
Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York

Don Mills, Ontario Wokingham, England Amsterdam Bonn

Sydney Singapore Tokyo Madrid San Juan

Paris Seoul Milan Mexico City Taipei

I N S I D E M A C I N T O S H

Overview

Apple Computer, Inc.

© 1992, Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, LaserWriter, MacApp,
Macintosh, MPW, and MultiFinder are
trademarks of Apple Computer, Inc.,
registered in the United States and
other countries.

Balloon Help, Finder, QuickDraw,
QuickTime, ResEdit, and SourceBug are
trademarks of Apple Computer, Inc.

Adobe Illustrator and PostScript are
trademarks of Adobe Systems
Incorporated, which may be registered
in certain jurisdictions.

AGFA is a trademark of Agfa-Gevaert.

FrameMaker is a registered trademark
of Frame Technology Corporation.

Helvetica and Palatino are registered
trademarks of Linotype Company.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

ISBN 0-201-63247-0
1 2 3 4 5 6 7 8 9-MU-9695949392
First Printing, December 1992

The paper used in this book meets the
EPA standards for recycled fiber.

iii

Contents

Figures, Tables, and Listings vii

Preface About This Book xi

About Inside Macintosh xii

The New Inside Macintosh xiii

Conventions Used in This Book xiii

Special Fonts xiv

Types of Notes xiv

Development Environment xiv

For More Information xv

Chapter 1 Introduction 1

Getting Started 3

The Macintosh System Software 6

The Macintosh Toolbox 7

The Macintosh Operating System 11

Additional System Software Services 12

Text Handling 12

Interapplication Communication 14

QuickTime 17

Communications Toolbox 18

System Software Routines 19

The Sample Application 21

Conventions for Sample Code 24

Chapter 2 Memory 27

About Memory 29

The System Heap 31

The System Global Variables 31

Application Partitions 32

The Application Stack 33

The Application Heap 34

The Application Global Variables and A5 World 37

Memory Blocks 38

Nonrelocatable Blocks 39

Relocatable Blocks 40

Locking and Unlocking Relocatable Blocks 42

iv

Purging and Reallocating Relocatable Blocks 43

Data Types 44

Pointers and Handles 44

Strings 45

Procedure Pointers 46

Type Coercion 47

Chapter 3 Resources 49

About Resources 51

Resource Paths 52

Resource Types 55

Resource Structure 56

Using Standard Resources 59

Using Custom Resources 60

Chapter 4 Events 69

About Events 71

Initializing an Application 74

Receiving Events 75

Handling Events Outside the Main Event Loop 79

Chapter 5 Drawing 83

About QuickDraw 85

Points 86

Rectangles 87

Regions 89

Bit Images 91

Ports and Windows 92

Drawing Shapes 94

Drawing Bit Images 99

Drawing Text 101

Chapter 6 Windows 107

About Windows 109

Window Parts 110

Window Records 112

Window Types 113

Creating Windows 115

v

Handling Window Events 119

Mouse Events 119

Update Events 123

Activate Events 125

Closing Windows 128

Chapter 7 Dialog Boxes 131

About Dialog Boxes 133

Using Modeless Dialog Boxes 137

Creating a Modeless Dialog Box 137

Setting Up Application-Defined Items 139

Handling User Actions in a Modeless Dialog Box 141

Using Modal Dialog Boxes 144

Displaying a Modal Dialog Box 145

Defining a Modal Dialog Filter Function 146

Chapter 8 Menus 149

About Menus 151

Creating Menus 152

Creating a Menu Resource 152

Creating a Menu Bar Resource 154

Setting Up the Menu Bar and Menus 154

Handling Menu Choices 156

Handling Keyboard Equivalents 160

Adjusting Menus 161

Chapter 9 Processes 163

About Processes 165

Specifying Processing Options 168

Handling Suspend and Resume Events 170

Handling Null Events 173

Quitting an Application 175

Handling Errors 176

Checking the Operating Environment 178

Afterword Going Further 183

Implementing Further Features 183

Maintaining Compatibility 187

Making Your Application Localizable 188

vi

Using Developer Services 189

Technical Publications 189

Training 190

Technical Support 191

Appendix A Constants, Types, and Variables 195

Appendix B Utility Routines 199

Appendix C Dialog Code 205

Appendix D Resource Code 211

Appendix E User Interface Code 217

Glossary 233

Index 245

vii

Figures, Tables, and Listings

Chapter 1 Introduction 1

Figure 1-1 The window created by the simple application 4
Figure 1-2 Overview of the system software 7
Figure 1-3 Parts of the Macintosh Toolbox 8
Figure 1-4 A multiscript line of text drawn by QuickDraw 13
Figure 1-5 Input and conversion of Japanese text using the Text Services

Manager 14
Figure 1-6 Sharing dynamic data with other applications 15
Figure 1-7 Sending and responding to Apple events 16
Figure 1-8 Playing a QuickTime movie 18
Figure 1-9 A typical Venn diagram window 22
Figure 1-10 The parts of a Venn diagram window 22
Figure 1-11 A correctly constructed Venn diagram 23
Figure 1-12 The Venn menu 24

Table 1-1 Parameters passed to NewWindow in Listing 1-1 4
Table 1-2 The Macintosh Toolbox 10
Table 1-3 The Macintosh Operating System 11

Listing 1-1 A simple Macintosh application 3

Chapter 2 Memory 27

Figure 2-1 Memory organization in the cooperative multitasking
environment 30

Figure 2-2 Organization of an application partition 32
Figure 2-3 The application stack 34
Figure 2-4 A fragmented heap 35
Figure 2-5 A compacted heap 36
Figure 2-6 Organization of an application’s A5 world 37
Figure 2-7 A pointer to a nonrelocatable block 39
Figure 2-8 A handle to a relocatable block 41
Figure 2-9 Purging and reallocating a relocatable block 44

Chapter 3 Resources 49

Figure 3-1 Searching for a resource 54
Figure 3-2 The ResEdit version of the Preferences dialog box 58
Figure 3-3 A resource diagram 59
Figure 3-4 The Preferences dialog box 61

Table 3-1 Typical locations of resources 53
Table 3-2 Some standard resource types 55

viii

Listing 3-1 Rez input for the Preferences dialog box 57
Listing 3-2 The structure of a resource containing Venn diagram

preferences 61
Listing 3-3 Reading a user’s preferences 62
Listing 3-4 Creating a preferences file 64
Listing 3-5 Copying a resource from one resource file to another 65
Listing 3-6 Saving current preferences settings 66

Chapter 4 Events 69

Figure 4-1 Sources of events sent to your application 73

Listing 4-1 Initializing your application 74
Listing 4-2 Initializing the main Toolbox Managers 75
Listing 4-3 Handling disk-inserted events 77
Listing 4-4 An event loop 77
Listing 4-5 Tracking mouse events in the close box 79
Listing 4-6 Tracking the cursor in an arbitrary rectangle 80

Chapter 5 Drawing 83

Figure 5-1 Samples of QuickDraw’s abilities 85
Figure 5-2 The coordinate plane 86
Figure 5-3 A rectangle 87
Figure 5-4 Pixels and rectangles 88
Figure 5-5 Two regions 90
Figure 5-6 A bitmap 92
Figure 5-7 Calculating the overlap regions of a Venn diagram 98
Figure 5-8 Bit images in a document window 99

Listing 5-1 Saving and restoring the current graphics port 93
Listing 5-2 The structure of a record describing a document window’s

geometry 94
Listing 5-3 Initializing the geometry record 95
Listing 5-4 Defining circular regions 96
Listing 5-5 Defining noncircular regions 96
Listing 5-6 Reading 'ICON' resources into memory 100
Listing 5-7 Drawing the tools area of a document window 100
Listing 5-8 Drawing a portion of an icon 101
Listing 5-9 Retrieving a status message from a resource 102
Listing 5-10 Informing the user of an argument’s validity or invalidity 103
Listing 5-11 Displaying a status message 103

Chapter 6 Windows 107

Figure 6-1 A Venn diagram window 111
Figure 6-2 An inactive window containing controls 127

ix

Listing 6-1 The WindowRecord data structure 112
Listing 6-2 Determining if a window is a document window 114
Listing 6-3 Determining if a window is a dialog box 114
Listing 6-4 Determining if a window is a desk accessory window 115
Listing 6-5 The structure of a document record for the Venn Diagrammer

application 115
Listing 6-6 Creating a new Venn diagram window 117
Listing 6-7 Handling mouse-down events 120
Listing 6-8 Dragging a window 121
Listing 6-9 Handling clicks in a window’s content region 121
Listing 6-10 Handling a click in a figure icon 123
Listing 6-11 Handling update events 124
Listing 6-12 Handling window activations and deactivations 126
Listing 6-13 Handling clicks in the close box 128
Listing 6-14 Closing a window 129
Listing 6-15 Closing a Venn diagram window 129

Chapter 7 Dialog Boxes 131

Figure 7-1 An About box 133
Figure 7-2 An alert box 134
Figure 7-3 A Preferences dialog box 134

Listing 7-1 Dialog item numbers 135
Listing 7-2 Creating a modeless dialog box 138
Listing 7-3 Setting up application-defined dialog items 139
Listing 7-4 Drawing application-defined dialog items 140
Listing 7-5 Handling events in a modeless dialog box 141
Listing 7-6 Setting the state of radio buttons and checkboxes 142
Listing 7-7 Displaying a modal dialog box 145
Listing 7-8 Outlining the default button of a modal dialog box 146
Listing 7-9 A modal dialog filter function 147

Chapter 8 Menus 149

Figure 8-1 A typical pull-down menu 151
Figure 8-2 Defining a 'MENU' resource 153
Figure 8-3 Editing a menu command 153
Figure 8-4 An 'MBAR' resource in ResEdit 154

Table 8-1 Reserved keyboard equivalents 161

Listing 8-1 Setting up the menu bar and menus 155
Listing 8-2 Defining menu numbers and menu item numbers 156
Listing 8-3 Handling menu selections 157
Listing 8-4 Handling Apple menu selections 159
Listing 8-5 Handling Command-key equivalents 160
Listing 8-6 Adjusting menus 161

x

Chapter 9 Processes 163

Figure 9-1 The desktop with several applications open 166
Figure 9-2 A Venn diagram before automatic adjusting 174
Figure 9-3 A Venn diagram after automatic adjusting 175

Table 9-1 The bits in the message field of an operating-system event
record 172

Listing 9-1 The Rez input for a sample 'SIZE' resource 169
Listing 9-2 Handling operating-system events 171
Listing 9-3 Handling null events 173
Listing 9-4 Quitting your application 175
Listing 9-5 Handling serious errors 178
Listing 9-6 Checking that FindFolder is present 179
Listing 9-7 Determining whether a trap is available 180
Listing 9-8 Checking for the availability of the WaitNextEvent function 181

xi

P R E F A C E

About This Book

This book, Inside Macintosh: Overview, provides a general introduction to

programming for Macintosh computers and to the Inside Macintosh library of

reference books. Unless you are already an experienced developer of software

for Macintosh computers, you should read this book for a general overview of

the Macintosh system software and of the programming techniques that you

should use when developing your application.

This book is written for both professional developers and “hobbyists.” It

assumes only that you understand fundamental programming concepts and

that you have had experience using a high-level programming language such

as Pascal or C. It is helpful, but not necessary, to have some experience

programming for a graphic user interface (like the Macintosh desktop

metaphor). At the very least, you should already have extensive experience

using one or more applications on a Macintosh computer. Before you start

programming, you need to understand what the basic elements of the

Macintosh desktop metaphor are (windows, menus, scroll bars, and so forth)

and how the user expects those elements to operate.

This book leads by example. From the very first page, the fundamental

programming techniques are illustrated by source code that you can compile

into actual, working routines and applications. Gradually, you will learn how

to implement the major features of a Macintosh application, including

■ responding to user actions and other events

■ creating and managing windows and dialog boxes

■ handling menu selections

■ storing application data in resources

■ managing your application’s memory efficiently

■ sharing processing time and available memory with other open
applications

■ checking available system software features

■ handling errors or unexpected occurrences safely

This book also provides guidelines on how to maximize your application’s

compatibility with the entire family of Macintosh computers and minimize

the amount of work required to localize your application (that is, to adapt it

for use in other geographic locations). Compatibility and localizability are

features that you should always plan in advance. In general, your best guide

to writing software that follows these guidelines is to use the techniques

illustrated throughout the Inside Macintosh series of books.

xii

P R E F A C E

About Inside Macintosh

The Inside Macintosh library of books is a complete technical reference to the

system software provided for Macintosh computers by Apple Computer, Inc.

You’ll need some or all of the Inside Macintosh books—in addition to the

documentation for your specific software development environment—to

write applications and other software components that run in the Macintosh

Operating System.

Books in the Inside Macintosh series are designed primarily as reference books

and not as step-by-step tutorials. (The main exception to that rule is this book,

Inside Macintosh: Overview, which is a general introduction to programming on

Macintosh computers and to the other Inside Macintosh books.) Nonetheless,

there is sufficient “how-to” material in each book that you should be able to

successfully implement the features of some particular part of the Macintosh

system software by reading the appropriate chapters in Inside Macintosh.

Moreover, some of these books contain special introductory chapters that

explain general concepts and provide implementation details for specific

parts of the system software. For example, the chapter “Introduction to File

Management” in the book Inside Macintosh: Files provides a complete

explanation of how to implement the typical File menu commands.

If you are new to programming for the Macintosh system software, you

should begin by reading this book, Inside Macintosh: Overview. Once you

understand the material presented here, you can then usefully turn to other

Inside Macintosh books. In all likelihood, you’ll next want to look at two books

covering the Macintosh Toolbox:

■ Inside Macintosh: Macintosh Toolbox Essentials

■ Inside Macintosh: More Macintosh Toolbox

If your application is concerned with either text or graphics, you need to look

at one or both of:

■ Inside Macintosh: Imaging

■ Inside Macintosh: Text

You’ll also need to learn more about the main parts of the Macintosh

Operating System. You can get most of the information you need from these

three books:

■ Inside Macintosh: Memory

■ Inside Macintosh: Files

■ Inside Macintosh: Processes

See the Afterword, beginning on page 183, for a more detailed description of

the contents of these and other books in the Inside Macintosh series.

xiii

P R E F A C E

The New Inside Macintosh

The original Inside Macintosh library of books appeared in six volumes from

1985 to 1991. Those volumes each focused on a particular version of the

system software, sometimes prompted by the release of new hardware

configurations. Often, the later volumes of the original Inside Macintosh

described only new system software components or changes to existing

system software components.

The new Inside Macintosh books are intended to replace the original Inside
Macintosh books and to provide a more complete and more useful reference to

the Macintosh system software. The most obvious improvement in the new

books is that they are organized principally by topic. For example, the book

Inside Macintosh: Files contains virtually all the available information related to

files, including complete descriptions of the File Manager, the Standard File

Package, the Alias Manager, and the Disk Initialization Manager. Similarly,

the book Inside Macintosh: Text contains all information about handling text.

This topic-oriented organization of books makes it easier for you to find the

information you need. It also makes it easier for Apple to add books to the

Inside Macintosh suite as new technologies emerge in the years ahead.

At the same time that the entire suite of books was reorganized, the chapters

in the new Inside Macintosh books were completely rewritten. Information that

may have been previously scattered across multiple volumes of the original

Inside Macintosh is now combined into easily accessible chapters. Information

that is no longer relevant or useful has been removed. Most importantly, the

new Inside Macintosh provides far more explanatory material and source code

samples than the original. Where appropriate, material from the Macintosh

Technical Notes has been incorporated into the new Inside Macintosh. Finally,

each chapter has been extensively reviewed by Apple engineers, testing

personnel, and Developer Technical Support staff.

Conventions Used in This Book

Inside Macintosh uses various conventions to present information. Words that

require special treatment appear in specific fonts or font styles. Certain

information, such as parameter blocks, appears in special formats so that you

can scan it quickly.

xiv

P R E F A C E

Special Fonts
All code listings, reserved words, and the names of actual data structures,

constants, fields, parameters, and routines are shown in Courier (this is
Courier).

Words that appear in boldface are key terms or concepts and are defined in

the Glossary.

Types of Notes
There are several types of notes used in Inside Macintosh.

Note

A note like this contains information that is interesting but possibly not
essential to an understanding of the main text. (An example appears on
page 8.) ◆

IMPORTANT

A note like this contains information that is essential for an
understanding of the main text. (An example appears on page 5.) ▲

▲ W A R N I N G

Warnings like this indicate potential problems that you should be aware
of as you design your application. Failure to heed these warnings could
result in system crashes or loss of data. (There are no warnings in this
book.) ▲

Development Environment

The system software routines described in this book are available using

Pascal, C, or assembly-language interfaces. How you access these routines

depends on the development environment you are using. This book shows

system software routines in their Pascal interface using the Macintosh

Programmer’s Workshop (MPW).

All code listings in this book are shown in Pascal. They show methods of

using various routines and illustrate techniques for accomplishing particular

tasks. All code listings have been compiled and, in most cases, tested.

However, Apple Computer does not intend that you use these code samples

in your application.

This book occasionally uses GreetMe and Venn Diagrammer as the names of

sample applications for illustrative purposes; these are not actual products of

Apple Computer, Inc.

xv

P R E F A C E

For More Information

APDA is Apple’s worldwide source for over three hundred development

tools, technical resources, training products, and information for anyone

interested in developing applications on Apple platforms. Customers receive

the quarterly APDA Tools Catalog featuring all current versions of Apple

development tools and the most popular third-party development tools.

Ordering is easy; there are no membership fees, and application forms are not

required for most of our products. APDA offers convenient payment and

shipping options, including site licensing.

To order products or to request a complimentary copy of the APDA Tools
Catalog, contact

APDA

Apple Computer, Inc.

P.O. Box 319

Buffalo, NY 14207-0319

If you provide commercial products and services, call 408-974-4897 for

information on the developer support programs available from Apple.

For information of registering signatures, file types, Apple events, and other

technical information, contact

Macintosh Developer Technical Support

Apple Computer, Inc.

20525 Mariani Avenue, M/S 75-3T

Cupertino, CA 95014-6299

IMPORTANT

See the section “Using Developer Services” beginning on page 189 in the
Afterword for more information about Apple developer programs and
services. ▲

Telephone 800-282-2732 (United States)
800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDA

CompuServe 76666,2405

Internet APDA@applelink.apple.com

Contents 1

C H A P T E R 1

Contents

Introduction

Getting Started 3

The Macintosh System Software 6

The Macintosh Toolbox 7

The Macintosh Operating System 11

Additional System Software Services 12

Text Handling 12

Interapplication Communication 14

QuickTime 17

Communications Toolbox 18

System Software Routines 19

The Sample Application 21

Conventions for Sample Code 24

C H A P T E R 1

Getting Started 3

Introduction

Welcome inside. This chapter begins the discussion of programming for Macintosh

computers by describing the general organization of the Macintosh system software, a

collection of routines that you’ll use to simplify your development of Macintosh

applications. The system software provides, among other things, routines that you can

use to create and manage the essential parts of your application’s user interface. This

chapter illustrates the organization and content of the system software by dissecting a

very simple sample application.

Getting Started

Let’s begin by looking at the source code for a simple application. Consider Listing 1-1.

Listing 1-1 A simple Macintosh application

PROGRAM GreetMe;

VAR

gWindow: WindowPtr; {pointer to a window record}

gString: Str255; {the string to display}

gRect: Rect; {the window’s rectangle}

BEGIN

InitGraf(@thePort); {initialize QuickDraw}

InitFonts; {initialize Font Manager}

InitWindows; {initialize Window Manager}

InitCursor; {initialize the cursor to an arrow}

{set the position of the window}

SetRect(gRect, 100, 100, 400, 200);

gString := 'Hello, world!'; {set the greeting to be displayed}

{create a window}

gWindow := NewWindow(NIL, gRect, '', TRUE, dBoxProc, WindowPtr(-1),

 FALSE, 0);

SetPort(gWindow); {set the current drawing port}

WITH gWindow^.portRect DO {set the position of the pen}

MoveTo(((right - left) DIV 2) - (StringWidth(gString) DIV 2),

(bottom - top) DIV 2);

TextFont(systemFont); {set the font}

DrawString(gString); {draw the string}

REPEAT {loop until the mouse button is pressed}

UNTIL Button;

END.

C H A P T E R 1

Introduction

4 Getting Started

The application GreetMe defined by Listing 1-1 simply displays the window shown in

Figure 1-1 and exits as soon as the user presses the mouse button.

Figure 1-1 The window created by the simple application

This application is remarkably simple, but also quite revealing about some important

aspects of Macintosh programming. Consider the call that creates the window in which

the greeting is drawn:

gWindow := NewWindow(NIL, gRect, '', TRUE, dBoxProc,

 WindowPtr(-1), FALSE, 0);

This call to the NewWindow function creates a window at the specified location in front

of any existing windows on the screen. The NewWindow function is a good example of

the kind of routines provided by the system software. These routines greatly simplify the

creation of the standard “look and feel” of Macintosh applications. By using these

routines, you can ensure that your application conforms as closely as possible to the

standard Macintosh user interface and hence that users find your application easy to

learn and use.

Let’s take a closer look at the call to NewWindow. The NewWindow function requires eight

parameters, whose meanings are described in Table 1-1.

Table 1-1 Parameters passed to NewWindow in Listing 1-1

Parameter Meaning

NIL The address of a window record, a data structure that contains
information about the new window. Specifying NIL as the
address of this structure instructs the system software to allocate
that required storage itself.

gRect The window’s bounding rectangle. This is the rectangle that
encloses the new window. The values of the desired rectangle are
specified by the previous call to SetRect, which defines the
upper-left and lower-right corners of the rectangle.

'' The window’s title. The new window has no title bar, so this
parameter is specified as the empty string.

C H A P T E R 1

Introduction

Getting Started 5

The NewWindow function returns a window pointer, which is the address in memory of a

window record. The window record contains important information about the window

(such as its current location on the screen and the current font and size of text that is to

be drawn in the window). When you call a system software routine to perform some

operation on a window, you’ll typically pass a window pointer as a parameter to that

routine. For example, in Listing 1-1, the window pointer is passed to the SetPort

procedure to set the new window as the current drawing window.

IMPORTANT

You need to call SetPort before you do anything at all that affects the
contents of a window, such as drawing graphics or text in the window,
or even just erasing the contents of the window. ▲

Another notable element of Listing 1-1 is the DrawString procedure, which draws the

specified string in the current font at the current drawing location. By default, the

current drawing location in a new window is the upper-left corner. In this case,

remaining at that location would make the greeting unreadable, because DrawString

uses the vertical coordinate of the current point as the baseline of the text to be printed.

Instead, GreetMe calls the MoveTo procedure to move the current pen location to a point

that centers the greeting in the window:

TRUE An indication of whether the new window should initially be
visible or not. This parameter is set to TRUE to indicate that the
window is indeed to be made visible.

dBoxProc The type of window you want to create. The Macintosh user
interface includes a great variety of window types for different
purposes. For present purposes, the standard modal dialog box
is appropriate. The constant dBoxProc identifies that type of
window.

WindowPtr(-1) The new window’s initial plane (or layer) relative to any other
existing windows. This parameter is a window pointer to the
window behind which you want the new window to appear. The
system software recognizes two special values here. If you pass
NIL in this parameter, the new window appears behind all other
windows. If you pass –1, the new window appears in front of all
other windows. Because the NewWindow function expects a
window pointer in this parameter, you need to typecast the
special value –1 as WindowPtr(–1).

FALSE An indication of whether the window has a close box or not. This
parameter is set to FALSE to indicate that no close box is desired.

0 An application-specific reference number. This number is put
into a particular field of the new window record, and can be
useful to you if the window has specific data associated with it.
Because there is no such data associated with this window, this
parameter is set to 0.

Table 1-1 Parameters passed to NewWindow in Listing 1-1 (continued)

Parameter Meaning

C H A P T E R 1

Introduction

6 The Macintosh System Software

WITH gWindow^.portRect DO {set the position of the pen}

MoveTo(((right - left) DIV 2) - (StringWidth(gString) DIV 2),

(bottom - top) DIV 2);

The MoveTo procedure requires 2 parameters, the horizontal and vertical coordinates

within the window of the new drawing position. The origin—point (0,0)—of a window

is at its upper left corner. Horizontal coordinates increase as you move from left to right,

and vertical coordinates increase as you move from top to bottom. The coordinates

passed to MoveTo are calculated from the left, top, bottom, and right coordinates of the

window (obtained from the portRect field of the window record).

The Macintosh System Software

The richness of the Macintosh user interface is closely matched by the richness of the

Macintosh system software routines. There are currently several thousand system

software routines that, like NewWindow, are available to application developers for use in

writing applications for the Macintosh operating system. Fortunately, you don’t need to

learn all of those routines before starting to develop applications for the Macintosh. The

sample application defined in Listing 1-1 uses only a dozen or so system software

routines. A typical application might directly call a few hundred of these routines.

The entire collection of system software routines is logically divided into functional

groups—usually known as managers—that handle specific tasks or user interface

elements. For example, the NewWindow routine belongs to the Window Manager, the

part of the Macintosh system software that allows you to create, move, hide, resize, and

otherwise manipulate windows. Similarly, the parts of the system software that allow

you to create and manipulate menus belong to the Menu Manager.

Your application calls system software routines to create standard user interface

elements and to coordinate its actions with other open applications. The main other

application that your application needs to work with is the Finder, which is responsible

for keeping track of files and managing the user’s desktop. Usually, the user launches

your application by double-clicking its icon (or one of its document’s icons) in a Finder

window. The Finder isn’t really part of the Macintosh system software, but it is such an

important piece of the Macintosh graphic user interface that it’s sometimes difficult to

tell where the Finder ends and the systems software begins. In fact, the system software

provides a set of routines—known as the Finder Interface—that you can use to interact

with the Finder.

As shown in Figure 1-2, most of the system software routines are part of either the

Macintosh Operating System or the Macintosh Toolbox.

C H A P T E R 1

Introduction

The Macintosh System Software 7

Figure 1-2 Overview of the system software

This section describes the division of the Macintosh system software into its logical parts.

Understanding this division of system software into managers and other units is

essential to understanding Macintosh programming, as well as the general organization

of Inside Macintosh.

The Macintosh Toolbox
The system software routines used in Listing 1-1 allow you to manage elements of the

Macintosh user interface. These parts of the system software belong to the Macintosh
Toolbox (sometimes also called the Macintosh User Interface Toolbox). By offering a

common set of routines that every application can call to implement the user interface,

the Toolbox not only ensures familiarity and consistency for the user, but also helps

reduce your application’s code size and development time. At the same time, the

Toolbox offers a great deal of flexibility; your application can, whenever appropriate, use

its own code instead of Toolbox routines, and it can define its own types of windows,

menus, and controls. In general, however, you should use the Toolbox routines to

maximize compatibility with present and future versions of the system software.

C H A P T E R 1

Introduction

8 The Macintosh System Software

Figure 1-3 illustrates the main parts of the Macintosh Toolbox.

Figure 1-3 Parts of the Macintosh Toolbox

Note
For historical reasons, some collections of system software routines are
referred to as packages. One example is the Standard File Package
(which allows you to present the standard file opening and saving
dialog boxes). In general, the distinction between managers and
packages is unimportant. Accordingly, the new Inside Macintosh has,
whenever appropriate, adopted the practice of renaming packages as
managers. For instance, the Disk Initialization Manager (described in the
book Inside Macintosh: Files) was previously known as the Disk
Initialization Package. ◆

Consider the first few lines of Listing 1-1 on page 3:

InitGraf(@thePort); {initialize QuickDraw}

InitFonts; {initialize Font Manager}

InitWindows; {initialize Window Manager}

InitCursor; {initialize cursor to arrow}

C H A P T E R 1

Introduction

The Macintosh System Software 9

These lines of code perform standard initialization of some essential Toolbox managers.

You need to initialize these managers in order to set up the drawing environment for

your application and to prepare parts of the Toolbox for further use. The InitGraf

procedure initializes QuickDraw, the part of the Macintosh Toolbox that handles

drawing and other graphics operations. Because the Macintosh user interface is largely a

graphic user interface, QuickDraw routines are called by virtually all the other Toolbox

managers. For example, the Window Manager calls QuickDraw to draw the window

frame and any other required parts of a window (for instance, the title bar). For this

reason, you need to initialize QuickDraw before you initialize the other main Toolbox

Managers.

Note

QuickDraw gets its name from the fact that it’s designed to perform
basic graphics operations exceptionally fast. This is important for a user
interface that relies so heavily on graphics. ◆

Your application will also call QuickDraw directly, usually to draw inside a window or

to set up constructs (like rectangles) that you’ll need when making other Toolbox calls.

QuickDraw provides a rich array of routines that let you

■ change, hide, and display the cursor

■ manipulate the current drawing port

■ set characteristics of the drawing pen

■ draw text

■ manage colors

■ define rectangles, ovals, arcs, and other basic geometric shapes

■ define arbitrarily shaped regions

■ perform operations on shapes and regions

The essential thing to keep in mind is that if you can see something on the screen, then

QuickDraw is lurking somewhere behind it, either directly (you drew it there) or

indirectly (you called a Toolbox routine that called QuickDraw to draw it there).

The InitFonts procedure initializes the Font Manager, which supports the use of

various character fonts when you draw text with QuickDraw. The TextFont routine

sets the current font to that whose font number is passed as a parameter. GreetMe passes

the special constant systemFont, which requests the font used by the system (for

drawing menu titles and commands in menus, for example).

The InitWindows procedure initializes the Window Manager, and the InitCursor

procedure (which belongs to QuickDraw) sets the cursor to the standard arrow cursor.

Every application needs to call these routines before creating windows or handling any

user actions.

C H A P T E R 1

Introduction

10 The Macintosh System Software

Notice that Figure 1-3 depicts a number of other Toolbox managers that are not used by

GreetMe. You’ll encounter many of these as you progress through this book. For now,

take a look at Table 1-2 for a brief description of the most commonly used Macintosh

Toolbox managers.

Table 1-2 The Macintosh Toolbox

Manager Description

QuickDraw Performs all screen display operations, including all drawing
of graphics and text.

Window Manager Allows you to create and manage windows of various types.

Dialog Manager Allows you to create and manage dialog boxes, which are
special kinds of windows. Typically you’ll use dialog boxes to
alert the user to unusual situations or to solicit information
from the user.

Control Manager Allows you to create and manage controls, such as buttons,
radio buttons, checkboxes, pop-up menus, scroll bars, and
application-defined controls.

Menu Manager Allows you to create and manage your application’s menu bar
and the menus it contains. Also handles the drawing of menus
and user actions within a menu.

Event Manager Reports to your application events describing user actions and
changes in the processing status of your application. Also
allows you to communicate with other applications.

TextEdit Provides simple text-formatting and text-editing capabilities,
such as text input, selection, cutting, and pasting. Applications
that are not primarily concerned with text processing can use
TextEdit to handle most text manipulation.

Resource Manager Allows your application to read and write resources. Any
static data (such as menus, cursors, and windows) used by
your application can usefully be stored as a resource. The
system software provides a number of standard resources,
and your application can define its own custom resources.

Finder Interface Allows your application to interact with the Finder, the
application that helps keep track of files and manages the
user’s desktop display.

Scrap Manager Allows your application to support cutting and pasting of
information among applications.

Standard File Package Provides the standard dialog boxes that allow the user to
select a file to open or a location and name for a file to be
saved.

Help Manager Allows your application to provide Balloon Help on-line
assistance, information that describes the actions, behaviors,
and properties of elements of your application.

C H A P T E R 1

Introduction

The Macintosh System Software 11

The Macintosh Operating System
The Macintosh Operating System provides routines that allow you to perform basic

low-level tasks such as file input and output, memory management, and process and

device control. The Macintosh Toolbox is a level above the Operating System and, as

you’ve seen, provides routines that help you implement the standard Macintosh user

interface for your application. The Toolbox calls the Operating System to do low-level

operations, and you’ll also need to call the Operating System directly yourself.

The Macintosh Toolbox allows you to create and manage parts of your application’s user

interface, and in some sense mediates your application and the user. By contrast, the

Macintosh Operating System essentially mediates your application and the Macintosh

hardware. For example, you’ll read and write files not by reading data directly from the

medium on which they are stored, but rather by calling appropriate File Manager

routines. The File Manager locates the desired data within the logical hierarchical

structure of files and directories that it manages; then it calls another part of the

Operating System, the Device Manager, to read or write the data on the actual physical

device. The File Manager and the Device Manager thereby insulate your application

from the low-level details of interacting with the available data-storage hardware.

Similarly, the Memory Manager helps you allocate and dispose of memory within your

application’s logical address space. The Memory Manager takes care of mapping that

logical address space onto the physical address space provided by the available RAM. It

also helps manage your application’s memory by moving allocated blocks of memory

when necessary to create space for new blocks you want to allocate. Table 1-3 briefly

describes the main parts of the Macintosh Operating System.

List Manager Allows your application to create lists of items.

Sound Manager Provides sound output capabilities.

Sound Input Manager Provides sound input capabilities for Macintosh computers
equipped with a sound input device such as a microphone.

Table 1-3 The Macintosh Operating System

Manager Description

Process Manager Handles the launching, scheduling, and termination of
applications. Also provides information about open
processes.

Memory Manager Manages the dynamic allocation and releasing of
memory in your application’s memory partition.

continued

Table 1-2 The Macintosh Toolbox (continued)

Manager Description

C H A P T E R 1

Introduction

12 The Macintosh System Software

Additional System Software Services
The Macintosh system software includes a number of other parts that don’t historically

belong to either the Macintosh Toolbox or the Macintosh Operating System. The system

software provides an extremely powerful set of services you can use to handle text and

to support the varying text-handling requirements of different languages and writing

systems. Other system software components include the interapplication

communications architecture, QuickTime, and the Communications Toolbox.

Text Handling

Text handling on the Macintosh has two basic aspects that make it so powerful. First, it is

fundamentally graphic; text is drawn as a sequence of graphic elements; therefore the

full power and flexibility of the Macintosh graphic interface is available for drawing text

in sophisticated ways.

Second, text handling is designed to function properly across multiple languages and

writing systems. As you develop applications for worldwide markets, you need to

consider differences in scripts, languages, and regions. The Macintosh system software

presents one of the most flexible architectures for developing applications that can

support more than one script.

Virtual Memory Manager Provides virtual memory services (the ability to have a
logical address space that is larger than the total amount
of available RAM).

File Manager Provides access to the file system; allows applications to
create, open, read, write, and close files.

Alias Manager Helps you locate specified files, directories, or volumes.

Disk Initialization Manager Manages the process of initializing disks.

Device Manager Provides input from and output to hardware devices
attached to the computer.

SCSI Manager Controls the exchange of information between a
Macintosh computer and peripheral devices attached
through the Small Computer Standard Interface (SCSI).

Time Manager Allows you to execute a routine periodically or after a
specified time delay.

Vertical Retrace Manager Allows you to synchronize the execution of a routine
with the redrawing of the screen.

Shutdown Manager Allows you to execute a routine while the computer is
shutting down or restarting.

Table 1-3 The Macintosh Operating System (continued)

Manager Description

C H A P T E R 1

Introduction

The Macintosh System Software 13

A script, such as Roman, Kanji, or Arabic, is a writing system for a human language such

as English, Japanese, or Arabic. Scripts have different characteristics; for example, they

can differ in the direction in which their characters and lines run and in the number of

characters in their character sets. The way in which you need to input, display, render,

and edit text may change depending on the script in use.

A Macintosh script system is a set of system resources that support text input,

manipulation, and display for a given writing system. The Macintosh script
management system consists of system software managers and the WorldScript

extensions, which together give your application the power to create and work with text

of any script system. These are the essential text-handling managers:

■ QuickDraw is the graphics manager of Macintosh system software. Your application
makes QuickDraw calls to write text to the screen or to a printer. When QuickDraw
draws text, it draws it according to the settings of the current window’s graphics port
record, which includes the location information and complete font information.
QuickDraw can draw text of any script system. Figure 1-4 shows some of
QuickDraw’s text-drawing capabilities.

Figure 1-4 A multiscript line of text drawn by QuickDraw

■ The Font Manager supports QuickDraw by providing the fonts that QuickDraw
needs, in the typefaces, sizes, and styles that QuickDraw requests. The Font Manager
keeps track of all fonts available to an application, and supports fonts for all script
systems.

■ The Text Utilities are an integrated collection of routines for performing a variety of
operations on text, ranging from sorting strings to formatting dates and times to
finding word breaks. The Text Utilities work in conjunction with the Macintosh script
management system and can take into account the differences in text handling among
script systems. If you use these routines, you can handle text operations in a manner
that is transportable to different parts of the world.

■ The Script Manager is at the center of the Macintosh script management system. It
initializes script systems, maintains important data structures, supports switching text
input among different script systems, and provides several text-manipulation services.

■ The Text Services Manager supports text service components such as input methods. If
your application uses the Text Services Manager, it can support the special kinds of
text input needed for 2-byte script systems such as Japanese, Chinese, and Korean.

C H A P T E R 1

Introduction

14 The Macintosh System Software

Figure 1-5 shows how you can use the Text Services Manager to convert Japanese text.

Figure 1-5 Input and conversion of Japanese text using the Text Services Manager

You can use the script management system to achieve any level of text-handling

sophistication, from simple display of static text in one language to highly sophisticated

multilanguage word processing and page layout. The simplest way to achieve basic

worldwide flexibility in text handling is to use TextEdit, which provides simple

text-handling capabilities for text of any script system, including multiscript text.

TextEdit automatically handles text with more than one script, style, and direction. For

example, TextEdit supports mixing English text (a left-to-right directional script) with

Arabic text (a right-to-left directional script) in the same line (as you saw in Figure 1-4).

Note
For complete information on text handling, including multiscript text
handling, see Inside Macintosh: Text. For information on individual script
systems and how to localize your software for markets around the
world, see Guide to Macintosh Software Localization. ◆

Interapplication Communication

The interapplication communications (IAC) architecture provides a standard and

extensible mechanism for communication among Macintosh applications. The IAC

architecture includes these main parts:

■ The Edition Manager allows applications to automate copy and paste operations
between applications, so that data can be shared dynamically.

C H A P T E R 1

Introduction

The Macintosh System Software 15

■ The Apple Event Manager allows applications to send and respond to Apple events.

■ The Event Manager allows applications to send and respond to high-level events
other than Apple events.

■ The Program-to-Program Communications (PPC) Toolbox allows applications to
exchange blocks of data with each other by reading and writing low-level message
blocks. It also provides a standard user interface that allows a user working in one
application to select another application with which to exchange data.

The parts of the IAC architecture depend upon each other in fairly straightforward ways.

The Edition Manager uses the services of the Apple Event Manager to support dynamic

data sharing. The Apple Event Manager, in turn, relies on the Event Manager to send

Apple events as high-level events, and the Event Manager uses the services of the PPC

Toolbox.

If you want your application to exchange data with another application, you’ll probably

use either the Edition Manager or the Apple Event Manager. The Edition Manager

allows users to copy data from one application’s document to another application’s

document, updating the information automatically when the data in the original

document changes. Figure 1-6 shows how you can use the Edition Manager to create a

poster whose elements (an illustration, a title, and some text) all originate in documents

created by other applications. If, for example, the user changes the illustration in the

original document, the copy of that illustration in the poster could be updated

automatically.

Figure 1-6 Sharing dynamic data with other applications

C H A P T E R 1

Introduction

16 The Macintosh System Software

The Apple Event Manager allows you to send and receive Apple events, which are

high-level events that conform to the Apple Event Interprocess Messaging Protocol. The

Apple Event Registry: Standard Suites describes a standard vocabulary of Apple events

that you can use to communicate with other open applications. Typically you use Apple

events to request services and information from other applications, or to provide services

and information in response to such requests.

Communication between two applications that support Apple events is initiated by a

client application, which sends an Apple event to request a service or information. For

example, a client application might request services such as printing specific files,

checking the spelling of a list of words, or performing a numerical calculation; or it

might request information, such as one customer’s address or a list of names and

addresses of all customers living in Ohio. The application providing the service or the

requested information is called a server application. The client and server applications

can reside on the same local computer or on remote computers connected to a network.

Figure 1-7 shows the relationships among a client application, the Apple Event Manager,

and a server application. The client application uses Apple Event Manager routines to

create and send the Apple event, and the server application uses Apple Event Manager

routines to interpret the Apple event and respond appropriately. If the client application

so requests, the server application sends back a reply Apple event.

Figure 1-7 Sending and responding to Apple events

As you might imagine, there are many predefined kinds of Apple events, corresponding

to the many services one application might request of another. Apple events are grouped

into standard suites or groups of related events. Usually, you implement all the events in

a given suite at the same time. The standard Apple event suites include the following:

C H A P T E R 1

Introduction

The Macintosh System Software 17

■ The Required suite consists of four basic Apple events that your application must
support if it supports any Apple events at all. These events are Open Documents,
Open Application, Print Documents, and Quit Application. The Finder uses these
events for launching and terminating applications.

■ The Core suite consists of the basic Apple events that nearly all applications use to
communicate, including Get Data, Set Data, Move, Delete, and Save. You should
support all the Apple events in the Core suite that make sense for your application.

■ A functional-area suite consists of a group of Apple events that support a related
functional area. One example of a functional area is the Text suite, which includes
events related to text processing.

If an Apple event is one of these standard events, the client application can construct the

event and the server application can interpret it according to the standard definition for

that event. To ensure that your application can respond to Apple events sent by other

applications, you should support the standard Apple events that are appropriate for

your application.

Note

See the book Inside Macintosh: Interapplication Communication for
complete details about the interapplication communications
architecture. ◆

QuickTime

QuickTime is a collection of managers and other system software components that allow

your application to control time-based data. QuickTime allows you to integrate

time-based data (such as video clips, animation sequences, sound sequences, or

time-indexed scientific data) into your application and to let users manipulate it in the

same easy, intuitive way that they manipulate other elements of the Macintosh user

interface. With QuickTime, your application can allow users to display, edit, copy, and

paste time-based data much as they do text and graphics.

A movie is a collection of one or more streams of data, called tracks. Each track

represents a stream of data of a particular type, such as video, sound, still images, or

animation. Depending on the way the tracks are defined, one or more tracks can be

active at certain times while the movie is playing.

QuickTime consists mainly of these pieces:

■ the Movie Toolbox

■ the Image Compression Manager

■ a set of predefined components

C H A P T E R 1

Introduction

18 The Macintosh System Software

Many applications that incorporate QuickTime capabilities are interested only in playing

movies. To do so, they call the Movie Toolbox, which provides routines that allow you to

store, retrieve, and manipulate time-based data stored in QuickTime movies. Figure 1-8

illustrates the relationship between the various QuickTime managers and components.

Figure 1-8 Playing a QuickTime movie

Note
See the books Inside Macintosh: QuickTime and Inside Macintosh:
QuickTime Components for complete details about QuickTime. ◆

Communications Toolbox

The Communications Toolbox is a collection of system software managers that you can

use to provide your application with basic networking and communications services.

You’re likely to use the Communications Toolbox only if your application is specifically

concerned with communication between computers. Examples of such applications

include telecommunications packages and electronic bulletin board applications. By

using the Communications Toolbox, you can insulate your application from the details of

the actual physical connection between your computer and the remote computer.

C H A P T E R 1

Introduction

The Macintosh System Software 19

The Communications Toolbox consists of four managers:

■ The Connection Manager, which you can use to create and maintain a network
connection.

■ The Terminal Manager, which you can use to emulate a particular terminal during a
network connection.

■ The File Transfer Manager, which you can use to transfer files between your computer
and the remote computer to which you are connected.

■ The Communications Resource Manager, which you can use to register and keep track
of communications resources.

Note

For complete information about the Communications Toolbox, see the
book Inside the Macintosh Communications Toolbox. ◆

System Software Routines
By now, you might be wondering how these various system software routines are made

available to your application. In traditional programming environments, you gain access

to such special routines by linking a subroutine library—which contains the actual

executable code of those routines—to your application. The code of the special routine is

contained in your application, just like the code of any application-defined routine.

One main drawback of such an approach is that it tends to result in very large

applications. As you might imagine, the code comprising the thousands of system

software routines takes up quite a bit of space. It would be impractical to link all that

code, or whatever subset of it an application actually used, to each application.

Another important drawback of the traditional approach is the difficulty of revising

system software routines to provide new capabilities or to fix bugs. You would need to

obtain a new subroutine library and then rebuild your application so that the new code

is included in it.

The original Macintosh system software circumvented these problems by adopting a

fairly novel approach. The software routines that make up the Macintosh Toolbox and

the Macintosh Operating System reside mainly in read-only memory (ROM), provided

by special chips contained in every Macintosh computer. When your application calls a

Toolbox routine like NewWindow, the Operating System intercepts the call and executes

the appropriate code contained in ROM.

This mechanism provides a simple way for the Operating System to substitute the code

that is executed in response to a particular system software routine. Instead of executing

the ROM-based code for some routine, the Operating System might choose to load some

substitute code into the computer’s random-access memory (RAM); then, when your

application calls the routine in question, the Operating System intercepts the call and

executes that RAM-based code.

C H A P T E R 1

Introduction

20 The Macintosh System Software

RAM-based code that substitutes for ROM-based code is called a patch. Patches are

usually stored in the System file, located in the System Folder. The System file also

contains collections of static data, known as resources, that applications can use to help

present the standard Macintosh user interface.

The System file can also contain system software components that are not in a

computer’s ROM. To make one of these components available to your application, the

Operating System simply loads it into RAM. This is like a patch, except that the new

routines aren’t replacing any existing ROM routines. Originally these sorts of

RAM-based system software components were called packages; they were read into

RAM only when some application called any one of the routines contained in them.

However, because some of these packages have been included in later revisions of the

ROM, the distinction between managers and packages has faded with time.

The current method for adding capabilities to the system software is to include the

executable code of the new routines as a system extension. Extensions are stored in a

special location (namely, in the Extensions folder in the System Folder) and are loaded

into memory at system startup time. QuickTime, for example, is currently distributed as

an extension.

