defined in this example has four on-curve points and two off-curve points.

When drawn with the open-frame shape fill, it contains two curves and one straight line,

as shown in Figure 2-33.

Figure 2-33 A path

The sample function from Listing 2-16 draws the path without creating a path shape. It

could instead create a path shape with the GXNewPaths function:

aPathsShape = GXNewPaths((gxPaths *) aPathGeometry);

and then draw it using the GXDrawShape function:

GXDrawShape(aPathsShape);

You can also create path shapes using the GXNewShape function:

aPathsShape = GXNewShape(gxPathType);

GXSetPaths(aPathsShape, (gxPaths *) aPathGeometry);

or by using the GXNewShapeVector function:

aPathsShape = GXNewShapeVector(gxPathType, aPathGeometry);

C H A P T E R 2

Geometric Shapes

Using Geometric Shapes 2-59

Notice that in this case you do not have to cast the aPathGeometry array to be a

pointer to a gxPaths structure. The GXNewShapeVector function expects an array of

long values.

Although the GXDrawPaths function (shown in Listing 2-16) allows you to specify a

shape fill, the GXDrawShape function does not. If you create a path shape and you want

it to have a different shape fill than the default path shape, you must indicate the desired

shape fill using the GXSetShapeFill function—for example,

GXSetShapeFill(aPathsShape, gxInverseEvenOddFill);

For more information about shape fills, see “Shape Fill” beginning on page 2-12.

Creating Paths Using Only Off-Curve Points

The sample function in Listing 2-17 shows how you can create a path using only

off-curve control points. The path defined in this example contains four control points,

and the controlBits field is set to

0xF0000000 /* 1111 0000 0000 0000 0000 ... */

which indicates that the first four points are off curve. The path contains only four

points, and therefore they are all off curve.

Listing 2-17 Creating a path using only off-curve control points

void CreateRoundPath(void)

{

gxShape aPathShape;

static long aPathGeometry[] = {1, /* number of contours */

 4, /* number of points */

 0xF0000000, /* 1111 0000 ... */

 ff(50), ff(50), /* off */

 ff(150), ff(50), /* off */

 ff(150), ff(150), /* off */

 ff(50), ff(150)}; /* off */

aPathShape = GXNewPaths((gxPaths *) aPathGeometry);

GXDrawShape(aPathShape);

}

C H A P T E R 2

Geometric Shapes

2-60 Using Geometric Shapes

The four off-curve control points in this example form a square; the path that they define

is a rounded square, as shown in Figure 2-34.

Figure 2-34 A round path shape

Notice that the path is filled with the even-odd shape fill, which is the default for

path shapes. You could, however, specify any shape fill for this path except the

open-frame shape fill. The open-frame shape fill requires that the first and last points of

the contour be on-curve points, and this path has no on-curve points.

Creating Paths With Multiple Contours

The sample function in Listing 2-18 shows how a single path shape can contain more

than one path contour. The path shape defined in this example includes the round path

from the previous example as well as a second round path, entirely contained within the

first.

C H A P T E R 2

Geometric Shapes

Using Geometric Shapes 2-61

Listing 2-18 Creating a path with concentric contours

void CreateHollowCircles(void)

{

gxShape aPathShape;

static long aPathGeometry[] = {2, /* number of contours */

 4, /* number of points */

 0xF0000000, /* 1111 0000 ... */

 ff(50), ff(50), /* off */

 ff(150), ff(50), /* off */

 ff(150), ff(150), /* off */

 ff(50), ff(150), /* off */

 4, /* number of points */

 0xF0000000, /* 1111 0000 ... */

 ff(65), ff(65), /* off */

 ff(135), ff(65), /* off */

 ff(135), ff(135), /* off */

 ff(65), ff(135)}; /* off */

aPathShape = GXNewPaths((gxPaths *) aPathGeometry);

GXSetShapeFill(aPathShape, gxClosedFrameFill);

GXDrawShape(aPathShape);

GXDisposeShape(aPathShape);

}

C H A P T E R 2

Geometric Shapes

2-62 Using Geometric Shapes

The result of this function is shown in Figure 2-35.

Figure 2-35 A path shape with two concentric clockwise contours and closed-frame shape fill

You can change the shape fill of this polygon by removing this line of code from the

sample function in Listing 2-18:

GXSetShapeFill(aPolygonsShape, gxClosedFrameFill);

C H A P T E R 2

Geometric Shapes

Using Geometric Shapes 2-63

If you don’t specify a shape fill, the GXNewPaths function uses the shape fill from the

default path shape, which is the even-odd shape fill (unless you change it using the

GXGetDefaultShape and GXSetShapeFill functions). The path shape resulting from

an even-odd shape fill is shown in Figure 2-36.

Figure 2-36 A path shape with two concentric clockwise contours and even-odd shape fill

Notice that the even-odd shape fill causes QuickDraw GX to fill in the outer contour, but

not the inner contour. However, if you specify the winding shape fill for this path using

the call

GXSetShapeFill(aPathShape, gxWindingFill);

the resulting shape would appear as shown in Figure 2-37.

Figure 2-37 A path shape with two concentric clockwise contours and winding shape fill

C H A P T E R 2

Geometric Shapes

2-64 Using Geometric Shapes

Unlike the even-odd shape fill, the winding shape fill causes QuickDraw GX to fill inner

contours—as long as the inner contour has the same contour direction as the outer contour. If
the inner contour and the outer contour have opposite contour directions, neither the

even-odd shape fill nor the winding shape fill will fill the inner contour.

For example, if you change the direction of the inner contour from the previous example

by reversing the order of the second path’s geometric points, as in the declaration

static long aPathGeometry[] = {2, /* number of contours */

 4, /* number of points */

 0xF0000000, /* 1111 0000 */

 ff(50), ff(50), /* off */

 ff(150), ff(50), /* off */

 ff(150), ff(150), /* off */

 ff(50), ff(150), /* off */

 4, /* number of points */

 0xF0000000, /* 1111 0000 */

 ff(65), ff(135), /* off */

 ff(135), ff(135), /* off */

 ff(135), ff(65), /* off */

 ff(65), ff(65)}; /* off */

and set the shape fill to the closed-frame shape fill using the call

GXSetShapeFill(aPathShape, gxClosedFrameFill);

the resulting shape has contours with opposite contour directions, as depicted in

Figure 2-38.

Figure 2-38 A path shape with an internal counterclockwise contour and closed-frame shape fill

C H A P T E R 2

Geometric Shapes

Using Geometric Shapes 2-65

Since the outer contour and the inner contour have opposite contour directions, neither

the even-odd shape fill nor the winding shape fill cause QuickDraw GX to fill the inner

contour, as shown in Figure 2-39.

Figure 2-39 A path shape with even-odd or winding shape fill

For more information about contour direction and shape-filling algorithms, see “Shape

Fill” on page 2-12.

For more information about path shapes, see “Path Shapes” on page 2-25 and “Path

Structures” on page 2-107.

For information about the functions you can use to create and draw paths, see the

description of the GXNewPaths function on page 2-117 and the GXDrawPaths function

on page 2-162.

Converting Between Geometric Shape Types
QuickDraw GX provides the GXGetShapeType and GXSetShapeType functions to

allow you to manipulate a shape’s type. The GXGetShapeType function simply returns

the value of the shape type property for a specified shape. For geometric shapes, the

possible values returned from this function are

■ gxEmptyType

■ gxFullType

■ gxPointType

■ gxLineType

■ gxCurveType

■ gxRectangleType

C H A P T E R 2

Geometric Shapes

2-66 Using Geometric Shapes

■ gxPolygonType

■ gxPathType

The GXSetShapeType function allows you to change the shape type of an existing

shape. In doing so, this function often has to reinterpret the geometry of the shape. This

reinterpretation is called type conversion. Sometimes the conversion makes sense and

doesn’t lose any data. For example, you might want to convert a line shape to a polygon

shape so that you can add more contours to the shape. Some conversions, however,

aren’t as useful and data can be lost. For example, converting a complex path shape to a

point shape can result in the loss of a significant amount of data.

In general, when converting between geometric shape types, QuickDraw GX exhibits

different behavior in these four situations:

■ when converting other geometric shapes to an empty shape or a full shape

■ when converting other geometric shapes to a point, line, or rectangle

■ when converting other geometric shapes to a curve

■ when converting other geometric shapes to a polygon or path

When converting to an empty shape or a full shape, all the information in the original

shape’s geometry is lost—the result is simple an empty shape or a full shape,

respectively.

The following three subsections discuss the other cases in more detail.

Converting Shapes to Points, Lines, and Rectangles

When converting a shape to a point, line, or rectangle, QuickDraw GX uses the bounding

rectangle of the original shape. (Bounding rectangles are defined in the chapter

“Geometric Operations” in this book. For an example, see Figure 2-41 on page 2-68.)

QuickDraw GX uses the bounding rectangle differently, depending on which shape type

you are converting to:

■ When you convert to a rectangle shape, the resulting rectangle is the bounding
rectangle of the original shape.

■ When you convert to a line shape, the result is a line that runs from the upper-left
corner of the original shape’s bounding rectangle to the lower-right corner.

■ When you convert to a point, the resulting point is the point at the upper-left corner of
the bounding rectangle of the original shape.

C H A P T E R 2

Geometric Shapes

Using Geometric Shapes 2-67

Listing 2-19 creates a path shape, which is converted subsequently to a rectangle shape,

then to a line shape, and finally to a point shape.

Listing 2-19 Creating a figure-eight path shape

void CreateFigureEight(void)

{

gxShape aPathShape;

static long figureEightGeometry[] = {1,/* number of contours */

 4, /* number of points */

 0xF0000000, /* 1111 ... */

 ff(50), ff(50), /* off */

 ff(200),ff(200), /* off */

 ff(50), ff(200), /* off */

 ff(200),ff(50)}; /* off */

aPathShape = GXNewPaths((gxPaths *) figureEightGeometry);

GXSetShapeFill(aPathShape, gxClosedFrameFill);

GXDrawShape(aPathShape);

}

The resulting path geometry is shown in Figure 2-40.

Figure 2-40 A figure-eight path shape

C H A P T E R 2

Geometric Shapes

2-68 Using Geometric Shapes

If you convert this shape to a rectangle shape, using the call

GXSetShapeType(aPathShape, gxRectangleType);

the resulting shape is the bounding rectangle for the original path shape, as shown in

Figure 2-41.

Figure 2-41 A path shape before and after conversion to a rectangle shape

C H A P T E R 2

Geometric Shapes

Using Geometric Shapes 2-69

If you convert the original path shape to a line shape, using the call

GXSetShapeType(aPathShape, gxLineType);

the resulting shape is a diagonal line from the upper-left corner of the path’s bounding

rectangle to its lower-right corner, as shown in Figure 2-42.

Figure 2-42 A path shape before and after conversion to a line shape

C H A P T E R 2

Geometric Shapes

2-70 Using Geometric Shapes

Finally, if you convert the orignal path shape to a point shape, using the call

GXSetShapeType(aPathShape, gxPointType);

the resulting shape is the point at the upper-left corner of the path’s bounding rectangle,

as shown in Figure 2-43.

Figure 2-43 A path shape before and after conversion to a point shape

The next two sections give examples of converting to the curve shape type and of

converting to the polygon and path shape types.

For more information about the GXSetShapeType function, see the chapter “Shape

Objects” of Inside Macintosh: QuickDraw GX Objects.

C H A P T E R 2

Geometric Shapes

Using Geometric Shapes 2-71

Converting Shapes to Curve Shapes

When converting other geometric shapes to a curve shape, QuickDraw GX takes one of

these approaches:

■ When converting a point to a curve, QuickDraw GX sets each of the three geometric
points of the curve to be the same as the original point.

■ When converting a line to a curve, QuickDraw GX sets the first point and last point of
the curve to be the same as the first point and last point of the line and sets the
off-curve control point to be same as the last point of the line, which results in the
curve being a straight line.

■ When converting a rectangle to a curve, QuickDraw GX sets the first point of the
curve to be the upper-left corner of the rectangle and the last point of the curve to be
the lower-right corner of the rectangle. The off-curve control point is set to be the
same as the last point, which results in the curve being a straight line.

■ When converting a polygon or a path to a curve, QuickDraw GX sets the three
geometric points of the curve to be the first three geometric points of the original
shape.

The sample function in Listing 2-20 creates a line shape and converts it to a curve.

Listing 2-20 Converting a line to a curve

void ConvertLineToCurve(void)

{

gxShape aLineShape;

static gxLine diagonalGeometry = {ff(50), ff(50),

 ff(150), ff(150)};

aLineShape = GXNewLine(&diagonalGeometry);

GXSetShapeType(aLineShape, gxCurveType);

GXDrawShape(aLineShape);

GXDisposeShape(aLineShape);

}

C H A P T E R 2

Geometric Shapes

2-72 Using Geometric Shapes

The original line shape and the resulting curve shape are shown in Figure 2-44.

Figure 2-44 A line shape before and after conversion to a curve shape

Notice that the converted curve looks just like the original line. The only difference

between the two shapes is that the curve shape has an additional off-curve control point,

which is set to be identical to the last point.

The sample function in Listing 2-21 creates a rectangle shape and converts it to a curve

shape.

Listing 2-21 Converting a rectangle to a curve

void ConvertRectangleToCurve(void)

{

gxShape aRectangleShape;

static gxRectangle rectangleGeometry = {ff(50), ff(50),

 ff(150), ff(150)};

aRectangleShape = GXNewRectangle(&rectangleGeometry);

GXSetShapeType(aRectangleShape, gxCurveType);

GXDrawShape(aRectangleShape);

GXDisposeShape(aLineShape);

}

C H A P T E R 2

Geometric Shapes

Using Geometric Shapes 2-73

The original rectangle and the resulting curve are both shown in Figure 2-45.

Figure 2-45 A rectangle shape before and after conversion to a curve shape

As in the previous example, the off-curve control point of the curve shape is set to be the

same as the last point, which results in the curve shape being a straight line.

The next example, shown in Listing 2-22, shows how QuickDraw GX converts a polygon

shape to a curve shape.

Listing 2-22 Converting a polygon shape to a curve shape

void ConvertPolygonToCurve(void)

{

gxShape aPolygonShape;

static long aPolygonGeometry[] = {1, /* number of contours */

 4, /* number of points */

 ff(50), ff(50),

 ff(150), ff(50),

 ff(150), ff(150),

 ff(50), ff(150)};

aPolygonShape = GXNewPolygons((gxPolygons *) aPolygonGeometry);

GXSetShapeType(aPolygonShape, gxCurveType);

C H A P T E R 2

Geometric Shapes

2-74 Using Geometric Shapes

GXDrawShape(aPolygonShape);

GXDisposeShape(aPolygonShape);

}

In this example, QuickDraw GX sets the three geometric points of the resulting curve to

be the first three geometric points of the original polygon. (Converting from path shapes

to curve shapes works in the same way.) The original polygon and the resulting curve

are shown in Figure 2-46.

Figure 2-46 A polygon shape before and after conversion to a curve shape

Notice that even though the polygon in this example looks the same as the rectangle in

Figure 2-45, the converted curve shape looks quite different.

The next section gives examples of converting shapes to polygon and path shapes.

For more information about the GXSetShapeType function in general, see the chapter

“Shape Objects” of Inside Macintosh: QuickDraw GX Objects.

Converting Shapes to Polygons and Paths

When converting other geometric shapes to polygon or path shapes, the original shapes

don’t lose any geometric information. For example, when you convert a line shape to a

path shape, the resulting path shape contains one contour with two geometric points,

both on curve—an exact duplicate of the original line.

You can even convert a curve shape to a polygon shape without losing geometric

information, although the result does draw differently. The resulting polygon has one

contour and three geometric points—the same three geometric points as the original

curve. If you convert the polygon back to a curve, you end up with the original curve.

C H A P T E R 2

Geometric Shapes

Using Geometric Shapes 2-75

When you convert a rectangle shape to a polygon shape, as shown in Listing 2-23, the

original shape and the resulting shape look exactly the same.

Listing 2-23 Converting a rectangle shape to a polygon shape

void ConvertRectangleToPolygon(void)

{

gxShape aRectangleShape;

static gxRectangle rectangleGeometry = {ff(50), ff(50),

 ff(150), ff(150)};

aRectangleShape = GXNewRectangle(&rectangleGeometry);

GXSetShapeType(aRectangleShape, gxPolygonType);

GXDrawShape(aRectangleShape);

GXDisposeShape(aRectangleShape);

}

The original rectangle and the resulting polygon are shown in Figure 2-47.

Figure 2-47 A rectangle shape before and after conversion to a polygon shape

C H A P T E R 2

Geometric Shapes

2-76 Using Geometric Shapes

Converting from a path shape to a polygon shape, however, does lose geometric

information. The resulting polygon contains the same geometric points as the original

path; however, the points are all considered on-curve points. The original information

about which points were on curve and which points were off curve is lost during this

conversion.

As an example, Listing 2-24 creates a path shape and converts it to a polygon shape.

Listing 2-24 Converting a path shape to a polygon shape

void ConvertPathToPolygon(void)

{

gxShape aPathShape;

static long figureEightGeometry[] = {1, /* # of contours */

 4, /* # of points */

 0xF0000000, /* 1111 ... */

 ff(50), ff(50), /* off */

 ff(200),ff(200), /* off */

 ff(50), ff(200), /* off */

 ff(200),ff(50)}; /* off */

aPathShape = GXNewPaths((gxPaths *) figureEightGeometry);

GXSetShapeFill(aPathShape, gxHollowFill);

GXSetShapeType(aPathShape, gxPolygonType);

GXDrawShape(aPathShape);

GXDisposeShape(aPathShape);

}

C H A P T E R 2

Geometric Shapes

Using Geometric Shapes 2-77

Figure 2-48 shows the original path shape and the resulting polygon shape.

Figure 2-48 A path shape before and after conversion to a polygon shape

Note

You can request that QuickDraw GX calculate a better polygon
approximation to a path by setting the curve error property of the path
shape’s style object before calling the GXSetShapeType function. See
the next chapter, “Geometric Styles,” for examples. ◆

C H A P T E R 2

Geometric Shapes

2-78 Using Geometric Shapes

Converting in the other direction, however—from a polygon shape to a path shape—

retains all of the geometry information and the resulting path shape looks exactly the

same as the original polygon shape. The sample function in Listing 2-25 gives an

example.

Listing 2-25 Converting a polygon shape to a path shape

void ConvertPolygonToPath(void)

{

gxShape aPolygonShape;

static long aPolygonGeometry[] = {2, /* number of contours */

 3, /* number of points */

 ff(50), ff(50),

 ff(100), ff(80),

 ff(50), ff(110),

 3, /* number of points */

 ff(200), ff(50),

 ff(150), ff(80),

 ff(200), ff(110)};

aPolygonShape = GXNewPolygons((gxPolygons *)

 aPolygonGeometry);

GXSetShapeType(aPolygonShape, gxPathType);

GXDrawShape(aPolygonShape);

GXDisposeShape(aPolygonShape);

}

C H A P T E R 2

Geometric Shapes

Using Geometric Shapes 2-79

The original polygon shape and the converted path shape are shown in Figure 2-49.

Figure 2-49 Polygon shape with two contours before and after conversion to a path shape

For more information about the GXSetShapeType function, see the chapter “Shape

Objects” of Inside Macintosh: QuickDraw GX Objects.

Replacing Geometric Points
The GXSetPoint, GXSetLine, GXSetCurve, GXSetRectangle, GXSetPolygons,

and GXSetPaths functions allow you to replace the geometry of an existing shape. The

limitation of these functions is that you must replace the entire geometry at once.

QuickDraw GX provides other, more sophisticated, mechanisms for editing shape

geometries. The GXSetShapePoints function, which is illustrated in this section,

allows you to replace individual geometric points within a shape’s geometry. The

GXSetPolygonParts, GXSetPathParts, and GXSetShapeParts functions, which

are discussed in the next three sections, provide even more ways to edit the geometries

of shapes.

C H A P T E R 2

Geometric Shapes

2-80 Using Geometric Shapes

The sample function in Listing 2-26 creates a path shape and uses the

GXSetShapePoints function to replace two of the path’s geometric points.

Listing 2-26 Replacing geometric points

void ReplaceTopTwoControlPoints(void)

{

gxShape aPathShape;

static long twoCurveGeometry[] = {1, /* number of contours */

 6, /* number of points */

 0x48000000,/* 0100 1000 */

 ff(100), ff(150), /* on */

 ff(50), ff(100), /* off */

 ff(100), ff(50), /* on */

 ff(200), ff(50), /* on */

 ff(250), ff(100), /* off */

 ff(200), ff(150)}; /* on */

static gxPoint newTopGeometry[] = {ff(140), ff(50),

 ff(160), ff(50)};

aPathShape = GXNewPaths((gxPaths *) twoCurveGeometry);

GXSetShapeFill(aPathShape, gxOpenFrameFill);

GXSetShapePoints(aPathShape, 3, 2, newTopGeometry);

GXDrawShape(aPathShape);

GXDisposeShape(aPathShape);

}

The GXSetShapePoints function takes four parameters:

■ a reference to the shape to edit

■ the index of the first geometric point to be replaced

■ the number of geometric points to replace

■ an array containing the new geometric points

C H A P T E R 2

Geometric Shapes

Using Geometric Shapes 2-81

Therefore, the line of code from the sample function in Listing 2-26

GXSetShapePoints(aPathsShape, 3, 2, newTopGeometry);

replaces the third and fourth geometric point from the original path shape with the two

geometric points in the newTopGeometry array.

Figure 2-50 shows the path shape before the geometric points are replaced.

Figure 2-50 A path shape with a flat top

Figure 2-51 shows the path shape after the geometric points are replaced.

Figure 2-51 A path shape with geometric points replaced

For more information about the GXSetShapePoints function, see page 2-142.

The next three sections give examples of functions that allow you even more control in

editing the geometric points of a shape’s geometry.

C H A P T E R 2

Geometric Shapes

2-82 Using Geometric Shapes

Editing Polygon Parts
QuickDraw GX provides six functions that allow sophisticated editing of geometric

shapes:

■ The GXGetPolygonParts and GXSetPolygonParts functions allow you to
extract information from a polygon geometry, replace information in the geometry,
remove information in the geometry, and insert new information in the geometry.

■ The GXGetPathParts and GXSetPathParts functions allow you to extract,
replace, remove, and insert information in a path shape’s geometry.

■ The GXGetShapeParts and GXSetShapeParts functions allow you to extract,
replace, remove, and insert information in any shape’s geometry.

This section gives examples of the GXGetPolygonParts and GXSetPolygonParts

functions. The next two sections show how to edit path shape geometries and shape

geometries in general.

Listing 2-27 creates a polygon shape with two contours. Later examples in this section

use this polygon shape to demonstrate editing polygon parts.

Listing 2-27 Creating a polygon shape with two contours

void CreateTwoAngles(void)

{

gxShape aPolygonShape;

static long twoAngleGeometry[] = {2, /* number of contours */

 3, /* number of points */

 ff(100), ff(150),

 ff(50), ff(100),

 ff(100), ff(50),

 3, /* number of points */

 ff(200), ff(50),

 ff(250), ff(100),

 ff(200), ff(150)};

aPolygonShape = GXNewPolygons((gxPolygons *)

 twoAngleGeometry);

GXSetShapeFill(aPolygonShape, gxOpenFrameFill);

GXDrawShape(aPolygonShape);

GXDisposeShape(aPolygonShape);

}

C H A P T E R 2

Geometric Shapes

Using Geometric Shapes 2-83

The result of this sample function is shown in Figure 2-52.

Figure 2-52 A polygon shape with two contours

The GXGetPolygonParts function allows you to extract geometric points from the

geometry of an existing polygon shape and put them into a new polygon geometry. This

function takes four parameters:

■ a reference to the existing polygon shape

■ the index of the first desired geometric point

■ the number of geometric points to include

■ a pointer to a polygon geometry in which to store the extracted geometric points

The GXGetPolygonParts function returns as its function result the number of bytes

necessary to contain the extracted polygon. Therefore, you typically call

GXGetPolygonParts twice—once to determine the size of extracted polygon and once

to extract the polygon. For example, if you declare the variable

long byteCount;

you could determine the number of bytes necessary to extract the top half of the polygon

geometry in Figure 2-52 using this line of code:

byteCount = GXGetPolygonParts(aPolygonsShape, 2, 4, nil);

In this example, setting the final parameter to nil indicates that you want to determine

the number of bytes necessary to hold the extracted polygon geometry, but you do not

want to actually extract the polygon geometry. The values of 2 and 4 for the second and

third parameters indicate that the GXGetPolygonParts function should determine the

number of bytes necessary to hold an extracted polygon geometry that contains

geometric points 2, 3, 4, and 5 from the polygon geometry in Figure 2-52.

C H A P T E R 2

Geometric Shapes

2-84 Using Geometric Shapes

You can then use this byte count to allocate enough memory to hold the extracted

polygon geometry:

gxPolygons *topHalfGeometry;

topHalfGeometry = (gxPolygons *) NewPtr(byteCount);

Finally, you can extract the polygon geometry by calling GXGetPolygonParts again:

GXGetPolygonParts(aPolygonsShape, 2, 4, topHalfGeometry);

The sample function in Listing 2-28 creates the polygon shape from the previous

example, extracts the second through the fifth geometric points and puts them into a

separate geometry, and then replaces the geometry of the original polygon shape with

the extracted geometry.

Listing 2-28 Extracting part of a polygon shape

void ExtractTopPartOfPolygon(void)

{

gxShape aPolygonShape;

static long twoAngleGeometry[] = {2, /* number of contours */

 3, /* number of points */

 ff(100), ff(150),

 ff(50), ff(100),

 ff(100), ff(50),

 3, /* number of points */

 ff(200), ff(50),

 ff(250), ff(100),

 ff(200), ff(150)};

long byteCount;

gxPolygons *topHalfGeometry;

aPolygonShape = GXNewPolygons((gxPolygons *)

 twoAngleGeometry);

GXSetShapeFill(aPolygonShape, gxOpenFrameFill);

C H A P T E R 2

Geometric Shapes

Using Geometric Shapes 2-85

byteCount = GXGetPolygonParts(aPolygonShape, 2, 4, nil);

topHalfGeometry = (gxPolygons *) NewPtr(byteCount);

GXGetPolygonParts(aPolygonShape, 2, 4, topHalfGeometry);

GXSetPolygons(aPolygonShape, topHalfGeometry);

GXDrawShape(aPolygonShape);

GXDisposeShape(aPolygonShape);

}

The resulting polygon shape is shown in Figure 2-53.

Figure 2-53 A polygon shape extracted from a larger polygon shape

Compare this polygon shape with the polygon shape shown in Figure 2-52.

Like the GXSetShapePoints function discussed in the previous section, the

GXSetPolygonParts function allows you to replace geometric points within a polygon

shape’s geometry. However, the GXSetPolygonParts function allows you even more

editing control. With it, you can also remove geometric points, insert geometric points,

and break a polygon shape into multiple contours.

C H A P T E R 2

Geometric Shapes

2-86 Using Geometric Shapes

As an example of replacing geometric points in a polygon geometry, the sample function

in Listing 2-29 creates two polygon geometries: the two-angle polygon geometry from

Figure 2-52 and another polygon geometry consisting of a single point. The sample

function creates the two-angle polygon shape as in Listing 2-27 and then replaces its

third and fourth geometric points with the single geometric point of the other polygon

geometry.

Listing 2-29 Replacing geometric points of a polygon shape

void ReplaceControlPoints(void)

{

gxShape aPolygonShape;

static long twoAngleGeometry[] = {2, /* number of contours */

 3, /* number of points */

 ff(100), ff(150),

 ff(50), ff(100),

 ff(100), ff(50),

 3, /* number of points */

 ff(200), ff(50),

 ff(250), ff(100),

 ff(200), ff(150)};

static long newTopGeometry[] = {1, /* number of contours */

 1, /* number of points */

 ff(150), ff(50)};

aPolygonShape = GXNewPolygons((gxPolygons *)

twoAngleGeometry);

GXSetShapeFill(aPolygonsShape, gxOpenFrameFill);

GXSetPolygonParts(aPolygonShape, 3, 2,

 (gxPolygons *) newTopGeometry,

gxBreakNeitherEdit);

GXDrawShape(aPolygonShape);

GXDisposeShape(aPolygonShape);

}

C H A P T E R 2

Geometric Shapes

Using Geometric Shapes 2-87

Figure 2-54 shows the result of the sample function in Listing 2-29.

Figure 2-54 A polygon with two geometric points replaced by a single geometric point

Notice that, whereas the GXSetShapePoints function limited you to replacing

geometric points on a point-by-point basis, the GXSetPolygonParts function allows

you to replace any number of geometric points in the original geometry with any

number of new geometric points contained in an arbitrary polygon geometry.

Since the GXSetPolygonParts function allows you to insert an arbitrary polygon

geometry into the geometry of an existing polygon shape, you can use this function to

break a single polygon contour into multiple contours. In fact, the final parameter to

GXSetPolygonParts allows you to specify how the resulting polygons shape should

be broken up. In the previous example, the gxBreakNeitherEdit constant indicated

that the resulting polygon should not be broken into separate contours.

The next example, shown in Listing 2-30, first creates a polygon shape similar to the

two-angle polygons shape, except in this example the two contours are connected, as

shown in Figure 2-55.

Figure 2-55 A polygon shape with one contour

C H A P T E R 2

Geometric Shapes

2-88 Using Geometric Shapes

The sample function then uses the GXSetPolygonParts function to insert a new

geometric point in the center of the polygon.

Listing 2-30 Inserting a geometric point in a polygon shape

void CreateHollowPolygon(void)

{

gxShape aPolygonShape;

static long twoAngleGeometry[] = {1, /* number of contours */

 6, /* number of points */

 ff(100), ff(150),

 ff(50), ff(100),

 ff(100), ff(50),

 ff(200), ff(50),

 ff(250), ff(100),

 ff(200), ff(150)};

static long newCenterGeometry[] = {1, /* number of contours */

 1 /* number of points */,

 ff(150), ff(100)};

aPolygonShape = GXNewPolygons((gxPolygons *)

 twoAngleGeometry);

GXSetShapeFill(aPolygonShape, gxClosedFrameFill);

GXSetPolygonParts(aPolygonShape, 4, 0,

 (gxPolygons *) newCenterGeometry,

 gxBreakNeitherEdit);

GXDrawShape(aPolygonShape);

GXDisposeShape(aPolygonShape);

}

C H A P T E R 2

Geometric Shapes

Using Geometric Shapes 2-89

Since this sample function specifies the gxBreakNeitherEdit constant as the final

parameter to the GXSetPolygonParts function, the resulting polygon has a single

contour, as shown in Figure 2-56.

Figure 2-56 A polygon shape edited with the gxBreakNeitherEdit flag set

However, if the sample function had specified the gxBreakLeftEdit constant, as with

the call

GXSetPolygonParts(aPolygonsShape, 4, 0,

 (gxPolygons *) newCenterGeometry,

 gxBreakLeftEdit);

QuickDraw GX would break the resulting polygon into two contours: The

gxBreakLeftEdit constant indicates that the polygon should be broken between the

newly inserted point and the previous point, as shown in Figure 2-57.

Figure 2-57 A polygon shape edited with the gxBreakLeftEdit flag set

C H A P T E R 2

Geometric Shapes

2-90 Using Geometric Shapes

The gxBreakRightEdit constant works similarly, except the break occurs between the

newly inserted point and the subsequent point, as shown in Figure 2-58.

Figure 2-58 A polygon shape edited with the gxBreakRightEdit flag set

You can use the GXSetPolygonParts function to insert a polygon geometry that

contains multiple contours. In this case, the breaks that occur in the inserted geometry

remain in the resulting polygon shape.

For more information about polygon geometries, see “Polygon Shapes” on page 2-22.

For more information about the GXGetPolygonParts and GXSetPolygonParts

functions, see the function descriptions on page 2-144 and page 2-145.

The next two sections show more examples of editing shape geometries.

C H A P T E R 2

Geometric Shapes

Using Geometric Shapes 2-91

Editing Paths Parts
The GXGetPathParts and GXSetPathParts functions work similarly to the

GXGetPolygonParts and GXSetPolygonParts functions, which are described in the

previous section.

The sample function in Listing 2-31 creates a path shape similar to the polygon shape

from the previous section. Later examples in this section use this path shape to

demonstrate editing path parts.

Listing 2-31 Creating a path shape with two curved contours

void CreateTwoCurves(void)

{

gxShape aPathShape;

static long twoCurveGeometry[] = {2, /* number of contours */

 3, /* number of points */

 0x40000000, /* 0100 ... */

 ff(100), ff(150), /* on */

 ff(50), ff(100), /* off */

 ff(100), ff(50), /* on */

 3, /* number of points */

 0x40000000, /* 0100 ... */

 ff(200), ff(50), /* on */

 ff(250), ff(100), /* off */

 ff(200), ff(150)}; /* on */

aPathShape = GXNewPaths((gxPaths *) twoCurveGeometry);

GXSetShapeFill(aPathShape, gxOpenFrameFill);

GXDrawShape(aPathShape);

GXDisposeShape(aPathShape);

}

C H A P T E R 2

Geometric Shapes

2-92 Using Geometric Shapes

The resulting path shape is shown in Figure 2-59.

Figure 2-59 A path shape with two curved contours

You can use the GXSetPathParts function to replace any number of geometric points

from this path shape with an arbitrary number of new geometric points. In a manner

similar to the GXSetPolygonParts function, the GXSetPathParts function requires

that you encapsulate the new geometric points in a path geometry. For example, to

replace the top two geometric points in the path shape shown in Figure 2-59 with a

single geometric point, you must first encapsulate the new geometric point in a path

geometry, as with the definition

static long newTopGeometry[] = {1, /* number of contours */

 1, /* number of points */

 0x00000000, /* 0000 ... */

 ff(150), ff(50)}; /* on curve */

and then call the GXSetPathParts function:

GXSetPathParts(aPathsShape, 3, 2,

(gxPaths *) newTopGeometry, gxBreakNeitherEdit);

C H A P T E R 2

Geometric Shapes

Using Geometric Shapes 2-93

The resulting path shape is shown in Figure 2-60.

Figure 2-60 A path shape edited with GXSetPathParts

For more information about path geometries, see “Path Shapes” beginning on page 2-25.

For more information about the GXGetPathParts and GXSetPathParts functions,

see the function descriptions on page 2-148 and page 2-149.

Editing Shape Parts
The GXSetShapeParts function is more general than the GXSetPolygonParts

and GXSetPathParts functions described in the previous two sections. The

GXSetShapeParts function allows you to replace a subset of the geometric points in

one shape with the geometric points in the geometry of another shape.

For example, with GXSetShapeParts you could replace the last three geometric points

of a polygon shape with the geometry of a line shape, or you could replace the first

geometric point of a path shape with the entire geometry of a polygon shape.

C H A P T E R 2

Geometric Shapes

2-94 Using Geometric Shapes

The sample function in Listing 2-32 creates a path shape with one contour. Later

examples in this section use this path shape to demonstrate editing shape parts.

Listing 2-32 Creating a path shape with one contour

void CreatePathShape(void)

{

gxShape aPathShape;

static long twoCurveGeometry[] = {1, /* number of contours */

 6, /* number of points */

 0x48000000, /* 0100 1000 */

 ff(100), ff(150), /* on */

 ff(50), ff(100), /* off */

 ff(100), ff(50), /* on */

 ff(200), ff(50), /* on */

 ff(250), ff(100), /* off */

 ff(200), ff(150)}; /* on */

aPathsShape = GXNewPaths((gxPaths *) twoCurveGeometry);

GXSetShapeFill(aPathShape, gxOpenFrameFill);

GXDrawShape(aPathShape);

GXDisposeShape(aPathShape);

}

C H A P T E R 2

Geometric Shapes

Using Geometric Shapes 2-95

The resulting shape is shown in Figure 2-61.

Figure 2-61 A path shape with a flat top

To insert a new geometric point in this shape using the GXSetShapeParts function,

you must first encapsulate the new geometric point in a point shape:

static gxPoint newTopGeometry = {ff(150), ff(20)};

gxShape aPointShape;

aPointShape = GXNewPoint(&newTopGeometry);

Then you call the GXSetShapeParts function:

GXSetShapeParts(aPathsShape, 4, 0, aPointShape,

 gxBreakNeitherEdit);

C H A P T E R 2

Geometric Shapes

2-96 Using Geometric Shapes

Since you must create a shape to encapsulate the point geometry, you should dispose of

this shape when you no longer need it:

GXDisposeShape(aPointShape);

The resulting path shape is shown in Figure 2-62.

Figure 2-62 A path shape edited to have a pointy top

You can also use the GXSetShapeParts function to insert an off-curve control point in

the path shape. To do this, however, you must encapsulate the new geometric point into

a path shape, because only a path shape can contain a single off-curve point.

gxShape aSingleOffCurvePoint;

static long newTopGeometry[] = {1, /* number of contours */

 1, /* number of points */

 0x80000000, /* 1000 ... */

 ff(150), ff(20)}; /* off curve */

aSingleOffCurvePoint = GXNewPaths((gxPaths *) newTopGeometry);

GXSetShapeParts(aPathsShape, 4, 0,

 aSingleOffCurvePoint, gxBreakNeitherEdit);

GXDisposeShape(aSingleOffCurvePoint);

C H A P T E R 2

Geometric Shapes

Using Geometric Shapes 2-97

The resulting path shape is shown in Figure 2-63.

Figure 2-63 A path shape edited to have a round top

C H A P T E R 2

Geometric Shapes

2-98 Using Geometric Shapes

The GXSetShapeParts function allows you to edit the geometry of any shape. For

example, the sample function in Listing 2-33 creates a line shape and uses

GXSetShapeParts to change the last point.

Listing 2-33 Creating a diagonal line

void CreateDiagonalLine(void)

{

gxShape aLineShape;

gxShape aPointShape;

static gxLine lineGeometry = {ff(50), ff(50),

 ff(150), ff(150)};

static gxPoint newLastPointGeometry = {ff(300), ff(150)};

aLineShape = GXNewLine(&lineGeometry);

GXSetShapeFill(aLineShape, gxOpenFrameFill);

aPointShape = GXNewPoint(&newLastPointGeometry);

GXSetShapeParts(aLineShape, 2, 1, aPointShape,

 gxBreakNeitherEdit);

GXDisposeShape(aPointShape);

GXDrawShape(aLineShape);

GXDisposeShape(aLineShape);

}

C H A P T E R 2

Geometric Shapes

Using Geometric Shapes 2-99

The original line is shown in Figure 2-64.

Figure 2-64 A diagonal line

The line shape with the replaced last point is shown in Figure 2-65.

Figure 2-65 An edited line

For more information about editing shape parts and the GXSetShapeParts function,

see the function description on page 2-154.

C H A P T E R 2

Geometric Shapes

2-100 Applying Functions Described Elsewhere to Geometric Shapes

Applying Functions Described Elsewhere to Geometric Shapes

QuickDraw GX provides many functions that apply exclusively to geometric shapes.

However, there are many other QuickDraw GX functions that apply to other types of

shapes as well as geometric shapes.

The next two sections discuss how functions described elsewhere operate on geometric

shapes. These sections are:

■ “Shape-Related Functions Applicable to Geometric Shapes,” the next section

■ “Other Functions Applicable to Geometric Shapes,” on page 2-103

Shape-Related Functions Applicable to Geometric Shapes
You can apply all of the functions described in the chapter “Shape Objects” in Inside
Macintosh: QuickDraw GX Objects to geometric shapes. These functions allow you to

■ manipulate the shape object that represents geometric shapes (for example, you can
copy, clone, cache, compare, and dispose of a geometric shape)

■ set the geometry, shape type, shape fill, and shape attributes of geometric shapes

■ change the style, ink, and transform objects that are associated with geometric shapes

■ manipulate the tags and owner count of the geometric shapes

Table 2-1 gives important information about geometric shapes for a subset of the

functions from the chapter “Shape Objects” in Inside Macintosh: QuickDraw GX
Objects. Functions described in that chapter that do not appear in this list exhibit the

same behavior when applied to geometric shapes as they do when applied to other types

of shapes.

C H A P T E R 2

Geometric Shapes

Applying Functions Described Elsewhere to Geometric Shapes 2-101

When converting between geometric shape types, the behavior of the GXSetShapeType

function depends on the new shape type. If the new shape type is the point, line or

rectangle type, the new geometry is based on the bounding rectangle of the original

geometry:

For examples, see “Converting Between Geometric Shape Types” beginning on page 2-65.

Table 2-1 Shape-related functions that exhibit special behavior with geometric shapes

Function name Action taken

GXGetDefaultShape Returns a reference to the default geometric shape of the
specified type. See “The Geometric Shape Types” beginning
on page 2-16 for information about the default geometric
shapes.

GXGetShapeFill Returns the shape fill of the shape. See “The Geometric
Shape Types” beginning on page 2-16 for a discussion of
which shape fills are appropriate for which geometric
shapes.

GXSetDefaultShape Allows you to specify the shape to copy when creating new
geometric shapes. See “The Geometric Shape Types”
beginning on page 2-16 for information about the default
geometric shapes.

GXSetShapeFill Sets the shape fill of the shape. See “The Geometric Shape
Types” beginning on page 2-16 for a discussion of which
shape fills are appropriate for which geometric shapes.

GXSetShapeType Changes the shape type of the geometric shape and converts
the shape fill and geometry as appropriate. See the rest
of this section for more information about converting shape
types.

Old type New type New geometry

Any Point Upper-left corner of bounds

Any Line Line from upper-left corner to lower-left corner

Any Rectangle Bounding rectangle of original geometry

C H A P T E R 2

Geometric Shapes

2-102 Applying Functions Described Elsewhere to Geometric Shapes

If the new shape type is the curve type, the conversion performed depends on the

original shape type:

For examples, see “Converting Shapes to Curve Shapes” beginning on page 2-71.

If the new shape type is the polygon type, this function retains all of the original

geometric points:

When converting a path shape to a polygon shape, this function examines the curve

error of the style of the path shape. If the curve error is not zero, this functions creates a

polygon approximation of the original path. For more information about curve error, see

the next chapter, “Geometric Styles,” in this book.

Finally, if the new shape type is the path type, the GXSetShapeType function retains all

of the original geometry information:

For examples, see “Converting Shapes to Polygons and Paths” beginning on page 2-74.

Old type New type New geometry

Point Curve New control points all set to original point

Line Curve First and last points remain the same;
off-curve control point set equal to last point

Rectangle Curve First point set to original upper-left point;
last point set to original lower-right point;
off-curve control point set equal to last point

Polygon Curve New control points set to first three original control points

Path Curve New control points set to first three original control points

Old type New type New geometry

Point, line,
or rectangle

Polygon Single contour with same geometric points

Curve Polygon Single contour with same geometric points;
the off-curve point becomes on curve

Path Polygon Same geometric points; all on curve
(calculates approximation if curve error is not zero)

Old type New type New geometry

Point, line, curve,
or rectangle

Path Single contour with same geometric points

Polygon Path Same number of contours; same geometric points;
all control points remain on curve

C H A P T E R 2

Geometric Shapes

Geometric Shapes Reference 2-103

Other Functions Applicable to Geometric Shapes
You can apply any of the geometric operations described in Chapter 4, “Geometric

Operations,” to the geometric shapes.

Geometric shapes make use of the geometric properties of their style objects. For this

reason, you may apply shape-based functions (such as GXSetShapePen,

GXSetShapeDash, and so on) described in Chapter 3, “Geometric Styles,” to geometric

shapes.

You may also apply any of the shape-based functions in the chapter “Typographic

Styles” in Inside Macintosh: QuickDraw GX Typography to geometric shapes. However,

these functions do not affect the way geometric shapes appear when drawn.

You may apply any of the shape-based functions described in the chapter “Ink

Objects” in Inside Macintosh: QuickDraw GX Typography to geometric shapes.

These functions include GXSetShapeColor, GXSetShapeTransfer,

GXSetShapeInkAttributes, and so on.

You may apply any of the shape-based functions described in the chapter “Transform

Objects” in Inside Macintosh: QuickDraw GX Typography to geometric shapes. These

functions include GXSetShapeClip, GXSetShapeMapping, GXSetShapeHitTest,

and so on.

Geometric Shapes Reference

This section describes the data types and functions that are related to geometric shapes.

The “Data Types” section shows the structure definitions for the geometries of the

geometric shapes.

The “Functions” section describes the functions that allow you to create and draw

geometric shapes and functions that allow you to perform simple manipulations on

shape geometries, such as replacing the entire geometry, or replacing certain points in a

geometry.

Chapter 4, “Geometric Operations,” in this book describes functions that allow you to

perform more advanced operations on shape geometries—operations such as insetting,

intersecting, and so on.

C H A P T E R 2

Geometric Shapes

2-104 Geometric Shapes Reference

Data Types

This section describes the structures that you use when creating and manipulating

geometric shapes.

You use the gxPoint structure when creating a point shape and when specifying

geometric point positions for all of the geometric shapes.

You use the gxLine structure when creating a line shape.

You use the gxCurve structure when creating a curve shape.

You use the gxRectangle structure when creating a rectangle shape and when

specifying the bounding rectangle of a shape.

You use the gxPolygon structure when specifying a single contour made up of straight

lines. You use the gxPolygons structure when specifying multiple contours made up of

straight lines.

You use the gxPath structure when specifying a single contour made up of straight lines

and curves. You use the gxPaths structure when specifying multiple path contours.

The Point Structure

You use the gxPoint structure in a number of situations; for example, to specify the

geometry of a point shape, to specify the position of geometric points in the geometries

of other geometric shape types, to specify a location to hit-test, to specify the position of

a bitmap, and so on.

The gxPoint structure is defined as follows:

struct gxPoint {

Fixed x;

Fixed y;

};

Field descriptions

x A horizontal distance. Greater values of the x field indicate
distances further to the right.

y A vertical distance. Greater values of the y field indicate distances
further down.

The location of the origin depends on the context where you use the point; for example,

it might be the upper-left corner of a view port.

Notice that the x and y fields are of type Fixed. QuickDraw GX allows you to specify

fractional coordinate positions.

For more information about coordinates and coordinate spaces, see Inside Macintosh:
QuickDraw GX Objects.

For more information about points and point shapes, see “Point Shapes” on page 2-16.

C H A P T E R 2

Geometric Shapes

Geometric Shapes Reference 2-105

The Line Structure

You use the gxLine structure to specify the geometry of a line shape.

The gxLine structure is defined as follows:

struct gxLine {

struct gxPoint first;

struct gxPoint last;

};

Field descriptions

first The coordinate position where the line begins.

last The coordinate position where the line ends.

Notice that the endpoints of a line are ordered—lines have an implicit direction. This

direction can affect how QuickDraw GX draws a line shape, particularly when the line

shape has stylistic variations.

For more information about lines and line shapes, see “Line Shapes” on page 2-17.

The Curve Structure

You use the gxCurve structure to specify the geometry of a curve shape.

The gxCurve structure is defined as follows:

struct gxCurve {

struct gxPoint first;

struct gxPoint control;

struct gxPoint last;

};

Field descriptions

first The coordinate position where the curve begins.

control The coordinate position of the off-curve control point, which
QuickDraw GX uses to determine the tangents of the curve.

last The coordinate position where the curve ends.

The curve defined by these three points is a quadratic Bézier curve.

Because the geometric points that define a curve are ordered, curves have direction. The

direction of a curve can affect how QuickDraw GX draws the curve shape, particularly

when the curve shape has stylistic variations.

For more information about curves and curve shapes, see “Curve Shapes” on page 2-18.

C H A P T E R 2

Geometric Shapes

2-106 Geometric Shapes Reference

The Rectangle Structure

You use the gxRectangle structure in a variety of situations: to specify the geometry of

a rectangle shape, to specify the bounding rectangle of another shape, and so on.

The gxRectangle structure is defined as follows:

struct gxRectangle {

Fixed left;

Fixed top;

Fixed right;

Fixed bottom;

};

Field descriptions

left Specifies the x-coordinate of the rectangle’s first geometric point.

top Specifies the y-coordinate of the rectangle’s first geometric point.

right Specifies the x-coordinate of the rectangle’s last geometric point.

bottom Specifies the y-coordinate of the rectangle’s last geometric point.

You may specify a rectangle’s geometric points in any order—the coordinates in the

left and top field do not have to correspond to the rectangle’s upper-left corner.

However, rectangles calculated by QuickDraw GX, such as those returned from

geometric operations as described in Chapter 4, “Geometric Operations,” always have

their coordinates specified in the standard order.

For more information about rectangles and rectangle shapes, see “Rectangle Shapes” on

page 2-20.

Polygon Structures

You use the gxPolygon structure to specify a single polygon contour composed of

straight lines.

The gxPolygon structure is defined as follows:

struct gxPolygon {

long vectors;

struct gxPoint vector[gxAnyNumber];

};

Field descriptions

vectors The number of geometric points in the contour.

vector The coordinates of the geometric points.

The array index gxAnyNumber indicates that the gxPolygon data structure is a

variable-length structure—it can include any number of points.

C H A P T E R 2

Geometric Shapes

Geometric Shapes Reference 2-107

The gxPolygons structure allows you to group multiple polygon contours together.

You use this structure when specifying the geometry of a polygon shape.

The gxPolygons structure is defined as follows:

struct gxPolygons {

long contours;

struct gxPolygon contour[gxAnyNumber];

};

Field descriptions

contours The number of polygon contours.

contour The polygon contours.

The array index gxAnyNumber indicates that the gxPolygons data structure is also a

variable-length structure—it can include any number of gxPolygon structures.

Implementation Note

In version 1.0 of QuickDraw GX, a single polygon contour can have
between 1 and 32,767 geometric points. The geometry of a polygon
shape can have between 0 and 32,767 polygon contours. The total size of
a polygon geometry may not exceed 2,147,483,647 bytes. ◆

For more information about polygons and polygon shapes, see “Polygon Shapes” on

page 2-22.

Path Structures

You use the gxPath structure to specify a single contour composed of straight lines and

curves.

The gxPath structure is defined as follows:

struct gxPath {

long vectors;

long controlBits[gxAnyNumber];

struct gxPoint vector[gxAnyNumber];

};

Field descriptions

vectors The number of geometric points in the contour.

controlBits Bit flags that indicate which geometric points are on curve and
which are off-curve control points.

vector The coordinates of the geometric points.

The array index gxAnyNumber indicates that the gxPath data structure is a

variable-length structure—it can include any number of geometric points

C H A P T E R 2

Geometric Shapes

2-108 Geometric Shapes Reference

Each bit in the array specified in the controlBits field indicates whether a particular

point in the array specified by the vector field is on curve or off curve. A value of 0

indicates that the corresponding point is on curve and a value of 1 indicates that the

corresponding point is off curve.

The gxPaths structure allows you to group multiple path contours together. You use

this data structure when specifying the geometry of a path shape.

The gxPaths structure is defined as follows:

struct gxPaths {

long contours;

struct gxPath contour[gxAnyNumber];

};

Field descriptions

contours The number of path contours.

contour The path contours.

The array index gxAnyNumber indicates that the gxPaths data structure is also a

variable-length structure—it can include any number of path contours.

Implementation Note

In version 1.0 of QuickDraw GX, a single path contour can have between
0 and 32,767 geometric points. The geometry of a path shape can
between 0 and 32,767 polygon contours. The total size of a path
geometry may not exceed 2,147,483,647 bytes. ◆

For more information about paths and path shapes, see “Path Shapes” on page 2-25.

Functions

This section describes the functions available for

■ creating new geometric shapes

■ manipulating the geometries of geometric shapes

■ editing parts of shape geometries

■ drawing geometric shapes

Chapter 4, “Geometric Operations,” contains information about more sophisticateed

functions for manipulating shape geometries.

C H A P T E R 2

Geometric Shapes

Geometric Shapes Reference 2-109

For information about creating, drawing, and manipulating bitmap shapes, see

Chapter 5, “Bitmap Shapes.”

For information about creating, drawing, and manipulating picture shapes, see

Chapter 6, “Picture Shapes.”

For information about getting and setting the default geometric shapes and information

about manipulating shape type and shape fill, see the chapter “Shape Objects” in Inside
Macintosh: QuickDraw GX Objects. For information about hit-testing geometric shapes,

see the chapter “Transform Objects” also in that book.

For information about creating, drawing, and manipulating typographic shapes, see

Inside Macintosh: QuickDraw GX Typography.

Creating Geometric Shapes

QuickDraw GX provides a number of ways for you to create a new shape.

The functions described in this section allow you to specify a shape’s initial geometry

when creating the shape. For example, the GXNewShapeVector function allows you

to specify a shape type and an array of values. The function creates a new shape of the

specified type and uses the array of values to initialize the new shape’s geometry.

The GXNewPoint, GXNewLine, GXNewCurve, GXNewRectangle, GXNewPolygons,

and GXNewPaths functions all create a new shape of a specific type. These functions

allow you to specify the shape’s initial geometry.

You can also use the GXNewShape function to create shapes. This function, which is

described in the chapter “Shape Objects” in Inside Macintosh: QuickDraw GX Objects,

allows you to create a shape by specifying only the shape type; the geometry of the new

shape is set to its initial state—all geometric points are (0.0, 0.0) and polygons and paths

have 0 contours. You can customize the shape’s geometry using the functions described

in “Getting and Setting Shape Geometries” beginning on page 2-119.

GXNewShapeVector

You can use the GXNewShapeVector function to create a new shape of any type.

void GXNewShapeVector(gxShapeType aType, const Fixed vector[]);

aType A reference to the shape whose geometry you want to change.

vector An array of fixed-point values to use as the new geometry.

function result A reference to the new shape.

C H A P T E R 2

Geometric Shapes

2-110 Geometric Shapes Reference

DESCRIPTION

The GXNewShapeVector function copies the default shape of the shape type specified

by the aType parameter, sets the owner count of the new shape to 1, initializes its

geometry with the values in the vector parameter, and returns a reference to it as the

function result.

Although this function creates a copy of the default shape, it does not create a copy of

the default shape’s style, ink, or transform. The new shape returned by this function

contains references to same style, ink, and transform as the default shape. You can

change the style using functions from Chapter 3, “Geometric Styles,” and you

can change the style, ink, and transform using functions from Inside Macintosh:
QuickDraw GX Objects.

You may pass any number of values in the vector array; the GXNewShapeVector

function traverses this array as necessary to initialize the new shape’s geometry. If you

pass too few values in this parameter, the function posts the warning

extra_data_passed_was_ignored.

If you specify a shape type that is not one of the geometric shape types, this function

performs the actions described in the following table:

ERRORS, WARNINGS, AND NOTICES

Shape type Action taken

bitmap Creates a bitmap shape; expects the vector array to contain values
corresponding to the fields of a bitmap structure

picture Creates a picture shape with no overriding styles, inks, or transforms;
expects the vector array to contain an array of shape references

text Posts the error graphic_type_does_not_contain_points

glyph Posts the error graphic_type_does_not_contain_points

layout Posts the error graphic_type_does_not_contain_points

Errors
out_of_memory
shape_is_nil
parameter_is_nil
number_of_points_exceeds_implementation_limit
number_of_contours_exceeds_implementation_limit
size_of_polygon_exceeds_implementation_limit
size_of_path_exceeds_implementation_limit
illegal_type_for_shape (debugging version)
count_is_less_than_one (debugging version)
shape_access_not_allowed (debugging version)
graphic_type_does_not_contain_points (debugging version)

Warnings
extra_data_passed_was_ignored

C H A P T E R 2

Geometric Shapes

Geometric Shapes Reference 2-111

SEE ALSO

For general information about each type of geometry, see “About Geometric Shapes” on

page 2-5. For specific definitions of each type of geometry, see the section “Data Types”

beginning on page 2-104.

For information about related functions, see the descriptions of the GXNeWPoint,

GXNeWLine, GXNeWCurve, GXNeWRectangle, GXNeWPolygons, and GXNeWPaths

functions on page 2-111 through page 2-119.

GXNewPoint

You can use the GXNewPoint function to create a new point shape and initialize its

geometry.

gxShape GXNewPoint(const gxPoint *data);

data A pointer to the initial point geometry.

function result A reference to the new point shape.

DESCRIPTION

The GXNewPoint function creates a copy of the default point shape, sets the owner

count of the copy to 1, initializes its geometry with the values in the data parameter,

and returns a reference to it as the function result.

Although this function creates a copy of the default point shape, it does not create a copy

of the default point’s style, ink, or transform objects. The new point shape returned by

this function contains references to the same style, ink, and transform as the default

point shape.

SPECIAL CONSIDERATIONS

If no error occurs, the GXNewPoint function creates a shape; you are responsible for

disposing of this shape when you no longer need it. See Inside Macintosh: QuickDraw GX
Objects for information about creating and disposing of shapes.

If an error occurs, this function returns nil as the function result.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
parameter_is_nil (debugging version)

C H A P T E R 2

Geometric Shapes

2-112 Geometric Shapes Reference

SEE ALSO

For an example that uses this function, see “Creating and Drawing Points” beginning on

page 2-29.

For a discussion of points and the default point shape, see “Point Shapes” on page 2-16.

For a description of the gxPoint structure, see page 2-104.

To create a new point shape without specifying an initial geometry, see the description of

the GXNewShape function in the chapter “Shape Objects” in Inside Macintosh:
QuickDraw GX Objects.

To set the geometry of an existing point shape, see the description of the GXSetPoint

function on page 2-122.

To draw a point geometry, see the description of GXDrawPoint on page 2-158. To draw a

point shape, see the description of GXDrawShape in the chapter “Shape Objects” in

Inside Macintosh: QuickDraw GX Objects.

GXNewLine

You can use the GXNewLine function to create a new line shape and initialize its

geometry.

gxShape GXNewLine(const gxLine *data);

data A pointer to the initial line geometry.

function result A reference to the new line shape.

DESCRIPTION

The GXNewLine function creates a copy of the default line shape, sets the owner count of

the copy to 1, initializes its geometry with the values in the data parameter, and returns

a reference to it as the function result.

Although this function creates a copy of the default line shape, it does not create a copy

of the default line’s style, ink, or transform objects. The new line shape returned by this

function contains references to same style, ink, and transform as the default line shape.

SPECIAL CONSIDERATIONS

If no error occurs, the GXNewLine function creates a shape; you are responsible for

disposing of this shape when you no longer need it. See Inside Macintosh: QuickDraw GX
Objects for information about creating and disposing of shapes.

If an error occurs, this function returns nil as the function result.

C H A P T E R 2

Geometric Shapes

Geometric Shapes Reference 2-113

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example that uses this function, see “Creating and Drawing Lines” beginning on

page 2-36.

For a discussion of lines and the default line shape, see “Line Shapes” on page 2-17.

For a description of the gxLine structure, see page 2-105.

To create a new line shape without specifying an initial geometry, see the description of

the GXNewShape function in the chapter “Shape Objects” in Inside Macintosh:
QuickDraw GX Objects.

To set the geometry of an existing line shape, see the description of the GXSetLine

function on page 2-124.

To draw a line geometry without creating a line shape, see the description of

GXDrawLine on page 2-158. To draw a line shape, see the description of GXDrawShape

in the chapter “Shape Objects” in Inside Macintosh: QuickDraw GX Objects.

GXNewCurve

You can use the GXNewCurve function to create a new curve shape and initialize its

geometry.

gxShape GXNewCurve(const gxCurve *data);

data A pointer to the initial curve geometry.

function result A reference to the new curve shape.

DESCRIPTION

The GXNewCurve function creates a copy of the default curve shape, sets the owner

count of the copy to 1, initializes its geometry with the values in the data parameter,

and returns a reference to it as the function result.

Although this function creates a copy of the default curve shape, it does not create a

copy of the default curve’s style, ink, or transform objects. The new curve shape returned

by this function contains references to same style, ink, and transform as the default curve

shape.

Errors
out_of_memory
parameter_is_nil (debugging version)

C H A P T E R 2

Geometric Shapes

2-114 Geometric Shapes Reference

SPECIAL CONSIDERATIONS

If no error occurs, the GXNewCurve function creates a shape; you are responsible for

disposing of this shape when you no longer need it. See Inside Macintosh: QuickDraw GX
Objects for information about creating and disposing of shapes.

If an error occurs, this function returns nil as the function result.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example that uses this function, see “Creating and Drawing Curves” beginning

on page 2-41.

For a discussion of curves and the default curve shape, see “Curve Shapes” beginning on

page 2-18.

For a description of the gxCurve structure, see page 2-105.

To create a new curve shape without specifying an initial geometry, see the description of

the GXNewShape function in the chapter “Shape Objects” in Inside Macintosh:
QuickDraw GX Objects.

To set the geometry of an existing curve shape, see the description of the GXSetCurve

function on page 2-126.

To draw a curve geometry without creating a curve shape, see the description

of GXDrawCurve on page 2-159. To draw a curve shape, see the description of

GXDrawShape in the chapter “Shape Objects” in Inside Macintosh: QuickDraw GX Objects.

GXNewRectangle

You can use the GXNewRectangle function to create a new rectangle shape and

initialize its geometry.

gxShape GXNewRectangle(const gxRectangle *data);

data A pointer to the initial rectangle geometry.

function result A reference to the new rectangle shape.

Errors
out_of_memory
parameter_is_nil (debugging version)

C H A P T E R 2

Geometric Shapes

Geometric Shapes Reference 2-115

DESCRIPTION

The GXNewRectangle function creates a copy of the default rectangle shape, sets the

owner count of the copy to 1, initializes its geometry with the values in the data

parameter, and returns a reference to it as the function result.

Although this function creates a copy of the default rectangle shape, it does not create a

copy of the default rectangle’s style, ink, or transform objects. The new rectangle shape

returned by this function contains references to same style, ink, and transform as the

default rectangle shape.

SPECIAL CONSIDERATIONS

If no error occurs, the GXNewRectangle function creates a shape; you are responsible

for disposing of this shape when you no longer need it. See Inside Macintosh:
QuickDraw GX Objects for information about creating and disposing of shapes.

If an error occurs, this function returns nil as the function result.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example that uses this function, see “Creating and Drawing Rectangles”

beginning on page 2-43.

For a discussion of rectangles and the default rectangle shape, see “Rectangle Shapes”

beginning on page 2-20.

For a description of the gxRectangle structure, see page 2-106.

To create a new rectangle shape without specifying an initial geometry, see the

description of the GXNewShape function in the chapter “Shape Objects” in Inside
Macintosh: QuickDraw GX Objects.

To set the geometry of an existing rectangle shape, see the description of the

GXSetRectangle function on page 2-129.

To draw a rectangle geometry without creating a rectangle shape, see the description of

GXDrawRectangle on page 2-160. To draw a rectangle shape, see the description

of GXDrawShape in the chapter “Shape Objects” in Inside Macintosh: QuickDraw GX
Objects.

Errors
out_of_memory
parameter_is_nil (debugging version)

C H A P T E R 2

Geometric Shapes

2-116 Geometric Shapes Reference

GXNewPolygons

You can use the GXNewPolygons function to create a new polygon shape and initialize

its geometry.

gxShape GXNewPolygons(const gxPolygons *data);

data A pointer to the initial polygon geometry.

function result A reference to the new polygon shape.

DESCRIPTION

The GXNewPolygons function creates a copy of the default polygon shape, sets the

owner count of the copy to 1, initializes its geometry with the values in the data

parameter, and returns a reference to it as the function result. If you specify nil for the

data parameter, this function returns a polygon shape with no polygon contours.

Although this function creates a copy of the default polygon shape, it does not create a

copy of the default polygon’s style, ink, or transform objects. The new polygon shape

returned by this function contains references to same style, ink, and transform as the

default polygon shape.

Implementation Note

In version 1.0 of QuickDraw GX, the total size of a polygon geometry
may not exceed 2,147,483,647 bytes. If the size of the data you provide in
the data parameter exceeds this limit, the GXNewPolygons function
posts a size_of_polygon_exceeds_implementation_limit
error. ◆

SPECIAL CONSIDERATIONS

If no error occurs, the GXNewPolygons function creates a shape; you are responsible for

disposing of this shape when you no longer need it. See Inside Macintosh: QuickDraw GX
Objects for information about creating and disposing of shapes.

If an error occurs, this function returns nil as the function result.

C H A P T E R 2

Geometric Shapes

Geometric Shapes Reference 2-117

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example that uses this function, see “Creating and Drawing Polygons” beginning

on page 2-45.

For a discussion of polygons and the default polygon shape, see “Polygon Shapes”

beginning on page 2-22.

For a description of the gxPolygons structure, see page 2-106.

To create a new polygon shape without specifying an initial geometry, see the

description of the GXNewShape function in the chapter “Shape Objects” in Inside
Macintosh: QuickDraw GX Objects.

To set the geometry of an existing polygon shape, see the description of the

GXSetPolygons function on page 2-131.

To draw a polygon geometry without creating a polygon shape, see the description of

GXDrawPolygons on page 2-161. To draw a polygon shape, see the description

of GXDrawShape in the chapter “Shape Objects” in Inside Macintosh: QuickDraw GX
Objects.

GXNewPaths

You can use the GXNewPaths function to create a new path shape and initialize its

geometry.

gxShape GXNewPaths(const gxPaths *data);

data A pointer to the initial path geometry.

function result A reference to the new path shape.

Errors
out_of_memory
number_of_points_exceeds_implementation_limit
number_of_contours_exceeds_implementation_limit
size_of_polygon_exceeds_implementation_limit
count_is_less_than_one (debugging version)

C H A P T E R 2

Geometric Shapes

2-118 Geometric Shapes Reference

DESCRIPTION

The GXNewPaths function creates a copy of the default path shape, sets the owner count

of the copy to 1, initializes its geometry with the values in the data parameter, and

returns a reference to it as the function result. If you specify nil for the data parameter,

this function returns a path shape with no path contours.

Although this function creates a copy of the default path shape, it does not create a copy

of the default path shape’s style, ink, or transform objects. The new path shape returned

by this function contains references to same style, ink, and transform as the default path

shape.

Implementation Limit

In version 1.0 of QuickDraw GX, the total size of a path geometry may
not exceed 2,147,483,647 bytes. If the size of the data you provide in the
data parameter exceeds this limit, the GXNewPaths function posts a
size_of_path_exceeds_implementation_limit error. ◆

SPECIAL CONSIDERATIONS

If no error occurs, the GXNewPaths function creates a shape; you are responsible for

disposing of this shape when you no longer need it. See Inside Macintosh: QuickDraw GX
Objects for information about creating and disposing of shapes.

If an error occurs, this function returns nil as the function result.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example that uses this function, see “Creating and Drawing Paths” beginning on

page 2-55.

For a discussion of paths and the default path shape, see “Path Shapes” beginning on

page 2-25.

For a description of the gxPaths structure, see page 2-107.

To create a new path shape without specifying an initial geometry, see the description of

the GXNewShape function in the chapter “Shape Objects” in Inside Macintosh:
QuickDraw GX Objects.

To set the geometry of an existing path shape, see the description of the GXSetPaths

function on page 2-133.

Errors
out_of_memory
number_of_points_exceeds_implementation_limit
number_of_contours_exceeds_implementation_limit
size_of_path_exceeds_implementation_limit
count_is_less_than_one (debugging version)

C H A P T E R 2

Geometric Shapes

Geometric Shapes Reference 2-119

To draw a path geometry without creating a path shape, see the description

of GXDrawPaths on page 2-162. To draw a path shape, see the description of

GXDrawShape in the chapter “Shape Objects” in Inside Macintosh: QuickDraw GX Objects.

Getting and Setting Shape Geometries

The geometry property of geometric shapes contains the geometric points that define the

shape. The geometries of polygon shapes and path shapes also contain some additional

information, such as the number of separate contours, how many geometric points in

each contour, and (for paths) which geometric points are on curve and which are

off-curve control points.

For general information about each type of geometry, see “About Geometric Shapes”

beginning on page 2-5. For specific definitions of each type of geometric structure, see

the section “Data Types” beginning on page 2-104.

The GXSetShapeVector function allows you to change the geometry of any shape.

With this function, you specify a shape and an array of values. The function replaces the

geometry of the specified shape with the values in the array. This function works for

other shape types as well as geometric shapes.

The GXGetPoint, GXGetLine, GXGetCurve, GXGetRectangle, GXGetPolygons,

and GXGetPaths functions each return the geometry of a specific type of shape.

The GXSetPoint, GXSetLine, GXSetCurve, GXSetRectangle, GXSetPolygons,

and GXSetPaths functions each replace the geometry of a specific type of shape.

GXSetShapeVector

You can use the GXSetShapeVector function to change the geometry of an existing

shape.

void GXSetShapeVector(gxShape target, const Fixed vector[]);

target A reference to the shape whose geometry you want to change.

data An array of fixed-point values to use as the new geometry.

DESCRIPTION

The GXSetShapeVector function replaces the geometry of the target shape with a

new geometry, which it creates by traversing the vector array. The length of the

vector array that you supply depends on shape type of the target shape; for

example, if the target shape is a point, you should provide a vector array with two

Fixed values; if the target shape is a line, you should provide four Fixed values, and

so on.

C H A P T E R 2

Geometric Shapes

2-120 Geometric Shapes Reference

Although this function creates a copy of the default shape, it does not create a copy of

the default shape’s style, ink, or transform. The new shape returned by this function

contains references to same style, ink, and transform as the default shape. You can

change the style using functions from Chapter 3, “Geometric Styles,” and you can

change the style, ink, and transform using functions from Inside Macintosh:
QuickDraw GX Objects.

You may pass any number of values in the vector array; the GXNewShapeVector

function traverses this array as necessary to initialize the new shape’s geometry. If you

pass too few values in this parameter, the function posts the warning

extra_data_passed_was_ignored.

If you specify a shape type that is not one of the geometric shape types, this function

performs the actions described in the following table:

ERRORS, WARNINGS, AND NOTICES

Shape type Action taken

bitmap Sets the target shape to be a bitmap shape; expects the vector array to
contain values corresponding to the fields of a bitmap structure

picture Sets the target shape to be a picture shape with no overriding styles,
inks, or transforms; expects the vector array to contain an array of shape
references

text Posts the error graphic_type_does_not_contain_points

glyph Posts the error graphic_type_does_not_contain_points

layout Posts the error graphic_type_does_not_contain_points

Errors
out_of_memory
shape_is_nil
parameter_is_nil
number_of_points_exceeds_implementation_limit
number_of_contours_exceeds_implementation_limit
size_of_polygon_exceeds_implementation_limit
size_of_path_exceeds_implementation_limit
illegal_type_for_shape (debugging version)
count_is_less_than_one (debugging version)
shape_access_not_allowed (debugging version)
graphic_type_does_not_contain_points (debugging version)

Warnings
extra_data_passed_was_ignored

C H A P T E R 2

Geometric Shapes

Geometric Shapes Reference 2-121

SEE ALSO

For general information about each type of geometry, see “About Geometric Shapes” on

page 2-5. For specific definitions of each type of geometry, see the section “Data Types”

beginning on page 2-104.

For information about related functions, see the descriptions of the GXSetPoint,

GXSetLine, GXSetCurve, GXSetRectangle, GXSetPolygons, and GXSetPaths

functions on page 2-122 through page 2-135.

GXGetPoint

You can use the GXGetPoint function to determine the geometry of an existing point

shape.

gxPoint *GXGetPoint(gxShape source, gxPoint *data);

source A reference to the point shape whose geometry you want to determine.

data A pointer to a gxPoint structure. The function copies the source shape’s
geometry into this structure.

function result A pointer to a copy of the source shape’s geometry.

DESCRIPTION

The GXGetPoint function copies the geometry information from the source point shape

into the gxPoint structure pointed to by the data parameter. As a convenience, this

function also returns a pointer to the point geometry as the function result.

If the source shape is not a point shape, this function posts the error code

illegal_type_for_shape.

You must pass a pointer to a gxPoint structure in the data parameter—if you pass nil

for this parameter, the function posts the error code parameter_is_nil.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
shape_is_nil
illegal_type_for_shape (debugging version)
parameter_is_nil (debugging version)

C H A P T E R 2

Geometric Shapes

2-122 Geometric Shapes Reference

SEE ALSO

For general information about point geometries, see “Point Shapes” on page 2-16.

For the definition of the gxPoint structure, see page 2-104.

To create a new point shape, use the GXNewPoint function, which is described on

page 2-111.

To change the geometry of an existing point shape, use the GXSetPoint function, which

is described in the next section.

To draw a point geometry without creating a point shape, use the GXDrawPoint

function, which is described on page 2-158. To draw a point shape, use the

GXDrawShape function, which is described in the chapter “Shape Objects” in Inside
Macintosh: QuickDraw GX Objects.

GXSetPoint

You can use the GXSetPoint function to change the geometry of an existing point shape.

void GXSetPoint(gxShape target, const gxPoint *data);

target A reference to the point shape whose geometry you want to change.

data A pointer to the new point geometry.

DESCRIPTION

The GXSetPoint function copies the geometry information from the data parameter

into the geometry property of the target point shape. If the target shape is not a point

shape, this function replaces the target shape with a point shape and sets the shape fill to

open-frame fill.

You must provide a pointer to a gxPoint structure in the data parameter—if you pass

nil for the data parameter, the function posts the error parameter_is_nil.

If the target shape is locked (that is, its gxLockedShape shape attribute is set), this

function posts the error shape_access_not_allowed.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
shape_is_nil
parameter_is_nil (debugging version)
shape_access_not_allowed (debugging version)

C H A P T E R 2

Geometric Shapes

Geometric Shapes Reference 2-123

SEE ALSO

For general information about point geometries, see “Point Shapes” on page 2-16.

For the definition of the gxPoint structure, see page 2-104.

To create a new point shape, use the GXNewPoint function, which is described on

page 2-111.

To examine the geometry of an existing point shape, use the GXGetPoint function,

which is described on page 2-121.

To draw a point geometry without creating a point shape, use the GXDrawPoint

function, which is described on page 2-158. To draw a point shape, use the

GXDrawShape function, which is described in the chapter “Shape Objects” in Inside
Macintosh: QuickDraw GX Objects.

GXGetLine

You can use the GXGetLine function to determine the geometry of an existing line

shape.

gxLine *GXGetLine(gxShape source, gxLine *data);

source A reference to the line shape whose geometry you want to determine.

data A pointer to a gxLine structure. The function copies the source shape’s
geometry into this structure.

function result A pointer to a copy of the source shape’s geometry.

DESCRIPTION

The GXGetLine function copies the geometry information from the source line shape

into the gxLine structure pointed to by the data parameter. As a convenience, this

function also returns a pointer to the line geometry as the function result.

If the source shape is not a line shape, this function posts the error code

illegal_type_for_shape.

You must pass a pointer to a gxLine structure in the data parameter—if you pass nil

for this parameter, the function posts the error code parameter_is_nil.

C H A P T E R 2

Geometric Shapes

2-124 Geometric Shapes Reference

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For general information about line geometries, see “Line Shapes” on page 2-17.

For the definition of the gxLine structure, see page 2-105.

To create a new line shape, use the GXNewLine function, which is described on

page 2-112.

To change the geometry of an existing line shape, use the GXSetLine function, which is

described in the next section.

To draw a line geometry without creating a line shape, use the GXDrawLine function,

which is described on page 2-158. To draw a line shape, use the GXDrawShape

function, which is described in the chapter “Shape Objects” in Inside Macintosh:
QuickDraw GX Objects.

GXSetLine

You can use the GXSetLine function to change the geometry of a line shape.

void GXSetLine(gxShape target, const gxLine *data);

target A reference to the line shape whose geometry you want to change.

data A pointer to the new line geometry.

DESCRIPTION

The GXSetLine function copies the geometry information from the data parameter

into the geometry property of the target line shape. If the target shape is not a line shape,

this function replaces the target shape with a line shape and sets the shape fill to

open-frame fill.

You must provide a pointer to a gxLine structure in the data parameter—if you pass

nil for this parameter, the function posts the error code parameter_is_nil.

If the target shape is locked (that is, its gxLockedShape shape attribute is set), this

function posts the error shape_access_not_allowed.

Errors
out_of_memory
shape_is_nil
illegal_type_for_shape (debugging version)
parameter_is_nil (debugging version)

C H A P T E R 2

Geometric Shapes

Geometric Shapes Reference 2-125

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For general information about line geometries, see “Line Shapes” on page 2-17.

For the definition of the gxLine structure, see page 2-105.

To create a new line shape, use the GXNewLine function, which is described on

page 2-112.

To examine the geometry of an existing line shape, use the GXGetLine function, which

is described on page 2-123.

To draw a line geometry without creating a line shape, use the GXDrawLine function,

which is described on page 2-158. To draw a line shape, use the GXDrawShape

function, which is described in the chapter “Shape Objects” in Inside Macintosh:
QuickDraw GX Objects.

GXGetCurve

You can use the GXGetCurve function to determine the geometry of an existing curve

shape.

gxCurve *GXGetCurve(gxShape source, gxCurve *data);

source A reference to the curve shape whose geometry you want to determine.

data A pointer to a gxCurve structure. The function copies the source shape’s
geometry into this structure.

function result A pointer to a copy of the source shape’s geometry.

DESCRIPTION

The GXGetCurve function copies the geometry information from the source curve shape

into the gxCurve structure pointed to by the data parameter. As a convenience, this

function also returns a pointer to the curve geometry as the function result.

Errors
out_of_memory
shape_is_nil
parameter_is_nil (debugging version)
shape_access_not_allowed (debugging version)

C H A P T E R 2

Geometric Shapes

2-126 Geometric Shapes Reference

If the source shape is not a curve shape, this function posts the error code

illegal_type_for_shape.

You must pass a pointer to a gxCurve structure in the data parameter—if you pass nil

for this parameter, the function posts the error code parameter_is_nil.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For general information about curve geometries, see “Curve Shapes” on page 2-18.

For the definition of the gxCurve structure, see page 2-105.

To create a new curve shape, use the GXNewCurve function, which is described on

page 2-113.

To change the geometry of an existing curve shape, use the GXSetCurve function,

which is described in the next section.

To draw a curve geometry without creating a curve shape object, use the GXDrawCurve

function, which is described on page 2-159. To draw a curve shape, use the

GXDrawShape function, which is described in the chapter “Shape Objects” in Inside
Macintosh: QuickDraw GX Objects.

GXSetCurve

You can use the GXSetCurve function to change the geometry of a curve shape.

void GXSetCurve(gxShape target, const gxCurve *data);

target A reference to the curve shape whose geometry you want to change.

data A pointer to the new curve geometry.

DESCRIPTION

The GXSetCurve function copies the geometry information from the data parameter

into the geometry property of the target shape. If the target shape is not a curve shape,

this function replaces the target shape with a curve shape and sets the shape fill to

open-frame fill.

Errors
out_of_memory
shape_is_nil
illegal_type_for_shape (debugging version)
parameter_is_nil (debugging version)

C H A P T E R 2

Geometric Shapes

Geometric Shapes Reference 2-127

You must provide a pointer to a gxCurve structure in the data parameter—if you pass

nil for this parameter, the function posts the error code parameter_is_nil.

If the target shape is locked (that is, its gxLockedShape shape attribute is set), this

function posts the error shape_access_not_allowed.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For general information about curve geometries, see “Curve Shapes” on page 2-18.

For the definition of the gxCurve structure, see page 2-105.

To create a new curve shape, use the GXNewCurve function, which is described on

page 2-113.

To examine the geometry of an existing curve shape, use the GXGetCurve function,

which is described on page 2-125.

To draw a curve geometry without creating a curve shape, use the GXDrawCurve

function, which is described on page 2-159. To draw a curve shape, use the

GXDrawShape function, which is described in the chapter “Shape Objects” in Inside
Macintosh: QuickDraw GX Objects.

GXGetRectangle

You can use the GXGetRectangle function to determine the geometry of an existing

rectangle shape.

gxRectangle *GXGetRectangle(gxShape source, gxRectangle *data);

source A reference to the rectangle shape whose geometry you want to
determine.

data A pointer to a gxRectangle structure. The function copies the source
shape’s geometry into this structure.

function result A pointer to a copy of the source shape’s geometry.

Errors
out_of_memory
shape_is_nil
parameter_is_nil (debugging version)
shape_access_not_allowed (debugging version)

C H A P T E R 2

Geometric Shapes

2-128 Geometric Shapes Reference

DESCRIPTION

The GXGetRectangle function copies the geometry information from the source

rectangle shape into the gxRectangle data structure pointed to by the data parameter.

As a convenience, this function also returns a pointer to the rectangle geometry as the

function result.

If the source shape is not a rectangle shape, this function posts the error code

illegal_type_for_shape.

You must pass a pointer to a gxRectangle structure in the data parameter—if you

pass nil for this parameter, the function posts the error code parameter_is_nil.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For general information about rectangle geometries, see “Rectangle Shapes” on

page 2-20.

For the definition of the gxRectangle structure, see page 2-106.

To create a new rectangle shape, use the GXNewRectangle function, which is described

on page 2-114.

To determine the bounding rectangle of a rectangle shape, use the GXGetShapeBounds

function, which is described in the chapter, “Geometric Operations,” in this book. (The

result of the GXGetShapeBounds function is an ordered rectangle. Therefore, the result

of this function may differ from the geometry of the shape you pass in, even if that shape

is a rectangle.)

To change the geometry of an existing rectangle shape, use the GXSetRectangle

function, which is described in the next section.

To draw a rectangle geometry without creating a rectangle shape, use the

GXDrawRectangle function, which is described on page 2-160. To draw a rectangle

shape, use the GXDrawShape function, which is described in the chapter “Shape

Objects” in Inside Macintosh: QuickDraw GX Objects.

Errors
out_of_memory
shape_is_nil
illegal_type_for_shape (debugging version)
parameter_is_nil (debugging version)

C H A P T E R 2

Geometric Shapes

Geometric Shapes Reference 2-129

GXSetRectangle

You can use the GXSetRectangle function to change the geometry of a rectangle shape.

void GXSetRectangle(gxShape target, const gxRectangle *data);

target A reference to the rectangle shape whose geometry you want to change.

data A pointer to the new rectangle geometry.

DESCRIPTION

The GXSetRectangle function copies the geometry information from the data

parameter into the geometry property of the target shape. If the target shape is not a

rectangle shape, this function replaces the target shape with a rectangle shape and sets

the shape fill to closed-frame fill if it was originally open-frame fill.

If the target shape is not a rectangle shape, this function posts the error code

illegal_type_for_shape.

You must provide a pointer to a gxRectangle structure in the data parameter—if you

pass nil for this parameter, the function posts the error code parameter_is_nil.

If the target shape is locked (that is, its gxLockedShape shape attribute is set), this

function posts the error shape_access_not_allowed.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For general information about rectangle geometries, see “Rectangle Shapes” on

page 2-20.

For the definition of the gxRectangle structure, see page 2-106.

To create a new rectangle shape, use the GXNewRectangle function, which is described

on page 2-114.

To examine the geometry of an existing rectangle shape, use the GXGetRectangle

function, which is described on page 2-127.

To draw a rectangle geometry without creating a rectangle shape, use the

GXDrawRectangle function, which is described on page 2-160. To draw a rectangle

shape, use the GXDrawShape function, which is described in the chapter “Shape

Objects” in Inside Macintosh: QuickDraw GX Objects.

Errors
out_of_memory
shape_is_nil
parameter_is_nil (debugging version)
shape_access_not_allowed (debugging version)

C H A P T E R 2

Geometric Shapes

2-130 Geometric Shapes Reference

GXGetPolygons

You can use the GXGetPolygons function to determine the geometry of a polygon

shape.

long GXGetPolygons(gxShape source, gxPolygons *data);

source A reference to the polygon shape whose geometry you want to determine.

data A pointer to a gxPolygons data structure. The function copies the source
shape’s geometry into this structure.

function result The length in bytes of the source shape’s geometry.

DESCRIPTION

The GXGetPolygons function copies the geometry information from the source

polygon shape into the gxPolygons structure pointed to by the data parameter. As the

function result, this function returns the length in bytes of the polygon geometry.

If the source shape is not a polygon shape, this function posts the error code

illegal_type_for_shape.

You may pass nil for the data parameter. In this case, the GXGetPolygons function

still returns the length of the data as the function result, but it does not return the actual

data in the data parameter.

Typically, to use this function, you go through the following steps:

1. Determine the length of the polygon data by calling this function, passing nil for the
data parameter.

2. Allocate enough memory to hold the polygon data.

3. Call this function again, passing a pointer to the allocated memory in the data
parameter.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For general information about polygon geometries, see “Polygon Shapes” on page 2-22.

For the definition of the gxPolygons structure, see page 2-106.

Errors
out_of_memory
shape_is_nil
illegal_type_for_shape (debugging version)

C H A P T E R 2

Geometric Shapes

Geometric Shapes Reference 2-131

To create a new polygons shape, use the GXNewPolygons function, which is described

on page 2-116.

To change the geometry of an existing polygon shape, use the GXSetPolygons

function, which is described in the next section.

To draw a polygon geometry without creating a polygon shape, use the

GXDrawPolygons function, which is described on page 2-161. To draw a polygons

shape, use the GXDrawShape function, which is described in the chapter “Shape

Objects” in Inside Macintosh: QuickDraw GX Objects.

GXSetPolygons

You can use the GXSetPolygons function to change the geometry of a polygon shape.

void GXSetPolygons(gxShape target, const gxPolygons *data);

target A reference to the polygon shape whose geometry you want to change.

data A pointer to the new polygon geometry.

DESCRIPTION

The GXSetPolygons function copies the geometry information from the data

parameter into the geometry property of the target polygon shape. If the target shape is

not a polygon shape, this function replaces the target shape with a polygon shape.

If you pass nil for the data parameter, the function sets the polygon shape to have zero

contours.

If the target shape is locked (that is, its gxLockedShape shape attribute is set), this

function posts the error shape_access_not_allowed.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
shape_is_nil
number_of_points_exceeds_implementation_limit
number_of_contours_exceeds_implementation_limit
size_of_polygon_exceeds_implementation_limit
count_is_less_than_one (debugging version)
shape_access_not_allowed (debugging version)

C H A P T E R 2

Geometric Shapes

2-132 Geometric Shapes Reference

SEE ALSO

For general information about polygon geometries, see “Polygon Shapes” on page 2-22.

For the definition of the gxPolygons structure, see page 2-106.

To create a new polygon shape, use the GXNewPolygons function, which is described on

page 2-116.

To examine the geometry of an existing polygon shape, use the GXGetPolygons

function, which is described on page 2-130.

To draw a polygon geometry without creating a polygon shape, use the

GXDrawPolygons function, which is described on page 2-161. To draw a polygon

shape, use the GXDrawShape function, which is described in the chapter “Shape

Objects” in Inside Macintosh: QuickDraw GX Objects.

GXGetPaths

You can use the GXGetPaths function to determine the geometry of a path shape.

long GXGetPaths(gxShape source, gxPaths *data);

source A reference to the path shape whose geometry you want to determine.

data A pointer to a gxPaths structure. The function copies the source shape’s
geometry into this structure.

function result The length in bytes of the source shape’s geometry.

DESCRIPTION

The GXGetPaths function copies the geometry information from the source path shape

into the gxPaths structure pointed to by the data parameter. As the function result,

this function returns the length in bytes of the path geometry.

If the source shape is not a path shape, this function posts the error code

illegal_type_for_shape.

You may pass nil for the data parameter. In this case, the GXGetPaths function still

returns the length of the data, but it does not return the actual data in the data

parameter.

C H A P T E R 2

Geometric Shapes

Geometric Shapes Reference 2-133

Typically, to use this function, you go through the following steps:

1. Determine the length of the path data by calling this function, passing nil for the
data parameter.

2. Allocate enough memory to hold the path data.

3. Call this function again, passing a pointer to the allocated memory in the data
parameter.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For general information about path geometries, see “Path Shapes” on page 2-25.

For the definition of the gxPaths structure, see page 2-107.

To create a new path shape, use the GXNewPaths function, which is described on

page 2-117.

To change the geometry of an existing path shape, use the GXSetPaths function, which

is described in the next section.

To draw a path geometry without creating a path shape, use the GXDrawPaths function,

which is described on page 2-162. To draw a path shape, use the GXDrawShape

function, which is described in the chapter “Shape Objects” in Inside Macintosh:
QuickDraw GX Objects.

GXSetPaths

You can use the GXSetPaths function to change the geometry of a path shape.

void GXSetPaths(gxShape target, const gxPaths *data);

target A reference to the path shape whose geometry you want to change.

data A pointer to new path geometry.

Errors
out_of_memory
shape_is_nil
illegal_type_for_shape (debugging version)

C H A P T E R 2

Geometric Shapes

2-134 Geometric Shapes Reference

DESCRIPTION

The GXSetPaths function copies the geometry information from the data parameter

into the geometry property of the target path shape. If the target shape is not a path

shape, this function posts the error code illegal_type_for_shape.

You must provide a pointer to a gxPaths structure in the data parameter—if you pass

nil for this parameter, the function posts the error code parameter_is_nil.

