
Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York

Don Mills, Ontario Wokingham, England Amsterdam Bonn

Sydney Singapore Tokyo Madrid San Juan

Paris Seoul Milan Mexico City Taipei

I N S I D E M A C I N T O S H

Operating System Utilities

Apple Computer, Inc.

© 1994 Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.

Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
printing or clerical errors.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, AppleTalk, the Apple logo,
APDA, A/UX, LaserWriter, MPW,
MultiFinder, Macintosh, Powerbook,
and SANE are trademarks of Apple
Computer, Inc., registered in the United
States and other countries.

Apple Desktop Bus, Balloon Help,
Finder, Macintosh Quadra,
Powerbook Duo, QuickDraw, ResEdit,
System 7, and TrueType are trademarks
of Apple Computer, Inc.

NuBus is a trademark of Texas
Instruments.

Adobe Illustrator, Adobe Photoshop,
and PostScript are trademarks of Adobe
Systems Incorporated, which may be
registered in certain jurisdictions.

America Online is a service mark of
Quantum Computer Services, Inc.

CompuServe is a registered service
mark of CompuServe, Inc.

FrameMaker is a registered trademark
of Frame Technology Corporation.

Helvetica and Palatino are registered
trademarks of Linotype Company.

Internet is a trademark of Digital
Equipment Corporation.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Optrotech is a trademark of Orbotech
Corporation.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

ISBN 0-201-62270-X
1 2 3 4 5 6 7 8 9-CRW-9897969594
First Printing, July 1994

Library of Congress Cataloging-in-Publication Data

Inside Macintosh. Operating System Utilities / [Apple Computer, Inc.]
p. cm.

Includes index.
ISBN 0-201-62270-X
1. Macintosh (Computer) 2. Operating systems (Computers)

3. Utilities (Computer programs) I. Apple Computer, Inc.
QA76.8.M3I5617 1994
005.4’469—dc20 94-18100

CIP

iii

Contents

Figures, Tables, and Listings xi

Preface About This Book xv

Format of a Typical Chapter xvi

Conventions Used in This Book xvi

Special Fonts xvi

Types of Notes xvii

Assembly-Language Information xvii

The Development Environment xviii

Chapter 1 Gestalt Manager 1-1

About the Gestalt Manager 1-3

Using the Gestalt Manager 1-5

Determining Whether the Gestalt Manager Is Available 1-5

Getting Information About the Operating Environment 1-6

Interpreting Gestalt Responses 1-9

Adding a New Selector Code 1-10

Modifying a Selector Function 1-13

Getting Environmental Information Without the Gestalt Manager 1-14

Gestalt Manager Reference 1-14

Constants 1-14

Data Structures 1-28

The System Environment Record 1-28

Gestalt Manager Routines 1-30

Getting Information About the Operating Environment 1-30

Adding a Selector Code 1-33

Modifying a Selector Function 1-35

Application-Defined Routines 1-36

The Selector Function 1-36

Summary of the Gestalt Manager 1-38

Pascal Summary 1-38

Constants 1-38

Data Types 1-50

Gestalt Manager Routines 1-50

Application-Defined Routines 1-51

C Summary 1-51

Constants 1-51

Data Types 1-66

Gestalt Manager Routines 1-67

iv

Application-Defined Routines 1-67

Assembly-Language Summary 1-68

Data Structures 1-68

Result Codes 1-68

Chapter 2 System Error Handler 2-1

About the System Error Handler 2-3

System Errors 2-6

Resume Procedures 2-11

System Error Handler Reference 2-13

System Error Handler Routines 2-13

Application-Defined Routines 2-15

Resources 2-15

The System Error Alert Table Resource 2-16

Summary of the System Error Handler 2-22

Pascal Summary 2-22

System Error Handler Routines 2-22

Application-Defined Routines 2-22

C Summary 2-22

System Error Handler Routines 2-22

Application-Defined Routines 2-22

Assembly-Language Summary 2-22

Global Variables 2-22

Chapter 3 Mathematical and Logical Utilities 3-1

About the Mathematical and Logical Utilities 3-3

Bits, Bytes, Words, and Long Words 3-4

Bit Manipulation and Logical Operations 3-7

Reversed Bit-Numbering 3-7

Data Compression 3-8

Pseudorandom Number Generation 3-9

Fixed-Point Data Types 3-11

Angle-Slope Conversion 3-12

Using the Mathematical and Logical Utilities 3-14

Performing Low-Level Manipulation of Memory 3-14

Testing and Manipulating Bits 3-14

Performing Logical Operations on Long Words 3-16

Extracting a Word From a Long Word 3-18

Hardcoding Byte Values 3-19

Compressing Data 3-20

Obtaining Pseudorandom Numbers 3-22

Using Fixed-Point Data Types 3-24

v

Mathematical and Logical Utilities Reference 3-27

Data Structures 3-27

64-Bit Integer Record 3-27

Routines 3-27

Testing and Setting Bits 3-28

Performing Logical Operations 3-30

Getting and Setting Memory Values 3-32

Compressing and Decompressing Data 3-34

Obtaining a Pseudorandom Number 3-36

Converting Between Angle and Slope Values 3-37

Multiplying and Dividing Fixed-Point Numbers 3-38

Performing Calculations on Fixed-Point Numbers 3-41

Converting Among 32-Bit Numeric Types 3-43

Converting Between Fixed-Point and Floating-Point Values 3-45

Converting Between Fixed-Point and Integral Values 3-46

Multiplying 32-bit values 3-47

Summary of the Mathematical and Logical Utilities 3-48

Pascal Summary 3-48

Data Types 3-48

Routines 3-48

C Summary 3-50

Data Types 3-50

Routines 3-50

Global Variables 3-52

Chapter 4 Date, Time, and Measurement Utilities 4-1

About the Date, Time, and Measurement Utilities 4-3

Date and Time 4-4

Geographic Location and Time Zone 4-7

System of Measurement 4-8

Time Measurement 4-9

Using the Date, Time, and Measurement Utilities 4-9

Getting the Current Date and Time 4-9

Setting the Current Date and Time 4-10

Converting Date-Time Formats 4-12

Calculating Dates 4-14

Working With Different Calendar Systems 4-16

Handling Geographic Location and Time-Zone Data 4-18

Determining the Measurement System 4-21

Determining the Number of Elapsed Microseconds 4-22

Date, Time, and Measurement Utilities Reference 4-23

Data Structures 4-23

The Date-Time Record 4-23

Long Date-Time Value and Long Date-Time Conversion Record 4-25

The Long Date-Time Record 4-26

vi

The Geographic Location Record 4-29

The Toggle Parameter Block 4-30

The Unsigned Wide Record 4-32

Routines 4-32

Getting the Current Date and Time 4-33

Setting the Current Date and Time 4-36

Converting Between Date-Time Formats 4-38

Converting Between Long Date-Time Format 4-40

Modifying and Verifying Long Date-Time Records 4-42

Reading and Writing Location Data 4-46

Determining the Measurement System 4-48

Measuring Time 4-49

Summary of the Date, Time, and Measurement Utilities 4-50

Pascal Summary 4-50

Constants 4-50

Data Types 4-51

Routines 4-53

C Summary 4-54

Constants 4-54

Data Types 4-55

Routines 4-57

Assembly-Language Summary 4-59

Data Structures 4-59

Global Variables 4-60

Result Codes 4-61

Chapter 5 Control Panel Extensions 5-1

About Control Panel Extensions 5-3

Writing a Control Panel Extension 5-6

Creating a Component Resource for a Control Panel Extension 5-6

Dispatching to Control Panel Extension-Defined Routines 5-9

Installing and Removing Panel Items 5-13

Handling Panel Items 5-16

Handling Events in a Panel 5-17

Handling Title Requests 5-19

Managing Control Panel Settings 5-19

Control Panel Extensions Reference 5-20

Control Panel Extension-Defined Routines 5-20

Managing Panel Components 5-20

Handling Panel Events 5-25

Managing Panel Settings 5-28

Summary of Control Panel Extensions 5-31

Pascal Summary 5-31

Constants 5-31

Control Panel Extension-Defined Routines 5-31

vii

C Summary 5-32

Constants 5-32

Control Panel Extension-Defined Routines 5-33

Chapter 6 Queue Utilities 6-1

About Queues 6-3

The Queue Header 6-5

The Queue Element 6-6

Using the Queue Utilities 6-8

Searching for an Element in an Operating-System Queue 6-9

Adding Elements to an Operating-System Queue 6-10

Removing Elements From an Operating-System Queue 6-11

Queue Utilities Reference 6-13

Data Structures 6-13

Queue Headers 6-13

Queue Elements 6-14

Routines 6-15

Summary of the Queue Utilities 6-18

Pascal Summary 6-18

Constants 6-18

Data Types 6-18

Routines 6-19

C Summary 6-19

Constants 6-19

Data Types 6-20

Routines 6-20

Assembly-Language Summary 6-21

Result Codes 6-21

Chapter 7 Parameter RAM Utilities 7-1

About Parameter RAM 7-3

Using the Parameter RAM Utilities 7-7

Parameter RAM Utilities Reference 7-8

Data Structures 7-9

The System Parameters Record 7-9

Routines 7-10

Summary of the Parameter RAM Utilities 7-14

Pascal Summary 7-14

Data Types 7-14

Routines 7-14

C Summary 7-15

Data Types 7-15

viii

Routines 7-15

Assembly-Language Summary 7-16

Data Structures 7-16

Global Variables 7-16

Result Codes 7-16

Chapter 8 Trap Manager 8-1

About the Trap Manager 8-3

Trap Dispatch Tables 8-5

Process for Accessing System Software Routines 8-5

Patches and System Software Routines 8-6

Daisy Chain of Patches 8-8

Head Patch (Normal Patch) 8-8

Tail Patch 8-8

Come-From Patch (Used Only by Apple) 8-8

Patch for One Application 8-9

Patch for All Applications 8-9

A-Line Instructions 8-10

A-Line Instructions for Operating System Routines 8-11

Calling Conventions for Register-Based Routines 8-12

Parameter-Passing Conventions for Operating System Routines 8-13

Function Results 8-13

Flag Bits 8-14

A-Line Instructions for Toolbox Routines 8-14

Calling Conventions for Stack-Based Routines 8-16

Parameter-Passing Conventions for Toolbox Routines 8-18

Function Results 8-19

The Auto-Pop Bit 8-20

About Trap Macros 8-20

About Routine Selectors 8-21

Using the Trap Manager 8-21

Determining If a System Software Routine is Available 8-21

Patching a System Software Routine 8-23

Trap Manager Reference 8-25

Routines 8-25

Accessing Addresses From the Trap Dispatch Tables 8-25

Installing Patch Addresses Into the Trap Dispatch Tables 8-28

Detecting Unimplemented System Software Routines 8-32

Manipulating One Trap Dispatch Table (Obsolete Routines) 8-32

Summary of the Trap Manager 8-34

Pascal Summary 8-34

Constants 8-34

Data Types 8-34

Routines 8-34

C Summary 8-35

ix

Constants 8-35

Data Types 8-35

Routines 8-36

Assembly-Language Summary 8-36

Constants 8-36

Trap Macros 8-37

Chapter 9 Start Manager 9-1

System Initialization and Startup 9-3

System Initialization 9-3

System Startup 9-4

Boot Blocks 9-6

Global Timing Variables 9-9

About the Start Manager 9-9

Using the Start Manager 9-9

Writing a System Extension 9-10

Profile of a System Extension 9-10

Defining the User Interface for a System Extension 9-14

Creating a System Extension’s Resources 9-15

Creating Icons for a System Extension 9-16

Creating a System Heap Zone Resource for a System Extension 9-16

Building a System Extension 9-17

Start Manager Reference 9-18

Data Structures 9-18

The Default Startup Device Parameter Block 9-18

The Default Video Device Parameter Block 9-19

The Default Operating System Parameter Block 9-19

Routines 9-20

Identifying and Setting the Default Startup Device 9-20

Identifying and Setting the Default Video Device 9-23

Identifying and Setting the Default Operating System 9-25

Getting and Setting the Timeout Interval 9-27

Summary of the Start Manager 9-29

Pascal Summary 9-29

Data Types 9-29

Routines 9-30

C Summary 9-30

Data Types 9-30

Routines 9-31

Assembly-Language Summary 9-32

Data Structures 9-32

Trap Macros 9-33

Global Variables 9-33

x

Chapter 10 Package Manager 10-1

About the Package Manager 10-3

Using the Package Manager 10-6

Package Manager Reference 10-6

Routines 10-6

Initialization of Packages 10-7

Summary of the Package Manager 10-8

Pascal Summary 10-8

Constants 10-8

Routines 10-8

C Summary 10-9

Constants 10-9

Routines 10-9

Assembly-Language Summary 10-10

Trap Macros 10-10

Glossary GL-1

Index IN-1

xi

Figures, Tables, and Listings

Chapter 1 Gestalt Manager 1-1

Table 1-1 Gestalt selector suffixes and their meanings 1-10

Listing 1-1 Determining whether Gestalt is available 1-5
Listing 1-2 Calling Gestalt and checking its result code 1-6
Listing 1-3 Interpreting a Gestalt attributes response 1-10
Listing 1-4 Defining a simple Gestalt selector function 1-11
Listing 1-5 Installing a new Gestalt selector 1-12

Chapter 2 System Error Handler 2-1

Figure 2-1 The system startup alert box 2-4
Figure 2-2 The system startup alert box when extensions have been

disabled 2-4
Figure 2-3 The system error alert box 2-5
Figure 2-4 Handling of a nonfatal system error in System 7 2-12
Figure 2-5 The structure of a system error alert table 2-16
Figure 2-6 The structure of an alert definition 2-17
Figure 2-7 The structure of a text definition 2-18
Figure 2-8 The structure of an icon definition 2-18
Figure 2-9 The structure of a procedure definition 2-19
Figure 2-10 The structure of a button definition 2-20
Figure 2-11 The structure of a button-title definition 2-21

Table 2-1 System error IDs 2-7

Listing 2-1 A simple resume procedure 2-12

Chapter 3 Mathematical and Logical Utilities 3-1

Figure 3-1 A byte set to 109 ($6D) 3-4
Figure 3-2 A word set to $3AD4 3-6
Figure 3-3 A long word set to $C24DAF2F 3-6
Figure 3-4 Bit-numbering schemes 3-8
Figure 3-5 The Fixed data type 3-11
Figure 3-6 The Fract data type 3-12
Figure 3-7 Some slope and line equivalencies using the conventions of the

angle-slope conversion routines 3-13
Figure 3-8 A sample word (in MC680x0 notation) 3-15
Figure 3-9 The BitAnd, BitOr, and BitXor functions 3-16
Figure 3-10 The BitNot and BitShift functions 3-17

Table 3-1 Converting hexadecimal digits to binary values 3-5
Table 3-2 Routines for fixed-point data types 3-26

xii

Listing 3-1 Testing bits 3-14
Listing 3-2 Determining whether a handle is purgeable using the BitTst

function 3-15
Listing 3-3 Packing data to a resource 3-20
Listing 3-4 Decompressing data from a packed resource 3-21
Listing 3-5 Seeding the pseudo-random number generator 3-22
Listing 3-6 A simple way of obtaining a large random integer from a range

of pseudo-random numbers 3-23
Listing 3-7 Obtaining a pseudo random integer from a small range of

numbers 3-23
Listing 3-8 Obtaining a pseudo-random long integer 3-24

Chapter 4 Date, Time, and Measurement Utilities 4-1

Figure 4-1 The Date & Time control panel 4-7
Figure 4-2 The Map control panel 4-7
Figure 4-3 The numeric-format resource (resource type 'it10') 4-8

Table 4-1 Equivalent dates in the Gregorian, Arabic CLC, and Jewish
calendars 4-17

Table 4-2 Values for the dayOfYear and weekOfYear fields for the date
1 Muharram 1414 and equivalent values in the Gregorian
calendar 4-17

Table 4-3 Comparison of settings in fields of the long date-time record for
Arabic CLC, Gregorian, and Jewish calendars 4-18

Table 4-4 Renamed and relocated routines 4-33

Listing 4-1 Getting the current date and time with the GetDateTime
procedure 4-10

Listing 4-2 Getting the current date and time with the GetTime
procedure 4-10

Listing 4-3 Changing the current date and time with the SetDateTime
function 4-11

Listing 4-4 Changing the current date and time with the SetTime
function 4-11

Listing 4-5 Manipulating date-time information 4-13
Listing 4-6 Calculating the 300th day of the year 4-15
Listing 4-7 Computing the day of the week 4-16
Listing 4-8 Converting latitude and longitude to Fract values 4-19
Listing 4-9 Getting gmtDelta 4-20
Listing 4-10 Setting gmtDelta 4-21
Listing 4-11 Getting the current units of measurement 4-21
Listing 4-12 Timing an event using the Microseconds procedure 4-22

Chapter 5 Control Panel Extensions 5-1

Figure 5-1 A control panel with a panel 5-4
Figure 5-2 Panel-selection pop-up menu in a control panel 5-5

Listing 5-1 A component resource for a control panel extension 5-9
Listing 5-2 Handling Component Manager request codes 5-10

xiii

Listing 5-3 Responding to the get-item list request 5-14
Listing 5-4 Responding to the install request 5-15
Listing 5-5 Responding to an item-select request 5-16
Listing 5-6 Responding to an event-select request 5-18

Chapter 6 Queue Utilities 6-1

Figure 6-1 An operating-system queue 6-4
Figure 6-2 The format of a queue header 6-5
Figure 6-3 The format of a queue element 6-6
Figure 6-4 Formats of a vertical retrace queue element and a notification

queue element 6-8

Table 6-1 Operating-system queue types 6-7
Table 6-2 Installation routines for operating-system queue elements 6-10
Table 6-3 Removal routines for operating-system elements 6-12

Listing 6-1 Searching for drives in the drive queue 6-9
Listing 6-2 Using the Enqueue procedure to add a bank customer to a teller

queue 6-11
Listing 6-3 Using Dequeue to remove the first customer in the bank-teller

queue 6-12

Chapter 7 Parameter RAM Utilities 7-1

Figure 7-1 Interaction between parameter RAM and low memory 7-4
Figure 7-2 The format of the system parameter record 7-5

Table 7-1 Default values for parameter RAM (for U.S. system
software) 7-7

Chapter 8 Trap Manager 8-1

Figure 8-1 How the CPU processes A-line instructions 8-4
Figure 8-2 Trap dispatch tables 8-5
Figure 8-3 Accessing the FillRect procedure 8-6
Figure 8-4 Augmenting the FillRect procedure with a single patch 8-7
Figure 8-5 A-line instruction format 8-10
Figure 8-6 Exception stack frame (on Macintosh computers with a MC68020

microprocessor or greater) 8-10
Figure 8-7 An A-line instruction for an Operating System routine 8-11
Figure 8-8 The stack on entry to an Operating System routine 8-12
Figure 8-9 An A-line instruction for a Toolbox routine 8-15
Figure 8-10 Stack when entering a Toolbox routine 8-15
Figure 8-11 Pascal calling convention 8-17
Figure 8-12 C calling convention 8-17

Table 8-1 Toolbox parameter-passing conventions 8-18
Table 8-2 Conventions for returning results from Toolbox functions 8-19

xiv

Listing 8-1 Determining if a system software routine is available 8-22
Listing 8-2 Determining whether WaitNextEvent and Gestalt are

available 8-23
Listing 8-3 Patching the SysBeep Operating System procedure 8-23
Listing 8-4 Jumping to the next routine in the daisy chain 8-24
Listing 8-5 Installing a patch 8-24

Chapter 9 Start Manager 9-1

Figure 9-1 The default system extension icon 9-14
Figure 9-2 Typical resources for a system extension 9-16

Listing 9-1 The MySampleINIT system extension 9-11

Chapter 10 Package Manager 10-1

Table 10-1 The standard Macintosh packages 10-3

xv

P R E F A C E

About This Book

This book, Inside Macintosh: Operating System Utilities describes the parts of the

Macintosh Operating System that allow you to manage various low-level

aspects of the system software. The chapters in this book and the information

they contain are summarized here.

■ “Gestalt Manager” describes how the Gestalt Manager works. This chapter
also describes how you can make information about your own hardware or
software available to other applications.

■ “System Error Handler” explains what the Macintosh Operating System
does when a system error is encountered. This chapter also describes
how you can provide code that can help your application recover from
a system error.

■ “Mathematical and Logical Utilities” discusses how you can perform
low-level logical manipulation of bits and bytes, save disk space by using
simple compression and decompression routines, obtain a pseudorandom
number, perform mathematical operations with two fixed-point data types
supported directly by the Macintosh Operating System, and convert
numeric variables of different types.

■ “Date, Time, and Measurement Utilities” describes a set of utility routines
that you can use to operate on dates and times. You can use these routines
to get and change information about the current date, time, geographic
location, time zone, and units of measurement.

■ “Control Panel Extensions” describes how you can create a control panel
extension to add a panel to an existing control panel.

■ “Queue Utilities” describes how your application can directly add
elements to and remove them from operating-system queues managed by
the Macintosh Operating System. This chapter also describes how you can
use the Queue Utilities to operate on queues that you create.

■ “Parameter RAM” describes how your application can access and modify
the information used by the system software at system startup time.

■ “Trap Manager” describes how the Trap Manager works and then shows
how you can use the Trap Manger to check for the availability of a system
software routine. This chapter also describes how you can alter the
behavior of a system software routine.

■ “Start Manager” describes the system initialization and system startup
process performed by the Macintosh computer. This chapter also describes
how you can create a system extension.

■ “Package Manager” lists all the standard Macintosh packages and it
describes the routines that loads the packages into memory.

xvi

P R E F A C E

Additional information about the Macintosh Operating System can be found

in other Inside Macintosh books. For information about processes and tasks,

see Inside Macintosh: Processes. For information on how to allocate, release,

or otherwise manipulate memory, see Inside Macintosh: Memory. For

information about managing files and other objects in the file system,

see Inside Macintosh: Files.

If you are new to programming the Macintosh computer, you should also

read Inside Macintosh: Overview for an introduction to general concepts of

Macintosh programming.

Format of a Typical Chapter

Almost all chapters in this book follow a standard structure. For example, the

chapter “Queue Utilities” contains these sections:

■ “About Queue Utilities.” This section provides an overview of the features
provided by the Queue Utilities.

■ “Using Queue Utilities.” This section describes the tasks you can
accomplish using Queue Utilities. It describes how to use the most
common routines, provides code samples, and supplies additional
information.

■ “Queue Utilities Reference.” This section provides a complete reference for
the Queue Utilities by describing the data structures, and routines it uses.
Each routine description also follows a standard format, which presents the
routine declaration followed by a description of every parameter of the
routine. Some routine descriptions also give additional descriptive
information, such as assembly-language information or result codes.

■ “Summary of Queue Utilities.” This section provides the Pascal and
C interfaces for the constants, data structures, routines, and result
codes associated with Queue Utilities. It also includes relevant
assembly-language interface information.

Conventions Used in This Book

Inside Macintosh uses special conventions to present certain types of

information.

Special Fonts
All code listings, reserved words, and names of actual data structures,

fields, constants, parameters, and routines are shown in Courier

(this is Courier).

xvii

P R E F A C E

Words that appear in boldface are key terms or concepts and are defined in

the glossary.

Types of Notes
There are several types of notes used in this book.

Note

A note like this contains information that is interesting but not essential
to an understanding of the main text. (An example appears on
page 1-5.) ◆

IMPORTANT

A note like this contains information that is essential for an
understanding of the main text. (An example appears on page 4-6.) ▲

▲ W A R N I N G

Warnings like this indicate potential problems that you should be aware
of as you design your application. Failure to heed these warnings could
result in system crashes or loss of data. (An example appears on
page 1-12.) ▲

Assembly-Language Information
Inside Macintosh provides information about the registers for specific routines

in this format:

In the “Assembly-Language Summary” section at the end of each chapter,

Inside Macintosh presents information about the fields of data structures in

this format:

The left column indicates the byte offset of the field from the beginning of the

data structure. The second column shows the field name as defined in the

MPW Pascal interface files; the third column indicates the size of that field.

The fourth column provides a brief description of the use of the field. For a

complete description of each field, see the discussion of the data structure in

the reference section of the chapter.

Registers on entry

A0 Contents of register A0 on entry

Registers on exit

D0 Contents of register D0 on exit

0 what word event code

2 message long event message

6 when long ticks since startup

xviii

P R E F A C E

In addition, Inside Macintosh presents information about the fields of a

parameter block in this format:

The arrow in the far left column indicates whether the field is an input

parameter, output parameter, or both. You must supply values for all input

parameters and input/output parameters. The routine returns values in

output parameters and input/output parameters.

The second column shows the field name as defined in the MPW Pascal

interface files; the third column indicates the Pascal data type of that field.

The fourth column provides a brief description of the use of the field. For

a complete description of each field, see the discussion that follows the

parameter block or the description of the parameter block in the reference

section of the chapter.

The Development Environment

The system software routines described in this book are available using

Pascal, C, or assembly-language interfaces. How you access these routines

depends on the development environment you are using. When showing

system software routines, this book uses the Pascal interface available with

the Macintosh Programmer’s Workshop (MPW).

All code listings in this book are shown in Pascal or assembly language.

They show methods of using various routines and illustrate techniques for

accomplishing particular tasks. All code listings have been compiled and in

many cases tested. However, Apple Computer, Inc., does not intend for you to

use these code samples in your application.

APDA is Apple’s worldwide source for over three hundred development

tools, technical resources, training products, and information for anyone

interested in developing applications on Apple platforms. Customers receive

the quarterly APDA Tools Catalog featuring all current versions of Apple and

the most popular third-party development tools. Ordering is easy; there

are no membership fees, and application forms are not required for most

products. APDA offers convenient payment and shipping options including

site licensing.

Parameter block

↔ inAndOut Integer Input/output parameter.

← output1 Ptr Output parameter.

→ input1 Ptr Input parameter.

xix

P R E F A C E

To order products or to request a complimentary copy of the APDA Tools
Catalog, contact

APDA

Apple Computer, Inc.

P.O. Box 319

Buffalo, NY 14207-0319

If you provide commercial products and services, call 408-974-4897 for

information on the developer support programs available from Apple.

For information on registering signatures, file types, and other technical

information, contact

Macintosh Developer Technical Support

Apple Computer, Inc.

1 Infinite Loop, M/S 303-2T

Cupertino, CA 95014-6299

Telephone: 800-282-2732 (United States)
800-637-0029 (Canada)
716-871-6555 (elsewhere in the world)

Fax: 716-871-6511

AppleLink: APDA

America Online: APDAorder

CompuServe: 76666,2405

Internet: APDA@applelink.apple.com

Contents 1-1

C H A P T E R 1

Contents

Gestalt Manager

About the Gestalt Manager 1-3

Using the Gestalt Manager 1-5

Determining Whether the Gestalt Manager Is Available 1-5

Getting Information About the Operating Environment 1-6

Interpreting Gestalt Responses 1-9

Adding a New Selector Code 1-10

Modifying a Selector Function 1-13

Getting Environmental Information Without the Gestalt Manager 1-14

Gestalt Manager Reference 1-14

Constants 1-14

Data Structures 1-28

The System Environment Record 1-28

Gestalt Manager Routines 1-30

Getting Information About the Operating Environment 1-30

Adding a Selector Code 1-33

Modifying a Selector Function 1-35

Application-Defined Routines 1-36

The Selector Function 1-36

Summary of the Gestalt Manager 1-38

C H A P T E R 1

About the Gestalt Manager 1-3

Gestalt Manager

This chapter describes how you can use the Gestalt Manager and other system software

facilities to investigate the operating environment. You need to know about the

operating environment if your application takes advantage of hardware (such as a

floating-point unit) or software (such as Color QuickDraw) that is not available on all

Macintosh computers. You can also use the Gestalt Manager to inform the Operating

System that your software is present and to find out about other software registered

with the Gestalt Manager.

The Gestalt Manager is available in system software versions 6.0.4 and later. The MPW

software development system and some other development environments supply code

that allows you to use the Gestalt Manager on earlier system software versions; check

the documentation provided with your development system.

In system software versions earlier than 6.0.4, you can retrieve a limited description

of the operating environment with the SysEnvirons function, also described in

this chapter.

You need to read this chapter if you take advantage of specific hardware or software

features that may not be present on all versions of the Macintosh, or if you wish to

inform other software that your software is present in the operating environment.

This chapter describes how the Gestalt Manager works and then explains how you can

■ determine whether the Gestalt Manager is available

■ call the Gestalt function to investigate the operating environment

■ make information about your own hardware or software available to other
applications

■ retrieve a limited description of the operating environment even if the Gestalt
Manager is not available

About the Gestalt Manager

The Macintosh family of computers includes models that use a number of different

processors, some accompanied by a floating-point unit (FPU) or memory management

unit (MMU). Also, a single hardware configuration can have various versions of system

software, drivers, and QuickDraw routines.

In general, applications should communicate with the system software and hardware

through the available managers and device drivers. However, if your application takes

advantage of hardware or software components that may not be present on all

Macintosh computers, then you need some mechanism to determine whether those

components are available.

The Gestalt function provides a simple, efficient way to determine the hardware and

software configurations so your application can exploit as fully as possible whatever

environment it is running in. When your application calls the Gestalt function, your

application passes a selector code (or selector) as a parameter to specify the information

it needs. Your application can call the Gestalt function to determine

C H A P T E R 1

Gestalt Manager

1-4 About the Gestalt Manager

■ the version and features of QuickDraw

■ the versions and features of various other managers and drivers

■ the type of floating-point unit (FPU), if any

■ the type of memory management unit (MMU), if any

■ the amount of available RAM

■ the amount of available virtual memory

■ the version of the A/UX operating system, if it’s running

■ the type of keyboard

■ the model of computer

■ the version number of the System file

■ the type of central processing unit (CPU)

Your application can use the information returned by Gestalt in various ways. It

might branch to alternate code, for example, depending on the version of QuickDraw,

or cancel an operation and present an alert box if a critical but optional hardware

component is unavailable.

Associated with the Gestalt function are two other functions—one that allows an

application to register new features with the Gestalt Manager and another that allows

an application to change the function used by Gestalt to retrieve a particular piece of

information. These two functions make it easy for your software to announce its

presence to other applications. A debugger, for example, can register itself with the

Gestalt Manager during system initialization; afterward, debugging code in an

application under development can call Gestalt to verify that the special routines

provided by the debugger are available on the local machine. In this way, the Gestalt

Manager can act as a central clearinghouse for information on the available software

and hardware features of the operating environment and enhance cooperation and

awareness among third-party products.

Although the Gestalt function can provide much of the information your application

needs, you might still need to call some special-purpose routines supplied by various

parts of the system software. To determine the resolution of the main Macintosh screen,

for example, you call the ScreenRes procedure, described in the book Inside Macintosh:
Imaging with QuickDraw.

The Gestalt function has replaced both the SysEnvirons function and the Environs

procedure. The Gestalt function is simpler to use and provides more information than

either of those routines. Applications that use SysEnvirons execute correctly in system

software versions 7.0 and later, in which SysEnvirons calls Gestalt.

The SysEnvirons function, introduced with the Macintosh SE and Macintosh II

computers, fills in and returns a pointer to a system environment record, a data

structure that describes some features of the operating environment. The SysEnvirons

function cannot provide the detailed information supplied by Gestalt.

Like the SysEnvirons function, Gestalt can provide objective configuration

information such as ROM version and size, but you should not infer the presence or

C H A P T E R 1

Gestalt Manager

Using the Gestalt Manager 1-5

absence of particular hardware or software features from that information. When you

need to know whether a feature is present, you should request information about it

directly by using the appropriate selector code. (“Getting Information About the

Operating Environment” beginning on page 1-6, lists the Apple-defined selector codes

for Gestalt.)

Using the Gestalt Manager

The Gestalt Manager includes three functions—Gestalt, NewGestalt, and

ReplaceGestalt. You can use the Gestalt function to get information about

hardware or software components available on the current machine. You can use

NewGestalt to register new software modules (such as drivers and patches) with the

Gestalt Manager. You can use ReplaceGestalt to replace the function associated with

a particular selector code.

Note

Most applications do not need to use either NewGestalt or
ReplaceGestalt. ◆

If the Gestalt Manager is not present, you can get a brief description of the operating

environment by calling the SysEnvirons function.

Determining Whether the Gestalt Manager Is Available
Versions 3.2 and later of MPW provide glue routines that allow you to call the Gestalt

Manager functions even if they’re not in ROM or in the System file (that is, if your

application is running under a system software version earlier than 6.0.4). In assembly

language, however, and possibly in other development environments, you must verify

that the Gestalt Manager is available before you use it.

You can verify that the Gestalt function is available by calling the function

NGetTrapAddress, specifying the trap number of Gestalt, and comparing the result

with the address of the code that is executed when you invoke an unimplemented

instruction. If Gestalt is available, you can safely assume that NewGestalt and

ReplaceGestalt are also available. For efficiency, you might want to define a global

Boolean variable that you can set at the beginning of your program. Listing 1-1 illustrates

a test that sets the variable gHasGestalt.

Listing 1-1 Determining whether Gestalt is available

gHasGestalt := MySWRoutineAvailable(_Gestalt);

For a sample definition of the application-defined function MySWRoutineAvailable,

see the chapter “Trap Manager” later in this book.

C H A P T E R 1

Gestalt Manager

1-6 Using the Gestalt Manager

Getting Information About the Operating Environment
When your application needs information about a software or hardware feature, it calls

the Gestalt function, which has this interface:

FUNCTION Gestalt (selector: OSType; VAR response: LongInt): OSErr;

The first parameter is a selector code, which specifies the kind of information your

application needs. You can use any of the Apple-defined selector codes listed later in this

section and described in more detail in the section “Constants” beginning on page 1-14.

You can also define and register your own selector codes using the NewGestalt

function (as described in “Adding a New Selector Code” beginning on page 1-10),

and you can use selector codes defined and registered by other applications.

If Gestalt can determine the requested information, it returns that information in

the response parameter and returns a result code of noErr. If Gestalt cannot obtain the

information, it returns a result code indicating the cause of the error; in that case,

the value of the response parameter is undefined. You should always check the result

code returned by Gestalt to make sure that the response parameter contains

meaningful information.

Listing 1-2 illustrates an application-defined function that retrieves the sound attributes

of the current operating environment. The application-defined MyGetSoundAttr

function checks the function result returned by Gestalt and passes any calls with a

nonzero result code to an error-handling routine.

Listing 1-2 Calling Gestalt and checking its result code

FUNCTION MyGetSoundAttr: LongInt;

VAR

myErr: OSErr;

myAttr: LongInt;

BEGIN

IF gHasGestalt THEN

BEGIN

myErr := Gestalt(gestaltSoundAttr, myAttr);

IF myErr <> noErr THEN {Gestalt failed}

DoError(myErr)

END

ELSE

myAttr := 0; {Gestalt not available}

MyGetSoundAttr := myAttr;

END;

You get different kinds of information from Gestalt by passing selectors from two

kinds of Apple-defined selector codes:

C H A P T E R 1

Gestalt Manager

Using the Gestalt Manager 1-7

■ environmental selectors, which return information your application can use to guide
its actions

■ informational selectors, which return information that cannot be used to determine
whether a feature is available

It is particularly important that you understand the difference between environmental

and informational selectors. The response returned by Gestalt when it is passed an

informational selector is for your (or the user’s) edification only; it should never be used

by your application to determine whether a specific hardware or software feature is

available. For example, you can use Gestalt to test for the version of the ROM installed

on a particular machine. You can display this information to the user, but you should not

infer from it anything about the actual software available. Routines you expect to be in

ROM may actually be in RAM; hence, you cannot know that a routine usually found in

ROM is not present simply because the ROM version predates the routine. Also, routines

contained in ROM may have been patched by the system at startup time, in which case

the system might not have the features you think it has on the basis of the reported ROM

version. A Macintosh Plus with an old ROM, for example, could be running System 7.

Similar remarks apply to other informational selectors, including ROM size, machine

type, and System file version number.

To retrieve specific information about the hardware and software features available, you

can use the following environmental selectors:

CONST

gestaltAddressingModeAttr = 'addr'; {addressing-mode attributes}

gestaltAliasMgrAttr = 'alis'; {Alias Manager attributes}

gestaltAppleEventsAttr = 'evnt'; {Apple events attributes}

gestaltAppleTalkVersion = 'atlk'; {old format AppleTalk version}

gestaltATalkVersion = 'atkv'; {new format AppleTalk version}

gestaltAUXVersion = 'a/ux'; {A/UX version, if present}

gestaltCFMAttr = 'cfrg'; {Code Fragment Manager attributes}

gestaltCloseViewAttr = 'BSDa'; {CloseView attributes}

gestaltComponentMgr = 'cpnt'; {Component Manager version}

gestaltCompressionMgr = 'icmp'; {Image Compression Manager version}

gestaltConnMgrAttr = 'conn'; {Connection Manager attributes}

gestaltCRMAttr = 'crm '; {Communication Resource Manager }

 { attributes}

gestaltCTBVersion = 'ctbv'; {Communication Toolbox version}

gestaltDBAccessMgrAttr = 'dbac'; {Data Access Manager attributes}

gestaltDictionaryMgrAttr = 'dict'; {Dictionary Manager attributes}

gestaltDisplayMgrAttr = 'dply'; {Display Manager atributes}

gestaltDisplayMgrVers = 'dplv'; {Display Manager version}

gestaltDITLExtAttr = 'ditl'; {Dialog Manager extensions}

gestaltDragMgrAttr = 'drag'; {Drag Manager attributes}

gestaltEasyAccessAttr = 'easy'; {Easy Access attributes}

gestaltEditionMgrAttr = 'edtn'; {Edition Manager attributes}

C H A P T E R 1

Gestalt Manager

1-8 Using the Gestalt Manager

gestaltExtToolboxTable = 'xttt'; {Toolbox trap dispatch table info}

gestaltFinderAttr = 'fndr'; {Finder attributes}

gestaltFindFolderAttr = 'fold'; {FindFolder attributes}

gestaltFirstSlotNumber = 'slt1'; {first physical slot}

gestaltFontMgrAttr = 'font'; {Font Manager attributes}

gestaltFPUType = 'fpu '; {floating-point unit (FPU) type}

gestaltFSAttr = 'fs '; {file system attributes}

gestaltFXfrMgrAttr = 'fxfr'; {File Transfer Manager attributes}

gestaltHelpMgrAttr = 'help'; {Help Manager attributes}

gestaltIconUtilitiesAttr = 'icon'; {Icon Utilities attributes}

gestaltKeyboardType = 'kbd '; {keyboard type code}

gestaltLogicalPageSize = 'pgsz'; {logical page size}

gestaltLogicalRAMSize = 'lram'; {logical RAM size}

gestaltLowMemorySize = 'lmem'; {size of low memory}

gestaltMiscAttr = 'misc'; {miscellaneous attributes}

gestaltMixedModeVersion = 'mixd'; {MixedMode version}

gestaltMMUType = 'mmu '; {MMU type}

gestaltNativeCPUtype = 'cput'; {native CPU type}

gestaltNotificationMgrAttr = 'nmgr'; {Notification Manager attributes}

gestaltNuBusConnectors = 'sltc'; {NuBus connector bitmap}

gestaltNuBusSlotCount = 'nubs'; {number of logical NuBus slots}

gestaltOSAttr = 'os '; {Operating System attributes}

gestaltOSTable = 'ostt'; {base address of Operating System }

 { trap dispatch table}

gestaltParityAttr = 'prty'; {parity attributes}

gestaltPCXAttr = 'pcxg'; {PC exchange attributes}

gestaltPhysicalRAMSize = 'ram '; {physical RAM size}

gestaltPopupAttr = 'pop!'; {pop-up 'CDEF' attributes}

gestaltPowerMgrAttr = 'powr'; {Power Manager attributes}

gestaltPPCToolboxAttr = 'ppc '; {Program-to-Program Communications }

 { (PPC) Toolbox attributes}

gestaltProcessorType = 'proc'; {microprocessor type code}

gestaltQuickdrawFeatures = 'qdrw'; {QuickDraw features}

gestaltQuickdrawVersion = 'qd '; {QuickDraw version}

gestaltQuickTimeVersion = 'qtim'; {QuickTime version}

gestaltRealTimeMgrAttr = 'rtmr'; {Realtime Manager attributes}

gestaltResourceMgrAttr = 'rsrc'; {Resource Manager attributes}

gestaltScrapMgrAttr = 'scra'; {Scrap Manager attributes}

gestaltScriptCount = 'scr#'; {number of active script systems}

gestaltScriptMgrVersion = 'scri'; {Script Manager version}

gestaltSerialAttr = 'ser '; {serial hardware attributes}

gestaltSlotAttr = 'slot'; {slot attributes}

gestaltSoundAttr = 'snd '; {sound attributes}

C H A P T E R 1

Gestalt Manager

Using the Gestalt Manager 1-9

gestaltSpeechAttr = 'ttsc'; {Speech Manager attributes}

gestaltStandardFileAttr = 'stdf'; {Standard File attributes}}

gestaltStdNBPAttr = 'nlup'; {StandardNBP attributes}

gestaltSysArchitecture = 'sysa'; {Native System Architecture}

gestaltTEAttr = 'teat'; {TextEdit attributes}

gestaltTermMgrAttr = 'term'; {Terminal Manager attributes}

gestaltTextEditVersion = 'te '; {TextEdit version code}

gestaltThreadMgrAttr = 'thds'; {Thread Manager attributes}

gestaltTimeMgrVersion = 'tmgr'; {Time Manager version code}

gestaltToolboxTable = 'tbtt'; {base address of Toolbox trap }

 { dispatch table}

gestaltTranslationAttr = 'xlat'; {Translation Manager attributes}

gestaltTSMgrVersion = 'tsmv'; {Text Services Manager version}

gestaltVersion = 'vers'; {Gestalt version}

gestaltVMAttr = 'vm '; {virtual memory attributes}

The informational selectors are provided for your or the user’s information only. You can

display the information returned from these selectors, but you should never use this

information as an indication of what hardware or software features may be available.

You can use the following informational selectors:

CONST

gestaltHardwareAttr = 'hdwr'; {hardware attributes}

gestaltMachineIcon = 'micn'; {machine 'ICON'/'cicn' resource ID}

gestaltMachineType = 'mach'; {Macintosh model code}

gestaltROMSize = 'rom '; {ROM size}

gestaltROMVersion = 'romv'; {ROM version}

gestaltSystemVersion = 'sysv'; {System file version number}

For a description of the return values for these environmental and informational

selectors, see the next section, “Interpreting Gestalt Responses,” and the list of constants

beginning on page 1-14.

Interpreting Gestalt Responses
The meaning of the value that Gestalt returns in the response parameter depends

on the selector code with which it was called. For example, if you call Gestalt using

the gestaltTimeMgrVersion selector, it returns a version code in the response

parameter. In this case, a returned value of 3 indicates that the extended Time Manager

is available.

In most cases, the last few characters in the selector’s symbolic name form a suffix that

indicates what type of value you can expect Gestalt to place in the response

parameter. For example, if the suffix in a Gestalt selector is Size, then Gestalt

returns a size in the response parameter. Table 1-1 lists the meaningful suffixes.

C H A P T E R 1

Gestalt Manager

1-10 Using the Gestalt Manager

Selectors that have the suffix Attr deserve special attention. They cause Gestalt

to return a bit field that your application must interpret to determine whether a

desired feature is present. For example, the application-defined sample function

MyGetSoundAttr, defined in Listing 1-2 on page 1-6, returns a LongInt that

contains the Sound Manager attributes field retrieved from Gestalt. To determine

whether a particular feature is available, you need to look at the designated bit. The

application-defined sample function MyIsStereoMixing in Listing 1-3, for example,

determines whether stereo mixing is available.

Listing 1-3 Interpreting a Gestalt attributes response

FUNCTION MyIsStereoMixing: Boolean;

BEGIN

MyIsStereoMixing := BTst(MyGetSoundAttr, gestaltStereoMixing);

END;

The MyIsStereoMixing function uses the MPW Pascal function BTst and

the application-defined MyGetSoundAttr function to determine whether the

stereo-mixing bit is set in the response value returned by Gestalt when it’s called

with the gestaltSoundAttr selector. The constant gestaltStereoMixing is

defined in the header files.

Adding a New Selector Code
You can add your own selector code to those already understood by Gestalt by calling

the NewGestalt function. Typically, a system extension registers itself with the Gestalt

Manager so that applications that might use its services can find out whether it’s there.

A debugger, for example, could register its presence. Programmers working on an

application could then embed instructions for the debugger in code under

Table 1-1 Gestalt selector suffixes and their meanings

Suffix Returned value

Attr A range of 32 bits, the meanings of which are defined by a list of
constants. Bit 0 is the least significant bit of the long word.

Count A number indicating how many of the indicated type of item exist.

Size A size, usually in bytes.

Table The base address of a table.

Type An index to a list of feature descriptions.

Version A version number, which can be either a constant with a defined
meaning or an actual version number, usually stored as four hexadecimal
digits in the low-order word of the return value. Implied decimal points
may separate digits. The value $0701, for example, returned in response
to the gestaltSystemVersion selector, represents system software
version 7.0.1.

C H A P T E R 1

Gestalt Manager

Using the Gestalt Manager 1-11

development and call Gestalt to make sure the debugger is available before invoking

those instructions.

The NewGestalt function requires two parameters: the new selector to be registered

and the address of the associated selector function. Gestalt executes the selector

function to determine what value to pass back when it’s called with the new

selector code.

The selector code is a four-character sequence of type OSType. If you have registered

a creator string with Apple Computer, Inc., you are strongly encouraged to use that

sequence as your selector code. The Pipeline debugger, for example, with a creator string

of 'PIPE', would use a Gestalt selector code of 'PIPE'.

Note

Apple reserves for its own use all four-character sequences consisting
solely of lowercase letters and nonalphabetic ASCII characters. ◆

When you register your own selector code with the Gestalt Manager, you supply the

address of the selector function to be executed when an application calls Gestalt with

that code. Your selector function must reside in the system heap and must have the

following interface:

FUNCTION MySelectorFunction (selector: OSType;

 VAR response: LongInt): OSErr;

The Gestalt function passes its input parameters on to your selector function. Your

function places the requested information in the LongInt pointed to by the response

parameter and returns an error code, which Gestalt returns to its caller.

Your selector function should be as simple as possible. If your function needs to use

global variables from the A5 world—that of your own software or that of some other

software—it must explicitly set up A5 and then restore it upon exit. (See Inside Macintosh:
Memory for an explanation of setting up and restoring the A5 world.)

Your selector function can, if necessary, call Gestalt and pass it other selector codes.

Note that the response parameter is merely the address into which your function

places the information requested. You cannot use that parameter to pass information to

your selector function.

Listing 1-4 illustrates a minimal selector function that sets the response parameter

and returns an error code of noErr. The application-defined sample function,

MyGestaltPipe, is isolated in a UNIT element for separate compilation and placement

in a resource.

Listing 1-4 Defining a simple Gestalt selector function

UNIT GestaltFunc;

INTERFACE

USES OSIntf;

FUNCTION MyGestaltPipe (gestaltSelector: OSType;

C H A P T E R 1

Gestalt Manager

1-12 Using the Gestalt Manager

 VAR gestaltReply: LongInt): OSErr;

IMPLEMENTATION

FUNCTION MyGestaltPipe;

BEGIN

gestaltReply := $ACE; {reply defined by Pipeline}

MyGestaltPipe := noErr; {too simple for errors}

END;

END.

This sample linking command places the compiled code in resource ID 128 of a type

arbitrarily named 'GDEF'.

Link GestaltFunc.p.o -rn -rt GDEF=128 -o Pipeline

To add a Gestalt selector code, you first move the selector function into the system

heap and then call the NewGestalt function, which adds the selector code and its

function to the Gestalt repertoire.

▲ W A R N I N G

Take special care when accessing memory in the system heap; it persists
even after your application terminates. ▲

Listing 1-5 illustrates the installation of a new Gestalt selector.

Listing 1-5 Installing a new Gestalt selector

PROCEDURE MyInstallGestFunc;

VAR

gestFuncHandle: Handle;

gestFuncSize: Size;

gestSysPtr: Ptr;

myErr: OSErr;

BEGIN

gestFuncHandle := GetResource('GDEF', 128);

IF ResError = noErr THEN

BEGIN

gestFuncSize := SizeResource(gestFuncHandle);

gestSysPtr := NewPtrSys(gestFuncSize);

IF MemError = noErr THEN

BEGIN

BlockMove(gestFuncHandle^, gestSysPtr, gestFuncSize);

FlushInstructionCache;

myErr := NewGestalt('PIPE',

 SelectorFunctionUUP(gestSysPtr));

END;

C H A P T E R 1

Gestalt Manager

Using the Gestalt Manager 1-13

ReleaseResource(gestFuncHandle);

END;

END;

The application-defined sample procedure MyInstallGestFunc loads the resource

and then gets its size so it can allocate a pointer in the system heap. It then copies the

resource to the pointer and releases the resource.

▲ W A R N I N G

Be sure to call the FlushInstructionCache procedure every time
you modify code in RAM. See the chapter “Memory Management
Utilities” in Inside Macintosh: Memory for details about
FlushInstructionCache. ▲

Finally, MyInstallGestFunc calls NewGestalt to register the selector code 'PIPE'

and its selector function with the Gestalt Manager.

Because the new selector function resides in the system heap, Gestalt recognizes and

responds to the new selector until the machine restarts, even if your software terminates

before that time. You might therefore want your selector function to determine whether

your software is still running before filling in the response value. The simplest way

to report that your application is not available is to return an error code.

If you attempt to add a selector code that Gestalt already recognizes, NewGestalt

returns the error code gestaltDupSelectorErr.

Modifying a Selector Function
You can use the ReplaceGestalt function to modify the function that Gestalt

executes when passed a particular selector code. Your replacement selector function

must reside in the system heap and must conform to the interface defined in the

previous section, “Adding a New Selector Code.”