When your application calls a system software routine, it doesn’t matter, in general,

whether the code that is executed in response resides in ROM, is a patch in RAM loaded

from the System file, or is part of a RAM-based extension. It is, however, important that

the appropriate code exist in at least one of these locations, because your application will

crash if you attempt to call a routine that isn’t defined anywhere. So, especially for code

contained in extensions, you’ll need to make sure that the code is present in the current

operating environment before trying to call it. You can use the Gestalt function to

determine whether a particular part of system software is available. For details on calling

Gestalt, see the chapter “Gestalt Manager” in Inside Macintosh: Operating System
Utilities.

There is one further twist in this picture that is worth mentioning. Some routines that are

declared in your development system’s header files are provided by the development

system itself, not by the system software. These routines, known as glue routines (or just

glue), are constructed by modifying available system software routines in some way.

Consider the Memory Manager function NewHandle, which allocates a new relocatable

block of memory. A call to NewHandle compiles into an executable instruction word.

When that instruction is executed, the ROM code (or its RAM patch, if one exists) reads

several of the bits in that word to determine exactly what to do. If, for instance, bit 9 of

the instruction word is set, the ROM code allocates a block of the requested size and then

clears all the bytes in that block to 0.

C H A P T E R 1

Introduction

The Sample Application 21

If you’re programming in assembly language, you can set the bits of an instruction word

directly. However, if you’re programming in a high-level language like Pascal, you can’t

do that. Instead, you need to call a glue routine, in this case NewHandleClear, that

takes care of calling NewHandle and setting the appropriate bits in the instruction word.

Essentially, NewHandleClear is nothing but NewHandle together with some

assembly-language code to set a bit in the instruction word. This translation is handled

automatically by your development system at the time your application is compiled.

You’ll encounter several other kinds of glue routines. Some glue routines translate

high-level routines into low-level routines. Most of the high-level File Manager routines

are of this variety. There is, for example, no code in ROM or the System file

corresponding to the FSpCreate function. Instead, calling FSpCreate invokes some

glue code that creates a parameter block, fills out some of the fields appropriately, and

then passes that parameter block to the low-level function PBHCreate.

Some other glue routines are pure assembly-language instructions which don’t call any

system software routines. You might use glue like this to move a function result or other

data from a register onto the stack.

You don’t usually need to know whether a particular routine is implemented as glue

code, except when you’re doing low-level assembly-language debugging. For the time

being, you can consider all the routines defined in Inside Macintosh as part of the

Macintosh system software.

The Sample Application

The remainder of this book illustrates how to write a Macintosh application by gradually

dissecting the source code of a very simple sample application, called Venn Diagrammer.

This application allows the user to use Venn diagrams as a method of determining

whether a given syllogism is valid (that is, whether the conclusion must be true if both

premises are true). This section briefly describes the operation of the Venn Diagrammer

application.

IMPORTANT

The account of syllogisms and Venn diagrams given here is inadequate
for a full understanding of these topics. Most programmers, however,
have encountered Venn diagrams at some point in their lives. For a more
complete account, consult a good textbook on introductory logic. ▲

C H A P T E R 1

Introduction

22 The Sample Application

When the user launches the Venn Diagrammer application, it opens a Venn diagram

window, shown in Figure 1-9.

Figure 1-9 A typical Venn diagram window

This window contains a number of distinct parts, shown in Figure 1-10.

Figure 1-10 The parts of a Venn diagram window

C H A P T E R 1

Introduction

The Sample Application 23

This window is designed to let the user select a syllogism and then assess the validity of

the syllogism by appropriately modifying the Venn diagram (the five overlapping

circles). The user graphs the information contained in the two premises in the three

circles on the left and the information in the conclusion in the two circles on the right.

As you can see, a syllogism is an argument containing two premises and one conclusion.

These three statements must each be of one of four specific forms, known as the

statement’s mood. The four moods are often designated by the letters A, E, I, and O, as

follows:

Syllogisms are further classified by figure, which determines the order of the terms in the

two premises. A syllogism is completely determined by the three terms involved, the

moods of the three statements, and the figure.

The user can graph the information in a syllogism by clicking in the overlapping regions

in the circles. If a region is white, nothing is known about the region. If the region is

shaded, it’s known that there is nothing in that region (that is, the region is empty).

Finally, if an X appears in the region, it’s known that there is something in that region. A

correctly graphed syllogism is shown in Figure 1-11.

Figure 1-11 A correctly constructed Venn diagram

A All philosophers are logicians.

E No philosophers are logicians.

I Some philosophers are logicians.

O Some philosophers are not logicians.

C H A P T E R 1

Introduction

24 Conventions for Sample Code

At the top of the window, just below the title bar, are a set of tool icons and an empty

status area. The tool icons allow the user to perform various operations on the diagram

without having to move out of the window. For instance, clicking the tool in the middle

(the eraser) clears the Venn diagram. These same operations can also be invoked using

the Venn menu, as shown in Figure 1-12.

Figure 1-12 The Venn menu

The Venn Diagrammer application displays information in the window’s status area. For

example, if the user clicks the leftmost tool icon (or chooses the Assess Validity menu

command), the application determines whether the currently displayed syllogism is

valid or invalid. If it’s valid, the application displays the message “The argument is

valid.” in the status area; otherwise, it displays the message “The argument is invalid.”

Conventions for Sample Code

The sample code presented throughout this book follows a number of conventions to

help you understand the code and to distinguish application-defined routines from

system software routines. For the most part, the sample code listings presented

throughout the Inside Macintosh suite of books follow these conventions as well.

■ Constants defined by the Venn Diagrammer application begin with the letter k. For
example, the number of tools in a Venn diagram window is specified by the constant
kNumTools. There are, however, several exceptions to this rule:

■ Constants specifying resource IDs begin with the letter r. For example, the resource
ID of the menu bar is specified by the constant rMenuBar.

■ Constants specifying menu resource IDs begin with the letter m. For example, the
resource ID of the File menu is specified by the constant mFile.

■ Constants specifying menu commands begin with the letter i. For example, the
number of the Quit command in the File menu is specified by the constant iQuit.

■ Constants specifying messages displayed to the user in a window’s status area
begin with the letter e. For example, the message “The argument is valid.” is
specified by the constant eArgIsValid.

C H A P T E R 1

Introduction

Conventions for Sample Code 25

■ Application global variables have names beginning with the letter g. For example, the
global variable that indicates whether the user wants to quit the application is called
gDone. There are no exceptions to this rule.

■ Application-defined routines have names beginning with either the prefix Do or the
prefix My. For example, the routine that handles window updating is called
DoUpdate. Similarly, the routine that returns a random number is called MyRandom.
There is one exception to this rule:

■ Application-defined routines that return Boolean values have names beginning
with the prefix Is. For example, the routine that determines whether a window is a
dialog box is called IsDialogWindow. Several system software routines have
similar-sounding names. (For instance, the Dialog Manager provides the
IsDialogEvent routine.)

■ Application-defined data structures and types have names beginning with the prefix
My. For example, the structure that holds information about a document window is
called MyDocRec. A pointer to a record of type MyDocRec is of type MyDocRecPtr.

■ Routine parameters and local variables have names beginning with the prefix my. For
example, many of the routines in the Venn Diagrammer application require a window
pointer as one of the parameters; this parameter is usually called myWindow. This
convention has, however, many exceptions.

IMPORTANT

These naming conventions are adopted in this book (and elsewhere in
Inside Macintosh) solely for reasons of consistency and clarity. They
might not be suitable for your purposes. ▲

It’s worth mentioning in advance that Venn Diagrammer takes a minimalist approach to

error-handling: it tries to detect any errors that might adversely affect its further

processing and to work around those errors in such a way as to avoid those adverse

effects. In fact, this strategy is far too simple for most applications. Your application

should provide far more extensive error detection and reporting to the user. See

“Handling Errors” beginning on page 176 for some further discussion of error-handling

techniques.

Contents 27

C H A P T E R 2

Contents

Memory

About Memory 29

The System Heap 31

The System Global Variables 31

Application Partitions 32

The Application Stack 33

The Application Heap 34

The Application Global Variables and A5 World 37

Memory Blocks 38

Nonrelocatable Blocks 39

Relocatable Blocks 40

Locking and Unlocking Relocatable Blocks 42

Purging and Reallocating Relocatable Blocks 43

Data Types 44

Pointers and Handles 44

Strings 45

Procedure Pointers 46

Type Coercion 47

C H A P T E R 2

About Memory 29

Memory

This chapter provides a brief introduction to memory management on Macintosh

computers. It describes the organization of the partition of memory assigned to your

application when it is launched and explains the basic data types used by the Macintosh

Toolbox and Operating System. This chapter also describes how you can allocate

portions of that memory partition for specific purposes and how the Memory Manager

helps to maintain an orderly partition.

This chapter provides only the minimum information about memory that you’ll need to

understand the rest of this book and to begin reading other Inside Macintosh books. For a

more detailed description of basic memory management strategies, see the chapter

“Introduction to Memory Management” in the book Inside Macintosh: Memory.

About Memory

In the cooperative multitasking environment provided by the Macintosh Operating

System, your application can use only part of the total amount of RAM available on a

computer. Some of the available RAM is reserved for use by the Operating System itself,

and the remainder of the available memory is shared among all open applications.

When the Operating System starts up, it divides the available RAM into two broad

sections. It reserves for itself a zone or partition of memory known as the system
partition. The system partition always begins at the lowest addressable byte of memory

(memory address 0) and extends upward. The system partition consists of two main

parts:

■ a system heap

■ a set of global variables

In general, the memory in the system partition is for use by the Operating System alone.

Your application probably won’t need to read or write that memory.

All memory outside the system partition is available for allocation to applications or

other software components. In the cooperative multitasking environment, the user can

have multiple applications open at once. When an application is launched, the Operating

System assigns it a section of memory known as its application partition. In general, an

application uses only the memory contained in its own application partition.

Figure 2-1 illustrates the organization of memory when several applications are open at

the same time. The system partition occupies the lowest position in memory. Application

partitions occupy some or all of the remaining space. Note that application partitions are

loaded into the top part of memory first. An application partition consists of three main

parts:

■ an application heap

■ a stack

■ an A5 world, which includes the application’s global variables

C H A P T E R 2

Memory

30 About Memory

Figure 2-1 Memory organization in the cooperative multitasking environment

C H A P T E R 2

Memory

About Memory 31

The System Heap
The main part of the system partition is an area of memory known as the system heap.
In general, the system heap is reserved for exclusive use by the Operating System and

other system software components, which load into it various items such as system

resources, system code segments, and system data structures. All system buffers and

queues, for example, are allocated in the system heap.

The system heap is also used for code and other resources that do not belong to specific

applications, such as code resources that add features to the Operating System or that

provide control of special-purpose peripheral equipment. System patches and system

extensions (stored as code resources of type 'INIT') are loaded into the system heap

during the system startup process. Hardware device drivers (stored as code resources of

type 'DRVR') are loaded into the system heap when the driver is opened.

The System Global Variables
The lowest part of memory is occupied by a collection of global variables called system
global variables (or low-memory system global variables). The Operating System uses

these variables to maintain different kinds of information about the operating

environment. For example, the Ticks global variable contains the number of ticks

(sixtieths of a second) that have elapsed since the system was most recently started up.

Similar variables contain, for example, the height of the menu bar (MBarHeight) and

pointers to the heads of various operating-system queues (DTQueue, FSQHdr,

VBLQueue, and so forth). Most low-memory global variables are of this variety: they

contain information that is generally useful only to the Operating System or other

system software components.

Other low-memory global variables contain information about the current application.

For example, the ApplZone global variable contains the address of the first byte of the

active application’s partition. The ApplLimit global variable contains the address of the

last byte the active application’s heap can expand to include. The CurrentA5 global

variable contains the address of the boundary between the active application’s global

variables and its application parameters. Because these global variables contain

information about the active application, the Operating System changes the values of

these variables whenever a context switch occurs (that is, whenever an application takes

control of the CPU from another application).

In general, it is best to avoid reading or writing low-memory system global variables.

Most of these variables are undocumented, and the results of changing their values can

be unpredictable. Usually, when the value of a low-memory global variable is likely to be

useful to applications, the system software provides a routine that you can use to read or

write that value. For example, you can get the current value of the Ticks global variable

by calling the TickCount function.

C H A P T E R 2

Memory

32 Application Partitions

Application Partitions

When your application is launched, the Operating System allocates for it a partition of

memory called its application partition. That partition contains required segments of the

application’s code as well as other data associated with the application. Figure 2-2

illustrates the general organization of an application partition.

Figure 2-2 Organization of an application partition

Your application partition is divided into three major parts:

■ the application stack

■ the application heap

■ the application global variables and A5 world

The heap is located at the low-memory end of your application partition and always

expands (when necessary) toward high memory. The A5 world is located at the

C H A P T E R 2

Memory

Application Partitions 33

high-memory end of your application partition and is of fixed size. The stack begins at

the high-memory end of the A5 world and expands downward, toward the top of the

heap.

As you can see in Figure 2-2, there is usually an unused area of memory between the

stack and the heap. This unused area provides space for the stack to grow without

encroaching upon the space assigned to the application heap. In some cases, however,

the stack might grow into space reserved for the application heap. If this happens, it is

very likely that data in the heap will become corrupted.

The ApplLimit global variable marks the upper limit to which your heap can grow. If

you call the MaxApplZone procedure at the beginning of your program, the heap

immediately extends all the way up to this limit. If you were to use all of the heap’s free

space, the Memory Manager would not allow you to allocate additional blocks above

ApplLimit. If you do not call MaxApplZone, the heap grows toward ApplLimit

whenever the Memory Manager finds that there is not enough memory in the heap to fill

a request. However, once the heap grows up to ApplLimit, it can grow no further.

Thus, whether you maximize your application heap or not, you can use only the space

between the bottom of the heap and ApplLimit.

Unlike the heap, the stack is not bounded by ApplLimit. If your application uses

heavily nested procedures with many local variables or uses extensive recursion, the

stack could grow downward beyond ApplLimit. Because you do not use Memory

Manager routines to allocate memory on the stack, the Memory Manager cannot stop

your stack from growing beyond ApplLimit and possibly encroaching upon space

reserved for the heap. However, an Operating System task checks approximately 60

times each second to see if the stack has moved into the heap. If it has, the task, known

as the “stack sniffer,” generates a system error.

The Application Stack
The stack is an area of memory in your application partition that can grow or shrink at

one end while the other end remains fixed. This means that space on the stack is always

allocated and released in LIFO (last-in, first-out) order. The last item allocated is always

the first to be released. It also means that the allocated area of the stack is always

contiguous. Space is released only at the top of the stack, never in the middle, so there

can never be any unallocated “holes” in the stack.

By convention, the stack grows from high-memory addresses toward low-memory

addresses. The end of the stack that grows or shrinks is usually referred to as the “top”

of the stack, even though it’s actually at the lower end of memory occupied by the stack.

Because of its LIFO nature, the stack is especially useful for memory allocation

connected with the execution of functions or procedures. When your application calls a

routine, space is automatically allocated on the stack for a stack frame. A stack frame

contains the routine’s parameters, local variables, and return address. Figure 2-3

illustrates how the stack expands and shrinks during a function call. The leftmost

diagram shows the stack just before the function is called. The middle diagram shows

the stack expanded to hold the stack frame. Once the function is executed, the local

C H A P T E R 2

Memory

34 Application Partitions

variables and function parameters are popped off the stack. If the function is a Pascal

function, all that remains is the previous stack with the function result on top.

Figure 2-3 The application stack

Note

Dynamic memory allocation on the stack is usually handled
automatically if you are using a high-level development language such
as Pascal. The compiler generates the code that creates and deletes stack
frames for each function or procedure call. ◆

The Application Heap
An application heap is the area of memory in your application partition in which space

is dynamically allocated and released on demand. The heap begins at the low-memory

end of your application partition and extends upward in memory. The heap contains

virtually all items that are not allocated on the stack. For instance, your application heap

contains the application’s code segments and resources that are currently loaded into

memory. The heap also contains other dynamically allocated items such as window

records, dialog records, document data, and so forth.

C H A P T E R 2

Memory

Application Partitions 35

You allocate space within your application’s heap by making calls to the Memory

Manager, either directly (for instance, using the NewHandle function) or indirectly (for

instance, using a routine such as the Window Manager’s NewWindow, which in turn calls

Memory Manager routines). Space in the heap is allocated in blocks, which can be of any

size needed for a particular object.

The Memory Manager does all the necessary housekeeping to keep track of blocks in the

heap as they are allocated and released. Because these operations can occur in any order,

the heap doesn’t usually grow and shrink in an orderly way, as the stack does. Instead,

after your application has been running for a while, the heap can tend to become

fragmented into a patchwork of allocated and free blocks, as shown in Figure 2-4. This

fragmentation is known as heap fragmentation.

Figure 2-4 A fragmented heap

C H A P T E R 2

Memory

36 Application Partitions

One result of heap fragmentation is that the Memory Manager might not be able to

satisfy your application’s request to allocate a block of a particular size. Even though

there is enough free space available, the space is broken up into blocks smaller than the

requested size. When this happens, the Memory Manager tries to create the needed

space by moving allocated blocks together, thus collecting the free space in a single

larger block. This operation is known as heap compaction. Figure 2-5 shows the results

of compacting the fragmented heap shown in Figure 2-4.

Figure 2-5 A compacted heap

Heap fragmentation is generally not a problem as long as the blocks of memory you

allocate are free to move during heap compaction. There are, however, two situations in

which a block is not free to move: when it is a nonrelocatable block, and when it is a

relocatable block that is temporarily locked in place. To minimize heap fragmentation,

you should use nonrelocatable blocks sparingly, and you should lock relocatable blocks

only when absolutely necessary. See “Memory Blocks” starting on page 38 for a

description of relocatable and nonrelocatable blocks.

C H A P T E R 2

Memory

Application Partitions 37

The Application Global Variables and A5 World
Your application’s global variables are stored in an area of memory near the top of your

application partition known as the application A5 world. The A5 world contains four

kinds of data:

■ application global variables

■ application QuickDraw global variables

■ application parameters

■ the application’s jump table

Each of these items is of fixed size, although the sizes of the global variables and of the

jump table vary from application to application. Figure 2-6 shows the standard

organization of the A5 world.

Figure 2-6 Organization of an application’s A5 world

Note

An application’s global variables may appear either above or below the
QuickDraw global variables. The relative locations of these two items
are determined by your development system’s linker. In addition, part
of the jump table might appear below the boundary pointed to by
CurrentA5. ◆

C H A P T E R 2

Memory

38 Memory Blocks

The system global variable CurrentA5 points to the boundary between the current

application’s global variables and its application parameters. For this reason, the

application’s global variables are found as negative offsets from the value of

CurrentA5. This boundary is important because the Operating System uses it to access

the following information from your application: its global variables, its QuickDraw

global variables, the application parameters, and the jump table. This information is

known collectively as the A5 world because the Operating System uses the

microprocessor’s A5 register to point to that boundary.

Your application’s QuickDraw global variables contain information about its drawing

environment. For example, among these variables is a pointer to the current graphics

port.

Your application’s jump table contains an entry for each of your application’s routines

that is called by code in another segment. The Segment Manager uses the jump table to

determine the address of any externally referenced routines called by a code segment.

For more information on jump tables, see the chapter “Segment Manager” in Inside
Macintosh: Processes.

The application parameters are 32 bytes of memory located above the application global

variables; they’re reserved for use by the Operating System. The first long word of those

parameters is a pointer to your application’s QuickDraw global variables.

Memory Blocks

You can use the Memory Manager to allocate two different types of blocks in your heap:

nonrelocatable blocks and relocatable blocks. A nonrelocatable block is a block of

memory whose location in the heap is fixed. In contrast, a relocatable block is a block of

memory that can be moved within the heap (perhaps during heap compaction). The

Memory Manager sometimes moves relocatable blocks during memory operations so

that it can use the space in the heap optimally.

The Memory Manager provides data types that reference both relocatable and

nonrelocatable blocks. It also provides routines that allow you to allocate and release

blocks of both types.

C H A P T E R 2

Memory

Memory Blocks 39

Nonrelocatable Blocks
To reference a nonrelocatable block, you can use a pointer variable, defined by the Ptr

data type.

TYPE

SignedByte = –128..127;

Ptr = ^SignedByte;

A pointer is simply the address of an arbitrary byte in memory, and a pointer to a

nonrelocatable block of memory is simply the address of the first byte in the block, as

illustrated in Figure 2-7. After you allocate a nonrelocatable block, you can make copies

of the pointer variable. Because a pointer is the address of a block of memory that cannot

be moved, all copies of the pointer correctly reference the block as long as you don’t

dispose of it.

Figure 2-7 A pointer to a nonrelocatable block

C H A P T E R 2

Memory

40 Memory Blocks

You can allocate a nonrelocatable block of memory by calling the Memory Manager

function NewPtr. The Venn Diagrammer application uses the following line of code to

allocate a new window record each time the user creates a new document window:

myPointer := NewPtr(sizeof(WindowRecord));

Here, myPointer is of type Ptr. (To see this line of code in context, look at Listing 6-6

on page 117.)

Relocatable Blocks
To reference relocatable blocks, the Memory Manager uses a scheme known as double
indirection. The Memory Manager keeps track of a relocatable block internally with a

master pointer, which itself is part of a nonrelocatable master pointer block in your

application heap.

Note

The Memory Manager allocates one master pointer block (containing 64
master pointers) for your application at launch time, and you can call
the MoreMasters procedure to request that additional master pointer
blocks be allocated. ◆

When the Memory Manager moves a relocatable block, it updates the master pointer so

that it always contains the address of the relocatable block. You reference the block with

a handle, defined by the Handle data type.

TYPE

Handle = ^Ptr;

A handle contains the address of a master pointer. The left side of Figure 2-8 shows a

handle to a relocatable block of memory located in the middle of the application heap. If

necessary (perhaps to make room for another block of memory), the Memory Manager

can move that block down in the heap, as shown in the right side of Figure 2-8.

C H A P T E R 2

Memory

Memory Blocks 41

Figure 2-8 A handle to a relocatable block

Master pointers for relocatable objects in your heap are always allocated in your

application heap. Because the blocks of master pointers are nonrelocatable, it is best to

allocate them as low in your heap as possible. You can do this by calling the

MoreMasters procedure when your application starts up.

C H A P T E R 2

Memory

42 Memory Blocks

You can allocate a relocatable block of memory by calling the Memory Manager function

NewHandle. The Venn Diagrammer application uses the following line of code to

allocate a new document record each time the user creates a new document window:

myHandle := MyDocRecHnd(NewHandleClear(sizeof(MyDocRec)));

Here, myHandle is of type MyDocRecHnd. The NewHandleClear function is a variant

of NewHandle that clears all bytes in the new block to 0. (To see this line of code in

context, look at Listing 6-6 on page 117.)

Whenever possible, you should allocate memory in relocatable blocks. This gives the

Memory Manager the greatest freedom when rearranging the blocks in your application

heap to create a new block of free memory. In some cases, however, you may be forced to

allocate a nonrelocatable block of memory. When you call the Window Manager function

NewWindow, for example, the Window Manager internally calls the NewPtr function to

allocate a new nonrelocatable block in your application partition. You need to exercise

care when calling Toolbox routines that allocate such blocks, lest your application heap

become overly fragmented.

Using relocatable blocks makes the Memory Manager more efficient at managing

available space, but it does carry some overhead. As you have seen, the Memory

Manager must allocate extra memory to hold master pointers for relocatable blocks. It

groups these master pointers into nonrelocatable blocks. For large relocatable blocks, this

extra space is negligible, but if you allocate many very small relocatable blocks, the cost

can be considerable. For this reason, you should avoid allocating a very large number of

handles to small blocks; instead, allocate a single large block and use it as an array to

hold the data you need.

As you have seen, a heap block can be either relocatable or nonrelocatable. The

designation of a block as relocatable or nonrelocatable is a permanent property of that

block. If relocatable, a block can be either locked or unlocked; if it’s unlocked, a block can

be either purgeable or unpurgeable. These attributes of relocatable blocks can be set and

changed as necessary. The following sections explain how to lock and unlock blocks, and

how to mark them as purgeable or unpurgeable.

Locking and Unlocking Relocatable Blocks
Occasionally, you might need a relocatable block of memory to stay in one place. To

prevent a block from moving, you can lock it, using the HLock procedure. Once you

have locked a block, it won’t move. Later, you can unlock it, using the HUnlock

procedure, allowing it to move again.

In general, you need to lock a relocatable block only if there is some danger that it might

be moved during the time that you read or write the data in that block. This might

happen, for instance, if you dereference a handle to obtain a pointer to the data and (for

increased speed) use the pointer within a loop that calls routines that might cause

memory to be moved. If, within the loop, the block whose data you are accessing is in

fact moved, then the pointer no longer points to that data; this pointer is said to dangle.

C H A P T E R 2

Memory

Memory Blocks 43

Using locked relocatable blocks can, however, hinder the Memory Manager as much as

using nonrelocatable blocks. The Memory Manager can’t move locked blocks. In

addition, except when you allocate memory and resize relocatable blocks, it can’t move

relocatable blocks around locked relocatable blocks (just as it can’t move them around

nonrelocatable blocks). Thus, locking a block in the middle of the heap for long periods

can increase heap fragmentation.

Locking and unlocking blocks every time you want to prevent a block from moving can

become troublesome. Fortunately, the Memory Manager moves unlocked, relocatable

blocks only at well-defined, predictable times. In general, each routine description in

Inside Macintosh indicates whether the routine could move or purge memory. If you do

not call any of those routines in a section of code, you can rely on all blocks to remain

stationary while that code executes.

Purging and Reallocating Relocatable Blocks
One advantage of relocatable blocks is that you can use them to store information that

you would like to keep in memory to make your application more efficient, but that you

don’t really need if available memory space becomes low. For example, your application

might, at the beginning of its execution, load user preferences from a preferences file into

a relocatable block. As long as the block remains in memory, your application can access

information from the preferences file without actually reopening the file. However,

reopening the file probably wouldn’t take enough time to justify keeping the block in

memory if memory space were scarce.

By making a relocatable block purgeable, you allow the Memory Manager to free the

space it occupies if necessary. If you later want to prohibit the Memory Manager from

freeing the space occupied by a relocatable block, you can make the block unpurgeable.
You can use the HPurge and HNoPurge procedures to change back and forth between

these two states.

IMPORTANT

A block you create by calling NewHandle is initially unlocked and
unpurgeable. As a result, you don’t have to worry about the block being
purged unless you make the block purgeable. ▲

Once you make a relocatable block purgeable, you should subsequently check handles to

that block before using them if you call any of the routines that could move or purge

memory. If a handle’s master pointer is set to NIL, then the Operating System has

purged its block. To use the information formerly in the block, you must reallocate space

for it (perhaps by calling the ReallocateHandle procedure) and then reconstruct its

contents (for example, by rereading the preferences file). Figure 2-9 illustrates the

purging and reallocating of a relocatable block. When the block is purged, its master

pointer is set to NIL. When it is reallocated, the handle correctly references a new block,

but that block’s contents are initially undefined.

C H A P T E R 2

Memory

44 Data Types

Figure 2-9 Purging and reallocating a relocatable block

Data Types

This section describes some of the general-purpose data types that the Memory Manager

defines. These data types are used throughout the Macintosh Toolbox and Operating

System.

Pointers and Handles
As you’ve seen, the Memory Manager uses pointers and handles to reference

nonrelocatable and relocatable blocks, respectively. The data types Ptr and Handle

define pointers and handles as follows:

TYPE

SignedByte = –128..127; {any byte in memory}

Byte = 0..255; {an unsigned byte}

Ptr = ^SignedByte; {address of a signed byte}

Handle = ^Ptr; {address of a master pointer}

C H A P T E R 2

Memory

Data Types 45

The SignedByte data type stands for an arbitrary byte in memory, just to give Ptr and

Handle something to point to. The Byte data type is an alternative definition that treats

byte-length data as an unsigned rather than a signed quantity.

The Pascal language defines the special symbol NIL, which can be the value of any

pointer type. You can assign NIL to any pointer (and hence to any handle) to indicate

that the pointer has a defined value but does not point anywhere useful. Some system

software routines return NIL as the value of a pointer or handle if the routine fails to

perform the requested action. For example, the NewHandle routine returns NIL if the

requested amount of memory is not available in the application heap.

For C, the type declarations look like this:

typedef char SignedByte; /*any byte in memory*/

typedef unsigned char Byte; /*an unsigned byte*/

typedef char *Ptr; /*address of a signed byte*/

typedef Ptr *Handle; /*address of a master pointer*/

Unlike Pascal, the C language does not contain a reserved symbol for a nil pointer. Most

development systems, however, include definitions of both nil and NULL:

#define NULL 0

#define nil 0

Because of C’s loose type conventions, you can assign the values nil and NULL to data

types other than pointers and handles. In Pascal, the compiler generates an error if you

try to assign the value NIL to an object whose data type is not defined as a pointer to

some data type.

Strings
The Macintosh system software uses strings in arrays of up to 255 characters, with the

first byte of the array storing the length of the string. Some Toolbox routines allow you to

pass such a string directly; others require that you pass a pointer or a handle to a string.

The Memory Manager provides the following type definitions that define character

strings in terms of the Pascal String data type:

TYPE

Str15 = String[15];

Str27 = String[27];

Str31 = String[31];

Str63 = String[63];

Str255 = String[255];

StringPtr = ^Str255;

StringHandle = ^StringPtr;

C H A P T E R 2

Memory

46 Data Types

The C language treats strings differently than Pascal does. In C, strings are of variable

length, with the end of the string marked by a special delimiter, usually the null

character (ASCII 0). If you are using C, you must make certain to pass Pascal-style

strings to Toolbox routines or to use special versions of the Toolbox routines that accept

C strings. Check the documentation for your development environment for complete

details.

Procedure Pointers
For treating procedures and functions as data objects, the Memory Manager defines the

ProcPtr data type:

TYPE

ProcPtr = Ptr; {pointer to a procedure}

For example, after the declarations

VAR

myProcPtr: ProcPtr;

PROCEDURE MyProc;

BEGIN

...

END;

you can make myProcPtr reference the MyProc procedure by using Pascal’s @ operator,

as follows:

myProcPtr := @MyProc;

With the @ operator, you can assign procedures and functions to variables of type

ProcPtr, embed them in data structures, and pass them as arguments to other routines.

Notice, however, that the data type ProcPtr technically points to an arbitrary byte, not

an actual routine. As a result, there’s no way in Pascal to access the underlying routine

via this pointer in order to call it. Only routines written in assembly language can

actually call routines designated by pointers of type ProcPtr.

Note

You can’t use the @ operator to reference procedures or functions whose
declarations are nested within other routines. ◆

C H A P T E R 2

Memory

Data Types 47

Type Coercion
Because of Pascal’s strong typing rules, you can’t directly assign a pointer value to a

variable of some other pointer type, or pass a pointer variable to a routine requesting

some other pointer type. Instead, you have to coerce the pointer from one type to another.

For example, you can call the HLock procedure to lock a relocatable block of memory.

The HLock procedure requires a parameter of type Handle. If the block you want to

lock isn’t referenced by a variable of type Handle, you must coerce the variable to the

required type. Here’s an example:

HLock(Handle(myData));

Similarly, the GetDialogItem procedure returns in a VAR parameter a handle to an

item in a dialog box. If you were to use the procedure to obtain the handle to a button in

the variable itemHand of type Handle, you might need to access the button as a

control. For example, you could access the button’s enclosing rectangle with the code:

ControlHandle(itemHand)^^.contrlRect;

You can use this same syntax to equate any two variables of the same length. For

example:

VAR

myChar: Char;

myByte: Byte;

myByte := Byte(myChar);

You can also use the functions ORD, ORD4, and POINTER to coerce variables of different

length from one type to another. For example:

VAR

myInteger: Integer;

myLongInt: LongInt;

myPointer: Ptr;

myInteger := ORD(myLongInt); {two low-order bytes only}

myInteger := ORD(myPointer); {two low-order bytes only}

myLongInt := ORD(myInteger); {packed into high-order bytes}

myLongInt := ORD4(myInteger); {packed into low-order bytes}

myLongInt := ORD(myPointer);

myPointer := POINTER(myInteger);

myPointer := POINTER(myLongInt);

Note

Assembly-language and C language programmers don’t need to bother
with type coercion. ◆

Contents 49

C H A P T E R 3

Contents

Resources

About Resources 51

Resource Paths 52

Resource Types 55

Resource Structure 56

Using Standard Resources 59

Using Custom Resources 60

C H A P T E R 3

About Resources 51

Resources

This chapter describes how your application can use the Resource Manager to create and

manage resources, collections of data stored in a file’s resource fork that have a defined

structure or type. The Macintosh Operating System and the Macintosh Toolbox define a

large number of resource types. You’ll need to include resources of some of these types

in your application’s resource file to meet various requirements of the system software.

In addition, the system software provides a number of resources (such as fonts, patterns,

and icons) that you can use to help create the standard Macintosh user interface for your

application.

This chapter begins with a general description of resources. Then it shows how to

■ use predefined system resources

■ create resources of a standard type

■ define your own custom resources and resource types

For a complete description of the capabilities of the Resource Manager and for code

samples illustrating more advanced resource-handling techniques, see the chapter

“Resource Manager” in Inside Macintosh: More Macintosh Toolbox.

About Resources

An experienced Macintosh programmer might cringe at several features of the GreetMe

source code shown in Listing 1-1 on page 3. One of the main sins it commits is this line:

gString := 'Hello, world!';

The problem with this line is that it includes, as part of the source code of the

application, the message string that is to be displayed in the output window. While such

an intermixing of code and data might be standard in some programming environments,

it’s definitely nonstandard in the Macintosh environment. To change the message, or to

produce a version of the message in a different language, you’d need to change the

source code and recompile the application. It would be better to isolate the changing

data (the message string) from the application’s code.

When you’re programming on the Macintosh, you can do this by creating a resource that

contains the message string. A resource is any collection of data having a defined

structure that is stored in a file designed to hold resources, known as a resource file.
Then you can read the message string from the resource file using a call like this:

GetIndString(gString, kMessages, kGreetingString);

C H A P T E R 3

Resources

52 About Resources

The GetIndString procedure reads the resource of type 'STR#' that has the resource

ID kMessages in an open resource fork. This type of resource contains a string list,

which is a sequential list of Pascal strings. Then GetIndString selects the string having

the index kGreetingString. If there are at least that many strings in the string list, it

puts the appropriate string into the first parameter (in this case, gString).

Note

The GetIndString procedure is not part of the Resource Manager, but
it does call the Resource Manager. Many Toolbox and Operating System
routines internally call the Resource Manager to retrieve information
from resources. ◆

The resources used by an application can be created and changed separately from the

application’s code. This separation is the main advantage to having resource files. A

change in a simple greeting or in the title of a menu, for example, won’t require any

recompilation of code, nor will translation to another language.

IMPORTANT

Properly written Macintosh applications should store all language- or
location-sensitive data as resources, so that localization is largely a
matter of editing the application’s resources. ▲

Resource Paths
At any given time during your application’s execution, there are usually two or more

open resource files from which you can read information. The system resource file is

opened by the Operating System at startup time. It contains standard resources, called

system resources, shared by all applications. Among these are icons, fonts, sounds, and

other collections of data. The system resource file also contains a number of code

resources that you call indirectly to help create the standard Macintosh user interface.

For example, the standard appearance and behavior of pull-down menus is governed by

a menu-definition procedure, stored as a resource of type 'MDEF' in the system resource

file. The system resource file also contains code resources that help you create standard

windows and controls.

Your application’s resource file is opened when your application is launched. You can

call the CurResFile function early in your application’s execution to get the reference

number of your application’s resource file.

gAppsResourceFile := CurResFile;

C H A P T E R 3

Resources

About Resources 53

You need to keep track of your application’s resource file because the Resource Manager

always looks for resources in the current resource file, which can change. Each time you

open a resource file, it becomes the current resource file. You’re likely to open a number

of different resource files at various points in your application’s execution. For instance,

many applications store the user’s general preferences in a resource file in the

Preferences folder in the System Folder. In addition, if your application supports

document files, you’ll probably store some of the document’s settings in the document’s

resource file. Table 3-1 summarizes the typical locations of resources used by an

application.

When searching resource files, the Resource Manager generally begins with the most

recently opened one. When you ask it to open a resource of a particular type and ID, it

first looks in the current resource file. If the Resource Manager doesn’t find the specified

resource there, it then looks in the resource file opened just before the current resource

file. As long as the resource remains unfound, the Resource Manager continues until it

reaches the last resource file in the chain, which is probably the system resource file. If

the specified resource isn’t there either, the Resource Manager gives up and notifies your

application that the resource can’t be found.

Table 3-1 Typical locations of resources

Resource file Resources contained in file

System resource file Standard elements of the Macintosh user interface
(such as fonts, sounds, and icons) shared by all
applications, and code resources that manage user
interface elements (such as menus, controls, and
windows)

Application resource file Resources containing static data (such as menu titles,
menu items, and text strings) used by the application

Application preferences file Resources encoding the user’s global preferences for
the application

Document resource file Resources used only in this document, or resources that
govern the appearance of the document’s window
(such as its location on the screen)

C H A P T E R 3

Resources

54 About Resources

Figure 3-1 illustrates a typical search path followed by the Resource Manager as it looks

for a particular font.

Figure 3-1 Searching for a resource

Note
Unlike the system resource file and your application’s resource file, a
document’s resource file is not automatically opened when you open the
document’s data fork. If you want to include a document’s resource fork
in the chain of open resource files, you need to open it explicitly (for
instance, using the HOpenResFile routine). ◆

In general it’s best not to rely too much on the Resource Manager’s ability to search

through open resource files; instead, you should explicitly set the appropriate resource

file as the current resource file (by calling SetResFile) before you read or write any

resource data. In addition, you can restrict the Resource Manager’s search for a resource

to the current resource file by using special Resource Manager routines. For example,

instead of calling GetResource, you can call Get1Resource. This instructs the

Resource Manager to look only in the first resource file in the chain of open resource files.

C H A P T E R 3

Resources

About Resources 55

Resource Types
As indicated above, resources are grouped logically by function into resource types. You

refer to a resource by passing the Resource Manager a resource specification, which

consists of the resource type and an ID number or a name. Any resource type is valid,

whether one of those recognized by the Toolbox as referring to a standard Macintosh

resource (such as a pattern), or a custom type created for use by your application.

Note

The Resource Manager knows nothing about the formats of the
individual types of resources. Only the routines in the other parts of the
Toolbox and Operating System that call the Resource Manager have this
knowledge. ◆

A resource type can be any sequence of four alphanumeric characters, including the

space character. You can create resource types for your application, provided that they

consist of all uppercase letters and do not conflict with the standard resource types

already created. A resource type is defined by the ResType data type:

TYPE ResType = PACKED ARRAY[1..4] OF CHAR;

IMPORTANT

Uppercase letters are distinguished from their lowercase counterparts in
resource types. In addition, Apple reserves for its own use all resource
types that include any lowercase letters. If you create custom resource
types for use by your application, make sure that the type includes all
uppercase letters. ▲

Table 3-2 lists the names and uses of some of the standard resource types used by the

Macintosh system software. Uppercase resources are listed first.

Table 3-2 Some standard resource types

Resource type Meaning

'ALRT' Alert box template

'CODE' Application code segment

'CURS' Cursor

'DITL' Item list in a dialog or alert box

'DLOG' Dialog box template

'FONT' Bitmapped font

'ICON' Icon

'MBAR' Menu bar

'MENU' Menu

'PAT ' Pattern (The space in the resource type is required.)

continued

C H A P T E R 3

Resources

56 About Resources

You pick out a particular resource by specifying its type together with a resource name

or a resource ID number. In general, it’s best to use resource IDs because they’re

guaranteed to be unique within any given resource file. By contrast, it’s possible to have

two different resources of the same type with the same name.

Resource Structure
A resource file consists of a number of individual resources together with a resource
map, an indication of where in the resource file the data for a given resource is to be

found. You usually don’t need to know about the structure—or even the existence—of

the resource map. The Resource Manager uses it to keep track of a resource file’s

resources. If you lengthen or shorten a resource, or remove one from the resource file

entirely, the Resource Manager takes care of modifying the resource map accordingly.

Often, you don’t even need to know about the structure of the individual resources you

access in a resource fork. Sometimes you just need to open a resource and pass the

handle you receive from the Resource Manager to some Toolbox routine. Here’s an

example:

FOR count := 1 TO 4 DO

gEmptyPats[count] := GetPattern(kEmptyID + (count - 1));

FillRgn(myRegion, gEmptyPats[gEmptyIndex]^^);

'PICT' QuickDraw picture

'SIZE' Size of an application’s partition and other information

'STR ' String (The space in the resource type is required.)

'STR#' String list

'WIND' Window template

'hdlg' Help for dialog box or alert box items

'sfnt' Outline font

'snd ' Sound (The space in the resource type is required.)

Table 3-2 Some standard resource types (continued)

Resource type Meaning

C H A P T E R 3

Resources

About Resources 57

At application startup time, the Venn Diagrammer application reads the four available

emptiness patterns from the application’s resource file. Later, when it is drawing the

current contents of the Venn diagram, it might fill a specified region with the current

pattern. The application itself knows nothing about the actual structure of a pattern.

Sometimes, however, you do need to know about the structure of the individual

resources you want to use in your application. This is certainly true for any resources

your application defines itself. Occasionally, you also need to know how the data in a

system resource is structured. Inside Macintosh uses two general methods for displaying

the structure of a resource’s data: resource descriptions and resource diagrams.

The first method used in Inside Macintosh to describe the structure of a resource involves

specifying a description in the Rez resource description language. Listing 3-1 shows the

Rez input for a sample dialog box.

Listing 3-1 Rez input for the Preferences dialog box

resource 'DLOG' (rVennDPrefsDial, purgeable) { /*dialog resource*/

{84, 82, 264, 362}, /*rectangle for dialog box*/

noGrowDocProc, /*window definition ID for modeless dialog*/

visible, /*display this dialog box immediately*/

goAway, /*draw a close box*/

0x0, /*initial refCon value of zero*/

rVennDPrefsDial, /*use item list with res ID rVennDPrefsDial*/

"Venn Diagram Preferences",/*window title*/

noAutoCenter /*don't automatically center the window*/

};

Rez is a resource compiler: it takes a resource description like the one shown in

Listing 3-1 and produces a compiled resource. As you can see, the Rez description

includes information about the desired dialog box, including the box’s rectangle,

window definition ID, and initial window title.

Rez is provided as part of the Macintosh Programmer’s Workshop (MPW) and as part of

some third-party development environments. If you prefer, you can create and edit

resources using tools like ResEdit, a graphic resource editor provided by Apple

Computer, Inc. Using ResEdit, you’ll create and modify resources in a slightly more

friendly atmosphere, by manipulating windows like the one shown in Figure 3-2.

C H A P T E R 3

Resources

58 About Resources

Figure 3-2 The ResEdit version of the Preferences dialog box

ResEdit uses an internal resource compiler to turn this graphic representation of a

resource into a compiled resource.

Note
For most purposes, and especially for programmers new to the
Macintosh environment, ResEdit is a perfectly adequate tool for creating
and editing resources. For information about using ResEdit to create
resources, see ResEdit Reference. For complete information about using
Rez to compile resource descriptions into resources, see Macintosh
Programmer’s Workshop Reference. ◆

Whether you use Rez or ResEdit’s internal resource compiler to create resources, the

compiled resource will have the same structure. This structure is sometimes depicted in

Inside Macintosh using a resource diagram, as illustrated in Figure 3-3.

C H A P T E R 3

Resources

Using Standard Resources 59

Figure 3-3 A resource diagram

Using Standard Resources

In general, you’ll need to create resources describing the standard user interface

elements used by your application, including

■ dialog boxes

■ dialog box item lists

■ menus

■ windows

■ controls

C H A P T E R 3

Resources

60 Using Custom Resources

For standard user interface elements, the Macintosh Toolbox provides special routines

you can use to open the appropriate resources. For instance, you can call the Dialog

Manager function GetNewDialog to read a dialog box resource (of type 'DLOG') and

the corresponding item list (of type 'DITL') from your application’s resource fork.

myDialog := GetNewDialog(myKind, myPointer, WindowPtr(-1));

Similarly, you can call the Window Manager routine GetNewWindow to open a window

description resource (of type 'WIND'). Internally, these routines call Resource Manager

routines such as GetResource to read the resource data from the resource file.

Some Toolbox routines are simply loosely disguised Resource Manager calls. For

example, the code shown on page 56 which uses GetPattern to open four available

emptiness patterns could be replaced by this functionally equivalent code:

FOR count := 1 TO 4 DO

gEmptyPats[count] := GetResource('PAT ', kEmptyID + (count - 1));

Most Resource Manager routines that open resources return a handle to the specified

resource data. You can pass that handle to other Resource Manager routines, or doubly

dereference it to get at the resource data.

Using Custom Resources

In addition to using system resources to help create the standard Macintosh user

interface for your application and standard resource types to help isolate its localizable

data, you’ll probably also want to create custom resources. This section illustrates how to

define a custom resource type and how to create and manage resources of that type. The

source code provided here shows how to handle a preferences file. This file stores the

user’s global preferences, and your application can retrieve them each time it is

launched. When it starts up, the Venn Diagrammer application tries to open a

preferences file, which contains a single resource with the following type and ID:

CONST

kPrefResType = 'PRFN'; {type of preferences resource}

kPrefResID = 259; {ID of preferences resource}

As you’ve seen earlier in this book, the preferences file needs to contain information

about the user’s Venn diagram preferences, as displayed in the Preferences dialog box

shown in Figure 3-4.

C H A P T E R 3

Resources

Using Custom Resources 61

Figure 3-4 The Preferences dialog box

Here, there are six pieces of information that need to be tracked. To maintain this

information, the Venn Diagrammer application defines a data structure of type

MyPrefsRec (defined in Listing 3-2).