If the target shape is locked (that is, its gxLockedShape shape attribute is set), this

function posts the error shape_access_not_allowed.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For general information about path geometries, see “Path Shapes” on page 2-25.

For the definition of the gxPaths structure, see page 2-107.

To create a new path shape, use the GXNewPaths function, which is described on

page 2-117.

To examine the geometry of an existing path shape, use the GXGetPaths function,

which is described on page 2-132.

To draw a path geometry without creating a path shape, use the GXDrawPaths function,

which is described on page 2-162. To draw a path shape, use the GXDrawShape

function, which is described in the chapter “Shape Objects” in Inside Macintosh:
QuickDraw GX Objects.

Errors
out_of_memory
shape_is_nil
number_of_points_exceeds_implementation_limit
number_of_contours_exceeds_implementation_limit
size_of_path_exceeds_implementation_limit
count_is_less_than_one (debugging version)
shape_access_not_allowed (debugging version)

C H A P T E R 2

Geometric Shapes

Geometric Shapes Reference 2-135

Editing Shape Geometries

The functions described in the previous section, “Getting and Setting Shape

Geometries,” allow you to examine and replace entire shape geometries. The functions in

this section provide more sophisticated abilities—with these functions, you can examine

and edit specific parts of geometries.

For example, the GXCountShapeContours function allows you to determine the

number of contours in a shape’s geometry. For polygon and path shapes, this number is

an integral part of the geometry—it is the first value stored in the geometry; for other

geometric shapes, this function simply returns 1.

Similarly, the GXCountShapePoints function returns the number of geometric points

in a specified contour of a shape’s geometry.

The GXGetShapeIndex function returns the geometry index of a specific geometric

point given a contour number and the index of the geometric point within the contour.

(Remember, each geometric point in a geometry has an geometry index—if you consider

a geometry as a list of geometric points starting from the first geometric point of the first

contour to the last geometric point of the last contour, the geometry index of a particular

geometric point is its position in this list.) You use geometry indexes to specify ranges

of geometric points in many of the functions in this section.

You can use the GXGetShapePoints function to obtain a copy of a particular range of

geometric points from a shape’s geometry, and you can use the GXSetShapePoints to

replace a particular range of geometric points in a shape’s geometry.

You can use the GXGetPolygonParts function to extract a range of geometric points

from an existing polygon shape and put them into a new polygon geometry. You can use

the GXSetPolygonParts function to replace any range of geometric points in an

existing polygon shape with any new polygon geometry.

Similarly, you can use the GetPathsParts function to extract a range of geometric

points from an existing path shape and put them into a new path geometry, and you can

use the SetPathsParts function to replace any range of geometric points in an existing

path shape with any new path geometry.

The GXGetShapeParts and GXSetShapeParts functions allow the broadest editing

control. With the GXGetShapeParts function, you can extract any range of geometric

points from an existing shape and put them into a new shape. With the

GXSetShapeParts function, you can replace any range of geometric points in an

existing shape with the entire geometry of another shape.

C H A P T E R 2

Geometric Shapes

2-136 Geometric Shapes Reference

You can apply GXCountShapeContours, GXCountShapePoints,

GXGetShapeIndex, GXGetShapePoints, GXSetShapePoints, GXGetShapeParts,

and GXSetShapeParts functions to other shape types as well as geometric shapes.

Information about how they work for geometric shapes is presented in this section. You

can find more information about these functions in Chapter 5, “Bitmap Shapes,” and

Chapter 6, “Picture Shapes,” and in Inside Macintosh: QuickDraw GX Typography.

GXCountShapeContours

You can use the GXCountShapeContours function to determine the number of

contours in a shape.

long GXCountShapeContours(gxShape source);

source A reference to the shape whose contours you want to count.

function result The number of contours in the source shape.

DESCRIPTION

The GXCountShapeContours function returns as its function result the number of

contours in the source shape. For polygon and path shapes, this number indicates the

total number of polygon contours or path contours contained in the shape. For points,

lines, curves, and rectangles, this function returns the value 1. For empty and full shapes,

this function posts the graphics_type_does_not_have_multiple_contours

error.

If you provide a source shape that is not one of the geometric shape types, this function

performs the actions described in the following table:

Shape type Action taken

bitmap Always returns 1 as the function result

picture Returns the number of picture items

text Returns the number of glyphs

glyph Returns the number of glyphs

layout Returns the byte length of the text

C H A P T E R 2

Geometric Shapes

Geometric Shapes Reference 2-137

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For a discussion of contours, see “Shape Geometry” on page 2-9, “Polygon Shapes” on

page 2-22, and “Path Shapes” on page 2-25.

To learn how this function works for typographic shape types, see Inside Macintosh:
QuickDraw GX Typography.

To determine the number of points in a specific contour of a shape, use the

GXCountShapePoints function, which is described in the next section.

GXCountShapePoints

You can use the GXCountShapePoints function to determine the number of geometric

points in a specific contour of a shape.

long GXCountShapePoints(gxShape source, long contour);

source A reference to the shape containing the contour.

contour The index of the contour whose geometric points you want to count.

function result The number of points in the specified contour of the source shape.

DESCRIPTION

The GXCountShapePoints function returns as its function result the number of points

in the contour specified by the contour parameter of the shape specified by the source

parameter. If you pass 0 for the contour parameter, this function returns the total

number of geometric points in the shape.

Errors
out_of_memory
shape_is_nil
graphic_type_does_not_have_multiple_contours (debugging version)

C H A P T E R 2

Geometric Shapes

2-138 Geometric Shapes Reference

For the geometric shapes with only one contour—points, lines, curves, and rectangles—

you must pass a 0 or a 1 in the contour parameter. For polygons and paths shapes, the

value you provide for the contour parameter must be 0 or greater and must be equal to

or less than the actual number of contours in the shape. For empty and full shapes, the

function posts a contour_out_of_range warning.

If you provide a source shape that is not one of the geometric shape types, this function

performs the actions described in the following table:

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For a discussion of geometric points, see the section “About Geometric Shapes”

beginning on page 2-5.

To learn how this function works for typographic shape types, see Inside Macintosh:
QuickDraw GX Typography.

To determine the number of contours in a shape, use the GXCountShapeContours

function, which is described on page 2-136.

To determine the index of a particular geometric point within a shape, use the

GXGetShapeIndex function, which is described in the next section.

Shape type Action taken

bitmap Returns 1 if the contour parameter is 0 or 1; posts the error
contour_out_of_range otherwise

picture Posts the error graphic_type_does_not_contain_points

text Returns 1 if the contour parameter is 0 or 1; posts the error
contour_out_of_range otherwise

glyph Returns the number of glyphs in the style run indicated by the contour
parameter

layout Returns the byte length of the style run indicated by the contour
parameter

Errors
out_of_memory
shape_is_nil
graphic_type_does_not_contain_points (debugging version)

Warnings
contour_out_of_range

C H A P T E R 2

Geometric Shapes

Geometric Shapes Reference 2-139

GXGetShapeIndex

You can use the GXGetShapeIndex function to determine the geometry index of a

geometric point.

long GXGetShapeIndex(gxShape source, long contour, long vector);

source A reference to the shape containing the desired geometric point.

contour The index of the contour within the shape containing the geometric point.

vector The index of the geometric point within that contour.

function result The geometry index of the specified geometric point.

DESCRIPTION

The GXGetShapeIndex function returns as its function result the geometry index of the

geometric point in the source shape’s geometry that is identified by the contour and

vector parameters. The indexes you provide in the contour and vector parameters

are 1-based—for example, a value of 1 for the contour parameter indicates the first

contour, and value of 2 indicates the second contour, and so on.

Each geometric point in a geometry has a geometry index—if you consider a geometry

as a list of geometric points starting from the first geometric point of the first contour to

the last geometric point of the last contour, the geometry index of a particular geometric

point is its position in this list. For example, for a shape with two contours, the first with

10 geometric points and the second with 5 geometric points, this function would return

14 if you set the contour parameter to 2 and the vector parameter to 4.

For the geometric shapes with only one contour—points, lines, curves, and rectangles—

you must pass a 1 in the contour parameter. For polygon and path shapes, the

value you provide for the contour parameter must be greater than 0 and must be equal

to or less than the actual number of contours in the shape. Otherwise, the function posts

a contour_out_of_range warning. Similarly, the value you provide for the vector

parameter must be equal to or less than the actual number of geometric points in the

specified contour, or the function posts an index_out_of_range_in_contour

warning and returns 0 as the function result.

If you provide a source shape that is an empty shape, a full shape, or a shape that is not

one of the geometric shape types, this function posts the error

graphic_type_does_not_have_multiple_contours.

C H A P T E R 2

Geometric Shapes

2-140 Geometric Shapes Reference

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For a discussion of geometric points, see the section “About Geometric Shapes”

beginning on page 2-5.

To determine the number of contours in a shape, use the GXCountShapeContours

function, which is described on page 2-136.

To determine the number of geometric points in a contour, use the

GXCountShapePoints function, which is described on page 2-137.

To copy a range of geometric points from a shape’s geometry, use the

GXGetShapePoints function, which is described in the next section.

GXGetShapePoints

You can use the GXGetShapePoints function to obtain a copy of a range of geometric

points from a specified shape.

long GXGetShapePoints(gxShape source, long index, long count,

 gxPoint data[]);

source A reference to the shape containing the desired geometric points.

index The geometry index of the first geometric point to copy.

count The number of the geometric points to copy. You may provide the
gxSelectToEnd constant for this parameter.

data A pointer to an array of gxPoint structures. On return, this array
contains the copied points.

function result The number of geometric points copied.

Errors
out_of_memory
shape_is_nil
index_is_less_than_one (debugging version)
graphic_type_does_not_contain_points (debugging version)
graphic_type_does_not_have_multiple_contours (debugging version)

Warnings
contour_out_of_range
index_out_of_range_in_contour

C H A P T E R 2

Geometric Shapes

Geometric Shapes Reference 2-141

DESCRIPTION

The GXGetShapePoints function returns in the data parameter a copy of the

geometric points from the source shape’s geometry starting from the geometric point

with the geometry index indicated in the index parameter.

You provide, in the count parameter, the number of geometric points you want copied.

The function result is the actual number of points copied. Typically, the value you

provide for the count parameter is the same as the function result returned by this

function. There are two exceptions:

■ If you provide too large a value for the count parameter—that is, the geometry of the
source shape does not have enough geometric points to satisfy your request—this
function copies as many geometric points as the shape does have (starting from the
geometric point with the geometry index indicated by the index parameter). In this
case, the function posts a count_out_of_range warning, and the function result
reflects the actual number of geometric points copied.

■ Similarly, if you set the count parameter to the gxSelectToEnd constant, the
function copies as many geometric points as the shape has, starting from the
geometric point with the geometry index indicated by the index parameter. In this
case, the function result reflects the actual number of geometric points copied, but no
warning is posted.

Notice that this function returns the copied points as a single point array. If the source

shape is a polygon or path shape, the information about which contours contained the

geometric points is not retained.

If you want use the gxSelectToEnd constant for the count parameter, you would

typically do the following:

1. Determine the length of the point array by calling this function, passing nil for the
data parameter.

2. Allocate enough memory to hold the point array.

3. Call this function again, passing a pointer to the allocated memory in the data
parameter.

If you provide an empty or full shape for the source shape, this function posts the error

graphic_type_does_not_contain_points.

If you provide a source shape that is not one of the geometric shape types, this function

performs the actions described in the following table:

Shape type Action taken

bitmap Always returns 1 as the function result

picture Posts the error graphic_type_does_not_contain_points

text Always returns 1

glyph Returns the number of glyphs

layout Always returns 1

C H A P T E R 2

Geometric Shapes

2-142 Geometric Shapes Reference

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For a discussion of geometric points, see the section “Shape Geometry” beginning on

page 2-9.

To learn how this function works for typographic shape types, see Inside Macintosh:
QuickDraw GX Typography.

To determine the geometry index of a particular geometric point within a shape’s

geometry, use the GXGetShapeIndex function, which is described on page 2-139.

To replace a range of geometric points in a geometry, use the GXSetShapePoints

function, which is described in the next section.

GXSetShapePoints

You can use the GXSetShapePoints procedure to replace geometric points of a shape.

void GXSetShapePoints(gxShape target, long index, long count,

 const gxPoint data[]);

target A reference to the shape containing the geometric points you want to
replace.

index The geometry index of the first geometric point to replace.

count The number of the geometric points to replace.

data An array of new geometric points.

DESCRIPTION

The GXSetShapePoints function changes the values of the number of geometric points

specified in the count parameter, starting with the geometric point indicated by the

index parameter, to the values specified by the data parameter.

Notice that this function replaces geometric points on a point-by-point basis; the number

of points in the data parameter must match the value of the count parameter. You may

not use the gxSelectToEnd constant for the count parameter.

Errors
out_of_memory
shape_is_nil
index_is_less_than_one (debugging version)
count_is_less_than_one (debugging version)
graphic_type_does_not_contain_points (debugging version)

Warnings
index_out_of_range_in_contour
count_out_of_range

C H A P T E R 2

Geometric Shapes

Geometric Shapes Reference 2-143

If you provide an empty or full shape for the source shape, this function posts the error

graphic_type_does_not_contain_points.

If you provide a source shape that is not one of the geometric shape types, this function

performs the actions described in the following table:

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For examples that use this function, see “Replacing Geometric Points” beginning on

page 2-79.

For a discussion of geometric points, see the section “Shape Geometry” beginning on

page 2-9.

To learn how this function works for typographic shape types, see Inside Macintosh:
QuickDraw GX Typography.

To determine the geometry index of a particular geometric point within a shape, use the

GXGetShapeIndex function, which is described on page 2-139.

To obtain a copy of a range of geometric points in a geometry, use the

GXGetShapePoints function, which is described on page 2-140.

Shape type Action taken

bitmap Sets bitmap position

picture Posts the error graphic_type_does_not_contain_points

text Sets position of text shape

glyph Sets glyph positions corresponding to range indicated by the index and
count parameters

layout Sets position of layout shape

Errors
out_of_memory
shape_is_nil
index_is_less_than_one (debugging version)
count_is_less_than_one (debugging version)
graphic_type_does_not_contain_points (debugging version)
shape_access_not_allowed (debugging version)

Warnings
index_out_of_range_in_contour
count_out_of_range

C H A P T E R 2

Geometric Shapes

2-144 Geometric Shapes Reference

GXGetPolygonParts

You can use the GXGetPolygonParts function to copy a specified range of geometric

points from the geometry of a polygon shape and then put these points into a polygon

structure.

long GXGetPolygonParts(gxShape source, long index, long count,

 gxPolygons *data);

source A reference to the polygon shape containing the desired geometric points.

index The geometry index of the first geometric point to copy.

count The number of the geometric points to copy. You may provide the
gxSelectToEnd constant for this parameter.

data A pointer to a polygon structure to hold the copied geometric information.

function result The number of bytes required to hold the information returned in the
data parameter.

DESCRIPTION

The GXGetPolygonParts function copies geometry information from the source

polygon shape into the polygon structure specified by the data parameter. This function

copies all of the geometry information starting with the geometric point indicated by the

index parameter and continuing for as many geometric points as indicated by the

count parameter. This function copies the values of the indicated geometric points and

retains the information about contour breaks from the original geometry. The function

result is the length in bytes of the information returned in the data parameter.

Both the index and the count parameters must be greater than 0, although you can

provide the gxSelectToEnd constant for the count parameter, which indicates that

you want a copy of all the geometric points starting with the point indicated by the

index parameter.

You may pass nil for the data parameter. In this case, the function still returns the byte

length as the function result, but does not copy any geometry information.

Typically, to use this function, you go through these steps:

1. Determine the byte length needed to store the copied geometry information by calling
this function, passing nil for the data parameter.

2. Allocate enough memory to hold the copied geometric information.

3. Call this function again, passing a pointer to the allocated memory in the data
parameter.

C H A P T E R 2

Geometric Shapes

Geometric Shapes Reference 2-145

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example that uses this function, see “Editing Polygon Parts” beginning on

page 2-82.

For a discussion of polygons, see “Polygon Shapes” on page 2-22.

For the definition of the gxPolygons structure, see page 2-106.

For information about other functions that allow you to extract information from shape

geometries, see the description of the GXGetShapePoints function on page 2-140 and

the description of the GXGetShapeParts function on page 2-152.

To replace parts of a polygon shape’s geometry, use the GXSetPolygonParts function,

which is described in the next section.

GXSetPolygonParts

You can use the GXSetPolygonParts function to replace a range of geometry

information in the geometry of a polygon shape with information from a specified

polygon structure.

void GXSetPolygonParts(gxShape target, long index, long count,

 const gxPolygons *data,

 gxEditShapeFlag flags);

target A reference to the polygon shape whose geometry you want to edit.

index The geometry index of the first geometric point to replace. A value of 0
indicates that the new information should be inserted after the final
geometric point in the target shape’s geometry.

count The number of the geometric points to replace. A value of 0 indicates that
no geometric points should be replaced; instead, the new information is
inserted before the geometric point indicated by the index parameter. If
you pass the gxSelectToEnd constant for this parameter, all geometric
points starting with the geometric point indicated by the index
parameter are replaced.

Errors
out_of_memory
shape_is_nil
illegal_type_for_shape (debugging version)
index_is_less_than_one (debugging version)
count_is_less_than_one (debugging version)

Warnings
index_out_of_range
count_out_of_range

C H A P T E R 2

Geometric Shapes

2-146 Geometric Shapes Reference

data A pointer to a polygon structure containing the new geometry
information.

flags A set of flags that determine how the new information is inserted in the
existing geometry.

DESCRIPTION

The GXSetPolygonParts function replaces geometry information in the target shape’s

geometry with the information pointed to by the data parameter. The index and

count parameters determine what part of the original geometry is replaced. The flags

parameter determines how the new information is inserted in the geometry.

The data parameter contains a pointer to the geometry information to be copied into the

target shape’s geometry. If you pass the gxSetToNil constant for this parameter, no

new information is copied in; in this case, this function removes the indicated geometric

points instead of replacing them.

The index parameter indicates the first geometric point to be replaced. If you pass a

value of 0 for this parameter, no geometric points are replaced. Instead, this function

inserts the new geometry information after the last geometric point of the target shape’s

original geometry. If you pass 0 for this parameter, you must pass 0 or the

gxSelectToEnd constant for the count parameter.

The count parameter indicates how many geometric points in the original geometry

should be replaced. If you pass a value of 0 for this parameter, no geometric points are

replaced; instead, this function inserts the new geometry information before the

geometric point indicated by the index parameter. If you pass the gxSelectToEnd

constant for this parameter, the function replaces all geometric points in the original

geometry starting with the geometric point indicated by the index parameter.

When this function inserts the new geometry information, it retains the contour breaks

contained in the gxPolygons structure specified by the data parameter. For example, if

you provide a gxPolygons structure that contains two contours, the break between

those contours remains when the new geometric points are inserted in the target shape’s

geometry.

The flags parameter indicates how you want the function to merge the first geometric

point and the last geometric point of the gxPolygons structure into the target shape’s

geometry. The possible flags are

gxBreakNeitherEdit = 0

gxBreakLeftEdit = 0x01

gxBreakRightEdit = 0x02

gxRemoveDuplicatePoints = 0x04

C H A P T E R 2

Geometric Shapes

Geometric Shapes Reference 2-147

The gxBreakNeitherEdit value indicates that the first geometric point of the

gxPolygons structure should be merged into the preceding contour of the target

shape’s geometry and the final geometric point of the gxPolygons structure should be

merged into the following contour.

The gxBreakLeftEdit flag indicates that the first geometric point of the gxPolygons

structure should begin a new contour in the target shape’s geometry. The

gxBreakRightEdit flag indicates that the geometric point in the target shape that

follows the final geometric point of the gxPolygons structure (after the new

information is inserted) should begin a new contour.

The gxRemoveDuplicatePoints flag indicates that this function should, when

inserting the information from the gxPolygons structure, remove the first geometric

point of this structure if it exactly matches the preceding geometric point. Similarly, this

flag indicates that the final geometric point of the gxPolygons structure should be

removed if it exactly matches the subsequent geometric point in the target shape’s

geometry.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example that uses this function, see “Editing Polygon Parts” beginning on

page 2-82.

For a discussion of polygons, see “Polygon Shapes” on page 2-22.

For the definition of the gxPolygons structure, see page 2-106.

For information about other functions that allow you to edit information in shape

geometries, see the description of the GXSetShapePoints function on page 2-142 and

the description of the GXSetShapeParts function on page 2-154.

To copy parts of a polygon shape’s geometry, use the GXGetPolygonParts function,

which is described on page 2-144.

Errors
out_of_memory
shape_is_nil
number_of_points_exceeds_implementation_limit
number_of_contours_exceeds_implementation_limit
size_of_polygon_exceeds_implementation_limit
illegal_type_for_shape (debugging version)
inconsistent_parameters (debugging version)
index_is_less_than_zero (debugging version)
count_is_less_than_zero (debugging version)
shape_access_not_allowed (debugging version)

Warnings
index_out_of_range
count_out_of_range

C H A P T E R 2

Geometric Shapes

2-148 Geometric Shapes Reference

GXGetPathParts

You can use the GXGetPathParts function to extract a copy of a specified range of

geometric points from the geometry of a path shape and put these points into a

gxPaths structure.

long GXGetPathParts(gxShape source, long index, long count,

 gxPaths *data);

source A reference to the path shape containing the desired geometric points.

index The geometry index of the first geometric point to copy.

count The number of geometric points to copy. You may provide the
gxSelectToEnd constant for this parameter.

data A pointer to a gxPaths structure. On return, this structure contains the
copied geometric information.

function result The number of bytes required to hold the information returned in the
data parameter.

DESCRIPTION

The GXGetPathParts function copies geometry information from the source path

shape into the gxPaths structure specified by the data parameter. This function copies

all of the geometry information starting with the geometric point indicated by the

index parameter and continuing for as many geometric points as indicated by the

count parameter. This function copies the values of the indicated geometric points and

retains the information about contour breaks from the original geometry, as well as the

information about which points are on curve and which are off curve. The function

result is the length in bytes of the information returned in the data parameter.

Both the index and the count parameters must be greater than 0, although you can

provide the gxSelectToEnd constant for the count parameter, which indicates that

you want a copy of all the geometric points starting with the geometric point indicated

by the index parameter.

You may pass nil for the data parameter. In this case, the function still returns the byte

length as the function result, but does not copy any geometry information.

Typically, to use this function, you go through these steps:

1. Determine the byte length needed to store the copied geometry information by calling
this function, passing nil for the data parameter.

2. Allocate enough memory to hold the copied geometry information.

3. Call this function again, passing a pointer to the allocated memory in the data
parameter.

C H A P T E R 2

Geometric Shapes

Geometric Shapes Reference 2-149

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For a discussion of paths, see “Path Shapes” on page 2-25.

For the definition of the gxPaths structure, see page 2-107.

For information about other functions that allow you to extract information from shape

geometries, see the description of the GXGetShapePoints function on page 2-140 and

the description of the GXGetShapeParts function on page 2-152.

To replace parts of a path shape’s geometry, use the GXSetPathParts function, which

is described in the next section.

GXSetPathParts

You can use the GXSetPathParts function to replace a range of geometric points in the

geometry of a path shape with the information from a specified gxPaths structure.

void GXSetPathParts(gxShape target, long index, long count,

 const gxPaths *data, gxEditShapeFlag flags);

target A reference to the path shape whose geometry you want to edit.

index The index number of the first geometric point to replace. A value of 0
indicates that the new information should be inserted after the final
geometric point in the target shape’s geometry.

count The number of the geometric points to replace. A value of 0 indicates that
no geometric points should be replaced; instead, the new information is
inserted before the geometric point specified by the index parameter. If
you pass the gxSelectToEnd constant for this parameter, all geometric
points from the one specified by the index parameter to the final
geometric point are replaced.

data A pointer to the gxPaths structure containing the new geometry
information.

flags A set of flags that determine how the new information is inserted in the
existing geometry.

Errors
out_of_memory
shape_is_nil
illegal_type_for_shape (debugging version)
index_is_less_than_one (debugging version)
count_is_less_than_one (debugging version)

Warnings
index_out_of_range
count_out_of_range

C H A P T E R 2

Geometric Shapes

2-150 Geometric Shapes Reference

DESCRIPTION

The GXSetPathParts function replaces geometry information in the target shape’s

geometry with the information pointed to by the data parameter. The index and

count parameters determine what part of the original geometry is replaced. The flags

parameter determines how the new information is inserted in the geometry.

The data parameter contains a pointer to the geometry information to be copied into the

target shape’s geometry. If you pass the gxSetToNil constant for this parameter, no

new information is copied in; in this case, the GXSetPathParts function removes the

indicated geometric points instead of replacing them.

The index parameter indicates the first geometric point to be replaced. If you pass a

value of 0 for this parameter, no geometric points are replaced. Instead, this function

inserts the new geometric information after the last geometric point of the target shape’s

original geometry. If you pass 0 for this parameter, you must pass 0 or the

gxSelectToEnd constant for the count parameter.

The count parameter indicates how many geometric points in the original geometry

should be replaced. If you pass a value of 0 for this parameter, no geometric points are

replaced; instead, this function inserts the new geometry information before the

geometric point indicated by the index parameter. If you pass the gxSelectToEnd

constant for this parameter, the function replaces all geometric points in the original

geometry starting with the one indicated by the index parameter.

When this function inserts the new geometric information, it retains the contour breaks

contained in the gxPaths structure specified in the data parameter. For example, if you

provide a gxPaths structure that contains two contours, the break between those

contours remains when the geometric points are inserted into the target shape’s

geometry.

The flags parameter indicates how you want the function to merge the first geometric

point and the last geometric point of the gxPaths structure into the target shape’s

geometry. The possible flags are

gxBreakNeitherEdit = 0

gxBreakLeftEdit = 0x01

gxBreakRightEdit = 0x02

gxRemoveDuplicatePoints = 0x04

The gxBreakNeitherEdit value indicates that the first geometric point of the

gxPaths structure should be merged into the preceding contour of the target shape’s

geometry and the final geometric point of the gxPaths structure should be merged into

the subsequent contour.

C H A P T E R 2

Geometric Shapes

Geometric Shapes Reference 2-151

The gxBreakLeftEdit flag indicates that the first geometric point of the gxPaths

structure should begin a new contour once inserted in the target shape’s geometry. The

gxBreakRightEdit flag indicates that the geometric point in the target shape that

follows the final geometric point of the gxPaths structure (after the new information is

inserted) should begin a new contour.

The gxRemoveDuplicatePoints flag indicates that this function should, when

inserting the information from the gxPaths structure, remove the first geometric point

of this inserted structure if it exactly matches the preceding point in the existing

geometry. Similarly, this flag indicates that the final geometric point of the gxPaths

structure should be removed if it exactly matches the subsequent geometric point in the

target shape’s geometry.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example that uses this function, see “Editing Paths Parts” beginning on page 2-91.

For a discussion of paths, see “Path Shapes” on page 2-25.

For the definition of the gxPaths structure, see “Path Structures” on page 2-107.

For information about other functions that allow you to edit information in shape

geometries, see the description of the GXSetShapePoints function on page 2-142 and

the description of the GXSetShapeParts function on page 2-154.

To copy parts of a path shape’s geometry, use the GXGetPathParts function, which is

described on page 2-148.

Errors
out_of_memory
shape_is_nil
number_of_points_exceeds_implementation_limit
number_of_contours_exceeds_implementation_limit
size_of_polygon_exceeds_implementation_limit
illegal_type_for_shape (debugging version)
inconsistent_parameters (debugging version)
index_is_less_than_zero (debugging version)
count_is_less_than_zero (debugging version)
shape_access_not_allowed (debugging version)

Warnings
index_out_of_range
count_out_of_range

C H A P T E R 2

Geometric Shapes

2-152 Geometric Shapes Reference

GXGetShapeParts

You can use the GXGetShapeParts function to extract a copy of a specified range of

geometric points from the geometry of one shape and encapsulate it in another shape.

gxShape GXGetShapeParts(gxShape source, long index, long count,

 gxShape destination);

source A reference to the shape containing the desired geometric points.

index The geometry index of the first geometric point to copy.

count The number of geometric points to copy. You may provide the
gxSelectToEnd constant for this parameter.

destination
A reference to the shape to encapsulate the copied geometry information.

function result A copy of the reference returned in the destination parameter.

DESCRIPTION

The GXGetShapeParts function copies geometry information from the source shape

into the destination shape. This function copies all of the geometry information starting

with the geometric point indicated by the index parameter and continuing for as many

geometric points as indicated by the count parameter. This function copies the values

of the indicated geometric points and retains the information about contour breaks from

the original geometry, as well as the information about which points are on curve and

which are off curve. As a convenience, the function returns as its function result a

reference to the destination shape.

Both the index and the count parameters must be greater than 0, although you can

provide the gxSelectToEnd constant for the count parameter, which indicates that

you want a copy of all the geometric points (starting with the geometric point indicated

by the index parameter) in the source shape’s geometry.

You may pass nil for the destination parameter. In this case, the function creates a

new shape of the appropriate type and encapsulates the extracted geometry information

in this new shape.

C H A P T E R 2

Geometric Shapes

Geometric Shapes Reference 2-153

If the source shape is one of the geometric shape types, this function returns a geometric

shape type, as described in the following table:

If you provide a source shape that is not one of the geometric shape types, this function

performs the actions described in the following table:

SPECIAL CONSIDERATIONS

If you pass nil for the destination parameter and no error results, the

GXGetShapeParts function creates a shape; you are responsible for disposing of this

shape when you no longer need it. See Inside Macintosh: QuickDraw GX Objects for

information about creating and disposing of objects.

Shape type Action taken

empty Returns an empty shape

full Returns a full shape

point Returns a point shape

line Returns a point or a line shape, depending on the number of geometric
points copied

curve Returns a point, line, or curve shape, depending on the number of
geometric points copied

rectangle Returns a point or a rectangle shape, depending on the number of
geometric points copied

polygon Always returns a polygon shape, even if only one or two geometric
points are copied

path Always returns a path shape, even if only one, two, or three geometric
points are copied

Shape type Action taken

bitmap Posts shape_operator_may_not_be_a_bitmap error

picture Returns the number of picture items

text Returns the number of glyphs

glyph Returns the number of glyphs

layout Returns the byte length of the text

C H A P T E R 2

Geometric Shapes

2-154 Geometric Shapes Reference

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For information about other functions that allow you to extract information from shape

geometries, see the description of the GXGetShapePoints function on page 2-140, the

description of the GXGetPolygonParts function on page 2-144, and the description of

the GXGetPathParts function on page 2-148.

To replace parts of a shape’s geometry, use the GXSetShapeParts function, which is

described in the next section.

GXSetShapeParts

You can use the GXSetShapeParts function to replace a range of geometric points in a

shape’s geometry with the information in another shape’s geometry.

void GXSetShapeParts(gxShape target, long index, long count,

 gxShape insert, gxEditShapeFlag flags);

target A reference to the shape whose geometry you want to edit.

index The geometry index of the first geometric point to replace. A value of 0
indicates that the new information should be inserted after the final
geometric point in the target shape’s geometry.

count How many geometric points to replace. A value of 0 indicates that no
geometric points should be replaced; instead, the new information is
inserted before the geometric point specified by the index parameter. If
you pass the gxSelectToEnd constant for this parameter, all geometric
points from the one specified by the index parameter to the final one are
replaced.

insert A reference to the shape whose geometry you want to insert. You may
specify the gxSetToNil constant for this parameter to indicate that you
want to delete points from the target shape’s geometry.

flags A set of flags that determine how the new geometry information is
inserted in the target shape’s geometry.

Errors
out_of_memory
shape_is_nil
index_is_less_than_one (debugging version)
count_is_less_than_one (debugging version)

Warnings
shape_operator_may_not_be_a_bitmap
index_out_of_range
count_out_of_range

C H A P T E R 2

Geometric Shapes

Geometric Shapes Reference 2-155

DESCRIPTION

The GXSetShapeParts function replaces geometry information in the target shape’s

geometry with the geometry information in the shape specified by the insert

parameter. The index and count parameters determine what part of the original

geometry is replaced. The flags parameter determines how the new information is

inserted in the geometry.

This function converts the shape type of the target shape to be suitable to hold the

information from the inserted shape. For example, if the target shape is a line and the

inserted shape is a rectangle, this function converts the target shape to a polygon shape

before inserting the rectangle.

If the target shape is a rectangle, you may only insert information before both geometric

points, after both geometric points, or in place of both geometric points.

You may add any shape to an empty target shape—the result will be identical to the

inserted shape. You may also add any shape to a full target shape, but the result will also

be a full shape.

The index parameter indicates the first geometric point to be replaced. If you pass a

value of 0 for this parameter, no geometric points are replaced. Instead, this function

inserts the new geometry information after the last geometric point of the target shape’s

original geometry. If you pass a 0 for this parameter, you must pass a 0 or the

gxSelectToEnd constant for the count parameter.

The count parameter indicates how many geometric points in the original geometry

should be replaced. If you pass a value of 0 for this parameter, no geometric points are

replaced; instead, this function inserts the new geometry information before the

geometric point indicated by the index parameter. If you pass the gxSelectToEnd

constant for this parameter, the function replaces all geometric points in the original

geometry starting with the geometric point indicated by the index parameter.

When this function inserts the new geometry information, it retains the contour breaks

contained in the inserted shape’s geometry. For example, if you provide a path shape for

the inserted shape that contains two contours, the break between those contours remains

when the geometric points are inserted into the target shape’s geometry.

The flags parameter indicates how you want the function to merge the first geometric

point and the last geometric point of the inserted shape’s geometry into the target

shape’s geometry. The possible flags are:

gxBreakNeitherEdit = 0

gxBreakLeftEdit = 0x01

gxBreakRightEdit = 0x02

gxRemoveDuplicatePoints = 0x04

The gxBreakNeitherEdit value indicates that the first geometric point of the inserted

shape’s geometry should be merged into the preceding contour of the target shape’s

geometry and the final geometric point of the inserted shape’s geometry should be

merged into the subsequent contour.

C H A P T E R 2

Geometric Shapes

2-156 Geometric Shapes Reference

The gxBreakLeftEdit flag indicates that the first geometric point of the inserted

shape’s geometry should begin a new contour once inserted in the target shape’s

geometry. The gxBreakRightEdit flag indicates that the geometric point in the target

shape that follows the final geometric point of the inserted shape’s geometry (after the

new information is inserted) should begin a new contour.

The gxRemoveDuplicatePoints flag indicates that this function should, when

inserting the information from the inserted shape’s geometry, remove the first geometric

point of this inserted geometry if it exactly matches the preceding point in the existing

geometry. Similarly, this flag indicates that the final geometric point of the inserted

shape’s geometry should be removed if it exactly matches the subsequent geometric

point in the target shape’s geometry.

If you provide a source shape that is a full shape, this function returns a full shape in the

destination parameter.

If you provide a source shape that is not one of the geometric shape types, this function

performs the actions described in the following table:

ERRORS, WARNINGS, AND NOTICES

Shape type Action taken

bitmap Posts the error shape_operator_may_not_be_a_bitmap

picture Calls the GXSetPictureParts function

text Calls the GXSetTextParts function

glyph Calls the GXSetGlyphParts function

layout Calls the GXSetLayoutParts function

Errors
out_of_memory
shape_is_nil
index_is_less_than_one (debugging version)
count_is_less_than_one (debugging version)
functionality_unimplemented (debugging version)
rectangles_cannot_be_inserted_into (debugging version)
shape_operator_may_not_be_a_bitmap (debugging version)
shape_access_not_allowed (debugging version)

Warnings
index_out_of_range
count_out_of_range
picture_cannot_contain_itself

Notices
parameters_have_no_effect (debugging version)

C H A P T E R 2

Geometric Shapes

Geometric Shapes Reference 2-157

SEE ALSO

For an example of this function, see “Editing Shape Parts” beginning on page 2-93.

To learn how this function works for typographic shape types, see Inside Macintosh:
QuickDraw GX Typography.

For information about other functions that allow you to edit information in shape

geometries, see the description of the GXSetShapePoints function on page 2-142, the

description of the GXSetPolygonParts function on page 2-145, and the description of

the GXSetPathParts function on page 2-149.

To copy parts of a shape’s geometry, use the GXGetShapeParts function, which is

described on page 2-152.

Drawing Geometric Shapes

The QuickDraw GX drawing functions compile all of the information in a shape’s

properties, and the properties of its style, ink, and transform objects, and produce a

graphic image. Therefore, to understand how these functions draw geometric shapes,

you need to be familiar with much of the information in Inside Macintosh: QuickDraw GX
Objects, as well as much of the information in this chapter and in the next chapter,

“Geometric Styles.” The function descriptions in this section give an overview of the

process these functions use to draw geometric shapes.

If you want to draw a geometric shape without creating a shape object—that is, just

given a geometry—you can use the GXDrawPoint, GXDrawLine, GXDrawCurve,

GXDrawRectangle, GXDrawPolygons, or GXDrawPaths functions, which are

described in this section. These functions create a shape object, initialize it, draw it, and

dispose of it; therefore, they do not take advantage of the QuickDraw GX caching

mechanism. You should make limited use of these functions—for example, you could

use one of these functions if you wanted to draw a particular shape drawn only once.

To draw a shape once you have created a shape object and modified its properties to suit

your needs, you can use the GXDrawShape function. This function draws all shape

types, and is described in the chapter “Shape Objects” in Inside Macintosh: QuickDraw GX
Objects.

When debugging your application, you can use the GXGetDrawError function, which

is described in the chapter “QuickDraw GX Debugging” in Inside Macintosh:
QuickDraw GX Environment and Utilities, for hints when a shape fails to draw as expected.

C H A P T E R 2

Geometric Shapes

2-158 Geometric Shapes Reference

GXDrawPoint

You can use the GXDrawPoint function to draw a point without creating a point shape.

void GXDrawPoint(const gxPoint *data);

data A pointer to the point geometry you want to draw.

DESCRIPTION

The GXDrawPoint function draws the point geometry specified by the data parameter,

using the shape fill, style, ink, and transform of the default point shape.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For examples using this function, see “Creating and Drawing Points” beginning on

page 2-29.

For more information about points and the default point shape, see “Point Shapes” on

page 2-16.

For the definition of the gxPoint structure, see page 2-104.

For more information about drawing shapes, see the description of the GXDrawShape

function in the chapter “Shape Objects” in Inside Macintosh: QuickDraw GX Objects.

GXDrawLine

You can use the GXDrawLine function to draw a line without creating a line shape.

void GXDrawLine(const gxLine *data);

data A pointer to the line geometry you want to draw.

DESCRIPTION

The GXDrawLine function draws the line geometry specified by the data parameter,

using the shape fill, style, ink, and transform of the default line shape.

Errors
out_of_memory
parameter_is_nil (debugging version)

C H A P T E R 2

Geometric Shapes

Geometric Shapes Reference 2-159

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For examples using this function, see “Creating and Drawing Lines” beginning on

page 2-36.

For more information about lines and the default line shape, see “Line Shapes” on

page 2-17.

For the definition of the gxLine structure, see page 2-105.

For more information about drawing shapes, see the description of the GXDrawShape

function in the chapter “Shape Objects” in Inside Macintosh: QuickDraw GX Objects.

GXDrawCurve

You can use the GXDrawCurve function to draw a curve without creating a curve shape.

void GXDrawCurve(const gxCurve *data);

data A pointer to the curve geometry you want to draw.

DESCRIPTION

The GXDrawCurve function draws the curve geometry specified by the data parameter,

using the shape fill, style, ink, and transform of the default curve shape.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For examples using this function, see “Creating and Drawing Curves” beginning on

page 2-41.

For more information about curves and the default curve shape, see “Curve Shapes” on

page 2-18.

For the definition of the gxCurve structure, see page 2-105.

For more information about drawing shapes, see the description of the GXDrawShape

function in the chapter “Shape Objects” in Inside Macintosh: QuickDraw GX Objects

Errors
out_of_memory
parameter_is_nil (debugging version)

Errors
out_of_memory
parameter_is_nil (debugging version)

C H A P T E R 2

Geometric Shapes

2-160 Geometric Shapes Reference

GXDrawRectangle

You can use the GXDrawRectangle function to draw a rectangle without creating a

rectangle shape.

void GXDrawRectangle(const gxRectangle *data, gxShapeFill fill);

data A pointer to the rectangle geometry you want to draw.

fill The shape fill to use when drawing the rectangle.

DESCRIPTION

The GXDrawRectangle function draws the rectangle geometry specified by the data

parameter, using the shape fill specified by the fill parameter, and the style, ink, and

transform of the default rectangle shape.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For examples using this function, see “Creating and Drawing Rectangles” beginning on

page 2-43.

For more information about rectangles and the default rectangle shape, see “Rectangle

Shapes” on page 2-20.

For the definition of the gxRectangle structure, see page 2-106.

For more information about drawing shapes, see the description of the GXDrawShape

function in the chapter “Shape Objects” in Inside Macintosh: QuickDraw GX Objects.

Errors
out_of_memory
parameter_is_nil (debugging version)
shapeFill_is_not_allowed (debugging version)

C H A P T E R 2

Geometric Shapes

Geometric Shapes Reference 2-161

GXDrawPolygons

You can use the GXDrawPolygons function to draw polygon contours without creating

a polygon shape.

void GXDrawPolygons(const gxPolygons *data, gxShapeFill fill);

data A pointer to the polygon geometry you want to draw.

fill The shape fill to use when drawing the polygon contours.

DESCRIPTION

The GXDrawPolygons function draws the polygon geometry specified by the data

parameter, using the shape fill specified by the fill parameter, and the style, ink, and

transform of the default polygon shape.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For more information about polygons and the default polygon shape, see “Polygon

Shapes” on page 2-22.

For the definition of the gxPolygons structure, see page 2-106.

For examples using this function, see “Creating and Drawing Polygons” beginning on

page 2-45.

For more information about drawing shapes, see the description of the GXDrawShape

function in the chapter “Shape Objects” in Inside Macintosh: QuickDraw GX Objects.

Errors
out_of_memory
parameter_is_nil (debugging version)

C H A P T E R 2

Geometric Shapes

2-162 Geometric Shapes Reference

GXDrawPaths

You can use the GXDrawPaths function to draw path contours without creating a path

shape.

void GXDrawPaths(const gxPaths *data, gxShapeFill fill);

data A pointer to the path geometry you want to draw.

fill The shape fill to use when drawing the path contours.

DESCRIPTION

The GXDrawPaths function draws the path geometry specified by the data parameter,

using the shape fill specified by the fill parameter, and the style, ink, and transform of

the default path shape.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For more information about paths and the default path shape, see “Path Shapes” on

page 2-25.

For the definition of the gxPaths structure, see page 2-107.

For examples using this function, see “Creating and Drawing Paths” beginning on

page 2-55.

For more information about drawing shapes, see the description of the GXDrawShape

function in the chapter “Shape Objects” in Inside Macintosh: QuickDraw GX Objects.

Errors
out_of_memory
parameter_is_nil (debugging version)

C H A P T E R 2

Geometric Shapes

Summary of Geometric Shapes 2-163

Summary of Geometric Shapes

Constants and Data Types

The Point Structure

struct gxPoint {

Fixed x;

Fixed y;

};

The Line Structure

struct gxLine {

struct gxPoint first;

struct gxPoint last;

};

The Curve Structure

struct gxCurve {

struct gxPoint first;

struct gxPoint control;

struct gxPoint last;

};

The Rectangle Structure

struct gxRectangle {

Fixed left;

Fixed top;

Fixed right;

Fixed bottom;

};

C H A P T E R 2

Geometric Shapes

2-164 Summary of Geometric Shapes

Polygon Structures

struct gxPolygon {

long vectors;

struct gxPoint vector[gxAnyNumber];

};

struct gxPolygons {

long contours;

struct gxPolygon contour[gxAnyNumber];

};

Path Structures

struct gxPath {

long vectors;

long controlBits[gxAnyNumber];

struct gxPoint vector[gxAnyNumber];

};

struct gxPaths {

long contours;

struct gxPath contour[gxAnyNumber];

};

Functions

Creating Geometric Shapes

gxShape GXNewPoint (const gxPoint *data);

gxShape GXNewLine (const gxLine *data);

gxShape GXNewCurve (const gxCurve *data);

gxShape GXNewRectangle (const gxRectangle *data);

gxShape GXNewPolygons (const gxPolygons *data);

gxShape GXNewPaths (const gxPaths *data);

C H A P T E R 2

Geometric Shapes

Summary of Geometric Shapes 2-165

Getting and Setting Shape Geometries

gxPoint *GXGetPoint (gxShape source, gxPoint *data);

void GXSetPoint (gxShape target, const gxPoint *data);

gxLine *GXGetLine (gxShape source, gxLine *data);

void GXSetLine (gxShape target, const gxLine *data);

gxCurve *GXGetCurve (gxShape source, gxCurve *data);

void GXSetCurve (gxShape target, const gxCurve *data);

gxRectangle *GXGetRectangle
(gxShape source, gxRectangle *data);

void GXSetRectangle (gxShape target, const gxRectangle *data);

long GXGetPolygons (gxShape source, gxPolygons *data);

void GXSetPolygons (gxShape target, const gxPolygons *data);

long GXGetPaths (gxShape source, gxPaths *data);

void GXSetPaths (gxShape target, const gxPaths *data);

Editing Shape Geometries

long GXCountShapeContours (gxShape source);

long GXCountShapePoints (gxShape source, long contour);

long GXGetShapeIndex (gxShape source, long contour, long vector);

long GXGetShapePoints (gxShape source, long index, long count,
gxPoint data[]);

void GXSetShapePoints (gxShape target, long index, long count,
const gxPoint data[]);

long GXGetPolygonParts (gxShape source, long index, long count,
gxPolygons *data);

void GXSetPolygonParts (gxShape target, long index, long count,
const gxPolygons *data,
gxEditShapeFlag flags);

long GXGetPathParts (gxShape source, long index, long count,
gxPaths *data);

void GXSetPathParts (gxShape target, long index, long count,
const gxPaths *data, gxEditShapeFlag flags);

gxShape GXGetShapeParts (gxShape source, long index, long count,
gxShape destination);

void GXSetShapeParts (gxShape target, long index, long count,
gxShape insert, gxEditShapeFlag flags);

C H A P T E R 2

Geometric Shapes

2-166 Summary of Geometric Shapes

Drawing Geometric Shapes

void GXDrawPoint (const gxPoint *data);

void GXDrawLine (const gxLine *data);

void GXDrawCurve (const gxCurve *data);

void GXDrawRectangle (const gxRectangle *data, gxShapeFill fill);

void GXDrawPolygons (const gxPolygons *data, gxShapeFill fill);

void GXDrawPaths (const gxPaths *data, gxShapeFill fill);

Contents 3-1

C H A P T E R 3

Contents

Geometric Styles

About Geometric Styles 3-5

Shapes and Styles 3-5

Incorporating Stylistic Variations Into Shape Geometries 3-8

Style Properties 3-11

Default Style Objects 3-12

Curve Error 3-14

The Geometric Pen 3-15

Style Attributes 3-17

Pen Placement 3-18

Grids 3-20

Interactions Between Caps, Joins, Dashes, and Patterns 3-22

Caps 3-23

Joins 3-25

Dashes 3-27

Patterns 3-31

Interactions Between Caps, Joins, Dashes, and Patterns 3-33

Using Geometric Styles 3-35

Associating Styles With Shapes 3-36

Constraining Shape Geometries to Grids 3-40

Constraining Shapes to Device Grids 3-42

Using Curve Error When Converting Paths to Polygons 3-45

Using Curve Error When Reducing Shapes 3-49

Manipulating Pen Width and Placement 3-51

Adding Caps to a Shape 3-57

Adding Standard Caps to a Shape 3-59

Adding Joins to a Shape 3-61

Adding Standard Joins to a Shape 3-64

Dashing a Shape 3-66

Adjusting Dashes to Fit Contours 3-70

Insetting Dashes 3-73

C H A P T E R 3

3-2 Contents

Breaking and Bending Dashes 3-74

Wrapping Text to a Contour 3-80

Determining Dash Positions 3-81

Adding a Pattern to a Shape 3-86

Determining Pattern Positions 3-88

Combining Caps, Joins, Dashes, and Patterns 3-91

Geometric Styles Reference 3-96

Constants and Data Types 3-96

Style Objects 3-97

Style Attributes 3-98

The Cap Structure 3-99

Cap Attributes 3-101

The Join Structure 3-101

Join Attributes 3-102

The Dash Structure 3-103

Dash Attributes 3-105

The Pattern Structure 3-106

Pattern Attributes 3-107

Functions 3-108

Getting and Setting Style Attributes 3-109

GXGetStyleAttributes 3-109

GXSetStyleAttributes 3-110

GXGetShapeStyleAttributes 3-112

GXSetShapeStyleAttributes 3-113

Getting and Setting Curve Error 3-114

GXGetStyleCurveError 3-115

GXSetStyleCurveError 3-116

GXGetShapeCurveError 3-117

GXSetShapeCurveError 3-118

Getting and Setting the Pen Width 3-119

GXGetStylePen 3-119

GXSetStylePen 3-120

GXGetShapePen 3-121

GXSetShapePen 3-122

Getting and Setting Caps 3-123

GXGetStyleCap 3-124

GXSetStyleCap 3-125

GXGetShapeCap 3-126

GXSetShapeCap 3-128

Getting and Setting Joins 3-129

GXGetStyleJoin 3-129

GXSetStyleJoin 3-130

GXGetShapeJoin 3-132

GXSetShapeJoin 3-133

Getting and Setting Dashes 3-134

GXGetStyleDash 3-135

GXSetStyleDash 3-136

C H A P T E R 3

Contents 3-3

GXGetShapeDash 3-138

GXSetShapeDash 3-139

GXGetShapeDashPositions 3-140

Getting and Setting Patterns 3-142

GXGetStylePattern 3-142

GXSetStylePattern 3-144

GXGetShapePattern 3-145

GXSetShapePattern 3-146

GXGetShapePatternPositions 3-147

Summary of Geometric Styles 3-149

Constants and Data Types 3-149

Functions for Manipulating Geometric Style Properties 3-151

C H A P T E R 3

About Geometric Styles 3-5

Geometric Styles

This chapter describes the geometric properties of style objects, which you can use to

apply certain types of stylistic variations to QuickDraw GX shapes. In particular, this

chapter shows how you can

■ constrain the drawing of a shape to a grid

■ specify the pen width to use when drawing a shape’s frame

■ indicate the placement of the pen relative to the shape’s frame

■ specify what to draw at the beginnings and the ends of a shape’s contours

■ specify what to draw at the corners of a shape’s contours

■ dash the contours of a shape

■ fill a shape, or the frame of a shape, with a pattern

You can also apply stylistic variations to typographic shapes, using the typographic

properties of the style object. For example, you can use the style associated with a text

shape to specify the text’s font, font size, and type style. The chapter “Typographic

Styles” in Inside Macintosh: QuickDraw GX Typography discusses the text-related

properties of style objects.

You should be familiar with some of the information in Inside Macintosh: QuickDraw GX
Objects before you read this chapter; in particular, you should read the chapters

“Introduction to QuickDraw GX Objects” and “Style Objects” in that book.

About Geometric Styles

A style is a group of stylistic variations applied to a shape. QuickDraw GX provides two

major categories of stylistic variations: geometric variations, which include pen width,

dashes, patterns, and so on, and typographic variations, which include font, font size,

typestyle, and so on.

Both types of stylistic variation are encapsulated in a style object. Like a shape object, a

style object is a data structure that you manipulate with functions provided by

QuickDraw GX. Each style object has a group of properties, and each style property

represents a different stylistic variation.

Shapes and Styles
In general, a shape object is an object with a group of properties that describe a

geometry; a style object is an object with a group of properties that affect how

QuickDraw GX interprets a shape’s geometry during drawing.

C H A P T E R 3

Geometric Styles

3-6 About Geometric Styles

Every QuickDraw GX shape object contains a reference to a style object. Figure 3-1

shows the properties of a style object. In this figure, the geometric properties—those that

apply primarily to geometric shapes—are highlighted. These properties are discussed in

this chapter. The other style properties are shown in gray. These include

■ the typographic style properties (those that apply primarily to typographic shapes),
which are described in the chapter “Typographic Styles” in Inside Macintosh:
QuickDraw GX Typography

■ the style properties common to all objects, (owner count and tag list), which are
described in the chapter “Style Objects” in Inside Macintosh: QuickDraw GX Objects

Figure 3-1 Style object with geometric properties highlighted

C H A P T E R 3

Geometric Styles

About Geometric Styles 3-7

As Figure 3-2 depicts, a single style object can be shared by multiple shape objects.

Figure 3-2 Shared style objects

A geometric shape and a typographic shape can reference the same style object. The

geometric shape uses the geometric style properties, which are described in this chapter,

while the typographic shape uses the typographic style properties, which are described

in the chapter “Typographic Styles” in Inside Macintosh: QuickDraw GX Typography.

C H A P T E R 3

Geometric Styles

3-8 About Geometric Styles

QuickDraw GX typically handles style sharing for you. The section “Default Style

Objects” on page 3-12 and the section “Associating Styles With Shapes” on page 3-36

describe the default style sharing behavior implemented by QuickDraw GX and how

you can override this behavior.

As with all QuickDraw GX objects, a style object has an owner count, which reflects the

number of existing references to the style object. When a new reference to a style object is

created, the owner count of the style object is incremented; when a reference to a style

object goes away, the owner count of the style object is decremented. When a style object

has an owner count of 0, QuickDraw GX can free the memory used by the style object.

References to style objects typically include those contained in shape objects and those

contained in variables in your application. QuickDraw GX manages the owner counts

corresponding to references in shape objects for you; you are responsible for managing

the owner counts corresponding to variables in your application. The chapter

“Introduction to QuickDraw GX Objects” in Inside Macintosh: QuickDraw GX Objects

explains owner counts and owner count management in more detail.

Incorporating Stylistic Variations Into Shape Geometries
When you draw a shape, QuickDraw GX applies the information in the style object of

the shape to the shape’s geometry. For example, style objects contain a pen width

property, described in full later in this chapter. When you draw a line shape,

QuickDraw GX draws the line with the width specified in the pen width property of the

style object associated with the line shape. As drawn, the thick line looks like a filled

polygon. However, even after drawing the line shape, the shape still contains a line

geometry.

QuickDraw GX provides a mechanism for incorporating the stylistic variations

contained in a style object directly into the geometry of a shape object. This mechanism is

the GXPrimitiveShape function, which is described in full in the next chapter,

“Geometric Operations.”

If you make changes to a shape’s style object and then call the GXPrimitiveShape

function, QuickDraw GX changes the shape’s shape type, shape fill, and shape geometry

to incorporate the new stylistic variations. Basically, the same process that happens when

drawing the shape happens directly to the shape’s geometry.

For example, Figure 3-3 shows a line shape. If you alter the style of this line shape to

include a pen width of 10, the line shape effectively becomes a filled polygon shape.

If you were to apply the GXPrimitiveShape function to this thick line shape, the

GXPrimitiveShape function would change the shape type to the polygon type, the

shape fill to even-odd shape fill, and the shape geometry to a list of the four geometric

points that define the polygon, as shown in Figure 3-3.

Another example, the result of applying the GXPrimitiveShape function to a framed

rectangle with a thick pen width is shown in Figure 3-4. In this case, the result of the

GXPrimitiveShape function is a filled polygon shape with two contours: an inside

contour and an outside contour.

C H A P T E R 3

Geometric Styles

About Geometric Styles 3-9

Figure 3-3 Effects of the GXPrimitiveShape function on a line shape

C H A P T E R 3

Geometric Styles

3-10 About Geometric Styles

Figure 3-4 Effects of the GXPrimitiveShape function on a rectangle shape

C H A P T E R 3

Geometric Styles

About Geometric Styles 3-11

Notice that the GXPrimitiveShape function does not affect the style object of the

shape: it merely incorporates the existing style information into the geometry of

the shape.

The result of calling the GXPrimitiveShape function is called a primitive shape, or a

shape in its primitive form. Primitive shapes include

■ empty shapes and full shapes, which are described in Chapter 3, “Geometric Shapes”

■ filled rectangle, polygon, and path shapes, which are also described in Chapter 3,
“Geometric Shapes”

■ hairline framed shapes, which are described on page 3-16

■ glyph shapes, which are described in Inside Macintosh: QuickDraw GX Typography

■ bitmap shapes, which are described in Chapter 5, “Bitmap Shapes”

QuickDraw GX uses primitive shapes for caps, joins, dashes, and patterns, which are

discussed throughout the rest of this chapter, and for clip shapes, which are discussed in

the chapter “Transform Objects” in Inside Macintosh: QuickDraw GX Objects.

Style Properties
Like most QuickDraw GX objects, each style object has an owner count and a list of tags.

These properties are described in detail in the chapter “Introduction to QuickDraw GX

Objects” in Inside Macintosh: QuickDraw GX Objects.

In addition to the owner count and the tag list, each style object contains properties that

primarily affect the drawing of geometric shapes and properties that primarily affect the

drawing of typographic shapes.

The style properties that primarily affect geometric shapes include the following:

■ Curve error. This property specifies the allowable amount of error when
QuickDraw GX converts a path shape into a polygon shape. It also specifies how far
apart geometric points must be for QuickDraw GX to consider them separate points
when simplifying or reducing a shape.

■ Pen width. This property specifies the width of the pen QuickDraw GX uses to draw
the contours of a shape.

■ Style attributes. This property is a group of flags that allow you to specify how
QuickDraw GX places the pen with respect to a shape’s geometry and whether the
shape should be constrained to a grid when drawn.

■ Caps. This property specifies what QuickDraw GX should draw at the start and the
end of a shape’s contours. QuickDraw GX allows you to use any geometric shape (for
example, a polygon shaped like an arrow head) as a start cap or end cap.

■ Join. This property specifies what QuickDraw GX should draw at the corners of a
shape’s contours. QuickDraw GX provides two standard join types (one for round
corners and one for sharp corners), although QuickDraw GX allows you to specify
any geometric shape as a join.

C H A P T E R 3

Geometric Styles

3-12 About Geometric Styles

■ Dash. This property specifies how QuickDraw GX should dash the contours of a
shape. As with caps and joins, you can specify any geometric shape to dash the frame
another shape. However, you can also dash a shape with glyphs, which gives the
effect of fitting text to a shape’s frame.

■ Pattern. This property specifies how QuickDraw GX should fill the geometry of a
shape. You can use geometric shapes, glyphs shapes, or bitmap shapes as patterns.

The sections “Curve Error” on page 3-14, “The Geometric Pen” on page 3-15, “Style

Attributes” on page 3-17, and “Interactions Between Caps, Joins, Dashes, and Patterns”

on page 3-22 discuss these style properties in more detail.

The typographic style properties, which include font, text size, text face, and so on, are

described in Inside Macintosh: QuickDraw GX Typography.

Default Style Objects
When you call the GXNewStyle function, which is described in the chapter “Style

Objects” in Inside Macintosh: QuickDraw GX Objects, QuickDraw GX creates and returns a

new style object. All of the new style object’s properties are set to standard initial values.

Once you have created a new style object, you can change the values of its properties,

but you cannot change the behavior of the GXNewStyle function itself; it always returns

a style object with these values for the geometric style properties:

■ owner count: 1

■ tag list: no tags

■ style attributes: no attributes

■ curve error: 0.0

■ pen width: 0.0

■ cap

■ cap attributes: no attributes

■ start cap: none

■ end cap: none

■ join

■ join attributes: no attributes

■ join: none

■ join miter: Fixed1

C H A P T E R 3

Geometric Styles

About Geometric Styles 3-13

■ dash

■ dash attributes: no attributes

■ dash: none

■ dash advance: 0.0

■ dash phase: 0.0

■ dash scale: Fixed1

■ pattern

■ pattern attributes: no attributes

■ pattern: none

■ pattern grid: (0.0,0.0), (0.0,0.0)

The chapter “Typographic Styles” in Inside Macintosh: QuickDraw GX Typography

discusses the default style values for the typographic style properties.

Although you cannot change the behavior of the GXNewStyle function, QuickDraw GX

provides another method for creating new style objects—a method that you can modify.

When you create a new shape with the GXNewShape function, QuickDraw GX returns a

copy of the default shape of the requested type. Since you can change the default shapes,

you can also change the style objects that they reference.

Initially, all of the default shape objects reference the same style object. Whenever you

create a new shape, it, too, references this style object. There are two ways in which you

can change the style object associated with a new shape:

■ You can call a function such as GXSetShapePen, which makes a copy of the style
object specifically for your new shape before changing its pen width.

■ You can obtain a reference to your new shape’s style object by calling
the GXGetShapeStyle function, and then you can call a function such as
GXSetStylePen, which does not make a copy of the style object. Instead, it affects
the style object directly, which, in effect, changes the default style for all the default
shapes.

By calling functions such as GXSetShapePen on each of the default shapes, you can

create a different style object for each default shape. See the chapter “Shape Objects” in

Inside Macintosh: QuickDraw GX Objects for more information about default shapes.

C H A P T E R 3

Geometric Styles

3-14 About Geometric Styles

Curve Error
Curve error is the only geometric style property that doesn’t affect the drawing of a

shape; instead, it affects the geometric points of the shape’s geometry when performing

geometric operations, shape type conversions, and shape simplifications. The curve error

property determines how far away two points must be for QuickDraw GX to consider

them as separate points in these cases:

■ Geometric operations. QuickDraw GX guarantees that the results of the geometric
operations described in the chapter “Geometric Operations” in this book, such as
GXIntersectShape or GXUnionShape, have no two points closer than the value of
the curve error of the target shape.

■ Insetting shapes. A special case of geometric operation, the GXInsetShape function,
which is described in the chapter “Geometric Operations” in this book, can produce
results with an unusually large number of geometric points. Because the inset of a
quadratic Bézier curve is not a quadratic Bézier curve itself, multiple insets of tight
curve shapes can cause the number of geometric points to grow dramatically. As with
the other geometric operations, the result of the GXInsetShape function has no two
consecutive points closer than the value of the curve error of the target shape.

■ Path to polygon conversions. The curve error also determines the maximum error
when converting a path shape to a polygon (for example, with the code
GXSetShapeType (aPathShape, gxPolygonType)). The distance between the
original path and the resulting polygon is always less than the value of the curve
error. If the curve error is 0, QuickDraw GX performs the path to polygon conversion
simply by removing all off-curve control points, which gives a fairly rough
approximation.

■ Shape simplifications. The functions GXReduceShape and GXSimplifyShape,
which are described in more detail the chapter “Geometric Operations” in this book,
perform a number of simplifications on shapes (for example, removing geometric
points unnecessary to the geometry and unwinding crossed contours). In addition to
their other simplifications, these functions remove all consecutive (on-curve)
geometric points within a distance of less than the curve error.

The sections “Using Curve Error When Converting Paths to Polygons” on page 3-45 and

“Using Curve Error When Reducing Shapes” on page 3-49 give examples of using curve

error, and the section “Getting and Setting Curve Error” on page 3-114 describes the

functions you can use to manipulate this style property.

C H A P T E R 3

Geometric Styles

About Geometric Styles 3-15

The Geometric Pen
The contours of framed geometric shapes are drawn with the QuickDraw GX geometric
pen. You can specify the width of this pen using the pen width property of the style

object, and you can specify where to place the pen relative to the contours of a shape

using the style attributes, which are described in “Style Attributes” beginning on

page 3-17.

Conceptually, the QuickDraw GX geometric pen is a line that QuickDraw GX drags

along the contours of the shape being drawn—always keeping it perpendicular to the

contours. In effect, the geometric pen turns a framed geometry into a filled one. For

example, a line shape, which is always framed, becomes the equivalent of a filled

polygon after QuickDraw GX applies the geometric pen.

Figure 3-5 shows the effect of the geometric pen. This figure shows two geometries— a

line geometry and a curve geometry—and how QuickDraw GX draws them with a pen

width of 15.

Figure 3-5 The QuickDraw GX geometric pen

Notice that the ends of the thick line contour and the thick curve contour in Figure 3-5

are perpendicular to the direction of the contours themselves.

C H A P T E R 3

Geometric Styles

3-16 About Geometric Styles

Figure 3-6 shows the effect of different pen widths on a semicircular path shape.

Figure 3-6 Differing pen widths

Setting a value of 0 for the pen width property has special meaning. Instead of indicating

an infinitely thin pen, it indicates that a shape’s contours should be drawn using

hairlines—the thinnest line renderable on the device to which the shape is drawn.

A hairline is always one pixel wide and is always centered about the shape’s geometry.

One important use of hairlines is to make point shapes visible. QuickDraw GX draws

point shapes under only two conditions: if the pen width is 0, indicating a hairline point,

in which case exactly one pixel is drawn, or if the point has a start cap, which is

described in “Caps” beginning on page 3-23.

When drawing a hairline, QuickDraw GX uses this algorithm to determine which pixels

to include:

■ If the contour being drawn is more vertical than horizontal, QuickDraw GX includes a
pixel if the contour crosses the horizontal center line of the pixel.

■ If the contour being drawn is more horizontal than vertical, QuickDraw GX includes a
pixel if the contour crosses the vertical center line of the pixel.

Figure 3-7 depicts this algorithm.

Figure 3-7 Pixels included in a hairline

C H A P T E R 3

Geometric Styles

About Geometric Styles 3-17

In extreme cases, this algorithm can cause no pixels to draw, as shown in Figure 3-8.

Figure 3-8 A geometry with no hairline

The section “Manipulating Pen Width and Placement” on page 3-51 gives an example of

using the pen width property, and the section “Getting and Setting the Pen Width” on

page 3-119 describes the functions you can use to manipulate it.

Style Attributes
The style attributes property of a style object contains six attributes that affect the

drawing of a shape. Four of these attributes affect how QuickDraw GX places the

geometric pen relative to the contours of a shape:

■ The center-frame style attribute, which is the default, indicates that the
QuickDraw GX should center the geometric pen along the shape’s contours.

■ The inside-frame style attribute indicates that QuickDraw GX should position the pen
along the inside of a shape’s contours.

■ The outside-frame style attribute indicates that QuickDraw GX should position the
pen along the outside of shape’s contours.

■ The auto-inset style attribute affects the definition of the inside and outside of a
contour.

These four attributes are discussed in the next section, “Pen Placement.”

There are also two style attributes that determine whether the geometric points of a

shape are constrained to a grid when the shape is drawn:

■ The source-grid style attribute constrains the geometric points of a shape to integer
values before applying the shape’s style and transform information.

■ The device-grid style attribute constrains the geometric points of a shape to integer
pixel positions after applying the shape’s style and transform information.

These two attributes are discussed in the section “Grids” beginning on page 3-20.

C H A P T E R 3

Geometric Styles

3-18 About Geometric Styles

Pen Placement

You can use the center-frame, inside-frame, and outside-frame style attributes to specify

where QuickDraw GX should position the pen with respect to the shape’s geometry.

QuickDraw uses these attributes to position the pen, which also affects the placement of

dashes and how dashes are clipped. For some examples, see “Insetting Dashes”

beginning on page 3-73 and “Combining Caps, Joins, Dashes, and Patterns” beginning

on page 3-91.

Figure 3-9 shows the results of these style attributes. Notice that QuickDraw GX

considers contour direction when determining which side of a contour is the inside: the

right side of the contour is the inside, while the left side of the contour is the outside.

Figure 3-9 Pen placement

C H A P T E R 3

Geometric Styles

About Geometric Styles 3-19

QuickDraw GX also provides the auto-inset style attribute, which allows you to specify

that QuickDraw GX should ignore contour direction when determining which side of a

contour is the inside. When you set this style attribute, QuickDraw GX determines the

true inside of a contour, rather than using the right side as the inside. Figure 3-10 shows

the effect of setting the auto-inset style attribute for the shapes depicted in Figure 3-9.

Figure 3-10 Effect of the auto-inset style attribute

When a contour crosses over itself, the results of setting the auto-inset style attribute are

unpredictable, as the contour has no true inside (or, actually, has multiple true insides).

For the figure-eight shape in Figure 3-11, setting the gxAutoInsetStyle and the

gxInsideFrameStyle style attributes could lead to one of two results.

Figure 3-11 Effect of the auto-inset and inside-frame style attributes for a crossed contour

C H A P T E R 3

Geometric Styles

3-20 About Geometric Styles

To ensure that setting the auto-inset style attribute behaves as you would expect, you

need to call the GXSimplifyShape function, which is described in the chapter

“Geometric Operations” in this book. This function redefines the shape’s geometry to

eliminate crossed contours, as shown in Figure 3-12.

Figure 3-12 Eliminating crossed contours

The section “Manipulating Pen Width and Placement” on page 3-51 gives an example of

specifying pen placement. The section “Style Attributes” on page 3-98 defines the style

attributes enumeration, and the section “Getting and Setting Style Attributes” on

page 3-109 describes the functions you can use to manipulate them.

Grids

From the initial geometry specification to the final image rendering, each QuickDraw GX

shape exists in a number of different coordinate spaces. You describe a shape’s geometry

in geometry space, the style and transform modifications happen in local space, the

shape then exists in one or more view ports’ global spaces, and the shape is finally

rendered in the pixels of a view device’s device space.

In each of these coordinate spaces, QuickDraw GX allows fractional coordinate values.

When you specify points in a shape’s geometry, you are not limited to integer values,

such as (1, 1) or (–10, 10). Instead, you can specify that the shape’s geometric points fall

between integral positions in the geometry space’s coordinate grid, for example (0.5, 0.5).

During each transformation of the shape from geometry to rendering, QuickDraw GX

maintains fractional coordinate values.

The style attributes property of a style object contains two flags that allow you to

suppress fractional coordinate values—that is, these flags allow you to constrain a

shape’s geometric points to integer coordinate values in the different coordinate systems.

C H A P T E R 3

Geometric Styles

About Geometric Styles 3-21

The source-grid style attribute indicates that QuickDraw GX should constrain the

shape’s geometric points to integral positions on the local space grid, before making the

style and transform modifications.

The device-grid style attribute indicates that QuickDraw GX should constrain the

shape’s geometric points to integral positions (that is, pixel positions) on the device

space grid, after making style, transform, and view port modifications.

Note

These style attributes only affect a shape while it is being drawn. They
do not affect the geometric points you specify in the original shape
geometry. ◆

To constrain a shape to integral positions on a coordinate space’s grid, QuickDraw GX

moves the entire shape (that is, all the shape’s geometric points) so that the shape’s

first geometric point lies on the nearest grid position, and then moves each remaining

geometric point to the nearest grid position.

Figure 3-13 depicts the grid-constraining algorithm.

Figure 3-13 Constraining shapes to grids

The sections “Constraining Shape Geometries to Grids” on page 3-40 and “Constraining

Shapes to Device Grids” on page 3-42 give examples of the grid-constraining style

attributes. The section “Style Attributes” on page 3-98 defines the style attributes

enumeration and the section “Getting and Setting Style Attributes” beginning on

page 3-109 describes the functions you can use to manipulate them.

C H A P T E R 3

Geometric Styles

3-22 About Geometric Styles

Interactions Between Caps, Joins, Dashes, and Patterns
The cap, join, dash, and pattern properties of the style object allow you to change the

way QuickDraw GX draws the contours of a shape. The cap and join properties allow

you to place arbitrary shapes on the geometric points of a shape’s contours. For

example, you can place arrow heads at the ends of a line, or you can put rounded edges

at the corners of a rectangle. The dash property allows you to dash the contours of one

shape with another shape. For example, you could dash a line with a circular path shape

to get a dotted line.

The pattern property allows you to fill a shape (or the frame of a shape drawn with a

thick pen width) with a repeated pattern of another shape. For example, you could fill a

large square shape with a pattern of small squares to get a checkerboard.

Figure 3-14 shows some of the stylistic variations possible with caps, joins, dashes, and

patterms.

Figure 3-14 Caps, joins, dashes, and patterns

There is one important rule that applies to all four of these properties: Cap shapes, join

shapes, dash shapes, and pattern shapes must all be in their primitive form. When

QuickDraw GX uses a cap, join, dash, or pattern shape, it ignores the stylistic variations

of that shape. If you want a cap, join, dash, or pattern shape to have stylistic variations

itself, you must first incorporate those stylistic variations into the shape using the

GXPrimitiveShape function.

As an example, specifying a line shape with a thick pen (like the one in Figure 3-3 on

page 3-9) as a cap, join, dash, or pattern shape may produce an unexpected result or post

an error, since the shape is not in its primitive form. However, if you use the

GXPrimitiveShape function, you can convert the line to a filled polygon, which is a

perfectly acceptable cap, join, dash, or pattern shape.

The sections “The Cap Structure” on page 3-99, “The Join Structure” on page 3-101, “The

Dash Structure” on page 3-103, and“The Pattern Structure” on page 3-106 discuss the

types of shapes appropriate to use as caps, joins, dashes, and patterns.

C H A P T E R 3

Geometric Styles

About Geometric Styles 3-23

As another example, a polygon with zero contours is not an acceptable cap, join, dash, or

pattern shape, as it is not in its primitive form. Similarly, any shape with the no-fill shape

fill is not in its primitive form. However, the empty shape, which is in its primitive form,

is an acceptable cap, join, dash, or pattern shape. You can find more information about

polygon shapes, polygon contours, and empty shapes in Chapter 2, “Geometric Shapes,”

in this book.

You can always be sure your cap, join, dash, or pattern shape is in the correct form by

calling the GXPrimitiveShape function, which is described in Chapter 4, “Geometric

Operations,” before setting the corresponding style property.

As for typographic shapes, text and layout shapes are not in their primitive form, but

glyph shapes are acceptable as cap, join, dash, and pattern shapes so long as they have

no text face or tags and do not have caps, joins, dashes, or patterns themselves.

For more information, see Inside Macintosh: QuickDraw GX Typography.

You can use bitmap shapes as patterns, but not as caps, joins, or dashes, and you cannot

use picture shapes for caps, joins, dashes, or patterns.

The next few sections describe caps, joins, dashes, and patterns in more detail.

Caps

QuickDraw GX allows you to specify cap shapes—what to draw at the start and at the

end of a shape’s contours. In particular, you can specify a start cap for any point shape,

and you can specify a start cap and an end cap for any line, curve, polygon, or path

shape that has open-frame shape fill.

In fact, the only way to draw a point shape is to specify a start cap for it (unless its style

object has a pen width property with a value of 0, in which case QuickDraw GX draws

the point shape as a single pixel).

QuickDraw GX uses the cap property of a shape’s style object to store information about

the start cap and end cap of the shape.

Figure 3-15 shows how QuickDraw GX adds a cap to a contour by centering the cap

shape at the end of the contour, scaling the cap shape by the pen width, and rotating the

cap shape to match the slope of the contour.

Figure 3-15 A shape with caps

C H A P T E R 3

Geometric Styles

3-24 About Geometric Styles

The cap property of a style object includes a cap attributes field, which allows you to

specify level caps—caps that QuickDraw GX does not rotate to match the slope of the

contour—as shown in Figure 3-16.

Figure 3-16 A shape with level caps

You can create two standard cap types by specifying half a square or a semicircle for the

start cap or end cap shape, as shown in Figure 3-17.

Figure 3-17 Standard cap shapes

The sections “Adding Caps to a Shape” on page 3-57 and “Adding Standard Caps to a

Shape” on page 3-59 give examples of using the cap property, the sections “The Cap

Structure” on page 3-99 and “Cap Attributes” on page 3-101 describe the data structures

used to store information about caps, and the section “Getting and Setting Caps”

beginning on page 3-123 describes the functions you can use to manipulate caps.

C H A P T E R 3

Geometric Styles

About Geometric Styles 3-25

Joins

QuickDraw GX allows you to specify a join shape to be drawn at the corners of another

shape’s contours. In particular, you can specify a join shape for any rectangle, polygon,

or path shape that has an open-frame shape fill or a closed-frame shape fill:

■ For shapes with the closed-frame shape fill, QuickDraw GX draws the specified join
shape at every on-curve geometric point of each contour.

■ For shapes with the open-frame shape fill, QuickDraw GX draws the specified join
shape at every on-curve geometric point between the first point and the last point of
each contour.

QuickDraw GX uses the join property of a shape’s style object to store information about

the joins of a shape.

Figure 3-18 shows how QuickDraw GX adds a join to a contour by centering the join

shape on the on-curve geometric points, scaling the join shape by the pen width, and

rotating the join shape to match the mid-angle of the two line segments that make up the

corner.

Figure 3-18 A shape with joins

C H A P T E R 3

Geometric Styles

3-26 About Geometric Styles

The join property of a style object includes a join attributes field, which allows you to

specify level joins—joins that QuickDraw GX does not rotate to match the slope of the

contour—as shown in Figure 3-19.

Figure 3-19 A shape with level joins

You can also use the join attributes to specify two types of standard joins—sharp joins

and curve joins, as shown in Figure 3-20.

Figure 3-20 Standard joins

C H A P T E R 3

Geometric Styles

About Geometric Styles 3-27

For sharp joins, QuickDraw GX allows you to specify a miter—the maximum distance

between the actual corner of a shape’s geometry and the corner as drawn, as shown in

Figure 3-21.

Figure 3-21 Sharp join with miter

The sections “Adding Joins to a Shape” on page 3-61 and “Adding Standard Joins to a

Shape” on page 3-64 give examples of using the join property, the section “The Join

Structure” on page 3-101 and “Join Attributes” on page 3-102 describe the data structures

used to store information about joins, and the section “Getting and Setting Joins” on

page 3-129 describes the functions you can use to manipulate them.

Dashes

With QuickDraw GX, you can specify that framed shapes should be drawn with dashed,

instead of solid, contours. In particular, you may specify a dash shape for any line,

curve, rectangle, polygon, or path shape that has an open-frame shape fill or a

closed-frame shape fill.

QuickDraw GX uses the dash property of a shape’s style object to store information

about how to dash the shape.

Figure 3-22 shows how QuickDraw GX dashes a contour by placing copies of the dash

shape along the contour at regular intervals, and rotating the dash shape to match the

slope of the contour.

Figure 3-22 A dashed shape

C H A P T E R 3

Geometric Styles

3-28 About Geometric Styles

When drawing a dashed shape, QuickDraw GX automatically scales the dash shape up

by the pen width of the dashed shape. However, unlike cap and joins, QuickDraw GX

scales dashes only perpendicularly to the dashed contour.

For example, if the height of the dash shape is 1.0, then QuickDraw GX draws the dashes

with a height equal to the dashed shape’s pen width. If the height of the dash shape is

2.0, then QuickDraw GX draws the dashes with a height equal to twice the dashed

shape’s pen width.

Since the dash shape is scaled up by the pen width of the dashed shape, QuickDraw GX

provides a way for you to scale the dash down, as well, by providing a scaling factor,

called the dash scale, in one of the fields of the dash structure. QuickDraw GX multiplies

the height of the dash by the pen width and then divides by the dash scale.

Figure 3-23 shows the effect of different pen widths on the same dash shape. In this

example, the dash shape has height of 10.0 (its y-coordinates span from -5.0 to 5.0). The

shape being dashed is a curve. The curve is shown first with a pen width of 10.0 and a

dash scale of 10.0, which keeps the dimensions of the dash shape unchanged. The curve

is then shown with a pen width of 20.0 and a dash scale of 10.0, which doubles the size

of the dash shape in the y-coordinate direction.

Figure 3-23 Scaling a dash shape

Note

Glyph shapes are an exception to this scaling rule. If the dash shape is
a glyph shape, QuickDraw GX does not scale the dashes (which in this
case would be glyphs) to the dashed shape’s pen width. ◆

C H A P T E R 3

Geometric Styles

About Geometric Styles 3-29

Notice that the position of a dash shape in the coordinates of its geometry space is

significant. For example, if the y-coordinates of the geometry of a dash shape span from

1.0 to 2.0, then QuickDraw GX draws the dashes at a distance of one pen width to the

outside of the dashed contour (if the dash scale is 1.0). If the lowest y-coordinate of a

dash shape is 2.0, then QuickDraw GX draws the dashes at a distance of two pen widths

to the outside of the contour (if the dash scale is 1.0).

If the y-coordinates of the geometry of a dash shape are large enough and the scaling

factor you provided in the dash structure is small enough, the dashes may exceed the

pen width of the dashed shape. QuickDraw GX provides the clip dash attribute to

indicate that QuickDraw GX should clip the dashes to the pen width, as illustrated in

Figure 3-24.

Figure 3-24 Effect of the clip dash attribute

Setting the clip dash attribute causes some intricate interactions among dashes, caps,

joins, and patterms. See “Interactions Between Caps, Joins, Dashes, and Patterns” on

page 3-33 for more information.

QuickDraw GX also allows you to control how far apart the dashes appear from one

another, which is called the dash advance, and how far into the dash shape the dashing

should start, which is called the dash phase.

The dash advance is the distance between the start of one dash shape and the start of the

next dash shape along the contour. The dash phase indicates where the first dash should

fall on a contour; it is a percentage of the dash advance.

When a dash shape has multiple contours, it is possible for the dashes not to fall on the

contours of the dashed shape. For this situation, QuickDraw GX provides the break dash

attribute, which indicates that each contour of the dash should be rotated and placed

separately on the dashed shape’s contours. Figure 3-25 depicts the result of setting this

dash attribute.

C H A P T E R 3

Geometric Styles

3-30 About Geometric Styles

Figure 3-25 Effects of breaking a dash

Finally, QuickDraw GX provides a dashing feature that works only when dashing

hairline contours. In this case, you can set the bend dash attribute, which indicates that

QuickDraw GX should wrap the dash to fit the dashed contour exactly, as shown in

Figure 3-26.

Figure 3-26 Effects of bending a dash

C H A P T E R 3

Geometric Styles

About Geometric Styles 3-31

The following sections give examples of dashing:

■ “Dashing a Shape” on page 3-66

■ “Adjusting Dashes to Fit Contours” on page 3-70

■ “Insetting Dashes” on page 3-73

■ “Breaking and Bending Dashes” on page 3-74

■ “Wrapping Text to a Contour” on page 3-80

■ “Determining Dash Positions” on page 3-81

The section “The Dash Structure” on page 3-103 and“Dash Attributes” on page 3-105

describe the data structures used to store and communicate information about dashes,

and the section “Getting and Setting Dashes” on page 3-134 describes the functions you

can use to manipulate the dash property.

Patterns

With QuickDraw GX, you can specify that certain shapes be filled with a pattern. For

shapes with solid shape fills, QuickDraw GX fills the shape by repeating a pattern shape

that you specify.

You can also pattern framed shapes. For example, if you pattern a rectangle shape with a

closed-frame shape fill and a pen width of 20.0, QuickDraw GX would fill the frame of

the rectangle with the pattern. See the section “Interactions Between Caps, Joins, Dashes,

and Patterns” on page 3-33 for more intricate examples.

QuickDraw GX uses the pattern property of a shape’s style object to store information

about how to pattern the shape.

Figure 3-27 shows how QuickDraw GX patterns a shape by filling the shape with copies

of another shape, called the pattern shape, placed according to a regular grid that you

specify.

Figure 3-27 A shape with a pattern

C H A P T E R 3

Geometric Styles

3-32 About Geometric Styles

In addition to specifying the shape to use as the pattern shape, you also specify the

pattern grid on which to place the pattern, as shown in Figure 3-28.

Figure 3-28 Pattern placed on a nonrectilinear grid

In addition, QuickDraw GX provides you with two pattern attributes: the port-align

pattern attribute and the port-map pattern attribute. Setting the port-align pattern

attribute allows you to specify that QuickDraw GX should align the pattern with the

view device instead of with the geometry of the patterned shape. Figure 3-29 shows the

effect of setting this attribute.

Figure 3-29 Effects of the port-align pattern attribute

C H A P T E R 3

Geometric Styles

About Geometric Styles 3-33

The port-map pattern attribute indicates that the pattern shape should not be affected by

transformations to the patterned shape. For example, if you set this pattern attribute,

scaling the patterned shape by a factor of two does not also scale the pattern shape by a

factor of two; instead, more of the pattern is shown. Figure 3-30 shows the effect of

setting this attribute.

Figure 3-30 Effects of the port-map pattern attribute

The sections “Adding a Pattern to a Shape” on page 3-86 and “Determining Pattern

Positions” on page 3-88 give examples of using patterns. The section “The Pattern

Structure” on page 3-106 and “Pattern Attributes” on page 3-107 describes the

data structures used to store information about patterns, and the section “Getting and

Setting Patterns” on page 3-142 describes the functions you can use to manipulate

patterns.

Interactions Between Caps, Joins, Dashes, and Patterns

The previous four sections show the results of adding a cap, a join, a dash, or a pattern to

a QuickDraw GX shape. This section discusses how these stylistic variations interact

when you add more than one of them at a time to the same shape.

In general, these elements interact differently in each of these three cases:

■ the shape does not have a dash but has one or more of the other three stylistic
variations

■ the shape does have a dash but the clip dash attribute is not set

■ the shape does have a dash and the clip dash attribute is set

C H A P T E R 3

Geometric Styles

3-34 About Geometric Styles

When a shape has a cap and a join, QuickDraw GX adds the caps to the beginnings and

ends of the shape’s contours, and adds the joins to the other on-curve geometric points

of the shape’s contours. If the shape also has a pattern, QuickDraw GX draws this

pattern throughout the shape’s frame as well as the shape’s caps and joins, as shown in

Figure 3-31.

Figure 3-31 A shape with a cap, join, and pattern

If a shape has a dash, but the clip dash attribute is not set, QuickDraw GX ignores the caps
and joins of the shape. However, if the shape has a pattern, QuickDraw GX does draw the

pattern throughout the dashes, as shown in Figure 3-32.

Figure 3-32 A shape with a dash and a pattern

C H A P T E R 3

Geometric Styles

Using Geometric Styles 3-35

Finally, if the shape has a dash and the clip dash attribute is set, QuickDraw GX does not

ignore the caps and joins. Instead, the cap shapes and the join shapes are added to the

clip shape that QuickDraw GX uses to clip the dashes. Patterns are not allowed in this

case. Figure 3-33 shows the interaction of a cap, join, and clipped dash.

Figure 3-33 A shape with a clipped dash and a cap and join

The section “Combining Caps, Joins, Dashes, and Patterns” beginning on page 3-91 give

examples of the interactions between caps, joins, dashes, and patterns.

Using Geometric Styles

This section shows you how to use styles to add stylistic variations to geometric shapes.

In particular, this section show you how to

■ create a style object, alter its properties, and associate the style with a shape

■ alter the properties of a style object already associated with a shape

■ constrain shapes to grids

■ use curve error when approximating paths with polygons and when reducing shapes

■ manipulate pen width and placement

C H A P T E R 3

Geometric Styles

3-36 Using Geometric Styles

■ add caps to a shape, including round and square caps

■ add joins to a shape, including standard round and sharp joins

■ dash a shape

■ adjust dashes to fit contours

■ bend and break dashes

■ wrap text by using glyphs as a dash shape

■ determine dash positions

■ add a pattern to a shape and determine pattern positions

■ combine caps, joins, dashes, and patterns

Associating Styles With Shapes
QuickDraw GX provides two basic methods of altering stylistic information for shapes:

■ using functions that operate on style objects directly

■ using functions that operate on style objects indirectly through shape objects

The first category of functions require you to provide a reference to a style object, which

you can obtain by using the GXNewStyle function to create a new style object, or by

using the GXGetShapeStyle function to obtain a reference to an existing style object.

(The GXNewStyle and GXGetShapeStyle functions are described in Inside Macintosh:
QuickDraw GX Objects.)

Once you have a reference to a style object, you can use this category of functions to

manipulate the style’s properties; for example, you can use the GXSetStylePen

function to change the pen width of the style.

If you obtained the reference to the style object using the GXGetShapeStyle function,

then the style is already associated with a shape—in fact, it may be shared amongst

many shapes. Modifications you make to the style’s properties will apply to all shapes

that share the style.

C H A P T E R 3

Geometric Styles

Using Geometric Styles 3-37

However, if you created the style object using the GXNewStyle function, you must then

associate the style with a shape for the style modifications to have any effect. You can

associate a style with a shape using the GXSetShapeStyle function, as shown in

Listing 3-1. The GXSetShapeStyle function is described in Inside Macintosh:
QuickDraw GX Objects.

Listing 3-1 Adding style information by directly manipulating a style object

void MakeThickPenStyle(void)

{

gxShape aRectangleShape;

gxStyle aThickPenStyle;

static gxRectangle rectangleGeometry = {ff(50), ff(50),

 ff(200), ff(200)};

aRectangleShape = GXNewRectangle(&rectangleGeometry);

GXSetShapeFill(aRectangleShape, gxClosedFrameFill);

aThickPenStyle = GXNewStyle();

GXSetStylePen(aThickPenStyle, ff(30));

GXSetShapeStyle(aRectangleShape, aThickPenStyle);

GXDisposeStyle(aThickPenStyle);

GXDrawShape(aRectangleShape);

GXDisposeShape(aRectangleShape);

}

The MakeThickPenStyle sample function creates a rectangle shape and sets its shape

fill to the closed-frame shape fill, making it a framed rectangle. The sample function then

creates a new style object using the GXNewStyle function, which creates a style object

with properties set to the standard initialized values. The owner count of this style object

is 1, corresponding to the reference contained in the aThickPenStyle variable. The

sample function then alters the pen width of the new style using the GXSetStylePen

function.