To allow the new function to call the function it’s replacing, ReplaceGestalt returns

the address of the previous function.

If you attempt to redefine a selector that is not yet defined, ReplaceGestalt returns an

error code; in that case, the address of the previous function is undefined. Always test

the result code of ReplaceGestalt before calling Gestalt with that selector or

attempting to use the response parameter.

Note

If you modify the function associated with an existing Gestalt selector,
do not use any bits in the response parameter that are not documented
in this chapter. Apple reserves all undocumented bits in the response
parameters returned by Apple-defined Gestalt selectors. ◆

Because ReplaceGestalt supplies the address of the function it’s replacing, you can

use it to retrieve the address of the selector function associated with a selector code.

C H A P T E R 1

Gestalt Manager

1-14 Gestalt Manager Reference

Getting Environmental Information Without the Gestalt Manager
You can call the SysEnvirons function, which predates the Gestalt Manager, to get a

brief description of the operating environment. The SysEnvirons function is available

on all models of the Macintosh computer since the Macintosh SE and Macintosh II.

Note

The SysEnvirons function is not part of the Gestalt Manager, but is
documented in this chapter for the sake of completeness. ◆

The SysEnvirons function fills in a record that contains the model of the machine, the

System file version number, the microprocessor type, a keyboard type code, and Boolean

indicators of whether the machine has a floating-point unit or Color QuickDraw. The

system environment record includes one detail not available through Gestalt: the

working directory reference number of the folder or volume that holds the System file

(although that information is available through the FindFolder function). See “The

System Environment Record” beginning on page 1-28 for a complete description of the

system environment record.

Gestalt Manager Reference

This section lists the Gestalt selector codes and their defined return values and describes

the system environment record, the three Gestalt Manager functions, and the

SysEnvirons function.

Constants

This section lists the Apple-defined Gestalt Manager selector codes, describes the

formats of their responses, and lists the constants defined for their return values.

You pass a selector code when you call Gestalt to specify the kind of information you

need. Apple defines two distinct kinds of selector codes: environmental selectors, which

supply information you can use to control the behavior of your application, and

informational selectors, which supply information you can’t use to determine what

hardware or software features are available.

The selector code constants use a set of suffixes that indicate what format the response

value will take. Selectors with the suffix Attr, for example, return a 32-bit response

value in which the individual bits represent specific attributes. The constants listed for

these response values represent bit numbers. For a more general description of selectors

and their response values, see “Interpreting Gestalt Responses” beginning on page 1-9.

C H A P T E R 1

Gestalt Manager

Gestalt Manager Reference 1-15

The Gestalt function accepts the following environmental selectors.

Selector Response bits and response values

gestaltAddressingModeAttr Current addressing-mode attributes.

CONST
 gestalt32BitAddressing = 0;
 gestalt32BitSysZone = 1;
 gestalt32BitCapable = 2;

The gestalt32BitAddressing attribute
indicates that the machine started up with 32-bit
addressing. The gestalt32BitSysZone attribute
indicates that the system heap has 32-bit clean
block headers (regardless of the type of addressing
the machine started up in). See the book Inside
Macintosh: Memory for more information about
32-bit addressing.

gestaltAliasMgrAttr Alias Manager attributes.

CONST
gestaltAliasMgrPresent = 0;
gestaltAliasMgrSupportsRemoteAppleTalk
 = 1;

gestaltAppleEventsAttr The Apple events attribute.

CONST
 gestaltAppleEventsPresent = 0;
 gestaltScriptingSupport = 1;
 gestaltOSLInSystem = 2;

gestaltAppleTalkVersion The version number of the AppleTalk driver (in
particular, the .MPP driver) currently installed. The
version number is placed into the low-order byte of
the result; ignore the three high-order bytes. If an
AppleTalk driver is not currently open, the
response parameter is 0.

gestaltATalkVersion The version number of the AppleTalk driver, in the
format introduced with AppleTalk version 56. (For
a description of AppleTalk, see Inside AppleTalk,
second edition.) The version is stored in the high 3
bytes of the return value.

Byte 3 contains the major revision number, byte 2
contains the minor revision number, and byte 1
contains a constant that represents the release stage.

C H A P T E R 1

Gestalt Manager

1-16 Gestalt Manager Reference

gestaltATalkVersion
(continued)

CONST
 development = $20;
 alpha = $40;
 beta = $60;
 final = $80;
 release = $80;

For example, if you call Gestalt with the 'atkv'
selector when AppleTalk version 57 is loaded, you
receive the long integer response value $39008000.

Byte 0 always contains 0.

gestaltAUXVersion The version of A/UX if it is currently executing.
The result is placed into the low-order word of the
response parameter. If A/UX is not executing,
Gestalt returns gestaltUnknownErr.

gestaltCFMAttr Code Fragment Manager attributes.

CONST
 gestaltCFMPresent = 0;

gestaltCloseViewAttr The CloseView attributes

CONST
 gestaltCloseViewEnabled = 0;
 gestaltCloseViewDisplayMgrFriendly
 = 1;

getstaltComponentMgr The version of the Component Manager.

getstaltCompressionMgr The version of the Image Compression Manager.

gestaltConnMgrAttr Connection Manager attributes.

CONST
 gestaltConnMgrPresent = 0;
 gestaltConnMgrCMSearchFix = 1;
 gestaltConnMgrErrorString = 2;
 gestaltConnMgrMultiAsyncIO = 3;

The gestaltConnMgrCMSearchFix bit flag
indicates that the fix is present that allows the
CMAddSearch routine to work over the mAttn
channel.

gestaltCRMAttr Communications Resource Manager attributes.

CONST
 gestaltCRMPresent = 0;
 gestaltCRMPersistentFix = 1;
 gestaltCRMToolRsrcCalls = 2;

gestaltCTBVersion The version number of the Communications
Toolbox (in the low-order word of the return value).

gestaltDBAccessMgrAttr The Data Access Manager attribute.

CONST
 gestaltDBAccessMgrPresent = 0;

Selector Response bits and response values

C H A P T E R 1

Gestalt Manager

Gestalt Manager Reference 1-17

gestaltDictionaryMgrAttr The Dictionary Manager attributes.

CONST
 gestaltDictionaryMgrPresent = 0;

gestaltDisplayMgrAttr The Display Manager attributes.

CONST
 gestaltDisplayMgrPresent = 0;

gestaltDITLExtAttr The Dialog Manager extensions attributes.

CONST
 gestaltDITLExtPresent = 0;

If this flag bit is TRUE, then the Dialog Manager
extensions included in System 7 are available. See
the book Inside Macintosh: Macintosh Toolbox
Essentials for details about the Dialog Manager.

gestaltDragMgrAttr Drag Manager attributes.

CONST
 gestaltDragMgrPresent = 0;

gestaltEasyAccessAttr Easy Access attributes.

CONST
 gestaltEasyAccessOff = 0;
 gestaltEasyAccessOn = 1;
 gestaltEasyAccessSticky = 2;
 gestaltEasyAccessLocked = 3;

gestaltEditionMgrAttr Edition Manager attributes.

CONST
 gestaltEditionMgrPresent = 0;
 gestaltEditionMgrTranslationAware
 = 1;

gestaltExtToolboxTable The base address of the second half of the Toolbox
trap table if the table is discontiguous. If the table is
contiguous, this selector returns 0.

gestaltFinderAttr Finder attributes.

CONST
 gestaltFinderDropEvent = 0;
 gestaltFinderMagicPlacement
 = 1;
 gestaltFinderCallsAEProcess
 = 2;
 gestaltOSLCompliantFinder = 3;
 gestaltFinderSupports4GBVolumes
 = 4;
 gestaltFinderHandlesCFMFailures
 = 5;
 gestaltFinderHasClippings = 6;

Selector Response bits and response values

C H A P T E R 1

Gestalt Manager

1-18 Gestalt Manager Reference

gestaltFindFolderAttr The FindFolder function attribute.

CONST
 gestaltFindFolderPresent = 0;

gestaltFirstSlotNumber The first physical slot.

gestaltFontMgrAttr The Font Manager attribute.

CONST
 gestaltOutlineFonts = 0;

gestaltFPUType A constant that represents the type of floating-point
unit currently installed, if any.

CONST
 gestaltNoFPU = 0;
 gestalt68881 = 1;
 gestalt68882 = 2;
 gestalt68040FPU = 3;

gestaltFSAttr File system attributes.

CONST
 gestaltFullExtFSDispatching = 0;
 gestaltHasFSSpecCalls = 1;
 gestaltHasFileSystemManager = 2;
 gestaltFSMDoesDynamicLoad = 3;
 gestaltFSSupports4GBVols = 4;
 gestaltHasExtendedDiskInit = 6;

gestaltFXfrMgrAttr The File Transfer Manager attributes.

CONST
 gestaltFXfrMgrPresent = 0;
 gestaltFXfrMgrMultiFile = 1;
 gestaltFXfrMgrErrorString = 2;

gestaltHelpMgrAttr The Help Manager attribute.

CONST
 gestaltHelpMgrPresent = 0;

gestaltIconUtilitiesAttr The Icon Utilities attribute.

CONST
 gestaltIconUtilitiesPresent = 0;

gestaltKeyboardType A constant that represents the type of keyboard.

CONST
 gestaltMacKbd = 1;
 gestaltMacAndPad = 2;
 gestaltMacPlusKbd = 3;
 gestaltExtADBKbd = 4;
 gestaltStdADBKbd = 5;
 gestaltPrtblADBKbd = 6;
 gestaltPrtblISOKbd = 7;

Selector Response bits and response values

C H A P T E R 1

Gestalt Manager

Gestalt Manager Reference 1-19

gestaltKeyboardType
(continued)

 gestaltStdISOADBKbd = 8;
 gestaltExtISOADBKbd = 9;
 gestaltADBKbdII = 10;
 gestaltADBISOKbdII = 11;
 gestaltPwrBookADBKbd = 12;
 gestaltPwrBookISOADBKbd = 13;
 gestaltAppleAdjustKeypad = 14;
 gestaltAppleAdjustADBKbd = 15;
 gestaltAppleAdjustISOKbd = 16;

If the Apple Desktop Bus (ADB) is in use, there
may be multiple keyboards or other ADB devices
attached to the machine. The
gestaltKeyboardType selector identifies only
the type of the keyboard on which the last
keystroke occurred.

You cannot use this selector to find out what ADB
devices are connected. For that, you can use the
Apple Desktop Bus Manager, described in Inside
Macintosh: Devices. Note that the ADB keyboard
types described by Gestalt do not necessarily
map directly to ADB device handler IDs.

Future support for the gestaltKeyboardType
selector is not guaranteed. To determine the type of
the keyboard last touched without using Gestalt,
check the system global variable KbdType,
documented in Inside Macintosh: Devices.

If the Gestalt Manager does not recognize the
keyboard type, it returns an error.

gestaltLogicalPageSize The logical page size. This value is defined only on
machines with the MC68010, MC68020, MC68030,
or MC68040 microprocessors. On a machine with
the MC68000, Gestalt returns an error when
called with this selector.

gestaltLogicalRAMSize The amount of logical memory available. This
value is the same as that returned by
gestaltPhysicalRAMSize when virtual
memory is not installed. On some machines,
however, this value might be less than the value
returned by gestaltPhysicalRAMSize because
some RAM may be used by the video display and
the Operating System.

gestaltLowMemorySize The size (in bytes) of the low-memory area. The
low-memory area is used for vectors, global
variables, and dispatch tables.

Selector Response bits and response values

C H A P T E R 1

Gestalt Manager

1-20 Gestalt Manager Reference

gestaltMiscAttr Information about miscellaneous pieces of the
Operating System or hardware configuration.

CONST
 gestaltScrollingThrottle = 0;
 gestaltSquareMenuBar = 2;

gestaltMixedModeVersion The version of Mixed Mode Manager.

gestaltMMUType A constant that represents the type of MMU
currently installed.

CONST
 gestaltNoMMU = 0;
 gestaltAMU = 1;
 gestalt68851 = 2;
 gestalt68030MMU = 3;
 gestalt68040MMU = 4;
 gestaltEMMU1 = 5;

gestaltNativeCPUtype Native CPU type.

CONST
 gestaltCPU68000 = $000;
 gestaltCPU68010 = $001;
 gestaltCPU68020 = $002;
 gestaltCPU68030 = $003;
 gestaltCPU68040 = $004;

 gestaltCPU601 = $101;

Note, to check whether the native system
architecture is a MC680x0 or a PowerPC
microprocessor, use the
gestaltSysArchitecture selector.

gestaltNotificationMgrAttr The Notification Manager attribute.

CONST
 gestaltNotificationPresent = 0;

gestaltNuBusConnectors A bitmap that describes the NuBus™ slot connector
locations. On a Macintosh II, for example, the
return value would have bits 9 through 14 set,
indicating that 6 NuBus slots are present, at
locations 9 through 14.

gestaltOSAttr General Operating System attributes, such as
whether temporary memory handles are real
handles. The low-order bits of the response
parameter are interpreted as bit flags. A flag is set
to 1 to indicate that the corresponding feature is
available. Currently, the following bits are
significant:

Selector Response bits and response values

C H A P T E R 1

Gestalt Manager

Gestalt Manager Reference 1-21

gestaltOSAttr
(continued)

CONST
 gestaltSysZoneGrowable = 0;
 gestaltLaunchCanReturn = 1;
 gestaltLaunchFullFileSpec = 2;
 gestaltLaunchControl = 3;
 gestaltTempMemSupport = 4;
 gestaltRealTempMemory = 5;
 gestaltTempMemTracked = 6;

See the book Inside Macintosh: Memory for a full
explanation of the temporary memory features, and
see the book Inside Macintosh: Processes for a full
explanation of the launch control features.

gestaltOSTable The base address of the Operating System trap
dispatch table.

gestaltParityAttr Information about the machine’s parity-checking
features.

CONST
 gestaltHasParityCapability = 0;
 gestaltParityEnabled = 1;

Note that parity is not considered to be enabled
unless all installed memory is parity RAM.

gestaltPCXAttr PC Exchange attributes.

CONST
 gestaltPCXHas8and16BitFAT = 0;
 gestaltPCXHasProDOS = 1;

gestaltPhysicalRAMSize The number of bytes of physical RAM currently
installed.

gestaltPopupAttr The attribute of the pop-up control definition.

CONST gestaltPopupPresent = 0;

gestaltPowerMgrAttr Power Manager attributes.

CONST
 gestaltPMgrExists = 0;
 gestaltPMgrCPUIdle = 1;
 gestaltPMgrSCC = 2;
 gestaltPMgrSound = 3;
 gestaltPMgrDispatchExists = 4;

gestaltPPCToolboxAttr Program-to-Program Communication (PPC)
Toolbox attributes. Note that these constants are
defined as masks, not bit numbers.

CONST
 gestaltPPCToolboxPresent = $0000;
 gestaltPPCSupportsRealTime = $1000;
 gestaltPPCSupportsIncoming = $0001;
 gestaltPPCSupportsOutgoing = $0002;

Selector Response bits and response values

C H A P T E R 1

Gestalt Manager

1-22 Gestalt Manager Reference

gestaltProcessorType A constant that represents the type of
microprocessor currently running.

CONST
 gestalt68000 = 1;
 gestalt68010 = 2;
 gestalt68020 = 3;
 gestalt68030 = 4;
 gestalt68040 = 5;

gestaltQuickdrawFeatures QuickDraw features.

CONST
 gestaltHasColor = 0;
 gestaltHasDeepGWorlds = 1;
 gestaltHasDirectPixMaps = 2;
 gestaltHasGrayishTextOr = 3;
 gestaltSupportsMirroring = 4;

gestaltQuickdrawVersion The version of QuickDraw, encoded as a revision
number in the low-order word of the return value.
The high-order byte represents the major revision
number, and the low-order byte represents the
minor revision number. For example, version 1.3 of
32-Bit QuickDraw represents QuickDraw revision
2.3; its response value is $0230.

CONST
 gestaltOriginalQD = $000;
 gestalt8BitQD = $100;
 gestalt32BitQD = $200;
 gestalt32BitQD11 = $210;
 gestalt32BitQD12 = $220;
 gestalt32BitQD13 = $230;

Values having a major revision number of 1 or 2
indicate that Color QuickDraw is available, in
either the 8-bit or 32-bit version. These results do
not, however, indicate whether a color monitor is
attached to the system. You must use high-level
QuickDraw routines to obtain that information.

gestaltQuickTimeVersion The QuickTime version.

gestaltRealtimeMgrAttr Realtime Manager attributes.

CONST
 gestaltRealtimeMgrPresent = 0;

gestaltResourceMgrAttr The Resource Manager attribute.

CONST
 gestaltPartialRsrcs = 0;

Selector Response bits and response values

C H A P T E R 1

Gestalt Manager

Gestalt Manager Reference 1-23

gestaltScrapMgrAttr Scrap Manager attributes.

CONST
 gestaltScrapMgrTranslationAware
 = 0;
 gestaltTranslationMgrHintOrder
 = 1;

gestaltScriptCount The number of script systems currently active.

gestaltScriptMgrVersion The version number of the Script Manager (in the
low-order word of the return value).

gestaltSerialAttr Serial hardware attributes of the machine, such as
whether or not the GPIa line is connected and can
be used for external clocking.

CONST
 gestaltHasGPIaToDCDa = 0;
 gestaltHasGPIaToRTxCa = 1;
 gestaltHasGPIaToDCDb = 2;

gestaltSlotAttr Slot Manager attributes.

CONST
 gestaltSlotMgrExists = 0;
 gestaltNuBusPresent = 1;
 gestaltSESlotPresent = 2;
 gestaltSE30SlotPresent = 3;
 gestaltPortableSlotPresent = 4;

gestaltSoundAttr Sound attributes.

CONST
 gestaltStereoCapability = 0;
 gestaltStereoMixing = 1;
 gestaltSoundIOMgrPresent = 3;
 gestaltBuiltInSoundInput = 4;
 gestaltHasSoundInputDevice = 5;
 gestaltPlayAndRecord = 6;
 gestalt16BitSoundIO = 7;
 gestaltStereoInput = 8;
 gestaltLineLevelInput = 9;
 gestaltSndPlayDoubleBuffer = 10;
 gestaltMultiChannels = 11
 gestalt16BitAudioSupport = 12;

Selector Response bits and response values

C H A P T E R 1

Gestalt Manager

1-24 Gestalt Manager Reference

gestaltSoundAttr
(continued)

If the bit gestaltStereoCapability is TRUE,
the available hardware can play stereo sounds. The
bit gestaltStereoMixing indicates that the
sound hardware of the machine mixes both left and
right channels of stereo sound into a single audio
signal for the internal speaker. The
gestaltSoundIOMgrPresent bit indicates that
the new sound input routines are available, and the
gestaltBuiltInSoundInput bit indicates that a
built-in sound input device is available. The
gestaltHasSoundInputDevice bit indicates
that some sound input device is available.

Note, bits 7 through 12 are not defined for versions
of the Sound Manager prior to version 3.0.

gestaltSpeechAttr Speech Manager attributes.

CONST
 getaltSpeechMgrPresent = 0;
 getaltSpeechHasPPCGlue = 1;

gestaltStandardFileAttr Standard File Package attributes.

CONST
 gestaltStandardFile58 = 0;
 gestaltStandardFileTranslationAware
 = 1;
 gestaltStandardFileHasColorIcons
 = 2;

If the gestaltStandardFile58 flag bit is set,
you can call the four new procedures—
StandardPutFile, StandardGetFile,
CustomPutFile, and CustomGetFile—
introduced with System 7. (The name of the
constant reflects the enabling of selectors 5 through
8 on the trap macro that handles the Standard File
Package.)

gestaltStdNBPAttr Information about the StandardNBP
(Name-Binding Protocol) function.

CONST
 gestaltStdNBPPresent = 0;

gestaltSysArchitecture The native system architecture.

CONST
 gestalt68k = 1;
 gestaltPowerPC = 2;

If the gestalt68k flag bit is set, the native
microprocessor is a MC680x0 chip. If the
gestaltPowerPC flag bit is set, the native
microprocessor is a PowerPC chip.

Selector Response bits and response values

C H A P T E R 1

Gestalt Manager

Gestalt Manager Reference 1-25

gestaltTEAttr TextEdit attributes.

CONST
 gestaltTEHasGetHiliteRgn = 0;

gestaltTermMgrAttr Terminal Manager attributes.

CONST
 gestaltTermMgrPresent = 0;
 gestaltTermMgrErrorString = 2;

gestaltTextEditVersion A constant that indicates which version of TextEdit
is present.

CONST
 gestaltTE1 = 1;
 gestaltTE2 = 2;
 gestaltTE3 = 3;
 gestaltTE4 = 4;
 gestaltTE5 = 5;

gestaltThreadMgrAtt Thread Manager attributes.

CONST
 gestaltThreadMgrPresent = 0;
 gestaltSpecificMatchSupport = 1;

gestaltTimeMgrVersion A constant that indicates which version of the Time
Manager is present.

CONST
 gestaltStandardTimeMgr = 1;
 gestaltRevisedTimeMgr = 2;
 gestaltExtendedTimeMgr = 3;

gestaltToolboxTable The base address of the Toolbox trap dispatch table.

gestaltTranslationAttr The Translation Manager attributes.

CONST
 gestaltTranslationMgrExists = 0;

gestaltTSMgrVersion The version of the Text Services.

gestaltVersion The version of the Gestalt Manager (in the
low-order word of the return value). The current
version is 1, corresponding to a returned value of
$0001.

gestaltVMAttr The virtual memory attributes.

CONST
 gestaltVMPresent = 0;

Selector Response bits and response values

C H A P T E R 1

Gestalt Manager

1-26 Gestalt Manager Reference

The Gestalt function also accepts the following informational selectors.

▲ W A R N I N G

Never infer the existence of certain hardware or software features from
the responses that Gestalt returns when you pass it an informational
selector. ▲

Selector Meaning

gestaltHardwareAttr Low-level hardware configuration attributes.

CONST
 gestaltHasVIA1 = 0;
 gestaltHasVIA2 = 1;
 gestaltHasASC = 3;
 gestaltHasSCC = 4;
 gestaltHasSCSI = 7;
 gestaltHasSoftPowerOff = 19;
 gestaltHasSCSI961 = 21;
 gestaltHasSCSI962 = 22;
 gestaltHasUniversalROM = 24;

The gestaltHasSCSI bit means the machine is
equipped with a SCSI implementation based on the
53C80 chip, which was introduced in the Macintosh
Plus. This bit is 0 on computers with a different SCSI
implementation. Those computers set the
gestaltHasSCSI961 or gestaltHasSCSI962 bit to
report a SCSI implementation based on the 53C96 chip
installed on an internal or external bus, respectively.

The gestaltHasSCC bit is normally returned as 0 on
the Macintosh IIfx and Macintosh Quadra 900
computers, which have intelligent I/O processors that
isolate the hardware and make direct access to the SCC
impossible. However, if the user has used the
Compatibility Switch control panel to enable
compatibility mode, gestaltHasSCC is set.

gestaltMachineIcon The icon family resource ID for the current type of
Macintosh.

gestaltMachineType A constant that indicates the model of computer.

CONST
 gestaltClassic = 1;
 gestaltMacXL = 2;
 gestaltMac512KE = 3;
 gestaltMacPlus = 4;
 gestaltMacSE = 5;
 gestaltMacII = 6;
 gestaltMacIIx = 7;
 gestaltMacIIcx = 8;
 gestaltMacSE030 = 9;
 gestaltPortable = 10;

C H A P T E R 1

Gestalt Manager

Gestalt Manager Reference 1-27

gestaltMachineType
(continued)

 gestaltMacIIci = 11;
 gestaltMacIIfx = 13;
 gestaltMacClassic = 17;
 gestaltMacIIsi = 18;
 gestaltMacLC = 19;
 gestaltQuadra900 = 20;
 gestaltPowerBook170 = 21;
 gestaltQuadra700 = 22;
 gestaltClassicII = 23;
 gestaltPowerBook100 = 24;
 gestaltPowerBook140 = 25;
 gestaltQuadra950 = 26;
 gestaltMacLCIII = 27;
 gestaltPowerBookDuo210 = 29;
 gestaltMacCentris650 = 30;
 gestaltPowerBookDuo230 = 32;
 gestaltPowerBook180 = 33;
 gestaltPowerBook160 = 34;
 gestaltMacQuadra800 = 35;
 gestaltMacLCII = 37;
 gestaltPowerBookDuo250 = 38;
 gestaltMacIIvi = 44;
 gestaltPerforma600 = 45;
 gestaltMacIIvx = 48;
 gestaltMacColorClassic = 49;
 gestaltPowerBook165c = 50;
 gestaltMacCentris610 = 52;
 gestaltMacQuadra610 = 53;
 gestaltPowerBook145 = 54;
 gestaltMacLC520 = 56;
 gestaltMacCentris660AV = 60;
 gestaltPowerBook180c = 71;
 gestaltPowerBookDuo270c = 77;
 gestaltMacQuadra840AV = 78;
 gestaltPowerBook165 = 84;
 gestaltMacTV = 88;
 gestaltMacLC475 = 89;
 gestaltMacLC575 = 92;
 gestaltMacQuadra605 = 94;
 gestaltPowerMac8100_80 = 65;
 gestaltPowerMac6100_60 = 75;
 gestaltPowerMac7100_66 = 112;

To obtain a string containing the machine’s name, you
can pass the returned value to the GetIndString
procedure as an index into the resource of type 'STR#'
in the System file having the resource ID defined by the
constant kMachineNameStrID.

CONST
 kMachineNameStrID = -16395;

Selector Meaning

C H A P T E R 1

Gestalt Manager

1-28 Gestalt Manager Reference

Data Structures

This section describes the record filled in by the SysEnvirons function.

The System Environment Record

The SysEnvirons function fills in a system environment record, which describes some

aspects of the software and hardware environment.

TYPE SysEnvRec =

RECORD

environsVersion: Integer;

machineType: Integer;

systemVersion: Integer;

processor: Integer;

hasFPU: Boolean;

hasColorQD: Boolean;

keyBoardType: Integer;

atDrvrVersNum: Integer;

sysVRefNum: Integer;

END;

FIELD DESCRIPTIONS

environsVersion
The version number of the SysEnvirons function that was used to
fill in the record.

When you call SysEnvirons, you specify a version number to
ensure that you receive a system environment record that matches
your expectations, as explained in the description of SysEnvirons
beginning on page 1-32. If you request a more recent version of
SysEnvirons than is available, SysEnvirons places its own
version number in the environsVersion field and returns a
function result envVersTooBig.

gestaltROMSize The size of the installed ROM, in bytes. The value is
returned in only one word.

gestaltROMVersion The version number of the installed ROM (in the
low-order word of the return value).

gestaltSystemVersion The version number of the currently active System file,
represented as four hexadecimal digits in the low-order
word of the return value. For example, if your
application is running in version 7.0.1, then Gestalt
returns the value $0701. Ignore the high-order word of
the returned value.

Selector Meaning

C H A P T E R 1

Gestalt Manager

Gestalt Manager Reference 1-29

machineType A code for the Macintosh model, which can be one of these values:

CONST

envXL = -2; {Macintosh XL}

envMac = –1; {Macintosh with 64K }

{ ROM}

envMachUnknown = 0; {unknown model, }

{ after Macintosh }

{ IIfx}

env512KE = 1; {Macintosh 512K }

{ enhanced}

envMacPlus = 2; {Macintosh Plus}

envSE = 3; {Macintosh SE}

envMacII = 4; {Macintosh II}

envMacIIx = 5; {Macintosh IIx}

envMacIIcx = 6; {Macintosh IIcx}

envSE30 = 7; {Macintosh SE30}

envPortable = 8; {Macintosh Portable}

envMacIIci = 9; {Macintosh IIci}

envMacIIfx = 11; {Macintosh IIfx}

Note

Use Gestalt to obtain information about machine types not
listed above. ◆

systemVersion The version number of the current System file, represented as two
byte-long numbers with one or more implied decimal points. The
value $0410, for example, represents system software version 4.1.

If you call SysEnvirons when a system earlier than 4.1 is running,
the MPW glue places $0 in this field and returns a result code of
envNotPresent.

processor A code for the microprocessor, which can be one of these values:

CONST

envCPUUnknown = 0; {unknown }

{ microprocessor}

env68000 = 1; {MC68000}

env68010 = 2; {MC68010}

env68020 = 3; {MC68020}

env68030 = 4; {MC68030}

env68040 = 5; {MC68040}

hasFPU A Boolean value that indicates whether hardware floating-point
processing is available.

hasColorQD A Boolean value that indicates whether Color QuickDraw is
present. This field says nothing about the presence of a color
monitor.

C H A P T E R 1

Gestalt Manager

1-30 Gestalt Manager Reference

keyboardType A code for the keyboard type, which can be one of these values:

CONST

envUnknownKbd = 0; {Macintosh Plus with }

{ keypad}

envMacKbd = 1; {Macintosh}

envMacAndPad = 2; {Macintosh with keypad}

envMacPlusKbd = 3; {Macintosh Plus}

envAExtendKbd = 4; {Apple extended}

envStandADBKbd = 5; {standard ADB}

envPrtblADBKbd = 6; {Macintosh Portable ADB}

envPrtblISOKbd = 7; {Macintosh Portable ISO}

envStdISOADBKbd = 8; {standard ISO ADB}

envExtISOADBKbd = 9; {extended ISO ADB}

Note

Use Gestalt to obtain information about keyboard types not
listed above. ◆

If the Apple Desktop Bus is in use, this field returns the keyboard
type of the keyboard on which the last keystroke was made.

atDrvrVersNum The version number of the AppleTalk driver (specifically, the .MPP
driver) currently installed. If AppleTalk is not loaded, this field is 0.

sysVRefNum The working-directory reference number of the folder or volume
that holds the open System file.

Gestalt Manager Routines

This section describes the three Gestalt Manager functions, Gestalt, NewGestalt, and

ReplaceGestalt. It also describes the SysEnvirons function, which can give you a

brief description of the operating environment when Gestalt is not available. The

Gestalt Manager functions allow you to

■ find out what hardware and software features are present

■ add new selectors to those understood by the Gestalt function

■ replace the functions associated with known selectors

Getting Information About the Operating Environment

This section describes both the Gestalt function, which you use to find out about the

operating environment, and the SysEnvirons function, which you use only when

Gestalt is not available.

C H A P T E R 1

Gestalt Manager

Gestalt Manager Reference 1-31

Gestalt

You can use the Gestalt function to obtain information about the operating

environment. You specify what information you need by passing one of the selector

codes recognized by Gestalt.

FUNCTION Gestalt (selector: OSType; VAR response: LongInt): OSErr;

selector The selector code for the information you need.

response On exit, the requested information whose format depends on the selector
code specified in the selector parameter.

DESCRIPTION

The Gestalt function places the information requested by the selector parameter in

the variable parameter response. Note that Gestalt returns the response from all

selectors in a long word, which occupies 4 bytes. When not all 4 bytes are needed, the

significant information appears in the low-order byte or bytes. Although the response

parameter is declared as a variable parameter, you cannot use it to pass information to

Gestalt or to a Gestalt selector function. Gestalt interprets the response

parameter as an address at which it is to place the result returned by the selector

function specified by the selector parameter. Gestalt ignores any information

already at that address.

The Apple-defined selector codes fall into two categories: environmental selectors, which

supply specific environmental information you can use to control the behavior of your

application, and informational selectors, which supply information you can’t use to

determine what hardware or software features are available. You can use one of the

selector codes defined by Apple (listed in the “Constants” section beginning on

page 1-14) or a selector code defined by a third-party product.

Selectors with the suffix Attr return a 32-bit response value in which the individual bits

represent specific attributes. The constants listed for these response values represent

bit numbers.

SPECIAL CONSIDERATIONS

When passed one of the Apple-defined selector codes, the Gestalt function does not

move or purge memory and therefore may be called at any time, even at interrupt time.

However, selector functions associated with non-Apple selector codes might move or

purge memory, and third-party software can alter the Apple-defined selector functions.

Therefore, it is safest always to assume that Gestalt could move or purge memory.

C H A P T E R 1

Gestalt Manager

1-32 Gestalt Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for the Gestalt function are

RESULT CODES

SEE ALSO

See the documentation of the features you’re interested in for more information on the

various response values and their meanings.

See “Interpreting Gestalt Responses” beginning on page 1-9 for a discussion of the

different response value formats and a sample function that checks an attributes value

for a specific feature.

See “Getting Information About the Operating Environment” beginning on page 1-6 for

a sample function that calls the Gestalt function and checks the validity of the return

value. See the “Constants” section beginning on page 1-14 for a list of selector codes

defined by Apple and the formats of their responses.

SysEnvirons

You can use the SysEnvirons function when you need information about the operating

environment and the Gestalt function is not available.

FUNCTION SysEnvirons (versionRequested: Integer;

 VAR theWorld: SysEnvRec): OSErr;

versionRequested
The version number of SysEnvirons you expect.

theWorld A system environment record.

Registers on entry

D0 Selector code

Registers on exit

A0 Response

D0 Result code

noErr 0 No error
gestaltUnknownErr –5550 Could not obtain the response
gestaltUndefSelectorErr –5551 Undefined selector

C H A P T E R 1

Gestalt Manager

Gestalt Manager Reference 1-33

DESCRIPTION

The SysEnvirons function fills in a system environment record identified by the

variable parameter theWorld. It returns a result code.

You use the versionRequested parameter to tell SysEnvirons which version of

the system environment record you’re prepared to receive. This chapter documents

version 2, which contains the same fields as version 1 but recognizes a more complete

set of descriptive constants. Apple will raise the SysEnvirons version number in the

future only if the record structure changes. You can trust any future revision to return

the version 2 record if you request it, although the record might contain whatever

constants are then current. To request the most recent version, you can use the

constant curSysEnvVers:

CONST

curSysEnvVers = 2;

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for the SysEnvirons function are

RESULT CODES

SEE ALSO

See “The System Environment Record” beginning on page 1-28 for a detailed description

of the system environment record.

Adding a Selector Code

You can add your own selector code using the NewGestalt function.

Registers on entry

A0 Address of a system environment record

D0 Version requested

Registers on exit

A0 Address of a system environment record

D0 Result code

noErr 0 No error
envNotPresent –5500 SysEnvirons trap not present
envBadVers –5501 Nonpositive version number passed
envVersTooBig –5502 Requested version of SysEnvirons not available

C H A P T E R 1

Gestalt Manager

1-34 Gestalt Manager Reference

NewGestalt

You can use the NewGestalt function to add a selector code to those already recognized

by Gestalt.

FUNCTION NewGestalt (selector: OSType;

gestaltFunction: SelectorFunctionUUP)

: OSErr;

selector The selector code you’re adding, which is a four-character sequence of
type OSType.

gestaltFunction
A pointer to the selector function that Gestalt executes when it receives
the new selector code.

DESCRIPTION

The NewGestalt function registers a specified selector code with the Gestalt Manager

so that when Gestalt is called with that selector code, the specified selector function is

executed. The function result of NewGestalt is a result code.

Before calling NewGestalt, you must define a selector function and install it in the

system heap. The selector function must conform to the interface defined in “Adding a

New Selector Code” beginning on page 1-10.

Registering with the Gestalt Manager is a way for software such as system extensions to

make their presence known to potential users of their services.

SPECIAL CONSIDERATIONS

The NewGestalt function might move memory and should not be called at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for the NewGestalt function are

Registers on entry

A0 Address of new selector function

D0 Selector code

Registers on exit

D0 Result code

C H A P T E R 1

Gestalt Manager

Gestalt Manager Reference 1-35

RESULT CODES

SEE ALSO

See “Adding a New Selector Code” beginning on page 1-10 for a sample selector

function and a sample procedure that installs it. For information about the Gestalt

function, see page 1-31.

Modifying a Selector Function

You can install your own selector function for an established selector code using the

ReplaceGestalt function.

ReplaceGestalt

You can use the ReplaceGestalt function to replace the function that is currently

associated with a selector.

FUNCTION ReplaceGestalt (selector: OSType;

 gestaltFunction: SelectorFunctionUUP;

 VAR oldGestaltFunction:

 SelectorFunctionUUP): OSErr;

selector The selector code for the function being replaced.

gestaltFunction
A pointer to the new selector function.

oldGestaltFunction
On exit, a pointer to the function previously associated with the specified
selector.

DESCRIPTION

The ReplaceGestalt function replaces the selector function associated with an

existing selector code.

So that your function can call the function previously associated with the selector,

ReplaceGestalt places the address of the old selector function in the

oldGestaltFunction parameter. If ReplaceGestalt returns an error of any type,

then the value of oldGestaltFunction is undefined.

noErr 0 No error
memFullErr –108 Ran out of memory
gestaltDupSelectorErr –5552 Selector already exists
gestaltLocationErr –5553 Function not in system heap

C H A P T E R 1

Gestalt Manager

1-36 Gestalt Manager Reference

SPECIAL CONSIDERATIONS

The ReplaceGestalt function might move memory and should not be called at

interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for the ReplaceGestalt function are

RESULT CODES

SEE ALSO

See “Modifying a Selector Function” on page 1-13 for a discussion of replacing selector

functions. See “Adding a New Selector Code” beginning on page 1-10 for a sample

selector function.

Application-Defined Routines

This section describes the Gestalt selector function, which is the function Gestalt

executes to retrieve the information specified by a selector.

The Selector Function

If you add your own selector code or modify an existing selector code, you supply a

selector function that returns the information associated with the selector.

Registers on entry

A0 Address of new selector function

D0 Selector code

Registers on exit

A0 Address of old selector function

D0 Result code

noErr 0 No error
gestaltUndefSelectorErr –5551 Undefined selector
gestaltLocationErr –5553 Function not in system heap

C H A P T E R 1

Gestalt Manager

Gestalt Manager Reference 1-37

MySelectorFunction

The selector function is responsible for placing the requested information in the

response parameter and returning an appropriate error code.

FUNCTION MySelectorFunction (selector: OSType;

 VAR response: LongInt): OSErr;

selector The selector code that triggers the function.

response On exit, the information.

DESCRIPTION

The selector function places the requested information in the response parameter and

returns a result code. If the information is not available, the selector function returns the

appropriate error code, which Gestalt returns as its function result.

A selector function can call Gestalt or even other selector functions. It must reside in

the system heap.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for the selector function are

RESULT CODES

SEE ALSO

See “Adding a New Selector Code” beginning on page 1-10 for a sample selector

function and a procedure that installs it in the system heap. For information about the

NewGestalt function, see page 1-34. For information about the ReplaceGestalt

function, see page 1-35.

Registers on entry

D0 Selector code

Registers on exit

A0 Response

D0 Result code

noErr 0 No error
gestaltUnknownErr –5550 Could not obtain the response

C H A P T E R 1

Gestalt Manager

1-38 Summary of the Gestalt Manager

Summary of the Gestalt Manager

Pascal Summary

Constants

Environmental Selector Codes

CONST

gestaltAddressingModeAttr = 'addr'; {addressing-mode attributes}

gestaltAliasMgrAttr = 'alis'; {Alias Manager attributes}

gestaltAppleEventsAttr = 'evnt'; {Apple events attributes}

gestaltAppleTalkVersion = 'atlk'; {old format AppleTalk version}

gestaltATalkVersion = 'atkv' {new format AppleTalk version}

gestaltAUXVersion = 'a/ux'; {A/UX version, if present}

gestaltCFMAttr = 'cfrg'; {Code Fragment Manager attr}

gestaltCloseViewAttr = 'BSDa'; {CloseView attributes}

gestaltComponentMgr = 'cpnt'; {Component Manager version}

gestaltCompressionMgr = 'icmp' {Image Compression Manager }

{ version}

gestaltConnMgrAttr = 'conn'; {Connection Manager attributes}

gestaltCRMAttr = 'crm '; {Communication Resource }

{ Manager attr}

gestaltCTBVersion = 'ctbv'; {Comm Toolbox version}

gestaltDBAccessMgrAttr = 'dbac'; {Data Access Manager attributes}

gestaltDictionaryMgrAttr = 'dict'; {Dictionary Manager attributes}

gestaltDisplayMgrAttr = 'dply'; {Display Manager attributes}

gestaltDisplayMgrVers = 'dplv'; {Display Manager version}

gestaltDITLExtAttr = 'ditl'; {Dialog Manager extensions}

gestaltDragMgrAttr = 'drag'; {Drag Manager attributes}

gestaltEasyAccessAttr = 'easy'; {Easy Access attributes}

gestaltEditionMgrAttr = 'edtn'; {Edition Manager attributes}

gestaltExtToolboxTable = 'xttt'; {Toolbox trap dispatch table}

gestaltFinderAttr = 'fndr' {Finder attributes}

gestaltFindFolderAttr = 'fold'; {FindFolder attributes}

gestaltFirstSlotNumber = 'slt1'; {first physical slot}

gestaltFontMgrAttr = 'font'; {Font Manager attributes}

gestaltFPUType = 'fpu '; {floating-point unit type}

C H A P T E R 1

Gestalt Manager

Summary of the Gestalt Manager 1-39

gestaltFSAttr = 'fs '; {file system attributes}

gestaltFXfrMgrAttr = 'fxfr'; {File Transfer Manager attr}

gestaltHardwareAttr = 'hdwr'; {hardware attributes}

gestaltHelpMgrAttr = 'help'; {Help Manager attributes}

gestaltIconUtilitiesAttr = 'icon'; {Icon Utilities attributes}

gestaltKeyboardType = 'kbd '; {keyboard type code}

gestaltLogicalPageSize = 'pgsz'; {logical page size}

gestaltLogicalRAMSize = 'lram'; {logical RAM size}

gestaltLowMemorySize = 'lmem'; {size of low memory}

gestaltMiscAttr = 'misc'; {miscellaneous attributes}

gestaltMixedModeVersion = 'mixd'; {MixedMode version}

gestaltMMUType = 'mmu '; {MMU type}

gestaltNativeCPUtype = 'cput'; {Native CPU type}

gestaltNotificationMgrAttr = 'nmgr'; {Notification Manager attr}

gestaltNuBusConnectors = 'sltc'; {NuBus connector bitmap}

getstaltNuBusSlotCount = 'nubs'; {count of logical NuBus slots}

gestaltOSAttr = 'os '; {Operating System attributes}

gestaltOSTable = 'ostt'; {base address of Operating }

{ System trap dispatch table}

gestaltParityAttr = 'prty'; {parity attributes}

gestaltPCXAttr = 'pcxg'; {PC exchange attributes}

gestaltPhysicalRAMSize = 'ram '; {physical RAM size}

gestaltPopupAttr = 'pop!'; {pop-up 'CDEF' attributes}

gestaltPowerMgrAttr = 'powr'; {Power Manager attributes}

gestaltPPCToolboxAttr = 'ppc '; {PPC Toolbox attributes}

gestaltProcessorType = 'proc'; {microprocessor type code}

gestaltQuickdrawFeatures = 'qdrw'; {QuickDraw features}

gestaltQuickdrawVersion = 'qd '; {QuickDraw version}

gestaltQuickTime = 'qtim'; {QuickTime version}

gestaltRealtimeAttr = 'rtmr'; {Realtime Manager attributes}

gestaltResourceMgrAttr = 'rsrc'; {Resource Manager attributes}

gestaltScrapMgrAttr = 'scra'; {Scrap Manager attributes}

gestaltScriptCount = 'scr#'; {number of active script }

{ systems}

gestaltScriptMgrVersion = 'scri'; {Script Manager version}

gestaltSerialAttr = 'ser '; {serial hardware attributes}

gestaltSoundAttr = 'snd '; {sound attributes}

gestaltSpeechAttr = 'ttsc'; {Speech Manager attributes}

gestaltStandardFileAttr = 'stdf'; {Standard File attributes}

gestaltStdNBPAttr = 'nlup'; {StandardNBP attributes}

gestaltSysArchitecture = 'sysa'; {native system architecture}

gestaltTEAttr = 'teat'; {TextEdit attributes}

gestaltTermMgrAttr = 'term'; {Terminal Manager attributes}

C H A P T E R 1

Gestalt Manager

1-40 Summary of the Gestalt Manager

gestaltTextEditVersion = 'te '; {TextEdit version code}

gestaltThreadMgrAtt = 'thds'; {Thread Manager attributes}

gestaltTimeMgrVersion = 'tmgr'; {Time Manager version code}

gestaltTranslationAttr = 'xlat'; {Translation Manager attributes}

gestaltTSMgrVersion = 'tsmv'; {Text Services Manager version}

gestaltToolboxTable = 'tbtt'; {base address of Toolbox trap }

{ dispatch table}

gestaltVersion = 'vers'; {Gestalt version}

gestaltVMAttr = 'vm '; {virtual memory attributes}

Informational Selector Codes

CONST

gestaltHardwareAttr = 'hdwr'; {hardware attributes}

gestaltMachineIcon = 'micn'; {machine 'ICON'/'cicn' res ID}

gestaltMachineType = 'mach'; {Macintosh model code}

gestaltROMSize = 'rom '; {ROM size}

gestaltROMVersion = 'romv'; {ROM version}

gestaltSystemVersion = 'sysv'; {System file version number}

Environmental Selector Response Values

CONST

{gestaltAddressingModeAttr response bits}

gestalt32BitAddressing = 0; {booted in 32-bit mode}

gestalt32BitSysZone = 1; {32-bit compatible system zone}

gestalt32BitCapable = 2; {machine is 32-bit capable}

{gestaltAliasMgrAttr response bits}

gestaltAliasMgrPresent = 0; {Alias Manager is present}

gestaltAliasMgrSupportsRemoteAppletalk {Alias Manager knows about }

= 1; { remote AppleTalk}

{gestaltAppleEventsAttr response bits}

gestaltAppleEventsPresent = 0; {Apple events available}

gestaltScriptingSupport = 1;

gestaltOSLInSystem = 2; {OSL in system}

{gestaltATalkVersion release stage constants}

development = $20; {development}

alpha = $40; {alpha}

beta = $60; {beta}

final = $80; {final}

release = $80; {release}

C H A P T E R 1

Gestalt Manager

Summary of the Gestalt Manager 1-41

{gestaltCFMAttr response bits}

gestaltsCFMPresent = 0; {Code Fragment Manager present}

{gestaltCloseViewAttr response bits}

gestaltCloseViewEnabled = 0; {CloseView enabled}

gestaltCloseViewDisplayMgrFriendly

= 1; {CloseView compatible with }

{ Display Manger}

{gestaltConnMgrAttr response bits}

gestaltConnMgrPresent = 0; {Connection Manager present}

gestaltConnMgrCMSearchFix = 1; {CMAddSearch fix present}

gestaltConnMgrErrorString = 2; {has CMGetErrorString}

gestaltConnMgrMultiAsyncIO = 3; {has CMNewIOPB, CMDisposeIOPB, }

{ CMPBRead, CMPBWrite,and }

{ CMPBIOKill}

{gestaltCRMAttr response bits}

gestaltCRMPresent = 0; {Communication Resource Manager }

{ present}

gestaltCRMPersistentFix = 1; {fix for persistent tools}

gestaltCRMToolRsrcCalls = 2; {tool resource calls available}

{gestaltDBAccessMgrAttr response bits}

gestaltDBAccessMgrPresent = 0; {Data Access Manager present}

{gestaltDisplayMgrAttr response bits}

gestaltDisplayMgrPresent = 0; {Display Manager Present}

{gestaltDictionaryMgrAttr response bits}

gestaltDictionaryMgrPresent = 0; {Dictionary Manager present}

{gestaltDITLExtAttr response bits}

gestaltDITLExtPresent = 0; {Dialog Manager extensions }

{ present}

{gestaltDragMgrATtr response bits}

gestaltDragMgrPresent = 0; {Drag Manager present}

{gestaltEasyAccessAttr response bits}

gestaltEasyAccessOff = 0; {Easy Access present but off}

gestaltEasyAccessOn = 1; {Easy Access on}

gestaltEasyAccessSticky = 2; {Easy Access sticky}

gestaltEasyAccessLocked = 3; {Easy Access locked}

C H A P T E R 1

Gestalt Manager

1-42 Summary of the Gestalt Manager

{gestaltEditionMgrAttr response bits}

gestaltEditionMgrPresent = 0; {Edition Manager present}

gestaltEditionMgrTranslationAware {Edition Manager aware of }

= 1; { Translation Manager}

{gestaltFinderAttr response bits}

gestaltFinderDropEvent = 0; {Finder recognizes drop event}

gestaltFinderMagicPlacement = 1; {Finder supports magic icon }

{ placement}

gestaltFinderCallsAEProcess = 2; {Finder calls }

{ AEProcessAppleEvent}

gestaltFinderOSLCompliantFinder

= 3; {Finder is scriptable and }

{ recordable}

getstaltFinderSupports4GBVolumes

= 4; {Finder handles 4GB volumes}

getstaltFinderHandlesCFMFailures

= 5; {Finder handles Code Fragment }

{ Manager errors}

getstaltFinderHasClippings = 6; {Finder supports Drag Manager }

{ cliping files}

{gestaltFindFolderAttr response bits}

gestaltFindFolderPresent = 0; {FindFolder available}

{gestaltFontMgrAttr response values}

gestaltOutlineFonts = 0; {outline fonts supported}

{gestaltFPUType response values}

gestaltNoFPU = 0; {no FPU}

gestalt68881 = 1; {Motorola 68881 FPU}

gestalt68882 = 2; {Motorola 68882 FPU}

gestalt68040FPU = 3; {built-in 68040 }

{ floating-point processing}

{gestaltFSAttr response bits}

gestaltFullExtFSDispatching = 0; {new HFSDispatch available}

gestaltHasFSSpecCalls = 1; {has FSSpec calls}

gestaltHasFileSystemManager = 2; {has File System Manager}

gestaltHasFileSystemManager = 3; {supports dynamic loading}

gestaltFSSupports4GBVols = 4; {supports 4 gigabyte volume}

gestaltHasExtendedDiskInit = 6; {has extended disk }

{ initialization calls}

C H A P T E R 1

Gestalt Manager

Summary of the Gestalt Manager 1-43

{gestaltFXfrMgrAttr response bits}

gestaltFXfrMgrPresent = 0; {File Transfer Manager present}

gestaltFXfrMgrMultiFile = 1; {supports FTSend and FTReceive}

gestaltFXfrMgrErrorString = 2; {supports FTGetErrorString}

{gestaltHelpMgrAttr response bits}

gestaltHelpMgrPresent = 0; {Help Manager present}

{gestaltIconUtilitiesAttr response value}

gestaltIconUtilitiePresents = 0; {Icon Utilities are present}

{gestaltKeyboardType response values}

gestaltMacKbd = 1; {Macintosh}

gestaltMacAndPad = 2; {Macintosh with keypad}

gestaltMacPlusKbd = 3; {Macintosh Plus}

gestaltExtADBKbd = 4; {extended ADB}

gestaltStdADBKbd = 5; {standard ADB}

gestaltPrtblADBKbd = 6; {Portable ADB}

gestaltPrtblISOKbd = 7; {Portable ISO ADB}

gestaltStdISOADBKbd = 8; {ISO standard ADB}

gestaltExtISOADBKbd = 9; {ISO extended ADB}

gestaltADBKbdII = 10; {ADB II}

gestaltADBISOKbdII = 11; {ISO ADB II}

gestaltPwrBookADBKbd = 12; {PowerBook ADB}

gestaltPwrBookISOADBKbd = 13; {PowerBook ISO ADB}

gestaltAppleAdjustKeypad = 14; {Adjustable Keypad}

gestaltAppleAdjustADBKbd = 15; {Adjustable ADB}

gestaltAppleAdjustISOKbd = 16; {Adjustable ISO}

{gestaltMiscAttr response bits}

gestaltScrollingThrottle = 0; {scrolling throttle is on}

gestaltSquareMenuBar = 2; {menu bar is square}

{gestaltMMUType response values}

gestaltNoMMU = 0; {no MMU}

gestaltAMU = 1; {Mac II address management unit}

gestalt68851 = 2; {Motorola 68851 PMMU}

gestalt68030MMU = 3; {built-in 68030 MMU}

gestalt68040MMU = 4; {built-in 68040 MMU}

gestaltEMMU1 = 5; {emulated MMU type 1}

{gestaltNativeCPUtype response values}

gestaltCPU68000 = $000; {Macintosh 68000 CPU}

gestaltCPU68010 = $001; {Macintosh 68010 CPU}

gestaltCPU68020 = $002; {Macintosh 68020 CPU}

C H A P T E R 1

Gestalt Manager

1-44 Summary of the Gestalt Manager

gestaltCPU68030 = $003; {Macintosh 68030 CPU}

gestaltCPU68040 = $004; {Macintosh 68040 CPU}

gestaltCPU601 = $101; {PowerPC 601 CPU}

{gestaltNotificationMgrAttr response bits}

gestaltNotificationPresent = 0; {Notification Manager present}

{gestaltOSAttr response bits}

gestaltSysZoneGrowable = 0; {system heap can grow}

gestaltLaunchCanReturn = 1; {can return from launch}

gestaltLaunchFullFileSpec = 2; {LaunchApplication available}

gestaltLaunchControl = 3; {Process Manager available}

gestaltTempMemSupport = 4; {temporary memory support }

{ available}

gestaltRealTempMemory = 5; {temporary memory handles are }

{ real}

gestaltTempMemTracked = 6; {temporary memory handles are}

{ tracked}

{gestaltParityAttr response bits}

gestaltHasParityCapability = 0; {machine can check parity}

gestaltParityEnabled = 1; {parity RAM is installed}

{gestaltPCXAttr response bits}

gestaltPCXHas8and16BitFat = 0; {PC exchange supports both }

{ 8 and 16 bit FATs}

gestaltPCXHasProDOS = 1; {PC exchange supports ProDos}

{gestaltPopupAttr response bits}

gestaltPopupPresent = 0; {pop-up 'CDEF' is present}

{gestaltPowerMgrAttr response bits}

gestaltPMgrExists = 0; {Power Manager is present}

gestaltPMgrCPUIdle = 1; {CPU can idle}

gestaltPMgrSCC = 2; {Power Manager can stop SCC }

{ clock}

gestaltPMgrSound = 3; {Power Manager can turn off }

{ sound power}

gestaltPMgrDispatchExists = 4; {Power Manager dispatch exists}

{gestaltPPCToolboxAttr response masks}

gestaltPPCToolboxPresent = $0000; {PPC Toolbox is present;