Listing 3-2 The structure of a resource containing Venn diagram preferences

TYPE

MyPrefsRec = RECORD

autoDiag: Boolean; {do we automatically fix the diagram?}

showName: Boolean; {do we show names of valid arguments?}

isImport: Boolean; {do subjects have existential import?}

isRandom: Boolean; {do we select next setting randomly?}

emptyInd: Integer; {index of the desired emptiness pattern}

existInd: Integer; {index of the desired existence symbol}

END;

MyPrefsPtr = ^MyPrefsRec;

MyPrefsHnd = ^MyPrefsPtr;

When it is first launched, the Venn Diagrammer application calls the application-defined

routine DoReadPrefs (defined in Listing 3-3) to read the user’s existing preferences

settings. First, DoReadPrefs determines the name of the preferences file by reading a

resource in the application’s resource file that contains that name. By convention, the

name of the preferences file consists of the name of the application followed by the string

“ Preferences”, for instance, Venn Diagrammer Preferences.

C H A P T E R 3

Resources

62 Using Custom Resources

Listing 3-3 Reading a user’s preferences

PROCEDURE DoReadPrefs;

VAR

myVRefNum: Integer;

myDirID: LongInt;

myName: Str255; {name of this application}

myPrefs: Handle; {handle to actual preferences data}

myResNum: Integer; {reference number of opened resource file}

myResult: OSErr;

CONST

kNameID = 4000; {resource ID of 'STR#' with filename}

BEGIN

{Determine the name of the preferences file.}

GetIndString(myName, kNameID, 1);

{Figure out where the preferences file is.}

IF IsFindFolder THEN

myResult := FindFolder(kOnSystemDisk, kPreferencesFolderType,

 kDontCreateFolder, myVRefNum, myDirID)

ELSE

myResult := -1;

IF myResult <> noErr THEN

BEGIN

myVRefNum := 0; {use default volume}

myDirID := 0; {use default directory}

END;

{Open the preferences resource file.}

myResNum := HOpenResFile(myVRefNum, myDirID, myName, fsCurPerm);

{If no preferences file successfully opened, create one }

{ by copying default preferences in app's resource file.}

IF myResNum = -1 THEN

myResNum := DoCreatePrefsFile(myVRefNum, myDirID, myName);

IF myResNum <> -1 THEN {if we successfully opened the file...}

BEGIN

UseResFile(myResNum); {make the new resource file current one}

myPrefs := Get1Resource(kPrefResType, kPrefResID);

IF myPrefs = NIL THEN

exit(DoReadPrefs);

WITH MyPrefsHnd(myPrefs)^^ DO

C H A P T E R 3

Resources

Using Custom Resources 63

BEGIN {read the preferences settings}

gAutoAdjust := autoDiag;

gShowNames := showName;

gGiveImport := isImport;

gStepRandom := isRandom;

gEmptyIndex := emptyInd;

gExistIndex := existInd;

END;

{Make sure some preferences globals make sense.}

IF NOT (gExistIndex IN [1..4]) THEN

gExistIndex := 1;

IF NOT (gEmptyIndex IN [1..4]) THEN

gEmptyIndex := 1;

{Reinstate the application's resource file.}

UseResFile(gAppsResourceFile);

END;

gPreferencesFile := myResNum; {remember its resource ID}

END;

After determining the name of the preferences file, DoReadPrefs calls the

application-defined utility IsFindFolder to see whether the operating environment

supports the FindFolder function. (See Listing 9-6 on page 179 for a definition of

IsFindFolder.) If it does, DoReadPrefs calls FindFolder to find the location of the

Preferences folder. The FindFolder function returns the volume reference number and

the directory ID of that folder, if it can be found. If FindFolder isn’t available or if it

cannot find the Preferences folder, DoReadPrefs looks in the default directory on the

default volume.

IMPORTANT

Just looking in the default directory when you cannot find the
Preferences folder isn’t really the best thing to do. Your application
would probably want to look in the System Folder to see if your
preferences file is there. ▲

Once the target folder is successfully located, DoReadPrefs calls the HOpenResFile

function to try to open a file having the required name in that folder. If no such file can

be opened (as indicated by a returned reference number of –1), DoReadPrefs calls the

application-defined function DoCreatePrefsFile to attempt to create a new

preferences file. (See Listing 3-4 for a definition of DoCreatePrefsFile.)

If the existing or newly created preferences file is successfully opened, then

DoReadPrefs calls UseResFile to make that file the current resource file. Then it

reads the resource of type kPrefResType and ID kPrefResID from that file. If all goes

C H A P T E R 3

Resources

64 Using Custom Resources

well, DoReadPrefs reads the current settings from that resource and assigns them to

the appropriate global variables:

WITH MyPrefsHnd(myPrefs)^^ DO

BEGIN {read the preferences settings}

gAutoAdjust := autoDiag;

gShowNames := showName;

gGiveImport := isImport;

gStepRandom := isRandom;

gEmptyIndex := emptyInd;

gExistIndex := existInd;

END;

Finally, DoReadPrefs ensures that the values of the two index variables are within

acceptable limits and then restores the application’s resource file as the current resource

file by calling UseResFile once again. Notice that the preferences resource file is left

open; this way, the Venn Diagrammer application need not reopen the file if the user

wants to change the stored preferences settings.

The DoCreatePrefsFile function that is called by DoReadPrefs is defined in

Listing 3-4. Essentially, DoCreatePrefsFile creates a resource file in the appropriate

location and with the appropriate name; then it copies into that new resource file an

existing set of preferences (stored in the application’s resource fork).

Listing 3-4 Creating a preferences file

FUNCTION DoCreatePrefsFile (myVRefNum: Integer; myDirID: LongInt;

 myName: Str255): Integer;

VAR

myResNum: Integer;

myResult: OSErr;

myID: Integer; {resource ID of resource in app's res fork}

myHandle: Handle; {handle to resource in app's res fork}

myType: ResType; {ignored; used for GetResInfo}

BEGIN

myResult := noErr;

HCreateResFile(myVRefNum, myDirID, myName);

IF ResError = noErr THEN

BEGIN

myResNum := HOpenResFile(myVRefNum, myDirID, myName, fsCurPerm);

IF myResNum <> -1 THEN

BEGIN

UseResFile(gAppsResourceFile);

myHandle := Get1Resource(kPrefResType, kPrefResID);

IF ResError = noErr THEN

C H A P T E R 3

Resources

Using Custom Resources 65

BEGIN

GetResInfo(myHandle, myID, myType, myName);

myResult := DoCopyResource(kPrefResType, myID,

 gAppsResourceFile, myResNum);

END

ELSE

BEGIN

CloseResFile(myResNum);

myResult := HDelete(myVRefNum, myDirID, myName);

myResNum := -1;

END;

END;

DoCreatePrefsFile := myResNum;

END;

END;

To copy the existing resource from the application’s resource file to the new preferences

resource file, DoCreatePrefsFile calls the application-defined routine

DoCopyResource. A version of DoCopyResource is shown in Listing 3-5.

Listing 3-5 Copying a resource from one resource file to another

FUNCTION DoCopyResource (rType: ResType; rID: Integer; source: Integer;

 dest: Integer): OSErr;

VAR

myHandle: Handle; {handle to resource to copy}

myName: Str255; {name of resource to copy}

myAttr: Integer; {resource attributes}

myType: ResType; {ignored; used for GetResInfo}

myID: Integer; {ignored; used for GetResInfo}

myResult: OSErr;

myCurrent: Integer; {current resource file on entry}

BEGIN

myCurrent := CurResFile; {remember current resource file}

UseResFile(source); {set the source resource file}

myHandle := Get1Resource(rType, rID); {open the source resource}

IF myHandle <> NIL THEN

BEGIN

GetResInfo(myHandle, myID, myType, myName); {get res name}

myAttr := GetResAttrs(myHandle); {get res attributes}

DetachResource(myHandle); {so we can copy the resource}

UseResFile(dest); {set destination resource file}

C H A P T E R 3

Resources

66 Using Custom Resources

IF ResError = noErr THEN

AddResource(myHandle, rType, rID, myName);

IF ResError = noErr THEN

SetResAttrs(myHandle, myAttr);{set res attributes of copy}

IF ResError = noErr THEN

ChangedResource(myHandle); {mark resource as changed}

IF ResError = noErr THEN

WriteResource(myHandle); {write resource data}

END;

DoCopyResource := ResError; {return result code}

ReleaseResource(myHandle); {get rid of resource data}

UseResFile(myCurrent); {restore original resource file}

END;

As you can see, DoCopyResource opens the resource to be copied. It copies that

resource into the destination resource file by making the destination file the current

resource file and then calling the Resource Manager routine AddResource. However,

before calling AddResource, you need to disassociate the source resource from its

resource file. Because AddResource requires a handle to some data in memory that is

not a handle to an existing resource, you need to call the DetachResource procedure to

cut the link between the resource data and its original resource file.

You can determine whether a Resource Manager call succeeded by calling the function

ResError, which returns the result code from the most recently executed Resource

Manager routine. The DoCopyResource function calls ResError repeatedly to make

sure that the resource data was successfully added, that the resource attributes were

successfully copied, that the destination resource was successfully marked as changed,

and that the data was successfully written out to disk.

It’s easy to see how to save a set of preferences to the user’s preferences file. In essence,

you simply need to reverse the strategy employed in reading the preferences. Listing 3-6

defines the DoSavePrefs procedure, which the Venn Diagrammer application calls

whenever the user wants to save the current preferences settings. The DoSavePrefs

procedure assumes that the application’s preferences file is already open.

Listing 3-6 Saving current preferences settings

PROCEDURE DoSavePrefs;

VAR

myPrefData: Handle; {handle to new resource data}

myHandle: Handle; {handle to resource to replace}

myName: Str255; {name of resource to copy}

myAttr: Integer; {resource attributes}

myType: ResType; {ignored; used for GetResInfo}

myID: Integer; {ignored; used for GetResInfo}

C H A P T E R 3

Resources

Using Custom Resources 67

BEGIN

{Make sure we have an open preferences file.}

IF gPreferencesFile = -1 THEN

exit(DoSavePrefs);

myPrefData := NewHandleClear(sizeof(MyPrefsRec));

HLock(myPrefData);

WITH MyPrefsHnd(myPrefData)^^ DO

BEGIN

autoDiag := gAutoAdjust;

showName := gShowNames;

isImport := gGiveImport;

isRandom := gStepRandom;

emptyInd := gEmptyIndex;

existInd := gExistIndex;

END;

UseResFile(gPreferencesFile); {use preferences file}

myHandle := Get1Resource(kPrefResType, kPrefResID);

IF myHandle <> NIL THEN

BEGIN

GetResInfo(myHandle, myID, myType, myName); {get res name}

myAttr := GetResAttrs(myHandle); {get res attributes}

RmveResource(myHandle);

IF ResError = noErr THEN

AddResource(myPrefData, kPrefResType, kPrefResID, myName);

IF ResError = noErr THEN

WriteResource(myPrefData);

END;

HUnlock(myPrefData);

ReleaseResource(myPrefData);

UseResFile(gAppsResourceFile); {restore app's resource file}

END;

The DoSavePrefs procedure creates a new preferences record and fills in the fields as

appropriate. Then it removes the existing preferences resource from the preferences file

and adds a new resource. To make sure that the new resource data is written out to disk,

DoSavePrefs calls the WriteResource procedure. Finally, DoSavePrefs restores the

application’s resource file as the current resource file.

Contents 69

C H A P T E R 4

Contents

Events

About Events 71

Initializing an Application 74

Receiving Events 75

Handling Events Outside the Main Event Loop 79

C H A P T E R 4

About Events 71

Events

This chapter describes how you can use the Event Manager to receive information about

user actions and to receive notice of changes in the processing status of your application.

One of the key elements of a well-written Macintosh application is its “user-centered”

design. This means, among other things, that instead of carrying out a sequence of steps

in a predetermined order, the application is driven primarily by user actions (such as

moving the mouse, pressing the mouse button, and typing characters) whose order

cannot in general be predicted. This chapter describes how the Macintosh system

software reports user actions to your application and shows how to structure your

application to facilitate the implementation of user-centered design.

This chapter begins by describing some of the features of a good user-centered design

and some general ways to implement them. Then it shows how to

■ initialize the basic Toolbox managers

■ receive information from the Event Manager about user actions

■ respond to user actions

For a complete description of the capabilities of the Event Manager, see the chapter

“Event Manager” in Inside Macintosh: Macintosh Toolbox Essentials. For the complete story

on the features of a good user interface, see Macintosh Human Interface Guidelines.

About Events

Probably the most distinctive aspect of a well-written Macintosh application is that it

puts users in control of the application, not the other way around. To be in control, the

user should be able to perform, at any particular time, any of a wide array of actions.

These actions might include pulling down one of your application’s menus, choosing a

menu command, typing some characters, moving a window, and so forth. A key concept

here is that users should feel that your application is always ready to do something for

them.

Even when your application is busy performing some lengthy operation (for instance,

saving a document to disk) and you need to prevent the user from doing other things,

you should provide some safe way for the user to cancel the operation and regain

control. Typically you accomplish this by displaying a dialog box indicating that a

lengthy operation is underway; the dialog box should indicate some safe way for the

user to stop the operation.

The essence of this user-centered design is the use of an event-driven programming
model. In other words, the system software breaks up the user’s actions into their

component events, which are passed one by one to your application for handling. For

example, when the user presses a key on the keyboard, the system software sends your

application information about that event. This information includes which key was

pressed, when the key was pressed, whether any modifier keys (for instance, the

Command key) were being held down at the time of the keypress, and so forth. Your

application responds to the event by performing whatever actions are appropriate.

C H A P T E R 4

Events

72 About Events

Your application can receive many types of events. Events are usually divided into three

categories:

■ low-level events

■ operating-system events

■ high-level events

The Event Manager returns low-level events to your application for occurrences such as

the user pressing the mouse button, releasing the mouse button, pressing a key on the

keyboard, or inserting a disk. The Event Manager also returns low-level events to your

application if your application needs to activate a window (that is, make changes to a

window based on whether it is in front or not) or update a window (that is, redraw the

window’s contents). When your application requests an event and there are no other

events to report, the Event Manager returns a null event.

The Event Manager returns operating-system events to your application when the

processing status of your application is about to change or has changed. For example, if a

user brings your application to the foreground, the Process Manager sends an event

through the Event Manager to your application. Some of the work of reactivating your

application is done automatically, both by the Process Manager and by the Window

Manager; your application must take care of any further processing needed as a result of

your application being reactivated.

The Event Manager returns high-level events to your application as a result of

communication directed to your application from another application or process.

Note

Low-level events, except for update events and null events, are always
directed to the foreground process. Operating-system events are also
always directed to the foreground process. High-level events, update
events, and null events can be directed to the foreground process or
background processes. ◆

Figure 4-1 illustrates the various sources of events that can be passed to your application.

As you can see, events originate from a number of different sources: the Operating

System Event Manager, Window Manager, Process Manager, and PPC Toolbox.

C H A P T E R 4

Events

About Events 73

Figure 4-1 Sources of events sent to your application

The Event Manager maintains, for each open application, an event stream containing

those events that are available to that application. Your general strategy is to retrieve an

event, process it, retrieve the next event, process it, and so on indefinitely. You stop this

process only when the user elects to quit your application.

C H A P T E R 4

Events

74 Initializing an Application

Initializing an Application

When your application first starts up, and even before you begin to receive and process

events describing the user’s actions, you need to do some initial setting up. As you’ve

already seen (page 3), you need to initialize some of the Macintosh Toolbox managers.

You also need to set up your menu bar and menus, and perform some other standard

initialization. Listing 4-1 shows the code executed by the Venn Diagrammer application

when it first starts up.

Listing 4-1 Initializing your application

DoInitManagers; {initialize Toolbox managers}

DoSetupMenus; {initialize menus}

gDone := FALSE; {initialize global variables}

gNumDocWindows := 0; {initialize count of open doc windows}

gPrefsDialog := NIL; {initialize ptr to Preferences dialog}

gAppsResourceFile := CurResFile; {get refnum of the app's resource file}

gPreferencesFile := -1; {initialize res ID of preferences file}

DoReadPrefs; {read the user's preference settings}

DoVennInit;

DoMainEventLoop; {and then loop forever...}

The first thing the Venn Diagrammer application does is call the application-defined

routine DoInitManagers to set up its application partition and initialize several

Toolbox managers. Then it calls DoSetupMenus to create its menu bar and menus. (See

Listing 8-1 on page 155 for the definition of DoSetupMenus.)

After its menu bar has been created, Venn Diagrammer initializes several global

variables and reads the user’s current preferences from a preferences file. Then the

application calls another routine, DoVennInit, to handle any other initialization. This

includes defining the rectangles and regions in a Venn diagram window and displaying

a window.

Note

The DoVennInit procedure is not defined in this book. ◆

C H A P T E R 4

Events

Receiving Events 75

Once the application has initialized itself, it starts executing its main event loop by

calling the DoMainEventLoop procedure. In the main event loop, the application calls

the Event Manager to get an event, responds to the event, then loops back to repeat the

process. See Listing 4-4 on page 77 for a sample event loop.

Listing 4-2 defines the DoInitManagers routine. It begins by calling two Memory

Manager routines to expand the heap zone to its limit and to create an additional block

of master pointers.

Listing 4-2 Initializing the main Toolbox Managers

PROCEDURE DoInitManagers;

BEGIN

MaxApplZone; {extend heap zone to limit}

MoreMasters; {get 64 more master pointers}

InitGraf(@thePort); {initialize QuickDraw}

InitFonts; {initialize Font Manager}

InitWindows; {initialize Window Manager}

InitMenus; {initialize Menu Manager}

TEInit; {initialize TextEdit}

InitDialogs(NIL); {initialize Dialog Manager}

FlushEvents(everyEvent, 0); {clear event queue}

InitCursor; {initialize cursor to arrow}

END;

Then DoInitManagers calls the standard Toolbox initialization routines. Finally, it

clears the event queue and calls the QuickDraw routine InitCursor to make sure that

the cursor is the standard arrow cursor.

Receiving Events

You receive events by calling an Event Manager routine, usually WaitNextEvent.

When you ask for an event, the Event Manager returns the next available event

according to its event priority. The Event Manager returns events in this order of

priority:

1. activate events

2. mouse-down, mouse-up, key-down, key-up, and disk-inserted events in FIFO
(first-in, first-out) order

C H A P T E R 4

Events

76 Receiving Events

3. auto-key events

4. update events (in front-to-back order of windows)

5. operating-system events (suspend, resume, mouse-moved)

6. high-level events

7. null events

To retrieve an event, you pass the WaitNextEvent function an event record, defined by

the EventRecord data type:

TYPE EventRecord =

RECORD

what: Integer; {event code}

message: LongInt; {event message}

when: LongInt; {ticks since startup}

where: Point; {mouse location}

modifiers: Integer; {modifier flags}

END;

On return from WaitNextEvent, the what field of the event record contains an integer

that specifies the type of event received. The Event Manager uses this set of predefined

constants to indicate the event type:

CONST

nullEvent = 0; {no other pending events}

mouseDown = 1; {mouse button pressed}

mouseUp = 2; {mouse button released}

keyDown = 3; {key pressed}

keyUp = 4; {key released}

autoKey = 5; {key held down}

updateEvt = 6; {a window needs updating}

diskEvt = 7; {disk inserted}

activateEvt = 8; {activate/deactivate window}

osEvt = 15; {operating-system event}

kHighLevelEvent = 23; {high-level event}

The message field of the event record contains additional information about the event.

The interpretation of this field depends on the type of event you’ve received. For some

events (such as null events, mouse-up, and mouse-down events), the value in the

message field is undefined. For keyboard events, the message field indicates which key

was pressed. For activate and update events, the message field contains a window

pointer to the affected window. For disk-inserted events, the message field contains the

drive number in the low-order word and the result code of the File Manager’s attempt to

mount that disk in that drive. Listing 4-3 illustrates how an application reads parts of the

message field while handling disk-inserted events.

C H A P T E R 4

Events

Receiving Events 77

Listing 4-3 Handling disk-inserted events

PROCEDURE DoDiskEvent (myEvent: EventRecord);

VAR

myResult: Integer;

myPoint: Point;

BEGIN

IF HiWord(myEvent.message) <> noErr THEN

BEGIN

SetPt(myPoint, 100, 100);

myResult := DIBadMount(myPoint, myEvent.message);

END;

END;

If the disk was not successfully mounted (that is, if the high-order word of the message

field does not contain noErr), then DoDiskEvent calls the system software routine

DIBadMount to inform the user and allow the disk to be ejected or reformatted. (See the

chapter “Disk Initialization Manager” in Inside Macintosh: Files for more information

about handling disk-inserted events.)

The where field of the event record contains, for low-level events, the location of the

cursor at the time the event was posted. You can use this information to determine where

on the screen a mouse-down event occurred, for instance.

The modifiers field contains information about the state of the modifier keys and the

mouse button at the time the event was posted. For activate events, this field also

indicates whether the window should be activated or deactivated. (In System 7, it also

indicates whether a mouse-down event caused your application to switch to the

foreground.)

To handle an event, you simply take whatever action is appropriate for the kind of event

it is. Listing 4-4 shows one way to structure an event-handling routine.

Listing 4-4 An event loop

PROCEDURE DoMainEventLoop;

VAR

myEvent: EventRecord;

gotEvent: Boolean; {is returned event for me?}

BEGIN

REPEAT

gotEvent := WaitNextEvent(everyEvent, myEvent, 15, NIL);

IF NOT DoHandleDialogEvent(myEvent) THEN

IF gotEvent THEN

BEGIN

CASE myEvent.what OF

C H A P T E R 4

Events

78 Receiving Events

mouseDown:

DoMouseDown(myEvent); {see page 120}

keyDown, autoKey:

DoKeyDown(myEvent); {see page 160}

updateEvt:

DoUpdate(WindowPtr(myEvent.message)); {see page 124}

diskEvt:

DoDiskEvent(myEvent); {see page 77}

activateEvt:

DoActivate(WindowPtr(myEvent.message),

 myEvent.modifiers); {see page 126}

osEvt:

DoOSEvent(myEvent); {see page 171}

keyUp, mouseUp:

;

nullEvent:

DoIdle(myEvent); {see page 173}

OTHERWISE

;

END; {CASE}

END

ELSE

DoIdle(myEvent);

UNTIL gDone; {loop until user quits}

END;

The event loop defined in Listing 4-4 repeatedly calls the WaitNextEvent function to

retrieve the next available event. This function returns a value of FALSE if there are no

events of the desired type (other than null events) pending for your application.

Otherwise, WaitNextEvent returns TRUE.

After the next available event is retrieved, the DoMainEventLoop procedure calls the

application-defined function DoHandleDialogEvent (defined in Listing 7-5 on

page 141) to determine whether the event applies to a dialog box. The

DoHandleDialogEvent function returns TRUE if it handled the event and FALSE

otherwise.

Note

Dialog boxes receive special treatment because the system software
automatically handles many user actions in dialog boxes. For example,
the Dialog Manager handles update events for dialog boxes, and it calls
the Control Manager to handle user actions affecting any controls in the
dialog box. ◆

C H A P T E R 4

Events

Handling Events Outside the Main Event Loop 79

If the event retrieved does not apply to a dialog box, and if it isn’t a null event, then

DoMainEventLoop branches into a Pascal CASE statement in which the labels are

simply the predefined constants for each event type. As you can see, the event loop calls

an application-defined routine to handle each particular kind of event. These routines

are defined throughout this book.

Handling Events Outside the Main Event Loop

You’ll notice that some types of events—for example, keyUp and mouseUp—are simply

ignored by the main event loop defined in Listing 4-4. Key-up events are ignored

because most applications don’t need to know that a key was released, only that it was

pressed. Similarly, you usually don’t need to know when the mouse button was released,

because you’re more interested in knowing whether (and where) the mouse button was

pressed. In certain cases, however, you will be interested in a mouse-up event. For

example, if the user presses the mouse button while the cursor is in a window’s close box

but then moves the cursor outside the close box before releasing the mouse button, you

don’t want to handle the mouse-down event. (This is another good example of

user-centered design: allowing users to change their minds.)

It might appear that a problem is lurking, because the main event loop defined in

Listing 4-4 ignores mouse-up events. How, then, can your application determine that the

user released the mouse button when the cursor was outside of the close box? The

answer is simple: the system software provides a routine, TrackGoAway, that you call in

response to a user click in the close box. The TrackGoAway function tracks user actions

involving the close box; it returns the Boolean value TRUE if the cursor is still inside the

close box when the button is released and FALSE otherwise. Listing 4-5 illustrates how to

call TrackGoAway.

Listing 4-5 Tracking mouse events in the close box

PROCEDURE DoGoAwayBox (myWindow: WindowPtr; mouseloc: Point);

BEGIN

IF TrackGoAway(myWindow, mouseloc) THEN

DoCloseWindow(myWindow);

END;

The TrackGoAway function exits only when the mouse button is released. Because it

determines internally when that happens, your application doesn’t need to.

C H A P T E R 4

Events

80 Handling Events Outside the Main Event Loop

The system software provides routines to handle the three main cases in which you need

to track the mouse and determine if the cursor is in a particular location when the button

is released. Here are the main routines you’ll use:

For various purposes, you might need to perform similar tracking on an arbitrary

rectangle in a window. The function DoTrackRect defined in Listing 4-6 shows one

way to define such a function.

Note

Venn Diagrammer calls DoTrackRect to handle mouse-down events in
the tool icons. See Listing 6-9 beginning on page 121. ◆

Listing 4-6 Tracking the cursor in an arbitrary rectangle

FUNCTION DoTrackRect (myWindow: WindowPtr; myRect: Rect): Boolean;

VAR

myIgnore: LongInt;

myPoint: Point;

BEGIN

InvertRect(myRect); {invert the rectangle}

REPEAT

Delay(kVisualDelay, myIgnore)

UNTIL NOT StillDown; {until mouse is released}

InvertRect(myRect);

GetMouse(myPoint); {get mouse location}

DoTrackRect := PtInRect(myPoint, myRect);

END;

The DoTrackRect function inverts the specified rectangle and keeps it inverted until

the user releases the mouse button. The Event Manager function StillDown looks in

your application’s event queue for a mouse-up event; if none is found, StillDown

returns TRUE; otherwise, StillDown returns FALSE. Note that DoTrackRect loops

until StillDown returns FALSE, indicating that the corresponding mouse-up event has

been found. The call to the Delay procedure within the loop is to ensure that the

rectangle is inverted for some minimum, user-perceptible amount of time.

Mouse-tracking routine Action

TrackBox Track the cursor in a window’s zoom box

TrackControl Track the cursor within a control

TrackGoAway Track the cursor in a window’s close box

C H A P T E R 4

Events

Handling Events Outside the Main Event Loop 81

CONST

kVisualDelay = 6; {wait 6 ticks (one-tenth second)}

The DoTrackRect function loops until StillDown detects the appropriate mouse-up

event and then returns the specified rectangle to its original state by inverting it again.

Next, DoTrackRect calls the Event Manager function GetMouse to determine the

current position of the cursor. If, when the mouse button is released, the cursor is still

inside the specified rectangle (as determined by the QuickDraw routine PtInRect),

then DoTrackRect returns TRUE.

As you can see, you sometimes want to call Event Manager routines from outside your

main event loop, most often to monitor mouse movements and button states once the

user has clicked in some particular part of a window.

Contents 83

C H A P T E R 5

Contents

Drawing

About QuickDraw 85

Points 86

Rectangles 87

Regions 89

Bit Images 91

Ports and Windows 92

Drawing Shapes 94

Drawing Bit Images 99

Drawing Text 101

C H A P T E R 5

About QuickDraw 85

Drawing

This chapter shows how you can draw simple graphics and text inside of windows using

QuickDraw, the part of the Macintosh Toolbox that performs graphics operations on the

user’s screen. All Macintosh applications use QuickDraw indirectly whenever they call

other Toolbox managers to create and manage the basic graphic user interface elements

(such as windows, controls, and menus). Most applications also call QuickDraw directly

to define areas in a window and to draw appropriate graphic elements in those areas.

The Venn Diagrammer application, for instance, calls QuickDraw to draw the

overlapping circles, the tool icons, and the figure and mood selection icons. It also calls

QuickDraw to draw all the text displayed in a window.

This chapter begins with a description of QuickDraw, its basic drawing model, and some

of the data structures QuickDraw uses. Then it shows how to

■ define and draw simple objects such as lines, rectangles, and circles

■ define complex graphic objects by combining simple objects

■ outline and fill graphic objects

■ draw static (that is, noneditable) text in a window

For a complete description of the drawing capabilities of QuickDraw, see the chapter

“QuickDraw Drawing” in Inside Macintosh: Imaging. For a complete description of the

text capabilities of QuickDraw, see the chapter “QuickDraw Text” in Inside Macintosh:
Text. To learn how to handle editable text, see the chapter “TextEdit” in Inside Macintosh:
Text.

About QuickDraw

QuickDraw allows you to draw many types of objects on the Macintosh display screen.

Some of these objects are illustrated in Figure 5-1.

Figure 5-1 Samples of QuickDraw’s abilities

C H A P T E R 5

Drawing

86 About QuickDraw

As you can see, you can use QuickDraw to draw

■ text characters and strings in a number of fonts, sizes, and styles

■ straight lines of any length, width, and pattern

■ a variety of simple shapes, including rectangles, rounded-corner rectangles, circles,
and ovals

■ polygons

■ arcs of ovals, or wedge-shaped sections filled with a pattern

■ any other arbitrary shape or collection of shapes

■ bit images, such as icons, cursors, and patterns

This section explains the basic mathematical model employed by QuickDraw and shows

how you can define several of these sorts of objects.

Points
QuickDraw measures location and movement in terms of coordinates on a very large

plane. The plane is a two-dimensional grid, with integer coordinates ranging from

–32767 to 32767, as illustrated in Figure 5-2.

Figure 5-2 The coordinate plane

The intersection of a horizontal and a vertical grid line marks a point on the coordinate

plane. Because all coordinates are limited to simple integers, there are 4,294,836,224

unique points in the QuickDraw plane.

C H A P T E R 5

Drawing

About QuickDraw 87

You can store the coordinates of a point into a Pascal variable of type Point, defined by

QuickDraw as a record of two integers:

TYPE

VHSelect = (v,h);

Point =

RECORD

CASE INTEGER OF

0: (v: Integer; {vertical coordinate}

 h: Integer); {horizontal coordinate}

1: (vh: ARRAY[VHSelect] OF Integer);

END;

The variant part of this record lets you access the vertical and horizontal coordinates of a

point either individually or as an array. This book will always use the first way of

specifying the coordinates. So, for example, the vertical coordinate of the variable

myPoint is accessed as myPoint.v.

Rectangles
Any two points can define the upper-left and lower-right corners of a rectangle on the

coordinate plane, as shown in Figure 5-3.

Figure 5-3 A rectangle

C H A P T E R 5

Drawing

88 About QuickDraw

You can describe a rectangle using a data structure of type Rect, which consists of four

integers or two points.

TYPE Rect =

RECORD

CASE INTEGER OF

0: (top: Integer; {top coordinate}

 left: Integer; {left coordinate}

 bottom: Integer; {bottom coordinate}

 right: Integer); {right coordinate}

1: (topLeft: Point; {upper-left point}

 botRight: Point); {lower-right point}

END;

Once again, the record variant allows you to access a variable of type Rect either as four

boundary coordinates or as two diagonally opposite corner points. This book will

always use the first way of specifying a rectangle. So, for example, the top coordinate of

the variable myRect is accessed as myRect.top.

Note

If the bottom coordinate of a rectangle is less than or equal to the top
coordinate, or if the right coordinate is less than or equal to the left
coordinate, the rectangle is treated as an empty rectangle (that is, one
that has no area). ◆

A pixel is a physical dot on the screen and corresponds to a rectangle in the QuickDraw

coordinate plane that has sides one coordinate long, as shown in Figure 5-4. (This, of

course, is the smallest possible rectangle.)

Figure 5-4 Pixels and rectangles

C H A P T E R 5

Drawing

About QuickDraw 89

You can think of a pixel as corresponding to the point at the top left of the rectangle.

There are many more points in the QuickDraw coordinate plane than there are pixels on

the screen. As a result, you’ll associate small parts of the coordinate plane with areas on

the screen. In general, you don’t need to worry about where in that large coordinate

plane you’re working, because QuickDraw always forces you to work with a particular

graphics port, which has its own local coordinate system. (A graphics port is a complete

drawing environment that defines where and how graphics operations will take place;

see page 92 for more information on graphics ports.)

To draw a line, you can simply move to the desired starting point of the line and draw to

the desired end. For example, to draw a line in the current graphics port from point

(100,150) to the point (200,250), you could do this:

MoveTo(100, 150);

LineTo(200, 250);

To draw a rectangle, you need to proceed in a slightly different manner. You first need to

define the rectangle in the coordinate plane and then perform some graphical operation

on the rectangle. Here’s an example:

SetRect(myRect, 100, 200, 300, 400);

FrameRect(myRect);

These two lines of code define a rectangle and then frame it (that is, draw its outline).

Instead of just drawing the rectangle’s outline, you could also fill the rectangle with the

current pattern (by calling PaintRect) or with some other pattern (by calling

FillRect).

Note

Coordinates are passed to SetRect in the order left, top, right, bottom
(which is different from the order in the Rect data type). The word
litterbug is a useful mnemonic; it contains the letters l, t, r, and b in the
correct order. ◆

QuickDraw does not contain data types that describe circles or ovals. Instead, you draw

an oval by defining a rectangle and then asking QuickDraw to draw the oval that fits

inside of the rectangle. The oval is completely enclosed within the rectangle, and never

includes any pixels lying outside the boundary. If the rectangle is a square, then the oval

is a circle.

Regions
One of QuickDraw’s most powerful capabilities is the ability to work with regions of

arbitrary size, shape, and complexity. You define a region by drawing its boundary with

QuickDraw operations. The boundary can be any set of lines and shapes (even including

other regions) forming one or more closed loops. A region can be concave or convex, can

consist of one connected area or many separate ones, and can even have holes in the

C H A P T E R 5

Drawing

90 About QuickDraw

middle. In Figure 5-5, the region on the left has a hole in it, and the region on the right

consists of two disjoint areas.

Figure 5-5 Two regions

QuickDraw describes a region using a data structure of type Region. This structure

contains two fixed-length fields followed by a variable-length field.

TYPE Region =

RECORD

rgnSize: Integer; {size in bytes}

rgnBBox: Rect; {enclosing rectangle}

{more data if not rectangular}

END;

RgnPtr = ^Region;

RgnHandle = ^RgnPtr;

The rgnSize field contains the size, in bytes, of the region variable. The rgnBBox field

contains a rectangle that completely encloses the region. In general, however, you’ll treat

the Region data structure like a “black box”; you shouldn’t need to read the two named

fields except in special circumstances.

C H A P T E R 5

Drawing

About QuickDraw 91

The Venn Diagrammer application uses a number of regions to pick out the areas

defined by the overlapping circles. See “Drawing Shapes” beginning on page 94 for

details.

Bit Images
Points, rectangles, and regions are mathematical models—data types that QuickDraw

uses for defining areas on the screen—but they can also be graphic elements that actually

appear on the screen. A rectangle, for example, can mathematically define a particular

visible area, but it can also be an object to be framed, painted, or filled. QuickDraw also

defines a number of other graphic elements, including icons, bitmaps, patterns, and

other bit images, that have only a direct graphic interpretation. An icon, for instance,

defines an image not by mapping an abstract mathematical representation onto the

screen pixels but by directly indicating which pixels in a given area are to be black and

which are to be white.

IMPORTANT

The discussion in this section applies only to black-and-white bit
images, which are the simplest cases. For complete information on color
bit images (such as color icons), see Inside Macintosh: Imaging. ▲

The Macintosh user interface uses bit images extensively, so QuickDraw contains a

number of additional data types describing such direct entities and routines to draw

them. The Venn Diagrammer application uses two kinds of bit images: bitmaps and

patterns.

A bitmap is a data structure that defines a physical bit image in terms of the coordinate

plane. A bitmap has three parts: a pointer to a rectangular collection of bits, the row

width of that rectangular collection, and a boundary rectangle that gives the bitmap both

its dimensions and a coordinate system.

The structure of a bitmap is defined by the BitMap data type:

TYPE BitMap =

RECORD

baseAddr: Ptr; {pointer to bit image}

rowBytes: Integer; {row width}

bounds: Rect; {boundary rectangle}

END;

C H A P T E R 5

Drawing

92 About QuickDraw

Figure 5-6 shows how these three pieces of information define a particular bitmap.

Figure 5-6 A bitmap

The baseAddr field is a pointer to the beginning of the bit image in memory. The

rowBytes field is the row width, in bytes. (Both baseAddr and rowBytes must

contain even values.) The bounds field is the bitmap’s bounding rectangle. See

“Drawing Bit Images” beginning on page 99 for a description of how to display a bitmap.

Ports and Windows
All drawing takes place in a controlled drawing environment known as a graphics port.
The graphics port defines a number of drawing parameters, such as the current drawing

location, the current font and size used for drawing characters, and so forth. In general,

you can think of a graphics port as the window within which you’re currently drawing.

A graphics port is defined by the GrafPort data structure.

TYPE GrafPort =

RECORD

device: Integer; {device-specific information}

portBits: BitMap; {GrafPort's bit map}

portRect: Rect; {GrafPort's rectangle}

C H A P T E R 5

Drawing

About QuickDraw 93

visRgn: RgnHandle; {visible region}

clipRgn: RgnHandle; {clipping region}

bkPat: Pattern; {background pattern}

fillPat: Pattern; {fill pattern}

pnLoc: Point; {pen location}

pnSize: Point; {pen size}

pnMode: Integer; {pen's transfer mode}

pnPat: Pattern; {pen pattern}

pnVis: Integer; {pen visibility}

txFont: Integer; {font number for text}

txFace: Style; {text's character style}

txMode: Integer; {text's transfer mode}

txSize: Integer; {font size for text}

spExtra: Fixed; {extra space}

fgColor: LongInt; {foreground color}

bkColor: LongInt; {background color}

colrBit: Integer; {color bit}

patStretch: Integer; {used internally}

picSave: Handle; {picture being saved}

rgnSave: Handle; {region being saved}

polySave: Handle; {polygon being saved}

grafProcs: QDProcsPtr; {low-level drawing routines}

END;

GrafPtr = ^GrafPort;

The fields of a GrafPort data structure are maintained by QuickDraw, and you should

never write directly into those fields. You can, and often must, read the fields of a

GrafPort structure. For example, it’s often useful to read the portRect field of a

variable of type GrafPort, because it gives the rectangle around the content area of a

window. (That information was used in Listing 1-1 on page 3 to center a text string.)

QuickDraw always performs drawing operations on the current graphics port. As a

result, you should explicitly set the graphics port before doing any drawing. A safe

strategy is to save and later restore the original graphics port upon entry to any routine

that affects the screen. Listing 5-1 shows an example.

Listing 5-1 Saving and restoring the current graphics port

PROCEDURE DrawInPort(thePort: GrafPtr);

VAR

origPort: GrafPtr;

BEGIN

GetPort(origPort);

C H A P T E R 5

Drawing

94 Drawing Shapes

SetPort(thePort);

{Do your drawing (erasing, etc.) here.}

SetPort(origPort);

END;

Notice that QuickDraw uses the GrafPtr data type to refer to graphics ports. For

historical reasons, the GrafPort data structure is one of the few objects in the

Macintosh system software that’s referred to by a pointer rather than a handle.

Drawing Shapes

As you’ve seen, you can draw circles by calling FrameOval. The Venn Diagrammer

application uses code like this to draw the outlines of the five circles:

FOR count := 1 TO 5 DO

FrameOval(gGeometry^^.circleRects[count]);

The rectangles defining the circles are stored in an array of rectangles that is one of the

fields of an application-defined data structure of type MyGeometryRec. Venn

Diagrammer allocates just one of these records when the application first starts up. The

global variable gGeometry is a handle to that record.

VAR

gGeometry: MyGeometryHnd; {handle to a geometry record}

Listing 5-2 shows part of the structure of this record.

Listing 5-2 The structure of a record describing a document window’s geometry

TYPE MyGeometryRec =

RECORD

circleRects: ARRAY[1..5] OF Rect; {squares for the 5 circles}

circleRgns: ARRAY[1..5] OF RgnHandle; {regions for the 5 circles}

premiseRgns: ARRAY[1..8] OF RgnHandle; {regions for premises}

concRgns: ARRAY[1..4] OF RgnHandle; {regions for conclusion}

{other fields omitted}

END;

MyGeometryPtr = ^MyGeometryRec;

MyGeometryHnd = ^MyGeometryPtr;

C H A P T E R 5

Drawing

Drawing Shapes 95

This record contains all the information needed to perform graphics operations on the

Venn diagram in a document window. The fields are initialized at application launch

time by the application-defined routine DoInitGeometry, shown in Listing 5-3.

Listing 5-3 Initializing the geometry record

PROCEDURE DoInitGeometry;

BEGIN

{Allocate the memory needed to hold the diagram's geometry.}

gGeometry := MyGeometryHnd(NewHandleClear(sizeof(MyGeometryRec)));

IF gGeometry = NIL THEN {make sure we have the memory}

DoBadError(eNotEnoughMemory); {see Listing 9-5 on page 178}

{Set up the rectangles that define the circles.}

FOR count := 1 TO 5 DO

gGeometry^^.circleRects[count] := MyGetIndCircleRect(count);

{Set up the regions that the circles define.}

DoSetupCircleRegions;

{Set up the overlapping regions within the circles.}

DoSetupOverlapRegions;

END;

The DoInitGeometry procedure allocates a geometry record and calls other

application-defined routines to initialize the fields of that record. First, it calls

MyGetIndCircleRect to determine the rectangle bounding each of the five circles.

Note

The MyGetIndCircleRect function is not defined in this book. You
could define such a function in many ways. You could determine in
advance where in the window the five rectangles should be and then
hard-code that information in constants. Alternatively, you could
calculate desirable positions dynamically at run time. The Venn
Diagrammer application uses the first method, for speed. ◆

Then DoInitGeometry calls two other application-defined routines to set up a number

of regions in the window. The first, DoSetupCircleRegions, defined in Listing 5-4,

creates regions corresponding to the area inside each of the five circles. These regions are

used in turn by the DoSetupOverlapRegions procedure to calculate the regions of

intersection.

C H A P T E R 5

Drawing

96 Drawing Shapes

Listing 5-4 Defining circular regions

PROCEDURE DoSetupCircleRegions;

VAR

count: Integer;

BEGIN

FOR count := 1 TO 5 DO

BEGIN

gGeometry^^.circleRgns[count] := NewRgn;

OpenRgn;

FrameOval(gGeometry^^.circleRects[count]);

CloseRgn(gGeometry^^.circleRgns[count]);

END;

END;

You create a new region by calling the NewRgn function, which allocates storage in your

application heap for a structure of type Region and returns a handle (of type

RgnHandle) to that region. The newly created region is empty. To add to the region, you

call the OpenRgn procedure and then draw the outline of the area you want enclosed by

the region. As you can see, DoSetupCircleRegions indicates the desired area by

calling the FrameOval procedure on a circle’s defining rectangle. When you’re done

drawing that outline, you call the CloseRgn procedure, passing it a handle to the region

to close.

If you simply want to create a region that’s empty, you can call NewRgn, OpenRgn, and

CloseRgn without doing any drawing.

myRegion := NewRgn; {create an empty region}

OpenRgn;

CloseRgn(myRegion);

The DoSetupOverlapRegions procedure, defined in Listing 5-5, uses the circular

regions defined by DoSetupCircleRegions to define the regions corresponding to the

areas defined by the overlapping circles.

Listing 5-5 Defining noncircular regions

PROCEDURE DoSetupOverlapRegions;

VAR

myRegion: RgnHandle; {a scratch region}

count: Integer;

BEGIN

FOR count := 1 TO 8 DO {create new, empty regions}

BEGIN

gGeometry^^.premiseRgns[count] := NewRgn;

C H A P T E R 5

Drawing

Drawing Shapes 97

OpenRgn;

CloseRgn(gGeometry^^.premiseRgns[count]);

END;

myRegion := NewRgn; {create a scratch region}

OpenRgn;

CloseRgn(myRegion);

{Calculate the overlap regions in the premises diagram.}

HLock(Handle(gGeometry)); {lock the handle}

WITH gGeometry^^ DO

BEGIN

DiffRgn(circleRgns[1], circleRgns[2], myRegion);

DiffRgn(myRegion, circleRgns[3], premiseRgns[1]);

SectRgn(circleRgns[1], circleRgns[2], myRegion);

DiffRgn(myRegion, circleRgns[3], premiseRgns[2]);

DiffRgn(circleRgns[2], circleRgns[1], myRegion);

DiffRgn(myRegion, circleRgns[3], premiseRgns[3]);

SectRgn(circleRgns[1], circleRgns[3], myRegion);

DiffRgn(myRegion, circleRgns[2], premiseRgns[4]);

SectRgn(circleRgns[1], circleRgns[2], myRegion);

SectRgn(myRegion, circleRgns[3], premiseRgns[5]);

SectRgn(circleRgns[2], circleRgns[3], myRegion);

DiffRgn(myRegion, circleRgns[1], premiseRgns[6]);

DiffRgn(circleRgns[3], circleRgns[1], myRegion);

DiffRgn(myRegion, circleRgns[2], premiseRgns[7]);

END;

HUnlock(Handle(gGeometry)); {unlock the handle}

DisposeRgn(myRegion); {dispose scratch region}

END;

The DoSetupOverlapRegions procedure is remarkably straightforward. It initializes

the regions in the premises diagram and also creates a temporary scratch region. Then it

calculates the seven regions of overlap in that diagram by calling SectRgn and

DiffRgn on the circular regions defined in Listing 5-4. The SectRgn procedure takes

the intersection of two regions and places it into a third region. The DiffRgn procedure

takes the portion of the first region that is outside the second region and places it into the

C H A P T E R 5

Drawing

98 Drawing Shapes

third region. Figure 5-7 shows how the overlap regions are defined by taking

intersections and unions of the three circles.