C H A P T E R 3

Geometric Styles

3-38 Using Geometric Styles

To associate the style with the rectangle shape, the sample function calls the

GXSetShapeStyle function. This function disposes of the style previously referenced

by the rectangle shape, stores a reference to the new style in the rectangle shape object,

and increments the style’s owner count—there are now two references to the style: one in

the sample function’s local variable, and one in the rectangle shape.

Finally, the sample function disposes of the style, which indicates that the reference to

the style stored in the local variable aThickPenStyle is no longer needed.

QuickDraw GX decrements the owner count of the style, which becomes 1,

corresponding to the reference contained in the rectangle shape.

Finally, the sample function draws the rectangle, which appears as in Figure 3-34.

Figure 3-34 Rectangle with thick pen

The second method of altering styles involves functions that operate on style objects

indirectly through the shape objects that reference them.

When using this category of function, you need only provide a reference to the shape

whose style information you want to change. QuickDraw GX finds the associated style

object and alters the appropriate style property for you.

C H A P T E R 3

Geometric Styles

Using Geometric Styles 3-39

In fact, QuickDraw GX provides one further level of service with this category of

functions. If the shape that you specify is sharing its style with other shapes,

QuickDraw GX first makes a copy of the style object, associates the copy with the shape

you specified, and then alters the appropriate property of the copy.

Listing 3-2 shows an alternate approach to creating the thick-framed rectangle

from Listing 3-1.

Listing 3-2 Manipulating style information indirectly

void MakeThickRectangle(void)

{

gxShape aRectangleShape;

gxRectangle rectangleGeometry = {ff(50), ff(50),

 ff(200), ff(200)};

aRectangleShape = GXNewRectangle(&rectangleGeometry);

GXSetShapeFill(aRectangleShape, gxHollowFill);

GXSetShapePen(aRectangleShape, ff(30));

GXDrawShape(aRectangleShape);

GXDisposeShape(aRectangleShape);

}

As in Listing 3-1, this sample function creates a new framed rectangle shape. However,

instead of creating a style object, altering the pen width property of the style object with

the GXSetStylePen function, and associating the style with the rectangle shape, this

sample function uses the GXSetShapePen function to accomplish those tasks in one

step.

Since the rectangle shape is a new shape, it shares its style object with other shapes—the

default rectangle shape at the very least. The GXSetShapePen function notices that the

rectangle shape’s style is shared, so it makes a copy of this style, associates the copy with

the rectangle shape, and alters the pen width property of this copy.

C H A P T E R 3

Geometric Styles

3-40 Using Geometric Styles

The result of this sample function looks exactly the same as the result of the previous

sample function, shown in Figure 3-34.

For simplicity, the rest of the sample functions in this chapter use the second method for

altering style properties.

Constraining Shape Geometries to Grids
The source-grid style attribute (gxSourceGridStyle) allows you to specify that

QuickDraw GX should constrain the coordinates of a shape’s geometry to integer

positions before applying the shape’s style and transform. Setting this style attribute

does not actually change the information stored in the shape’s geometry—instead,

QuickDraw GX reinterprets the shape’s geometry when drawing the shape.

If a shape has no style or transform modifications, setting this style attribute has the

effect of snapping the shape to a 1/72-inch grid—an effect that is visible only on

high-resolution devices. However, if the shape has style or transform modifications,

setting this style attribute might have visible effects even on lower-resolution devices.

For example, you can use the source-grid style attribute in combination with a scaling

transform to achieve the effect of constraining a shape to a grid much larger than 1/72

inch. The sample function in Listing 3-3 shows how to use this style attribute to constrain

a shape to a half-inch grid.

Listing 3-3 Constraining a shape to a half-inch grid

void ConstrainShapeToGrid(void)

{

gxMapping scaleToHalfInches;

static long veeGeometry[] = {1, /* number of contours */

 3, /* number of points */

 fl(1.2), fl(1.1),

 fl(2.9), fl(2.8),

 fl(5.2), fl(.9)};

gxShape aVeeShape;

aVeeShape = GXNewPolygons((gxPolygons *) veeGeometry);

GXSetShapeFill(aVeeShape, gxOpenFrameFill);

GXSetShapePen(aVeeShape, fl(5.0 * (1.0/36.0)));

C H A P T E R 3

Geometric Styles

Using Geometric Styles 3-41

GXResetMapping(scaleToHalfInches);

GXScaleMapping(scaleToHalfInches, ff(36), ff(36),

 ff(0), ff(0));

 GXSetShapeMapping(aVeeShape, scaleToHalfInches);

GXDrawShape(aVeeShape);

GXDisposeShape(aVeeShape);

}

This sample function defines a small, irregular, V-shape geometry and scales the shape

up by 36 points, or half an inch. The pen width is set to 5.0 (divided by 36.0 to counteract

the scaling). The result of this sample function is shown in Figure 3-35.

Figure 3-35 Scaled, but not constrained, V shape

Notice that before QuickDraw GX applies the mapping, the coordinates of the shape’s

geometry represent points, whereas after QuickDraw GX applies the mapping, the

coordinates of the shape’s geometry effectively represent half inches.

If you set the source-grid style attribute by adding this line of code to the sample

function:

GXSetShapeStyleAttributes(aVeeShape, gxSourceGridStyle);

C H A P T E R 3

Geometric Styles

3-42 Using Geometric Styles

QuickDraw GX constrains the coordinates of the shape’s geometry to the nearest integer

position before applying the mapping. Therefore, after the mapping, the shape’s

geometric points lie on a half-inch grid, as shown in Figure 3-36.

Figure 3-36 Constrained V shape

The sample function in this section uses some concepts from other parts of

QuickDraw GX. For more information about scaling, mappings, and transforms, see the

chapter “Transform Objects” in Inside Macintosh: QuickDraw GX Objects.

For more information about the gxSourceGridStyle style attribute, see “Style

Attributes” on page 3-98.

Constraining Shapes to Device Grids
QuickDraw GX provides the device-grid style attribute (gxDeviceGridStyle), which

allows you to constrain the geometric points of a shape to integer positions after the

style, transform, and view modifications have been made.

This style attribute constrains the geometric points of a shape to the nearest integer pixel

position on the device to which the shape is rendered. Unlike the source-grid style

attribute, the device-grid style attribute never drastically affects the position of the

shape. However, for shapes that do not have the device-grid attribute set,

QuickDraw GX makes minor modifications when drawing contours whose geometric

points lie between pixels; you can use the device-grid style attribute to override these

modifications, which typically produces better-looking results.

C H A P T E R 3

Geometric Styles

Using Geometric Styles 3-43

The sample function in Listing 3-4 creates a star-shaped polygon and rotates it 28

degrees, which causes its geometric points to lie between integer positions.

Listing 3-4 Creating a shape with fractional geometric point positions

void ConstrainShapeToDeviceGrid(void)

{

long starGeometry[] = {1, /* number of contours */

9, /* number of points */

ff(40), ff(40),

ff(50), ff(20),

ff(60), ff(40),

ff(80), ff(50),

ff(60), ff(60),

ff(50), ff(80),

ff(40), ff(60),

ff(20), ff(50),

 ff(40), ff(40),

 };

gxShape aStar;

aStar = GXNewPolygons((gxPolygons *) starGeometry);

GXSetShapeFill(aStar, gxOpenFrameFill);

RotateShapeAboutCenter(aStar, ff(28));

GXDrawShape(aStar);

GXDisposeShape(aStar);

}

C H A P T E R 3

Geometric Styles

3-44 Using Geometric Styles

Because the geometric points of the rotated star do not lie on integer positions,

QuickDraw GX does not draw the contours of the star with the most visually appealing

lines; instead, it makes minor adjustments to reflect the fractional part of the geometric

point coordinates as shown in Figure 3-37.

Figure 3-37 Rotated star not constrained to device grid (magnified 200 percent)

If you constrain the star shape to the device grid by adding this line of code to the

sample function:

GXSetShapeStyleAttributes(aStar, gxDeviceGridStyle);

QuickDraw GX constrains the shape’s geometric points to the device grid before

choosing the pixels to represent the shape’s contours, which creates better-looking lines,

as shown in Figure 3-38.

C H A P T E R 3

Geometric Styles

Using Geometric Styles 3-45

Figure 3-38 Rotated star constrained to device grid (magnified 200 percent)

The sample function in this section uses some concepts from other parts of

QuickDraw GX. For more information about rotating, mappings, and transforms, see the

chapter “Transform Objects” in Inside Macintosh: QuickDraw GX Objects.

For more information about the gxDeviceGridStyle style attribute, see “Style

Attributes” on page 3-98.

Using Curve Error When Converting Paths to Polygons
You can use the curve error property of the style object in a variety of situations—for

example, when approximating a path shape (which includes curves) with a polygon

shape (which includes only straight lines).

The GXSetShapeType function, which is described in full in Inside Macintosh:
QuickDraw GX Objects, allows you to convert a shape from one shape type to another.

When you convert a path shape that contains curves to a polygon shape, QuickDraw GX

uses the curve error of the shape’s style to determine how close to make the polygon

approximation. The distance between the polygon and the original path is never greater

than the number of grid points (1/72-inch units) specified by the curve error.

C H A P T E R 3

Geometric Styles

3-46 Using Geometric Styles

Listing 3-5 shows a sample function that creates a circular path shape, sets its curve error

to 1, and converts it to a polygon shape.

Listing 3-5 Converting a circle to a polygon

void ConvertCircleToPolygon(void)

{

gxRectangle circleBounds = {ff(50), ff(50),

 ff(200), ff(200)};

gxShape aCircle;

aCircle = NewArc(&circleBounds, ff(0), ff(360), false);

GXSetShapeFill(aCircle, gxClosedFrameFill);

GXSetShapeCurveError(aCircle, ff(1));

GXSetShapeType(aCircle, gxPolygonType);

GXDrawShape(aCircle);

GXDisposeShape(aCircle);

}

Since the curve error is 1 in this example, the resulting polygon is never more than 1 grid

point away from the original circle, which makes for an accurate approximation, as

shown in Figure 3-39.

Figure 3-39 Polygon approximation of a circle with curve error of 1

C H A P T E R 3

Geometric Styles

Using Geometric Styles 3-47

Increasing the curve error decreases the accuracy of the approximation. Setting the curve

error to 5 in this example creates the polygon shown in Figure 3-40, which has fewer

sides than the polygon in Figure 3-39.

Figure 3-40 Polygon approximation of a circle with curve error of 5

If you increase the curve error to 10, the octagon shown in Figure 3-41 results.

Figure 3-41 Polygon approximation of a circle with curve error of 10

C H A P T E R 3

Geometric Styles

3-48 Using Geometric Styles

Although decreasing the curve error leads to more accurate approximations in general, a

curve error of 0 is a special case. A curve error of 0 indicates that QuickDraw GX should

not approximate the path at all. Instead, QuickDraw GX simply removes all off-curve

control points, leaving a polygon made up of the on-curve geometric points of the initial

path.

In Listing 3-5, the circular path returned by the NewArc library routine contains eight

off-curve control points, which imply eight on-curve geometric points midway between

each pair of off-curve control points. A curve error of 0 results in a polygon containing

these eight on-curve points, as shown in Figure 3-42.

Figure 3-42 Polygon resulting from a curve error of 0

For more information about paths, polygons, and on-curve and off-curve geometric

points, see Chapter 3, “Geometric Shapes.”

For more information about curve error and the functions you can use to manipulate it,

see “Curve Error” on page 3-14 and “Getting and Setting Curve Error” on page 3-114.

C H A P T E R 3

Geometric Styles

Using Geometric Styles 3-49

Using Curve Error When Reducing Shapes
You can also use curve error to eliminate excess detail in complicated shapes. When you

call the GXReduceShape or GXSimplifyShape functions, QuickDraw GX averages

points within a curve error of each other.

You can use this feature to smooth a complicated contour, such as the wavy line created

in Listing 3-6.

Listing 3-6 Creating a complicated contour

void FlattenWavyLine(void)

{

gxShape aWave;

static longwavyGeometry[] = {1, /* number of contours */

 13, /* number of points */

 0x2AA00000, /* 0010 0101 0101 */

 ff(80), ff(100),/* on */

 ff(110), ff(100),/* on */

 ff(113), ff(91), /* off */

 ff(118), ff(103),/* on */

 ff(123), ff(85),/* off */

 ff(128), ff(100), /* on */

 ff(133), ff(112), /* off */

 ff(135), ff(97), /* on */

 ff(141), ff(106), /* off */

 ff(145), ff(94), /* on */

 ff(150), ff(109), /* off */

 ff(153), ff(100), /* on */

 ff(183), ff(100)/* on */

 };

aWave = GXNewPaths((gxPaths *) wavyGeometry);

GXSetShapeFill(aWave, gxOpenFrameFill);

GXDrawShape(aWave);

GXDisposeShape(aWave);

}

C H A P T E R 3

Geometric Styles

3-50 Using Geometric Styles

The shape created by this sample function is shown in Figure 3-43.

Figure 3-43 Wavy line

If you add the following lines of code to this sample function:

GXSetShapeCurveError(aWave, ff(10));

GXReduceShape(aWave, 0);

the resulting shape has a slightly smoother appearance because QuickDraw GX averages

sequential on-curve geometric points within the specified distance (a distance of 10 grid

points). Figure 3-44 shows the resulting shape.

Figure 3-44 Wavy line somewhat smoothed by curve error of 10

Increasing the curve error increases the number of geometric points that QuickDraw GX

averages. A curve error of 15 results in the shape shown in Figure 3-45.

Figure 3-45 Wavy line smoothed by curve error of 15

A curve error of 20 results in a completely straight line—all of the points between the

start point and the end point of the contour have been averaged out as shown in

Figure 3-46.

Figure 3-46 Wavy line completely straightened by curve error of 20

C H A P T E R 3

Geometric Styles

Using Geometric Styles 3-51

Note
When QuickDraw GX reduces a shape, it does not ignore the first and
last points of the contour. If these points had been close enough to the
other points in this example, they, too, would have been averaged, and
the entire shape would have become a point. ◆

For more information about curve error and the functions you can use to manipulate it,

see “Curve Error” on page 3-14 and “Getting and Setting Curve Error” beginning on

page 3-114.

Manipulating Pen Width and Placement
The pen width property of a style object determines the width with which

QuickDraw GX draws a shape’s contours, and three of the style attributes determine

where QuickDraw GX places the pen in relation to a shape’s contours. These three

attributes are

■ the center-frame style attribute (gxCenterFrameStyle)

■ the inside-frame style attribute (gxInsideFrameStyle)

■ the outside-frame style attribute (gxOutsideFrameStyle)

Since contour direction and crossed contours affect pen placement, the examples in this

section use a path shape shaped like a figure eight, as defined in Listing 3-7.

Listing 3-7 Defining a figure eight

void CreateFigureEight(void)

{

gxShape aPathShape;

static long figureEightGeometry[] = {1, /* number of contours */

 4, /* number of points */

 0xF0000000, /* 1111 ... */

 ff(50), ff(50),

 ff(200), ff(200),

 ff(50), ff(200),

 ff(200), ff(50)};

aPathShape = GXNewPaths((gxPaths *) figureEightGeometry);

GXSetShapeFill(aPathShape, gxClosedFrameFill);

GXDrawShape(aPathShape);

GXDisposeShape(aPathShape);

}

C H A P T E R 3

Geometric Styles

3-52 Using Geometric Styles

Figure 3-47 shows the result of this sample function with the default pen width, which is

a hairline, and the default pen placement, which is centered (as it always is for hairlines).

Figure 3-47 A hairline figure eight

To increase the width of the pen, you can add the following line of code to the

CreateFigureEight sample function:

GXSetShapePen(aPathShape, ff(30));

which results in the shape depicted in Figure 3-48.

Figure 3-48 A thick figure eight

C H A P T E R 3

Geometric Styles

Using Geometric Styles 3-53

To change the placement of the thick pen, you can use the

GXSetShapeStyleAttributes function to set the inside-frame style attribute or

outside-frame style attribute. For example, if you add this line of code to the

CreateFigureEight sample function:

GXSetShapeStyleAttributes(aPathShape, gxInsideFrameStyle);

QuickDraw GX shifts the entire pen width, which is 30 points, to the inside of the figure

eight. Since, by default, QuickDraw GX defines the inside of a contour to be the right

side, contour direction is significant in this case, and the resulting shape appears as

depicted in Figure 3-49.

Figure 3-49 A figure eight with pen inset

C H A P T E R 3

Geometric Styles

3-54 Using Geometric Styles

If you indicate that the pen should be placed outside—that is, to the left of—the contour,

using this line of code:

GXSetShapeStyleAttributes(aPathShape, gxOutsideFrameStyle);

the figure reverses, appearing as shown in Figure 3-50.

Figure 3-50 A figure eight with pen outset

The contour direction of the path shape determines which side is the inside and which

side is the outside. If you reverse the contour direction by reversing the order of the

geometric points with this definition:

static long figureEightGeometry[] = {1, /* number of contours */

 4, /* number of points */

 0xF0000000, /* 1111 ... */

 ff(200), ff(50)

 ff(50), ff(200),

 ff(200), ff(200),

 ff(50), ff(50)};

but still set the outside-frame style attribute:

GXSetShapeStyleAttributes(aPathShape, gxOutsideFrameStyle);

then the resulting shape appears to be the same as the original figure-eight shape with

the path inset, as shown in Figure 3-51.

C H A P T E R 3

Geometric Styles

Using Geometric Styles 3-55

Figure 3-51 A reversed figure eight with pen outset

However, this figure still doesn’t look like a figure eight with the path outset—it looks

like a figure eight with the upper half of the path outset and the lower half of the path

inset. This problem arises because the path crosses itself. To fix this problem, you can call

the GXSimplifyShape function, which redefines the geometry of the shape so that the

path has no crossed contours. Listing 3-8 shows a sample function that uses the

GXSimplifyShape to remove the unwanted contour crossing.

Listing 3-8 Removing unwanted contour crossings

void CreateUncrossedFigureEight(void)

{

gxShape aPathShape;

static long figureEightGeometry[] = {1, /* number of contours */

 4, /* number of points */

 0xF0000000, /* 1111 ... */

 ff(50), ff(50), /* off */

 ff(200), ff(200),/* off */

 ff(50), ff(200),/* off */

 ff(200), ff(50)};/* off */

aPathShape = GXNewPaths((gxPaths *) figureEightGeometry);

GXSetShapeFill(aPathShape, gxClosedFrameFill);

GXSetShapePen(aPathShape, ff(30));

GXSimplifyShape(aPathShape);

C H A P T E R 3

Geometric Styles

3-56 Using Geometric Styles

GXSetShapeStyleAttributes(aPathShape, gxAutoInsetStyle);

GXSetShapeStyleAttributes(aPathShape, gxOutsideFrameStyle);

GXDrawShape(aPathShape);

GXDisposeShape(aPathShape);

}

This sample function calls GXSimplifyShape to uncross the contours of the figure

eight. However, you cannot be sure whether GXSimplifyShape uncrosses the contours

by reversing the direction of the upper half of the figure eight, making each loop

clockwise, or by reversing the lower half of the figure eight, making each loop

counterclockwise. Therefore, the CreateUncrossedFigureEight sample function

sets the auto-inset style attribute, which overrides the default assumption that the right

side of the contour is the inside. Instead, QuickDraw GX determines the true inside of

each contour.

Finally, now that the contours of the path do not cross and QuickDraw GX is determinng

the actual inside of the contour, setting the outside-frame style attribute works more as

you would expect, as shown in Figure 3-52.

Figure 3-52 Uncrossed figure eight with pen outset

For more information about pen placement, see “Pen Placement” beginning on

page 3-18. For more information about style attributes, see “Style Attributes” beginning

on page 3-17 and “Style Attributes” beginning on page 3-98.

C H A P T E R 3

Geometric Styles

Using Geometric Styles 3-57

Adding Caps to a Shape
To add a cap shape to the ends of another shape’s contours, you must create a cap record

structure. The cap structure has three fields: one for the start cap shape, one for the end

cap shape, and one for the cap attributes.

Listing 3-9 shows how to create a cap structure with an arrow head for the start cap, an

arrow tail for the end cap, and no cap attributes.

Listing 3-9 Creating an arrow

void CreateArrow(void)

{

gxShape aCurve, arrowHead, arrowTail;

static gxCurve curveGeometry = {ff(25), ff(125),

 ff(100), 0,

 ff(225), ff(125)};

static long arrowHeadPolygonGeometry[] = {4, /* # of points */

 -ff(3), 0,

 0, fixed1,

 fixed1, 0,

 0, -fixed1};

static long arrowTailPolygonGeometry[] = {5, /* # of points */

 -fixed1, 0,

 0, fixed1,

 ff(2), fixed1,

 ff(2), -fixed1,

 0, -fixed1};

 gxCapRecord theCapRecord;

aCurve = GXNewCurve (&curveGeometry);

arrowHead = NewPolygon((gxPolygon *)

&arrowHeadPolygonGeometry);

arrowTail = NewPolygon((gxPolygon *)

&arrowTailPolygonGeometry);

theCapRecord.startCap = arrowHead;

theCapRecord.endCap = arrowTail;

theCapRecord.attributes = gxNoAttributes;

C H A P T E R 3

Geometric Styles

3-58 Using Geometric Styles

GXSetShapeCap(aCurve, &theCapRecord);

GXDisposeShape(arrowHead);

GXDisposeShape(arrowTail);

GXSetShapePen(aCurve, ff(10));

GXDrawShape(aCurve);

GXDisposeShape(aCurve);

}

This sample function creates two polygon shapes: one for the arrow head and one for the

arrow tail. It then creates a cap structure that contains references to the two shape objects

and an attributes field with no attributes set.

The sample function then calls the GXSetShapeCap function, which sets the cap

property of the curve shape’s style object. (Remember, it makes a copy of this style object

if the style is shared amongst multiple shapes.)

When the GXSetShapeCap function copies the start cap and the end cap from the cap

record to the curve’s style object, it does not simply copy references to the arrow head

polygon and the arrow tail polygon. Instead, it makes copies of those shapes and

includes the copies in the cap property of the curve’s style object. After setting the curve

shape’s caps, you may subsequently make changes to the arrow head and arrow

tail shapes without affecting the start cap or end cap of the curve.

Note

Actually, the GXSetShapeCap function does not copy the entire start
cap shape or end cap shape. Instead, it copies only the geometric
information of the start and end cap shapes. For this reason, you must
provide start cap shapes and end cap shapes in their primitive forms. ◆

After the CreateArrow sample function sets the caps of the curve shape, it disposes of

the arrow head and arrow tail polygons. At this point, the owner count of these shapes

becomes 0 (since the curve’s style does not actually reference these shapes), and the

memory used by the two polygon shapes is freed.

Note

In the same way that the GXSetShapeCap function copies geometry
information from the start and end cap shapes into a style’s cap
property, the GXGetShapeCap function creates new shape objects and
copies the geometry information from a style’s cap property into the
new shapes. If you use the GXGetShapeCap function to find the caps of
a shape and alter those caps, you must use the GXSetShapeCap
function to copy your changes back into the shape’s caps. ◆

C H A P T E R 3

Geometric Styles

Using Geometric Styles 3-59

Figure 3-53 shows the result of the CreateArrow sample function.

Figure 3-53 An arrow

Notice that QuickDraw GX rotates the start cap and the end cap to match the slope of the

curve’s contour, and scales them by the width of the pen. You can suppress the rotation

by setting the level start-cap attribute and the level end-cap attribute.

The sections “The Cap Structure” on page 3-99 and “Cap Attributes” on page 3-101

describe the cap structure and the cap attributes in more detail, and the section “Getting

and Setting Caps” beginning on page 3-123 describes the functions you can use to

manipulate caps.

Adding Standard Caps to a Shape
Two types of caps that you may frequently want to add to your shapes are the round cap

and the square cap. The sample function in Listing 3-10 shows how to create these types

of caps.

For a round cap, you need to create a semicircle, which you can do using the library

function NewArc. To fit the end of a contour, the bounds of this semicircle must be set as

follows:

gxRectangle roundCapBounds = {-fl(.5), -fl(.5), fl(.5), fl(.5)};

and the semicircle must start at 180 degrees and span a 180 degree arc:

gxRoundCap = NewArc(&roundCapBounds, ff(180), ff(180), true);

For a square cap to fit the end of a contour, its bounds must be set as follows:

gxRectangle squareCapBounds = {-ff(.5), -ff(.5), ff(0), ff(.5)};

C H A P T E R 3

Geometric Styles

3-60 Using Geometric Styles

Listing 3-10 shows how to create a round cap and a square cap for the curve shape from

previous examples.

Listing 3-10 Adding round caps and square caps to a curve

void CreateMyShape(void)

{

gxShape aCurve, gxRoundCap, gxSquareCap;

static gxCurve curveGeometry = {ff(25), ff(125),

 ff(100), 0,

 ff(225), ff(125)};

static gxRectangle roundCapBounds = {-fl(.5), -fl(.5),

 fl(.5), fl(.5)};

static gxRectangle squareCapBounds = {-ff(.5), -ff(.5),

 ff(0), ff(.5)};

 gxCapRecord theCapRecord;

aCurve = GXNewCurve (&curveGeometry);

gxRoundCap = NewArc(&roundCapBounds, ff(180), ff(180), true);

gxSquareCap = GXNewRectangle(&squareCapBounds);

theCapRecord.startCap = gxRoundCap;

theCapRecord.endCap = gxSquareCap;

theCapRecord.attributes = gxNoAttributes;

GXSetShapeCap(aCurve, &theCapRecord);

GXDisposeShape(gxRoundCap);

GXDisposeShape(gxSquareCap);

GXSetShapePen(aCurve, ff(10));

GXDrawShape(aCurve);

GXDisposeShape(aCurve);

}

C H A P T E R 3

Geometric Styles

Using Geometric Styles 3-61

Figure 3-54 shows the result of this sample function.

Figure 3-54 Round and square caps

Notice that QuickDraw GX rotates and resizes the caps to fit the contour.

The sections “The Cap Structure” on page 3-99 and “Cap Attributes” on page 3-101

describe the cap structure and the cap attributes in more detail, and the section “Getting

and Setting Caps” beginning on page 3-123 describes the functions you can use to

manipulate caps.

Adding Joins to a Shape
To add a join shape to the corners of another shape’s contours, you must create a join

structure. The join structure has three fields: one for the join shape, one for the join

attributes, and one for the miter, which is used only for sharp joins.

Listing 3-11 shows how to create a join structure with an diamond shape as the join

shape, and then apply the diamond join shape to the corners of a rectangle shape.

Listing 3-11 Adding joins to a shape

void CreateJoinedSquare(void)

{

gxShape aSquareShape, aDiamondShape;

static gxRectangle squareGeometry = {ff(50), ff(50),

 ff(150), ff(150)};

static long diamondGeometry[] = {1, /* number of contours */

 4, /* number of points */

 ff(0), ff(3),

 ff(1), fl(0),

 ff(0), -ff(3),

 -ff(1), ff(0)};

C H A P T E R 3

Geometric Styles

3-62 Using Geometric Styles

 gxJoinRecord theJoinRecord;

aSquareShape = GXNewRectangle(&squareGeometry);

GXSetShapeFill(aSquareShape, gxClosedFrameFill);

aDiamondShape = GXNewPolygons((gxPolygons *) diamondGeometry);

theJoinRecord.attributes = gxNoAttributes;

theJoinRecord.join = aDiamondShape;

theJoinRecord.miter = 0;

GXSetShapeJoin(aSquareShape, &theJoinRecord);

GXDisposeShape(aDiamondShape);

GXSetShapePen(aSquareShape, ff(10));

GXDrawShape(aSquareShape);

GXDisposeShape(aSquareShape);

}

This sample function creates a square as the shape to add joins to and a diamond-shaped

polygon to use for the joins. It then creates a join structure which contains a reference to

the diamond shape, an attributes field with no attributes set, and a miter of 0.

The sample function then calls the GXSetShapeJoin function, which sets the join

property of the square shape’s style object. (Remember, it makes a copy of this style

object if the style is shared amongst multiple shapes.)

Note

As with caps, QuickDraw GX copies only the geometric information
of the join shape into the join property of the style object; it does not
copy the entire join shape. For this reason, join shapes must be in their
primitive form. Once you have called GXSetShapeJoin, you are free to
change the original join shape without affecting the joins that you have
already added to a shape. ◆

After the CreateJoinedSquare sample function sets the joins of the square shape, it

disposes of the diamond-shaped polygon. At this point, the owner count of this polygon

shape becomes 0 and the memory used by the polygon shape is freed.

Figure 3-55 shows the result of the CreateJoinedSquare sample function.

C H A P T E R 3

Geometric Styles

Using Geometric Styles 3-63

Figure 3-55 A square with diamond-shaped joins

Notice that QuickDraw GX scales the join shape by the pen width and rotates the join

shape to match the mid-angle of the two line segments that make each corner. You can

suppress the rotation by setting the level join attribute:

theJoinRecord.attributes = gxLevelJoin;

Figure 3-56 shows the result of setting this attribute.

Figure 3-56 A square with level joins

C H A P T E R 3

Geometric Styles

3-64 Using Geometric Styles

The sections “The Join Structure” on page 3-101 and “Join Attributes” on page 3-102

describe the join structure and join attributes in more detail, and the section “Getting and

Setting Joins” beginning on page 3-129 describes the functions you can use to

manipulate joins.

The next section shows how to create standard joins and how to use the miter field of the

join structure.

Adding Standard Joins to a Shape
Two types of joins that you may frequently want to add to your shapes are the round

join and the square join. Unlike the standard cap shapes, which you add yourself by

creating a semicircle shape or a half-square shape, the standard join shapes are provided

for you by QuickDraw GX.

To create a standard join shape, you set the join field of the join record to nil, which

indicates that you are not providing a join shape, and you set the sharp join attribute or

the curve join attribute, which indicates that you want QuickDraw GX to generate one

of the standard joins for you.

Listing 3-12 shows how to add a sharp join to an angle shape.

Listing 3-12 Adding a sharp join to an angle shape

void CreateSharpJoin(void)

{

gxShape anAngleShape;

static long angleGeometry[] = {1, /* number of contours */

 3, /* number of points */

 ff(20), ff(20),

 ff(250), ff(60),

 ff(20), ff(100)};

 gxJoinRecord theJoinRecord;

anAngleShape = GXNewPolygons((gxPolygons *) angleGeometry);

GXSetShapeFill(anAngleShape, gxOpenFrameFill);

theJoinRecord.attributes = gxSharpJoin;

theJoinRecord.join = nil;

theJoinRecord.miter = gxPositiveInfinity;

GXSetShapeJoin(anAngleShape, &theJoinRecord);

GXSetShapePen(anAngleShape, ff(15));

C H A P T E R 3

Geometric Styles

Using Geometric Styles 3-65

GXDrawShape(anAngleShape);

GXDisposeShape(anAngleShape);

}

Notice that this sample function sets the miter field to the constant value

gxPositiveInfinity, which indicates the join should be as sharp as necessary.

Figure 3-57 shows the result of this sample function.

Figure 3-57 An angle with a sharp join

If you limit the miter of the sharp join, for example, with the code

theJoinRecord.miter = ff(1); /* scaled by pen width */

QuickDraw GX limits the distance between the actual corner of the contour as specified

in the shape’s geometry and the tip of the corner as actually drawn. Since miter is scaled

by pen width, and the pen width in this example is 15, QuickDraw GX truncates the

sharp join 15 points away from the actual corner of the geometry, as shown in

Figure 3-58.

Figure 3-58 An angle with a truncated sharp join

C H A P T E R 3

Geometric Styles

3-66 Using Geometric Styles

The sections “The Join Structure” on page 3-101 and “Join Attributes” on page 3-102

describe the join record structure and the join attributes in more detail, and the section

“Getting and Setting Joins” beginning on page 3-129 describes the functions you can use

to manipulate joins.

Dashing a Shape
To add a dash shape along the contours of another shape, you must create a dash

structure. The dash structure has five fields:

■ the dash attributes, which modify the way the shape is dashed

■ the dash shape, which contains the shape to use as the dashes

■ the dash advance, which determines the number of points between the start of one
dash and the start of the next

■ the dash phase, which determines how far into the advance the dashing should start

■ the dash scale, which you can use to counteract the automatic scaling of the dash
shape

The sample function in Listing 3-13 creates a curve shape dashed with diamonds. First, it

creates the curve shape and the diamond shape. The diamond shape has a height and a

width of 30.0 points.

The sample function then creates a dash structure for the diamond dashes, and calls the

GXSetShapeDash function to set the dash property of the curve shape’s style object.

Listing 3-13 Creating a curve shape dashed with diamonds

void CreateDashedCurve(void)

{

gxShape aCurveShape, aDiamondShape;

static gxCurve curveGeometry = {ff(50), ff(125),

 ff(125), 0,

 ff(250), ff(125)};

static long diamondGeometry[] = {1, /* number of contours */

 4, /* number of points */

 ff(0), ff(15),

 ff(15), fl(0),

 ff(0), -ff(15),

 -ff(15), ff(0)};

 gxDashRecord theDashRecord;

C H A P T E R 3

Geometric Styles

Using Geometric Styles 3-67

aCurveShape = GXNewCurve (&curveGeometry);

aDiamondShape = GXNewPolygons((gxPolygons *) diamondGeometry);

theDashRecord.attributes = gxNoAttributes;

theDashRecord.dash = aDiamondShape;

theDashRecord.advance = ff(40);

theDashRecord.phase = 0;

theDashRecord.scale = ff(30);

GXSetShapeDash(aCurveShape, &theDashRecord);

GXDisposeShape(aDiamondShape);

GXSetShapePen(aCurveShape, ff(30));

GXDrawShape(aCurveShape);

GXDisposeShape(aCurveShape);

}

Note

As with caps and joins, QuickDraw GX copies only the geometric
information of the dash shape into the dash property of the style object;
it does not copy the entire dash shape. For this reason, the dash shape
must be in its primitive form. Once you have called GXSetShapeDash,
you are free to change the original dash shape without affecting the
dashes of the dashed shape. ◆

Notice that this sample function sets the dash advance to 40. Since the diamond shape is

30 points wide, this dash advance allows for 10 points between dashes. The dash phase

is set to 0, which indicates that the origin of the first dash should be aligned with the

beginning of the curve contour exactly.

Since QuickDraw GX scales dashes (perpendicularly to the dashed contour) by the pen

width, the dashes in this example would be 900 points from tip to tip, as the diamond

shape itself is 30 points high and the pen width of the curve is also 30 points. However,

the sample function sets the dash scale to 30, by which QuickDraw GX scales the dashes

down (again, perpendicularly to the dashed contour), which leaves the diamond shapes

with their original size.

C H A P T E R 3

Geometric Styles

3-68 Using Geometric Styles

Figure 3-59 shows the result of the CreateDashedCurve sample function.

Figure 3-59 A dashed curve

If you provide a smaller value for the dash scale, QuickDraw GX scales the dashes up in

the direction perpendicular to the dashed contour. For example, if you provide a dash

scale half as large:

theDashRecord.scale = ff(15);

the dashes become twice the size in the direction perpendicular to the curve, as shown in

Figure 3-60.

Figure 3-60 A curve with scaled dashes

C H A P T E R 3

Geometric Styles

Using Geometric Styles 3-69

The dashes are now actually wider than the pen width of the curve. You can set the clip

dash attribute to draw only the parts of the dashes that lie within the curve’s pen width.

For example, adding this line of code to the sample function:

theDashRecord.attributes = gxClipDash;

creates the shape shown in Figure 3-61.

Figure 3-61 A curve with clipped dashes

Notice that QuickDraw GX not only clips the dashes to the width of the curve, but also

clips them at the ends of the curve. To shift the dashes along the curve so that you see the

whole first dash, you can adjust the dash phase. For example, this line of code:

theDashRecord.phase = GXFloatToFract(0.50);

shifts the dashes forward one half of the dash advance. Since the dash advance in this

case is 40, the dashes are shifted forward 20 points, as shown in Figure 3-62.

Figure 3-62 A curve with phased dashes

C H A P T E R 3

Geometric Styles

3-70 Using Geometric Styles

In this case, adjusting the dash phase is sufficient to cause a whole number of dashes to

show. In other cases, you may have to use the auto-advance dash attribute, which is

described in the next section.

The sections “The Dash Structure” on page 3-103 and “Dash Attributes” on page 3-105

describe the dash record and dash attributes in more detail, and the section “Getting and

Setting Dashes” beginning on page 3-134 describes the functions you can use to

manipulate dashes.

Adjusting Dashes to Fit Contours
Sometimes the dash advance does not divide evenly into the length of a contour and the

dashes don’t look quite right. QuickDraw GX provides the auto-advance dash attribute

(gxAutoAdvanceDash) to handle this situation.

For example, the sample function in Listing 3-14 creates a circle dashed with kite-shaped

diamonds. It does not use the auto-advance dash attribute.

Listing 3-14 Creating a dashed circle

void CreateDashedCircle(void)

{

gxShape aCircleShape, aDiamondShape;

static gxRectanglecircleBounds = {ff(50), ff(50),

 ff(180), ff(180)};

static long diamondGeometry[] = {1, /* number of contours */

 4, /* number of points */

 ff(0), ff(20),

 ff(15), ff(0),

 ff(0), -ff(40),

 -ff(15), ff(0)};

 gxDashRecord theDashRecord;

aCircleShape = NewArc(&circleBounds, ff(0), ff(360), false);

GXSetShapeFill(aCircleShape, gxHollowFill);

aDiamondShape = GXNewPolygons((gxPolygons *) diamondGeometry);

theDashRecord.attributes = gxNoAttributes;

theDashRecord.dash = aDiamondShape;

theDashRecord.advance = ff(30);

C H A P T E R 3

Geometric Styles

Using Geometric Styles 3-71

theDashRecord.phase = 0;

theDashRecord.scale = ff(60);

GXSetShapeDash(aCircleShape, &theDashRecord);

GXDisposeShape(aDiamondShape);

GXSetShapePen(aCircleShape, ff(60));

GXDrawShape(aCircleShape);

}

Since this sample function does not set the auto-advance dash attribute, and the dash

advance of 30 does not divide evenly into the circumference of the circle, this function

results in the shape shown in Figure 3-63.

Figure 3-63 Circle dashed with diamonds

Notice that the initial dash and the final dash overlap. (The overlapping region is not

filled, because, by default, the dash shape has winding shape fill.)

C H A P T E R 3

Geometric Styles

3-72 Using Geometric Styles

If, however, you set the auto-advance dash attribute, using this line of code:

theDashRecord.attributes = gxAutoAdvanceDash;

QuickDraw GX adjusts the dash advance accordingly. The result is shown in Figure 3-64.

Figure 3-64 Circle with automatically advanced dashes

As you can see, QuickDraw GX adjusts the dash advance the smallest amount possible

to create a whole number of dashes along the contour.

The sections “The Dash Structure” on page 3-103 and “Dash Attributes” on page 3-105

describe the dash structure and dash attributes in more detail, and the section “Getting

and Setting Dashes” beginning on page 3-134 describes the functions you can use to

manipulate dashes.

C H A P T E R 3

Geometric Styles

Using Geometric Styles 3-73

Insetting Dashes
You can use a number of methods to change the placement of the dash shape relative to

the dashed contour. For example, you can

■ set the inside-frame style attribute (gxInsideFrameStyle) or outside-frame style
(gxOutsideFrameStyle) attribute of the style object containing the dash
information so that QuickDraw GX places the dashes on the inside or outside of the
contours

■ change the geometry of the dash shape so that QuickDraw GX changes the placement
the dash shape correspondingly when dashing the shape

These two methods produce substantially different results. For example, if you inset the

pen placement in the example from the previous section by adding the call

GXSetShapeStyleAttributes(aCircleShape, gxInsideFrameStyle);

to the CreateADashedCircle sample function in Listing 3-14 on page 3-70,

QuickDraw GX automatically adjusts the number and spacing of the dashes to fit the

smaller circle, as shown in Figure 3-65.

Figure 3-65 Circle with diamond dashes inset

C H A P T E R 3

Geometric Styles

3-74 Using Geometric Styles

In this case, the number of dashes has been drastically reduced. If you want to keep the

number of dashes constant, but move them towards the center of the circle, change the

geometry of the dash shape instead of insetting the pen. For example, you can alter the

diamond geometry from the CreateDashedCircle sample function by translating it

up 30 points in the y-coordinate direction using this defintion:

static long diamondGeometry[] = {1, /* number of contours */

 4, /* number of points */

 ff(0), ff(50),

 ff(15), ff(30),

 ff(0), -ff(10),

 -ff(15), ff(30)};

In this case, if you do not inset the pen of the circle shape, the resulting shape maintains

the greater number of dashes, but fits within the smaller circle, as shown in Figure 3-66.

Figure 3-66 Circle with diamond dashes moved toward the center

The sections “The Dash Structure” on page 3-103 and “Dash Attributes” on page 3-105

describe the dash structure and dash attributes in more detail, and the section “Getting

and Setting Dashes” beginning on page 3-134 describes the functions you can use to

manipulate dashes.

Breaking and Bending Dashes
You can use polygon shapes and path shapes as dash shapes, which means you can have

a dash shape that has multiple contours. The way that QuickDraw GX place dashes

along a contour can cause dashes with multiple contours to appear quite a distance from

the dashed contour. QuickDraw GX provides the break dash attribute (gxBreakDash)

and the bend dash attribute (gxBendDash) to address this problem.

C H A P T E R 3

Geometric Styles

Using Geometric Styles 3-75

As an example, you can create a dash shape with two entirely separate contours: for

example, two separate diamonds, as shown in Figure 3-67.

Figure 3-67 Dash shape with two contours

When you use this shape to dash any sort of curve, the larger diamond falls entirely off

of the contour. Listing 3-15 creates a circle shape and dashes with the double diamond

shape.

Listing 3-15 Creating a dash with multiple contours

void CreateDoubleDiamondDash(void)

{

gxShape aCircleShape, aDiamondShape;

gxRectangle circleBounds = {ff(50), ff(50), ff(180), ff(180)};

static long doubleDiamond[] = {2, /* number of contours */

 4, /* number of points */

 ff(0), ff(10),

 ff(10), ff(0),

 ff(0), -ff(10),

 -ff(10), ff(0),

 4, /* number of points */

 ff(40), ff(10),

 ff(60), ff(0),

 ff(40), -ff(10),

 ff(20), ff(0)};

 gxDashRecord theDashRecord;

aCircleShape = NewArc(&circleBounds, ff(0), ff(360), false);

GXSetShapeFill(aCircleShape, gxClosedFrameFill);

aDiamondShape = GXNewPolygons((gxPolygons *) doubleDiamond);

C H A P T E R 3

Geometric Styles

3-76 Using Geometric Styles

theDashRecord.attributes = gxAutoAdvanceDash;

theDashRecord.dash = aDiamondShape;

theDashRecord.advance = ff(80);

theDashRecord.phase = GXFloatToFract(0.0);

theDashRecord.scale = ff(60);

GXSetShapeDash(aCircleShape, &theDashRecord);

GXDisposeShape(aDiamondShape);

GXSetShapePen(aCircleShape, ff(60));

GXDrawShape(aCircleShape);

GXDisposeShape(aCircleShape);

}

This sample function creates the shape depicted in Figure 3-68.

Figure 3-68 Circle dashed with double diamonds

C H A P T E R 3

Geometric Styles

Using Geometric Styles 3-77

The break dash attribute indicates that each contour of the dash shape should be

separately rotated and placed on the contours of the dashed shape. If you set the break

dash attribute in this example by replacing this line of code in the sample function:

theDashRecord.attributes = gxAutoAdvanceDash;

with this line of code:

theDashRecord.attributes = gxAutoAdvanceDash | gxBreakDash;

the resulting shape appears as shown in Figure 3-69.

Figure 3-69 Circle with dashes broken

In this case, QuickDraw GX rotates and centers the large diamond contours (separately

from the small diamond contours) to fit the contour of the dashed shape.

C H A P T E R 3

Geometric Styles

3-78 Using Geometric Styles

If you change the pen width of the circle in this example to 0.0, you get a hairline curve,

and the dashes are mapped down to their one-dimensional image. So, for example,

setting the pen width with the call

GXSetShapePen(aCircleShape, ff(0));

causes the dashed circle to appear as in Figure 3-70.

Figure 3-70 Circle with hairline dashes

QuickDraw GX provides an extra feature for hairline dashes: you can bend them to fit

curved contours exactly using the bend dash attribute (gxBendDash).

C H A P T E R 3

Geometric Styles

Using Geometric Styles 3-79

For example, if you change the dash attributes in this example using the assignment

theDashRecord.attributes = gxAutoAdvanceDash | gxBreakDash |

gxBendDash;

the dashed circle appears as shown in Figure 3-71.

Figure 3-71 Circle with bent hairline dashes

Note that you can specify the bend dash attribute only for hairline contours with broken

dashes.

The sections “The Dash Structure” on page 3-103 and “Dash Attributes” on page 3-105

describe the dash record structure and dash attributes in more detail, and the section

“Getting and Setting Dashes” beginning on page 3-134 describes the functions you can

use to manipulate dashes.

C H A P T E R 3

Geometric Styles

3-80 Using Geometric Styles

Wrapping Text to a Contour
You can wrap text to a contour by using a typographic shape as the dash shape. Since

dashes must always be primitive shapes, you must convert a text or layout shape to a

glyph or path shape before using it as a dash shape.

The sample function in Listing 3-16 creates a text shape, sets its font and text size,

converts it to a path shape, and uses it to dash a curve.

Listing 3-16 Wrapping text

void WrapText(void)

{

gxShape aCurveShape, aTextShape;

static gxCurve curveGeometry = {ff(25), ff(125),

 ff(100), 0,

 ff(225), ff(125)};

 gxDashRecord theDashRecord;

aCurveShape = GXNewCurve(&curveGeometry);

GXSetShapeFill(aCurveShape, gxOpenFrameFill);

aTextShape = GXNewText(13,

 (unsigned char *) "QuickDraw™ GX",

 nil);

SetShapeCommonFont(aTextShape, timesFont);

GXSetShapeTextSize(aTextShape, ff(35));

GXSetShapeType(aTextShape, gxPathType);

theDashRecord.attributes = gxBreakDash;

theDashRecord.dash = aTextShape;

theDashRecord.advance = ff(330);

theDashRecord.phase = 0;

theDashRecord.scale = ff(35);

C H A P T E R 3

Geometric Styles

Using Geometric Styles 3-81

GXSetShapeDash(aCurveShape, &theDashRecord);

GXDisposeShape(aTextShape);

GXSetShapePen(aCurveShape, ff(35));

GXDrawShape(aCurveShape);

GXDisposeShape(aCurveShape);

}

This example sets the dash scale to equal the text size so that the glyphs do not become

distorted by dash scaling.

The result of this function is depicted in Figure 3-72. Notice that QuickDraw GX rotates

and places each glyph separately on the contour because the break dash attribute is set.

Figure 3-72 Wrapped text

Inside Macintosh: QuickDraw GX Typography contains more information about using

typographic shapes.

Determining Dash Positions
A restriction of the QuickDraw GX dashing architecture is that each dash must be the

same shape. There may be a situation where you’d like to dash a contour and have the

dashes change as they progress along the contour.

To help you create the appearance of a dashed contours where the dashes change,

QuickDraw GX provides the GXGetShapeDashPositions function. This function

returns a list of mappings that identify the position and rotation of each dash on a shape.

By placing shapes in a picture using this list of mappings, you can give the effect of a

contour with changing dashes.

C H A P T E R 3

Geometric Styles

3-82 Using Geometric Styles

As an example, the sample functions in this section show you how to create a picture of a

clock. The CreateDashedCircle sample function in Listing 3-17 creates a circle with

12 dashes, each of which appears where a number would appear on a clock.

Listing 3-17 Creating a circle with 12 dashes

void CreateDashedCircle(void)

{

gxShape aCircleShape, aSquareShape;

static gxRectangle circleBounds = {ff(50), ff(50),

 ff(180), ff(180)};

static gxRectangle squareBounds = {-ff(10), -ff(10),

 ff(10), ff(10)};

 gxDashRecord theDashRecord;

aCircleShape = NewArc(&circleBounds, ff(30), ff(350), false);

GXSetShapeFill(aCircleShape, gxClosedFrameFill);

GXSetShapePen(aCircleShape, ff(60));

aSquareShape = GXNewRectangle(&squareBounds);

GXSetShapeFill(aSquareShape, gxEvenOddFill);

theDashRecord.attributes = gxAutoAdvanceDash | gxLevelDash;

theDashRecord.dash = aSquareShape;

theDashRecord.advance = ff(34);

theDashRecord.phase = 0;

theDashRecord.scale = ff(60);

GXSetShapeDash(aCircleShape, &theDashRecord);

GXDisposeShape(aSquareShape);

GXDrawShape(aCircleShape);

GXDisposeShape(aCircleShape);

}

C H A P T E R 3

Geometric Styles

Using Geometric Styles 3-83

This sample function creates a square shape using the GXNewRectangle function to use

as a dash for a circle shape created using the library function NewArc.

The result of this function is shown in Figure 3-73.

Figure 3-73 Dash positions for a clock

To replace the square dashes with numbers, the sample function in Listing 3-18 calls the

GetDashPositions function to obtain an array of mappings that identify the position

and rotation of each dash. (Notice that the dashes are not rotated in this case since the

level dash attribute is set.)

The sample function in Listing 3-18 then creates a picture and adds to it text shapes

containing the numbers 1 through 12. Each time text is added to the picture, its mapping

is set to be the next mapping in the array of dash positions.

Listing 3-18 Creating a clock shape

void CreateAClock(void)

{

gxShape aCircleShape, aTextShape, aSquareShape, aPicture;

static gxRectangle circleBounds = {ff(50), ff(50),

 ff(180), ff(180)};

static gxRectangle squareBounds = {-ff(10), -ff(10),

 ff(10), ff(10)};

static gxPointtextPosition = {ff(0), ff(0)};

C H A P T E R 3

Geometric Styles

3-84 Using Geometric Styles

static char* numbers[] = {" 1", " 2", " 3", " 4", " 5", " 6",

 " 7", " 8", " 9", "10", "11", "12"};

 gxDashRecord theDashRecord;

long numberOfDashes, count;

gxMapping dashMappings[12];

 /* Create the dashed circle from the previous example. */

aCircleShape = NewArc(&circleBounds, ff(30), ff(350), false);

GXSetShapeFill(aCircleShape, gxClosedFrameFill);

aSquareShape = GXNewRectangle(&squareBounds);

GXSetShapeFill(aSquareShape, gxEvenOddFill);

theDashRecord.attributes = gxAutoAdvanceDash | gxLevelDash;

theDashRecord.dash = aSquareShape;

theDashRecord.advance = ff(34);

theDashRecord.phase = GXFloatToFract(0.0);

theDashRecord.scale = ff(60);

GXSetShapeDash(aCircleShape, &theDashRecord);

GXSetShapePen(aCircleShape, ff(60));

/* Find the dash positions. */

numberOfDashes = GXGetShapeDashPositions(aCircleShape,

 dashMappings);

GXDisposeShape(aCircleShape);

GXDisposeShape(aSquareShape);

/* Create a picture with numbered text shapes. */

aTextShape = GXNewText(1, (unsigned char*) " 1",

 &textPosition);

GXSetShapeFill(aTextShape, gxEvenOddFill);

aPicture = GXNewShape(gxPictureType);

GXSetShapeAttributes(aPicture, gxUniqueItemsShape);

for (count = 0; count <= numberOfDashes; count++) {

GXSetShapeMapping(aTextShape, dashMappings[count]);

C H A P T E R 3

Geometric Styles

Using Geometric Styles 3-85

GXSetText(aTextShape, 2, numbers[count], &textPosition);

AddToShape(aPicture, aTextShape);

}

GXDisposeShape(aTextShape);

GXDrawShape(aPicture);

GXDisposeShape(aPicture);

}

The result of the CreateAClock sample function is depicted in Figure 3-74.

Figure 3-74 A clock shape

This sample function uses some concepts from other parts of QuickDraw GX. For more

information about

■ mappings, see the chapter “Transform Objects” in Inside Macintosh: QuickDraw GX
Objects.

■ pictures and adding elements to them, see Chapter 6, “Picture Shapes.”

■ typographic shapes, see Inside Macintosh: QuickDraw GX Typography.

C H A P T E R 3

Geometric Styles

3-86 Using Geometric Styles

Adding a Pattern to a Shape
To add a pattern to a shape, you must create a pattern structure. The pattern structure

has four fields: the shape to use as the pattern, the pattern attributes, and a pair of

vectors that define the grid over which QuickDraw GX places the pattern.

The sample function in Listing 3-19 creates a large rectangle shape patterned with small

squares.

Listing 3-19 Patterning a shape

void CreatePatternedRectangle(void)

{

gxShape aRectangleShape, aSquarePattern;

static gxRectangle rectangleGeometry = {ff(50), ff(50),

 ff(250), ff(150)};

static gxRectangle squareGeometry = {ff(0), ff(0),

 ff(10), ff(10)};

 gxPatternRecord thePatternRecord;

aRectangleShape = GXNewRectangle(&rectangleGeometry);

aSquarePattern = GXNewRectangle(&squareGeometry);

thePatternRecord.attributes = gxNoAttributes;

thePatternRecord.pattern = aSquarePattern;

thePatternRecord.u.x = ff(0);

thePatternRecord.u.y = ff(20);

thePatternRecord.v.x = ff(20);

thePatternRecord.v.y = ff(0);

GXSetShapePattern(aRectangleShape, &thePatternRecord);

GXDisposeShape(aSquarePattern);

GXDrawShape(aRectangleShape);

GXDisposeShape(aRectangleShape);

}

C H A P T E R 3

Geometric Styles

Using Geometric Styles 3-87

Note
As with caps, joins, and dashes, QuickDraw GX copies only the
geometric information of the pattern shape into the pattern property of
the style object; it does not copy the entire pattern shape. For this reason,
pattern shapes must be in primitive form. Once you have called
GXSetShapePattern, you are free to change the original pattern shape
without affecting the pattern of the patterned shape. ◆

Notice that this sample function creates a square pattern shape 10 points high

by 10 points wide. It places that square pattern on a rectangular grid 20 points high by

20 points wide, resulting in the shape shown in Figure 3-75.

Figure 3-75 A rectangle with a pattern

Although this example places the pattern shape on a rectangular grid, you are not

limited to rectangular grids. The u and v fields of the pattern structure allow you to

define a pair of vectors, so your pattern can be placed on any regular grid.

C H A P T E R 3

Geometric Styles

3-88 Using Geometric Styles

QuickDraw GX does not limit you to patterning filled shapes; you can pattern

framed shapes as well. For example, if you change the previous example so that the

rectangle shape is framed using the call

GXSetShapeFill(aRectangleShape, gxClosedFrameFill);

and has a thick pen width using the call

GXSetShapePen(aRectangleShape, ff(40));

the resulting function creates the shape shown in Figure 3-76.

Figure 3-76 A framed rectangle with a pattern

You can also pattern dashed shapes. For examples, see “Combining Caps, Joins, Dashes,

and Patterns” on page 3-91.

The sections “The Pattern Structure” on page 3-106 and “Pattern Attributes” on

page 3-107 describe the pattern record structure and pattern attributes in more detail,

and the section “Getting and Setting Patterns” beginning on page 3-142 describes the

functions you can use to manipulate patterns.

Determining Pattern Positions
As with the model for dashes, the QuickDraw GX model for patterns provides only for

the case where the pattern shape remains the same throughout the entire patterned

shape. If you want to pattern a shape and have the pattern change throughout it, you

must use the GXGetShapePatternPositions function. This function returns an array

of points that identify the location of each pattern shape on the patterned shape.

C H A P T E R 3

Geometric Styles

Using Geometric Styles 3-89

As an example, the sample function in this section shows you how to alter the patterned

rectangle from the previous section. The sample function in Listing 3-20 first creates the

patterned rectangle shown in Figure 3-75 and then uses the

GXGetShapePatternPositions function to find the position of each small square in

that patterned rectangle. The sample function then creates a picture, adding small

squares at the appropriate positions, but rotating each new square a small amount.

Listing 3-20 Changing a pattern throughout a patterned shape

void CreateBizarrePattern(void)

{

gxShape aRectangleShape, smallRectangle, aPicture;

static gxRectangle rectangleGeometry = {ff(50), ff(50),

 ff(250), ff(150)};

static gxRectangle smallRectGeometry = {ff(0), ff(0),

 ff(10), ff(10)};

gxPatternRecord thePatternRecord;

 gxPoint *patternPositions;

int numberOfPatterns, count;

aRectangleShape = GXNewRectangle(&rectangleGeometry);

GXSetShapeFill(aRectangleShape, gxEvenOddFill);

smallRectangle = GXNewRectangle(&smallRectGeometry);

GXSetShapeFill(smallRectangle, gxEvenOddFill);

thePatternRecord.attributes = gxPortAlignPattern;

thePatternRecord.pattern = smallRectangle;

thePatternRecord.u.x = ff(0);

thePatternRecord.u.y = ff(20);

thePatternRecord.v.x = ff(20);

thePatternRecord.v.y = ff(0);

GXSetShapePattern(aRectangleShape, &thePatternRecord);

numberOfPatterns = GXGetShapePatternPositions(aRectangleShape,

 nil);

C H A P T E R 3

Geometric Styles

3-90 Using Geometric Styles

patternPositions = (gxPoint *)

 NewPtr(numberOfPatterns * sizeof(gxPoint));

GXGetShapePatternPositions(aRectangleShape, patternPositions);

GXDisposeShape(aRectangleShape);

aPicture = GXNewShape(gxPictureType);

GXSetShapeAttributes(aPicture, gxUniqueItemsShape);

for (count = 0; count < numberOfPatterns; count++) {

GXRotateShape(smallRectangle, ff(10), 0, 0);

GXMoveShapeTo(smallRectangle, patternPositions[count].x,

 patternPositions[count].y);

AddToShape(aPicture, smallRectangle);

}

GXDisposeShape(smallRectangle);

DisposePtr((Ptr)patternPositions);

GXDrawShape(aPicture);

GXDisposeShape(aPicture);

}

This function calls the GXGetShapePatternPositions function twice. The first time,

it sends nil as the value of the pattern positions array, which indicates that the

GXGetShapePatternPositions function should not return an actual array of

positions, but should return as the function result the total number of pattern positions.

Once the sample function has this total, it allocates enough memory to hold the array of

pattern positions, and then calls GXGetShapePatternPositions again to determine

the actual positions.

C H A P T E R 3

Geometric Styles

Using Geometric Styles 3-91

The result of this sample function is shown in Figure 3-77.

Figure 3-77 Shape with changing pattern

Notice that, in this case, the list of positions returned by

GXGetShapePatternPositions starts at the upper-left corner and

works down each column of the patterned shape. In general, the order of

the positions returned by the GXGetShapePatternPositions function is not

guaranteed by QuickDraw GX.

This sample function uses some concepts from other parts of QuickDraw GX. For more

information about

■ rotating and moving shapes, see the chapter “Transform Objects” in Inside Macintosh:
QuickDraw GX Objects.

■ pictures and adding elements to them, see Chapter 6, “Picture Shapes,” in this book.

Combining Caps, Joins, Dashes, and Patterns
As mentioned in “Interactions Between Caps, Joins, Dashes, and Patterns” on page 3-22,

combining caps, joins, dashes, and patterns on the same shape causes some interesting

interactions.

These elements interact differently in each of these three cases:

■ the shape does not have a dash but has one or more of the three other stylistic
variations

■ the shape does have a dash but the clip dash attribute is not set

■ the shape does have a dash and the clip dash attribute is set

C H A P T E R 3

Geometric Styles

3-92 Using Geometric Styles

When a shape has a cap and a join, QuickDraw GX adds the caps to the beginnings and

ends of the shape’s contours, and adds the joins to the other on-curve geometric points

of the shape’s contours. If the shape also has a pattern, QuickDraw GX draws this

pattern throughout the shape’s frame as well as the shape’s caps and joins. The sample

function in Listing 3-21 creates an angle shape with a round cap, a square join, and a

very small square pattern.

Listing 3-21 Combining a cap, join, and pattern

void CapJoinPattern(void)

{

gxShape anAngleShape, aRoundCap, aSquareJoin, aSquarePattern;

static long angleGeometry[] = {1, /* number of contours */

 3, /* number of points */

 ff(100), ff(100),

 ff(200), ff(80),

 ff(300), ff(100)};

static long diamondGeometry[] = {1, /* number of contours */

 4, /* number of points */

 ff(0), ff(50),

 ff(10), ff(0),

 ff(0), -ff(50),

 -ff(10), ff(0)};

static gxRectangle circleBounds ={-fl(.75), -fl(.75),

 fl(.75), fl(.75)};

static gxRectangle smallSquareGeometry = {ff(0), ff(0),

ff(1), ff(1)};

 gxCapRecord theCapRecord;

 gxJoinRecord theJoinRecord;

 gxPatternRecord thePatternRecord;

 /* Create the shape to be capped, joined, and patterned. */

anAngleShape = GXNewPolygons((gxPolygons *) angleGeometry);

GXSetShapeFill(anAngleShape, gxOpenFrameFill);

GXSetShapePen(anAngleShape, ff(50));

/* Create the round cap and add to the shape. */

aRoundCap = NewArc(&circleBounds, ff(0), ff(360), false);

theCapRecord.startCap = aRoundCap;

theCapRecord.endCap = aRoundCap;

C H A P T E R 3

Geometric Styles

Using Geometric Styles 3-93

theCapRecord.attributes = gxNoAttributes;

GXSetShapeCap(anAngleShape, &theCapRecord);

GXDisposeShape(aRoundCap);

 /* Create the square join and add to join the shape. */

aSquareJoin = GXNewRectangle(&circleBounds);

theJoinRecord.attributes = gxNoAttributes;

theJoinRecord.join = aSquareJoin;

theJoinRecord.miter = 0;

GXSetShapeJoin(anAngleShape, &theJoinRecord);

GXDisposeShape(aSquareJoin);

/* Create the small square pattern and pattern the shape. */

aSquarePattern = GXNewRectangle(&smallSquareGeometry);

GXSetShapeFill(aSquarePattern, gxSolidFill);

thePatternRecord.attributes = gxNoAttributes;

thePatternRecord.pattern = aSquarePattern;

thePatternRecord.u.x = ff(0);

thePatternRecord.u.y = ff(2);

thePatternRecord.v.x = ff(2);

thePatternRecord.v.y = ff(0);

GXSetShapePattern(anAngleShape, &thePatternRecord);

GXDisposeShape(aSquarePattern);

GXDrawShape(anAngleShape);

GXDisposeShape(anAngleShape);

}

The result of this function is shown in Figure 3-78.

Figure 3-78 Angle shape with cap, join, and pattern

C H A P T E R 3

Geometric Styles

3-94 Using Geometric Styles

The second case of cap, join, dash, and pattern interaction is when the shape has a dash

but the clip dash attribute is not set. In this case, QuickDraw GX ignores the caps and joins
of the shape. However, QuickDraw GX does draw the pattern throughout the dashes.

For example, if you add the following declarations at the appropriate places in the

previous example:

gxShape aDiamondDash;

static long diamondGeometry[] = {1, /* number of contours */

 4, /* number of points */

 ff(0), ff(50),

 ff(10), ff(0),

 ff(0), -ff(50),

 -ff(10), ff(0)};

gxDashRecord theDashRecord;

and you add the following code to create a diamond-shaped dash:

/* Create the diamond dash and dash the shape. */

aDiamondDash = GXNewPolygons((gxPolygons *) diamondGeometry);

GXSetShapeFill(aDiamondDash, gxEvenOddFill);

theDashRecord.attributes = gxNoAttributes;

theDashRecord.dash = aDiamondDash;

theDashRecord.advance = ff(40);

theDashRecord.phase = 0;

theDashRecord.scale = ff(50);

GXSetShapeDash(anAngleShape, &theDashRecord);

GXDisposeShape(aDiamondDash);

the resulting shape will appear as depicted in Figure 3-79.

Figure 3-79 Angle shape with dash and pattern; caps and join ignored

C H A P T E R 3

Geometric Styles

Using Geometric Styles 3-95

The third case of cap, join, dash, and pattern interaction is when the shape has a dash

and the clip dash attribute is set. In this case, QuickDraw GX adds the cap and the join

shapes to the clip shape used to clip the dashes. Patterns are not allowed in this case, so

if you add the following line to the previous example:

theDashRecord.attributes = gxClipDash;

you must comment out this line:

/* GXSetShapePattern(anAngleShape, &thePatternRecord); */

which ensures that no pattern is set for the shape.

In this case, the resulting shape is drawn as shown in Figure 3-80.

Figure 3-80 Shape with cap, join, dash, and the clip dash attribute set

Notice that the dashes (which are now solid because there is no pattern) are clipped to

the thick contours of the angle shape. However, at the ends and at the corner more of the

dashes show because the cap shapes and the join shape are added to the clip shape used

to clip the dashes.

C H A P T E R 3

Geometric Styles

3-96 Geometric Styles Reference

Geometric Styles Reference

Each QuickDraw GX shape includes a shape object, a style object, an ink object, and a

transform object. This section describes the data types and functions that are specific to

style objects.

The “Constants and Data Types” section shows the type definition for the style object,

and the structure and enumeration definitions used for five of the properties of style

objects: the style attributes, the caps, the join, the dash, and the pattern.

The “Functions” section describes functions that manipulate the geometric style

properties: the style attributes, the curve error, the pen width, the caps, the join, the dash,

and the pattern. These properties allow you to apply stylistic variations to geometric

shapes.

For information regarding creating and manipulating style objects themselves, or

manipulating their tags and owner counts, see the chapter “Style Objects” in Inside
Macintosh: QuickDraw GX Objects.

For information regarding the typographic style properties—for example, the font, text

size, and text face—see the chapter “Typographic Styles” in Inside Macintosh:
QuickDraw GX Typography.

Constants and Data Types

This section describes the data types that you use to provide information about and to

retrieve information from style objects.

You use the gxStyle data type when referring to a style object. This data type is

described in full in the chapter “Style Objects” of Inside Macintosh: QuickDraw GX Objects.

You use the gxStyleAttributes enumeration when getting and setting individual

flags of the attributes property of a style object.

You use the gxCapRecord structure and the gxCapAttributes enumeration when

getting and setting the start cap and end cap of a shape.

You use the gxJoinRecord structure and the gxJoinAttributes enumeration when

getting and setting the corner join of a shape.

You use the gxDashRecord structure and the gxDashAttributes enumeration when

getting and setting a shape’s dashes.

You use the gxPatternRecord structure and the gxPatternAttributes

enumeration when getting and setting a shape’s pattern.

C H A P T E R 3

Geometric Styles

Geometric Styles Reference 3-97

Style Objects

You use the gxStyle data type when referring to a style object. This data type is

described in full in the chapter “Style Objects” of Inside Macintosh: QuickDraw GX Objects.

Style objects have owner counts, tags, typographic style properties, and seven

geometric style properties. The owner count and tags properties are described in
Inside Macintosh: QuickDraw GX Objects. The typographic style properties are described

in Inside Macintosh: QuickDraw GX Typography. The geometric style properties are listed

here:

■ Style attributes. This property is a group of flags that modify the behavior of the style
object. The section “Style Attributes” on page 3-17 discusses the effects of these
attributes. The section “Style Attributes” on page 3-98 describes the style attribute
flags, and “Getting and Setting Style Attributes” on page 3-109 describes the functions
you can use to examine or alter style attribute flags.

■ Curve error. This property specifies the allowable amount of error when QuickDraw
GX converts a path shape into a polygon shape. It also specifies how far apart
geometric points must be for QuickDraw GX to consider them separate points when
reducing or simplifying a shape. The section “Curve Error” on page 3-14 discusses the
curve error property and the sections “Using Curve Error When Converting Paths to
Polygons” on page 3-45 and “Using Curve Error When Reducing Shapes” on
page 3-49 give examples of using curve error. The section “Getting and Setting Curve
Error” on page 3-114 describes the functions you can use to examine or alter this
property.

■ Pen width. This property specifies the thickness of the pen QuickDraw GX uses to
draw the contours of a shape. “The Geometric Pen” on page 3-15 describes how
QuickDraw GX uses the pen when drawing, and “Getting and Setting the Pen Width”
beginning on page 3-119 describes the functions you can use to examine or alter the
pen width.

■ Cap. This property specifies what QuickDraw GX should draw at the start and the
end of a shape’s contours. The section “Caps” on page 3-23 describes start and end
caps, the sections “The Cap Structure” on page 3-99 and “Cap Attributes” on
page 3-101 discuss the data types you use to describe start and end caps, and the
section “Getting and Setting Caps” beginning on page 3-123 describes the functions
you can use to examine or alter a shape’s start and end caps.

■ Join. This property specifies what QuickDraw GX draws at the corners of a shape’s
geometry. The section “Joins” on page 3-25 describes corner joins, the sections “The
Join Structure” on page 3-101 and “Join Attributes” on page 3-102 discuss the data
types you use to describe corner joins, and the section “Getting and Setting Joins”
beginning on page 3-129 describes the functions you can use to examine or alter a
shape’s corner joins.

C H A P T E R 3

Geometric Styles

3-98 Geometric Styles Reference

■ Dash. This property specifies how QuickDraw GX should dash the contours of a
shape. The section “Dashes” on page 3-27 describes dashes, the sections “The Dash
Structure” on page 3-103 and “Dash Attributes” on page 3-105 discuss the data types
you use to describe dashes, and the section “Getting and Setting Dashes” beginning
on page 3-134 describes the functions you can use to examine or alter a shape’s dashes.

■ Pattern. This property specifies how QuickDraw GX should fill the geometry of a
shape with a pattern. The section “Patterns” on page 3-31 describes patterns, the
sections “The Pattern Structure” on page 3-106 and “Pattern Attributes” on page 3-107
discuss the data types you use to describe patterns, and the section “Getting and
Setting Patterns” beginning on page 3-142 describes the functions you can use to
examine or alter a shape’s pattern.

Style Attributes

Each style object has a set of style attributes, which are a group of flags that modify the

behavior of the style object. In particular, these flags allow you to specify how

QuickDraw GX places the pen with respect to a shape’s geometry and whether the shape

should be constrained to a grid. These constants are defined in the

gxStyleAttributes enumeration:

enum gxStyleAttributes {

gxCenterFrameStyle = 0,

gxSourceGridStyle = 0x0001,

gxDeviceGridStyle = 0x0002,

gxInsideFrameStyle = 0x0004,

gxOutsideFrameStyle = 0x0008,

gxAutoInsetStyle = 0x0010

};

typedef long gxStyleAttribute;

Constant descriptions

gxCenterFrameStyle
Indicates that QuickDraw GX should center the geometric pen
along the shape’s contours.

gxSourceGridStyle
Constrains the geometric points of the shape in geometry space.
When drawing a shape whose style object has this flag set,
QuickDraw GX moves each geometric point of the shape’s
geometry to the closest integral position before applying the shape’s
style and transform. (Note that the original geometric points are
unchanged; this operation occurs only as the shape is being drawn.)
See “Grids” beginning on page 3-20 for more information.

C H A P T E R 3

Geometric Styles

Geometric Styles Reference 3-99

gxDeviceGridStyle
Constrains the geometric points of the shape in device space. When
drawing a shape whose style object has this flag set, QuickDraw GX
moves the shape’s geometric points, after applying the shape’s style
and transform, to the closest integral position (that is, pixel
position) in the device space. (Note that the original geometric
points are unchanged; this operation occurs only as the shape is
being drawn.) See “Grids” beginning on page 3-20 for more
information.

gxInsideFrameStyle
Indicates that QuickDraw GX should position the pen along the
inside of the shape’s contours. By default, QuickDraw GX uses the
direction of a contour to determine which side is the inside; the
right side of a contour is considered the inside.

gxOutsideFrameStyle
Indicates that QuickDraw GX should place the pen along the
outside of the shape’s contours. By default, QuickDraw GX uses the
direction of a contour to determine which side is the inside; the left
side of a contour is considered the outside.

gxAutoInsetStyle
Alters the default definition of the inside and outside of a contour.
When this flag is not set, QuickDraw GX assumes the right side of a
contour is the inside and the left side of a contour is the outside
(which provides the correct behavior for TrueType fonts). When the
gxAutoInsetStyle flag is set, QuickDraw GX finds the true
inside of each contour, regardless of the contour direction.

Setting both the gxInsideFrameStyle and gxOutsideFrameStyle style attributes

results in the inconsistent_parameters error.

See “Grids” on page 3-20 and “Constraining Shape Geometries to Grids” beginning on

page 3-40 for details about how QuickDraw GX constrains shapes to a grid. See “The

Geometric Pen” on page 3-15 and “Manipulating Pen Width and Placement” on

page 3-51 for examples of pen placement.

The Cap Structure

QuickDraw GX allows you to specify what to draw at the start and at the end of a

shape’s contours. In particular, you may specify a start cap for any point shape, and you

may specify a start cap and an end cap for any line, curve, polygon, or path shape that

has an open-frame shape fill.

QuickDraw GX uses the cap property of a shape’s style object to store information about

the start cap and end cap of the shape.

You use the cap structure when specifying cap information (using the GXSetStyleCap

or GXSetShapeCap functions) and when retrieving cap information (using the

GXGetStyleCap or GXGetShapeCap functions).

C H A P T E R 3

Geometric Styles

3-100 Geometric Styles Reference

The cap structure is defined by the gxCapRecord data type:

struct gxCapRecord {

gxCapAttribute attributes;

gxShape startCap;

gxShape endCap;

};

Field descriptions

attributes Modifies the behavior of the caps. The next section, “Cap
Attributes,” describes the gxCapAttribute flags in detail.

startCap Specifies what the start cap should look like. You must use shapes
in their primitive form for the start cap shape. (Primitive shapes are
described in detail in Chapter 4, “Geometric Operations,” in this
book.) You may not use framed shapes, shapes with an inverse
shape fill, full shapes, text shapes, glyph shapes, layout shapes,
bitmap shapes, or picture shapes as the start cap shape.

QuickDraw GX considers only the geometric properties (the shape
type, the shape fill, and the shape geometry) of the shape specified
by the startCap field. QuickDraw GX ignores the owner count,
shape tags, and shape attributes properties and the style, ink, and
transform objects of the start cap shape.

endCap Specifies what the start cap should look like. You must use shapes
in their primitive form for the end cap shape. (Primitive shapes are
described in detail in Chapter 4, “Geometric Operations,” in this
book.) You may not use framed shapes, shapes with an inverse
shape fill, full shapes, text shapes, glyph shapes, layout shapes,
bitmap shapes, or picture shapes as the end cap shape.

QuickDraw GX considers only the geometric properties (the shape
type, the shape fill, and the shape geometry) of the shape specified
by the endCap field. QuickDraw GX ignores the owner count,
shape tags, and shape attributes properties and the style, ink, and
transform objects of the end cap shape.

See “Caps” beginning on page 3-23, “Adding Caps to a Shape” beginning on page 3-57,

and “Adding Standard Caps to a Shape” beginning on page 3-59 for examples of caps.

C H A P T E R 3

Geometric Styles

Geometric Styles Reference 3-101

Cap Attributes

Each cap structure contains a set of flags that modify the way a shape is capped. These

constants are defined in the gxCapAttributes enumeration:

enum gxCapAttributes {

gxLevelStartCap= 0x0001;

gxLevelEndCap = 0x0002;

};

typedef long gxCapAttribute;

Constant descriptions

gxLevelStartCap
Suppresses rotation of the start cap shape. When you set this flag,
QuickDraw GX does not rotate the start cap shape to match the
slope of the capped contour. Instead, QuickDraw GX places the
start cap shape onto the start of the capped contour with the exact
orientation specified by the start cap shape’s geometry.

gxLevelEndCap Suppresses rotation of the end cap shape. When you set this flag,
QuickDraw GX does not rotate the end cap shape to match the
slope of the capped contour. Instead, QuickDraw GX places the end
cap shape onto the start of the capped contour with the exact
orientation specified by the end cap shape’s geometry.

The Join Structure

QuickDraw GX allows you to specify a join shape to be drawn at the corners of another

shape’s contours. In particular, you may specify a join shape for any rectangle, polygon,

or path shape that has an open-frame shape fill or a closed-frame shape fill.

■ For shapes with the closed-frame shape fill, QuickDraw GX draws the specified join
shape at every on-curve geometric point of each contour.

■ For shapes with the open-frame shape fill, QuickDraw GX draws the specified join
shape at every on-curve geometric point between the first point and the last point of
each contour.

QuickDraw GX uses the join property of a shape’s style object to store information about

the join of the shape.

You use the join structure when specifying join information (using the

GXSetStyleJoin or GXSetShapeJoin functions) and when retrieving join

information (using the GXGetStyleJoin or GXGetShapeJoin functions).

C H A P T E R 3

Geometric Styles

3-102 Geometric Styles Reference

The join structure is defined by the gxJoinRecord data type:

struct gxJoinRecord {

gxJoinAttributeattributes;

gxShape join;

Fixed miter;

};

Field descriptions

attributes Allows you to specify a level join, or to specify one of two standard
types of joins: sharp joins and curve joins. The next section, “Join
Attributes,” describes the gxJoinAttribute flags in detail.

join Specifies what the join should look like. You must use shapes in
their primitive form for the join shape. (Primitive shapes are
described in detail in Chapter 4, “Geometric Operations,” in this
book.) You may not use framed shapes, shapes with an inverse
shape fill, full shapes, text shapes, glyph shapes, layout shapes,
bitmap shapes, or picture shapes as the join shape.

QuickDraw GX considers only the geometric properties (the shape
type, the shape fill, and the shape geometry) of the shape specified
by the join field. QuickDraw GX ignores the owner count, shape
tags, and shape attributes properties and the style, ink, and
transform objects of the join shape.

You set this field to nil when you want to specify a standard join: a
sharp join or curve join.

miter Used to truncate sharp joins. See the next section, “Join Attributes,”
for more information about sharp joins.

See “Joins” beginning on page 3-25, “Adding Joins to a Shape” beginning on page 3-61,

and “Adding Standard Joins to a Shape” beginning on page 3-64 for examples of joins.

Join Attributes

Each join structure contains a set of flags that allow you to specify level joins, sharp joins,

and curve joins. These constants are defined in the gxJoinAttributes enumeration:

enum gxJoinAttributes {

gxSharpJoin= 0x0000,

gxCurveJoin= 0x0001,

gxLevelJoin= 0x0002

};

typedef long gxJoinAttribute;

C H A P T E R 3

Geometric Styles

Geometric Styles Reference 3-103

Constant descriptions

gxSharpJoin Indicates that QuickDraw GX should continue the outside edges of
the corners of the joined shape until they meet at a point. You can
use the miter field of the join structure to limit the size of a sharp
join for very sharp corners.

gxCurveJoin Indicates that QuickDraw GX should connect the outside edges of
the corners of the joined shape with a circular curve.

gxLevelJoin Suppresses rotation of the shape specified by the join field of the
join structure. When you set this flag, QuickDraw GX does not
rotate the join shape to match the mid-angle of the joined corner.
Instead, QuickDraw GX places the join shape onto the joined corner
with the exact orientation specified by the geometry of the join
shape.

QuickDraw GX draws a sharp join or a curve join for every corner of every geometric

shape; you may additionally specify a join shape to be added to a shape’s corner using

the join field of the join structure.

The miter field of the join structure allows you to limit the size of sharp joins, which is

particularly useful if the joined corner is very sharp. In the miter field, you specify the

maximum distance between the actual corner (as specified by the joined shape’s

geometry) and the tip of the sharp corner as drawn.

See “Adding Standard Joins to a Shape” beginning on page 3-64 for an example of a

standard join.

The Dash Structure

With QuickDraw GX, you can specify that certain shapes should be drawn with dashed,

instead of solid, contours. In particular, you may specify a dash for any line, curve,

rectangle, polygon, or path shape that has an open-frame shape fill or a closed-frame

shape fill.

QuickDraw GX uses the dash property of a shape’s style object to store information

about how to dash the shape.

You use the dash structure when specifying dash information (using the

GXSetStyleDash or GXSetShapeDash functions) and when retrieving dash

information (using the GXGetStyleDash or GXGetShapeDash functions).

The dash structure is defined by the gxDashRecord data type:

struct gxDashRecord {

gxDashAttribute attributes;

gxShape dash;

Fixed advance;

fract phase;

Fixed scale;/

};

C H A P T E R 3

Geometric Styles

3-104 Geometric Styles Reference

Field descriptions

attributes Modifies the behavior of the dashes. The next section, “Dash
Attributes,” describes the gxDashAttribute flags in detail.

dash Specifies what the dash should look like. You must use shapes in
their primitive form for the dash shape. (Primitive shapes are
described in detail in Chapter 4, “Geometric Operations,” in this
book.) You may not use text shapes, layout shapes, bitmap shapes,
or picture shapes as the dash shape. However, you may use
framed shapes and glyph, and you may also use shapes with an
inverse shape fill if the clip dash attribute is set.

QuickDraw GX considers only the geometric properties (the shape
type, the shape fill, and the shape geometry) of the shape specified
by the dash field. QuickDraw GX ignores the owner count, shape
tags, and shape attributes properties and the style, ink, and
transform objects of the dash shape.

advance Indicates the distance between dashes. This fixed-point value is the
distance along the contours of the dashed shape between the
beginning of a dash and the beginning of the following dash. The
value must be greater than 0.

phase Specifies the initial placement of a dash. This value can vary
between –2.0 and 2.0. A value of 0 indicates that the dash shape
should not be offset—that is, the start of the first dash shape should
be aligned with the start of the contour. A value greater than 0
indicates that the first dash along the contour should begin a certain
percentage into the dash shape. A value of 1.0 indicates that the
dashes should be shifted exactly one advance width—this value
is equivalent to specifying a value of 0. Values greater than 1.0 are
equivalent to their fractional part.

scale Specifies the scaling of the dash shape. QuickDraw GX scales the
dash shape in one dimension—perpendicularly to the contour
being dashed. The factor it uses to scales the dash shape in this
dimension is the pen with divided by the dash scale. Therfore,
decreasing the dash scale has the effect of thickening the dashed
contour.

See “Dashes” beginning on page 3-27 for more information about dashes, and see

page 3-66 through page 3-81 for examples of dashing.

C H A P T E R 3

Geometric Styles

Geometric Styles Reference 3-105

Dash Attributes

Each dash structure contains a set of flags that modify the way a shape is dashed. These

constants are defined in the gxDashAttributes enumeration:

enum gxDashAttributes {

gxBendDash = 0x0001;

gxBreakDash = 0x0002;

gxClipDash = 0x0004;

gxLevelDash = 0x0008;

gxAutoAdvanceDash = 0x0010;

};

typedef long gxDashAttribute;

Constant descriptions

gxBendDash Distorts the dash shape to match the contour being dashed. A dash
may have the gxBendDash attribute only when the dashed shape’s
pen width is zero, indicating hairline contours. (Any other pen
width results in an error condition.) When the gxBendDash
attribute is set, QuickDraw GX maps the dash shape onto the x-axis
(so that it becomes one-dimensional) and bends this flattened dash
shape along the contours of the shape being dashed.

gxBreakDash Indicates that QuickDraw GX should rotate and place each contour
of the dash shape separately. When this attribute is set,
QuickDraw GX calculates the center point of each contour of the
dash shape and rotates and centers it appropriately along the
contour of the shape being dashed. See Figure 3-25 on page 3-30 for
an example.

gxClipDash Indicates that QuickDraw GX should clip the dashes to the pen
width of the dashed shape. See Figure 3-24 on page 3-29 for an
example. This attribute causes dashes to have some complicated
interactions with caps and joins. See the section “Interactions
Between Caps, Joins, Dashes, and Patterns” on page 3-33 and
“Combining Caps, Joins, Dashes, and Patterns” beginning on
page 3-91 for more information.

gxLevelDash Suppresses rotation of the dash shape. When this attribute is set,
QuickDraw GX does not rotate the dash shape to match the slope of
the dashed shape’s contours. Instead, QuickDraw GX places the
dash shape onto the contours of the dashed shape with the exact
orientation specified by the geometry of the dash shape.

gxAutoAdvanceDash
Adjusts the dash advance so that a whole multiple of dash shapes
fit each contour.

C H A P T E R 3

Geometric Styles

3-106 Geometric Styles Reference

These sections include examples of using dash attributes:

■ “Dashing a Shape” on page 3-66

■ “Adjusting Dashes to Fit Contours” on page 3-70

■ “Breaking and Bending Dashes” on page 3-74

The Pattern Structure

With QuickDraw GX, you can specify that certain shapes be patterned. For shapes with

solid shape fills, QuickDraw GX fills the shape by repeating a pattern shape that you

specify, over a grid that you specify.

You can also pattern shapes with framed shape fills. For example, imagine a rectangle

shape with the closed-frame shape fill and a pen width of 20. If you patterned this

rectangle, QuickDraw GX would fill the frame of the rectangle with the pattern. See the

section “Adding a Pattern to a Shape” on page 3-86 for examples.

QuickDraw GX uses the pattern property of a shape’s style object to store information

about how to pattern the shape.

You use the pattern structure when specifying pattern information (using the

GXSetStylePattern or GXSetShapePattern functions) and when retrieving pattern

information (using the GXGetStylePattern or GXGetShapePattern functions).

The pattern structure is defined by the gxPatternRecord data type:

struct gxPatternRecord {

gxPatternAttribute attributes;

gxShape pattern;

gxPoint u;

gxPoint v;

};

Field descriptions

attributes Modifies the behavior of the pattern. The next section, “Pattern
Attributes,” describes the gxPatternAttribute flags in detail.

pattern Specifies the shape that makes up the pattern. You must use
shapes in their primitive form for the pattern shape.
(Primitive shapes are described in detail in Chapter 4, “Geometric
Operations,” in this book.) You may not use text shapes, layout
shapes, or picture shapes as the pattern shape. However, you may
use framed shape shapes and shapes with an inverse shape fill. You
may also use bitmap shapes with any pixel size as long as the
bitmap shape does not contain color profile information.

QuickDraw GX considers only the geometric properties (the shape
type, the shape fill, and the shape geometry) of the shape specified
by the pattern field. QuickDraw GX ignores the owner count, shape
tags, and shape attributes properties and the style, ink, and
transform objects of the pattern shape.

C H A P T E R 3

Geometric Styles

Geometric Styles Reference 3-107

u One of a pair of vectors that determine how QuickDraw GX places
the pattern shape. This field, along with the v field, defines the
pattern grid.

v The other of the pair of vectors that describe how QuickDraw GX
places the pattern shape. This field, along with the u field, defines
the pattern grid.

The u and v fields together form a pair of vectors that define the pattern grid, which

determines where QuickDraw GX places the pattern shape. The vectors define a grid

of parallelograms and QuickDraw GX draws a pattern shape at every intersection in this

grid.

The vectors specified by the u and v fields do not need to be any order, but they must

point in different directions—that is, they may not lie on the same line. If you specify u

and v vectors that are parallel, a pattern_lattice_out_of_range error results.

Optimization Note

QuickDraw GX draws bitmap patterns very quickly—that is, nearly as
fast as a nonpatterned fill—if the u and v vectors place the patterns in a
rectangular grid the size of the bitmap. ◆

See “Patterns” beginning on page 3-31 for more information about patterns and

the pattern grid, and “Adding a Pattern to a Shape” on page 3-86 for an example of

using patterns.

Pattern Attributes

Each pattern structure contains a set of flags that modify the way a shape is patterned.

These constants are defined in the gxPatternAttributes enumeration:

enum gxPatternAttributes {

gxPortAlignPattern = 0x0001,

gxPortMapPattern = 0x0002

};

typedef long gxPatternAttribute;

Constant descriptions

gxPortAlignPattern
Indicates that QuickDraw GX should align the pattern shapes with
the view device instead of the patterned shape. When this attribute
is set, the pattern does not move when the patterned shape moves.
Instead, the position of the pattern stays constant with respect to the
view device. In effect, the patterned shape allows you to see
through to a constant background covered by the pattern shape.

C H A P T E R 3

Geometric Styles

3-108 Geometric Styles Reference

gxPortMapPattern
Indicates that mappings in the patterned shape’s transform affect
the patterned shape but do not affect the pattern. As an example,
imagine that the transform of the patterned shape specifies that
the patterned shape be scaled up by a factor of 2. If the
gxPortMapPattern attribute is not set, then the pattern itself is
magnified as well as the patterned shape. If this attribute is set, then
the pattern stays the same size, but the patterned shape shows more
of the pattern.