{ PPCInit has been called}

gestaltPPCSupportsRealTime = $1000; {supports real-time delivery}

gestaltPPCSupportsIncoming = $0001; {accepts sessions from remote }

C H A P T E R 1

Gestalt Manager

Summary of the Gestalt Manager 1-45

{ computers}

gestaltPPCSupportsOutGoing = $0002; {can initiate sessions with }

 { remote computers}

{gestaltProcessorType response values}

gestalt68000 = 1; {68000 microprocessor}

gestalt68010 = 2; {68010 microprocessor}

gestalt68020 = 3; {68020 microprocessor}

gestalt68030 = 4; {68030 microprocessor}

gestalt68040 = 5; {68040 microprocessor}

{gestaltQuickdrawFeatures response bits}

gestaltHasColor = 0; {Color QuickDraw present}

gestaltHasDeepGWorlds = 1; {graphics worlds can be deeper }

{ than 1 bit}

gestaltHasDirectPixMaps = 2; {PixMaps can be direct }

{ (16- or 32-bit)}

gestaltHasGrayishTextOr = 3; {supports text mode }

{ grayishTextOr}

gestaltSupportsMirroring = 4; {supports video mirroring }

{ using the Display Manager}

{gestaltQuickdrawVersion response values}

gestaltOriginalQD = $000; {original 1-bit QuickDraw}

gestalt8BitQD = $100; {8-bit QuickDraw}

gestalt32BitQD = $200; {32-Bit QuickDraw vers. 1.0}

gestalt32BitQD11 = $210; {32-Bit QuickDraw vers. 1.1}

gestalt32BitQD12 = $220; {32-Bit QuickDraw vers. 1.2}

gestalt32BitQD13 = $230; {32-Bit QuickDraw vers. 1.3}

{gestaltRealtimeAttr response bits}

gestaltRealtimeMgrPresent = 0; {Realtime Manager present}

{gestaltResourceMgrAttr response bits}

gestaltPartialRsrcs = 0; {partial resources supported}

{gestaltScrapMgrAttr response bits}

gestaltScrapMgrTranslationAware

= 0; {aware of Translation Manager}

gestaltTranslationMgrHintOrder

= 1; {hint order reversal present}

C H A P T E R 1

Gestalt Manager

1-46 Summary of the Gestalt Manager

{gestaltSerialAttr response bits}

gestaltHasGPIaToDCDa = 0; {GPI connected to DCD on port A}

gestaltHasGPIaToRTxCa = 1; {GPI connected to RTxC on }

{ port A}

gestaltHasGPIaToDCDb = 2; {GPI connected to DCD on port B}

{gestaltSoundAttr response bits}

gestaltStereoCapability = 0; {stereo capability present}

gestaltStereoMixing = 1; {stereo mixing on internal }

{ speaker}

gestaltSoundIOMgrPresent = 3; {sound input routines present}

gestaltBuiltInSoundInput = 4; {built-in input device present}

gestaltHasSoundInputDevice = 5; {sound input device present}

gestaltPlayAndRecord = 6; {built-in hardware can play }

{ and record simultaneously}

getstalt16BitSoundIO = 7; {sound hardware can play and }

{ record 16-bit samples}

getstaltStereoInput = 8; {sound hardware can }

{ record steore}

getstaltSndPlayDoubleBuffer = 10; {SndPlayDouble buffer present}

getstaltMultiChannels = 11; {multiple channel support}

getstalt16BitAudioSuuport = 12; {16-bit audio data supported}

{gestaltSpeechAttr response bits}

gestaltSpeechMgrPresent = 0; {Speech Manager present}

gestaltSpeechHasPPCGlue = 1; {Speech Manager has native PPC }

{ glue for API}

{gestaltStandardFileAttr response bits}

getaltStandardFile58 = 0; {has functions new with 7.0}

gestaltStandardFileTranslationAware

= 1; {aware of Translation Manager}

gestaltStandardFileHasColorIcons

= 2; {dialog boxes use small color }

{ icons}

{gestaltStdNBPAttr response bits}

gestaltStdNBPPresent = 0; {StandardNBP is present}

{gestaltSysArchitecture response bits}

gestalt68k = 1; {MC680x0 architecture}

gestaltPowerPC = 2; {PowerPC architecture}

{gestaltTEAttr response bits}

gestaltTEHasGetHiliteRgn = 0; {TextEdit has TEGetHiliteRgn}

C H A P T E R 1

Gestalt Manager

Summary of the Gestalt Manager 1-47

{gestaltTermMgrAttr response bits}

gestaltTermMgrPresent = 0; {Terminal Manager present}

gestaltTermMgrErrorString = 2; {supports error string }

{ function}

{gestaltTextEditVersion response values}

gestaltTE1 = 1; {in MacIIci ROM}

gestaltTE2 = 2; {with 6.0.4 scripts on Mac IIci}

gestaltTE3 = 3; {with 6.0.4 scripts on other }

{ machines}

gestaltTE4 = 4; {in 6.0.5 and 7.0}

gestaltTE5 = 5; {TextWidthHook available}

{gestaltThreadMgrAttr response bits}

gestaltThreadMgrPresent = 0; {Thread Manger present}

gestaltSpecificMatchSupport = 1; {Thread Manager supports }

{ exact match creation option}

{gestaltTimeMgrVersion response values}

gestaltStandardTimeMgr = 1; {standard Time Manager}

gestaltRevisedTimeMgr = 2; {revised Time Manager}

gestaltExtendedTimeMgr = 3; {extended Time Manager}

{getstaltTranslationAttr response codes}

gestaltTranslationMgrExists = 0; {Translation Manager present}

{gestaltVMAttr response bits}

gestaltVMPresent = 0; {virtual memory present}

Informational Selector Response Values

CONST

{gestaltHardwareAttr response bits}

gestaltHasVIA1 = 0; {has VIA1 chip}

gestaltHasVIA2 = 1; {has VIA2 chip}

gestaltHasASC = 3; {has Apple sound chip}

gestaltHasSCC = 4; {has SCC}

gestaltHasSCSI = 7; {has SCSI}

gestaltHasSoftPowerOff = 19; {capable of software power off}

gestaltHasSCSI961 = 21; {has 53C96 SCSI on internal bus}

gestaltHasSCSI962 = 22; {has 53C96 SCSI on external bus}

gestaltHasUniversalROM = 24; {has universal ROM}

C H A P T E R 1

Gestalt Manager

1-48 Summary of the Gestalt Manager

{gestaltMachineType response values}

gestaltClassic = 1; {Macintosh 128K}

gestaltMacXL = 2; {Macintosh XL}

gestaltMac512KE = 3; {Macintosh 512K enhanced}

gestaltMacPlus = 4; {Macintosh Plus}

gestaltMacSE = 5; {Macintosh SE}

gestaltMacII = 6; {Macintosh II}

gestaltMacIIx = 7; {Macintosh IIx}

gestaltMacIIcx = 8; {Macintosh IIcx}

gestaltMacSE030 = 9; {Macintosh SE/30}

gestaltPortable = 10; {Macintosh Portable}

gestaltMacIIci = 11; {Macintosh IIci}

gestaltMacIIfx = 13; {Macintosh IIfx}

gestaltMacClassic = 17; {Macintosh Classic}

gestaltMacIIsi = 18; {Macintosh IIsi}

gestaltMacLC = 19; {Macintosh LC}

gestaltQuadra900 = 20; {Macintosh Quadra 900}

gestaltPowerBook170 = 21; {Macintosh PowerBook 170}

gestaltQuadra700 = 22; {Macintosh Quadra 700}

gestaltClassicII = 23; {Macintosh Classic II}

gestaltPowerBook100 = 24; {Macintosh PowerBook 100}

gestaltPowerBook140 = 25; {Macintosh PowerBook 140}

gestaltQuadra950 = 26; {Macintosh Quadra 950}

gestaltMacLCIII = 27; {Macintosh LC III}

gestaltPowerBookDuo210 = 29; {Macintosh PowerBook Duo 210}

gestaltMacCentris650 = 30; {Macintosh Centris 650}

gestaltPowerBookDuo230 = 32; {Macintosh PowerBook Duo 230}

gestaltPowerBook180 = 33; {Macintosh PowerBook 180}

gestaltPowerBook160 = 34; {Macintosh PowerBook 160}

gestaltMacQuadra800 = 35; {Macintosh Quadra 800}

gestaltMacLCII = 37; {Macintosh LC II}

gestaltPowerBookDuo250 = 38; {Macintosh PowerBook Duo 230}

gestaltMacIIvi = 44; {Macintosh IIvi}

gestaltPerforma600 = 45; {Macintosh Performa 600}

gestaltMacIIvx = 48; {Macintosh IIvx}

gestaltMacColorClassic = 49; {Macintosh Color Classic}

gestaltPowerBook165c = 50; {Macintosh PowerBook 165c}

gestaltMacCentris610 = 52; {Macintosh Centris 610}

gestaltMacQuadra610 = 53; {Macintosh Quadra 610}

gestaltPowerBook145 = 54; {Macintosh PowerBook 145}

getstaltMacLC520 = 56; {Macintosh LC 520}

getstaltMacCentris660AV = 60; {Macintosh Centris 660 AV}

getstaltPowerBook180c = 71; {Macintosh PowerBook 180c}

C H A P T E R 1

Gestalt Manager

Summary of the Gestalt Manager 1-49

getstaltPowerBookDuo270c = 77; {Maciintosh PowerBook Duo 270c}

getstaltMacQuadra840AV = 78; {Macintosh Quadra 840 AV}

getstaltPowerBook165 = 84; {Macintosh PowerBook 165}

getstaltMacTV = 88; {Macintosh TV}

getstaltMacLC475 = 89; {Macintosh LC 475}

getstaltMacLC575 = 92; {Macintosh LC 575}

getstaltMacQuadra605 = 94; {Macintosh Quadra 605}

getstaltPowerMac8100_80 = 65; {Power Macintosh 8100/80}

getstaltPowerMac6100_60 = 75; {Power Macintosh 6100/60}

getstaltPowerMac7100_66 = 112; {Power Macintosh 7100/66}

kMachineNameStrID = -16395; {'STR#' resource that }

{ contains machine names}

SysEnvirons Constants

CONST

curSysEnvVers = 2; {current SysEnvirons version}

{machine types}

envXL = -2; {Macintosh XL}

envMac = -1; {Macintosh with 64K ROM}

envMachUnknown = 0; {unknown model, after }

{ Macintosh IIfx}

env512KE = 1; {Macintosh 512K enhanced}

envMacPlus = 2; {Macintosh Plus}

envSE = 3; {Macintosh SE}

envMacII = 4; {Macintosh II}

envMacIIx = 5; {Macintosh IIx}

envMacIIcx = 6; {Macintosh IIcx}

envSE30 = 7; {Macintosh SE30}

envPortable = 8; {Macintosh Portable}

envMacIIci = 9; {Macintosh IIci}

envMacIIfx = 11; {Macintosh IIfx}

{system environment record microprocessor codes}

envCPUUnknown = 0; {unknown microprocessor}

env68000 = 1; {68000 microprocessor}

env68010 = 2; {68010 microprocessor}

env68020 = 3; {68020 microprocessor}

env68030 = 4; {68030 microprocessor}

env68040 = 5; {68040 microprocessor}

C H A P T E R 1

Gestalt Manager

1-50 Summary of the Gestalt Manager

{system environment record keyBoardType codes}

envUnknownKbd = 0; {Macintosh Plus with keypad}

envMacKbd = 1; {Macintosh}

envMacAndPad = 2; {Macintosh with keypad}

envMacPlusKbd = 3; {Macintosh Plus}

envAExtendKbd = 4; {Apple extended}

envStandADBKbd = 5; {standard ADB}

envPrtblADBKbd = 6; {Macintosh Portable ADB}

envPrtblISOKbd = 7; {Macintosh Portable ISO}

envStdISOADBKbd = 8; {standard ISO ADB}

envExtISOADBKbd = 9; {extended ISO ADB}

Data Types

TYPE SysEnvRec = {system environment record}

RECORD

 environsVersion: Integer; {SysEnvirons version number}

 machineType: Integer; {Macintosh model code}

 systemVersion: Integer; {System file version number}

 processor: Integer; {microprocessor type code}

 hasFPU: Boolean; {floating-point unit flag}

 hasColorQD: Boolean; {Color QuickDraw flag}

 keyBoardType: Integer; {keyboard type code}

 atDrvrVersNum: Integer; {AppleTalk driver version number}

 sysVRefNum: Integer; {working directory reference number of }

{ folder or volume containing open }

{ System file}

END;

Gestalt Manager Routines

Getting Information About the Operating Environment

FUNCTION Gestalt (selector: OSType;
VAR response: LongInt): OSErr;

FUNCTION SysEnvirons (versionRequested: Integer;
VAR theWorld: SysEnvRec): OSErr;

C H A P T E R 1

Gestalt Manager

Summary of the Gestalt Manager 1-51

Adding a Selector Code

FUNCTION NewGestalt (selector: OSType;
gestaltFunction: SelectorFunctionUUP): OSErr;

Modifying a Selector Function

FUNCTION ReplaceGestalt (selector: OSType;
gestaltFunction: SelectorFunctionUUP;
VAR oldGestaltFunction: SelectorFunctionUUP)
: OSErr;

Application-Defined Routines

FUNCTION MySelectorFunction
(selector: OSType; VAR response: LongInt)
: OSErr;

C Summary

Constants

Environmental Selector Codes

#define gestaltAddressingModeAttr 'addr' /*addressing-mode attributes*/

#define gestaltAliasMgrAttr 'alis' /*Alias Manager attributes*/

#define gestaltAppleEventsAttr 'evnt' /*Apple events attributes*/

#define gestaltAppleTalkVersion 'atlk' /*old format AppleTalk version*/

#define gestaltATalkVersion 'atkv' /*new format AppleTalk version*/

#define gestaltAUXVersion 'a/ux' /*A/UX version, if present*/

#define gestaltCFMAttr 'cfrg' /*Code Fragment Manager attr*/

#definegestaltCloseViewAttr 'BSDa' /*CloseView attributes*/

#define gestaltComponentMgr 'cpnt' /*Component Manager version*/

#define gestaltCompressionMgr 'icmp' /*Image Compression Manager */

/* version*/

#define gestaltConnMgrAttr 'conn' /*Connection Manager attr*/

#define gestaltCRMAttr 'crm ' /*Comm Resource Manager attr*/

#define gestaltCTBVersion 'ctbv' /*Comm Toolbox version*/

#define gestaltDBAccessMgrAttr 'dbac' /*Data Access Manager attr*/

#define gestaltDictionaryMgrAttr 'dict' /*Dictionary Manager attr*/

#define gestaltDisplayMgrAttr 'dply' /*Display Manager attributes*/

#define gestaltDisplayMgrVers 'dplv' /*Display Manager version*/

C H A P T E R 1

Gestalt Manager

1-52 Summary of the Gestalt Manager

#define gestaltDITLExtAttr 'ditl' /*Dialog Manager extensions*/

#define gestaltDragMgrAttr 'drag' /*Drag Manager attributes*/

#define gestaltEasyAccessAttr 'easy' /*Easy Access attributes*/

#define gestaltEditionMgrAttr 'edtn' /*Edition Manager attributes*/

#define gestaltExtToolboxTable 'xttt' /*Toolbox trap dispatch table*/

#define gestaltFinderAttr 'fndr' /*Finder attributes*/

#define gestaltFindFolderAttr 'fold' /*FindFolder attributes*/

#define gestaltFirstSlotNumber 'slt1' /*first physical slot*/

#define gestaltFontMgrAttr 'font' /*Font Manager attributes*/

#define gestaltFPUType 'fpu ' /*floating-point unit type*/

#define gestaltFSAttr 'fs ' /*file system attributes*/

#define gestaltFXfrMgrAttr 'fxfr' /*File Transfer Manager attr*/

#define gestaltHelpMgrAttr 'help' /*Help Manager attributes*/

#define gestaltKeyboardType 'kbd ' /*keyboard type code*/

#define gestaltLogicalPageSize 'pgsz' /*logical page size*/

#define gestaltLogicalRAMSize 'lram' /*logical RAM size*/

#define gestaltLowMemorySize 'lmem' /*size of low memory*/

#define gestaltMiscAttr 'misc' /*miscellaneous attributes*/

#define gestaltMixedModeVersion 'mixd' /*MixedMode version*/

#define gestaltMMUType 'mmu ' /*MMU type*/

#define gestaltNativeCPUtype 'cput' /*Native CPU type*/

#define gestaltNotificationMgrAttr 'nmgr' /*Notification Manager attr*/

#define gestaltNuBusConnectors 'sltc' /*NuBus connector bitmap*/

#define getstaltNuBusSlotCount 'nubs' /*count of logical NuBus slots*/

#define gestaltOSAttr 'os ' /*Operating System attributes*/

#define gestaltOSTable 'ostt' /*base address of Operating */

/* System trap dispatch table*/

#define gestaltParityAttr 'prty' /*parity attributes*/

#define gestaltPCXAttr 'pcxg' /*PC exchange attributes*/

#define gestaltPhysicalRAMSize 'ram ' /*physical RAM size*/

#define gestaltPopupAttr 'pop!' /*pop-up 'CDEF' attributes*/

#define gestaltPowerMgrAttr 'powr' /*Power Manager attributes*/

#define gestaltPPCToolboxAttr 'ppc ' /*PPC Toolbox attributes*/

#define gestaltProcessorType 'proc' /*microprocessor type code*/

#define gestaltQuickdrawFeatures 'qdrw' /*QuickDraw features*/

#define gestaltQuickdrawVersion 'qd ' /*QuickDraw version*/

#define gestaltQuickTime 'qtim' /*QuickTime version*/

#define gestaltRealtimeAttr 'rtmr' /*Realtime Manager attributes*/

#define gestaltResourceMgrAttr 'rsrc' /*Resource Manager attributes*/

#define gestaltScrapMgrAttr 'scra' /*Scrap Manager attributes*/

#define gestaltScriptCount 'scr#' /*number of active script */

/* systems*/

#define gestaltScriptMgrVersion 'scri' /*Script Manager version*/

C H A P T E R 1

Gestalt Manager

Summary of the Gestalt Manager 1-53

#define gestaltSerialAttr 'ser ' /*serial hardware attributes*/

#define gestaltSoundAttr 'snd ' /*sound attributes*/

#define gestaltSpeechAttr 'ttsc' /*Speech Manager attributes*/

#define gestaltStandardFileAttr 'stdf' /*Standard File attributes*/

#define gestaltStdNBPAttr 'nlup' /*StandardNBP attributes*/

#define gestaltSysArchitecture 'sysa' /*native system architecture*/

#define gestaltTEAttr 'teat' /*TextEdit attributes*/

#define gestaltTermMgrAttr 'term' /*Terminal Manager attributes*/

#define gestaltTextEditVersion 'te ' /*TextEdit version code*/

#define gestaltThreadMgrAttr 'thds' /*Thread Manager attributes*/

#define gestaltTimeMgrVersion 'tmgr' /*Time Manager version code*/

#define gestaltToolboxTable 'tbtt' /*base address of Toolbox */

/* trap dispatch table*/

#define gestaltTranslationAttr 'xlat' /*Translation Manager */

/* attributes*/

#define gestaltTSMgrVersion 'tsmv' /*Text Services Manager */

/* version*/

#define getstaltIconUtilities 'icon' /*Icon Utilities attributes*/

#define gestaltVersion 'vers' /*Gestalt version*/

#define gestaltVMAttr 'vm ' /*virtual memory attributes*/

Informational Selector Codes

#define gestaltHardwareAttr 'hdwr' /*hardware attributes*/

#define gestaltMachineIcon 'micn' /*machine 'ICON'/'cicn' res ID*/

#define gestaltMachineType 'mach' /*Macintosh model code*/

#define gestaltROMSize 'rom ' /*ROM size*/

#define gestaltROMVersion 'romv' /*ROM version*/

#define gestaltSystemVersion 'sysv' /*System file version number*/

Environmental Selector Response Values

enum {

/*gestaltAddressingModeAttr response bits*/

gestalt32BitAddressing = 0, /*booted in 32-bit mode*/

gestalt32BitSysZone = 1, /*32-bit compatible system */

/* zone*/

gestalt32BitCapable = 2 /*machine is 32-bit capable*/

};

enum {

/*gestaltAliasMgrAttr response bits*/

gestaltAliasMgrPresent = 0, /*Alias Manager present*/

C H A P T E R 1

Gestalt Manager

1-54 Summary of the Gestalt Manager

gestaltAliasMgrSupportsRemoteAppletalk /*Alias Manager knows about */

= 1 /* remote Appletalk*/

};

enum {

/*gestaltAppleEventsAttr response bits*/

gestaltAppleEventsPresent = 0, /*Apple Events available*/

gestaltScriptingSupport = 1,

gestaltOSLInSystem = 2 /*OSL in system*/

};

enum {

/*gestaltATalkVersion release stage constants*/

development = $20, /*development*/

alpha = $40, /*alpha*/

beta = $60, /*beta*/

final = $80, /*final*/

release = $80 /*release*/

};

enum {

/*gestaltCFMAttr response bits*/

gestaltCFMPresent = 0 /*Code Fragment Manager */

/* present*/

};

enum {

/*gestaltCloseViewAttr response bits*/

gestaltCloseViewEnabled = 0, /*CloseView enabled*/

gestaltCloseViewDisplayMgrFriendly

= 1 /*CloseView compatible with */

/* Display Manger*/

};

enum {

/*gestaltConnMgrAttr response bits*/

gestaltConnMgrPresent = 0, /*Connection Manager present*/

gestaltConnMgrCMSearchFix = 1, /*CMAddSearch fix present*/

gestaltConnMgrErrorString = 2, /*has CMGetErrorString*/

gestaltConnMgrMultiAsyncIO = 3 /*has CMNewIOPB, */

/* CMDisposeIOPB, CMPBRead, */

/* CMPBWrite, CMPBIOKill*/

};

C H A P T E R 1

Gestalt Manager

Summary of the Gestalt Manager 1-55

enum {

/*gestaltCRMAttr response bits*/

gestaltCRMPresent = 0, /*Comm Resource Manager */

/* present*/

gestaltCRMPersistentFix = 1, /*fix for persistent tools*/

gestaltCRMToolRsrcCalls = 2 /*tool resource calls */

/* available*/

};

enum {

/*gestaltDBAccessMgrAttr response bits*/

gestaltDBAccessMgrPresent = 0 /*Data Access Manager present*/

};

enum {

/*gestaltDictionaryMgrAttr response bits*/

gestaltDictionaryMgrPresent = 0 /*Dictionary Manager present*/

};

enum {

/*gestaltDisplayMgrAttr response bits*/

gestaltDisplayMgrPresent = 0 /*Display Manager Present*/

};

enum {

/*gestaltDITLExtAttr response bits*/

gestaltDITLExtPresent = 0 /*Dialog Manager extensions */

/* present*/

};

enum {

/*gestaltDragMgrAttr response bits*/

gestaltDragMgrPresent = 0 /*Drag Manager present*/

};

enum {

/*gestaltEasyAccessAttr response bits*/

gestaltEasyAccessOff = 0, /*Easy Access present but off*/

gestaltEasyAccessOn = 1, /*Easy Access on*/

gestaltEasyAccessSticky = 2, /*Easy Access sticky*/

gestaltEasyAccessLocked = 3 /*Easy Access locked*/

};

C H A P T E R 1

Gestalt Manager

1-56 Summary of the Gestalt Manager

enum {

/*gestaltEditionMgrAttr response bits*/

gestaltEditionMgrPresent = 0, /*Edition Manager present*/

gestaltEditionMgrTranslationAware = 1 /*Edition Manager aware of */

/* Translation Manager*/

};

enum {

/*gestaltFinderAttr response bits*/

gestaltFinderDropEvent = 0, /*Finder recognizes drop event*/

gestaltFinderMagicPlacement = 1, /*Finder supports magic icon */

/* placement*/

gestaltFinderCallsAEProcess = 2, /*Finder calls */

/* AEProcessAppleEvent*/

gestaltFinderOSLCompliantFinder

= 3, /*Finder is scriptable and */

/* recordable*/

getstaltFinderSupports4GBVolumes

= 4, /*Finder handles 4GB volumes*/

getstaltFinderHandlesCFMFailures

= 5, /*Finder handles Code */

/ *Fragment Manager errors*/

getstaltFinderHasClippings = 6 /*Finder supports Drag */

/* Manager cliping files*/

enum {

/*gestaltFindFolderAttr response bits*/

gestaltFindFolderPresent = 0 /*FindFolder available*/

};

enum {

/*gestaltFontMgrAttr response bits*/

gestaltOutlineFonts = 0 /*outline fonts supported*/

};

enum {

/*gestaltFPUType response values*/

gestaltNoFPU = 0, /*no FPU*/

gestalt68881 = 1, /*Motorola 68881 FPU*/

gestalt68882 = 2, /*Motorola 68882 FPU*/

gestalt68040FPU = 3 /*built-in 68040 */

/* floating-point processing*/

};

C H A P T E R 1

Gestalt Manager

Summary of the Gestalt Manager 1-57

enum {

/*gestaltFSAttr response bits*/

gestaltFullExtFSDispatching = 0, /*new HFSDispatch available*/

gestaltHasFSSpecCalls = 1, /*has FSSpec calls*/

gestaltHasFileSystemManager = 2, /*has File System Manager*/

gestaltHasFileSystemManager = 3, /*supports dynamic loading*/

gestaltFSSupports4GBVols = 4, /*supports 4 gigabyte volume*/

gestaltHasExtendedDiskInit = 6 /*has extended disk */

/* initialization calls*/

};

enum {

/*gestaltFXfrMgrAttr response bits*/

gestaltFXfrMgrPresent = 0, /*File Transfer Manager */

/* present*/

gestaltFXfrMgrMultiFile = 1, /*supports FTSend and */

/* FTReceive*/

gestaltFXfrMgrErrorString = 2 /*supports FTGetErrorString*/

};

enum {

/*gestaltHelpMgrAttr response bits/*

gestaltHelpMgrPresent = 0 /*Help Manager present*/

};

enum {

/*gestaltIconUtilitiesAttr response bits*/

gestaltIconUtilitiesPresent = 0 /*icon utilities present*/

};

enum {

/*gestaltKeyboardType response values*/

gestaltMacKbd = 1, /*Macintosh*/

gestaltMacAndPad = 2, /*Macintosh with keypad*/

gestaltMacPlusKbd = 3, /*Macintosh Plus*/

gestaltExtADBKbd = 4, /*extended ADB*/

gestaltStdADBKbd = 5, /*standard ADB*/

gestaltPrtblADBKbd = 6, /*Portable ADB */

gestaltPrtblISOKbd = 7, /*Portable ISO ADB*/

gestaltStdISOADBKbd = 8, /*ISO standard ADB*/

gestaltExtISOADBKbd = 9, /*ISO extended ADB*/

gestaltADBKbdII = 10, /*ADB II*/

gestaltADBISOKbdII = 11, /*ISO ADB II*/

gestaltPwrBookADBKbd = 12, /*PowerBook ADB*/

C H A P T E R 1

Gestalt Manager

1-58 Summary of the Gestalt Manager

gestaltPwrBookISOADBKbd = 13, /*PowerBook ISO ADB*/

gestaltAppleAdjustKeypad = 14, /*Adjustable Keypad*/

gestaltAppleAdjustADBKbd = 15, /*Adjustable ADB*/

gestaltAppleAdjustISOKbd = 16 /*Adjustable ISO*/

};

enum {

/*gestaltMiscAttr return bits*/

gestaltScrollingThrottle = 0, /*scrolling throttle is on*/

gestaltSquareMenuBar = 2 /*menu bar is square*/

};

enum {

/*gestaltMMUType return values*/

gestaltNoMMU = 0, /*no MMU*/

gestaltAMU = 1, /*Mac II address management */

/* unit*/

gestalt68851 = 2, /*Motorola 68851 PMMU*/

gestalt68030MMU = 3, /*built-in 68030 MMU*/

gestalt68040MMU = 4, /*built-in 68040 MMU*/

gestaltEMMU1 = 5 /*emulated MMU type 1*/

};

enum {

/*gestaltNativeCPUtype response values*/

gestaltCPU68000 = $000, /*Macintosh 68000 CPU*/

gestaltCPU68010 = $001, /*Macintosh 68010 CPU*/

gestaltCPU68020 = $002, /*Macintosh 68020 CPU*/

gestaltCPU68030 = $003, /*Macintosh 68030 CPU*/

gestaltCPU68040 = $004, /*Macintosh 68040 CPU*/

gestaltCPU601 = $101, /*PowerPC 601 CPU*/

};

enum {

/*gestaltNotificationMgrAttr response bits*/

gestaltNotificationPresent = 0 /*Notification Manager present*/

};

enum {

/*gestaltOSAttr response bits*/

gestaltSysZoneGrowable = 0, /*system heap can grow*/

gestaltLaunchCanReturn = 1, /*can return from launch*/

gestaltLaunchFullFileSpec = 2, /*LaunchApplication available*/

gestaltLaunchControl = 3, /*Process Manager available*/

C H A P T E R 1

Gestalt Manager

Summary of the Gestalt Manager 1-59

gestaltTempMemSupport = 4, /*temporary memory support */

/* available*/

gestaltRealTempMemory = 5, /*temporary memory handles */

/* are real*/

gestaltTempMemTracked = 6, /*temporary memory handles */

/* are tracked*/

};

enum {

/*gestaltParityAttr response bits*/

gestaltHasParityCapability = 0, /*machine can check parity*/

gestaltParityEnabled = 1 /*parity RAM is installed*/

};

enum {

/*gestaltPCXAttr response bits*/

gestaltPCXHas8and16BitFat = 0, /*PC exchange supports both */

/* 8 and 16 bit FATs*/

/*gestaltPCXHasProDOS = 1 /*PC exchange supports ProDos*/

};

enum {

/*gestaltPopupAttr response bits*/

gestaltPopupPresent = 0 /*pop-up 'CDEF' is present*/

};

enum {

/*gestaltPowerMgrAttr response bits*/

gestaltPMgrExists = 0, /*Power Manager is present*/

gestaltPMgrCPUIdle = 1, /*CPU can idle*/

gestaltPMgrSCC = 2, /*Power Manager can stop SCC */

/* clock*/

gestaltPMgrSound = 3, /*Power Manager can turn off */

/* sound power*/

gestaltPMgrDispatchExists = 4 /*Power Mgr dispatch exists*/

};

enum {

/* gestaltPPCToolboxAttr response bits*/

gestaltPPCToolboxPresent = 0x0000, /*PPC Toolbox is present; */

 /* PPCInit has been called*/

gestaltPPCSupportsRealTime = 0x1000, /*supports real-time delivery*/

gestaltPPCSupportsIncoming = 0x0001, /*accepts sessions from */

 /* remote computers*/

C H A P T E R 1

Gestalt Manager

1-60 Summary of the Gestalt Manager

gestaltPPCSupportsOutGoing = 0x0002 /*can initiate sessions with */

 /* remote computers*/

};

enum {

/*gestaltProcessorType response values*/

gestalt68000 = 1, /*68000 microprocessor*/

gestalt68010 = 2, /*68010 microprocessor*/

gestalt68020 = 3, /*68020 microprocessor*/

gestalt68030 = 4, /*68030 microprocessor*/

gestalt68040 = 5 /*68040 microprocessor*/

};

enum {

/*gestaltQuickdrawFeatures response bits*/

gestaltHasColor = 0, /*Color QuickDraw present*/

gestaltHasDeepGWorlds = 1, /*graphics worlds can be */

/* deeper than 1 bit*/

gestaltHasDirectPixMaps = 2, /*PixMaps can be direct */

/* (16- or 32-bit)*/

gestaltHasGrayishTextOr = 3, /*supports text mode */

/* grayishTextOr*/

gestaltSupportsMirroring = 4 /*supports video mirroring */

/* using the Display Manager*/

};

enum {

/*gestaltQuickdrawVersion response values*/

gestaltOriginalQD = 0x000, /*original 1-bit QuickDraw*/

gestalt8BitQD = 0x100, /*8-bit QuickDraw*/

gestalt32BitQD = 0x200, /*32-Bit QuickDraw vers. 1.0*/

gestalt32BitQD11 = 0x210, /*32-Bit QuickDraw vers. 1.1*/

gestalt32BitQD12 = 0x220, /*32-Bit QuickDraw vers. 1.2*/

gestalt32BitQD13 = 0x230 /*32-Bit QuickDraw vers. 1.3*/

};

enum {

/*gestaltRealtimeAttr response bits*/

gestaltRealtimeMgrPresent = 0 /*Realtime Manager present*/

};

C H A P T E R 1

Gestalt Manager

Summary of the Gestalt Manager 1-61

enum {

/*gestaltResourceMgrAttr response bits*/

gestaltPartialRsrcs = 0 /*partial resources supported*/

};

enum {

/*gestaltScrapMgrAttr response bits*/

gestaltScrapMgrTranslationAware = 0, /*aware of Translation Manager*/

gestaltTrasnlationMgrHintOrder = 1 /*hint order reversal present*/

};

enum {

/*gestaltSerialAttr response bits*/

gestaltHasGPIaToDCDa = 0, /*GPI connected to DCD on */

/* port A*/

gestaltHasGPIaToRTxCa = 1, /*GPI connected to RTxC on */

/* port A*/

gestaltHasGPIbToDCDb = 2 /*GPI connected to DCD on */

/* port B*/

};

enum {

/*gestaltSoundAttr response bits*/

gestaltStereoCapability = 0, /*stereo capability present*/

gestaltStereoMixing = 1, /*stereo mixing on internal */

/* speaker*/

gestaltSoundIOMgrPresent = 3, /*sound input routines present*/

gestaltBuiltInSoundInput = 4, /*built-in input device */

/* present*/

gestaltHasSoundInputDevice = 5, /*sound input device present*/

gestaltPlayAndRecord = 6, /*built-in hardware can play */

/* and record simultaneously*/

getstalt16BitSoundIO = 7, /*sound hardware can play and */

/* record 16-bit samples*/

getstaltStereoInput = 8, /*sound hardware can */

/* record steore*/

getstaltSndPlayDoubleBuffer = 10, /*SndPlayDouble buffer present*/

getstaltMultiChannels = 11, /*multiple channel support*/

getstalt16BitAudioSuuport = 12 /*16-bit audio data supported*/

};

enum {

/*gestaltSpeechAttr response bits*/

gestaltSpeechMgrPresent = 0, /*Speech Manager present*/

C H A P T E R 1

Gestalt Manager

1-62 Summary of the Gestalt Manager

gestaltSpeechHasPPCGlue = 1 /*Speech Manager has native *

/* PPC glue for API*/

};

enum {

/*gestaltStandardFileAttr response bits*/

getaltStandardFile58 = 0, /*has functions new with 7.0*/

gestaltStandardFileTranslationAware = 1, /*aware of Translation Manager*/

gestaltStandardFileHasColorIcons = 2 /*dialog boxes use small */

/* color icons*/

};

enum {

/*gestaltStdNBPAttr response bits*/

gestaltStdNBPPresent = 0 /*StandardNBP is present*/

};

enum {

/*gestaltSysArchitecture response bits*/

gestalt68k = 1, /*MC680x0 architecture*/

gestaltPowerPC = 2 /*PowerPC architecture*/

};

enum {

/*gestaltTEAttr response bits*/

gestaltTEHasGetHiliteRgn = 0 /*TextEdit has TEGetHiliteRgn*/

};

enum {

/*gestaltTermMgrAttr response bits*/

gestaltTermMgrPresent = 0, /*Terminal Manager present*/

gestaltTermMgrErrorString = 2 /*supports error string */

/* function*/

};

enum {

/*gestaltTextEditVersion response codes */

gestaltTE1 = 1, /*in MacIIci ROM*/

gestaltTE2 = 2, /*with 6.0.4 scripts on */

/* MacIIci*/

gestaltTE3 = 3, /*with 6.0.4 scripts on*/

/* other machines*/

gestaltTE4 = 4, /*in 6.0.5 and 7.0*/

gestaltTE5 = 5 /*TextWidthHook available*/

};

C H A P T E R 1

Gestalt Manager

Summary of the Gestalt Manager 1-63

enum {

/*gestaltThreadMgrAttr response bits*/

gestaltThreadMgrPresent = 0, /*Thread Manager present*/

gestaltSpecificMatchSupports = 1 /*Thread Manager supports */

/* exact match creation option*/

};

enum {

/*gestaltTimeMgrVersion response codes*/

gestaltStandardTimeMgr = 1, /*standard Time Manager*/

gestaltRevisedTimeMgr = 2, /*revised Time Manager*/

gestaltExtendedTimeMgr = 3 /*extended Time Manager*/

};

enum {

/*getstaltTranslationAttr response codes*/

gestaltTranslationMgrExists = 0 /*Translation Manager present*/

};

enum {

/*gestaltVMAttr response bits*/

gestaltVMPresent = 0 /*virtual memory present*/

};

Informational Selector Response Values

enum {

/*gestaltHardwareAttr response bits*/

gestaltHasVIA1 = 0, /*has VIA1 chip*/

gestaltHasVIA2 = 1, /*has VIA2 chip*/

gestaltHasASC = 3, /*has Apple Sound Chip*/

gestaltHasSCC = 4, /*has SCC*/

gestaltHasSCSI = 7, /*has SCSI*/

gestaltHasSoftPowerOff = 19, /*capable of software power */

/* off*/

gestaltHasSCSI961 = 21, /*has 53C96 SCSI on internal */

/* bus*/

gestaltHasSCSI962 = 22, /*has 53C96 SCSI on external */

/* bus*/

gestaltHasUniversalROM = 24 /*has universal ROM*/

};

C H A P T E R 1

Gestalt Manager

1-64 Summary of the Gestalt Manager

enum {

/*gestaltMachineType response codes*/

gestaltClassic = 1, /*Macintosh 128K*/

gestaltMacXL = 2, /*Macintosh XL*/

gestaltMac512KE = 3, /*Macintosh 512K enhanced*/

gestaltMacPlus = 4, /*Macintosh Plus*/

gestaltMacSE = 5, /*Macintosh SE*/

gestaltMacII = 6, /*Macintosh II*/

gestaltMacIIx = 7, /*Macintosh IIx*/

gestaltMacIIcx = 8, /*Macintosh IIcx*/

gestaltMacSE030 = 9, /*Macintosh SE/30*/

gestaltPortable = 10, /*Macintosh Portable*/

gestaltMacIIci = 11, /*Macintosh IIci*/

gestaltMacIIfx = 13, /*Macintosh IIfx*/

gestaltMacClassic = 17, /*Macintosh Classic*/

gestaltMacIIsi = 18, /*Macintosh IIsi*/

gestaltMacLC = 19, /*Macintosh LC*/

gestaltQuadra900 = 20, /*Macintosh Quadra 900*/

gestaltPowerBook170 = 21, /*Macintosh PowerBook 170*/

gestaltQuadra700 = 22, /*Macintosh Quadra 700*/

gestaltClassicII = 23, /*Macintosh Classic II*/

gestaltPowerBook100 = 24, /*Macintosh PowerBook 100*/

gestaltPowerBook140 = 25, /*Macintosh PowerBook 140*/

gestaltQuadra950 = 26, /*Macintosh Quadra 950*/

gestaltMacLCIII = 27, /*Macintosh LC III*/

gestaltPowerBook210 = 29, /*Macintosh PowerBook Duo 210*/

gestaltMacCentris650 = 30, /*Macintosh Centris 650*/

gestaltPowerBook230 = 32, /*Macintosh PowerBook Duo 230*/

gestaltPowerBook180 = 33, /*Macintosh PowerBook 180*/

gestaltPowerBook160 = 34, /*Macintosh PowerBook 160*/

gestaltMacQuadra800 = 35, /*Macintosh Quadra 800*/

gestaltMacLCII = 37, /*Macintosh LC II*/

gestaltPowerBookDuo250 = 38, /*Macintosh PowerBook Duo 230*/

gestaltMacIIvi = 44, /*Macintosh IIvi*/

gestaltPerforma600 = 45, /*Macintosh Performa 600*/

gestaltMacIIvx = 48, /*Macintosh IIvx*/

gestaltMacColorClassic = 49, /*Macintosh Color Classic*/

gestaltPowerBook165c = 50, /*Macintosh PowerBook 165c*/

gestaltMacCentris610 = 52, /*Macintosh Centris 610*/

gestaltMacQuadra610 = 53, /*Macintosh Quadra 610*/

gestaltPowerBook145 = 54, /*Macintosh PowerBook 145*/

getstaltMacLC520 = 56, /*Macintosh LC 520*/

getstaltMacCentris660AV = 60, /*Macintosh Centris 660 AV*/

C H A P T E R 1

Gestalt Manager

Summary of the Gestalt Manager 1-65

getstaltPowerBook180c = 71, /*Macintosh PowerBook 180c*/

getstaltPowerBookDuo270c = 77, /*Macintosh PowerBook Duo 270c*/

getstaltMacQuadra840AV = 78, /*Macintosh Quadra 840 AV*/

getstaltPowerBook165 = 84, /*Macintosh PowerBook 165*/

getstaltMacTV = 88, /*Macintosh TV*/

getstaltMacLC475 = 89, /*Macintosh LC 475*/

getstaltMacLC575 = 92, /*Macintosh LC 575*/

getstaltMacQuadra605 = 94, /*Macintosh Quadra 605*/

getstaltPowerMac8100_80 = 65, /*Power Macintosh 8100/80*/

getstaltPowerMac6100_60 = 75, /*Power Macintosh 6100/60*/

getstaltPowerMac7100_66 = 112 /*Power Macintosh 7100/66*/

};

enum {

kMachineNameStrID = -16395 /*'STR#' resource that */

}; /* contains machine names*/

SysEnvirons Constants

enum {

curSysEnvVers = 2 /*current SysEnvirons version*/

};

enum {

/*machine types*/

envXL = -2, /*Macintosh XL*/

envMac = -1, /*Macintosh with 64K ROM*/

envMachUnknown = 0, /*unknown model, after */

/* Macintosh IIfx*/

env512KE = 1, /*Macintosh 512K enhanced*/

envMacPlus = 2, /*Macintosh Plus*/

envSE = 3, /*Macintosh SE*/

envMacII = 4, /*Macintosh II*/

envMacIIx = 5, /*Macintosh IIx*/

envMacIIcx = 6, /*Macintosh IIcx*/

envSE30 = 7, /*Macintosh SE30*/

envPortable = 8, /*Macintosh Portable*/

envMacIIci = 9, /*Macintosh IIci*/

envMacIIfx = 11, /*Macintosh IIfx*/

envMacClassic = 15, /*Macintosh Classic*/

envMacIIsi = 16, /*Macintosh IIsi*/

envMacLC = 17, /*Macintosh LC*/

C H A P T E R 1

Gestalt Manager

1-66 Summary of the Gestalt Manager

envMacQuadra900 = 18, /*Macintosh Quadra 900*/

envMacPowerBook170 = 19, /*Macintosh PowerBook 170*/

envMacQuadra700 = 20, /*Macintosh Quadra 700*/

envMacClassicII = 21, /*Macintosh Classic II*/

envMacPowerBook100 = 22, /*Macintosh PowerBook 100*/

envMacPowerBook140 = 23, /*Macintosh PowerBook 140*/

envMacQuadra950 = 24, /*Macintosh Quadra 950*/

envMacLCII = 35, /*Macintosh LC II*/

envMacPowerBook145 = 52 /*Macintosh PowerBook 145*/

};

enum {

/*CPU types*/

envCPUUnknown = 0, /*unknown microprocessor*/

env68000 = 1, /*68000 microprocessor*/

env68010 = 2, /*68010 microprocessor*/

env68020 = 3, /*68020 microprocessor*/

env68030 = 4, /*68030 microprocessor*/

env68040 = 5, /*68040 microprocessor*/

};

enum {

/*keyboard types*/

envUnknownKbd = 0, /*Macintosh Plus with keypad*/

envMacKbd = 1, /*Macintosh*/

envMacAndPad = 2, /*Macintosh with keypad*/

envMacPlusKbd = 3, /*Macintosh Plus*/

envAExtendKbd = 4, /*Apple extended*/

envStandADBKbd = 5, /*standard ADB*/

envPrtblADBKbd = 6, /*Macintosh Portable ADB*/

envPrtblISOKbd = 7, /*Macintosh Portable ISO*/

envStdISOADBKbd = 8, /*standard ISO ADB */

envExtISOADBKbd = 9 /*extended ISO ADB*/

};

Data Types

struct SysEnvRec { /*system environment record*/

 short environsVersion; /*SysEnvirons version number*/

 short machineType; /*Macintosh model code*/

 short systemVersion; /*System file version number*/

 short processor; /*microprocessor type code*/

 Boolean hasFPU; /*floating-point unit flag*/

C H A P T E R 1

Gestalt Manager

Summary of the Gestalt Manager 1-67

 Boolean hasColorQD; /*Color QuickDraw flag*/

 short keyBoardType; /*keyboard type code*/

 short atDrvrVersNum; /*AppleTalk driver version number*/

 short sysVRefNum /*working-directory reference */

/* number of folder or volume */

/* containing open System file*/

};

typedef struct SysEnvRec SysEnvRec;

Gestalt Manager Routines

Getting Information About the Operating Environment

pascal OSErr Gestalt (OSType selector, long *response);

pascal OSErr SysEnvirons (short versionRequested, SysEnvRec *theWorld);

Adding a Selector Code

pascal OSErr NewGestalt (OSType selector,
SelectorFunctionUUP gestaltFunction);

Modifying a Selector Function

pascal OSErr ReplaceGestalt
(OSType selector,
SelectorFunctionUUP gestaltFunction,
SelectorFunctionUUP *oldGestaltFunction);

Application-Defined Routines

pascal OSErr MySelectorFunc
(OSType selector, long *response);

C H A P T E R 1

Gestalt Manager

1-68 Summary of the Gestalt Manager

Assembly-Language Summary

Data Structures

SysEnvRec Data Structure

Result Codes

0 environsVersion word SysEnvirons version number

2 machineType word Macintosh model code

4 systemVersion word System file version number

6 processor word microprocessor type code

8 hasFPU byte floating-point unit flag

9 hasColorQD byte Color QuickDraw flag

10 keyBoardType word keyboard type code

12 atDrvrVersNum word AppleTalk driver version number

14 sysVRefNum word working-directory reference
number of directory or volume
containing open System file

noErr 0 No error
memFullErr –108 Ran out of memory
envNotPresent –5500 SysEnvirons trap not present
envBadVers –5501 Nonpositive version number passed
envVersTooBig –5502 Requested version of SysEnvirons not available
gestaltUnknownErr –5550 Could not obtain the response
gestaltUndefSelectorErr –5551 Undefined selector
gestaltDupSelectorErr –5552 Selector already exists
gestaltLocationErr –5553 Function not in system heap

Contents 2-1

C H A P T E R 2

Contents

System Error Handler

About the System Error Handler 2-3

System Errors 2-6

Resume Procedures 2-11

System Error Handler Reference 2-13

System Error Handler Routines 2-13

Application-Defined Routines 2-15

Resources 2-15

The System Error Alert Table Resource 2-16

Summary of the System Error Handler 2-22

Pascal Summary 2-22

System Error Handler Routines 2-22

Application-Defined Routines 2-22

C Summary 2-22

System Error Handler Routines 2-22

Application-Defined Routines 2-22

Assembly-Language Summary 2-22

Global Variables 2-22

C H A P T E R 2

About the System Error Handler 2-3

System Error Handler

This chapter describes the System Error Handler. The System Error Handler assumes

control of the system when a system error occurs and is also responsible for displaying

certain alert boxes in response to a system startup. The System Error Handler displays

an alert box when a system error occurs and manages display of the “Welcome to

Macintosh” alert box and the disk-switch alert box.