Figure 5-7 Calculating the overlap regions of a Venn diagram

Note

The definition of DoSetupOverlapRegions given in Listing 5-5 is
not complete. It omits calculations of the conclusion regions and of the
fields omitted from the MyGeometryRec data structure defined in
Listing 5-2. ◆

Now that the Venn Diagrammer application has defined the various regions in the Venn

diagram, it’s easy to draw in those regions. For instance, to shade the very center of the

diagram, you could call the FillRgn procedure, as follows:

FillRgn(gGeometry^^.premiseRgns[5], gEmptyPats[gEmptyIndex]^^);

This fills the specified region with the current emptiness pattern.

C H A P T E R 5

Drawing

Drawing Bit Images 99

Drawing Bit Images

The Venn Diagrammer application uses bit images to draw several parts of a document

window, including

■ the tool symbols at the top of a document window

■ the figure and mood symbols at the bottom of a window

■ the existence symbol within the Venn diagram itself

Figure 5-8 shows the location of these items.

Figure 5-8 Bit images in a document window

The standard way to draw a bit image is to read into memory the appropriate bit data

and then call the CopyBits routine to move the data into the desired position in the

destination window. The Venn Diagrammer application stores the bit data in resources of

type 'ICON'. Then it calls its own application-defined routine DoPlotIcon to move the

appropriate portion of the icon into a document window. Notice that none of the bit

images in a document window is actually as large as an icon (which is 32 pixels by 32

pixels). Venn Diagrammer uses this strategy because ResEdit provides a simple way to

create and edit 'ICON' resources.

C H A P T E R 5

Drawing

100 Drawing Bit Images

When Venn Diagrammer starts up, it reads the necessary icon resources into memory

using the code in Listing 5-6.

Listing 5-6 Reading 'ICON' resources into memory

{Get handles to tool icons.}

FOR count := 1 TO kNumTools DO

gToolsIcons[count] := GetResource('ICON', kToolsIconStart + (count - 1));

{Get handles to available existence-indicating icons.}

FOR count := 1 TO 4 DO

gExistIcons[count] := GetResource('ICON', kExistID + (count - 1));

{Get handles to mood icons.}

FOR count := 1 TO 4 DO

gMoodIcons[count] := GetResource('ICON', kMoodIconStart + (count - 1));

{Get handles to figure icons.}

FOR count := 1 TO 4 DO

gFigureIcons[count] := GetResource('ICON', kFigIconStart + (count - 1));

As you can see, the icons in each group are given contiguous resource IDs in the resource

file. The handles to each icon are stored in the appropriate array, accessed by global

variables.

IMPORTANT

As always, you should make certain that none of the returned handles
has the value NIL. For brevity, this check is not shown in Listing 5-6. ▲

To draw the tools area of a window, for example, Venn Diagrammer uses the code shown

in Listing 5-7.

Listing 5-7 Drawing the tools area of a document window

{Redraw the tool area in the window.}

FOR count := 1 TO kNumTools DO

BEGIN

SetRect(myRect, kToolWd * (count - 1), 0, kToolWd * count, kToolHt);

DoPlotIcon(myRect, gToolsIcons[count], myWindow, srcCopy);

END;

C H A P T E R 5

Drawing

Drawing Text 101

This code fragment calls the application-defined routine DoPlotIcon to draw the

appropriate portion of the icon in the specified rectangle. The DoPlotIcon procedure is

defined in Listing 5-8.

Listing 5-8 Drawing a portion of an icon

PROCEDURE DoPlotIcon (myRect: Rect; myIcon: Handle; myWindow: WindowPtr;

 myMode: Integer);

VAR

myBitMap: BitMap;

BEGIN

myBitMap.baseAddr := myIcon^;

myBitMap.rowBytes := 4;

myBitMap.bounds := myRect;

CopyBits(myBitMap, myWindow^.portBits, myRect, myRect, myMode, NIL);

END;

The DoPlotIcon procedure plots a portion of an icon by defining a bitmap that

includes the desired portion of the icon. (The desired portion of the icon is specified by

the myRect parameter.) Then DoPlotIcon calls the QuickDraw routine CopyBits to

copy the appropriate bits from their location in memory to the desired location in the

specified window.

The CopyBits procedure transfers a bit image between two existing bit maps. In this

case, the two bitmaps are the bitmapped portion of the icon and the bits in the

destination window (which are specified by the portBits field of the window’s

graphics port; see Listing 6-1 on page 112 for details). The myRect parameter specifies

the rectangle to copy; it’s passed to DoPlotIcon from the calling routine so that

DoPlotIcon can be used to plot different parts of the source icon. Finally, DoPlotIcon

is passed a transfer mode, which indicates how the bits are to be drawn in the existing

bit image of the destination rectangle. The constant srcCopy is passed in Listing 5-7 to

indicate that the source bitmap is to overwrite the destination bitmap.

Drawing Text

In addition to the many routines it provides for defining and drawing both simple and

complex graphic elements, QuickDraw also provides support for drawing text. You can

use QuickDraw to draw characters, words, or other textual elements at any desired size

and in any available font. It might seem odd that QuickDraw handles these operations,

until you realize that text, like graphics, permeates the Macintosh user interface.

Windows, menus, and some controls (for instance, buttons) have titles, which are

essential to the user’s understanding and manipulation of the application. As a result, it

makes sense to treat text fundamentally as a graphic object and to assign basic

C H A P T E R 5

Drawing

102 Drawing Text

text-drawing responsibilities to QuickDraw, which manages all graphics within the

Macintosh system software.

Although QuickDraw is ultimately responsible for drawing text on the screen, you might

need to use other Toolbox managers for other text-handling needs. For example, if you

want the user to be able to input and edit some small amount of text, you can use

TextEdit. TextEdit provides basic text-editing capabilities, such as cutting, copying,

pasting, and entering words and characters. TextEdit calls QuickDraw to display the

editable text. Similarly, if your application allows the user to display text in a variety of

fonts, you might need to use the Font Manager. The Font Manager supports QuickDraw

by providing the character bitmaps it needs to draw text in a specified font, size, and

style. For a complete description of TextEdit and the Font Manager, see Inside Macintosh:
Text.

The Venn Diagrammer application has very minimal text-handling requirements. It does

not support any text entry or editing by the user. Instead, it obtains all the text it needs

from resources stored in its resource fork. As a result, the Venn Diagrammer application

can use basic QuickDraw text-drawing routines to display its text. For example, the Venn

Diagrammer application draws the message in a window’s status area by calling the

application-defined routine DoStatusMesg, defined in Listing 5-9.

Listing 5-9 Retrieving a status message from a resource

PROCEDURE DoStatusMesg (myWindow: WindowPtr; myMessageID: Integer);

VAR

myText: Str255;

BEGIN

GetIndString(myText, rVennD, myMessageID);

DoStatusText(myWindow, myText);

END;

As you can see, the DoStatusMesg routine takes two parameters, a window pointer

specifying the window whose status area is to be filled in and an integer specifying the

index into an 'STR#' resource. Then DoStatusMesg retrieves the appropriate message

text and calls the application-defined procedure DoStatusText to print the message in

the window.

Venn Diagrammer calls DoStatusMesg whenever it needs to display a message in the

status area. For instance, when the user wants to determine if a syllogism is valid or not,

Venn Diagrammer checks the syllogism’s validity and then executes the code in

Listing 5-10.

C H A P T E R 5

Drawing

Drawing Text 103

Listing 5-10 Informing the user of an argument’s validity or invalidity

IF valid THEN

BEGIN

IF gShowNames THEN {show names of valid syllogisms?}

BEGIN

GetIndString(myMesg, rVennD, eArgIsValid);

DoGetName(myWindow, myName);

myMesg := concat(myMesg, ' (', myName, ')');

DoStatusText(myWindow, myMesg);

END

ELSE

DoStatusMesg(myWindow, eArgIsValid);

END

ELSE

DoStatusMesg(myWindow, eArgNotValid);

This code fragment illustrates why the Venn Diagrammer application defines two

different routines, DoStatusMesg and DoStatusText. The first, DoStatusMesg,

retrieves the desired message text from a resource and calls the second, DoStatusText,

to display it on the screen. The application also calls DoStatusText at other times, for

instance, when it needs to add something to the resource-based message string. In the

example shown in Listing 5-10, the application needs to get the name of the valid

syllogism, if the user has indicated that this should be done.

The DoStatusText procedure is defined in Listing 5-11. Its job is to display the text

passed as a parameter in the status area of the specified window.

Listing 5-11 Displaying a status message

PROCEDURE DoStatusText (myWindow: WindowPtr; myText: Str255);

VAR

myRect: Rect;

origSize: Integer;

origFont: Integer;

myHandle: MyDocRecHnd;

CONST

kSlop = 4;

kSize = 9;

kFont = applFont;

BEGIN

IF myWindow <> NIL THEN

BEGIN

SetPort(myWindow);

origSize := myWindow^.txSize; {remember original size and font}

C H A P T E R 5

Drawing

104 Drawing Text

origFont := myWindow^.txFont;

TextSize(kSize); {set desired size and font}

TextFont(kFont);

SetRect(myRect, kToolWd * kNumTools, 0,

 myWindow^.portRect.right, kToolHt);

EraseRect(myRect);

IF length(myText) > 0 THEN

BEGIN

MoveTo(myRect.left + kSlop, myRect.bottom - kSlop);

DrawString(myText);

END;

TextSize(origSize); {restore original size and font}

TextFont(origFont);

{Remember the last message printed in this window.}

myHandle := MyDocRecHnd(GetWRefCon(myWindow));

myHandle^^.statusText := myText;

END;

END;

The DoStatusText procedure first remembers the graphics port’s existing font and

size, so that it can change and then later restore those values. Then DoStatusText sets

the desired font and size of the status message by calling the QuickDraw routines

TextFont and TextSize. You should always use these routines—instead of changing

the fields of the grafPort record—whenever you want to change a graphics port’s font

and size.

IMPORTANT

Although you should never change the fields of a graphics port directly,
you sometimes need to read those fields directly. In Listing 5-11, the
original font and size are determined by reading the appropriate fields
(txFont and txSize) of the graphics port record. This is necessary
because QuickDraw doesn’t provide routines to read that information
from a graphics port record. ▲

Once it’s set the desired font and size, the DoStatusText procedure calls SetRect to

define the rectangle into which the text is to be drawn. Then, DoStatusText erases that

rectangle by calling EraseRect. If the string to be displayed consists of at least one

character, DoStatusText moves to the appropriate spot in the status area and calls the

QuickDraw routine DrawString, which draws the specified string at the current

drawing location in the window.

C H A P T E R 5

Drawing

Drawing Text 105

Finally, DoStatusText restores the graphics port’s original font and size, and then

copies the string just drawn into the statusText field of the window’s document

record. The Venn Diagrammer application needs to remember each window’s latest

status message so that it can redraw the message whenever necessary (for example, if the

message is covered up by another window and then later revealed).

Venn Diagrammer uses similar techniques for all other text drawing it requires.

Remember that this application supports only static text (that is, text that cannot be

edited) stored in the application’s resource fork. To allow the user to enter and edit some

text, you need to use more powerful text-handling tools. See Inside Macintosh: Text for

information about using system software services like the Font Manager and TextEdit to

handle editable text. See Inside Macintosh: Files for information on storing text and other

data in files. Finally, see the chapter “Dialog Manager” in Inside Macintosh: Macintosh
Toolbox Essentials for information on handling text entry and editing in a dialog box.

Contents 107

C H A P T E R 6

Contents

Windows

About Windows 109

Window Parts 110

Window Records 112

Window Types 113

Creating Windows 115

Handling Window Events 119

Mouse Events 119

Update Events 123

Activate Events 125

Closing Windows 128

C H A P T E R 6

About Windows 109

Windows

This chapter describes how your application can use the Window Manager to create and

manage windows. Windows delineate the space within which the user enters or views

information, and every Macintosh application that has a user interface should use

windows to communicate with the user. Any piece of information that your application

presents to the user should be displayed in a window. Similarly, any piece of information

that your application solicits from the user should involve the user performing

appropriate actions (such as typing or clicking) in a window.

There are two general kinds of windows: document windows and dialog boxes.

Document windows are used primarily to allow the user to enter and manipulate

information, such as text, graphics, or other data. Often, but not always, the information

in a document window can be stored in a file, from which the user can later retrieve it.

Dialog boxes are used for many other purposes, such as alerting the user of unusual

occurrences, soliciting information from the user, and displaying various application

settings or user preferences.

This chapter focuses on techniques for handling windows in general, with particular

emphasis on document windows. It shows how to

■ determine the type of a window

■ create and display windows

■ handle events in windows

■ close and remove windows

For specific information about dialog windows, see the chapter “Dialog Boxes” later in

this book. For a complete description of the capabilities of the Window Manager and for

code samples illustrating more advanced window-handling techniques, see the chapter

“Window Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

About Windows

A window is a user interface element that delimits an area on the screen in which the

user can enter or view information. Here “information” is intended quite broadly; for

example, an application that draws mazes and allows the user to trace a path through

the maze by moving the cursor can reasonably be thought of as displaying information

(the maze) and allowing the user to enter information (the desired path through the

maze). As a result, virtually any interaction with the user that happens outside the menu

bar and menus should occur within a window.

The system software provides a wide array of types of window to accommodate the

many uses they can have. Window types are distinguished by their appearance and

behavior. Some windows have title bars and others do not. Some windows can be moved

around on the screen by the user and others cannot. In your choice of a window type,

you should be guided by the behavior your application supports in that window.

C H A P T E R 6

Windows

110 About Windows

Note
You can, if necessary, define your own custom types of windows, with
an appearance and behavior unlike the windows provided by the
system software. For compatibility reasons, however, this practice is
generally discouraged. ◆

As indicated earlier in this chapter, the many types of windows are divided loosely into

document windows and dialog boxes. The distinction between windows and dialog

boxes is to some degree arbitrary, but in general, you use the Dialog Manager to create

and manage dialog boxes and the Window Manager to create and manage document

windows. The Dialog Manager essentially just provides a “front-end” to other Toolbox

managers, including the Window Manager, the Control Manager, the Event Manager,

and TextEdit. The Dialog Manager makes it very easy to create and handle user actions

in windows containing controls, text boxes, and other dialog items. However, because

dialog boxes are also windows, you might need to use some Window Manager routines

as well to manipulate dialog boxes. For example, you can hide a dialog box by calling

the HideWindow routine (there is no HideDialog routine).

When you are designing your application, you need to decide whether to use the Dialog

Manager or the Window Manager to create and manage any particular window. For

some types of windows, the decision is obvious. For document windows that can

contain variable amounts of data and therefore probably require scroll bars and a size

box, you’ll want to use the Window Manager. For simple windows that contain a

message and possibly a few buttons, you’ll probably want to use the Dialog Manager. As

a dialog box becomes more and more complex, however, you’ll want to consider using

the Window Manager and other Toolbox managers instead. The Window Manager

provides the greatest control over the appearance and behavior of a window. In

particular, any time you need to do moderately complex drawing in the window, you

should probably use the Window Manager (and QuickDraw) instead of the Dialog

Manager.

Note

For a more detailed list of factors that can effect the decision whether to
use the Dialog Manager or the Window Manager (and other Toolbox
managers) to manage a window, see the chapter “Dialog Manager” in
Inside Macintosh: Macintosh Toolbox Essentials. ◆

Window Parts
The Window Manager defines and supports a set of standard window elements through

which the user can manipulate windows. It’s important that your application follow the

standard conventions for drawing, moving, resizing, and closing windows. By

presenting the standard interface, you make experienced users instantly familiar with

many aspects of your application, allowing them to focus on learning its unique features.

The Venn Diagrammer application supports two kinds of windows, a single dialog box

for setting general preferences and an unlimited number of document windows for

evaluating categorical syllogisms. A sample document window is shown in Figure 6-1.

C H A P T E R 6

Windows

About Windows 111

Figure 6-1 A Venn diagram window

This window contains only two special elements defined by the Window Manager, a title

bar and a close box. The title bar displays the name of the window and indicates

whether it’s active or not. The Window Manager displays the title of the window in the

center of the title bar, in the system font and system font size. If the system font is in the

Roman script system, the title bar is 20 pixels high.

The close box offers the user a quick way to close a window. If the user clicks the close

box, your application should react exactly as if the user had chosen the Close command

from the File menu.

Note
Venn Diagrammer’s use of standard window elements is purposely
restricted to the title bar and close box. Your application’s windows
should include as many of the standard window elements as are
appropriate. ◆

The window shown in Figure 6-1 also contains a number of elements that are defined

and managed by the Venn Diagrammer application. Immediately under the title bar is a

row of five tools, which allow the user to manipulate the Venn diagram without leaving

the window. To the right of the tools is a status area, where the Venn Diagrammer

application displays information and other feedback to the user. In Figure 6-1, the status

area contains a message indicating that the syllogism under consideration is valid; the

status area also shows the traditional name of that valid syllogism (Ferio).

Underneath the tools area and the status area, the document window contains two sets

of overlapping circles, which show the Venn diagram for the syllogism’s premises and

conclusion. The user can alter the contents of any region of overlap by clicking in that

area. Shading indicates that the region is known to be empty; an X indicates that the

C H A P T E R 6

Windows

112 About Windows

region is known to contain something; the lack of either shading or an X indicates that

the contents of the region are unknown.

The user can alter the syllogism under consideration by changing the figure of the

syllogism and the mood of any of the three statements in the syllogism. Any changes in

the figure or mood are instantly reflected in the syllogism shown in the bottom center of

the window.

Window Records
You’ve already seen, in skeletal form at least, how to create a window by calling

NewWindow (see Listing 1-1 on page 3). When you call NewWindow, the Window

Manager creates in your application heap a new window record that contains

information about the new window. The Window Manager defines a window record

using the WindowRecord data structure, shown in Listing 6-1.

Listing 6-1 The WindowRecord data structure

TYPE WindowRecord =

RECORD

port: GrafPort; {window's graphics port}

windowKind: Integer; {class of the window}

visible: Boolean; {visibility}

hilited: Boolean; {highlighting}

goAwayFlag: Boolean; {presence of close box}

spareFlag: Boolean; {presence of zoom box}

strucRgn: RgnHandle; {handle to structure region}

contRgn: RgnHandle; {handle to content region}

updateRgn: RgnHandle; {handle to update region}

windowDefProc: Handle; {handle to window definition }

{ function}

dataHandle: Handle; {handle to window state }

{ data record}

titleHandle: StringHandle; {handle to window title}

titleWidth: Integer; {title width in pixels}

controlList: ControlHandle; {handle to control list}

nextWindow: WindowPeek; {pointer to next window }

{ record in window list}

windowPic: PicHandle; {handle to optional picture}

refCon: LongInt; {storage available to your }

{ application}

END;

C H A P T E R 6

Windows

About Windows 113

As you can see, a window record consists of numerous fields that contain information

about the window. The first field (port) contains the window’s graphics port, a drawing

environment with its own coordinate system. The graphics port in turn contains

information about that drawing environment, such as the location of the port on the

screen, the default size and font of any text that is to be drawn in the port, and so forth.

Because many of the operations you’ll perform on windows are in reality operations on

the window’s graphics port, the Window Manager defines the data type WindowPtr as

a pointer to the window’s graphics port.

TYPE

WindowPtr = GrafPtr;

For example, each time you want to draw in a window, you need to make sure that the

window is the current drawing port. To do so, you can simply pass the window pointer

to the QuickDraw routine SetPort.

SetPort(myWindow);

You can do this because a window pointer is simply a pointer to a graphics port, which

is the first field in a window record. Similarly, you can determine the location of the

window on the screen by inspecting the portRect field of the graphics port. Recall that

Listing 1-1 on page 3 centers the text within the window as follows:

WITH gWindow^.portRect DO {set the position of the pen}

MoveTo(((right - left) DIV 2) - (StringWidth(gString) DIV 2),

(bottom - top) DIV 2);

Usually you don’t need to access or directly modify fields in a window record. If you do

need to examine the fields of the window record (other than those contained in the

window’s graphics port), you can use the WindowPeek data type:

TYPE

WindowPeek = ^WindowRecord;

A WindowPeek data type is a pointer to a window record.

Note

Don’t get confused here. A window pointer is a pointer to the window’s
graphics port, not a pointer to the window record. The WindowPeek
data type is so called because it lets you “peek” into the fields of the
window record beyond the graphics port. ◆

Window Types
The windowKind field of a window record indicates the type of window that the

window record describes. Your application can, if necessary, read the value in that field

to determine how to handle a particular window.

C H A P T E R 6

Windows

114 About Windows

When the Window Manager creates a new window for a desk accessory, it places a

negative value (in particular, the reference ID of the desk accessory) in the windowKind

field of the window. In all other cases, the Window Manager puts one of two constants

into that field:

CONST

dialogKind = 2; {dialog or alert window}

userKind = 8; {window created by an application}

You can rely on this behavior to determine what kind of window a given window

pointer picks out. Listing 6-2 defines a function IsAppWindow that returns TRUE if the

application created the specified window by calling a Window Manager routine directly.

In the case of the Venn Diagrammer application, this means that the window is a

document window.

Listing 6-2 Determining if a window is a document window

FUNCTION IsAppWindow (myWindow: WindowPtr): Boolean;

BEGIN

IF myWindow = NIL THEN

IsAppWindow := FALSE

ELSE

IsAppWindow := WindowPeek(myWindow)^.windowKind = userKind;

END;

Notice that IsAppWindow coerces the window pointer myWindow to the type

WindowPeek before dereferencing it to examine the windowKind field.

You can define similar functions to identify dialog boxes and desk accessory windows.

Listing 6-3 defines a function IsDialogWindow that returns TRUE if your application

created the specified window by calling a Dialog Manager routine.

Listing 6-3 Determining if a window is a dialog box

FUNCTION IsDialogWindow (myWindow: WindowPtr): Boolean;

BEGIN

IF myWindow = NIL THEN

IsDialogWindow := FALSE

ELSE

IsDialogWindow := WindowPeek(myWindow)^.windowKind = dialogKind;

END;

Finally, Listing 6-4 defines a function IsDAccWindow that returns TRUE if the specified

window was created by a desk accessory.

C H A P T E R 6

Windows

Creating Windows 115

Listing 6-4 Determining if a window is a desk accessory window

FUNCTION IsDAccWindow (myWindow: WindowPtr): Boolean;

BEGIN

IF myWindow = NIL THEN

IsDAccWindow := FALSE

ELSE

IsDAccWindow := WindowPeek(myWindow)^.windowKind < 0;

END;

These three functions are used extensively throughout the code samples in the

remainder of this chapter.

Note

The IsDAccWindow function is provided to help maintain compatibility
with previous system software versions. When your application is
running in System 7, it receives events only for its own windows and for
windows belonging to desk accessories that were launched in its
partition. ◆

Creating Windows

The Venn Diagrammer application allows the user to have multiple document windows

(that is, multiple Venn diagram windows) on the desktop at the same time. Each

different document window probably displays a different syllogism. As a result, the

application needs some way to keep track of each window’s current settings.

A standard way to do this is to make use of the refCon field in the window record. The

refCon field is reserved specifically for use by applications, which can set the field

(using the SetWRefCon procedure) to any 4-byte value. Often, applications store a

handle to an application-defined data structure that describes the window. This data

structure is often known as a document record. Given the window pointer, you can

retrieve that handle by calling the GetWRefCon function.

The sample code in this book uses a document record of type MyDocRec (shown in

Listing 6-5) to store information about the current contents of a Venn diagram window.

Listing 6-5 The structure of a document record for the Venn Diagrammer application

TYPE MyDocRec = {information for a document window}

RECORD

figure: Integer; {the figure of the syllogism}

mood: ARRAY[1..3] OF Integer; {the moods of the statements}

terms: ARRAY[1..3] OF Str31; {the three terms}

statusText: Str255; {most recent status message}

C H A P T E R 6

Windows

116 Creating Windows

userSolution: MyDiagramState; {user's diagram state}

realSolution: MyDiagramState; {answer's diagram state}

isAnswerShowing: Boolean; {is the answer showing?}

isExistImport: Boolean; {stmts imply exists subject?}

needsAdjusting: Boolean; {diagram needs adjusting?}

END;

MyDocRecPtr = ^MyDocRec;

MyDocRecHnd = ^MyDocRecPtr;

As you can see, the document record used by the Venn Diagrammer application contains

fields that describe the current settings of the syllogism in the window, including the

figure of the syllogism, the mood of each statement in the syllogism, and the terms used

in those statements. The document record also contains fields that maintain information

about the current appearance of the window, such as the status message most recently

displayed in the window’s status area (statusText field) and a Boolean value that

indicates whether the answer is visible in the window (isAnswerShowing field). The

Venn Diagrammer application uses that Boolean value to determine how to fill in the

regions in the overlapping circles. If the value of isAnswerShowing is TRUE, the

application displays the correct answer (encoded in the realSolution field);

otherwise, the application displays the user’s current answer (encoded in the

userSolution field).

Note

The structure of the MyDiagramState data type is not shown in this
book. ◆

The MyDocRec data structure also contains two other fields containing Boolean values.

These specify whether the statements that make up the syllogism are to be interpreted as

having existential import or not, and whether the window needs to be checked for

automatic adjustment.

IMPORTANT

If a Venn diagram window contained TextEdit fields or controls (such as
radio buttons or scroll bars), the document record could be expanded to
include handles to those items. Also, if a file were associated with the
window, you’d want the document record to include information about
that file. In a nutshell, the document record can contain all relevant
information about the window that isn’t contained in the window
record. ▲

The Venn Diagrammer application creates a document record every time it creates a

document window, and it stores a handle to the document record in the refCon field of

the window record. Listing 6-6 shows the DoCreateWindow routine, which creates a

new document window. This function is called when the application is first launched

and whenever the user chooses the New command from the File menu.

C H A P T E R 6

Windows

Creating Windows 117

Listing 6-6 Creating a new Venn diagram window

FUNCTION DoCreateWindow: WindowPtr;

VAR

myPointer: Ptr;

myWindow: WindowPtr;

myHandle: MyDocRecHnd;

BEGIN

myPointer := NewPtr(sizeof(WindowRecord));

IF myPointer = NIL THEN

exit(DoCreateWindow);

myWindow := GetNewWindow(rVennD, myPointer, WindowPtr(-1));

IF myWindow <> NIL THEN

BEGIN

SetPort(myWindow);

myHandle := MyDocRecHnd(NewHandleClear(sizeof(MyDocRec)));

IF myHandle <> NIL THEN

BEGIN

HLockHi(Handle(myHandle)); {lock the data high in the heap}

SetWRefCon(myWindow, LongInt(myHandle));

{attach handle to window record}

DoSetWindowTitle(myWindow); {set the window title}

{Define initial window settings.}

WITH myHandle^^ DO

BEGIN

figure := 1;

mood[1] := 1;

mood[2] := 1;

mood[3] := 1;

isAnswerShowing := FALSE;

isExistImport := gGiveImport;

END;

DoGetRandomTerms(myWindow);

DoCalcAnswer(myWindow);

{Position the window and display it.}

DoPositionWindow(myWindow);

ShowWindow(myWindow);

END {IF myHandle <> NIL}

ELSE

C H A P T E R 6

Windows

118 Creating Windows

BEGIN {couldn't get a data record}

CloseWindow(myWindow);

DisposePtr(Ptr(myWindow));

myWindow := NIL; {so pass back NIL}

END;

END;

DoCreateWindow := myWindow;

END;

The DoCreateWindow function first attempts to allocate space in the heap for a window

record by calling the Memory Manager’s NewPtr function. If no space is available,

DoCreateWindow exits and returns NIL to indicate that no new window was created.

Otherwise, DoCreateWindow creates the new window, whose size and type are defined

in a window resource of type rVennD.

CONST

rVennD = 131; {resource ID of document window}

If the new window is successfully created, DoCreateWindow next tries to allocate space

for a document record. Once again, if the space isn’t available, DoCreateWindow takes

care to dispose of the new window and return NIL to the calling routine. Otherwise,

DoCreateWindow locks the handle to the document record high in the heap and

attaches the document record to the window record by calling SetWRefCon.

Note

The document record data is locked at the top of the heap to help
prevent heap fragmentation. See the chapter “Introduction to Memory
Management” in Inside Macintosh: Memory for a discussion of when you
need to lock data in the heap. ◆

The DoCreateWindow function next sets up the window’s title (by calling the

application-defined procedure DoSetWindowTitle) and initializes some of the fields in

the document record. Then DoCreateWindow calls two further application-defined

procedures (DoGetRandomTerms and DoCalcAnswer) to initialize the terms field and

the realSolution field of the document record. (As for the userSolution field, the

NewHandleClear function, which sets all bytes in the block to 0, automatically

initializes it to encode an empty diagram, according to a clever scheme.)

The application-defined procedure DoPositionWindow sets the original position of the

new window according to the user’s expectations and good human interface design.

Then DoCreateWindow calls the Window Manager procedure ShowWindow to display

the window. The ShowWindow procedure generates and update event for the newly

displayed window, thereby causing the Venn Diagrammer application to draw the

content region of the window.

C H A P T E R 6

Windows

Handling Window Events 119

Note
The procedure DoPositionWindow is not defined in this book. For a
discussion of how to determine the position of a new window, see the
chapter “Window Manager” in Inside Macintosh: Macintosh Toolbox
Essentials. ◆

Handling Window Events

Your application must be prepared to handle two kinds of window-related events:

■ mouse and keyboard events in your application’s windows, which are reported by the
Event Manager in direct response to user actions

■ activate and update events, which are generated by the Window Manager and the
Event Manager as an indirect result of user actions

Because Venn Diagrammer does not support text entry, the only relevant keyboard

events it needs to handle are keyboard equivalents of menu commands. See the chapter

“Menus” in this book for a description of how to handle those events.

This section shows how to handle mouse events as well as update and activate events.

Mouse Events
When your application is active, it receives notice of all mouse-down events in the menu

bar, in one of its windows, or in any windows belonging to desk accessories that were

launched in its partition. When it receives a mouse-down event, your application should

call FindWindow to determine where the cursor was when the mouse button was

pressed. The FindWindow function returns a part code that indicates the location of the

cursor. These constants define the available part codes:

CONST inDesk = 0; {none of the following}

inMenuBar = 1; {in menu bar}

inSysWindow = 2; {in desk accessory window}

inContent = 3; {anywhere in content region except size }

{ box if window is active, }

{ anywhere including size box if window }

{ is inactive}

inDrag = 4; {in drag (title bar) region}

inGrow = 5; {in size box (active window only)}

inGoAway = 6; {in close box}

inZoomIn = 7; {in zoom box (window in standard state)}

inZoomOut = 8; {in zoom box (window in user state)}

C H A P T E R 6

Windows

120 Handling Window Events

In addition to returning a part code as its function result, FindWindow also returns in its

second parameter a pointer to a window, if the user presses the mouse button while the

cursor is in a window. Listing 6-7 show how the Venn Diagrammer application handles

mouse-down events.

Listing 6-7 Handling mouse-down events

PROCEDURE DoMouseDown (myEvent: EventRecord);

VAR

myPart: Integer;

myWindow: WindowPtr;

BEGIN

myPart := FindWindow(myEvent.where, myWindow);

CASE myPart OF

inMenuBar:

BEGIN

DoMenuAdjust;

DoMenuCommand(MenuSelect(myEvent.where));

END;

InSysWindow:

SystemClick(myEvent, myWindow);

inDrag:

DoDrag(myWindow, myEvent.where);

inGoAway:

DoGoAwayBox(myWindow, myEvent.where);

inContent:

BEGIN

IF myWindow <> FrontWindow THEN

SelectWindow(myWindow)

ELSE

DoContentClick(myWindow, myEvent);

END;

OTHERWISE

;

END;

END;

If the user clicks in the menu bar, DoMouseDown adjusts the menus and calls the

application-defined routine DoMenuCommand to handle whatever menu command the

user might choose. See the chapter “Menus” in this book for details on handling menu

choices.

The FindWindow function returns the part code inSysWindow only when the user

presses the mouse button while the cursor is in a window that belongs to a desk

C H A P T E R 6

Windows

Handling Window Events 121

accessory launched in your application’s partition. You can then call the SystemClick

procedure, passing it the event record and window pointer. The SystemClick

procedure makes sure that the event is handled by the appropriate desk accessory. For

more information about SystemClick, see the chapter “Event Manager” in Inside
Macintosh: Macintosh Toolbox Essentials.

If the user clicks in a window’s drag region (identified by the part code inDrag),

DoMouseDown calls the application-defined routine DoDrag, defined in Listing 6-8. The

DoDrag procedure calls the Window Manager procedure DragWindow, which displays

an outline of the window, moves the outline as long as the user continues to drag the

window, and calls MoveWindow to draw the window in its new location when the user

releases the mouse button.

Listing 6-8 Dragging a window

PROCEDURE DoDrag (myWindow: WindowPtr; mouseloc: Point);

VAR

dragBounds: Rect;

BEGIN

dragBounds := GetGrayRgn^^.rgnBBox;

DragWindow(myWindow, mouseloc, dragBounds);

END;

If the user clicks a window’s close box (identified by the part code inGoAway), you can

call an application-defined procedure to close that window. See “Closing Windows”

beginning on page 128 for a discussion of how to close windows.

Finally, the DoMouseDown procedure defined in Listing 6-7 handles all user clicks in a

window’s content region either by selecting the window if it isn’t already the frontmost

window or by calling the routine DoContentClick defined in Listing 6-9.

Listing 6-9 Handling clicks in a window’s content region

PROCEDURE DoContentClick (myWindow: WindowPtr; myEvent: EventRecord);

VAR

myRect: Rect; {temporary rectangle}

count: Integer;

BEGIN

IF NOT IsAppWindow(myWindow) THEN

exit(DoContentClick); {make sure it's a document window}

SetPort(myWindow); {set port to our window}

GlobalToLocal(myEvent.where);

{See if the click is in the tools area.}

C H A P T E R 6

Windows

122 Handling Window Events

SetRect(myRect, 0, 0, kToolWd * kNumTools, kToolHt);

IF PtInRect(myEvent.where, myRect) THEN

BEGIN {if so, determine which tool was clicked}

FOR count := 1 TO kNumTools DO

BEGIN

SetRect(myRect, (count - 1) * kToolWd, 0,

count * kToolWd, kToolHt);

IF PtInRect(myEvent.where, myRect) THEN

Leave; {we found the right tool, so stop looking}

END;

IF DoTrackRect(myWindow, myRect) THEN

DoMenuCommand(BitShift(mVennD, 16) +

((kNumTools + 1) - count)); {handle tools selections}

exit(DoContentClick);

END;

{See if the click is in the status area.}

SetRect(myRect, kToolWd * kNumTools, 0,

myWindow^.portRect.right, kToolHt);

IF PtInRect(myEvent.where, myRect) THEN

BEGIN

exit(DoContentClick);

END;

{The click must be in somewhere in the rest of the window.}

DoVennClick(myWindow, myEvent.where);

END;

The general strategy employed in the DoContentClick procedure is to check each part

of the content area that is meaningful to the application and determine whether the

mouse click occurred there. Then DoContentClick reacts appropriately.

After setting the current drawing port to the specified window, DoContentClick calls

the GlobalToLocal procedure to convert the mouse click location from global

coordinates to local coordinates. Then DoContentClick checks whether the click

occurred in the tools area of the window. If so, DoContentClick handles the tool

selection by invoking the corresponding menu command and then exiting.

If the mouse click was in the status area of a window, DoContentClick simply exits.

Otherwise, the user must have clicked somewhere in the content area below the tools

and status area. In that case, DoContentClick calls the application-defined function

DoVennClick to handle the event.

C H A P T E R 6

Windows

Handling Window Events 123

Note
The DoVennClick function is not defined in this book, but it’s quite
simple. It merely checks whether the click occurred in the figure icons,
mood icons, or some part of the overlapping circles and, if so, changes
the window’s document record accordingly and invalidates any affected
part of the screen. A portion of DoVennClick is shown in Listing
6-10. ◆

Update Events
The Event Manager sends your application an update event when part or all of your

window’s content region needs to be redrawn. Specifically, the Event Manager checks

each window’s update region every time your application calls WaitNextEvent and

generates an update event for every window whose update region is not empty.

The Window Manager typically triggers update events when the moving and relayering

of windows on the screen requires that one or more windows be redrawn. If the user

moves a window that covers part of an inactive window, for example, the Window

Manager first redraws the window frame. It then adds the newly exposed area to the

window’s update region, triggering an update event. In response, your application

updates the content region.

Note

Your application can receive update events when it is in either the
foreground or the background. In general, however, it doesn’t matter
whether your update routine is executed in the foreground or the
background. ◆

Your application can also trigger update events itself by manipulating the update region.

You can add areas to a window’s update region by calling the Window Manager

procedures InvalRect (to add a rectangle to the update region) and InvalRgn (to add

an arbitrary region to the update region). For example, when the Venn Diagrammer

application detects a mouse click in a figure icon, it reacts as shown in Listing 6-10.

Listing 6-10 Handling a click in a figure icon

FOR count := 1 TO 4 DO

BEGIN

IF PtInRect(myPoint, gFigureRects[count]) THEN

IF myHandle^^.figure <> count THEN {new rect differ from prev?}

BEGIN

InvalRect(gFigureRects[myHandle^^.figure]);

myHandle^^.figure := count;

InvalRect(gFigureRects[myHandle^^.figure]);

InvalRect(gTextBoxes[1]); {invalidate premises}

InvalRect(gTextBoxes[2]);

DoCalcAnswer(myWindow); {update the current answer}

C H A P T E R 6

Windows

124 Handling Window Events

DoStatusText(myWindow, ''); {remove any existing message}

END;

END;

Your general strategy should be to isolate all drawing that occurs in a document window

into your application’s update routine. Then, within any other routines, you redraw

parts of the window, whenever necessary, by invalidating those parts to add them to the

window’s update region. Listing 6-11 shows the update routine for Venn Diagrammer.

Listing 6-11 Handling update events

PROCEDURE DoUpdate (myWindow: WindowPtr);

VAR

myHandle: MyDocRecHnd;

myRect: Rect; {tool rectangle}

origPort: GrafPtr;

origPen: PenState;

count: Integer;

BEGIN

GetPort(origPort); {remember original drawing port}

SetPort(myWindow);

BeginUpdate(myWindow); {clear update region}

EraseRect(myWindow^.portRect);

IF IsAppWindow(myWindow) THEN

BEGIN

{Draw two lines separating tools area from work area.}

GetPenState(origPen); {remember original pen state}

PenNormal; {reset pen to normal state}

WITH myWindow^ DO

BEGIN

MoveTo(portRect.left, portRect.top + kToolHt);

Line(portRect.right, 0);

MoveTo(portRect.left, portRect.top + kToolHt + 2);

Line(portRect.right, 0);

END;

{Redraw the tools area in the window.}

FOR count := 1 TO kNumTools DO

BEGIN

SetRect(myRect, kToolWd * (count - 1), 0, kToolWd * count,

 kToolHt);

C H A P T E R 6

Windows

Handling Window Events 125

DoPlotIcon(myRect, gToolsIcons[count], myWindow, srcCopy);

END;

{Redraw the status area in the window.}

myHandle := MyDocRecHnd(GetWRefCon(myWindow));

DoStatusText(myWindow, myHandle^^.statusText);

{Draw the rest of the content region.}

DoVennDraw(myWindow);

SetPenState(origPen); {restore previous pen state}

END; {IF IsAppWindow}

EndUpdate(myWindow);

SetPort(origPort); {restore original drawing port}

END;

In response to an update event, your application calls BeginUpdate, draws the

window’s contents, and then calls EndUpdate. The BeginUpdate procedure limits the

visible region to the intersection of the visible region and the update region. Your

application can then update either the visible region or the entire content region—

because QuickDraw limits drawing to the visible region, only the parts of the window

that actually need updating are drawn. The BeginUpdate procedure also clears the

update region. After you’ve updated the window, you call EndUpdate to restore the

visible region in the graphics port to the full visible region.

As you can see in Listing 6-11, the Venn Diagrammer application draws the two lines

separating the upper portion of the window’s content region and redraws the tools

icons. Then it redraws the most recently displayed status message (which it has saved in

the window’s document record). Finally, DoUpdate calls the application-defined routine

DoVennDraw to draw the remainder of the content area (the overlapping circles, the

figure and mood icons, the term labels on the circles, and the syllogism itself).

Note

The DoVennDraw routine is not shown in this book, but you’ve already
seen portions of it in the chapter “Drawing” earlier in this book. ◆

Activate Events
The window in which the user is currently working is the active window. It’s always the

frontmost window on the desktop (unless your application supports “floating”

windows) and is easily identified by the “racing stripes” in the title bar.

Your application activates and deactivates windows in response to activate events,
which are generated by the Window Manager to inform your application that a window

is becoming active or inactive. Each activate event specifies the window to be changed

and the direction of the change (that is, whether it is to be activated or deactivated).

C H A P T E R 6

Windows

126 Handling Window Events

Your application also triggers activate events itself by calling the SelectWindow

procedure. When it receives a mouse-down event in an inactive window, for example,

your application calls SelectWindow, which brings the selected window to the front,

removes the highlighting from the previously active window, and adds highlighting to

the selected window (see Listing 6-7 on page 120). The SelectWindow procedure then

generates two activate events: the first one tells your application to deactivate the

previously active window; the second, to activate the newly active window.

When you receive the event for the previously active window, you need to do whatever

is appropriate to make the window’s contents appear inactive. Depending on the design

of you application, you might need to

■ hide the controls and size box

■ remove or alter any highlighting of selections in the window

When you receive the event for the newly active window, you

■ draw the controls and size box

■ restore the content area as necessary, adding the insertion point in its former location
and highlighting any previously highlighted selections

If the newly activated window also needs updating, your application also receives an

update event, as described in the previous section, “Update Events.”

Note

A switch to one of your application’s windows from a different
application is handled through suspend and resume events, not activate
events. See the chapter “Processes” in this book for a description of how
your application can handle suspend and resume events. ◆

Listing 6-12 illustrates the application-defined procedure DoActivate, which handles

activate events.

Listing 6-12 Handling window activations and deactivations

PROCEDURE DoActivate (myWindow: WindowPtr; myModifiers: Integer);

VAR

myState: Integer; {activation state}

myControl: ControlHandle;

BEGIN

myState := BAnd(myModifiers, activeFlag);

IF IsDialogWindow(myWindow) THEN

BEGIN

myControl := WindowPeek(myWindow)^.controlList;

WHILE myControl <> NIL DO

BEGIN

HiliteControl(myControl, myState + 255 mod 256);

C H A P T E R 6

Windows

Handling Window Events 127

myControl := myControl^^.nextControl;

END;

END;

END;

The DoActivate procedure is passed a window pointer and the modifiers field from

the event record corresponding to the activate event. The modifiers field contains a bit

(defined by the activeFlag constant) that indicates whether the event specifies

window activation or deactivation.

Notice that DoActivate does nothing to Venn Diagrammer’s document windows,

because those windows contain no controls, text, or other items whose visual state might

depend on the activation state. For document windows belonging to Venn Diagrammer,

the Window Manager handles all the necessary activation and deactivation.

Note

If your application’s document windows contain controls (such as scroll
bars), your application does need to activate them appropriately. For
more information, see the chapter “Control Manager” in Inside
Macintosh: Macintosh Toolbox Essentials. ◆

However, the Preferences dialog box supported by the Venn Diagrammer application

does contain controls, so the DoActivate procedure needs to inactivate those controls

when the window is deactivated and then reactivate them when the window is

activated. The DoActivate procedure checks the window’s control list and calls the

Control Manager procedure HiliteControl to perform the necessary activation or

deactivation. (The head of the window’s control list is stored in the controlList field

of the window record.) Figure 6-2 shows the Preferences dialog box in its inactive state.

Figure 6-2 An inactive window containing controls

C H A P T E R 6

Windows

128 Closing Windows

Closing Windows

The user closes a window either by clicking the window’s close box (in the upper-left

corner of the window) or by choosing the Close command from the File menu. To

determine which window to close, you’ll proceed in slightly different ways for these two

cases. When the user clicks a window’s close box, you can get a window pointer for that

window by calling the FindWindow function in response to the mouse-down event.

When the user chooses a menu command, however, you can’t do that; instead, you can

call the FrontWindow function to retrieve a pointer to the frontmost window on the

screen.

Note

You’ll also want to close any windows that might be on the desktop
when the user quits your application. You can do that by repeatedly
calling FrontWindow until it returns NIL. See Listing 9-4 on page 175. ◆

When the user presses the mouse button while the cursor is in the close box, your

application should call the TrackGoAway function to track mouse movement until the

user releases the button, as illustrated in Listing 6-13.

Listing 6-13 Handling clicks in the close box

PROCEDURE DoGoAwayBox (myWindow: WindowPtr; mouseloc: Point);

BEGIN

IF TrackGoAway(myWindow, mouseloc) THEN

DoCloseWindow(myWindow);

END;

If TrackGoAway returns FALSE, the user released the button while the cursor was

outside the close box, and your application should do nothing. If TrackGoAway returns

TRUE, your application should invoke its own procedure for closing a window.

Listing 6-14 illustrates an application-defined function that closes a window. Notice that

the effect of this function varies according to which kind of window it’s being asked to

close. If the user wants to close a dialog window, DoCloseWindow simply hides the

window; this strategy leaves the data structures associated with the dialog box in

memory, in expectation that the user might open the dialog box again. If the user wants

to close a desk accessory window, DoCloseWindow calls the Desk Manager routine

CloseDeskAcc to close that desk accessory.

C H A P T E R 6

Windows

Closing Windows 129

Listing 6-14 Closing a window

PROCEDURE DoCloseWindow (myWindow: WindowPtr);

BEGIN

IF myWindow <> NIL THEN

IF IsDialogWindow(myWindow) THEN {this is a dialog window}

HideWindow(myWindow)

ELSE IF IsDAccWindow(myWindow) THEN {this is a DA window}

CloseDeskAcc(WindowPeek(myWindow)^.windowKind)

ELSE IF IsAppWindow(myWindow) THEN {this is a document window}

DoCloseDocWindow(myWindow);

END;

If the window to be closed is a document window, DoCloseWindow calls the

application-defined procedure DoCloseDocWindow defined in Listing 6-15 to deallocate

the document record, close the window, and then deallocate the window record.