See the section “Patterns” on page 3-31 for an example of these attributes.

Functions

This section describes the functions available for manipulating a style object’s geometric

properties:

■ the style attributes

■ the curve error

■ the pen width

■ the caps

■ the join

■ the dash

■ the pattern

These properties together determine the stylistic variations applied to the frame and the

area of a shape when drawn.

For information about creating, disposing of, copying, and comparing style objects as

well as information about manipulating style tags and style owner counts, see Inside
Macintosh: QuickDraw GX Objects.

For information about the typographic style properties, such as font, text size, and text

face, see Inside Macintosh: QuickDraw GX Typography.

In general, there are two types of functions that manipulate the properties of style objects:

■ functions that require you to provide a reference to the style object itself

■ functions that allow you to provide a reference to a shape and affect the style object
associated with that shape

The section “Associating Styles With Shapes” on page 3-36 provides an example of both

of these types of functions and compares their results.

Both types of functions are described in this reference section.

C H A P T E R 3

Geometric Styles

Geometric Styles Reference 3-109

Getting and Setting Style Attributes

The style attributes are a set of flags that modify the behavior of the style object. In

particular, these flags allow you to specify how QuickDraw GX places the geometric pen

with respect to a shape’s geometry and whether the shape should be constrained to a

grid.

For a description of the style attributes, see the section “Style Attributes” on page 3-98.

You can use the GXGetStyleAttributes function to find the style attributes of an

existing style and the GXSetStyleAttributes function to set the style attributes of a

style.

The GXGetShapeStyleAttributes and GXSetShapeStyleAttributes functions

provide a way to determine and change the style attributes of a style object associated

with a particular shape.

GXGetStyleAttributes

You can use the GXGetStyleAttributes function to determine which style attributes

are set for a particular style object.

gxStyleAttribute GXGetStyleAttributes(gxStyle source);

source A reference to the style object whose style attributes you want to
determine.

function result The style attributes associated with the source style object.

DESCRIPTION

The GXGetStyleAttributes function returns as its function result the style attributes

of the style object specified by the source parameter.

As an example, to examine the gxSourceGridStyle flag of a style object referenced by

the variable source, you could use this code:

if (GXGetStyleAttributes(source) & gxSourceGridStyle) {

/* style has gxSourceGridStyle attribute set */

}

C H A P T E R 3

Geometric Styles

3-110 Geometric Styles Reference

The gxCenterFrameStyle attribute is set only if both the gxInsideFrameStyle and

the gxOutsideFrameStyle attributes are clear, so if you want to test for a centered

frame style you need this code:

if (GXGetStyleAttributes(source) &

(gxInsideFrameStyle | gxOutsideFrameStyle) ==

gxCenterFrameStyle) {

/* style has gxCenterFrameStyle attribute set */

}

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For a discussion of style attributes, see “Style Attributes” on page 3-98.

For an example of pen placement, see “Manipulating Pen Width and Placement” on

page 3-51.

For an example of constraining shapes to grids, see “Constraining Shape Geometries to

Grids” on page 3-40 and “Constraining Shapes to Device Grids” on page 3-42.

To examine the style attributes of a style object associated with a particular shape, use

the GXGetShapeStyleAttributes function, which is described on page 3-112.

To alter the style attributes of a style object, use the GXSetStyleAttributes function,

which is described in the next section.

To alter the style attributes of a style object associated with a particular shape, use the

GXSetShapeStyleAttributes function, which is described on page 3-113.

GXSetStyleAttributes

You can use the GXSetStyleAttributes function to alter the style attributes for a

particular style object.

void GXSetStyleAttributes(gxStyle target,

 gxStyleAttribute attributes);

target A reference to the style object whose attributes you want to alter.

attributes
The new set of attributes.

Errors
out_of_memory
style_is_nil

C H A P T E R 3

Geometric Styles

Geometric Styles Reference 3-111

DESCRIPTION

The GXSetStyleAttributes function sets the style attributes of the style object

specified by the target parameter to be the attributes specified in the attributes

parameter.

You can use this function in combination with the GXGetStyleAttributes function to

set or clear single style attributes. For example, to clear the gxSourceGridStyle

attribute of a style object referenced by the variable target, you could use this line of

code:

GXSetStyleAttributes(target,

 GXGetStyleAttributes(target & ~gxSourceGridStyle);

To set the gxSourceGridStyle attribute, you could use this line of code:

GXSetStyleAttributes(target,

 GXGetStyleAttributes(target | gxSourceGridStyle);

To set the gxCenterFrameStyle attribute, you need to clear the

gxInsideFrameStyle and gxOutsideFrameStyle attributes.

When you set a style’s attributes using this function, you are effectively changing the

style attributes for all shapes that share the style.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For a discussion of style attributes, see “Style Attributes” on page 3-98.

For an example of pen placement, see “Manipulating Pen Width and Placement”

beginning on page 3-51.

For an example of constraining shapes to grids, see “Constraining Shape Geometries to

Grids” on page 3-40 and “Constraining Shapes to Device Grids” on page 3-42.

To examine the style attributes of a style object, use the GXGetStyleAttributes

function, which is described on page 3-109.

To examine the style attributes of a style object associated with a particular shape, use

the GXGetShapeStyleAttributes function, which is described in the next section. To

alter the style attributes of a style object associated with a particular shape, use the

GXSetShapeStyleAttributes function, which is described on page 3-113.

Errors
out_of_memory
style_is_nil
inconsistent_parameters (debugging version)
parameter_out_of_range (debugging version)

Notices (debugging version)
attributes_already_set

C H A P T E R 3

Geometric Styles

3-112 Geometric Styles Reference

GXGetShapeStyleAttributes

You can use the GXGetShapeStyleAttributes function to determine which style

attributes are set for the style object of a particular shape.

gxStyleAttribute GXGetShapeStyleAttributes(gxShape source);

source A reference to the shape whose style attributes you want to determine.

function result The style attributes of the source shape’s style object.

DESCRIPTION

The GXGetShapeStyleAttributes function provides a convenient way to

determine the style attributes of a shape without having to call the GXGetShapeStyle

function to obtain a reference to the shape’s style object.

As an example, to examine the gxSourceGridStyle flag of a style object associated

with the shape object referenced by the variable source, you could use this code:

if (GXGetShapeStyleAttributes(source) & gxSourceGridStyle) {

/* shape's style has gxSourceGridStyle attribute set */

}

The gxCenterFrameStyle attribute is set only if both the gxInsideFrameStyle

and the gxOutsideFrameStyle attributes are clear, so if you want to test for a

centered frame style you need this code:

if (GXGetShapeStyleAttributes(source) &

(gxInsideFrameStyle | gxOutsideFrameStyle) ==

 gxCenterFrameStyle) {

/* shape's style has gxCenterFrameStyle attribute set */

}

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For a discussion of style attributes, see “Style Attributes” on page 3-98.

For an example of pen placement, see “Manipulating Pen Width and Placement”

beginning on page 3-51.

Errors
out_of_memory
shape_is_nil

C H A P T E R 3

Geometric Styles

Geometric Styles Reference 3-113

For an example of constraining shapes to grids, see “Constraining Shape Geometries to

Grids” on page 3-40 and “Constraining Shapes to Device Grids” on page 3-42.

To examine or alter the style attributes of a style object, use the

GXGetStyleAttributes function, which is described on page 3-109. To alter the style

attributes of a style object, use the GXSetStyleAttributes function, which is

described on page 3-110.

To alter the style attributes of a style object associated with a particular shape, use the

GXSetShapeStyleAttributes function, which is described in the next section.

GXSetShapeStyleAttributes

You can use the GXSetShapeStyleAttributes function to alter the style attributes of

the style object associated with a particular shape.

void GXSetShapeStyleAttributes(gxShape target,

 gxStyleAttribute attributes);

target A reference to the shape whose style attributes you want to alter.

attributes
The new set of attributes.

DESCRIPTION

The GXSetShapeStyleAttributes function sets the style attributes of the style object

associated with the shape specified by the target parameter.

If the target shape shares its style object with other shapes, this function makes a copy

of the style object, sets the target shape to reference the copy, and changes the style

attributes of the copy. (However, if the effect of this function would leave the

style attributes unchanged, this function does not create a copy of the style object;

instead, it posts a notice).

You can use this function in combination with the GXGetShapeStyleAttributes

function to set or clear single style attributes. For example, to clear the

gxSourceGridStyle attribute of a style object associated with a target shape, you

could use this line of code:

GXSetShapeStyleAttributes(target,

GXGetShapeStyleAttributes(target & ~gxSourceGridStyle);

To set the gxSourceGridStyle attribute, you could use this line of code:

GXSetShapeStyleAttributes(target,

 GXGetShapeStyleAttributes(target | gxSourceGridStyle);

C H A P T E R 3

Geometric Styles

3-114 Geometric Styles Reference

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For a discussion of style attributes, see “Style Attributes” on page 3-98.

For an example of pen placement, see “Manipulating Pen Width and Placement” on

page 3-51.

For an example of constraining shapes to grids, see “Constraining Shape Geometries to

Grids” on page 3-40 and “Constraining Shapes to Device Grids” on page 3-42.

To examine the style attributes of a style object associated with a particular shape, use

the GXGetShapeStyleAttributes function, which is described on page 3-112.

To examine the style attributes of a style object, use the GXGetStyleAttributes

function, which is described on page 3-109. To alter the style attributes of a style object,

use the GXSetStyleAttributes function, which is described on page 3-110.

Getting and Setting Curve Error

The curve error property of style objects specifies the allowable amount of error when

QuickDraw GX converts a path shape into a polygon shape. It also specifies how far

apart geometric points must be for QuickDraw GX to consider them separate points

when performing geometric operations on shapes or reducing shapes.

For example, when you call the GXInsetShape function on a tight curve, the resulting

curve can require many more geometric points than the original curve. QuickDraw GX

simplifies the resulting shape by removing geometric points that are within the shape’s

curve error from another geometric point.

You can use the GXGetStyleCurveError function to determine the curve error of a

style object and the GXSetStyleCurveError function to change the curve error of

a style object.

The GXGetShapeCurveError and GXSetShapeCurveError functions provide a way

to determine and change the curve error of the style object associated with a particular

shape.

Errors
out_of_memory
style_is_nil
inconsistent_parameters (debugging version)
parameter_out_of_range (debugging version)

Notices (debugging version)
attributes_already_set

C H A P T E R 3

Geometric Styles

Geometric Styles Reference 3-115

GXGetStyleCurveError

You can use the GXGetStyleCurveError function to determine the curve error of a

style object.

Fixed GXGetStyleCurveError(gxStyle source);

source A reference to the style object whose curve error you want to determine.

function result The curve error of the source style object.

DESCRIPTION

When a path shape has a curve error of 0, QuickDraw GX does not approximate the path

shape with a polygon shape when converting it to a polygon. Instead, QuickDraw GX

simply removes off-curve control points, as shown in “Using Curve Error When

Converting Paths to Polygons” on page 3-45.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For a discussion of curve error, see “Curve Error” on page 3-14.

For examples of using curve error, see “Using Curve Error When Converting Paths to

Polygons” on page 3-45 and “Using Curve Error When Reducing Shapes” on page 3-49.

To change the curve error of a style object, use the GXSetStyleCurveError function,

which is described in the next section.

To examine the curve error of a style object associated with a particular shape, use the

GXGetShapeCurveError function, which is described on page 3-117. To change the

curve error of a style object associated with a particular shape, use the

GXSetShapeCurveError function, which is described on page 3-118.

Errors
out_of_memory
style_is_nil

C H A P T E R 3

Geometric Styles

3-116 Geometric Styles Reference

GXSetStyleCurveError

You can use the GXSetStyleCurveError function to change the curve error of a style

object.

void GXSetStyleCurveError(gxStyle target, Fixed error);

target A reference to the style object whose curve error you want to change.

error The new curve error.

DESCRIPTION

This routine sets the curve error of the style object specified by the target parameter to be

the fixed-point value specified by the error parameter. You may specify any

nonnegative value for this parameter.

When a path shape has a curve error of 0.0, QuickDraw GX does not approximate the

path shape with a polygon shape when converting it to a polygon. Instead,

QuickDraw GX simply removes off-curve control points, as shown in “Using Curve

Error When Converting Paths to Polygons” on page 3-45.

A very small curve error may cause the GXSetShapeType function and certain

geometric operations such as the GXInsetShape function to use inappropriate amounts

of memory and time.

When you set a style’s curve error using this function, you are effectively changing the

curve error for all shapes that share the style.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For a discussion of curve error, see “Curve Error” on page 3-14.

For examples of curve error, see “Using Curve Error When Converting Paths to

Polygons” on page 3-45 and “Using Curve Error When Reducing Shapes” on page 3-49.

To determine the curve error of a style object, use the GXGetStyleCurveError

function, which is described on page 3-115.

Errors
out_of_memory
style_is_nil
parameter_out_of_range (debugging version)

Notices (debugging version)
curve_error_already_set

C H A P T E R 3

Geometric Styles

Geometric Styles Reference 3-117

To examine the curve error of a style object associated with a particular shape, use the

GXGetShapeCurveError function, which is described in the next section. To change

the curve error of a style object associated with a particular shape, use the

GXSetShapeCurveError function, which is described on page 3-118.

GXGetShapeCurveError

You can use the GXGetShapeCurveError function to determine the curve error of the

style object associated with a particular shape.

Fixed GXGetShapeCurveError(gxShape source);

source A reference to the shape whose curve error you want to determine.

function result The curve error of the style object associated with the source shape.

DESCRIPTION

When a path shape has a curve error of 0, QuickDraw GX does not approximate the path

shape with a polygon shape when converting it to a polygon. Instead, QuickDraw GX

simply removes off-curve control points, as shown in “Using Curve Error When

Converting Paths to Polygons” on page 3-45.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For a discussion of curve error, see “Curve Error” on page 3-14.

For examples of curve error, see “Using Curve Error When Converting Paths to

Polygons” on page 3-45 and “Using Curve Error When Reducing Shapes” on page 3-49.

To determine the curve error of a style object, use the GXGetStyleCurveError

function, which is described on page 3-115. To change the curve error of a style object,

use the GXSetStyleCurveError function, which is described on page 3-116.

To change the curve error of a style object associated with a particular shape, use the

GXSetShapeCurveError function, which is described in the next section.

Errors
out_of_memory
shape_is_nil

C H A P T E R 3

Geometric Styles

3-118 Geometric Styles Reference

GXSetShapeCurveError

You can use the GXSetShapeCurveError function to change the curve error of the

style object associated with a particular shape.

void GXSetShapeCurveError(gxShape target, Fixed error);

target A reference to the shape whose curve error you want to change.

error The new curve error.

DESCRIPTION

The GXSetShapeCurveError function replaces the curve error of the style object

associated with the shape specified by the source parameter with the value in the

error parameter. You may specify any nonnegative value for this parameter.

If the target shape shares its style object with other shapes, this function makes a copy of

the style object, sets the target shape to reference the copy, and changes the curve error

of the copy. (However, if the effect of this function would leave the curve error

unchanged, this function does not create a copy of the style object; instead, it posts a

notice.)

When the curve error is 0, QuickDraw GX does not approximate a path shape with a

polygon shape when converting from a path to a polygon. Instead, QuickDraw GX

simply removes off-curve control points, as shown in “Using Curve Error When

Converting Paths to Polygons” on page 3-45.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For a discussion of curve error, see “Curve Error” on page 3-14.

For examples of curve error, see “Using Curve Error When Converting Paths to

Polygons” on page 3-45 and “Using Curve Error When Reducing Shapes” on page 3-49.

To determine the curve error of a style object, use the GXGetStyleCurveError

function, which is described on page 3-115. To change the curve error of a style object,

use the GXSetStyleCurveError function, which is described on page 3-116.

To determine the curve error of a style object associated with a particular shape, use the

GXGetShapeCurveError function, which is described on page 3-117.

Errors
out_of_memory
shape_is_nil
parameter_out_of_range (debugging version)

Notices (debugging version)
curve_error_already_set

C H A P T E R 3

Geometric Styles

Geometric Styles Reference 3-119

Getting and Setting the Pen Width

The pen width property of a style object specifies the width at which QuickDraw GX

should draw a shape’s contours. A pen width of 0 specifies a hairline. QuickDraw GX

always draws hairlines at the resolution of the output device—one pixel wide. The pen

width also affects dashing: QuickDraw GX scales a shape’s dashes (in the y-coordinate

direction) by the pen width. Also, the pen width affects the clip shape that

QuickDraw GX uses to clip the dashes when a shape’s clip dash attribute is set.

You can use the GXGetStylePen function to determine the pen width of a style object

and the GXSetStylePen function to change the pen width of a style object.

The GXGetShapePen and GXSetShapePen functions provide a way to determine and

change the pen width of the style object associated with a particular shape.

GXGetStylePen

You can use the GXGetStylePen function to determine the pen width of a particular

style object.

Fixed GXGetStylePen(gxStyle source);

source A reference to the style object whose pen width you want to determine.

function result The pen width of the source style object.

DESCRIPTION

A pen width of 0.0 indicates a hairline width; QuickDraw GX always draws hairlines

one pixel wide.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For a discussion of the drawing pen, see “The Geometric Pen” on page 3-15.

For an example of changing a shape’s pen width, see “Manipulating Pen Width and

Placement” on page 3-51.

To change the pen width of a style object, use the GXSetStylePen function, which is

described in the next section.

Errors
out_of_memory
style_is_nil

C H A P T E R 3

Geometric Styles

3-120 Geometric Styles Reference

To determine the pen width of a style object associated with a particular shape, use the

GXGetShapePen function, which is described on page 3-121. To change the pen width

of a style object associated with a particular shape, use the GXSetShapePen function,

which is described on page 3-122.

GXSetStylePen

You can use the GXSetStylePen function to change the pen width of a style object.

void GXSetStylePen(gxStyle target, Fixed pen);

target A reference to the style object whose pen width you want to change.

pen The new pen width.

DESCRIPTION

The GXSetStylePen function sets the pen width of the style object specified by the

target parameter to the value specified in the pen parameter. You may specify any

nonnegative value for this parameter.

A pen width of 0 indicates a hairline; QuickDraw GX always draws hairlines one pixel

wide.

Remember that the pen parameter is specified as a fixed-point value. Very small

diameters may cause all drawing to disappear, since a shape may fall between pixels. A

common mistake when setting the pen width is to specify the pen width as an integer,

rather than a fixed-point value:

GXSetStylePen(myStyle, 1); /* set the pen width to 1/65536 */

GXSetStylePen(myStyle, ff(1)); /* set the pen width to 1.0 */

When you set the pen width using this function, you are effectively changing the pen

width for all shapes that share the style.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
style_is_nil
parameter_out_of_range (debugging version)

Notices (debugging version)
pen_size_already_set

C H A P T E R 3

Geometric Styles

Geometric Styles Reference 3-121

SEE ALSO

For a discussion of the drawing pen, see “The Geometric Pen” on page 3-15.

For an example of changing a shape’s pen width, see “Manipulating Pen Width and

Placement” on page 3-51.

To determine the pen width of a style object, use the GXGetStylePen function, which is

described on page 3-119.

To determine the pen width of a style object associated with a particular shape, use the

GXGetShapePen function, which is described in the next section. To change the pen

width of a style object associated with a particular shape, use the GXSetShapePen

function, which is described on page 3-122.

GXGetShapePen

You can use the GXGetShapePen function to determine the pen width of the style object

associated with a particular shape.

Fixed GXGetShapePen(gxShape source);

source A reference to the shape whose pen width you want to determine.

function result The pen width of the source shape’s style object.

DESCRIPTION

A pen width of 0.0 indicates a hairline width; QuickDraw GX always draws hairlines

one pixel wide.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For a discussion of the drawing pen, see “The Geometric Pen” on page 3-15.

For an example of changing a shape’s pen width, see “Manipulating Pen Width and

Placement” on page 3-51.

Errors
out_of_memory
shape_is_nil

C H A P T E R 3

Geometric Styles

3-122 Geometric Styles Reference

To determine the pen width of a style object, use the GXGetStylePen function, which is

described on page 3-119. To change the pen width of a style object, use the

GXSetStylePen function, which is described on page 3-120.

To change the pen width of a style object associated with a particular shape, use the

GXSetShapePen function, which is described in the next section.

GXSetShapePen

You can use the GXSetShapePen function to change the pen width of the style object

associated with a particular shape.

void GXSetShapePen(gxShape target, Fixed pen);

target A reference to the shape whose pen width you want to change.

pen The new pen width.

DESCRIPTION

The GXSetShapePen function sets the pen width of the target shape’s style object to

be the value specified in the pen parameter. You may specify any nonnegative value for

this parameter.

If the target shape shares its style object with other shapes, this function makes a copy of

the style object, sets the target shape to reference the copy, and changes the pen width

of the copy. (However, if the effect of this function would leave the pen width

information unchanged, this function does not create a copy of the style object; instead, it

posts a notice.)

A pen width of 0 indicates a hairline; QuickDraw GX always draws hairlines one pixel

wide.

GXSetShapePen(myShape, 0); /* set as thin as renderable */

Remember that the pen parameter is specified as a fixed-point value. Very small

diameters may cause all drawing to disappear, since a shape may fall between pixels. A

common mistake when setting the pen width is to specify the pen width as an integer,

rather than a fixed-point value:

GXSetStylePen(myStyle, 1); /* set the pen width to 1/65536 */

GXSetStylePen(myStyle, ff(1)); /* set the pen width to 1.0 */

C H A P T E R 3

Geometric Styles

Geometric Styles Reference 3-123

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For a discussion of the drawing pen, see “The Geometric Pen” on page 3-15.

For an example of changing a shape’s pen width, see “Manipulating Pen Width and

Placement” on page 3-51.

To determine the pen width of a style object, use the GXGetStylePen function, which is

described on page 3-119. To change the pen width of a style object, use the

GXSetStylePen function, which is described on page 3-120.

To determine the pen width of a style object associated with a particular shape, use the

GXGetShapePen function, which is described on page 3-121.

Getting and Setting Caps

QuickDraw GX allows you to specify what to draw at the start and at the end of a

shape’s contours. In particular, you may specify a start cap for any point shape, and you

may specify a start cap and an end cap for any line, curve, polygon, or path shape that

has an gxOpenFrameFill shape fill. You must always specify cap shapes in primitive

form.

“The Cap Structure” on page 3-99 describes the gxCapRecord structure, which you use

when retrieving or specifying cap information. That section also describes what types of

shapes you may use as cap shapes.

You can use the GXGetStyleCap function to retrieve the cap information from a style

object and the GXSetStyleCap function to specify cap information for a style object.

The GXGetShapeCap and GXSetShapeCap functions provide a way to retrieve and

specify cap information for the style object associated with a particular shape.

Errors
out_of_memory
shape_is_nil
parameter_out_of_range (debugging version)

Notices (debugging version)
pen_size_already_set

C H A P T E R 3

Geometric Styles

3-124 Geometric Styles Reference

GXGetStyleCap

You can use the GXGetStyleCap function to retrieve the cap information from a style

object.

gxCapRecord *GXGetStyleCap(gxStyle source, gxCapRecord *cap);

source The style object whose cap information you want to retrieve.

cap A pointer to a gxCapRecord structure. On return, this structure contains
the cap information for the source style object.

function result A copy of the gxCapRecord associated with the source style.

DESCRIPTION

The GXGetStyleCap function returns as its function result, and in the cap parameter, a

gxCapRecord structure containing the cap information for the style object specified by

the source parameter.

This function creates new shapes to encapsulate the start cap and end cap geometries,

and places references to these shapes in the startCap and endCap fields of the

returned gxCapRecord structure. You should dispose of these shapes when you no

longer need them.

Since this function copies the cap information from the source style object, you may

make changes to the gxCapRecord structure returned by this function without affecting

the source style’s cap information. If you want to change the cap information in the

source style, you must use the GXSetStyleCap function.

SPECIAL CONSIDERATIONS

If no error results, the GXGetStyleCap function creates shapes; you are responsible for

disposing of these shapes when you no longer need them. See Inside Macintosh:
QuickDraw GX Objects for information about disposing QuickDraw GX objects.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
style_is_nil
parameter_is_nil (debugging version)

C H A P T E R 3

Geometric Styles

Geometric Styles Reference 3-125

SEE ALSO

For a discussion of start and end caps, see “Caps” on page 3-23.

For examples of adding caps to a shape, see “Adding Caps to a Shape” on page 3-57 and

“Adding Standard Caps to a Shape” on page 3-59.

For a discussion of the gxCapRecord structure and a description of what types of

shapes you can use as cap shapes, see “The Cap Structure” on page 3-99.

To specify cap information for a style object, use the GXSetStyleCap function, which is

described in the next section.

To retrieve cap information from a style object associated with a particular shape, use the

GXGetShapeCap function, which is described on page 3-126. To specify cap information

for a style object associated with a particular shape, use the GXSetShapeCap function,

which is described on page 3-128.

GXSetStyleCap

You can use the GXSetStyleCap function to change the cap information of a style

object.

void GXSetStyleCap(gxStyle target, const gxCapRecord *cap);

target The style object whose cap information you want to change.

cap A pointer to the new cap information.

DESCRIPTION

The GXSetStyleCap function replaces the cap information in the style object specified

by the target parameter with the cap information specified in the cap parameter. You

use the gxCapRecord structure to provide cap information.

Passing nil for the cap parameter indicates that you want no caps and QuickDraw GX

removes any cap information from the target style.

When you set a style’s cap property using this function, you are effectively changing the

caps for all shapes that share the style.

C H A P T E R 3

Geometric Styles

3-126 Geometric Styles Reference

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For a discussion of start and end caps, see “Caps” on page 3-23.

For examples of adding caps to a shape, see “Adding Caps to a Shape” on page 3-57 and

“Adding Standard Caps to a Shape” on page 3-59.

For a discussion of the gxCapRecord structure and a description of what types of

shapes you can use as cap shapes, see “The Cap Structure” on page 3-99.

To retrieve cap information from a style object, use the GXGetStyleCap function, which

is described on page 3-124.

To retrieve cap information from a style object associated with a particular shape, use the

GXGetShapeCap function, which is described in the next section. To specify cap

information for a style object associated with a particular shape, use the

GXSetShapeCap function, which is described on page 3-128.

GXGetShapeCap

You can use the GXGetShapeCap function to retrieve cap information from the style

object of a particular shape.

gxCapRecord *GXGetShapeCap(gxShape source, gxCapRecord *cap);

source A refernce to the shape whose cap information you want to retrieve.

cap A pointer to a gxCapRecord structure. On return, this structure contains
the cap information for the source shape.

function result A copy of the gxCapRecord structure associated with the source
shape’s style object.

Errors
out_of_memory
style_is_nil
parameter_out_of_range (debugging version)
empty_shape_not_allowed (debugging version)
ignorePlatformShape_not_allowed (debugging version)
illegal_type_for_shape (debugging version)
nil_style_in_glyph_not_allowed (debugging version)
complex_glyph_style_not_allowed (debugging version)
shapeFill_not_allowed (debugging version)

Notices (debugging version)
caps_already_set
tags_in_shape_ignored

C H A P T E R 3

Geometric Styles

Geometric Styles Reference 3-127

DESCRIPTION

The GXGetShapeCap function returns as its function result, and in the cap parameter, a

gxCapRecord structure containing the cap information for the style object associated

with the shape specified by the source parameter.

This function creates new shapes to encapsulate the start cap and end cap geometries,

and places references to these shapes in the startCap and endCap fields of the

returned gxCapRecord structure. You should dispose of these shapes when you no

longer need them.

Since this function copies the cap information from the source shape’s style, you may

make changes to the gxCapRecord structure returned by this function without affecting

the source shape’s caps. If you want to change the cap information for the source shape,

you must use the GXSetShapeCap function.

SPECIAL CONSIDERATIONS

Unless an error results, the GXGetShapeCap function creates shapes; you are

responsible for disposing of these shapes when you no longer need them. See Inside
Macintosh: QuickDraw GX Objects for information about disposing of QuickDraw GX

objects.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For a discussion of start and end caps, see “Caps” on page 3-23.

For examples of adding caps to a shape, see “Adding Caps to a Shape” on page 3-57 and

“Adding Standard Caps to a Shape” on page 3-59.

For a discussion of the gxCapRecord structure and a description of what types of

shapes you can use as cap shapes, see “The Cap Structure” on page 3-99.

To retrieve cap information from a style object, use the GXGetStyleCap function, which

is described on page 3-124. To specify cap information for a style object, use the

GXSetStyleCap function, which is described on page 3-125.

To specify cap information for a style object associated with a particular shape, use the

GXSetShapeCap function, which is described in the next section.

Errors
out_of_memory
shape_is_nil
parameter_is_nil

C H A P T E R 3

Geometric Styles

3-128 Geometric Styles Reference

GXSetShapeCap

You can use the GXSetShapeCap function to change the cap information of the style

object associated with a particular shape.

void GXSetShapeCap(gxShape target, const gxCapRecord *cap);

target A reference to the shape whose cap information you want to change.

cap A pointer to the new cap information.

DESCRIPTION

The GXSetShapeCap function replaces the cap information in the style object of the

shape specified by the target parameter with the cap information specified in the cap

parameter. You use the gxCapRecord structure to provide cap information.

Passing nil for the cap parameter indicates that you want no caps and QuickDraw GX

removes any cap information from the target shape.

If the target shape shares its style object with other shapes, this function makes a copy of

the style object, sets the target shape to reference the copy, and changes the cap property

of the copy. (However, if the effect of this function would leave the cap information

unchanged, this function does not create a copy of the style object; instead, it posts a

notice.)

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For a discussion of start and end caps, see “Caps” on page 3-23.

For examples of adding caps to shapes, see “Adding Caps to a Shape” on page 3-57 and

“Adding Standard Caps to a Shape” on page 3-59.

For a discussion of the gxCapRecord structure and a description of what types of

shapes you can use as cap shapes, see “The Cap Structure” on page 3-99.

Errors
out_of_memory
style_is_nil
parameter_out_of_range (debugging version)
empty_shape_not_allowed (debugging version)
ignorePlatformShape_not_allowed (debugging version)
illegal_type_for_shape (debugging version)
nil_style_in_glyph_not_allowed (debugging version)
complex_glyph_style_not_allowed (debugging version)
shapeFill_not_allowed (debugging version)

Notices (debugging version)
caps_already_set
tags_in_shape_ignored

C H A P T E R 3

Geometric Styles

Geometric Styles Reference 3-129

To retrieve cap information from a style object, use the GXGetStyleCap function, which

is described on page 3-124.

To specify cap information for a style object, use the GXSetStyleCap function, which is

described on page 3-125.

To retrieve cap information from a style object associated with a particular shape, use the

GXGetShapeCap function, which is described on page 3-126.

Getting and Setting Joins

QuickDraw GX allows you to specify what to draw at corners of a shape’s contours. In

particular, you may specify a corner join for any rectangle, polygon, or path shape that

has an open-frame shape fill or a closed-frame shape fill. You must always specify join

shapes in primitive form.

“The Join Structure” on page 3-101 describes the gxCapRecord structure, which you use

when retrieving or specifying join information. That section also describes what types of

shapes you may use as join shapes.

You can use the GXGetStyleJoin function to retrieve the join information from a style

object and the GXSetStyleJoin function to specify join information for a style object.

The GXGetShapeJoin and GXSetShapeJoin functions provide a way to retrieve and

specify join information for the style object associated with a particular shape.

GXGetStyleJoin

You can use the GXGetStyleJoin function to retrieve the join information from a style

object.

gxJoinRecord *GXGetStyleJoin(gxStyle source, gxJoinRecord *join);

source A reference to the style object whose join information you want to retrieve.

join A pointer to a gxJoinRecord structure. On return, this structure
contains the join information for the source style object.

function result A copy of the gxJoinRecord structure associated with the source
style object.

DESCRIPTION

The GXGetStyleJoin function returns as its function result, and in the join

parameter, a pointer to a gxJoinRecord structure containing the join information for

the style object specified by the source parameter.

C H A P T E R 3

Geometric Styles

3-130 Geometric Styles Reference

This function creates a new shape to encapsulate the join geometry, and places a

reference to this shape in the join field of the returned gxJoinRecord structure. You

should dispose of this shape when you no longer need it.

Since this function copies the join information from the source style, you may make

changes to the gxJoinRecord structure returned by this function without affecting the

source style’s join information. If you want to change the join information in the source

style, you must use the GXSetStyleJoin function.

SPECIAL CONSIDERATIONS

Unless an error results, the GXGetStyleJoin function creates a shape; you are

responsible for disposing of this shape when you no longer need it. See Inside Macintosh:
QuickDraw GX Objects for information about disposing of QuickDraw GX objects.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For a discussion of joins, see “Joins” on page 3-25.

For examples of adding joins to shapes, see “Adding Joins to a Shape” on page 3-61 and

“Adding Standard Joins to a Shape” on page 3-64.

For a discussion of the gxJoinRecord structure and a description of what types of

shapes you can use as join shapes, see “The Join Structure” on page 3-101.

To specify join information for a style object, use the GXSetStyleJoin function, which

is described in the next section.

To retrieve join information from a style object associated with a particular shape, use the

GXGetShapeJoin function, which is described on page 3-132.

To specify join information for a style object associated with a particular shape, use the

GXSetShapeJoin function, which is described on page 3-133.

GXSetStyleJoin

You can use the GXSetStyleJoin function to change a style object’s join information.

void GXSetStyleJoin(gxStyle target, const gxJoinRecord *join);

Errors
out_of_memory
style_is_nil
parameter_is_nil

C H A P T E R 3

Geometric Styles

Geometric Styles Reference 3-131

target A reference to the style object whose join information you want to change.

join A pointer to the new join information.

DESCRIPTION

The GXSetStyleJoin function replaces the join information in the style object specified

by the target parameter with the join information specified in the join parameter. You

use the gxJoinRecord structure to provide join information.

Passing nil for the join parameter indicates that you want no join shape and

QuickDraw GX removes any join information from the target style.

When you set a style’s join property using this function, you are effectively changing the

joins for all shapes that share the style.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For a discussion of joins, see “Joins” on page 3-25.

For examples of adding joins to shapes, see “Adding Joins to a Shape” on page 3-61 and

“Adding Standard Joins to a Shape” on page 3-64.

For a discussion of the gxJoinRecord structure and a description of what types of

shapes you can use as join shapes, see “The Join Structure” on page 3-101.

To retrieve join information from a style object, use the GXGetStyleJoin function,

which is described on page 3-129.

To retrieve join information from a style object associated with a particular shape, use the

GXGetShapeJoin function, which is described in the next section.

To specify join information for a style object associated with a particular shape, use the

GXSetShapeJoin function, which is described on page 3-133.

Errors
out_of_memory
style_is_nil
parameter_out_of_range (debugging version)
empty_shape_not_allowed (debugging version)
ignorePlatformShape_not_allowed (debugging version)
illegal_type_for_shape (debugging version)
nil_style_in_glyph_not_allowed (debugging version)
complex_glyph_style_not_allowed (debugging version)
shapeFill_not_allowed (debugging version)

Notices (debugging version)
join_type_already_set
tags_in_shape_ignored

C H A P T E R 3

Geometric Styles

3-132 Geometric Styles Reference

GXGetShapeJoin

You can use the GXGetShapeJoin function to retrieve the join information from the

style object of a shape.

gxJoinRecord *GXGetShapeJoin(gxShape source, gxJoinRecord *join);

source A reference to the shape whose join information you want to retrieve.

join A pointer to a gxJoinRecord structure. On return, this structure
contains the join information for the source shape.

function result A copy of the gxJoinRecord structure associated with the source
shape’s style object.

DESCRIPTION

The GXGetShapeJoin function returns as its function result, and in the join

parameter, a pointer to a gxJoinRecord structure containing the join information for

the style object of the shape specified by the source parameter.

This function creates a new shape to encapsulate the join geometry, and places a

reference to this shape in the join field of the returned gxJoinRecord structure. You

should dispose of this shape when you no longer need it.

Since this function copies the join information from the source shape’s style, you may

make changes to the gxJoinRecord structure returned by this function without

affecting the source shape’s joins. If you want to change the join information for the

source shape, you must use the GXSetShapeJoin function.

SPECIAL CONSIDERATIONS

Unless an error results, the GXGetShapeJoin function creates a shape; you are

responsible for disposing of this shape when you no longer need it. See Inside Macintosh:
QuickDraw GX Objects for information about disposing of QuickDraw GX objects.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
shape_is_nil
parameter_is_nil

C H A P T E R 3

Geometric Styles

Geometric Styles Reference 3-133

SEE ALSO

For a discussion of joins, see “Joins” on page 3-25.

For examples of adding joins to shapes, see “Adding Joins to a Shape” on page 3-61 and

“Adding Standard Joins to a Shape” on page 3-64.

For a discussion of the gxJoinRecord structure and a description of what types of

shapes you can use as join shapes, see “The Join Structure” on page 3-101.

To retrieve join information from a style object, use the GXGetStyleJoin function,

which is described on page 3-129. To specify join information for a style object, use the

GXSetStyleJoin function, which is described on page 3-130.

To specify join information for a style object associated with a particular shape, use the

GXSetShapeJoin function, which is described in the next section.

GXSetShapeJoin

You can use the GXSetShapeJoin function to change the join information for the style

object of a particular shape.

void GXSetShapeJoin(gxShape target, const gxJoinRecord *join);

target A reference to the shape whose join information you want to change.

join A pointer to new join information.

DESCRIPTION

The GXSetShapeJoin function replaces the join information in the style object of the

shape specified by the target parameter with the join information provided in the

join parameter. You use the gxJoinRecord structure to provide join information.

Passing nil for the join parameter indicates that you want no joins and QuickDraw

GX removes any join information from the target shape.

If the target shape shares its style object with other shapes, this function makes a copy of

the style object, sets the target shape to reference the copy, and changes the join property

of the copy. (However, if the effect of this function would leave the join information

unchanged, this function does not create a copy of the style object; instead, it posts a

notice.)

C H A P T E R 3

Geometric Styles

3-134 Geometric Styles Reference

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For a discussion of joins, see “Joins” on page 3-25.

For examples of adding joins to shapes, see “Adding Joins to a Shape” on page 3-61 and

“Adding Standard Joins to a Shape” on page 3-64.

For a discussion of the gxJoinRecord structure and a description of what types of

shapes you can use as join shapes, see “The Join Structure” on page 3-101.

To retrieve join information from a style object, use the GXGetStyleJoin function,

which is described on page 3-129. To specify join information for a style object, use the

GXSetStyleJoin function, which is described on page 3-130.

To retrieve join information from a style object associated with a particular shape, use the

GXGetShapeJoin function, which is described on page 3-132.

Getting and Setting Dashes

QuickDraw GX allows you to specify how contours of a shape should be dashed when

drawn. In particular, you may specify a dash shape for any line, curve, rectangle,

polygon, or path shape that has an open-frame shape fill or a closed-frame shape fill. You

must always specify dash shapes in primitive form.

“The Dash Structure” on page 3-103 describes the gxDashRecord structure, which you

use when retrieving or specifying dash information. That section also describes what

types of shapes you may use as a dash shape.

You can use the GXGetStyleDash function to retrieve the dash information from a style

object and the GXSetStyleDash function to specify dash information for a style object.

The GXGetShapeDash and GXSetShapeDash functions provide a way to retrieve and

specify dash information for the style object associated with a particular shape.

Errors
out_of_memory
style_is_nil
parameter_out_of_range (debugging version)
empty_shape_not_allowed (debugging version)
ignorePlatformShape_not_allowed (debugging version)
illegal_type_for_shape (debugging version)
nil_style_in_glyph_not_allowed (debugging version)
complex_glyph_style_not_allowed (debugging version)
shapeFill_not_allowed (debugging version)

Notices (debugging version)
join_type_already_set
tags_in_shape_ignored

C H A P T E R 3

Geometric Styles

Geometric Styles Reference 3-135

GXGetStyleDash

You can use the GXGetStyleDash function to retrieve the dash information from a style

object.

gxDashRecord *GXGetStyleDash(gxStyle source, gxDashRecord *dash);

source A reference to the style object whose dash information you want to
retrieve.

dash A pointer to a gxDashRecord structure. On return, this structure
contains the dash information for the source style object.

function result A copy of the gxDashRecord structure associated with the source
style object.

DESCRIPTION

The GXGetStyleDash function returns as its function result, and in the dash

parameter, a pointer to a gxDashRecord structure containing the dash information for

the style object specified by the source parameter.

This function creates a new shape to encapsulate the dash geometry and places a

reference to this shape in the dash field of the returned gxDashRecord structure. You

should dispose of this shape when you no longer need it.

Since this function copies the dash information from the source style, you may make

changes to the gxDashRecord structure returned by this function without affecting the

source style’s dash information. If you want to change the dash information in the source

style, you must use the GXSetStyleDash function.

SPECIAL CONSIDERATIONS

Unless an error results, the GXGetStyleDash function creates a shape; you are

responsible for disposing of this shape when you no longer need it. See Inside Macintosh:
QuickDraw GX Objects for information about disposing of QuickDraw GX objects.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
style_is_nil
parameter_is_nil

C H A P T E R 3

Geometric Styles

3-136 Geometric Styles Reference

SEE ALSO

For a discussion of dashes, see “Dashes” on page 3-27.

For examples of adding dashes to shapes, see page 3-66 through page 3-86.

For a discussion of the gxDashRecord structure and a description of what types of

shapes you can use as dash shapes, see “The Dash Structure” on page 3-103.

To specify dash information for a style object, use the GXSetStyleDash function, which

is described in the next section.

To retrieve dash information from a style object associated with a particular shape, use

the GXGetShapeDash function, which is described on page 3-138. To specify dash

information for a style object associated with a particular shape, use the

GXSetShapeDash function, which is described on page 3-139.

To determine where dashing occurs for a particular shape, use the

GXGetShapeDashPositions function, which is described on page 3-140.

GXSetStyleDash

You can use the GXSetStyleDash function to change a style object’s dash information.

void GXSetStyleDash(gxStyle target, const gxDashRecord *dash);

target A reference to the style object whose dash information you want to
change.

dash A pointer to the new dash information.

DESCRIPTION

The GXSetStyleDash function replaces the dash information in the style object

specified by the target parameter with the dash information provided by the dash

parameter. You use the gxDashRecord structure to provide dash information.

Passing nil for the dash parameter indicates that you want no dashing to occur and

QuickDraw GX removes any dash information from the target style.

When you set a style’s dash property using this function, you are effectively changing

the dashes for all shapes that share the style.

C H A P T E R 3

Geometric Styles

Geometric Styles Reference 3-137

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For a discussion of dashes, see “Dashes” on page 3-27.

For examples of adding dashes to shapes, see page 3-66 through page 3-86.

For a discussion of the gxDashRecord structure and a description of what types of

shapes you can use as dash shapes, see “The Dash Structure” on page 3-103.

To retrieve dash information from a style object, use the GXGetStyleDash function,

which is described on page 3-135.

To retrieve dash information from a style object associated with a particular shape, use

the GXGetShapeDash function, which is described in the next section. To specify dash

information for a style object associated with a particular shape, use the

GXSetShapeDash function, which is described on page 3-139.

To determine where dashing occurs for a particular shape, use the

GXGetShapeDashPositions function, which is described on page 3-140.

Errors
out_of_memory
style_is_nil
parameter_out_of_range (debugging version)
empty_shape_not_allowed (debugging version)
ignorePlatformShape_not_allowed (debugging version)
illegal_type_for_shape (debugging version)
nil_style_in_glyph_not_allowed (debugging version)
complex_glyph_style_not_allowed (debugging version)
shapeFill_not_allowed (debugging version)

Warnings
graphic_type_cannot_be_dashed

Notices (debugging version)
dash_already_set
tags_in_shape_ignored

C H A P T E R 3

Geometric Styles

3-138 Geometric Styles Reference

GXGetShapeDash

You can use the GXGetShapeDash function to retrieve the dash information from the

style object associated with a particular shape.

gxDashRecord *GXGetShapeDash(gxShape source, gxDashRecord *dash);

source A reference to the shape whose dash information you want to retrieve.

dash A pointer to a gxDashRecord structure. On return, this structure
contains the dash information for the source shape.

function result A copy of the gxDashRecord structure associated with the source
shape’s style object.

DESCRIPTION

The GXGetShapeDash function returns as its function result and in the dash parameter,

a pointer to a gxDashRecord structure containing the dash information for the style

object of the shape specified by the source parameter.

This function creates a new shape to encapsulate the dash geometry, and places a

reference to this shape in the dash field of the returned gxDashRecord structure. You

should dispose of this shape when you no longer need it.

Since this function copies the dash information from the source shape’s style, you may

make changes to the gxDashRecord structure returned by this function without

affecting the source shape’s dashes. If you want to change the dash information for the

source shape, you must use the GXSetShapeDash function.

SPECIAL CONSIDERATIONS

Unless an error results, the GXGetShapeDash function creates a shape; you are

responsible for disposing of this shape when you no longer need it. See Inside Macintosh:
QuickDraw GX Objects for information about disposing of objects.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
shape_is_nil
parameter_is_nil

C H A P T E R 3

Geometric Styles

Geometric Styles Reference 3-139

SEE ALSO

For a discussion of dashes, see “Dashes” on page 3-27.

For examples of adding dashes to shapes, see page 3-66 through page 3-86.

For a discussion of the gxDashRecord structure and a description of what types of

shapes you can use as dash shapes, see “The Dash Structure” on page 3-103.

To retrieve dash information from a style object, use the GXGetStyleDash function,

which is described on page 3-135.

To specify dash information for a style object, use the GXSetStyleDash function, which

is described on page 3-136.

To specify dash information for a style object associated with a particular shape, use the

GXSetShapeDash function, which is described in the next section.

To determine where dashing occurs for a particular shape, use the

GXGetShapeDashPositions function, which is described on page 3-140.

GXSetShapeDash

You can use the GXSetShapeDash function to change the dash information for a style

object associated with a particular shape.

void GXSetShapeDash(gxShape target, const gxDashRecord *dash);

target A reference to the shape whose dash information you want to change.

dash A pointer to the new dash information.

DESCRIPTION

The GXSetShapeDash function replaces the dash information in the style object of the

shape specified by the target parameter with the dash information provided by the

dash parameter. You use the gxDashRecord structure to provide dash information.

Passing nil for the dash parameter indicates that you want no dashing to occur and

QuickDraw GX removes any dash information from the target shape.

If the target shape shares its style object with other shapes, this function makes a copy of

the style object, sets the target shape to reference the copy, and changes the dash

property of the copy. (However, if the effect of this function would leave the dash

information unchanged, this function does not create a copy of the style object; instead, it

returns a notice.)

C H A P T E R 3

Geometric Styles

3-140 Geometric Styles Reference

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For a discussion of dashes, see “Dashes” on page 3-27.

For examples of adding dashes to shapes, see page 3-66 through page 3-86.

For a discussion of the gxDashRecord structure and a description of what types of

shapes you can use as dash shapes, see “The Dash Structure” on page 3-103.

To retrieve dash information from a style object, use the GXGetStyleDash function,

which is described on page 3-135.

To specify dash information for a style object, use the GXSetStyleDash function, which

is described on page 3-136.

To retrieve dash information from a style object associated with a particular shape, use

the GXGetShapeDash function, which is described on page 3-138.

To determine where dashing occurs for a particular shape, use the

GXGetShapeDashPositions function, which is described in the next section.

GXGetShapeDashPositions

You can use the GXGetShapeDashPositions function to determine the precise

locations where QuickDraw GX draws a particular shape’s dashes.

long GXGetShapeDashPositions(gxShape source,

 gxMapping dashMappings[]);

Errors
out_of_memory
style_is_nil
parameter_out_of_range (debugging version)
empty_shape_not_allowed (debugging version)
ignorePlatformShape_not_allowed (debugging version)
illegal_type_for_shape (debugging version)
nil_style_in_glyph_not_allowed (debugging version)
complex_glyph_style_not_allowed (debugging version)
shapeFill_not_allowed (debugging version)

Warnings
graphic_type_cannot_be_dashed

Notices (debugging version)
dash_already_set
tags_in_shape_ignored

C H A P T E R 3

Geometric Styles

Geometric Styles Reference 3-141

source A reference to the shape whose dash positions you want to find.

dashMappings
An array of dash positions. On return, this array contains mappings that
indicate the position of the dashes of the source shape.

function result The number of dash positions returned in the dashMappings parameter.

DESCRIPTION

The GXGetShapeDashPositions function returns in the dashMappings parameter

mappings that indicate the locations and rotations of the dashes as drawn along the

contours of the source shape.

The function result is the number of dash positions returned—the number of dash

shapes drawn along the contours of the source shape.

If you pass nil for the dashMappings parameter, the GXGetShapeDashPositions

function still returns as the function result the number of dashes but it does not return

the positions of the dashes.

This function returns 0 if the source shape is not dashed.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For a discussion of dashes, see “Dashes” on page 3-27.

For an example of using this function, see “Determining Dash Positions” on page 3-81.

For a discussion of the gxDashRecord structure, see “The Dash Structure” on

page 3-103.

To retrieve dash information from a style object, use the GXGetStyleDash function,

which is described on page 3-135. To specify dash information for a style object, use the

GXSetStyleDash function, which is described on page 3-136.

To retrieve dash information from a style object associated with a particular shape, use

the GXGetShapeDash function, which is described on page 3-138. To specify dash

information for a style object associated with a particular shape, use the

GXSetShapeDash function, which is described on page 3-139.

Errors
out_of_memory
shape_is_nil

Warnings
graphic_type_cannot_be_dashed

C H A P T E R 3

Geometric Styles

3-142 Geometric Styles Reference

Getting and Setting Patterns

QuickDraw GX allows you to specify a pattern to fill a shape when drawn. In particular,

you may specify a pattern shape for any line, curve, rectangle, polygon, or path shape

that has any framed shape fill or any solid fill. You must always specify pattern shapes in

their primitive form.

“The Pattern Structure” on page 3-106 describes the gxPatternRecord structure,

which you use when retrieving or specifying pattern information. That section also

describes what types of shapes you may use as a pattern shape.

You can use the GXGetStylePattern function to retrieve the pattern information

from a style object and the GXSetStylePattern function to specify pattern

information for a style object.

The GXGetShapePattern and GXSetShapePattern functions provide a way to

retrieve and specify pattern information for the style object associated with a particular

shape.

GXGetStylePattern

You can use the GXGetStylePattern function to retrieve the pattern information from

a style object.

gxPatternRecord *GXGetStylePattern(gxStyle source,

 gxPatternRecord *pattern);

source The style object whose pattern information you want to retrieve.

pattern A pointer to a gxPatternRecord structure. On return, this structure
contains the pattern information for the source style object.

function result A copy of the gxPatternRecord structure associated with the
source style object.

DESCRIPTION

The GXGetStylePattern function returns as its function result, and in the pattern

parameter, a pointer to a gxPatternRecord structure containing the pattern

information for the style object specified by the source parameter.

C H A P T E R 3

Geometric Styles

Geometric Styles Reference 3-143

This function creates a new shape to encapsulate the pattern geometry, and places a

reference to this shape in the pattern field of the returned gxPatternRecord

structure. You should dispose of this shape when you no longer need it.

Since this function copies the pattern information from the source style, you may make

changes to the gxPatternRecord structure returned by this function without affecting

the source style’s pattern information. If you want to change the pattern information

in the source style, you must use the GXSetStylePattern function.

SPECIAL CONSIDERATIONS

Unless an error results, the GXGetStylePattern function creates a shape; you are

responsible for disposing of this shape when you no longer need it. See Inside Macintosh:
QuickDraw GX Objects for information about disposing of QuickDraw GX objects.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For a discussion of patterns, see “Patterns” on page 3-31.

For examples of adding patterns to shapes, see page 3-86 through page 3-91.

For a discussion of the gxPatternRecord structure and a description of what types of

shapes you can use as pattern shapes, see “The Pattern Structure” on page 3-106.

To specify pattern information for a style object, use the GXSetStylePattern function,

which is described in the next section.

To retrieve pattern information from a style object associated with a particular shape, use

the GXGetShapePattern function, which is described on page 3-145. To specify pattern

information for a style object associated with a particular shape, use the

GXSetShapePattern function, which is described on page 3-146.

To determine where pattern shapes are drawn for a particular shape, use the

GXGetShapePatternPositions function, which is described on page 3-147.

Errors
out_of_memory
style_is_nil
parameter_is_nil

C H A P T E R 3

Geometric Styles

3-144 Geometric Styles Reference

GXSetStylePattern

You can use the GXSetStylePattern function to change a style object’s pattern

information.

void GXSetStylePattern(gxStyle target,

 const gxPatternRecord *pattern);

target A reference to the style object whose pattern information you want to
change.

pattern A pointer to the new pattern information.

DESCRIPTION

The GXSetStylePattern function replaces the pattern information in the style object

specified by the target parameter with the pattern information provided by the

pattern parameter. You use the gxPatternRecord structure to provide pattern

information.

Passing nil for the pattern parameter indicates that you want no pattern and

QuickDraw GX removes any pattern information from the target style.

When you set a style’s pattern property using this function, you are effectively changing

the pattern for all shapes that share the style.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
style_is_nil
parameter_out_of_range (debugging version)
empty_shape_not_allowed (debugging version)
ignorePlatformShape_not_allowed (debugging version)
illegal_type_for_shape (debugging version)
nil_style_in_glyph_not_allowed (debugging version)
complex_glyph_style_not_allowed (debugging version)
shapeFill_not_allowed (debugging version)
colorProfile_must_be_nil (debugging version)

Warnings
graphic_type_cannot_be_dashed

Notices (debugging version)
dash_already_set
tags_in_shape_ignored

C H A P T E R 3

Geometric Styles

Geometric Styles Reference 3-145

SEE ALSO

For a discussion of patterns, see “Patterns” on page 3-31.

For examples of adding patterns to shapes, see page 3-86 through page 3-91.

For a discussion of the gxPatternRecord structure and a description of what types of

shapes you can use as pattern shapes, see “The Pattern Structure” on page 3-106.

To retrieve pattern information from a style object, use the GXGetStylePattern

function, which is described on page 3-142.

To retrieve pattern information from a style object associated with a particular shape, use

the GXGetShapePattern function, which is described in the next section. To specify

pattern information for a style object associated with a particular shape, use the

GXSetShapePattern function, which is described on page 3-146.

To determine where pattern shapes are drawn for a particular shape, use the

GXGetShapePatternPositions function, which is described on page 3-147.

GXGetShapePattern

You can use the GXGetShapePattern function to retrieve the pattern information from

the style object associated with a particular shape.

gxPatternRecord *GXGetShapePattern(gxShape source,

 gxPatternRecord *pattern);

source The shape whose pattern information you want to retrieve.

pattern A pointer to a gxPatternRecord structure. On return, this structure
contains the pattern information for the source shape.

function result A copy of the gxPatternRecord structure associated with the
source shape’s style object.

DESCRIPTION

The GXGetShapePattern function returns as its function result and in the pattern

parameter a pointer to a gxPatternRecord structure containing the pattern

information for the style object of the shape specified by the source parameter.

This function creates a new shape to encapsulate the pattern geometry, and places a

reference to this shape in the pattern field of the returned gxPatternRecord

structure. You should dispose of this shape when you no longer need it.

Since this function copies the pattern information from the source shape’s style, you may

make changes to the gxPatternRecord structure returned by this function without

affecting the source shape’s pattern. If you want to change the pattern information for

the source shape, you must use the GXSetShapePattern function.

C H A P T E R 3

Geometric Styles

3-146 Geometric Styles Reference

SPECIAL CONSIDERATIONS

The GXGetShapePattern function may create a shape; you are responsible for

disposing of this shape when you no longer need it. See Inside Macintosh: QuickDraw GX
Objects for information about creating and disposing of objects.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For a discussion of patterns, see “Patterns” on page 3-31.

For examples of adding patterns to shapes, see page 3-86 through page 3-91.

For a discussion of the gxPatternRecord structure and a description of what types of

shapes you can use as pattern shapes, see “The Pattern Structure” on page 3-106.

To retrieve pattern information from a style object, use the GXGetStylePattern

function, which is described on page 3-142. To specify pattern information for a style

object, use the GXSetStylePattern function, which is described on page 3-144.

To specify pattern information for a style object associated with a particular shape, use

the GXSetShapePattern function, which is described in the next section.

To determine where pattern shapes are drawn for a particular shape, use the

GXGetShapePatternPositions function, which is described on page 3-147.

GXSetShapePattern

You can use the GXSetShapePattern function to change the pattern information for a

style object associated with a particular shape.

void GXSetShapePattern(gxShape target,

 const gxPatternRecord *pattern);

target A reference to the shape whose pattern information you want to change.

pattern A pointer to the new pattern information.

DESCRIPTION

The GXSetShapePattern function replaces the pattern information in the style object

of the shape specified by the target parameter with the pattern information provided

by the pattern parameter. You use the gxPatternRecord structure to provide pattern

information.

Errors
out_of_memory
shape_is_nil
parameter_is_nil

C H A P T E R 3

Geometric Styles

Geometric Styles Reference 3-147

Passing nil for the pattern parameter indicates that you want no pattern and

QuickDraw GX removes any pattern information from the target shape.

If the target shape shares its style object with other shapes, this function makes a copy

of the style object, sets the target shape to reference the copy, and changes the pattern

property of the copy. (However, if the effect of this function would leave the pattern

information unchanged, this function does not create a copy of the style object; instead, it

returns a notice).

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For a discussion of patterns, see “Patterns” on page 3-31.

For examples of adding patterns to shapes, see page 3-86 through page 3-91.

For a discussion of the gxPatternRecord structure and a description of what types of

shapes you can use as pattern shapes, see “The Pattern Structure” on page 3-106.

To retrieve pattern information from a style object, use the GXGetStylePattern

function, which is described on page 3-142. To specify pattern information for a style

object, use the GXSetStylePattern function, which is described on page 3-144.

To retrieve pattern information from a style object associated with a particular shape, use

the GXGetShapePattern function, which is described on page 3-145.

To determine where pattern shapes are drawn for a particular shape, use the

GXGetShapePatternPositions function, which is described in the next section.

GXGetShapePatternPositions

You can use the GXGetShapePatternPositions function to determine the precise

locations where QuickDraw GX draws the shapes that pattern another shape.

long GXGetShapePatternPositions(gxShape source,

 gxPoint positions[]);

Errors
out_of_memory
shape_is_nil
parameter_out_of_range
pattern_lattice_out_of_range

Notices (debugging version)
pattern_already_set

C H A P T E R 3

Geometric Styles

3-148 Geometric Styles Reference

source A reference to the shape whose pattern positions you want to find.

positions An array of pattern positions. On return, this array contains points that
indicate the position of the pattern shapes that pattern the source shape.

function result The number of pattern positions returned in the positions parameter.

DESCRIPTION

The GXGetShapePatternPositions function returns in the positions parameter

the locations of the pattern shapes as drawn for the source shape.

The function result is the number of pattern positions returned—the number of pattern

shapes drawn for the source shape.

If you pass nil for the positions parameter, the GXGetShapePatternPositions

function still returns as the function result the number of pattern shapes but it does not

return the positions of the pattern shapes.

This function returns 0 if the source shape has no pattern.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For a discussion of patterns, see “Patterns” on page 3-31.

For an example using this function, see “Determining Pattern Positions” on page 3-88.

For a discussion of the gxPatternRecord structure and a description of what types of

shapes you can use as pattern shapes, see “The Pattern Structure” on page 3-106.

To retrieve pattern information from a style object, use the GXGetStylePattern

function, which is described on page 3-142. To specify pattern information for a style

object, use the GXSetStylePattern function, which is described on page 3-144.

To retrieve pattern information from a style object associated with a particular shape, use

the GXGetShapePattern function, which is described on page 3-145. To specify pattern

information for a style object associated with a particular shape, use the

GXSetShapePattern function, which is described on page 3-146.

Errors
out_of_memory
shape_is_nil

C H A P T E R 3

Geometric Styles

Summary of Geometric Styles 3-149

Summary of Geometric Styles

Constants and Data Types

Style Attributes

enum gxStyleAttributes {

gxCenterFrameStyle = 0, /* center the pen on contour */

gxSourceGridStyle = 0x0001, /* constrain to source grid */

gxDeviceGridStyle = 0x0002, /* constrain to device grid */

gxInsideFrameStyle = 0x0004, /* place pen inside contour */

gxOutsideFrameStyle = 0x0008, /* place pen outside contour */

gxAutoInsetStyle = 0x0010 /* don’t assume right is in */

};

typedef long gxStyleAttribute;

Cap Structure

struct gxCapRecord {

gxCapAttribute attributes; /* modifies behavior of caps */

gxShape startCap; /* shape to use at start of contours */

gxShape endCap; /* shape to use at end of contours */

};

Cap Attributes

enum gxCapAttributes {

gxLevelStartCap= 0x0001; /* suppress start cap rotation */

gxLevelEndCap = 0x0002; /* suppress end cap rotation */

};

typedef long gxCapAttribute;

Join Structure

struct gxJoinRecord {

gxJoinAttribute attributes; /* modifies behavior of joins */

gxShape join; /* shape to use at corners */

Fixed miter; /* size limit for sharp joins */

};

C H A P T E R 3

Geometric Styles

3-150 Summary of Geometric Styles

Join Attributes

enum gxJoinAttributes {

gxSharpJoin = 0x0000, /* use default sharp joins */

gxCurveJoin = 0x0001, /* use default curved joins */

gxLevelJoin = 0x0002 /* suppress join shape rotation */

};

typedef long gxJoinAttribute;

Dash Structure

struct gxDashRecord {

gxDashAttribute attributes; /* modifies behavior of dashes */

gxShape dash; /* shape used for dashing */

Fixed advance; /* distance between dashes */

fract phase; /* start offset into the contour */

Fixed scale; /* height of dash (mapped to pen) */

};

Dash Attributes

typedef enum gxDashAttributes {

gxBendDash = 0x0001; /* distorts shape in 1 dimension */

gxBreakDash = 0x0002; /* places dash contours separately */

gxClipDash = 0x0004; /* clips dashes to pen width */

gxLevelDash = 0x0008; /* suppresses dash rotation */

gxAutoAdvanceDash = 0x0010; /* automatically adjusts advances */

};

typedef long gxDashAttribute;

Pattern Structure

struct gxPatternRecord {

gxPatternAttribute attributes; /* modifies behavior of pattern */

gxShape pattern; /* shape to use as pattern */

gxPoint u; /* vector for pattern grid */

gxPoint v; /* vector for pattern grid */

};

C H A P T E R 3

Geometric Styles

Summary of Geometric Styles 3-151

Pattern Attributes

enum gxPatternAttributes {

gxPortAlignPattern = 0x0001, /* align pattern with device */

gxPortMapPattern = 0x0002 /* suppress mapping of pattern */

};

typedef long gxPatternAttribute;

Functions for Manipulating Geometric Style Properties

Getting and Setting Style Attributes

gxStyleAttribute GXGetStyleAttributes
(gxStyle source);

void GXSetStyleAttributes (gxStyle target, gxStyleAttribute attributes);

gxStyleAttribute GXGetShapeStyleAttributes
(gxShape source);

void GXSetShapeStyleAttributes
(gxShape target, gxStyleAttribute attributes);

Getting and Setting Curve Error

Fixed GXGetStyleCurveError (gxStyle source);

void GXSetStyleCurveError (gxStyle target, Fixed error);

Fixed GXGetShapeCurveError (gxShape source);

void GXSetShapeCurveError (gxShape target, Fixed error);

Getting and Setting the Pen Width

Fixed GXGetStylePen (gxStyle source);

void GXSetStylePen (gxStyle target, Fixed pen);

Fixed GXGetShapePen (gxShape source);

void GXSetShapePen (gxShape target, Fixed pen);

Getting and Setting Caps

gxCapRecord *GXGetStyleCap (gxStyle source, gxCapRecord *cap);

void GXSetStyleCap (gxStyle target, const gxCapRecord *cap);

gxCapRecord *GXGetShapeCap (gxShape source, gxCapRecord *cap);

void GXSetShapeCap (gxShape target, const gxCapRecord *cap);

C H A P T E R 3

Geometric Styles

3-152 Summary of Geometric Styles

Getting and Setting Joins

gxJoinRecord *GXGetStyleJoin
(gxStyle source, gxJoinRecord *join);

void GXSetStyleJoin (gxStyle target, const gxJoinRecord *join);

gxJoinRecord *GXGetShapeJoin
(gxShape source, gxJoinRecord *join);

void GXSetShapeJoin (gxShape target, const gxJoinRecord *join);

Getting and Setting Dashes

gxDashRecord *GXGetStyleDash
(gxStyle source, gxDashRecord *dash);

void GXSetStyleDash (gxStyle target, const gxDashRecord *dash);

gxDashRecord *GXGetShapeDash
(gxShape source, gxDashRecord *dash);

void GXSetShapeDash (gxShape target, const gxDashRecord *dash);

long GXGetShapeDashPositions
(gxShape source, gxMapping dashMappings[]);

Getting and Setting Patterns

gxPatternRecord *GXGetStylePattern
(gxStyle source, gxPatternRecord *pattern);

void GXSetStylePattern (gxStyle target, const gxPatternRecord
*pattern);

gxPatternRecord *GXGetShapePattern
(gxShape source,
gxPatternRecord *pattern);

void GXSetShapePattern (gxShape target, const gxPatternRecord
*pattern);

long GXGetShapePatternPositions
(gxShape source, gxPoint positions[]);

Contents 4-1

C H A P T E R 4

Contents

Geometric Operations

About Geometric Operations 4-4

Contours and Contour Direction 4-4

Reducing and Simplifying Shape Geometries 4-9

The Primitive Form of Shape Geometries 4-12

Geometric Information 4-16

Touching and Containing 4-18

Geometric Arithmetic 4-21

Using Geometric Operations 4-23

Determining and Reversing Contour Direction 4-23

Breaking Shape Contours 4-28

Eliminating Unnecessary Geometric Points 4-30

Simplifying Shapes 4-33

Converting a Shape to Primitive Form 4-38

Finding Geometric Information About a Shape 4-41

Finding the Length of a Contour 4-42

Finding the Point at a Certain Distance Along a Contour 4-42

Finding the Bounding Rectangle and Center Point of a Shape 4-43

Finding the Area of a Shape 4-45

Setting a Shape’s Bounding Rectangle 4-47

Insetting Shapes 4-50

Determining Whether Two Shapes Touch 4-53

Determining Whether One Shape Contains Another 4-58

Performing Geometric Arithmetic With Shapes 4-60

Geometric Operations Reference 4-67

Constants and Data Types 4-67

Contour Directions 4-67

Functions 4-68

Determining and Reversing Contour Direction 4-68

GXGetShapeDirection 4-68

GXReverseShape 4-70

C H A P T E R 4

4-2 Contents

Breaking Shape Contours 4-72

GXBreakShape 4-72

Reducing and Simplifying Shapes 4-74

GXReduceShape 4-74

GXSimplifyShape 4-76

Incorporating Style Information Into Shape Geometries 4-79

GXPrimitiveShape 4-79

Finding Geometric Information About Shapes 4-83

GXGetShapeLength 4-83

GXShapeLengthToPoint 4-85

GXGetShapeCenter 4-87

GXGetShapeArea 4-88

Getting and Setting Shape Bounds 4-90

GXGetShapeBounds 4-90

GXSetShapeBounds 4-92

Insetting Shapes 4-94

GXInsetShape 4-94

Determining Whether Two Areas Touch 4-95

GXTouchesRectanglePoint 4-96

GXTouchesBoundsShape 4-97

GXTouchesShape 4-98

Determining Whether One Shape Contains Another 4-100

GXContainsRectangle 4-100

GXContainsBoundsShape 4-101

GXContainsShape 4-103

Performing Geometric Arithmetic With Shapes 4-104

GXIntersectRectangle 4-105

GXUnionRectangle 4-106

GXIntersectShape 4-107

GXUnionShape 4-109

GXDifferenceShape 4-110

GXReverseDifferenceShape 4-112

GXExcludeShape 4-114

GXInvertShape 4-116

Summary of Geometric Operations 4-117

Constants and Data Types 4-117

Functions 4-117

C H A P T E R 4

4-3

Geometric Operations

This chapter describes the functions that allow you to perform geometric operations

on shapes. Some of the geometric operations described in this chapter work on all

types of shapes. Read this chapter if you perform any kind of geometric manipulation on

the shapes you create.

Before reading this chapter, you should be familiar with the QuickDraw GX object

architecture as described in Inside Macintosh: QuickDraw GX Objects. You should also be

familiar with the information in the chapters “Geometric Shapes” and “Geometric

Styles” in this book.

For more information about geometric manipulation of shapes, you might want to read

the chapter “Transform Objects” in Inside Macintosh: QuickDraw GX Objects and the

chapter “QuickDraw GX Mathematics” in Inside Macintosh: QuickDraw GX Environment
and Utilities.

This chapter introduces the basic categories of geometric operations and shows how to

use these operations to

■ determine and reverse the contour direction of a shape’s contours

■ simplify the geometric description of a shape

■ incorporate style information into a shape’s geometry

■ obtain geometric information about a shape’s geometry, such as contour length and
area

■ determine and alter the bounding rectangle of a shape

■ inset a shape’s geometry

■ determine if two shapes touch

■ determine if one shape contains another

■ perform geometric arithmetic, such as intersection and union, on shapes

Finally, this chapter contains a complete reference for the geometric operations.

C H A P T E R 4

Geometric Operations

4-4 About Geometric Operations

About Geometric Operations

The geometric operations allow you to obtain geometric information about geometric

shapes and perform geometric calculations on them without having to manipulate shape

geometries directly.

The geometric operations fall into five main categories:

■ operations that affect contours and contour direction

■ operations that simplify the drawing of shapes

■ operations that determine and alter basic geometric information about shapes

■ operations that test for intersection and inclusion

■ operations that perform geometric arithmetic on shapes

The next five sections discuss these categories.

Contours and Contour Direction
With the exception of empty, full, and point shapes, geometric shapes are made up of

contours. Line, curve, and rectangle shapes have a single contour, while polygon and

path shapes can have zero, one, or more contours. Every contour is defined by an

ordered series of on-curve or off-curve geometric points, or a combination of both.

C H A P T E R 4

Geometric Operations

About Geometric Operations 4-5

For example, the geometry of a line shape contains two (on-curve) geometric points—a

first point and a last point. The contour of a line shape is the line segment connecting

these two points. Since the line has a first point and a last point, it also has a direction, a

right side, and a left side, as shown in Figure 4-1.

Figure 4-1 Line contours

C H A P T E R 4

Geometric Operations

4-6 About Geometric Operations

As another example, a path shape can have multiple contours; each path contour is

defined by a series of on-curve and off-curve points. As with line contours, each path

contour has a direction, a right side, and a left side. Notice that the order of the

geometric points decides which side is the left side and which side is the right side, as

shown in Figure 4-2.

Figure 4-2 A path shape with two contours

Each contour of a polygon or path shape has an implied line (or curve) connecting the

last geometric point of the contour to the first geometric point of the contour.

QuickDraw GX uses this implied line (or curve) when the shape fill of the polygon or

path shape is the closed-frame shape fill or any of the solid shape fills. These implied

lines are shown in gray in Figure 4-2.

Notice that the right side of the first contour falls inside the area enclosed by the contour

and the right side of the second contour falls outside the area enclosed by the contour.

C H A P T E R 4

Geometric Operations

About Geometric Operations 4-7

All contours have either a clockwise or a counterclockwise contour direction. Sometimes

the contour direction of a contour is obvious, such as the contour directions of the

contours in Figure 4-2. In this figure, the first contour has a clockwise contour direction

and the second contour has a counterclockwise contour direction. However, sometimes

the contour direction is not so obvious. Figure 4-3 gives an example.

Figure 4-3 A path whose contour direction is not immediately obvious

The upper half of the contour shown in Figure 4-3 seems to have a counterclockwise

direction while the lower half of the contour seems to have a clockwise direction. In

cases like this one, QuickDraw GX assigns an arbitrary contour direction to the entire

contour. You can use the GXGetShapeDirection function, described on page 4-68, to

find the contour direction that QuickDraw GX has assigned to a particular contour.

C H A P T E R 4

Geometric Operations

4-8 About Geometric Operations

QuickDraw GX uses contour direction for a number of purposes—for example, when

filling shapes that have a winding shape fill. The path shape shown in Figure 4-4

contains an inner contour with the same contour direction as the contour that surrounds

it. When drawing this path using a winding fill, QuickDraw GX ignores the inner

contour.

Figure 4-4 A path whose inner contour has the same contour direction as its outer contour

To indicate that QuickDraw GX should not ignore the inner contour, you could change

the shape fill to even-odd fill, or you could reverse the contour direction of the inner

contour, as shown in Figure 4-5.

Figure 4-5 A path shape whose inner and outer contours have different contour directions

C H A P T E R 4

Geometric Operations

About Geometric Operations 4-9

QuickDraw GX lets you reverse a contour’s direction by reversing the order of the

geometric points in the contour.

Note

QuickDraw GX always considers line shapes to have a clockwise
contour direction, regardless of the order of the geometric points in
the line’s geometry. Therefore, you cannot change the contour direction
of line shapes. However, a line contour in a polygon or a path does have
a clockwise or a counterclockwise direction (which QuickDraw GX
assigns to it depending on the other contours in the shape); therefore,
you can change the contour direction of line contours in polygons and
paths. ◆

In certain situations, QuickDraw GX needs to know which side of a contour is the inside

and which is the outside—for example, when drawing a geometric shape that has the

inside-frame style attribute set. The default assumption is that the right side of a contour

is the inside—which works well for clockwise contours but can produce surprising

results with counterclockwise contours. The auto-inset style attribute indicates that

QuickDraw GX should find the true inside for each contour of a shape, rather than

assuming the right side is the inside. The true inside of a contour is defined to be the

right side of the contour if the contour direction is clockwise and the left side of a

contour if the contour direction is counterclockwise.

You can find more information about the inside-frame style attribute and the auto-inset

style attribute in Chapter 3, “Geometric Styles,” in this book.

The section “Determining and Reversing Contour Direction” beginning on page 4-23

contains programming examples relating to contour direction.

Reducing and Simplifying Shape Geometries
QuickDraw GX allows you to change shape geometries to simpler forms. You can reduce

the number of geometric points in a shape by removing unnecessary ones. You can also

simplify a shape’s geometry by removing unnecessary contour breaks, eliminating

crossed and overlapping contours, and even simplifying the shape’s shape type, if

possible.

C H A P T E R 4

Geometric Operations

4-10 About Geometric Operations

Figure 4-6 shows the difference between reducing a shape’s geometry and simplifying a

shape’s geometry.

Figure 4-6 Effects of reducing and simplifying shape geometries

C H A P T E R 4

Geometric Operations

About Geometric Operations 4-11

In this figure, the polygon geometry has two unnecessary geometric points, which are

removed in the reduced polygon. Since the polygon is actually a square, simplifying this

polygon converts the polygon geometry to the simplest type of geometry necessary—

which in this case is a rectangle geometry.

The path geometry in the lower part of Figure 4-6 has a crossed contour, but no

unnecessary geometric points. Reducing this path results in the same path geometry,

whereas simplifying this path reorders the geometric points and breaks the geometry

into two path contours so that no contour crossing occurs. Also notice that, because the

original path geometry starts with an off-curve control point, simplifying the path adds

an initial on-curve geometric point. The new initial geometric point is halfway between

the point that was originally at the end of the contour and the point that was originally

at the beginning of the contour. Although adding this new complexity might not seem

like a simplification, removing crossed contours does result in more predictable drawing

results, as shown in Figure 4-7.

Figure 4-7 How simplifying a shape can produce more predictable results when drawing

Figure 4-7 shows the path geometry from Figure 4-6. When this path is drawn with a pen

width of 10.0 and the inside-frame style attribute set, the upper half of the path is inset,

but the lower half of the path is outset, because of the crossed contour. Simplifying the

shape uncrosses the contour, which results in both halves of the path shape being inset

when drawn.

For more examples of the effect of simplifying shapes on drawing, see the section

“Simplifying Shapes” beginning on page 4-33, as well as in the pen placement examples

in Chapter 3, “Geometric Styles,” in this book.

C H A P T E R 4

Geometric Operations

4-12 About Geometric Operations

The Primitive Form of Shape Geometries
QuickDraw GX provides a mechanism for incorporating the stylistic variations

contained in a style object directly into the geometry of a shape object. This mechanism is

the GXPrimitiveShape function. When the geometry of a shape has its stylistic

variations incorporated into it, it is said to be in primitive form. Shapes in primitive

form include

■ empty shapes and full shapes, which are described in Chapter 2, “Geometric Shapes”

■ filled rectangle, polygon, and path shapes, which are also described in Chapter 2,
“Geometric Shapes”

■ hairline framed shapes, which are described in Chapter 3, “Geometric Styles”

■ glyph shapes, which are described in Inside Macintosh: QuickDraw GX Typography

Figure 4-8 shows a simple example of the GXPrimitiveShape function. This figure

shows a line geometry as drawn with a pen width of 10.0. Converting this line shape to

its primitive form results in a rectangle shape with an even-odd fill; the pen width has

been incorporated into the geometry of the shape.

C H A P T E R 4

Geometric Operations

About Geometric Operations 4-13

Figure 4-8 Simple example of the GXPrimitiveShape function

C H A P T E R 4

Geometric Operations

4-14 About Geometric Operations

Figure 4-9 shows a more involved example—a line shape dashed with diamond-shaped

polygons. Converting this line shape to its primitive form results in a polygon shape

with multiple contours—one contour for each dash.

C H A P T E R 4

Geometric Operations

About Geometric Operations 4-15

Figure 4-9 More involved example of the GXPrimitiveShape function

C H A P T E R 4

Geometric Operations

4-16 About Geometric Operations

Notice that, even though the geometry of the shape has changed significantly, the shape

appears the same when drawn. Also notice that the GXPrimitiveShape function

affects only the shape type, shape geometry, and shape fill of a shape—it does not affect

the shape’s associated style object. In the example in Figure 4-9, the result of the

GXPrimitiveShape function has a pen width of 10.0 and dash shape. However,

since the shape fill was changed to even-odd fill, these aspects of the style are ignored

when the shape is drawn.

For a complete description of the primitive forms of shapes, see the reference description

of the GXPrimitiveShape function, which is on page 4-79. For some examples that

demonstrate when it is necessary to use primitive shapes, see the descriptions of caps,

joins, dashes, and patterns in Chapter 3, “Geometric Styles,” in this book, and the

description of clip shapes in Inside Macintosh: QuickDraw GX Objects.

For programming examples illustrating shapes in their primitive form, see “Converting

a Shape to Primitive Form” beginning on page 4-38.

Geometric Information
QuickDraw GX lets you calculate specific geometric information about a shape, or about

the contour of a shape. You can

■ find the length of all of a shape’s contours or of a particular contour of a shape

■ locates the point that falls at a given distance along a particular contour of a shape

■ calculates the area contained by the contours of a shape’s geometry or by a particular
contour of a shape’s geometry

■ find the center point of a shape or of a particular contour of a shape

■ find the bounding rectangle of a shape

C H A P T E R 4

Geometric Operations

About Geometric Operations 4-17

Figure 4-10 illustrates the geometric information you can obtain about a shape.

Figure 4-10 Geometric information available about a path shape

Notice in Figure 4-10 that, because the first point of the path shape is an off-curve control

point, the length-to-point operation starts its calculation at an initial on-curve point,

halfway between the original first and last points of the contour.

C H A P T E R 4

Geometric Operations

4-18 About Geometric Operations

QuickDraw GX also allows you to set the bounding rectangle of a shape, and therefore

move and scale the shape, as shown in Figure 4-11.

Figure 4-11 A path shape resized by changing its bounding rectangle

For programming examples of obtaining geometric information about shapes, see

“Finding Geometric Information About a Shape” beginning on page 4-41.

For programming examples of setting the bounding rectangle of a shape, see “Setting a

Shape’s Bounding Rectangle” beginning on page 4-47.

Touching and Containing
QuickDraw GX allows you to determine if the area enclosed by the contours of one

shape touch the area enclosed by the contours of another shape. You can also determine

if one shape’s area contains the area of another shape.

In particular, you can

■ determine if a point touches the area enclosed by a rectangle

■ determine if the area enclosed by the contours of a shape touches the area enclosed by
a rectangle

■ determine if the areas of two shapes touch

C H A P T E R 4

Geometric Operations

About Geometric Operations 4-19

Figure 4-12 shows the results of testing to see whether pairs of different geometric

shapes touch. In this figure, a solid rectangle shape is tested for touching with both a

framed path and a solid path, and a solid path is tested for touching with a solid

polygon.

Figure 4-12 Testing whether one shape touches another

QuickDraw GX also allows you to determine whether or not

■ one rectangle contains another

■ a rectangle contains the area covered by a shape

■ the area covered by one shape contains the area covered by another shape.

C H A P T E R 4

Geometric Operations

4-20 About Geometric Operations

Figure 4-13 shows the results of testing pairs of shapes to see if one shape contains

another.

Figure 4-13 Testing whether one shape contains another

Notice the first diagram in the third row of Figure 4-13. A shape does not contain another

shape if it merely surrounds the other shape; the area covered by the first shape as

drawn must contain the area of the second shape as drawn.

Note

QuickDraw GX defines empty shapes as touching no shapes and full
shapes as touching any shape except an empty shape. QuickDraw GX
also defines full shapes as containing any shape and empty shapes as
being contained by any shape except other empty shapes. ◆

C H A P T E R 4

Geometric Operations

About Geometric Operations 4-21

For programming examples of testing shapes for intersection, see “Determining Whether

Two Shapes Touch” beginning on page 4-53.

For programming examples of testing shapes for inclusion, see “Determining Whether

One Shape Contains Another” beginning on page 4-58.

Geometric Arithmetic
QuickDraw GX provides six different arithmetic operations that you can perform on

geometric shapes. These operations are: intersection, union, difference, reverse

difference, exclusion, and inversion. With these operations, you can

■ find the intersection of two rectangles

■ find the union of two rectangles

■ find the area common to two shapes

■ find the combined area of by two shapes

■ find the area covered by one shape that is not also covered by another

■ find the area covered by one shape or another, but not both

■ find the area not covered by a shape

Figure 4-14 illustrates the first five of these arithmetic operations.

Figure 4-14 Geometric arithmetic with two solid shapes

C H A P T E R 4

Geometric Operations

4-22 About Geometric Operations

Figure 4-14 shows geometric arithmetic with two solid shapes. You can also perform

some geometric arithmetic on a filled shape and a solid shape, as shown in Figure 4-15.

Figure 4-15 Geometric arithmetic with a framed shape and a solid shape

Figure 4-16 illustrates the geometic inversion—the area not covered by a shape. The

inverted shape extends to the limits of its clip shape or the limits of the view port to

which it is drawn.

Figure 4-16 Geometric inversion

For programming examples of geometric arithmetic, see “Performing Geometric

Arithmetic With Shapes” beginning on page 4-60.

C H A P T E R 4

Geometric Operations

Using Geometric Operations 4-23

Using Geometric Operations

This section shows you how to apply geometric operations to shapes. In particular, this

section shows you how to

■ determine and reverse the contour direction of a shape’s contours

■ break a contour into multiple contours

■ reduce and simplify the geometric description of a shape

■ incorporate style information into a shape’s geometry

■ obtain geometric information about a shape’s geometry, such as contour length and
area

■ determine and alter the bounding rectangle of a shape

■ inset a shape’s geometry

■ determine if two shapes touch

■ determine if one shape contains another

■ perform geometric arithmetic, such as intersection and union, on shapes

Many of the sample functions in this section create geometric shapes, and to do so, they

specify geometric points for the shapes’ geometries. Since a geometric point contains two

fixed-point values, the sample functions in this section must convert integer constants

to fixed-point constants when specifying a geometric point. QuickDraw GX provides the

GXIntToFixed macro, which performs this conversion by shifting the integer value 16

bits to the left:

#define GXIntToFixed(a) ((Fixed) (a) << 16)

QuickDraw GX also provides the ff macro as a convenient alias:

#define ff(a) GXIntToFixed(a)

The ff macro is used throughout this section.

Determining and Reversing Contour Direction
The contours of geometric shapes have contour direction: either clockwise or

counterclockwise, as described in “Contours and Contour Direction” beginning on

page 4-4. QuickDraw GX allows you to determine the contour direction of a specific

contour of a shape and also allows you to change the direction of a shape’s contour by

reversing the order of the geometric points in the geometry defining the contour.

C H A P T E R 4

Geometric Operations

4-24 Using Geometric Operations

The sample function in Listing 4-1 creates a polygon shape with two contours—one

having a clockwise contour direction and the other having a counterclockwise contour

direction.

Listing 4-1 Creating a polygon shape with two contours having opposite contour directions

void CreateConcentricTriangles(void)

{

gxShape twoTriangles;

long twoTrianglesGeometry[] = {2, /* number of contours */

 3, /* number of points */

 ff(50), ff(200),

 ff(110), ff(100),

 ff(170), ff(200),

 3, /* number of points */

 ff(90), ff(178),

 ff(130), ff(178),

 ff(110), ff(145)};

twoTriangles = GXNewPolygons((gxPolygons *)

 twoTrianglesGeometry);

GXSetShapeFill(twoTriangles, gxWindingFill);

GXDrawShape(twoTriangles);

GXDisposeShape(twoTriangles);

}

C H A P T E R 4

Geometric Operations

Using Geometric Operations 4-25

The result of this sample function is shown in Figure 4-17.

Figure 4-17 A polygon shape whose two contours have opposite contour directions

QuickDraw GX provides the GXGetShapeDirection function to allow you to

determine the contour direction of a specific contour in a shape. This function takes two

parameters: the first parameter is a reference to the shape and the second parameter is

the index of the contour whose contour direction you want to find. In the example from

Listing 4-1, the first contour (the outer contour) has a clockwise contour direction.

Calling the function

GXGetShapeDirection(twoTriangles, 1);

returns the constant gxClockwiseDirection.

The second contour (the inner contour) has a counterclockwise direction. Calling the

function

GXGetShapeDirection(twoTriangles, 2);

returns the constant gxCounterclockwiseDirection.

C H A P T E R 4

Geometric Operations

4-26 Using Geometric Operations

You can reverse the direction of a contour by reversing the order of the contour’s

geometric points. For this purpose, QuickDraw GX provides the GXReverseShape

function. This function also takes two parameters: a reference to the shape and the index

of the contour to reverse. Specifying 0 as the number of the contour to reverse causes the

GXReverseShape function to reverse all the contours of a shape. For example, you can

add the following function call to the sample function in Listing 4-1:

GXReverseShape(twoTriangles, 0);

The result is shown in Figure 4-18.

Figure 4-18 A polygon shape with the direction of both contours reversed

C H A P T E R 4

Geometric Operations

Using Geometric Operations 4-27

Since both contours are reversed in this example, the shape appears the same when

drawn as it did before the contours were reversed.

However, reversing only the inner contour of this polygon by calling

GXReverseShape(twoTriangles, 2);

results in the polygon shown in Figure 4-19.

Figure 4-19 A polygon shape with the direction of the inner contour reversed

Reversing the contour of a shape by calling the GXReverseShape function almost

always changes the result of the GXGetShapeDirection function. One important

exception, however, is that line shapes always have a clockwise direction. The order of a

line shape’s geometric points does not affect the result of the GXGetShapeDirection

function.

For a discussion of contour direction, see “Contours and Contour Direction” beginning

on page 4-4.

For more information about the GXGetShapeDirection function, see page 4-68. For

more information about the GXReverseShape function, see page 4-70.

C H A P T E R 4

Geometric Operations

4-28 Using Geometric Operations

Breaking Shape Contours
Polygon and path shapes can contain many contours. Each contour of a polygon shape

can be made up of many lines and each contour of a path shape can be made up of many

lines and curves.

QuickDraw GX provides a method for breaking a single contour of a polygon or path

shape into two contours at a specified geometric point in the original contour.

As an example, the sample function in Listing 4-2 creates a path shape with a single

contour. This contour contains six geometric points and is made up of a curve, a line, and

another curve.

Listing 4-2 Creating a path shape with a single contour

void CreateSingleContourPath(void)

{

gxShape aPathShape;

static long oneContourGeometry[] = {1, /* number of contours */

 6, /* number of points */

 0x48000000, /* 0100 1000 */

 ff(100), ff(150), /* on */

 ff(50), ff(100), /* off */

 ff(100), ff(50), /* on */

 ff(200), ff(50), /* on */

 ff(250), ff(100), /* off */

 ff(200), ff(150)};/* on */

aPathShape = GXNewPaths((gxPaths *) oneContourGeometry);

GXSetShapeFill(aPathShape, gxClosedFrameFill);

GXDrawShape(aPathShape);

GXDisposeShape(aPathShape);

}

C H A P T E R 4

Geometric Operations

Using Geometric Operations 4-29

The result of this function is shown in Figure 4-20.