This chapter explains what the Operating System does when a system error is

encountered, describes the routine and resource that the System Error Handler uses

when generating a system error alert box, and discusses how you can provide code that

can help your application recover from an system error.

Although your application may call the routine provided by the System Error Handler,

ordinarily there is no need to do so; this routine is primarily used by the Macintosh

Operating System.

This chapter also contains a list of all currently defined system errors and the conditions

under which they can arise.

About the System Error Handler

The System Error Handler employs a mechanism that allows for display of simple alert

boxes even when the Control Manager, Dialog Manager, and Memory Manager might

not be able to function properly. System Error Handler alert boxes can therefore be

displayed at times when the Dialog Manager cannot be called. This mechanism is useful

at two times. First, at system startup time, the Dialog Manager may not yet have been

initialized. Second, after a system error occurs, using the Dialog Manager or Memory

Manager may be impossible or cause a system crash.

Because the System Error Handler cannot use Dialog Manager resources to store

representations of its alert boxes, it defines its own resource, the system error alert table

resource, to store such information. This resource type is described in “The System Error

Alert Table Resource” beginning on page 2-16. The system alert table resource defines

for each system error the contents of the system alert box to be displayed. For example,

depending on the system error that occurred, the system error alert box may contain one

or more buttons, typically a Restart and a Continue button.

C H A P T E R 2

System Error Handler

2-4 About the System Error Handler

At system startup time, the System Error Handler presents the system startup alert box,

shown in Figure 2-1.

Figure 2-1 The system startup alert box

The system startup alert box can take different forms. In particular, if an error occurs

during the startup process, the System Error Handler might inform the user of the error

by displaying an additional line of information in the alert box. The System Error

Handler also uses the system startup alert box to post special messages to inform the

user about the status of the system. For example, in System 7 and later, if the user holds

down the Shift key while starting up, system extensions are disabled, and the system

startup alert box includes the message “Extensions off.” This is illustrated in Figure 2-2.

Figure 2-2 The system startup alert box when extensions have been disabled

Other messages that may be displayed at startup time include “Debugger Installed,”

“Disassembler Installed,” and “System 7.1 needs more memory to start up.”

C H A P T E R 2

System Error Handler

About the System Error Handler 2-5

The System Error Handler also displays an alert box when the Operating System or

some other software invokes the SysError procedure. Figure 2-3 illustrates a system
error alert box, sometimes called a bomb box. The conditions under which a system

error occur are described in the next section, “System Errors.”

Figure 2-3 The system error alert box

The system error alert box presents some information about the type of error that

has occurred and also includes buttons to allow possible recovery from the error. The

user may click the Restart button, in which case the System Error Handler attempts to

restart the computer. (Such attempts are not always successful, and the computer may

freeze, forcing the user to flip the power switch or depress the reset switch.) Some

system error alert boxes have Continue buttons. If the user clicks the Continue button,

the System Error Handler attempts to execute the application’s resume procedure.

Resume procedures are discussed in “Resume Procedures” on page 2-11. If no resume

procedure has been defined, then only the Restart button is available.

Note

The layout and form of the system error alert box have changed
considerably in different versions of system software. In early versions
of system software, there was always a Resume button, which had the
same effect as the Continue button, but it was grayed out when no
resume procedure was defined. The Resume and Restart buttons were
both at the left of the alert box. In some versions of system software,
information about the type of error was displayed at the bottom of the
alert box, and the ID information may have been conveyed in words
(“bus error”) instead of numbers (“ID = 1”). However, your application
should not need to be familiar with the layout of the system error alert
box. ◆

A close examination of the button in Figure 2-3 reveals that the button has a different

appearance from that of buttons displayed by the Control Manager. This is because the

System Error Handler does not use the Control Manager to create buttons. Instead, it

draws the buttons itself and highlights them when the mouse is clicked within the

button area.

C H A P T E R 2

System Error Handler

2-6 About the System Error Handler

System Errors
A system error is the result of the detection of a problem by the microprocessor

or the Operating System. For example, if your application attempts to execute a

system software routine that is not available on a certain Macintosh computer, the

microprocessor detects the exception. The Operating System then calls the SysError

procedure to produce a system error alert box. Similarly, the Operating System itself

might detect a problem; for example, it might detect that a menu record that is needed

has been purged. In this case, the Operating System calls SysError directly.

Your application can also call SysError if it detects that something that never should

happen actually has happened. Ordinarily, it is more graceful for an application to use

the Dialog Manager to warn the user that an error has occurred. You should call the

SysError procedure only if there is reason to believe that an abnormal condition could

prevent the Dialog Manager from working correctly. The Dialog Manager is described in

the chapter “Dialog Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

Associated with each type of system error is a system error ID. This ID is typically

presented to the user in the system error alert box. Although the system error IDs are

meaningless to most users, a user can report the ID to you, thus possibly making it easier

for you to track down the problem and provide the user with a solution.

Table 2-1 lists and briefly describes the system error IDs that are currently defined.

Note, however, that sometimes system error IDs may be misleading. For example, your

application might make an invalid memory reference that does not cause a system error

immediately. However, the effects of that reference could cause another problem leading

to a system error of a different type.

Note also that some system errors occur in the ordinary course of an application’s

execution but are handled by the Operating System with no need to display an

error message to the user. For example, when virtual memory is in operation and an

application attempts to access memory that has been paged out, a bus error is generated.

Because the Virtual Memory Manager intercepts the bus error and determines that

memory needs to be paged in, this error is generated transparently to the user. If

possible, when a system error occurs, the System Error Handler stops execution of

the application that caused the error and displays an alert box with the message

“Application has unexpectedly quit.” (See Figure 2-4 on page 2-12 for an example of

this alert box.)

C H A P T E R 2

System Error Handler

About the System Error Handler 2-7

Table 2-1 System error IDs

ID and name Explanation

1 (Bus error) A memory reference was invalid. This is the most common type
of system error.

An application might have tried to access memory in another
application’s partition or in a portion of memory not accessible
to the application.

Typically, this error occurs if your application uses a handle
or pointer reference that is no longer valid or was never valid.
For example, if your application does not initialize a variable
of type Handle or Ptr to the correct value and then tries to use
that value as a memory reference, a bus error could occur.
Or if you have made an error in performing pointer arithmetic,
a bus error could occur.

This error could also occur if your application attempts to
access a block of memory that has been moved or disposed of.
Once your application disposes of a block of memory, either
directly or indirectly, all pointer and handle references to
that block of memory are invalid and could cause bus errors.

If your application dereferences a handle, calls a routine that
could move or purge memory, and then relies on the master
pointer value, a bus error could occur. See Inside Macintosh:
Memory for more information.

If your application is careless in using the Memory Manager’s
BlockMove procedure or another technique to copy bytes
directly, data structures used by the Memory Manager could
be altered and a bus error generated.

2 (Address error) A reference to a word (2 bytes) or long word (4 bytes) was not
on a word boundary.

An address error is often simply a bus error in which the
memory reference happens to be odd. Thus, any programming
errors that could cause a bus error might result in an address
error as well. Indeed, sometimes the same programming error
can generate both types of errors if you execute the offending
code several times.

Address errors are often microprocessor-specific. That is, code
that executes correctly on MC68030 microprocessors might
generate an address error on MC68000 microprocessors. This
is most likely to be a problem for assembly-language
programmers.

continued

C H A P T E R 2

System Error Handler

2-8 About the System Error Handler

3 (Illegal instruction) The microprocessor attempted to execute an instruction not
defined for that version of the microprocessor. This might occur
if you set a compiler to generate MC68030 code and then
attempt to execute that code on a MC68000 microprocessor.
Attempting to execute PowerPC code on a MC680x0
microprocessor could also cause this problem.

Typically, this problem occurs only if you are programming
in assembly language or if your compiler generates illegal
instructions. If your application (either intentionally or
unintentionally) modifies its own code while executing,
then this problem could also occur.

4 (Zero divide) The microprocessor received a signed divide (DIVS) or
unsigned divide (DIVU) instruction, but the divisor was 0.
When you write code that performs the division operation,
you should ensure that the divisor can never be 0, unless you
are using Operating System or SANE numeric types that
support division by 0.

5 (Check exception) The microprocessor executed a check-register-against-bounds
(CHK) instruction and detected an out-of-bounds value. If you
are programming in a high-level language, this might occur
if you have enabled range-checking and a value is out of range
(for example, you attempt to access the sixth element of a
five-element array).

6 (TrapV exception) The microprocessor executed a trap-on-overflow (TRAPV)
instruction and detected an overflow. If you are programming
in a high-level language, this might occur if you have enabled
integer-arithmetic overflow checking and an overflow occurs.

7 (Privilege violation) The Macintosh computer was in a mode that did not allow
execution of the specified microprocessor instruction. This
should not happen because the Macintosh computer always
runs in supervisor mode. However, if you are programming
in assembly language, this error could occur if you execute
an erroneous return-from-execution (RTE) instruction.

8 (Trace exception) The trace bit in the status register is set. Debuggers use this
error to force code execution to stop at a certain point. If you are
programming in a high-level language, this system error should
always be intercepted by your low-level debugger.

9 (A-line exception) The trap dispatcher failed to execute the specified system
software routine. This error might occur if you attempt to
execute a Toolbox routine that is not defined in the version
of the system software that is running.

10 (F-line exception) Your application executed an illegal instruction.

Table 2-1 System error IDs (continued)

ID and name Explanation

C H A P T E R 2

System Error Handler

About the System Error Handler 2-9

11 (Miscellaneous exception) The microprocessor invoked an exception not covered by
system error IDs 1 to 10. This exception might be generated
in the case of a hardware failure.

12 (Unimplemented core routine) The Operating System encountered an unimplemented trap
number.

13 (Spurious interrupt) The interrupt vector table entry for a particular level of interrupt
is NIL. This error usually occurs with level 4, 5, 6, or 7
interrupts. Typically, this error should affect only developers
of low-level device drivers, NuBus cards, and other
expansion devices.

14 (I/O system error) A Device Manager or Operating System queue operation failed.
This might occur if the File Manager attempts to remove an
entry from an I/O request queue, but the queue entry has an
invalid queue type (perhaps the queue entry is unlocked). Or
this might occur as a result of a call to Fetch or Stash, but the
dCtlQHead field was NIL. This error can also occur if your
driver has purged a needed device control entry (DCE).

15 (Segment loader error) A call was made to load a code segment, but a call to
GetResource to read the segment into memory failed. This
could occur if your application attempts to load a segment that
does not exist, or if your application attempts to load a segment
but there is not enough memory for it in the application heap.
When an attempt to load a code resource with resource ID 0
fails, a system error with ID 26 is generated instead.

16 (Floating-point error) The halt bit in the floating-point environment word was set.

17–24 (Can’t load package) The Package Manager attempted to load a package into
memory, but the call to GetResource failed. This could occur
because the system file is corrupted, or because there is not
enough memory for the package to be loaded. For example, if
you call a List Manager routine when memory is very low, the
SysError procedure could be executed.

25 (Out of memory) The requested memory block could not be allocated in the heap
because there is insufficient free space. Typically, a Toolbox
routine generates this system error if it requires heap space
to run but there is insufficient space. Your application should
prevent this from occurring by ensuring that it always leaves
enough memory for Toolbox operations. See Inside Macintosh:
Memory for more details.

You can also get this error if the Package Manager was unable
to load the Apple Event Manager (Pack 8). See the chapter
“Package Manager” in this book for an explanation of this error.

continued

Table 2-1 System error IDs (continued)

ID and name Explanation

C H A P T E R 2

System Error Handler

2-10 About the System Error Handler

26 (Segment loader error) A call was made to load a code segment with resource ID 0, but
the call to GetResource failed. This usually occurs if your
application attempts to execute a nonexecutable file.

You can also get this error if the Package Manager was unable
to load the Program-to-Program Communications (PPC)
Toolbox package (Pack 9). See the chapter “Package Manager”
in this book for an explanation of this error.

27 (File map destroyed) The File Manager encountered a paradox. A logical block
number was found that is greater than the number of the last
logical block on the volume or less than the logical block
number of the first allocation block on the volume. The disk
is probably corrupted.

28 (Stack overflow error) The Operating System detected that the application’s stack
collided with its heap. This could happen when a deeply nested
routine is executed or when interrupt routines use more stack
space than available. If your application relies on recursion,
it should monitor the size of the stack to prevent such an error
from occurring.

If this error occurs simply because your application attempted
to execute a deeply nested routine, you can prevent this from
occurring by increasing the minimum size of the stack at
application startup. Because the size of the stack may differ
from one Macintosh model to another, an application might
encounter no problems on a Macintosh LC but crash on a
Macintosh Plus, for example. For more information, see
Inside Macintosh: Memory.

You can also get this error if the Package Manager was unable
to load the Edition Manager (Pack 11). See the chapter “Package
Manager” in this book for an explanation of this error.

30 (Disk insertion required) A necessary disk is not available. The System Error Handler
responds to this error by requesting that the user insert the
requested disk. Often, the user can cancel this alert box by
pressing Command-period repeatedly; in certain circumstances,
however, pressing Command-period repeatedly can lead to a
system crash.

You can also get this error if the Package Manager was unable
to load the Data Access Manager (Pack 13). See the chapter
“Package Manager” in this book for an explanation of this error.

31 (Wrong disk inserted) The user inserted the incorrect disk in response to a
disk-insertion request. The System Error Handler ejects
the disk and allows the user to insert another.

You can also get this error if the Package Manager was unable
to load the Help Manager (Pack 14). See the chapter “Package
Manager” in this book for an explanation of this error.

Table 2-1 System error IDs (continued)

ID and name Explanation

C H A P T E R 2

System Error Handler

About the System Error Handler 2-11

Resume Procedures
The Operating System supports a mechanism that allows your application to resume

execution after a system error if the user clicks the Continue button (or the Resume

button in earlier versions of system software). When initializing the Dialog Manager

using the InitDialogs procedure, your application passes a pointer to a resume

procedure or passes NIL if no resume procedure is desired. A resume procedure takes no

parameters.

In general, you should not write code to allow an application to continue to execute

normally after a system error has occurred. Because current versions of system software

allow multiple applications to be open at once, a system error could affect other

processes than the one that is executing. Indeed, the System Error Handler often simply

stops execution of the application that caused the error rather than present the system

error alert box. In this case, the Finder reports that the application has unexpectedly quit,

as shown in Figure 2-4.

33 (Negative zcbFree value) The Memory Manager’s calculation of the number of bytes free
in a heap zone (that is, the value of the zcbFree field) resulted
in a negative number. Your application might have used up too
much memory in the heap zone, or the heap is corrupted

41 (Finder not found) The Operating System could not locate the Finder on the disk.
The disk might be corrupted.

84 (Menu purged) The Menu Manager attempted to access information about a
menu, but the menu record was purged. You should ensure that
all menus stored in your application’s resource file are marked
as unpurgeable.

100 (Can’t mount system startup
 volume)

The Operating System could not mount the system startup
volume and thus is unable to read the system resource file into
memory. The startup volume could be corrupted or broken.
Your application can force startup on another volume by
clearing parameter RAM, as discussed in the chapter
“Parameter RAM Utilities” in this book.

32767 (Default system error) This is the default system error that executes when an undefined
problem occurs. Your application can call the SysError
procedure with this value.

Table 2-1 System error IDs (continued)

ID and name Explanation

C H A P T E R 2

System Error Handler

2-12 About the System Error Handler

Figure 2-4 Handling of a nonfatal system error in System 7

An application that attempts to resume execution after a system error is likely to

encounter the same problem again and might even encounter more serious problems.

In early versions of system software, such an attempt constituted a harmless last-ditch

effort by an application to salvage itself. In current versions of system software, such an

attempt may cause a fatal system error—that is, a system error that crashes the entire

system—even if the initial system error was nonfatal.

If your application is designed to work with System 7 only, you should always pass NIL

to InitDialogs and forego a resume procedure. You might alternatively pass a pointer

to a simple resume procedure that simply quits the program, as illustrated in Listing 2-1.

Listing 2-1 A simple resume procedure

PROCEDURE MyResumeProc;

BEGIN

ExitToShell;

END;

If you wish, you might write a custom resume procedure that you install only on

Macintosh computers running versions of system software prior to System 7. Typically,

such resume procedures simply jump to the beginning of the application’s main event

loop and hope for the best. Because Pascal does not permit a procedure to include a

GOTO statement that references a label outside its scope, resume procedures typically

are written in assembly language.

▲ W A R N I N G

Implementing a resume procedure is not an adequate substitute for
quality assurance. Your application should not, for example, allow the
user to open so many documents that memory runs out, causing a
system error. Calling the System Error Handler’s SysError procedure
to report a problematic condition to the user might cause a system crash
even if no crash would have otherwise occurred and even if your
application uses the simple resume procedure defined in Listing 2-1. ▲

C H A P T E R 2

System Error Handler

System Error Handler Reference 2-13

System Error Handler Reference

This section describes the routine and resource that the System Error Handler uses when

generating a system error. Although your application may use the routine, ordinarily

there is no need to do so. The system error alert table resource is private to the System

Error Handler and documented for completeness only.

System Error Handler Routines

The Operating System calls the SysError procedure to force display of the system error

alert box.

SysError

You can use the SysError procedure to simulate a system error. Ordinarily, however,

only the Operating System invokes this procedure.

PROCEDURE SysError (errorCode: Integer);

errorCode The system error ID corresponding to the system error condition
identified.

DESCRIPTION

The SysError procedure generates a system error with the system error ID specified

by the errorCode parameter. The value of the system error ID determines the exact

response of the System Error Handler (for example, whether it can intercept the error)

and determines the contents of the system error alert box displayed for the error.

The SysError procedure begins by saving all registers and the stack pointer and by

storing the system error ID in a global variable (named DSErrCode). The Finder uses

this global variable when reporting that an application unexpectedly quit.

If there is not a system error alert table in memory, SysError loads it in. (The global

variable DSAlertTab stores a pointer to the current system error alert table. If no

system error alert table is in memory, DSAlertTab is NIL.) If there is no table in

memory (indicating that the error likely occurred at the beginning of system startup),

the System Error Handler draws the “sad Macintosh” icon and plays appropriate

ominous tones through the Macintosh speaker. Different tones correspond to different

problems that the SysError procedure determines have occurred.

After allocating memory for QuickDraw global variables on the stack and initializing

QuickDraw, SysError initializes a graphics port in which the alert box is drawn.

C H A P T E R 2

System Error Handler

2-14 System Error Handler Reference

The SysError procedure draws the alert box (in the rectangle specified by the global

variable DSAlertRect) unless the errorCode parameter contains a negative value.

Note that the system error alert box is not a Dialog Manager modal dialog box. Negative

values are used to force the SysError procedure to display a sequence of consecutive

messages in a system startup alert box without redrawing the entire alert box. If the

value in the errorCode parameter does not correspond to an entry in the system error

alert table, the default alert box definition at the start of the table is used, displaying the

message “Sorry, a system error occurred.”

The SysError procedure uses the value in the errorCode parameter to determine the

contents of the system error alert box. It looks in the system error alert table resource for

an alert definition whose definition ID matches the errorCode parameter. It then draws

the text and icon of the alert box according to that alert definition in the system error

alert table.

System error alert tables include procedures and button definitions. (See the description

of the system error alert table resource in the section “The System Error Alert Table

Resource” beginning on page 2-16, for details.) If the procedure definition ID in the table

is not 0, SysError invokes the procedure with the specified ID. If the button definition

ID in the table is 0, SysError returns control to the procedure that called it. This

mechanism allows the disk-switch alert box to return control to the File Manager after

the “Please insert the disk:” message has been displayed.

If a resume procedure has been defined, the button definition ID is incremented by 1.

This mechanism allows the System Error Handler to use one of two layouts depending

on whether a resume procedure has been defined. After drawing the buttons using

QuickDraw rather than the Control Manager, SysError performs hit-testing on the

buttons, highlighting them appropriately. When a button is pressed, the appropriate

procedure is invoked. If there is no procedure code defined for a button, the SysError

procedure returns to the routine that called it. The resume procedure is described in the

next section.

SPECIAL CONSIDERATIONS

Calling the SysError procedure might cause a system crash even if no condition that

would have caused a system crash existed prior to the invocation of SysError.

SysError works correctly only if the following conditions are met:

■ The trap dispatcher is operative. (See the chapter “Trap Manager” in this book for
information about the trap dispatcher.)

■ The Font Manager procedure InitFonts has been called. Ordinarily, it is called
when the system starts up.

■ Register A7 points to a reasonable place in memory (for example, not to video RAM).

■ A few important system data structures do not appear to be too badly damaged.

SEE ALSO

A list of system error IDs is provided in Table 2-1 on page 2-7.

C H A P T E R 2

System Error Handler

System Error Handler Reference 2-15

Application-Defined Routines

The System Error Handler calls your application’s resume procedure when the user

clicks the Continue button (or the Resume button on earlier versions of system software)

in the system error alert box.

MyResumeProc

When you call the Dialog Manager procedure InitDialogs, your application can pass

a pointer to a resume procedure. If you don’t want to install a resume procedure, pass

NIL. A resume procedure has the following syntax:

PROCEDURE MyResumeProc;

DESCRIPTION

If your application is the current process, your application’s resume procedure is called

when the user responds to a system error alert box by clicking the Continue button. No

parameters are passed to a resume procedure.

In System 7, the System Error Handler intercepts many system errors and stops

execution of the process, causing an error rather than calling the application’s

resume procedure.

SPECIAL CONSIDERATIONS

In general, you should not write code to allow your application to continue to execute

normally after a system error has occurred. An application that attempts to resume

execution after a system error is likely to encounter the same problem again and might

even encounter more serious problems. In early versions of system software, such an

attempt constituted a harmless last-ditch effort by an application to salvage itself. In

current versions of system software, such an attempt may cause a fatal system error—

that is, a system error that crashes the entire system—even if the initial system error

was nonfatal.

SEE ALSO

For more information about resume procedures, see the section “Resume Procedures” on

page 2-11.

Resources

This section describes the system error alert table ('DSAT') resource. The System Error

Handler uses resources of this type to determine what to display in the system startup

C H A P T E R 2

System Error Handler

2-16 System Error Handler Reference

alert box and the system error alert box. You should never need to access or change these

resources; the information is provided for completeness only.

The System Error Alert Table Resource

The System Error Handler stores system error alert tables in resources with resource type

'DSAT'. During system startup, the system error alert table resource with resource ID 0

is loaded. This resource describes the “Welcome to Macintosh” alert box. Immediately

thereafter, that table is disposed of and replaced with the system error alert table

resource with resource ID 2.

Note

In early versions of system software the system error alert table was
called the “user alert table” and its resource type was of type 'INIT'. ◆

A system error alert table consists of a group of alert definitions, text definitions, icon

definitions, procedure definitions, button definitions, and button-title definitions. These

definitions provide information about the alert box as a whole: the text, icon, buttons,

and titles for those buttons to be displayed in the alert box, and the procedures to be

executed. The first word (2 bytes) of any definition contains a definition ID, which

must be unique across all definitions. Some definitions reference other definitions. For

example, a button definition includes a word to reference a button-title definition and a

word to reference a procedure definition. This section describes the format of the system

error alert table as a whole and of the various types of definitions.

A system error alert table’s first word indicates the number of entries in the table.

Following these 2 bytes is a 14-byte alert definition that defines an alert box to be used

for all system errors that do not have their own alert box definitions. This alert box

definition is followed by additional definitions, which need not be in any particular

order. For example, a system alert table could contain all alert box definitions before any

other definitions, but this might not be the case. Figure 2-5 illustrates the overall

structure of a system error alert table.

Figure 2-5 The structure of a system error alert table

C H A P T E R 2

System Error Handler

System Error Handler Reference 2-17

All definitions in a system error alert table contain a 4-byte definition header. The first

word of the header is the unique definition ID for that definition, which corresponds to

the appropriate system error for alert box definitions, and the second word is a number

indicating the length in bytes of the remainder of the definition.

Figure 2-6 shows the format of an alert definition.

Figure 2-6 The structure of an alert definition

Following the definition header, the alert definition consists of five word-length fields

containing the definition IDs for a primary text definition, a secondary text definition,

an icon definition, a procedure definition, and a button definition. For each alert

definition, two button definitions must be defined with consecutive numbers. The lower

of these numbers is specified in the button definition ID field. When an application

specifies a resume procedure, the SysError procedure uses the button definition with

the higher ID.

A definition ID of 0 is used for any field to which no definition corresponds. For

example, if a system error alert box contains only one text string, the field for the

secondary text definition ID contains 0. A button definition ID of 0 indicates that

SysError should return to the procedure that called it; this is used for disk-insertion

alerts. If the procedure definition ID is 0, SysError does not invoke an alert procedure

(which should not be confused with a resume procedure).

A text definition specifies the text that is to be drawn in the system error alert box.

Because an alert box can have up to two lines of text, the alert definition allows for two

text definitions. The primary text definition specifies the first line of text in the system

error alert box and the secondary text definition specifies the second line of text.

Figure 2-7 illustrates the format of a text definition.

C H A P T E R 2

System Error Handler

2-18 System Error Handler Reference

Figure 2-7 The structure of a text definition

Following the definition header, a text definition includes a 4-byte field indicating the

point, specified in global coordinates, at which the text is to be drawn. Following this

field is a variable-length field consisting of the text to be drawn. The System Error

Handler responds to the slash (/) character by advancing to the beginning of the next

line. This mechanism allows a single text definition to consist of a multiline message.

The last byte of the definition must contain 0 to indicate the end of the text.

An icon definition specifies what icon the System Error Handler draws in the system

error alert box, where to draw it, whether the icon is black-and-white or color, the bit

depth of the icon, and other data as necessary. Figure 2-8 shows the format of an icon

definition.

Figure 2-8 The structure of an icon definition

C H A P T E R 2

System Error Handler

System Error Handler Reference 2-19

Following the definition header, the icon definition contains an 8-byte field indicating

the rectangle, specified in global coordinates, in which to draw the icon. The following

128 bytes consist of icon data.

An alert definition uses a procedure definition to specify a procedure to be executed

whenever the SysError procedure draws a system error alert box. Button definitions

(described next) use procedure definitions to specify an action to be taken when the user

presses a particular button. Figure 2-9 illustrates the format of a procedure definition.

Figure 2-9 The structure of a procedure definition

After the definition header, a procedure definition consists only of a variable-length field

that contains the procedure’s code. The procedure takes no parameters.

A button definition specifies the buttons that the System Error Handler should draw in

the system error alert box. A button definition may reference 0, 1, 2, or more buttons.

Figure 2-10 shows the format of a button definition.

C H A P T E R 2

System Error Handler

2-20 System Error Handler Reference

Figure 2-10 The structure of a button definition

Following the definition header is a word indicating the number of buttons in the

button definition. Following this is 12 bytes for each defined button. Each of these

12-byte groups consists of a word containing the button-title definition ID for the text

within the button, 8 bytes containing a rectangle, in global coordinates, that specifies the

location of the button, and a word containing the procedure definition ID for the

procedure to be executed when the button is pressed.

A button-title definition specifies the text to be drawn within a button. Figure 2-11

shows a button-title definition. Following the definition header of the button-title

definition are the actual characters in the string.

C H A P T E R 2

System Error Handler

System Error Handler Reference 2-21

Figure 2-11 The structure of a button-title definition

C H A P T E R 2

System Error Handler

2-22 Summary of the System Error Handler

Summary of the System Error Handler

Pascal Summary

System Error Handler Routines

PROCEDURE SysError (errorCode: Integer);

Application-Defined Routines

PROCEDURE MyResumeProc;

C Summary

System Error Handler Routines

pascal void SysError (short errorCode);

Application-Defined Routines

pascal void MyResumeProc;

Assembly-Language Summary

Global Variables

DSErrCode The system error ID of the last system error.

DSAlertTab A pointer to the system error alert table in memory, or NIL if none has been loaded.

DSAlertRect The rectangle, in global coordinates, in which to draw the system error alert box.

Contents 3-1

C H A P T E R 3

Mathematical and Logical

Contents

Utilities

About the Mathematical and Logical Utilities 3-3

Bits, Bytes, Words, and Long Words 3-4

Bit Manipulation and Logical Operations 3-7

Reversed Bit-Numbering 3-7

Data Compression 3-8

Pseudorandom Number Generation 3-9

Fixed-Point Data Types 3-11

Angle-Slope Conversion 3-12

Using the Mathematical and Logical Utilities 3-14

Performing Low-Level Manipulation of Memory 3-14

Testing and Manipulating Bits 3-14

Performing Logical Operations on Long Words 3-16

Extracting a Word From a Long Word 3-18

Hardcoding Byte Values 3-19

Compressing Data 3-20

Obtaining Pseudorandom Numbers 3-22

Using Fixed-Point Data Types 3-24

Mathematical and Logical Utilities Reference 3-27

Data Structures 3-27

64-Bit Integer Record 3-27

Routines 3-27

Testing and Setting Bits 3-28

Performing Logical Operations 3-30

Getting and Setting Memory Values 3-32

Compressing and Decompressing Data 3-34

Obtaining a Pseudorandom Number 3-36

Converting Between Angle and Slope Values 3-37

C H A P T E R 3

3-2 Contents

Multiplying and Dividing Fixed-Point Numbers 3-38

Performing Calculations on Fixed-Point Numbers 3-41

Converting Among 32-Bit Numeric Types 3-43

Converting Between Fixed-Point and Floating-Point Values 3-45

Converting Between Fixed-Point and Integral Values 3-46

Multiplying 32-bit values 3-47

Summary of the Mathematical and Logical Utilities 3-48

Pascal Summary 3-48

Data Types 3-48

Routines 3-48

C Summary 3-50

Data Types 3-50

Routines 3-50

Global Variables 3-52

C H A P T E R 3

About the Mathematical and Logical Utilities 3-3

Mathematical and Logical Utilities

This chapter describes a number of utility routines that you can use to perform

mathematical and logical operations supported directly by the Macintosh Operating

System. In particular, this chapter discusses how you can

■ perform low-level logical manipulation of bits and bytes when using a compiler that
does not directly support such manipulations

■ save disk space by using simple compression and decompression routines

■ obtain a pseudorandom number

■ perform mathematical operations with two fixed-point data types supported directly
by the Operating System

■ convert numeric variables of different types

You need to read this chapter only if you need access to any of these features. With the

exception of the mathematical operations and conversions, the routines this chapter

describes are intended for programmers who occasionally need to access some of

these features and do not require that the algorithms used to implement them be

sophisticated. For example, if you are developing an advanced mathematical

application, the pseudorandom number generator built into the Operating System might

be too simplistic to fit your needs. Similarly, if you wish to access individual bits of

memory in a time-critical loop, the Operating System routines that perform these

operations are probably too slow to be practical.

You do not need any prior knowledge of the Operating System to read this chapter,

which begins by describing the building blocks of memory in any operating system: bits,

bytes, words, and long words. After subsequent discussions of the built-in compression

and decompression routines provided by the Operating System, this chapter illustrates

how you can use the Operating System’s Mathematical and Logical Utilities. The chapter

concludes with a reference to all mathematical and logical routines supported by the

Operating System. If you are an experienced programmer, you might be able to skip

directly to that section to determine which routine you need.

This chapter does not describe the numeric data types supported by the Standard Apple

Numerics Environment (SANE) that the Operating System does not support directly.

For more information on such data types, consult the Apple Numerics Manual and

Inside Macintosh: PowerPC Numerics.

About the Mathematical and Logical Utilities

This section begins by introducing the building blocks of memory and then discusses

some low-level routines the Mathematical and Logical Utilities provide, such as routines

that compress data and generate pseudorandom numbers. Finally, the section concludes

by introducing two fixed-point data types the Operating System supports.

C H A P T E R 3

Mathematical and Logical Utilities

3-4 About the Mathematical and Logical Utilities

Bits, Bytes, Words, and Long Words
This section describes the fundamental memory units used in all computer systems and

discusses some of the operations that you can perform on them using the Mathematical

and Logical Utilities. If you already know what bits, bytes, words, and long words are,

you can skip this section.

A bit is the atomic memory unit. Each bit can be set to one of two values. Often these

values are called 0 and 1. A bit is said to be cleared when its value is 0 and set when its

value is 1.

Eight bits form a single byte. The first bit in a byte is bit number 7, and the last bit is bit

number 0. Bit number 7 is called the most significant bit or the high-order bit, and bit

number 0 is the least significant bit or the low-order bit. A byte can thus store 28, or 256,

different possible values. In Pascal, a byte is thus defined like this:

TYPE

Byte = 0..255;

Figure 3-1 illustrates a byte set to the base-10 value 109.

Figure 3-1 A byte set to 109 ($6D)

The base-10 value 109 is equivalent to the binary value 01101101. This sequence of binary

digits exactly corresponds to the status of each bit in the byte illustrated in Figure 3-1.

A byte value is typically represented by two hexadecimal digits. The value in Figure 3-1,

for example, is equivalent to $6D.

Sometimes it is useful to quickly convert between hexadecimal and binary number

formats during debugging when examining the values of individual bits in a byte.

Table 3-1 provides an easy way to do this on a digit-by-digit basis.

C H A P T E R 3

Mathematical and Logical Utilities

About the Mathematical and Logical Utilities 3-5

Table 3-1 Converting hexadecimal digits to binary values

For example, the hexadecimal value $A8 is equivalent to the binary value 10101000

because the hexadecimal digit $A is equivalent to 1010 and the digit $8 is equivalent

to 1000. You can use Table 3-1 to convert numbers in both directions.

While you can always think of a byte as a particular value from $00 to $FF, sometimes

that value is irrelevant. For example, an application might use a byte simply as a way

to store eight flag bits; in this case, the application cares about only individual bits within

the byte and not the value of the byte as a whole. Also, bytes are often used to store

signed values, in which case a byte can be considered equivalent to values from –$80

to +$7F. If you use a low-level debugger like MacsBug to examine individual bytes in

memory, you should also be aware that different compilers might use bytes in

different ways.

Two bytes form a word. A word is thus a 16-bit quantity and can be used to store 216

(or 65,536) possible values. A word boundary is the memory location that divides two

words. The first byte in a word is known as the high-order byte, and the second byte

is known as the low-order byte. A pointer to a word points to the high-order byte.

Figure 3-2 illustrates a word.

Hexadecimal Binary

$0 0000

$1 0001

$2 0010

$3 0011

$4 0100

$5 0101

$6 0110

$7 0111

$8 1000

$9 1001

$A 1010

$B 1011

$C 1100

$D 1101

$E 1110

$F 1111

C H A P T E R 3

Mathematical and Logical Utilities

3-6 About the Mathematical and Logical Utilities

Figure 3-2 A word set to $3AD4

In Figure 3-2, the high-order byte is set to $3A. The low-order byte is set to $D4. The

word thus has the value $3AD4.

Two words form a long word. A long word is thus a 32-bit quantity and can be used to

store 232 (or 4,294,967,296) values. A long-word boundary is the memory location that

divides two long words. A long word consists of a high-order word and a low-order

word, as illustrated in Figure 3-3.

Figure 3-3 A long word set to $C24DAF2F

In Figure 3-3, the high-order word is set to $C24D. The low-order word is set to $AF2F.

The long word thus has the value $C24DAF2F.

Variables of type Integer are signed words, and variables of type LongInt are signed

long words. On current versions of the Operating System, a memory address is stored

using all 32 bits of a long word.

Typically, Macintosh compilers align all values on word boundaries (and in some cases

on long-word boundaries). This means that when you declare a variable of type Byte

in Pascal, the compiler is in fact likely to allocate 2 bytes of memory to store the byte; the

extra byte is called a pad byte. In this case, when you attempt to test bits in a byte you

have allocated, the compiler might test the corresponding bit in the wrong byte.

In Pascal, there are two easy ways to avoid this problem. One is to aggregate variables

of type Boolean and of type Byte in a packed record. In this case, as long as the packed

record’s size is a number of bytes that is a multiple of 4, no pad bytes are added. The

C H A P T E R 3

Mathematical and Logical Utilities

About the Mathematical and Logical Utilities 3-7

second technique is, for variables in which you wish to test individual bits, to allocate

2 or 4 bytes for the variable (using a variable of type Integer or LongInt, respectively).

Bit Manipulation and Logical Operations

The Mathematical and Logical Utilities provide a number of routines that provide

bit-level and byte-level control over memory, as described in “Performing Low-Level

Manipulation of Memory” beginning on page 3-14. Given a pointer and offset, these

routines can manipulate any specific bit in a stream of bits.

The BitTst, BitSet, and BitClr routines allow you to test and clear individual bits

within a byte. These functions are introduced in “Testing and Manipulating Bits” on

page 3-14.

Note

The BitTst, BitSet, and BitClr routines use a bit-numbering
scheme that is opposite that of the MC680x0 microprocessor. This
reversed bit-numbering scheme is described in the next section. ◆

The BitAnd, BitOr, BitXor, and BitNot functions allow you to perform logical

operations on long words, and the BitShift function allows you to shift the bits in

a long word to the right or to the left. These functions are introduced in “Performing

Logical Operations on Long Words” on page 3-16.

You might also need to extract one of a long word’s words. The HiWord and LoWord

functions allow you to do this and are described in “Extracting a Word From a Long

Word” on page 3-18. Finally, you might need to set a group of bytes’ values directly.

The StuffHex procedure enables you to hardcode hexadecimal values to bytes

anywhere in memory and is described in “Hardcoding Byte Values” on page 3-19.

Reversed Bit-Numbering

Three of the routines described in this chapter (the BitTst, BitSet, and BitClr

routines) use a bit-numbering scheme that is opposite from that of the bit-numbering

scheme used by the MC680x0 microprocessor.

The BitTst, BitSet, and BitClr routines count the bit numbers from left to right.

That is, the most significant bit has the bit number 0. The MC680x0 bit number notation

counts the bit numbers from right to left. (That is, the most significant bit has the biggest

bit number.) Figure 3-1 illustrates these bit-numbering schemes.

C H A P T E R 3

Mathematical and Logical Utilities

3-8 About the Mathematical and Logical Utilities

Figure 3-4 Bit-numbering schemes

When using routines other than the BitTst, BitSet, and BitClr routines or if you are

an assembly-language programmer, you should use the MC680x0 bit-numbering scheme.

To convert from MC680x0 bit notation to the scheme described in this section, subtract

the MC680x0 bit number from the highest bit number. For example, to clear bit number

3 in a byte, you must clear bit number 4 (7–3 = 4).

Data Compression
The Mathematical and Logical Utilities include two procedures, PackBits and

UnpackBits, that allow you to provide rudimentary data compression and

decompression, respectively. The procedures are not powerful enough to provide

effective compression for applications that primarily concern themselves with data

compression. Also, if you are compressing sound, image, or video data, the Sound

Manager (described in Inside Macintosh: Sound) and the Image Compression Manager

(described in Inside Macintosh: QuickTime) provide far more effective compression

algorithms.

You can use the PackBits and UnpackBits procedures to conserve memory both in

RAM and on disk. However, because decompressing data is time consuming, typically

you compress data using the PackBits procedure before saving a file or resource to

disk and decompress data using the UnpackBits procedure after reading the data

back from disk. Because the time required for compression and decompression using

PackBits and UnpackBits is usually trivial compared to the time it takes to access a

typical hard disk, the routines provide a simple, low-overhead way for an application to

minimize the size of its data files.

C H A P T E R 3

Mathematical and Logical Utilities

About the Mathematical and Logical Utilities 3-9

The PackBits procedure is effective when an uncompressed buffer of data is likely to

have many consecutive bytes containing the same value. For example, some applications

use data structures that include fields that the application reserves for future use. These

fields are typically all set to 0. The PackBits procedure senses that there is a long string

of consecutive bytes containing the same value and compresses the string of bytes by

using 1 byte to indicate that the subsequent compressed byte represents a number of

consecutive uncompressed bytes.

PackBits was originally intended as an easy way to compress black-and-white image

data, such as MacPaint documents. However, because each pixel of a color picture is

typically represented by multiple bytes of data, PackBits is unlikely to provide

effective compression for such pictures.

If there is no reason to think that your data format might contain long strings of

consecutive bytes, then the PackBits procedure is probably not useful and might even

increase the size of your files. The PackBits procedure packs data 127 bytes at a time. If

within the 127 bytes there is no series of 3 consecutive bytes containing the same value,

then there are no gains to be made from compression. In this case, the PackBits

procedure must use an initial byte to specify that the 127 subsequent bytes contain

uncompressed data. You can compute the worst-case performance of PackBits (that is,

the maximum number of output bytes) by using the following formula:

maxDstBytes := srcBytes + (srcBytes+126) DIV 127;

where maxDstBytes stands for the maximum number of destination bytes and

srcBytes stands for the number of bytes in the uncompressed source data.

You can, if desired, pack a buffer of data, and then pack the packed buffer again.

However, packing data twice not only is slower than packing data once, but also is likely

to result in a larger output buffer than just packing data once. If your application does

pack data twice, it should unpack the data twice.

Note

In current versions of system software, you can request that PackBits
pack up to 32,767 bytes. The PackBits procedure then processes the
input buffer in 127-byte chunks. In versions of system software prior to
version 6.0.2, however, you should pass to PackBits only buffers up to
127 bytes in length. ◆

Pseudorandom Number Generation
Because digital computers continuously execute instructions, it is impossible for a

computer to select a truly random number. To force the computer to output a number,

the programmer must create an algorithm, but because algorithms always execute in

the same way, the numbers an algorithm produces cannot be truly random. Random

numbers are often necessary in software applications, however. For example, an

entertainment software application might need to ensure that the user is not faced

C H A P T E R 3

Mathematical and Logical Utilities

3-10 About the Mathematical and Logical Utilities

with the exact same game every time. Or a spreadsheet application might offer

a randomization function for business users attempting to simulate various possible

scenarios.

To get around the impossibility of producing truly random numbers, computer scientists

rely on pseudorandom number generation algorithms. These are complex numeric

algorithms used to produce a series of numbers. All such series eventually repeat, but

typically not until the pseudorandom number generation algorithm has been executed

millions or even billions of times. Because the series is generated by an algorithm, it is

possible to discern a pattern; given the first few numbers of a series, a clever user might

be able to guess the next number. Typically, however, these algorithms are complicated

enough to make the numbers appear random, at least to the casual observer.

Of course, because pseudorandom number generation algorithms are algorithms,

they produce the same series of numbers every time. However, you can seed the

pseudorandom number generator to force it to start somewhere in the middle of the

series. By seeding the generator to a constantly changing variable when your application

starts up, your application can produce different results each time. The value typically

used to seed the pseudo-random number generator is the current date and time. Of

course, time isn’t random—it moves forward at a constant linear rate—but in the

absence of a stopped system clock, the user will never launch your application at the

same time twice, so you can be confident that your application will produce different

results each time it is executed.

The Macintosh Operating System’s pseudorandom number generation algorithm is

accessible through the Random function. The Random function returns a pseudorandom

integer from –32767 to 32767. The value that the Random function produces depends

on the randSeed global variable. The Random function changes randSeed while

generating a pseudorandom number, thus enabling a subsequent call to Random to

produce the next number in the series. You only need to seed the global variable once,

at the start of your program.

The pseudorandom number generation algorithm is designed so that as the number of

times Random is executed approaches infinity, the percentage difference in the number

of times any two integers in the range –32767 to 32767 are produced approaches 0. Thus,

the pseudorandom number generator is said to produce pseudo-random numbers that

are uniformly distributed in the range –32767 to 32767.

This chapter does not describe the algorithm that Random uses to generate

pseudorandom numbers. While the algorithm is sufficiently complex for most

applications, applications that perform mathematical or statistical analysis might require

a better pseudo-random number generator. Consult the computer science literature for

information on sophisticated pseudorandom number generation algorithms.

C H A P T E R 3

Mathematical and Logical Utilities

About the Mathematical and Logical Utilities 3-11

Fixed-Point Data Types
The Operating System supports two fixed-point data types, that is, numeric types that

consist of integral and fractional components. Depending on the type of information you

are representing with a fixed-point data type, these might be better suited for your needs

than the types Integer, LongInt, and the many floating-point types supported by the

Standard Apple Numerics Environment.

A variable of type Fixed is defined like this:

TYPE

Fixed = LongInt;

A variable of type Fixed is a 32-bit signed quantity containing an integer part in the

high-order word and a fractional part in the low-order word. Figure 3-5 illustrates the

format for Fixed.

Figure 3-5 The Fixed data type

The high-order word consists of the integral component of the fixed-point number, and

the low-order word consists of the fractional component of the fixed-point number. Each

bit, other than the most significant bit, represents a power of 2, as indicated in Figure 3-5.

Negative numbers of type Fixed are the two’s complement; that is, the negative

numbers are formed by treating the fixed-point number as a long integer, inverting each

bit, and adding 1 to the least significant bit.

The Fract data type is useful for allowing accurate representation of small numbers,

that is, numbers between –2 and 2. It is defined just like Fixed:

TYPE

Fract = LongInt;

Figure 3-6 illustrates the format for Fract.

C H A P T E R 3

Mathematical and Logical Utilities

3-12 About the Mathematical and Logical Utilities

Figure 3-6 The Fract data type

Like a Fixed number, a Fract number is a 32-bit quantity, but its implicit binary point

is to the right of bit 30 of the number; that is, a Fract number has 2 integer bits and

30 fraction bits. As with the type Fixed, a number is negated by taking its two’s

complement. Thus, Fract values range between –2 and 2 – (2–30), inclusive.

All routines that operate on fixed-point numbers handle boundary cases uniformly.

Results are rounded by adding half a unit in magnitude in the last place of the stored

precision and then chopping toward zero. Overflows are set to the maximum

representable value with the correct sign ($80000000 for negative results and $7FFFFFFF

for positive results). Division by zero results in $8000000 if the numerator is negative

and $7FFFFFFF otherwise; thus, the special case 0/0 yields $7FFFFFFF.

Angle-Slope Conversion
The Mathematical and Logical Utilities provide two functions for applications that need

to draw lines at particular angles. For example, a mathematical plotting application

might need to draw a 30-degree line. The SlopeFromAngle and AngleFromSlope

functions provide simple conversion between slope and angle values. Slopes and angles

are defined in such a way as to be convenient to a computer programmer rather than

correspond to the conventional mathematical interpretation.

Note

You should not rely on the SlopeFromAngle and AngleFromSlope
functions to produce values that will allow you to draw lines at a precise
angle on the screen. The functions do not take into account the size of
pixels on a screen. If pixels on a screen are not perfect squares, a
30-degree angle might appear to be a different angle to the user. ◆

Since QuickDraw and other computer imaging schemes typically invert the y-axis

(making positive down and negative up), the angle-slope conversion routines use this

convention as well. Angles are measured clockwise relative to the negative y-axis (that is,

relative to 12 o’clock), and are taken MOD 180, so that a 270-degree angle is considered to

be equivalent to a 90-degree angle.

C H A P T E R 3

Mathematical and Logical Utilities

About the Mathematical and Logical Utilities 3-13

Slopes are defined as ∆x/∆y, the horizontal change divided by the vertical change for

any two points on a line with the slope. Note that mathematicians typically measure

slopes ∆y/∆x. The convention of angle-slope conversion is convenient for applications

that plot a number of lines in a graph one horizontal line at a time.

Figure 3-7 shows some equivalencies between angle and slope values for the angle-slope

conversion routines.

Figure 3-7 Some slope and line equivalencies using the conventions of the angle-slope
conversion routines

C H A P T E R 3

Mathematical and Logical Utilities

3-14 Using the Mathematical and Logical Utilities

The AngleFromSlope function is useful primarily only when speed is more important

than accuracy because the function might return an angle off by as much as 1 degree

from the actual angle. The function returns values between 1 and 180 (inclusive), and

thus never returns an angle value between 0 and 1 degrees. If your application is likely

to need precise differentiation in angles, you should probably develop alternative

routines to handle angle-slope conversions.