Listing 6-15 Closing a Venn diagram window

PROCEDURE DoCloseDocWindow (myWindow: WindowPtr);

VAR

myHandle: MyDocRecHnd;

BEGIN

IF myWindow = NIL THEN

exit(DoCloseDocWindow) {ignore NIL windows}

ELSE

BEGIN

myHandle := MyDocRecHnd(GetWRefCon(myWindow));

DisposeHandle(Handle(myHandle));

CloseWindow(myWindow); {close the window}

DisposePtr(Ptr(myWindow)); {and release the storage}

END;

END;

The DoCloseDocWindow procedure retrieves a handle to the document record from the

window record. Then it calls DisposeHandle to free the memory occupied by the

document record. Next DoCloseDocWindow closes the window by calling the Window

Manager procedure CloseWindow and deallocates the window record by calling

DisposePtr.

C H A P T E R 6

Windows

130 Closing Windows

Note
When you create a window, if you allow the Window Manager to
allocate memory for the window record (by passing NIL as the second
parameter to GetNewWindow), then you should call the
DisposeWindow procedure to close the window, instead of calling
CloseWindow and DisposePtr. ◆

Contents 131

C H A P T E R 7

Contents

Dialog Boxes

About Dialog Boxes 133

Using Modeless Dialog Boxes 137

Creating a Modeless Dialog Box 137

Setting Up Application-Defined Items 139

Handling User Actions in a Modeless Dialog Box 141

Using Modal Dialog Boxes 144

Displaying a Modal Dialog Box 145

Defining a Modal Dialog Filter Function 146

C H A P T E R 7

About Dialog Boxes 133

Dialog Boxes

This chapter describes how your application can use the Dialog Manager to create and

manage dialog boxes. You can use dialog boxes to alert the user to unusual situations or

to solicit information from the user. The Venn Diagrammer application uses one

modeless dialog box and two modal dialog boxes.

This chapter shows how to

■ create resources describing dialog boxes and the items in dialog boxes

■ open those resources to display a dialog box

■ define application-specific dialog items

■ handle events associated with both modeless and modal dialog boxes

Most Macintosh applications support a number of dialog boxes and provide more

complete event handling in those dialog boxes than is illustrated in this chapter. For

example, the dialog boxes supported by the Venn Diagrammer application do not

contain text fields. For a complete description of the capabilities of the Dialog Manager

and for code samples illustrating more advanced dialog handling, see the chapter

“Dialog Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

About Dialog Boxes

A dialog box is a window that’s used for some special, limited purpose. In the simplest

case, you can use a dialog box just to display information to the user. The information

might be a report of some error, a greeting, or a progress bar showing what percentage of

some operation has completed. Figure 7-1 shows a simple modal dialog box of this ilk;

this is the box Venn Diagrammer displays when the user chooses the About Venn

Diagrammer command from the Apple menu.

Figure 7-1 An About box

This kind of dialog box is said to be modal: it puts the user in the state or “mode” of

being able to work only inside the dialog box. To dismiss the dialog box, the user must

click one or the other of the two buttons.

C H A P T E R 7

Dialog Boxes

134 About Dialog Boxes

The system software distinguishes a special category of modal dialog boxes, called alert
boxes. You’ll use alert boxes to report errors or to give warnings to the user. Figure 7-2

shows an alert box. (Venn Diagrammer displays this alert box if it cannot read the

resources it uses to create menus; see Listing 8-1 on page 155.)

Figure 7-2 An alert box

Other types of dialog boxes both display information to the user and allow the user to

enter or change information. You might, for instance, use a dialog box of this sort in an

application that allows users to specify a word to be searched for. The Venn Diagrammer

application displays the modeless dialog shown in Figure 7-3 when the user chooses the

Preferences command from the Venn menu.

Figure 7-3 A Preferences dialog box

This modeless dialog box contains a button, four checkboxes, and eight radio buttons. It
also contains eight application-defined items—the icons used to show the available

existence symbols and emptiness patterns.

In contrast to the modal dialog boxes shown in Figure 7-1 and Figure 7-2, the dialog box

shown in Figure 7-3 is said to be modeless: the user can switch to another window or

perform other actions without dismissing the dialog box. The user doesn’t have to

change any preferences settings or click any buttons to be able to switch to a document

window or pull down a menu. Moreover, clicking a button in the modeless dialog box

C H A P T E R 7

Dialog Boxes

About Dialog Boxes 135

should not dismiss it; instead, the dialog box should remain on the desktop so that the

user can continue to see the information displayed in it or repeat any actions it permits.

IMPORTANT

To give users maximum control and minimum frustration, you should,
whenever possible, implement your dialog boxes as modeless dialog
boxes. ▲

The distinctive feature of dialog boxes—as opposed to windows—is that they are very

easy to create and manage. The Dialog Manager looks in dialog resources to find

descriptions of the dialog box and the items in it. Then the Dialog Manager draws the

dialog box and handles user actions in the dialog box accordingly. This can be especially

useful for managing dialog boxes that contain editable text fields. The Dialog Manager

calls TextEdit to handle all the standard text-editing operations such as cutting, pasting,

and copying.

To create a dialog box, you first need to define a dialog resource and a dialog item list.
The dialog resource specifies, among other things, the rectangle on the screen in which

the dialog box is drawn, a window definition ID indicating the type of dialog box to

draw, and a resource ID of the dialog item list. A dialog resource is of type 'DLOG'. See

Figure 3-2 on page 58 for the ResEdit form of a dialog resource and Listing 3-1 on

page 57 for the Rez form of the same dialog resource. Both of these correspond to the

dialog box in Figure 7-3.

One of the main pieces of information in a dialog resource is the resource ID of a dialog

item list (a resource of type 'DITL'). The item list specifies the items—such as buttons

and static text—to display in an alert box or a dialog box. (Once again, you can specify

an item list graphically using a utility like ResEdit or textually in the Rez resource

description language.) The Dialog Manager uses the item list both to draw the dialog

box and also to handle user actions in dialog boxes. It reports user actions to your

application by specifying the item number of the relevant item. An item’s number is

simply its rank in the item list. In Listing 7-1, the Venn Diagrammer application defines a

number of constants to keep track of the numbers of the items in its Preferences dialog

box.

Listing 7-1 Dialog item numbers

iEmpty1Radio = 1;

iEmpty2Radio = 2;

iEmpty3Radio = 3;

iEmpty4Radio = 4;

iEmpty1Icon = 5;

iEmpty2Icon = 6;

iEmpty3Icon = 7;

iEmpty4Icon = 8;

iExist1Radio = 9;

iExist2Radio = 10;

C H A P T E R 7

Dialog Boxes

136 About Dialog Boxes

iExist3Radio = 11;

iExist4Radio = 12;

iExist1Icon = 13;

iExist2Icon = 14;

iExist3Icon = 15;

iExist4Icon = 16;

iGetNextRandomly = 19;

iAutoAdjust = 20;

iShowSchoolNames = 21;

iUseExistImport = 22;

iSaveVennPrefs = 23;

Note

Notice that several item numbers (namely, 17 and 18) are missing from
this list. They are the item numbers of the two text labels “Emptiness
Pattern” and “Existence Symbol.” Venn Diagrammer ignores those item
numbers because clicking them has no effect. ◆

Dialog boxes can contain various sorts of items, such controls (buttons, checkboxes, and

radio buttons) and fields for entering and editing text. The Dialog Manager recognizes

these constants for dialog box items:

CONST

ctrlItem = 4; {add this to the next four constants}

btnCtrl = 0; {standard button control}

chkCtrl = 1; {standard checkbox control}

radCtrl = 2; {standard radio button}

resCtrl = 3; {control defined in a control resource}

helpItem = 1; {help balloons}

statText = 8; {static text}

editText = 16; {editable text}

iconItem = 32; {icon}

picItem = 64; {QuickDraw picture}

userItem = 0; {application-defined item}

Several Dialog Manager routines return these constants to your application. For instance,

you can get information about a particular dialog item by calling the GetDialogItem

routine:

GetDialogItem(myDialog, itemNum, myType, myHand, myRect);

Suppose, for example, that itemNum has the value specified by the constant

iSaveVennPrefs. Then on return from the procedure call, myType will contain the

value ctrlItem+btnCtrl, indicating that the specified item is a standard button

control.

C H A P T E R 7

Dialog Boxes

Using Modeless Dialog Boxes 137

As you can see, a dialog box can contain standard user interface elements like buttons,

checkboxes, icons, and even arbitrary pictures. If you need to include other kinds of

elements in a dialog box, you can create application-defined items. Because the Dialog

Manager uses the constant userItem to designate these items, they’re often called user
items. The Venn Diagrammer application employs eight user items in the Preferences

dialog box, to draw the four emptiness patterns and the four existence symbols.

When you use any application-defined user items in a dialog box, your application

needs to tell the Dialog Manager how to draw the items and what to do in response to

user selections of those items. See “Setting Up Application-Defined Items” beginning on

page 139 for instructions on implementing user items in a dialog box.

Note

Most dialog boxes don’t need to contain user items. The Venn
Diagrammer application uses them because it needs to draw bit images
(not entire icons) in the dialog box. ◆

Using Modeless Dialog Boxes

To display a modeless dialog box, you can create the dialog box by calling

GetNewDialog. Then you can respond to user actions in the dialog box by intercepting

dialog-related events in your main event loop and handling those events. The Dialog

Manager calls the Control Manager to draw any controls you’ve put in the dialog box

and handle user actions in them. If the dialog box contains any application-defined user

items, you need to provide the Dialog Manager with a drawing procedure so that it

knows how to draw the items. You also need to handle user actions for any such

application-defined items yourself.

Creating a Modeless Dialog Box
You can create a modeless dialog box by calling GetNewDialog and passing it the

resource ID of an appropriate 'DLOG' resource. The Venn Diagrammer application

supports only one modeless dialog box, in which the user can set various application

preferences. Venn Diagrammer displays that dialog box after the user chooses the

Preferences command from the Venn menu.

iGetVennPrefs:

DoModelessDialog(rVennDPrefsDial, gPrefsDialog);

As you can see, Venn Diagrammer simply calls the application-defined procedure

DoModelessDialog, passing it a resource ID specifying the dialog box to open and a

global variable in which to return the dialog pointer created by GetNewDialog.

Listing 7-2 defines the DoModelessDialog procedure.

C H A P T E R 7

Dialog Boxes

138 Using Modeless Dialog Boxes

Listing 7-2 Creating a modeless dialog box

PROCEDURE DoModelessDialog (myKind: Integer; VAR myDialog: DialogPtr);

VAR

myPointer: Ptr;

BEGIN

IF myDialog = NIL THEN {the dialog box doesn't exist yet}

BEGIN

myPointer := NewPtr(sizeof(DialogRecord));

IF myPointer = NIL THEN

exit(DoModelessDialog);

myDialog := GetNewDialog(myKind, myPointer, WindowPtr(-1));

IF myDialog <> NIL THEN

BEGIN

DoSetupUserItems(myKind, myDialog); {set up user items}

DoSetupCtrlValues(myDialog); {set up initial values}

END;

END

ELSE

BEGIN

ShowWindow(myDialog);

SelectWindow(myDialog);

SetPort(myDialog);

END;

END;

The DoModelessDialog procedure first determines whether the specified dialog box

has already been created, by checking the value of the global variable passed to it. If the

variable contains any value other than NIL, the dialog box already exists (but is perhaps

hidden or obscured by other windows). If so, DoModelessDialog simply makes the

dialog box visible (by calling ShowWindow), makes it the active window (by calling

SelectWindow), and establishes it as the current graphics port (by calling SetPort).

If, however, the specified dialog box doesn’t exist yet, then DoModelessDialog

allocates memory for a new dialog record and (if successful) calls GetNewDialog,

passing it the appropriate resource ID. If GetNewDialog returns successfully (as

indicated by a returned dialog pointer whose value isn’t NIL), DoModelessDialog

then calls two application-defined routines, DoSetupUserItems and

DoSetupCtrlValues, to tell the Dialog Manager how draw the user items in the dialog

box and to set the correct initial values for the dialog box’s radio buttons and checkboxes.

C H A P T E R 7

Dialog Boxes

Using Modeless Dialog Boxes 139

Setting Up Application-Defined Items
Whenever a modeless dialog box contains application-defined user items, you need to

tell the Dialog Manager how to draw them. You do this by calling the Dialog Manager

procedure SetDialogItem for each application-defined item in the dialog box.

Listing 7-3 shows the DoSetupUserItems procedure called by DoModelessDialog

(defined in Listing 7-2).

Listing 7-3 Setting up application-defined dialog items

PROCEDURE DoSetupUserItems (myKind: Integer; VAR myDialog: DialogPtr);

VAR

myType: Integer;

myHand: Handle;

myRect: Rect;

count: Integer;

origPort: GrafPtr;

BEGIN

GetPort(origPort);

SetPort(myDialog);

CASE myKind OF

rVennDPrefsDial:

FOR count := 1 TO kVennPrefsItemCount DO

IF count IN [iExist1Icon..iExist4Icon,

iEmpty1Icon..iEmpty4Icon] THEN

BEGIN

GetDialogItem(myDialog, count, myType, myHand, myRect);

SetDialogItem(myDialog, count, myType, @DoUserItem, myRect);

END;

OTHERWISE

;

END;

SetPort(origPort);

END;

The DoSetupUserItems procedure simply selects the relevant application-defined

items, retrieves information about each item (by calling GetDialogItem), and then

calls SetDialogItem to associate a particular application-defined drawing procedure

with each item. As you can see, the drawing procedure (DoUserItem) is the same for

each user item in the Preferences dialog box. This is possible because the Dialog

C H A P T E R 7

Dialog Boxes

140 Using Modeless Dialog Boxes

Manager passes the drawing procedure the dialog pointer and item number when it

wants a particular item to be drawn. Listing 7-4 defines the Venn Diagrammer procedure

that draws user items.

Listing 7-4 Drawing application-defined dialog items

PROCEDURE DoUserItem (myDialog: DialogPtr; myItem: Integer);

VAR

myType: Integer;

myHand: Handle;

myRect: Rect;

origPort: GrafPtr;

BEGIN

GetPort(origPort);

SetPort(myDialog);

GetDialogItem(myDialog, myItem, myType, myHand, myRect);

IF myDialog = gPrefsDialog THEN

CASE myItem OF

iExist1Icon..iExist4Icon:

BEGIN

DoPlotIcon(myRect, GetIcon(kExistID + myItem - iExist1Icon),

myDialog, srcCopy);

END;

iEmpty1Icon..iEmpty4Icon:

BEGIN

DoPlotIcon(myRect, GetIcon(kEmptyID + myItem - iEmpty1Icon),

myDialog, srcCopy);

FrameRect(myRect);

END;

OTHERWISE

;

END; {CASE}

SetPort(origPort); {restore original port}

END;

The DoUserItem procedure is also fairly simple. It makes sure that the dialog pointer

passed to it picks out the Preferences dialog box. Then it calls the application-defined

procedure DoPlotIcon (defined in Listing 5-8 on page 101) to draw the appropriate

part of an icon in the item rectangle. If the emptiness patterns are being drawn,

DoUserItem also draws a box around the pattern (by calling FrameRect).

C H A P T E R 7

Dialog Boxes

Using Modeless Dialog Boxes 141

Handling User Actions in a Modeless Dialog Box
The Venn Diagrammer application calls its DoHandleDialogEvent function for each

event it retrieves from the Event Manager. Its strategy is to determine if the returned

event applies to a dialog box. If so, DoHandleDialogEvent handles the event and

returns TRUE to indicate that it did so; otherwise, DoHandleDialogEvent just returns

FALSE to indicate that it didn’t handle the event. Listing 7-5 defines

DoHandleDialogEvent. (See Listing 4-4 on page 77 to see when

DoHandleDialogEvent is called.)

Listing 7-5 Handling events in a modeless dialog box

FUNCTION DoHandleDialogEvent (myEvent: EventRecord): Boolean;

VAR

eventHandled: Boolean; {did we handle the event?}

myDialog: DialogPtr;

myItem: Integer;

BEGIN

eventHandled := FALSE;

IF FrontWindow <> NIL THEN

IF IsDialogEvent(myEvent) THEN

IF DialogSelect(myEvent, myDialog, myItem) THEN

BEGIN

eventHandled := TRUE;

SetPort(myDialog);

IF myDialog = gPrefsDialog THEN

BEGIN

CASE myItem OF

iEmpty1Radio..iEmpty4Radio:

gEmptyIndex := myItem;

iEmpty1Icon..iEmpty4Icon:

gEmptyIndex := myItem - 4;

iExist1Radio..iExist4Radio:

gExistIndex := myItem - iEmpty4Icon;

iExist1Icon..iExist4Icon:

gExistIndex := myItem - (iEmpty4Icon + 4);

iGetNextRandomly:

gStepRandom := NOT gStepRandom;

iAutoAdjust:

gAutoAdjust := NOT gAutoAdjust;

iShowSchoolNames:

gShowNames := NOT gShowNames;

iUseExistImport:

C H A P T E R 7

Dialog Boxes

142 Using Modeless Dialog Boxes

gGiveImport := NOT gGiveImport;

iSaveVennPrefs:

DoSavePrefs;

OTHERWISE

;

END;

DoSetupCtrlValues(myDialog); {update values}

END;

END;

DoHandleDialogEvent := eventHandled;

END;

The DoHandleDialogEvent function calls the Dialog Manager’s IsDialogEvent

function to determine whether at the time of the event the frontmost window is a dialog

box. If not, then DoHandleDialogEvent just exits and returns the value FALSE. If,

however, the event did occur while a dialog box was active, then the event might apply

to that dialog box. To determine whether it does apply, DoHandleDialogEvent calls

the Dialog Manager’s DialogSelect function, which handles most of the events

relating to a dialog box. For example, if the event is an update or activate event for the

dialog box, DialogSelect updates or activates the dialog box and returns FALSE (to

indicate that no further processing is required by the calling application).

If the event involves an enabled item in the dialog box, DialogSelect returns a

function result of TRUE. In the myItem parameter, it returns the item number of the item

selected by the user. In the myDialog parameter, it returns a pointer to the dialog record

for the dialog box where the event occurred. In all other cases, the DialogSelect

function returns FALSE. When DialogSelect returns TRUE, you should do whatever

is appropriate as a response to the event involving that item in that particular dialog box;

when it returns FALSE, you should do nothing.

The DoHandleDialogEvent function uses a very simple technique for handling user

selections of items in the Preferences dialog box. As you can see, it sets the appropriate

application global variables for clicks of the radio buttons, and it toggles the appropriate

global variables for clicks of the checkboxes. Then DoHandleDialogEvent calls the

application-defined procedure DoSetupCtrlValues to change the values of those

controls, turning the radio buttons and checkboxes off or on, as appropriate. Listing 7-6

gives the definition of DoSetupCtrlValues.

Listing 7-6 Setting the state of radio buttons and checkboxes

PROCEDURE DoSetupCtrlValues (myDialog: DialogPtr);

VAR

count: Integer;

myType: Integer;

C H A P T E R 7

Dialog Boxes

Using Modeless Dialog Boxes 143

myHand: Handle;

myRect: Rect;

origPort: GrafPtr;

BEGIN

IF myDialog = NIL THEN

exit(DoSetupCtrlValues);

GetPort(origPort); {save the current graphics port}

SetPort(myDialog); {always do this before drawing}

ShowWindow(myDialog);

IF myDialog = gPrefsDialog THEN

BEGIN

FOR count := 1 TO kVennPrefsItemCount DO

BEGIN

GetDialogItem(myDialog, count, myType, myHand, myRect);

IF myType = ctrlItem + radCtrl THEN

CASE count OF

iExist1Radio..iExist4Radio:

SetCtlValue(ControlHandle(myHand),

ORD(gExistIndex = count - (iExist1Radio - 1)));

iEmpty1Radio..iEmpty4Radio:

SetCtlValue(ControlHandle(myHand),

ORD(gEmptyIndex = count - (iEmpty1Radio - 1)));

OTHERWISE

;

END;

IF myType = ctrlItem + chkCtrl THEN

CASE count OF

iGetNextRandomly:

SetCtlValue(ControlHandle(myHand),

 ORD(gStepRandom = TRUE));

iShowSchoolNames:

SetCtlValue(ControlHandle(myHand),

 ORD(gShowNames = TRUE));

iUseExistImport:

SetCtlValue(ControlHandle(myHand),

 ORD(gGiveImport = TRUE));

iAutoAdjust:

SetCtlValue(ControlHandle(myHand),

 ORD(gAutoAdjust = TRUE));

OTHERWISE

;

C H A P T E R 7

Dialog Boxes

144 Using Modal Dialog Boxes

END;

END;

END;

SetPort(origPort); {restore the previous graphics port}

END;

The DoSetupCtrlValues procedure simply calls the Control Manager procedure

SetCtlValue to set the value of each control in the dialog box according to the value of

some global variable. This makes it easy to toggle checkboxes and to group radio buttons

in such a way that exactly one radio button in each group is on.

IMPORTANT

The strategy for handling dialog box events described in this section
might not be the best or most efficient strategy for your application. For
a more complete discussion of handling dialog box events, see the
chapter “Dialog Manager” in Inside Macintosh: Macintosh Toolbox
Essentials. ▲

Using Modal Dialog Boxes

Remember that a modal dialog box puts the user into the state or “mode” of being able

to work only inside the dialog box. The user cannot move the dialog box and can dismiss

it only by clicking its buttons (perhaps after supplying some necessary information).

Note

The Dialog Manager also provides movable modal dialog boxes; these
are modal dialog boxes that contain a title bar so that the user can drag
the dialog box. You should use movable modal dialog boxes whenever
the user might need to move a modal dialog box to see what it obscures
or whenever you want allow the user to switch to another application
while the dialog box is displayed. ◆

In general, it’s easier to create and handle simple modal dialog boxes than it is to create

and handle modeless dialog boxes. The reason is that the Dialog Manager provides

special routines that you can call to display alerts and other simple dialog boxes. The

Dialog Manager also provides the ModalDialog procedure, which you can call to

manage all user actions in modal dialog boxes.

IMPORTANT

Ease of implementation is not a sufficient reason for using modal dialog
boxes instead of modeless ones. You should avoid using modal dialog
boxes except when absolutely necessary. ▲

C H A P T E R 7

Dialog Boxes

Using Modal Dialog Boxes 145

Displaying a Modal Dialog Box
Listing 7-7 shows a standard way to display a modal dialog box. It defines the procedure

DoAboutBox, which is called after the user chooses the About Venn Diagrammer

command from the Apple menu.

Listing 7-7 Displaying a modal dialog box

PROCEDURE DoAboutBox (myWindow: WindowPtr);

VAR

myWindow: WindowPtr;

myDialog: DialogPtr;

myItem: Integer;

BEGIN

myWindow := FrontWindow;

IF myWindow <> NIL THEN

DoActivate(myWindow, 1 - activeFlag);

myDialog := GetNewDialog(rAboutDial, NIL, WindowPtr(-1));

IF myDialog <> NIL THEN

BEGIN

SetPort(myDialog);

DoDefaultButton(myDialog);

REPEAT

ModalDialog(@MyModalFilter, myItem);

UNTIL myItem = iOK;

DisposeDialog(myDialog);

SetPort(myWindow);

END;

END;

When you display a modal dialog box, you should first deactivate any existing front

window. The DoAboutBox procedure retrieves a window pointer to the front window

and passes that pointer to the application-defined activate routine DoActivate. Then

DoAboutBox calls GetNewDialog to open the dialog box specified by the resource ID

rAboutDial:

CONST

rAboutDial = 7000; {resource ID of About dialog}

If GetNewDialog returns a dialog pointer whose value is not NIL, then DoAboutBox

calls SetPort to establish the new dialog box as the current drawing port. Then it calls

the application-defined procedure DoDefaultButton (defined in Listing 7-8) to draw a

C H A P T E R 7

Dialog Boxes

146 Using Modal Dialog Boxes

thick border around the default button. This indicates that the user can dismiss the

dialog box by pressing the Return key or the Enter key.

Listing 7-8 Outlining the default button of a modal dialog box

PROCEDURE DoDefaultButton (myDialog: DialogPtr);

VAR

myType: Integer;

myHand: Handle;

myRect: Rect;

BEGIN

GetDialogItem(myDialog, iOK, myType, myHand, myRect);

DoOutlineControl(myHand);

END;

The DoDefaultButton procedure simply calls the application-defined procedure

DoOutlineControl to outline the dialog item whose item number is 1 (identified by

the constant iOK). See page 200 for a definition of DoOutlineControl.

At this point, the modal dialog box is displayed on the screen. The DoAboutBox

procedure loops indefinitely, repeatedly calling ModalDialog until the user clicks the

OK button. The ModalDialog procedure handles all mouse, keystroke, and update

events that occur inside the dialog box until an event involving an enabled dialog item

occurs. When that happens, ModalDialog exits and returns the dialog item number in

the second parameter. Your application can then do whatever is appropriate in response

to an event in that item. In DoAboutBox, ModalDialog is called repeatedly until a click

in the OK button occurs. At that time, the modal dialog is removed from the screen, and

DoAboutBox calls SetPort to reinstate the original drawing port.

Defining a Modal Dialog Filter Function
The actions of ModalDialog are guided by the modal dialog filter function whose

address is passed in its first parameter. If you pass NIL as the first parameter to the

ModalDialog procedure, you’ll get the standard event filtering provided by the Dialog

Manager. The standard event filter function returns TRUE and causes ModalDialog to

return item number 1 (the number of the default button) when the user presses the

Return or the Enter key.

For most modal dialog boxes, the standard modal dialog filter function is too simple.

Your application should define a modal dialog filter function that performs the following

tasks:

■ return TRUE and the item number for the default button if the user presses the Return
key or the Enter key

■ return TRUE and the item number for the Cancel button if the user presses the Escape
key or the Command-period combination

C H A P T E R 7

Dialog Boxes

Using Modal Dialog Boxes 147

■ allow background applications to receive update events and return FALSE when they
do

■ return FALSE for all other events that your event filter doesn’t handle

Listing 7-9 defines a modal dialog filter function that accomplishes these tasks. In

addition, the filter function MyModalFilter handles any disk-inserted events that

occur while the modal dialog box is displayed.

Listing 7-9 A modal dialog filter function

FUNCTION MyModalFilter (myDialog: DialogPtr; VAR myEvent: EventRecord;

VAR myItem: Integer): Boolean;

VAR

myType: Integer;

myHand: Handle;

myRect: Rect;

myKey: Char;

myIgnore: LongInt;

BEGIN

MyModalFilter := FALSE; {assume we don't handle the event}

CASE myEvent.what OF

updateEvt:

BEGIN

IF WindowPtr(myEvent.message) <> myDialog THEN

DoUpdate(WindowPtr(myEvent.message));

{update the window behind}

END;

keyDown, autoKey:

BEGIN

myKey := char(BAnd(myEvent.message, charCodeMask));

{if Return or Enter pressed, do default button}

IF (myKey = kReturn) OR (myKey = kEnter) THEN

BEGIN

GetDialogItem(myDialog, iOK, myType, myHand, myRect);

HiliteControl(ControlHandle(myHand), 1);

{make button appear to have been pressed}

Delay(kVisualDelay, myIgnore);

HiliteControl(ControlHandle(myHand), 0);

MyModalFilter := TRUE;

myItem := iOK;

END;

C H A P T E R 7

Dialog Boxes

148 Using Modal Dialog Boxes

{if Escape or Cmd-. pressed, do Cancel button}

IF (myKey = kEscape)

OR ((myKey = kPeriod)

AND (BAnd(myEvent.modifiers, CmdKey) <> 0)) THEN

BEGIN

GetDialogItem(myDialog, iCancel, myType, myHand, myRect);

HiliteControl(ControlHandle(myHand), 1);

{make button appear to have been pressed}

Delay(kVisualDelay, myIgnore);

HiliteControl(ControlHandle(myHand), 0);

MyModalFilter := TRUE;

myItem := iCancel;

END;

END;

diskEvt:

BEGIN

DoDiskEvent(myEvent);

MyModalFilter := TRUE; {show we've handled the event}

END;

OTHERWISE

;

END; {CASE}

END;

An interesting part of MyModalFilter is the way it intercepts key-down events and

translates them into button clicks. When, for instance, it detects that the Return key was

pressed, it calls GetDialogItem to retrieve a handle to the first item in the item list (by

convention, the OK button). Then MyModalFilter calls HiliteControl to invert the

state of the button, waits for a specified number of ticks, and then calls HiliteControl

once again to restore the button to its original state. Finally, it sets the function result and

the variable parameter myItem, thus informing the calling routine that the event was

handled.

Contents 149

C H A P T E R 8

Contents

Menus

About Menus 151

Creating Menus 152

Creating a Menu Resource 152

Creating a Menu Bar Resource 154

Setting Up the Menu Bar and Menus 154

Handling Menu Choices 156

Handling Keyboard Equivalents 160

Adjusting Menus 161

C H A P T E R 8

About Menus 151

Menus

This chapter describes how your application can use the Menu Manager to create and

manage menus. Menus provide a simple and standard method for the user to view or

choose from a list of commands and settings that your application provides. Every

Macintosh application that has a user interface should support pull-down menus (that is,

menus that the user “pulls down” by pressing the mouse button when the cursor is over

the menu title in the menu bar).

This chapter shows how to

■ create menu and menu bar resources

■ open those resources to display the menu bar

■ handle user clicks in the menu bar

■ handle user choices of menu items

■ handle keyboard equivalents of menu commands

■ enable and disable menu items

Most Macintosh applications provide more menu handling than is illustrated in this

chapter. For example, you might want to use pop-up menus in a window or dialog box.

For a complete description of the capabilities of the Menu Manager and for code samples

illustrating more advanced menu-handling techniques, see the chapter “Menu Manager”

in Inside Macintosh: Macintosh Toolbox Essentials.

About Menus

A menu is a user interface element that your application can create to allow the user to

view or choose an item from a list of commands and options that your application

provides. For example, the sample application Venn Diagrammer provides a menu

(shown in Figure 8-1) that contains a list of commands for manipulating Venn diagrams.

Figure 8-1 A typical pull-down menu

This kind of menu is known as a pull-down menu, because the user “pulls down” the

menu by clicking the menu title (the word “Venn” in the menu bar). A pull-down menu

always has associated with it one or more menu items, rectangles containing text and

other characteristics that identify a command that the user can choose to perform an

C H A P T E R 8

Menus

152 Creating Menus

action. The menu shown in Figure 8-1 contains six menu items and one divider (the gray

line used to separate the first five items from the last one). In addition, four of the menu

items in that menu have keyboard equivalents associated with them. The user can

invoke the menu command by pressing the appropriate combination of characters on the

keyboard. For example, the user can make the Preferences dialog box appear by pressing

the combination Command-Y.

Note

This chapter shows how to create and handle pull-down menus only.
The word “menu” should therefore be understood to mean “pull-down
menu.” ◆

The Menu Manager provides routines that allow you to create your application’s menu
bar and menus, and to handle user actions in the menu bar and in individual menus.

You’ll call these routines when you detect that a mouse-down event has occurred in the

menu bar or when you detect that the user has typed a keyboard equivalent of a menu

command. You’ll also call the Menu Manager to perform other operations on menus,

such as changing menu item text or enabling and disabling menu items.

All Macintosh applications should support at least three standard menus: the Apple

menu, the File menu, and the Edit menu. In addition, you’ll want to support other

menus that contain commands and options specific to your application. The Venn

Diagrammer application supports only one application-specific menu along with the

three standard menus.

Creating Menus

The easiest way to define menu titles and commands is to use a resource editor like

ResEdit to create resources describing your application’s menu bar and the individual

menus. It’s also possible to define your menu bar and menu items internally in your

application, but you can make your application significantly easier to localize by

isolating that information in resources.

Note

As you learned in the chapter “Resources,” you can also create resources
using the Rez resource-description language and a resource compiler.
This chapter shows how to use ResEdit to create menu-related
resources. ◆

Creating a Menu Resource
You can define the menu title and characteristics of each individual menu item in a

menu resource (a resource of type 'MENU'). Figure 8-2 shows the appearance of

ResEdit’s 'MENU' resource editor.

C H A P T E R 8

Menus

Creating Menus 153

Figure 8-2 Defining a 'MENU' resource

As you can see, the menu title is currently selected. ResEdit allows you to change the

menu title text or to designate this menu as the Apple menu. This window also lets you

set the menu as initially enabled or disabled. In most cases, you’ll want to have your

menus initially enabled. The Venn Diagrammer application, however, disables the Edit

menu because it does not support any text editing.

To edit the text of a menu command, you can click it. ResEdit highlights the selected

command and changes the controls in the right side of the window, as shown in

Figure 8-3.

Figure 8-3 Editing a menu command

You can use the controls in the right side of the window to change the menu item text,

the keyboard equivalent, the menu’s mark, and several other items. You can also

designate the menu item as initially enabled or disabled. Once again, you’ll probably

want most items to be initially enabled. You can disable and reenable menu items

C H A P T E R 8

Menus

154 Creating Menus

dynamically during your application’s execution; see “Handling Menu Choices”

beginning on page 156 for details.

Creating a Menu Bar Resource
You can define the order and resource IDs of the menus in your application in a menu
bar resource (a resource of type 'MBAR'). You should define your 'MBAR' resource in

such a way that the Apple menu is the first menu in the menu bar. You should define the

next two menus as the File and Edit menus, followed by any other menus that your

application uses. You do not need to define the Keyboard, Help, or Application menus in

your 'MBAR' resource; the Menu Manager automatically adds them to your

application’s menu bar if your application calls the GetNewMBar function and your

menu bar includes an Apple menu or if your application inserts the Apple menu into the

current menu list using the InsertMenu procedure.

You can use ResEdit to create an 'MBAR' resource. Figure 8-4 shows the 'MBAR'

resource window for the Venn Diagrammer application.

Figure 8-4 An 'MBAR' resource in ResEdit

An 'MBAR' resource is simply a list of the menu IDs, in the order you want the

corresponding menu titles to appear from left to right in the menu bar.

Setting Up the Menu Bar and Menus
One of the very first things you need to do when your application starts running is set

up your menu bar and menus. You can do this by calling the Menu Manager function

GetNewMBar, which reads a specified 'MBAR' resource from your application’s resource

C H A P T E R 8

Menus

Creating Menus 155

fork and inserts each menu described there into the menu bar. You can define a constant

that indicates which 'MBAR' resource to open.

CONST

rMenuBar = 128; {menu bar resource ID}

Listing 8-1 shows a standard way to call GetNewMBar.

Listing 8-1 Setting up the menu bar and menus

PROCEDURE DoSetupMenus;

VAR

menuBar: Handle;

BEGIN

menuBar := GetNewMBar(rMenuBar);

IF menuBar = NIL THEN

DoBadError(eCantFindMenus);

SetMenuBar(menuBar);

DisposeHandle(menuBar);

AppendResMenu(GetMenuHandle(mApple), 'DRVR');

DrawMenuBar;

END;

The routine DoSetupMenus creates the application’s menu bar by reading in the

definition from the 'MBAR' resource with resource ID rMenuBar. The GetNewMBar

function returns a handle to the menu bar information stored in that resource and in the

'MENU' resources whose IDs are contained in the 'MBAR' resource. Notice that

DoSetupMenus makes sure that the value of the returned handle isn’t NIL; if it is, you

shouldn’t continue.

Note

Checking that GetNewMBar returns handle with a non-NIL value is
probably overkill. It’s extremely unlikely that the Menu Manager will
have a problem reading your menu-related resources or finding enough
free memory to hold the menu list to which menuBar is a handle.
Nonetheless, it’s best to make sure, because passing AppendResMenu a
handle whose value is NIL is likely to cause your application to crash.
As a result, DoSetupMenus calls the application-defined routine
DoBadError (defined in Listing 9-5 on page 178) to alert the user of the
problem and terminate the application. If the application can’t even put
up its menu bar, there’s no point in continuing to run. (See Figure 7-2 on
page 134 for the alert box displayed if the menu resources can’t be
found.) ◆

C H A P T E R 8

Menus

156 Handling Menu Choices

If GetNewMBar returns a handle with a non-NIL value, then DoSetupMenus calls the

procedure SetMenuBar to install the individual menus into the menu bar. At that point,

you no longer need the handle and you can dispose of it (by calling the Memory

Manager routine DisposeHandle). Next DoSetupMenus calls the AppendResMenu

procedure to add the items in the Apple Menu Items folder to the Apple menu. Finally,

the DoSetupMenus procedure displays the menu bar by calling the DrawMenuBar

procedure.

Handling Menu Choices

Your application is informed of user menu choices in a slightly roundabout fashion.

First, your application receives a mouse-down event indicating that the user has clicked

in the menu bar. At that time, you should call the Menu Manager function MenuSelect

to determine which menu and menu item, if any, the user chose. When you call

MenuSelect, the Menu Manager pulls down the appropriate menu and tracks all

subsequent mouse movement in the menu. When the user releases the mouse button,

MenuSelect exits and returns to your application a long integer that indicates which

menu and item the user chose. The high-order word of that long integer contains the

menu number, and the low-order word contains the menu item number.

To coordinate the menu numbers and menu item numbers with the menus and menu

items as defined in your 'MBAR' and 'MENU' resources, you’ll probably want to define

a set of constants, as shown in Listing 8-2.

Listing 8-2 Defining menu numbers and menu item numbers

CONST

mApple = 128; {resource ID of Apple menu}

iAbout = 1; {our About... dialog}

mFile = 129; {resource ID of File menu}

iNew = 1;

iClose = 2;

iQuit = 4;

mEdit = 130; {resource ID of Edit menu}

iUndo = 1;

iCut = 3;

iCopy = 4;

iPaste = 5;

iClear = 6;

mVenn = 131; {resource ID of Venn menu}

C H A P T E R 8

Menus

Handling Menu Choices 157

iCheckVenn = 1;

iDoVenn = 2;

iClearVenn = 3;

iNextTask = 4;

iCheckArg = 5;

iGetVennPrefs = 7;

Note

The divider in a menu counts as a menu item, even though the user
can’t choose it. ◆

In general, you’ll define a routine like DoMenuCommand shown in Listing 8-3 to handle

all menu choices. Both your mouse-down event handler (Listing 6-9 on page 121) and

your key-down event handler (Listing 8-5 on page 160) call MenuSelect. It is passed

either the result of MenuSelect (for menu selections) or MenuKey (for keyboard

equivalents of menu selections).

Listing 8-3 Handling menu selections

PROCEDURE DoMenuCommand (menuAndItem: LongInt);

VAR

myMenuNum: Integer;

myItemNum: Integer;

myResult: Integer;

myDAName: Str255;

myWindow: WindowPtr;

BEGIN

myMenuNum := HiWord(menuAndItem);

myItemNum := LoWord(menuAndItem);

GetPort(myWindow);

CASE myMenuNum OF

mApple:

CASE myItemNum OF

iAbout:

BEGIN

DoAboutBox;

END;

OTHERWISE

BEGIN

GetMenuItemText(GetMenuHandle(mApple), myItemNum,

 myDAName);

myResult := OpenDeskAcc(myDAName);

END;

C H A P T E R 8

Menus

158 Handling Menu Choices

END;

mFile:

BEGIN

CASE myItemNum OF

iNew:

myWindow := DoCreateWindow;

iClose:

DoCloseWindow(FrontWindow);

iQuit:

DoQuit;

OTHERWISE

;

END;

END;

mEdit:

BEGIN

IF NOT SystemEdit(myItemNum - 1) THEN

;

END;

mVennD:

BEGIN

myWindow := FrontWindow;

CASE myItemNum OF

iCheckVenn:

DoVennCheck(myWindow);

iDoVenn:

DoVennAnswer(myWindow);

iClearVenn:

DoVennClear(myWindow);

iNextTask:

DoVennNext(myWindow);

iCheckArg:

DoVennAssess(myWindow);

iGetVennPrefs:

DoModelessDialog(rVennDPrefsDial, gPrefsDialog);

OTHERWISE

;

END;

END;

OTHERWISE

;

C H A P T E R 8

Menus

Handling Menu Choices 159

END;

HiliteMenu(0);

END;

The DoMenuCommand procedure is passed a long integer that encodes the menu number

and item number of the chosen item. As you can see, DoMenuCommand consists mainly

of a CASE statement that branches on the menu number. Each menu number, in turn,

consists mainly of a CASE statement that branches on the menu item number. In this

simple way, you can handle all menus and all menu items.

Most of the innermost branches just call application-defined routines to handle the

appropriate menu item choice. (For example, if the user chooses Quit from the File

menu, then DoMenuCommand calls the application-defined routine DoQuit.) The code

that handles choices in the Apple menu (Listing 8-4) is slightly different, however.

Listing 8-4 Handling Apple menu selections

iAbout:

BEGIN

DoAboutBox;

END;

OTHERWISE

BEGIN

GetMenuItemText(GetMenuHandle(mApple), myItemNum, myDAName);

myResult := OpenDeskAcc(myDAName);

END;

If the user chooses the command About Venn Diagrammer (picked out by the constant

iAbout), then DoMenuCommand calls the application-defined routine DoAboutBox (see

Listing 7-7 on page 145). Otherwise, the user must have chosen a desk accessory or other

item in the Apple menu. In that case, DoMenuCommand retrieves the name of the desk

accessory (by calling GetMenuItemText) and passes that name to the OpenDeskAcc

function.

Because Venn Diagrammer doesn’t support any text editing, it simply calls the system

software routine SystemEdit to handle user choices in the Edit menu. SystemEdit

checks whether the frontmost window belongs to a desk accessory; if so, it passes the

menu choice to the desk accessory and returns TRUE. The parameter to SystemEdit is

interpreted so you can pass the item number less 1 of the standard Edit menu commands.

Before exiting, DoMenuCommand calls the Menu Manager procedure HiliteMenu to

undo the menu title highlighting provided automatically by MenuSelect or MenuKey.

C H A P T E R 8

Menus

160 Handling Keyboard Equivalents

Handling Keyboard Equivalents

Keyboard equivalents of menu commands allow the user to invoke a menu command

from the keyboard. You can determine if the user chose the keyboard equivalent of a

menu command by examining the event record for a key-down event. If the user pressed

the Command key in combination with another character, you can then determine if this

combination maps to a known Command-key equivalent by calling the Menu Manager

function MenuKey. Listing 8-5 shows the Venn Diagrammer application’s DoKeyDown

procedure, which handles key-down events and determines if a keyboard equivalent

was pressed.

Listing 8-5 Handling Command-key equivalents

PROCEDURE DoKeyDown (myEvent: EventRecord);

VAR

myKey: char;

BEGIN

myKey := chr(BAnd(myEvent.message, charCodeMask));

IF (BAnd(myEvent.modifiers, CmdKey) <> 0) THEN

BEGIN

DoMenuAdjust;

DoMenuCommand(MenuKey(myKey));

END;

END;

The DoKeyDown procedure first extracts the pressed key from the message field of the

event record and then examines the modifiers field to determine whether the

Command key was also pressed. If so, the application first adjusts its menus and then

calls the DoMenuCommand procedure defined in Listing 8-3 on page 157. In turn,

DoKeyDown passes to DoMenuCommand the value returned from the MenuKey function.

If the key combination pressed by the user is not the keyboard equivalent of any

currently enabled menu item, then MenuKey sets the high-order word of its return value

to 0.

Note

The Venn Diagrammer application does not accept any text input from
the user. As a result, the DoKeyDown procedure shown in Listing 8-5
doesn’t need an ELSE clause to handle keypresses in which the
Command key is not held down. ◆

Several keyboard equivalents (listed in Table 8-1) are reserved for common commands in

the File and Edit menus. If your application supports these commands, you should

assign these equivalents to the specified commands. Otherwise, you should ignore these

keyboard equivalents.

C H A P T E R 8

Menus

Adjusting Menus 161

Table 8-1 Reserved keyboard equivalents

IMPORTANT

You should never assign the keyboard equivalents listed in Table 8-1 to
other menu commands. This helps ensure predictable behavior among
all applications. ▲

Adjusting Menus

At any given time during the execution of your application, it’s likely that some of the

commands in your menus will not be appropriate. For example, if the front window is a

dialog window, then any menu commands that manipulate only document windows

should be disabled. Similarly, if the desktop shows no windows belonging to your

application, then the Close command in the File menu should be disabled. When a menu

item is disabled, it is drawn in a dimmed text and is not highlighted when the cursor

passes over it. This disabling prevents the user from choosing those commands.

An easy way to achieve this effect is to call an application-defined routine that adjusts

the menus according to the current application context just before you call either

MenuSelect or MenuKey. Listing 8-6 shows the version of DoMenuAdjust used by the

Venn Diagrammer application.

Listing 8-6 Adjusting menus

PROCEDURE DoMenuAdjust;

VAR

myWindow: WindowPtr;

myMenu: MenuHandle;

count: Integer;

Keys Command Menu

-A Select All Edit

-C Copy Edit

-N New File

-O Open… File

-P Print… File

-Q Quit File

-S Save File

-V Paste Edit

-W Close File

-X Cut Edit

-Z Undo Edit

C H A P T E R 8

Menus

162 Adjusting Menus

BEGIN

myWindow := FrontWindow;

IF myWindow = NIL THEN

DisableMenuItem(GetMenuHandle(mFile), iClose)

ELSE

EnableMenuItem(GetMenuHandle(mFile), iClose);

myMenu := GetMenuHandle(mVennD);

IF IsAppWindow(myWindow) THEN

FOR count := 1 TO kNumTools DO

EnableMenuItem(myMenu, count)

ELSE

FOR count := 1 TO kNumTools DO

DisableMenuItem(myMenu, count);

IF IsDAccWindow(myWindow) THEN

EnableMenuItem(GetMenuHandle(mEdit), 0)

ELSE

DisableMenuItem(GetMenuHandle(mEdit), 0);

DrawMenuBar;

END;

The DoMenuAdjust procedure calls FrontWindow to get a pointer to the frontmost

window belonging to the Venn Diagrammer application. If there is no window

belonging to the Venn Diagrammer application, DoMenuAdjust disables the Close

menu command in the File menu. Conversely, if there is a window belonging to the

application, DoMenuAdjust enables the Close command.