Figure 4-20 A path shape with a single contour

The GXBreakShape function allows you to break a single contour into two contours at a

specified geometric point. Adding the function call

GXBreakShape(aPathShape, 4);

to the sample function in Listing 4-2 breaks the single contour of the path shape into two

contours at the fourth geometric point, as shown in Figure 4-21.

Figure 4-21 A path shape broken into two contours

C H A P T E R 4

Geometric Operations

4-30 Using Geometric Operations

After the call to the GXBreakShape function, the path shape has two contours, each

with three geometric points. Calling the function

GXCountShapeContours(aPathShape);

returns the value 2.

In addition to breaking the contours of polygon and path shapes, you can also use the

GXBreakShape function to break line shapes and curve shapes. For example, if the

variable aLine references a line shape, the function call

GXBreakShape(aLine, 1);

converts the line shape to a polygon shape with two contours. The first contour is empty

(that is, it has no geometric points) and the second contour is the original line. Calling

the function

GXCountShapeContours(aLine);

returns the value 2.

For a discussion of contours, geometric points, and the GXCountShapeContours

function, see Chapter 2, “Geometric Shapes,” in this book.

You can also use the GXSetPolygonParts, GXSetPathParts, and

GXSetShapeParts functions to break a shape’s contours. These functions are also

described in Chapter 2, “Geometric Shapes,” in this book.

For more information about the GXBreakShape function, see page 4-72.

Eliminating Unnecessary Geometric Points
There are many ways in which polygon and path shapes can contain more geometric

points than necessary to describe their underlying geometry. Two common examples are

■ duplicate points—sequential points with the same coordinates

■ colinear points—points that lie in a straight line between a preceding point and
subsequent point

C H A P T E R 4

Geometric Operations

Using Geometric Operations 4-31

The sample function in Listing 4-3 creates a polygon shape with a single contour that has

six geometric points, two of which are unnecessary.

Listing 4-3 Creating a polygon with redundant geometric points

void ReduceUnnecessaryPoints(void)

{

gxShape squareShape;

static long paddedSquareGeometry[] = {1, /* # of contours */

 6, /* # of contours */

 ff(50), ff(50),

 ff(100), ff(50),

 ff(150), ff(50),

 ff(150), ff(150),

 ff(150), ff(150),

 ff(50), ff(150)};

squareShape = GXNewPolygons((gxPolygons *)

 &paddedSquareGeometry);

GXSetShapeFill(squareShape, gxEvenOddFill);

GXDrawShape(squareShape);

GXDisposeShape(squareShape);

}

The resulting polygon shape is shown in Figure 4-22.

Figure 4-22 A polygon shape with unnecessary geometric points

C H A P T E R 4

Geometric Operations

4-32 Using Geometric Operations

QuickDraw GX provides the GXReduceShape function so you can eliminate

unnecessary duplicate and colinear points. The GXReduceShape function takes two

parameters: a reference to the shape containing the contour whose unnecessary

geometric points you want to eliminate and an index specifying the contour itself. If you

supply the value 0 for the second parameter, the GXReduceShape function eliminates

unnecessary geometric points from all the contours of a shape.

As an example, adding the function call

GXReduceShape(squareShape, 0);

to the sample function in Listing 4-3 results in the polygon shape shown in Figure 4-23.

Figure 4-23 A polygon shape with the unnecessary geometric points removed

The unnecessary duplicate geometric point and the unnecessary colinear geometric point

are gone, but the polygon still appears the same when drawn. Although the resulting

geometry could be described by a rectangle shape, the shape in this example remains a

polygon shape. The GXReduceShape function does not convert the shape type of the

original shape. (However, the GXSimplifyShape function, shown in the next section,

does convert shape type, when possible.)

The GXReduceShape function considers two points to be duplicate points if they are

within the distance from each other specified by the curve error property of the shape’s

style object. See Chapter 3, “Geometric Styles,” in this book for a discussion of curve

error.

For a discussion of geometric points, see Chapter 2, “Geometric Shapes,” in this book.

For more information about the GXReduceShape function, see page 4-74.

C H A P T E R 4

Geometric Operations

Using Geometric Operations 4-33

Simplifying Shapes
In addition to unnecessary geometric points, there are other aspects of shape geometries

that complicate the definition and drawing of a shape. Some examples are:

■ an unnecessary contour break, where an open-framed contour ends on the same point
where the subsequent contour begins

■ a crossed contour, where a contour crosses over itself or another contour of the same
shape

■ overlapping contours, where inner contour loops have the same contour direction as
the contour that contains them

The sample function in Listing 4-4 creates a polygon shape with a single contour that

crosses over itself.

Listing 4-4 Creating a polygon shape with a crossed contour

void CreateHourglassPolygon(void)

{

gxShape aPolygonShape;

static long hourglassGeometry[] = {1, /* number of contours */

 4, /* number of points */

 ff(50), ff(50),

 ff(150), ff(50),

 ff(50), ff(150),

 ff(150), ff(150)};

aPolygonShape = GXNewPolygons((gxPolygons *)

hourglassGeometry);

GXSetShapeFill(aPolygonShape, gxClosedFrameFill);

GXDrawShape(aPolygonShape);

GXDisposeShape(aPolygonShape);

}

C H A P T E R 4

Geometric Operations

4-34 Using Geometric Operations

The resulting polygon shape is shown in Figure 4-24.

Figure 4-24 A polygon shape with a crossed contour

QuickDraw GX provides the GXSimplifyShape function so you can eliminate

unnecessary contour breaks, crossed contours, and overlapping contours. This function

takes one parameter: a reference to the shape you want to simplify.

As an example, adding the function call

GXSimplifyShape(aPolygonShape);

to the sample function in Listing 4-4 creates the polygon shown in Figure 4-25.

Figure 4-25 A polygon shape with no crossed contours

C H A P T E R 4

Geometric Operations

Using Geometric Operations 4-35

Notice that although this polygon shape is simplified, it contains more geometric points

and more contours than the original polygon. However, the crossed contour is

eliminated.

As another example, the sample function in Listing 4-5 creates a path shape with two

concentric contours: an outer contour and an inner contour, both of which have a

clockwise contour direction.

Listing 4-5 Creating a path shape with two clockwise contours

void CreateConcentricPaths(void)

{

gxShape aPathShape;

static long twoCircleGeometry[] = {2, /* # of contours */

 4, /* # of points */

 0xF0000000, /* 1111 ... */

 ff(50), ff(50), /* off */

 ff(150), ff(50), /* off */

 ff(150), ff(150), /* off */

 ff(50), ff(150), /* off */

 4, /* # of points */

 0xF0000000, /* 1111 ... */

 ff(65), ff(65), /* off */

 ff(135), ff(65), /* off */

 ff(135), ff(135), /* off */

 ff(65), ff(135)}; /* off */

aPathShape = GXNewPaths((gxPaths *) twoCircleGeometry);

GXSetShapeFill(aPathShape, gxEvenOddFill);

GXDrawShape(aPathShape);

GXDisposeShape(aPathShape);

}

C H A P T E R 4

Geometric Operations

4-36 Using Geometric Operations

Figure 4-26 shows the result of this sample function.

Figure 4-26 A path shape with two concentric clockwise contours and even-odd shape fill

Applying the GXSimplifyShape function to the path shape in Figure 4-26 reverses the

contour direction of the inner contour, so that it is no longer an overlapping contour with

the same contour direction. The result is shown in Figure 4-27.

Figure 4-27 A path shape with two concentric contours with opposite contour direction

C H A P T E R 4

Geometric Operations

Using Geometric Operations 4-37

However, imagine that the path shape defined in Listing 4-5 originally had a winding

fill, as shown in Figure 4-28.

Figure 4-28 A path shape with two concentric clockwise contours and winding shape fill

In this case, the GXSimplifyShape function removes the inner contour entirely, as it is

not necessary to describe the shape as drawn. The result is shown in Figure 4-29.

Figure 4-29 A path shape simplified to a single clockwise contour

The GXSimplifyShape function can change the shape type of a shape, as well the

geometry of shape, if the shape can be expressed by a simpler shape type. For example, a

polygon shape is converted to a rectangle shape or a line shape, if possible. Similarly, a

path shape is converted to a polygon shape if it has no off-curve control points.

For a discussion of shape fills and contour direction, see Chapter 2, “Geometric Shapes,”

in this book.

For more information about the GXSimplifyShape function, see page 4-76.

C H A P T E R 4

Geometric Operations

4-38 Using Geometric Operations

Converting a Shape to Primitive Form
QuickDraw GX requires that certain shapes (such as cap shapes, join shapes, dash

shapes, pattern shapes, and clip shapes) be in primitive form—that is, they must have all

of their style modifications incorporated into their geometries. Before you set a cap

shape, join shape, dash shape, and so on, you must ensure that the shape is in primitive

form.

As an example of converting a shape to primitive form, the sample function in

Listing 4-6 creates a polygon shape that is not in primitive form. The polygon has one

contour, a closed-frame shape fill, and a pen width of 15.0.

Listing 4-6 Creating an hourglass polygon shape with a thick pen width

void CreateHourglassPolygon(void)

{

gxShape aPolygonShape;

gxJoinRecord theJoinRecord;

static long hourglassGeometry[] = {1, /* number of contours */

 4, /* number of points */

 ff(50), ff(50),

 ff(150), ff(50),

 ff(50), ff(150),

 ff(150), ff(150)};

aPolygonShape = GXNewPolygons((gxPolygons *)

 hourglassGeometry);

GXSetShapeFill(aPolygonShape, gxClosedFrameFill);

GXSetShapePen(aPolygonShape, ff(15));

theJoinRecord.attributes = gxSharpJoin;

theJoinRecord.join = nil;

theJoinRecord.miter = gxPositiveInfinity;

GXSetShapeJoin(aPolygonShape, &theJoinRecord);

GXDrawShape(aPolygonShape);

GXDisposeShape(aPolygonShape);

}

C H A P T E R 4

Geometric Operations

Using Geometric Operations 4-39

The result of this sample function is shown in Figure 4-30.

Figure 4-30 A hourglass-shaped polygon with a thick border

The polygon shape defined in Listing 4-6 is not in primitive form because an element

of the polygon’s style (the pen width) is not incorporated into the polygon’s geometry.

QuickDraw GX provides the GXPrimitiveShape function so you can incorporate the

elements of a shape’s style into the shape’s geometry. For example, adding the function

call

GXPrimitiveShape(aPolygonShape);

to the sample function in Listing 4-6 creates the polygon shown in Figure 4-31.

Figure 4-31 A polygon shape with style information incorporated into its geometry

C H A P T E R 4

Geometric Operations

4-40 Using Geometric Operations

As shown in Figure 4-31, the GXPrimitiveShape function has incorporated the pen

width into the geometry of the polygon; the resulting polygon has two contours whereas

the original had one, and the resulting polygon has a winding fill instead of a

closed-frame fill.

Notice that the primitive form of this polygon is not simplified because the

GXPrimitiveShape function does not simplify its result. You can simplify the result of

this function by calling

GXSimplifyShape(aPolygonShape);

Figure 4-32 shows the resulting shape—the primitive form of the polygon with no

crossed or overlapping contours.

Figure 4-32 The primitive form of the polygon shape after simplification

The polygon shape now has three contours—which do not cross or overlap—and yet it

appears the same as the original polygon shape when drawn.

For a discussion of style modifications and more examples of the GXPrimitiveShape

function, see Chapter 3, “Geometric Styles,” in this book.

For more information about the GXPrimitiveShape function, see page 4-79.

C H A P T E R 4

Geometric Operations

Using Geometric Operations 4-41

Finding Geometric Information About a Shape
QuickDraw GX provides a number of functions that allow you to determine geometric

information about a shape, such as the length of a contour or the area covered by a shape.

The sample function in Listing 4-7 creates a path shape with two concentric contours, the

outer contour having a clockwise contour direction and the inner contour having a

counterclockwise contour direction. This path shape is used in subsequent sections to

illustrate the geometric information functions.

Listing 4-7 Creating a path shape with two contours having opposite contour directions

void CreateConcentricCircles(void)

{

gxShape aPathShape;

static long twoCircleGeometry[] = {2, /* number of contours */

 4, /* number of points */

 0xF0000000, /* 1111 ... */

 ff(50), ff(50), /* off */

 ff(150), ff(50), /* off */

 ff(150), ff(150), /* off */

 ff(50), ff(150), /* off */

 4, /* number of points */

 0xF0000000, /* 1111 ... */

 ff(65), ff(135), /* off */

 ff(135), ff(135), /* off */

 ff(135), ff(65), /* off */

 ff(65), ff(65)}; /* off */

aPathShape = GXNewPaths((gxPaths *) twoCircleGeometry);

GXDrawShape(aPathShape);

GXDisposeShape(aPathShape);

}

C H A P T E R 4

Geometric Operations

4-42 Using Geometric Operations

The resulting shape geometry is shown in Figure 4-33.

Figure 4-33 A path with an outer clockwise contour and an inner counterclockwise contour

Finding the Length of a Contour

QuickDraw GX provides the GXGetShapeLength function so you can measure the

length of a contour. This function takes three parameters: a reference to the shape

containing the contour you want to measure, an index indicating which contour you

want to measure, and a pointer to a variable of type gxWide to store the result.

For example, if you add the declaration

gxWide length;

and the function call

GXGetShapeLength(aPathShape, 1, &length);

to the sample function in Listing 4-7, the value returned in the length parameter is

approximately 322.543, which is the length (the circumference) of the outer contour.

For more information about the GXGetShapeLength function, see page 4-83.

Finding the Point at a Certain Distance Along a Contour

QuickDraw GX provides the GXShapeLengthToPoint function that allows you to

calculate the position of the point that falls at a specified distance along a contour. This

function also calculates the tangent of the contour at that point.

C H A P T E R 4

Geometric Operations

Using Geometric Operations 4-43

As an example, adding the function call

GXShapeLengthToPoint(aPathShape, 1, ff(120),

 &thePoint, &theDirection);

to the sample function in Listing 4-7 determines the point that falls along the first

contour at a distance of 120.0 points from the start of the contour, and stores the resulting

point in the thePoint parameter. Also, in the theDirection parameter, this function

stores a tangent vector indicating the direction of the contour at that point.

The result of this function is shown in Figure 4-34.

Figure 4-34 Finding a specified point on a path contour

For more information about the GXShapeLengthToPoint function, see page 4-85.

Finding the Bounding Rectangle and Center Point of a Shape

QuickDraw GX provides functions for finding the bounding rectangle of a shape and the

center point of a shape. The bounding rectangle is the smallest rectangle that contains

the shape. The center point of a shape is not the center of the shape’s bounding rectangle;

rather it is the “center of gravity” of a shape. QuickDraw GX guarantees that the center

point of a shape remains the same even if the shape is rotated.

You can use the GXGetShapeBounds function to find the bounding rectangle of a shape.

As an example, if you apply the function

GXGetShapeBounds(aPathShape, 0, &theBounds);

to the path shape from Listing 4-7, the result is a rectangle with the coordinates (50.0,

50.0, 150.0, 150.0). Similarly, if you apply the function

GXGetShapeCenter(aPathShape, 0, &thePoint);

to the same path shape, the result is the point: (100.0, 100.0).

C H A P T E R 4

Geometric Operations

4-44 Using Geometric Operations

The results of these functions are depicted in Figure 4-35.

Figure 4-35 Finding the bounding rectangle and the center point of a path

If you move the inner contour of the path shape to right, the center point moves to the

right as well, effectively moving with the combined “center of gravity” of the two

contours, as shown in Figure 4-36.

Figure 4-36 Finding the center point of two contours

Notice that the center point lies somewhere between the center of the outer contour and

the center of the inner contour.

For more information about the GXGetShapeBounds function, see page 4-90. For more

information about the GXGetShapeCenter function, see page 4-87.

C H A P T E R 4

Geometric Operations

Using Geometric Operations 4-45

Finding the Area of a Shape

QuickDraw GX provides the GXGetShapeArea function so you can determine the area

covered by a shape.

With the path shape from Listing 4-7 (on page 4-41), applying the function

GXGetShapeArea(aPathShape, 1, &theArea);

results in the value 4250.0. This value represents the area of the outer contour minus the

area of the inner contour, as shown in Figure 4-37.

Figure 4-37 Finding the area of a path, two contours with same contour direction

In effect, the function finds the area covered by the shape as if it were filled with the

winding shape fill.

Therefore, if you reverse the direction of the inner contour of this path with the function

call

GXReverseShape(aPathShape, 2);

then the function call

GXGetShapeArea(aPathShape, 1, &theArea);

results in the value 12416.6666. This value represents the area of the outer contour plus
the area of the inner contour—the area covered by the inner contour is counted twice.

C H A P T E R 4

Geometric Operations

4-46 Using Geometric Operations

The area included in this calculation is depicted in Figure 4-38.

Figure 4-38 Finding the area of a path, two contours with opposite contour direction

Note that the GXGetShapeArea function does not consider the shape fill when

calculating area—it includes this overlapping area twice whether the shape fill is

winding fill, even-odd fill, open-frame fill, or closed-frame fill.

You can correct this calculation by calling the GXSimplifyShape function first. For

example, if you set the shape fill to winding fill with the function call

GXSetShapeFill(aPathShape, gxWindingFill);

and then call the GXSimplifyShape function:

GXSimplifyShape(aPathShape);

the GXSimplifyShape function removes the inner contour, as shown in Figure 4-39.

Figure 4-39 Finding the area of a simplified path

C H A P T E R 4

Geometric Operations

Using Geometric Operations 4-47

Once this inner contour is removed, you can call the GXGetShapeArea function, and

the area of the original outer contour (8333.3333) is returned.

For more information about the GXGetShapeArea function, see page 4-88.

Setting a Shape’s Bounding Rectangle
The GXGetShapeBounds function, illustrated on page 4-44, allows you to determine the

bounding rectangle of a shape. Similarly, the GXSetShapeBounds function allows you

to alter the bounding rectangle of a shape, thereby scaling the shape to a new size and

moving it to a new location.

As an example, the sample function in Listing 4-8 creates a path with a single circular

contour.

Listing 4-8 Creating a circular path

void CreateCircularPath(void)

{

gxShape aPathShape;

static long circularGeometry[] = {1, /* # of contours */

 4, /* # of points */

 0xF0000000, /* 1111 ... */

 ff(50), ff(50), /* off */

 ff(150), ff(50), /* off */

 ff(150), ff(150), /* off */

 ff(50), ff(150)}; /* off */

aPathShape = GXNewPaths((gxPaths *) circularGeometry);

GXDrawShape(aPathShape);

GXDisposeShape(aPathShape);

}

C H A P T E R 4

Geometric Operations

4-48 Using Geometric Operations

The result of this function is shown in Figure 4-40.

Figure 4-40 A circular path

The bounding rectangle of this shape, which you can determine by calling

GXGetShapeBounds(aPathShape, 0, &theBounds);

is (50.0, 50.0, 150.0, 150.0). You can move and resize this shape by declaring a new

bounding rectangle

gxRectangle newBounds = {ff(60), ff(60), ff(110), ff(110)};

and then calling the function

GXSetShapeBounds(aPathShape, &newBounds);

The geometry of the altered shape is centered around the point (85.0, 85.0) and is smaller

than the original shape, as showin in Figure 4-41.

Figure 4-41 A circular path after bounding rectangle changed

C H A P T E R 4

Geometric Operations

Using Geometric Operations 4-49

In this example, the GXSetShapeBounds function actually alters the geometry of the

original shape. If you call

GXGetShapeArea(aPathShape, 0, &theArea);

the area returned in the theArea parameter reflects the area of the new, smaller,

geometry.

However, if you set the gxMapTransformShape shape attribute of the path shape

before setting the shape bounds, QuickDraw GX moves and resizes the shape by

changing the information in the shape’s transform—not by changing the geometric

points of the shape’s geometry. In this case, calling the GXGetShapeArea function,

which examines only a shape’s geometry and ignore its transform mapping, results

in the area of the original geometry. The result of declaring a new bounding rectangle

and then calling

GXSetShapeAttributes(aPathShape,

GXGetShapeAttributes(aPathShape) |

 gxMapTransformShape);

GXSetShapeBounds(aPathShape, &newBounds);

GXGetShapeArea(aPathShape, 0, &theArea);

is shown in Figure 4-42.

Figure 4-42 A path shape with a transform mapping

For more information about the GXSetShapeBounds function, see page 4-92. For more

information about the GXGetShapeBounds function, see page 4-90.

For more information about the gxMapTransformShape shape attribute, see the

chapter “Shape Objects” and the chapter “Transform Objects” of Inside Macintosh:
QuickDraw GX Objects.

C H A P T E R 4

Geometric Operations

4-50 Using Geometric Operations

Insetting Shapes
Whereas the GXSetShapeBounds function, illustrated in the previous section, provides

a way to scale a shape, the GXInsetShape function provides a way to resize a shape

relative to its original contours.

The sample function in Listing 4-9 creates a curve shape to use as an example.

Listing 4-9 Creating a tight curve shape

void CreateATightCurve(void)

{

gxShape curveShape;

const gxCurve tightCurveGeometry = {ff(90), ff(200),

 ff(110), ff(0),

 ff(120), ff(200)};

curveShape = GXNewCurve(&tightCurveGeometry);

GXSetShapeFill(curveShape, gxOpenFrameFill);

GXDrawShape(curveShape);

GXDisposeShape(curveShape);

}

C H A P T E R 4

Geometric Operations

Using Geometric Operations 4-51

The result of this function is shown in Figure 4-43.

Figure 4-43 A tight curve

If you apply

GXInsetShape(curveShape, ff(10));

to this curve, the function insets the curve a distance of 10.0 points from the original

geometry, as shown in Figure 4-44. The resulting shape is a path shape with 16 geometric

points.

Figure 4-44 An inset curve shape

C H A P T E R 4

Geometric Operations

4-52 Using Geometric Operations

You can use a shape’s curve error to control the number of geometric points in the shape

resulting from the inset operation. The result of the GXInsetShape function has no two

consecutive points closer than the distance indicated by the shape’s curve error.

The GXInsetShape function considers the contour direction when calculating an inset

contour. For example, if you use

GXReverseShape(curveShape, 1);

to reverse the direction of the curve from Listing 4-9 before you inset the curve, the

resulting path shape is actually outset from the original curve, as shown in Figure 4-45.

Figure 4-45 An outset curve

The contours created by the GXInsetShape function lie to the right of the original

contours if you specify a positive distance and to the left of the original contours if you

specify a negative distance. You can alter this behavior by setting the auto-inset style

attribute, as described in Chapter 3, “Geometric Styles,” in this book.

For more information about the GXInsetShape function, see page 4-94.

C H A P T E R 4

Geometric Operations

Using Geometric Operations 4-53

Determining Whether Two Shapes Touch
QuickDraw GX provides three functions to help you determine whether the areas of two

shapes touch—that is, whether they intersect, even at a single point.

■ The GXTouchesRectanglePoint function determines whether a point lies within
the boundaries of a rectangle.

■ The GXTouchesBoundsShape function determines whether the area covered by a
shape touches the area covered a rectangle.

■ The GXTouchesShape function determines whether one shape touches another shape

This section shows examples of using the GXTouchesShape function. The sample

function in Listing 4-10 defines a rectangle and a circular path shape to use for these

examples.

Listing 4-10 Creating a rectangle and a circular path shape

void CreateBoxedCircle(void)

{

gxShape aLargeCircle;

static gxRectangle largeBounds = {ff(50), ff(50),

 ff(150), ff(150)};

static long largeCircleGeometry[] = {1,/* number of contours */

 4,/* number of points */

 0xF0000000, /* 1111 ... */

 ff(50), ff(50), /* off */

 ff(150), ff(50), /* off */

 ff(150), ff(150),/* off */

 ff(50), ff(150)};/* off */

aLargeCircle = GXNewPaths((gxPaths *) largeCircleGeometry);

GXSetShapeFill(aLargeCircle, gxClosedFrameFill);

GXDrawRectangle(&largeBounds, gxClosedFrameFill);

GXDrawShape(aLargeCircle);

GXDisposeShape(aLargeCircle);

}

C H A P T E R 4

Geometric Operations

4-54 Using Geometric Operations

The result of this function is shown in Figure 4-46.

Figure 4-46 A rectangle containing a circular path

You can call the GXTouchesBoundsShape function to test whether the rectangle and

the path shape defined in Listing 4-10 touch:

GXTouchesBoundsShape(&largeBounds, aLargeCircle)

This function call returns true; the area of the rectangle does intersect the area of the

path.

C H A P T E R 4

Geometric Operations

Using Geometric Operations 4-55

When calculating whether a rectangle and a shape intersect, the

GXTouchesBoundsShape function assumes that the rectangle has an even-odd shape

fill. The following code defines another, smaller, path shape to test for intersection with

the rectangle defined in Listing 4-10:

gxShape aSmallCircle;

static long smallCircleGeometry[] = {1, /* number of contours */

 4, /* number of points */

 0xF0000000,

 ff(65), ff(65), /* off */

 ff(135), ff(65), /* off */

 ff(135), ff(135),/* off */

 ff(65), ff(135)};/* off */

aSmallCircle = GXNewPaths((gxPaths *) smallCircleGeometry);

GXSetShapeFill(aSmallCircle, gxClosedFrameFill);

The call

GXTouchesBoundsShape(&largeBounds, aSmallCircle);

returns true because the smaller path shape touches the area contained by the rectangle,

as shown in Figure 4-47.

Figure 4-47 A rectangle that touches a circular path shape

C H A P T E R 4

Geometric Operations

4-56 Using Geometric Operations

The GXTouchesBoundsShape function returns true even if the rectangle and the path

shape share only an edge or even a single point. For example, if you move the small

circle to the right by a distance of 85.0 points by calling

GXMoveShape(aSmallCircle, ff(85), 0);

as depicted in Figure 4-48, then the call

GXTouchesBoundsShape(&largeBounds, aSmallCircle)

still returns true.

Figure 4-48 A rectangle and a circular path touching at a single point

The GXTouchesShape function works similarly to the GXTouchesBoundsShape

function, but it determines whether any two shapes intersect.

C H A P T E R 4

Geometric Operations

Using Geometric Operations 4-57

As an example, if you give the path shapes defined earlier in this section the even-odd

shape fill by calling

GXSetShapeFill(aLargeCircle, gxEvenOddFill);

GXSetShapeFill(aSmallCircle, gxEvenOddFill);

then the call

GXContainsShape(aLargeCircle, aSmallCircle)

returns true; the small path intersects the area contained in the large path, as shown in

Figure 4-49.

Figure 4-49 A large circular path shape touching a smaller circular path shape

For information about the GXTouchesRectanglePoint function, see page 4-96. For

more information about the GXTouchesBoundsShape function and the

GXTouchesShape function, see page 4-97 and page 4-98, respectively.

C H A P T E R 4

Geometric Operations

4-58 Using Geometric Operations

Determining Whether One Shape Contains Another
QuickDraw GX also provides three functions to help you determine whether one area

contains another:

■ The GXContainsRectangle function determines whether one rectangle contains
another.

■ The GXContainsBoundsShape function determines whether the area covered by a
rectangle contains the area covered by a shape.

■ The GXContainsShape function determines whether the area covered by one shape
contains the area covered by another shape.

The sample function in Listing 4-11 creates a small circular path and a larger,

donut-shaped path to test for containment.

Listing 4-11 Creating a path shape with two contours and a smaller concentric rectangle shape

void CreateMultiplePaths(void)

{

gxShape twoCircleShape, smallSquareShape;

static rectangle smallSquareGeometry[] = {ff(90), ff(90),

ff(110), ff(110)};

static long twoCircleGeometry[] = {2, /* # of contours */

 4, /* # of points */

 0xF0000000, /* 1111 ... */

 ff(50), ff(50),

 ff(150), ff(50),

 ff(150), ff(150),

 ff(50), ff(150),

 4, /* # of points */

 0xF0000000, /* 1111 ... */

 ff(65), ff(65),

 ff(65), ff(135) ,

 ff(135), ff(135),

 ff(135), ff(65)};

twoCircleShape = GXNewPaths((gxPaths *) twoCircleGeometry);

GXSetShapeFill(twoCircleShape, gxEvenOddFill);

C H A P T E R 4

Geometric Operations

Using Geometric Operations 4-59

smallSquareShape = GXNewRectangle(&smallSquareGeometry);

GXSetShapeFill(smallSquareShape, gxEvenOddFill);

GXDrawShape(twoCircleShape);

GXDisposeShape(twoCircleShape);

GXDrawShape(smallSquareShape);

GXDisposeShape(smallSquareShape);

}

The results of this sample function are shown in Figure 4-50.

Figure 4-50 A path shape with two contours and a smaller concentric rectangle shape

Since the GXContainsShape function considers shape fill when calculating whether

one shape contains another, the following function call:

GXContainsShape(twoCircleShape, smallerCircleShape);

returns false; the area covered by the larger path does not contain the area covered by

the smaller path.

For more information about the GXContainsShape function, see page 4-103.

The functions GXContainsRectangle and GXContainsBoundsShape work similarly

to the GXContainsShape function, except the input parameters to these functions are

rectangle geometries, rather than shapes. The GXContainsRectangle function

compares two rectangle geometries and the GXContainsBoundsShape compares a

rectangle geometry to a shape.

For more information about the GXContainsRectangle function and the

GXContainsBoundsShape function, see page 4-100 and page 4-101, respectively.

C H A P T E R 4

Geometric Operations

4-60 Using Geometric Operations

Performing Geometric Arithmetic With Shapes
QuickDraw GX provides six arithmetic operations you can apply to geometric shapes:

union, intersection, difference, reverse difference, exclusion, and inversion.

To illustrate these operations, the sample function in Listing 4-12 creates two shapes: a

diamond-shaped polygon and a circular path.

Listing 4-12 Creating a diamond-shaped polygon and a circular path that intersect

void CreateDiamondAndCircle(void)

{

gxShape diamondShape, circleShape;

static long circleGeometry[] = {1, /* number of contours */

 4, /* number of points */

 0xF0000000, /* 1111 ... */

 ff(100), ff(100), /* off */

 ff(200), ff(100), /* off */

 ff(200), ff(200), /* off */

 ff(100), ff(200)}; /* off */

static long diamondGeometry[] = {1, /* number of contours */

 4, /* number of points */

 ff(50), ff(150),

 ff(100), ff(100),

 ff(150), ff(150),

 ff(100), ff(200)};

diamondShape = GXNewPolygons((gxPolygons *) diamondGeometry);

circleShape = GXNewPaths((gxPaths *) circleGeometry);

GXDrawShape(diamondShape);

GXDisposeShape(diamondShape);

GXDrawShape(circleShape);

GXDisposeShape(circleShape);

}

C H A P T E R 4

Geometric Operations

Using Geometric Operations 4-61

The resulting shapes are shown in Figure 4-51.

Figure 4-51 A diamond-shaped polygon geometry and a circular path geometry

The GXIntersectShape function finds the area common to two shapes. This function

takes two parameters—the shapes to intersect—and stores the result in the first

parameter.

If you apply the GXIntersectShape function to the diamond-shaped polygon and the

circular path from Listing 4-12 by calling

GXIntersectShape(diamondShape, circleShape);

GXDrawShape(diamondShape);

you get the resulting shape shown in Figure 4-52.

Figure 4-52 The intersection of a diamond-shaped polygon and a circular path

C H A P T E R 4

Geometric Operations

4-62 Using Geometric Operations

Implementation Note

Due to a implementation limit with QuickDraw GX version 1.0, you can
find the intersection of two framed shapes only if the shapes are points,
lines, or curves. You can, however, find the intersection of a framed
shape and a filled shape; the intersection is the part of the framed shape
contained in the filled shape. In this case, the target shape must be the
framed shape and the operand shape must be the filled shape. ◆

You can find the intersection of two rectangle geometries—without having to

encapsulate those geometries into shapes—using the GXIntersectRectangle

function, which is described on page 4-105. Similarly, you can find the union of two

rectangle geometries (which is the considered to be the smallest rectangle that contains

them both) using the GXUnionRectangle function, which is described on page 4-106.

The GXUnionShape function combines the areas covered by two shapes. This function

also takes two parameters—the shapes to combine—and stores the result in the first

parameter.

If you apply the GXUnionShape function to the diamond-shaped polygon and the

circular path from Listing 4-12 by calling

GXUnionShape(diamondShape, circleShape);

GXDrawShape(diamondShape);

you get the resulting shape shown in Figure 4-53.

Figure 4-53 The union of a diamond-shaped polygon and a circular path

Although you cannot find the union of a framed shape and a solid shape, you can find

the union of two framed shapes. If the diamond-shaped polygon and the circular path

from Listing 4-12 had closed-frame fills, the resulting union would appear as shown in

Figure 4-54.

C H A P T E R 4

Geometric Operations

Using Geometric Operations 4-63

Figure 4-54 The union of a framed diamond-shaped polygon and a circular path

The GXDifferenceShape function subtracts the area of one shape from the area of

another. This function takes two parameters—the shape to subtract from and the shape

to subtract—and stores the result in the first parameter.

If you apply the GXDifferenceShape function to the diamond-shaped polygon and

the circular path from Listing 4-12 by calling

GXDifferenceShape(diamondShape, circleShape);

GXDrawShape(diamondShape);

you get the resulting shape shown in Figure 4-55.

Figure 4-55 The result of subtracting a circular path from a diamond-shaped polygon

C H A P T E R 4

Geometric Operations

4-64 Using Geometric Operations

The GXReverseDifferenceShape function is similar to the GXDifferenceShape

function, except the GXReverseDifferenceShape function subtracts the first

parameter from the second parameter. Like GXDifferenceShape, it also stores the

result in the first parameter.

If you apply the GXReverseDifferenceShape function to the diamond-shaped

polygon and the circular path from Listing 4-12 by calling

GXReverseDifferenceShape(diamondShape, circleShape);

GXDrawShape(diamondShape);

you get the resulting shape shown in Figure 4-56.

Figure 4-56 The result of subtracting a diamond-shaped polygon from a circular path

The GXExcludeShape function performs the exclusive-OR operation on the areas of

two shapes—that is, it finds the area that is covered by one shape or the other, but not by

both shapes.

C H A P T E R 4

Geometric Operations

Using Geometric Operations 4-65

If you apply the GXExcludeShape function to the diamond-shaped polygon and the

circular path from Listing 4-12 by calling

GXExcludeShape(diamondShape, circleShape);

GXDrawShape(diamondShape);

you get the resulting shape shown in Figure 4-57.

Figure 4-57 The result of the exclusive-OR operation on a polygon and a path

Finally, QuickDraw GX provides the GXInvertShape function which inverts the area

covered by a shape—that is, the resulting shape covers all of the area not covered by the

original shape. This function takes one parameter—the shape to invert—and stores the

result in this parameter.

C H A P T E R 4

Geometric Operations

4-66 Using Geometric Operations

If you apply the GXInvertShape function to the diamond-shaped polygon from

Listing 4-12 by calling

GXInvertShape(diamondShape);

you get the resulting shape shown in Figure 4-58. Notice that this shape extends to the

full extent of its view port.

Figure 4-58 An inverted diamond

For more information about these arithmetic operations, see the function descriptions in

“Performing Geometric Arithmetic With Shapes” beginning on page 4-104.

C H A P T E R 4

Geometric Operations

Geometric Operations Reference 4-67

Geometric Operations Reference

QuickDraw GX allows you to determine geometric information about and perform

geometric manipulations on shapes. This section describes the data types and functions

that are related to these operations.

Constants and Data Types

This section describes the enumeration QuickDraw GX uses to specify information about

contour direction.

Contour Directions

QuickDraw GX assigns a contour direction to every contour in a shape: contours are

either clockwise or counterclockwise.

Contour directions are specified by the gxContourDirections enumeration, which is

defined as follows:

enum gxContourDirections {

gxCounterclockwiseDirection,

gxClockwiseDirection

};

typedef long gxContourDirection;

Constant descriptions

gxCounterclockwiseDirection
A counterclockwise contour direction.

gxClockwiseDirection
A clockwise contour direction.

For more information about the contours of the various geometric shapes, see Chapter 2,

“Geometric Shapes,” in this book.

For more information about contour direction, see “Contours and Contour Direction”

beginning on page 4-4.

For more information about how QuickDraw GX uses contour direction, see the

description of the GXReverseShape function on page 4-70.

C H A P T E R 4

Geometric Operations

4-68 Geometric Operations Reference

Functions

QuickDraw GX provides functions you can call to perform geometric operations on

geometric shapes and their geometries. This section includes descriptions of the

functions that allow you to

■ determine and alter the contour direction of a shape’s contours

■ reduce and simplify a shape’s geometry

■ incorporate style information into a shape’s geometry

■ obtain geometric information about a shape’s geometry

■ determine and alter the bounding rectangle of a shape

■ inset a shape’s geometry

■ perform geometric arithmetic on shapes

Determining and Reversing Contour Direction

The contours of geometric shapes have a contour direction: clockwise or

contourclockwise. The following factors determine the contour direction of a contour:

■ the order and position of the geometric points that make up the contour

■ the contour’s relative position to other contours in the shape if the shape has multiple
contours

For a discussion of geometric points, see Chapter 2, “Geometric Shapes,” in this book.

The GXGetShapeDirection function allows you to determine the contour direction of

a specified contour of a shape.

The GXReverseShape function allows you to reverse the order of the geometric points

that define a contour and therefore reverse the contour’s direction.

GXGetShapeDirection

You can use the GXGetShapeDirection function to determine whether a contour has a

clockwise or counterclockwise direction.

gxContourDirection GXGetShapeDirection(gxShape source,

long contour);

source A reference to the shape containing the contour.

contour The contour index of the contour whose direction you want to determine.

C H A P T E R 4

Geometric Operations

Geometric Operations Reference 4-69

function result The direction of the contour, either gxClockwiseDirection or
gxCounterclockwiseDirection.

DESCRIPTION

The GXGetShapeDirection function indicates whether QuickDraw GX considers the

contour indicated by the contour parameter of the shape indicated by the source

parameter to be clockwise or counterclockwise. You can use this information to

determine how QuickDraw GX will draw a shape that has the gxInsideFrameStyle

or gxOutsideFrameStyle style attribute set, or how the GXInsetShape function

affects a shape.

For empty and full shapes, this function posts the error

graphic_type_does_not_have_multiple_contours.

For point shapes and line shapes, this function always returns

gxClockwiseDirection. Although the order of the geometric points in a line shape’s

geometry does not affect the result of this function, it may affect how QuickDraw GX

draws the line. For example, if the line is dashed, the order of the geometric points

determines the end of the line at which dashing begins. Also, if the line has a pen width

and the gxInsideFrameStyle or gxOutsideFrameStyle style attribute is set, the

order of the geometric points determines the side of the geometry on which

QuickDraw GX draws the line.

For rectangle shapes, the result of this function is determined by examining which

corners are specified by the geometric points. For a rectangle whose geometry includes

the upper-left point and the lower-right point, this function returns

gxClockwiseDirection, regardless of the order of the two points in the geometry. For

a rectangle whose geometry includes the upper-right point and the lower-left point, this

function returns gxCounterclockwiseDirection, again regardless of the order of

the two points.

For curve shapes, polygon shapes, and path shapes, reversing the order of any contour’s

geometric points reverses the result of this function.

If you provide a source shape that is not one of the geometric shape types, this function

performs the actions described in the following table:

Shape type Action taken

bitmap Posts the error
graphic_type_does_not_have_multiple_contours

picture Posts the error
graphic_type_does_not_have_multiple_contours

text Posts the error illegal_type_for_shape

glyph Posts the error illegal_type_for_shape

layout Posts the error illegal_type_for_shape

C H A P T E R 4

Geometric Operations

4-70 Geometric Operations Reference

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For examples using this function, see “Determining and Reversing Contour Direction”

beginning on page 4-23.

To reverse the order of geometric points in a shape’s geometry, use the

GXReverseShape function, described in the next section.

For a description of the GXInsetShape function, see page 4-94. For a description of the

gxInsideFrameStyle and gxOutsideFrameStyle style attributes, see Chapter 3,

“Geometric Styles,” in this book.

GXReverseShape

You can use the GXReverseShape function to reverse the order of the geometric points

in a shape’s contour.

void GXReverseShape(gxShape target, long contour);

target A reference to the shape containing the contour.

contour The number of the contour you want to reverse. You may specify a value
of 0 for this parameter to indicate all contours.

DESCRIPTION

The GXReverseShape function reverses the order of the geometric points of the contour

specified by the contour parameter in the shape specified by the target parameter.

If you specify a value of 0 for the contour parameter, this function reverses the order of

the geometric points in each contour of the target shape, but does not affect the order

of the contours themselves. If the target shape is a rectangle shape, this function converts

it to a polygon shape before reversing the direction.

Errors
out_of_memory
shape_is_nil
contour_is_less_than_zero (debugging version)
illegal_type_for_shape (debugging version)
graphic_type_does_not_have_multiple_contours (debugging version)

Warnings
contour_out_of_range

C H A P T E R 4

Geometric Operations

Geometric Operations Reference 4-71

You can use this function to control how QuickDraw GX

■ draws shapes with a winding shape fill

■ draws shapes with the gxInsideFrameStyle or gxOutsideFrameStyle style
attribute set

■ places dashes on a dashed contour

■ insets shape geometries

If you provide a target shape that is not one of the geometric shape types, this function

performs the actions described in the following table:

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For examples using this function, see “Determining and Reversing Contour Direction”

beginning on page 4-23.

To determine the direction of a contour, use the GXGetShapeDirection function,

described on page 4-68.

For a discussion of geometric points, see the Chapter 2, “Geometric Shapes.”

For a discussion of contour direction, see “Contours and Contour Direction” beginning

on page 4-4.

For a discussion of dashes and the gxInsideFrameStyle or gxOutsideFrameStyle

style attributes, see the Chapter 3, “Geometric Styles,” in this book.

For a description of the GXInsetShape function, see page 4-94.

Shape type Action taken

bitmap Posts the error illegal_type_for_shape

picture Posts the error illegal_type_for_shape

text Posts the error illegal_type_for_shape

glyph Posts the error illegal_type_for_shape

layout Posts the error illegal_type_for_shape

Errors
out_of_memory
shape_is_nil
contour_is_less_than_zero (debugging version)
illegal_type_for_shape (debugging version)

Warnings
contour_out_of_range
shape_access_not_allowed

C H A P T E R 4

Geometric Operations

4-72 Geometric Operations Reference

Breaking Shape Contours

Each contour of a polygon or path shape can be made up of many parts: each polygon

contour can contain many lines and each path contour can contain many lines and

curves.

The GXBreakShape function allows you to specify a geometric point at which to break a

single contour into two contours.

GXBreakShape

You can use the GXBreakShape function to break a single contour into two contours.

void GXBreakShape(gxShape target, long index);

target A reference to the shape containing the contour to break.

index The geometry index of the point at which to break the contour.

DESCRIPTION

The GXBreakShape function breaks an existing contour into two contours at a specified

geometric point.

This function can convert the shape type of the target shape. For example, you can break

line shapes at their first point by specifying a geometry index of 1 for the index

parameter. The result is a polygon shape with two contours: the first contour is empty

and the second contour is the original line. If you specify a value of 2 for the index

parameter, this function posts the notice shape_already_broken, and the original

line is unaffected.

Similarly, you can break curve shapes at their first point; the result is a path shape with

two contours. You can also break curve shapes at the off-curve control point by

specifying a value of 2 for the index parameter. The resulting path shape has two

contours: the first contour ends at the off-curve control point, and the second contour

begins at the off-curve control point. You must add on-curve geometric points at the end

of the first contour and the beginning of the second contour before drawing this path

shape.

The function affects polygon and path shapes in the following ways:

■ If the geometry index you specify corresponds to the first point of a contour, this
function inserts an empty contour into the shape before the specified point.

■ If the geometry index you specify corresponds to the last point of a contour, this
function posts a shape_already_broken notice, and the original shape is
unaffected.

■ If the geometric index you specify corresponds to a point between the first and last
points of a contour, this function breaks the existing contour into two contours. The
specified point becomes the first point of the new second contour.

C H A P T E R 4

Geometric Operations

Geometric Operations Reference 4-73

For empty, full, and point shapes, this function posts the error

graphic_type_does_not_contain_points. For rectangle shapes, this function

posts a rectangles_cannot_be_inserted_into notice.

If you provide a target shape that is not one of the geometric shape types, this function

performs the actions described in the following table:

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example using this function, see “Breaking Shape Contours” beginning on

page 4-28.

For a discussion of geometric points, see Chapter 2, “Geometric Shapes,” in this

book. For other methods of breaking contours, see the shape-editing functions also

described in that chapter.

To learn how this function works for the typographic shapes, see Inside Macintosh:
QuickDraw GX Typography.

Shape type Action taken

bitmap Posts the error graphic_type_does_not_contain_points

picture Posts the error graphic_type_does_not_contain_points

text Posts the error illegal_type_for_shape

glyph Posts the error illegal_type_for_shape

layout Posts the error illegal_type_for_shape

Errors
out_of_memory
shape_is_nil
index_is_less_than_one (debugging version)
shape_access_not_allowed (debugging version)
rectangles_cannot_be_inserted_into (debugging version)
graphic_type_does_not_contain_points (debugging version)
illegal_type_for_shape (debugging version)

Warnings
shape_access_not_allowed
index_out_of_range
contour_out_of_range

Notices (debugging version)
shape_already_broken

C H A P T E R 4

Geometric Operations

4-74 Geometric Operations Reference

Reducing and Simplifying Shapes

The geometries of QuickDraw GX shapes can contain many unnecessary or complicating

elements:

■ duplicate geometric points

■ unnecessary colinear geometric points

■ crossed contours

■ overlapping contours

■ unnecessary contour breaks

■ a more complex shape type than necessary

The GXReduceShape function eliminates unnecessary geometric points.

The GXSimplifyShape function eliminates crossed contours, overlapping contours,

unnecessary contour breaks, and also sets a shape’s shape type to the simplest type

necessary to describe the shape’s geometry.

GXReduceShape

You can use the GXReduceShape function to remove unnecessary geometric points

from a polygon or path contour.

void GXReduceShape(gxShape target, long contour);

target A reference to the polygon or path shape containing the contour whose
unnecessary geometric points you want to eliminate.

contour The index of the contour you want to reduce. You may specify a value
of 0 for this parameter to indicate all contours.

DESCRIPTION

The GXReduceShape function removes unnecessary geometric points from the contour

indicated by the contour parameter of the shape indicated by the target parameter.

The geometric points removed by this function include both duplicate and colinear

geometric points. Duplicate geometric points are sequential geometric points in the same

contour with the same (x, y) coordinate pair. Colinear geometric points are

sequential geometric points that fall on the same line as the preceding and the

subsequent geometric point. Although this function may affect the geometry of a shape,

the resulting shape appears the same as the original shape when drawn, unless the curve

error of the target shape is nonzero.

C H A P T E R 4

Geometric Operations

Geometric Operations Reference 4-75

Note
Under certain circumstances, the GXReduceShape function actually
increases the number of geometric points used to define a shape. For
path shapes, the number of geometric points in the resulting shape can
be up to one third more than the number of points in the original shape.
Even in this case, the resulting shape appears the same as the original
shape when drawn. ◆

The GXReduceShape function does consider the curve error of the target shape when

selecting which geometric points to remove. If the distance between a point and a

neighboring point is less than that indicated by the curve error, the GXReduceShape

function considers them to be duplicate points. If you specify a target shape with a

nonzero curve error, the resulting shape may draw differently than the original shape—

the greater the curve error, the more drastic the difference may be. For shapes with many

points within a distance of less than that indicated by the curve error, the resulting shape

can sometimes degenerate to a surprising result.

The shape fill of the target shape can also affect the results of this function. For example,

if the first point and the last point of a contour are the same geometric point, this

function removes the last point if the target shape has a closed-frame fill or any of the

solid fills. However, if the target shape has an open-frame fill, this function does not

remove the last point.

Similarly, if one or more of the points at the end of a contour is colinear with one or more

points at the beginning of that contour, this function considers them all to lie on the same

line if the target shape has a closed-frame fill or any of the solid fills and the unnecessary

points are removed—even the first and last point of the original contour can be removed.

However, if the target shape has an open-frame fill, the first and the last points of a

contour are never removed.

This function operates only within individual contours; it never combines contours or

compares points from different contours. Also, this function does not convert between

shape types. The resulting shape always has the same shape type as the original shape.

If you specify a source shape that is not a polygon or a path shape, this function posts

the error graphic_type_cannot_be_reduced.

If you provide a target shape that is not one of the geometric shape types, this function

performs the actions described in the following table:

Shape type Action taken

bitmap Posts the error graphic_type_cannot_be_reduced

picture Posts the error graphic_type_cannot_be_reduced

text Posts the error graphic_type_cannot_be_reduced

glyph Posts the error graphic_type_cannot_be_reduced

layout Posts the error graphic_type_cannot_be_reduced

C H A P T E R 4

Geometric Operations

4-76 Geometric Operations Reference

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For examples using this function, see “Eliminating Unnecessary Geometric Points”

beginning on page 4-30.

For more information about reduced and simplified shapes, see “Reducing and

Simplifying Shape Geometries” beginning on page 4-9.

For a discussion of geometric points and contours, see Chapter 2, “Geometric Shapes,” in

this book.

GXSimplifyShape

You can use the GXSimplifyShape function to eliminate from a shape any unnecessary

contour breaks, contour crossings, and internal contour loops.

void GXSimplifyShape(gxShape target);

target A reference to the shape you want to simplify.

Errors
out_of_memory
shape_is_nil
size_of_path_exceeds_implementation_limit
number_of_points_exceeds_implementation_limit
graphic_type_cannot_be_reduced (debugging version)

Warnings
unable_to_traverse_open_contour_that_starts_or_ends_off_the_curve

(debugging version)
contour_out_of_range
shape_access_not_allowed

C H A P T E R 4

Geometric Operations

Geometric Operations Reference 4-77

DESCRIPTION

The GXSimplifyShape function performs operations on the geometry of the shape

specified by the target parameter and simplifies the description of the shape,

sometimes changing the shape type, without affecting how the shape is drawn.

Most importantly, the resulting shape has no crossed contours. The GXSimplifyShape

function adds geometric points and changes contour directions to redefine the shape’s

geometry so that no contour crosses over itself or any other contour.

This function also removes unnecessary contour breaks. If the last point of one contour is

identical to the first point of the next contour, this function combines the two contours

into a single contour.

Note

Under certain circumstances, the GXSimplifyShape function actually
increases the number of geometric points and the number of contours
used to defined a shape. However, the simplified shape still appears the
same as the original shape when drawn. ◆

If the geometry of the original shape can be expressed as a geometry of a simpler shape

type, this function converts the shape to the simpler type. For example, if the shape

referenced by the target parameter is a polygon, but the geometry of that polygon

defines a simple square, the GXSimplifyShape function converts the shape to a

rectangle type and redefines the geometry as appropriate. As another example, a path

shape with no curved contours is converted to a polygon shape type.

The shape fill of the target shape also affects the simplifications. For example, if the

target shape has two circular, concentric contours (an inner contour and an outer

contour) and both contours have the same contour direction, the following occurs:

■ If the shape has a winding shape fill, the inner contour does not affect how the shape
is drawn. In this case, the GXSimplifyShape function removes the inner contour.

■ If the shape has an even-odd shape fill, the inner contour does affect how the shape is
drawn. In this case, the GXSimplifyShape function maintains the inner contour, but
it reverses the direction of that contour.

As a result of these simplifications, changing the shape fill of a simplified shape from

winding fill to even-odd fill or from even-odd fill to winding fill does not affect the

appearance of the shape when drawn.

C H A P T E R 4

Geometric Operations

4-78 Geometric Operations Reference

If you provide a target shape that is not one of the geometric shape types, this function

performs the actions described in the following table:

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For examples using this function, see “Simplifying Shapes” beginning on page 4-33.

For more information about simplified shapes, see “Reducing and Simplifying Shape

Geometries” beginning on page 4-9.

For a discussion of geometric points and contours, see Chapter 2, “Geometric Shapes,” in

this book.

To remove unnecessary geometric points but not perform other simplifications, use the

GXReduceShape function, described on page 4-74.

Shape type Action taken

bitmap Chooses smaller color set if possible, if the pixel size is 1, 2, 4, or 8; posts
the notice shape_already_in_simple_form if the pixel size is 16 or
32; converts to a rectangle shape if every pixel in the bitmap has the
same color

picture Posts the notice shape_already_in_simple_form

text Simplifies to the empty shape if appropriate; posts the notice
shape_already_in_simple_form otherwise

glyph Simplifies to the empty shape, a text shape, or a simpler glyph shape as
appropriate; posts the notice shape_already_in_simple_form if no
simplification possible

layout Simplifies to the empty shape if appropriate; posts the notice
shape_already_in_simple_form otherwise

Errors
out_of_memory
shape_is_nil
number_of_contours_exceeds_implementation_limit
number_of_points_exceeds_implementation_limit
size_of_path_exceeds_implementation_limit
size_of_polygon_exceeds_implementation_limit
shape_access_not_allowed
functionality_unimplemented (debugging version)

Warnings
unable_to_traverse_open_contour_that_starts_or_ends_off_the_curve

(debugging version)

Notices (debugging version)
shape_already_in_simple_form

C H A P T E R 4

Geometric Operations

Geometric Operations Reference 4-79

Incorporating Style Information Into Shape Geometries

QuickDraw GX requires that shapes used for certain purposes (caps, joins, dashes,

patterns, and clips) be in primitive form—that is, their style modifications must be

incorporated into their geometries. For example, the GXSetShapeDash function

requires that the shape used for dashing be in primitive form; the GXSetShapeCap,

GXSetShapeJoin, and GXSetShapePattern functions are similar.

For more information about the primitive form of shapes and for examples of functions

that use shapes in their primitive form, see Chapter 3, “Geometric Styles,” in this book.

The GXPrimitiveShape function converts a shape to its primitive form, incorporating

the modifications made by the shape’s style into the shape’s geometry.

GXPrimitiveShape

You can use the GXPrimitiveShape function to convert a shape to its primitive form.

void GXPrimitiveShape(gxShape target);

target A reference to the shape to convert to primitive form.

DESCRIPTION

The GXPrimitiveShape function converts the shape referenced by the target

parameter to its primitive form—that is, it changes the geometry, shape fill, and shape

type of the target shape to incorporate the information from the original shape’s style

(including pen width, dashes, joins, and so on).

For example, a horizontal line shape with a greater-than-zero pen width becomes a filled

rectangle shape. A diagonal line shape with a greater-than-zero pen width becomes a

filled polygon shape. A curve shape with a greater-than-zero pen width becomes a filled

path shape. A framed shape dashed with rectangles becomes a polygon shape with

multiple contours—each contour representing one of the original dashes.

For the geometric shapes, the shape resulting from this function can be a hairline shape

or a solid-filled shape. In either case, the information from the style object is no longer

necessary because it has been incorporated into the shape object itself.

Implementation Note

In version 1.0 of QuickDraw GX, this function posts an error of
functionality_unimplemented for picture shapes. ◆

The result of the GXPrimitiveShape function is not simplified, nor are its unnecessary

geometric points removed. You may want to simplify or reduce the resulting shape by

calling the GXSimplifyShape function or the GXReduceShape function.

C H A P T E R 4

Geometric Operations

4-80 Geometric Operations Reference

The following table gives information about this function for each type of geometric

shape:

Shape type Action taken

empty If the shape fill is the noFill shape fill, this function posts the notice
shape_already_in_primitive_form. If the shape fill is either of
the inverse shape fills, this function returns a full shape (unless the
shape has a pattern, in which case the function returns the shape
described by the pattern).

full If the shape fill is the noFill shape fill or any of the inverse fills, this
function returns an empty shape. Otherwise, the function posts the
notice shape_already_in_primitive_form (unless the shape has
a pattern, in which case the function returns the shape described by the
pattern).

point If the shape fill is the noFill shape fill, this function returns an empty
shape. If the pen width is greater than zero and the shape has a start
cap, the function returns the start cap. If the pen width is zero or the
shape has no start cap, the function returns an empty shape.

If the shape has a pen width of zero, no start cap, and a solid pattern,
the function returns a point as indicated by the pattern. If the shape has
a framed pattern, the function posts the
clip_to_frame_shape_unimplemented error. Bitmap patterns are
ignored.

If one of the grid-constraining attributes is set, this function constrains
the point geometry to the grid.

line If the shape fill is the noFill shape fill, this function returns an empty
shape. If the pen width is greater than zero, the function returns a
polygon shape (or a path shape depending on the start and end caps).

If the pen width is zero and the shape has a solid pattern, the function
returns a point or a line as indicated by the pattern. If the shape has a
framed pattern, the function posts the
clip_to_frame_shape_unimplemented error. Bitmap patterns are
ignored.

If one of the grid-constraining attributes is set, this function constrains
the geometry to the grid.

C H A P T E R 4

Geometric Operations

Geometric Operations Reference 4-81

curve If the shape fill is the noFill shape fill, this function returns an
empty shape. If the pen width is greater than zero, the function returns
a path shape.

If the pen width is zero and the shape has a solid pattern, the function
returns a point, line, curve, or path line as indicated by the pattern. If
the shape has a framed pattern, the function posts the
clip_to_frame_shape_unimplemented error. Bitmap patterns are
ignored.

If one of the grid-constraining attributes is set, this function constrains
the geometry to the grid.

rectangle If the shape fill is the noFill shape fill, this function returns an empty
shape. If the shape fill is one of the framed fills and the pen width is
greater than zero, the function returns a polygon shape (or a path shape
depending on the join shape).

If the rectangle has a solid pattern, the function returns a point, line, or
polygon as indicated by the pattern. If the rectangle is framed, has a pen
width of zero, and has a framed pattern, the function posts the
clip_to_frame_shape_unimplemented error. Bitmap patterns are
ignored.

If one of the grid-constraining attributes is set, this function constrains
the geometry to the grid.

polygon If the shape fill is the noFill shape fill or the shape has no contours,
this function returns an empty shape. If the shape fill is one of the
framed fills and the pen width is greater than zero, the function returns
a polygon shape (or a path shape depending on the caps and join).

If the shape has a solid pattern, the function returns a point, line, or
polygon as indicated by the pattern. If the polygon is framed, has a pen
width of zero, and has a framed pattern, the function posts the
clip_to_frame_shape_unimplemented error. Bitmap patterns are
ignored.

If one of the grid-constraining attributes is set, this function constrains
the geometry to the grid.

path If the shape fill is the noFill shape fill or the shape has no contours,
this function returns an empty shape. If the shape fill is one of the
framed fills and the pen width is greater than zero, the function returns
a path shape.

If the shape has a solid pattern, the function returns a point, line, or
polygon as indicated by the pattern. If the path is framed, has a pen
width of zero, and shape has a framed pattern, the function posts the
clip_to_frame_shape_unimplemented error. Bitmap patterns are
ignored.

If one of the grid-constraining attributes is set, this function constrains
the geometry to the grid.

Shape type Action taken

C H A P T E R 4

Geometric Operations

4-82 Geometric Operations Reference

If you provide a target shape that is not one of the geometric shape types, this function

performs the actions described in the following table:

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For examples using this function, see “Converting a Shape to Primitive Form” beginning

on page 4-38.

For more information about the primitive form of shapes and for examples of functions

that use shapes in their primitive form, see Chapter 3, “Geometric Styles,” in this book.

To eliminate unnecessary geometric points, use the GXReduceShape function, described

on page 4-74. To simplify a shape’s contours, use the GXSimplifyShape function,

described on page 4-76.

Shape type Action taken

bitmap Constrains the bitmap position to an integer grid position if one of the
grid-constraining attributes is set

picture Posts the notice shape_already_in_primitive_form

text Converts to glyph shape; constrains the text position to an integer grid
position if one of the grid-constraining attributes is set; converts to an
empty shape if appropriate

glyph Constrains the glyph positions to integer grid positions if one of the
grid-constraining attributes is set; eliminates any nil styles and complex
styles; converts to an empty shape if appropriate

layout Converts to a glyph shape; converts to an empty shape if appropriate

Errors
out_of_memory
shape_is_nil
shape_access_not_allowed
functionality_unimplemented (debugging version)
clip_to_frame_shape_unimplemented (debugging version)

Warnings
unable_to_traverse_open_contour_that_starts_or_ends_off_the_curve

(debugging version)
face_override_style_font_must_match_style

Notices (debugging version)
shape_already_in_primitive_form

C H A P T E R 4

Geometric Operations

Geometric Operations Reference 4-83

Finding Geometric Information About Shapes

The functions described in this section calculate geometric information about a shape.

The GXGetShapeLength function calculates the length of a particular contour or of all

contours in a shape.

The GXShapeLengthToPoint function determines the point that falls at a specified

distance along a particular contour or along all combined contours of a shape.

The GXGetShapeCenter function determines the center point of a particular contour of

or all combined contours of a shape’s geometry.

The GXGetShapeArea function calculates the area covered by a particular contour or by

all combined contours of a shape’s geometry.

You can also use the GXGetShapeBounds function, described on page 4-90, to find

geometric information about a shape—in this case, the shape’s bounding rectangle.

GXGetShapeLength

You can use the GXGetShapeLength function to determine the length of a particular

contour or of all contours of a shape.

gxWide *GXGetShapeLength(gxShape source, long index,

 gxWide *length);

source A reference to the shape containing the contour.

index The index of the contour you want to measure. You may specify a value
of 0 for this parameter to measure all contours.

length A pointer to a gxWide value. On return, this value indicates the length of
the indicated contour.

function result The length of the indicated contour.

DESCRIPTION

The GXGetShapeLength function returns as the function result the length of the

perimeter of a particular contour of a shape. This function calculates the length of the

contour as defined in the shape’s geometry; it does not consider transformations to the

shape made by the shape’s transform.

C H A P T E R 4

Geometric Operations

4-84 Geometric Operations Reference

For empty and full shapes, this function posts the warning

shape_does_not_have_length. For point shapes, it returns zero. For solid polygon

and path shapes, this function calculates the length as if the shape had the closed-frame

shape fill.

If you provide a target shape that is not one of the geometric shape types, this function

performs the actions described in the following table:

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example using this function, see “Finding the Length of a Contour” beginning on

page 4-42.

For information about the contours of the various geometric shapes, see Chapter 2,

“Geometric Shapes,” in this book.

Shape type Action taken

bitmap Posts the warning shape_does_not_have_length

picture Returns the length of the specified picture item or the sum of the length
of all picture items

text Posts the warning shape_does_not_have_length

glyph Posts the warning shape_does_not_have_length

layout Posts the warning shape_does_not_have_length

Errors
out_of_memory
shape_is_nil
parameter_is_nil (debugging version)
contour_is_less_than_zero (debugging version)

Warnings
contour_out_of_range
shape_does_not_have_length (debugging version)
unable_to_traverse_open_contour_that_starts_or_ends_off_the_curve

(debugging version)

C H A P T E R 4

Geometric Operations

Geometric Operations Reference 4-85

GXShapeLengthToPoint

You can use the GXShapeLengthToPoint function to determine the point that falls at a

certain distance along a contour of a shape.

gxPoint *GXShapeLengthToPoint(gxShape target, long index,

 Fixed length, gxPoint *location,

 gxPoint *tangent);

target A reference to the shape containing the contour you want to examine.

index The number of the contour within the shape. You may specify a value of 0
for this parameter to indicate that the function should start measuring at
the beginning of the first contour and continue through all contours.

length The distance along the specified contour.

location A pointer to a gxPoint structure. On return, this structure contains the
point that lies along the contour at the specified distance.

tangent A pointer to a gxPoint structure. On return, this structure contains a
point that specifies a tangent vector representing the slope of the contour
at the specified distance.

function result The point that lies along the contour at the specified distance. (This value
is the same as the value returned in the location parameter.)

DESCRIPTION

The GXShapeLengthToPoint function returns the location of the point that lies at the

distance specified by the length parameter along the contour specified by the index

parameter of the target shape.

If you provide a pointer for the tangent parameter that is not nil, this function returns

the slope of the specified contour at that point, in the form of a tangent vector. (The

tangent vector implicitly starts at point (0.0, 0.0) and ends at the point indicated by the

returned tangent parameter.)

This function measures the contour length as defined in the shape’s geometry; it does

not consider transformations to the shape made by the shape’s transform.

C H A P T E R 4

Geometric Operations

4-86 Geometric Operations Reference

If the target shape has the noFill shape fill, this function posts the error

shape_fill_not_allowed.

If the target shape is an empty shape or a full shape, this function posts the warning

shape_does_not_have_length.

If you provide a target shape that is not one of the geometric shape types, this function

performs the actions described in the following table:

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example using this function, see “Finding the Point at a Certain Distance Along a

Contour” beginning on page 4-42.

For information about the contours of the various geometric shapes, see Chapter 2,

“Geometric Shapes,” in this book.

To measure the length of a contour, use the GXGetShapeLength function, described on

page 4-83.

Shape type Action taken

bitmap Posts the warning shape_does_not_have_length

picture Posts the warning shape_does_not_have_length

text Posts the warning shape_does_not_have_length

glyph Posts the warning shape_does_not_have_length

layout Posts the warning shape_does_not_have_length

Errors
out_of_memory
shape_is_nil
length_is_less_than_zero (debugging version)
parameter_is_nil (debugging version)
shape_fill_not_allowed (debugging version)

Warnings
contour_out_of_range
length_out_of_range
shape_does_not_have_length (debugging version)
unable_to_traverse_open_contour_that_starts_or_ends_off_the_curve

(debugging version)

C H A P T E R 4

Geometric Operations

Geometric Operations Reference 4-87

GXGetShapeCenter

You can use the GXGetShapeCenter function to determine the center of a specified

contour of a shape.

gxPoint *GXGetShapeCenter(gxShape source, long index,

 gxPoint *center);

source A reference to the shape containing the contour whose center you want to
find.

index The number of the contour whose center you want to find. You may
specify a value of 0 to indicate you want to find the center of the entire
shape.

center A pointer to a gxPoint structure. On return, this structure contains the
point that falls at the center of the specified contour.

function result The point that falls at the center of the specified contour. (This value is
the same as the value returned in the center parameter.)

DESCRIPTION

The GXGetShapeCenter function determines the point that falls at the center of the

contour specified by the index parameter of the shape specified by the source

parameter. If you specify a value of 0 for the index parameter, this function finds the

center point of the entire source shape.

The center point of a shape is not merely the center of the shape’s bounding rectangle;

rather it is the “center of gravity” of a shape. QuickDraw GX guarantees the center point

of a shape does not change even if the shape is rotated.

This function finds the center of a shape (or of a particular contour) as defined by the

source shape’s geometry; it does not consider shape fill or transformations to the shape

made by the shape’s transform. For point shapes, this function returns a copy of the

point’s geometry. For line and rectangle shapes, this function returns the midpoint of the

geometry. For empty and full shapes, this function posts the error

shape_does_not_have_length.

C H A P T E R 4

Geometric Operations

4-88 Geometric Operations Reference

If you provide a target shape that is not one of the geometric shape types, this function

performs the actions described in the following table:

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For examples using this function, see “Finding the Bounding Rectangle and Center Point

of a Shape” beginning on page 4-43.

To find the bounding rectangle of a shape or a contour of a shape, use the

GXGetShapeBounds function described on page 4-90.

GXGetShapeArea

You can use the GXGetShapeArea function to determine the area covered by a specific

contour of a shape’s geometry.

gxWide *GXGetShapeArea(gxShape source, long index, gxWide *area);

source A reference to the shape containing the contour whose area you want to
determine.

Shape type Action taken

bitmap Returns midpoint of bounding rectangle

picture Posts the error illegal_type_for_shape

text Returns midpoint of the bounding rectangle of the specified glyph

glyph Returns midpoint of the bounding rectangle of the specified glyph

layout Converts to glyph shape and returns midpoint of the bounding
rectangle of the specified glyph

Errors
out_of_memory
shape_is_nil
parameter_is_nil (debugging version
illegal_type_for_shape (debugging version)
contour_less_than_zero (debugging version)
graphic_type_does_not_contain_points (debugging version)

Warnings
contour_out_of_range
unable_to_traverse_open_contour_that_starts_or_ends_off_the_curve

(debugging version)

C H A P T E R 4

Geometric Operations

Geometric Operations Reference 4-89

index The number of the contour whose area you want to determine. You may
specify a value of 0 for this parameter to indicate you want to determine
the area of the entire shape.

area A pointer to a gxWide value. On return, this value indicates the area
covered by the contour.

function result The area covered by the contour. (This value is the same as the value
returned in the area parameter.)

DESCRIPTION

The GXGetShapeArea function returns the area covered by the contour specified by the

index parameter of the shape indicated by the source parameter. This function

considers only the geometry of the source shape—it does not consider the shape fill of

the shape. The same geometry returns the same area whether the shape has one of the

framed fills, an even-odd fill, a winding fill, or one of the inverse fills.

Some shapes have overlapping contours with the same contour direction. (When

drawing these shapes, QuickDraw GX fills these overlapping areas if the shape has a

winding fill and does not fill these areas if the shape has an even-odd fill.) The

GXGetShapeArea function counts these overlapping areas twice. To correct this

calculation, call the GXSimplifyShape function before calling the GXGetShapeArea

function:

■ For shapes with a winding shape fill, the GXSimplifyShape function eliminates the
inner contour and, therefore, the GXGetShapeArea function counts the overlapping
area only once.

■ For shapes with an even-odd shape fill, the GXSimplifyShape function reverses the
contour direction of the internal contour, and therefore the GXGetShapeArea
function does not count the overlapping area at all.

This function measures the shape area as defined in the shape’s geometry; it does not

consider transformations to the shape made by the shape’s transform.

For empty shapes, point shapes, and line shapes, this function posts the error

shape_does_not_have_area. For full shapes, it posts the error

illegal_type_for_shape.

If you provide a target shape that is not one of the geometric shape types, this function

performs the actions described in the following table:

Shape type Action taken

bitmap Returns the bitmap height multiplied by the bitmap width

picture Returns the sum of the areas of the picture items

text Converts to path shape and finds area

glyph Converts to path shape and finds area

layout Converts to path shape and finds area

C H A P T E R 4

Geometric Operations

4-90 Geometric Operations Reference

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For examples using this function, see “Finding the Area of a Shape” beginning on

page 4-45.

For a discussion of shape fills, see Chapter 2, “Geometric Shapes,” in this book

To simplify a shape before measuring its area, use the GXSimplifyShape function,

described on page 4-76.

Getting and Setting Shape Bounds

Every shape has a bounding rectangle—the smallest rectangle that contains the shape.

The functions in this section allow you to determine and alter a shape’s bounding

rectangle.

The GXGetShapeBounds function finds the bounding rectangle of a shape, or of a

specified contour of a shape.

The GXSetShapeBounds function allows you to alter a shape’s bounding rectangle (and

thereby move and resize the shape).

GXGetShapeBounds

You can use the GXGetShapeBounds function to determine the bounding rectangle of a

shape or of a specified contour of a shape.

gxRectangle *GXGetShapeBounds(gxShape source, long index,

 gxRectangle *bounds);

source A reference to the shape containing the contour whose bounding
rectangle you want to find.

index The number of the contour whose bounding rectangle you want to find.
You may specify a value of 0 to indicate you want to find the bounding
rectangle of the entire shape.

Errors
out_of_memory
shape_is_nil
parameter_is_nil
shape_does_not_have_area (debugging version)

Warnings
index_out_of_range
contour_out_of_range

C H A P T E R 4

Geometric Operations

Geometric Operations Reference 4-91

bounds A pointer to a gxRectangle structure. On return, this structure contains
the bounding rectangle of the specified contour.

function result The bounding rectangle of the specified contour. (This value is the
same as the value returned in the bounds parameter.)

DESCRIPTION

The GXGetShapeBounds function determines the bounding rectangle of the contour

specified by the index parameter of the shape specified by the source parameter. If

you specify a value of 0 for the index parameter, this function finds the bounding

rectangle of the entire source shape.

The bounding rectangle of a shape (or of a contour of a shape) is the smallest rectangle

that contains the geometry of the shape (or of the contour).

This function finds the bounding rectangle of the source shape (or a contour of the

source shape) as defined by the source shape’s geometry; it does not consider shape fill

or transformations to the shape made by the shape’s transform.

For empty shapes and full shapes, this function posts the warning

shape_passed_has_no_bounds. For full shapes, it returns an infinitely large

rectangle; for empty shapes, it returns the inverse rectangle.

If you provide a target shape that is not one of the geometric shape types, this function

performs the actions described in the following table:

ERRORS, WARNINGS, AND NOTICES

Shape type Action taken

bitmap Returns the bounding rectangle

picture Returns the bounding rectangle for the entire picture

text Returns bounding rectangle of specified glyphs

glyph Returns bounding rectangle of specified glyphs

layout Posts the error functionality_unimplemented if the index
parameter is not zero; returns bounding rectangle of glyphs otherwise

Errors
out_of_memory
shape_is_nil
contour_is_less_than_zero
parameter_is_nil (debugging version)
functionality_unimplemented (debugging version)

Warnings
contour_out_of_range

shape_passed_has_no_bounds (debugging version)
unable_to_traverse_open_contour_that_starts_or_ends_off_the_curve

(debugging version)

C H A P T E R 4

Geometric Operations

4-92 Geometric Operations Reference

SEE ALSO

For a discussion of rectangles and bounding rectangles, see Chapter 2, “Geometric

Shapes,” in this book.

To find the center of a shape or a contour of a shape, use the GXGetShapeCenter

function, which is described on page 4-87.

To change the bounding rectangle of a shape, use the GXSetShapeBounds function,

described in the next section.

GXSetShapeBounds

You can use the GXSetShapeBounds function to change a shape’s bounding rectangle,

thereby moving and resizing the shape.

void GXSetShapeBounds(gxShape target,

 const gxRectangle *newBounds);

source A reference to the shape whose bounding rectangle you want to change.

newBounds The new bounding rectangle.

DESCRIPTION

The GXSetShapeBounds function changes the bounding rectangle of the shape

specified by the source parameter to be the rectangle specified by the newBounds

parameter.

How this function changes the bounding rectangle is determined by the source shape’s

gxMapTransformShape shape attribute:

■ If the gxMapTransformShape shape attribute is not set, the function changes the
geometry of the source shape to fit the new bounding rectangle.

■ If the gxMapTransformShape shape attribute is set, the function does not alter the
shape’s geometry directly; instead, it changes the mapping of the shape’s transform
object to scale the shape to fit in the new bounding rectangle.

By changing a shape’s bounding rectangle, you can move the shape as well as scale it in

the horizontal and vertical dimensions.

For empty and full shapes, this function does nothing.

If you provide a point shape as the target shape and a new bounding rectangle that has

height or width, this function posts the warning scale_shape_out_of_range.

C H A P T E R 4

Geometric Operations

Geometric Operations Reference 4-93

If you provide a target shape that is not one of the geometric shape types, this function

performs the actions described in the following table:

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For examples of this function, see “Setting a Shape’s Bounding Rectangle” beginning on

page 4-47.

For a discussion of rectangles and bounding rectangles, see Chapter 2, “Geometric

Shapes,” in this book.

For a discussion of the gxMapTransformShape shape attribute, see the chapters

“Shape Objects” and “Transform Objects” in Inside Macintosh: QuickDraw GX Objects.

To determine the bounding rectangle of a shape, use the GXGetShapeBounds function,

described on page 4-90.

Shape type Action taken

bitmap Calls the GXMapShape function

picture Calls the GXMapShape function

text Converts to a path shape if necessary (when the ratio between the
height of the new bounding rectangle and the height of the original
bounding rectangle is not the same as the ratio between the width of the
new bounding rectangle and the width of the original bounding
rectangle)

glyph Converts to a path shape if necessary

layout Converts to a path shape if necessary

Errors
out_of_memory
shape_is_nil
shape_access_not_allowed (debugging version)
functionality_unimplemented (debugging version)

Warnings
scale_shape_out_of_range
character_substitution_took_place

font_substitution_took_place
unable_to_traverse_open_contour_that_starts_or_ends_off_the_curve

(debugging version)
shape_passed_has_no_bounds (debugging version)

C H A P T E R 4

Geometric Operations

4-94 Geometric Operations Reference

Insetting Shapes

The GXInsetShape function, described in this section, provides a way to inset or

outset the contours of a shape a specified distance from the original contours.

GXInsetShape

You can use the GXInsetShape procedure to inset a shape’s geometry.

void GXInsetShape(gxShape target, Fixed inset);

source A reference to the shape whose geometry you want to inset.

inset The distance to inset the geometry of the shape.

DESCRIPTION

The GXInsetShape function insets the geometry of the shape specified by the target

parameter by the distance specified in the inset parameter. The on-curve geometric

points of the resulting geometry are the specified distance inside the contour of the

original geometry.

You can specify a positive or negative value for the inset parameter: positive values

move the geometry to the inside of the original geometry; negative values move it

outside the original geometry.

QuickDraw GX uses the direction of a contour to define which side is the inside

of a contour: the inside is the side to the right of the contour. As a result, insetting

clockwise contours by a positive amount makes them smaller while insetting

counterclockwise contours by a positive amount makes them larger.

You can override this behavior by setting the gxAutoInsetStyle style attribute. If you

set this style attribute for a shape, QuickDraw GX finds the true inside of the contour,

regardless of its contour direction. With this attribute set, insetting a contour by a

positive amount makes it smaller, whether it has a clockwise direction or a

counterclockwise direction.

If the target shape has the noFill shape fill, this function posts the error

shape_fill_not_allowed.

For empty, full, and point shapes, this function posts the error

graphic_type_cannot_be_inset. Line shapes and rectangle shapes are converted

to polygon shapes; curve shapes are converted to path shapes.

C H A P T E R 4

Geometric Operations

Geometric Operations Reference 4-95

If you provide a target shape that is not one of the geometric shape types, this function

performs the actions described in the following table:

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For examples using this function, see “Insetting Shapes” beginning on page 4-50.

For a discussion of contours and contour direction, see Chapter 2, “Geometric Shapes,”

in this book.

For a discussion of the gxAutoInsetStyle style attribute, see Chapter 3, “Geometric

Styles,” in this book.

To change the bounding rectangle of a shape, use the GXSetShapeBounds function,

described on page 4-92.

Determining Whether Two Areas Touch

The functions described in this section determine if two areas touch.

The GXTouchesRectanglePoint function determines whether the area covered by a

rectangle touches a point.

The GXTouchesBoundsShape function determines whether the area covered by a

rectangle touches a shape.

Shape type Action taken

bitmap Posts the error graphic_type_cannot_be_inset

picture Posts the error graphic_type_cannot_be_inset

text Posts the error graphic_type_cannot_be_inset

glyph Posts the error graphic_type_cannot_be_inset

layout Posts the error graphic_type_cannot_be_inset

Errors
out_of_memory
shape_is_nil
graphic_type_cannot_be_inset (debugging version)
shape_fill_not_allowed (debugging version)
shape_access_not_allowed (debugging version)

Warnings
unable_to_traverse_open_contour_that_starts_or_ends_off_the_curve

(debugging version)

Notices (debugging version)
geometry_unaffected (debugging version)

C H A P T E R 4

Geometric Operations

4-96 Geometric Operations Reference

The GXTouchesShape function determines whether the area covered by one shape

touches the area covered by another.

The GXIntersectShape function, which is described on page 4-107 in the section

“Performing Geometric Arithmetic With Shapes,” determines not only if two shapes

intersect but also what their intersection is.

GXTouchesRectanglePoint

You can use the GXTouchesRectanglePoint function to determine if a point lies

within or on the edge of a rectangle.

gxBoolean GXTouchesRectanglePoint(const gxRectangle *target,

 const gxPoint *test);

target A pointer to the rectangle to test as the container.

test A pointer to the point to test for inclusion.

function result A Boolean value indicating whether the point touches the rectangle.

DESCRIPTION

The GXTouchesRectanglePoint function returns true as its function result if the

point specified by the test parameter lies within or on the edge of the rectangle

specified by the target parameter, and returns false otherwise.

Notice that the parameters to this function are not shapes; they are pointers to a

gxPoint or to a gxRectangle structure.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For a discussion of the gxPoint and gxRectangle data structures, see Chapter 2,

“Geometric Shapes,” in this book.

To determine if a rectangle touches a shape, use the GXTouchesBoundsShape function,

described in the next section.

To determine if a rectangle contains a shape, use the GXContainsBoundsShape

function, described on page 4-101.

Errors
parameter_is_nil

C H A P T E R 4

Geometric Operations

Geometric Operations Reference 4-97

GXTouchesBoundsShape

You can use the GXTouchesBoundsShape function to determine if a rectangle and a

shape touch.

gxBoolean GXTouchesBoundsShape(const gxRectangle *target,

 gxShape test);

target A pointer to the rectangle to test to determine if it touches a shape.

test A reference to the shape to test to determine if it touches the rectangle.

function result A Boolean value indicating whether the shape touches the rectangle.

DESCRIPTION

The GXTouchesBoundsShape function returns true as its function result if the

rectangle specified by the target parameter touches the shape specified by the test

parameter—even if they share only an edge or a point—and returns false otherwise.

This function considers the shape fill, the style modifications, and the transform

mapping of the test shape. Only areas that are drawn are considered when determining

touching.

If you provide a test shape that is not one of the geometric shape types, this function

performs the actions described in the following table:

Shape type Action taken

bitmap Compares bounding rectangle of bitmap

picture Posts the error illegal_type_for_shape

text Converts to path shape

glyph Converts to path shape

layout Converts to path shape

C H A P T E R 4

Geometric Operations

4-98 Geometric Operations Reference

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example using this function, see “Determining Whether Two Shapes Touch”

beginning on page 4-53.

For a discussion of shape fills, see Chapter 2, “Geometric Shapes,” in this book.

For a discussion of style modifications, see Chapter 3, “Geometric Styles,” in this book.

For a discussion of transform mappings, see the chapter “Transform Objects” in Inside
Macintosh: QuickDraw GX Objects.

To determine if a rectangle touches a point, use the GXTouchesRectanglePoint

function, described on page 4-96.

To determine if a rectangle contains a shape, use the GXContainsBoundsShape

function, described on page 4-101.

To determine if two shapes touch, use the GXTouchesShape function, described in the

next section.

GXTouchesShape

You can use the GXTouchesShape function to determine if two shapes touch.

gxBoolean GXTouchesShape(gxShape target, gxShape test);

target A reference to one shape to test to determine if it touches another.

test A reference to the other shape to test.

function result A Boolean value indicating whether the shapes intersect.

Errors
out_of_memory
shape_is_nil
parameter_is_nil (debugging version)
illegal_type_for_shape (debugging version)
shape_may_not_be_a_picture (debugging version)

C H A P T E R 4

Geometric Operations

Geometric Operations Reference 4-99

DESCRIPTION

The GXTouchesShape function returns true as its function result if the shape specified

by the target parameter touches the shape specified by the test parameter—even if

they share only an edge or a point—and returns false otherwise.

This function considers the shape fill, the style modifications, and the transform

mapping of the target and test shapes. Only areas that are drawn are considered when

determining touching.

For example, if the target shape has an even-odd fill and contains an overlapping

contour, then the shape has an internal area that is not drawn. If the test shape lies

entirely within this area, the GXTouchesShape function returns false.

As another example, if the test shape lies entirely within the target shape, but the target

shape has an inverse shape fill, the GXTouchesShape function returns false.

If you provide a target or test shape that is not one of the geometric shape types, this

function performs the actions described in the following table:

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For examples using this function, see “Determining Whether Two Shapes Touch”

beginning on page 4-53.

For a discussion of shape fills, see Chapter 2, “Geometric Shapes,” in this book.

For a discussion of style modifications, see Chapter 3, “Geometric Styles,” in this book.

For a discussion of transform mappings, see the chapter “Transform Objects” in Inside
Macintosh: QuickDraw GX Objects.

To determine if a rectangle touches a shape, use the GXTouchesBoundsShape
function, described on page 4-97.

To determine if a shape contains another shape, use the GXContainsShape function,

described on page 4-103.

Shape type Action taken

bitmap Compares bounding rectangle of bitmap

picture Posts the error illegal_type_for_shape

text Converts to path shape

glyph Converts to path shape

layout Converts to path shape

Errors
out_of_memory
shape_is_nil
illegal_type_for_shape (debugging version)
shape_may_not_be_a_picture (debugging version)

C H A P T E R 4

Geometric Operations

4-100 Geometric Operations Reference

Determining Whether One Shape Contains Another

The functions described in this section determine if one area contains another.

The GXContainsRectangle function determines whether the area covered by one

rectangle contains the area covered by another.

The GXContainsBoundsShape function determines whether the area covered by a

rectangle contains the area covered by a shape.

The GXContainsShape function determines whether the area covered by one shape

contains the area covered by another.

GXContainsRectangle

You can use the GXContainsRectangle function to determine if one rectangle contains

another.

gxBoolean GXContainsRectangle(const gxRectangle *container,

 const gxRectangle *test);

container A pointer to the rectangle to test as the container.

test A pointer to the rectangle to test for inclusion.

function result A Boolean value indicating whether the container rectangle contains
the test rectangle.

DESCRIPTION

The GXContainsRectangle function returns true as its function result if the rectangle

specified by the test parameter lies within the rectangle specified by the target

parameter, and false otherwise.

This function may return true even if the container and test rectangles share one or

more edges. This function returns true when the container and test rectangles are

defined by the same coordinates.

Notice that the parameters to this function are not shapes; they are pointers to

gxRectangle structures.

C H A P T E R 4

Geometric Operations

Geometric Operations Reference 4-101

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For a discussion of the gxRectangle data structure, see Chapter 2, “Geometric Shapes,”

in this book.

To determine if a rectangle touches a point, use the GXTouchesRectanglePoint

function, described on page 4-96.

To determine if a rectangle contains a shape, use the GXContainsBoundsShape

function, described in the next section.

GXContainsBoundsShape

You can use the GXContainsBoundsShape function to determine if a rectangle

contains a shape or a particular contour of a shape.

gxBoolean GXContainsBoundsShape(const gxRectangle *container,

 gxShape test, long index);

container A pointer to the rectangle to test as the container.

test A reference to the shape containing the contour to test for inclusion.

index The number of the contour to test for inclusion. You may specify a value
of 0 to indicate you want to test the entire shape for inclusion.

function result A Boolean value indicating whether the container rectangle contains
the specified contour of the test shape.

DESCRIPTION

The GXContainsBoundsShape function returns true as its function result if the

rectangle specified by the container parameter contains the contour indicated by the

index parameter of the shape specified by the test parameter and returns false

otherwise.

This function may return true even if the container rectangle and the indicated contour

of the test shape share one or more edges.

Errors
parameter_is_nil

C H A P T E R 4

Geometric Operations

4-102 Geometric Operations Reference

This function considers the shape fill, the style modifications, and the transform

mapping of the test shape. Only areas that are drawn are considered when determining

whether the container rectangle contains the specified contour.

If you provide a test shape that is not one of the geometric shape types, this function

performs the actions described in the following table:

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For a discussion of shape fills, see Chapter 2, “Geometric Shapes,” in this book.

For a discussion of style modifications, see Chapter 3, “Geometric Styles,” in this book.

For a discussion of transform mappings, see the chapter “Transform Objects” of Inside
Macintosh: QuickDraw GX Objects.

To determine if a rectangle touches a shape, use the GXTouchesBoundsShape function,

described on page 4-97.

To determine if a shape contains another shape, use the GXContainsShape function,

described in the next section.

Shape type Action taken

bitmap Compares bounding rectangle of bitmap

picture Compares bounding rectangle of entire picture

text Converts to path shape

glyph Converts to path shape

layout Converts to path shape

Errors
out_of_memory
shape_is_nil
parameter_is_nil (debugging version)
illegal_type_for_shape (debugging version)
shape_operator_may_not_be_a_picture (debugging version)

C H A P T E R 4

Geometric Operations

Geometric Operations Reference 4-103

GXContainsShape

You can use the GXContainsShape function to determine if the area covered by a shape

contains the area covered by another shape.

gxBoolean GXContainsShape(gxShape container, gxShape test);

container A reference to the shape to test as the container.

test A reference to the shape to test for inclusion.

function result A Boolean value indicating whether the container shape contains
the test shape.

DESCRIPTION

The GXContainsShape function returns true as its function result if the shape

specified by the container parameter contains the shape specified by the test

parameter, and returns false otherwise.

This function may return true even if the container shape and the test shape share one

or more edges; it returns true if they are the same shape.

This function considers the shape fill, the style modifications, and the transform

mapping of the container and test shapes. Only areas that are drawn are considered

when determining whether the container shape contains the test shape.

The container shape must have one of the solid shape fills (even-odd, winding, inverse

even-odd, or inverse winding). The test shape may have any shape fill.

If the test shape has a framed shape fill, this function returns true if the frame lies

entirely within the area of the container shape, or along the edges of the container shape.