SlopeFromAngle(0) is 0, and AngleFromSlope(0) is 180. For all x except for 0,

however, AngleFromSlope(SlopeFromAngle(x)) = x is true. But the reverse,

SlopeFromAngle(AngleFromSlope(x)) = x is not necessarily true.

Using the Mathematical and Logical Utilities

This section describes how you can take advantage of the Mathematical and Logical

Utilities supported by the Operating System, it describes how you can

■ test and set individual bits, perform logical operations on long words, divide a long
word into its high word and low word, and set memory values directly.

■ use the PackBits and UnpackBits procedures to compress and decompress data.

■ seed the pseudo-random number generator and obtain random integers or long
integers within a given range.

■ perform simple calculations involving fixed-point numbers and convert fixed-point
numbers to other numeric types.

Performing Low-Level Manipulation of Memory
The Mathematical and Logical Utilities provide several routines to perform bit-level and

byte-level manipulation of memory. These routines are provided primarily for Pascal

programmers. C and assembly-language programmers can use these routines also;

however, in general it is easier and more efficient to achieve the same effects as these

routines by using built-in C or assembly constructs.

Testing and Manipulating Bits

The BitTst function lets you test whether a given bit is set. The function requires that

you specify a bit through an offset from a pointer. Listing 3-1 is an example of an

application-defined function that tests a specified bit.

Listing 3-1 Testing bits

FUNCTION MyTestBit (bytePtr: Ptr; bitNum: LongInt): Boolean;

BEGIN

MyTestBit := BitTst(bytePtr, bitNum);

END;

C H A P T E R 3

Mathematical and Logical Utilities

Using the Mathematical and Logical Utilities 3-15

The bytePtr parameter specifies a pointer to a byte in memory. The bitNum parameter

specifies the number of the bit to be tested as an offset from bytePtr. For example, you

can use the application-defined function MyTestBit to test specific bits of the word

specified in Figure 3-8.

Figure 3-8 A sample word (in MC680x0 notation)

Using the word in Figure 3-8, the call BitTst(myPtr, 0) returns FALSE because bit

number 0 in the first byte is not set. But the call BitTst(myPtr, 11) returns TRUE

because bit number 3 in the second byte is set.

When using the BitTst function, be sure to specify bits as positive offsets from

the high-order bit rather than using the normal MC680x0 notation (see “Reversed

Bit-Numbering” on page 3-7). Listing 3-2 illustrates a use of the BitTst function in

conjunction with a bit traditionally identified with MC680x0 notation.

Listing 3-2 Determining whether a handle is purgeable using the BitTst function

FUNCTION MyHandleIsPurgeable (myHandle: Handle): Boolean;

CONST

kMyBitNum68000 = 6;

VAR

propertiesByte: SignedByte;

BEGIN

propertiesByte := HGetState(myHandle);

MyHandleIsPurgeable := BitTst(@propertiesByte,

7 - kMyBitNum68000);

END;

The MyHandleIsPurgeable function defined in Listing 3-2 determines whether a

handle references a relocatable block by examining the properties byte for that handle.

The purgeable bit is, in MC680x0 notation, bit number 6 of the properties byte; because

BitTst uses reverse numbering, so bit number 7 – 6 = 1 is tested.

The BitSet and BitClr procedures require that you specify bits using the same

scheme as with the BitTst procedure (see “Reversed Bit-Numbering” on page 3-7).

The BitSet procedure sets a bit (that is, sets its value to 1), while BitClr clears a bit

C H A P T E R 3

Mathematical and Logical Utilities

3-16 Using the Mathematical and Logical Utilities

(that is, sets its value to 0). For example, if you issue the following two calls to

the BitSet procedure

BitSet(bytePtr, 5);

BitClr(bytePtr, 7);

bit 5 (using the reversed bit-numbering scheme) of the byte in memory pointed to by

the bytePtr parameter is set to 1, and bit 7 (using reversed bit-numbering) of the same

byte is cleared.

Note

In C, you can test bits by using the & operator. You can set and clear bits
by using the |= and &= operators, respectively. In all three cases,
one operand should be the byte (or word or long word you wish to
manipulate), and the other should be a value in which only the relevant
bit is set or cleared. Many Pascal compilers also support built-in
operations that accomplish these tasks efficiently. Note that C uses
the MC680x0 bit-numbering scheme (normal bit-numbering). ◆

Performing Logical Operations on Long Words

The Macintosh Operating System provides routines that allow you to perform basic

bitwise logical operations, including the AND, OR, and XOR operations on long words.

Each of the functions takes two long integers as parameters and returns another long

integer. You can use these functions on other 32-bit data types, as long as you cast values

to LongInt as required by your compiler. The functions that perform the AND, OR, and

XOR operations are BitAnd, BitOr, and BitXor respectively. Figure 3-9 illustrates

these functions.

Figure 3-9 The BitAnd, BitOr, and BitXor functions

C H A P T E R 3

Mathematical and Logical Utilities

Using the Mathematical and Logical Utilities 3-17

As shown in Figure 3-9, the BitAnd function returns a long word in which each bit is set

if and only if the corresponding bit is set in both long words passed in. The BitOr

function returns a long word in which each bit is set if and only if the corresponding bit

is set in either long word passed in. The BitXor function returns a long word in which

each bit is set if and only if one but not both of the corresponding bits in the long words

passed in is set.

Note

In C, you can achieve the same effects as the BitAnd, BitOr, and
BitXor functions by using the &, |, and ̂ operators, respectively, in
conjunction with the = assignment operator. Many Pascal compilers also
support built-in operations that accomplish these tasks more
efficiently. ◆

A common use of the BitAnd function is to mask out certain bytes within a long word

(that is, clear all bits in those bytes). For example, to mask out the second byte of a long

word stored in a variable value, you could write the following code:

value := BitAnd(value, $FF00FFFF);

The Macintosh Operating System also offers two bit-manipulation routines that simulate

unary operators, the BitNot and the BitShift functions, which perform the NOT

operation and bit-shifting, respectively. You specify the long integer on which to perform

the operation as a parameter to the BitNot and BitShift functions. In addition, you

specify how to shift the bits as a parameter to the BitShift function.

Figure 3-10 illustrates BitNot and BitShift.

Figure 3-10 The BitNot and BitShift functions

C H A P T E R 3

Mathematical and Logical Utilities

3-18 Using the Mathematical and Logical Utilities

As shown in Figure 3-10, the BitNot function returns a long word in which each bit

is set if and only if the corresponding bit in the long word passed in is not set. The

BitShift function shifts bits—to the left if the count parameter is greater than 0 and

to the right if the count parameter is less than 0. (Shifting to the left means shifting

towards the high-order bit.) When shifting count bits to the left, the count low-order

bits are set to 0; when shifting count bits to the right, the count high-order bits are

set to 0.

Note

In C, you can achieve the same effect as the BitNot function more
efficiently by using the ^ operator on the value whose bits are to be
inverted and the value $FFFFFFFF. You can achieve the same effect as
the BitShift function more efficiently by using the >> operator for
shifting to the right and the << operator for shifting to the left. Many
Pascal compilers support built-in operations that accomplish these tasks
efficiently. ◆

Extracting a Word From a Long Word

Often a long word stored as a variable of type LongInt is used to hold two different

pieces of information in its two different words. For example, when a disk-inserted event

occurs, the message field of the event record contains the drive number in the low-order

word and a result code in the high-order word. To access these two types of information,

you can use the HiWord and LoWord functions. For example:

VAR

x: LongInt;

high, low: Integer;

high := HiWord(x);

low := LoWord(x);

The HiWord function returns the high-order word of the long word passed in, and the

LoWord function returns the low-order word of the long word passed in. You can use

these functions with types other than LongInt and Integer, as long as they are 4 bytes

and 2 bytes, respectively, and, if you are using Pascal, you cast the quantities to the

correct types.

The Operating System does not provide any routines that allow you to set the high-order

or low-order words of a long integer. It might seem that you could set the low-order

word by calling the BitAnd function with the original long integer and the low-order

word as parameters, and set the high-order word by calling BitAnd with the original

long integer and the high-order word shifted left 16 bytes as parameters. The problem

with this approach is that when you pass an integer variable to BitAnd, the compiler

automatically casts the variable to a long integer. But for both integers and long integers,

it is the leftmost byte that indicates the sign of the number. So when a negative integer is

cast to a long integer, the low-order word of the long integer is not equal to the original

integer.

C H A P T E R 3

Mathematical and Logical Utilities

Using the Mathematical and Logical Utilities 3-19

However, you can use the Memory Manager’s BlockMove procedure to directly

copy the bytes of a word to the high-order or low-order word of a long word. See

Inside Macintosh: Memory for more information. Or, if you wish to set both the

high-order word and the low-order word of a long integer at once, you can define

the following type:

TYPE MyLongWordType =

PACKED RECORD

myHiWord: Integer; {high-order word}

myLoWord: Integer; {low-order word}

END;

Then you can define a variable of this type and set the high-word and low-word fields.

By casting a long integer to MyLongWordType, you could also extract a word from a

long word more efficiently than you can using the HiWord and LoWord functions.

Hardcoding Byte Values

Occasionally, you might need to set a group of bytes in memory to specific hexadecimal

values. For example, suppose your application uses a data structure with a 16-byte flags

field and you wish to initialize each of the bytes in the flags field to particular values.

While there are a number of ways that you might do this, the StuffHex procedure

provides a simple, though usually inefficient, option.

You provide a pointer to any data structure in memory, and a string of hexadecimal

digits as parameters to the StuffHex procedure. For example:

StuffHex(@x, 'D34E0F29');

Of course, it would in this case be just as easy—and more efficient—to write the

following code:

x := $D34E0F29;

The StuffHex procedure is perhaps most useful when you wish to assign a large or odd

number of bytes or set the values of particular bytes within a variable. For example, to

set the low-order word of a long integer x to $64B5, you could use the following code:

StuffHex(Ptr(ORD4(@x) + 2), '64B5');

You could use this code rather than use the techniques described in the previous section,

“Extracting a Word From a Long Word.”

Note that Ptr and ORD4 are used here simply to satisfy Pascal type-casting rules.

The StuffHex procedure might also be useful if you are developing a calculator or

other application that allows users to enter hexadecimal values directly.

C H A P T E R 3

Mathematical and Logical Utilities

3-20 Using the Mathematical and Logical Utilities

Compressing Data
The PackBits and UnpackBits procedures, introduced in “Data Compression” on

page 3-8, allow you to compress (or decompress) data stored in RAM. Typically, you use

PackBits before writing data to disk and UnpackBits immediately after writing data

from disk.

Both procedures require that you pass in the srcPtr and dstPtr parameters values

that point to the beginning of the source buffer and the destination buffer, respectively.

The PackBits procedure compresses the data in the source buffer and stores the result

in the destination buffer; the UnpackBits procedure decompresses the data in the

source buffer and stores the result in the destination buffer. You must also pass to the

PackBits procedure and the UnpackBits procedure a value that specifies the size

of the original, uncompressed data. Because you must pass this information to

UnpackBits, you typically use these procedures only to compress a data structure

with a fixed size, so that this size can be passed as a parameter to PackBits.

Your application is responsible for allocating memory for both the source and

the destination buffers. When PackBits and UnpackBits complete operation, the

srcPtr and dstPtr parameter are incremented so that srcPtr points to the memory

immediately following the source bytes, and dstPtr points to the data immediately

following the destination bytes. This feature was originally designed to allow you to

pack large buffers of data at once in chunks, although PackBits can automatically

chunk large data buffers in versions of system software 6.0.2 and later. In any case, your

application must store copies of srcPtr and dstPtr to access the start of the source or

destination buffer after calling PackBits or UnpackBits.

One use of the compression routines might be to compress resources in your

application’s resource fork. Many types of resources can be made significantly smaller by

compression. Listing 3-3 shows how you can pack data stored in a handle to a specified

resource.

Listing 3-3 Packing data to a resource

PROCEDURE MyAddPackedResource (srcData: Handle; theType: ResType;

 theID: Integer; name: Str255);

VAR

srcBytes: Integer; {bytes of unpacked data}

maxDstBytes: LongInt; {maximum length of packed data}

dstData: Handle; {packed data}

srcPtr: Ptr; {pointer to unpacked data}

dstPtr: Ptr; {pointer to packed data}

srcProperties: SignedByte; {properties of source handle}

BEGIN

srcBytes := GetHandleSize(srcData); {find size of source}

{calculate maximum possible }

{ size of packed data}

C H A P T E R 3

Mathematical and Logical Utilities

Using the Mathematical and Logical Utilities 3-21

maxDstBytes := srcBytes + (srcBytes + 126) DIV 127;

dstData := NewHandle(maxDstBytes + 2); {allocate memory for source, }

{ plus length info}

IF dstData <> NIL THEN {check for NIL handle}

BEGIN

BlockMove(@srcBytes, dstData^, 2); {copy source into buffer}

srcPtr := srcData^; {copy source pointer}

dstPtr := Ptr(ORD4(dstData^) + 2); {copy destination pointer}

PackBits(srcPtr, dstPtr, srcBytes); {pack source to destination}

{shrink destination data}

SetHandleSize(dstData, ORD4(dstPtr) - ORD4(dstData^));

srcProperties := HGetState(srcData); {get source handle properties}

IF BitTst(@srcProperties, 2) THEN {is source a real resource?}

RemoveResource(srcData); {remove current resource}

{add to resource file}

AddResource(dstData, theType, theID, name);

WriteResource(dstData); {write resource data}

DetachResource(dstData); {detach from resource map}

DisposeHandle(dstData); {dispose of destination data}

END;

END;

The MyAddPackedResource procedure declared in Listing 3-3 initially allocates a

destination buffer to hold compressed data that is big enough to hold the compressed

data in a worst-case scenario, plus 2 bytes to store information at the beginning of the

resource about the size of the source data. Because PackBits does not move memory,

the handle storing the destination buffer does not need to be locked. However, to

prevent the PackBits procedure from changing the value of a master pointer, you

should only pass copies of the dereferenced handle to the procedure. After PackBits

returns, MyAddPackedResource determines how much memory the compressed data

takes up by computing how much the dstPtr variable has changed.

MyAddPackedResource then resizes the handle containing the compressed data to the

appropriate size. Finally, MyAddPackedResource writes the new resource, after first

removing the existing resource if the source handle is a handle to a resource. For more

information on resources, see Inside Macintosh: More Macintosh Toolbox.

Having used the MyAddPackedResource procedure to compress resource data, your

application needs to be able read the resource and decompress it using the UnpackBits

procedure. Listing 3-4 shows how you might accomplish this.

Listing 3-4 Decompressing data from a packed resource

FUNCTION MyGetPackedResource (theType: ResType; theID: Integer): Handle;

VAR

srcData: Handle; {handle to packed data}

C H A P T E R 3

Mathematical and Logical Utilities

3-22 Using the Mathematical and Logical Utilities

dstData: Handle; {handle to unpacked data}

srcPtr: Ptr; {pointer to packed data}

dstPtr: Ptr; {pointer to unpacked data}

dstBytes: Integer; {number of unpacked bytes}

BEGIN

srcData := GetResource(theType, theID); {get the resource}

BlockMove(srcData^, @dstBytes, 2); {read number of bytes of }

{ unpacked data}

dstData := NewHandle(dstBytes); {allocate memory for }

{ unpacked data}

IF dstData <> NIL THEN

BEGIN

srcPtr := Ptr(ORD4(srcData^) + 2); {copy source pointer}

dstPtr := dstData^; {copy destination pointer}

UnpackBits(srcPtr, dstPtr, dstBytes); {unpack source to }

{ destination}

END;

IF srcData <> NIL THEN {if there was a resource}

BEGIN

DetachResource(srcData); {detach from resource map}

DisposeHandle(srcData); {dispose the resource}

END;

MyGetPackedResource := dstData; {return destination handle}

END;

The MyGetPackedResource function reads in a resource that has previously been

packed, determines the size of the unpacked data by copying the first 2 bytes of the

resource data, and allocates a relocatable block of this size. The remainder of the data

is unpacked using the UnpackBits procedure, and the original packed resource data is

disposed of.

Obtaining Pseudorandom Numbers
The Random function makes it easy to obtain pseudorandom numbers. Before you use

Random, however, you should seed the pseudo-random number generator. Listing 3-5

shows a common technique for doing this.

Listing 3-5 Seeding the pseudo-random number generator

PROCEDURE MySeedGenerator;

BEGIN

GetDateTime(randSeed);

END;

C H A P T E R 3

Mathematical and Logical Utilities

Using the Mathematical and Logical Utilities 3-23

The MySeedGenerator procedure defined in Listing 3-5 simply uses the Date and Time

Utilities’ GetDateTime procedure to copy the number of seconds since midnight,

January 1, 1904, to the global variable randSeed. You might use some other volatile

long-word value—such as the mouse location—to seed the pseudo-random number

generator, or you might even take a word from one source and a word from another.

However, just using GetDateTime is sufficient for most applications.

Sometimes you wish to obtain a pseudo-random integer from a large range of integers;

for example, you might need a pseudo-random integer in the range of –20,000 to 20,000.

Listing 3-6 shows how you might do this.

Listing 3-6 A simple way of obtaining a large random integer from a range
of pseudo-random numbers

FUNCTION MyRandomLargeRange (min, max: Integer): Integer;

VAR

randInt: Integer;

BEGIN

REPEAT

randInt := Random

UNTIL (randInt >= min) AND (randInt <= max);

MyRandomLargeRange := randInt;

END;

The MyRandomLargeRange function defined in Listing 3-6 simply calls the Random

function until it returns an acceptable value. This approach is efficient when you need

a random integer from a range of integers that is wide, though not quite as wide as

the range the Random function returns by default. However, if you need a random

number from a small range—for example, a random number from 1 to 10—the

MyRandomLargeRange function is inefficient. Listing 3-7 shows an alternative approach.

Listing 3-7 Obtaining a pseudo random integer from a small range of numbers

FUNCTION MyRandomRange (min, max: Integer): Integer;

CONST

kMinRand = -32767.0;

kMaxRand = 32767.0;

VAR

myRand: Integer;

x: Real; {Random scaled to [0..1]}

BEGIN

{find random number, and scale it to [0.0..1.0]}

x := (Random - kMinRand) / (kMaxRand + 1.0 - kMinRand);

C H A P T E R 3

Mathematical and Logical Utilities

3-24 Using the Mathematical and Logical Utilities

{scale x to [min, max + 1.0], truncate, and return result}

MyRandomRange := TRUNC(x * (max + 1.0 - min) + min);

END;

The MyRandomRange function defined in Listing 3-7 first scales the integral value

returned by the Random function to a floating-point value from 0 up to, but not

including, 1. The function then scales the result to a real number greater than or equal

to min but less than max + 1. By truncating extra decimal places, the correct result is

achieved. Note that to force the compiler to perform floating-point calculations, all

constants in the function are expressed as real numbers rather than as integers.

Sometimes an application might require a pseudo-random long integer. Listing 3-8

shows how you can do this.

Listing 3-8 Obtaining a pseudo-random long integer

FUNCTION MyRandomLongInt: LongInt;

TYPE

MyLongWordType = PACKED RECORD

myHiWord: Integer; {high-order word}

myLoWord: Integer; {low-order word}

END;

VAR

myLongWord: MyLongWordType; {random long word}

BEGIN

{obtain random high-order word}

myLongWord.myHiWord := Random;

{obtain random low-order word}

myLongWord.myLoWord := Random;

{cast and return result}

MyRandomLongInt := LongInt(myLongWord);

END;

The MyRandomLongInt function defined in Listing 3-8 uses a technique discussed in

“Extracting a Word From a Long Word” on page 3-18 to stuff a pseudo-random number

in the high-order word of a long integer and another pseudo-random number in the

low-order word of the long integer. If you need to obtain a long integer within a

specified range, you can define routines analogous to Listing 3-6 and Listing 3-7 but

use the MyRandomLongInt function in place of the Random function.

Using Fixed-Point Data Types
Most high-level language compilers include built-in support for the Fixed and Fract

data types so that you can perform regular mathematical operations with fixed-point

variables. Also, the algorithms for performing addition and subtraction on Fixed and

C H A P T E R 3

Mathematical and Logical Utilities

Using the Mathematical and Logical Utilities 3-25

Fract variables are the same as the algorithms for performing such operations on

variables of type LongInt.

The Operating System, however, includes several routines that allow you to convert

Fixed and Fract variables to other formats, including SANE’s Extended data type,

and allow you to perform some simple operations on Fixed and Fract variables. If you

need more sophisticated numeric functions, consult the Apple Numerics Manual.

To perform multiplication and division of fixed-point numbers, you can use the FixMul,

FixDiv, FracMul, and FracDiv functions, which allow you to multiply Fixed point

numbers with each other or with other long integers.

You can multiply and divide 32-bit quantities of different types using these functions.

The format of the result in this case depends on the particular function being used. See

descriptions of the individual functions in “Multiplying and Dividing Fixed-Point

Numbers” beginning on page 3-38 for more information.

Using the FracSqrt, FracCos, FracSin, and FixATan2 functions, you can perform a

few special arithmetic operations involving variables of type Fixed and Fract.

The FracSqrt function allows you to obtain the square root of a variable of type

Fract, interpreting bit 0 as having weight 2 rather than –2. The FracCos and FracSin

provide support for the trigonometric cosine and sine functions. The FixATan2 function

provides support for the arctangent function. The arguments to all of these functions

should be expressed in radians, not in degrees.

Note

To provide fast trigonometric approximations, these trigonometric
functions use values of π correct only to 4 decimal places. You should
thus use alternative SANE routines when you require better precision. ◆

To convert among 32-bit numeric types, you can use the Long2Fix, Fix2Long,

Fix2Frac, and Frac2Fix functions.

Each of the functions returns its parameter converted into the appropriate format.

You can also convert fixed-point values to and from the SANE Extended floating-point

type using the Fix2X, X2Fix, Frac2X, and X2Frac functions.

Two additional functions, FixRatio and FixRound, allow you to perform special

conversions on variables of type Fixed.

The FixRatio function returns the fixed-point quotient of the numer and denom

parameters. The FixRound function rounds a variable of type Fixed to the nearest

integer. If the value is halfway between two integers (0.5), it is rounded to the integer

with the higher absolute value. To round a negative fixed-point number, negate it, round

it, and then negate it again.

Note

To convert a variable of type Fixed to a variable of type Integer
simply use the HiWord function to extract the integral component of the
fixed-point number. ◆

C H A P T E R 3

Mathematical and Logical Utilities

3-26 Using the Mathematical and Logical Utilities

The Operating System also provides the LongMul procedure that allows you to multiple

two 32-bit quantities and obtain a 64-bit quantity.

Table 3-2 summaries the routines that perform operations on the Fixed and Fract data

types.

Table 3-2 Routines for fixed-point data types

Routine Description

FixMul Multiply a variable of type Fixed with another variable of type Fixed
or with a variable of type Fract or LongInt

FixDiv Divide two variables of the same type (Fixed, Fract, or LongInt)
or divide a LongInt or Fract number by a Fixed number

FracMul Multiply a variable of type Fract with another variable of type Fract
or with a variable of type Fixed or LongInt

FracDiv Divide two variables of the same type (Fixed, Fract, or LongInt)
or divide a LongInt or Fixed number by a Fract number

FracSqrt Compute the square root of a variable of type Fract

FracCos Obtain the cosine of a variable of type Fixed

FracSin Obtain the sine of a variable of type Fixed

FixATan2 Obtain the arctangent of a variable of type Fixed, Fract, or LongInt

Long2Fix Convert a variable of type LongInt to Fixed

Fix2Long Convert a variable of type Fixed to LongInt

Fix2Frac Convert a variable of type Fixed to Fract

Frac2Fix Convert a variable of type Fract to Fixed

Fix2X Convert a variable of type Fixed to Extended

X2Fix Convert a variable of type Extended to Fixed

Frac2X Convert a variable of type Fract to Extended

X2Frac Convert a variable of type Extended to Fract

FixRatio Obtain the Fixed equivalent of a fraction

FixRound Round a fixed-point number to the nearest integer

LongMul Multiply two 32-bit quantities and obtain a 64-bit quantity

C H A P T E R 3

Mathematical and Logical Utilities

Mathematical and Logical Utilities Reference 3-27

Mathematical and Logical Utilities Reference

This section provides a complete reference to the Mathematical and Logical Utilities

routines provided by the Macintosh Operating System. The section “Data Structures”

describes the 64-bit integer record. The section “Routines” describes the routines that

the Operating System includes to allow you to perform simple mathematical and

logical operations.

Data Structures

This section describes the 64-bit integer record. For information on the numeric formats

of fixed-point numbers, see “Fixed-Point Data Types” beginning on page 3-11. For

information on the format of other numeric data types, consult the Apple Numerics
Manual.

64-Bit Integer Record

By using the LongMul procedure, you can multiply two 32-bit quantities and obtain a

64-bit quantity stored in a 64-bit integer record. The Int64Bit data type defines a 64-bit

integer record.

TYPE Int64Bit =

RECORD

hiLong: LongInt;

loLong: LongInt;

END;

Field descriptions

hiLong The high-order long integer of the 64-bit integer.

loLong The low-order long integer of the 64-bit integer.

Routines

This section describes the Mathematical and Logical Utilities supported directly by the

Macintosh Operating System. Note that none of the routines in this section moves

memory; therefore, all of the described routines in this section can be called at

interrupt time.

C H A P T E R 3

Mathematical and Logical Utilities

3-28 Mathematical and Logical Utilities Reference

Testing and Setting Bits

This section describes the BitTst function and the BitSet and BitClr procedures.

You can test a bit using BitTst and specify a bit’s value using BitSet and BitClr.

All three of these procedures use the reversed bit-numbering scheme described in the

section “Reversed Bit-Numbering” on page 3-7.

BitTst

You can use the BitTst function to determine whether a given bit is set.

FUNCTION BitTst (bytePtr: Ptr; bitNum: LongInt): Boolean;

bytePtr A pointer to a byte in memory.

bitNum The bit to be tested, specified as a positive offset from the high-order bit
of the byte pointed to by the bytePtr parameter. The bit being tested
need not be in the byte pointed to by bytePtr.

DESCRIPTION

The BitTst function returns TRUE if the bit specified by the bytePtr and bitNum

parameters is set (that is, has a value of 1) and returns FALSE if the specified bit is

cleared (that is, has a value of 0).

SPECIAL CONSIDERATIONS

The bit-numbering scheme used by the BitTst function is the opposite of MC680x0 bit

numbering. To convert an MC680x0 bit number to the format required by the BitTst

function, subtract the MC680x0 bit number from the highest bit number.

SEE ALSO

For an example of the use of the BitTst function, see Listing 3-2 on page 3-15. For more

information about reversed bit-numbering see, “Reversed Bit-Numbering” on page 3-7.

BitSet

You can use the BitSet procedure to set a particular bit.

PROCEDURE BitSet (bytePtr: Ptr; bitNum: LongInt);

bytePtr A pointer to a byte in memory.

C H A P T E R 3

Mathematical and Logical Utilities

Mathematical and Logical Utilities Reference 3-29

bitNum The bit to be set, specified as a positive offset from the high-order bit of
the byte pointed to by the bytePtr parameter. The bit being set need
not be in the byte pointed to by bytePtr.

DESCRIPTION

The BitSet procedure sets (to a value of 1) the bit specified by the bytePtr and

bitNum parameters.

SPECIAL CONSIDERATIONS

The bit-numbering scheme used by the BitSet procedure is the opposite of MC680x0

bit numbering. To convert an MC680x0 bit number to the format required by the BitSet

procedure, subtract the MC680x0 bit number from the highest bit number.

SEE ALSO

For an example of the use of the BitSet procedure, see page 3-16. For more information

about reversed bit-numbering see “Reversed Bit-Numbering” on page 3-7.

BitClr

You can use the BitClr procedure to clear a particular bit.

PROCEDURE BitClr (bytePtr: Ptr; bitNum: LongInt);

bytePtr A pointer to a byte in memory.

bitNum The bit to be cleared, specified as a positive offset from the high-order bit
of the byte pointed to by the bytePtr parameter. The bit being cleared
need not be in the same byte pointed to by bytePtr.

DESCRIPTION

The BitClr procedure clears (to a value of 0) the bit specified by the bytePtr and

bitNum parameters.

SPECIAL CONSIDERATIONS

The bit-numbering scheme used by the BitClr procedure is the opposite of MC680x0

bit numbering. To convert an MC680x0 bit number to the format required by the BitClr

procedure, subtract the MC680x0 bit number from the highest bit number.

C H A P T E R 3

Mathematical and Logical Utilities

3-30 Mathematical and Logical Utilities Reference

SEE ALSO

For an example of the use of the BitClr procedure, see page 3-16. For more information

about reversed bit-numbering, see “Reversed Bit-Numbering” on page 3-7.

Performing Logical Operations

The Operating System supports five functions to support bit-level logical operations. The

BitAnd, BitOr, BitXor, BitNot, and BitShift functions perform AND, OR, XOR, NOT,

and bit-shifting operations, respectively. These routines are intended primarily for Pascal

programmers. If you are programming in C, you can typically use C operators to

perform the same logical operations more efficiently.

BitAnd

You can use the BitAnd function to perform the AND logical operation on two long

words.

FUNCTION BitAnd (value1, value2: LongInt): LongInt;

value1 A long word.

value2 A long word.

DESCRIPTION

The BitAnd function returns a long word that is the result of performing the AND

operation on the long words specified by the value1 and value2 parameters. Each bit

in the returned value is set if and only if the corresponding bit is set in both value1 and

value2.

SEE ALSO

For an illustration of the result of performing an operation using the BitAnd function,

see Figure 3-9 on page 3-16.

BitOr

You can use the BitOr function to perform the OR logical operation on two long words.

FUNCTION BitOr (value1, value2: LongInt): LongInt;

value1 A long word.

value2 A long word.

C H A P T E R 3

Mathematical and Logical Utilities

Mathematical and Logical Utilities Reference 3-31

DESCRIPTION

The BitOr function returns a long word that is the result of performing the OR operation

on the long words specified by the value1 and value2 parameters. Each bit in the

returned value is set if and only if the corresponding bit is set in value1 or value2, or

in both value1 and value2.

SEE ALSO

For an illustration of the result of performing an operation using the BitOr function, see

Figure 3-9 on page 3-16.

BitXor

You can use the BitXor function to perform the XOR logical operation on two long

words.

FUNCTION BitXor (value1, value2: LongInt): LongInt;

value1 A long word.

value2 A long word.

DESCRIPTION

The BitXor function returns a long word that is the result of performing the XOR

operation on the long words specified by the value1 and value2 parameters. Each bit

in the returned value is set if and only if the corresponding bit is set in either value1 or

value2, but not in both value1 and value2.

SEE ALSO

For an illustration of the result of performing an operation using the BitXor function,

see Figure 3-9 on page 3-16.

BitNot

You can use the BitNot function to perform the NOT logical operation on a long word.

FUNCTION BitNot (value: LongInt): LongInt;

value A long word.

C H A P T E R 3

Mathematical and Logical Utilities

3-32 Mathematical and Logical Utilities Reference

DESCRIPTION

The BitNot function returns a long word that is the result of performing the NOT

operation on the long word specified by the value parameter. Each bit in the returned

value is set if and only if the corresponding bit is not set in value.

SEE ALSO

For an illustration of the result of performing an operation using the BitNot function,

see Figure 3-10 on page 3-17.

BitShift

You can use the BitShift function to shift bits in a long word.

FUNCTION BitShift (value: LongInt; count: Integer): LongInt;

value A long word.

count The number of bits to shift. If this number is positive, BitShift shifts
this many positions to the left; if this number is negative, BitShift
shifts this many positions to the right. The value in this parameter is
converted to the result of MOD 32.

DESCRIPTION

The BitShift function returns a long word that is the result of shifting the bits in the

long word specified by the value parameter. The shift’s direction and extent are

determined by the count parameter. Zeroes are shifted into empty positions regardless

of the direction of the shift.

SEE ALSO

For an illustration of the result of performing an operation using the BitShift function,

see Figure 3-10 on page 3-17.

Getting and Setting Memory Values

The HiWord and LoWord functions allow you to extract a word from a long word. The

StuffHex procedure provides a quick way to convert hexadecimal values stored in a

string into byte values in memory.

To copy a range of bytes from one memory location to another, you should ordinarily

use the Memory Manager’s BlockMove procedure, which is described in Inside
Macintosh: Memory.

C H A P T E R 3

Mathematical and Logical Utilities

Mathematical and Logical Utilities Reference 3-33

HiWord

You can use the HiWord function to obtain the high-order word of a long word. One use

of this function is to obtain the integral part of a fixed-point number.

FUNCTION HiWord (x: LongInt): Integer;

x The long word whose high word is to be returned.

DESCRIPTION

The HiWord function returns the high-order word of the long word specified by the

x parameter.

LoWord

You can use the LoWord function to obtain the low-order word of a long word. One use

of this function is to obtain the fractional part of a fixed-point number.

FUNCTION LoWord (x: LongInt): Integer;

x The long word whose low word is to be returned.

DESCRIPTION

The LoWord function returns the low-order word of the long word specified by the

x parameter.

StuffHex

You can use the StuffHex procedure to hardcode byte values into memory.

PROCEDURE StuffHex (thingPtr: Ptr; s: Str255);

thingPtr A pointer to any data structure in memory. If thingPtr is an odd
address, then thingPtr is interpreted as pointing to the next word
boundary.

s A string of characters representing hexadecimal digits. Be sure that all
characters in this string are hexadecimal digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,
B, C, D, E, F). Otherwise, StuffHex may set bytes in the data structure
pointed to by thingPtr to arbitrary values. If there are an odd number
of characters in the string, the last character is ignored.

C H A P T E R 3

Mathematical and Logical Utilities

3-34 Mathematical and Logical Utilities Reference

DESCRIPTION

The StuffHex procedure sets bytes in memory beginning with that byte specified by

the parameter thingPtr. The total number of bytes set is equivalent to s[0] DIV 2

(that is, half the length of the string, ignoring the last character if the number of

characters is odd).

Each byte to be set corresponds to two characters in the string. These characters should

represent hexadecimal digits. For example, the string 'D41A' results in 2 bytes being set

to the values $D4 and $1A, respectively.

Although the StuffHex procedure sets the value of individual bytes, it does not move

relocatable blocks. Thus, you can call it at interrupt time.

SPECIAL CONSIDERATIONS

The StuffHex procedure does no range checking to ensure that bytes being set are

within the bounds of a certain data structure. If you do not use StuffHex carefully,

you may change memory in the partition of your application or another application in

unpredictable ways.

SEE ALSO

For examples of the use of the StuffHex procedure, see page 3-19.

Compressing and Decompressing Data

You can use the PackBits function to compress a source buffer of data into a

destination buffer and the UnpackBits function to decompress a source buffer of

PackBits-compressed data into a destination buffer.

PackBits

You can use the PackBits procedure to compress a data buffer stored in RAM.

PROCEDURE PackBits (VAR srcPtr, dstPtr: Ptr; srcBytes: Integer);

srcPtr On entry, a pointer to the first byte of a buffer of data to be compressed.
On exit, a pointer to the first byte following the bytes compressed.

dstPtr On entry, a pointer to the first byte in which to store compressed data. On
exit, a pointer to the first byte following the compressed data.

srcBytes The number of bytes of uncompressed data to be compressed. In versions
of software prior to version 6.0.2, this number must be 127 or less.

C H A P T E R 3

Mathematical and Logical Utilities

Mathematical and Logical Utilities Reference 3-35

DESCRIPTION

The PackBits procedure compresses srcBytes bytes of data beginning at the location

specified by the srcPtr parameter and stores it at the location specified by the dstPtr

parameter. It then modifies the srcPtr and dstPtr variables to point to the first bytes

after the uncompressed and compressed data, respectively.

Your application must allocate memory for the destination buffer itself. In general,

you should allocate enough memory for a worst-case scenario. In the worst case, the

destination buffer is 128 bytes long for each block of source data up to 127 bytes. Thus,

you can use the following formula to determine how much space to allocate for the

destination buffer:

maxDstBytes := srcBytes + (srcBytes+126) DIV 127;

where maxDstBytes stands for the maximum number of destination bytes.

The PackBits algorithm is most effective on data buffers in which there are likely to be

series of bytes containing the same value. For example, resources of many formats often

contain many consecutive zeros. If you have a data buffer in which there are only likely

to be series of words or long words containing the same value, PackBits is unlikely to

be effective.

Because your application must allocate memory for the source and destination buffers,

PackBits does not move relocatable blocks. Thus, you can call it at interrupt time.

SPECIAL CONSIDERATIONS

Because PackBits changes the values of the srcPtr and dstPtr parameters, you

should pass to PackBits only copies of pointers to the source and destination buffers.

This allows you to access the beginning of the source and destination buffers after

PackBits returns. Also, if the source or destination buffer is stored in an unlocked,

relocatable block, this technique prevents PackBits from changing the value of a

master pointer, which would make the original handle invalid.

SEE ALSO

For an example of the use of the PackBits procedure, see Listing 3-3 on page 3-20.

UnpackBits

You can use the UnpackBits procedure to decompress a data buffer containing data

compressed by PackBits.

PROCEDURE UnpackBits (VAR srcPtr, dstPtr: Ptr; dstBytes: Integer);

srcPtr On entry, a pointer to the first byte of a buffer of data to be decompressed.
On exit, a pointer to the first byte following the compressed data.

C H A P T E R 3

Mathematical and Logical Utilities

3-36 Mathematical and Logical Utilities Reference

dstPtr On entry, a pointer to the first byte in which to store decompressed data.
On exit, a pointer to the first byte following the decompressed data.

dstBytes The number of bytes of the data before compression. In general, you
should either use PackBits to compress data structures of a fixed size
that you can then pass in this parameter to UnpackBits, or store with
the compressed data the original size of the uncompressed data.

DESCRIPTION

The UnpackBits procedure decompresses srcBytes bytes of data beginning at the

location specified by the srcPtr parameter and stores it at the location specified

by the dstPtr parameter. It then modifies the srcPtr and dstPtr variables to point to

the first bytes after the compressed and decompressed data, respectively.

Because your application must allocate memory for the source and destination buffers,

UnpackBits does not move relocatable blocks. Thus, you can call it at interrupt time.

SPECIAL CONSIDERATIONS

Because UnpackBits changes the values of the srcPtr and dstPtr parameters, you

should pass to UnpackBits only copies of pointers to the source and destination

buffers. This allows you to access the beginning of the source and destination buffers

after UnpackBits returns. Also, if the source or destination buffer is stored in an

unlocked, relocatable block, this technique prevents UnpackBits from changing the

value of a master pointer, which would make the original handle invalid.

SEE ALSO

For an example of the use of the UnpackBits procedure, see Listing 3-4 on page 3-21.

Obtaining a Pseudorandom Number

You can gain access to the Operating System’s pseudorandom number generator by

using the Random function.

Random

You can use the Random function to obtain a pseudorandom integer.

FUNCTION Random: Integer;

DESCRIPTION

The Random function returns a pseudorandom integer, uniformly distributed in the

range –32767 to 32767.

C H A P T E R 3

Mathematical and Logical Utilities

Mathematical and Logical Utilities Reference 3-37

The value Random returns depends solely on the global variable randSeed, which

the QuickDraw InitGraf procedure initializes to 1. Each time the Random function

executes, it uses a numerical algorithm to change the value of randSeed to prevent it

from returning the same value each time it is called.

To prevent your application from generating the same sequence of pseudo-random

numbers each time it is executed, initialize the randSeed global variable, when your

application starts up, to a volatile long word variable such as the current date and time.

If you would like to generate the same sequence of pseudo-random numbers twice, on

the other hand, simply set randSeed to the same value before calling Random for

each sequence.

ASSEMBLY-LANGUAGE INFORMATION

You can access the global variable randSeed through the system global variable

RndSeed.

SEE ALSO

Listing 3-5 on page 3-22, Listing 3-6 on page 3-23, Listing 3-7 on page 3-23,

and Listing 3-8 on page 3-24 for examples of how to use the Random function.

Converting Between Angle and Slope Values

You can use the SlopeFromAngle and AngleFromSlope functions to convert between

angle and slope values.

SlopeFromAngle

You can convert an angle value to a slope value using the SlopeFromAngle function.

FUNCTION SlopeFromAngle (angle: Integer): Fixed;

angle The angle, expressed in clockwise degrees from 12 o’clock and treated
MOD 180. (90 degrees is thus at 3 o’clock and –90 degrees is at 9 o’clock.)

DESCRIPTION

The SlopeFromAngle function returns the slope corresponding to the angle specified

in the angle parameter. Slopes are defined as ∆x/∆y, the horizontal change divided by

the vertical change between any two points on a line with the given angle. The negative

y-axis is defined as being at 12 o’clock, and the positive y-axis at 6 o’clock. The x-axis is

defined as usual, with the positive side defined as being at 3 o’clock.

C H A P T E R 3

Mathematical and Logical Utilities

3-38 Mathematical and Logical Utilities Reference

SEE ALSO

For an example of the use of the SlopeFromAngle function, see Figure 3-7 on page 3-13.

AngleFromSlope

You can convert a slope value to an angle value using the AngleFromSlope function.

FUNCTION AngleFromSlope (slope: Fixed): Integer;

slope The slope, defined as ∆x/∆y, which is the horizontal change divided by
the vertical change between any two points on a line with the slope.

DESCRIPTION

The AngleFromSlope function returns the angle corresponding to the slope specified in

the slope parameter treated MOD 180. Angles are defined in clockwise degrees from 12

o’clock. The negative y-axis is defined as being at 12 o’clock, and the positive y-axis at 6

o’clock. The x-axis is defined as usual, with the positive side defined as being at 3 o’clock.

SPECIAL CONSIDERATIONS

The AngleFromSlope function is most useful when you require speed more than

accuracy in performing the calculation. The integer result is within 1 degree of the

correct answer, but not necessarily within half a degree.

SEE ALSO

For an example of the use of the AngleFromSlope function, see Figure 3-7 on page 3-13.

Multiplying and Dividing Fixed-Point Numbers

The FixMul and FracMul functions allow you to multiply fixed-point numbers.

The FixDiv and FracDiv functions allow you to divide fixed-point numbers. By

performing appropriate type casting, you can multiply or divide a fixed-point

number of one type with a fixed-point number of another type or a long integer.

FixMul

You can use the FixMul function to multiply a variable of type Fixed with another

variable of type Fixed or with a variable of type Fract or LongInt.

FUNCTION FixMul (a, b: Fixed): Fixed;

C H A P T E R 3

Mathematical and Logical Utilities

Mathematical and Logical Utilities Reference 3-39

a The first operand, which can be a variable of type Fixed or a variable of
type Fract or LongInt.

b The second operand, which can be a variable of type Fixed or a variable
of type Fract or LongInt.

DESCRIPTION

The FixMul function returns the product of the numbers specified in the a and b

parameters. At least one of a and b should be a variable of type Fixed.

The returned value is in the format of a LongInt if one of a or b is a LongInt. It is a

Fract number if one of a or b is Fract. It is a Fixed number if both a and b are Fixed

numbers.

Overflows are set to the maximum representable value with the correct sign ($80000000

for negative results and $7FFFFFFF for positive results).

SEE ALSO

For a summary of the routines that perform operations on the Fixed and Fract data

type, see Table 3-2 on page 3-26.

FixDiv

You can use the FixDiv function to divide two variables of the same type (Fixed,

Fract, or LongInt) or to divide a LongInt or Fract number by a Fixed number.

FUNCTION FixDiv (a, b: Fixed): Fixed;

a The first operand, which can be a variable of type Fixed or a variable of
type Fract or LongInt.

b The second operand, which can be a variable of type Fixed or it can be a
variable of the same type as the variable in parameter a.

DESCRIPTION

The FixDiv function returns the quotient of the numbers specified in the a and b

parameters. If the b parameter is in the format of a Fixed number, then the a parameter

can be in the format of a Fixed, Fract, or LongInt number. If the b parameter is in the

format of a Fract or LongInt number, then the a parameter must be in the same

format.

The returned value is in the format of a Fixed number if both a and b are both Fixed

numbers, both Fract numbers, or both LongInt numbers. Otherwise, the returned

value is the same type as the number in the a parameter.

C H A P T E R 3

Mathematical and Logical Utilities

3-40 Mathematical and Logical Utilities Reference

Division by zero results in $8000000 if a is negative, and $7FFFFFFF otherwise; thus the

special case 0/0 yields $7FFFFFFF.

SEE ALSO

For a summary of the routines that perform operations on the Fixed and Fract data type,

see Table 3-2 on page 3-26.

FracMul

You can use the FracMul function to multiply a variable of type Fract with another

variable of type Fract or with a variable of type Fixed or LongInt.

FUNCTION FracMul (a, b: Fract): Fract;

a The first operand, which can be a variable of type Fract or a variable of
type Fixed or LongInt.

b The second operand, which can be a variable of type Fract or a variable
of type Fixed or LongInt.

DESCRIPTION

The FracMul function returns the product of the numbers specified in the a and b

parameters. At least one of a or b should be a variable of type Fract.

The returned value is in the format of a LongInt number if one of a and b is a LongInt

number. It is a Fixed number if one of a or b is a Fixed number. It is a Fract number

if both a and b are Fract numbers.

Overflows are set to the maximum representable value with the correct sign ($80000000

for negative results and $7FFFFFFF for positive results).

SEE ALSO

For a summary of the routines that perform operations on the Fixed and Fract data type,

see Table 3-2 on page 3-26.

FracDiv

You can use the FracDiv function to divide two variables of the same type (Fract,

Fixed, or LongInt) or to divide a LongInt or Fixed number by a Fract number.

FUNCTION FracDiv (a, b: Fract): Fract;

C H A P T E R 3

Mathematical and Logical Utilities

Mathematical and Logical Utilities Reference 3-41

a The first operand, which can be a variable of type Fract or a variable of
type Fixed or LongInt.

b The second operand, which can be a variable of type Fract or a variable
of the same type as the variable in parameter a.

DESCRIPTION

The FracDiv function returns the quotient of the numbers specified in the a and b

parameters. If the b parameter is in the format of a Fract number, then the a parameter

can be in the format of a Fract, a Fixed, or a LongInt number. If the b parameter is in

the format of a Fixed or a LongInt number, then the a parameter must be in the same

format.

The returned value is in the format of a Fract number if a and b are both Fract

numbers, both Fixed numbers, or both LongInt numbers. Otherwise, the returned

value is in the same format as the number in the a parameter.

Division by zero results in $8000000 if a is negative, and $7FFFFFFF otherwise; thus the

special case 0/0 yields $7FFFFFFF.

Performing Calculations on Fixed-Point Numbers

The Operating System provides four functions that you can use to perform a few

common calculations on fixed-point numbers. The FracSqrt function allows you to

obtain the square root of a number. The FracCos, FracSin, and FixATan2 functions

allow you to obtain fast approximations of trigonometric functions on fixed-point

numbers.

FracSqrt

You can use the FracSqrt function to obtain the square root of a Fract number.

FUNCTION FracSqrt (x: Fract): Fract;

x The Fract number to obtain a square root of. This parameter is
interpreted as being unsigned in the range 0 through 4 – 2–30, inclusive.
That is, the bit of a Fract number that ordinarily has weight –2 is instead
interpreted as having weight 2.

DESCRIPTION

The FracSqrt function returns the square root of the Fract number you supply in the

x parameter. The result is unsigned in the range 0 through 2, inclusive.

C H A P T E R 3

Mathematical and Logical Utilities

3-42 Mathematical and Logical Utilities Reference

FracCos

You can use the FracCos function to obtain a fast approximation of the cosine of a

Fixed number.

FUNCTION FracCos (x: Fixed): Fract;

x The Fixed number expressed in radians, whose cosine is to be calculated.

DESCRIPTION

The FracCos function returns the cosine, expressed in radians, of the Fixed number x.

The approximation of π/4 used to compute the cosine is the hexadecimal value 0.C910,

making the approximation of π equal to 3.1416015625, while π itself equals 3.14159265....

Despite the approximation of π, the cosine value obtained is usually correct to several

decimal places.

FracSin

You can use the FracSin function to obtain a fast approximation of the sine of a

Fixed number.

FUNCTION FracSin (x: Fixed): Fract;

x The Fixed number expressed in radians, whose sine is to be calculated.

DESCRIPTION

The FracSin function returns the sine, expressed in radians, of the Fixed number x.

The approximation of π/4 used to compute the sine is the hexadecimal value 0.C910,

making the approximation of π equal to 3.1416015625, while π itself equals 3.14159265....

Despite the approximation of π, the sine value obtained is usually correct to several

decimal places.

FixATan2

You can use the FixATan2 function to obtain a fast approximation of the arctangent of

a fraction.

FUNCTION FixATan2 (x, y: LongInt): Fixed;

C H A P T E R 3

Mathematical and Logical Utilities

Mathematical and Logical Utilities Reference 3-43

x The numerator of the fraction whose arctangent is to be obtained. This
variable can be a LongInt, Fixed, or Fract number.

y The denominator of the fraction whose arctangent is to be obtained. The
number supplied in this variable must be of the same type as that of the
number supplied in the x parameter.

DESCRIPTION

The FixATan2 function returns, in radians, the arctangent of y/x.

The approximation of π/4 used to compute the arctangent is the hexadecimal value

0.C910, making the approximation of π equal to 3.1416015625, while π itself equals

3.14159265.... Thus FixATan2(1, 1)equals the equivalent of the hexadecimal value

0.C910. Despite the approximation of π, the arctangent value obtained will usually be

correct to several decimal places.