If the front window is a document window, then DoMenuAdjust enables all the

document-specific commands in the Venn menu; otherwise, it disables all those

commands. (DoMenuAdjust retrieves the menu handle by calling GetMenuHandle and

passes that handle to EnableMenuItem or DisableMenuItem.)

You can disable or enable an entire menu by passing DisableMenuItem or

EnableMenuItem the value 0 in place of a menu item number. This is the strategy that

DoMenuAdjust follows for the Edit menu. Venn Diagrammer does no editing of its

own, so DoMenuAdjust makes certain to enable the Edit menu only when a desk

accessory window is frontmost. When you call DisableMenuItem or

EnableMenuItem in this way, however, you also need to call the Menu Manager

procedure DrawMenuBar to update the menu bar’s appearance.

Contents 163

C H A P T E R 9

Contents

Processes

About Processes 165

Specifying Processing Options 168

Handling Suspend and Resume Events 170

Handling Null Events 173

Quitting an Application 175

Handling Errors 176

Checking the Operating Environment 178

C H A P T E R 9

About Processes 165

Processes

Your application is usually only one of several applications that a user has open at one

time. Your application must therefore share the available system resources such as the

central processing unit (CPU) and the available random-access memory (RAM). The

Macintosh Operating System uses a very simple and elegant method for your

application to coordinate its actions with those of other open applications. The Process

Manager sends events, through the Event Manager, to your application informing it of

impending changes in your application’s processing status. Your application needs to

respond to those events in the appropriate way to ensure the smooth operation of all

open applications.

This chapter describes what you need to do to ensure that your application operates

smoothly in the Macintosh Operating System. It describes how your application is

launched and how the Operating System controls access to the CPU and other system

resources to create a cooperative multitasking environment in which your application

and any other open applications execute. This environment is managed primarily by the

Process Manager, which is responsible for launching processes, scheduling their use of

the available system resources, and handling their termination. This chapter shows how

to

■ indicate the desired size of your application’s memory partition

■ suspend your application’s execution when another application needs the CPU

■ resume execution when your application regains control of the CPU

■ terminate your application when the user quits or when a serious error occurs

■ determine what software and hardware features are available on a particular machine

For a complete description of the cooperative multitasking environment, see the chapter

“Process Manager” in Inside Macintosh: Processes. For a complete description of how to

handle suspend and resume events, see the chapter “Event Manager” in Inside Macintosh:
Macintosh Toolbox Essentials.

About Processes

The Macintosh Operating System, the Finder, and several other system software

components work together to provide a multitasking environment in which a user can

have multiple applications open at once and can switch between open applications as

desired. To run in this environment, however, your application must follow certain rules

governing its use of the available system resources. Because the smooth operation of all

applications depends on their cooperation, this environment is known as a cooperative
multitasking environment.

Note

The cooperative multitasking environment is available in system
software versions 7.0 and later, and when the MultiFinder option is
enabled in earlier system software versions. ◆

C H A P T E R 9

Processes

166 About Processes

Although a number of documents and applications can be open at the same time, only

one application is the active application. The active application is the application

currently interacting with the user; its icon appears at the right side of the menu bar. The

active application displays its menu bar and is responsible for highlighting the controls

of its frontmost window. In Figure 9-1, Venn Diagrammer is the active application.

Windows of other applications are visible on the desktop behind the frontmost window.

Figure 9-1 The desktop with several applications open

The Operating System schedules the processing of all applications and desk accessories,

known collectively as processes. When a user opens an application, the Operating

System loads the application code into memory and schedules the application to run at

the next available opportunity, usually when the current process relinquishes the CPU.

In most cases, the application runs immediately (or so it appears to the user).

When your application is first launched, it is the foreground process. Usually the

foreground process has control of the CPU and other system resources, but it can agree

to relinquish control of the CPU if there are no events (other than null events) pending

for it. A process that is open but that isn’t currently the foreground process is said to be a

background process.

C H A P T E R 9

Processes

About Processes 167

A background process can receive processing time when the foreground process makes

an event call (that is, calls WaitNextEvent or EventAvail) and there are no events

pending for that foreground process. The Process Manager sends a null event to the

background process, thereby informing it that it is now the current process and can

perform whatever background processing it desires. The background process should

make an event call periodically in order to relinquish the CPU and ensure a timely return

to foreground processing when necessary.

The CPU is available only to the current application, whether it is running in the

foreground or the background. The application can be interrupted only by hardware

interrupts, which are transparent to the application. However, to give processing time to

background applications and to allow the user to interact with your application and

others, you must periodically call the Event Manager’s WaitNextEvent or

EventAvail function to allow your application to relinquish control of the CPU for

short periods. By using these event routines in your application, you allow the user to

interact not only with your application but also with other applications.

The method by which the available processing time is distributed among multiple

processes is known as context switching (or just switching). All switching occurs at a

well-defined time, namely, when an application calls WaitNextEvent. When a context

switch occurs, the Process Manager allocates processing time to a process other than the

one that had been receiving processing time. Two types of context switching may occur:

major and minor.

A major switch is a complete context switch: an application’s windows are moved from

the back to the front, or vice versa. In a major switch, two applications are involved, the

one being switched to the foreground and the one being switched to the background.

The Process Manager switches the A5 worlds of both applications, as well as the relevant

low-memory environments. If those applications can handle suspend and resume

events, they are so notified at the time that a major switch occurs.

A minor switch occurs when the Process Manager gives time to a background process

without bringing the background process to the front. The two processes involved in a

minor switch can be two background processes or a foreground process and a

background process. As in a major switch, the Process Manager switches the A5 worlds

and the low-memory environments of the two processes. However, the order of

windows is not switched, and neither process receives either suspend or resume events.

When the frontmost window is an alert box or modal dialog box, major switching does

not occur, although minor switching can. To determine whether major switching can

occur, the Operating System checks (among other things) whether the window definition

procedure of the frontmost window is dBoxProc, because the type dBoxProc is

specifically reserved for alert boxes and modal dialog boxes. (If the frontmost window is

a movable modal dialog box, major switching can still occur.)

Note

Your application can also be switched out if it calls a system software
routine that internally makes an event call. For example, when your
application calls ModalDialog, a minor switch can occur. ◆

C H A P T E R 9

Processes

168 Specifying Processing Options

Specifying Processing Options

To take full advantage of the cooperative multitasking environment provided by the

Macintosh system software, you need to inform the Operating System about the

processing capabilities and requirements of your application. You need to indicate, for

example, the partition size your application needs in order to execute most effectively.

You also need to indicate whether your application can do any processing while it is in

the background. If it cannot do any background processing, there’s no use in having the

Process Manager give your application access to the CPU while it’s in the background.

You specify these and other processing options to the Operating System by including in

your application’s resource fork a resource of type 'SIZE', known as its size resource.
The size resource contains several long integers and many flag bits, which together give

the Process Manager the information it needs to launch your application and control its

processing.

IMPORTANT

Every application executing in system software version 7.0 and later, as
well as every application executing in system software version 6.0 with
MultiFinder, should contain a size resource. ▲

A 'SIZE' resource consists of a 16-bit flags field, followed by two 32-bit size fields. The

flags field specifies operating characteristics of your application, and the size fields

indicate the minimum and preferred partition sizes for your application. The minimum
partition size is the actual limit below which your application will not run. The

preferred partition size is the memory size at which your application can run most

effectively. The Operating System attempts to secure this preferred amount of memory

when your application is launched. If that amount of memory is unavailable, your

application is placed into the largest contiguous block available, provided that it is larger

than the specified minimum size.

Note

If the amount of available memory is between the minimum and the
preferred sizes, the Finder displays a dialog box asking if the user wants
to run the application using the amount of memory available. If your
application does not have a 'SIZE' resource, it is assigned a default
partition size of 512 KB, and the Process Manager uses a default value of
FALSE for all specifications normally defined by constants in the flags
field. ◆

When you define a 'SIZE' resource, you should give it a resource ID of –1. A user can

modify the preferred size in the Finder’s information window for your application. If the

user does alter the partition size, the Operating System creates a new 'SIZE' resource

having a resource ID of 0 in your application’s resource fork. At application launch time,

the Process Manager looks for a 'SIZE' resource with ID 0; if this resource is not found,

the Process Manager uses your original 'SIZE' resource (with ID –1). This new 'SIZE'

resource is also created when the user modifies any of the other settings in the resource.

C H A P T E R 9

Processes

Specifying Processing Options 169

Listing 9-1 shows the Rez input for a sample 'SIZE' resource.

Listing 9-1 The Rez input for a sample 'SIZE' resource

resource 'SIZE' (-1) {

reserved, /*reserved*/

acceptSuspendResumeEvents, /*accepts suspend and resume events*/

reserved, /*reserved*/

cannotBackground, /*can't use background null events*/

doesActivateOnFGSwitch, /*activates own windows in */

/* response to OS events*/

backgroundAndForeground, /*application has a user interface*/

dontGetFrontClicks, /*don't return mouse events */

/* in front window on resume*/

ignoreAppDiedEvents, /*doesn’t want app-died events*/

is32BitCompatible, /*works with 24- or 32-bit addr*/

notHighLevelEventAware, /*can't use high-level events*/

onlyLocalHLEvents, /*can't use remote high-level events*/

notStationeryAware, /*can't use stationery documents*/

dontUseTextEditServices, /*can't use inline input services*/

reserved, /*reserved*/

reserved, /*reserved*/

reserved, /*reserved*/

kPrefSize * 1024, /*preferred memory size*/

kMinSize * 1024 /*minimum memory size*/

};

The 'SIZE' resource specification in Listing 9-1 indicates, among other things, that the

application accepts suspend and resume events, does no processing in the background,

activates or deactivates any windows as necessary in response to operating-system

events, has a user interface, and doesn’t want to receive any mouse event associated with

a resume event that was caused by the user clicking in the application’s front window. In

this example, the Rez input file must define values for the constants kPrefSize and

kMinSize; for example, if kPrefSize is set to 50, the preferred partition size is 50 KB.

Note

See the chapter “Event Manager” in Inside Macintosh: Macintosh Toolbox
Essentials for a more complete description of the 'SIZE' resource. ◆

The numbers you specify as your application’s preferred and minimum partition sizes

depend on the particular memory requirements of your application. Your application’s

memory requirements depend in turn on the size of your application’s A5 world, heap,

and stack. (See the chapter “Memory” earlier in this book for details about these areas of

your application’s partition.)

C H A P T E R 9

Processes

170 Handling Suspend and Resume Events

You can usually make a fairly reliable estimate of the size of your application’s A5 world

by determining the size of your application’s global variables and its jump table (whose

size you can determine by looking at the size of your compiled application’s 'CODE'

resource with ID 0). You can also make a good guess about the size of your application’s

static heap objects—objects that are always present during the execution of your

application (for example, code segments, Toolbox data structures for window records,

and so on).

It’s a little bit more work to determine the amount of space you’ll need to reserve for

dynamic heap objects. These include objects created on a per-document basis (which

may vary in size proportionally with the document itself) and objects required for

specific commands or functions. Perhaps the best advice to follow in determining your

application’s minimum and preferred partition sizes is to experiment with reasonable

values and make sure that there is always enough memory to meet reasonable requests

from the user. You can also use tools such as MacsBug’s heap-exploring commands to

help empirically determine your application’s dynamic memory requirements.

Handling Suspend and Resume Events

Your application receives suspend and resume events as a result of changes in its

processing status. When your application is in the foreground and the Process Manager

wants to switch it into the background, the Process Manager sends it a suspend event.
This is a signal to your application to prepare to be switched out. Your application isn’t

actually switched out immediately. Instead, the Process Manager gives your application

a chance to handle the suspend event. Your application is switched out at the next event

call it makes. Similarly, the application that is about to be switched into the foreground is

sent a resume event once it’s actually switched. The resume event is a signal to that

application that it can resume normal foreground processing.

Upon receiving a suspend event, your application should deactivate the front window,

remove the highlighting from any selections, and hide any floating windows. Your

application should also convert any private scrap into the global scrap, if necessary. If

your application shows a window that displays the Clipboard contents, you should hide

this window also, because the user might change the contents of the Clipboard before

returning to your application. Your application can also do anything else necessary to get

ready for a major switch. Then your application should call WaitNextEvent to

relinquish the processor and allow the Operating System to schedule other processes for

execution.

C H A P T E R 9

Processes

Handling Suspend and Resume Events 171

Upon receiving a resume event, your application should activate the front window and

restore any windows to the state the user left them in at the time of the previous suspend

event. For example, your application should show scroll bars, restore any selections that

were previously in effect, and show any floating windows. Your application should copy

the contents of the Clipboard and convert the data back to its private scrap, if necessary.

If your application shows a window that displays the Clipboard contents, you can

update the contents of the window after reading in the scrap. Your application can then

resume interacting with the user.

Responding to a suspend or resume event usually involves activating or deactivating

windows. If you set the acceptSuspendResumeEvents flag and the

doesActivateOnFGSwitch flag in your application’s 'SIZE' resource, your

application is responsible for activating or deactivating its windows when it handles

suspend and resume events.

Listing 9-2 defines the routine called by the Venn Diagrammer application to handle

operating-system events.

Listing 9-2 Handling operating-system events

PROCEDURE DoOSEvent (myEvent: EventRecord);

VAR

myWindow: WindowPtr;

BEGIN

CASE BSR(myEvent.message, 24) OF

mouseMovedMessage:

BEGIN

DoIdle(myEvent); {right now, do nothing}

END;

suspendResumeMessage:

BEGIN

myWindow := FrontWindow;

IF (BAnd(myEvent.message, resumeFlag) <> 0) THEN

DoActivate(myWindow, activeFlag) {activate window}

ELSE

DoActivate(myWindow, 1 - activeFlag); {deactivate window}

END;

OTHERWISE

;

END;

END;

C H A P T E R 9

Processes

172 Handling Suspend and Resume Events

The procedure DoOSEvent is called by the main event loop (Listing 4-4 on page 77)

whenever the what field of an event record contains the constant osEvt. You need to

inspect the message field of that event record to determine what kind of

operating-system event you’ve received. Table 9-1 shows the information contained in

the bits of the message field.

As you can see, you need to inspect bits 24–31 to determine what kind of

operating-system event you’ve received. Those eight bits contain one of two constants:

CONST

suspendResumeMessage = $01; {suspend or resume event}

mouseMovedMessage = $FA; {mouse-moved event}

If the event is a suspend or resume event, you then need to examine bit 0 to determine

whether that event is a suspend or resume event. (Bits 0 and 1 are meaningful only if bits

24–31 indicate that the event is a suspend or resume event.) You can use the

resumeFlag constant to determine whether the event is a suspend or resume event. If

the event is a resume event, you can use the convertClipboardFlag constant to

determine whether Clipboard conversion from the Clipboard to your application’s scrap

is required.

CONST

resumeFlag = 1; {resume event}

convertClipboardFlag = 2; {Clipboard conversion required}

The procedure DoOSEvent defined in Listing 9-2 first checks what kind of event it has

received. If the event is a mouse-moved event, DoOSEvent ignores the event, treating it

like a null event. If the event is a suspend or resume event, DoOSEvent then activates or

deactivates the front window, depending on whether the event is a resume or a suspend

event.

Table 9-1 The bits in the message field of an operating-system event record

Bit Contents

0 0 if a suspend event
1 if a resume event

1 0 if Clipboard conversion is not required
1 if Clipboard conversion is required

2–23 Reserved

24–31 suspendResumeMessage if a suspend or resume
event
mouseMovedMessage if a mouse-moved event

C H A P T E R 9

Processes

Handling Null Events 173

Note
Because the Venn Diagrammer application doesn’t support cutting or
pasting, it doesn’t need to worry about converting the Clipboard. ◆

Handling Null Events

Recall that the Event Manager sends your application a null event when there are no

other events to report. The WaitNextEvent function reports a null event by returning a

function result of FALSE and by setting the what field of the event record to nullEvt.

When your application receives a null event, it can perform idle processing. Your

application should do only minimal processing in response to a null event, so that other

processes can use the CPU and so that the foreground process (or your application,

when it is in the foreground) can respond promptly to the user. For example, if your

application is in the foreground when it receives a null event, you can make the insertion

point blink in the active window (if your application supports text entry).

If your application receives a null event in the background, it can perform tasks or do

other processing while in the background. However, your application should not

perform any tasks that would slow down the responsiveness of the foreground process.

Your application also should not interact with the user if it is in the background.

Note

Remember that your application receives null events while it is in the
background only if you’ve set the canBackground flag in your
application’s 'SIZE' resource. If you don’t want your application to
receive null events when it is in the background, you should set the
cannotBackground flag. ◆

The Venn Diagrammer application uses null events in a somewhat interesting way.

Whenever the application receives a null event, it calls the application-defined procedure

DoIdle, which checks to see whether the user wants it to automatically adjust the Venn

diagram and whether the diagram might need adjusting. If both of these are true, then

DoIdle calls the application-defined procedure DoVennIdle to perform the automatic

adjustment. The DoIdle procedure is defined in Listing 9-3.

Listing 9-3 Handling null events

PROCEDURE DoIdle (myEvent: EventRecord);

VAR

myWindow: WindowPtr;

myHandle: MyDocRecHnd;

BEGIN

myWindow := FrontWindow;

IF IsAppWindow(myWindow) THEN

IF gAutoAdjust THEN

C H A P T E R 9

Processes

174 Handling Null Events

BEGIN

myHandle := MyDocRecHnd(GetWRefCon(myWindow));

IF myHandle^^.needsAdjusting THEN

DoVennIdle(myWindow);

END;

END;

The document record contains the field needsAdjusting, which is set to TRUE each

time the user clicks anywhere within the Venn diagram circles. If the user’s preference is

for automatic diagram adjustment, then DoIdle calls the application-defined procedure

DoVennIdle to adjust the diagram. Figure 9-2 shows the state of a diagram needing

adjustment, and Figure 9-3 shows the same diagram after DoVennIdle has adjusted

the diagram.

Note

The DoVennIdle procedure is not defined in this book. In addition to
determining whether and how to adjust the diagram, DoVennIdle
resets the needsAdjusting field of the document record to FALSE. ◆

Figure 9-2 A Venn diagram before automatic adjusting

C H A P T E R 9

Processes

Quitting an Application 175

Figure 9-3 A Venn diagram after automatic adjusting

Quitting an Application

Eventually the user will quit your application, usually by choosing Quit from the File

menu (or by pressing the usual keyboard equivalent, Command-Q). At that time, you

should close all windows, release any memory you still are holding, and exit your main

event loop. Listing 9-4 shows the DoQuit routine called by the Venn Diagrammer

application when the user chooses Quit from the File menu.

Listing 9-4 Quitting your application

PROCEDURE DoQuit;

VAR

myWindow: WindowPtr;

BEGIN

myWindow := FrontWindow; {close all windows}

WHILE myWindow <> NIL DO

BEGIN

DoUpdate(myWindow); {force redrawing window}

DoCloseWindow(myWindow);

myWindow := FrontWindow;

C H A P T E R 9

Processes

176 Handling Errors

END;

gDone := TRUE; {set flag to exit main event loop}

END;

The DoQuit procedure simply closes all windows belonging to the application and then

sets the application global variable gDone to indicate that the user has finished using the

application. Recall that the main event loop (Listing 4-4 on page 77) terminates when

gDone is TRUE.

Note

The Process Manager automatically deallocates your application
partition and closes all windows when your application terminates. As a
result, the Venn Diagrammer application could simply have set gDone
to TRUE in response to the Quit command. However, DoQuit illustrates
how to close all windows because your version of DoCloseWindow
might need to prompt the user to save any unsaved data in document
windows currently on the desktop. ◆

Handling Errors

Occasionally, a system software routine might be unable to perform the service you’ve

requested of it. You might, for instance, pass GetResource a resource specification that

doesn’t apply to any resource in any of the open resource files. Or, the user might have

opened so many document windows that there simply isn’t enough space in your

application’s heap to open another one. In these situations, you need to determine that

an error has occurred and react to it in some appropriate manner.

The system software has several ways of informing your application that a requested

service is not possible. Many functions return a result code that indicates whether the

function completed successfully, and if not, what the reason for failure was. These

functions return a result of type OSErr. Here’s an example:

myResult := FindFolder(kOnSystemDisk, kPreferencesFolderType,

 kDontCreateFolder, myVRefNum, myDirID);

IF myResult = noErr THEN

...

ELSE

...;

Other routines—mainly procedures and functions that return other types of results—

don’t return a result code directly. To find out whether these kinds of routines were

successful, you need to call an additional system software routine. For example, some

Resource Manager procedures don’t directly indicate if the resource operation was

successful or not. To find that out, you can call the ResError function. The

DoSavePrefs routine (defined in Listing 3-6 on page 66) uses this strategy to update a

preferences resource:

C H A P T E R 9

Processes

Handling Errors 177

RmveResource(myHandle);

IF ResError = noErr THEN

AddResource(myPrefData, kPrefResType, kPrefResID, myName);

IF ResError = noErr THEN

WriteResource(myPrefData);

Similarly, the Resource Manager routine Get1Resource returns a handle to the

specified resource data. If for some reason the resource cannot be opened, the function

returns a handle whose value is NIL. You can inspect the returned value to determine

whether it’s safe to proceed.

myHandle := Get1Resource(kPrefResType, kPrefResID);

IF myHandle <> NIL THEN

...;

You could also call ResError to determine if Get1Resource succeeded. In other

words, the following lines are equivalent to the preceding ones:

myHandle := Get1Resource(kPrefResType, kPrefResID);

IF ResError <> noErr THEN

...;

The Memory Manager provides the MemError function, which works much as

ResError does. For Memory Manager functions that return a value, you can either

inspect the returned value or call MemError to determine if the function completed

successfully.

This book has used a fairly simple strategy for detecting and reacting to the normal

kinds of problems. When calling a function that returns a pointer or handle, Venn

Diagrammer checks that the value of that pointer or handle isn’t NIL. If it is NIL, Venn

Diagrammer usually just skips any code that uses that pointer or handle.

IMPORTANT

Venn Diagrammer’s error-handling strategy is far too simple for most
applications, and it runs afoul of good human interface principles. For
example, if the DoCreateWindow function (defined in Listing 6-6 on
page 117) cannot allocate the memory it needs, it exits and returns a NIL
window pointer to the calling routine. The net result is that no new
window is created, in spite of the user’s desire to create one. At the very
least, DoCreateWindow should inform the user that a new window
could not be created because sufficient memory was not available. ▲

Occasionally, an application might run into some more serious problem during its

execution that renders further processing impossible or undesirable. For example, if the

Venn Diagrammer application isn’t able to allocate enough memory for the data

structure it uses to maintain information about a document window’s geometry, there’s

no point in continuing to run, because the application won’t be able to draw anything in

any document windows. In that case, the application should gracefully terminate its

own execution. (See Listing 5-3 on page 95.)

C H A P T E R 9

Processes

178 Checking the Operating Environment

To do this, the Venn Diagrammer application defines the DoBadError procedure and

calls it whenever there is a problem serious enough to warrant such drastic action. The

DoBadError procedure is defined in Listing 9-5.

Listing 9-5 Handling serious errors

PROCEDURE DoBadError (myError: Integer);

VAR

myItem: Integer;

myMessage: Str255;

BEGIN

SetCursor(arrow); {set arrow cursor}

GetIndString(myMessage, kErrorStrings, myError);

ParamText(myMessage, '', '', '');

myItem := Alert(rErrorAlert, NIL); {display message}

ExitToShell; {terminate execution}

END;

The application passes DoBadError an index into a resource of type 'STR#' that

contains messages indicating the types of serious errors. First DoBadError sets the

cursor to the standard arrow cursor (this step is necessary only if your application ever

changes the cursor). Then DoBadError retrieves the appropriate message from the

application’s resource fork and calls the Dialog Manager routine ParamText to

substitute the message into the alert box text. After that, DoBadError displays the alert

box by calling the Dialog Manager routine Alert. (See Figure 7-2 on page 134 for an

example of this alert box.) Finally, DoBadError calls the Process Manager procedure

ExitToShell to terminate the application immediately.

Checking the Operating Environment

Calling ExitToShell is the preferred way to terminate your application if for some

reason you don’t want to return to your main event loop. You might also want to call

DoBadError to terminate your application before you even get to the main event loop.

This might happen if your application requires system software routines that aren’t

available in all operating environments. In general, if your application uses any system

software routines that aren’t available in all operating environments, you need to make

sure that they are available in the current environment. Otherwise, your application will

crash.

For example, the Venn Diagrammer application uses the FindFolder function to find

the Preferences folder containing the application’s preferences file (see Listing 3-3 on

page 62). Because FindFolder was introduced in system software version 7.0, Venn

Diagrammer will crash if it calls FindFolder when running in an earlier system

software version.

C H A P T E R 9

Processes

Checking the Operating Environment 179

To avoid crashing in environments that don’t support the FindFolder function, the

Venn Diagrammer application makes sure that the function is available before calling it.

It calls the Gestalt function to see if FindFolder is present, as shown in Listing 9-6.

Listing 9-6 Checking that FindFolder is present

FUNCTION IsFindFolder: Boolean;

VAR

myResult: OSErr;

myFeature: LongInt;

BEGIN

IsFindFolder := FALSE; {assume it's not available}

myResult := Gestalt(gestaltFindFolderAttr, myFeature);

IF myResult = noErr THEN

IsFindFolder := BTST(myFeature, gestaltFindFolderPresent);

END;

The Gestalt function is part of the Gestalt Manager, which you can use to determine

what software and hardware features are available in the current operating environment.

When passed the gestaltFindFolderAttr selector code, the Gestalt function fills

in the long integer passed in its second parameter (myFeature) with a bit field that

encodes information about the features of the FindFolder function. Currently only one

bit is defined, specified using the constant gestaltFindFolderPresent. If that bit is

set, then FindFolder is present in the operating environment. The Venn Diagrammer

application calls IsFindFolder as follows (see Listing 3-3 on page 62):

IF IsFindFolder THEN

myResult := FindFolder(kOnSystemDisk, kPreferencesFolderType,

kDontCreateFolder, myVRefNum, myDirID);

Note

For complete details about using the Gestalt function to determine the
features of the current operating environment, see the chapter “Gestalt
Manager” in Inside Macintosh: Operating System Utilities. ◆

If FindFolder function isn’t available, Venn Diagrammer looks in the default directory

instead of in the Preferences folder for the user’s preferences file. This isn’t the best

strategy possible, but it’s good enough for a simple application like Venn Diagrammer.

More generally, however, you need to decide what the base system software

requirements of your application are and how you want to react if necessary services

aren’t available. In some cases, working around a problem isn’t so easy. In those cases,

informing the user that your software won’t run in the current system configuration and

then exiting is probably the right thing to do.

A second way to determine the availability of a particular system software routine is to

test directly for the existence of the routine by inspecting its trap number (a number that

identifies each system software routine), using the technique illustrated in Listing 9-7.

C H A P T E R 9

Processes

180 Checking the Operating Environment

You should use this method to test for the existence of routines not included in managers

about which Gestalt can report.

Listing 9-7 Determining whether a trap is available

FUNCTION NumToolboxTraps: Integer;

BEGIN

IF NGetTrapAddress(_InitGraf, ToolTrap) =

NGetTrapAddress($AA6E, ToolTrap) THEN

NumToolboxTraps := $200

ELSE

NumToolboxTraps := $400;

END;

FUNCTION GetTrapType (theTrap: Integer): TrapType;

CONST

TrapMask = $0800;

BEGIN

IF BAND(theTrap, TrapMask) > 0 THEN

GetTrapType := ToolTrap

ELSE

GetTrapType := OSTrap;

END;

FUNCTION TrapAvailable (theTrap: Integer): Boolean;

VAR

tType: TrapType;

BEGIN

tType := GetTrapType(theTrap);

IF tType = ToolTrap THEN

BEGIN

theTrap := BAND(theTrap, $07FF);

IF theTrap >= NumToolboxTraps THEN

theTrap := _Unimplemented;

END;

TrapAvailable := NGetTrapAddress(theTrap, tType) <>

NGetTrapAddress(_Unimplemented, ToolTrap);

END;

C H A P T E R 9

Processes

Checking the Operating Environment 181

Listing 9-8 shows how to use the TrapAvailable function defined in Listing 9-7 to

determine whether the WaitNextEvent function is available.

Listing 9-8 Checking for the availability of the WaitNextEvent function

FUNCTION WNEAvailable: Boolean;

CONST

_WaitNextEvent = $A860; {trap number of WaitNextEvent}

BEGIN

WNEAvailable := TrapAvailable(_WaitNextEvent);

END;

The NumToolboxTraps function relies on the fact that the InitGraf trap (trap number

$A86E) is always implemented. If the trap dispatch table is large enough (that is, has

more than $200 entries), then $AA6E always points to either _Unimplemented or

something else, but never to InitGraf. As a result, you can check the size of the trap

dispatch table by checking to see if the address of trap $A86E is the same as $AA6E.

After receiving the information about the size of the dispatch table, the TrapAvailable

function first checks to see if the trap to be tested has a trap number greater than the total

number of traps available on the machine. If so, it sets the theTrap variable to

_Unimplemented before testing it against the _Unimplemented trap. See the

discussion of the trap dispatch table utilities in Inside Macintosh: Operating System Utilities

for complete details on trap numbers and the trap dispatch table.

IMPORTANT

There’s one final twist in this story. Your software development system
might provide glue routines that mimic the operation of some system
software routines, thereby allowing you to call them in earlier system
software versions. (For instance, MPW versions 3.2 and later provide
glue that allows you to call FindFolder in system software versions
prior to 7.0.) However, you cannot in general use Gestalt or the
technique shown in Listing 9-7 to test for the availability of routines
provided as glue. Instead, you’ll need to consult the documentation for
your development system to find out what glue routines it provides. ▲

183

A F T E R W O R D

Going Further

If you’ve made it this far, you’ve learned quite a bit about putting a

Macintosh application together. You’ve seen how to create and manage

menus, windows, dialog boxes, and preference files. You know how to get

information about the user’s actions, and you know how to respond to many

of those actions. You also know, at least in overview, how your application

shares the available system resources with the Operating System and other

open applications. Congratulations; that’s a lot to learn in less than 200 pages.

No doubt, however, you want to learn more. The Venn Diagrammer

application fails to implement a number of very fundamental elements of a

typical Macintosh application. It provides no text-input or editing capabilities,

no support for user drawing, no support for color, and virtually no support

for the many important features introduced in System 7. The following

section briefly describes some of these capabilities and refers you to the Inside
Macintosh books that give more information about implementing those

capabilities.

This afterword also provides some hints on writing your application so that it

is compatible with all existing Macintosh computers and system software

versions and so that it can be easily localized to different languages. This

afterword ends with a list of additional developer services provided by Apple

Computer, Inc.

Implementing Further Features

Venn Diagrammer succeeds in its basic goal, which is to illustrate how to

implement many of the essential user interface components of a typical

Macintosh application and to introduce the very simplest features of the

Operating System. It shows how to do basic drawing in a window and how to

handle many user actions. Best of all, it’s a real application that does useful,

albeit limited, work.

It’s important to realize that although some parts of the source code presented

throughout this book are purposely simplified, other parts are not. The code

for handling dialog boxes, for instance, is designed to be easily amplified to

handle other modeless dialog boxes. The basic event loop and the

menu-handling code are also quite typical of what you’d find in a commercial

Macintosh application. The Venn Diagrammer source code is not intended as

a shell on which to base your application, but chances are you’ll do at least a

few things in the same way.

184

A F T E R W O R D

Still, the Venn Diagrammer source code fails to illustrate how to implement a

number of important Macintosh features. Here’s a moderately complete list of

what’s missing and where you can look to get the information you need to

add these features to your application:

■ Windows. The document windows created by the Venn Diagrammer
application are of fixed size, so they don’t need to contain zoom boxes, size
boxes, or scroll bars. In all likelihood, however, your application will allow
the user to enter and edit information (such as text or graphics) that will
usually not fit in a fixed-size window. As a result, you will probably want
to include support for these window elements. To learn how to handle
zoom and size boxes, see the chapter “Window Manager” in Inside
Macintosh: Macintosh Toolbox Essentials. To learn how to implement scroll
bars, see the chapter “Control Manager” in that same book.

■ Menus. The Macintosh system software provides support for several kinds
of menus in addition to the standard “pull-down” menus used by the Venn
Diagrammer application. A very useful adaptation of the pull-down menu
is the pop-up menu, which you can put in dialog boxes and document
windows. Moreover, both pop-up menus and pull-down menus can
contain hierarchical menus, where an entire menu is attached to a menu
item. For information about these additional kinds of menus, see the
chapter “Menu Manager” in Inside Macintosh: Macintosh Toolbox Essentials.
That chapter also shows how to modify a menu item’s text and style, how
to add a mark to a menu item, and how to associate an icon with a menu
item. Because pop-up menus are actually very complex controls, you’ll also
need to read the chapter “Control Manager” in Inside Macintosh: Macintosh
Toolbox Essentials to learn how to handle pop-up menus.

■ Text. Most Macintosh applications support some form of text entry and
editing, even if just to solicit some piece of information from the user in a
dialog box. The system software includes TextEdit, which you can use to
provide basic text-handling capabilities for your application. Although
TextEdit was originally designed to handle edit fields in a dialog box, you
can also use it for other purposes. For example, if you’re writing a
spreadsheet application, you might use TextEdit to handle small amounts
of text. TextEdit is not, however, suitable for large amounts of text (greater
than about 32,000 characters). If you’re writing a word-processing
application, you’ll need to write your own custom text-handling routines.
To learn how to handle text entry and editing in dialog boxes, see the
chapter “Dialog Manager” in Inside Macintosh: Macintosh Toolbox Essentials.
To learn how to use TextEdit directly, see the chapter “TextEdit” in Inside
Macintosh: Text. This latter book also describes a number of other
text-related facilities provided by the Macintosh system software, such as
support for multiple fonts and non-Roman character sets.

■ Files. The Venn Diagrammer application can create, read, and write
resource files only (which contain the user’s preferences). Most
applications allow the user to create and edit information of arbitrary size,
and they store that information in a file’s data fork. The data fork can
contain any kind of information you care to put there. You read and write
data from a file’s data fork using the File Manager, and you present the

185

A F T E R W O R D

standard user interface for opening and saving files using the Standard File
Package. The chapter “Introduction to File Management” in Inside
Macintosh: Files shows how to use these and other services to implement
the typical File menu commands (Open, Save, Save As, Revert, and so
forth). Other chapters in that book provide more detailed information
about the structure of the file system used on Macintosh computers and
about the system software managers you can use to manipulate objects in
the file system. For more complete information on reading and writing
resource files, see the chapter “Resource Manager” in Inside Macintosh:
More Macintosh Toolbox.

■ Icons. To learn how to define icons for your application and its document
files, see the chapter “Finder Interface” in Inside Macintosh: Macintosh
Toolbox Essentials.

■ Help. Every application should include the resources necessary to allow
the Help Manager to display help balloons after the user has chosen the
Show Balloons command from the Help menu. Usually you can add
support for help balloons simply by adding resources to your application’s
resource fork, without having to change or recompile its source code. In
some cases, however, you might also need to modify the source code to
provide help balloons. For complete details on implementing help
balloons, see the chapter “Help Manager” in Inside Macintosh: More
Macintosh Toolbox.

■ Printing. One of the easiest features to add to the Venn Diagrammer
application is the capability to print a Venn diagram window. Printing
essentially involves just drawing the window into a special graphics port
called a printing graphics port. Before doing that, however, you need to
present the standard dialog boxes to set up a page and to send a print job
to a printer. If, as is usually the case, there are multiple pages to be printed,
you’ll want to structure your printing code into a printing loop. A complete
printing loop is provided in the chapter “QuickDraw Printing Manager” in
Inside Macintosh: Imaging. That chapter also shows how to handle a number
of other printing-related tasks.

■ Memory. The Venn Diagrammer application is surprisingly naive in its
management of the memory in its own partition. For the most part, it
simply tries to allocate the memory it needs for some particular operation,
and if it fails to get that memory, it just does the safest thing it can to work
around that failure. You’ll want to implement a much more robust scheme
to manage the memory you’re allocated when your application starts up.
You need to make sure that your application’s memory requirements don’t
consume too much of your partition, because many system software
routines (especially many QuickDraw routines) also use memory in your
application partition. For a simple but effective memory-management
strategy, see the chapter “Introduction to Memory Management” in Inside
Macintosh: Memory. For some advice on how to segment your application’s
executable code to minimize its memory footprint, see the chapter
“Segment Manager” in Inside Macintosh: Processes.

186

A F T E R W O R D

■ Interapplication Communication. To take full advantage of the
cooperative multitasking environment provided in system software
versions 7.0 and later, your application should be able to communicate
effectively with other open applications. The system software provides
several ways in which you can interact with other applications. You can
support the publish and subscribe capabilities of the Edition Manager
(described earlier in “Interapplication Communication” beginning on
page 14) and you can support high-level events such as Apple events. For
complete details on how to communicate and share data with other
applications, see the book Inside Macintosh: Interapplication Communication.

■ Sound. You can enhance the perceived quality of your application by
appropriately including sounds in its user interface. When, for example,
the user asks the Venn Diagrammer application to check the user’s
diagram, the application might play some agreeable sound if the diagram
is correct and some discordant sound otherwise. Sound can provide user
feedback that is not achievable using text and graphics alone. Other
applications are more directly involved with recording or producing
sound. To learn how to add sound capabilities to your application, see the
chapter “Introduction to Sound” in Inside Macintosh: Sound.

■ Color. Like sound, color might be either an enhancement to or a
fundamental feature of your application. For example, Venn Diagrammer
might allow the user to fill empty regions with colored patterns. You can
use QuickDraw to draw shapes, regions, and even text in any color
supported by the available video devices. For complete information on
supporting color in your application, see the appropriate chapters in Inside
Macintosh: Imaging.

IMPORTANT

You don’t have to read all of the books mentioned in this list to develop
a Macintosh application. Which of the many Inside Macintosh books
you’ll need depends on the particular requirements of your application.
(The Venn Diagrammer application, for instance, draws mainly on four
books only: Inside Macintosh: Macintosh Toolbox Essentials, Inside
Macintosh: More Macintosh Toolbox, Inside Macintosh: Memory, and Inside
Macintosh: Imaging.) Moreover, you don’t necessarily have to read all of a
chapter to get started using a certain manager. Most chapters in Inside
Macintosh contain advanced material that is likely to be of interest only
to developers with very specialized needs. ▲

187

A F T E R W O R D

Maintaining Compatibility

Compatibility is the ability of an application to execute properly in different

operating environments. Compatibility is important if you want to write

software that runs, with little or no modification, on all members of the

Macintosh family and in all system software versions.

The key to achieving compatibility is not to depend on things that may

change. Inside Macintosh contains numerous warnings about which

information is likely to change. As the Operating System and Toolbox evolve

to accommodate the needs of developers and users, many of their elements

will vary. Whenever possible, Apple Computer strives to add features

without altering existing programming interfaces. In general, you can assume

that Operating System and Toolbox routines are less likely to change than

data structures. Therefore, you should never directly manipulate data

structures that are internal to a manager or system software routine, even if

their structure is documented. Instead, you should manipulate those

structures only indirectly, by calling Operating System and Toolbox routines

that achieve the desired effect. In particular, you should never alter any

portion of a data structure marked as unused or reserved.

Another key to writing compatible code is to code defensively. Do not assume

that users perform actions in a particular order, and do not assume that

function and procedure calls always succeed. You should always test the

return values of routines for errors, as illustrated in most of the code samples

presented in this book.

Here are some more specific guidelines to keep in mind as you write your

application:

■ Never address hardware directly; whenever possible, use the routines
provided by the various device drivers and managers to send data to the
available hardware. The addresses of memory-mapped hardware are
always subject to change, as is the hardware itself. More important, direct
access to such hardware is not possible in every operating environment. In
multi-user systems like A/UX, for instance, the operating system
manipulates all hardware; applications simply cannot write directly to
hardware addresses.

■ Avoid writing directly to the screen. Use QuickDraw routines whenever
possible to draw on the screen. If you absolutely must write directly to the
screen, do not assume that the screen is a fixed size or that it is in a fixed
location. The location, size, and bit depth of the screen differ in various
machines.

188

A F T E R W O R D

■ Don’t rely on system global variables. Many of these variables are
documented in Inside Macintosh, but many are not. In particular, you must
avoid undocumented system global variables because they are most likely
to change. But you should try to avoid even well-known system global
variables because they may not be available in all environments or in the
future. In general, you can avoid using system global variables by using
available routines that return the same information. (For example, the
TickCount function returns the same value that is contained in the system
global variable Ticks.)

Making Your Application Localizable

Localization is the process of adapting an application to a specific language,

culture, and region. By planning ahead and making localization relatively

painless, you’ll ensure that your product is ready for international markets in

the future. This section provides a brief overview of what you need to do to

make it easy to localize your application. For the complete account of writing

software that is compatible with Macintosh computers throughout the world,

see Inside Macintosh: Text and Guide to Macintosh Software Localization.

The key to easy localization is to store region-dependent information used by

your application as resources (rather than within the application’s code). Text

seen by the user can then be translated without modifying the code. In

addition, storing such information in resources means that your application

can be adapted for a different area of the world simply by substituting the

appropriate resources. Make sure that at least the following kinds of

information are stored in resources:

■ all text, including special characters and delimiters

■ menus and keyboard equivalents for menu commands (if available)

■ character, word, phrase, and text translation tables

■ address formats, including zip codes and telephone numbers

When you create resources for your applications, remember the following key

points:

■ text needs room to grow (up, down, and sideways)

■ translated text is often 50 percent larger than the U.S. English text

■ diacritical marks, widely used outside the United States, may extend up
to the ascent line

■ some system fonts contain characters that extend to both the ascent and
descent lines

■ text location within a window should be easy to change

189

A F T E R W O R D

Using Developer Services

In addition to the Inside Macintosh library of books, Apple Computer provides

a number of other services that you can use to learn more about programming

for Macintosh computers and simplify your software development process.

Apple’s goal in making these services available is to provide you with the

resources you need to create outstanding Macintosh applications. These

services include

■ books and other technical publications

■ programming languages and tools

■ programming classes and self-paced training materials

■ conferences and workshops

■ technical support

Most of these products and services are available to anyone interested in

programming for Macintosh computers. You can get information about them

by contacting APDA, Apple’s source for developer tools. See the Preface

(page xv) for details on contacting APDA.

Some of the services just listed—in particular, technical support and

invitations to some developer conferences and workshops—are provided only

to members of the Apple Associates and Partners Program. For information

about Apple’s support programs for commercial developers, call the

Developer Hotline at (408) 974-4897. These programs are available to

developers in the United States and Canada only.

Technical Publications
Apple provides a number of technical publications that can assist you in

writing Macintosh applications. Here’s a brief description of three books that

you’ll probably need right now:

■ Macintosh Human Interface Guidelines. A complete description of the Apple
Desktop Interface and an indispensable set of guidelines governing the
appearance and behavior of Macintosh applications. You will need this
book to ensure that your application conforms to those guidelines.

■ Technical Introduction to the Macintosh Family. A general introduction to the
family of Macintosh computers, with emphasis on the features that make it
a desirable platform for application developers. This book also provides
details on Macintosh hardware and on A/UX, Apple’s version of the
UNIX® operating system.

190

A F T E R W O R D

■ Guide to Macintosh Software Localization. A guide to the process of localizing
application software for Macintosh computers around the world. You’ll
want to read this book for essential information about making your
product marketable worldwide.

If you are an Apple Associate or Partner, you’ll automatically receive a

subscription to develop, The Apple Technical Journal. This magazine is intended

to complement other reference materials like Inside Macintosh. It doesn’t try to

replace or reword those books; instead, it’s designed to help you understand

them by illustrating some of the techniques they describe. For subscription

information, contact

develop
Apple Computer, Inc.

P.O. Box 531

Mount Morris, IL 61054-7858

Training
Apple Developer University offers a broad range of Macintosh programming

instruction through hands-on classes and self-paced training products.

Classes are offered in Cupertino, at Apple training facilities worldwide, on an

on-site basis, and through selected third-party University and Corporate

trainers.

Developer University provides expert instruction for all levels of Macintosh

programmers. These course teach programmers to produce fast, efficient code

that takes maximum advantage of the Macintosh Toolbox and Operating

System.

Apple Developer University is open to all individuals worldwide who have

an interest in mastering leading-edge technology. To reserve your place in a

class, schedule an on-site training class, or for more information, contact

Apple Developer University Training Registrar

Apple Computer, Inc.

20525 Mariani Avenue

M/S 75-6U

Cupertino, CA 95014

Telephone 800-877-5548 (United States)
815-734-6309 (All other countries)

Fax 815-734-4205

AppleLink DEV.SUBS

Telephone 408-974-6215 (United States)

Fax 408-974-0544

AppleLink DEVUNIV

191

A F T E R W O R D

Technical Support
If you are an Apple Associate or Partner, you’ll have access to various levels

of technical support from Apple. Both Associates and Partners receive

monthly mailings that include a newsletter, Apple II and Macintosh Technical

Notes, pertinent Developer Programs information, and the latest news

relating to Apple products. Mailings also usually include the latest developer

CD-ROM, which contains system software, programming utilities, code

samples illustrating how to use various parts of the Macintosh system

software, and the latest on-line technical documentation.

In addition, Apple Partners receive discounts on Apple equipment and

technical assistance from the staff of Apple’s Developer Technical Support

department.

Appendixes

The following five appendixes provide complete source code listings of the parts of the

Venn Diagrammer application whose operations are explained in this book. For clarity,

the source code is divided into five parts:

■ Appendix A, “Constants, Types, and Variables”, beginning on page 195, defines the
constants, data types, and global variables used by the Venn Diagrammer application

■ Appendix B, “Utility Routines”, beginning on page 199, defines a number of utility
procedures and functions used by the remaining code samples

■ Appendix C, “Dialog Code”, beginning on page 205, defines a handful of procedures
that manage dialog boxes

■ Appendix D, “Resource Code”, beginning on page 211, shows how to read and write a
simple set of application preferences

■ Appendix E, “User Interface Code”, beginning on page 217, shows the code that
manages the basic application setup, event handling, and user interface

Code that is specific to handling Venn diagrams (such as the procedures that handle the

first five menu commands in the Venn menu) is not shown in this book.