As a result, a solid shape contains its own frame.

If you provide a test shape that is not one of the geometric shape types, this function

performs the actions described in the following table:

Shape type Action taken

bitmap Compares bounding rectangle of bitmap

picture Posts the error illegal_type_for_shape

text Converts to path shape

glyph Converts to path shape

layout Converts to path shape

C H A P T E R 4

Geometric Operations

4-104 Geometric Operations Reference

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For examples using this function, see “Determining Whether One Shape Contains

Another” beginning on page 4-58.

For a discussion of shape fills, see Chapter 2, “Geometric Shapes,” in this book.

For a discussion of style modifications, see Chapter 3, “Geometric Styles,” in this book.

For a discussion of transform mappings, see the chapter “Transform Objects” in Inside
Macintosh: QuickDraw GX Objects.

To determine if a rectangle contains a shape, use the GXContainsBoundsShape
function, described on page 4-101.

To determine if one shape touches another, use the GXTouchesShape function,

described on page 4-98.

Performing Geometric Arithmetic With Shapes

QuickDraw GX provides six arithmetic operations you can apply to geometric shapes:

intersection, union, difference, reverse difference, exclusion, and inversion.

The GXIntersectRectangle and GXUnionRectangle perform the intersection and

union operations on rectangle structures.

The other functions described in this section perform the arithmetic operations on

shapes:

■ The GXIntersectShape function finds the area common to the shapes.

■ The GXUnionShape function finds the smallest area that contains both the shapes.

■ The GXDifferenceShape function finds the area covered by the first shape that is
not covered by the second shape.

■ The GXReverseDifferenceShape function finds the area covered by the second
shape that is not covered by the first shape.

■ The GXExcludeShape fucntion finds the area covered by one shape or the other, but
not by both.

■ The GXInvertShape function finds the area not covered by a shape.

Errors
out_of_memory
shape_is_nil
illegal_type_for_shape (debugging version)
shape_operator_may_not_be_a_picture (debugging version)

C H A P T E R 4

Geometric Operations

Geometric Operations Reference 4-105

GXIntersectRectangle

You can use the GXIntersectRectangle function to find the intersection of two

rectangles.

gxBoolean GXIntersectRectangle(gxRectangle *target,

 const gxRectangle *source,

 const gxRectangle *operand);

target A pointer to a gxRectangle structure. On return, the intersection of the
source and operand rectangles. You may specify the value nil for this
parameter if you do not want the intersection to be calculated. Depending
on the result of the intersection operation, this pointer may point to the
source or operand rectangle.

source A pointer to one of the rectangles to intersect.

operand A pointer to the other rectangle to intersect.

function result A Boolean value indicating whether the rectangles intersect.

DESCRIPTION

The GXIntersectRectangle function returns true as its function result if the source

rectangle and the operand rectangle intersect, and returns false otherwise.

If you provide a pointer for the target parameter that is not nil, this function returns

the intersection of the source and operand rectangles in the gxRectangle structure

pointed to by the target parameter.

If the source rectangle and the operand rectangle do not intersect or share only one edge,

this function returns false and does not affect the target rectangle.

You may specify the source rectangle or the operand rectangle as the target rectangle. In

this case, the function calculates the intersection of the original rectangles and then

places the calculated intersection into the source or operand rectangle, as specified.

Notice that the parameters to this function are not shapes; they are pointers to

gxRectangle data structures.

ERRORS, WARNINGS, AND NOTICES

Errors
parameter_is_nil

C H A P T E R 4

Geometric Operations

4-106 Geometric Operations Reference

SEE ALSO

For a discussion of the gxRectangle data structure, see Chapter 2, “Geometric Shapes.”

For a discussion of geometric arithmetic, see “Geometric Arithmetic” beginning on

page 4-21.

To find the intersection of two shapes, use the GXIntersectShape function, described

on page 4-107.

To find the union of two rectangles, use the GXUnionRectangle function, described in

the next section.

GXUnionRectangle

You can use the GXUnionRectangle function to find the smallest rectangle that

contains two other rectangles.

gxRectangle *GXUnionRectangle(gxRectangle *target,

 const gxRectangle *source,

 const gxRectangle *operand);

target A pointer to a gxRectangle structure. On return, the smallest rectangle
containing both the source and operand rectangles.

source A pointer to one of the rectangles to combine.

operand A pointer to the other rectangle to combine.

function result The smallest rectangle containing both the source and operand
rectangles. (This rectangle is the same as the rectangle returned in
the target parameter.)

DESCRIPTION

The GXUnionRectangle function calculates the smallest rectangle containing both the

source rectangle and the operand rectangle and stores the results in target parameter.

This function also returns the calculated rectangle as its function result.

You may specify the source rectangle or the operand rectangle as the target rectangle. In

this case, the function calculates the smallest rectangle containing both of the original

rectangles and then places the calculated rectangle into the source or operand rectangle,

as specified.

Notice that the parameters to this function are not shapes, but pointers to the

gxRectangle data structures.

C H A P T E R 4

Geometric Operations

Geometric Operations Reference 4-107

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For a discussion of the gxRectangle data structure, see Chapter 2, “Geometric Shapes,”

in this book.

For a discussion of geometric arithmetic, see “Geometric Arithmetic” beginning on

page 4-21.

To find the intersection of two rectangles, use the GXIntersectRectangle function,

described in this previous section.

To find the union of two shapes, use the GXUnionShape function, described on

page 4-109.

GXIntersectShape

You can use the GXIntersectShape function to find the intersection of two shapes.

void GXIntersectShape(gxShape target, gxShape operand);

target On input, a reference to one of the shapes to intersect. On output, a
reference to the intersection of the input target shape and the operand
shape.

operand A reference to the other shape to intersect.

DESCRIPTION

The GXIntersectShape function finds the intersection of the target shape and the

operand shape, reduces and simplifies the result, and stores it in the target shape. If the

original target shape and the operand shape do not intersect, the resulting target shape is

an empty shape.

If the target shape and the operand shape share only an edge, and if both have a solid

fill, the resulting target shape is an empty shape. However, you can provide a framed

target shape and a solid operand shape—the result being a framed shape.

This function considers the shape fill, the style modifications, and the transform

mapping of the target and operand shapes. Only areas that are drawn are considered

when determining intersection.

Implementation Note

Due to an implementation limit with QuickDraw GX version 1.0, you
can find the intersection of two framed shapes only if the shapes are
points, lines, or curves. ◆

Errors
parameter_is_nil

C H A P T E R 4

Geometric Operations

4-108 Geometric Operations Reference

If you provide a target or operand shape that is not one of the geometric shape types,

this function performs the actions described in the following table:

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example using this function, see “Performing Geometric Arithmetic With Shapes”

beginning on page 4-60.

For a discussion of geometric arithmetic, see “Geometric Arithmetic” beginning on

page 4-21.

For a discussion of shape fills, see Chapter 2, “Geometric Shapes,” in this book.

For a discussion of style modifications, see Chapter 3, “Geometric Styles,” in this book.

Shape type Action taken

bitmap Posts the error shape_operator_may_not_be_a_bitmap

picture Posts the error shape_operator_may_not_be_a_picture

text Converts to path shape if other parameter is not an empty shape or a
full shape

glyph Converts to path shape if other parameter is not an empty shape or a
full shape

layout Converts to path shape if other parameter is not an empty shape or a
full shape

Errors
out_of_memory
shape_is_nil
number_of_contours_exceeds_implementation_limit
number_of_points_exceeds_implementation_limit
size_of_path_exceeds_implementation_limit
size_of_polygon_exceeds_implementation_limit
fill_type_not_allowed (debugging version)
shape_access_not_allowed (debugging version)
clip_to_frame_shape_unimplemented (debugging version)
shape_operator_may_not_be_a_bitmap (debugging version)
shape_operator_may_not_be_a_picture (debugging version)

Warnings
character_substitution_took_place
font_substitution_took_place
unable_to_traverse_open_contour_that_starts_or_ends_off_the_curve

(debugging version)

C H A P T E R 4

Geometric Operations

Geometric Operations Reference 4-109

For a discussion of transform mappings, see the chapter “Transform Objects” in Inside
Macintosh: QuickDraw GX Objects.

To determine if two shapes touch, use the GXTouchesShape function, described on

page 4-98.

To find the union of two shapes, use the GXUnionShape function, described in the next

section.

GXUnionShape

You can use the GXUnionShape function to find the union of two shapes.

void GXUnionShape(gxShape target, gxShape operand);

target On input, a reference to one of the shapes to combine. On output, a
reference to the union of the input target shape and the operand shape.

operand A reference to the other shape to combine.

DESCRIPTION

The GXUnionShape function finds the union of the target shape and the operand shape,

reduces and simplifies the result, and stores it in the target shape.

This function considers the shape fill, the style modifications, and the transform

mapping of the target and operand shape. Only areas that are drawn are considered

when calculating the union.

The target shape and the operand shape must both have solid fills (even-odd, winding,

inverse even-odd, or inverse winding) or both have framed fills (open-frame or

closed-frame); one of each type of fill is not allowed.

If you provide a target or operand shape that is not one of the geometric shape types,

this function performs the actions described in the following table:

Shape type Action taken

bitmap Posts the error shape_operator_may_not_be_a_bitmap

picture Posts the error shape_operator_may_not_be_a_picture

text Converts to path shape if other parameter is not an empty shape or a
full shape

glyph Converts to path shape if other parameter is not an empty shape or a
full shape

layout Converts to path shape if other parameter is not an empty shape or a
full shape

C H A P T E R 4

Geometric Operations

4-110 Geometric Operations Reference

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For examples using this function, see “Performing Geometric Arithmetic With Shapes”

beginning on page 4-60.

For a discussion of geometric arithmetic, see “Geometric Arithmetic” beginning on

page 4-21.

For a discussion of shape fills, see Chapter 2, “Geometric Shapes,” in this book.

For a discussion of style modifications, see Chapter 3, “Geometric Styles,” in this book.

For a discussion of transform mappings, see Inside Macintosh: QuickDraw GX Objects.

To find the intersection of two shapes, use the GXIntersectShape function, described

on page 4-107.

GXDifferenceShape

You can use the GXDifferenceShape function to find the geometric difference

between two shapes.

void GXDifferenceShape(gxShape target, gxShape operand);

target On input, a reference to the shape to subtract from. On output, a reference
to a shape describing the difference between the two shapes.

operand A reference to the shape to subtract.

Errors
out_of_memory
shape_is_nil
number_of_contours_exceeds_implementation_limit
number_of_points_exceeds_implementation_limit
size_of_path_exceeds_implementation_limit
size_of_polygon_exceeds_implementation_limit
fill_type_not_allowed (debugging version)
shape_access_not_allowed (debugging version)
clip_to_frame_shape_unimplemented (debugging version)
shape_operator_may_not_be_a_bitmap (debugging version)
shape_operator_may_not_be_a_picture (debugging version)

Warnings
character_substitution_took_place
font_substitution_took_place
unable_to_traverse_open_contour_that_starts_or_ends_off_the_curve

(debugging version)

C H A P T E R 4

Geometric Operations

Geometric Operations Reference 4-111

DESCRIPTION

The GXDifferenceShape function subtracts the operand shape from the target shape,

reduces and simplifies the result, and stores it in the target shape.

The initial target shape does not have to contain the operand shape; the result of this

function is the intersection of the target and operand shapes subtracted from the target

shape.

This function considers the shape fill, the style modifications, and the transform

mapping of the target and operand shapes: only areas that are drawn are considered

when calculating the difference.

The operand shape cannot have one of the framed shape fills (open-frame or

closed-frame). The target shape can have one of the framed fills; in this case, the

resulting shape is the part of the frame that does not lie within the operand shape.

If you provide a target or operand shape that is not one of the geometric shape types,

this function performs the actions described in the following table:

ERRORS, WARNINGS, AND NOTICES

Shape type Action taken

bitmap Posts the error shape_operator_may_not_be_a_bitmap

picture Posts the error shape_operator_may_not_be_a_picture

text Converts to path shape if other parameter is not an empty shape or a
full shape

glyph Converts to path shape if other parameter is not an empty shape or a
full shape

layout Converts to path shape if other parameter is not an empty shape or a
full shape

Errors
out_of_memory
shape_is_nil
number_of_contours_exceeds_implementation_limit
number_of_points_exceeds_implementation_limit
size_of_path_exceeds_implementation_limit
size_of_polygon_exceeds_implementation_limit
fill_type_not_allowed (debugging version)
shape_access_not_allowed (debugging version)
clip_to_frame_shape_unimplemented (debugging version)
shape_operator_may_not_be_a_bitmap (debugging version)
shape_operator_may_not_be_a_picture (debugging version)

Warnings
character_substitution_took_place
font_substitution_took_place
unable_to_traverse_open_contour_that_starts_or_ends_off_the_curve

(debugging version)

C H A P T E R 4

Geometric Operations

4-112 Geometric Operations Reference

SEE ALSO

For examples using this function, see “Performing Geometric Arithmetic With Shapes”

beginning on page 4-60.

For a discussion of geometric arithmetic, see “Geometric Arithmetic” beginning on

page 4-21.

For a discussion of shape fills, see Chapter 2, “Geometric Shapes,” in this book.

For a discussion of style modifications, see Chapter 3, “Geometric Styles,” in this book.

For a discussion of transform mappings, see Inside Macintosh: QuickDraw GX Objects.

For information about related routines, see the description of the GXIntersectShape

function on page 4-107, the GXUnionShape function on page 4-109, and the

GXReverseDifferenceShape function in the next section.

GXReverseDifferenceShape

You can use the GXReverseDifferenceShape function to find the geometric

difference between two shapes.

void GXReverseDifferenceShape(gxShape target, gxShape operand);

target On input, a reference to the shape to subtract. On output, a reference to a
shape describing the difference between the two shapes.

operand A reference to the shape to subtract from.

DESCRIPTION

The GXReverseDifferenceShape function subtracts the target shape from the

operand shape and stores the result in the target shape.

The initial operand shape does not have to contain the target shape; the result of this

function is the intersection of the target and operand shapes subtracted from the

operand shape.

This function considers the shape fill, the style modifications, and the transform

mapping of the target and operand shapes. Only areas that are drawn are considered

when calculating the difference.

Neither the target shape nor the operand shape have one of the framed fills (open-frame

or closed-frame).

C H A P T E R 4

Geometric Operations

Geometric Operations Reference 4-113

If you provide a target or operand shape that is not one of the geometric shape types,

this function performs the actions described in the following table:

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For examples using this function, see “Performing Geometric Arithmetic With Shapes”

beginning on page 4-60.

For a discussion of geometric arithmetic, see “Geometric Arithmetic” beginning on

page 4-21.

For a discussion of shape fills, see Chapter 2, “Geometric Shapes,” in this book.

For a discussion of style modifications, see Chapter 3, “Geometric Styles,” in this book.

Shape type Action taken

bitmap Posts the error shape_operator_may_not_be_a_bitmap

picture Posts the error shape_operator_may_not_be_a_picture

text Converts to path shape if other parameter is not an empty shape or a
full shape

glyph Converts to path shape if other parameter is not an empty shape or a
full shape

layout Converts to path shape if other parameter is not an empty shape or a
full shape

Errors
out_of_memory
shape_is_nil
number_of_contours_exceeds_implementation_limit
number_of_points_exceeds_implementation_limit
size_of_path_exceeds_implementation_limit
size_of_polygon_exceeds_implementation_limit
fill_type_not_allowed (debugging version)
shape_access_not_allowed (debugging version)
clip_to_frame_shape_unimplemented (debugging version)
shape_operator_may_not_be_a_bitmap (debugging version)
shape_operator_may_not_be_a_picture (debugging version)

Warnings
character_substitution_took_place
font_substitution_took_place
unable_to_traverse_open_contour_that_starts_or_ends_off_the_curve

(debugging version)

C H A P T E R 4

Geometric Operations

4-114 Geometric Operations Reference

For a discussion of transform mappings, see the chapter “Transform Objects” in Inside
Macintosh: QuickDraw GX Objects.

For information about related functions, see the description of the GXIntersectShape

function on page 4-107, the GXUnionShape function on page 4-109, and the

GXDifferenceShape function on page 4-110.

GXExcludeShape

You can use the GXExcludeShape function to find the result of performing the

exclusive-OR operation on two shapes.

void GXExcludeShape(gxShape target, gxShape operand);

target On input, a reference to one of the shapes on which to perform the
exclusive-OR operation. On output, a reference to a shape describing
the exclusive-OR of the two shapes.

operand A reference to the other shape on which to perform the exclusive-OR
operation.

DESCRIPTION

The GXExcludeShape function performs an exclusive-OR operation on the target and

operand shapes, and stores the result in the target shape.

The exclusion of two shapes (the result of the exclusive-OR operation) is the area

contained by the union of the two shapes less the area contained by the intersection of

the two shapes.

This function considers the shape fill, the style modifications, and the transform

mapping of the target and test shapes. Only areas that are drawn are considered when

calculating the difference.

Neither the target shape nor the operand shape may have one of the framed fills

(open-frame or closed-frame).

If you provide a target or operand shape that is not one of the geometric shape types,

this function performs the actions described in the following table:

Shape type Action taken

bitmap Posts the error shape_operator_may_not_be_a_bitmap

picture Posts the error shape_operator_may_not_be_a_picture

text Converts to path shape if other parameter is not an empty shape or a
full shape

glyph Converts to path shape if other parameter is not an empty shape or a
full shape

layout Converts to path shape if other parameter is not an empty shape or a
full shape

C H A P T E R 4

Geometric Operations

Geometric Operations Reference 4-115

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For examples using this function, see “Performing Geometric Arithmetic With Shapes”

beginning on page 4-60.

For a discussion of geometric arithmetic, see “Geometric Arithmetic” beginning on

page 4-21.

For a discussion of shape fills, see Chapter 2, “Geometric Shapes,” in this book.

For a discussion of style modifications, see Chapter 3, “Geometric Styles,” in this book.

For a discussion of transform mappings, see the chapter “Transform Objects” in Inside
Macintosh: QuickDraw GX Objects.

For information about related functions, see the description of the GXIntersectShape

function on page 4-107, the GXUnionShape function on page 4-109, the

GXDifferenceShape function on page 4-110, and the GXReverseDifferenceShape

function on page 4-112.

Errors
out_of_memory
shape_is_nil
number_of_contours_exceeds_implementation_limit
number_of_points_exceeds_implementation_limit
size_of_path_exceeds_implementation_limit
size_of_polygon_exceeds_implementation_limit
fill_type_not_allowed (debugging version)
shape_access_not_allowed (debugging version)
clip_to_frame_shape_unimplemented (debugging version)
shape_operator_may_not_be_a_bitmap (debugging version)
shape_operator_may_not_be_a_picture (debugging version)

Warnings
character_substitution_took_place
font_substitution_took_place
unable_to_traverse_open_contour_that_starts_or_ends_off_the_curve

(debugging version)

C H A P T E R 4

Geometric Operations

4-116 Geometric Operations Reference

GXInvertShape

You can use the GXInvertShape function to invert a shape.

void GXInvertShape(gxShape target);

target A reference to the shape to invert.

DESCRIPTION

The GXInvertShape function inverts the target shape and stores the resulting shape

in the target shape. Typically, this function changes the shape fill of the target shape. It

also converts empty shapes to full shapes and full shapes to empty shapes.

If the target shape has one of the framed shape fills (open-frame or closed-frame), this

function posts the error shape_cannot_be_inverted.

For empty shapes, this function coverts the shape to a full shape; for full shapes, it

comverts to empty shapes.

If you provide a target or operand shape that is not one of the geometric shape types,

this function performs the actions described in the following table:

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example using this function, see “Performing Geometric Arithmetic With Shapes”

beginning on page 4-60.

For a discussion of geometric arithmetic, see “Geometric Arithmetic” beginning on

page 4-21.

For a discussion of shape fills, see Chapter 2, “Geometric Shapes,” in this book.

Shape type Action taken

bitmap Posts the error shape_cannot_be_inverted

picture Posts the error shape_cannot_be_inverted

text Posts the error shape_cannot_be_inverted

glyph Posts the error shape_cannot_be_inverted

layout Posts the error shape_cannot_be_inverted

Errors
out_of_memory
shape_is_nil
shape_cannot_be_inverted (debugging version)
shape_access_not_allowed (debugging version)

C H A P T E R 4

Geometric Operations

Summary of Geometric Operations 4-117

Summary of Geometric Operations

Constants and Data Types

Contour Directions

enum gxContourDirections {

gxCounterclockwiseDirection,

gxClockwiseDirection

};

typedef long gxContourDirection;

Functions

Determining and Reversing Contour Direction

gxContourDirection GXGetShapeDirection
(gxShape source, long contour);

void GXReverseShape (gxShape target, long contour);

Breaking Shape Contours

void GXBreakShape (gxShape target, long index);

Reducing and Simplifying Shapes

void GXReduceShape (gxShape target, long contour);

void GXSimplifyShape (gxShape target);

Incorporating Style Information Into Shape Geometries

void GXPrimitiveShape (gxShape target);

Finding Geometric Information About Shapes

gxWide *GXGetShapeLength (gxShape source, long index, gxWide *length);

gxPoint *GXShapeLengthToPoint
(gxShape target, long index, Fixed length,
gxPoint *location, gxPoint *tangent);

gxPoint *GXGetShapeCenter (gxShape source, long index, gxPoint *center);

gxWide *GXGetShapeArea (gxShape source, long index, gxWide *area);

C H A P T E R 4

Geometric Operations

4-118 Summary of Geometric Operations

Getting and Setting Shape Bounds

gxRectangle *GXGetShapeBounds
(gxShape source, long index,
gxRectangle *bounds);

void GXSetShapeBounds (gxShape target, const gxRectangle *newBounds);

Insetting Shapes

void GXInsetShape (gxShape target, Fixed inset);

Determining Whether Two Shapes Touch

gxBoolean GXTouchesRectanglePoint
(const gxRectangle *target,
const gxPoint *test);

gxBoolean GXTouchesBoundsShape
(const gxRectangle *target, gxShape test);

gxBoolean GXTouchesShape (gxShape target, gxShape test);

Determining Whether One Shape Contains Another

gxBoolean GXContainsRectangle
(const gxRectangle *container,
const gxRectangle *test);

gxBoolean GXContainsBoundsShape
(const gxRectangle *container, gxShape test,
long index);

gxBoolean GXContainsShape (gxShape container, gxShape test);

Performing Geometric Arithmetic With Shapes

gxBoolean GXIntersectRectangle
(gxRectangle *target, const gxRectangle *source,
const gxRectangle *operand);

gxRectangle *GXUnionRectangle
(gxRectangle *target,
const gxRectangle *source,
const gxRectangle *operand);

void GXIntersectShape (gxShape target, gxShape operand);

void GXUnionShape (gxShape target, gxShape operand);

void GXDifferenceShape (gxShape target, gxShape operand);

void GXReverseDifferenceShape
(gxShape target, gxShape operand);

void GXExcludeShape (gxShape target, gxShape operand);

void GXInvertShape (gxShape target);

Contents 5-1

C H A P T E R 5

Contents

Bitmap Shapes

About Bitmap Shapes 5-3

Bitmap Geometries 5-5

Bitmap Styles and Inks 5-8

Bitmap Transforms 5-10

Bitmaps and View Devices 5-12

Using Bitmap Shapes 5-14

Creating and Drawing Bitmaps 5-15

Creating Black-and-White Bitmaps 5-15

Creating Color Bitmaps 5-21

Dithering and Halftoning Bitmaps 5-30

Applying Transfer Modes to Bitmaps 5-32

Converting Other Types of Shapes to Bitmaps 5-34

Applying Transformations to Bitmaps 5-38

Mapping Bitmap Shapes 5-39

Clipping Bitmap Shapes 5-43

Creating Bitmaps With Disk-Based Pixel Images 5-44

Creating Bitmaps Offscreen 5-45

Editing Part of a Bitmap 5-53

Applying Functions Described Elsewhere to Bitmap Shapes 5-54

Functions That Post Errors or Warnings When Applied to Bitmap
Shapes 5-55

Shape-Related Functions Applicable to Bitmap Shapes 5-56

Geometric Operations Applicable to Bitmap Shapes 5-58

Style-Related Functions Applicable to Bitmap Shapes 5-59

Ink-Related Functions Applicable to Bitmap Shapes 5-59

Transform-Related Functions Applicable to Bitmap Shapes 5-59

View-Related Functions Applicable to Bitmap Shapes 5-61

Bitmap Shapes Reference 5-61

Constants and Data Types 5-61

The Bitmap Geometry Structure 5-62

C H A P T E R 5

5-2 Contents

The Long Rectangle Structure 5-64

Constants For Bitmaps With Disk-Based Pixel Images 5-64

Bitmap Data Source Alias Structure 5-65

Functions 5-65

Creating Bitmaps 5-65

GXNewBitmap 5-66

Getting and Setting Bitmap Geometries 5-68

GXGetBitmap 5-68

GXSetBitmap 5-69

Editing Bitmaps 5-71

GXGetShapePixel 5-71

GXSetShapePixel 5-72

GXGetBitmapParts 5-74

GXSetBitmapParts 5-75

Drawing Bitmaps 5-76

GXDrawBitmap 5-77

Checking Bitmap Colors 5-79

GXCheckBitmapColor 5-79

Summary of Bitmap Shapes 5-81

Constants and Data Types 5-81

Functions 5-82

C H A P T E R 5

About Bitmap Shapes 5-3

Bitmap Shapes

This chapter describes bitmap shapes and the functions you use to manipulate them. It

also discusses functions described in other chapters and shows how you can apply them

to bitmap shapes.

Before you read this chapter, you should be familiar with the information in the chapter

“Shape Objects” of Inside Macintosh: QuickDraw GX Objects, and you will probably want

to be familiar with much of the information discussed in the chapters “Color and

Color-Related Objects,” “Transform Objects,” and “View-Related Objects,” also in that

book.

This chapter introduces bitmap shapes, describes bitmap geometries, and then shows

how to

■ define bitmap geometries

■ create bitmap shapes

■ draw bitmap shapes

■ manipulate the pixel image stored in a bitmap shape

■ apply transfer modes and transformations to bitmap shapes

■ draw other QuickDraw GX objects into a bitmap shape

■ create bitmap shapes with disk-based pixel images

■ replace a part of a bitmap shape’s pixel image

About Bitmap Shapes

Like all shapes, a bitmap shape is represented in memory by a shape object, a style

object, an ink object, and a transform object. A shape object representing a bitmap shape

contains the same properties as a shape object representing a geometric or typographic

shape: owner count, tag list, shape type, shape fill, geometry, and so on.

C H A P T E R 5

Bitmap Shapes

5-4 About Bitmap Shapes

Figure 5-1 shows a graphic representation of a bitmap shape and a bitmap geometry.

Figure 5-1 A bitmap shape

Bitmap shapes make extensive use of their geometry property. In fact, most of the

information useful to bitmap shapes is stored in their geometry—the values of the

bitmap’s pixels, the dimensions of the bitmap, and the color information used by

the bitmap.

Bitmap shapes don’t make much use of their shape fill property, and they use very little

of their associated style object. In fact, the only information in a style object used by

bitmap shapes are the style attributes that determine whether the upper-left corner of

the bitmap should be constrained to an integer grid position.

Bitmap shapes don’t use the color property of their ink objects because they store their

own color information in their geometries. However, they do use the transfer mode

property of their ink objects.

Bitmap shapes do make full use of their transform objects. For example, you can scale,

skew, rotate, and clip bitmap shapes. You can also hit-test bitmap shapes, but you cannot

hit-test parts of a bitmap shape, as you can for other types of shapes. For more

information about transform objects and hit-testing, see the chapter “Transform Objects”

of Inside Macintosh: QuickDraw GX Objects.

The next few sections discuss bitmap geometries, bitmap styles, bitmap inks, and bitmap

transforms.

C H A P T E R 5

Bitmap Shapes

About Bitmap Shapes 5-5

Bitmap Geometries
The geometry of a bitmap contains eight fields:

■ The pixel image—a pointer to a two-dimensional array of pixel values. Each pixel
value represents the color of one pixel of the bitmap.

■ The bitmap width—the number of pixels in each row of the bitmap.

■ The bitmap height—the number of pixels in each column of the bitmap.

■ The pixel size—the number of bits required to represent the color information for
each pixel of the bitmap.

■ The bytes per row—the number of bytes of the pixel image that correspond to each
row of the bitmap.

■ The bitmap color space—or the color space that determines how QuickDraw GX
translates the bitmap’s pixel values into colors. If the bitmap has any color space
except indexed space, each pixel value in the pixel image represents a color
specification in this color space. If the bitmap has an indexed color space, each pixel
value is interpreted using the bitmap color set.

■ The bitmap color set—the optional array of color values associated with the bitmap.
If the bitmap uses a color set (also called an indexed color space), each pixel value in the
bitmap’s pixel image represents an index into this color set.

■ The bitmap color profile—the color-matching information that you can specify for the
device on which the bitmap was created.

■ The bitmap position—the position of the upper-left corner of the bitmap. The actual
position of the bitmap when drawn may differ depending on the information in the
bitmap’s transform object.

QuickDraw GX provides the bitmap data type which you can use to create bitmap

geometries. The bitmap data type has a field corresponding to every field of a

bitmap geometry except the bitmap position. You must set and determine the bitmap

position programmatically.

QuickDraw GX enforces a few restrictions on the values of these geometry fields. For

example, the pixel size of the bitmap must be a power of 2 (from 1 to 32), and it must

correspond to the pixel size implicit in the bitmap color space.

The bytes per row of the bitmap must be a multiple of 2. This requirement allows for

faster bitmap manipulation.

Note

Although the Macintosh platform accepts any even number of bytes per
row, you might want to use a multiple of 4 bytes per row in your
bitmaps to promote cross-platform compatibility. ◆

C H A P T E R 5

Bitmap Shapes

5-6 About Bitmap Shapes

Sometimes you must pad a pixel image with extra bits to get an even number of bytes

per row. For example, Figure 5-2 shows a small, black-and-white (1 bit per pixel) bitmap

with a bitmap width of 10. The smallest number of bytes per row into which 10 bits fit

is 2, so the number of bytes per row for this bitmap is 2. Although the six extra bits at the

end of each row of the pixel image have values, they do not appear as pixels in the

bitmap when it is drawn.

Figure 5-2 A black-and-white bitmap geometry

All QuickDraw GX bitmaps are actually color bitmaps. A black-and-white bitmap is

simply a color bitmap with a color set containing only two colors—black and white.

Figure 5-3 shows another bitmap. In this example, the pixel size is 2; each pixel is

represented by 2 bits. Since no color space has an implicit pixel size of 2, this bitmap uses

a color set instead of a color space. In this example, the color set contains four shades of

gray (although it could contain any four colors); each pixel value in the pixel image is an

index into this color set. Since the bitmap width is 5 pixels and the pixel size is 2 bits per

pixel, at least 10 bits are required to represent each row of the pixel image. The smallest

number of bytes per row that contains 10 bits is 2 bytes, so each row of the bitmap has 16

bits total. The last 6 bits are ignored by QuickDraw GX.

C H A P T E R 5

Bitmap Shapes

About Bitmap Shapes 5-7

Figure 5-3 A grayscale bitmap geometry

QuickDraw GX allows you to store a bitmap’s pixel image in one of three locations:

■ You can allocate memory for the pixel image yourself. In this case, you provide
QuickDraw GX with a pointer to the memory containing your pixel image. The
section “Creating and Drawing Bitmaps” beginning on page 5-15 gives examples of
allocating memory for a pixel image yourself and incorporating the pixel image into a
bitmap shape.

■ You can request that QuickDraw GX allocate the memory for you. In this case, you
must use QuickDraw GX functions to draw into the bitmap and to edit it. If you want
to edit the pixel image directly, you can use other QuickDraw GX functions to lock the
image in memory and to request a pointer to it. However, if QuickDraw GX is storing
the pixel image on an accelerator card, your application might not be able to edit the
pixel image directly. The section “Creating Bitmaps Offscreen” beginning on
page 5-45 gives an example of requesting that QuickDraw GX allocate memory for
your pixel image.

■ You can associate the bitmap with a disk-based pixel image—a pixel image stored in
a disk file. In this case, you can use QuickDraw GX functions to read and draw the
bitmap, but you cannot use QuickDraw GX functions to edit the bitmap. You must
edit the bitmap directly using file-manipulation functions. The section “Creating
Bitmaps With Disk-Based Pixel Images” beginning on page 5-44 shows how you can
create a bitmap that uses a disk-based pixel image.

C H A P T E R 5

Bitmap Shapes

5-8 About Bitmap Shapes

Bitmap Styles and Inks
Although bitmap shapes have style objects and ink objects, they do not make full use of

the properties of these objects. Of the many properties of the style object, only the style

attributes property affects bitmap shapes. In fact, only the gxSourceGridStyle and

gxDeviceGridStyle style attributes affect bitmap shapes.

QuickDraw GX ignores the other style attributes and the other style properties when

drawing a bitmap shape. You can set the values of these properties and determine the

values you have set them to, but they do not affect how the bitmap is drawn.

See Chapter 3, “Geometric Styles,” for a description of how the gxSourceGridStyle

and gxDeviceGridStyle style attributes affect shapes, including bitmap shapes.

Of the ink object properties, bitmaps use the transfer mode property and ignore the color

property. Since bitmap shapes have color information stored in their geometries, they do

not need the color information stored in their ink objects. You can set the color of a

bitmap shape’s ink object, but it does not affect how the bitmap is drawn.

The transfer mode property, on the other hand, does affect the drawing of the bitmap.

QuickDraw GX applies the transfer mode as it draws each pixel of the bitmap, as shown

in Figure 5-4. You can find a color version of this figure in Plate 1 at the front of this book.

C H A P T E R 5

Bitmap Shapes

About Bitmap Shapes 5-9

Figure 5-4 The effect of transfer modes on bitmap shapes

The section “Applying Transfer Modes to Bitmaps” beginning on page 5-32 shows you

how to apply a transfer mode to a bitmap shape.

C H A P T E R 5

Bitmap Shapes

5-10 About Bitmap Shapes

Bitmap Transforms
Although bitmap shapes make limited use of their style and ink objects, they make full

use of their transform objects. Using the transform object, you can clip bitmap shapes

and apply mapping transformations to them. Some examples are shown in Figure 5-5.

Figure 5-5 The effect of mappings on bitmap shapes

You can find examples of how to clip and map bitmap shapes in “Applying

Transformations to Bitmaps,” which begins on page 5-38, and you can find more

information about clipping and mapping in the chapter “Transform Objects” in Inside
Macintosh: QuickDraw GX Objects as well as the chapter “Mathematical Functions” in

Inside Macintosh: QuickDraw GX Environment and Utilities.

Bitmap shapes, like other types of shapes, use the gxMapTransformShape shape

attribute to determine how mappings should be applied to the shape. If you set this

shape attribute, applying a mapping to a bitmap shape changes the mapping matrix

stored in the transform object of the bitmap shape. However, if you do not set this shape

attribute, applying a mapping to a bitmap shape changes the geometry of the bitmap

directly—that is, QuickDraw GX creates a completely new pixel image to represent the

transformed bitmap.

C H A P T E R 5

Bitmap Shapes

About Bitmap Shapes 5-11

Figure 5-6 compares the results of rotating a bitmap shape with and without the

gxMapTransformShape shape attribute set.

Figure 5-6 The effect of the gxMapTransformShape shape attribute on bitmap mappings

Each mapping that you apply to a bitmap shape that does not have its

gxMapTransformShape shape attribute set results in quality degradation of the

bitmap’s pixel image. If you apply multiple mappings to a bitmap shape that does not

have this shape attribute set, error can arise rapidly. The section “Applying

Transformations to Bitmaps,” which begins on page 5-38, gives an example of this

phenomenon.

You can find information about the GXRotateShape function in the chapter “Transform

Objects” in Inside Macintosh: QuickDraw GX Objects.

C H A P T E R 5

Bitmap Shapes

5-12 About Bitmap Shapes

Bitmaps and View Devices
When you draw a shape, QuickDraw GX applies the information in the shape’s style,

ink, and transform objects to the shape’s geometry and then renders the shape to the

display devices that correspond to the view information contained in the shape’s

transform object.

The transform object of a shape contains a list of view ports to which QuickDraw GX

should draw the shape. Each view port exists in the coordinate space of a specific view

group, and each view group contains view devices that share the same coordinate space.

QuickDraw GX determines where the shape appears in the coordinate space of each

view group. If the area of the shape when drawn overlaps the area covered by any view

device in that view group, QuickDraw GX renders the shape into the bitmap attached to

that view device.

Figure 5-7 depicts how this drawing mechanism works with four shapes: a polygon

shape, a path shape, a bitmap shape, and a text shape. The two path shapes share one

transform object and the bitmap shape and the text shape share a second transform

object.

Both of the transform objects contain one view port in their view port list. That view port

exists in a view group that also contains a view device. The view device has a bitmap

shape associated with it to hold the renderings of shapes drawn to it.

C H A P T E R 5

Bitmap Shapes

About Bitmap Shapes 5-13

Figure 5-7 Bitmaps and view devices

C H A P T E R 5

Bitmap Shapes

5-14 Using Bitmap Shapes

Whenever you draw a QuickDraw GX shape, you are using this view architecture to

render the shape to a display device. You can also use this view architecture to draw

shapes into an offscreen bitmap—a bitmap that is not associated with a physical display

device.

The section “Creating Bitmaps Offscreen,”which begins on page 5-45, shows how you

can create an offscreen bitmap, draw shapes into it, and then draw it to the screen.

You can find more information about the QuickDraw GX view architecture in the

chapter “View-Related Objects” in Inside Macintosh: QuickDraw GX Objects.

Using Bitmap Shapes

This section shows you how to create, edit, and draw bitmap shapes. In particular, this

section shows you how to

■ create and draw black-and-white bitmaps

■ create and draw color bitmaps

■ dither and halftone bitmaps

■ apply transfer modes to bitmaps

■ convert other types of shapes to bitmap shapes

■ apply transformations to bitmaps

■ create offscreen bitmaps

■ edit sections of bitmaps

Bitmap shape geometries use a gxPoint structure to indicate the initial position of

the bitmap. Since a gxPoint structure contains two fixed-point values (type Fixed), the

sample functions in this section must convert integer constants to fixed-point constants

when specifying bitmap positions. QuickDraw GX provides the GXIntToFixed macro

to perform this conversion:

#define GXIntToFixed(a) ((Fixed)(a) << 16)

QuickDraw GX also provides the ff macro as a convenient alias:

#define ff(a) GXIntToFixed(a)

C H A P T E R 5

Bitmap Shapes

Using Bitmap Shapes 5-15

Creating and Drawing Bitmaps
QuickDraw GX provides a number of methods to create and draw bitmaps. For example,

you can

■ define a bitmap geometry and draw it without creating a bitmap shape

■ define a bitmap geometry, encapsulate it in a bitmap shape, and draw the bitmap
shape

■ create another type of shape, convert it to a bitmap shape, perform any desired
bitmap editing, and draw the bitmap shape

■ create an offscreen bitmap, draw shapes to it, and then copy the offscreen bitmap to
the screen

■ unflatten a bitmap shape that was created earlier and stored to disk or that was
created by another application

■ convert a QuickDraw bitmap to a QuickDraw GX bitmap shape

The next section, “Creating Black-and-White Bitmaps,” and “Creating Color Bitmaps,”

which begins on page 5-21, show you how to create bitmaps by specifying the bitmap

geometry yourself.

The section “Converting Other Types of Shapes to Bitmaps,” which begins on page 5-34,

shows you how you can create a bitmap shape containing a bitmap representation of

other types of QuickDraw GX shapes.

The section “Creating Bitmaps Offscreen,” which begins on page 5-45, shows you how

you can draw other shapes into the pixel image of a bitmap shape. You can use this

method to create a bitmap representation of multiple QuickDraw GX shapes.

For information about flattening and unflattening bitmap shapes, see the chapter “Shape

Objects” in Inside Macintosh: QuickDraw GX Objects.

Creating Black-and-White Bitmaps

You create a black-and-white bitmap by creating a bitmap shape with a pixel size of 1. To

do this, you can define a pixel image, fill the fields of a bitmap geometry structure, and

create a bitmap shape using the GXNewBitmap function.

Listing 5-1 shows a complete sample function that defines a black-and-white bitmap

geometry, creates a bitmap shape, draws the shape, and disposes of it.

Listing 5-1 Creating a black-and-white bitmap

void CreateBlackAndWhiteBitmap(void)

{

gxShape aBitmapShape;

gxBitmap aBitmapGeometry;

gxPoint initialPosition = {ff(20), ff(40)};

C H A P T E R 5

Bitmap Shapes

5-16 Using Bitmap Shapes

const char envelopeImage[] = {0x7F, 0xFF, 0xFF, 0xFE,

 0xC0, 0x00, 0x00, 0x03,

 0xB0, 0x00, 0x00, 0x0D,

 0x8C, 0x00, 0x00, 0x31,

 0x83, 0x00, 0x00, 0xC1,

 0x80, 0xC0, 0x03, 0x01,

 0x80, 0x30, 0x0C, 0x01,

 0x80, 0x0C, 0x30, 0x01,

 0x80, 0x33, 0xCC, 0x01,

 0x80, 0xC0, 0x03, 0x01,

 0x83, 0x00, 0x00, 0xC1,

 0x8C, 0x00, 0x00, 0x31,

 0xB0, 0x00, 0x00, 0x0D,

 0x7F, 0xFF, 0xFF, 0xFE};

aBitmapGeometry.image = (char *) aSmallBitmapImage;

aBitmapGeometry.width = 32; /* width in pixels */

aBitmapGeometry.height = 14; /* height in pixels */

aBitmapGeometry.rowBytes = 4; /* bytes per row */

aBitmapGeometry.pixelSize = 1; /* bits per pixel */

/* QuickDraw GX creates a black-and-white color set for you */

aBitmapGeometry.space = gxNoSpace;

aBitmapGeometry.set = nil;

aBitmapGeometry.profile = nil;

aBitmapShape = GXNewBitmap(&aBitmapGeometry, &initialPosition);

GXDrawShape(aBitmapShape);

GXDisposeShape(aBitmapShape);

}

C H A P T E R 5

Bitmap Shapes

Using Bitmap Shapes 5-17

The result of this function is shown in Figure 5-8.

Figure 5-8 A black-and-white bitmap—32 bits wide

The sample function from Listing 5-1 first defines a variable to hold the reference to the

bitmap shape:

gxShape aBitmapShape;

Then the sample function defines two local variables to specify the bitmap geometry:

gxBitmap aBitmapGeometry;

gxPoint initialPosition = {ff(20), ff(40)};

The initialPosition variable, which is type gxPoint, contains the initial bitmap

position, and the aBitmapGeometry variable, which is type gxBitmap, contains the

rest of the information about the bitmap.

The sample function then defines the bitmap’s pixel image:

const char envelopeImage[] = {0x7F, 0xFF, 0xFF, 0xFE,

 0xC0, 0x00, 0x00, 0x03,

 0xB0, 0x00, 0x00, 0x0D,

 0x8C, 0x00, 0x00, 0x31,

 0x83, 0x00, 0x00, 0xC1,

 0x80, 0xC0, 0x03, 0x01,

 0x80, 0x30, 0x0C, 0x01,

 0x80, 0x0C, 0x30, 0x01,

 0x80, 0x33, 0xCC, 0x01,

 0x80, 0xC0, 0x03, 0x01,

 0x83, 0x00, 0x00, 0xC1,

 0x8C, 0x00, 0x00, 0x31,

 0xB0, 0x00, 0x00, 0x0D,

 0x7F, 0xFF, 0xFF, 0xFE};

C H A P T E R 5

Bitmap Shapes

5-18 Using Bitmap Shapes

The envelopeImage variable, which is defined as an array of bytes, contains a pixel

image depicting a small envelope, as shown in Figure 5-8.

To create a bitmap shape encapsulating this envelope image, the sample function fills in

the eight fields of the aBitmapGeometry variable. First, it sets the image field by

casting the envelopeImage variable to the correct type:

aBitmapGeometry.image = (char *) envelopeImage;

Then the sample function fills in the bitmap dimensions. The bitmap is 32 pixels wide by

14 pixels high, and there are 4 bytes of information in each row of the pixel image:

aBitmapGeometry.width = 32; /* width in pixels */

aBitmapGeometry.height = 14; /* height in pixels */

aBitmapGeometry.rowBytes = 4; /* bytes per row */

The sample function specifies the pixel size next. Since this bitmap is black-and-white,

only one bit is needed to represent each pixel of the bitmap:

aBitmapGeometry.pixelSize = 1; /* bits per pixel */

Finally, the sample function specifies color information. Since QuickDraw GX does not

provide a black-and-white color space, this bitmap needs a black-and-white color set in

which pixel values of 0 represent white pixels and pixel values of 1 represent black

pixels. Setting the pixelSize field to 1 and the space field to gxNoSpace indicates

that QuickDraw GX should create this black-and-white color set for you.

aBitmapGeometry.space = gxNoSpace;

aBitmapGeometry.set = nil;

aBitmapGeometry.profile = nil;

Setting the space field to the value gxNoSpace always indicates that QuickDraw GX

should choose a color space for you. If the pixel size were large—for example, 16 or 32—

QuickDraw GX would choose an RGB color space. However, since the pixel size is 1, no

appropriate color space exists, so QuickDraw GX creates a grayscale color set. The pixel

size determines the size of the color set created. In this case, a pixel size of 1 dictates that

the color set have two entries—an white entry for a pixel value of 0 and a black entry for

a pixel value of 1.

After you define a bitmap geometry, you could use the GXDrawBitmap function to cause

QuickDraw GX to

■ create a temporary bitmap shape (using the style, ink, and transform objects of the
default bitmap shape)

■ draw the bitmap

■ dispose of the temporary bitmap shape

with this line of code:

GXDrawBitmap(&aBitmapGeometry, &initialPosition);

C H A P T E R 5

Bitmap Shapes

Using Bitmap Shapes 5-19

You should use the GXDrawBitmap function, however, only when you know in advance

that you want to draw a bitmap only one time.

If you want to draw a bitmap more than once, you should encapsulate the bitmap

geometry in a bitmap shape and then draw the bitmap shape. The sample function in

Listing 5-1 uses this method:

aBitmapShape = GXNewBitmap(&aBitmapGeometry, &initialPosition);

GXDrawShape(aBitmapShape);

As with any type of QuickDraw GX shape, if you create a bitmap shape, you are

responsible for disposing of it when you no longer need it. Listing 5-1 does this by calling

GXDisposeShape(aBitmapShape);

Notice that the envelope bitmap requires 4 bytes—an even number—to represent each

row of the pixel image. However, to draw a similar envelope bitmap that includes two

more rows of bits, as shown in Figure 5-10, the required number of bytes might seem to

be 5 since 5 bytes contain 40 bits, more than enough needed to store the 34 bits per row

in this image.

However, if you set the rowBytes field to 5:

aBitmapGeometry.rowBytes = 5;

both the GXDrawBitmap function and the GXNewBitmap function post the error

bitmap_rowBytes_not_aligned, because the value of the rowBytes field must be

an even number.

Therefore, the value of the rowBytes field must be at least 6 for the bitmap of the

envelope with a shadow. However, simply setting the rowBytes field to the value 6

with the assignment

aBitmapGeometry.rowBytes = 6;

results in the bitmap shown in Figure 5-9.

Figure 5-9 An example of unaligned bytes per row

C H A P T E R 5

Bitmap Shapes

5-20 Using Bitmap Shapes

Clearly, the value of the bitmap’s rowBytes field is not aligned with the data in the

bitmap’s pixel image. If you set the value of the rowBytes field to 6, you must be sure to

pad the pixel image so that each row actually contains 6 bytes of information. Listing 5-2

shows a new definition of the pixel image. In this definition, each row contains one extra

byte so that the total number of bytes per row is even.

In this example, the extra bytes are initialized to the value 0x00. However, since these

bytes are just padding, you can specify any values for them. As indicated by the bitmap

width, QuickDraw GX ignores these extra bytes when drawing, hit-testing, or otherwise

manipulating the bitmap.

Listing 5-2 A bit image with an even number of bytes per row

static char envelopeImage[]= {0x7F, 0xFF, 0xFF, 0xFE, 0x00, 0x00,

0xC0, 0x00, 0x00, 0x03, 0x50, 0x00,

 0xB0, 0x00, 0x00, 0x0D, 0xA0, 0x00,

 0x8C, 0x00, 0x00, 0x31, 0x50, 0x00,

 0x83, 0x00, 0x00, 0xC1, 0xA0, 0x00,

 0x80, 0xC0, 0x03, 0x01, 0x50, 0x00,

 0x80, 0x30, 0x0C, 0x01, 0xA0, 0x00,

 0x80, 0x0C, 0x30, 0x01, 0x50, 0x00,

 0x80, 0x33, 0xCC, 0x01, 0xA0, 0x00,

 0x80, 0xC0, 0x03, 0x01, 0x50, 0x00,

 0x83, 0x00, 0x00, 0xC1, 0xA0, 0x00,

 0x8C, 0x00, 0x00, 0x31, 0x50, 0x00,

 0xB0, 0x00, 0x00, 0x0D, 0xA0, 0x00,

 0x7F, 0xFF, 0xFF, 0xFE, 0x50, 0x00,

 0x15, 0x55, 0x55, 0x55, 0xA0, 0x00,

 0x0A, 0xAA, 0xAA, 0xAA, 0x80, 0x00};

With this new, padded definition of the pixel image, you can set rowBytes field to 6 so

that the resulting bitmap appears as shown in Figure 5-10.

Figure 5-10 An envelope with a shadow

C H A P T E R 5

Bitmap Shapes

Using Bitmap Shapes 5-21

For a discussion of pixel images and bitmap geometries, see “Bitmap Geometries”

beginning on page 5-5.

For more information about the GXNewBitmap function, see its description on

page 5-66. For more information about the GXDrawBitmap function, see its description

on page 5-77.

The next section shows you how you can create a bitmap with color information.

Creating Color Bitmaps

All QuickDraw GX bitmaps are actually color bitmaps. A black-and-white bitmap is

simply a color bitmap with a color set containing only two colors—black and white.

The sample function in Listing 5-1 on page 5-15 creates a black-and-white bitmap

geometry by

■ specifying the pixel size to be 1

■ specifying the color space to be the gxNoSpace color space

The sample function encapsulates the geometry into a bitmap shape with this call to the

GXNewBitmap function:

aBitmapShape = GXNewBitmap(&aBitmapGeometry, &initialPosition);

Because the space field of the bitmap geometry specifies the gxNoSpace color space,

the GXNewBitmap function chooses a color space for you, based on the pixel size

specified in the pixelSize field. QuickDraw GX does not provide any color spaces

appropriate for a pixel size of 1, so the GXNewBitmap function creates a grayscale color

set with two entries—white and black.

If you specify the gxNoSpace color space with a pixel size of 2, the GXNewBitmap

function creates a grayscale color set with four entries—white, light gray, dark gray, and

black. After you change the pixel size to 2, you must reflect that change in the pixel

image, the bitmap width, and the number of bytes per row.

Typically, if you wanted to make a 1 bit-per-pixel bitmap into a 2 bit-per-pixel bitmap,

you would do the following

■ Maintain the bitmap width, as it represents the number of pixel values—not the
number of bits—per row of the bitmap

■ Double the number of bytes per row to accomodate the extra bits

■ Double the size of the pixel image, replacing 1-bit pixel values with 2-bit pixel values

This method allows you to maintain the size of the bitmap while allowing you to specify

more possible values (colors) for each pixel.

C H A P T E R 5

Bitmap Shapes

5-22 Using Bitmap Shapes

However, an easier (if somewhat less useful) way to make a 1 bit-per-pixel bitmap into a

2 bit-per-pixel bitmap is as follows:

■ Divide the bitmap width in half

■ Maintain the same number of bytes per row

■ Maintain the same pixel image

Let’s see what happens when you apply this simpler method for doubling the pixel size

of a bitmap. Doubling the pixel size and halving the bitmap width of the envelope

bitmap shown in Figure 5-10 on page 5-20 indicates that QuickDraw GX should interpret

every pair of bits in the pixel image as a single pixel. Since each pixel can have one of

four possible values (00, 01, 10, 11), the resulting bitmap contains four shades of gray, as

shown in Figure 5-11.

Figure 5-11 A bitmap with a grayscale color set (four shades)

You can double the pixel size and halve the bitmap width again, with the following

assignments:

aBitmapGeometry.width = 9;

aBitmapGeometry.height = 16;

aBitmapGeometry.rowBytes = 6;

aBitmapGeometry.pixelSize = 4;

QuickDraw GX interprets each set of 4 bits in the pixel image as representing a single

pixel of the bitmap, which means each pixel can now be represented by 16 different

values (0000, 0001, 0010, and so on). Since QuickDraw GX has no predefined color space

that uses a pixel size of 4, it creates for this bitmap a color set with sixteen shades of gray.

C H A P T E R 5

Bitmap Shapes

Using Bitmap Shapes 5-23

Figure 5-12 shows the resulting bitmap.

Figure 5-12 A bitmap with a grayscale color set (sixteen shades)

As the previous examples have shown, setting the space field of a bitmap geometry to

the gxNoSpace constant indicates that you want QuickDraw GX to choose a color space

for you. In these examples, which had 1, 2, or 4 bits per pixel, QuickDraw GX chose the

gxIndexedSpace color space and created a grayscale color set with the appropriate

number of color entries.

You are not limited to these grayscale color sets, however. You can create your own color

set, by choosing your own set of colors for the color entries. Listing 5-3 shows how to

define a simple color set with eight colors—black and white, the three primary RGB

colors, and the three secondary RGB colors.

Listing 5-3 Defining a color set

gxColorSet aColorSet;

gxSetColor newColorList[] = {

{0xFFFF, 0xFFFF, 0xFFFF, 0}, /* white */

{0xFFFF, 0, 0, 0}, /* red */

{0, 0xFFFF, 0, 0}, /* green */

{0, 0, 0xFFFF, 0}, /* blue */

{0, 0xFFFF, 0xFFFF, 0}, /* cyan */

{0xFFFF, 0, 0xFFFF, 0}, /* magenta */

{0xFFFF, 0xFFFF, 0, 0}, /* yellow */

{0, 0, 0, 0}, /* black */

};

C H A P T E R 5

Bitmap Shapes

5-24 Using Bitmap Shapes

The colors in this color set are specified in the RGB color space, and each color contains

four components—the red component, the green component, the blue component, and

a fourth component, which QuickDraw GX ignores for the RGB color space.

QuickDraw GX allows you to specify colors in other color spaces and with different

numbers of components. For complete color-specifying information, see the chapter

“Colors and Color-Related Objects” in Inside Macintosh: QuickDraw GX Objects.

Once you’ve defined the color list for a color set, you create the actual color set object by

using the GXNewColorSet function, which requires you to specify the color space in

which you’ve specified the colors, the total number of colors, and the list of colors:

aColorSet = GXNewColorSet(gxRGBSpace, 8, newColorList);

Note

Remember, you are responsible for disposing of QuickDraw GX objects
when you no longer need them, so you are responsible for disposing of
this new color set. ◆

To use the new color set in your bitmap, you need to set the space and set fields of the

bitmap geometry:

aBitmapGeometry.space = gxIndexedSpace;

aBitmapGeometry.set = aColorSet;

Setting the space field to gxIndexedSpace indicates that you are supplying the color

set, rather than having QuickDraw GX create one for you.

Figure 5-13 shows the result of applying this new color set to the 4-bits-per-pixel version

of the envelope bitmap. Notice that pixel values in the pixel image greater than 7 are

out of the range of the color set, so QuickDraw GX maps those pixel values to the color

black.

For a color version of Figure 5-13, see Plate 3 at the front of this book.

Figure 5-13 A bitmap with an eight-color color set

C H A P T E R 5

Bitmap Shapes

Using Bitmap Shapes 5-25

Each of the previous examples in this chapter creates a bitmap that uses a color set.

QuickDraw GX interprets each pixel of these bitmaps as an index into a set of colors. For

example, in the black-and-white bitmap that results from Listing 5-1 on page 5-15, each

pixel value (single bit) of the pixel image is an index into a color set with two colors—the

index of the color white is 0 and the index of the color black is 1. In the 2 bits-per-pixel

example on page 5-6, each pixel value (pair of bits) in the pixel image is an index into a

color set with four colors—the index of white is 0 (bits 00), the index of light gray is 1

(bits 01), the index of dark gray is 2 (bits 10), and the index of black is 3 (bits 11).

QuickDraw GX also allows you to create bitmaps that use color spaces other than

indexed color spaces (that is, other than color sets). In these bitmaps, each pixel value is

an actual color value instead of an index into a list of colors. The chapter “Colors and

Color-Related Objects” in Inside Macintosh: QuickDraw GX Objects explains color spaces,

color values, color sets, and color indexes.

One example of a bitmap for which you might want to use a color space instead of a

color set is a color ramp. A color ramp is a shape that blends from one color into another.

Since bitmaps are the only type of QuickDraw GX shape (except picture shapes) that

allows multiple colors in one shape, you must implement color ramps as bitmap shapes.

The sample function in Listing 5-4 on page 5-26 shows how to create a simple color

ramp. This function declares a bitmap shape reference and a bitmap geometry structure

using the declarations

gxShape aBitmapShape;

gxBitmap aBitmapGeometry;

It then fills in the fields of the bitmap geometry structure. First, it fills in the dimensions:

aBitmapGeometry.width = 1;

aBitmapGeometry.height = 256;

aBitmapGeometry.rowBytes = 1;

aBitmapGeometry.pixelSize = 32;

Notice that the sample function defines the bitmap width to be 1. Later, the sample

function uses the GXSetShapeBounds function later to widen the bitmap.

Next, the sample function sets the image field to nil to indicate that QuickDraw GX

should allocate memory for the pixel image of the bitmap. The value of the rowBytes

field is ignored because QuickDraw GX sets this field when allocating the pixel image.

The sample function then sets the color-related fields of the bitmap geometry structure:

aBitmapGeometry.space = gxRGB32Space;

aBitmapGeometry.set = nil;

aBitmapGeometry.profile = nil;

Notice that the pixel size implied by the color space (which is the gxRGB32Space color

space) is the same as the pixel size indicated in the pixelSize field of the bitmap

geometry structure (which is 32).

C H A P T E R 5

Bitmap Shapes

5-26 Using Bitmap Shapes

Next, the sample function creates the bitmap shape:

aBitmapShape = GXNewBitmap(&aBitmapGeometry, &initialPosition);

The sample function sets the color values of each pixel in the bitmap shape. To do this, it

creates a color structure with the declaration

gxColor current;

Then it fills in the values of the fields of the color structure:

current.space = gxRGBSpace;

current.profile = nil;

current.element.rgb.red = 0xFFFF;

current.element.rgb.green = 0;

current.element.rgb.blue = 0;

current.element.rgb.alpha = 0;

For a complete discussion of these fields, see the chapter “Colors and Color-Related

Objects” in Inside Macintosh: QuickDraw GX Objects.

The sample function then uses the GXSetShapePixel function to set each pixel value

in the pixel image of the bitmap shape. Each time the sample function sets the value of a

pixel, it changes the color value of the current variable slightly, decreasing the amount

of green and increasing the amount of red:

for (count = 0; count < 256; count++) {

current.element.component[0] -= 0x0101; /* decrease red */

current.element.component[1] += 0x0101; /* increase green */

GXSetShapePixel(aBitmapShape, 0, count, ¤t, 0);

}

Finally, the sample function resizes the bitmap, widening it to be a square, and draws the

resulting bitmap color ramp. The complete sample function definition is shown in

Listing 5-4.

Listing 5-4 Creating a color ramp

void CreateColorRamp(void)

{

gxShape aBitmapShape;

gxBitmap aBitmapGeometry;

const gxPoint initialLocation = {ff(50), ff(50)};

const gxRectangle theBounds = {ff(50), ff(50),

 ff(150), ff(150)};

C H A P T E R 5

Bitmap Shapes

Using Bitmap Shapes 5-27

gxColor current;

int count;

/* create a one-pixel-wide bitmap */

aBitmapGeometry.width = 1;

aBitmapGeometry.height = 256;

aBitmapGeometry.rowBytes = 1;

aBitmapGeometry.pixelSize = 32;

aBitmapGeometry.image = nil; /* have QuickDraw GX allocate */

aBitmapGeometry.space = gxRGB32Space;

aBitmapGeometry.set = nil;

aBitmapGeometry.profile = nil;

aBitmapShape = GXNewBitmap(&aBitmapGeometry, &initialLocation);

/* create a red color */

current.space = gxRGBSpace;

current.profile = nil;

current.element.component[0] = 0xFFFF; /* red */

current.element.component[1] = 0; /* green */

current.element.component[2] = 0; /* blue */

current.element.component[3] = 0; /* alpha */

/* fill in the colors of the bitmap pixel by pixel */

for (count = 0; count < 256; count++) {

current.element.rgb.red -= 0x0101; /* decrease red */

current.element.rgb.green += 0x0101; /* increase green */

GXSetShapePixel(aBitmapShape, 0, count, ¤t, 0);

}

/* resize the bitmap to give it more width */

GXSetShapeBounds(aBitmapShape, &theBounds);

GXDrawShape(aBitmapShape);

GXDisposeShape(aBitmapShape);

}

C H A P T E R 5

Bitmap Shapes

5-28 Using Bitmap Shapes

The resulting color ramp is shown in Figure 5-14. For a color version of this figure, see

Plate 4 at the front of this book.

Figure 5-14 A color ramp from red to green

QuickDraw GX provides the ramp library to assist you in creating color ramps. The

NewRamp library function requires you to provide a start color, an end color, an integer

indicating the number of different colors to calculate in between the start color and end

color, and a bounding rectangle for the final color ramp. Listing 5-5 shows how to use

this function to create the same color ramp shown in Figure 5-14.

Listing 5-5 Creating a color ramp using the ramp library

void CreateColorRamp(void)

{

gxShape aBitmapShape;

gxColor start, end;

const gxRectangle theBounds = {ff(50), ff(50),

 ff(150), ff(150)};

start.space = gxRGBSpace;

start.profile = nil;

start.element.rgb.red = 0xFFFF;

start.element.rgb.green = 0;

start.element.rgb.blue = 0;

start.element.rgb.alpha = 0;

end.space = gxRGBSpace;

end.profile = nil;

end.element.rgb.red = 0;

end.element.rgb.green = 0xFFFF;

C H A P T E R 5

Bitmap Shapes

Using Bitmap Shapes 5-29

end.element.rgb.blue = 0;

end.element.rgb.alpha = 0;

aBitmapShape = NewRamp(&start, &end, 256, &theBounds);

GXDrawShape(aBitmapShape);

GXDisposeShape(aBitmapShape);

}

As a further convenience, QuickDraw GX provides the color library, which allows you to

use predefined constants to specify frequently used colors. You provide the

SetCommonColor library function with a pointer to a color structure, and a predefined

constant specifying the color you want.

This function then initializes the color structure with the appropriate values to represent

the color you specify.

For example, the following call sets the fields of the start color structure with the

values that represent the color red:

SetCommonColor(&start, red);

Listing 5-6 shows you how to create the color ramp in Figure 5-14 by using functions

from both the ramp and color libraries.

Listing 5-6 Creating a color ramp using both the ramp and color libraries

void CreateColorRamp(void)

{

gxShape aBitmapShape;

gxColor start, end;

const gxRectangle theBounds = {ff(50), ff(50),

 ff(150), ff(150)};

SetCommonColor(&start, red);

SetCommonColor(&end, green);

aBitmapShape = NewRamp(&start, &end, 0, &theBounds);

GXDrawShape(aBitmapShape);

GXDisposeShape(aBitmapShape);

}

For a discussion of pixel images and bitmap geometries, see “Bitmap Geometries”

beginning on page 5-5.

You can find more information about colors, color structures, color values, color sets, and

color spaces in the chapter “Colors and Color-Related Objects” in Inside Macintosh:
QuickDraw GX Objects.

C H A P T E R 5

Bitmap Shapes

5-30 Using Bitmap Shapes

Dithering and Halftoning Bitmaps
The color ramp created in the previous section uses the gxRGB32Space color space, but

not all display devices can display 32 bits of color. To optimize the appearance of color

on displays with limited numbers of colors, QuickDraw GX allows you to dither

shapes—that is, approximate colors that a display device cannot draw, with patterns of

similar colors that the display device can draw.

The chapter “View-Related Objects” in Inside Macintosh: QuickDraw GX Objects describes

dithering in detail.

This section shows how you can use dithering to draw the color ramp shown in

Figure 5-14 on page 5-28.

Since dithering is a function of view port objects, you must first determine the view port

to which the color ramp is drawn. Since this color ramp is only being drawn to one view

port, you can declare an array to hold a single view port reference:

gxViewPort aViewPortList[1];

Then you can use the GXGetShapeGlobalViewPorts function to copy the view port

list from the transform object of the color ramp bitmap shape into the view port array:

GXGetShapeGlobalViewPorts(aColorRampBitmapShape, aViewPortList);

If the color ramp were being drawn to multiple view ports, you would call this function

once specifying nil for the view port array to determine the number of view ports, then

allocate space to hold the view port references, and then call the function a second time

to determine the actual view port references.

In the color ramp example, you can use the GXSetViewPortDither function to

indicate that shapes drawn to this view port should be dithered. This function takes two

parameters: a reference to the view port and a dither level, which is described in detail in

the chapter “View-Related Objects” in Inside Macintosh: QuickDraw GX Objects. If a view

port has a dither level of 2 or greater, QuickDraw GX dithers bitmaps drawn to that

view port:

GXSetViewPortDither(aViewPortList[0], 4); /* Dither bitmaps */

C H A P T E R 5

Bitmap Shapes

Using Bitmap Shapes 5-31

Figure 5-15 shows how QuickDraw GX draws the dithered color ramp to display devices

at two different pixel depths.

Figure 5-15 Dithered bitmaps

Halftoning, which is also described in the chapter “View-Related Objects” in Inside
Macintosh: QuickDraw GX Objects, is similar to dithering. To specify halftoning for a view

port, you need to create a gxHalftone structure. This structure specifies information

about how QuickDraw GX should halftone shapes drawn to the view port. Listing 5-7

shows how to create a sample gxHalftone structure and set the halftone characteristics

for the view port of the color ramp bitmap.

Listing 5-7 Halftoning a bitmap

gxHalftone aHalfTone;

SetCommonColor(&halftoneDots, gxBlack);

SetCommonColor(&halftoneBackground, gxWhite);

aHalftone.angle = ff(45);

aHalftone.frequency = ff(5);

aHalftone.method = gxRoundDot;

aHalftone.tinting = gxComponent1Tint;

aHalftone.dotColor = halftoneDots;

aHalftone.backgroundColor = halftoneBackground;

aHalftone.tintSpace = gxRGBSpace;

GXGetShapeGlobalViewPorts(aBitmapShape, aViewPort);

GXSetViewPortHalftone(aViewPort[0], &aHalftone);

C H A P T E R 5

Bitmap Shapes

5-32 Using Bitmap Shapes

Figure 5-16 shows three possible results of halftoning the color ramp bitmap. The first

example is the result of Listing 5-7—round dots and a dot frequency of 5. The other

two examples show the result of halftoning the color ramp bitmap with other dot

frequencies and dot shapes.

Figure 5-16 Halftoned bitmaps

Applying Transfer Modes to Bitmaps
When drawing a bitmap, QuickDraw GX uses the color information stored in the

geometry of the bitmap shape; it ignores the color information stored in the ink object

associated with the bitmap shape.

However, QuickDraw GX does consider the transfer mode information specified in a

bitmap shape’s ink object. QuickDraw GX uses the transfer mode when drawing each

pixel of a bitmap.

C H A P T E R 5

Bitmap Shapes

Using Bitmap Shapes 5-33

As an example, the sample function in Listing 5-8 creates a rectangle shape containing a

purple rectangle and a bitmap shape containing a color ramp from red to green (as

defined in Listing 5-6 on page 5-29).

Listing 5-8 Applying a transfer mode to a bitmap

void ApplyTransferModeToBitmap(void)

{

gxShape aRectangleShape, aBitmapShape;

const gxRectangle theRectangleBounds = {ff(100), ff(100),

 ff(200), ff(200)};

const gxRectangle theBitmapBounds = {ff(50), ff(50),

 ff(150), ff(150)};

gxColor start, end;

aRectangleShape = GXNewRectangle(&theRectangleBounds);

SetShapeCommonColor(aRectangleShape, purple);

SetCommonColor(&start, red);

SetCommonColor(&end, green);

aBitmapShape = NewRamp(&start, &end, 0, &theBitmapBounds);

SetShapeCommonTransfer(aBitmapShape, gxBlendMode);

GXDrawShape(aRectangleShape);

GXDrawShape(aBitmapShape);

GXDisposeShape(aRectangleShape);

GXDisposeShape(aBitmapShape);

}

C H A P T E R 5

Bitmap Shapes

5-34 Using Bitmap Shapes

The sample function then uses the transfer mode library function

SetShapeCommonTransfer to set the transfer mode of the bitmap shape to

gxBlendMode.

Finally, the sample function draws the purple rectangle and the bitmap. Since the ink

object associated with the bitmap specifies the gxBlendMode transfer mode,

QuickDraw GX applies this transfer mode when drawing each pixel of the bitmap. Pixels

that fall over the white background are blended with white, and pixels that fall over the

purple rectangle are blended with purple.

Figure 5-17 shows the result of this sample function. For a color version of this figure, see

Plate 2 at the front of this book.

Figure 5-17 A blended color ramp

You can find more information about transfer modes in the chapter “Ink Objects” in

Inside Macintosh: QuickDraw GX Objects.

Converting Other Types of Shapes to Bitmaps
The examples in the previous sections show you how to create a bitmap shape by

specifying the value of every pixel in the pixel image yourself. You can also create

bitmaps using one of a number of simpler methods. For example, you can convert any

QuickDraw GX shape to a bitmap shape. The pixel image of the resulting bitmap shape

contains a bitmap representation of the original shape. (In a similar way, when you draw

a shape to a display device, the display device displays a bitmap representation of the

original shape.)

C H A P T E R 5

Bitmap Shapes

Using Bitmap Shapes 5-35

To convert another type of shape into a bitmap shape, you use the GXSetShapeType

function, which is described in detail in the chapter “Shape Objects” of Inside Macintosh:
QuickDraw GX Objects.

Listing 5-9 shows a sample function that defines a figure-eight geometry, encapsulates

the geometry in a path shape, sets the pen width of that path to 10, and skews the path

around its center by 10% along both the horizontal and vertical axes. Then the sample

function converts the path shape into a bitmap shape and draws the bitmap.

Listing 5-9 Converting a path to a bitmap

void ConvertPathToBitmap(void)

{

gxShape pathToBitmapShape;

gxRectangle theBounds;

const long figureEightGeometry[] = {1, /* number of contours */

 4, /* number of points */

 0xF0000000, /* 1111 ... */

 ff(20), ff(20), /* off */

 ff(100), ff(100), /* off */

 ff(20), ff(100), /* off */

 ff(100), ff(20)}; /* off */

pathToBitmapShape = GXNewPaths((gxPaths *) figureEightGeometry);

GXSetShapeFill(pathToBitmapShape, gxClosedFrameFill);

GXSetShapePen(pathToBitmapShape, ff(10));

GXSkewShape(pathToBitmapShape, fl(.1), fl(.1), ff(60), ff(60));

GXSetShapeType(pathToBitmapShape, gxBitmapType);

 GXDrawShape(pathToBitmapShape);

 GXDisposeShape(pathToBitmapShape);

}

Listing 5-9 uses the GXSkewShape function, which is described fully in the chapter

“Transform Objects” in Inside Macintosh: QuickDraw GX Objects.

C H A P T E R 5

Bitmap Shapes

5-36 Using Bitmap Shapes

Figure 5-18 shows the result of this function.

Figure 5-18 A bitmap representation of a path shape

Notice that QuickDraw GX draws the bitmap at 72 pixels per inch.

When converting shapes to bitmap shapes, QuickDraw GX creates a bitmap shape with

the smallest pixel image possible to contain the bitmap representation of the original

shape. To illustrate, you can draw the bounding rectangle of the skewed figure-eight

bitmap by adding to Listing 5-9 the declaration

gxRectangle theBounds;

and these two lines of code:

GXGetShapeBounds(pathToBitmapShape, 0, &theBounds);

GXDrawRectangle(&theBounds, gxClosedFrameFill);

The resulting bitmap and bounding rectangle are shown in Figure 5-19.

Figure 5-19 A bitmap and its bounding rectangle

C H A P T E R 5

Bitmap Shapes

Using Bitmap Shapes 5-37

When QuickDraw GX converts other types of shapes into a bitmap shape, it creates a

new bitmap geometry and draws the original shape into the bitmap’s pixel image. If the

original shape does not cover all of the pixels in the bitmap’s pixel image,

QuickDraw GX sets the color value of the extra pixels to white. These white pixels may

produce unexpected results if you draw the bitmap over a background that includes

colors other than white.

For example, the following code adds a background shape to the sample function in

Listing 5-9:

gxShape backgroundShape;

const gxRectangle backgroundBounds = {ff(20), ff(10),

 ff(100), ff(110)};

backgroundShape = GXNewRectangle(&backgroundBounds);

SetShapeCommonColor(backgroundShape, purple);

If you draw the background before the bitmap, the white pixels of the bitmap cover the

corresponding area of the purple rectangle:

GXDrawShape(backgroundShape);

GXDrawShape(pathToBitmapShape);

The result appears as shown in Figure 5-20. For a color version of this figure, see Plate 6

at the front of this book.

Figure 5-20 A bitmap drawn over a background

You can set the transfer mode of the bitmap shape to allow the purple to show through

the white pixels. For example, you can set the transfer mode of the bitmap to the

gxMinimumMode transfer mode using this code:

SetShapeCommonTransfer(pathToBitmapShape, gxMinimumMode);

GXDrawShape(pathToBitmapShape);

C H A P T E R 5

Bitmap Shapes

5-38 Using Bitmap Shapes

The result is shown in Figure 5-21. For a color version of this figure, see Plate 6 at the

front of this book.

Figure 5-21 A bitmap with a transfer mode drawn over a background

Another way to allow the purple rectangle to show through the white areas of this

bitmap is to set the clip shape of the bitmap. The next section, “Applying

Transformations to Bitmaps,” shows an example of clipping a bitmap.

The examples in this section use colors and the SetCommonColor library function,

which are available in the color library, and transfer modes and the

SetShapeCommonTransfer library function, which are available in the transfer mode

library.

For more information about the GXSetShapeType function, see the chapter “Shape

Objects” in Inside Macintosh: QuickDraw GX Objects.

For information about combining multiple QuickDraw GX shapes into a single bitmap

shape, see “Creating Bitmaps Offscreen,” which begins on page 5-45.

Applying Transformations to Bitmaps
Although bitmap shapes make limited use of their style and ink objects, they make full

use of their transform objects. The examples in this section show how you can use the

transform object of a bitmap to affect the drawing of that bitmap. The first few sample

functions illustrate mapping transformations, and the last sample function illustrates

clipping.

C H A P T E R 5

Bitmap Shapes

Using Bitmap Shapes 5-39

Mapping Bitmap Shapes

Since a bitmap geometry contains a pixel image rather than a geometric description,

applying mapping transformations to bitmap shapes does not produce the same quality

results as applying mapping transformations to geometric shapes. To use as an example,

Figure 5-22 shows the path shape converted to a bitmap in Listing 5-9 on page 5-35.

Figure 5-22 A path shape converted to a bitmap shape

You can call the GXSkewShape function to undo the skewing of the figure-eight shape:

GXSkewShape(pathToBitmapShape, -fl(.1), -fl(.1), ff(60), ff(60));

Figure 5-23 shows the results of performing this transformation on the figure-eight

bitmap shape.

Figure 5-23 A path shape converted to a bitmap shape and then skewed

C H A P T E R 5

Bitmap Shapes

5-40 Using Bitmap Shapes

As Figure 5-23 shows, the quality of the transformed bitmap has degraded due to the

skewing. If the gxMapTransformShape shape attribute of the bitmap shape is not set,

this degradation of quality becomes more pronounced with multiple transformations.

For example, consider the color ramp depicted in Figure 5-24. For a color version of this

figure, see Plate 4 at the front of this book.

Figure 5-24 A color ramp bitmap

The following lines of code clear the gxMapTransformShape shape attribute for this

bitmap shape and then rotate the shape 360 times by 1 degree each time:

GXSetShapeAttributes(aColorRampBitmapShape,

 GXGetShapeAttributes(aColorRampBitmapShape)

 & ~gxMapTransformShape);

for (count = 1; count <= 360; count ++)

GXRotateShape(aColorRampBitmapShape, ff(1), ff(100), ff(100));

Enough error is introduced to create a interesting new bitmap, as shown in Figure 5-25.

For a color version of this figure, see Plate 5 at the front of this book.

Figure 5-25 A bitmap after multiple transformations

C H A P T E R 5

Bitmap Shapes

Using Bitmap Shapes 5-41

However, if you leave the gxMapTransformShape shape attribute set, you can apply

the same 360 transformations, and the resulting bitmap is identical to the original

bitmap. In this case, all of the transformations affect the mapping matrix stored in

the bitmap’s transform object and not the pixel values of the bitmap’s pixel image.

Scaling text provides another example of transformations degrading the quality with

which QuickDraw GX draws a shape. As an example, the sample function in Listing 5-10

creates a text shape, draws it, scales it up, and then draws the scaled version. This

sample function uses the GXScaleShape function, which is described in the chapter

“Transform Objects” of Inside Macintosh: QuickDraw GX Objects.

Listing 5-10 Scaling text

void ScaleText(void)

{

gxShape aTextShape;

const gxPoint initialLocation = {ff(50), ff(50)};

 aTextShape = GXNewText(9, (unsigned char *) "123456789",

 &initialLocation) ;

GXDrawShape(aTextShape);

GXScaleShape(aTextShape, ff(3), ff(3), ff(0), ff(50));

GXDrawShape(aTextShape);

GXDisposeShape(aTextShape);

}

The result is shown in Figure 5-26.

Figure 5-26 Scaled text

C H A P T E R 5

Bitmap Shapes

5-42 Using Bitmap Shapes

If you convert the text shape to a bitmap shape before scaling it, as in the sample

function in Listing 5-11, the result is quite different.

Listing 5-11 Scaling a bitmap

void ScalingABitmap(void)

{

gxShape aBitmapShape;

gxPoint initialLocation = {ff(50), ff(50)};

 aBitmapShape = GXNewText(9, (unsigned char *) "123456789",

 &initialLocation) ;

GXSetShapeType(aBitmapShape, gxBitmapType);

GXDrawShape(aBitmapShape);

GXScaleShape(aBitmapShape, ff(3), ff(3), ff(0), ff(50));

GXDrawShape(aBitmapShape);

GXDisposeShape(aBitmapShape);

}

Figure 5-27 compares the result of scaling the text shape with the result of scaling the

bitmap shape.

Figure 5-27 Scaled text and a scaled bitmap

C H A P T E R 5

Bitmap Shapes

Using Bitmap Shapes 5-43

When scaling the text, QuickDraw GX uses the outline information in the font to draw

the best representation of the text at the appropriate size. When scaling the bitmap

representation of the text, QuickDraw GX simply scales the bits used to represent the

smaller version of the text.

For more information about text shapes, see Inside Macintosh: QuickDraw GX Typography.

Clipping Bitmap Shapes

You can use the transform object of a bitmap shape to clip the bitmap—that is, restrict

the area where QuickDraw GX draws the bitmap.

As an example, to apply a circular clip to the color ramp from Figure 5-24 on page 5-40,

you start by defining the circular geometry and encapsulating it in a path shape:

long theClipGeometry[] = {1, 4, 0xF0000000,

 ff(50), ff(50),

 ff(150), ff(50),

 ff(150), ff(150),

 ff(50), ff(150)};

aClipShape = GXNewPaths((gxPaths *) theClipGeometry);

Then set the clip property of the bitmap’s transform object by using this call to the

GXSetShapeClip function:

GXSetShapeClip(aColorRampBitmapShape, aClipShape);

QuickDraw GX draws the resulting bitmap shape as shown in Figure 5-28. For a color

version of this figure, see Plate 5 at the front of this book.

Figure 5-28 A clipped bitmap

For more information about transform objects, mapping transformations, clip shapes,

and the GXSetShapeClip function, see the chapter “Transform Objects” in Inside
Macintosh: QuickDraw GX Objects.

C H A P T E R 5

Bitmap Shapes

5-44 Using Bitmap Shapes

Creating Bitmaps With Disk-Based Pixel Images
QuickDraw GX allows you to store the pixel image of a bitmap shapes in a disk file. To

create this type of bitmap, you specify a predefined constant for the image field of the

bitmap’s geometry:

aBitmapGeometry.image = gxBitmapFileAliasImageValue;

The other fields of the geometry you can initialize as you would for other bitmaps:

aBitmapGeometry.width = widthOfDiskBasedImage;

aBitmapGeometry.height = heightOfDiskBasedImage;

aBitmapGeometry.rowBytes = rowBytesOfDiskBasedImage;

aBitmapGeometry.pixelSize = pixelSizeOfDiskBasedImage;

aBitmapGeometry.space = colorSpaceOfDiskBasedImage;

aBitmapGeometry.set = colorSetOfDiskBasedImage;

aBitmapGeometry.profile = colorProfileOfDiskBasedImage;

You still create the bitmap using the GXNewBitmap function:

aBitmapShape = GXNewBitmap(&aBitmapGeometry, &initialLocation);

You specify the file that contains the pixel image using the bitmap data source alias

structure, which is defined by the gxBitmapDataSourceAlias data type:

struct gxBitmapDataSourceAlias {

unsigned long fileOffset; /* offset (in bytes) to image */

unsigned long aliasRecordSize; /* size of alias record */

unsigned char aliasRecord[gxAnyNumber]; /* alias record */

};

To use this data type, you need to declare a variable to hold the structure:

gxBtimapDataSourceAlias anAlias;

Then, you need to set the three fields of the structure:

■ the aliasRecord field should contain a Macintosh Alias Manager alias record
specifying the file containing the pixel image

■ the aliasRecordSize field should specify the size in bytes of the alias record

■ the fileOffset field should specify the offset in bytes from the beginning of the
data fork of the file to the first pixel value of the pixel image

C H A P T E R 5

Bitmap Shapes

Using Bitmap Shapes 5-45

Once you’ve created the bitmap data source alias structure, you create a tag object to

encapsulate the structure, using the call

anAliasTag = GXNewTag(gxBitmapFileAliasTagType, sizeOf(anAlias)

 &anAlias);

Then you associate the tag object with the bitmap shape using the call

GXSetShapeTags(aBitmapShape, gxBitmapFileAliasTagType,

1, /* first tag */

–1, /* replace all tags of same type */

1, /* insert one new tag */

&anAliasTag); /* tag to insert */

Now the disk-based bitmap is completely initialized. You can use most bitmap-related

functions with this bitmap, but there are bitmap-related functions you cannot use. In

particular, you cannot call the GXSetBitmapParts, GXSetShapePixel,

GXNewViewDevice, or GXSetViewDeviceBitmap functions, as these functions would

require QuickDraw GX to write to the file.

For more information about alias records, see the chapter “Alias Manager” of Inside
Macintosh: Files.

For more information about tags and the GXNewTag function, see the chapter “Tag

Objects” of Inside Macintosh: QuickDraw GX Objects. For information about the

GXSetShapeTags function, see the chapter “Shape Objects” in that book.

Creating Bitmaps Offscreen
The section “Converting Other Types of Shapes to Bitmaps” beginning on page 5-34

describes how you can convert a single QuickDraw GX shape to a bitmap shape. This

section shows you how to draw multiple QuickDraw GX shapes to a single bitmap

shape.

When you draw a shape, QuickDraw GX does the following:

■ examines the shape’s transform object, which contains a view port list

■ examines the view ports in this list, each of which belongs to a view group

■ examines these view groups, which contain view devices

■ decides which view devices the shape actually intersects

■ examines these view devices, each of which contains a bitmap

■ renders the shape into these bitmaps

C H A P T E R 5

Bitmap Shapes

5-46 Using Bitmap Shapes

Therefore, to draw shapes into an offscreen bitmap, you need to

■ create a bitmap shape to contain the rendered shapes

■ create a view group to contain a view device

■ create a view device to contain the bitmap shape

■ create a view port that belongs to the view group

■ create a transform to reference the view port

■ associate the transform with the shapes you want to draw offscreen

■ clear the offscreen bitmap

■ draw the shapes

You can find complete information about transforms, view devices, view groups, and

view ports in the chapters “Transform Objects” and “View-Related Objects” in Inside
Macintosh: QuickDraw GX Objects.

To create the offscreen bitmap, you must define a shape reference for the bitmap shape

and create a bitmap shape of the appropriate size:

gxShape aBitmapShape;

aBitmapShape = CreateABitmap(200, 200);

Listing 5-12 shows a possible definition for the CreateABitmap function. This function

creates a black-and-white bitmap of a specified height and width.

Listing 5-12 Creating a black-and-white bitmap

static gxShape CreateABitmap(long height, long width)

{

gxShape aBitmapShape;

gxBitmap aBitmapGeometry;

const gxPoint initialLocation = {ff(0), ff(0)};

aBitmapGeometry.image = nil;

aBitmapGeometry.width = width;

aBitmapGeometry.height = height;

aBitmapGeometry.rowBytes = 0;

aBitmapGeometry.pixelSize = 1;

aBitmapGeometry.space = gxNoSpace;

aBitmapGeometry.set = nil;

aBitmapGeometry.profile = nil;

C H A P T E R 5

Bitmap Shapes

Using Bitmap Shapes 5-47

aShape = GXNewBitmap(&aBitmapGeometry, &initialLocation);

return(aBitmapShape);

}

To create the offscreen view device, view group, and view port objects, you must declare

references to them:

gxViewGroup offscreenViewGroup;

gxViewDevice offscreenViewDevice;

gxViewPort offscreenViewPort;

You create the view group object first:

offscreenViewGroup = GXNewViewGroup();

Then you can create the view device and view port objects. To create a view device, you

must specify both the view group it belongs to and the bitmap it uses when rendering

shapes:

offscreenViewDevice = GXNewViewDevice(offscreenViewGroup,

 aBitmapShape);

To create a view port, you need only specify the view group to which it belongs:

offscreenViewPort = GXNewViewPort(offscreenViewGroup);

To draw shapes to this offscreen view port, you need to create a new transform object.

First, you must declare a reference to a transform object:

gxTransform offscreenTransform;

Then you can create it and set its view port list to contain the offscreen view port:

offscreenTransform = GXNewTransform();

GXSetTransformViewPorts(offscreenTransform, 1,

&offscreenViewPort);

Now you’re ready to draw shapes offscreen. The first shape that you draw is a simple

white rectangle, and drawing it initializes the pixels in the offscreen bitmap:

gxShape aRectangleShape;

gxRectangle boundsRectangle = {ff(0), ff(0), ff(200), ff(200)};

aRectangleShape = GXNewRectangle(&boundsRectangle);

SetShapeCommonColor(aRectangleShape, gxWhite);

C H A P T E R 5

Bitmap Shapes

5-48 Using Bitmap Shapes

To draw this white rectangle to the offscreen bitmap, you must set its transform object to

be the offscreen transform object:

GXSetShapeTransform(aRectangleShape, offscreenTransform);

Then you draw and dispose of the shape:

GXDrawShape(aRectangleShape);

GXDisposeShape(aRectangleShape);

Since the rectangle shape references the offscreen transform object, QuickDraw GX

draws the white rectangle into the offscreen bitmap.

Because the offscreen bitmap is now initialized, you can draw other shapes to it. The

following code demonstrates how to create a line shape and draw it to the offscreen

bitmap:

gxShape aLineShape;

gxLine lineGeometry = {ff(40), ff(40), ff(160), ff(160)};

aLineShape = GXNewLine(&lineGeometry);

GXSetShapePen(aLineShape, ff(50));

GXSetShapeTransform(aLineShape, offscreenTransform);

GXDrawShape(aLineShape);

GXDisposeShape(aLineShape);

As another example, the following code demonstrates how to create a text shape and

draw it to the offscreen bitmap:

gxShape aTextShape;

gxPoint textLocation = {ff(70), ff(100)};

gxPoint textCenter;

aTextShape = GXNewText(9, (unsigned char *) "123456789",

 &textLocation) ;

GXGetShapeCenter(aTextShape, 0, &textCenter);

GXScaleShape(aTextShape, ff(3), ff(3),

 textCenter.x, textCenter.y);

SetShapeCommonTransfer(aTextShape, gxXorMode);

GXSetShapeTransform(aTextShape, offscreenTransform);

GXDrawShape(aTextShape);

GXDisposeShape(aTextShape);

This code segment uses the SetShapeCommonTransfer library function, which is

available in the transfer mode library.