Converting Among 32-Bit Numeric Types

The Operating System includes functions that allow you to convert among variables of

type LongInt, Fixed, and Fract. The Long2Fix and Fix2Long functions convert

between LongInt variables and Fixed variables. The Fix2Frac functions and

Frac2Fix functions convert between Fixed and Fract variables. Ordinarily, there is

no need to convert between LongInt and Fract variables, because Fract variables

are used only to represent very small numbers. If you wish to do so, however, you can

combine functions shown in this section.

Long2Fix

You can use the Long2Fix function to convert a LongInt number to a Fixed number.

FUNCTION Long2Fix (x: LongInt): Fixed;

x The long integer to be converted to a Fixed number.

DESCRIPTION

The Long2Fix function returns the Fixed number equivalent to the long integer you

supply in the x parameter. If x is greater than the maximum representable fixed-point

number, the Long2Fix function returns $7FFFFFFF. If x is less than the negative number

with the highest absolute value, Long2Fix returns $80000000.

C H A P T E R 3

Mathematical and Logical Utilities

3-44 Mathematical and Logical Utilities Reference

Fix2Long

You can use the Fix2Long function to convert a Fixed number to a LongInt number.

FUNCTION Fix2Long (x: Fixed): LongInt;

x The Fixed number to be converted to a long integer.

DESCRIPTION

The Fix2Long function returns the long integer nearest to the Fixed number you

supply in the x parameter. If x is halfway between two integers (0.5), it is rounded to the

integer with the higher absolute value.

Fix2Frac

You can use the Fix2Frac function to convert a Fixed number to a Fract number.

FUNCTION Fix2Frac (x: Fixed): Fract;

x The Fixed number to be converted to a Fract number.

DESCRIPTION

The Fix2Frac function returns the Fract number equivalent to the Fixed number x.

If x is greater than the maximum representable Fract number, the Fix2Frac function

returns $7FFFFFFF. If x is less than the negative number with the highest absolute value,

Fix2Frac returns $80000000.

Frac2Fix

You can use the Frac2Fix function to convert a Fract number to a Fixed number.

FUNCTION Frac2Fix (x: Fract): Fixed;

x The Fract number to be converted to a Fixed number.

DESCRIPTION

The Frac2Fix function returns the Fixed number that best approximates the Fract

number you supply in the x parameter.

C H A P T E R 3

Mathematical and Logical Utilities

Mathematical and Logical Utilities Reference 3-45

Converting Between Fixed-Point and Floating-Point Values

The Mathematical and Logical Utilities provide four functions that allow you to convert

between fixed-point and floating-point values represented using SANE’s Extended

floating-point data type. The Fix2X function and the X2Fix function convert between

Fixed and Extended numbers. The Frac2X and X2Frac functions convert between

Fract and Extended numbers. See Apple Numerics Manual for information about

numeric data types supported by SANE.

Fix2X

You can use the Fix2X function to convert a Fixed number to an Extended number.

FUNCTION Fix2X (x: Fixed): Extended;

x The Fixed number to be converted to an Extended number.

DESCRIPTION

The Fix2X function returns the Extended equivalent of the Fixed number you supply

in the x parameter.

SPECIAL CONSIDERATIONS

Because the Fix2X function does not move memory, you can call it at interrupt time.

X2Fix

You can use the X2Fix function to convert an Extended number to a Fixed number.

FUNCTION X2Fix (x: Extended): Fixed;

x The Extended number to be converted to a Fixed number.

DESCRIPTION

The X2Fix function returns the best Fixed approximation of the Extended number

you supply in the x parameter. If x is greater than the maximum representable Fixed

number, the X2Fix function returns $7FFFFFFF. If x is less than the negative number

with the highest absolute value, X2Fix returns $80000000.

C H A P T E R 3

Mathematical and Logical Utilities

3-46 Mathematical and Logical Utilities Reference

Frac2X

You can use the Frac2X function to convert a Fract number to an Extended number.

FUNCTION Frac2X (x: Fract): Extended;

x The Fract number to be converted to an Extended number.

DESCRIPTION

The Frac2X function returns the Extended equivalent of the Fract number you

supply in the x parameter.

X2Frac

You can use the X2Frac function to convert an Extended number to a Fract number.

FUNCTION X2Frac (x: Extended): Fract;

x The Extended number to be converted to a Fract number.

DESCRIPTION

The X2Frac function returns the best Fract approximation of the Extended number

you supply in the x parameter. If x is greater than the maximum representable Fract

number, the X2Frac function returns $7FFFFFFF. If x is less than the negative number

with the highest absolute value, X2Frac returns $80000000.

Converting Between Fixed-Point and Integral Values

To convert the quotient of two integers to a Fixed number, you can use the FixRatio

function. To obtain the integral portion of a number of type Fixed, typically you just use

the HiWord function, described on page 3-33. However, you can also use the FixRound

function to obtain the integer nearest a fixed-point number.

FixRatio

You can use the FixRatio function to obtain the Fixed equivalent of a fraction.

FUNCTION FixRatio (numer, denom: Integer): Fixed;

numer The numerator of the fraction.

denom The denominator of the fraction.

C H A P T E R 3

Mathematical and Logical Utilities

Mathematical and Logical Utilities Reference 3-47

DESCRIPTION

The FixRatio function return the Fixed equivalent of the fraction numer/denom.

FixRound

You can use the FixRound function to round a fixed-point number to the nearest integer.

FUNCTION FixRound (x: Fixed): Integer;

x The Fixed number to be rounded.

DESCRIPTION

The FixRound function returns the Integer number nearest the Fixed number you

supply in the x parameter. If the value is halfway between two integers (0.5), it is

rounded up. Thus, 4.5 is rounded to 5, and –3.5 is rounded to –3.

To round a negative Fixed number so that values halfway between two integers are

rounded to the number with the higher absolute value, negate the number, round it,

and then negate it again.

Multiplying 32-bit values

To multiply a 32-bit value and return a 64-bit value, you can use the LongMul procedure.

LongMul

You can use the LongMul procedure to multiply two 32-bit quantities and obtain a 64-bit

quantity.

Procedure LongMul (a, b: LongInt; VAR result: Int64Bit);

a The first operand, which is a variable of type LongInt.

b The second operand, which is a variable of type LongInt.

result A pointer to the returned value.

DESCRIPTION

Given two variables of type LongInt, the LongMul procedure multiplies the two

variables specified in parameter a and b, and returns the value in the variable specified

by the result parameter.

C H A P T E R 3

Mathematical and Logical Utilities

3-48 Summary of the Mathematical and Logical Utilities

Summary of the Mathematical and Logical Utilities

Pascal Summary

Data Types

TYPE

Fixed = LongInt; {fixed-point number}

Fract = LongInt; {fractional number}

Int64Bit = {64-bit integer record}

RECORD

hiLong: LongInt; {high-order long integer}

loLong: LongInt; {low-order long integer}

END;

Routines

Testing and Setting Bits

FUNCTION BitTst (bytePtr: Ptr; bitNum: LongInt): Boolean;

PROCEDURE BitSet (bytePtr: Ptr; bitNum: LongInt);

PROCEDURE BitClr (bytePtr: Ptr; bitNum: LongInt);

Performing Logical Operations

FUNCTION BitAnd (value1, value2: LongInt): LongInt;

FUNCTION BitOr (value1, value2: LongInt): LongInt;

FUNCTION BitXor (value1, value2: LongInt): LongInt;

FUNCTION BitNot (value: LongInt): LongInt;

FUNCTION BitShift (value: LongInt; count: Integer): LongInt;

Getting and Setting Memory Values

FUNCTION HiWord (x: LongInt): Integer;

FUNCTION LoWord (x: LongInt): Integer;

PROCEDURE StuffHex (thingPtr: Ptr; s: Str255);

C H A P T E R 3

Mathematical and Logical Utilities

Summary of the Mathematical and Logical Utilities 3-49

Compressing and Decompressing Data

PROCEDURE PackBits (VAR srcPtr, dstPtr: Ptr; srcBytes: Integer);

PROCEDURE UnpackBits (VAR srcPtr, dstPtr: Ptr; dstBytes: Integer);

Obtaining a Pseudorandom Number

FUNCTION Random : Integer;

Converting Between Angle and Slope Values

FUNCTION SlopeFromAngle (angle: Integer): Fixed;

FUNCTION AngleFromSlope (slope: Fixed): Integer;

Multiplying and Dividing Fixed-Point Numbers

FUNCTION FixMul (a, b: Fixed): Fixed;

FUNCTION FixDiv (a, b: Fixed): Fixed;

FUNCTION FracMul (a, b: Fract): Fract;

FUNCTION FracDiv (a, b: Fract): Fract;

Performing Calculations on Fixed-Point Numbers

FUNCTION FracSqrt (x: Fract): Fract;

FUNCTION FracCos (x: Fixed): Fract;

FUNCTION FracSin (x: Fixed): Fract;

FUNCTION FixATan2 (x, y: LongInt): Fixed;

Converting Among 32-Bit Numeric Types

FUNCTION Long2Fix (x: LongInt): Fixed;

FUNCTION Fix2Long (x: Fixed): LongInt;

FUNCTION Fix2Frac (x: Fixed): Fract;

FUNCTION Frac2Fix (x: Fract): Fixed;

Converting Between Fixed-Point and Floating-Point Values

FUNCTION Fix2X (x: Fixed): Extended;

FUNCTION X2Fix (x: Extended): Fixed;

FUNCTION Frac2X (x: Fract): Extended;

FUNCTION X2Frac (x: Extended): Fract;

Converting Between Fixed-Point and Integral Values
FUNCTION FixRatio (numer, denom: Integer): Fixed;

FUNCTION FixRound (x: Fixed): Integer;

C H A P T E R 3

Mathematical and Logical Utilities

3-50 Summary of the Mathematical and Logical Utilities

Multiplying 32-bit Values

Procedure LongMul (a, b: LongInt; VAR result: Int64Bit);

C Summary

Data Types

typedef long Fixed; /*fixed-point number*/

typedef long Fract; /*fractional number*/

struct Int64Bit { /*64-bit integer record*/

long hiLong; /*high-order long integer*/

long loLong; /*low-order long integer*/

};

typedef struct Int64Bit Int64Bit;

Routines

Testing and Setting Bits

pascal Boolean BitTst (const void *bytePtr, long bitNum);

pascal void BitSet (void *bytePtr, long bitNum);

pascal void BitClr (void *bytePtr, long bitNum);

Performing Logical Operations

pascal long BitAnd (long value1, long value2);

pascal long BitOr (long value1, long value2);

pascal long BitXor (long value1, long value2);

pascal long BitNot (long value);

pascal long BitShift (long value, short count);

Getting and Setting Memory Values

pascal short HiWord (long x);

pascal short LoWord (long x);

pascal void StuffHex (void *thingPtr, ConstStr255Param s);

Compressing and Decompressing Data

pascal void PackBits (Ptr *srcPtr, Ptr *dstPtr, short srcBytes);

C H A P T E R 3

Mathematical and Logical Utilities

Summary of the Mathematical and Logical Utilities 3-51

pascal void UnpackBits (Ptr *srcPtr, Ptr *dstPtr, short dstBytes);

Obtaining a Pseudorandom Number

pascal short Random (void);

Converting Between Angle and Slope Values

pascal Fixed SlopeFromAngle
(short angle);

pascal short AngleFromSlope
(Fixed slope);

Multiplying and Dividing Fixed-Point Numbers

pascal Fixed FixMul (Fixed a, Fixed b);

pascal Fixed FixDiv (Fixed a, Fixed b);

pascal Fract FracMul (Fract a, Fract b);

pascal Fract FracDiv (Fract a, Fract b);

Performing Calculations with Fixed-Point Numbers

pascal Fract FracSqrt (Fract x);

pascal Fract FracCos (Fixed x);

pascal Fract FracSin (Fixed x);

pascal Fixed FixATan2 (long x, long y);

Converting Among 32-Bit Numeric Types

pascal Fixed Long2Fix (long x);

pascal long Fix2Long (Fixed x);

pascal Fract Fix2Frac (Fixed x);

pascal Fixed Frac2Fix (Fract x);

Converting Between Fixed-Point and Floating-Point Values

pascal Extended Fix2X (Fixed x);

pascal Fixed X2Fix (Extended x);

pascal Extended Frac2X (Fract x);

pascal Fract X2Frac (Extended x);

Converting Between Fixed-Point and Integral Values

pascal Fixed FixRatio (short numer, short denom);

pascal short FixRound (Fixed x);

C H A P T E R 3

Mathematical and Logical Utilities

3-52 Summary of the Mathematical and Logical Utilities

Multiplying 32-bit values

Pascal void LongMul (long a, long b, Int64Bit *result);

Global Variables
randSeed The seed to the pseudorandom number generator.

Contents 4-1

C H A P T E R 4

Date, Time, and

Contents

Measurement Utilities

About the Date, Time, and Measurement Utilities 4-3

Date and Time 4-4

Geographic Location and Time Zone 4-7

System of Measurement 4-8

Time Measurement 4-9

Using the Date, Time, and Measurement Utilities 4-9

Getting the Current Date and Time 4-9

Setting the Current Date and Time 4-10

Converting Date-Time Formats 4-12

Calculating Dates 4-14

Working With Different Calendar Systems 4-16

Handling Geographic Location and Time-Zone Data 4-18

Determining the Measurement System 4-21

Determining the Number of Elapsed Microseconds 4-22

Date, Time, and Measurement Utilities Reference 4-23

Data Structures 4-23

The Date-Time Record 4-23

Long Date-Time Value and Long Date-Time Conversion Record 4-25

The Long Date-Time Record 4-26

The Geographic Location Record 4-29

The Toggle Parameter Block 4-30

The Unsigned Wide Record 4-32

Routines 4-32

Getting the Current Date and Time 4-33

Setting the Current Date and Time 4-36

Converting Between Date-Time Formats 4-38

Converting Between Long Date-Time Format 4-40

C H A P T E R 4

4-2 Contents

Modifying and Verifying Long Date-Time Records 4-42

Reading and Writing Location Data 4-46

Determining the Measurement System 4-48

Measuring Time 4-49

Summary of the Date, Time, and Measurement Utilities 4-50

Pascal Summary 4-50

Constants 4-50

Data Types 4-51

Routines 4-53

C Summary 4-54

Constants 4-54

Data Types 4-55

Routines 4-57

Assembly-Language Summary 4-59

Data Structures 4-59

Global Variables 4-60

Result Codes 4-61

C H A P T E R 4

About the Date, Time, and Measurement Utilities 4-3

Date, Time, and Measurement Utilities

This chapter describes a set of utility routines that you can use to operate on dates and

times. You can use these routines to get and change information about the current date,

time, geographic location, time zone, and units of measurement.

The routines described in this chapter return this information in a format that is best

suited to the current script. As a result, you can facilitate localization of your application

by using these date, time, and measurement utilities.

To understand the material in this chapter, you need to be familiar with the international

resources, especially the numeric-format and long-date-format resources, and the Script

Manager. These topics are described in Inside Macintosh: Text. In addition, the chapter

“Text Utilities” in Inside Macintosh: Text describes how to convert date and time

information into strings of text.

Many of the Date, Time, and Measurement Utilities were previously associated with

other managers in the Macintosh system software, and several of these routines have

been renamed. Table 4-4 on page 4-33 shows the original names and locations of the

modified Date, Time, and Measurement Utilities routines.

The next section provides an introduction to the Date, Time, and Measurement Utilities.

About the Date, Time, and Measurement Utilities

You can use the Date, Time, and Measurement Utilities to manipulate the date-time

information and geographic location data used by a Macintosh computer. A Macintosh

computer contains a battery-operated clock chip that maintains

■ the current date-time information

■ the geographic location and related time-zone information

The date-time information is stored in a 4-byte value located on the clock chip.The

geographic location and related time-zone information is stored in extended parameter

RAM. For information on extended parameter RAM, see the chapter “Parameter RAM

Utilities” in this book.

You can use the routines provided by the Date, Time, and Measurement Utilities to

manipulate this information. Specifically, the Date, Time, and Measurement Utilities

provide routines that you can use to

■ get the current date and time

■ set the current date and time, if necessary

■ convert between internal date-time structures

■ get and set the geographic location and time-zone information

■ determine the current measurement system

■ determine the number of elapsed microseconds since system startup

The following sections give an overview of these utilities.

C H A P T E R 4

Date, Time, and Measurement Utilities

4-4 About the Date, Time, and Measurement Utilities

Date and Time
A Macintosh computer contains a battery-operated clock chip that maintains the current

date-time information. This date-time information is expressed, using 4 bytes, as the

number of seconds elapsed since midnight, January 1, 1904. At system startup the

date-time information is copied into low memory and is accessible through the system

global variable Time. System software updates the value of the global variable Time

each second. Doing this is faster than manipulating the clock chip directly.

The Date, Time, and Measurement Utilities provide four data structures that you can use

to access date-time information. You can access date-time information through

■ a standard date-time value that consists of a 32-bit long integer indicating the total
number of seconds elapsed since midnight, January 1, 1904

■ a date-time record that contains fields to indicate the year, month, day, hour, minute,
second, and day of the week

■ a long date-time record that extends the date-time record format by adding fields
for era, day of the year, week of the year, and morning/evening designations (for
example, A.M. and P.M.)

■ a long date-time value that consists of a 64-bit integer, in SANE comp (computational)
format, which also maintains the total number of seconds relative to midnight on
January 1, 1904

To access date-time information as a date and time, you can use a date-time record or a

long date-time record. A date-time record is defined by a data structure of type

DateTimeRec

TYPE DateTimeRec =

RECORD

year: Integer; {year, ranging from 1904 to 2040}

month: Integer; {month, 1 = January and 12 = December}

day: Integer; {day, from 1 to 31}

hour: Integer; {hour, from 0 to 23}

minute: Integer; {minute, from 0 to 59}

second: Integer; {second, from 0 to 59}

dayOfWeek: Integer; {day of the week, 1 = Sunday, }

{ 7 = Saturday}

END;

The year field contains the year of the date, ranging from 1904 to 2040. The month

field contains the month of the year, where a value of 1 equals January and 12 equals

December. The day field contains the number of the day, ranging from day 1 to day 31.

The hour field contains the hour, where the value of 0 equals midnight and 23 equals

11 P.M. The minute field contains the number of minutes, ranging from 0 to 59 minutes.

The second field contains the number of seconds, ranging from 0 to 59 seconds. The

dayOfWeek field specifies the name of the day; a value of 1 equals Sunday and a value

of 7 equals Saturday. For additional information about the fields in a date-time record,

see “The Date-Time Record” beginning on page 4-23.

C H A P T E R 4

Date, Time, and Measurement Utilities

About the Date, Time, and Measurement Utilities 4-5

Note
The date-time record can be used to hold date and time values only for a
Gregorian calendar. The long date-time record, described next, can be
used for a Gregorian calendar as well as other calendar systems. ◆

Because the values in a date-time record are simply a translation of the long integer

containing the number of seconds since midnight, January 1, 1904, the data structure

suffers the same limitation as the long integer representation: after the long integer has

reached its maximum value of $FFFFFFFF, it resets to 0. Therefore, the date-time record

can track dates and times only between midnight on January 1, 1904 and 6:28:15 A.M. on

February 6, 2040.

For some applications, this range might be inadequate. For example, a hotel

management application might need to let managers book reservations for customers

who think ahead to 2050, or a history multimedia application might need to track dates

in the first century B.C. If your application needs to track dates and times beyond the

range supported by the date-time record, you must use a long date-time record. A long

date-time record is defined by a data structure of type LongDateRec

TYPE LongDateRec =

RECORD

CASE Integer OF

0:

(era: Integer; {era}

year: Integer; {year, from 30081 B.C. to 29940 A.D}

month: Integer; {month, 1 = January and }

{ 12 = December}

day: Integer; {day, from 1 to 31}

hour: Integer; {hour, from 0 to 23}

minute: Integer; {minute, from 0 to 59}

second: Integer; {second, from 0 to 59}

dayOfWeek: Integer; {day of the week, 1= Sunday, }

{ 7 = Saturday}

dayOfYear: Integer; {day of the year, 1 to 365}

weekOfYear: Integer; {week of the year, 1 to 52}

pm: Integer; {which half of day--0 for }

{ morning, 1 for evening}

res1: Integer; {reserved}

res2: Integer; {reserved}

res3: Integer); {reserved}

1:

{index by LongDateField}

(list: ARRAY [0..13] OF Integer);

2:

(eraAlt: Integer; {era}

C H A P T E R 4

Date, Time, and Measurement Utilities

4-6 About the Date, Time, and Measurement Utilities

{date-time record}

oldDate: DateTimeRec);

END;

You can use a long date-time record for three purposes: to access a date and time, to

specify which of the fields in a long date-time record to verify, and to convert a date

and time represented by a date-time record into a date and time represented by a long

date-time record.

IMPORTANT

The long date-time record covers a much longer time span (30,000 B.C. to
30,000 A.D.) than the date-time record. In addition, the long date-time
record allows conversions to different calendar systems, such as a lunar
calendar. ▲

A long date time-record includes all of the fields available in a date-time record

in addition to fields that describe the era, day of the year, week of the year, and

morning /evening designations (for example, A.M. and P.M.). The era field contains the

era: a value of 0 represents A.D., and –1 represents B.C. The dayOfYear field contains a

number that represents a day of a year. For example, the value 300 equals the 300th day

of a year. The weekOfYear field contains a week number. The pm field contains the

morning or evening half of the 24-hour day cycle, where a value of 0 represents

the morning (for example, A.M.) and 1 represents the evening (for example, P.M.).

The list field contains an array of values that indicate which of the fields in a long

date-time record need to be verified.

The eraAlt field, which indicates the era, and the oldDate field, which contains

a date-time record, are used only for conversion from a date-time record to a long

date-time record. For additional information about the fields in the long date-time

record, see “The Long Date-Time Record” beginning on page 4-26.

Note that if you specify, in either record, a value in the month, day, hour, minute,

or second field that exceeds the maximum value allowed for that field (for example,

a value larger than 23 for the hour field), the result is a wraparound to a future date

and time when you modify the date-time format. Suppose you set the year field in a

date-time record to a value greater than 2040, for example 2045. When you modify the

date-time format, you get a value of 1909, because the value 2045 caused a wraparound

to 1904 plus 5, the number of years over 2040. See “Calculating Dates” beginning on

page 4-14 to see how you can use a wraparound to calculate and retrieve information

about a specific date.

Note

To present a date and time value as a date and time text string, you need
to use the Text Utilities routines. For a complete description of these
routines, see Inside Macintosh: Text. ◆

A user can set the current date-time information by using the General Controls control

panel, the Date & Time control panel, or the Alarm Clock. After the user sets the new

C H A P T E R 4

Date, Time, and Measurement Utilities

About the Date, Time, and Measurement Utilities 4-7

date and time, this new date and time is written to the clock chip, and the global variable

Time is updated to reflect the new date and time. Figure 4-1 illustrates how a user might

change the date, using the Date & Time control panel.

Figure 4-1 The Date & Time control panel

Geographic Location and Time Zone
Geographic location and related time-zone information are stored in the Macintosh

parameter RAM (extended parameter RAM). System software provides routines that

allow you to read this information and, if necessary, make changes to it and then store

the new settings in the parameter RAM (extended parameter RAM).

You can read and store values for

■ latitude

■ longitude

■ daylight saving time (DST)

■ Greenwich mean time (GMT)

The Map control panel allows the user to get geographic location and time-zone

information. Figure 4-2 shows the Map control panel.

Figure 4-2 The Map control panel

C H A P T E R 4

Date, Time, and Measurement Utilities

4-8 About the Date, Time, and Measurement Utilities

The Map control panel specifies latitude and longitude, computation of Greenwich mean

time for international time specification (shown as the Time Zone information), and

computation of the distance and time difference between the current location (in this

case, the location of the user’s computer is Cupertino, California) and an arbitrary city

(in this case, Copenhagen, Denmark).

See “Handling Geographic Location and Time-Zone Data” beginning on page 4-18, to

see how you can use Date, Time, and Measurement Utilities routines to work with the

geographic location and time-zone information.

System of Measurement
The Date, Time, and Measurement Utilities provide a routine (the IsMetric function)

that you can use to determine the type of measurement used by the current script

system. The system software supports two types of measurement systems:

■ the International System of Units (also called the metric system)—for example
centimeters, kilometers, milligrams, degrees Celsius, and so on.

■ the English system of measurement (also called the British or British imperial
system)—for example, inches, miles, ounces, degrees Fahrenheit, and so on.

The measurement information is stored in the numeric-format resource (resource

type 'itl0') of a script system. The IsMetric function determines whether the

current script system uses the International System of Units or the English system of

measurement by examining the 'itl0' resource. Figure 4-3 depicts the window ResEdit

displays for a numeric-format resource. Note that in the bottom of the figure the metric

box is unchecked, indicating that the script system associated with this 'itl0' resource

uses the English system of measurement.

Figure 4-3 The numeric-format resource (resource type 'it10')

C H A P T E R 4

Date, Time, and Measurement Utilities

Using the Date, Time, and Measurement Utilities 4-9

Time Measurement
The Date, Time, and Measurement Utilities provide a routine (the Microseconds

procedure) that you can use to measure the number of microseconds that have

elapsed since system startup. The Microseconds procedure is not effected by any

user-specified changes to the date and time information, that is, a user can modify

the current date-time information without effecting the value returned by the

Microseconds procedure.

The number of microseconds elapsed is returned in a 64-bit unsigned integer, specified

by the unsigned wide record. An unsigned wide record is defined by a data structure of

type UnsignedWide.

TYPE UnsignedWide =

PACKED RECORD

hi: LongInt; {high-order 32 bits}

lo: LongInt; {low-order 32 bits}

END;

Using the Date, Time, and Measurement Utilities

This section describes how to

■ get the current date and time

■ set the current date and time

■ calculate days and dates mathematically

■ convert between date-time formats

■ convert to different calendar systems

■ read and store geographic location and time-zone data

■ determine which measurement system to use

■ determine the number of elapsed microseconds

Getting the Current Date and Time
The Date, Time, and Measurement Utilities provide

■ a function—ReadDateTime—that system software uses at system startup time to
copy the current date-time information from the clock chip into low memory. This
low-memory copy of the current date-time is accessible through the global variable
Time. You application should never need to use this function.

■ two procedures —GetDateTime and GetTime—that allow you to access the current
date-time information stored in the global variable Time.

C H A P T E R 4

Date, Time, and Measurement Utilities

4-10 Using the Date, Time, and Measurement Utilities

You can access the date-time information through a date-time record, representing

the date and time, or you can access the date-time information through a standard

date-time value, a 32-bit integer representing the number of seconds since midnight,

January 1, 1904.

To obtain the current date-time information, you can use the GetDateTime and

GetTime procedures. The GetDateTime procedure requires that you pass it a standard

date-time value as a parameter. Listing 4-1 shows how you can get the current date-time

information, expressed as a number of seconds. The application-defined procedure

MyCurrentDateTimeInt returns in the long integer the number of seconds elapsed

since midnight, January 1, 1904.

Listing 4-1 Getting the current date and time with the GetDateTime procedure

PROCEDURE MyCurrentDateTimeInt (VAR myStandardDateTime: LongInt);

BEGIN

GetDateTime(myStandardDateTime);

END;

The GetTime procedure requires that you pass it a date-time record as a parameter, and

it fills in the fields of this record appropriately. Listing 4-2 shows how you can get the

current date-time information, expressed as a date and time. The application-defined

procedure MyCurrentDateTimeRec returns in the fields of the date-time record the

current date and time.

Listing 4-2 Getting the current date and time with the GetTime procedure

PROCEDURE MyCurrentDateTimeRec (VAR myDateTime: DateTimeRec);

BEGIN

GetTime(myDateTime);

END;

If you need to access the date-time information through a long date-time value or a long

date-time record, see “Converting Date-Time Formats” beginning on page 4-12 for more

information about converting date-time formats.

Setting the Current Date and Time
Your application can change the current date-time information stored in both the system

global variable Time and in the clock chip by calling either the SetDateTime function

or the SetTime procedure. The SetDateTime function requires a 32-bit integer as a

parameter. The SetTime procedure requires a date-time record as a parameter.

C H A P T E R 4

Date, Time, and Measurement Utilities

Using the Date, Time, and Measurement Utilities 4-11

Note
If you are using formats other than a date-time value or a date-time
record to access date-time information, you must first convert these
formats into a standard date-time value or a date-time record before
you can write the new date-time information to the clock chip. See
“Converting Date-Time Formats” beginning on page 4-12 for more
information about converting date-time formats. ◆

Listing 4-3 shows an application-defined function that uses the SetDateTime function

to change the current date and time to 5:50 A.M. on April 5, 1994.

Listing 4-3 Changing the current date and time with the SetDateTime function

FUNCTION MyChangeDateTimeInt: OSErr;

VAR

myDateTimeInt: LongInt;

myErr: OSErr;

BEGIN

myDateTimeInt := $A9C6AC88;

myErr := SetDateTime(myDateTimeInt);

END;

Listing 4-4 shows an application-defined procedure that uses the SetTime function to

change the current date and time to 5:50 A.M. on April 5, 1994.

Listing 4-4 Changing the current date and time with the SetTime function

PROCEDURE MyChangeDateTimeRec;

VAR

myDateTimeRec: DateTimeRec;

myErr: OSErr;

BEGIN

WITH myDateTimeRec DO

BEGIN

year := 1994;

month := 4;

day := 5;

hour := 5;

minute := 50;

second := 0;

dayOfWeek := 3;

END;

SetTime(myDateTimeRec);

END;

C H A P T E R 4

Date, Time, and Measurement Utilities

4-12 Using the Date, Time, and Measurement Utilities

IMPORTANT

Users can change the current date and time stored in both the system
global variable Time and in the clock chip by using the General Controls
control panel, Date & Time control panel, or the Alarm Clock desk
accessory. In general, your application should not directly change the
current date-time information. If your application does need to modify
the current date-time information, it should instruct the user how to
change the date and time. ▲

Converting Date-Time Formats
The Date, Time, and Measurement Utilities provide four routines—

the DateToSeconds, SecondsToDate, LongDateToSeconds, and

LongSecondsToDate procedures—that you can use to convert date-time

formats. You can convert a date and time to a number of seconds and a number

of seconds to a date and time.

Note that when you call one of these routines, system software uses

the DateToSeconds, SecondsToDate, LongDateToSeconds, and

LongSecondsToDate procedures provided by the current script system.

Note

The routines that convert between time formats assume that each day
contains 86,400 seconds. Occasionally (approximately once each two
years) astronomers add a second to either June 31 or December 31 to
compensate for imperfections in the earth’s rotation. If you need to
compute the exact number of seconds between two points in time, you
might need to take these occasional additions into account. The routines
that convert between formats are designed not to provide astronomical
accuracy, but merely to convert data between one data structure and
another. ◆

If you use a standard date-time value or a date-time record to access date-time

information, you can use the SecondsToDate procedure to convert a number of

seconds to a date and time, and the DateToSeconds procedure to convert a date

and time to a number of seconds. Listing 4-6 shows an application-defined procedure,

MyConvertSecondsAndDates, that uses the SecondsToDate and DateToSeconds

procedures to manipulate the date-time information. After calling the GetDateTime

procedure, MyConvertSecondsAndDates calls the SecondsToDate procedure to

convert the number of seconds (returned by the GetDateTime procedure) to a date and

time. The MyConvertSecondsAndDates procedure manipulates the year field in the

date-time record and then calls DateToSeconds to convert the date and time back into

a number of seconds. The SetDateTime procedure writes the new date-time

information to the clock chip.

C H A P T E R 4

Date, Time, and Measurement Utilities

Using the Date, Time, and Measurement Utilities 4-13

Listing 4-5 Manipulating date-time information

PROCEDURE MyConvertSecondsAndDates;

VAR

myDateTimeRec: DateRec;

mySeconds: DateTime;

myErr: OSErr;

BEGIN

GetDateTime(mySeconds);

SecondsToDate(mySeconds, myDateTimeRec);

WITH myDateTimeRec DO

year := year + 1;

DateToSeconds (myDateTimeRec, mySeconds);

myErr := SetDateTime(mySeconds);

END;

If you access date-time information through a long date-time value or a long date-time

record, you can use the LongSecondsToDate procedure to convert a number of

seconds to a date and time and use the LongDateToSeconds procedure to convert

a date and time to a number of seconds.

If the type of data structure that you are using to access date-time information is

insufficient, you can use a different date-time structure.

■ To access a number of seconds through a long date-time value instead of a standard
date-time value, set the lHigh field of a long date-time conversion record (described
on page 4-25) to 0 and the lLow field to the total number of seconds since midnight,
January 1, 1904. Then copy the value of the c field into a variable of type
LongDateTime.

■ To access a date and time through a long date-time record instead of a date-time
record, set the oldDate field of the LongDateRec to the date-time record, and set the
eraAlt field to 0, indicating that the date you have specified is A.D.

■ To access a number of seconds through a standard date-time value instead of a long
date-time value, truncate the long date-time value to just the low-order 32 bits. The
year of the date being converted must fall within 1904 to 2040 of the Gregorian
calendar.

This type of conversion is important when you work with a script system that uses a
calendar system other than the Gregorian. Because you cannot write a long date-time
value to the clock chip, you must first convert the long date-time value (if possible) to
a standard date-time value. See “Working With Different Calendar Systems”
beginning on page 4-16 for more information about calendar systems.

■ To access a date and time through a date-time record instead of a long date-time
record, truncate the long date-time record so just the year through dayOfWeek fields
are left. Once again, the year of the date being converted must fall within 1904 to 2040
of the Gregorian calendar.

C H A P T E R 4

Date, Time, and Measurement Utilities

4-14 Using the Date, Time, and Measurement Utilities

■ To access date-time information through a long date-time value instead of a date-time
record, use the DateToSeconds procedure to convert the date and time to a number
of seconds. Then set the lHigh field of a long date-time conversion record (described
on page 4-25) to 0 and the lLow field to the total number of seconds since midnight,
January 1, 1904.

■ To access date-time information through a long date-time record (described on
page 4-26) instead of a standard date-time value, use the SecondsToDate procedure
to translate the number of seconds to a date and time. Then set the oldDate field of
the long date-time record to the date-time record, and set the eraAlt field to 0.

■ To access date-time information through a date-time value instead of long date-time
record, use the LongDateToSeconds procedure to translate the date and time to a
number of seconds. Then truncate the long date-time value (returned by the
LongDateToSeconds procedure) to just the low-order 32 bits. The year of the date
being converted must fall within 1904 to 2040 in the Gregorian calendar.

The Gregorian calendar is the default for converting to and from the long date-time

forms. The current range allowed in conversion is roughly 30,000 B.C. to 30,000 A.D.

To present a date and time value as a date and time text string, you need to use Text

Utilities routines, such as the DateString, TimeString, StringToDate,

StringToTime, LongDateString, and LongTimeString routines. (Note that the

date-string conversion routines do not append strings for A.D. or B.C.) For a complete

description of these routines, see Inside Macintosh: Text.

Calculating Dates
In the date-time record and long date-time record, any value in the month, day, hour,

minute, or second field that exceeds the maximum value allowed for that field, will

cause a wraparound to a future date and time when you modify the date-time format.

■ In the month field, values greater than 12 cause a wraparound to a future year and
month.

■ In the day field, values greater than the number of days in a given month cause a
wraparound to a future month and day.

■ In the hour field, values greater than 23 cause a wraparound to a future day and hour.

■ In the minute field, values greater than 59 cause a wraparound to a future hour and
minute.

■ In the seconds field, values greater than 59 cause a wraparound to a future minute
and seconds.

You can use these wraparound facts to calculate and retrieve information about a specific

date. For example, you can use a date-time record and the DateToSeconds and

SecondsToDate procedures to calculate the 300th day of 1994. Set the month field of

the date-time record to 1 and the year field to 1994. To find the 300th day of 1994, set the

day field of the date-time record to 300. Initialize the rest of the fields in the record to

values that do not exceed the maximum value allowed for that field. (Refer to the

description of the date-time record on page 4-23 for a complete list of possible values).

C H A P T E R 4

Date, Time, and Measurement Utilities

Using the Date, Time, and Measurement Utilities 4-15

To force a wrap-around, first convert the date and time (in this example, January 1, 1994)

to the number of seconds elapsed since midnight, January 1, 1904 (by calling the

DateToSeconds procedure). Once you have converted the date and time to a number

of seconds, you convert the number of seconds back to a date and time (by calling the

SecondsToDate procedure). The fields in the date-time record now contain the values

that represent the 300th day of 1994. Listing 4-6 shows an application-defined procedure

that calculates the 300th day of the Gregorian calendar year using a date-time record.

Listing 4-6 Calculating the 300th day of the year

PROCEDURE MyCalculate300Day;

VAR

myDateTimeRec: DateTimeRec;

mySeconds: LongInt;

BEGIN

WITH myDateTimeRec DO

BEGIN

year := 1994;

month := 1;

day := 300;

hour := 0;

minute := 0;

second := 0;

dayOfWeek := 1;

END;

DateToSeconds (myDateTimeRec, mySeconds);

SecondsToDate (mySeconds, myDateTimeRec);

END;

The DateToSeconds procedure converts the date and time to the number of seconds

elapsed since midnight, January 1, 1904, and the SecondsToDate procedure converts

the number of seconds back to a date and time. After the conversions, the values in the

year, month, day, and dayOfWeek fields of the myDateTimeRec record represent the

year, month, day of the month, and day of the week for the 300th day of 1994. If the

values in the hour, minute, and second fields do not exceed the maximum value

allowed for each field, the values remain the same after the conversions (in this example,

the time is exactly 12:00 A.M.).

Similarly, you can use a long date-time record and the LongDateToSeconds and

LongSecondsToDate procedures to compute the day of the week corresponding to a

given date. Listing 4-7 shows an application-defined procedure that computes and

retrieves the name of the day for July 4, 1776. Note that because the year is prior to 1904,

it is necessary to use a long date-time record.

C H A P T E R 4

Date, Time, and Measurement Utilities

4-16 Using the Date, Time, and Measurement Utilities

Listing 4-7 Computing the day of the week

PROCEDURE DoDayCalc;

VAR

myLongDateRec: LongDateRec;

myLongSeconds: LongDateTime;

myDayOfWeek: Integer;

BEGIN

WITH myLongDateRec DO

BEGIN

era := 0; /*initialize era field*/

year := 1776;

month := 7;

day := 4;

hour := 0; /*initialize hour field*/

minute := 0; /*initialize minute field*/

second := 0; /*initialize second field*/

dayOfWeek := 1; /*initialize dayOfWeek field*/

dayOfYear := 1; /*initialize dayOfYear field*/

weekOfYear := 1; /*initialize weekOfYear field*/

pm := 1; /*initialize pm field*/

END;

LongDateToSeconds (myLongDateRec, myLongSeconds);

LongSecondsToDate (myLongSeconds, myLongDateRec);

myDayOfWeek := myLongDateRec.dayOfWeek;

END;

The LongDateToSeconds procedure converts the date and time to the number of

seconds, and the LongSecondsToDate procedure converts the number of seconds back

to a date and time. After the conversions, the value in the dayOfWeek field of the

myLongDateRec record represent the day of the week corresponding to July 4, 1776. If

the values in the hour, minute, and second fields do not exceed the maximum value

allowed for each field, the values remain the same after the conversions (in this example,

the time is exactly 12:00 A.M.). The values in the dayOfYear, weekOfYear, and pm fields

correspond to the date July 4, 1776 and the time 12:00 A.M.

Working With Different Calendar Systems
The additional fields and wider ranges allowed by the long date-time record can help

you to do calculations and conversions for different calendar systems. For example, the

date January 1, 1993 in the Gregorian calendar year converts to 7 Rajab 1413 in the

Arabic Civil Lunar Calendar (CLC) and 4 Tevet 5753 in the Jewish calendar; the years

1413 and 5753 are outside of the year field’s range in the date-time record.

C H A P T E R 4

Date, Time, and Measurement Utilities

Using the Date, Time, and Measurement Utilities 4-17

Note
Depending on the country, the change from the Julian calendar to the
Gregorian calendar occurred in different years. In western European
countries, the change occurred in 1582; in Russia, the calendar changed
in 1918. In these countries, dates before the calendar change should use
the Julian calendar for conversion. (The Julian calendar differs from the
Gregorian calendar by three days every four centuries.) ◆

In addition, the beginning of the year for one calendar system falls on different dates in

other calendar systems. Table 4-1 shows the equivalent dates for the first day of the

calendar year in the Gregorian, Arabic CLC, and Jewish calendars.

Converting from one calendar system to another produces different values in the

dayOfYear and weekOfYear fields of a long date-time record. For example, assuming

all the data for the date 1 Muharram 1414 is correctly put into a long date-time record,

the dayOfYear field value is 1, and the weekOfYear value is also 1. Converting this

date to the Gregorian calendar results in June 20, 1993. The dayOfYear field value is

then 171, and the weekOfYear value is 26. Table 4-2 shows these values.

Note

Language-specific information, such as the name of the day, name of
the month, and so on, are stored in the international resources. The
international resources are provided by a script system, and the
information in these resources varies according to the language
associated with the script system. ◆

Table 4-3 shows how some of the fields in the long date-time record are set to show the

first day of the year 1414 in the Arabic CLC and the equivalent dates in the Gregorian

and Jewish calendars.

Table 4-1 Equivalent dates in the Gregorian, Arabic CLC, and Jewish calendars

Gregorian calendar Arabic CLC Jewish calendar

January 1, 1993 7 Rajab 1413 4 Tevet 5753

June 20, 1993 1 Muharram 1414 1 Tammuz 5753

September 16, 1993 29 Rabi I 1414 1 Tishri 5754

Table 4-2 Values for the dayOfYear and weekOfYear fields for the date 1 Muharram 1414
and equivalent values in the Gregorian calendar

LongDateRec field Arabic CLC Gregorian calendar

dayOfYear 1 171

weekOfYear 1 26

C H A P T E R 4

Date, Time, and Measurement Utilities

4-18 Using the Date, Time, and Measurement Utilities

Note

The Arabic script system supports two lunar calendars: the astronomical
lunar calendar (ALC) and the civil lunar calendar (CLC). The Macintosh
user may choose either of the Arabic calendars or the Gregorian
calendar by clicking buttons in the Arabic Calendar control panel.

The Hebrew script system supports the Jewish calendar besides the
Gregorian calendar.

For more information on the different calendar systems supported
by localized versions of the Macintosh system software, see
Guide to Macintosh Software Localization. ◆

For calendars that have more than seven day names and 12 month names (for example,

the Jewish calendar sometimes has 13 months), you use the 'itl1' resource, defined by

the Itl1ExtRec data type. To get more information on the format of the 'itl1'

resource, see the appendix “International Resources” in Inside Macintosh: Text.

Handling Geographic Location and Time-Zone Data

Geographic locations and time zones can affect date and time information. For example,

time-zone information can be used to derive the Greenwich mean time (GMT) at which

a document or mail message was created. With this information, when the document is

received by an application or user in a different time zone, the creation date and time are

correct. Otherwise, documents can appear to be created after they are read (for example,

a user creates a message in Tokyo on Tuesday and sends it to San Francisco, where it is

received and read on Monday). Geographic location information can also be used by

applications that require it.

The geographic location and time-zone information for a particular Macintosh

computers are stored in parameter RAM. You can work with this information through

the ReadLocation and WriteLocation procedures. These procedures use the

Table 4-3 Comparison of settings in fields of the long date-time record for Arabic CLC,
Gregorian, and Jewish calendars

Field of a long
date-time record Arabic CLC calendar Gregorian calendar Jewish calendar

era 0 0 0

year 1413 1993 5753

month 1 6

day 1 21

…

dayOfWeek 4 2 3

dayOfYear 1 172

weekOfYear 1 26

C H A P T E R 4

Date, Time, and Measurement Utilities

Using the Date, Time, and Measurement Utilities 4-19

geographic location record (of date type MachineLocation) to help you read and store

latitude, longitude, daylight saving time (DST), and GMT values.

TYPE MachineLocation = {geographic location record}

RECORD

latitude: Fract; {latitude}

longitude: Fract; {longitude}

CASE Integer OF

0:

(dlsDelta: SignedByte); {daylight saving time}

1:

(gmtDelta: LongInt); {Greenwich mean time}

END;

The daylight savings time value is a signed byte value that you can use to specify the

offset for the hour field—whether to add 1 hour, subtract 1 hour, or make no change

at all.

The Greenwich mean time value is in seconds east of GMT. For example, San Francisco

is at –28,800 seconds (8 hours * 3,600 seconds per hour) east of GMT.

If the geographic location record has never been set, all fields contain 0.

Generally, latitude and longitude are measured in degrees. These values also can be

thought of as fractions of a great circle.

Latitude and longitude information is stored in the geographic location record as values

of type Fract. These values give accuracy to within 1 foot, which should be sufficient

for most purposes. For example, the Fract value 1.0 equals 90 degrees; –1.0 equals

–90 degrees; and –2.0 equals –180 degrees.

To store latitude and longitude values, you need to convert them first to the Fixed data

type, then to the Fract data type. You can use the Operating System Utilities routines

Long2Fix and Fix2Fract to accomplish this task. Listing 4-8 is an application-defined

procedure that converts San Francisco’s latitude and longitude to Fract values, then

writes the Fract values to parameter RAM using the WriteLocation procedure.

Listing 4-8 Converting latitude and longitude to Fract values

PROCEDURE MyConvertLatLong;

VAR

myLatitude, myLongitude: LongInt;

fixedLatitude, fixedLongitude: Fixed;

latFract, longFract: Fract;

myLocation: MachineLocation;

BEGIN

myLatitude:= 37.48; {degrees latitude}

myLongitude:= 122.24; {degrees longitude}

C H A P T E R 4

Date, Time, and Measurement Utilities

4-20 Using the Date, Time, and Measurement Utilities

{convert from long to fixed data type}

fixedLatitude:= Long2Fix(myLatitude);

fixedLongitude:= Long2Fix(myLongitude);

{convert from fixed to Fract data type}

latFract:= Fix2Frac(fixedLatitude);

longFract:= Fix2Frac(fixedLongitude);

{write latitude and logitude to myLocation}

myLocation.latitude:= latFract;

myLocation.longitude:= longFract;

{write latitude and longitude to parameter RAM}

WriteLocation(myLocation);

END;

To read the latitude and longitude values from parameter RAM, you use the

ReadLocation procedure. To convert these values to a degrees format, you need to

convert the Fract values first to the Fixed data type, then to the LongInt data type.

You can use the Mathematical and Logical Utilities routines Fract2Fix and Fix2Long

to accomplish this task. (For more information on the Fract data type and the

conversion routines Long2Fix, Fix2Fract, Fract2Fix, and Fix2Long, see the

chapter “Mathematical and Logical Utilities” in this book.)

The gmtDelta field of the geographic location record is a 3-byte value contained in a

long word, so you must take care to get and set it properly. Listing 4-9 shows an

application-defined function for obtaining the value of gmtDelta.

Listing 4-9 Getting gmtDelta

FUNCTION MyGetGmtDelta (myLocation: MachineLocation): LongInt;

VAR

internalGmtDelta: LongInt;

BEGIN

WITH myLocation DO

BEGIN

internalGmtDelta := BitAnd(gmtDelta, $00FFFFFF);

IF BitTst(internalGmtDelta, 23) THEN

{test sign extend bit}

internalGmtDelta := BitOr(internalGmtDelta, $FF000000);

MyGetGmtDelta := internalGmtDelta;

END;

END;

C H A P T E R 4

Date, Time, and Measurement Utilities

Using the Date, Time, and Measurement Utilities 4-21

When writing gmtDelta, you should preserve the value of dlsDelta. Listing 4-10

shows an application-defined procedure that writes gmtDelta while preserving the

value of dlsDelta.

Listing 4-10 Setting gmtDelta

PROCEDURE MySetGmtDelta (VAR myLocation: Location;

 myGmtDelta: LongInt);

VAR

tempSignedByte: SignedByte;

BEGIN

WITH myLocation DO

BEGIN

tempSignedByte := dlsDelta; {preserve dlsDelta}

gmtDelta := myGmtDelta; {write gmtDelta}

dlsDelta := tempSignedByte; {restore dlsDelta}

END;

END;

Note that you should mask off the top byte of the long word containing gmtDelta

because it is reserved.

Determining the Measurement System

To implement measuring devices in applications, such as rulers in a word processor

or in drawing applications, you need to determine which measurement system your

application should use. You can use the IsMetric function to determine if the

measurement system needs to be the metric system or the English system. The

IsMetric function reads the numeric-format resource (resource type 'itl0') of

the current script system to determine whether the user is using the metric system

or the English system.

Listing 4-11 shows an application-defined procedure that uses the result of the

IsMetric function to determine which application-defined ruler setup to use for a

document window.

Listing 4-11 Getting the current units of measurement

PROCEDURE DoRuler (window: WindowPtr);

VAR

myMeasure: BOOLEAN; {response returned by IsMetric}

BEGIN

myMeasure := IsMetric;

IF myMeasure = TRUE THEN {metric system is default}

C H A P T E R 4

Date, Time, and Measurement Utilities

4-22 Using the Date, Time, and Measurement Utilities

DoMetricRulerSetup {set up metric system ruler}

ELSE

DoEnglishRulerSetup; {set up English system ruler}

END;

If you want to use a measurement system different from that of the current script, you

need to override the value of the metricSys field in the current numeric-format

resource (resource type 'itl0'). You can do this by using your own version of the

numeric-format resource instead of the current script system’s default international

resources. See the chapter “Script Manager” in Inside Macintosh: Text for information on

how to replace a script system’s default international resources.

Determining the Number of Elapsed Microseconds

Your application can use the Microseconds procedure to obtain the number of

elapsed microseconds since system startup time. You can use the value returned by

the Microseconds procedure to time an event. For example, Listing 4-11 shows an

application-defined function MyEventTimer that computes and returns the time it takes

to execute an application-defined procedure DoMyEvent. The application-defined

function MyCalulateElapsedTime function uses the returned value of the

Microseconds procedure to compute the time it takes to execute the

DoMyEvent procedure.