IMPORTANT

As explained in the preface to this book, this code is provided for
explanatory purposes only. The code listed in these appendixes might
not be appropriate for the particular needs of your application. ▲

A P P E N D I X A

195

Constants, Types, and Variables

This appendix defines most of the constants, data types, and global variables used by the

Venn Diagrammer application.

UNIT Global;

INTERFACE

CONST

{menu constants (resource IDs and menu command numbers)}

rMenuBar = 128; {menu bar resource ID}

mApple = 128; {resource ID of Apple menu}

iAbout = 1; {our About... dialog}

mFile = 129; {resource ID of File menu}

iNew = 1;

iClose = 2;

iQuit = 4;

mEdit = 130; {resource ID of Edit menu}

iUndo = 1;

iCut = 3;

iCopy = 4;

iPaste = 5;

iClear = 6;

mVennD = 131; {resource ID of Venn menu}

iCheckVenn = 1;

iDoVenn = 2;

iClearVenn = 3;

iNextTask = 4;

iCheckArg = 5;

iGetVennPrefs = 7;

kNumTools = 5;

rVennD = mVennD; {resource ID of Venn diagram window}

{dialog boxes and their associated items}

rAboutDial = 7000; {resource ID of About dialog}

A P P E N D I X A

Constants, Types, and Variables

196

iOK = 1; {OK button}

iCancel = 2; {Cancel button}

rVennDPrefsDial = 3040; {resource ID of Preferences dialog}

iEmpty1Radio = 1; {dialog item numbers}

iEmpty2Radio = 2;

iEmpty3Radio = 3;

iEmpty4Radio = 4;

iEmpty1Icon = 5;

iEmpty2Icon = 6;

iEmpty3Icon = 7;

iEmpty4Icon = 8;

iExist1Radio = 9;

iExist2Radio = 10;

iExist3Radio = 11;

iExist4Radio = 12;

iExist1Icon = 13;

iExist2Icon = 14;

iExist3Icon = 15;

iExist4Icon = 16;

iGetNextRandomly = 19;

iAutoAdjust = 20;

iShowSchoolNames = 21;

iUseExistImport = 22;

iSaveVennPrefs = 23;

kVennPrefsItemCount = 23;

kVisualDelay = 8; {ticks to invert a button to simulate press}

kCntlActivate = 0; {enabled control's hilite state}

kCntlDeactivate = $FF; {disabled control's hilite state}

kToolHt = 14; {height of a tool icon}

kToolWd = 21; {width of a tool icon}

kVennToolsIconStart = 768; {base resource ID of tools icons}

kExistID = 2000; {first (of four) icons showing existence}

kEmptyID = 3000; {first (of four) patterns showing emptiness}

{Text strings printed in a Venn diagram window.}

rMiscStrings = 1004; {resource ID of 'STR#' for text items}

kShowAnswerText = 1; {in Venn menu}

kShowUserText = 2; {in Venn menu}

kAllText = 3;

A P P E N D I X A

Constants, Types, and Variables

197

kNoText = 4;

kSomeText = 5;

kAreText = 6;

kAreNotText = 7;

kFigureText = 8;

kMoodText = 9;

{Venn Diagram window status messages: 'STR#' resource ID = rVennD}

eDiagramCorrect = 1;

eDiagramIncorrect = 2;

eHereIsSolution = 3;

eHereIsYourWork = 4;

eCannotEditAnswer = 5;

eCannotEraseAnswer = 6;

eArgIsValid = 7;

eArgNotValid = 8;

eExistNotPossible = 9;

rErrorAlert = 129; {res ID of 'ALRT' resource for error mesgs}

kErrorStrings = 1005; {res ID of 'STR#' resource for error mesgs}

eCantFindMenus = 1; {can't read menu bar resource}

eNotEnoughMemory = 2; {insufficient memory for operation}

{constants defining several keyboard characters}

kEnter = char(3); {the enter character}

kReturn = char(13); {the return character}

kEscape = char(27); {the escape character}

kPeriod = '.'; {the period character}

TYPE

{record to hold the current settings of a Venn Diagram window}

MyDocRec =

RECORD {information about a document window}

figure: Integer; {the figure of the syllogism}

mood: ARRAY[1..3] of Integer;

{the moods of the statements}

terms: ARRAY[1..3] of Str31; {the three terms}

statusText: Str255; {most recent status message}

userSolution: MyDiagramState; {user's diagram state}

realSolution: MyDiagramState; {answer's diagram state}

isAnswerShowing: Boolean; {is the answer showing?}

isExistImport: Boolean; {stmts imply exists subject?}

needsAdjusting: Boolean; {diagram needs adjusting?}

A P P E N D I X A

Constants, Types, and Variables

198

END;

MyDocRecPtr = ^MyDocRec;

MyDocRecHnd = ^MyDocRecPtr;

VAR

gNumDocWindows: Integer; {the number of open document windows}

gPrefsDialog: DialogPtr; {pointer to Preferences dialog window}

gAppsResourceFile: Integer; {reference number of app's res file}

gPreferencesFile: Integer; {reference number of app's prefs file}

gToolsIcons: ARRAY[1..kNumTools] of Handle;

{handles to tools icons}

gEmptyPats: ARRAY[1..4] of PatHandle;

{handles to emptiness patterns}

gExistIcons: ARRAY[1..4] of Handle;

{handles to existence symbols}

gMoodIcons: ARRAY[1..4] of Handle;

{handles to mood icons}

gFigureIcons: ARRAY[1..4] of Handle;

{handles to figure icons}

gExistIndex: Integer; {rank of icon showing existence}

gEmptyIndex: Integer; {rank of icon showing emptiness}

gStepRandom: Boolean; {generate next setup randomly?}

gAutoAdjust: Boolean; {automatically adjust the diagram?}

gGiveImport: Boolean; {do subjects have existential import?}

gShowNames: Boolean; {do we show names of valid forms?}

IMPLEMENTATION

END. {UNIT Global}

A P P E N D I X B

199

Utility Routines

This appendix defines a number of utility procedures and functions that are called by

other parts of the Venn Diagrammer application.

UNIT Utilities;

INTERFACE

USES

Global;

PROCEDURE DoPlotIcon (myRect: Rect; myIcon: Handle; myWindow: WindowPtr;

 myMode: Integer);

PROCEDURE DoOutlineControl (myControl: univ ControlHandle);

PROCEDURE DoDefaultButton (myDialog: DialogPtr);

FUNCTION IsDAccWindow (myWindow: WindowPtr): Boolean;

FUNCTION IsAppWindow (myWindow: WindowPtr): Boolean;

FUNCTION IsDialogWindow (myWindow: WindowPtr): Boolean;

PROCEDURE DoPositionWindow (myWindow: WindowPtr);

PROCEDURE DoSetWindowTitle (myWindow: WindowPtr);

FUNCTION DoTrackRect (myWindow: WindowPtr; myRect: Rect): Boolean;

PROCEDURE DoStatusText (myWindow: WindowPtr; myText: Str255);

PROCEDURE DoStatusMesg (myWindow: WindowPtr; myMessage: Integer);

PROCEDURE DoBadError (myError: Integer);

FUNCTION IsFindFolder: Boolean;

FUNCTION MyRandom (last: Integer): Integer;

IMPLEMENTATION

{DoPlotIcon: plot a piece of an icon in a specified rectangle}

PROCEDURE DoPlotIcon (myRect: Rect; myIcon: Handle; myWindow: WindowPtr;

 myMode: Integer);

VAR

myBitMap: BitMap;

BEGIN

myBitMap.baseAddr := myIcon^;

myBitMap.rowBytes := 4;

myBitMap.bounds := myRect;

CopyBits(myBitMap, myWindow^.portBits, myRect, myRect, myMode, NIL);

END;

A P P E N D I X B

Utility Routines

200

{DoOutlineControl: draw bold outline around a control}

PROCEDURE DoOutlineControl (myControl: UNIV ControlHandle);

VAR

myOval: Integer;

myRect: Rect;

origPen: PenState;

origPort: GrafPtr;

BEGIN

IF myControl <> NIL THEN

BEGIN

GetPort(origPort);

SetPort(myControl^^.contrlOwner);

GetPenState(origPen);

PenNormal;

myRect := myControl^^.contrlRect;

InsetRect(myRect, -4, -4);

myOval := ((myRect.bottom - myRect.top) DIV 2) + 2;

IF (myControl^^.contrlHilite = kCntlActivate) THEN

PenPat(black)

ELSE

PenPat(gray);

PenSize(3, 3);

FrameRoundRect(myRect, myOval, myOval);

SetPenState(origPen); {restore previous pen state}

SetPort(origPort);

END;

END;

{DoDefaultButton: draw bold outline around default button in a dialog}

{this procedure assumes that the default button is item number 1 (i.e., iOK)}

PROCEDURE DoDefaultButton (myDialog: DialogPtr);

VAR

myType: Integer;

myHand: Handle;

myRect: Rect;

BEGIN

GetDialogItem(myDialog, iOK, myType, myHand, myRect);

DoOutlineControl(myHand);

END;

{IsDAccWindow: determine if specified window belongs to a desk accessory}

A P P E N D I X B

Utility Routines

201

FUNCTION IsDAccWindow (myWindow: WindowPtr): Boolean;

BEGIN

IF myWindow = NIL THEN

IsDAccWindow := FALSE

ELSE

IsDAccWindow := WindowPeek(myWindow)^.windowKind < 0;

END;

{IsAppWindow: determine if specified window belongs to my app}

FUNCTION IsAppWindow (myWindow: WindowPtr): Boolean;

BEGIN

IF myWindow = NIL THEN

IsAppWindow := FALSE

ELSE

IsAppWindow := WindowPeek(myWindow)^.windowKind = userKind;

END;

{IsDialogWindow: determine if specified window is a dialog}

FUNCTION IsDialogWindow (myWindow: WindowPtr): Boolean;

BEGIN

IF myWindow = NIL THEN

IsDialogWindow := FALSE

ELSE

IsDialogWindow := WindowPeek(myWindow)^.windowKind = dialogKind;

END;

{DoPositionWindow: set the position of a new window}

PROCEDURE DoPositionWindow (myWindow: WindowPtr);

BEGIN

END;

{DoSetWindowTitle: construct a title for a new window}

PROCEDURE DoSetWindowTitle (myWindow: WindowPtr);

VAR

myName: Str255;

myRank: Str255;

BEGIN

GetWTitle(myWindow, myName);

gNumDocWindows := gNumDocWindows + 1;

NumToString(gNumDocWindows, myRank);

myName := concat(myName, ' ', myRank);

SetWTitle(myWindow, myName);

END;

A P P E N D I X B

Utility Routines

202

{DoTrackRect: do "TrackBox" for a random rectangle}

{this is used to process clicks in a window tool}

FUNCTION DoTrackRect (myWindow: WindowPtr; myRect: Rect): Boolean;

VAR

myIgnore: LongInt;

myPoint: Point;

BEGIN

InvertRect(myRect); {invert the rectangle}

REPEAT

Delay(kVisualDelay, myIgnore)

UNTIL NOT StillDown; {keep inversion until mouse is released}

InvertRect(myRect);

GetMouse(myPoint); {get mouse location in local coordinates}

DoTrackRect := PtInRect(myPoint, myRect);

END;

{DoStatusText: print a message in a window's status area}

PROCEDURE DoStatusText (myWindow: WindowPtr; myText: Str255);

VAR

myRect: Rect;

origSize: Integer;

origFont: Integer;

myHandle: MyDocRecHnd;

CONST

kSlop = 4;

kSize = 9;

kFont = applFont;

BEGIN

IF myWindow <> NIL THEN

BEGIN

SetPort(myWindow);

origSize := myWindow^.txSize; {remember original size and font}

origFont := myWindow^.txFont;

TextSize(kSize); {set desired size and font}

TextFont(kFont);

SetRect(myRect, kToolWd * kNumTools, 0,

 myWindow^.portRect.right, kToolHt);

EraseRect(myRect);

IF length(myText) > 0 THEN

BEGIN

A P P E N D I X B

Utility Routines

203

MoveTo(myRect.left + kSlop, myRect.bottom - kSlop);

DrawString(myText);

END;

TextSize(origSize); {restore original size and font}

TextFont(origFont);

{Remember the last message printed in this window.}

myHandle := MyDocRecHnd(GetWRefCon(myWindow));

myHandle^^.statusText := myText;

END;

END;

{DoStatusMesg: call DoStatusText, getting the text from a resource}

PROCEDURE DoStatusMesg (myWindow: WindowPtr; myMessageID: Integer);

VAR

myText: Str255;

BEGIN

GetIndString(myText, rVennD, myMessageID);

DoStatusText(myWindow, myText);

END;

{DoBadError: inform the user of fatal errors, then terminate the app}

PROCEDURE DoBadError (myError: Integer);

VAR

myItem: Integer;

myMessage: Str255;

BEGIN

SetCursor(arrow); {set arrow cursor}

GetIndString(myMessage, kErrorStrings, myError);

ParamText(myMessage, '', '', '');

myItem := Alert(rErrorAlert, NIL); {display message}

ExitToShell; {terminate execution}

END;

{IsFindFolder: is the FindFolder function available?}

FUNCTION IsFindFolder: Boolean;

VAR

myResult: OSErr;

myFeature: LongInt;

BEGIN

IsFindFolder := FALSE; {assume it's not available}

myResult := Gestalt(gestaltFindFolderAttr, myFeature);

A P P E N D I X B

Utility Routines

204

IF myResult = noErr THEN

IsFindFolder := BTST(myFeature, gestaltFindFolderPresent);

END;

{MyRandom: generate a reasonably random number between 0 and last}

FUNCTION MyRandom (last: Integer): Integer;

BEGIN

MyRandom := ABS(Random) MOD SUCC(last);

END;

END.

A P P E N D I X C

205

Dialog Code

This appendix defines several procedures used by the Venn Diagrammer application to

manage dialog boxes.

UNIT Dialog; {routines to handle dialog boxes}

INTERFACE

USES

Global, Utilities, Preferences, VennProcs;

PROCEDURE DoSetupUserItems (myKind: Integer; VAR myDialog: DialogPtr);

PROCEDURE DoSetupCtrlValues (myDialog: DialogPtr);

PROCEDURE DoUserItem (myDialog: DialogPtr; myItem: Integer);

PROCEDURE DoModelessDialog (myKind: Integer; VAR myDialog: DialogPtr);

FUNCTION DoHandleDialogEvent (myEvent: EventRecord): Boolean;

IMPLEMENTATION

{DoSetupUserItems: set up application-defined ("user") items in a dialog box}

PROCEDURE DoSetupUserItems (myKind: Integer; VAR myDialog: DialogPtr);

VAR

myType: Integer;

myHand: Handle;

myRect: Rect;

count: Integer;

origPort: GrafPtr;

BEGIN

GetPort(origPort);

SetPort(myDialog);

CASE myKind OF

rVennDPrefsDial:

FOR count := 1 TO kVennPrefsItemCount DO

IF count IN [iExist1Icon..iExist4Icon,

iEmpty1Icon..iEmpty4Icon] THEN

BEGIN

GetDialogItem(myDialog, count, myType, myHand, myRect);

SetDialogItem(myDialog, count, myType, @DoUserItem,

 myRect);

END;

OTHERWISE

A P P E N D I X C

Dialog Code

206

;

END;

SetPort(origPort);

END;

{DoSetupCtrlValues: install initial values in a dialog}

PROCEDURE DoSetupCtrlValues (myDialog: DialogPtr);

VAR

count: Integer;

myType: Integer;

myHand: Handle;

myRect: Rect;

origPort: GrafPtr;

BEGIN

IF myDialog = NIL THEN

exit(DoSetupCtrlValues);

GetPort(origPort); {save the current graphics port}

SetPort(myDialog); {always do this before drawing}

ShowWindow(myDialog);

IF myDialog = gPrefsDialog THEN

BEGIN

FOR count := 1 TO kVennPrefsItemCount DO

BEGIN

GetDialogItem(myDialog, count, myType, myHand,

 myRect);

IF myType = ctrlItem + radCtrl THEN

CASE count OF

iExist1Radio..iExist4Radio:

SetCtlValue(ControlHandle(myHand),

ORD(gExistIndex = count - (iExist1Radio - 1)));

iEmpty1Radio..iEmpty4Radio:

SetCtlValue(ControlHandle(myHand),

ORD(gEmptyIndex = count - (iEmpty1Radio - 1)));

OTHERWISE

;

END;

IF myType = ctrlItem + chkCtrl THEN

CASE count OF

iGetNextRandomly:

SetCtlValue(ControlHandle(myHand),

A P P E N D I X C

Dialog Code

207

 ORD(gStepRandom = TRUE));

iShowSchoolNames:

SetCtlValue(ControlHandle(myHand),

 ORD(gShowNames = TRUE));

iUseExistImport:

SetCtlValue(ControlHandle(myHand),

 ORD(gGiveImport = TRUE));

iAutoAdjust:

SetCtlValue(ControlHandle(myHand),

 ORD(gAutoAdjust = TRUE));

OTHERWISE

;

END;

END;

END;

SetPort(origPort); {restore the previous graphics port}

END;

{DoUserItem: handle drawing of application-defined items in a dialog box}

PROCEDURE DoUserItem (myDialog: DialogPtr; myItem: Integer);

VAR

myType: Integer;

myHand: Handle;

myRect: Rect;

origPort: GrafPtr;

BEGIN

GetPort(origPort);

SetPort(myDialog);

GetDialogItem(myDialog, myItem, myType, myHand, myRect);

IF myDialog = gPrefsDialog THEN

CASE myItem OF

iExist1Icon..iExist4Icon:

BEGIN

DoPlotIcon(myRect,

GetIcon(kExistID + myItem - iExist1Icon),

myDialog, srcCopy);

END;

iEmpty1Icon..iEmpty4Icon:

BEGIN

DoPlotIcon(myRect,

A P P E N D I X C

Dialog Code

208

GetIcon(kEmptyID + myItem - iEmpty1Icon),

myDialog, srcCopy);

FrameRect(myRect);

END;

OTHERWISE

;

END; {CASE}

SetPort(origPort); {restore original port}

END;

{DoModelessDialog: put up a modeless dialog box}

PROCEDURE DoModelessDialog (myKind: Integer; VAR myDialog: DialogPtr);

VAR

myPointer: Ptr;

BEGIN

IF myDialog = NIL THEN {the dialog box doesn't exist yet}

BEGIN

myPointer := NewPtr(sizeof(DialogRecord));

IF myPointer = NIL THEN

exit(DoModelessDialog);

myDialog := GetNewDialog(myKind, myPointer, WindowPtr(-1));

IF myDialog <> NIL THEN

BEGIN

DoSetupUserItems(myKind, myDialog); {set up user items}

DoSetupCtrlValues(myDialog); {set up initial values}

END;

END

ELSE

BEGIN

ShowWindow(myDialog);

SelectWindow(myDialog);

SetPort(myDialog);

END;

END;

{DoHandleDialogEvent: handle events in modeless dialog boxes}

FUNCTION DoHandleDialogEvent (myEvent: EventRecord): Boolean;

VAR

eventHandled: Boolean; {did we handle the event?}

myDialog: DialogPtr;

myItem: Integer;

A P P E N D I X C

Dialog Code

209

BEGIN

eventHandled := FALSE;

IF FrontWindow <> NIL THEN

IF IsDialogEvent(myEvent) THEN

IF DialogSelect(myEvent, myDialog, myItem) THEN

BEGIN

eventHandled := TRUE;

SetPort(myDialog);

IF myDialog = gPrefsDialog THEN

BEGIN

CASE myItem OF

iEmpty1Radio..iEmpty4Radio:

gEmptyIndex := myItem;

iEmpty1Icon..iEmpty4Icon:

gEmptyIndex := myItem - 4;

iExist1Radio..iExist4Radio:

gExistIndex := myItem - iEmpty4Icon;

iExist1Icon..iExist4Icon:

gExistIndex := myItem - (iEmpty4Icon + 4);

iGetNextRandomly:

gStepRandom := NOT gStepRandom;

iAutoAdjust:

gAutoAdjust := NOT gAutoAdjust;

iShowSchoolNames:

gShowNames := NOT gShowNames;

iUseExistImport:

gGiveImport := NOT gGiveImport;

iSaveVennPrefs:

DoSavePrefs;

OTHERWISE

;

END;

DoSetupCtrlValues(myDialog); {update values}

END;

END;

DoHandleDialogEvent := eventHandled;

END;

END.

A P P E N D I X D

211

Resource Code

This appendix defines the routines used by the Venn Diagrammer application to create,

read, and write the resources it uses to store the user’s preferences. The application

expects to find those resources in a file named “Venn Diagrammer Preferences” in the

Preferences folder in the currently-active System folder. If no such file is found, the

application creates a new file of the desired name in that location; then it copies into that

file a default set of preferences settings that is contained in the application’s resource file.

UNIT Preferences;

INTERFACE

USES

Folders, Global, Utilities;

CONST

kPrefResType = 'PRFN'; {type of preferences resource}

kPrefResID = 259; {resource ID of preferences resource}

TYPE

{structure of a resource that contains Venn diagram preferences}

MyPrefsRec = RECORD

autoDiag: Boolean; {do we automatically fix the diagram?}

showName: Boolean; {do we show names of valid arguments?}

isImport: Boolean; {do subjects have existential import?}

isRandom: Boolean; {do we select next setting randomly?}

emptyInd: Integer; {index of the desired emptiness pattern}

existInd: Integer; {index of the desired existence symbol}

END;

MyPrefsPtr = ^MyPrefsRec;

MyPrefsHnd = ^MyPrefsPtr;

FUNCTION DoCopyResource (rType: ResType; rID: Integer; source: Integer;

 dest: Integer): OSErr;

PROCEDURE DoReadPrefs;

PROCEDURE DoSavePrefs;

IMPLEMENTATION

{DoCopyResource}

{copy a resource from one open resource file [source] to another [dest];}

{make sure not to alter the current resource file }

A P P E N D I X D

Resource Code

212

{ and to preserve resource attributes}

FUNCTION DoCopyResource (rType: ResType; rID: Integer; source: Integer;

 dest: Integer): OSErr;

VAR

myHandle: Handle; {handle to resource to copy}

myName: Str255; {name of resource to copy}

myAttr: Integer; {resource attributes}

myType: ResType; {ignored; used for GetResInfo}

myID: Integer; {ignored; used for GetResInfo}

myResult: OSErr;

myCurrent: Integer; {current resource file on entry}

BEGIN

myCurrent := CurResFile; {remember current resource file}

UseResFile(source); {set the source resource file}

myHandle := Get1Resource(rType, rID); {open the source resource}

IF myHandle <> NIL THEN

BEGIN

GetResInfo(myHandle, myID, myType, myName); {get res name}

myAttr := GetResAttrs(myHandle); {get res attributes}

DetachResource(myHandle); {so we can copy the resource}

UseResFile(dest); {set destination resource file}

IF ResError = noErr THEN

AddResource(myHandle, rType, rID, myName);

IF ResError = noErr THEN

SetResAttrs(myHandle, myAttr);{set res attributes of copy}

IF ResError = noErr THEN

ChangedResource(myHandle); {mark resource as changed}

IF ResError = noErr THEN

WriteResource(myHandle); {write resource data}

END;

DoCopyResource := ResError; {return result code}

ReleaseResource(myHandle); {get rid of resource data}

UseResFile(myCurrent); {restore original resource file}

END;

{DoCreatePrefsFile:}

{Create a preferences file in the specified location.}

{The initial settings are just those in the app's resource file.}

FUNCTION DoCreatePrefsFile (myVRefNum: Integer; myDirID: LongInt;

 myName: Str255): Integer;

VAR

myResNum: Integer;

A P P E N D I X D

Resource Code

213

myResult: OSErr;

myID: Integer; {resource ID of resource in app's res fork}

myHandle: Handle; {handle to resource in app's res fork}

myType: ResType; {ignored; used for GetResInfo}

BEGIN

myResult := noErr;

HCreateResFile(myVRefNum, myDirID, myName);

IF ResError = noErr THEN

BEGIN

myResNum := HOpenResFile(myVRefNum, myDirID, myName, fsCurPerm);

IF myResNum <> -1 THEN

BEGIN

UseResFile(gAppsResourceFile);

myHandle := Get1Resource(kPrefResType, kPrefResID);

IF ResError = noErr THEN

BEGIN

GetResInfo(myHandle, myID, myType, myName);

myResult := DoCopyResource(kPrefResType, myID,

 gAppsResourceFile, myResNum);

END

ELSE

BEGIN

CloseResFile(myResNum);

myResult := HDelete(myVRefNum, myDirID, myName);

myResNum := -1;

END;

END;

DoCreatePrefsFile := myResNum;

END;

END; {DoCreatePrefsFile}

{DoReadPrefs:}

{Open the application's global preferences file and read indicated settings.}

PROCEDURE DoReadPrefs;

VAR

myVRefNum: Integer;

myDirID: LongInt;

myName: Str255; {name of this application}

myPrefs: Handle; {handle to actual preferences data}

myResNum: Integer; {reference number of opened resource file}

myResult: OSErr;

CONST

A P P E N D I X D

Resource Code

214

kNameID = 4000; {resource ID of 'STR#' with filename}

BEGIN

{Determine the name of the preferences file.}

GetIndString(myName, kNameID, 1);

{Figure out where the preferences file is.}

IF IsFindFolder THEN

myResult := FindFolder(kOnSystemDisk, kPreferencesFolderType,

 kDontCreateFolder, myVRefNum, myDirID)

ELSE

myResult := -1;

IF myResult <> noErr THEN

BEGIN

myVRefNum := 0; {use default volume}

myDirID := 0; {use default directory}

END;

{Open the preferences resource file.}

myResNum := HOpenResFile(myVRefNum, myDirID, myName, fsCurPerm);

{If no preferences file successfully opened, create one }

{ by copying default preferences in app's resource file.}

IF myResNum = -1 THEN

myResNum := DoCreatePrefsFile(myVRefNum, myDirID, myName);

IF myResNum <> -1 THEN {if we successfully opened the file...}

BEGIN

UseResFile(myResNum); {make the new resource file current one}

myPrefs := Get1Resource(kPrefResType, kPrefResID);

IF myPrefs = NIL THEN

exit(DoReadPrefs);

WITH MyPrefsHnd(myPrefs)^^ DO

BEGIN {read the preferences settings}

gAutoAdjust := autoDiag;

gShowNames := showName;

gGiveImport := isImport;

gStepRandom := isRandom;

gEmptyIndex := emptyInd;

gExistIndex := existInd;

END;

{Make sure some preferences globals make sense.}

A P P E N D I X D

Resource Code

215

IF NOT (gExistIndex IN [1..4]) THEN

gExistIndex := 1;

IF NOT (gEmptyIndex IN [1..4]) THEN

gEmptyIndex := 1;

{Reinstate the application's resource file.}

UseResFile(gAppsResourceFile);

END;

gPreferencesFile := myResNum; {remember its resource ID}

END; {DoReadPrefs}

{DoSavePrefs:}

{Save the current preference settings.}

PROCEDURE DoSavePrefs;

VAR

myPrefData: Handle; {handle to new resource data}

myHandle: Handle; {handle to resource to replace}

myName: Str255; {name of resource to copy}

myAttr: Integer; {resource attributes}

myType: ResType; {ignored; used for GetResInfo}

myID: Integer; {ignored; used for GetResInfo}

BEGIN

{Make sure we have an open preferences file.}

IF gPreferencesFile = -1 THEN

exit(DoSavePrefs);

myPrefData := NewHandleClear(sizeof(MyPrefsRec));

HLock(myPrefData);

WITH MyPrefsHnd(myPrefData)^^ DO

BEGIN

autoDiag := gAutoAdjust;

showName := gShowNames;

isImport := gGiveImport;

isRandom := gStepRandom;

emptyInd := gEmptyIndex;

existInd := gExistIndex;

END;

UseResFile(gPreferencesFile); {use preferences file}

myHandle := Get1Resource(kPrefResType, kPrefResID);

IF myHandle <> NIL THEN

BEGIN

A P P E N D I X D

Resource Code

216

GetResInfo(myHandle, myID, myType, myName); {get res name}

myAttr := GetResAttrs(myHandle); {get res attributes}

RmveResource(myHandle);

IF ResError = noErr THEN

AddResource(myPrefData, kPrefResType, kPrefResID, myName);

IF ResError = noErr THEN

WriteResource(myPrefData);

END;

HUnlock(myPrefData);

ReleaseResource(myPrefData);

UseResFile(gAppsResourceFile); {restore app's resource file}

END; {DoSavePrefs}

END. {UNIT Preferences}

A P P E N D I X E

217

User Interface Code

This appendix shows the source code that manages the basic setup and user interface for

the Venn Diagrammer application.

PROGRAM VennDiagrammer;

USES

Global, Utilities, Dialog, Preferences, VennProcs;

VAR

gDone: Boolean;

{DoInitManagers: initialize Toolbox Managers}

PROCEDURE DoInitManagers;

BEGIN

MaxApplZone; {extend heap zone to limit}

MoreMasters; {get 64 more master pointers}

InitGraf(@thePort); {initialize QuickDraw}

InitFonts; {initialize Font Manager}

InitWindows; {initialize Window Manager}

InitMenus; {initialize Menu Manager}

TEInit; {initialize TextEdit}

InitDialogs(NIL); {initialize Dialog Manager}

FlushEvents(everyEvent, 0); {clear event queue}

InitCursor; {initialize cursor to arrow}

END;

{DoSetupMenus: set up the menu bar}

PROCEDURE DoSetupMenus;

VAR

menuBar: Handle;

BEGIN

menuBar := GetNewMBar(rMenuBar);

IF menuBar = NIL THEN

DoBadError(eCantFindMenus);

SetMenuBar(menuBar);

DisposeHandle(menuBar);

AppendResMenu(GetMenuHandle(mApple), 'DRVR');

A P P E N D I X E

User Interface Code

218

DrawMenuBar;

END;

{DoUpdate: update a window}

PROCEDURE DoUpdate (myWindow: WindowPtr);

VAR

myHandle: MyDocRecHnd;

myRect: Rect; {tool rectangle}

origPort: GrafPtr;

origPen: PenState;

count: Integer;

BEGIN

GetPort(origPort); {remember original drawing port}

SetPort(myWindow);

BeginUpdate(myWindow); {clear update region}

EraseRect(myWindow^.portRect);

IF IsAppWindow(myWindow) THEN

BEGIN

{Draw two lines separating tools area from work area.}

GetPenState(origPen); {remember original pen state}

PenNormal; {reset pen to normal state}

WITH myWindow^ DO

BEGIN

MoveTo(portRect.left, portRect.top + kToolHt);

Line(portRect.right, 0);

MoveTo(portRect.left, portRect.top + kToolHt + 2);

Line(portRect.right, 0);

END;

{Redraw the tools area in the window.}

FOR count := 1 TO kNumTools DO

BEGIN

SetRect(myRect, kToolWd * (count - 1), 0, kToolWd * count,

 kToolHt);

DoPlotIcon(myRect, gToolsIcons[count], myWindow, srcCopy);

END;

{Redraw the status area in the window.}

myHandle := MyDocRecHnd(GetWRefCon(myWindow));

DoStatusText(myWindow, myHandle^^.statusText);

A P P E N D I X E

User Interface Code

219

{Draw the rest of the content region.}

DoVennDraw(myWindow);

SetPenState(origPen); {restore previous pen state}

END; {IF IsAppWindow}

EndUpdate(myWindow);

SetPort(origPort); {restore original drawing port}

END;

{DoCreateWindow: create a new window}

FUNCTION DoCreateWindow: WindowPtr;

VAR

myPointer: Ptr;

myWindow: WindowPtr;

myHandle: MyDocRecHnd;

BEGIN

myPointer := NewPtr(sizeof(WindowRecord));

IF myPointer = NIL THEN

exit(DoCreateWindow);

myWindow := GetNewWindow(rVennD, myPointer, WindowPtr(-1));

IF myWindow <> NIL THEN

BEGIN

SetPort(myWindow);

myHandle := MyDocRecHnd(NewHandleClear(sizeof(MyDocRec)));

IF myHandle <> NIL THEN

BEGIN

HLockHi(Handle(myHandle));

{lock the data high in the heap}

SetWRefCon(myWindow, LongInt(myHandle));

{attach data handle to window record}

DoSetWindowTitle(myWindow); {set the window title}

{Define initial window settings.}

WITH myHandle^^ DO

BEGIN

figure := 1;

mood[1] := 1;

mood[2] := 1;

mood[3] := 1;

A P P E N D I X E

User Interface Code

220

isAnswerShowing := FALSE;

isExistImport := gGiveImport;

END;

DoGetRandomTerms(myWindow);

DoCalcAnswer(myWindow);

{Position the window and display it.}

DoPositionWindow(myWindow);

ShowWindow(myWindow);

END {IF myHandle <> NIL}

ELSE

BEGIN {couldn't get a data record}

CloseWindow(myWindow);

DisposePtr(Ptr(myWindow));

myWindow := NIL; {so pass back NIL}

END;

END;

DoCreateWindow := myWindow;

END;

{DoCloseDocWindow: dispose a document window and all its data structures}

PROCEDURE DoCloseDocWindow (myWindow: WindowPtr);

VAR

myHandle: MyDocRecHnd;

BEGIN

IF myWindow = NIL THEN

exit(DoCloseDocWindow) {ignore NIL windows}

ELSE

BEGIN

myHandle := MyDocRecHnd(GetWRefCon(myWindow));

DisposeHandle(Handle(myHandle));

CloseWindow(myWindow); {close the window}

DisposePtr(Ptr(myWindow)); {and release the storage}

END;

END;

{DoCloseWindow: close a window}

PROCEDURE DoCloseWindow (myWindow: WindowPtr);

BEGIN

IF myWindow <> NIL THEN

IF IsDialogWindow(myWindow) THEN {this is a dialog window}

A P P E N D I X E

User Interface Code

221

HideWindow(myWindow)

ELSE IF IsDAccWindow(myWindow) THEN {this is a DA window}

CloseDeskAcc(WindowPeek(myWindow)^.windowKind)

ELSE IF IsAppWindow(myWindow) THEN {this is a document window}

DoCloseDocWindow(myWindow);

END;

{DoDrag: handle window dragging}

PROCEDURE DoDrag (myWindow: WindowPtr; mouseloc: Point);

VAR

dragBounds: Rect;

BEGIN

dragBounds := GetGrayRgn^^.rgnBBox;

DragWindow(myWindow, mouseloc, dragBounds);

END;

{DoGoAwayBox: process a click in close box}

PROCEDURE DoGoAwayBox (myWindow: WindowPtr; mouseloc: Point);

BEGIN

IF TrackGoAway(myWindow, mouseloc) THEN

DoCloseWindow(myWindow);

END;

{DoQuit: quit the program}

PROCEDURE DoQuit;

VAR

myWindow: WindowPtr;

BEGIN

myWindow := FrontWindow; {close all windows}

WHILE myWindow <> NIL DO

BEGIN

DoUpdate(myWindow); {force redrawing window}

DoCloseWindow(myWindow);

myWindow := FrontWindow;

END;

gDone := TRUE; {set flag to exit main event loop}

END;

{DoActivate: handle activate and deactivate events for the specified window}

PROCEDURE DoActivate (myWindow: WindowPtr; myModifiers: Integer);

VAR

myState: Integer; {activation state}

myControl: ControlHandle;

A P P E N D I X E

User Interface Code

222

BEGIN

myState := BAnd(myModifiers, activeFlag);

IF IsDialogWindow(myWindow) THEN

BEGIN

myControl := WindowPeek(myWindow)^.controlList;

WHILE myControl <> NIL DO

BEGIN

HiliteControl(myControl, myState + 255 mod 256);

myControl := myControl^^.nextControl;

END;

END;

END;

{DoDiskEvent: handle disk-inserted events}

PROCEDURE DoDiskEvent (myEvent: EventRecord);

VAR

myResult: Integer;

myPoint: Point;

BEGIN

IF HiWord(myEvent.message) <> noErr THEN

BEGIN

SetPt(myPoint, 100, 100);

myResult := DIBadMount(myPoint, myEvent.message);

END;

END;

{MyModalFilter: a basic modal dialog filter function}

FUNCTION MyModalFilter (myDialog: DialogPtr; VAR myEvent: EventRecord;

VAR myItem: Integer): Boolean;

VAR

itemType: Integer;

itemHand: Handle;

itemRect: Rect;

myKey: Char;

myIgnore: LongInt;

BEGIN

MyModalFilter := FALSE; {assume we don't handle the event}

CASE myEvent.what OF

updateEvt:

BEGIN

IF WindowPtr(myEvent.message) <> myDialog THEN

A P P E N D I X E

User Interface Code

223

DoUpdate(WindowPtr(myEvent.message));

{update the window behind}

END;

keyDown, autoKey:

BEGIN

myKey := char(And(myEvent.message, charCodeMask));

{if Return or Enter pressed, do default button}

IF (myKey = kReturn) OR (myKey = kEnter) THEN

BEGIN

GetDItem(myDialog, iOK, itemType, itemHand, itemRect);

HiliteControl(ControlHandle(itemHand), 1);

{make button appear to have been pressed}

Delay(kVisualDelay, myIgnore);

HiliteControl(ControlHandle(itemHand), 0);

MyModalFilter := TRUE;

myItem := iOK;

END;

{if Escape or Cmd-. pressed, do Cancel button}

IF (myKey = kEscape)

OR ((myKey = kPeriod)

AND (BAnd(myEvent.modifiers, CmdKey) <> 0)) THEN

BEGIN

GetDItem(myDialog, iCancel, itemType, itemHand,

itemRect);

HiliteControl(ControlHandle(itemHand), 1);

{make button appear to have been pressed}

Delay(kVisualDelay, myIgnore);

HiliteControl(ControlHandle(itemHand), 0);

MyModalFilter := TRUE;

myItem := iCancel;

END;

END;

diskEvt:

BEGIN

DoDiskEvent(myEvent);

MyModalFilter := TRUE; {show we've handled the event}

END;

OTHERWISE

;

END; {CASE}

END;

A P P E N D I X E

User Interface Code

224

{DoAboutBox: handle About... selections}

PROCEDURE DoAboutBox (myWindow: WindowPtr);

VAR

myWindow: WindowPtr;

myDialog: DialogPtr;

myItem: Integer;

BEGIN

myWindow := FrontWindow;

IF myWindow <> NIL THEN

DoActivate(myWindow, 1 - activeFlag);

myDialog := GetNewDialog(rAboutDial, NIL, WindowPtr(-1));

IF myDialog <> NIL THEN

BEGIN

SetPort(myDialog);

DoDefaultButton(myDialog);

REPEAT

ModalDialog(@MyModalFilter, myItem);

UNTIL myItem = iOK;

DisposeDialog(myDialog);

SetPort(myWindow);

END;

END;

{DoMenuAdjust: adjust menus by enabling and disabling items}

PROCEDURE DoMenuAdjust;

VAR

myWindow: WindowPtr;

myMenu: MenuHandle;

count: Integer;

BEGIN

myWindow := FrontWindow;

IF myWindow = NIL THEN

DisableMenuItem(GetMenuHandle(mFile), iClose)

ELSE

EnableMenuItem(GetMenuHandle(mFile), iClose);

myMenu := GetMenuHandle(mVennD);

IF IsAppWindow(myWindow) THEN

A P P E N D I X E

User Interface Code

225

FOR count := 1 TO kNumTools DO

EnableMenuItem(myMenu, count)

ELSE

FOR count := 1 TO kNumTools DO

DisableMenuItem(myMenu, count);

IF IsDAccWindow(myWindow) THEN

EnableMenuItem(GetMenuHandle(mEdit), 0)

ELSE

DisableMenuItem(GetMenuHandle(mEdit), 0);

DrawMenuBar;

END;

{DoMenuCommand: interpret and act on menu selections}

PROCEDURE DoMenuCommand (menuAndItem: LongInt);

VAR

myMenuNum: Integer;

myItemNum: Integer;

myResult: Integer;

myDAName: Str255;

myWindow: WindowPtr;

BEGIN

myMenuNum := HiWord(menuAndItem);

myItemNum := LoWord(menuAndItem);

GetPort(myWindow);

CASE myMenuNum OF

mApple:

CASE myItemNum OF

iAbout:

BEGIN

DoAboutBox;

END;

OTHERWISE

BEGIN

GetMenuItemText(GetMenuHandle(mApple), myItemNum,

 myDAName);

myResult := OpenDeskAcc(myDAName);

END;

END;

mFile:

BEGIN

CASE myItemNum OF

A P P E N D I X E

User Interface Code

226

iNew:

myWindow := DoCreateWindow;

iClose:

DoCloseWindow(FrontWindow);

iQuit:

DoQuit;

OTHERWISE

;

END;

END;

mEdit:

BEGIN

IF NOT SystemEdit(myItemNum - 1) THEN

;

END;

mVennD:

BEGIN

myWindow := FrontWindow;

CASE myItemNum OF

iCheckVenn:

DoVennCheck(myWindow);

iDoVenn:

DoVennAnswer(myWindow);

iClearVenn:

DoVennClear(myWindow);

iNextTask:

DoVennNext(myWindow);

iCheckArg:

DoVennAssess(myWindow);

iGetVennPrefs:

DoModelessDialog(rVennDPrefsDial, gPrefsDialog);

OTHERWISE

;

END;

END;

OTHERWISE

;

END;

HiliteMenu(0);

END; {DoMenuCommand}

{DoContentClick: handle a mouse click in the content area of a window}

A P P E N D I X E

User Interface Code

227

PROCEDURE DoContentClick (myWindow: WindowPtr; myEvent: EventRecord);

VAR

myRect: Rect; {temporary rectangle}

count: Integer;

BEGIN

IF NOT IsAppWindow(myWindow) THEN

exit(DoContentClick); {make sure it's a document window}

SetPort(myWindow); {set port to our window}

GlobalToLocal(myEvent.where);

{See if the click is in the tools area.}

SetRect(myRect, 0, 0, kToolWd * kNumTools, kToolHt);

IF PtInRect(myEvent.where, myRect) THEN

BEGIN {if so, determine which tool was clicked}

FOR count := 1 TO kNumTools DO

BEGIN

SetRect(myRect, (count - 1) * kToolWd, 0,

count * kToolWd, kToolHt);

IF PtInRect(myEvent.where, myRect) THEN

Leave; {we found the right tool, so stop looking}

END;

IF DoTrackRect(myWindow, myRect) THEN

DoMenuCommand(BitShift(mVennD, 16) +

((kNumTools + 1) - count));{handle tools selections}

exit(DoContentClick);

END;

{See if the click is in the status area.}

SetRect(myRect, kToolWd * kNumTools, 0,

myWindow^.portRect.right, kToolHt);

IF PtInRect(myEvent.where, myRect) THEN

BEGIN

exit(DoContentClick);

END;

{The click must be in somewhere in the rest of the window.}

DoVennClick(myWindow, myEvent.where);

END;

{DoMouseDown: process mouseDown events}

PROCEDURE DoMouseDown (myEvent: EventRecord);

VAR

A P P E N D I X E

User Interface Code

228

myPart: Integer;

myWindow: WindowPtr;

BEGIN

myPart := FindWindow(myEvent.where, myWindow);

CASE myPart OF

inMenuBar:

BEGIN

DoMenuAdjust;

DoMenuCommand(MenuSelect(myEvent.where));

END;

InSysWindow:

SystemClick(myEvent, myWindow);

inDrag:

DoDrag(myWindow, myEvent.where);

inGoAway:

DoGoAwayBox(myWindow, myEvent.where);

inContent:

BEGIN

IF myWindow <> FrontWindow THEN

SelectWindow(myWindow)

ELSE

DoContentClick(myWindow, myEvent);

END;

OTHERWISE

;

END;

END;

{DoKeyDown: respond to keyDown events}

PROCEDURE DoKeyDown (myEvent: EventRecord);

VAR

myKey: char;

BEGIN

myKey := chr(BAnd(myEvent.message, charCodeMask));

IF (BAnd(myEvent.modifiers, CmdKey) <> 0) THEN

BEGIN

DoMenuAdjust;

DoMenuCommand(MenuKey(myKey));

END;

END;

{DoIdle: handle null events}

{currently we use this for auto-processing in Venn diagram windows}

A P P E N D I X E

User Interface Code

229

PROCEDURE DoIdle (myEvent: EventRecord);

VAR

myWindow: WindowPtr;

myHandle: MyDocRecHnd;

BEGIN

myWindow := FrontWindow;

IF IsAppWindow(myWindow) THEN

IF gAutoAdjust THEN

BEGIN

myHandle := MyDocRecHnd(GetWRefCon(myWindow));

IF myHandle^^.needsAdjusting THEN

DoVennIdle(myWindow);

END;

END; {DoIdle}

{DoOSEvent: handle OS events}

PROCEDURE DoOSEvent (myEvent: EventRecord);

VAR

myWindow: WindowPtr;

BEGIN

CASE BSR(myEvent.message, 24) OF

mouseMovedMessage:

BEGIN

DoIdle(myEvent); {right now, do nothing}

END;

suspendResumeMessage:

BEGIN

myWindow := FrontWindow;

IF (BAnd(myEvent.message, resumeFlag) <> 0) THEN

DoActivate(myWindow, activeFlag) {activate window}

ELSE

DoActivate(myWindow, 1 - activeFlag); {deactivate window}

END;

OTHERWISE

;

END;

END;

{DoMainEventLoop: the main event loop}

PROCEDURE DoMainEventLoop;

VAR

myEvent: EventRecord;

gotEvent: Boolean; {is returned event for me?}

A P P E N D I X E

User Interface Code

230

BEGIN

REPEAT

gotEvent := WaitNextEvent(everyEvent, myEvent, 15, NIL);

IF NOT DoHandleDialogEvent(myEvent) THEN

IF gotEvent THEN

BEGIN

CASE myEvent.what OF

mouseDown:

DoMouseDown(myEvent);

keyDown, autoKey:

DoKeyDown(myEvent);

updateEvt:

DoUpdate(WindowPtr(myEvent.message));

diskEvt:

DoDiskEvent(myEvent);

activateEvt:

DoActivate(WindowPtr(myEvent.message),

 myEvent.modifiers);

osEvt:

DoOSEvent(myEvent);

keyUp, mouseUp:

;

nullEvent:

DoIdle(myEvent);

OTHERWISE

;

END; {CASE}

END

ELSE

DoIdle(myEvent);

UNTIL gDone; {loop until user quits}

END;

BEGIN

DoInitManagers; {initialize Toolbox managers}

DoSetupMenus; {initialize menus}

gDone := FALSE; {initialize global variables}

gNumDocWindows := 0; {initialize count of open doc windows}

gPrefsDialog := NIL; {initialize ptr to Preferences dialog}

gAppsResourceFile := CurResFile; {get refnum of the app's resource file}

gPreferencesFile := -1; {initialize res ID of preferences file}

A P P E N D I X E

User Interface Code

231

DoReadPrefs; {read the user's preference settings}

DoVennInit;

DoMainEventLoop; {and then loop forever...}

END.