C H A P T E R 5

Bitmap Shapes

Using Bitmap Shapes 5-49

Finally, to transfer the offscreen bitmap to the screen, you need only draw the bitmap:

GXDrawShape(aBitmapShape);

When drawing the offscreen bitmap, QuickDraw GX uses the information in the

transform object of the offscreen bitmap shape. This example uses the GXNewBitmap

function to create the offscreen bitmap, and so it references the same transform object as

the default bitmap shape. The transform of the default bitmap references the default

view port, as described in the chapter “View-Related Objects” in Inside Macintosh:
QuickDraw GX Objects. Since the default view port is typically on screen, drawing the

offscreen bitmap effectively transfers it to the screen.

Listing 5-13 shows the complete sample function to create an offscreen bitmap, draw

shapes to it, and copy it to the screen.

Listing 5-13 Creating an offscreen bitmap

void CreateOffscreenBitmap(void)

{

gxShape aBitmapShape, aRectangleShape, aLineShape, aTextShape;

gxRectangle boundsRectangle = {ff(0), ff(0), ff(200), ff(200)};

gxLine lineGeometry = {ff(40), ff(40), ff(160), ff(160)};

gxPoint textLocation = {ff(70), ff(100)};

gxPoint textCenter;

/* declare view group, and so forth. */

 aBitmapShape = CreateABitmap(200, 200);

offscreenViewGroup = GXNewViewGroup();

offscreenViewDevice = GXNewViewDevice(offscreenViewGroup,

 aBitmapShape);

offscreenViewPort = GXNewViewPort(offscreenViewGroup);

offscreenTransform = GXNewTransform();

GXSetTransformViewPorts(offscreenTransform, 1,

 &offscreenViewPort);

/* draw white rectangle to clear bitmap */

aRectangleShape = GXNewRectangle(&boundsRectangle);

GXSetShapeTransform(aRectangleShape, offscreenTransform);

SetShapeCommonColor(aRectangleShape, gxWhite);

GXDrawShape(aRectangleShape);

GXDisposeShape(aRectangleShape);

C H A P T E R 5

Bitmap Shapes

5-50 Using Bitmap Shapes

/* draw thick diagonal line offscreen */

aLineShape = GXNewLine(&lineGeometry);

GXSetShapePen(aLineShape, ff(50));

GXSetShapeTransform(aLineShape, offscreenTransform);

GXDrawShape(aLineShape);

GXDisposeShape(aLineShape);

/* draw text offscreen */

aTextShape = GXNewText(9, (unsigned char *) "123456789",

 &textLocation) ;

GXGetShapeCenter(aTextShape, 0, &textCenter);

GXScaleShape(aTextShape, ff(3), ff(3), textCenter.x,

 textCenter.y);

SetShapeCommonTransfer(aTextShape, gxXorMode);

GXSetShapeTransform(aTextShape, offscreenTransform);

GXDrawShape(aTextShape);

GXDisposeShape(aTextShape);

/* transfer bitmap to screen */

GXDrawShape(aBitmapShape);

GXDisposeShape(aBitmapShape);

GXDisposeTransform(offscreenTransform);

GXDisposeViewGroup(offscreenViewGroup);

}

C H A P T E R 5

Bitmap Shapes

Using Bitmap Shapes 5-51

Figure 5-29 shows the result of this function.

Figure 5-29 Multiple shapes drawn to a bitmap

The offscreen library provided with QuickDraw GX contains some utilities that simplify

the creation of offscreen bitmaps. This library defines the offscreen structure, which

contains a reference to a transform, view port, view device, and view group. Listing 5-14

shows how to use the offscreen library to create the bitmap shown in Figure 5-29 .

Listing 5-14 Creating an offscreen bitmap using the offscreen library

void CreateOffscreenBitmap(void)

{

shape aBitmapShape, aRectangleShape, aLineShape, aTextShape;

offscreen anOffscreen;

const gxRectangle boundsRectangle = {ff(0), ff(0),

 ff(200), ff(200)};

const gxLine lineGeometry = {ff(40), ff(40),

 ff(160), ff(160)};

const gxPoint textLocation = {ff(70), ff(100)};

gxPoint textCenter;

 aBitmapShape = CreateABitmap(200, 200);

C H A P T E R 5

Bitmap Shapes

5-52 Using Bitmap Shapes

/* create all offscreen-related objects */

CreateOffscreen(&anOffscreen, aBitmapShape);

aRectangleShape = GXNewRectangle(&boundsRectangle);

GXSetShapeTransform(aRectangleShape, anOffscreen.xform);

SetShapeCommonColor(aRectangleShape, gxWhite);

GXDrawShape(aRectangleShape);

GXDisposeShape(aRectangleShape);

aLineShape = GXNewLine(&lineGeometry);

GXSetShapePen(aLineShape, ff(50));

GXSetShapeTransform(aLineShape, anOffscreen.xform);

GXDrawShape(aLineShape);

GXDisposeShape(aLineShape);

aTextShape = GXNewText(9, (unsigned char *) "123456789",

 &textLocation) ;

GXGetShapeCenter(aTextShape, 0, &textCenter);

GXScaleShape(aTextShape, ff(3), ff(3), textCenter.x,

 textCenter.y);

SetShapeCommonTransfer(aTextShape, gxXorMode);

GXSetShapeTransform(aTextShape, anOffscreen.xform);

GXDrawShape(aTextShape);

GXDisposeShape(aTextShape);

GXDrawShape(aBitmapShape);

GXDisposeShape(aBitmapShape);

/* dispose of all offscreen-related objects */

DisposeOffscreen(&anOffscreen);

GXDrawShape(aBitmapShape);

GXDisposeShape(aBitmapShape);

}

C H A P T E R 5

Bitmap Shapes

Using Bitmap Shapes 5-53

Editing Part of a Bitmap
QuickDraw GX provides two functions that allow you to manipulate part of a bitmap.

The GXGetBitmapParts function copies a rectangular subsection from one bitmap to a

new bitmap, and the GXSetBitmapParts function replaces a rectangular subsection of

one bitmap with another bitmap.

To extract part of a bitmap shape, you need to declare a reference to a new bitmap shape

to hold the extracted part:

gxShape extractedBitmap;

You also need to specify what part of the bitmap to extract. QuickDraw GX provides the

gxLongRectangle sturcture for this purpose:

gxLongRectangle extractedBounds = {70, 70, 125, 125};

You can then use the GXGetBitmapParts function to extract the specified section. For

example, the following call extracts from the bitmap referenced by the aBitmapShape

variable the section starting at 70 pixels over and 70 pixels down and ending at 125

pixels over and 125 pixels down.

extractedBitmap = GXGetBitmapParts(aBitmapShape,

 &extractedBounds);

Applying this function call to the bitmap shown in Figure 5-29 results in the bitmap

shown in Figure 5-30.

Figure 5-30 An extracted bitmap

You can use the GXSetBitmapParts function to replace a section of one bitmap with

the contents of another bitmap.

For example, you might create a small, square bitmap containing all black pixels:

gxShape insertionBitmap;

gxRectangle insertionGeometry = {ff(0), ff(0), ff(100), ff(100)};

insertionBitmap = GXNewRectangle(&insertionGeometry);

GXSetShapeType(insertionBitmap, gxBitmapType);

C H A P T E R 5

Bitmap Shapes

5-54 Applying Functions Described Elsewhere to Bitmap Shapes

Then you can insert that bitmap into the bitmap from Figure 5-29 by specifying where it

should be inserted with the declaration

gxLongRectangle whereToInsert = {70, 70, 125, 125};

and then inserting it with this call to the GXSetBitmapParts function:

GXSetBitmapParts(aBitmapShape, &whereToInsert, insertionBitmap);

Notice that the insertionBitmap shape is larger than the whereToInsert rectangle.

QuickDraw GX only inserts as much of the insertionBitmap shape as fits in the

whereToInsert rectangle, starting with the upper-left corner of the

insertionBitmap shape.

The resulting bitmap is shown in Figure 5-31.

Figure 5-31 An edited bitmap

For more information about the GXGetBitmapParts and the GXSetBitmapParts

functions, see page 5-74 and page 5-75, respectively.

Applying Functions Described Elsewhere to Bitmap Shapes

QuickDraw GX provides only a small number of functions that apply exclusively to

bitmaps. However, most of the QuickDraw GX functions that apply to other types of

shapes can also be applied to bitmap shapes.

C H A P T E R 5

Bitmap Shapes

Applying Functions Described Elsewhere to Bitmap Shapes 5-55

The next seven sections discuss how functions described elsewhere operate on bitmaps.

These sections are as follows:

■ “Functions That Post Errors or Warnings When Applied to Bitmap Shapes” on
page 5-55, which lists functions that you can apply to other types of shapes but not to
bitmap shapes

■ “Shape-Related Functions Applicable to Bitmap Shapes” on page 5-56, which lists
functions that operate on bitmap shape objects

■ “Geometric Operations Applicable to Bitmap Shapes” on page 5-58, which lists the
few geometric operation functions that you can apply to bitmap geometries

■ “Style-Related Functions Applicable to Bitmap Shapes” on page 5-59, which lists the
few style-related functions that affect the drawing of bitmaps

■ “Ink-Related Functions Applicable to Bitmap Shapes” on page 5-59, which lists the
functions that manipulate on the transfer mode of a bitmap shape’s ink object

■ “Transform-Related Functions Applicable to Bitmap Shapes” on page 5-59, which
discusses the functions that allow you to map and clip a bitmap as well as set its
hit-test parameters and its view port list

■ “View-Related Functions Applicable to Bitmap Shapes” on page 5-61, which lists the
functions that allow you to associate a bitmap shape with a view device object

Functions That Post Errors or Warnings When Applied to Bitmap
Shapes
Some QuickDraw GX functions that operate on other types of shapes only post an error

or a warning if you try to apply them to a bitmap shape.

For example, the shape-editing functions listed in Table 5-1 operate on the geometric

shape types, but not on bitmap shapes. These functions are described in Chapter 2,

“Geometric Shapes,” in this book.

Although you cannot apply the functions listed in Table 5-1 to a bitmap shape, you can

use the GXGetBitmapParts and GXSetBitmapParts functions to edit sections of a

bitmap. These functions are described in “Editing Bitmaps” beginning on page 5-71.

Table 5-1 Shape-editing functions that post errors or warnings when applied to bitmaps

Function name Error or warning posted

GXGetShapeParts shape_operator_may_not_be_a_bitmap

GXSetShapeParts shape_operator_may_not_be_a_bitmap

C H A P T E R 5

Bitmap Shapes

5-56 Applying Functions Described Elsewhere to Bitmap Shapes

There are also a number of geometric operations that you cannot apply to bitmap

shapes. Table 5-2 lists these functions, which are described in Chapter 4, “Geometric

Operations,” in this book.

Most of these geometric operations do not apply to bitmap shapes because the geometry

of a bitmap is substantially different from the geometry of a geometric shape.

You can apply a few of the geometric operations to bitmaps, however. These functions

are discussed in “Geometric Operations Applicable to Bitmap Shapes” beginning on

page 5-58.

Shape-Related Functions Applicable to Bitmap Shapes
You can apply all of the functions described in the chapter “Shape Objects” in Inside
Macintosh: QuickDraw GX Objects to bitmap shapes. These functions allow you to

■ manipulate the shape object that represents the bitmap shape—for example, you can
copy, clone, cache, compare, and dispose of the bitmap shape

■ set the geometry, shape type, shape fill, and shape attributes of the bitmap shape

Table 5-2 Geometric operations that post errors or warnings when applied to bitmaps

Function name Error or warning posted

GXBreakShape graphic_type_does_not_contain_points

GXContainsShape shape_operator_may_not_be_a_bitmap

GXDifferenceShape shape_operator_may_not_be_a_bitmap

GXExcludeShape shape_operator_may_not_be_a_bitmap

GXGetShapeCenter illegal_type_for_shape

GXGetShapeDirection graphic_type_does_not_have_multiple_contours

GXGetShapeLength shape_does_not_have_length

GXInsetShape graphic_type_cannot_be_inset

GXIntersectShape shape_operator_may_not_be_a_bitmap

GXInvertShape shape_cannot_be_inverted

GXReduceShape graphic_type_cannot_be_reduced

GXReverseDifferenceShape shape_operator_may_not_be_a_bitmap

GXReverseShape contour_out_of_range

GXShapeLengthToPoint shape_does_not_have_length

GXTouchesShape shape_operator_may_not_be_a_bitmap

GXUnionShape shape_operator_may_not_be_a_bitmap

C H A P T E R 5

Bitmap Shapes

Applying Functions Described Elsewhere to Bitmap Shapes 5-57

■ change the style, ink, and transform objects that are associated with the bitmap shape

■ manipulate the tags and owner count of the bitmap shape

Table 5-3 gives important bitmap-related information for a subset of the functions from

the chapter “Shape Objects” in Inside Macintosh: QuickDraw GX Objects. Functions

described in that chapter that do not appear in this list exhibit the same behavior when

applied to bitmap shapes as they do when applied to other types of shapes.

Table 5-3 Shape-related functions that exhibit special behavior when applied to bitmaps

Function name Action taken

GXChangedShape Notifies QuickDraw GX that you have directly edited the geometry of
the bitmap (using the GXGetShapeStructure and GXLockShape
functions). You should call this function when you directly edit any
field of a bitmap geometry structure or when you edit the pixel values
of a bitmap’s pixel image.

GXCopyToShape Makes a copy of the bitmap shape, but does not copy the pixel image.
Instead, the new bitmap shape references the same pixel image.

GXCopyDeepToShape Makes a copy of the bitmap shape, including a complete copy of the
bitmap’s pixel image. The copy of the pixel image is allocated in
QuickDraw GX memory, regardless of where the original image was
allocated.

GXEqualShape Determines if two bitmap shapes are equal—that is, their bitmap
position, height, width, color space, color set, and color profile fields are
equal, and their pixel images contain the same pixel values.

GXGetShapeSize Determines the amount of memory currently used by the bitmap shape,
including the amount of QuickDraw GX memory currently used by the
pixel image of the bitmap.

GXGetDefaultShape Returns a reference to the default bitmap shape. The default bitmap
shape has 1 bit per pixel, 0 width, and 0 height.

GXGetShapeFill Returns the shape fill of the shape. The shape fill for bitmap shapes is
always even-odd fill or no fill.

GXGetShapeStructure Returns a pointer to the geometry of the bitmap shape. You can use this
function to determine the address of the pixel image, even if it is
allocated in QuickDraw GX memory.

GXLockShape Loads the bitmap shape into memory and locks its geometry into a
fixed memory location. If the pixel image is allocated in QuickDraw GX
memory, it is loaded and locked as well.

GXNewShape Creates a bitmap shape with 0 width, 0 height, 32 bits per pixel and
rgb32space color space.

GXSetShapeFill Sets the shape fill of the shape. You must always set the shape fill of a
bitmap shape to even-odd fill or no fill.

GXSetShapeType Changes the shape type of the bitmap shape and converts the shape fill
and geometry as appropriate.

C H A P T E R 5

Bitmap Shapes

5-58 Applying Functions Described Elsewhere to Bitmap Shapes

Geometric Operations Applicable to Bitmap Shapes
Most geometric operations post errors or warnings when applied to bitmap shapes, as

described in “Functions That Post Errors or Warnings When Applied to Bitmap Shapes”

on page 5-55.

You can, however, apply the remainder of the functions described in Chapter 4,

“Geometric Operations,” to bitmap shapes. Table 5-4 gives important bitmap-related

information for a subset of these functions. The remainder of the geometric operations

exhibit the same behavior when applied to bitmap shapes as they do when applied to

other types of shapes.

Table 5-4 Geometric operations that exhibit special behavior when applied to bitmaps

Function name Action taken

GXGetShapeArea Returns bitmap width multiplied by bitmap height.

GXPrimitiveShape Applies sourceGridStyle attribute to bitmap position.

GXSimplifyShape Reduces the pixel size of the bitmap if the bitmap uses a
limited number of colors.

GXSetShapeBounds If the gxMapTransformShape shape attribute is set, this
function changes the transform mapping of the bitmap;
otherwise, it changes the bitmap height, width, and location,
and creates a new, scaled version of the bit image to fit in the
new bounding rectangle.

C H A P T E R 5

Bitmap Shapes

Applying Functions Described Elsewhere to Bitmap Shapes 5-59

Style-Related Functions Applicable to Bitmap Shapes
As discussed in “Bitmap Styles and Inks” on page 5-8, bitmap shapes make limited use

of their style objects. Although you can apply to a bitmap shape any of the functions

described in Chapter 3, “Geometric Styles,” only the GXSetShapeStyleAttributes

function affects the drawing of the bitmap. While you can use this function to set or clear

any of a bitmap’s style attributes, QuickDraw GX considers only the

gxSourceGridStyle style attribute and the gxDeviceGridStyle style attribute

when drawing bitmaps; other attributes are ignored.

You may use the other style-related functions (such as GXSetShapePen,

GXSetShapeDash, and so on) to set the other properties of a bitmap’s style object, and

you may use the corresponding functions (GXGetShapePen, GXGetShapeDash, and so

on) to examine these properties. However, QuickDraw GX ignores these properties when

drawing a bitmap.

Ink-Related Functions Applicable to Bitmap Shapes
Since bitmap shapes contain their own color information in their geometries,

QuickDraw GX does not use the color property of the ink object when drawing a bitmap.

However, QuickDraw GX does consider the transfer mode of the ink object and applies

it to each pixel when drawing a bitmap. You can use the GXSetShapeTransfer

function, which is described in the chapter “Ink Objects” in Inside Macintosh:
QuickDraw GX Objects, to assign a transfer mode to a bitmap shape.

You may also use the GXSetShapeColor function to set the color property of a bitmap’s

ink object and use the GXGetShapeColor function to examine this property. However,

QuickDraw GX ignores this property when drawing a bitmap.

Transform-Related Functions Applicable to Bitmap Shapes
Although bitmap shapes do not make full use of their style and ink objects, they do

make full use of their transform objects. You can apply all of the shape-related functions

that are described in the chapter “Transform Objects” in Inside Macintosh: QuickDraw GX
Objects to bitmap shapes.

C H A P T E R 5

Bitmap Shapes

5-60 Applying Functions Described Elsewhere to Bitmap Shapes

Table 5-5 gives important bitmap-related information for a subset of the functions from

that chapter. Functions described in that chapter that do not appear in this list exhibit the

same behavior when applied to bitmap shapes as they do when applied to other types of

shapes.

Table 5-5 Transform-related functions that exhibit special behavior when applied to bitmaps

Function name Action taken

GXGetShapeHitTest Returns the hit-test parameters associated with the bitmap shape’s
transform. QuickDraw GX hit-tests bitmaps using only the boundsPart
shape part.

GXMapShape Multiplies the mapping associated with the transform object of the bitmap
shape (if the gxMapTransformShape shape attribute of the bitmap shape
is set) by a mapping matrix, or applies the mapping directly to the
geometry of the bitmap (if the gxMapTransformShape attribute is not
set). Depending on the mapping, this function may also change the clip
shape of the bitmap.

GXMoveShape Moves the bitmap by a specified distance. This function can affect the
mapping of the bitmap’s transform or the geometry of the bitmap itself,
depending on the value of the gxMapTransformShape shape attribute of
the bitmap shape.

GXMoveShapeTo Moves the bitmap to a specified position. This function can affect the
mapping of the bitmap’s transform or the geometry of the bitmap itself,
depending on the value of the gxMapTransformShape shape attribute of
the bitmap shape.

GXRotateShape Rotates the bitmap. This function can affect the mapping of the bitmap’s
transform or the geometry of the bitmap itself, depending on the value of
the gxMapTransformShape shape attribute of the bitmap shape. This
function can also affect the clip shape of the bitmap.

GXScaleShape Scales the bitmap. This function can affect the mapping of the bitmap’s
transform or the geometry of the bitmap itself, depending on the value of
the gxMapTransformShape shape attribute of the bitmap shape. This
function can also affect the clip shape of the bitmap.

GXSkewShape Skews the bitmap. This function can affect the mapping of the bitmap’s
transform or the geometry of the bitmap itself, depending on the value of
the gxMapTransformShape shape attribute of the bitmap shape. This
function can also affect the clip shape of the bitmap.

GXSetShapeClip Assigns a clip shape to the transform object associated with the bitmap
shape.

GXSetShapeHitTest Assigns hit-test parameters to the transform object associated with the
bitmap shape. QuickDraw GX only hit-tests bitmaps using the
boundsPart shape part.

GXSetShapeMapping Changes the mapping associated with the transform object of the bitmap
shape (if the gxMapTransformShape shape attribute of the bitmap shape
is set) or applies the mapping directly to the geometry of the bitmap (if the
gxMapTransformShape attribute is not set). Depending on the mapping,
this function may also change the clip shape of the bitmap.

C H A P T E R 5

Bitmap Shapes

Bitmap Shapes Reference 5-61

View-Related Functions Applicable to Bitmap Shapes
As described in “Bitmaps and View Devices” beginning on page 5-12, view device

objects use bitmaps to store rendered shape images. Table 5-6 lists the function that

allows you to determine the bitmap assigned to a view device and the function

that allows you to change the bitmap of a view device. Both of these functions are

described in detail in the chapter “View-Related Objects” in Inside Macintosh:
QuickDraw GX Objects.

Bitmap Shapes Reference

This section describes the data types and functions you use to create and manipulate

bitmap shapes. The first subsection, “Constants and Data Types,” shows the definitions

of the data types related to bitmap shapes. The section “Functions,” beginning on

page 5-65, gives a complete reference for the functions specific to bitmaps. In addition to

the functions described in this section, you can apply many functions described

elsewhere to bitmap shapes. See the section “Applying Functions Described Elsewhere

to Bitmap Shapes,” which begins on page 5-54, for more details.

Constants and Data Types

This section describes the data structures you use to create and manipulate bitmaps.

You use the gxBitmap structure to specify information about a bitmap geometry and

information about how QuickDraw GX should create a bitmap shape. You also use this

data structure to specify color information for bitmaps. A complete discussion of the

QuickDraw GX color architecture appears in the chapter “Color and Color-Related

Objects” in Inside Macintosh: QuickDraw GX Objects.

You use the gxLongRectangle structure to specify a rectangular subsection of a bitmap

pixel image when editing bitmap parts.

This section also discusses the constants and data types you use when creating

disk-based bitmaps.

Table 5-6 View-related functions that can be applied to bitmaps

Function name Action taken

GXGetViewDeviceBitmap Returns the bitmap shape associated with a view
device object.

GXSetViewDeviceBitmap Assigns a bitmap shape to a view device. You can use
this function to create offscreen bitmaps, which are
discussed in “Bitmaps and View Devices” beginning
on page 5-12.

C H A P T E R 5

Bitmap Shapes

5-62 Bitmap Shapes Reference

The Bitmap Geometry Structure

The gxBitmap structure specifies the geometry of a bitmap shape. You can use this data

structure when creating bitmap shapes with the GXNewBitmap function, when altering

bitmap shapes with the GXGetBitmap and GXSetBitmap functions, and when directly

editing bitmap shapes with the GXGetShapeStructure function.

The gxBitmap structure is defined as follows:

typedef struct {

char *image;

long width;

long height;

long rowBytes;

long pixelSize;

gxColorSpace space;

gxColorSet set;

gxColorProfile profile;

} gxBitmap;

Field descriptions

image A pointer to the pixel image. When creating a bitmap, you can
specify nil for this field to indicate that QuickDraw GX should
allocate memory for the pixel image of the bitmap.

width The width of the bitmap in pixels.

height The height of the bitmap in pixels.

rowBytes The number of bytes of the pixel image corresponding to each row
of the bitmap. This value must be a positive even number.

pixelSize The number of bits representing a single pixel in the pixel image.
This value must be 1, 2, 4, 8, 16, or 32.

space The color space that QuickDraw GX uses when interpreting
the pixel values in the pixel image. When creating a bitmap,
you may specify the gxNoSpace constant for this field to
indicate that QuickDraw GX should choose a color space for
you. If the value of the pixelSize field is 32, QuickDraw GX
uses the value gxRGB32Space; if the pixel size is 16,
QuickDraw GX uses gxRGB16Space; if the pixel size is 8 or
less, QuickDraw GX uses gxIndexedSpace and creates the
default color set for the pixel size, which is usually a grayscale
color set.

C H A P T E R 5

Bitmap Shapes

Bitmap Shapes Reference 5-63

set The color set that QuickDraw GX uses when interpreting the pixel
values of the pixel image. If the space field contains the value
gxIndexedSpace, QuickDraw GX interprets the pixel values in
the pixel image as indexes to this color set. If the bitmap’s color
space is not gxIndexedSpace, this field should be nil.

profile The color matching information about the device on which the
bitmap was created. You may provide a reference to a color profile
object, or you may set the value of this field to nil.

Implementation Note

Version 1.0 of QuickDraw GX limits the bitmap width and the bitmap
height to 32,767. ◆

When creating a bitmap, you can allocate the memory for the pixel image of the bitmap

yourself and store a pointer to it in the image field, or you can set the image field to

nil, which indicates that QuickDraw GX should allocate the pixel image memory.

If you create the pixel image for a bitmap, you must pad the end of each row of the pixel

image so that each row contains an even number of bytes. You must store the number of

bytes per row in the rowBytes field, unless you are creating a bitmap with a pixel

image in QuickDraw GX memory, in which case you want to set this field to 0.

If you set the image field to nil when creating a bitmap, QuickDraw GX does two

things:

■ creates an uninitialized pixel image based on the bitmap width and height you specify
in the width and height fields and the pixel size you specify in the pixelSize field

■ determines an appropriate rowBytes value

If you want to create a bitmap with a disk-based pixel image, you should specify the

gxBitmapFileAliasImageValue constant for the image field.

If you specify the gxNoSpace constant for the space field, QuickDraw GX chooses an

appropriate color space for you, based on the value of the pixelSize field.

If you specify the color space yourself, you must be sure the pixel size of that color space

matches the value you indicate in the pixelSize field.

For a discussion of pixel images, bitmap width, bitmap height, and pixel size, see

“Bitmap Geometries” beginning on page 5-5. For a detailed discussion of color spaces,

color sets, and color profiles, see the chapter “Color and Color-Related Objects” in Inside
Macintosh: QuickDraw GX Objects.

For examples of creating gxBitmap structures and bitmap shapes, see “Creating and

Drawing Bitmaps” beginning on page 5-15.

C H A P T E R 5

Bitmap Shapes

5-64 Bitmap Shapes Reference

The Long Rectangle Structure

The gxLongRectangle structure allows you to specify a rectangular subsection of the

pixel image of a bitmap shape. It differs from the gxRectangle structure, described in

the chapter “Geometric Shapes” in this book, in that the coordinates of a

gxLongRectangle structure have no fractional part.

struct gxLongRectangle {

long left;

long top;

long right;

long bottom;

};

Field descriptions

left The left side of the rectangle in number of pixels.

top The top of the rectangle in number of pixels.

right The right side of the rectangle in number of pixels.

bottom The bottom of the rectangle in number of pixels.

You use the gxLongRectangle structure when editing parts of a bitmap, as discussed

in “Editing Part of a Bitmap” beginning on page 5-53.

Constants For Bitmaps With Disk-Based Pixel Images

QuickDraw GX provides two constants for you to use when creating bitmaps with

disk-based pixel images.

#define gxBitmapFileAliasImageValue 0x00000001

#define gxBitmapFileAliasTagType 'bfil'

You indicate that a bitmap uses a disk-based pixel image by setting the bitmap

geometry’s image field to the gxBitmapFileAliasImageValue constant. You specify

which file contains the pixel image in a bitmap data source alias structure, which you

attach to the bitmap using a tag with the gxBitmapFileAliasTagType tag type.

For an example of a bitmap with a disk-based pixel image, see “Creating Bitmaps With

Disk-Based Pixel Images” beginning on page 5-44.

C H A P T E R 5

Bitmap Shapes

Bitmap Shapes Reference 5-65

Bitmap Data Source Alias Structure

QuickDraw GX provides the bitmap data source alias structure to allow you to specify

file information for disk-based pixel images.

struct gxBitmapDataSourceAlias {

unsigned long fileOffset;

unsigned long aliasRecordSize;

unsigned char aliasRecord[gxAnyNumber];

};

Field descriptions

fileOffset The offset in bytes from the beginning of the file to the first pixel
value of the pixel image.

aliasRecordSize
The size in bytes of the alias record.

aliasRecord A Macintosh Alias Manager alias record specifying the file
containing the pixel image.

For an example of a bitmap with a disk-based pixel image, see “Creating Bitmaps With

Disk-Based Pixel Images” beginning on page 5-44.

Functions

This section describes the functions provided by QuickDraw GX specifically for creating

and manipulating bitmap shapes. With the functions described in this section, you can

■ create a new bitmap shape

■ determine and replace the geometry of a bitmap shape

■ edit a single pixel of a bitmap

■ examine or replace a rectangular subsection of a bitmap

The section “Applying Functions Described Elsewhere to Bitmap Shapes,” which begins

on page 5-54, contains information about other QuickDraw GX functions that you can

apply to bitmap shapes.

Creating Bitmaps

This section describes the function you use to create new bitmap shapes.

The GXNewBitmap function requires that you specify information about the bitmap in a

gxBitmap structure, and the function encapsulates that information in a new bitmap

shape.

C H A P T E R 5

Bitmap Shapes

5-66 Bitmap Shapes Reference

GXNewBitmap

You can use the GXNewBitmap function to create a new bitmap shape.

gxShape GXNewBitmap(const gxBitmap *data,

 const gxPoint *position);

data A pointer to a gxBitmap bitmap structure that specifies information
about the bitmap shape you want to create.

position A pointer to a gxPoint structure that indicates the initial position of the
upper-right corner of the bitmap. You may set this parameter to nil to
indicate (0.0, 0.0).

function result A reference to the newly created bitmap shape.

DESCRIPTION

The GXNewBitmap function creates a new bitmap shape and returns a reference to that

shape as its function result.

You specify the initial position of the new bitmap in the position parameter, and you

specify the rest of the bitmap geometry by creating a gxBitmap structure and passing a

pointer to it in the data parameter.

You must provide values for the width, height, and pixelSize fields of the

gxBitmap structure.

Implementation Note

Version 1.0 of QuickDraw GX limits the bitmap width and the bitmap
height to 32,767. ◆

You may specify the pixel image in the image field of the bitmap geometry structure,

or you may set this field to nil, in which case QuickDraw GX allocates memory for the

pixel image based on the requested width, height, and pixel size. If you supply the pixel

image, you must also supply an appropriate value in the rowBytes field of the bitmap

geometry structure. If QuickDraw GX allocates the pixel image, you should initialize the

rowBytes field to 0.

You may indicate a color space for the bitmap in the space field of the bitmap geometry

structure, but the pixel size of that color space must match the pixel size you specify in

the pixelSize field. If you specify the gxNoSpace constant for the space field,

QuickDraw GX chooses a color space for you:

■ If you indicate in the pixelSize field a pixel size of 16 or 32, QuickDraw GX chooses
the gxRGB16Space color space or the gxRGB32Space color space, respectively.

■ If you indicate in the pixelSize field a pixel size of 1, 2, 4, or 8, QuickDraw GX
chooses the gxIndexedSpace color space, and creates a default color set of the
appropriate size.

C H A P T E R 5

Bitmap Shapes

Bitmap Shapes Reference 5-67

If you indicate the gxIndexedSpace color space for the space field, you must provide

a color set in the set field.

In the profile field, you may provide a reference to a color profile describing the color

matching information for the device on which the bitmap was created, or you may set

this field to nil.

SPECIAL CONSIDERATIONS

If no error results, the GXNewBitmap function creates a bitmap shape; you are

responsible for disposing of this shape when you no longer need it. See Inside Macintosh:
QuickDraw GX Objects for information about creating and disposing of shapes.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For examples using this function, see “Creating and Drawing Bitmaps” beginning on

page 5-15.

For information about the gxBitmap structure, see “The Bitmap Geometry Structure”

beginning on page 5-62.

For information about bitmap width, height, and pixel size, see “Bitmap Geometries”

beginning on page 5-5.

For information about disposing of bitmap shapes, see the description of the

GXDisposeShape function, which is in the chapter “Shape Objects” in Inside Macintosh:
QuickDraw GX Objects.

For a complete discussion of the QuickDraw GX color architecture, see the chapter

“Color and Color-Related Objects” in Inside Macintosh: QuickDraw GX Objects.

Errors
out_of_memory
size_of_bitmap_exceeds_implementation_limit
parameter_is_nil (debugging version)
invalid_pixelSize (debugging version)
bitmap_height_negative (debugging version)
bitmap_width_negative (debugging version)
bitmap_height_negative (debugging version)
bitmap_rowBytes_negative (debugging version)
bitmap_rowBytes_too_small (debugging version)
bitmap_rowBytes_not_aligned (debugging version)
bitmap_ptr_not_aligned (debugging version)
bitmap_rowBytes_must_be_specified_for_user_image_buffer

(debugging version)
colorSpace_out_of_range (debugging version)

Warnings
shape_access_not_allowed (debugging version)

C H A P T E R 5

Bitmap Shapes

5-68 Bitmap Shapes Reference

Getting and Setting Bitmap Geometries

This section describes the functions you can use to examine or replace the entire

geometry of a bitmap shape.

The GXGetBitmap function copies the information from the geometry of a bitmap shape

into a gxBitmap data structure.

The GXSetBitmap function replaces the geometry of a bitmap shape with information

you provide in a gxBitmap structure.

GXGetBitmap

You can use the GXGetBitmap function to obtain a copy of the information in a bitmap

shape’s geometry.

gxBitmap *GXGetBitmap(gxShape source, gxBitmap *data,

 gxPoint *position);

source A reference to the bitmap shape whose geometry you want to copy.

data A pointer to a gxBitmap structure. On return, this structure contains
information copied from the geometry of the bitmap shape.

position A pointer to a gxPoint structure. On return, this structure indicates the
position of the upper-left corner of the bitmap shape.

function result A pointer to a gxBitmap structure containing information from the the
geometry of the bitmap shape. This value is the same as the value you
provided in the data parameter.

DESCRIPTION

The GXGetBitmap function copies the information from the geometry of the bitmap

shape indicated by the source parameter to the gxBitmap structure pointed to by the

data parameter and returns a pointer to this information as its function result. This

function also copies the bitmap position from the bitmap geometry to the gxPoint

structure pointed to by the position parameter.

You may specify nil for the data or position parameters. If you do, this function does

return the corresponding information.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
shape_is_nil
illegal_type_for_shape (debugging version)

C H A P T E R 5

Bitmap Shapes

Bitmap Shapes Reference 5-69

SEE ALSO

For information about the gxBitmap structure, see “The Bitmap Geometry Structure”

beginning on page 5-62.

For information about pixel images, see “Bitmap Geometries” beginning on page 5-5.

To create a bitmap shape, use the GXNewBitmap function, which is described on

page 5-66.

To change the geometry of a bitmap shape, use the GXSetBitmap function, which is

described in the next section.

GXSetBitmap

You can use the GXSetBitmap function to change the information in the geometry of a

bitmap shape.

void GXSetBitmap(gxShape target, const gxBitmap *data,

 const gxPoint *position);

target A reference to the bitmap shape whose geometry you want to change.

data A pointer to a gxBitmap structure containing new information for the
geometry of the target bitmap shape.

position A pointer to a gxPoint structure indicating the new bitmap position for
the target bitmap shape.

DESCRIPTION

The GXSetBitmap function uses information you provide both in the gxBitmap

structure pointed to by the data parameter and the gxPoint structure pointed to by the

position parameter to change the information in the geometry of the bitmap shape

referenced by the target parameter. If the target shape is not a bitmap shape, this

function converts the target shape to a bitmap shape before setting the geometry of the

shape.

You can change only the bitmap position by creating a gxPoint structure, setting its

fields to reflect the new position, passing a pointer to it in the position parameter, and

setting the data parameter to nil.

You can change other information in the geometry of the target bitmap shape by

providing new information in a gxBitmap structure and passing a pointer to this

structure in the data parameter.

If the pixel image of the target bitmap shape was not allocated by QuickDraw GX (for

example, if you allocated the pixel image yourself before calling the GXNewBitmap

function), then the GXSetBitmap function simply replaces the information in the

geometry of the target bitmap shape with information from the fields of the gxBitmap

structure pointed to by the data parameter.

C H A P T E R 5

Bitmap Shapes

5-70 Bitmap Shapes Reference

However, if QuickDraw GX allocated the pixel image of the target bitmap shape, you can

use this function to change the dimensions of the existing pixel image.

You can change the bitmap height by providing a new height in the height field of the

gxBitmap structure. You can change the bitmap width by setting the rowBytes field

to 0 and provide a new bitmap width in the width field of the bitmap geometry

structure. In this case, QuickDraw GX calculates an appropriate number of bytes per row.

In either case, this function does not scale the original pixel image; instead, it changes the

amount of memory allocated to hold the pixel image. If you decrease the dimensions of

the pixel image, QuickDraw GX fits the pixels in the original pixel image into a smaller

space in memory, thereby losing some of the original pixel values. If you increase the

dimensions of the pixel image, QuickDraw GX allocates more memory (possibly moving

the original pixel image), thereby adding uninitialized pixels to the pixel image.

If QuickDraw GX allocated the original pixel image, you can also change the pixel size of

the bitmap shape. You provide the new pixel size in the pixelSize field of the

gxBitmap structure and the GXSetBitmap function expands or compresses the image

to fit in the new pixel size. If you specify a smaller pixel size than the original, this

function redistributes the colors in the color space of the bitmap shape.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For information about the gxBitmap structure, see “The Bitmap Geometry Structure”

beginning on page 5-62.

For information about pixel images, bitmap height, bitmap width, pixel size, and

number of rows per byte, see “Bitmap Geometries” beginning on page 5-5.

Errors
out_of_memory
shape_is_nil
size_of_bitmap_exceeds_implementation_limit
parameter_is_nil (debugging version)
invalid_pixelSize (debugging version)
bitmap_height_negative (debugging version)
bitmap_width_negative (debugging version)
bitmap_height_negative (debugging version)
bitmap_rowBytes_negative (debugging version)
bitmap_rowBytes_too_small (debugging version)
bitmap_rowBytes_not_aligned (debugging version)
bitmap_ptr_not_aligned (debugging version)
bitmap_rowBytes_must_be_specified_for_user_image_buffer

(debugging version)
colorSpace_out_of_range (debugging version)

Warnings
shape_access_not_allowed (debugging version)

C H A P T E R 5

Bitmap Shapes

Bitmap Shapes Reference 5-71

For a complete discussion of the QuickDraw GX color architecture, see the chapter

“Color and Color-Related Objects” in Inside Macintosh: QuickDraw GX Objects.

To create a bitmap shape, use the GXNewBitmap function, which is described on

page 5-66.

To obtain a copy of the information from the geometry of a bitmap shape, use the

GXGetBitmap function, which is described on page 5-68.

Editing Bitmaps

This section describes the functions you can use to examine and change information in

the pixel image of a bitmap shape.

The GXGetShapePixel function allows you to examine the value of a single pixel. The

GXSetShapePixel function allows you to change the value of a single pixel.

The GXGetBitmapParts function allows you to extract a rectangular section of one

bitmap shape and encapsulate it in another bitmap shape. The GXSetBitmapParts

function allows you to replace a rectangular section of one bitmap shape with the pixel

image of another bitmap shape.

GXGetShapePixel

You can use the GXGetShapePixel function to determine the pixel value and the pixel

offset of a specific pixel in a bitmap shape.

long GXGetShapePixel(gxShape source, long x, long y,

gxColor *data, long *index);

source A reference to the bitmap shape containing the pixel to examine.

x The index of the column in which the pixel lies.

y The index of the row in which the pixel lies.

data A pointer to a gxColor structure. On return, this structure contains the
color value of the specified pixel.

index A pointer to a long value. On return, this value contains the color value
of the specified pixel (if the pixel size of the bitmap is 16 or 32) or the
specified pixel’s index into the bitmap’s color set (if the pixel size of the
bitmap is 1, 2, 4, or 8).

function result The index of the byte containing the specified pixel in the source bitmap’s
pixel image.

C H A P T E R 5

Bitmap Shapes

5-72 Bitmap Shapes Reference

DESCRIPTION

The GXGetShapePixel function copies the pixel value of the pixel determined by the x

and y parameters from the source bitmap shape into the gxColor structure pointed to

by the data parameter.

If the source bitmap shape has the gxKeepShapeDirect shape attribute set, this

function also determines the pixel offset of the specified pixel and returns it in the

long value pointed to by the index parameter. This function also returns a pointer to

this value as the function result.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For information about the gxBitmap structure, see “The Bitmap Geometry Structure”

beginning on page 5-62.

For information about pixels, pixel values, and pixel offsets, see “Bitmap Geometries”

beginning on page 5-5.

To examine more than a single pixel of a bitmap, use the GXGetBitmapParts function,

which is described on page 5-74.

To change the value of a pixel, use the GXSetShapePixel function, which is described

in the next section.

GXSetShapePixel

You can use the GXSetShapePixel function to change the pixel value of a specific pixel

in a bitmap shape.

void GXSetShapePixel(gxShape target, long x, long y,

 const gxColor *newColor, long newIndex);

target A reference to the bitmap shape containing the pixel to change.

x The index of the column in which the pixel lies.

y The index of the row in which the pixel lies.

Errors
out_of_memory
shape_is_nil

Warnings
shape_does_not_contain_a_bitmap (debugging only)

C H A P T E R 5

Bitmap Shapes

Bitmap Shapes Reference 5-73

newColor A pointer to a gxColor structure indicating the new pixel value of the
specified pixel. You may specify nil for this parameter if the target
bitmap shape has the gxIndexedSpace color space.

newIndex An index into a color set. You may use this parameter to set the pixel
value if the target bitmap shape has the gxIndexedSpace color space.

DESCRIPTION

The GXSetShapePixel function sets the pixel value of a specific pixel in the target

bitmap. The pixel is determined by the values you provide in the x and y parameters.

The new pixel value is determined by the newColor or newIndex parameter:

■ If you provide a color value in the newColor parameter, this function sets the pixel
value of the specified pixel to be the closest color available in the color space of the
target bitmap shape—even if the target bitmap shape has the gxIndexedSpace color
space.

■ Alternatively, and only if the target bitmap shape has the gxIndexedSpace color
space, you may provide nil for the newColor parameter and provide in the
newIndex parameter a new index into the color set of the bitmap shape.

This function posts a functionality_unimplemented error for disk-based bitmaps.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For information about the gxBitmap structure, see “The Bitmap Geometry Structure”

beginning on page 5-62.

For information about pixels, pixel values, and pixel offsets, see “Bitmap Geometries”

beginning on page 5-5.

To change more than a single pixel of a bitmap, use the GXSetBitmapParts function,

which is described on page 5-75.

To examine the value of a pixel, use the GXGetShapePixel function, which is described

on page 5-71.

Errors
out_of_memory
shape_is_nil
point_does_not_intersect_bitmap (debugging only)
functionality_unimplemented (debugging only)

Warnings
shape_does_not_contain_a_bitmap (debugging only)

C H A P T E R 5

Bitmap Shapes

5-74 Bitmap Shapes Reference

GXGetBitmapParts

You can use the GXGetBitmapParts function to extract a rectangular section of pixels

from a bitmap.

gxShape GXGetBitmapParts(gxShape source,

 const gxLongRectangle *bounds);

source A reference to the bitmap shape containing the pixels to extract.

bounds A pointer to a gxRectangle indicating which part of the bitmap to
extract.

function result A reference to a new bitmap shape containing only the extracted section
of the source bitmap shape.

DESCRIPTION

The GXGetBitmapParts function extracts the pixels whose row number and column

number fall within the boundaries of the rectangle pointed to by the bounds parameter,

encapsulates the extracted pixel image in a new bitmap shape, and returns a reference to

the new bitmap shape as the function result.

The returned bitmap shape has the same pixel size as the source bitmap shape. The

returned bitmap shape also shares the same color space, color set, and color profile as the

source bitmap shape.

The pixel image of the returned bitmap is allocated in QuickDraw GX memory.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
shape_is_nil
parameter_is_nil
parameter_out_of_range (debugging only)
point_does_not_intersect_bitmap (debugging only)

Warnings
shape_does_not_contain_a_bitmap (debugging only)

C H A P T E R 5

Bitmap Shapes

Bitmap Shapes Reference 5-75

SEE ALSO

For examples using this function, see “Editing Part of a Bitmap” beginning on page 5-53.

For information about the gxBitmap structure, see “The Bitmap Geometry Structure”

beginning on page 5-62.

For information about the gxLongRectangle structure, see “The Long Rectangle

Structure” on page 5-64.

For information about pixels and pixel images, see “Bitmap Geometries” beginning on

page 5-5.

To examine a single pixel of a bitmap, use the GXGetShapePixel function, which is

described on page 5-71.

To change a section of a bitmap, use the GXSetBitmapParts function, which is

described in the next section.

GXSetBitmapParts

You can use the GXSetBitmapParts function to replace the pixel values in a

rectangular subsection of a bitmap’s pixel image.

void GXSetBitmapParts(gxShape target, const gxRectangle *bounds,

 gxShape bitmapShape);

target A reference to the bitmap shape containing the pixels to replace.

bounds A pointer to a gxRectangle structure indicating which part of the target
bitmap to replace.

bitmapShape
A reference to a bitmap shape containing the pixel values to use when
replacing the specified pixels in the target bitmap shape.

DESCRIPTION

The GXSetBitmapParts function copies the pixel values (starting at the upper-left

corner of the pixel image) of the source bitmap shape (which is indicated by the

bitmapShape parameter) to the pixel image of the target bitmap shape. The bounds

parameter determines how many rows and columns this function copies and where in

the target bitmap the function places the copied pixel values.

The pixel image of the source bitmap may not be smaller than the size indicated by the

bounds parameter; that is, the number of rows and columns in the pixel image of the

source bitmap shape may not be less than the height and width of the specified

rectangle, respectively.

C H A P T E R 5

Bitmap Shapes

5-76 Bitmap Shapes Reference

The source and target bitmap shapes must have the same pixel size, color space, and

color set.

This function posts a functionality_unimplemented error for disk-based bitmaps.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For examples using this function, see “Editing Part of a Bitmap” beginning on page 5-53.

For information about the gxBitmap structure, see “The Bitmap Geometry Structure”

beginning on page 5-62.

For information about the gxLongRectangle structure, see “The Long Rectangle

Structure” on page 5-64.

For information about pixels and pixel images, see “Bitmap Geometries” beginning on

page 5-5

To change the pixel value of a single pixel, use the GXSetShapePixel function, which

is described on page 5-72.

To extract a rectangular subsection of a bitmap, use the GXGetBitmapParts function,

which is described on page 5-74.

Drawing Bitmaps

QuickDraw GX provides two methods of drawing a bitmap:

■ You can create a bitmap shape (by calling the GXNewBitmap function, by copying an
existing bitmap shape, and so on) and use the GXDrawShape function to draw the
bitmap.

■ You can create a gxBitmap structure and use the GXDrawBitmap function to draw
the bitmap.

Errors
out_of_memory
shape_is_nil
parameter_is_nil
parameter_out_of_range (debugging only)
point_does_not_intersect_bitmap (debugging only)
functionality_unimplemented (debugging only)

Warnings
shape_does_not_contain_a_bitmap (debugging only)

C H A P T E R 5

Bitmap Shapes

Bitmap Shapes Reference 5-77

In general, you should use the GXDrawShape function to draw any QuickDraw GX

graphic, including bitmap shapes. In fact, the GXDrawBitmap function creates a

temporary bitmap shape, uses the GXDrawShape function to draw it, and then disposes

of it. The GXDrawShape function is described in the chapter “Shape Objects” in Inside
Macintosh: QuickDraw GX Objects.

You would typically use the GXDrawBitmap function only in simple situations—for

example, if you knew you wanted to draw a particular bitmap only once.

GXDrawBitmap

You can use the GXDrawBitmap function to draw a bitmap without encapsulating the

bitmap geometry in a bitmap shape.

void GXDrawBitmap(const gxBitmap *data, const gxPoint *position);

data A pointer to a gxBitmap structure that specifies information about the
bitmap you want to draw.

position A pointer to a gxPoint structure which indicates the position to draw
the bitmap.

DESCRIPTION

The GXDrawBitmap function allows you to draw a bitmap without having to create a

bitmap shape yourself. Instead, you create a gxBitmap structure specifying the bitmap

you want to draw and a gxPoint structure indicating the position of the bitmap, and

then you pass a pointer to these structures in the data and position parameters,

respectively.

The GXDrawBitmap function calls the GXNewBitmap function to create a temporary

bitmap shape using the values specified in these structures and the style, ink and

transform of the default bitmap shape. Then the GXDrawBitmap function draws the

bitmap shape using the GXDrawShape function.

For information about how QuickDraw GX creates bitmap shapes using the values you

provide in the fields of the gxBitmap structure, see the description of the GXNewBitmap

function on page 5-66.

C H A P T E R 5

Bitmap Shapes

5-78 Bitmap Shapes Reference

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For examples of this function, see “Creating Black-and-White Bitmaps” beginning on

page 5-15.

For information about the gxBitmap structure, see “The Bitmap Geometry Structure”

beginning on page 5-62.

To encapsulate a bitmap geometry in a bitmap shape, use the GXNewBitmap function,

which is described on page 5-66.

To draw a bitmap once you’ve encapsulated it in a bitmap shape, use the GXDrawShape

function, which is described in the “Shape Objects” chapter of Inside Macintosh:
QuickDraw GX Objects.

Errors
out_of_memory
shape_is_nil
parameter_is_nil
size_of_bitmap_exceeds_implementation_limit
parameter_is_nil (debugging version)
invalid_pixelSize (debugging version)
bitmap_height_negative (debugging version)
bitmap_width_negative (debugging version)
bitmap_height_negative (debugging version)
bitmap_rowBytes_negative (debugging version)
bitmap_rowBytes_too_small (debugging version)
bitmap_rowBytes_not_aligned (debugging version)
bitmap_ptr_not_aligned (debugging version)
bitmap_rowBytes_must_be_specified_for_user_image_buffer

(debugging version)
colorSpace_out_of_range (debugging version)

Warnings
shape_access_not_allowed (debugging version)

C H A P T E R 5

Bitmap Shapes

Bitmap Shapes Reference 5-79

Checking Bitmap Colors

QuickDraw GX provides the GXCheckBitmapColor function to allow you to determine

which pixels in a bitmap are in the gamut of a specified color space or exactly match a

color in a color set.

GXCheckBitmapColor

You can use the GXCheckBitmapColor function to determine whether the color

values in a bitmap’s pixel image are in the gamut of a given color space or exactly match

colors in a given color set.

gxShape GXCheckBitmapColor(gxShape source,

const gxLongRectangle *area,

gxColorSpace space, gxColorSet aSet,

 gxColorProfile profile);

source A reference to the bitmap shape whose pixels you want to check.

area A pointer to a long rectangle specifying the area of the bitmap to check.
You can specify a value of nil for this parameter to check the entire
bitmap.

space The color space to check the pixel values of the source bitmap against.
You can specify the gxIndexedSpace color space to indicate that you
want to test the pixel values against a color set.

aSet A reference to the color set to check the pixel values of the source bitmap
against.

profile A pointer to the color profile to use when checking the pixel values of the
source bitmap.

function result A new bitmap shape with a pixel size of 1 bit per pixel. The value of each
pixel in this bitmap indicates whether the color of the corresponding pixel
in the source bitmap lies in the gamut of the specified color space (or, if
you specified a color set, whether the color of the corresponding pixel
exactly matches a color in that color set). If the corresponding source pixel
does lie in the gamut of the color space (or match a color in the color set),
the pixel value of this bitmap is set to 0, otherwise it is 1.

C H A P T E R 5

Bitmap Shapes

5-80 Bitmap Shapes Reference

DESCRIPTION

The GXCheckBitmapColor function performs one of two tests on the pixels of the

source bitmap:

■ If you specify a indexed color space in the space parameter, the function determines
whether the color of the pixel exactly matches any color within the color set you
provide in the aSet parameter.

■ If you specify any other color space in the space parameter, the function converts the
pixel color to the indicated color space, using the color profile in the profile
parameter, to determine whether the color is in the gamut represented by the color
space and color profile.

If you specify nil as the area parameter, this function tests every pixel in the source

bitmap’s pixel image. If you provide a pointer to a long rectangle in this parameter, the

function only tests the pixels that fall within the corresponding rectangular subsection of

the source bitmap.

This function returns as the function result a 1 bit-per-pixel bitmap shape with a bitmap

height and bitmap width corresponding to the dimensions of the area parameter. Each

pixel in the returned bitmap is set to a value of 0 if the corresponding pixel in the source

bitmap passed the test. The pixel value is 1 otherwise.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For information about the gxLongRectangle structure, see page 5-64.

For information about colors, color spaces, color sets, color profiles, and the

GXCheckColor function, see chapter “Colors and Color-Related Objects” in Inside
Macintosh: QuickDraw GX Objects.

Errors
out_of_memory
color_is_nil
colorSpace_out_of_range (debugging version)

Warnings
colorSet_index_out_of_range (debugging version)

C H A P T E R 5

Bitmap Shapes

Summary of Bitmap Shapes 5-81

Summary of Bitmap Shapes

Constants and Data Types

The Bitmap Geometry Structure

typedef struct {

char *image; /* pointer to the pixel image */

long width; /* bitmap width */

long height; /* bitmap height */

long rowBytes; /* number of bytes per row */

long pixelSize; /* number of bits per pixel */

gxColorSpace space; /* color space used to interpret pixel values */

gxColorSet set; /* color set to use to interpret pixel values */

gxColorProfile profile; /* color matching information */

} gxBitmap;

The Long Rectangle Structure

struct gxLongRectangle {

long left;

long top;

long right;

long bottom;

};

Constants For Bitmaps With Disk-Based Pixel Images

#define gxBitmapFileAliasImageValue 0x00000001

#define gxBitmapFileAliasTagType 'bfil'

Bitmap Data Source Alias Structure

struct gxBitmapDataSourceAlias {

unsigned long fileOffset; /* file offset (in bytes) */

unsigned long aliasRecordSize; /* size of alias record */

unsigned char aliasRecord[gxAnyNumber]; /* alias record */

};

C H A P T E R 5

Bitmap Shapes

5-82 Summary of Bitmap Shapes

Functions

Creating Bitmaps

gxShape GXNewBitmap (const gxBitmap *data, const gxPoint *position);

Getting and Setting Bitmap Geometries

gxBitmap *GXGetBitmap (gxShape source, const gxBitmap *data,
const gxPoint *position);

void GXSetBitmap (gxShape target, const gxBitmap *data,
const gxPoint *position);

Editing Bitmaps

long GXGetShapePixel (gxShape source, long x, long y, gxColor *data,
long *index);

void GXSetShapePixel (gxShape target, long x, long y,
const gxColor *newColor, long newIndex);

gxShape GXGetBitmapParts (gxShape source, const gxLongRectangle *bounds);

void GXSetBitmapParts (gxShape target, const gxLongRectangle *bounds,
gxShape bitmapShape);

Drawing Bitmaps

void GXDrawBitmap (const gxBitmap *data, const gxPoint *position);

Checking Bitmap Colors

gxShape GXCheckBitmapColor (gxShape source,
const gxLongRectangle *area,
gxColorSpace space, gxColorSet aSet,
gxColorProfile profile);

Contents 6-1

C H A P T E R 6

Contents

Picture Shapes

About Picture Shapes 6-3

Overriding Styles, Inks, and Transforms 6-8

Multiple References 6-10

Unique Items Shape Attribute 6-15

Picture Hierarchies 6-18

Transform Concatenation 6-19

About Hit-Testing Picture Shapes 6-24

Using Picture Shapes 6-26

Creating and Drawing Picture Shapes 6-27

Getting and Setting Picture Geometries 6-31

Adding Items to a Picture 6-32

Removing and Replacing Items in a Picture 6-35

Using Overriding Styles, Inks, and Transforms 6-38

Adding Multiple References 6-40

Adding Items With the Unique Items Attribute Set 6-43

Creating Picture Hierarchies 6-44

Hit-Testing Pictures 6-46

Applying Functions Described Elsewhere to Picture Shapes 6-52

Functions That Post Errors or Warnings When Applied to Pictures 6-52

Shape-Related Functions Applicable to Pictures 6-54

Geometric Operations Applicable to Pictures 6-55

Style-Related Functions Applicable to Pictures 6-55

Ink-Related Functions Applicable to Pictures 6-56

Transform-Related Functions Applicable to Pictures 6-56

Picture Shapes Reference 6-57

Functions 6-57

Creating Picture Shapes 6-57

GXNewPicture 6-57

C H A P T E R 6

6-2 Contents

Getting and Setting Picture Geometries 6-59

GXGetPicture 6-59

GXSetPicture 6-61

Editing Picture Parts 6-63

GXGetPictureParts 6-63

GXSetPictureParts 6-65

Drawing Pictures 6-67

GXDrawPicture 6-67

Hit-Testing Pictures 6-69

GXHitTestPicture 6-69

Summary of Picture Shapes 6-72

Functions 6-72

C H A P T E R 6

About Picture Shapes 6-3

Picture Shapes

This chapter describes picture shapes and the functions you use to manipulate them. It

also discusses the functions described in other chapters that you can apply to picture

shapes.

In particular, this chapter shows you how you can create and draw picture shapes; edit a

picture shape’s list of items; override style, ink, and transform information for items in

a picture; create picture hierarchies; and hit-test picture shapes.

You should be familiar with the information in the chapter “Shape Objects” of Inside
Macintosh: QuickDraw GX Objects before you read this chapter, and you will probably

want to be familiar with the information in the chapter “Transform Objects” of that book.

You might also want to be familiar with the other shape types, which are described in

Chapter 2, “Geometric Shapes,” and Chapter 5, “Bitmap Shapes,” of this book, as well as

in the chapter “Typographic Shapes” of Inside Macintosh: QuickDraw GX Typography.

About Picture Shapes

A picture shape represents a collection of other shapes. For example, you could create a

scroll bar using a picture shape:

■ You could create separate polygon shapes to represent the scroll box, the gray area,
and the two scroll arrows.

■ You could then collect these individual polygon shapes into a single picture shape to
represent the entire scroll bar.

Using picture shapes, you can create complex graphics, create shapes with both graphic

and typographic content, combine multiple bitmaps into a single shape, create groups of

shapes, create shape layers, group shapes into pages to prepare for printing, and so on.

Like any QuickDraw GX shape, a picture shape is represented in memory by a shape

object, a style object, an ink object, and a transform object. A shape object representing a

picture shape contains the same properties as a shape object representing a geometric or

a typographic shape: owner count, tag list, shape type, shape fill, geometry, and so on.

Since picture shapes contain other shapes, they don’t make much use of their shape fill

property, although you can specify a no-fill shape fill if you don’t want the picture to

appear when drawn.

Picture shapes also don’t make much use of their associated style object, since each

shape in the picture has its own style object.

Pictures shapes also don’t make much use of their ink objects for the same reasons.

Picture shapes do make full use of their transform objects, however. For example, you

can scale, skew, rotate, and clip picture shapes as a whole, as well as separately for each

individual shape in the picture. This process is described in more detail in the section

“Transform Concatenation” beginning on page 6-19.

Picture shapes differ from other types of shapes primarily in the content of their

geometries. A picture shape’s geometry contains a list of picture items. Each picture item

contains a reference to another shape.

C H A P T E R 6

Picture Shapes

6-4 About Picture Shapes

Although each of the shapes in a picture has its own style, ink, and transform object,

picture shapes allow you to provide an overriding style, ink, and transform object for

each of these shapes. QuickDraw GX uses this overriding information only when

drawing the picture. Even after you insert a shape into a picture, you can still draw the

original shape using its original style, ink, and transform object.

Overriding objects are described in the next section “Overriding Styles, Inks, and

Transforms” beginning on page 6-8.

Figure 6-1 shows a graphic representation of a picture shape and a picture geometry.

Figure 6-1 A picture shape

C H A P T E R 6

Picture Shapes

About Picture Shapes 6-5

Figure 6-2 shows a single picture item. This item contains a reference to a shape object,

which contains a reference to its associated style, ink, and transform objects. These

objects are shown in grey, because the picture item also contains references to an

overriding style, ink, and transform object for the shape.

Figure 6-2 A picture item

C H A P T E R 6

Picture Shapes

6-6 About Picture Shapes

Figure 6-3 shows an example of a picture shape with a geometry that contains two

picture items. Each item contains a reference to a shape, but neither item contains a

reference to an overriding style, ink, or transform object. Therefore, when

QuickDraw GX draws this picture, it draws each shape in the picture using the style, ink,

and transform information originally associated with the shape, as shown at the bottom

of Figure 6-3.

Figure 6-3 A picture geometry with two items

C H A P T E R 6

Picture Shapes

About Picture Shapes 6-7

Notice that QuickDraw GX draws the shapes in a picture in the order the references to

them appear in the picture geometry: from back to front.

Figure 6-3 shows the entire shape object and picture geometry for the picture

shape. Figure 6-4 shows a condensed view of the same picture. This chapter uses

condensed views of picture shapes when drawing picture hierarchies, which are

described in “Picture Hierarchies” beginning on page 6-18.

Figure 6-4 Condensed view of picture with two items

C H A P T E R 6

Picture Shapes

6-8 About Picture Shapes

Overriding Styles, Inks, and Transforms
QuickDraw GX allows you to specify an overriding style, ink, or transform object for

any item in a picture. If an item has an overriding style, ink, or transform object,

QuickDraw GX uses the information in the overriding object rather than the information

in the original style, ink, or transform when drawing that item of the picture shape.

Figure 6-5 shows the picture from Figure 6-4 with overriding information added. In

this figure, the first picture item has an overriding ink, which specifies a dark gray color.

The second picture item has an overriding style, which specifies a pattern.

C H A P T E R 6

Picture Shapes

About Picture Shapes 6-9

Figure 6-5 A picture shape with overrides

When QuickDraw GX draws the picture represented in Figure 6-5, it draws the first

picture item using the information in the overriding ink object, rather than the

information in the ink object originally associated with the first item. Similarly, when it

draws the second shape, it uses the information in the overriding style rather than the

information in the original style.

C H A P T E R 6

Picture Shapes

6-10 About Picture Shapes

Multiple References
QuickDraw GX allows multiple items in a picture to reference the same shape. Figure 6-6

shows an example of a picture shape containing four items. In this example, each item

references the same shape: a black rectangle.

Figure 6-6 A picture containing multiple references to the same shape

C H A P T E R 6

Picture Shapes

About Picture Shapes 6-11

Figure 6-7 shows the condensed view of the picture from Figure 6-6.

Figure 6-7 A condensed view of a picture with multiple references

Although the picture shape shown in Figure 6-7 contains four references to the black

rectangle, only one black rectangle appears when the picture is drawn. You might

expect the rectangle to be drawn four times; however, it only appears once because the

rectangle is redrawn in the same location four times.

C H A P T E R 6

Picture Shapes

6-12 About Picture Shapes

Having multiple references to the same shape becomes more useful when you add

overriding information. For example, if you add overriding transforms to three of the

items in the picture shape from Figure 6-6, all four items appear when the picture is

drawn, as shown in Figure 6-8.

Figure 6-8 Multiple references with overriding transforms

C H A P T E R 6

Picture Shapes

About Picture Shapes 6-13

The picture shape in Figure 6-8 contains four items each referencing the same black

rectangle shape. However, the second, third, and fourth items contain overriding

transforms. When drawing this picture shape, QuickDraw GX applies the

original transform when drawing the first item, and applies the overriding transforms

when drawing the second, third, and fourth items. In this way, the four items appear

separate when the picture is drawn, even though all four items reference the same shape.

C H A P T E R 6

Picture Shapes

6-14 About Picture Shapes

You can use overriding styles and inks to make multiple references even more powerful.

In Figure 6-9, the second item has an overriding style as well as an overriding transform,

the third item has an overriding ink as well as an overriding transform, and the fourth

item has an overriding transform that not only moves, but scales and clips as well.

Figure 6-9 Multiple references with overriding styles, inks, and transforms

C H A P T E R 6

Picture Shapes

About Picture Shapes 6-15

Although each item in the picture shape shown in Figure 6-9 references the same black

rectangle, the use of overriding styles, inks, and transforms creates substantial variations

in the items of the picture as drawn.

For more examples of multiple references and overriding styles, inks, and transforms,

see “Adding Multiple References” beginning on page 6-40.

Unique Items Shape Attribute
One of the shape attributes provided by QuickDraw GX is the unique items attribute.
This attribute affects the way shapes are added to a picture:

■ If a picture shape does not have the unique items attribute set, QuickDraw GX adds
shapes to the picture by reference.

■ If a picture shape does have the unique items attribute set, QuickDraw GX adds
shapes to the picture by copying the shapes and adding a reference to the copy.

Although you may clear the unique items attribute for a picture at any time, you may set

the unique items attribute only when a picture is empty—that is, only when the picture

contains no items.

You set or clear the unique items attribute using the GXGetShapeAttributes function,

which is described in the chapter “Shape Objects” of Inside Macintosh: QuickDraw GX
Objects.

Figure 6-10 depicts an empty picture shape and a polygon shape. The following

two figures use these shapes to illustrate the effect of the unique items attribute.

Figure 6-10 An empty picture shape and a polygon shape

C H A P T E R 6

Picture Shapes

6-16 About Picture Shapes

Figure 6-11 shows the result of adding the polygon shape to the empty picture shape. In

the left half of this figure, the picture shape does not have the unique items attribute set.

In this case, adding the polygon shape to the empty picture simply adds a reference to

the polygon shape to the geometry of the picture shape and increases the owner count

of the polygon shape.

In the right half of this figure, the picture shape has the unique items attribute set. In this

case, adding the polygon shape to the empty picture creates a deep copy of the polygon

shape—including all objects referenced by the polygon shape—and adds the copy to the

geometry of the picture shape. The original polygon shape is unchanged.

Figure 6-11 Adding a polygon shape to a picture shape

C H A P T E R 6

Picture Shapes

About Picture Shapes 6-17

Figure 6-12 shows the result of adding the same polygon shape to the empty picture

shape twice.

In the left half of this figure, the picture shape does not have the unique items attribute

set. In this case, the first time the polygon shape is added to the empty picture, a

reference to the polygon shape is added to the geometry of the picture shape and the

owner count of the polygon shape is incremented. The second time the polygon is added

to the picture, another reference to the polygon is added to the picture geometry and the

owner count of the polygon is incremented again.

In the right half of this figure, the picture shape has the unique items attribute set. In this

case, the first time the polygon shape is added to the empty picture, QuickDraw GX

creates a deep copy of the polygon shape—including all objects referenced by the

polygon shape—and adds a reference to the copy to the geometry of the picture shape.

The original polygon shape is unchanged. The second time the polygon is added to the

picture, QuickDraw GX notices that the polygon has already been added to the picture

and has not been changed. Therefore, to avoid making a second deep, QuickDraw GX

simply adds to the picture geometry another reference to the first deep copy.

Figure 6-12 Adding a shape to a picture twice

For more examples involving the unique items attribute, see “Adding Items With the

Unique Items Attribute Set” beginning on page 6-43.

C H A P T E R 6

Picture Shapes

6-18 About Picture Shapes

Picture Hierarchies
Each item of a picture shape contains a reference to another shape. These shapes can be

of any type, including other picture shapes. When a picture shape contains references to

other picture shapes, you have a picture hierarchy. Figure 6-13 shows a picture hiearchy.

Figure 6-13 depicts a picture shape with two items. Each item references another picture

shape, each of which also has two items. This figure shows the condensed view of the

picture hierarchy.

Figure 6-13 A condensed view of a picture hierarchy

C H A P T E R 6

Picture Shapes

About Picture Shapes 6-19

Each item in a picture hierarchy has a level. The two items belonging to the topmost

picture shape—which are picture shapes themselves—have a level of 1. Items belonging

to pictures that have a level of 1 have a level of 2, and so on. In the picture hierarchy

shown in Figure 6-13, the four geometric shapes all have a level of 2.

Transform Concatenation
Each item in a picture shape has its own transform object and possibly an overriding

transform as well. When QuickDraw GX draws a picture shape, it maps and clips each

item according the mapping and clipping information stored in that item’s transform

object (or the information in the item’s overriding transform, if it has one).

After applying mappings and clippings to the individual items of a picture,

QuickDraw GX applies a mapping and clipping to the entire picture, as indicated by the

transform object associated with the picture shape. In this way, each item in the picture

can go through two transformations: an individual transformation as indicated by the

item’s individual transform (or overriding transform), and a group transformation as

indicated by the picture shape’s transform. This process is called transform
concatenation.

If a picture shape contains a picture hierarchy, QuickDraw GX repeats this concatenation

process from the individual shapes at the lowest level of the hierarchy all the way up to

the picture shape at the highest level of the hierarchy.

As an example, Figure 6-14 shows a path shape representing a house. This path shape

has a transform that rotates it 180 degrees.

Figure 6-14 A path shape and its transform

C H A P T E R 6

Picture Shapes

6-20 About Picture Shapes

Figure 6-15 shows the same path shape, but in this figure the path shape has been added

to a picture shape as the picture’s only item. This item includes an overriding transform.

When drawing this picture, QuickDraw GX ignores the original transform, and rotates

every item in the path shape clockwise by 90 degrees, as specified in the overriding

transform.

Figure 6-15 A picture with an overriding transform

C H A P T E R 6

Picture Shapes

About Picture Shapes 6-21

Figure 6-16 shows the same picture shape as Figure 6-15. In Figure 6-16, however, the

picture shape at the top of the picture hierarchy has its own transform object that

specifies that the entire picture should be rotated counterclockwise by 90 degrees.

QuickDraw GX concatentates the overriding transform of the path shape (labeled 1 in

the picture) with the transform of the top of the picture hierarchy (labeled 2 in the

picture), and draws the house at its original orientation. The original transform of the

path shape (labeled 1A) is ignored because of the overriding transform.

Figure 6-16 Simple transform concatenation

C H A P T E R 6

Picture Shapes

6-22 About Picture Shapes

Figure 6-17 shows an even more complex example of transform concatenation. This

figure shows the same picture from Figure 6-16, but in Figure 6-17 this picture has been

added as an item to another picture.

To draw this picture, QuickDraw GX uses the overriding transform (labeled 1) of the

original path shape, which rotates it 90 degrees to the right. Then QuickDraw GX uses

the overriding transform (labeled 2) associated with the picture that contains the path

shape, which scales the picture by a factor of 2. Finally, QuickDraw GX uses the

transform object (labeled 3) of the picture at the top of the hierarcy, which rotates the

picture 45 degrees to the right. The result is shown at the bottom of Figure 6-17.

C H A P T E R 6

Picture Shapes

About Picture Shapes 6-23

Figure 6-17 Intricate transform concatenation

You can find more examples of transform concatentation in “Creating Picture

Hierarchies” beginning on page 6-44.

C H A P T E R 6

Picture Shapes

6-24 About Picture Shapes

About Hit-Testing Picture Shapes
When the user clicks the mouse, your application receives the information from the

Macintosh Toolbox about where the mouse click occurred. By sending this information

to the GXHitTestPicture function, you can find out which item in a picture was hit.

This process is called hit-testing a picture shape.

When hit-testing a picture shape, QuickDraw GX searches through the shapes contained

in the picture until it finds the shape that was hit by the hit-test point. As QuickDraw GX

searches through the shapes in the picture, it

■ hit-tests the shape, using the hit-test information in that shape’s transform object (or
overriding transform object, if the shape has one) to determine if the shape was hit
or not

■ determines whether the hit shapes satisfy criteria that you specify

QuickDraw GX returns information about the first item that was hit and satisfies the

criteria.

Since more than one shape in a picture can be hit during a single hit-test, you provide

QuickDraw GX with extra selection criteria when hit-testing a picture. Specifically, you

specify a depth and a level:

■ Pictures frequently contain shapes that overlap when drawn. Therefore, it is possible
that the test point hits multiple shapes. For example, if the picture contains two
shapes, one on top of the other, the test point might hit both of them. You can control
which of these shapes QuickDraw GX selects as the hit shape by specifying a shape
depth. In this example, specifying a shape depth of 1 would indicate that
QuickDraw GX should select the shape that was drawn on top as the hit shape.
Specifying a shape depth of 2 would indicate that QuickDraw GX should select the
shape that was drawn underneath as the hit shape.

■ In a picture hierarchy, each shape can be contained by a picture shape, which in turn
can be contained by another picture shape, and so on. If the hit shape has a level of 3,
for example, you can specify that QuickDraw GX return a reference to the hit shape
by specifying a level of 3. You can specify that QuickDraw GX return a reference to the
picture that contains the hit shape by specifying a level of 2. You can specify that
QuickDraw GX return a reference to the picture that contains the picture that contains
the hit shape by specifying a level of 1.

C H A P T E R 6

Picture Shapes

About Picture Shapes 6-25

Figure 6-18 shows an example. The picture shape shown in this figure has two items,

each of which are pictures. Each of these pictures has two items itself, making a total of

four shapes that have a level of 2 in this hierarchy.

This figure shows the picture as drawn, and three sample hit-test points.

Figure 6-18 A picture shape and hit-test points

C H A P T E R 6

Picture Shapes

6-26 Using Picture Shapes

The first sample hit-test point hits only one shape: the lawn path shape. If you specified a

depth of 1, QuickDraw GX would select this shape as the hit shape. The shape returned

by QuickDraw GX, however, depends on what you specify for the level. If you specify 2,

the lawn path shape would be returned. If you specified 1, however, the picture that

contains the lawn path shape would be returned.

The second sample hit-test point hits two shapes: at depth 1, it hits the house rectangle;

at depth 2, it hits the lawn shape. You determine which is the hit shape by specifying a

depth of 1 or 2. You also specify whether QuickDraw GX returns the hit shape (by

specifying level 2) or the picture that contains the hit shape (by specifying level 1).

The third hit-test point hits three shapes: at depth 1, it hits the house rectangle; at

depth 2, it hits the walkway polygon; at depth 3, it hits the lawn shape. Again, you can

determine which of these shapes is the hit shape (by specifying the depth) and whether

the hit shape or the picture that contains it is returned (by specifying the level).

For programming examples of hit-testing picture shapes, see “Hit-Testing Pictures”

beginning on page 6-46.

Using Picture Shapes

This section shows you how to create, draw, edit, and hit-test picture shapes. In

particular, this section shows you how to

■ create and draw pictures

■ add items to a picture

■ remove and replace items in a picture

■ provide overriding styles, inks, and transforms for the items in a picture

■ add multiple copies of a shape to a picture

■ copy objects when adding them to a picture

■ create hierarchies of pictures

■ hit-test pictures

Although the geometry of a picture shape does not contain geometric points, a picture

shape can contain shapes whose geometries do contain geometric points. For this reason,

some of the sample functions in this section need to specify geometric points, which are

made up of two fixed-point numbers. To convert integers to fixed-point numbers when

specifying geometric points, QuickDraw GX provides the GXIntToFixed macro:

#define GXIntToFixed(a) ((Fixed)(a) << 16)

QuickDraw GX also provides the ff macro as a convenient alias:

#define ff(a) GXIntToFixed(a)

C H A P T E R 6

Picture Shapes

Using Picture Shapes 6-27

The sample functions throughout this section use the ff macro when converting an

integer constant to a fixed-point constant.

Creating and Drawing Picture Shapes
QuickDraw GX provides a number of methods to create and draw pictures. In general,

you can

■ define the items of the picture and draw them without creating a picture shape

■ define the items of the picture, incorporate them into a picture shape, and draw the
picture shape

You can use the GXDrawPicture function to draw pictures using the first method. You

send five parameters to this function: a count of how many shapes are in the picture, an

array of references to the shapes you want drawn, and arrays of references to the

overriding styles, inks, and transforms for those shapes. (See “Using Overriding Styles,

Inks, and Transforms” beginning on page 6-38 for examples of overriding styles, inks,

and transforms.) The GXDrawPicture function creates a temporary picture shape using

the information in the arrays you provide, draws the picture shape, and then disposes

of the temporary picture shape.

The GXDrawPicture function is convenient if you have a set of shapes (and overriding

styles, inks, and transforms) that you want to draw only one time.

QuickDraw GX also provides a number of ways for you to create a more permanent

picture shape—one that you can edit and draw repeatedly. To create a picture shape, you

can

■ create an empty picture shape using the GXNewShape function and add items to the
picture all at once using the GXSetPicture function

■ create an empty picture shape using the GXNewShape function and add items to the
picture individually using the GXSetPictureParts function or the AddToPicture
library function

■ create a picture with an initial set of items using the GXNewPicture function

In any of these three cases, you draw the picture shape using the GXDrawShape function.

The GXSetPicture function allows you to replace the entire geometry of a picture with

a new set of items. For more information, see “Getting and Setting Picture Geometries”

beginning on page 6-31.

The GXSetPictureParts function provides more sophisticated editing of a picture

shape’s item list. For more information, see “Adding Items to a Picture” beginning on

page 6-32, and “Removing and Replacing Items in a Picture” beginning on page 6-35.

The GXNewPicture function is similar to the GXDrawPicture function in that it

requires four arrays as parameters: arrays of references to the shapes, the overriding

styles, the overriding inks, and the overriding transforms that make up the items of the

picture shape. However, unlike the GXDrawPicture function, the GXNewPicture

function creates a picture shape and returns a reference to it to your application. You can

use this reference to draw the picture using the GXDrawShape function.

C H A P T E R 6

Picture Shapes

6-28 Using Picture Shapes

Listing 6-1 shows how to draw a picture of a house comprising three shapes: a rectangle

for the house itself, another rectangle for the door, and a triangle for the roof. The sample

function shown in this listing creates three shapes and draws them using the

GXDrawPicture function.

Listing 6-1 Creating a simple picture of a house

static gxShape DrawHousePicture(void)

{

const gxRectangle houseGeometry = {ff(90), ff(80),

 ff(200), ff(125)};

const gxRectangle doorGeometry = {ff(155), ff(95),

 ff(170), ff(125)};

const long roofGeometry[] = {1, /* number of contours */

 3, /* number of points */

 ff(80), ff(80),

 ff(145), ff(50),

 ff(210), ff(80)};

gxShape houseRectangle;

gxShape roofPolygon;

gxShape doorRectangle;

gxShape partsOfHouse[3];

houseRectangle = GXNewRectangle(&houseGeometry);

SetShapeCommonColor(houseRectangle, gxGray);

roofPolygon = GXNewPolygons((gxPolygons *) roofGeometry);

doorRectangle = GXNewRectangle(&doorGeometry);

partsOfHouse[0] = houseRectangle;

partsOfHouse[1] = roofPolygon;

partsOfHouse[2] = doorRectangle;

GXDrawPicture(3, partsOfHouse, nil, nil, nil);

C H A P T E R 6

Picture Shapes

Using Picture Shapes 6-29

GXDisposeShape(houseRectangle);

GXDisposeShape(roofPolygon);

GXDisposeShape(doorRectangle);

};

The results of this sample function are shown in Figure 6-19.

Figure 6-19 A picture of a house with a roof and a door

The call to the GXDrawPicture function in this example creates a temporary picture

shape, draws it, and then disposes of it. This function does not return a reference to the

picture shape, and so your code never has access to this shape. To create a more

permanent picture shape, one that your code can reference, you must first declare a

shape reference variable:

gxShape housePicture;

Then you can replace the call to the GXDrawPicture function with calls to the

GXNewPicture function and the GXDrawShape function:

housePicture = GXNewPicture(3, partsOfHouse, nil, nil, nil);

GXDrawShape(housePicture);

The resulting picture looks the same as the picture drawn by the GXDrawPicture

function, which is shown in Figure 6-19, but in this case the picture shape exists until

you explicitly dispose of it.

C H A P T E R 6

Picture Shapes

6-30 Using Picture Shapes

You can dispose of the picture shape using the GXDisposeShape function:

GXDisposeShape(housePicture);

In this example, disposing of the house picture also disposes of the three geometric

shapes referenced by the house picture. That is, disposing of the house picture releases

one of the references to each of the geometric shapes. However, before you dispose of the

house picture, each of these shapes has an owner count of 2. (The owner count of each

shape starts at 1 when you create it, and the call to the GXNewPicture function

increments the owner count of each of the shapes.) Therefore, when you dispose of the

house picture, the owner count of each of the geometric shapes decrements to 1. To free

the memory used by these shapes, you must still dispose of them individually—just as

you created them:

GXDisposeShape(houseRectangle);

GXDisposeShape(roofPolygon);

GXDisposeShape(doorRectangle);

Notice that you can dispose of these three geometric shapes before you dispose of the

house picture, as shown in Listing 6-2.

Listing 6-2 Disposing of shapes contained in a picture before disposing of the picture

housePicture = GXNewPicture(3, partsOfHouse, nil, nil, nil);

GXDisposeShape(houseRectangle);

GXDisposeShape(roofPolygon);

GXDisposeShape(doorRectangle);

GXDrawPicture(housePicture);

GXDisposeShape(housePicture);

In this example, disposing of the three geometric shapes decrements their owner count

by 1, but does not free their memory because the house picture shape still contains a

reference to each of the three shapes. Only when the house picture is disposed of is the

memory occupied by these three geometric shapes freed.

For information about the GXDrawPicture function, see page 6-67. For information

about the GXNewPicture function, see page 6-57.

C H A P T E R 6

Picture Shapes

Using Picture Shapes 6-31

Getting and Setting Picture Geometries
QuickDraw GX provides the GXGetPicture function and the GXSetPicture function

to allow you to examine and replace the entire geometry of a picture shape.

The GXGetPicture function returns as its function result the number of items in the

picture, and optionally returns an array of references to the shapes referenced by

the picture’s items, as well as arrays of references to the picture items’ overriding styles,

inks, and transforms. Typically, you call this function twice. The first time, you

determine the number of items in the picture. Then you use that number to allocate

enough memory to hold the arrays of references. Finally, you call the function a second

time to copy references from the items of the picture into your arrays.

The GXSetPicture function allows you to replace the geometry of a picture with a new

set of items. This function increments the owner counts of the new shapes, overriding

styles, overriding inks, and overriding transforms and disposes of the original shapes,

overriding styles, overriding inks, and overriding transforms.

Listing 6-3 gives an example of the GXGetPicture function. This example, which

builds on the example from Listing 6-1 on page 6-28, edits the picture of the house by

moving the location of the door.

Listing 6-3 Extracting and editing items from a picture

gxShape *extractedShapes;

long numberOfItems;

.

.

.

numberOfItems = GXGetPicture(housePicture, nil, nil, nil, nil);

extractedShapes = (gxShape *)

NewPtr(numberOfItems * sizeof(gxShape));

GXGetPicture(housePicture, extractedShapes, nil, nil, nil);

GXMoveShape(extractedShapes[2], ff(-40), 0);

GXDrawShape(housePicture);

C H A P T E R 6

Picture Shapes

6-32 Using Picture Shapes

The code in Listing 6-3 includes two new variable declarations: a pointer to shape

references and a long integer. The code in this listing calls the GXGetPicture function

to determine the number of items in the house picture, uses that number to allocate

enough memory to store the appropriate number of shape references, and then calls the

GXGetPicture function a second time to copy the shape references from the items of

the picture into the array of shape references. The sample code then uses the

GXMoveShape function to move the third shape in the picture 40 grid points to the left.

Notice that the extractedShapes array does not contain copies of the shapes in the

picture; instead, it contains copies of references to the shapes in the picture. The

references in the extractedShapes array reference the actual shapes in the picture.

Therefore, moving the shape referenced by the third item in the extractedShapes

array actually affects the house picture, as shown in Figure 6-20.

Figure 6-20 A picture of a house with a relocated door

For more information about the GXGetPicture and GXSetPicture functions, see

page 6-59 through page 6-63.

Adding Items to a Picture
Once you have created a picture shape, you can add more items to it using one of these

methods:

■ You can use the GXGetPicture function to obtain arrays of references to the shapes,
overriding styles, overriding inks, and overriding transforms that make up the items
of a picture. You can then add new references to these arrays and use the
GXSetPicture function to replace the original items with the information in the
edited arrays.

■ You can use the GXSetPictureParts function to insert any number of new items
directly into a picture shape. With this function, you can insert the new items
anywhere in the existing item list.

■ You can use the AddToPicture library function to insert a single new item at the end
of a picture shape’s item list.

C H A P T E R 6

Picture Shapes

Using Picture Shapes 6-33

Listing 6-4 and Listing 6-5 show how to use the GXSetPictureParts function to add

three new items to the house picture defined in Listing 6-1 on page 6-28. Listing 6-4

defines three new shapes to include in the picture, and Listing 6-5 uses the

GXSetPictureParts function to insert the shapes into the house picture.

Listing 6-4 Defining new shapes for the house picture

gxShape lawnPolygon;

gxShape walkwayPolygon;

gxShape chimneyRectangle;

.

.

.

const long lawnGeometry[] = {1, /* number of contours */

 5, /* number of points */

 0x70000000, /* 0111 0000 ... */

 ff(20), ff(160), /* on */

 ff(20), ff(130), /* off */

 ff(140), ff(100), /* off */

 ff(260), ff(130), /* off */

 ff(260), ff(160)}; /* on */

const long walkwayGeometry[] = {1, /* number of contours */

 3, /* number of points */

 ff(102), ff(160),

 ff(122), ff(100),

 ff(142), ff(160)};

gxRectangle chimneyGeometry = {ff(110), ff(50),

 ff(120), ff(80)};

lawnPolygon = GXNewPaths((gxPaths *) lawnGeometry);

SetShapeCommonColor(lawnPolygon, light + gxGray);

walkwayPolygon = GXNewPolygons((gxPolygons *) walkwayGeometry);

SetShapeCommonColor(walkwayPolygon, dark + gxGray);

chimneyRectangle = GXNewRectangle(&chimneyGeometry);

SetShapeCommonColor(chimneyRectangle, dark + gxGray);

C H A P T E R 6

Picture Shapes

6-34 Using Picture Shapes

The sample code from Listing 6-4 defines a lawn shape, a walkway shape, and a

chimney shape. The sample code in Listing 6-5 creates an array to store references to

these three shapes, and then calls the GXSetPictureParts function to insert the

shapes into the house picture.

Listing 6-5 Adding new shapes to the house picture

gxShape insertedShapes[3];

.

.

.

insertedShapes[0] = lawnPolygon;

insertedShapes[1] = walkwayPolygon;

insertedShapes[2] = chimneyRectangle;

GXSetPictureParts(housePicture,

 1, /* insert before first item */

 0, /* don’t replace any existing items */

 3, /* insert three new items */

 insertedShapes, /* shapes to insert */

 nil, nil, nil); /* no overrides */

The first parameter to the GXSetPictureParts function specifies the picture whose

item list you want to edit. The second parameter specifies where you want the editing to

occur. In this example, the second parameter is set to 1, which indicates that the new

items should be inserted before the first item of the picture. QuickDraw GX draws

the items of a picture in order from back to front; therefore, inserting the new items

before the existing items ensures that the new items are drawn behind the existing ones.

The third parameter to the GXSetPictureParts function specifies how many of the

original picture items to remove. In this example, this parameter is set to 0. For examples

of removing and replacing picture items, see the next section.

The fourth parameter to the GXSetPictureParts function specifies how many new

items to insert into the picture, which in this case is 3.

The last four parameters to the GXSetPictureParts function specify the shapes,

overriding styles, overriding inks, and overriding transforms that make up the new

picture items.

C H A P T E R 6

Picture Shapes

Using Picture Shapes 6-35

Once you have inserted the new shapes into the picture, you can dispose of the shapes

(which simply lowers their owner count to 1), and then draw the picture:

GXDisposeShape(lawnPolygon);

GXDisposeShape(walkwayPolygon);

GXDisposeShape(chimneyRectangle);

GXDrawShape(housePicture);

The resulting picture is shown in Figure 6-21.

Figure 6-21 A house with a lawn, walkway, and chimney

For more information about the GXSetPictureParts function, see page 6-65.

Removing and Replacing Items in a Picture
You can use the GXSetPicture function or the GXSetPictureParts function to

replace items in a picture.

The GXSetPicture function removes every item in a picture and inserts a new list of

items. The GXSetPictureParts function allows you more control in replacing items.

With this function, you can replace a subset of the items in a picture with another set

of items. The inserted set does not have to have the same number of items as the

replaced set.

C H A P T E R 6

Picture Shapes

6-36 Using Picture Shapes

As a simple example, you can use the GXSetPictureParts function to remove a single

item from a picture. Listing 6-6 shows how to use the GXSetPictureParts function

to remove the chimney, which is item number 3, from the house picture shown in

Figure 6-21.