Listing 4-12 Timing an event using the Microseconds procedure

FUNCTION MyEventTimer: UnsignedWide;

VAR

myStartTime:UnsignedWide;

myEndTime: UnsignedWide;

BEGIN

Microseconds(&myStartTime);

DoMyEvent;

Microseconds(&myEndTime);

MyEventTimer := MyComputeElapsedTime(&myStartTime, &myEndTime);

END;

Because there is no compiler support for 64-bit integers, you must write an

application-defined routine that calculates the elapsed time; you cannot obtain the

elapsed time by subtracting the value in the myStartTime parameter from the value in

the myEndTime parameter.

C H A P T E R 4

Date, Time, and Measurement Utilities

Date, Time, and Measurement Utilities Reference 4-23

Date, Time, and Measurement Utilities Reference

This section describes the data structures and routines that are specific to the Date,

Time, and Measurement Utilities. The section “Data Structures” shows the Pascal data

structures for the date-time record, long date-time record, standard date-time value, long

date-time value, and more. The section “Routines” describes the routines you can use to

read, write, and manipulate date-time information.

Data Structures

This section describes the data structures that you use to exchange information with the

Date, Time, and Measurement Utilities.

The Date-Time Record

The date-time record describes the date-time information as a date and time. The Date,

Time, and Measurement Utilities use a date-time record to read and write date-time

information to and from the clock chip. The DateTimeRec data type defines the

date-time record.

Note

The date-time record can be used to hold date and time values only for a
Gregorian calendar. The long date-time record (described on page 4-26)
can be used for a Gregorian calendar as well as other calendar
systems. ◆

TYPE DateTimeRec =

RECORD

year: Integer; {year, ranging from 1904 to 2040}

month: Integer; {month, 1= January and 12 = December}

day: Integer; {day of the month, from 1 to 31}

hour: Integer; {hour, from 0 to 23}

minute: Integer; {minute, from 0 to 59}

second: Integer; {second, from 0 to 59}

dayOfWeek: Integer; {day of the week, 1 = Sunday, }

{ 7 = Saturday}

END;

Field descriptions

year The year, ranging from 1904 to 2040. Note that to indicate the year
1984, this field would store the integer 1984, not just 84. This field
accepts input of 0 or negative values, but these values produce
unpredictable results in the year, month, and day fields when you

C H A P T E R 4

Date, Time, and Measurement Utilities

4-24 Date, Time, and Measurement Utilities Reference

use the SecondsToDate and DateToSeconds procedures. In
addition, using SecondsToDate and DateToSeconds with year
values greater than 2040 causes a wraparound to 1904 plus the
number of years over 2040. For example, setting the year to 2045
returns a value of 1909, and the other fields in this record return
unpredictable results.

month The month of the year, where 1 represents January, and 12
represents December. Values greater than 12 cause a wraparound to
a future year and month. This field accepts input of 0 or negative
values, but these values produce unpredictable results in the year,
month, and day fields when you use the SecondsToDate and
DateToSeconds procedures.

day The day of the month, ranging from 1 to 31. Values greater than the
number of days in a given month cause a wraparound to a future
month and day. This feature is useful for working with leap years.
For example, the 366th day of January in 1992 (1992 was a leap year)
evaluates as December 31, 1992, and the 367th day of that year
evaluates as January 1, 1993.

This field accepts 0 or negative values, but when you use the
SecondsToDate and DateToSeconds procedures, a value of 0 in
this field returns the last day of the previous month. For example, a
month value of 2 and a day value of 0 return 1 and 31, respectively.

Using SecondsToDate and DateToSeconds with a negative
number in this field subtracts that number of days from the last day
in the previous month. For example, a month value of 5 and a day
value of –1 return 4 for the month and 29 for the day; a month value
of 2 and a day value of –15 return 1 and 16, respectively.

hour The hour of the day, ranging from 0 to 23, where 0 represents
midnight and 23 represents 11:00 P.M. Values greater than 23 cause a
wraparound to a future day and hour. This field accepts input of
negative values, but these values produce unpredictable results in
the month, day, hour, and minute fields you use the
SecondsToDate and DateToSeconds procedures.

minute The minute of the hour, ranging from 0 to 59. Values greater than 59
cause a wraparound to a future hour and minute. When you use the
SecondsToDate and DateToSeconds procedures, a negative
value in this field has the effect of subtracting that number from the
beginning of the given hour. For example, an hour value of 1 and a
minute value of –10 return 0 hours and 50 minutes. However, if the
negative value causes the hour value to be less than 0, for example
hour = 0, minute = –61, unpredictable results occur.

second The second of the minute, ranging from 0 to 59. Values greater than
59 cause a wraparound to a future minute and second. When you
use the SecondsToDate and DateToSeconds procedures, a
negative value in this field has the effect of subtracting that number
from the beginning of the given minute. For example, a minute
value of 1 and a second value of –10 returns 0 minutes and 50
seconds. However, if the negative value causes the hour value to be

C H A P T E R 4

Date, Time, and Measurement Utilities

Date, Time, and Measurement Utilities Reference 4-25

less than 0, for example hour = 0, minute = 0, and second = –61,
unpredictable results occur.

dayOfWeek The day of the week, where 1 indicates Sunday and 7 indicates
Saturday. This field accepts 0, negative values, or values greater
than 7. When you use the SecondsToDate and DateToSeconds
procedures, you get correct values because this field is
automatically calculated from the values in the year, month, and
day fields.

Long Date-Time Value and Long Date-Time Conversion Record

The long date-time value specifies the date and time as seconds relative to midnight,

January 1, 1904. But where the standard date-time value is an unsigned, 32-bit long

integer, the long date-time value is a signed, 64-bit integer in SANE comp format. This

format lets you use dates and times with a much longer span—roughly 500 billion years.

You can use this value to represent dates and times prior to midnight, January 1, 1904.

The LongDateTime data type defines the long date-time value.

TYPE LongDateTime = comp;

When storing a long date-time value in files, you can use a 5-byte or 6-byte format for a

range of roughly 35,000 years. You should sign extend this value to restore it to a comp

format.

The Date, Time, and Measurement Utilities provide the LongDateCvt record to help in

setting up LongDateTime values.

TYPE LongDateCvt =

RECORD

CASE Integer OF

0:

(c: comp); {number of seconds relative to }

{ midnight, January 1, 1904}

1:

(lHigh: LongInt; {high long integer}

 lLow: LongInt); {low long integer}

END;

Field descriptions

c The date and time, specified in seconds relative to midnight,
January 1, 1904, as a signed, 64-bit integer in SANE comp format.
The high-order bit of this field represents the sign of the 64-bit
integer. Negative values allow you to indicate dates and times prior
to midnight, January 1, 1904.

lHigh The high-order 32 bits when converting from a standard date-time
value. Set this field to 0.

C H A P T E R 4

Date, Time, and Measurement Utilities

4-26 Date, Time, and Measurement Utilities Reference

lLow The low-order 32 bits when converting from a standard date-time
value. Set this field to the standard date-time value representing the
total number of seconds since midnight, January 1, 1904.

The Long Date-Time Record

In addition to the date-time record, system software provides the long date-time record,

which extends the date-time record format by adding several more fields. This format

lets you use dates and times with a much longer span (30,000 B.C. to 30,000 A.D.). In

addition, the long date-time record allows conversions to different calendar systems,

such as a lunar calendar.

The LongDateRec data type defines the format of the long date-time record.

TYPE LongDateRec =

RECORD

CASE Integer OF

0:

(era: Integer; {era}

 year: Integer; {year, from 30,081 B.C. }

{ to 29,940 A.D.}

 month: Integer; {month}

 day: Integer; {day of the month}

 hour: Integer; {hour, from 0 to 23}

 minute: Integer; {minute, from 0 to 59}

 second: Integer; {second, from 0 to 59}

 dayOfWeek: Integer; {day of the week}

 dayOfYear: Integer; {day of the year}

 weekOfYear: Integer; {week of the year}

 pm: Integer; {morning/evening}

 res1: Integer; {reserved}

 res2: Integer; {reserved}

 res3: Integer); {reserved}

1:

{index by LongDateField}

(list: ARRAY[0..13] OF Integer);

2:

(eraAlt: Integer; {era}

oldDate: DateTimeRec); {date-time record}

END;

Field descriptions

era The era, where 0 represents A.D., and –1 represents B.C.

year The year, ranging from 30,081 B.C. to 29,940 A.D. Values outside this
range produce unpredictable results in all fields of the record. Note
that to indicate the year 1984, this field would store the integer 1984,

C H A P T E R 4

Date, Time, and Measurement Utilities

Date, Time, and Measurement Utilities Reference 4-27

not just 84. This field accepts input of 0 or negative values, but these
values return the positive result of the value plus one for the year.
For example, a year value of 0 returns 1, and a year value of –1993
returns 1994. Other fields are unaffected.

month The month of the year, where 1 represents January, and 12
represents December. When you use the LongSecondsToDate and
LongDateToSeconds procedures, month values greater than 12
cause a wraparound to a future year and month. A value of 0 in this
field returns the 12th month of the previous year. For example, a
month value of 0 and a year value of 1993 return 12 and 1992,
respectively. A negative value in this field has the effect of
subtracting that number from the first month of the given year. For
example, a month value of –2 and a year value of 1993 return 10
and 1992, respectively.

day The day of the month, ranging from 1 to 31. When using the
LongSecondsToDate and LongDateToSeconds procedures, day
values greater than the number of days in a given month cause a
wraparound to a future month and day. This feature is useful for
working with leap years. For example, the 366th day of January in
1992 (1992 was a leap year) evaluates as December 31, 1992, and the
367th day of that year evaluates as January 1, 1993. A value of 0 in
this field produces unpredictable results in the month and day
fields. A negative value in this field has the effect of subtracting that
number from the first day of the given month. For example, a day
value of –10 and a month value of 10 return 9 and 20, respectively.

hour The hour of the day, ranging from 0 to 23, where 0 represents
midnight and 23 represents 11:00 P.M. When you use the
LongSecondsToDate and LongDateToSeconds procedures,
hour values greater than 23 cause a wraparound to a future day
and hour. A negative value in this field produces unpredictable
results. Note that this field is always maintained in 24-hour time.
The pm field, if used, is redundant.

minute The minute of the hour, ranging from 0 to 59. When you use the
LongSecondsToDate and LongDateToSeconds procedures,
minute values greater than 59 cause a wraparound to a future hour
and minute. A negative value in this field has the effect of
subtracting that number from the first minute of the given hour. For
example, an hour value of 10 and a minute value of –10 return 9
and 50, respectively. However, if the negative value causes the hour
value to become less than 0, for example hour = 0 and minute =
–61, unpredictable results occur.

second The second of the minute, ranging from 0 to 59. When you use the
LongSecondsToDate and LongDateToSeconds procedures,
second values greater than 59 cause a wraparound to a future
minute and second. A negative value in this field has the effect of
subtracting that number from the first second of the given minute.
For example, an minute value of 10 and a second value of –10
return 9 and 50, respectively. However, if the negative value causes

C H A P T E R 4

Date, Time, and Measurement Utilities

4-28 Date, Time, and Measurement Utilities Reference

the hour value to become less than 0, for example hour = 0,
minute = 0, and second = –61, unpredictable results occur.

dayOfWeek The day number of the week, where 1 indicates Sunday and 7
indicates Saturday. This field accepts 0, negative values, or values
greater than 7. When you use the LongSecondsToDate and
LongDateToSeconds procedures, you get correct values because
this field is automatically calculated from the values in the year,
month, and day fields. For calendars that have more than 7 day
names and 12 month names (for example, the Jewish calendar
sometimes has 13 months), you use the 'itl1' resource, defined
by the Itl1ExtRec data type. To get more information on the
format of the 'itl1' resource, see the appendix “International
Resources” in Inside Macintosh: Text.

dayOfYear The day number of the year, ranging from 1 to 366. Values greater
than the number of days in a given year cause a wraparound to a
future year and day. This feature is useful for working with leap
years. For example, in a Gregorian calendar the 366th day of
January in 1992 (1992 was a leap year) evaluates as December 31,
1992, and the 367th day of that year evaluates as January 1, 1993.

weekOfYear The week number of the year, ranging from 1 to 52. Note that
out-of-range values (such as 0, negative numbers, or numbers
greater than 52) can be set for this field. However, you can use the
LongSecondsToDate procedure to convert these out-of-range
values to appropriate values.

pm The morning or evening half of the 24-hour day cycle, where 0
represents the morning (for example, A.M.), and 1 represents the
evening (for example, P.M.). Note that out-of-range values can be set
for this field. However, you can use the LongSecondsToDate
procedure to convert these out-of-range values to appropriate
values.

res1 Reserved. Set this field to 0.

res2 Reserved. Set this field to 0.

res3 Reserved. Set this field to 0.

list An array of LongDateField values. The field parameter of the
ToggleDate function uses the enumerated data type
LongDateField to indicate the LongDateRec fields that the
ValidDate function should check. The following values are
available:
TYPE LongDateField =
 (eraField, yearField, monthField, dayField,
 hourField, minuteField, secondField,
 dayOfWeekField, dayOfYearField,
 weekOfYearField, pmField, res1Field,
 res2Field, res3Field);

eraAlt The era, where 0 represents A.D., and –1 represents B.C. Use this field
and the oldDate field to convert from a date-time record.

oldDate The date-time record to convert. Use this field and the eraAlt field
to convert from a date-time record.

C H A P T E R 4

Date, Time, and Measurement Utilities

Date, Time, and Measurement Utilities Reference 4-29

The Geographic Location Record

The geographic location and time-zone information of a Macintosh computer are stored

in extended parameter RAM. The MachineLocation data type defines the format for

the geographic location record.

TYPE MachineLocation = {geographic location record}

RECORD

latitude: Fract; {latitude}

longitude: Fract; {longitude}

CASE Integer OF

0:

(dlsDelta: SignedByte); {daylight saving time}

1:

(gmtDelta: LongInt); {Greenwich mean time}

END;

Field descriptions

latitude The location’s latitude, in fractions of a great circle. For example,
Copenhagen, Denmark is at 55.43 degrees north latitude. When
writing the latitude to extended parameter RAM with the
WriteLocation procedure, you must convert this value to a
Fract data type. (For example, a Fract value of 1.0 equals 90
degrees; –1.0 equals –90 degrees; and –2.0 equals –180 degrees.) For
an example that shows this conversion process, see Listing 4-8 on
page 4-19. For more information on the Fract data type, see the
chapter “Mathematical and Logical Utilities” in this book.

longitude The location’s longitude, in fractions of a great circle. For example,
Copenhagen, Denmark is at 12.34 degrees east longitude. When
writing the longitude to extended parameter RAM with the
WriteLocation procedure, you must convert this value to a
Fract data type. (For example, a Fract value of 1.0 equals 90
degrees; –1.0 equals –90 degrees; and –2.0 equals –180 degrees.) For
an example that shows this conversion process, see Listing 4-8 on
page 4-19. For more information on the Fract data type, see the
chapter “Mathematical and Logical Utilities” in this book.

dlsDelta A signed byte value representing the hour offset for daylight saving
time. This field is a 1-byte value contained in a long word. It should
be preserved when writing gmtDelta. See Listing 4-10 on
page 4-21 for an example that writes gmtDelta while preserving
dlsDelta.

gmtDelta The Greenwich mean time (GMT). For example, Copenhagen,
Denmark is at 1 hour west of GMT. This field is a 3-byte value
contained in a long word. In addition, the top byte of this field
should be masked off when writing because it is reserved. See
Listing 4-9 on page 4-20 and Listing 4-10 on page 4-21 for code
examples that get and set gmtDelta properly.

C H A P T E R 4

Date, Time, and Measurement Utilities

4-30 Date, Time, and Measurement Utilities Reference

The ReadLocation and WriteLocation procedures use the geographic location

record to read and store the geographic location and time zone information in extended

parameter RAM. If the geographic location record has never been set, all fields contain 0.

The Toggle Parameter Block

The ToggleDate function exchanges information with your application using the

toggle parameter block, defined by the TogglePB data type.

TYPE TogglePB =

RECORD

togFlags: LongInt; {flags}

amChars: ResType; {A.M. characters from 'itl0' }

{ resource, but made uppercase}

pmChars: ResType; {P.M. characters from 'itl0' }

{ resource, but made uppercase}

reserved: ARRAY[0..3] OF LongInt; {reserved}

END;

Field descriptions

togFlags The high-order word of this field contains flags that specify special
conditions for the ToggleDate function:

genCdevRangeBit = 27; {restrict date/time to }

{ range used by }

{ General Controls }

{ control panel}

togDelta12HourBit = 28; {if modifying hour }

{ up/down, restrict to }

{ 12-hour range}

togCharZCycleBit = 29; {modifier for }

{ togChar12HourBit to }

{ accept hours }

{ 0…11 only}

togChar12HourBit = 30; {if modifying hour by }

{ char, accept hours }

{ 1…12 only}

smallDateBit = 31; {restrict valid }

{ date/time to }

{ range of Time global}

genCdevRangeBit
If this bit is set in addition to smallDateBit, then the date range is
restricted to that used by the General Controls control panel—

C H A P T E R 4

Date, Time, and Measurement Utilities

Date, Time, and Measurement Utilities Reference 4-31

January 1, 1920 to December 31, 2019 in the Gregorian calendar (the
routine works correctly for other calendars as well). For dates
outside this range but within the range specified by the system
global variable Time—January 1, 1904 to February 6, 2040 in the
Gregorian calendar—ToggleDate adds or subtracts 100 years to
bring the dates into the range of the General Controls control panel
if these bits are set. The ToggleDate function returns an error if
the smallDateBit is set and the date is outside the range specified
by the system global variable Time. This bit works with system
software version 6.0.4 and later.

togDelta12HourBit
If this bit is set, modifying the hour up or down is limited to a
12-hour range. For example, increasing by one from 11 produces 0,
increasing by one from 23 produces 12, and so on. This bit works
with system software version 6.0.4 and later.

togCharZCycleBit
If this bit is set, the input character is treated as if it modifies an
hour whose value is in the range 0–11. If this bit is not set, the input
character is treated as if it modifies an hour whose value is in the
range 12, 1–11. This bit works with system software version 6.0.4
and later.

togChar12HourBit
If this bit is set, modifying the hour by character is limited to the
12-hour range defined by togCharZCycleBit, mapped to the
appropriate half of the 24-hour range, as determined by the pm field.
This bit works with system software version 6.0.4 and later.

smallDateBit
If this bit is set, the valid date and time are restricted to the range of
the system global variable Time—that is, between midnight on
January 1, 1904 and 6:28:15 A.M. on February 6, 2040.

The low-order word of this field contains masks representing fields
to be checked by the ValidDate function. Each mask corresponds
to a value in the enumerated type LongDateField. You can set
this field to check the era through second fields by using the
predeclared constant dateStdMask. The following constants
specify the LongDateRec fields for the ValidDate function to
check.

CONST

eraMask = $0001; {verify the era}

yearMask = $0002; {verify the year}

monthMask = $0004; {verify the month}

dayMask = $0008; {verify the day}

hourMask = $0010; {verify the hour}

minuteMask = $0020; {verify the }

C H A P T E R 4

Date, Time, and Measurement Utilities

4-32 Date, Time, and Measurement Utilities Reference

{ minute}

secondMask = $0040; {verify the }

{ second}

dateStdMask = $007F; {verify the era }

{ through second}

dayOfWeekMask = $0080; {verify the day }

{ of the week}

dayOfYearMask = $0100; {verify the day }

{ of the year}

weekOfYearMask = $0200; {verify the week }

{ of the year}

pmMask = $0400; {verify the }

{ evening (P.M.)}

amChars The trailing string to display for morning (for example, A.M.). This
string is read from the numeric-format resource (resource type
'itl0') of the current script system.

pmChars The trailing to display for evening (for example, P.M.). This string is
read from the numeric-format resource (resource type 'itl0') of
the current script system.

reserved Reserved. Set each of the three elements of this field to 0.

The Unsigned Wide Record

The Microseconds procedure uses the unsigned wide record to return the number of

microseconds elapsed since system startup time. The UnsignedWide data type defines

the format for the unsigned wide record.

UnsignedWide = {Microseconds procedure return type}

PACKED RECORD

hi: LongInt; {high-order 32 bits}

lo: LongInt; {low-order 32 bits}

END;

Field descriptions

hi The high-order 32 bits

lo The low-order 32 bits

Routines

The Date, Time, and Measurement Utilities provide routines you can use to read and

write current date-time information, convert between internal date and time formats (for

example, you can access date-time information as a number of seconds elapsed since

midnight, January 1, 1904 or as a date and time), manipulate date-time information, read

and write location information, and determine the current measurement system.

C H A P T E R 4

Date, Time, and Measurement Utilities

Date, Time, and Measurement Utilities Reference 4-33

Some of the routines provided by the Date, Time, and Measurement Utilities were

previously associated with the Script Manager or the International Utilities Package. In

addition, some routines have been renamed to reflect their functions more clearly. You

can access the renamed routines using more than one spelling of the routine’s name,

depending on the interface files supported by your development environment. For

example, the IsMetric function is also available as the IUMetric function. Table 4-4

provides a summary of these changes.

Getting the Current Date and Time

At system startup time, system software uses the ReadDateTime function to copy the

current date-time information from the clock chip into low memory. You can access this

date-time information as the number of seconds elapsed since midnight of January 1,

1904 or as a date and time. To obtain the current date-time information expressed as the

number of seconds elapsed since midnight of January 1, 1904, use the GetDateTime

procedure. To obtain the current date-time information expressed as a date and time, use

the GetTime procedure.

IMPORTANT

If an application disables interrupts for longer than a second, the
date-time information returned by the GetDateTime and GetTime
procedures might not be exact. The GetDateTime and GetTime
procedures are intended to provide fairly accurate time information, but
not scientifically precise data. ▲

Table 4-4 Renamed and relocated routines

Current name Previous name Former location

DateToSeconds Date2Secs (Unchanged)

IsMetric IUMetric International Utilities Package

LongDateToSeconds LongDate2Secs Script Manager

LongSecondsToDate LongSecs2Date Script Manager

ReadLocation ReadLocation Script Manager

SecondsToDate Secs2Date (Unchanged)

ToggleDate ToggleDate Script Manager

ValidDate ValidDate Script Manager

WriteLocation WriteLocation Script Manager

C H A P T E R 4

Date, Time, and Measurement Utilities

4-34 Date, Time, and Measurement Utilities Reference

ReadDateTime

System software uses at system startup time the ReadDateTime function to copy the

date-time information from the clock chip into low memory. Your application should

never need to use this function.

FUNCTION ReadDateTime (VAR time: LongInt): OSErr;

time On return, the current time expressed as the number of seconds elapsed
since midnight, January 1, 1904.

DESCRIPTION

The ReadDateTime function copies the current date-time information from the clock

chip into low memory. It then returns in the time parameter a copy of the date-time

information, expressed as the number of seconds elapsed since midnight, January 1, 1904.

The low-memory copy of the date and time information is accessible through the global

variable Time.

If the clock chip cannot be read, ReadDateTime returns the clkRdErr result code. The

operation might fail if the clock chip is damaged. Otherwise, the function returns the

noErr result code.

ASSEMBLY-LANGUAGE INFORMATION

You must set up register A0 with a pointer to a long integer in which you wish to store

the current date-time information. On exit, register A0 contains the same pointer to the

now-changed long integer, and register D0 contains the result code.

The registers on entry and exit for this routine are

RESULT CODES

Registers on entry

A0 Pointer to long word

Registers on exit

A0 Pointer to current time

D0 Result code

noErr 0 No error
clkRdErr –85 Unable to read clock

C H A P T E R 4

Date, Time, and Measurement Utilities

Date, Time, and Measurement Utilities Reference 4-35

GetDateTime

You can use the GetDateTime procedure to obtain the current date-time information,

expressed as the number of seconds elapsed since midnight, January 1, 1904.

PROCEDURE GetDateTime (VAR secs: LongInt);

secs On return, the number of seconds elapsed since midnight, January 1, 1904.

DESCRIPTION

The GetDateTime procedure returns in the secs parameter the number of seconds

elapsed since midnight, January 1, 1904.

The low-memory copy of the date and time information (expressed as the number of

seconds elapsed since midnight, January 1, 1904) is also accessible through the global

variable Time.

SEE ALSO

For an example that uses the GetDateTime procedure to get the current date and time,

see Listing 4-1 on page 4-10.

GetTime

You can use the GetTime procedure to obtain the current date-time information,

expressed as a date and time.

PROCEDURE GetTime (VAR d: DateTimeRec);

d On return, the fields of the date-time record contain the current date and
time.

DESCRIPTION

The GetTime procedure returns in the d parameter the current date and time. The

GetTime procedure first calls the GetDateTime procedure to obtain the number of

seconds elapsed since midnight, January 1, 1904. It then calls the SecondsToDate

procedure to convert the number of seconds (returned by the GetDateTime procedure)

into a date and time.

As an alternative to using the GetTime procedure, you can pass the value of the global

variable Time to the SecondsToDate procedure; a SecondsToDate(Time) procedure

call is identical to a GetTime(d) procedure call.

C H A P T E R 4

Date, Time, and Measurement Utilities

4-36 Date, Time, and Measurement Utilities Reference

SEE ALSO

For more information about the SecondsToDate procedure, see page 4-38. The

GetDateTime procedure is described on page 4-35. For sample code that uses the

GetTime procedure to get the current date and time, see Listing 4-2 on page 4-10.

The date-time record is described in detail beginning on page 4-23.

Setting the Current Date and Time

You can modify the date-time information stored in the clock chip by using the

SetDateTime function or the SetTime procedure. The two routines differ in the

type of arguments they require. The SetDateTime function requires that the new

date-time information be expressed as the number of seconds elapsed since midnight

of January 1, 1904 (using a value of type LongInt). The SetTime procedure requires

that the new date-time information be expressed as a date and time (using a value of

type DateTimeRec).

IMPORTANT

Users can change the current date and time stored in both the system
global variable Time and in the clock chip by using the General Controls
control panel, Date & Time control panel, or the Alarm Clock desk
accessory. In general, your application should not directly change the
current date-time information. If your application does need to modify
the current date-time information, it should instruct the user how to
change the date and time. ▲

SetDateTime

You can use the SetDateTime function to modify the date-time information stored

in the clock chip. The SetDateTime function requires that the new date-time

information be passed to the function as the number of seconds elapsed since midnight,

January 1, 1904.

FUNCTION SetDateTime (time: LongInt): OSErr;

time The number of seconds elapsed since midnight, January 1, 1904; this
value is written to the clock chip.

DESCRIPTION

The SetDateTime function writes the number of seconds, specified by the time

parameter, to the clock chip. The SetDateTime function also updates the low-memory

copy of the date-time information.

The SetDateTime function attempts to verify the value written by reading it back in

and comparing it to the value in the low-memory copy. If a problem occurs, the

SetDateTime function returns either the clkRdErr result code, because the clock chip

C H A P T E R 4

Date, Time, and Measurement Utilities

Date, Time, and Measurement Utilities Reference 4-37

could not be read, or the clkWrErr result code, because the time written to the clock

chip could not be verified. Otherwise, the function returns the noErr result code.

ASSEMBLY-LANGUAGE INFORMATION

You must set up register D0 with the number of seconds to which you wish to change

the clock chip. When the SetDateTime function returns, register D0 contains the result

code.

The registers on entry and exit for this routine are

RESULT CODES

SEE ALSO

For sample code that uses the SetDateTime function to write date-time information

(represented as a number of seconds) to the clock-chip, see Listing 4-3 on page 4-11.

SetTime

You can use the SetTime procedure to modify the date-time information in the clock

chip. The SetTime requires that the new date-time information be passed to the

function as a date and time.

PROCEDURE SetTime (d: DateTimeRec);

d The date and time to which to set the clock chip.

DESCRIPTION

The SetTime procedure writes the date and time specified by the d parameter to the

clock chip. The SetTime procedure first converts the date and time to the number of

seconds elapsed since midnight, January 1, 1904 (by calling the DateToSeconds

procedure). It then writes these seconds to the clock chip and to the system global

variable Time (by calling the SetDateTime function).

Registers on entry

D0 Seconds elapsed since midnight, January 1, 1904

Registers on exit

D0 Result code

noErr 0 No error
clkRdErr –85 Unable to read clock
clkWrErr –86 Time written did not verify

C H A P T E R 4

Date, Time, and Measurement Utilities

4-38 Date, Time, and Measurement Utilities Reference

As an alternative to using the SetTime procedure, you can use the DateToSeconds

and SetDateTime routines.

Note

The SetTime procedure does not return a result code. If you need to
know whether an attempt to change the date and time information in
the clock chip is successful, you must use the SetDateTime function. ◆

SEE ALSO

See page 4-23 for a description of the fields of a date-time record. For more

information on the DateToSeconds procedure, see page 4-39. The SetDateTime

function is described on page 4-36. For sample code that uses the SetTime procedure to

write date-time information (represented as a date and time) to the clock-chip, see

Listing 4-4 on page 4-11.

Converting Between Date-Time Formats

The Date, Time, and Measurement Utilities provide two procedure, SecondsToDate

and DateToSeconds, that you can use to convert between date-time formats. You

can convert a number of seconds to a date and time and a date and time to a number

of seconds.

If you use a standard date-time value (used to access a number of seconds) or a

date-time record (used to access a date and time) to access date-time information, you

can use the SecondsToDate and DateToSeconds procedures to convert between

these date-time formats. Use the SecondsToDate procedure to convert a number of

seconds to a date and time, and use the DateToSeconds procedure to convert a date

and time to a number of seconds.

Note

The system software uses the SecondsToDate and DateToSeconds
procedures provided by the current script system. ◆

SecondsToDate

You can use the SecondsToDate procedure to convert a number of seconds elapsed

since midnight, January 1, 1904 to a date and time.

PROCEDURE SecondsToDate (s: LongInt; VAR d: DateTimeRec);

s The number of seconds elapsed since midnight, January 1, 1904.

d On return, the fields of the date-time record that contain the date and time
corresponding to the value indicated in the s parameter.

C H A P T E R 4

Date, Time, and Measurement Utilities

Date, Time, and Measurement Utilities Reference 4-39

DESCRIPTION

The SecondsToDate procedure converts the number of seconds, specified in the s
parameter, to a date and time. The date and time values are returned in the d parameter.

The SecondsToDate procedure is also available as the Secs2Date procedure.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for this routine are

SEE ALSO

For a complete description of the date-time record, see page 4-23.

DateToSeconds

You can use the DateToSeconds procedure to convert a date and time to a number of

seconds elapsed since midnight, January 1, 1904.

PROCEDURE DateToSeconds (d: DateTimeRec; VAR s: LongInt);

d The date-time record containing the date and time to convert.

s On return, the number of seconds elapsed between midnight,
January 1, 1904, and the time specified in the d parameter.

DESCRIPTION

The DateToSeconds procedure converts the date and time specified in the

d parameter to the number of seconds elapsed since midnight, January 1, 1904. The

number of seconds are returned in the s parameter. For example, specifying a date

and time of 5:50 A.M. on June 13, 1990 results in 41627 being returned in the s parameter.

The DateToSeconds procedure is also available as the Date2Secs procedure.

ASSEMBLY-LANGUAGE INFORMATION

You must set up register A0 with a pointer to the date and time record containing the

date and time you wish to convert. When DateToSeconds returns, register D0 contains

a long integer representing the converted date and time.

Registers on entry

D0 Seconds since midnight, January 1, 1904

A0 Pointer to a date-time record

Registers on exit

A0 Pointer to a date-time record

C H A P T E R 4

Date, Time, and Measurement Utilities

4-40 Date, Time, and Measurement Utilities Reference

The registers on entry and exit for this routine are

SEE ALSO

For a complete description of the date-time record, see page 4-23.

Converting Between Long Date-Time Format

The Date, Time, and Measurement Utilities provide two procedures,

LongSecondsToDate and LongDateToSeconds, that you can use to convert between

long date-time formats. You can convert a number of seconds to a date and time and a

date and time to a number of seconds.

If you use a long date-time value (used to access a number of seconds) or a long

date-time record (used to access a date and time) to access date-time information, you

can use the LongSecondsToDate and LongDateToSeconds procedures to convert

between these date-time formats. Use the LongSecondsToDate procedure to convert a

number of seconds to a date and time, and use the LongDateToSeconds procedure to

convert a date and time to a number of seconds.

Note

The system software uses the LongSecondsToDate and
LongDateToSeconds procedures provided by the current
script system. ◆

LongSecondsToDate

You can use the LongSecondsToDate procedure to convert the number of seconds

elapsed since midnight, January 1, 1904 to a date and time.

PROCEDURE LongSecondsToDate (lSecs: LongDateTime;

 VAR lDate: LongDateRec);

lSecs The number of seconds elapsed since midnight, January 1, 1904.

lDate On return, the fields of the long date-time record that contain the date and
time corresponding to the value indicated in the lSecs parameter.

Registers on entry

A0 Pointer to date-time record

Registers on exit

D0 Corresponding seconds since midnight, January 1, 1904

C H A P T E R 4

Date, Time, and Measurement Utilities

Date, Time, and Measurement Utilities Reference 4-41

DESCRIPTION

The LongSecondsToDate procedure converts the representation of the date-time

information from a number of seconds, specified in the lSecs parameter, to a date and

time. The date and time are returned in the lDate parameter as values in the date-time

record. For example, specifying the number of seconds 41627 results in the date and

time 5:50 A.M. on June 13, 1990 being returned in the lDate parameter.

The LongSecondsToDate procedure is also available as the LongSecs2Date

procedure.

SEE ALSO

To learn more about the long date-time value, see the section page 4-25. For more

information on the long date-time record, see page 4-26.

LongDateToSeconds

You can use the LongDateToSeconds procedure to convert a date and time to the

number of seconds elapsed since midnight, January 1, 1904.

PROCEDURE LongDateToSeconds (lDate: LongDateRec;

 VAR lSecs: LongDateTime);

lDate The long date-time record containing the date and time to convert.

lSecs On return, the number of seconds elapsed since midnight,
January 1, 1904, and the time specified in the lDate parameter.

DESCRIPTION

The LongDateToSeconds procedure converts the representation of the date-time

information from a date and time, specified in the lDate parameter, to the number of

seconds elapsed since midnight, January 1, 1904. The number of seconds are returned as

a long date-time value in the lSecs parameter. For example, specifying the date and

time 5:50 A.M. on June 13, 1990 results in 41627 being returned in the lSecs parameter.

The LongDateToSeconds procedure is also available as the LongDate2Secs

procedure.

SEE ALSO

To learn more about the long date-time value, see page 4-25. For more information on the

long date-time record, see page 4-26.

C H A P T E R 4

Date, Time, and Measurement Utilities

4-42 Date, Time, and Measurement Utilities Reference

Modifying and Verifying Long Date-Time Records

You can modify and verify the values in a long date-time record by using the

ToggleDate function and the ValidDate function, respectively.

The ToggleDate function accepts a pointer to a toggle parameter block as a parameter.

Information about the fields in the toggle parameter block appears in the following

format:

Parameter block

The arrow on the far left indicates whether the field is an input or output parameter. You

must supply values for all input parameters. The routine returns values in the output

parameters. The next column shows the field name as defined in the MPW interface files,

followed by the data type of that field. This matches the MPW interface name of the data

type as shown in the parameter block. The fourth column contains a comment about or

brief definition of the field.

ToggleDate

You can use the ToggleDate function to modify a date and time, by modifying one

specific component of a date and time (day, hour, minute, seconds, day of week, and

so on). For example, you can use the ToggleDate function to increase a date and time

by one minute, decrease a date and time by one minute, or explicitly add or subtract a

number of seconds to or from a date and time.

FUNCTION ToggleDate (VAR lSecs: LongDateTime;

field: LongDateField; delta: DateDelta;

ch: Integer; params: TogglePB)

: ToggleResults;

lSecs The date-time information to modify, expressed as the number of seconds
elapsed since midnight, January 1, 1904.

field The name of the field in the date-time record you want modify. Use one
of the LongDateField enumeration constants for the value of this
parameter.

delta A signed byte specifying the action you want to perform on the value
specified in the field parameter. Set delta to 1, to increase the value in
the field by 1. Set delta to -1, to decrease the value of the field by 1. Set
delta to 0. If you want to set the value of the field explicitly; pass the
new value through the ch field, described next.

→ input1 LongInt Input parameter comment.
← output1 LongInt Output parameter comment.

C H A P T E R 4

Date, Time, and Measurement Utilities

Date, Time, and Measurement Utilities Reference 4-43

ch If the value in the delta field is 0, the value of the field in the date-time
record (specified by the field parameter) is set to the value in the
ch parameter. If the value in the delta field is not equal to 0, the value in
the ch parameter is ignored.

params The settings of the toggle parameter block settings. Note that you are
responsible for setting this field.

Parameter block

DESCRIPTION

The ToggleDate function first converts the number of seconds, specified in the

lSecs parameter, to a date and time—making each component of the date and time

(day, minute, seconds, day of week, and so on) available through a long date-time

record. The ToggleDate function then modifies the value of the field, specified by the

field parameter. If the value in the delta field is greater than 0, the value of the field

(specified in the field parameter) increases by 1; if the value in the delta field is less

than 0, the value of the field decreases by 1; and if the value of delta is 0, the value of

the field is explicitly set to the value specified in the ch field.

After the ToggleDate function modifies the field, it calls the ValidDate function. The

ValidDate function checks the long date-time record for correctness, using the values

of the togFlags field in the toggle parameter block that the ToggleDate function

passes to it. If any of the record fields are invalid, the ValidDate function returns a

LongDateField value corresponding to the field in error. Otherwise, it returns the

result code for validDateFields. Note that ValidDate reports only the least

significant erroneous field.

After the ToggleDate function checks the validity of the modified field, it converts the

modified date and time back into a number of seconds (the number of seconds elapsed

since midnight, January 1, 1904) and returns these seconds in the lSecs parameter.

The following constants specify the LongDateRec fields for the ValidDate function

to check:

CONST

eraMask = $0001; {verify the era}

yearMask = $0002; {verify the year}

monthMask = $0004; {verify the month}

dayMask = $0008; {verify the day}

hourMask = $0010; {verify the hour}

minuteMask = $0020; {verify the minute}

secondMask = $0040; {verify the second}

→ togFlags LongInt The fields to be checked by the
ValidDate function.

→ amChars ResType A.M. characters from 'itl0' resource.
→ pmChars ResType P.M. characters from 'itl0' resource.
→ reserved ARRAY [0…3]

OF LongInt
Reserved; set each element to 0.

C H A P T E R 4

Date, Time, and Measurement Utilities

4-44 Date, Time, and Measurement Utilities Reference

dateStdMask = $007F; {verify the era through second}

dayOfWeekMask = $0080; {verify the day of the week}

dayOfYearMask = $0100; {verify the day of the year}

weekOfYearMask = $0200; {verify the week of the year}

pmMask = $0400; {verify the evening (P.M.)}

SPECIAL CONSIDERATIONS

Although ToggleDate does not move or purge memory, you should not call it at

interrupt time.

RESULT CODES

The ToggleDate function returns its own set of result codes. The ToggleResults data

type defines the result code of the ToggleDate function:

TYPE ToggleResults = Integer; {ToggleDate function return type}

The following list gives the result codes defined for this function:

SEE ALSO

To learn more about the LongDateTime data type, see page 4-25. For more information

on the LongDateRec structure, see page 4-26. The toggle parameter block record is

described on page 4-30.

For more information about the GetIntlResource function, see the chapter “Script

Manager” in Inside Macintosh: Text. For details on the UppercaseText procedure, see

the chapter “Text Utilities” in Inside Macintosh: Text. The ValidDate function is

described next.

toggleUndefined 0 Undefined error
toggleOK 1 No error
toggleBadField 2 Invalid field number
toggleBadDelta 3 Invalid delta value
toggleBadChar 4 Invalid character
toggleUnknown 5 Unknown error
toggleBadNum 6 Tried to use character as number
toggleOutOfRange 7 Out of range (synonym for toggleErr3)
toggleErr3 7 Reserved
toggleErr4 8 Reserved
toggleErr5 9 Reserved

C H A P T E R 4

Date, Time, and Measurement Utilities

Date, Time, and Measurement Utilities Reference 4-45

ValidDate

You can use the ValidDate function to verify specific date and time values in a long

date-time record.

FUNCTION ValidDate (VAR vDate: LongDateRec; flags: LongInt;

 VAR newSecs: LongDateTime): Integer;

vDate The long date-time record whose fields you want to verify.

flags The fields that you want to verify in the long date-time record.

newSecs The date-time information, passed by the ToggleDate function, that you
want to verify.

DESCRIPTION

The ValidDate function verifies the fields, specified by the flags parameter, in the

long date-time record specified by the vDate parameter. If any of the specified fields

contain invalid values, the ValidDate function returns a LongDateField value

indicating the field in error. Otherwise, it returns the constant validDateFields.

Note that ValidDate reports only the least significant erroneous field.

The following constants specify the LongDateRec fields for the ValidDate function

to check:

CONST

eraMask = $0001; {verify the era}

yearMask = $0002; {verify the year}

monthMask = $0004; {verify the month}

dayMask = $0008; {verify the day}

hourMask = $0010; {verify the hour}

minuteMask = $0020; {verify the minute}

secondMask = $0040; {verify the second}

dateStdMask = $007F; {verify the era through }

{ second}

dayOfWeekMask = $0080; {verify the day of the week}

dayOfYearMask = $0100; {verify the day of the year}

weekOfYearMask = $0200; {verify the week of the year}

pmMask = $0400; {verify the evening (P.M.)}

SPECIAL CONSIDERATIONS

Although ValidDate does not move or purge memory, you should not call it at

interrupt time.

C H A P T E R 4

Date, Time, and Measurement Utilities

4-46 Date, Time, and Measurement Utilities Reference

SEE ALSO

To learn more about the LongDateTime data type, see page 4-25. For more information

on the long date-time record, see page 4-26. The ToggleDate function is described on

page 4-42. The enumerated type LongDateField is described on page 4-29.

Reading and Writing Location Data

You can read and set geographic location and time-zone information using the

Readlocation and WriteLocation procedures.

ReadLocation

You can use the ReadLocation procedure to get information about a geographic

location or time zone.

PROCEDURE ReadLocation (VAR loc: MachineLocation);

loc On return, the fields of the geographic location record containing the
geographic location and the time-zone information.

DESCRIPTION

The ReadLocation procedure reads the stored geographic location and time zone

of the Macintosh computer from extended parameter RAM and returns it in the

loc parameter.

You can get values for the latitude, longitude, daylight savings time (DST), or

Greenwich mean time (GMT). If the geographic location record has never been set,

all fields contain 0.

The latitude and longitude are stored as Fract values, giving accuracy to within

one foot. For example, a Fract value of 1.0 equals 90 degrees; –1.0 equals –90 degrees;

and –2.0 equals –180 degrees.

To convert these values to a degrees format, you need to convert the Fract values first

to the Fixed data type, then to the LongInt data type. You can use the Mathematical

and Logical Utilities routines Fract2Fix and Fix2Long to accomplish this task.

The DST value is a signed byte value that you can use to specify the offset for the

hour field—whether to add one hour, subtract one hour, or make no change at all.

The GMT value is in seconds east of GMT. For example, San Francisco is at

–28,800 seconds (8 hours * 3,600 seconds per hour) east of GMT. The gmtDelta field

is a 3-byte value contained in a long word, so you must take care to get it properly.

C H A P T E R 4

Date, Time, and Measurement Utilities

Date, Time, and Measurement Utilities Reference 4-47

SPECIAL CONSIDERATIONS

Although the ReadLocation procedure does not move or purge memory, you should

not call it at interrupt time.

SEE ALSO

For more information on the geographic location record, see page 4-29. For an

example of how to use the ReadLocation procedure to get latitude and longitude,

see Listing 4-8 on page 4-19. Listing 4-9 on page 4-20 shows an application-defined

procedure for obtaining the value of gmtDelta.

For more information on the Fract data type and the conversion routines Long2Fix,

Fix2Fract, Fract2Fix, and Fix2Long, see the chapter “Mathematical and Logical

Utilities” in this book.

WriteLocation

You can use the WriteLocation procedure to change the geographic location or

time-zone information stored in extended parameter RAM.

PROCEDURE WriteLocation (loc: MachineLocation);

loc The geographic location and time-zone information to write to the
extended parameter RAM.

DESCRIPTION

The WriteLocation procedure takes the geographic location and time-zone

information, specified in the loc parameter, and writes it to the extended

parameter RAM.

The latitude and longitude are stored in the geographic location record as Fract values,

giving accuracy to within 1 foot. For example, a Fract value of 1.0 equals 90 degrees;

–1.0 equals –90 degrees; and –2.0 equals –180 degrees.

To store latitude and longitude values, you need to convert them first to the Fixed data

type, then to the Fract data type. You can use the Operating System Utilities routines

Long2Fix and Fix2Fract to accomplish this task. Listing 4-8 on page 4-19 shows a

procedure that converts San Francisco’s latitude and longitude to Fract values, then

writes the Fract values to extended parameter RAM using the WriteLocation

procedure.

The daylight savings time value is a signed byte value that you can use to specify the

offset for the hour field—whether to add one hour, subtract one hour, or make no

change at all.

The Greenwich mean time value is in seconds east of GMT. For example, San Francisco is

at –28,800 seconds (8 hours * 3,600 seconds per hour) east of GMT. The gmtDelta field is

C H A P T E R 4

Date, Time, and Measurement Utilities

4-48 Date, Time, and Measurement Utilities Reference

a 3-byte value contained in a long word, so you must take care to set it properly. When

writing gmtDelta, you should mask off the top byte because it is reserved. In addition,

you should preserve the value of dlsDelta. Listing 4-10 on page 4-21 shows a

procedure that writes gmtDelta, with the top byte masked off, while preserving

the value of dlsDelta.

SPECIAL CONSIDERATIONS

Although WriteLocation does not move or purge memory, you should not call it at

interrupt time.

SEE ALSO

For more information on the geographic location record, see page 4-29. For more

information on the Fract data type and the conversion routines Long2Fix,

Fix2Fract, Fract2Fix, and Fix2Long, see the chapter “Mathematical and Logical

Utilities” in this book.

Determining the Measurement System

You can determine the type of measurement system that is used by the current script

system by the using the IsMetric function.

IsMetric

You can use the IsMetric function to determine whether the current script system is

using the metric system (also called the International System of Units) or the English

system of measurement (also called the British imperial system). The IsMetric function

is also available as the IUMetric function.

FUNCTION IsMetric: BOOLEAN;

DESCRIPTION

The IsMetric function examines the metricSys field of the numeric-format resource

(resource type 'itl0') to determine if the current script is using the metric system.

A value of 255 in the metricSys field indicates that the metric system (centimeters,

kilometers, milligrams, degrees Celsius, and so on) is being used. In this case, the
IsMetric function returns a value of TRUE. A value of 0 in the metricSys field

indicates that the English system of measurement (inches, miles, ounces, degrees

Fahrenheit, and so on) is used. In that case, the IsMetric function returns a value

of FALSE.

If you want to use units of measurement different from that of the current script, you

need to override the value of the metricSys field in the current numeric-format

C H A P T E R 4

Date, Time, and Measurement Utilities

Date, Time, and Measurement Utilities Reference 4-49

resource (resource type 'itl0'). You can do this by using your own version of the

numeric-format resource instead of the current script system’s default international

resource.

SPECIAL CONSIDERATIONS

The IsMetric function may move or purge blocks in the heap; calling it may cause

problems if you’ve dereferenced a handle. You should not call this function from within

interrupt code, such as in a completion routine or a VBL task.

SEE ALSO

For a complete description of the international numeric-format resource (resource

type 'itl0') and how to use it, see the appendix “International Resources” in

Inside Macintosh: Text.

For information on how to replace a script system’s default international resources, see

the chapter “Script Manager” in Inside Macintosh: Text.

Measuring Time

You can measure the number of elapsed microseconds since system startup, using the

Microseconds procedure.

Microseconds

You can use the Microseconds procedure to determine the number of microseconds

that have elapsed since system startup time.

PROCEDURE Microseconds (VAR microTickCount: UnsignedWide);

microsecondCount
The number of microseconds elapsed since system startup.

DESCRIPTION

The Microseconds procedure returns, in the microsecondCount parameter, the

number of microseconds that has elapsed since system startup time.

SEE ALSO

For information about the return type for this procedure—the UnsignedWide record—

see page 4-32. For an example of how to use the Microseconds procedure, see

Listing 4-11 on page 4-21.