233

A5 world An area of memory in an
application’s partition that contains the
QuickDraw global variables, the application
global variables, the application parameters, and
the jump table—all of which are accessed
through the A5 register.

action procedure A procedure that performs an
action in response to the user holding the mouse
button down while the cursor is in a control.

activate event An event indicating that a
window is becoming active or inactive. Each
activate event specifies the window to be
changed and the direction of the change (that is,
whether it’s becoming active or becoming
inactive).

active application The application currently
interacting with the user. Its icon appears on the
right side of the menu bar. See also current
process, foreground process.

active control A control in which the Control
Manager responds to a user’s mouse actions by
providing visual feedback.

active window The frontmost window on the
desktop, the one in which the user is currently
working. The active window is designated by
racing stripes in the title bar, active controls, and
highlighted selections.

address A number that specifies the location of
a byte in memory.

alert An alert sound, an alert box, or both.
Alerts warn the user of an unusual or potentially
undesirable situation occurring within an
application. See also alert box.

alert box A window that an application
displays on the screen to warn the user or to
report an error to the user. An alert box typically
consists of text describing the situation and
buttons that require the user to acknowledge or
rectify the problem. An alert box may or may not
be accompanied by an alert sound.

alert resource A resource (of type 'ALRT') that
specifies alert sounds, a display rectangle, and an
item list for an alert box.

alert sound An audible signal from the
Macintosh speaker that warns the user of an
unusual or potentially undesirable situation
occurring within an application. An alert sound
may or may not be accompanied by an alert box.

Alias Manager The part of the Operating
System that helps you to locate specified files,
directories, or volumes at a later time. The Alias
Manager creates and resolves alias records.

alias record A data structure created by the
Alias Manager to identify a file, directory, or
volume.

allocate To assign an area of memory for use.

Apple event A high-level event whose
structure and interpretation are determined by
the Apple Event Interprocess Messaging Protocol.

Apple Event Manager The part of the
Macintosh system software that allows
applications to send and respond to Apple events.

Apple Menu Items folder A directory located
in the System Folder for storing desk accessories,
applications, folders, and aliases that the user
wants to display in and access from the Apple
menu.

application global variables A set of variables
stored in the application’s A5 world that are
global to the application.

application heap An area of memory in the
application heap zone in which memory is
dynamically allocated and released on demand.
The heap contains the application’s 'CODE'
segment 1, data structures, resource map, and
other code segments as needed.

Glossary

G L O S S A R Y

234

application parameters Thirty-two bytes of
memory in the application partition that are
reserved for system use. The first long word is
the address of the first QuickDraw global
variable.

application partition A partition of memory
reserved for use by an application. The
application partition consists of free space, the
application heap, the application’s stack, and the
application’s A5 world.

auto-key event An event indicating that a key
is still down after a certain amount of time has
elapsed.

background-only application An application
that does not have a user interface.

background process A process that isn’t
currently interacting with the user. Compare
foreground process.

bitmap A set of bits that represents the
positions and states of a corresponding set of
items, such as pixels.

block See memory block.

button A control that appears on the screen as a
rounded rectangle with a title centered inside.
When the user clicks a button, the application
performs the action described by the button’s
title. Button actions are usually performed
instantaneously. Examples include completing
operations defined by a dialog box and
acknowledging an error message in an alert box.

checkbox A control that appears onscreen as a
small square with an accompanying title. A
checkbox displays one of two settings: on
(indicated by an X inside the box) or off. When
the user clicks a checkbox, the application
reverses its setting. See also radio button.

close box The small white box on the left side
of the title bar of an active window. Clicking it
closes the window.

Command-key equivalent Refers specifically
to a keyboard equivalent that the user invokes by
holding down the Command key and pressing
another key (other than a modifier key) at the
same time.

Communications Toolbox A part of the
Macintosh system software that you can use to
provide your application with basic networking
and communications services.

compact See heap compaction.

compatibility The ability of an application to
execute properly in different operating
environments.

content region The part of a window in which
the contents of a document, the size box, and the
window controls (including the scroll bars) are
displayed.

context The information about a process
maintained by the Process Manager. This
information includes the current state of the
process, the address and size of its partition, its
type, its creator, a copy of its low-memory
globals, information about its 'SIZE' resource,
and a process serial number.

context switch A major or minor switch.

control An onscreen object that the user can
manipulate with the mouse. By manipulating a
control, the user can take an immediate action or
change a setting to modify a future action.

control definition function A function that
defines the appearance and behavior of a control.
A control definition function, for example, draws
the control. See also standard control definition
functions.

control definition ID A number passed to
control-creation routines to indicate the type of
control. It consists of the control definition
function’s resource ID and a variation code.

control list A series of entries pointing to the
descriptions of the controls associated with the
window.

Control Manager A collection of routines that
applications use to create and manipulate
controls, especially those in windows.

control record A data structure of type
ControlRecord, which the Control Manager
uses to store all the information it needs for its
operations on a control.

G L O S S A R Y

235

cooperative multitasking environment A
multitasking environment in which applications
explicitly cooperate to share the available system
resources. See also multitasking environment.

current directory The directory whose contents
are listed in the dialog box displayed by the
Standard File Package. See also default directory.

current menu list A data structure that contains
handles to the menu records of all menus in the
current menu bar and the menu records of any
submenus or pop-up menus that an application
inserts into the list.

current process The process that is currently
executing and whose A5 world is valid; this
process can be in the background or the
foreground.

cursor Any 256-bit image, defined by a
16-by-16-bit square. The mouse driver displays
the current cursor and maps the movement of the
mouse to relative locations on the screen as the
user moves the mouse.

dangling pointer A copy of a master pointer
that no longer points to the correct memory
address.

data fork The part of a file that contains data
accessed using the File Manager. The data
usually corresponds to data entered by the user;
the application creating a file can store and
interpret the data in the data fork in whatever
manner is appropriate.

default button In an alert box or a dialog box,
the button whose action is invoked when the
user presses the Return key or the Enter key. The
Dialog Manager automatically draws a bold
outline around the default button in alert boxes;
applications should draw a bold outline around
the default button in dialog boxes. The default
button should invoke the preferred action which,
whenever possible, should be a “safe” action—
that is, one that doesn’t cause loss of data.

default directory The directory used in File
Manager routines whenever you don’t explicitly
specify some directory. See also current directory.

default volume The volume that contains the
default directory.

desk accessory A “mini-application” that is
available from the Apple menu regardless of
which application you’re using—for example, the
Calculator, Note Pad, Alarm Clock, Puzzle,
Scrapbook, Key Caps, and Chooser.

desktop The working environment displayed
on the Macintosh computer: the gray background
area on the screen.

Device Manager The part of the Macintosh
Operating System that supports device I/O.

dialog box A window that’s used for some
special or limited purpose, such as to solicit
information from the user before the application
carries out the user’s command. See also modal
dialog box, modeless dialog box, and movable
modal dialog box.

Dialog Manager The part of the Macintosh
Toolbox that provides routines for creating and
manipulating alerts and dialog boxes.

dialog record A data structure of type
DialogRecord that the Dialog Manager uses to
create dialog boxes and alerts.

dialog resource A resource (of type 'DLOG')
that specifies the window type, display rectangle,
and item list for a dialog box.

directory A subdivision of a volume, available
in the hierarchical file system. A directory can
contain files and other directories (known as
subdirectories).

disabled item In an alert box or a dialog box,
an item for which the Dialog Manager does not
report user events. An example of a disabled item
is static text, which typically does not respond to
clicks.

disk A physical medium capable of storing
information.

disk initialization The process of making a
disk usable by the Macintosh Operating System.

Disk Initialization Manager The part of the
Macintosh Operating System that manages the
process of initializing disks.

disk-inserted event An event indicating that a
disk has been inserted into a disk drive.

G L O S S A R Y

236

display rectangle A rectangle that defines the
size and location of an item in an alert box or a
dialog box. The display rectangle is specified in
an item list and uses coordinates local to the alert
box or a dialog box.

disposed handle A handle whose associated
relocatable block has been disposed of.

divider A gray line used in menus to separate
groups of menu items.

document (1) A file that a user can create and
edit. A document is usually associated with a
single application, which the user expects to be
able to open by double-clicking the document’s
icon in the Finder. (2) Any collection of
information that is displayed in a document
window.

document record An application-defined data
structure that contains information about the
window, any controls in the window (such as
scroll bars), and the file (if any) whose contents
are displayed in the window.

document window A window in which the
user enters text, draws graphics, or otherwise
enters or manipulates data.

double indirection The means by which the
Memory Manager or an application accesses the
data associated with a handle variable.

drag region The area occupied by a window’s
title bar, except for the close box and zoom box.
The user can move a window on the desktop by
dragging the drag region.

edition The data written to an edition container
by a publisher. A publisher writes data to an
edition whenever a user saves a document that
contains a publisher, and subscribers in other
documents may read the data from the edition
whenever it is updated.

Edition Manager The part of the Macintosh
system software that allows applications to
automate copy and paste operations between
applications, so that data can be shared
dynamically.

empty handle A handle whose master pointer
has the value NIL (possibly indicating that the
underlying relocatable block has been purged).

enabled item In an alert box or a dialog box,
an item for which the Dialog Manager reports
user events. For example, the Dialog Manager
reports clicks in an enabled OK button.

event The means by which the Event Manager
communicates information about user actions,
changes in the processing status of the
application, and other occurrences that require a
response from the application.

event-driven programming A way of
structuring an application so that it is guided by
events reporting a user’s actions and other
occurrences in the computer.

event filter function An application-defined
routine that supplements the Dialog Manager’s
ability to handle events—for example, an event
filter function can test for disk-inserted events
and can allow background applications to receive
update events.

event loop A section of code that repetitively
retrieves events from the Event Manager and
dispatches to the appropriate event-handler.

Event Manager The collection of routines that
an application can use to receive information
about actions performed by the user, to receive
notice of changes in the processing status of the
application, and to communicate with other
applications.

event priority The order in which an event of a
particular type is returned to an application.

event record A data structure of type
EventRecord that your application uses when
retrieving information about an event. The Event
Manager returns, in an event record, information
about what type of event occurred (a mouse click
or keypress, for example) and additional
information associated with the event.

extension See system extension.

Extensions folder A directory located in the
System Folder for storing system extension files
such as printer and network drivers and files of
types 'INIT', 'scri', and 'appe'.

file A named, ordered sequence of bytes stored
on a Macintosh volume, divided into a data fork
and a resource fork.

G L O S S A R Y

237

file fork One of the two parts of a file. See also
data fork and resource fork.

File Manager The part of the Macintosh
Operating System that manages the organization,
reading, and writing of data located on physical
data storage devices such as disk drives.

file system A method of organizing files and
directories on a volume.

Finder An application that works with the
system software to keep track of files and
manage the user’s desktop display.

Finder Interface A set of routines, data
structures, and resources that you can use to
coordinate your application with the Finder.

folder A directory. See directory.

Fonts folder A directory located in the System
Folder for storing fonts.

foreground process The process currently
interacting with the user; it appears to the user as
the active application. The foreground process
displays its menu bar, and its windows are in
front of the windows of other applications.
Compare background process.

fork See file fork.

fragmentation See heap fragmentation.

frame The part of a window drawn
automatically by the Window Manager, namely,
the title bar, including the close box and zoom
box, and the window’s outline.

free block A memory block containing space
available for allocation.

global coordinate system The coordinate
system that represents all potential QuickDraw
drawing space. The origin of the global
coordinate system—that is, the point (0,0)—is at
the upper-left corner of the main screen.
Compare local coordinate system.

global variables See application global
variables, system global variables, and
QuickDraw global variables.

glue routine A routine, usually written in
assembly-language, that allows a high-level
language to call a low-level routine. Also, any
short special-purpose assembly-language routine.

graphics port A complete, individual drawing
environment with an independent coordinate
system. Each window is drawn in a graphics port.

handle A variable containing the address of a
master pointer, used to access a relocatable block.
See also pointer.

heap An area of memory in which space is
dynamically allocated and released on demand,
using the Memory Manager. See also application
heap.

heap compaction The process of moving
allocated blocks within a heap to collect the free
space into a single block.

heap fragmentation The state of a heap when
the available free space is scattered throughout
the heap in numerous unused blocks.

help balloon A rounded-rectangle window that
contains explanatory information for the user.
With tips pointing at the objects they annotate,
help balloons look like bubbles used for dialog in
comic strips. Help balloons are turned on by the
user from the Help menu; when Balloon Help
assistance is on, a help balloon appears whenever
the user moves the cursor over an area that is
associated with it.

hierarchical menu A menu to which a
submenu is attached.

high-level event An event sent from one
application to another requesting transfer of
information or performance of some action.

high-level event queue A separate queue that
the Event Manager maintains to store high-level
events transmitted to an application. The Event
Manager maintains a high-level event queue for
each open application capable of receiving
high-level events.

icon An image that represents an object, a
concept, or a message.

inactive control A control that has no meaning
or effect in the current context—for example, the
scroll bars in an empty window. The Control
Manager dims inactive controls or otherwise
visually indicates their inactive state.

inactive window A window in which the user
is not working.

G L O S S A R Y

238

interapplication communications (IAC)
architecture A standard and extensible
mechanism for communicating among
Macintosh applications.

item list A resource (of type 'DITL') that
specifies the items—such as buttons and static
text—to display in an alert box or a dialog box.

item number An integer that identifies an item
in either a menu or dialog box. Menu items are
assigned item numbers starting with 1 for the
first menu item in the menu, 2 for the second
menu item in the menu, and so on, up to the
number of the last menu item in the menu.
Dialog items are assigned numbers that
correspond to the item’s position in its item list.
For example, the first item listed in a dialog item
list is item number 1.

jump table An area of memory in an
application’s A5 world that contains one entry
for every externally referenced routine in every
code segment of the application. The jump table
is the means by which the loading and unloading
of segments is implemented.

keyboard equivalent A keyboard combination
of one or more modifier keys and another key
that invokes a corresponding menu command
when pressed by the user. See also
Command-key equivalent.

key-down event An event indicating that the
user pressed a key on the keyboard.

key-up event An event indicating that the user
released a key on the keyboard.

local coordinate system The coordinate system
defined by the port rectangle of a graphics port.
When the window manager creates a window, it
places the origin of the local coordinate system at
the upper-left corner of the window’s port
rectangle. Compare global coordinate system.

localization The process of adapting an
application to a specific language, culture, and
region.

lock To temporarily prevent a relocatable block
from being moved during heap compaction.

low-level events The type of event returned by
the Event Manager to report very low level
hardware and software occurrences. Low-level

events report actions by the user, changes in
windows on the screen, and that the Event
Manager has no other events to report. Compare
high-level events, operating-system events.

low-memory system global variables See
system global variables.

Macintosh Operating System The part of
Macintosh system software that manages basic
low-level operations such as file reading and
writing, memory allocation and deallocation,
process execution, and interrupt handling.

Macintosh script management system The
Script Manager, script-aware parts of other text
managers, the WorldScript extensions, and one or
more script systems.

Macintosh system software A collection of
routines that you can use to simplify your
development of Macintosh applications. See also
Macintosh Toolbox and Macintosh Operating
System.

Macintosh Toolbox The part of the Macintosh
system software that allows you to implement
the standard Macintosh user interface in your
application.

Macintosh User Interface Toolbox See
Macintosh Toolbox.

major switch A change of the foreground
process. The Process Manager switches the
context of the foreground process with the
context of a background process (including the
A5 worlds and low-memory globals) and brings
the background process to the front, sending the
previous foreground process to the background.
See also context, minor switch.

manager A part of the Macintosh system
software.

master pointer A pointer to a relocatable block,
maintained by the Memory Manager and
updated whenever the block is moved, purged,
or reallocated. All handles to a relocatable block
refer to it by double indirection through the
master pointer.

G L O S S A R Y

239

master pointer block A nonrelocatable block of
memory that contains master pointers. A master
pointer block in your application heap contains
64 master pointers, and a master pointer block in
the system heap contains 32 master pointers.

memory block An area of contiguous memory
within a heap.

Memory Manager The part of the Operating
System that dynamically allocates and releases
memory space in the heap.

menu A user interface element you can use in
your application to allow the user to view or
choose an item from a list of choices and
commands that your application provides. See
also hierarchical menu, pull-down menu,
pop-up menu, and submenu.

menu bar A white rectangle that is tall enough
to display menu titles in the height of the system
font and system font size, and with a black lower
border that is one pixel tall. The menu bar
extends across the top of the startup screen and
contains the title of each available pull-down
menu.

menu bar definition function A function that
draws the menu bar and performs most of the
drawing activities related to the display of menus
when the user moves the cursor between menus.
This function, in conjunction with the menu
definition procedure, defines the general
appearance and behavior of menus.

menu bar resource A resource (of type
'MBAR') that specifies the order and resource ID
of each menu in a menu bar.

menu definition procedure A procedure that
performs all the drawing of menu items within a
specific menu. This procedure, in conjunction
with the menu bar definition function, defines
the general appearance and behavior of menus.

menu ID A number that you assign to a menu
in your application. Each menu in your
application must have a unique menu ID.

menu item In a menu, a rectangle with text and
other characteristics identifying a command that
the user can choose.

menu list A data structure that contains
handles to the menu records of one or more
menus (although a menu list can be empty).
Compare current menu list.

Menu Manager The collection of routines that
an application can use to create, display, and
manage its menus.

menu record A data structure of type
MenuInfo that the Menu Manager uses to
maintain information about a menu.

menu resource A resource (of type 'MENU')
that specifies the menu title and the individual
characteristics of items in a menu.

menu title The word or icon in the menu bar or
in a window that shows the location of a menu.

minimum partition size The actual partition
size limit below which an application cannot run.

minor switch A change in the context of a
process. The Process Manager switches the
context of a process to give time to a background
process without bringing the background process
to the front. See also context, major switch.

modal dialog box A dialog box that puts the
user in the state or “mode” of being able to work
only inside the dialog box. A modal dialog box
resembles an alert box. The user cannot move a
modal dialog box and can dismiss it only by
clicking its buttons. See also modeless dialog box
and movable modal dialog box.

modal dialog filter function An
application-defined function that filters events
passed from the Event Manager to your
application when one of its modal dialog boxes is
being displayed.

modeless dialog box A dialog box that looks
like a document window without a size box or
scroll bars. The user can move a modeless dialog
box, make it inactive and active again, and close
it like any document window. See also modal
dialog box and movable modal dialog box.

modifier keys The Shift, Option, Command,
Control, and Caps Lock keys.

mouse-down event An event indicating that
the user pressed the mouse button.

G L O S S A R Y

240

mouse location The location of the cursor at the
time an event occurred.

mouse-moved event An event indicating that
the cursor is outside of a specified region.

mouse-up event An event indicating that the
user released the mouse button.

movable modal dialog box A modal dialog box
that has a title bar (with no close box) by which
the user can drag the dialog box. See also dialog
box, modal dialog box, and modeless dialog box.

multitasking environment An environment in
which several independent applications or other
processes can be open at once. See also
cooperative multitasking environment.

nonrelocatable block A block whose location
in the heap is fixed. This block can’t be moved
during heap compaction or other memory
operations.

null event An event indicating that no events
of the requested types exist in the application’s
event stream.

open application An application that is loaded
into memory.

Operating System See Macintosh Operating
System.

operating-system event An event returned by
the Event Manager to communicate information
about changes in the operating status of
applications (suspend and resume events) and to
report that the user has moved the mouse outside
of an area specified by the application
(mouse-moved events). Compare low-level
events, high-level events.

Operating System Event Manager The
collection of low-level routines that manage the
Operating System event queue.

Operating System event queue A queue that
the Operating System Event Manager creates and
maintains. The Operating System Event Manager
detects and reports low-level hardware-related
events such as mouse clicks, keypresses, and disk
insertions and places these events in the
Operating System event queue.

package A collection of system software
routines that’s stored as a resource and brought
into memory only when needed. See also
manager.

part code An integer between 1 and 253 that
stands for a particular part of a control. The
FindControl and TrackControl functions
return a part code to indicate the location of the
cursor when the user presses the mouse button.

partition A contiguous block of memory
reserved for use by the Operating System or by
an application. See also application partition and
system partition.

patch To replace a piece of ROM code with
other RAM-based code (by storing a new entry
into the trap dispatch table). Also, a resource that
contains the new code.

pixel The smallest dot you can draw on the
screen.

point The intersection of a horizontal grid line
and a vertical grid line in the coordinate plane.
Defined by the Point data type.

pointer A variable containing the address of a
byte in memory. See also handle.

pop-up menu A menu that appears elsewhere
than the menu bar. The Control Manager
provides a control definition function for
applications to use when implementing pop-up
menus.

PPC Toolbox See Program-to-Program
Communications (PPC) Toolbox.

preferences file A file, usually located in the
Preferences folder, that records a user’s
configuration settings for an application.

Preferences folder A directory located in the
System Folder for holding files that record users’
configuration settings for applications on a
particular Macintosh computer.

preferred partition size The partition size at
which an application can run most effectively.
The Operating System attempts to secure this
partition size upon launch of the application.

G L O S S A R Y

241

process An open application, or, in some cases,
an open desk accessory. (Only desk accessories
that are not opened in the context of another
application are considered processes.)

Process Manager The part of the Macintosh
Operating System that provides a cooperative
multitasking environment by controlling access
to shared resources and managing the
scheduling, execution, and termination of
applications.

process serial number A number assigned by
the Process Manager to identify a particular
instance of an application during a single boot of
the local machine.

Program-to-Program Communications (PPC)
Toolbox The part of the Macintosh system
software that allows applications to exchange
blocks of data with each other by reading and
writing low-level message blocks.

pull-down menu A menu that is identified by a
menu title (a word or an icon) in the menu bar.

purge To remove a relocatable block from the
heap, leaving its master pointer allocated but set
to NIL.

purgeable block A relocatable block that can be
purged from the heap.

QuickDraw The part of the Macintosh Toolbox
that performs all graphics operations on the
Macintosh screen.

QuickDraw global variables A set of variables
stored in the application’s A5 world that contain
information used by QuickDraw.

QuickTime A collection of managers and other
system software components that allow your
application to control time-based data.

radio button A control that appears on screen
as a small circle. A radio button displays one of
two settings: on (indicated by a black dot inside
the circle) or off. A radio button is always a part
of a group of related radio buttons in which only
one button can be on at a time. When the user
clicks an unmarked radio button, the application
turns that button on and turns the other buttons
in its group off.

RAM See random-access memory.

RAM disk A portion of the available RAM
reserved for use as a temporary storage device. A
user can configure a RAM disk or disable it
altogether using controls in the Memory control
panel.

random-access memory (RAM) Memory
whose contents can be changed. The RAM in a
Macintosh computer contains exception vectors,
buffers used by hardware devices, the system
and application heaps, the stack, and other
information used by applications.

read-only memory (ROM) Memory whose
contents are permanent. The ROM in a
Macintosh computer contains routines for the
Toolbox and the Operating System, and the
various system traps.

reallocate To allocate new space in the heap for
a purged block and to update the block’s master
pointer to point to its new location.

rectangle The area picked by intersecting the
grid lines of any two points in the coordinate
plane.

release (1) To free an allocated area of memory,
making it available for reuse. (2) To allow a
previously held range of pages to be movable in
physical memory.

relocatable block A block that can be moved
within the heap during compaction.

resource Any data stored according to a
defined structure in a resource fork of a file; the
data in a resource is interpreted according to its
resource type.

resource file The resource fork of a file.

resource fork The part of a file that contains the
files’ resources. A resource fork consists of a
resource map and resources.

resource ID A number that identifies a specific
resource of a given resource type.

resource map In a resource file, data that is
read into memory when the file is opened and
that, given a resource specification, leads to the
corresponding resource data.

resource name A string that, together with the
resource type, identifies a resource in a resource
file. A resource may or may not have a name.

G L O S S A R Y

242

resource specification A resource type and
either a resource ID or a resource name.

resource type A sequence of four characters
that uniquely identifies a specific type of resource.

resume event An event indicating that an
application has been switched back into the
foreground and can resume interacting with the
user. See also suspend event.

return receipt A high-level event that indicates
whether the other application accepted the
high-level event sent to it by your application.

ROM See read-only memory.

script A writing system for a human language.

Script Manager The part of the Macintosh
system software that manages script systems.

script system A collection of software facilities
that provides for the representation of a specific
writing system. It consists of keyboard resources,
a set of international resources, one or more
fonts, and possibly a script system extension.

segment One of several logical divisions of the
code of an application. Not all segments need to
be in memory at the same time.

Segment Manager The part of the Macintosh
Operating System that loads and unloads your
application’s code segments into and out of
memory.

signature A resource whose type is defined by
a four-character sequence that uniquely identifies
an application to the Finder. A signature is
located in an application’s resource fork.

size box A box in the lower-right corner of
windows that can be resized. Dragging the size
box resizes the window.

size region The area occupied by a window’s
size box. See size box.

size resource A resource (of type 'SIZE') that
specifies the operating characteristics, minimum
partition size, and preferred partition size of an
application.

stack An area of memory in the application
partition that is used to store temporary variables.

stack frame The area of the stack used by a
routine for its parameters, return address, local
variables, and temporary storage.

Standard File Package The part of system
software that allows you to present the standard
user interface when a file is to be saved or
opened.

stationery pad A document that a user creates
to serve as a template for other documents. The
Finder tags a document as a stationery pad by
setting the isStationery bit in the Finder flags
field of the file’s file information record. An
application that is asked to open a stationery pad
should copy the template’s contents into a new
document and open the document in an untitled
window.

submenu A menu that is attached to another
menu.

suspend event An event indicating that the
execution of your application is about to be
suspended as the result of either a major or
minor switch. The application is suspended at
the application’s next call to WaitNextEvent or
EventAvail. See also resume event.

switch See major switch and minor switch.

system extension A file of type 'INIT' that
contains executable code. System extensions are
loaded into memory at system startup time.

System file A file, located in the System Folder,
that contains the basic system software plus some
system resources, such as sound and keyboard
resources.The System file behaves like a folder in
this regard: although it looks like a suitcase icon,
double-clicking it opens a window that reveals
movable resource files (such as sounds, keyboard
layouts, and script system resource collections)
stored in the System file.

System Folder A directory containing the
software that Macintosh computers use to start
up. The System Folder includes a set of folders
for storing related files, such as preferences files
that an application might need when starting up.

system global variables A collection of global
variables stored in the system partition.

G L O S S A R Y

243

system heap An area of memory in the system
partition reserved for use by the Operating
System.

system partition A partition of memory
reserved for use by the Operating System.

system resource A resource in the system
resource file.

terminate To end the execution of a process. A
process can terminate by crashing, by quitting, or
by being killed by some other process.

Text Services Manager The part of the system
software that manages the interactions between
applications that request text services and text
service components that provide them.

Time Manager The part of the Macintosh
Operating System that lets you schedule the
execution of a routine after a certain time has
elapsed.

title bar The bar at the top of a window that
displays the window name, contains the close
and zoom boxes, and indicates whether the
window is active.

Toolbox Event Manager See Event Manager.

transfer mode A specification of which Boolean
operation QuickDraw should perform when
drawing or when transferring a bit image from
one bitmap to another.

unlock To allow a relocatable block to be
moved during heap compaction.

unpurgeable block A relocatable block that
can’t be purged from the heap.

update event An event indicating that the
contents of a window need updating.

update region A region maintained by the
Window Manager that includes the parts of a
window’s content region that need updating. The
Event Manager generates update events as
necessary, based on the contents of the update
region, telling your application to update a
window.

user items Items in a dialog box that are
managed largely by an application, not by the
Dialog Manager. These items are designated by
the constant userItem.

user state The size and location that the user
has established for a window.

Vertical Retrace Manager The part of the
Operating System that schedules and executes
tasks during a vertical retrace interrupt.

visible region The part of a window’s graphics
port that’s actually visible on the screen—that is,
the part that’s not covered by other windows.

volume A portion of a storage device that is
formatted to contain files.

window An area on the screen that displays
information, including user documents as well as
communications such as alert boxes and dialog
boxes. The user can open or close a window;
move it around on the desktop; and sometimes
change its size, scroll through it, and edit its
contents.

window definition function A function that
defines the general appearance and behavior of a
window. The Window Manager calls the window
definition function to draw the window’s frame,
determine what region of the window the cursor
is in, draw the window’s size box, draw the
window’s zoom box, move and resize the
window, and calculate the window’s structure
and content regions.

window definition ID An integer that specifies
the resource ID of a window definition function
in the upper 12 bits and an optional variation
code in the lower 4 bits. When creating a new
window, your application supplies a window
definition ID either as a field in the 'WIND'
resource or as a parameter to the NewWindow or
NewCWindow function.

window list A list maintained by the Window
Manager of all windows on the desktop. The
frontmost window is first in the window list, and
the remaining windows appear in the order in
which they are layered on the desktop.

Window Manager The part of the Macintosh
Toolbox that provides routines for creating and
manipulating windows.

G L O S S A R Y

244

Window Manager port A graphics port that
represents the desktop area on the main
monitor—that is, a rounded-corner rectangle that
occupies all of the main monitor except for the
area occupied by the title bar.

window record A data structure of type
WindowRecord (or CWindowRecord) in which
the Window Manager stores a window’s
characteristics, including the window’s graphics
port, title, visibility status, and control list.

window type A collection of characteristics—
such as the shape of the window’s frame and the
features of its title bar—that describe a window.

zoom box A box in the right side of a window’s
title bar that the user can click to alternate
between two different window sizes (the user
state and the standard state).

245

Index

Symbols

@ operator 46

A

A5 register 38
A5 world

and context switching 167
defined 37
size of 170

activate events
handling 125–127

active application 166
AddResource procedure 66
alert boxes 134
Alias Manager 12
APDA xv, 189
AppendResMenu procedure 156
Apple Event Interprocess Messaging Protocol 16
Apple Event Manager 15, 16–17
Apple events 16–17

Core suite 17
functional-area suites 17
Required suite 17
sent by the Finder 17

Apple menu 159
application global variables 37
application heap 34–36, 169

defined 34
application parameters 38
application partitions 29, 32–38
applications

initializing 74–75
quitting 175–176

ApplLimit global variable 31, 33
ApplZone global variable 31

B

background process 166
Balloon Help 10
BeginUpdate procedure 125
bit images 91–92, 99–101
BitMap data type 91

bitmaps 91
blocks, memory

defined 35
purging and reallocating 43–44

buttons
drawing an outline around 146

Byte data type 44
coercing to Char data type 47

C

Cancel button
in modal dialog boxes 146

Char data type
coercing to Byte data type 47

check boxes
handling user clicks on 142–144

circles 89, 94
Clipboard 170
close box 111

handling clicks in 121
handling mouse-down events in 128–129

Close command (File menu) 161, 162
CloseRgn procedure 96
CloseWindow procedure 129
Command key 160
Communications Resource Manager 19
Communications Toolbox 18–19
compaction. See heap compaction
compatibility

and the Toolbox 7
guidelines 187–188
trap availability 178–181

Connection Manager 19
content region

handling mouse-down events in 121–123
context of a process

switching 167
Control Manager 10
controls

drawing an outline around 146. See also check boxes,
radio buttons

setting values of 142–144
cooperative multitasking environment 165–167
coordinate plane 86
CopyBits procedure 99, 101
CurrentA5 global variable 31, 38

I N D E X

246

current process 166
CurResFile function 52
cursors, initializing 9

D

dangling pointers 42
data, exchanging with other applications 15
data types, general purpose 39–40, 44–46
dBoxProc window type 167
default button 146
Delay procedure 80
desk accessories 114, 121

closing 128
desktop 166
DetachResource procedure 66
Device Manager 11, 12
dialog boxes 133–148

closing 128
defined 133
event handling in 78
introduced 109
items in. See item lists

Dialog Manager 10, 110, 133–148
dialog resources 57, 135
DialogSelect function 142
DIBadMount function 77
DiffRgn procedure 97
DisableMenuItem procedure 162
Disk Initialization Manager 12
disk-inserted events

handling 76–77
in modal dialog boxes 147

DisposeHandle procedure 129, 156
DisposePtr procedure 129–130
DisposeWindow procedure 130
'DITL' resource type 135
dividers 152, 157
'DLOG' resource type 135
document records 115–118
document windows 110, 114

closing 128–129
double indirection 40
drag region 121
DragWindow procedure 121
drawing 85–106
DrawMenuBar procedure 156, 162
DrawString procedure 5, 104

E

Edition Manager 14, 15–16
Edit menu 159, 160
EnableMenuItem procedure 162
EndUpdate procedure 125
Enter key

in modal dialog boxes 146
EraseRect procedure 104
errors

and Resource Manager routines 66
handling 176–178

Escape key
in modal dialog boxes 146

EventAvail function 167
event-driven programming 71
event loop 75, 77
Event Manager 10, 15, 71–81
event priority 75
event record 76
EventRecord data type 76
events 71

activate 125–127
high-level 15, 72
key-down 148
key-up 79
low-level 72
mouse-up 79–81
null 72
operating-system 72
priority 75
receiving 75–79
types of 72, 76

ExitToShell procedure 178
extensions. See system extensions

F

figures, syllogistic 23
File Manager 11, 12
File menu xii, 160

Close command 128, 161, 162
New command 116
Quit command 175

files
specifying in a document record 116

File Transfer Manager 19
FillRect procedure 89
FillRgn procedure 98
Finder 6, 10

sending Apple events 17
Finder Interface 6, 10
FindFolder function 63

I N D E X

247

checking for availability 178–179
FindWindow function 119
Font Manager 9, 13, 102
foreground process 166
FrameOval procedure 96
FrameRect procedure 89
free blocks 38
FrontWindow function 128, 162
FSpCreate function 21

G

Gestalt function 20, 179
Gestalt Manager 179
Get1Resource function 54
GetDialogItem procedure 47, 136, 140, 148
GetIndString procedure 52
GetMenuHandle function 162
GetMenuItemText procedure 159
GetNewDialog function 60, 137, 137–138, 145
GetNewMBar function 154–156
GetNewWindow function 60, 130
GetPattern function 60
GetPort procedure 94
GetResource function 54, 60
GetWRefCon function 115
GlobalToLocal procedure 122
glue routines 20, 181
GrafPort data type 92
GrafPtr data type 93, 113
graphics ports 92–94

and window records 113
setting and restoring 93–94

H

Handle data type 40, 44
handles 40
heap compaction 36
heap fragmentation 35
heap purging 43–44
heap. See application heap; system heap
help balloons 185
Help Manager 10, 185
HideWindow procedure 110
high-level events 72
HiliteControl procedure 127, 148
HiliteMenu procedure 159
HLock procedure 42, 47
HOpenResFile function 54, 63
HUnlock procedure 42

I

'ICON' resource type 99
icons 91, 99
Image Compression Manager 17
InitCursor procedure 9, 75
InitFonts procedure 9
InitGraf procedure 9, 181
InitWindows procedure 9
InsertMenu procedure 154
Inside Macintosh xii–xiv

code conventions 24–25
format conventions xiii–xiv

integers
coercing to long integers 47
coercing to pointers 47

interapplication communication 14–17
InvalRect procedure 123
InvalRgn procedure 123
IsDialogEvent function 142
item lists 135
item numbers 135
items in alerts and dialog boxes 136–137

J

jump table 38

K

keyboard equivalents 152, 157
handling 160–161
reserved 160

key-down events 148
key-up events 79

L

lines 89
List Manager 11
localization 52
localization guidelines 188
locking relocatable blocks 42–43
long integers

coercing to integers 47
coercing to pointers 47

low-level events 72

I N D E X

248

M

Macintosh Operating System 11–12
Macintosh script management system 13
Macintosh system software 3
Macintosh Toolbox 7–11
major switches 167
managers 6. See also system software
master pointer blocks 40
master pointers 40
MaxApplZone procedure

and ApplLimit global variable 33
'MBAR' resource type 154
'MDEF' resource type 52
MemError function 177
memory

allocating 35, 38, 40, 42
locking 42–43
organization of 29–38
purging 43–44

Memory Manager 11
and application heap 35–36
data types 39–40

menu bar
creating 74
specifying 154

menu commands
keyboard equivalents 119, 152, 157

menu item numbers 156
menu items 151

disabling 162
enabling 162

MenuKey function 160, 161
Menu Manager 10, 151–162

introduced 6
menu numbers 156
'MENU' resource type 152–154
menus 151–162

adjusting 161–162
creating 74, 152–156
defined 151
disabling 162
dividers in 152, 157
enabling 162
handling selections 156–159
required 152

MenuSelect function 156, 161
menu titles 151
minimum partition size 168
minor switches 167
modal dialog boxes 133–134, 144–148

creating 145–146
modal dialog filter functions 146–148
ModalDialog procedure 144, 146, 167
modeless dialog boxes 134–135, 137–144

creating 137–138
handling events in 141–144

moods, syllogistic 23
MoreMasters procedure 41
mouse-down events

in menu bar 156
in the menu bar 120
in windows 119–123

mouse-up events 79–81
movable modal dialog boxes 144
MoveTo procedure 5
MoveWindow procedure 121
movies 17
Movie Toolbox 17
MPW 57
MultiFinder 165
multitasking environment 165–167

N

NewHandleClear function 21, 118
NewHandle function 20, 42, 43
NewPtr function 40, 118
NewRgn function 96
NewWindow function 4–5, 42, 112
nonrelocatable blocks

advantages of 42
data type for 40
defined 38

null events 72, 167
handling 173–174

O

OpenDeskAcc function 159
OpenRgn procedure 96
operating environment

checking features of 20, 178–181
operating-system events 72
OSErr data type 176
ovals 89

P

packages 8, 20
PaintRect procedure 89
part codes 119
partitions 29. See also application partitions; system

partition

I N D E X

249

sizes of 168
patches 20
patterns 91
PBHCreate function 21
pixels 88
Point data type 87
pointers 39

coercing to integers 47
coercing to long integers 47
to procedures and functions 46

points 86–87
PPC Toolbox 15
preferences files

creating 64–66
managing 60–67
names of 61
reading 61–64, 74
updating 66–67

Preferences folder 53
preferred partition size 168
processes

background 166
context of 167
current 166
foreground 166
switching between 167

processing options
specifying 168–170

Process Manager 11
ProcPtr data type 46
Program-to-Program Communications Toolbox 15
PtInRect function 81
Ptr data type 39, 44
pull-down menus 151, 152. See also menus
purging relocatable blocks 43–44

Q

QuickDraw 9, 10, 85–106
capabilities 9, 85
drawing text 101–105
initializing 9

QuickDraw global variables 38
QuickTime 17–18

R

radio buttons
handling user clicks on 142–144

RAM 19
random-access memory. See RAM

read-only memory. See ROM
ReallocateHandle procedure 43
reallocating relocatable blocks 43–44
rectangles 87–89, 89
Rect data type 88
Region data type 90
regions 89–91

defining 95–98
drawing in 98
empty 96

relocatable blocks
data type for 39
defined 38
disadvantages of 42
locking 42–43
properties of 42–43
purging 43–44
reallocating 43–44
unlocking 42–43

ResEdit resource editor 57–58, 152–154
ResError function 66, 176–177
resource files

creating 64–66
current 64
defined 51
determining reference number of 52
managing 60–67
reading 61–64
updating 66–67

Resource Manager 10, 51–68
checking for errors 66

resource maps 56
resource paths 52–54
resources 51–68

compiled 58
defined 51
standard types 55
structure of 56–58

specifying using ResEdit 57–58
specifying using Rez 57

types 55–56
typical locations of 53
using custom 60–67
using standard 59–60
using to facilitate localization 52
using to store static data 51

resource specifications 55
resource types
'DITL' 60, 135
'DLOG' 60, 135
'ICON' 99
'MBAR' 154
'MDEF' 52
'MENU' 152–154
'SIZE' 165

I N D E X

250

'STR#' 52, 102
'WIND' 60

resource types. See resources, types
ResType data type 55
resume events 126

handling 170–173
Return key

in modal dialog boxes 146, 148
Rez resource description language 57, 152
ROM 19

S

Scrap Manager 10
script management system. See Macintosh script

management system
Script Manager 13
script systems 13
SCSI Manager 12
SectRgn procedure 97
SelectWindow procedure 126, 138
SetCtlValue procedure 144
SetDialogItem procedure 139–140
SetMenuBar procedure 156
SetPort procedure 5, 94, 113, 138, 146
SetRect procedure 4, 89, 104
SetResFile procedure 54
SetWRefCon procedure 115, 118
ShowWindow procedure 118
Shutdown Manager 12
SignedByte data type 39, 44
size resources 168
'SIZE' resource type

sample Rez input 169
setting flags of 168
specifying partition size 165

Sound Input Manager 11
Sound Manager 11
stack 33
stack frame 34
stack sniffer 33
Standard File Package 10
StillDown function 80
'STR#' resource type 52, 102
Str15 data type 45
Str255 data type 45
Str27 data type 45
Str31 data type 45
Str63 data type 45
StringHandle data type 45
StringPtr data type 45
strings

drawing 5

in C 46
in Pascal 45

suspend events 126
handling 170–173

switching
context 167
major 167
minor 167

SystemClick procedure 121
SystemEdit function 159
system extensions 20
System file 20
system global variables 31, 188
system heap 31
system partition 29–31. See also system heap; system

global variables
system resources 52
system software 6–19

T

Terminal Manager 19
text

centering in a window 5, 113
drawing 5, 101–105
setting font of 104
setting size of 104

TextEdit 10, 102
TextFont procedure 104
text service components 14
Text Services Manager 14
TextSize procedure 104
Text Utilities 13
TickCount function 188
Ticks global variable 31, 188
Time Manager 12
title bar 111
TrackGoAway function 79, 128
tracking the mouse 79–81
tracks 17
transfer modes 101
trap dispatch table 181
trap numbers 181
type casting 47
type coercion 47

U

unlocking relocatable blocks 42–43
update events

and activate events 126

I N D E X

251

handling 123–125
in modal dialog boxes 147

user-centered design 71, 79
UseResFile procedure 64
user items 137

setting up 139–140

V

Venn Diagrammer 21–24
Vertical Retrace Manager 12
Virtual Memory Manager 12

W, X, Y, Z

WaitNextEvent function 75, 78, 123, 167, 173, 181
and multitasking 170

Window Manager 6, 9, 10, 109–130
WindowPeek data type 113
window pointer 5
WindowPtr data type 113
window record 5
WindowRecord data type 112
window records 112

reference constant in 115, 116
windows 109–130

activating 125–127
active 125
and dialog boxes 109
and graphics ports 113
closing 128–130, 176
creating 4
creating a new window 115–119
deactivating 145
desk accessory 114
dialog boxes 114
document 114
dragging 121
drawing content region 124–125
events in 119–127
introduced 109
mouse-down events in 119–123
origin in 6
parts of 110–112
positioning 118
setting title 118
types 109, 113–115
updating 118, 123–125

WorldScript 13

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages were created on an Apple
LaserWriter IINTX printer. Final page
negatives were output directly from text
files on an AGFA ProSet 9800 imagesetter.
Line art was created using
Adobe™ Illustrator. PostScript™, the
page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Apple Courier.

The Inside Macintosh: Overview Team:

WRITER

Tim Monroe

DEVELOPMENTAL EDITOR

Antonio Padial

ILLUSTRATOR

Peggy Kunz

PRODUCTION EDITORS

Teresa Lujan, Josephine Manuele

PROJECT LEADER

Patricia Eastman

COVER DESIGNER

Barbara Smyth

The Entire Inside Macintosh Team
(1992 Snapshot):

PROJECT LEADER

Patricia Eastman

LEAD WRITERS

Dave Bice, Paul Black, Rob Dearborn,
Sharon Everson, Tim Monroe

WRITERS

Dave Bice, Paul Black, Patria Brown,
Julie Callahan, Sean Cotter,
Rob Dearborn, Dee Eduardo,
Doug Engfer, Sharon Everson,
Ed Fernandez, Tony Francis,
Gary Hillerson, Marq Laube, Sue Luttner,
Judy Melanson, Tim Monroe,
Diane Patterson, Rich Pettijohn,
Laine Rapin

TECHNICAL CONSULTANT

Ray Chiang

LEAD EDITOR

Laurel Rezeau

DEVELOPMENTAL EDITORS

Sue Factor, Sanborn Hodgkins,
Antonio Padial, Anne Szabla,
George Truett

EDITORIAL CONSULTANT

Lorraine Aochi

ILLUSTRATORS

Ruth Anderson, Deborah Dennis,
Sandee Karr, Peggy Kunz, Bruce Lee,
Barbara Smyth

LEAD PRODUCTION EDITOR

Josephine Manuele

PRODUCTION EDITORS

Gerri Gray, Teresa Lujan, Rex Wolf

COVER DESIGNER

Barbara Smyth

PUBLISHING LIAISON

Martha Steffen