Listing 6-6 Removing an item from a picture

GXSetPictureParts(housePicture,

3, /* start editing at item 3 */

1, /* remove 1 item */

0, /* insert 0 items */

nil, /* no shapes to insert */

nil, nil, nil); /* no overrides */

The resulting picture is shown in Figure 6-22.

Figure 6-22 A house with chimney removed

You can also use the GXSetPictureParts function to replace items in a picture; with a

single call to GXSetPictureParts, you can remove items from a picture and insert

new items into a picture.

C H A P T E R 6

Picture Shapes

Using Picture Shapes 6-37

Like the sample code in Listing 6-6, the sample code in Listing 6-7 uses the

GXSetPictureParts function to remove the chimney shape from the house picture.

However, this call to the GXSetPictureParts function inserts a new chimney into the

house picture at the same time.

Listing 6-7 Replacing one shape with another

gxShape newChimneyRectangle;

gxRectangle newChimneyGeometry = {ff(170), ff(50),

 ff(180), ff(80)};

.

.

.

newChimneyRectangle = GXNewRectangle(&newChimneyGeometry);

SetShapeCommonColor(newChimneyRectangle, dark + gxGray);

GXSetPictureParts(housePicture,

3, /* start editing at item 3 */

1, /* remove 1 item */

1, /* insert 1 item */

&newChimneyRectangle, /* shape to insert */

nil, nil, nil); /* no overrides */

GXDisposeShape(newChimneyRectangle);

The resulting house picture is shown in Figure 6-23.

Figure 6-23 A house with the chimney replaced

For more information about the GXSetPictureParts function, see page 6-65.

C H A P T E R 6

Picture Shapes

6-38 Using Picture Shapes

Using Overriding Styles, Inks, and Transforms
As detailed in the previous three sections, QuickDraw GX provides a number of

methods for adding items to a picture shape. In particular, you can add items when

creating a picture using the GXNewPicture function, you can replace every item in an

existing picture using the GXSetPicture function, and you can replace some of the

items in a picture using the GXSetPictureParts function. All three of these functions

allow you to specify overriding styles, inks, and transforms for the new picture items.

As an example, the code in Listing 6-8 and Listing 6-9 alters the house picture from

Listing 6-1 on page 6-28. Listing 6-8 defines a style object, an ink object, and a transform

object. Listing 6-9 uses these objects and the GXSetPicture function to create a house

picture whose items contain overriding styles, inks, and transforms.

Listing 6-8 Creating style, ink, and transform objects

gxShape squarePattern;

gxStyle patternedStyle;

gxInk grayInk;

gxTransform skewedTransform;

const gxRectangle squareGeometry = {ff(0), ff(0),

 ff(2), ff(2)};

gxPatternRecord patternRecord;

.

.

.

squarePattern = GXNewRectangle(&squareGeometry);

patternRecord.attributes = gxNoAttributes;

patternRecord.pattern = squarePattern;

patternRecord.u.x = ff(1);

patternRecord.u.y = ff(4);

patternRecord.v.x = ff(3);

patternRecord.v.y = ff(1);

patternedStyle = GXNewStyle();

GXSetStylePattern(patternedStyle, &patternRecord);

grayInk = GXNewInk();

SetInkCommonColor(grayInk, gxGray);

skewedTransform = GXNewTransform();

GXSkewTransform(skewedTransform, -fl(.5), 0, ff(122), ff(110));

C H A P T E R 6

Picture Shapes

Using Picture Shapes 6-39

Listing 6-9 uses the style, ink, and transform objects defined in Listing 6-8, and the

partsOfHouse array (which is defined in Listing 6-1 on page 6-28) to create a house

picture. In this house picture, the main part of the house has an overriding style, the roof

has an overriding ink, and the door has an overriding transform.

Listing 6-9 Creating a picture whose items have overriding styles, inks, and transforms

gxStyle overridingStyles[3];

gxInk overridingInks[3];

gxTransform overridingTransforms[3];

.

.

.

overridingStyles[0] = patternedStyle;

overridingStyles[1] = nil;

overridingStyles[2] = nil;

overridingInks[0] = nil;

overridingInks[1] = grayInk;

overridingInks[2] = nil;

overridingTransforms[0] = nil;

overridingTransforms[1] = nil;

overridingTransforms[2] = skewedTransform;

housePicture = GXNewShape(gxPictureType);

GXSetPicture(housePicture,

 3,

 partsOfHouse,

 overridingStyles,

 overridingInks,

 overridingTransforms);

C H A P T E R 6

Picture Shapes

6-40 Using Picture Shapes

Once you have added the overriding style, ink, and transform objects to the picture, you

can dispose of them, as shown in Listing 6-10. Since these objects are referenced twice

(once by your application and once by the house picture), disposing of them lowers their

owner counts to 1, but does not free the memory associated with them. When you

eventually dispose of the house picture, QuickDraw GX disposes of these objects again

and frees their memory.

Listing 6-10 Disposing of overriding style, ink, and transform objects before drawing

GXDisposeShape(squarePattern);

GXDisposeStyle(patternedStyle);

GXDisposeInk(grayInk);

GXDisposeTransform(skewedTransform);

GXDrawShape(housePicture);

The resulting picture is shown in Figure 6-24.

Figure 6-24 A house picture with an overriding style, ink, and transform

For more information about overriding styles, inks, and transforms, see “Overriding

Styles, Inks, and Transforms” beginning on page 6-8.

For more information about the GXNewPicture function, see page 6-57. For more

information about the GXSetPicture function, see page 6-61.

Adding Multiple References
Multiple items in a single picture can reference the same shape. You can use any of the

functions that add items to a picture (GXNewPicture, GXSetPicture,

GXSetPictureParts) to add multiple references to a single shape. The example in

Listing 6-11 adds four new items to the house picture defined in Listing 6-1 on page 6-28.

Each of these items references the same shape—a small, white rectangle. Because four

items reference the same rectangle, four instances of this rectangle appear in the picture.

C H A P T E R 6

Picture Shapes

Using Picture Shapes 6-41

Without overriding transforms, however, all four instances of this rectangle would

appear in the same location. Therefore, the sample code in Listing 6-11 creates overriding

transforms for three of the four new items.

Listing 6-11 Adding four items that reference the same shape to a house picture

gxRectangle windowGeometry = {ff(155), ff(93),

 ff(160), ff(112)};

gxShape windowRectangle;

gxShape insertedShapes[4];

gxTransform overridingTransforms[4];

windowRectangle = GXNewRectangle(&windowGeometry);

SetShapeCommonColor(windowRectangle, gxWhite);

insertedShapes[0] = windowRectangle;

insertedShapes[1] = windowRectangle;

insertedShapes[2] = windowRectangle;

insertedShapes[3] = windowRectangle;

overridingTransforms[0] = nil;

overridingTransforms[1] = GXNewTransform();

overridingTransforms[2] = GXNewTransform();

overridingTransforms[3] = GXNewTransform();

GXMoveTransform(overridingTransforms[1], ff(7), 0);

GXMoveTransform(overridingTransforms[2], ff(14), 0);

GXMoveTransform(overridingTransforms[3], ff(21), 0);

GXSetPictureParts(housePicture,

 3, /* where to insert */

 0, /* how many to replace */

 4, /* how many to insert */

 insertedShapes,

 nil, nil,

 overridingTransforms);

C H A P T E R 6

Picture Shapes

6-42 Using Picture Shapes

This sample code creates one rectangle shape and three transform objects. Once you

insert these objects in the picture, you can dispose of them to lower their owner count

to 1, as shown in Listing 6-12. Since these objects are referenced twice (once by your

application and once by the house picture), disposing of them lowers their owner counts

to 1, but does not free the memory associated with them. When you dispose of the house

picture, QuickDraw GX disposes of these objects again and frees their memory.

Listing 6-12 Disposing of the white rectangle and the three transform objects before drawing

int count;

.

.

.

for (count = 1; count <= 3 ; count++)

GXDisposeTransform(overridingTransforms[count]);

GXDisposeShape(windowRectangle);

GXDrawShape(housePicture);

The resulting picture is shown in Figure 6-25.

Figure 6-25 A house with four windows

Notice that the sample code in Listing 6-11 creates three separate transform objects

because three different transformations are happening to the instances of the window

rectangle—the second instance is moved 7 grid points to the right, the third instance is

moved 14 grid points to the right, and the fourth instance is moved 21 grid points to the

right.

You can specify that QuickDraw GX copy the overriding transforms when adding them

to the picture (rather than adding them by reference) by setting the unique items shape

attribute, as discussed in the next section.

For more information about adding multiple items referencing the same shape, see

“Multiple References” beginning on page 6-10.

C H A P T E R 6

Picture Shapes

Using Picture Shapes 6-43

Adding Items With the Unique Items Attribute Set
The unique items shape attribute changes the way in which QuickDraw GX adds shapes

to a picture. When you add a shape to a picture that does not have this attribute set,

QuickDraw GX copies the reference to the existing shape, inserts this reference into the

picture’s item list, and increments the owner count of the shape. Similarly, if you specify

an overriding style, ink, or transform object for the shape, QuickDraw GX copies the

object’s reference into the picture’s item list and increments the owner count of the object.

However, when you add a shape to a picture that has the unique items attribute set,

QuickDraw GX makes a copy of the shape and inserts a reference to the copy in the

picture’s item list. Similarly, overriding styles, inks, and transforms are also copied.

As an example, Listing 6-13 shows how to use the GXGetShapeAttributes and

GXSetShapeAttributes functions to set the unique items shape attribute of a picture.

You must set this attribute before you add any items to a picture; if the picture already

contains items, setting this attribute results in an error.

This listing adds four instances of a window rectangle to the house picture from

Listing 6-1 on page 6-28. This sample code specifies the same overriding transform for

each instance of the window rectangle. However, the overriding transform is moved

(with the GXMoveTransform function) after each call to the AddToPicture library

function. Because the house picture has the unique items shape attribute set, QuickDraw

GX makes a separate copy of the overriding transform each time a window rectangle is

inserted into the picture.

Listing 6-13 Adding unique items to a picture

GXSetShapeAttributes(housePicture,

GXGetShapeAttributes(housePicture) | gxUniqueItemsShape);

.

.

.

moveToRight = GXNewTransform();

for (count = 0; count <= 3 ; count++) {

AddToPicture(housePicture,

 windowRectangle,

 nil, nil,

 moveToRight);

GXMoveTransform(moveToRight, ff(7), 0);

}

In this example, the first time that the AddToPicture function is called, QuickDraw GX

creates a copy of the window rectangle shape and a copy of the overriding transform

object, and inserts references to the copies in the item list of the house picture.

C H A P T E R 6

Picture Shapes

6-44 Using Picture Shapes

The second time that the AddToPicture function is called, QuickDraw GX notices that

the window rectangle shape has not changed, so it does not make another copy of the

window rectangle. Instead, it creates a new item in the house picture that references the

previously made copy. However, the overriding transform has changed, so

QuickDraw GX makes a new copy of it for the new picture item.

The third and fourth calls to the AddToPicture function also create new copies of the

overriding transform, but do not create new copies of the window rectangle.

After the code from Listing 6-13 finishes executing, there are a total of two window

rectangles—the original one, which is referenced by the windowRectangle variable,

and the copy, which is referenced four times by the items of the house picture. There are

a total of five transform objects—the original one, which is referenced by the

moveToRight variable, and four separate copies referenced by the four new items of the

picture.

Figure 6-26 shows the resulting picture.

Figure 6-26 A house with four windows and four unique overriding transforms

For more information about the unique items shape attribute, see “Unique Items Shape

Attribute” beginning on page 6-15.

Creating Picture Hierarchies
QuickDraw GX allows the items in a picture shape to reference other picture shapes. You

can use any of the functions that allow you to add items to pictures (GXNewPicture,

GXSetPicture, GXSetPictureParts) to create picture hierarchies.

When drawing a picture hierarchy, QuickDraw GX concatenates the mapping and

clipping information contained in the transform objects (or overriding transform objects)

at each level of the hierarchy. As an example, Listing 6-14 shows how QuickDraw GX

concatenates mapping information from two levels of a picture hierarchy. In this

example, the house picture from Figure 6-21 on page 6-35 is added to another picture as

an item with an overriding transform that rotates the house clockwise 90 degrees. In

turn, this picture is added as an item to yet another picture, with the same overriding

transform.

C H A P T E R 6

Picture Shapes

Using Picture Shapes 6-45

Listing 6-14 Creating a picture hierarchy

gxShape rootPicture, level1Picture;

gxTransform rotateHouse;

.

.

.

rotateHouse = GXNewTransform();

GXRotateTransform(rotateHouse, ff(90), ff(150), ff(100));

level1Picture = GXNewPicture(1,

 &housePicture,

nil, nil,

&rotateHouse);

rootPicture = GXNewPicture(1,

&level1Picture,

nil, nil,

&rotateHouse);

GXDrawShape(rootPicture);

When QuickDraw GX draws the root-level picture, it concatenates the information in the

two overriding transforms, and draws the house picture rotated clockwise 180 degrees,

as shown in Figure 6-27.

Figure 6-27 A house rotated by 90 degrees two times

For more information about picture hierarchies and transform concatenation, see

“Picture Hierarchies” beginning on page 6-18 and “Transform Concatenation” beginning

on page 6-19.

C H A P T E R 6

Picture Shapes

6-46 Using Picture Shapes

Hit-Testing Pictures
As described in “About Hit-Testing Picture Shapes” beginning on page 6-24, QuickDraw

GX hit-tests a picture shape by

■ hit-testing each item contained in the picture, using the hit-test information in that
item’s transform object (or overriding transform object, if the item has one) to
determine if the item was hit or not

■ finding the hit item that corresponds to the depth you specify

■ determining the item to return using the level you specify

■ providing information about the item

The criteria you specify includes the depth at which you want to hit-test the picture, and

the level of the picture hierarchy at which you want to hit-test.

To illustrate picture hit-testing, Listing 6-15 creates a picture hierarchy using the shapes

defined in Listing 6-1 on page 6-28 and Listing 6-4 on page 6-33. This example creates a

picture shape that contains two items. The first item is a picture of a lawn and a

walkway, and the second item is a picture of a house, roof, and door.

Listing 6-15 Creating a picture hierarchy

gxShape groundsPicture, housePicture, entirePicture;

gxShape partsOfHouse[4];

gxShape partsOfGrounds[2];

gxShape partsOfEntirePicture[2];

.

.

.

partsOfGrounds[0] = lawnPolygon;

partsOfGrounds[1] = walkwayPolygon;

groundsPicture = GXNewPicture(2, partsOfGrounds, nil, nil, nil);

partsOfHouse[0] = houseRectangle;

partsOfHouse[1] = roofPolygon;

partsOfHouse[2] = doorRectangle;

housePicture = GXNewPicture(3, partsOfHouse, nil, nil, nil);

partsOfEntirePicture[0] = groundsPicture;

partsOfEntirePicture[1] = housePicture;

entirePicture = GXNewPicture(2, partsOfEntirePicture,

 nil, nil, nil);

C H A P T E R 6

Picture Shapes

Using Picture Shapes 6-47

Figure 6-28 shows the items that make up the grounds picture.

Figure 6-28 Grounds picture

Figure 6-29 shows the items that make up the house picture.

Figure 6-29 House picture

C H A P T E R 6

Picture Shapes

6-48 Using Picture Shapes

Figure 6-30 shows the entire picture created in Listing 6-15.

Figure 6-30 Picture containing grounds picture and house picture

You hit-test a picture shape using the function GXHitTestPicture. This function takes

as its parameters a reference to the picture to hit-test, the test point, an optional hit-test

parameters structure, the level at which to hit-test, and the depth at which to hit-test. The

sample code in Listing 6-16 shows how to hit-test the picture from Listing 6-15 using a

test point of ff(122), ff(110).

C H A P T E R 6

Picture Shapes

Using Picture Shapes 6-49

Listing 6-16 Hit-testing a picture shape

gxPoint testPoint = {ff(122), ff(110)};

gxShape hitShape;

long level, depth;

.

.

.

hitShape = GXHitTestPicture(entirePicture, &testPoint, nil,

 level, depth);

Figure 6-31 shows the location of the test point.

Figure 6-31 Hit-testing the picture of house and grounds

C H A P T E R 6

Picture Shapes

6-50 Using Picture Shapes

If you specify a depth of 2, the hit shape is the house rectangle. If you specify a level of 1,

QuickDraw GX returns information about the house picture that contains the house

rectangle. Figure 6-32 depicts this selection process.

Figure 6-32 Hit-testing the picture at depth 2 and level 1

The GXHitTestPicture function returns a reference to the shape that was hit by the

test point. In this example, the test point falls above four separate shapes: the door

rectangle, the house rectangle, the walkway polygon, and the lawn path. By varying the

values of the level and depth parameters, you can control which shape is returned by the

GXHitTestPicture function.

C H A P T E R 6

Picture Shapes

Using Picture Shapes 6-51

Table 6-1 shows which shape is returned for various choices of level and depth.

At depth 1, the returned shape is the frontmost shape that was hit—in this case, the door

rectangle, which is at level 2 in the picture hierarchy. If you specify a depth of 1 and a

level of 1, the GXHitTestPicture function returns the picture that contains the door

rectangle—in this case the house picture.

In a similar manner, depth 2 indicates the house rectangle, depth 3 indicates the

walkway polygon, and depth 4 indicates the lawn path.

For information about the GXHitTestPicture function, see page 6-69.

Table 6-1 Hit-testing a picture at different depths and levels

Depth Level Hit Shape

1 2 Door rectangle

1 1 House picture

2 2 House rectangle

2 1 House picture

3 2 Walkway polygon

3 1 Grounds picture

4 2 Lawn path

4 1 Grounds picture

C H A P T E R 6

Picture Shapes

6-52 Applying Functions Described Elsewhere to Picture Shapes

Applying Functions Described Elsewhere to Picture Shapes

QuickDraw GX provides only a small number of functions that apply exclusively to

picture shapes. However, many of the QuickDraw GX functions that you can apply to

other types of shapes you can also apply to picture shapes.

The next six sections discuss how functions described elsewhere operate when applied

to picture shapes. These sections are

■ “Functions That Post Errors or Warnings When Applied to Pictures” on page 6-52,
which lists functions that you can apply to other types of shapes but not to picture
shapes

■ “Shape-Related Functions Applicable to Pictures” on page 6-54, which lists functions
that operate on picture shape objects

■ “Geometric Operations Applicable to Pictures” on page 6-55, which lists the few
geometric operation functions that you can apply to pictures

■ “Style-Related Functions Applicable to Pictures” on page 6-55, which discusses how
style-related functions apply to pictures

■ “Ink-Related Functions Applicable to Pictures” on page 6-56, which discusses how
ink-related functions apply to pictures

■ “Transform-Related Functions Applicable to Pictures” on page 6-56, which discusses
how transform-related functions apply to pictures

Functions That Post Errors or Warnings When Applied to
Pictures
Some QuickDraw GX functions that operate on other types of shapes do nothing but

post an error or a warning if you try to apply them to a picture shape.

For example, there are a number of shape-related functions and geometric operations

that you cannot apply to picture shapes. Table 6-2 lists these functions, which are

described in full in Chapter 2, “Geometric Shapes,” and Chapter 4, “Geometric

Operations.”

C H A P T E R 6

Picture Shapes

Applying Functions Described Elsewhere to Picture Shapes 6-53

Most of these geometric operations do not apply to picture shapes because a picture’s

geometry is substantially different from the geometry of a geometric shape.

You can apply a few of the geometric operations to pictures, however. These functions

are discussed in “Geometric Operations Applicable to Pictures” beginning on page 6-55.

Table 6-2 Geometric operations that post errors or warnings when applied to pictures

Function name Error or warning posted

GXBreakShape graphic_type_does_not_contain_points

GXContainsShape shape_operator_may_not_be_a_picture

GXCountShapePoints graphic_type_does_not_contain_points

GXDifferenceShape shape_operator_may_not_be_a_picture

GXExcludeShape shape_operator_may_not_be_a_picture

GXGetShapeCenter illegal_type_for_shape

GXGetShapeDirection graphic_type_does_not_have_multiple_contours

GXGetShapeLength shape_does_not_have_length

GXGetShapePoints graphic_type_does_not_contain_points

GXInsetShape graphic_type_cannot_be_inset

GXIntersectShape shape_operator_may_not_be_a_picture

GXInvertShape shape_cannot_be_inverted

GXReverseDifferenceShape shape_operator_may_not_be_a_picture

GXReverseShape contour_out_of_range

GXShapeLengthToPoint shape_does_not_have_length

GXSetShapePoints graphic_type_does_not_contain_points

GXTouchesShape shape_operator_may_not_be_a_picture

GXUnionShape shape_operator_may_not_be_a_picture

C H A P T E R 6

Picture Shapes

6-54 Applying Functions Described Elsewhere to Picture Shapes

Shape-Related Functions Applicable to Pictures
You can apply all of the functions described in the chapter “Shape Objects” in Inside
Macintosh: QuickDraw GX Objects to picture shapes. These functions allow you to

■ manipulate the shape object that represents the picture shape; for example, you can
copy, clone, cache, compare, and dispose of the picture shape

■ set the geometry, shape type, shape fill, and shape attributes of the picture shape

■ change the style, ink, and transform objects that are associated with the picture shape

■ manipulate the picture shape’s tags and owner count

Table 6-3 gives important picture-related information for a subset of the functions from

the chapter “Shape Objects” of Inside Macintosh: QuickDraw GX Objects. Functions

described in that chapter that do not appear in this list exhibit the same behavior when

applied to picture shapes as they do when applied to other types of shapes.

Table 6-3 Shape-related functions that exhibit special behavior when applied to pictures

Function name Action taken

GXCopyToShape Makes a copy of the picture shape; the items of the new
picture shape reference the same shapes as the items of the
original picture shape.

GXCopyDeepToShape Makes a copy of the picture shape, including a complete
copy of the entire picture hierarchy.

GXGetShapeSize Determines the amount of memory currently used by all of
the items in the picture.

GXGetShapeFill Returns the shape’s shape fill, which for picture shapes is
always even-odd fill or no fill.

GXSetShapeFill Sets the shape’s shape fill; you must always set a picture
shape’s shape fill to even-odd fill or no fill.

GXSetShapeType Changes the shape type of the picture shape and converts
the shape fill and geometry as appropriate. The resulting
shape is a picture with one item—the original shape.

C H A P T E R 6

Picture Shapes

Applying Functions Described Elsewhere to Picture Shapes 6-55

Geometric Operations Applicable to Pictures
Many geometric operations post errors or warnings when applied to picture shapes, as

described in “Functions That Post Errors or Warnings When Applied to Pictures” on

page 6-52.

You can, however, apply the remainder of the functions described in Chapter 4,

“Geometric Operations,” to picture shapes. Table 6-4 gives important picture-related

information for a subset of these functions; the remainder of the geometric operations

exhibit the same behavior when applied to picture shapes as they do when applied to

other types of shapes.

Style-Related Functions Applicable to Pictures
Picture shapes make limited use of their style objects. You may apply to a picture shape

any of the functions described in Chapter 3, “Geometric Styles,” (such as

GXSetShapePen, GXSetShapeDash, and so on) to set the properties of a picture’s style

object, and you may use the corresponding functions (GXGetShapePen,

GXGetShapeDash, and so on) to examine these properties. However, QuickDraw GX

ignores these properties when drawing a picture.

Table 6-4 Geometric operations that exhibit special behavior when applied to pictures

Function name Action taken

GXGetShapeArea Returns summed areas of picture items.

GXGetShapeBounds Returns bounding rectangle of specified item.

GXSetShapeBounds If the picture’s mapTransformShape shape attribute is set,
this function changes the picture’s transform so that the
entire picture fits within the specifed bounding rectangle. If
this attribute is not set, this function posts an error.

C H A P T E R 6

Picture Shapes

6-56 Applying Functions Described Elsewhere to Picture Shapes

Ink-Related Functions Applicable to Pictures
Picture shapes make limited use of their ink objects. You may apply to a picture

shape any of the shape-related functions described in the chapter “Ink Objects” of

Inside Macintosh: QuickDraw GX Objects (such as GXSetShapeColor,

GXSetShapeTransfer) to set the properties of a picture’s ink object, and you may

use the corresponding functions (GXGetShapeColor, GXGetShapeTransfer) to

examine these properties. However, QuickDraw GX ignores these properties when

drawing a picture.

Transform-Related Functions Applicable to Pictures
Although picture shapes do not make full use of their style and ink objects, they do

make full use of their transform objects. You can apply all of the shape-related functions

that are described in the chapter “Transform Objects” of Inside Macintosh: QuickDraw GX
Objects to picture shapes.

In general, you need to be sure that a picture shape’s gxMapTransformShape shape

attribute is set before applying any of the mapping operations to a picture.

C H A P T E R 6

Picture Shapes

Picture Shapes Reference 6-57

Picture Shapes Reference

Functions

This section describes the functions provided by QuickDraw GX specifically for creating

and manipulating picture shapes. With the functions described in this section, you can

■ create a new picture shape

■ examine and edit the items of a picture shape

■ draw pictures

■ hit-test pictures

See the section “Applying Functions Described Elsewhere to Picture Shapes” beginning

on page 6-52 for information about other QuickDraw GX functions that you can apply to

picture shapes.

Creating Picture Shapes

This section describes the GXNewPicture function, which you use to create new picture

shapes.

GXNewPicture

You can use the GXNewPicture function to create a new picture shape.

gxShape GXNewPicture(long count, const gxShape shapes[],

const gxStyle styles[], const gxInk inks[],

const gxTransform transforms[])

count The number of picture items in the new picture shape.

shapes An array of references to the shapes you want to include in the picture.

styles An array of references to the style objects you want to use as overriding
styles for the picture items. You may provide nil for this parameter if
you do not want any overriding styles.

inks An array of references to the ink objects you want to use as overriding
inks for the picture items. You may provide nil for this parameter if you
do not want any overriding inks.

C H A P T E R 6

Picture Shapes

6-58 Picture Shapes Reference

transforms
An array of references to the transform objects you want to use as
overriding transforms for the picture items. You may provide nil for this
parameter if you do not want any overriding transforms.

function result A reference to the newly created picture shape.

DESCRIPTION

The GXNewPicture function creates a new picture shape.

In the count parameter, you specify the number of shapes you want to include as items

of the picture, and in the shapes parameter, you provide references to the shapes.

In the styles parameter, you specify references to overriding styles. Each item of this

array overrides the style of the corresponding shape in the shapes array. For example,

the first style you provide in the styles array becomes the overriding style for the first

shape in the shapes array, and so on. Similarly, in the inks and transforms

parameters you specify references to overriding inks and transforms.

You may specify 0 for the count parameter and nil for the shapes, styles, inks,

and transforms parameters to create an empty picture—a picture containing no

picture items. You may provide nil for the styles, inks, or transforms parameters

even if you provide shape references in the shapes parameter. In this case, the newly

created picture shape contains picture items, but those items contain no overriding

styles, inks, or transforms.

You may also provide nil for an individual item of a styles, inks, or transforms

array if you do not want the corresponding picture item to have an overriding style, ink,

or transform.

SPECIAL CONSIDERATIONS

If no error results, the GXNewPicture function creates a picture shape; you are

responsible for disposing of this shape when you no longer need it. See Inside Macintosh:
QuickDraw GX Objects for information about creating and disposing of shapes.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
parameter_is_nil
shape_is_nil
parameter_out_of_range

C H A P T E R 6

Picture Shapes

Picture Shapes Reference 6-59

SEE ALSO

For information about picture items and their overriding styles, inks, and transforms, see

“About Picture Shapes” beginning on page 6-3.

For an example using this function, see “Creating and Drawing Picture Shapes”

beginning on page 6-27.

To draw a picture shape once you’ve created one, use the GXDrawShape function,

described in the chapter “Shape Objects” of Inside Macintosh: QuickDraw GX Objects.

For information about disposing of picture shapes, see the description of the

GXDisposeShape function, which is in the chapter “Shape Objects” of Inside Macintosh:
QuickDraw GX Objects.

Getting and Setting Picture Geometries

This section describes the functions you can use to examine or replace the entire

geometry of a picture shape—that is, all of the picture items included in the picture.

The GXGetPicture function provides references to the shapes contained in a picture

geometry and references to their overriding styles, inks, and transforms.

The GXSetPicture function replaces references to the shapes contained in a picture

geometry and references to their overriding styles, inks, and transforms.

GXGetPicture

You can use the GXGetPicture function to obtain references to the shapes contained in

a picture and references to their overriding styles, inks, and transforms.

long GXGetPicture(gxShape source, gxShape shapes[],

gxStyle styles[], gxInk inks[],

gxTransform transforms[]);

source A reference to the picture shape whose items you want to examine.

shapes An array of shape references. On return, this array contains references to
the shapes contained in the source picture.

styles An array of references to style objects. On return, this array contains
references to the overriding styles contained in the source picture.

inks An array of references to ink objects. On return, this array contains
references to the overriding inks contained in the source picture.

C H A P T E R 6

Picture Shapes

6-60 Picture Shapes Reference

transforms
An array of references to transform objects. On return, this array contains
references to the overriding transforms contained in the source picture.

function result The total number of items in the source picture.

DESCRIPTION

If you provide arrays for the shapes, styles, inks, and transforms parameters, this

function copies the references to shapes, styles, inks, and transforms from the picture’s

geometry into these arrays. However, you may provide nil for any of these parameters

to indicate that you do not want to obtain the corresponding references.

Typically, you call this function twice. The first time you specify nil for all of the array

parameters and use the function result to determine the number of picture items, which

you can use to allocate arrays large enough to contain the shape, style, ink, and

transform references. Then you call the function a second time to determine the actual

references.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
shape_is_nil
inconsistent_parameters (debugging version)
parameter_out_of_range (debugging version)
index_is_less_than_one (debugging version)
count_is_less_than_one (debugging version)
cannot_set_item_shapes_to_nil (debugging version)
cannot_use_original_item_shapes_when_growing_picture

(debugging version)

Warnings
index_out_of_range
count_out_of_range
picture_expected (debugging version)
shape_access_not_allowed (debugging version)
picture_cannot_contain_itself (debugging version)
cannot_dispose_locked_tag (debugging version)
cannot_dispose_default_shape (debugging version)
cannot_dispose_default_style (debugging version)
cannot_dispose_default_ink (debugging version)
cannot_dispose_default_transform (debugging version)
cannot_dispose_default_colorProfile (debugging version)

C H A P T E R 6

Picture Shapes

Picture Shapes Reference 6-61

SEE ALSO

For information about picture items and their overriding styles, inks, and transforms, see

“About Picture Shapes” beginning on page 6-3.

For an example using this function, see “Getting and Setting Picture Geometries”

beginning on page 6-31.

To examine a subset of the items in a picture geometry, use the GXGetPictureParts

function, which is described on page 6-63.

To replace the information in the geometry of a picture shape, use the GXSetPicture

function, which is described in the next section.

GXSetPicture

You can use the GXSetPicture function to replace the information in the geometry of a

picture shape.

void GXSetPicture(gxShape target, long count,

const gxShape shapes[], const gxStyle styles[],

const gxInk inks[],

const gxTransform transforms[]);

target A reference to the picture shape whose geometry you want to replace.

count The number of picture items in the new picture geometry.

shapes An array of references to the shapes to include in the new picture
geometry.

styles An array of references to the styles you want to use as overriding styles in
the new picture geometry. You may provide nil for this parameter if you
do not want to change the existing overriding styles. You may provide the
gxSetToNil constant to remove all of the existing overriding styles.

inks An array of references to the inks you want to use as overriding inks in
the new picture geometry. You may provide nil for this parameter if you
do not want to change the existing overriding inks. You may provide the
gxSetToNil constant to remove all of the existing overriding inks.

transforms
An array of references to the transforms you want to use as overriding
transforms in the new picture geometry. You may provide nil for this
parameter if you do not want to change the existing overriding
transforms. You may provide the gxSetToNil constant to remove all of
the existing overriding transforms.

C H A P T E R 6

Picture Shapes

6-62 Picture Shapes Reference

DESCRIPTION

The GXSetPicture function replaces the geometry of the picture shape object

referenced by the target parameter with a new geometry. To maintain correct owner

counts, this function disposes of the shapes, styles, inks, and transforms referenced by

the items of the original picture geometry.

In the count parameter, you specify the number of shapes in the new picture geometry,

and in the shapes parameter you provide references to the shapes.

In the styles parameter, you specify references to the styles to use as overriding

styles in the new picture geometry. Each item of this array overrides the style of the

corresponding shape in the shapes array. For example, the first style you provide in the

styles array becomes the overriding style for the first shape in the shapes array, and

so on. Similarly, in the inks and transforms parameters you specify references to

overriding inks and transforms.

You may specify 0 for the count parameter and nil for the shapes, styles, inks,

and transforms parameters to create an empty picture—a picture containing no

picture items. You may provide the gxSetToNil constant for the styles, inks, or

transforms parameters even if you provide shape references in the shapes parameter.

In this case, the newly created picture shape contains picture items, but those items

contain no overriding styles, inks, or transforms, respectively.

You may also provide nil for an individual item of a styles, inks, or transforms

array if you do not want the corresponding picture item to have an overriding style, ink,

or transform.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
shape_is_nil
parameter_out_of_range (debugging version)
cannot_set_item_shapes_to_nil (debugging version)
cannot_use_original_item_shapes_when_growing_picture

(debugging version)

Warnings
picture_expected (debugging version)
shape_access_not_allowed (debugging version)
picture_cannot_contain_itself (debugging version)
cannot_dispose_locked_tag (debugging version)
cannot_dispose_default_shape (debugging version)
cannot_dispose_default_style (debugging version)
cannot_dispose_default_ink (debugging version)
cannot_dispose_default_transform (debugging version)
cannot_dispose_default_colorProfile (debugging version)

C H A P T E R 6

Picture Shapes

Picture Shapes Reference 6-63

SEE ALSO

For information about picture items and their overriding styles, inks, and transforms, see

“About Picture Shapes” beginning on page 6-3.

To examine the items of a picture geometry, use the GXGetPicture function, which is

described on page 6-59.

To replace a subset of the items in a picture geometry, use the GXSetPictureParts

function, which is described on page 6-65.

For information about disposing of shapes, see the chapter “Shape Objects” of Inside
Macintosh: QuickDraw GX Objects.

Editing Picture Parts

This section describes the functions you can use to examine and replace specific items

within a picture geometry.

The GXGetPictureParts function allows you to obtain information about a specified

subset of the picture items contained in a picture geometry.

The GXSetPictureParts function allows you to replace a subset of the picture items

in a picture geometry with new picture items.

GXGetPictureParts

You can use the GXGetPictureParts function to obtain information about a specified

subset of a picture’s items.

long GXGetPictureParts(gxShape source, long index, long count,

 gxShape shapes[], gxStyle styles[],

 gxInk inks[], gxTransform transforms[])

source A reference to the picture shape whose items you want to examine.

index The number of the first picture item you want to examine.

count The total number of items you want to examine. You may supply the
gxSelectToEnd constant (–1) to indicate that you want to examine all
picture items (starting with the picture item indicated by the index
parameter.)

shapes An array of shape references. On return, this array contains references to
the specified shapes contained in the source picture.

styles An array of style references. On return, this array contains references to
the overriding styles corresponding to the returned shapes.

inks An array of ink references. On return, this array contains references to the
overriding inks corresponding to the returned shapes.

C H A P T E R 6

Picture Shapes

6-64 Picture Shapes Reference

transforms
An array of transform references. On return, this array contains references
to the overriding transforms corresponding to the returned shapes.

function result The total number of items returned.

DESCRIPTION

The GXGetPictureParts function extracts information from a subset of the picture

items in the picture shape referenced by the source parameter. You specify which

picture items using the index and count parameters. The index parameter, which

must have a value of 1 or greater, indicates the first picture item you want to examine.

The count parameter indicates how many items you want to examine.

You provide arrays to hold the returned information in the shapes, styles, inks, and

transforms parameters. In the shapes array, the GXGetPictureParts function

returns references to the shapes that correspond to the picture items you specified with

the index and count parameters. In the styles, inks, and transforms arrays, this

function returns references to the overriding styles, inks, and transforms for the specified

picture items. You may provide nil for any of the array parameters to indicate that you

do not want to obtain the corresponding references.

This function returns as its function result the number of picture items returned.

Typically, this value is the same as the value you provide for the count parameter.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For information about picture items and their overriding styles, inks, and transforms, see

“About Picture Shapes” beginning on page 6-3.

Errors
out_of_memory
shape_is_nil
index_is_less_than_one (debugging version)
count_is_less_than_one (debugging version)

Warnings
index_out_of_range
count_out_of_range
picture_expected (debugging version)

C H A P T E R 6

Picture Shapes

Picture Shapes Reference 6-65

To examine all of the items in a picture geometry, use the GXGetPicture function,

which is described on page 6-59.

To replace a subset of the items in a picture geometry, use the GXSetPictureParts

function, which is described in the next section.

GXSetPictureParts

You can use the GXSetPictureParts function to add, remove, or replace a range of

picture items in a picture shape’s geometry.

void GXSetPictureParts(gxShape target, long index, long oldCount,

 long newCount, const gxShape shapes[],

 const gxStyle styles[],

 const gxInk inks[],

 const gxTransform transforms[]);

target A reference to the picture shape whose picture item list you want to alter.

index The number of the first picture item you want to replace.

oldCount The total number of picture items you want to replace. A value of 0
indicates that you want to insert new picture items before the existing
picture item indicated by the index parameter, rather than replace items.
You may supply the gxSelectToEnd constant (–1) to indicate that you
want to replace all picture items (starting with the picture item indicated
by the index parameter.)

newCount The total number of new picture items to insert in the picture. A value
of 0 specifies that you do not want to insert new items into the picture;
instead, the existing items you specified with the index and oldCount
parameters are removed.

shapes An array of references to the shapes to include as the new picture items in
the new picture geometry.

styles An array of references to the style objects you want to use as overriding
styles in the new picture geometry. You may provide gxSetToNil for
this parameter if you do not want any overriding styles.

inks An array of references to the ink objects you want to use as overriding
inks in the new picture geometry. You may provide gxSetToNil for this
parameter if you do not want any overriding inks.

transforms
An array of references to the transform objects you want to use as
overriding transforms in the new picture geometry. You may provide
gxSetToNil for this parameter if you do not want any overriding
transforms.

C H A P T E R 6

Picture Shapes

6-66 Picture Shapes Reference

DESCRIPTION

The GXSetPictureParts function allows you to insert new picture items in a picture,

to remove picture items from a picture, or to replace picture items with new picture

items. In any of these three cases, the target parameter specifies the picture to be

modified, the oldCount parameter specifies the number of items to remove, the

newCount parameter specifies the number of items to add, and the shapes, styles,

inks, and transforms parameters specify the information for the new picture items.

■ To insert picture items, set the oldCount parameter to 0. Use the index parameters
to specify where to add the new picture items. (This function inserts the new picture
items before the existing item you specify with the index parameter. For example, if
you specify 1 for this parameter, the new picture items are inserted before the first
item of the existing picture item list.)

■ To remove picture items, set the newCount parameter ot 0 and the shapes, styles,
inks, and transforms parameters to nil. Use the index and oldCount
parameters to specify which picture items to remove.

■ To replace picture items, use the index and oldCount parameters to specify the
existing picture items to remove and use the newCount, shapes, styles, inks, and
transforms parameters to specify the new picture items to insert in their place.

To maintain correct owner counts, this function clones the inserted shapes, styles, inks

and transforms, and disposes of any replaced shapes, styles, inks, and transforms.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
shape_is_nil
parameter_out_of_range (debugging version)
index_is_less_than_one (debugging version)
count_is_less_than_one (debugging version)
cannot_set_item_shapes_to_nil (debugging version)
cannot_use_original_item_shapes_when_growing_picture

(debugging version)

Warnings
index_out_of_range
count_out_of_range
picture_expected (debugging version)
shape_access_not_allowed (debugging version)
picture_cannot_contain_itself (debugging version)
cannot_dispose_locked_tag (debugging version)
cannot_dispose_default_shape (debugging version)
cannot_dispose_default_style (debugging version)
cannot_dispose_default_ink (debugging version)
cannot_dispose_default_transform (debugging version)
cannot_dispose_default_colorProfile (debugging version)

C H A P T E R 6

Picture Shapes

Picture Shapes Reference 6-67

SEE ALSO

For information about picture items and their overriding styles, inks, and transforms, see

“About Picture Shapes” beginning on page 6-3.

For examples using this function, see “Removing and Replacing Items in a Picture”

beginning on page 6-35.

To extract information from a subset of the items contained in a picture shape’s

geometry, use the GXGetPictureParts function, which is described on page 6-63.

To replace every item in a picture geometry, use the GXSetPicture function, which is

described on page 6-61.

For information about disposing of shapes, see the chapter “Shape Objects” in Inside
Macintosh: QuickDraw GX Objects.

Drawing Pictures

QuickDraw GX provides two methods of drawing a picture:

■ You can create a picture shape (by calling the GXNewPicture function, by copying an
existing picture shape, and so on) and use the GXDrawShape function to draw the
picture.

■ You can create an array of shape references, and arrays of references to overriding
styles, inks, and transforms, and use the GXDrawPicture function to draw the
corresponding picture.

In general, you should use the GXDrawShape function to draw any QuickDraw GX

graphic, including picture shapes. In fact, the GXDrawPicture function creates a

temporary picture shape, uses the GXDrawShape function to draw it, and then disposes

of it. The GXDrawShape function is described in the “Shape Objects” chapter of Inside
Macintosh: QuickDraw GX Objects.

You would typically use the GXDrawPicture function only in simple situations—for

example, if you knew you wanted to draw a particular picture only once.

GXDrawPicture

You can use the GXDrawPicture function to draw a picture without encapsulating the

items of the picture geometry in a picture shape.

void gxDrawPicture(long count, const gxShape shapes[],

 const gxStyle styles[], const gxInk inks[],

 const gxTransform transforms[]);

count The number of picture items in the new picture shape.

shapes An array of references to the shapes you want to draw.

C H A P T E R 6

Picture Shapes

6-68 Picture Shapes Reference

styles An array of references to the style objects you want to use to override the
styles of the shapes specified in the shapes parameter. You may provide
nil for this parameter if you do not want any overriding styles.

inks An array of references to the ink objects you want to use to override the
inks of the shapes specified in the shapes parameter. You may provide
nil for this parameter if you do not want any overriding inks.

transforms
An array of references to the transform objects you want to use to
override the transforms of the shapes specified in the shapes parameter.
You may provide nil for this parameter if you do not want any
overriding transforms.

DESCRIPTION

The GXDrawPicture function allows you to draw a picture without having to create a

picture shape yourself. Instead, you specify the items of a picture geometry using the

shapes, styles, inks, and transforms parameters.

The GXDrawPicture function creates a temporary picture shape using the values

specified in these arrays, and draws the picture shape using the GXDrawShape function.

The GXDrawPicture function calls the GXNewPicture function to create the

temporary picture shape.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
shape_is_nil
inconsistent_parameters (debugging version)
parameter_out_of_range (debugging version)
index_is_less_than_one (debugging version)
count_is_less_than_one (debugging version)
cannot_set_item_shapes_to_nil (debugging version)
cannot_use_original_item_shapes_when_growing_picture

(debugging version)

Warnings
index_out_of_range
count_out_of_range
picture_expected (debugging version)
shape_access_not_allowed (debugging version)
picture_cannot_contain_itself (debugging version)
cannot_dispose_locked_tag (debugging version)
cannot_dispose_default_shape (debugging version)
cannot_dispose_default_style (debugging version)
cannot_dispose_default_ink (debugging version)
cannot_dispose_default_transform (debugging version)
cannot_dispose_default_colorProfile (debugging version)

C H A P T E R 6

Picture Shapes

Picture Shapes Reference 6-69

SEE ALSO

For information about picture items and their overriding styles, inks, and transforms, see

“About Picture Shapes” beginning on page 6-3.

For an example using this function, see “Creating and Drawing Picture Shapes”

beginning on page 6-27.

To encapsulate a picture geometry in a picture shape, use the GXNewPicture function,

described on page 6-57.

To draw a picture shape, use the DrawShape function, described in the “Shape Objects”

chapter of Inside Macintosh: QuickDraw GX Objects.

Hit-Testing Pictures

This section describes the GXHitTestPicture function. To hit-test a picture, this

function

■ hit-tests each shape contained in the picture

■ compiles a list of shapes that were hit

■ selects one of the shapes using criteria you provide

■ provides information about the shape in the picture that was hit

For more information about how QuickDraw GX hit-tests shapes, see the chapter “Shape

Objects” and the chapter “Transform Objects” in Inside Macintosh: QuickDraw GX Objects.

GXHitTestPicture

You can use the GXHitTestPicture function to determine whether a test point hits a

picture shape and to discover which shape in the picture hierarchy is hit.

gxShape GXHitTestPicture(gxShape target, const gxPoint *test,

 gxHitTestInfo *result, long level,

 long depth);

target A reference to the picture shape to hit-test.

test A pointer to a gxPoint structure. The GXHitTestPicture function
determines whether the location specified by this point hits the target
picture.

result A pointer to a gxHitTestInfo structure. On return, this structure
contains information identifying the part of the target picture that was hit
by the test point.

C H A P T E R 6

Picture Shapes

6-70 Picture Shapes Reference

level A level in the picture hierarchy. This parameter, along with the depth
parameter, is used to determine which shape in the picture to return as
the function result. You must provide a nonnegative value for this
parameter. A value of 0 indicates you want the item at the lowest level of
the hierarchy.

depth A shape depth in the picture as drawn. This parameter, along with the
level parameter, is used to determine which shape in the picture to
return as the function result. You must provide a nonnegative value for
this parameter. A value of 0 indicates you want the hit item at the lowest
depth.

function result A reference to the shape (at the specified shape depth and hierarchy level)
hit by the test point. The function result is nil if no shape was hit that
satisfies the criteria.

DESCRIPTION

The GXHitTestPicture function compares the point indicated by the test parameter

with each shape in the picture referenced by the target parameter. To determine

whether the test point hits a shape, this function uses the hit-test parameters contained

in that shape’s transform object, or contained in the overriding transform if there is one.

If the target picture contains shapes that overlap when drawn, more than one shape

might be hit by the test point. The function uses the depth parameter to select which of

these shapes is the hit shape. If you set this parameter to 1, the function selects the

frontmost shape as the hit shape. If you set this parameter to 2, the function selects the

shape immediately behind the frontmost shape as the hit shape, and so on.

Before returning a reference to the hit shape, this function examines how deep into the

target picture’s hierarcy the hit shape is. If the hit shape is deeper into the hierarchy than

the level indicated by the level parameter, this function does not return a reference

to the hit shape. Instead, it returns a reference to the subpicture at the appropriate level

of the target picture’s hierarchy that contains the hit shape.

For example, if the hit shape is at level 2 of the picture hierarchy—that is, it is an item of

a picture which is an item of the target picture—then specifying a value of 2 for the

level parameter causes the function to return a reference to the shape as the function

result. However, if you specify a value of 1 for the level parameter, the function returns

a reference to the picture that contains the hit shape, rather than a reference to the hit

shape itself. Specifying a level of 0 indicates you want the item at the lowest level of the

picture hierarchy.

C H A P T E R 6

Picture Shapes

Picture Shapes Reference 6-71

This function also returns information in the gxHitTestInfo structure pointed to by

the result parameter:

■ The what field indicates which shape part of the hit shape was hit by the test point.

■ The index field indicates the index of the geometric point hit by the test point.

■ The distance field indicates the distance of the test point from the shape part hit.

■ The which field contains a reference to the hit shape.

■ The containerPicture field contains a reference to the picture that contains the hit
shape.

■ The containerIndex field indicates the index of the hit shape within the container
picture.

■ The totalIndex field indicates the overall index of the hit shape within the target
picture.

For more information about the gxHitTestInfo structure, see the chapter “Transform

Objects” in Inside Macintosh: QuickDraw GX Objects.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For more information about hit-testing shapes, see the chapters “Shape Objects” and

“Transform Objects” in Inside Macintosh: QuickDraw GX Objects.

For examples using this function, see “About Hit-Testing Picture Shapes” beginning on

page 6-24.

Errors
out_of_memory
shape_is_nil
parameter_is_nil
parameter_out_of_range (debugging version)
parameter_out_of_range

Warnings
character_substitution_took_place
font_substitution_took_place
picture_expected (debugging version)
unable_to_traverse_open_contour_that_starts_or_ends_off_the_curve

(debugging version)

C H A P T E R 6

Picture Shapes

6-72 Summary of Picture Shapes

Summary of Picture Shapes

Functions

Creating Picture Shapes

gxShape GXNewPicture (long count, const gxShape shapes[],
const gxStyle styles[], const gxInk inks[],
const gxTransform transforms[])

Getting and Setting Picture Geometries

long GXGetPicture (gxShape source, gxShape shapes[],
gxStyle styles[], gxInk inks[],
gxTransform transforms[]);

void GXSetPicture (gxShape target, long count,
const gxShape shapes[], const gxStyle styles[],
const gxInk inks[],
const gxTransform transforms[]);

Editing Picture Parts

long GXGetPictureParts (gxShape source, long index, long count,
gxShape shapes[], gxStyle styles[],
gxInk inks[], gxTransform transforms[])

void GXSetPictureParts (gxShape target, long index, long oldCount,
long newCount, const gxShape shapes[],
const gxStyle styles[],
const gxInk inks[],
const gxTransform transforms[]);

Drawing Pictures

void gxDrawPicture (long count, const gxShape shapes[],
const gxStyle styles[], const gxInk inks[],
const gxTransform transforms[]);

Hit-Testing Pictures

gxShape GXHitTestPicture (gxShape target, const gxPoint *test,
gxHitTestInfo *result, long level,
long depth);

GL-1

attributes A property of many QuickDraw GX
objects. The attributes property of an object is a
set of flags that control various aspects of that
object’s behavior.

bitmap A QuickDraw GX data structure that
describes a pixel map on a physical device. A
bitmap structure is a property of a view device
object.

bitmap color profile The object that specifies
color-matching information about the device on
which a bitmap was created.

bitmap color set An array of color values
associated with a bitmap. If a bitmap uses a color
set (as opposed to a color space), each pixel
value in the bitmap’s pixel image represents an
index into this color set.

bitmap color space A color space associated
with a bitmap. If a bitmap uses a color space (as
opposed to a color set), each pixel value in the
bitmap’s pixel image represents a color value in
this color space.

bitmap height The number of pixels in each
column of a bitmap.

bitmap position The position of the upper-left
corner of a bitmap in geometry space.

bitmap shape A type of QuickDraw GX shape.
The geometry of a bitmap shape contains a pixel
image and color information.

bitmap width The number of pixels in each
row of a bitmap.

bounding rectangle The smallest rectangle that
encloses a shape. The coordinates of a bounding
rectangle are ordered.

bytes per row The number of bytes in a pixel
image required to represent each row of a bitmap.

cap See cap property.

cap attributes A set of flags that modify the
way QuickDraw GX draws cap shapes.

cap property A property of a style object that is
used to specify how the end points of contours
are drawn.

cap shape A shape drawn at the end points of
another shape’s contours.

color ramp A shape that blends from one color
to another.

contour A connected series of lines and curves.
The geometry property of a geometric shape is
made up of one or more contours.

contour direction A value, either clockwise or
counterclockwise, that QuickDraw GX assigns to
each contour in a shape’s geometry.

contour index A number used to specify a
particular geometric point in a contour: the first
geometric point in a contour has contour index 1,
the second has contour index 2, and so on. See
also geometry index.

control bits A set of bit flags in a path geometry
that determines which geometric points are on
curve and which are off curve.

control point A geometric point used to control
the curvature of a curve.

curve error A property of the style object used
to specify the accuracy of certain operations, such
as converting paths to polygons.

curve join A join attribute specifying that a
shape should be drawn with curved corners.

curve shape A type of QuickDraw GX shape.
The geometry of a curve shape defines a Bézier
curve.

dash (n) See dash property. (v) Applying
a dash shape to the contours of another shape.

dash advance The distance between dashes in
a dashed contour.

dash attributes A set of flags that modify the
way QuickDraw GX dashes a shape.

Glossary

G L O S S A R Y

GL-2

dash phase How far into a dash a contour
begins.

dash property A property of the style object
used to draw contours as repeated patterns of
shapes rather than continous lines.

dash scale The factor to divide by when scaling
a dash shape perpendicularly to the dashed
shape’s contours.

dash shape A shape used to dash the contours
of another shape.

dashed shape A shape whose contours have
been drawn with a dash shape.

depth A number indicating the position in front
to back order at which a picture item is drawn.
The greater a shape’s depth, the more other
shapes are drawn on top of the shape.

disk-based pixel image A bitmap pixel image
that is stored in a file (rather than in memory)
even when the bitmap shape is memory.

dither To approximate colors that a display
device cannot draw with patterns of similar
colors that the display device can draw.

empty shape A type of QuickDraw GX
shape. Empty shapes have no geometry, are
contained by every other shape, and do not
appear when drawn.

edge A line or curve that makes up part of a
shape contour.

even-odd rule A rule used when drawing
filled shapes to determine which areas are filled.
The even-odd rule does not fill areas which
lie under overlapping contours. Compare
winding-number rule.

fill See shape fill.

framed fill A shape fill that indicates a shape’s
geometry describes an outline—the outline
defined by the contours of the shape’s geometry.
Framed fills include open-frame fill and
closed-frame fill.

framed shape A shape that describes an
outline—the outline defined by the contours of
the shape’s geometry. The shape fill of a framed
shape can be open-frame fill or closed-frame fill.

full shape A type of QuickDraw GX shape.
Full shapes have no geometry, contain every
other shape, and cover all area when drawn.

geometry index A number used to specify a
particular geometric point in a geometry: the first
geometric point in a geometry has geometry
index 1, and so on. Whereas contour indices start
over with each contour in a geometry, geometry
indices do not.

geometric pen The pen used by QuickDraw GX
to draw framed shapes. The width and
placement of this pen are affected by style
properties.

geometric point An (x, y) coordinate pair used
to specify a location in a shape’s geometry.
Geometric points can specify the ends of lines or
curves or the off-curve control points used to
control curvature.

geometric shape Any QuickDraw GX shape
that has one of the following shape types: empty,
full, point, line, curve, rectangle, polygon, path.

geometry A property of a QuickDraw GX
shape object. A shape’s geometry is the
specification of the actual size, position, and form
of the shape. For example, for a line shape, the
geometry specifies the locations (in local
coordinates) of the end points of the line.

grid point (1) A location in the QuickDraw GX
coordinate system. Grid points are infinitely thin,
and fall between pixels. (2) The distance between
two grid points.

halftone A QuickDraw GX data structure that
specifies a pattern and a set of colors. A halftone
is used to achieve a greater range of colors than
may be available on a display device.

index A number that indicates the position of
and item in a list. See also contour index and
geometric index.

inverse fill A shape fill that indicates a shape’s
geometry describes an area—the area not
contained within the contours of the shape’s
geometry. Inverse fills include inverse even-odd
filll, and inverse winding fill.

join See join property.

G L O S S A R Y

GL-3

join attributes A set of flags that modify the
way QuickDraw GX adds a join shape to the
corners of a shape.

join property A property of a style object that
specifies how the corners of a geometric shape
should be drawn.

join shape A shape drawn at the corners of
another shape.

layout shape A type of QuickDraw GX shape.
The geometry of a layout shape contains a line of
text and sophisticated typographic formatting
information.

level A number indicating how many pictures
separate a shape from the root picture in a
picture hierarchy.

level cap A cap shape that is not rotated to
match the angle of the contour on which it is
drawn.

level join A join shape that is not rotated to
match the angle that bisects the corner on which
it is drawn.

miter The length a sharp join can reach before
being truncated.

off-curve control point See control point.

offscreen bitmap A bitmap that exists in
memory or on disk but is not associated with a
physical display device.

overriding ink object An optional part of a
picture item. If a picture item has an overriding
ink object, QuickDraw GX uses the information
in the overriding ink when drawing the item,
rather than the information in the original ink
object.

overriding style object An optional part of a
picture item. If a picture item has an overriding
style object, QuickDraw GX uses the information
in the overriding style when drawing the item,
rather than the information in the original style
object.

overriding transform object An optional part
of a picture item. If a picture item has an
overriding transform object, QuickDraw GX uses
the information in the overriding transform
when drawing the item, rather than the
information in the original transform object.

path contour A connected series of straight
lines and curves.

path shape A type of QuickDraw GX shape.
The geometry of a path shape is made up of zero,
one, or more path contours.

pattern See pattern property.

pattern grid A pair of vectors that determine
the placement of a pattern shape over the area of
another shape.

pattern property A property of a style object
that specifies how the area of a shape is to be
filled.

pattern shape A shape copied over the area of
another shape at positions specified by a pattern
grid.

picture hierarchy A picture shape that contains
other picture shapes as items.

picture item An element of a picture shape’s
geometry. Each picture item contains a reference
to a shape and, optionally, a reference to
an overriding style, an overriding ink, and an
overriding transform.

picture shape A type of QuickDraw GX shape
that represents a collection of other shapes.

pixel depth See pixel size.

pixel image A two-dimensional array of pixel
values, each of which describes the color of one
pixel in a bitmap.

pixel size The number of bits required to
represent the color information for each pixel in a
bitmap. Also called pixel depth.

pixel value A series of bits in a bitmap’s pixel
image that represent a single pixel of the bitmap.
This value can represent a color value (if the
bitmap uses a color space) or an index into a
color set (if the bitmap uses a color set).

point See control point, geometric point,
grid point, and point shape.

point shape A type of QuickDraw GX shape.
The geometry of a point shape specifies an
x-coordinate and a y-coordinate. Point shapes
appear as a single pixel (if the pen width is 0) or
as a cap shape (if the pen width is greater than 0).

G L O S S A R Y

GL-4

polygon contour A connected series of straight
lines.

polygon shape A type of QuickDraw GX
shape. The geometry of a polygon shape is made
up of zero, one, or more polygon contours.

primitive form Having stylistic variations
incorporated into the shape type, geometry, and
shape fill.

primitive shape A shape whose shape type,
geometry, and shape fill have had stylistic
information incorporated into them.

property An item or set of data in a
QuickDraw GX object A property of an object is
analogous to a field of a data structure; however,
a field is accessed through its name, whereas a
property is accessed through a function.

rectangle shape A type of QuickDraw GX
shape. The geometry of a rectangle shape
contains points representing two opposing
corners of a rectangle.

reduce To remove unnecessary geometric
points from a geometry.

RGB color space A color space whose three
components measure the intensity of red, green,
and blue. Used mostly for color video.

shape (1) A graphic or typographic item (such
as a geometric shape, a bitmap, or a line of text)
created and drawn with QuickDraw GX. (2) A set
of QuickDraw GX objects that, taken together,
describe the type and characteristics of such a
graphic or typographic item. A shape consists of
a shape object, a style object, an ink object, and a
transform object.

shape fill A property of a shape object.
The shape fill specifies whether and how
QuickDraw GX fills in the outlines of a shape
that it draws.

shape type A property of a shape object.
The shape type specifies the classification (such
as point, line, bitmap, or text) of a particular
shape.

sharp join A join attribute specifying that a
shape should be drawn with sharp corners.

simplify To remove crossed and overlapping
contours from a geometry.

solid fill A shape fill that indicates a shape’s
geometry describes an area—the area
surrounded by the contours of the shape’s
geometry. Solid fills include even-odd fill,
winding fill, inverse even-odd filll, and
inverse winding fill.

solid shape A shape that describes an area—
the area surrounded by the contours of the
shape’s geometry. The shape fill of a solid shape
can be even-odd shape fill, winding-number
shape fill, or one of the inverse shape fills.

standard cap A type of cap. Standard caps are
square caps and semicircular caps.

standard join A type of join. Standard joins are
sharp joins and curve joins.

style See style object.

style attributes A property of a style
object. Style attributes are a set of flags that
influence how the information in a style object
affects a shape.

style object A QuickDraw GX object associated
with a shape object. A style object contains
information that affects the visual appearance of
a shape when it is drawn.

style property One of the pieces of information
stored in a style object and maintained by
QuickDraw GX.

style reference A reference to a style object.

text shape A type of QuickDraw GX shape. The
geometry of a text shape contains a string of
characters to be drawn in a single font and style.

transform concatenation The process by which
QuickDraw GX combines the clips and mappings
of transform objects at different levels of a picture
hierarchy when drawing a picture shape.

true inside The right side of a
clockwise contour or the left side of a
counterclockwise contour.

type See shape type.

G L O S S A R Y

GL-5

type conversion The process of changing a
shape from one shape type to another. Often the
geometry of the shape is significantly affected
during this process.

typographic shape Any QuickDraw GX shape
that has one of the following shape types: text,
glyph, layout.

unique items attribute A shape attribute that
affects the way items are added to picture shapes.

winding-number rule A rule used when
drawing filled shapes to determine which areas
are filled. The winding-number rule fills areas
that lie under overlapping contours. Compare
even-odd rule.

IN-1

Index

A

area of a shape 4-17, 4-45 to 4-47, 4-88
arithmetic operations on shapes. See geometric

arithmetic
attributes 3-102
auto-advance dash attribute 3-70 to 3-72, 3-105
auto-inset style attribute 3-19 to 3-20, 3-99

B

bend dash attribute 3-74 to 3-79, 3-105
Bézier curves 2-18 to 2-20
bitmap color profiles 5-5
bitmap color sets 5-5
bitmap color spaces 5-5
bitmap data source alias structure 5-65
bitmap geometries

editing 5-53 to 5-54, 5-71 to 5-76
fields of 5-4 to 5-7
replacing 5-68 to 5-71
structure of 5-62 to 5-63

bitmap geometry structure 5-62
bitmap height 5-5 to 5-7
bitmap shapes 5-3 to 5-80

and view devices 5-45 to 5-51
applying transfer modes to 5-9, 5-32 to 5-34
black-and-white 5-15 to 5-21
clipping 5-43
color 5-21 to 5-29
converting other shapes to 5-34 to 5-38
creating and drawing 5-15 to 5-29, 5-66, 5-77
dithering 5-30 to 5-32
drawing with halftones 5-30 to 5-32
functions for

functions specific to bitmaps 5-65 to 5-80
other applicable functions 5-54 to 5-61

introduced 1-17 to 1-19
mapping 5-10, 5-38 to 5-43
and map-transform shape attribute 5-40
offscreen 5-14, 5-45 to 5-52
rotating 5-40
scaling 5-41 to 5-43
skewing 5-39
and view devices 5-12, 5-14

bitmap width 5-5 to 5-7
black-and-white bitmaps 5-15 to 5-21

bounding rectangle of a shape
determining 4-43, 4-90
setting 4-47 to 4-49, 4-92

break dash attribute 3-74 to 3-79, 3-105
bytes per row in bitmap geometries 5-5 to 5-7

unaligned 5-19

C

cap attributes 3-24, 3-59, 3-100
caps 3-23 to 3-24. See also cap style property

adding to a shape 3-57 to 3-61
definition of cap structure 3-99 to 3-100
functions for 3-123 to 3-129
interactions with joins, dashes, patterns 3-33 to 3-35,

3-91 to 3-95
level 3-24, 3-101
standard 3-24, 3-59 to 3-61

cap structure 3-99 to 3-100
cap style property 3-23, 3-25. See also caps

functions for 3-123 to 3-129
center-frame style attribute 3-17, 3-98
center of a shape 4-87
clip dash attribute 3-29, 3-69, 3-105
clipping

dashes 3-29, 3-69, 3-105
clockwise contour direction 4-7
closed-frame shape fill

and multiple contours 2-62, 2-64
compared to even-odd shape fill 2-21, 2-23
compared to open-frame shape fill 2-23
and crossed contours 2-51
defined 2-13
and overlapping contours 2-53

colinear geometric points 4-30
color bitmaps 5-21 to 5-29
color profiles

of bitmap shapes 5-5
color ramps 5-25
color set objects

of bitmap shapes 5-5
color spaces

of bitmap shapes 5-5
concatenating transforms 6-19 to 6-23, 6-44 to 6-45
containment, testing shapes for 4-18 to 4-21, 4-58 to

4-59, 4-100 to 4-104

I N D E X

IN-2

contour direction
defined 2-11, 4-7
determining 4-68
effect on shape fill 4-23 to 4-27
reversing 4-23 to 4-27, 4-70

contour index 2-23
contours 4-4 to 4-9. See also path contours; path

shapes; polygon contours; polygon shapes
breaking 4-28 to 4-30, 4-72
counting 2-136, 4-30
crossed

creating 2-50
effect of shape fill on 2-14 to 2-15, 2-24
and pen placement 3-19, 3-56
removing 4-76

defined 2-9
determining direction 4-25, 4-68
finding a specific point on 4-42, 4-85
left side 4-5
overlapping

creating 2-52
effect of shape fill on 2-14 to 2-15, 2-26, 2-63 to 2-65
removing 4-76

removing unnecessary contour breaks 4-76
right side 4-5
true inside 4-9

control bits of path geometries 2-25, 2-56
control points 2-18, 2-25, 2-56
coordinate spaces 3-20 to 3-21
counterclockwise contour direction 4-7
crossed contours

creating 2-50
effect of shape fill on 2-14 to 2-15, 2-24
and pen placement 3-19, 3-56
removing 4-33, 4-76

curve error style property 3-14
effect when converting shapes 3-45 to 3-48
effect when reducing 3-49 to 3-51
functions for 3-114 to 3-118

curve geometries
defined 2-18
determining 2-125
editing 2-79 to 2-81, 2-126
structure of 2-105

curve join attribute 3-103
curve joins 3-26, 3-103
curve shapes

converting other shapes to 2-71 to 2-74
creating and drawing 2-41 to 2-42, 2-113, 2-159
default 2-20
defined 2-18
dividing in two 2-19

D

dash advance 3-29, 3-66 to 3-67, 3-104
dash attributes

as field of dash record 3-104
auto-advance dash attribute 3-70 to 3-72, 3-105
bend dash attribute 3-74 to 3-79, 3-105
break dash attribute 3-74 to 3-79, 3-105
clip dash attribute 3-29, 3-105
defined 3-66
as enumeration 3-105, 3-106
level dash attribute 3-105

dashes 3-27 to 3-31. See also dash style property
adding to a shape 3-66 to 3-70
adjusting to fit contours 3-70 to 3-74
auto-advancing 3-70 to 3-74, 3-105
bending 3-30, 3-74 to 3-79, 3-105
breaking 3-29, 3-74 to 3-79, 3-105
clipping 3-29, 3-69, 3-105
definition of dash structure 3-103 to 3-104
effect of shape fill 3-103
functions for 3-134 to 3-141
height of 3-28, 3-104
insetting 3-73 to 3-74, 3-99
interactions with caps, joins, patterns 3-33 to 3-35,

3-91 to 3-95
level 3-105
phasing 3-69, 3-104
positions, determining 3-81 to 3-85, 3-140
scaling 3-28, 3-68, 3-104
text used as 3-80 to 3-81

dash phase 3-29, 3-104
dash scale 3-28, 3-68, 3-104
dash structures 3-103 to 3-104
dash style property 3-27

functions for 3-134 to 3-141
default shapes

curve 2-20
line 2-17
path 2-26
point 2-16
polygon 2-24
rectangle 2-21

depth of shapes 6-24
depth of picture items 6-51
device-grid style attribute 3-21, 3-42 to 3-45, 3-99
difference operation 4-21, 4-63, 4-110
disk-based pixel images 5-44 to 5-45
dithering, bitmaps 5-30 to 5-32
disk-based pixel images 5-7
duplicate geometric points 4-30

I N D E X

IN-3

E

empty shapes
creating and drawing 2-29
defined 2-16

end caps 3-57 to 3-61, 3-100. See also caps
even-odd rule for filling shapes 2-13
even-odd shape fill

compared to closed-frame shape fill 2-21, 2-23
compared to open-frame shape fill 2-23
compared to winding fill 2-13
compared to winding shape fill 2-24
and concentric contours 2-63, 2-64
and crossed contour 2-51
defined 2-13
and overlapping contour 2-53

exclusion operation 4-21, 4-64, 4-114

F

framed shape fills 2-12. See also closed-frame shape fill;
open-frame shape fill

full shapes
creating and drawing 2-29
defined 2-16

GA–GXA

geometric arithmetic
difference 4-63, 4-110
examples of 4-60 to 4-66
exclusion 4-64, 4-114
functions for 4-104 to 4-116
intersection 4-61, 4-105, 4-107
introduced 4-21 to 4-22
inversion 4-65, 4-116
reverse difference 4-64, 4-112
union 4-62, 4-106, 4-109

geometric information 4-41 to 4-47
functions for 4-83 to 4-92
introduced 4-16
shape area 4-45 to 4-47, 4-88
shape bounds 4-43, 4-47 to 4-49, 4-90, 4-92
shape center 4-87
shape length 4-42, 4-83
shape length to point 4-42, 4-85

geometric pen. See pen, geometric
geometric points

colinear 4-30
duplicate 4-30
effect of fractional coordinate values 2-40

removing unnecessary 4-30
replacing 2-79 to 2-99, 2-142 to 2-157

geometric shapes 2-5 to 2-166. See also curve shapes;
empty shapes; full shapes; line shapes; path
shapes; point shapes; polygon shapes; rectangle
shapes

adding caps to 3-123 to 3-129
adding dashes to 3-134 to 3-141
adding joins to 3-129 to 3-134
adding patterns to 3-142 to 3-148
caps, adding 3-57 to 3-61
converting between types 2-65 to 2-78, 2-101 to 2-102
creating 2-28 to 2-65, 2-109 to 2-119
dashes, adding 3-66 to 3-81
data structures for 2-104 to 2-108
editing 2-79 to 2-99, 2-119 to 2-157
functions for

functions specific to geometric shapes 2-108 to
2-162

other applicable functions 2-100 to 2-101
introduced 1-7
joins, adding 3-61 to 3-66
patterns, adding 3-86 to 3-88
stylistic variations. See style properties of geometric

shapes
geometries

constraining to grids 3-40 to 3-45
editing 2-93 to 2-99, 2-135 to 2-157
incorporating style information into 4-38 to 4-40,

4-79
of point shapes 2-9
removing unnecessary points 4-10, 4-30, 4-74
replacing 2-119 to 2-134

geometry index 2-23
graphics pen. See pen, geometric
grids 3-20 to 3-21

constraining geometries to 3-40 to 3-42
for patterns 3-32, 3-107

GXB

gxBitmapDataSourceAlias structure 5-65
gxBitmap structure 5-62
GXBreakShape function 4-28 to 4-30, 4-72

GXC

gxCapAttributes enumeration 3-101
gxCapRecord structure 3-99
GXContainsBoundsShape function 4-58 to 4-59, 4-101
GXContainsRectangle function 4-58 to 4-59, 4-100

I N D E X

IN-4

GXContainsShape function 4-58 to 4-59, 4-103
GXCountShapeContours function 2-136, 4-30
GXCountShapePoints function 2-137
gxCurve structure 2-105

GXD

gxDashAttributes enumeration 3-105
gxDashRecord structure 3-103
GXDifferenceShape function 4-63, 4-110
GXDrawBitmap function 5-77, 5-79
GXDrawCurve function 2-41 to 2-42, 2-159
GXDrawLine function 2-36 to 2-38, 2-158
GXDrawPaths function 2-57 to 2-58, 2-162
GXDrawPicture function 6-27 to 6-29, 6-67
GXDrawPoint function 2-30, 2-158
GXDrawPolygons function 2-47, 2-161
GXDrawRectangle function 2-43, 2-160

GXE, GXF

GXExcludeShape function 4-64, 4-114

GXG

GXGetBitmap function 5-68
GXGetBitmapParts function 5-53 to 5-54, 5-74
GXGetCurve function 2-125
GXGetLine function 2-123
GXGetPathParts function 2-91, 2-148
GXGetPaths function 2-132
GXGetPicture function 6-31 to 6-32, 6-59
GXGetPictureParts function 6-63
GXGetPoint function 2-109, 2-119, 2-121
GXGetPolygonParts function 2-82 to 2-85, 2-144
GXGetPolygons function 2-130
GXGetRectangle function 2-127
GXGetShapeArea function 4-45, 4-88
GXGetShapeBounds function 4-43, 4-90
GXGetShapeCap function 3-57, 3-126
GXGetShapeCenter function 4-43, 4-87
GXGetShapeCurveError function 3-117
GXGetShapeDash function 3-66 to 3-70, 3-138
GXGetShapeDashPositions function 3-81 to 3-85,

3-140
GXGetShapeDirection function 4-23 to 4-27, 4-68
GXGetShapeIndex function 2-139
GXGetShapeJoin function 3-132
GXGetShapeLength function 4-42, 4-83

GXGetShapeParts function 2-152
GXGetShapePattern function 3-145
GXGetShapePatternPositions function 3-88 to 3-91,

3-147
GXGetShapePen function 3-121
GXGetShapePixel function 5-71
GXGetShapePoints function 2-140
GXGetStyleCap function 3-124
GXGetStyleCurveError function 3-115
GXGetStyleDash function 3-135
GXGetStyleJoin function 3-129
GXGetStylePattern function 3-142
GXGetStylePen function 3-119

GXH

GXHitTestPicture function 6-46 to 6-51, 6-69

GXI

GXInsetShape function 4-50 to 4-52, 4-94
GXIntersectRectangle function 4-105
GXIntersectShape function 4-61, 4-107
GXInvertShape function 4-65, 4-116

GXJ–GXM

gxJoinAttributes enumeration 3-102
gxJoinRecord structure 3-101
gxLine structure 2-105
gxLongRectangle structure 5-64

GXN, GXO

GXNewBitmap function 5-15 to 5-28, 5-66
GXNewCurve function 2-41 to 2-42, 2-113
GXNewLine function 2-38, 2-112
GXNewPaths function 2-58, 2-117
GXNewPicture function 6-27 to 6-30, 6-57
GXNewPoint function 2-31, 2-111
GXNewPolygons function 2-48, 2-116
GXNewRectangle function 2-43 to 2-45, 2-114

GXP, GXQ

gxPath structure 2-107 to 2-108

I N D E X

IN-5

gxPatternAttributes enumeration 3-107
gxPatternRecord structure 3-106
gxPoint structure 2-104
gxPolygons structure 2-107
gxPolygon structure 2-106
GXPrimitiveShape function 4-38 to 4-40, 4-79

GXR

gxRectangle structure 2-106
GXReduceShape function 4-30 to 4-32, 4-74
GXReverseDifferenceShape function 4-64, 4-112
GXReverseShape function 4-23 to 4-27, 4-70

GXS

GXSetBitmap function 5-69
GXSetBitmapParts function 5-53 to 5-54, 5-75
GXSetCurve function 2-79, 2-126
GXSetLine function 2-38 to 2-40, 2-79, 2-124
GXSetPathParts function 2-91 to 2-93, 2-149
GXSetPaths function 2-79 to 2-81, 2-133
GXSetPicture function 6-31 to 6-32, 6-61
GXSetPictureParts function 6-32 to 6-37, 6-65
GXSetPoint function 2-33 to 2-35, 2-79, 2-122
GXSetPolygonParts function 2-82 to 2-90, 2-145
GXSetPolygons function 2-79, 2-131
GXSetRectangle function 2-79, 2-129
GXSetShapeBounds function 4-47 to 4-49, 4-92
GXSetShapeCap function 3-57 to 3-61, 3-128
GXSetShapeCurveError function 3-50, 3-118
GXSetShapeDash function 3-66 to 3-70, 3-139
GXSetShapeJoin function 3-61 to 3-66, 3-133
GXSetShapeParts function 2-93 to 2-99, 2-154
GXSetShapePattern function 3-86 to 3-88, 3-146
GXSetShapePen function 3-52, 3-122
GXSetShapePixel function 5-26 to 5-28, 5-72
GXSetShapePoints function 2-142
GXSetShapeStyleAttributes function 3-113
GXSetStyleAttributes function 3-110
GXSetStyleCap function 3-125
GXSetStyleCurveError function 3-116
GXSetStyleDash function 3-136
GXSetStyleJoin function 3-130
GXSetStylePattern function 3-144
GXSetStylePen function 3-120
GXShapeLengthToPoint function 4-42, 4-43, 4-85
GXSimplifyShape function 4-33 to 4-37, 4-76
gxStyleAttributes enumeration 3-98

GXT

GXTouchesBoundsShape function 4-53 to 4-57, 4-97
GXTouchesRectanglePoint function 4-53 to 4-57, 4-96
GXTouchesShape function 4-53 to 4-57, 4-98

GXU–GXZ

GXUnionRectangle function 4-106
GXUnionShape function 4-62, 4-109

H

hairline dashes 3-78
hairlines 3-16 to 3-17
halftoning

bitmaps 5-30 to 5-32
hit-testing

picture shapes 6-46 to 6-51, 6-69
hollow frame fill. See closed-frame shape fill 2-5

I

inclusion. See containment 4-3
ink objects

of bitmap shapes 5-8 to 5-9
overriding 6-8 to 6-15, 6-38 to 6-40

insetting dashes 3-73 to 3-74
insetting shapes 4-50 to 4-52, 4-94
inside-frame style attribute

as style attribute flag 3-99
defined 3-18
effect on dash placement 3-73
effect on shape with crossed contours 3-53 to 3-54

intersection (touching), testing shapes for 4-18 to 4-21,
4-53 to 4-57, 4-95 to 4-99

intersection operation 4-21, 4-61, 4-105, 4-107
inverse shape fills 2-15
inversion operation 4-21, 4-65, 4-116

J, K

join attributes 3-26, 3-63 to 3-65, 3-102 to 3-103
joins 3-25 to 3-27. See also join style property

adding to a shape 3-61 to 3-66
curve 3-26, 3-103
effect of shape fill 3-25, 3-101

I N D E X

IN-6

functions for 3-129 to 3-134
interactions with caps, dashes, patterns 3-33 to 3-35,

3-91 to 3-95
level 3-26, 3-63, 3-103
miter 3-102
miter of 3-27, 3-102
sharp 3-26, 3-64 to 3-65, 3-103
standard 3-26, 3-64 to 3-66, 3-102 to 3-103

join structure 3-101 to 3-102
join style property

defined 3-25
functions for 3-129 to 3-134

L

length of a contour 4-42, 4-83
level caps 3-24, 3-101
level dashes 3-105
level joins 3-26, 3-63, 3-103
level of picture item 6-19, 6-51
line geometries 2-9

defined 2-17
determining 2-123
editing 2-38 to 2-40, 2-79 to 2-81, 2-124
structure of 2-105

line shapes
converting other shapes to 2-65 to 2-70
creating and drawing 2-36 to 2-40, 2-112, 2-158
default 2-17
defined 2-17

M

map-transform shape attribute 4-49
effect on bitmaps 5-11, 5-40

miter of joins 3-27, 3-65 to 3-66, 3-102
multiple references in picture shapes 6-10 to 6-15, 6-40

to 6-44

N

no-fill shape fill 2-13

O

objects. See ink objects; shape objects; style objects;
transform objects

off-curve control points. See control points
offscreen bitmaps 5-45 to 5-52
open-frame shape fill 2-13, 2-23
outsetting shapes 4-52, 4-94
outside-frame style attribute 3-18 to 3-19, 3-54 to 3-56,

3-99
overlapping contours

creating 2-52
effect of shape fill on 2-14 to 2-15, 2-26, 2-63 to 2-65
removing 4-33, 4-76

overriding inks 6-8 to 6-15, 6-38 to 6-40
overriding styles 6-8 to 6-15, 6-38 to 6-40
overriding transforms 6-8 to 6-15, 6-38 to 6-40

P

path contours. See also contours; path shapes
defined 2-25
structure of 2-107

path geometries
control bits 2-25, 2-56
defined 2-25
determining 2-132
editing 2-79 to 2-81, 2-91 to 2-93, 2-133, 2-149
with multiple contours 2-60, 2-65
with only off-curve control points 2-59, 2-60
structure of 2-107

path shapes
approximating with polygon shapes 3-45 to 3-48
converting other shapes to 2-74 to 2-79
converting to polygon shapes 3-45 to 3-48
creating and drawing 2-55 to 2-65
default 2-26
defined 2-25
effect of shape fill 2-26, 2-63 to 2-65
with a single contour 2-57 to 2-59
with multiple contours 2-60 to 2-65

pattern attributes 3-32, 3-107 to 3-108
as field of pattern structure 3-106

pattern grid 3-32, 3-107

I N D E X

IN-7

patterns 3-31 to 3-33
adding to a shape 3-86 to 3-88
aligning 3-107
definition of pattern structure 3-106 to 3-107
effect of shape fill 3-31, 3-106
functions for 3-142 to 3-148
grid 3-32, 3-107
interactions with caps, dashes, joins 3-33 to 3-35,

3-91 to 3-95
mapping 3-108
positions, determining 3-88 to 3-91, 3-147

pattern structure 3-106 to 3-107
pattern style property

defined 3-31
functions for 3-142 to 3-148

pen
placement of 3-18 to 3-20, 3-53 to 3-56
width of. See pen width style property

pen, geometric
introduced 3-15

pen width style property 3-15 to 3-17, 3-51 to 3-53
functions for 3-119 to 3-123

phased dashes 3-69
picture geometries

editing 6-31 to 6-32, 6-63 to 6-67
properties of 6-4
replacing 6-31 to 6-32, 6-59 to 6-63

picture hierarchies 6-18 to 6-19, 6-44 to 6-45
picture items 6-24

adding 6-32 to 6-35
defined 6-5
depth of 6-51
level of 6-51
multiple references to 6-10 to 6-15, 6-40 to 6-44
removing 6-35 to 6-37
replacing 6-35 to 6-37

picture shapes 6-3 to 6-71
creating and drawing 6-27 to 6-30, 6-57, 6-67
functions for

functions specific to picture shapes 6-57 to 6-71
other applicable functions 6-52 to 6-56

hit-testing 6-46 to 6-51, 6-69
introduced 1-20 to 1-22

pixel image 5-5 to 5-7
pixel size 5-5 to 5-7
pixel values 5-5
point 2-9
point geometries

defined 2-16
editing 2-34 to 2-35, 2-79 to 2-81, 2-122
structure of 2-104

point shapes
converting other shapes to 2-65 to 2-70
creating and drawing 2-29 to 2-36, 2-111, 2-158

default 2-16
defined 2-16
disposing of 2-36

polygon contours
defined 2-22
structure of 2-106

polygon geometries
defined 2-22
determining 2-130
editing 2-79 to 2-81, 2-82 to 2-90, 2-131
structure of 2-106

polygon shapes
converting other shapes to 2-74 to 2-79
creating and drawing 2-45 to 2-55
default 2-24
defined 2-22
effect of shape fill 2-24, 2-51 to 2-55
with a single contour 2-46 to 2-48
with crossed contours 2-24, 2-50 to 2-55
with multiple contours 2-23, 2-49 to 2-50

port-align pattern attribute 3-33, 3-108
port-map pattern attribute 3-33, 3-108
primitive form of shapes 4-12

effect of converting to 3-8 to 3-11
how to convert to 4-38 to 4-40, 4-79

primitive shapes 4-9 to 4-16

Q

quadratic Bézier curves. See Bezier curves

R

rectangle geometries
defined 2-20
determining 2-127
editing 2-79 to 2-81, 2-129
structure of 2-106

rectangle shapes
converting other shapes to 2-65 to 2-70
creating and drawing 2-43 to 2-45, 2-114, 2-160
default 2-21
defined 2-20
effect of shape fills 2-44 to 2-45

reducing shapes 4-9 to 4-16, 4-30 to 4-32, 4-74
reverse difference operation 4-21, 4-64, 4-112
reversing contour direction 4-23 to 4-27, 4-70
round caps 3-24, 3-59 to 3-61

I N D E X

IN-8

S

scaling
dashes 3-68, 3-104
shapes in general 4-47 to 4-49, 4-92

shape attributes
map-transform shape attribute 4-49

shape fills 2-12 to 2-15
defined 2-12
effect of contour direction 2-53 to 2-55, 2-62 to 2-65,

4-23 to 4-27
effect on path shapes 2-14, 2-26, 2-63 to 2-65
effect on polygon shapes 2-24, 2-51 to 2-55

shape length to point 4-42, 4-85
shapes

converting to primitive form 4-38 to 4-40, 4-79
insetting 4-50 to 4-52, 4-94
outsetting 4-52
reducing 4-9 to 4-11, 4-30 to 4-32, 4-74
simplifying 4-9 to 4-11, 4-33 to 4-37, 4-76
testing for containment 4-18 to 4-21, 4-58 to 4-59,

4-100 to 4-104
testing for inclusion 4-58 to 4-59, 4-100 to 4-104
testing for touching 4-18 to 4-21, 4-53 to 4-57, 4-95 to

4-99
sharp join attribute 3-103
sharp joins 3-26, 3-64 to 3-66, 3-103
simplifying shapes 4-9 to 4-16, 4-33 to 4-37, 4-76
solid shape fills 2-12. See also even-odd shape fill;

winding shape fill
source-grid style attribute 3-21, 3-40 to 3-42, 3-98
square caps 3-24, 3-59 to 3-61
standard caps 3-24, 3-59 to 3-61
standard joins 3-26, 3-64 to 3-66, 3-102 to 3-103
start caps 3-57 to 3-61, 3-100
style attributes 3-109 to 3-114

auto-inset style attribute 3-20, 3-99
center-frame style attribute 3-18, 3-98
constants for, defined 3-98 to 3-99
device-grid style attribute 3-42 to 3-45, 3-99
outside-frame style attribute 3-99
source-grid style attribute 3-40 to 3-42, 3-98

style object properties
attributes. See style attributes
cap 3-23, 3-25, 3-57 to 3-59, 3-123 to 3-129
dash 3-27, 3-66 to 3-70, 3-134 to 3-141
defined 3-5
join 3-25, 3-61 to 3-64
pattern 3-31
pattern property 3-31, 3-86 to 3-88
pen width 3-15 to 3-16, 3-51 to 3-53, 3-119 to 3-123

style objects 3-5 to 3-148
attributes. See style attributes
changing directly 3-36 to 3-38
changing through shape objects 3-38 to 3-40

curve error. See curve error style property
default 3-12 to 3-13
defined 3-5
incorporating into shape objects 4-38 to 4-40, 4-79
of bitmap shapes 5-8
overriding 6-8 to 6-15, 6-38 to 6-40
relationship to shape objects 3-6 to 3-7
style attributes property 3-98 to 3-99
style object properties

join 3-25, 3-129 to 3-131
style properties of geometric shapes 3-11 to 3-12, 3-97

to 3-98
join style property 3-129 to 3-134
pattern style property 3-142 to 3-148

T

text, using as dashes 3-80 to 3-81
touching

testing shapes for 4-18 to 4-21, 4-53 to 4-57, 4-95 to
4-99

transfer modes
effect on bitmap shapes 5-9, 5-32 to 5-34

transform concatenation 6-19 to 6-23, 6-44 to 6-45
transform objects

concatenating 6-19 to 6-23, 6-44 to 6-45
in picture shapes 6-38 to 6-40
of bitmap shapes 5-10 to 5-11
overriding 6-8 to 6-15, 6-38 to 6-40

true inside of a contour 4-9
type conversion

defined 2-66
to curve shapes 2-71 to 2-74
to line shapes 2-65 to 2-70
to path shapes 2-74 to 2-79
to point shapes 2-65 to 2-70
to polygon shapes 2-74 to 2-79
to rectangle shapes 2-65 to 2-70
table summarizing 2-101, 2-102

U

union operation 4-21, 4-62, 4-106, 4-109
unique items attribute 6-15 to 6-17, 6-43 to 6-44

V

view devices, and bitmap shapes 5-12 to 5-14, 5-45 to
5-51

I N D E X

IN-9

W, X, Y, Z

winding-number rule for filling shapes 2-14
winding shape fill

compared to even-odd shape fill 2-13, 2-24
and concentric contours 2-54
defined 2-14
and overlapping contours 2-65

wrapping text to a contour 3-80 to 3-81

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages were created on an Apple
LaserWriter Pro printer. Final page
negatives were output directly from text
files on an Optrotech SPrint 220
imagesetter. Line art was created
using Adobe™ Illustrator and
Adobe Photoshop. PostScript™, the
page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Apple Courier.

WRITER

Marq T. Laube

DEVELOPMENTAL EDITORS

Laurel Rezeau, George Truett

ILLUSTRATORS

Ruth Anderson, Sandee Karr,
Mai-Ly Pham

PRODUCTION EDITORS

Pat Christenson, Alan Morgenegg

PROJECT MANAGER

Trish Eastman

LEAD WRITER

David Bice

LEAD EDITOR

Laurel Rezeau

ART DIRECTOR/COVER DESIGNER

Barbara Smyth

Special thanks to Pete Alexander,
Cary Clark, Dave Good, Josh Horwich,
Rob Johnson, David Surovell, Chris Yerga

Acknowledgments to Sarah Chester,
Gary Hillerson, Gary McCue,
Diane Patterson, Rich Pettijohn,
Laine Rapin