C H A P T E R 4

Date, Time, and Measurement Utilities

4-50 Summary of the Date, Time, and Measurement Utilities

Summary of the Date, Time, and Measurement Utilities

Pascal Summary

Constants

CONST

{date equates for ToggleDate control bits}

validDateFields = -1; {date fields are valid}

genCdevRangeBit = 27; {restrict date/time to range used by }

{ General Controls control panel}

togDelta12HourBit = 28; {if toggling hour up/down, restrict to }

{ 12-hour range}

togCharZCycleBit = 29; {modifier for togChar12HourBit to }

{ accept hours 0..11 only}

togChar12HourBit = 30; {if toggling hour by char, accept }

{ hours 1..12 only}

smallDateBit = 31; {restrict valid date/time to range }

{ of Time global}

{long date-time record field masks}

eraMask = $0001; {era}

yearMask = $0002; {year}

monthMask = $0004; {month}

dayMask = $0008; {day}

hourMask = $0010; {hour}

minuteMask = $0020; {minute}

secondMask = $0040; {second}

dayOfWeekMask = $0080; {day of the week}

dayOfYearMask = $0100; {day of the year}

weekOfYearMask = $0200; {week of the year}

pmMask = $0400; {evening (P.M.)}

{default value for togFlags field in the toggle parameter block }

{ and default value for the flags parameter passed to the Verify function}

dateStdMask = $007F; {default value for checking era }

{ through second fields}

C H A P T E R 4

Date, Time, and Measurement Utilities

Summary of the Date, Time, and Measurement Utilities 4-51

Data Types

TYPE

DateTimeRec = {date-time record}

RECORD

year: Integer; {year}

month: Integer; {month}

day: Integer; {day of the month}

hour: Integer; {hour}

minute: Integer; {minute}

second: Integer; {second}

dayOfWeek: Integer; {day of the week}

END;

LongDateField = {long date field enumeration}

(eraField, yearField, monthField, dayField,

hourField, minuteField, secondField,dayOfWeekField,

dayOfYearField,weekOfYearField, pmField, res1Field,

res2Field, res3Field);

LongDateTime = comp; {date and time in 64-bit SANE comp format}

LongDateCvt = {long date-time conversion record}

RECORD

CASE Integer OF

0:

(c: comp); {copy field into a variable of type }

{ LongDateTime}

1:

(lHigh: LongInt; {high-order 32 bits}

 lLow: LongInt);{low-order 32 bits}

END;

LongDateRec = {long date-time record}

RECORD

CASE Integer OF

0:

(era: Integer; {era}

 year: Integer; {year}

 month: Integer; {month}

 day: Integer; {day of the month}

 hour: Integer; {hour}

 minute: Integer; {minute}

 second: Integer; {second}

C H A P T E R 4

Date, Time, and Measurement Utilities

4-52 Summary of the Date, Time, and Measurement Utilities

 dayOfWeek: Integer; {day of the week}

 dayOfYear: Integer; {day of the year}

 weekOfYear: Integer; {week of the year}

 pm: Integer; {half of day--0 for morning, }

{ 1 for evening}

 res1: Integer; {reserved}

 res2: Integer; {reserved}

 res3: Integer); {reserved}

1: {index by LongDateField}

(list: ARRAY[0..13] OF Integer);

2:

(eraAlt: Integer; {era}

 oldDate: DateTimeRec); {date-time record}

END;

TogglePB = {toggle parameter block}

RECORD

togFlags: LongInt; {flags}

amChars: ResType; {from 'itl0' resource, but made uppercase}

pmChars: ResType; {from 'itl0' resource, but made uppercase}

{reserved}

reserved: ARRAY[0..3] OF LongInt;

END;

ToggleResults = Integer; {ToggleDate function return type}

DateDelta = SignedByte; {ToggleDate function delta field type}

MachineLocation = {geographic location record}

RECORD

latitude: Fract; {latitude}

longitude: Fract; {longitude}

CASE Integer OF

0:

(dlsDelta: SignedByte);{daylight savings time}

1:

(gmtDelta: LongInt); {Greenwich mean time}

END;

C H A P T E R 4

Date, Time, and Measurement Utilities

Summary of the Date, Time, and Measurement Utilities 4-53

UnsignedWide = {Microseconds procedure return type}

PACKED RECORD

hi: longInt; {high-order 32 bits}

lo: longInt; {low-order 32 bits}

END;

Routines

Getting the Current Date and Time

FUNCTION ReadDateTime (VAR time: LongInt) : OSErr;

PROCEDURE GetDateTime (VAR secs: LongInt);

PROCEDURE GetTime (VAR d: DateTimeRec);

Setting the Current Date and Time
FUNCTION SetDateTime (time: LongInt) : OSErr;

PROCEDURE SetTime (d: DateTimeRec);

Converting Between Date-Time Formats

{each procedure has two spellings, see Table 4-4 for the alternate spelling}

PROCEDURE SecondsToDate (secs: LongInt; VAR d: DateTimeRec);

PROCEDURE DateToSeconds (d: DateTimeRec; VAR secs: LongInt);

Converting Between Long Date-Time Formats

{each procedure has two spellings, see Table 4-4 for the alternate spelling}

PROCEDURE LongSecondsToDate (VAR lSecs: LongDateTime;
VAR lDate: LongDateRec);

PROCEDURE LongDateToSeconds (lDate: LongDateRec; VAR lSecs: LongDateTime);

Modifying and Verifying Long Date-Time Records

FUNCTION ToggleDate (VAR lSecs: LongDateTime; field: LongDateField;
delta: DateDelta; ch: Integer;
params: TogglePB): ToggleResults;

FUNCTION ValidDate (vDate: LongDateRec; flags: LongInt;
VAR newSecs: LongDateTime): Integer;

Reading and Writing Location Data

PROCEDURE ReadLocation (VAR loc: MachineLocation);

PROCEDURE WriteLocation (VAR loc: MachineLocation);

C H A P T E R 4

Date, Time, and Measurement Utilities

4-54 Summary of the Date, Time, and Measurement Utilities

Determining the Measurement System

{this function has two spellings, see Table 4-4 for the alternate spelling}

FUNCTION IsMetric: Boolean;

Measuring Time

PROCEDURE Microseconds (VAR microTickCount UnsignedWide);

C Summary

Constants

enum

{

/*date equates for ToggleDate control bits*/

validDateFields = -1, /*date fields are valid*/

genCdevRangeBit = 27, /*restrict date/time to range used by */

/* General Controls control panel*/

togDelta12HourBit = 28, /*if toggling hour up/down, restrict */

/* to 12-hour range*/

togCharZCycleBit = 29, /*modifier for TogChar12HourBit to */

/* accept hours 0..11 only*/

togChar12HourBit = 30, /*if toggling hour by char, accept */

/* hours 1..12 only*/

smallDateBit = 31, /*restrict valid date/time to range */

/* of Time global*/

/*long date-time record field masks*/

eraMask = 0x0001, /*era*/

yearMask = 0x0002, /*year*/

monthMask = 0x0004, /*day*/

dayMask = 0x0008, /*month*/

hourMask = 0x0010, /*hour*/

minuteMask = 0x0020, /*minute*/

secondMask = 0x0040, /*second*/

dayOfWeekMask = 0x0080, /*day of the week*/

dayOfYearMask = 0x0100, /*day of the year*/

weekOfYearMask = 0x0200, /*week of the year*/

pmMask = 0x0400 /*evening (P.M.)*/

};

C H A P T E R 4

Date, Time, and Measurement Utilities

Summary of the Date, Time, and Measurement Utilities 4-55

enum

{

/*default value for togFlags field in the toggle parameter block and */

/* default value for the flags parameter passed to the Verify function*/

dateStdMask = 0x007F, /*default value for checking era */

/* through second fields*/

};

Data Types

struct DateTimeRec /*date-time record*/

{

short year; /*year*/

short month; /*month*/

short day; /*day of the month*/

short hour; /*hour*/

short minute; /*minute*/

short second; /*second*/

short dayOfWeek; /*day of the week*/

};

typedef struct DateTimeRec DateTimeRec;

enum /*long date field enumeration*/

{

eraField, yearField, monthField, dayField, hourField, minuteField,

secondField,dayOfWeekField, dayOfYearField, weekOfYearField, pmField,

res1Field, res2Field, res3Field

};

typedef unsigned char LongDateField;

typedef comp LongDateTime; /*date and time in 64-bit SANE comp format*/

union LongDateCvt /*long date-time conversion record*/

{

comp c; /*copy field into a LongDateTime variable*/

struct

{

long lHigh; /*high-order 32 bits*/

long lLow; /*low-order 32 bits*/

} hl;

};

typedef union LongDateCvt LongDateCvt;

C H A P T E R 4

Date, Time, and Measurement Utilities

4-56 Summary of the Date, Time, and Measurement Utilities

union LongDateRec /*long date-time record*/

{

struct

{

short era; /*era*/

short year; /*year*/

short month; /*month*/

short day; /*day of the month*/

short hour; /*hour*/

short minute; /*minute*/

short second; /*second*/

short dayOfWeek; /*day of the week*/

short dayOfYear; /*day of the year*/

short weekOfYear; /*week of the year*/

short pm; /*half of day--0 for morning, 1 for evening*/

short res1; /*reserved*/

short res2; /*reserved*/

short res3; /*reserved*/

} ld;

short list[14]; /*index by LongDateField*/

struct

{

short eraAlt; /*era*/

DateTimeRec oldDate; /*date-time record*/

} od;

};

typedef union LongDateRec LongDateRec;

struct TogglePB /*toggle parameter block*/

{

long togFlags; /*flags*/

ResType amChars; /*from 'itl0' resource, but made uppercase*/

ResType pmChars; /*from 'itl0' resource, but made uppercase*/

long reserved[4]; /*reserved*/

};

typedef struct TogglePB TogglePB;

typedef short ToggleResults; /*ToggleDate function return type*/

typedef char DateDelta; /*ToggleDate function delta field type*/

struct MachineLocation /*geographic location record*/

{

Fract latitude; /*latitude*/

C H A P T E R 4

Date, Time, and Measurement Utilities

Summary of the Date, Time, and Measurement Utilities 4-57

Fract longitude; /*longitude*/

union

{

char dlsDelta; /*daylight saving time*/

long gmtDelta; /*Greenwich mean time*/

} gmtFlags;

};

typedef struct MachineLocation MachineLocation;

struct UnsignedWide /*Microseconds procedure return type*/

{

unsigned long hi; /*high-order 32 bits*/

unsigned long lo; /*high-order 32 bits*/

};

typedef struct UnsignedWide UnsignedWide;

Routines

Getting the Current Date and Time

pascal OSErr ReadDateTime (unsigned long *time);

pascal void GetDateTime (unsigned long *secs);

pascal void GetTime (DateTimeRec *d);

Setting the Current Date and Time

pascal OSErr SetDateTime (unsigned long time);

pascal void SetTime (const DateTimeRec *d);

Converting Between Date-Time Formats

{each procedure has two spellings, see Table 4-4 for the alternate spelling}

pascal void SecondsToDate (unsigned long secs, DateTimeRec *d);

pascal void DateToSeconds (const DateTimeRec *d, unsigned long *secs);

Converting Between Long Date-Time Formats

{each procedure has two spellings, see Table 4-4 for the alternate spelling}

pascal void LongSecondsToDate

(LongDateTime *lSecs, LongDateRec *lDate);

pascal void LongDateToSeconds
(const LongDateRec *lDate, LongDateTime *lSecs);

C H A P T E R 4

Date, Time, and Measurement Utilities

4-58 Summary of the Date, Time, and Measurement Utilities

Modifying and Verifying Long Date-Time Records

pascal ToggleResults ToggleDate
(LongDateTime *lSecs, LongDateField field,
DateDelta delta, short ch,
const TogglePB *params);

pascal short ValidDate (const LongDateRec vDate, long flags,
 LongDateTime *newSecs);

Reading and Writing Location Data

pascal void ReadLocation (MachineLocation *loc);

pascal void WriteLocation (MachineLocation *loc);

Determining the Measurement System

{this functiosn has two spellings, see Table 4-4 for the alternate spelling}

pascal Boolean IsMetric (void);

Measuring Time

pascal void Microseconds (UnsignedWide *microTickCount);

C H A P T E R 4

Date, Time, and Measurement Utilities

Summary of the Date, Time, and Measurement Utilities 4-59

Assembly-Language Summary

Data Structures

Date-Time Record

Long Date Field Enumeration

Long Date-Time Value

0 dtYear word year

2 dtMonth word month

4 dtDay word day of the month

6 dtHour word hour

8 dtMinute word minute

10 dtSecond word second

12 dtDayOfWeek word day of the week

0 eraField byte era

1 yearField byte year

2 monthField byte month

3 dayField byte day of the month

4 hourField byte hour

5 minuteField byte minute

6 secondField byte second

7 dayOfWeekField byte day of the week

8 dayOfYearField byte day of the year

9 weekOfYearField byte week of the year

10 pmField byte pm

11 res1Field byte reserved

12 res2Field byte reserved

13 res3Field byte reserved

0 highLong long high-order 32 bits

4 lowLong long low-order 32 bits

C H A P T E R 4

Date, Time, and Measurement Utilities

4-60 Summary of the Date, Time, and Measurement Utilities

Long Date-Time Record

Geographic Location Record

Toggle Parameter Block

Unsigned Wide Record

Global Variables

0 era word era

2 year word year

4 month word month

6 day word day of the month

8 hour word hour

10 minute word minute

12 second word second

14 dayOfWeek word day of the week

16 dayOfYear word day of the year

18 weekOfYear word week of the year

20 pm word half of day, morning or evening

22 ldReserved 6 bytes reserved

0 latitude long latitude

4 longitude long longitude

8 dlsDelta byte daylight savings time

9 gmtDelta 3 bytes Greenwich mean time

0 togFlags long flags

2 amChars word ResType from 'itl0' made uppercase

4 pmChars word ResType from 'itl0' made uppercase

6 reserved word reserved

0 hi long high-order 32 bits

4 lo long low-order 32 bits

Time The number of seconds since midnight, January 1, 1904

C H A P T E R 4

Date, Time, and Measurement Utilities

Summary of the Date, Time, and Measurement Utilities 4-61

Result Codes
toggleErr5 9 Reserved
toggleErr4 8 Reserved
toggleErr3 7 Reserved
toggleOutOfRange 7 Out of range (synonym for toggleErr3)
toggleBadNum 6 Tried to use character as number
toggleUnknown 5 Unknown error
toggleBadChar 4 Invalid character
toggleBadDelta 3 Invalid delta value
toggleBadField 2 Invalid field number
toggleOK 1 No error
toggleUndefined 0 Undefined error
noErr 0 No error
clkRdErr –85 Unable to read clock
clkWrErr –86 Time written did not verify

Contents 5-1

C H A P T E R 5

Contents

Control Panel Extensions

About Control Panel Extensions 5-3

Writing a Control Panel Extension 5-6

Creating a Component Resource for a Control Panel Extension 5-6

Dispatching to Control Panel Extension-Defined Routines 5-9

Installing and Removing Panel Items 5-13

Handling Panel Items 5-16

Handling Events in a Panel 5-17

Handling Title Requests 5-19

Managing Control Panel Settings 5-19

Control Panel Extensions Reference 5-20

Control Panel Extension-Defined Routines 5-20

Managing Panel Components 5-20

Handling Panel Events 5-25

Managing Panel Settings 5-28

Summary of Control Panel Extensions 5-31

C H A P T E R 5

About Control Panel Extensions 5-3

Control Panel Extensions

This chapter describes how you can create a control panel extension to add a panel to an

existing control panel. Some of the control panels provided with the Macintosh system

software allow you to install additional panels to control settings for your own devices.

You can also install additional panels to allow the user to manipulate other system-wide

settings or configuration data not directly associated with any hardware.

You need to read this chapter if you are developing hardware or software that provides

system-wide services and that has one or more settings that a user might want to alter.

However, you need to read this chapter only if some existing control panel is extensible

in the way described in the next section, “About Control Panel Extensions.” Currently,

only certain versions of the Sound control panel and the Video control panel allow

you to add panels by creating control panel extensions. In all other cases, you’ll need

to create a control panel to handle any necessary user interaction. For a complete

description of how to create a control panel, see the chapter “Control Panels” in

Inside Macintosh: More Macintosh Toolbox. (Also see the chapter “Control Panels”

if you are the manufacturer of a video card and need to create an extension to the

Monitors control panel.)

To use this chapter, you should already be familiar with creating dialog boxes and

handling user actions in them. See the chapters “Dialog Manager” and “Event Manager”

in Inside Macintosh: Macintosh Toolbox Essentials for more information about these topics.

Because control panel extensions are components, you also need to be familiar with the

Component Manager, described in Inside Macintosh: More Macintosh Toolbox.

Note

The programming interface to control panel extensions described in this
chapter is virtually identical to the programming interface to sequence
grabber panel components, described in the chapter “Sequence Grabber
Panel Components” in Inside Macintosh: QuickTime Components. If you
are programming in C, you might find it useful to consult the source
code samples, which are in C in that chapter. ◆

About Control Panel Extensions

A control panel manages the settings of a system-wide feature, such as the amount of

memory allocated to a disk cache, the speed at which the cursor moves relative to

movement of the mouse, the background pattern used on the desktop, or the picture

displayed by a screen saver. On the screen, a control panel appears as a modeless dialog

box with controls that let users specify basic settings and preferences for the feature. A

control panel such as the General Controls or Color control panel usually defines the

contents of its display area and manages the settings of its own controls; however, a

control panel such as the Sound or Video control panel may use one or more control

panel extensions to manage parts of its display area. The rest of this chapter discusses

control panels that use control panel extensions and describes how to write a control

panel extension. For information on control panels that do not use control panel

extensions, see the chapter “Control Panels” in Inside Macintosh: More Macintosh Toolbox.

C H A P T E R 5

Control Panel Extensions

5-4 About Control Panel Extensions

A control panel extension works in conjunction with and at the request of a control

panel to manage a certain part of the control panel’s display area. The area managed by

a control panel extension is called a panel. A panel contains controls and other items

related to the features managed by the control panel extension. These items are the same

items used in dialog and alert boxes. The control panel extension is responsible for

handling events in its panel and for responding to requests from its associated control

panel. A control panel that uses control panel extensions typically includes a pop-up

menu, from which the user chooses which panel to view. The control panel displays the

current panel’s items within a dotted-line border extending from its pop-up menu.

Figure 5-1 shows the Sound control panel introduced with version 3.0 of the Sound

Manager. The Sound control panel manages the pop-up menu in its display area. When

the user chooses a menu item from the pop-up menu, the Sound control panel uses a

control panel extension to display the panel corresponding to the user’s choice. The

control panel extension is responsible for managing the area within its panel.

Figure 5-1 A control panel with a panel

As shown in Figure 5-1, control panels that use control panel extensions typically include

a pop-up menu from which the user can choose one or more items. Each item typically

corresponds to a feature managed by a control panel extension. For example, Figure 5-2

shows the menu items in the pop-up menu of the Sound control panel. This pop-up

menu can have the items Alert Sounds, Sound In, Sound Out, or Volumes as well as

items corresponding to other control panel extensions. Apple supplies the control panel

extensions for Alert Sounds, Sound In, Sound Out, and Volumes.

C H A P T E R 5

Control Panel Extensions

About Control Panel Extensions 5-5

Figure 5-2 Panel-selection pop-up menu in a control panel

As shown in Figure 5-2, when the user chooses the Alert Sounds pop-up menu item, the

Sound control panel calls the Alert Sounds control panel extension to display a panel

and manage the items associated with the extension. The Alert Sounds control panel

extension is responsible for the items within its panel: the volume slider, the scrollable

list of sounds, and the two buttons.

The user interface for a panel consists of the display area defined by the owning control

panel and includes the items defined and managed by your panel. Each control panel

that supports control panel extensions defines the bounding area in which panels can

place items. For example, the panel inserted into the Sound control panel is given a

default rectangle size of 185 pixels in height, and 302 pixels in width. All of the items

for this panel must be placed at least 13 pixels from the dialog’s border.

Control panel extensions are implemented as components. A control panel uses the

Component Manager to request services from the appropriate control panel extension as

needed. For example, when the user opens a control panel, the Finder sends the control

panel an initialization request. In response to this request, the control panel uses the

Component Manager to determine which control panel extensions are available and

includes the name of each available extension in its pop-up menu.

The control panel then uses the Component Manager to open the control panel extension

associated with the current pop-up menu item and set up the panel. (For example, if the

Sound control panel determines that its panel area should display information for Alert

Sounds panel, the Sound control panel opens the Alert Sounds control panel extension.)

As directed, the control panel extension returns information about its controls and other

items in its panel area and sets initial values for these items. The control panel continues

to use the Component Manager to communicate with the control panel extension,

requesting it to respond to user events within the panel area. When the user closes the

control panel, the control panel uses the Component Manager to close the current control

panel extension before the control panel terminates.

C H A P T E R 5

Control Panel Extensions

5-6 Writing a Control Panel Extension

This chapter describes the general structure of a control panel extension. For information

on providing a control panel extension for a specific control panel, see the

documentation describing that control panel. For example, for information on the

Video control panel, see the chapter “Sequence Grabber Panel Components” in

Inside Macintosh: QuickTime Components.

Writing a Control Panel Extension

A control panel extension is a component that works with a control panel to manage a

panel—a certain part of an existing control panel’s display area. Because a control panel

extension is a component, it must be able to respond to standard request codes sent by

the Component Manager. In addition, a control panel extension must

■ return information about the items in its panel

■ handle user actions and other events in its panel

■ get and set the values of its items

This section describes how to write a control panel extension. You need to read this

section if you want to create a new panel for an existing control panel.

Creating a Component Resource for a Control Panel Extension
A control panel extension is stored as a component resource. It contains a number of

resources, including icons, strings, pictures, and the standard component resource (a

resource of type 'thng') required of any Component Manager component. In addition,

a control panel extension must contain code to handle required request codes passed to

it by the Component Manager as well as panel-specific request codes. A control panel

extension also usually contains an item list resource ('DITL') that defines the items for

the panel.

Note

For complete details on components and their structure, see the chapter
“Component Manager” in Inside Macintosh: More Macintosh Toolbox. This
section provides specific information about control panel extensions. ◆

The component resource binds together all the relevant resources contained in a

component; its structure is defined by the ComponentResource data type.

TYPE ComponentResource =

RECORD

cd: ComponentDescription;

component: ResourceSpec;

componentName: ResourceSpec;

C H A P T E R 5

Control Panel Extensions

Writing a Control Panel Extension 5-7

componentInfo: ResourceSpec;

componentIcon: ResourceSpec;

END;

The cd field contains a component description record that specifies the component type,

subtype, manufacturer, and flags. The component field specifies the resource type and

resource ID of the component’s executable code. By convention, this resource should be

of the same type as the componentType field of the component description record

referenced through the cd field. (You can, however, specify some other resource type

if you wish.) The resource ID can be any integer greater than or equal to 128. See the

next section, “Dispatching to Control Panel Extension-Defined Routines,” for further

information about this code resource. The ResourceSpec data type has this structure:

TYPE ResourceSpec =

RECORD

resourceType: ResType;

resourceID: Integer;

END;

The componentName field of the ResourceSpec data type specifies the resource type

and resource ID of the resource that contains the component’s name. Usually the name is

contained in a resource of type 'STR '. This string should be as short as possible.

The componentInfo field specifies the resource type and resource ID of the resource

that contains a description of the component. Usually the description is contained in a

resource of type 'STR '. This information is not currently used by control panels, but

some development tools may use it.

The componentIcon field specifies the resource type and resource ID of the resource

that contains an icon for the component. Usually the icon is contained in a resource of

type 'ICON'. This icon is not currently used by control panels, but some development

tools may use it.

As previously described, the cd field of the ComponentResource structure is a

component description record, which includes additional information about the

component. A component description record is defined by the

ComponentDescription data structure.

TYPE ComponentDescription =

RECORD

componentType: LongInt;

componentSubType: LongInt;

componentManufacturer: LongInt;

componentFlags: LongInt;

componentFlagsMask: LongInt;

END;

C H A P T E R 5

Control Panel Extensions

5-8 Writing a Control Panel Extension

For control panel extensions, the componentType field must be set to a value associated

with an existing control panel. Currently, you can specify one of two available

component types for control panel extensions:

CONST

SoundPanelType = 'sndP'; {sound panel}

VideoPanelType = 'vidP'; {video panel}

In addition, the componentSubType field must be set to a value that indicates the type

of control panel services your panel provides. For example, the Apple-supplied control

panel extensions for the Sound control panel have these subtypes:

CONST

kAlertSoundsPanel = 'alrt'; {alert sounds panel}

kInputsPanel = 'mics'; {input devices panel}

kOutputsPanel = 'spek'; {output devices panel}

kVolumesSubType = 'vols'; {volumes panel}

If you add panels to the Sound control panel, you should assign some other subtype.

Note

Apple reserves for its own uses all types and subtypes composed solely
of lowercase letters. ◆

You can assign any value you like to the componentManufacturer field; typically, you

put the signature of your control panel extension in this field.

The componentFlags field of the component description for a control panel extension

contains bit flags that encode information about the extension. Currently, you can use

this field to specify whether the control panel should open your extension’s resource file.

CONST

channelFlagDontOpenResFile = 2; {do not open resource file}

The channelFlagDontOpenResFile bit indicates to the owning control panel

whether or not to open the component’s resource file. When bit 2 is cleared (set to 0),

the control panel opens the component’s resource file for you. In general, this is the most

convenient way to gain access to your extension’s resources. However, if the component

is linked with an application and does not have its own resource file, you might not want

the control panel to try to open the resource file. In that case, set this bit to 1.

You should set the componentFlagsMask field to 0.

Your control panel extension is contained in a resource file. The creator of the file can be

any type you wish, but the type of the file must be 'thng'. If the extension contains a

'BNDL' resource, then the file’s bundle bit must be set. Control panel extensions should

be located in the Control Panels folder (or Extensions folder if the component needs

automatic registration).

Listing 5-1 shows the Rez listing of a component resource that describes a control panel

extension.

C H A P T E R 5

Control Panel Extensions

Writing a Control Panel Extension 5-9

Listing 5-1 A component resource for a control panel extension

resource 'thng' (kExamplePanelID, kExampleName, purgeable) {

kExamplePanelComponentType, /*component type*/

kExamplePanelSubType, /*component subtype*/

kExampleManufacturer, /*component manufacturer*/

cmpWantsRegisterMessage, /*control flags*/

0, /*control flags mask*/

/*code res type, res ID*/

kExamplePanelCodeType, kExamplePanelCodeID,

'STR ', kExamplePanelNameID, /*name res type, res ID*/

'STR ', kExamplePanelInfoID, /*info res type, res ID*/

'ICON', kExamplePanelIconID /*icon res type, res ID*/

};

Dispatching to Control Panel Extension-Defined Routines
As explained in the previous section, the code stored in the control panel extension

component should be contained in a resource whose resource type matches the type

stored in the componentType field of the component description record. The

Component Manager expects that the entry point in this resource is a function having

this format:

FUNCTION MyPanelDispatch (VAR params: ComponentParameters;

 storage: Handle): ComponentResult;

Whenever the Component Manager receives a request for your control panel extension,

it calls your component’s entry point and passes any parameters, along with information

about the current connection, in a component parameters record. The Component

Manager also passes a handle to the global storage (if any) associated with that instance

of your component.

When your component receives a request, it should examine the parameters to

determine the nature of the request, perform the appropriate processing, set an error

code if necessary, and return an appropriate function result to the Component Manager.

The component parameters record is defined by a data structure of type

ComponentParameters. The what field of this record contains a value that specifies

the type of request. Your component’s entry point should interpret the request code and

possibly dispatch to some other subroutine. Your extension must be able to handle the

required request codes, defined by these constants:

CONST

kComponentOpenSelect = -1;

kComponentCloseSelect = -2;

kComponentCanDoSelect = -3;

kComponentVersionSelect = -4;

C H A P T E R 5

Control Panel Extensions

5-10 Writing a Control Panel Extension

Note
For complete details on required component request codes, see the
chapter “Component Manager” in Inside Macintosh: More Macintosh
Toolbox. ◆

In addition, your extension must be able to respond to panel-specific request codes.

Currently, you need to be able to handle these request codes:

CONST

kPanelGetDitlSelect = 0; {get panel's item list}

kPanelGetTitleSelect = 1; {get panel's name}

kPanelInstallSelect = 2; {restore item settings}

kPanelEventSelect = 3; {handle event in panel}

kPanelItemSelect = 4; {handle click in a panel item}

kPanelRemoveSelect = 5; {panel is about to be removed}

kPanelValidateInputSelect = 6; {validate panel settings}

kPanelGetSettingsSelect = 7; {get panel settings}

kPanelSetSettingsSelect = 8; {set panel settings}

You should respond to these request codes by performing the requested action. To

service the request, your component may need to access additional information

provided in the params field of the component parameters record. The params field

is an array that contains the parameters specified by the control panel that called your

component. You can directly extract the parameters from this array, or you can use the

CallComponentFunction or CallComponentFunctionWithStorage function to

extract the parameters from this array and pass these parameters to a subroutine of

your component.

Listing 5-2 illustrates how to define the entry-point routine for a control panel extension.

Listing 5-2 Handling Component Manager request codes

FUNCTION MyPanelDispatch (VAR params: ComponentParameters; storage: Handle)

 : ComponentResult;

CONST

kPanelVersion = 1;

kExamplePanelDITLID = 128;

kDefaultButton = 1;

kExampleOtherButton = 2;

kExampleBeepButton = 3;

kExampleRadioButton1 = 4;

kExampleRadioButton1 = 5;

TYPE

PanelGlobalsRec = {global storage for this component instance}

RECORD

itemOffset: Integer;

C H A P T E R 5

Control Panel Extensions

Writing a Control Panel Extension 5-11

mySelf: ComponentInstance;

END;

PanelGlobalsPtr = ^PanelGlobalsRec;

PanelGlobalsHandle = ^PanelGlobalsPtr;

VAR

myGlobals: PanelGlobalsHandle;

selector: Integer;

BEGIN

CASE params.what OF

kComponentOpenSelect: {component is opening}

BEGIN

myGlobals :=

PanelGlobalsHandle(NewHandleClear(SizeOf(PanelGlobalsRec)));

IF myGlobals <> NIL THEN

BEGIN

myGlobals^^.mySelf := ComponentInstance(params.params[0]);

SetComponentInstanceStorage(myGlobals^^.mySelf,

Handle(myGlobals));

MyPanelDispatch := noErr;

END

ELSE

MyPanelDispatch := MemError;

END;

kComponentCloseSelect: {component is closing; clean up}

BEGIN

IF storage <> NIL THEN

DisposeHandle(storage);

MyPanelDispatch := noErr;

END;

kComponentCanDoSelect: {indicate whether component }

{ supports this request code}

BEGIN

selector := Integer((Ptr(params.params)^));

IF (((kComponentVersionSelect <= selector)

AND (selector <= kComponentOpenSelect))

OR ((kPanelGetDitlSelect <= selector)

AND (selector <= kPanelSetSettingsSelect))) THEN

MyPanelDispatch := 1 {valid request}

ELSE

MyPanelDispatch := 0;{invalid request}

END;

C H A P T E R 5

Control Panel Extensions

5-12 Writing a Control Panel Extension

kComponentVersionSelect:{return version number}

MyPanelDispatch := kPanelVersion;

kPanelGetDitlSelect: {get panel's item list}

MyPanelDispatch := CallComponentFunctionWithStorage

(storage, params,

 ComponentFunction(@MyPanelGetDITL));

kPanelInstallSelect: {restore items' settings if necessary}

MyPanelDispatch := CallComponentFunctionWithStorage

(storage, params,

 ComponentFunction(@MyPanelInstall));

kPanelEventSelect: {handle event in panel}

MyPanelDispatch := CallComponentFunctionWithStorage

(storage, params,

 ComponentFunction(@MyPanelEvent));

kPanelItemSelect: {handle hit in one of panel's items}

MyPanelDispatch := CallComponentFunctionWithStorage

(storage, params,

 ComponentFunction(@MyPanelItem));

kPanelRemoveSelect: {panel is about to be removed, respond as needed}

MyPanelDispatch := CallComponentFunctionWithStorage

(storage, params,

 ComponentFunction(@MyPanelRemove));

kPanelValidateInputSelect:{validate panel settings}

MyPanelDispatch :=

CallComponentFunctionWithStoMyPanelValidateInputrage

(storage, params,

 ComponentFunction(@MyPanelValidateInput));

kPanelGetTitleSelect: {get panel's name}

MyPanelDispatch := CallComponentFunctionWithStorage

(storage, params,

 ComponentFunction(@MyPanelGetTitle));

kPanelGetSettingsSelect: {get panel settings}

MyPanelDispatch := CallComponentFunctionWithStorage

(storage, params,

ComponentFunction(@MyPanelGetSettings));

C H A P T E R 5

Control Panel Extensions

Writing a Control Panel Extension 5-13

kPanelSetSettingsSelect:{set panel settings}

MyPanelDispatch := CallComponentFunctionWithStorage

(storage, params,

ComponentFunction(@MyPanelSetSettings));

OTHERWISE {unrecognized request code}

MyPanelDispatch := badComponentSelector;

END; {of CASE}

END;

The MyPanelDispatch function defined in Listing 5-2 simply inspects the what field

of the component parameters record to determine which request code to handle. For

panel-specific request codes, it dispatches to the appropriate function in the control

panel extension. See the following sections for more details on handling panel-specific

request codes.

Your extension can be dynamically loaded or unloaded at any time. When the owning

control panel first discovers the extension, it loads it into a subheap of some existing

heap. In all likelihood, your extension is loaded into either the system heap or temporary

memory. In some cases, however, your extension might be loaded into an application’s

heap. Your extension is guaranteed 32 KB of available heap space. You should do all

allocation in that heap using normal Memory Manager routines.

If you need to access resources that are stored in your control panel extension, you can

use the OpenComponentResFile and CloseComponentResFile functions (which

are provided by the Component Manager), or you can allow the control panel to open

your resource fork for you automatically by setting the appropriate component flag. The

OpenComponentResFile routine requires the ComponentInstance parameter

supplied to your routine. You should not call the Resource Manager routines

OpenResFile or CloseResFile.

▲ W A R N I N G

Do not leave any resource files open when your control panel extension
is closed. Their maps will be left in the subheap when the subheap is
freed, causing the Resource Manager to crash. ▲

The following sections illustrate how to write control panel extension functions that

respond to panel-specific request codes.

Installing and Removing Panel Items
After opening your control panel extension, the control panel calls your control panel

extension with a get-item list request followed by an install request. When your

component receives a get-item list request, it should return the item list that defines

the items in its panel. When your component receives an install request, it should set the

default values of any items in the panel or set up any user items in the panel. For

example, your component can restore previous settings as set by the user or create lists

C H A P T E R 5

Control Panel Extensions

5-14 Writing a Control Panel Extension

at this time. When your component receives a remove request, it should perform any

processing that is necessary before the panel is removed from the display area of

the control panel.

A control panel that uses your control panel extension calls your component with the

get-item list request (followed by an install request) before displaying the panel to the

user. If your component returns a result code of noErr in response to both of these

request codes, the control panel displays your panel to the user.

The relevant fields in the component parameters record when your component receives

a get-item list request are:

Field Description

what This field is set to kPanelGetDitlSelect.

params The first entry in this array contains a handle to a block of memory.
Your component should resize the handle as necessary and then use this
memory to return an item list of the items supported by your control
panel extension.

In response to a get-item list request, set your component’s function result to noErr if

your component successfully placed the item list in memory; otherwise, set it to a

nonzero value.

Listing 5-3 shows an example of a control panel extension-defined routine that handles

the get-item list request.

Listing 5-3 Responding to the get-item list request

FUNCTION MyPanelGetDITL(globals: PanelGlobalsHandle;

ditlHandle: Handle): ComponentResult;

BEGIN

MyPanelGetDITL := resNotFound; {set default return value}

ditlHandle := Get1Resource('DITL', kExamplePanelDITLID);

IF (ditlHandle <> NIL)

BEGIN

DetachResource(ditlHandle);

MyPanelGetDITL := noErr;

END;

END;

C H A P T E R 5

Control Panel Extensions

Writing a Control Panel Extension 5-15

The relevant fields in the component parameters record when your component receives

an install request are:

Field Description

what This field is set to kPanelInstallSelect.

params The first entry in this array contains the dialog pointer of the owning
control panel. The dialog box can be a color dialog box on systems that
support color windows. The second entry contains the item offset to your
panel’s first item.

In response to an install request, set your component’s function result to noErr if your

component successfully handled the request; otherwise, set it to a nonzero value.

Listing 5-4 shows an example of a control panel extension-defined routine that handles

the install request.

Listing 5-4 Responding to the install request

FUNCTION MyPanelInstall(globals: PanelGlobalsHandle;

cpDialogPtr: DialogPtr;

itemOffset: Integer): ComponentResult;

BEGIN

{restore previous settings of panel items as set by user}

MyPanelInstall := MyRestoreSettings(globals, itemOffset,

 cpDialogPtr);

END;

The MyPanelInstall function shown in Listing 5-4 calls one of its own routines

(MyRestoreSettings) to set the panel’s items to the last settings chosen by the user. In

response to the install request, you can also create other elements needed by your panel,

such as lists.

The relevant fields in the component parameters record when your component receives a

remove request are:

Field Description

what This field is set to kPanelRemoveSelect.

params The first entry in this array contains the dialog pointer of the owning
control panel. The dialog box can be a color dialog box on systems that
support color windows. The second entry contains the item offset to your
panel’s first item.

In response to a remove request, dispose of any additional dialog data you created (for

example, if you created a list, call LDispose), but do not dispose of your component’s

global storage. Also, set your component’s function result to noErr if your component

successfully handled the request; otherwise, set it to a nonzero value.

C H A P T E R 5

Control Panel Extensions

5-16 Writing a Control Panel Extension

Handling Panel Items
Your control panel extension typically receives an item-select request (indicated by the

kPanelItemSelect request code) when the user clicks in one of your panel’s items.

When your component receives an item-select request, it should perform the appropriate

action for the selected item.

Note that when a click in one of your panel’s items occurs, the owning control panel

first sends your component an event-select request, giving your component a chance

to filter the event, if necessary. A control panel sends your component an item-select

request only if your component returns FALSE in the handled parameter in response to

an event-select request. Typically, your component only returns FALSE in response to an

event-select request if the event is a mouse event. The event-select request is discussed in

detail in the next section, “Handling Events in a Panel” beginning on page 5-17.

The relevant fields in the component parameters record when your component receives

an item-select request are:

Field Description

what This field is set to kPanelItemSelect.

params The first entry in this array contains the dialog pointer of the owning
control panel. The dialog box can be a color dialog box on systems that
support color windows. The second entry contains the item number of
the item selected by the user. Note that to map the item number to an
item in your panel, you must offset the item number by the number of
items in the owning control panel.

You must set your component’s function result to noErr in response to an item-select

request; otherwise, the owning control panel closes the panel.

Listing 5-5 shows an example of a control panel extension-defined routine that handles

an item-select request.

Listing 5-5 Responding to an item-select request

FUNCTION MyPanelItemSelect(globals: PanelGlobalsHandle;

cpDialogPtr: DialogPtr;

itemHit: Integer): ComponentResult;

BEGIN

MyPanelItemSelect := noErr; {set return value}

{adjust item number to take into account control panel's items}

itemHit := itemHit - (globals^^).itemsOffset;

CASE itemHit OF

kExampleBeepButton: {user clicked beep button}

SysBeep(40);

kExampleOtherButton: {user clicked this button}

MyPanelItemSelect := MyDoButton(cpDialogPtr, itemHit);

kExampleRadioButton1:{user clicked this radio button}

C H A P T E R 5

Control Panel Extensions

Writing a Control Panel Extension 5-17

MyPanelItemSelect := MySetRadioButton(cpDialogPtr,

 itemHit);

kExampleRadioButton2:{user clicked this radio button}

MyPanelItemSelect := MySetRadioButton(cpDialogPtr,

 itemHit);

kDefaultButton: {user clicked the default button}

MyPanelItemSelect :=

MyDoDefaultButtonAction(cpDialogPtr,

itemHit);

END; {of CASE}

END;

Handling Events in a Panel
A control panel sends an event-select request (indicated by the kPanelEventSelect

request code) to your extension whenever an event occurs in your panel. The

event-select request is intended to provide your extension with the ability to respond

just like an event filter function specified in calls to the ModalDialog procedure or

other Dialog Manager routines. A control panel sends your extension the event-select

request to give it an opportunity to intercept events in its panel and handle events

before, or instead of the owning control panel. For example, you can change a keystroke

into a click on an item, use idle time during null events, or track the movement of the

cursor through mouse events.

The relevant fields in the component parameters record when your component receives

an event-select request are:

Field Description

what This field is set to kPanelEventSelect.

params The first entry in this array contains the dialog pointer of the owning
control panel. The second entry contains the item offset to your panel’s
first item. Note that to map the item number to an item in your panel,
you must offset the item number by the number of items in the owning
control panel. The third entry contains an event record describing the
event. If your extension handles the event, it should return in the fourth
entry the item number of the associated panel item. On exit, your
extension should indicate in the fifth entry whether it has handled the
event by returning TRUE (handled the event) or FALSE (did not handle
the event).

When your extension receives an event-select request, it indicates (through the fifth entry

in params) whether it handled the event or not. Typically, your extension responds to an

event-select request in this manner:

■ maps the Return or Enter key to the default button, performs the action
corresponding to the default button, and returns TRUE and the item number of the
default button through entries in params

C H A P T E R 5

Control Panel Extensions

5-18 Writing a Control Panel Extension

■ maps the Esc (Escape) key or Command-period combination to the Cancel button (if
any), performs the action corresponding to the Cancel button, and returns TRUE and
the item number through entries in params

■ updates the panel if needed (typically updating only those items that need updating
apart from the standard updating performed by the Dialog Manager, such as
user-defined panel items or lists) and returns TRUE and the item number of the
default button through entries in params

■ activates certain panel items (such as lists) as necessary and returns TRUE

■ maps keyboard equivalents (if any) to corresponding item numbers, performs the
corresponding action for that item number, and returns TRUE

■ tracks movement of the cursor as needed (typically tracking the cursor only in those
items, such as user-defined items or lists, that the Dialog Manager doesn’t handle)
and returns TRUE

In general, for all other events, your extension should return FALSE (in the fifth entry

of params) and allow the owning control panel to handle the event. However, note that

if your extension returns FALSE, the owning control panel calls your extension with the

item-select request code. See the previous section, “Handling Panel Items” on page 5-16

for information on handling clicks in your panel’s items.

Listing 5-6 shows an example of a control panel extension-defined routine that handles

the event-select request.

Listing 5-6 Responding to an event-select request

FUNCTION MyPanelEvent (globals: Handle; dialog: DialogPtr;

 itemOffset: Integer;

 theEvent: eventRecord;

 VAR itemHit: Integer;

 VAR handled: Boolean): ComponentResult;

VAR

itemType: Integer;

itemHandle: Handle;

itemRect: Rect;

finalTicks: LongInt;

BEGIN

MyPanelEvent := noErr;

CASE theEvent.what OF

keyDown, autoKey:

BEGIN

CASE ((char)(theEvent->message & charCodeMask))

kEnterKey, kReturnKey:

BEGIN {respond as if user clicked Default button}

itemHit := kDefaultButton + itemOffset;

C H A P T E R 5

Control Panel Extensions

Writing a Control Panel Extension 5-19

GetDialogItem(dialog, itemHit, itemType,

 itemHandle, itemRect);

HiliteControl(ControlHandle(itemHandle),inButton);

Delay(kVisualDelay, finalTicks);

HiliteControl(ControlHandle(itemHandle),0);

MyPanelEvent :=

MyDoDefaultButtonAction(dialog, itemHit);

END;

OTHERWISE

{let control panel/Dialog Mgr handle other keyboard events}

handled := FALSE;

END; {of CASE keyDown, autoKey}

updateEvt:

DoUpdatePanel(globals, dialog);

OTHERWISE

{let owning control panel & Dialog Mgr handle other events}

handled := FALSE;

END; {of CASE}

END;

Handling Title Requests
A control panel may send your control panel extension a title request to determine the

name it should display for the panel in the control panel’s pop-up menu. Note that a

control panel usually uses the name of your component as the name to display.

The relevant fields in the component parameters record when your component receives

a title request are:

Field Description

what This field is set to kPanelGetTitleSelect.

params The first entry in this array contains a value that identifies a specific
instance of your component. In the second entry of this array, your
component should return the name you want displayed in the pop-up
menu associated with your panel.

Note

Current versions of the Sound and Video control panels do not send the
kPanelGetTitleSelect request code. ◆

Managing Control Panel Settings
A control panel may send the kPanelValidateInputSelect,

kPanelGetSettingsSelect, or kPanelSetSettingsSelect request codes to your

extension to request it to validate the settings of its items, or return or set the current

C H A P T E R 5

Control Panel Extensions

5-20 Control Panel Extensions Reference

settings of its items. If a control panel sends this request code, your extension should

respond appropriately.

Note

Current versions of the Sound and Video control panels do not send the
kPanelValidateInputSelect, kPanelGetSettingsSelect, or
kPanelSetSettingsSelect request code. ◆

Control Panel Extensions Reference

This section describes the extension-defined routines that you can write to handle the

panel-specific request codes that your control panel extension receives. See “Writing a

Control Panel Extension” beginning on page 5-6 for information on creating a

component that contains these extension-defined routines.

Control Panel Extension-Defined Routines

This section describes the routines you’ll need to define in order to write a control panel

extension. You need to write routines that respond to panel-specific request codes. The

panel-specific request codes request your control panel extension to perform various

actions. These actions include:

■ returning an item list describing the panel’s items and setting up the initial values of
these items

■ receiving and handling events in the panel

■ getting and setting a panel’s settings

Your control panel extension-defined routines should always return result codes of type

ComponentResult. If a routine succeeds, it should return noErr.

See “Dispatching to Control Panel Extension-Defined Routines” beginning on page 5-9

for a description of how you call these routines from within a control panel extension.

Managing Panel Components

A control panel extension should respond to the kPanelGetDitlSelect,

kPanelInstallSelect, kPanelGetTitleSelect, and kPanelRemoveSelect
request codes. You typically define subroutines that the main program of your control

panel extension calls (using CallComponentFunctionWithStorage) to handle

these requests. You can choose any name for these subroutines, but by convention

they’re called MyPanelGetDITL, MyPanelInstall, MyPanelGetTitle,

and MyPanelRemove.

When the appropriate control panel prepares to add a control panel extension’s items to

a control panel, it obtains a list of those items by calling the extension and specifying the

C H A P T E R 5

Control Panel Extensions

Control Panel Extensions Reference 5-21

kPanelGetDitlSelect request code. The control panel extension typically responds

by calling a subroutine (for example, MyPanelGetDITL) to handle the request. Once

the control panel has installed the items, it calls the extension and specifies the

kPanelInstallSelect request code to give the extension the opportunity to set any

default values in the panel. The extension’s MyPanelInstall function responds to this

request code.

Before the control panel removes the panel from its display, it calls the extension and

specifies the kPanelRemoveSelect request code. The extension’s MyPanelRemove

function responds to this request code. The kPanelGetTitleSelect request code is

currently optional for control panel extensions. If your extension responds to this request

code, it should return the name that the control panel should display for the panel in the

control panel’s pop-up menu. The extension’s MyPanelGetTitle function responds to

this request code.

MyPanelGetDITL

A control panel extension must respond to the kPanelGetDitlSelect request code. A

control panel sends this request code to an extension to obtain a list of the panel’s items.

A control panel extension typically responds to the kPanelGetDitlSelect request

code by calling an extension-defined subroutine (for example, MyPanelGetDITL) to

handle the request.

FUNCTION MyPanelGetDITL (globals: Handle; VAR ditl: Handle)

 : ComponentResult;

globals A handle to the control panel extension’s global data.

ditl On entry, a handle to a block of memory in your application heap. On
exit, a handle to an item list.

DESCRIPTION

Your MyPanelGetDITL function should return, through the ditl parameter, an item

list of the items supported by your extension. The control panel then places those items

into the control panel and, after installing the panel, displays the panel to the user. When

the control panel creates the panel, it places the items at the locations specified in the

item list.

On entry to your MyPanelGetDITL function, the ditl parameter contains a handle to a

block of memory in your application heap. You should resize the handle as necessary to

hold the item list you return to the control panel. (If you use a Resource Manager routine

such as Get1Resource, the Resource Manager automatically resizes the handle for you.)

In general, the owning control panel disposes of the handle you pass it once it’s finished

constructing the panel. As a result, you must make sure that the handle you pass to the

control panel is not a resource handle. If you obtain your item list by reading it into

memory from a resource, you should call the Resource Manager’s DetachResource

C H A P T E R 5

Control Panel Extensions

5-22 Control Panel Extensions Reference

procedure to convert that resource handle into one that is suitable for use with the

MyPanelGetDITL function.

The componentFlags field of the component description record for a control panel

extension contains a bit flag, channelFlagDontOpenResFile, that indicates

whether the control panel should open your extension’s resource file before calling

your extension.

Set the channelFlagDontOpenResFile component flag to 0 if you want the

control panel to open your extension’s resource file before calling your extension. Set the

channelFlagDontOpenResFile component flag to 1 to specify that the control panel

should not open your extension’s resource file before calling your extension.

RESULT CODES

Your MyPanelGetDITL function should return noErr if successful, or an appropriate

result code otherwise.

SEE ALSO

For an example of the MyPanelGetDITL function, see Listing 5-3 on page 5-14.

MyPanelInstall

A control panel extension must respond to the kPanelInstallSelect request code.

A control panel sends this request code to an extension immediately after sending the

kPanelGetDitlSelect request code (which initially adds your panels’s items to

the control panel) and just before displaying the panel to the user. A control panel

extension typically responds to the kPanelInstallSelect request code by calling an

extension-defined subroutine (for example, MyPanelInstall) to handle the request.

FUNCTION MyPanelInstall (globals: Handle; dialog: DialogPtr;

 itemOffset: Integer): ComponentResult;

globals A handle to the control panel extension’s global data.

dialog A pointer to the dialog record of the owning control panel. The owning
control panel displays your panel’s items in the dialog box referenced
through this parameter.

itemOffset
An offset to the panel’s first item.

DESCRIPTION

Your MyPanelInstall function should perform any processing that must occur after

the panel is created but before it is displayed to the user. For example, your

C H A P T E R 5

Control Panel Extensions

Control Panel Extensions Reference 5-23

MyPanelInstall function can set or restore default values of various items in the

panel. You can also use this opportunity to create user items (such as lists) in the panel.

The itemOffset parameter specifies the offset from 1 to the first item in your panel.

The items installed by your control panel extension are contained in a larger dialog box

containing other items; as a result, if you call the GetDialogItem procedure to obtain

a handle to an item, you need to increment the itemNo parameter passed to

GetDialogItem by the value of itemOffset.

In most cases, you’ll need to save the value passed in the itemOffset parameter in

your extension’s global storage for later use. For example, you usually need this value

to determine which panel item the user selected when your extension responds to the

kPanelItemSelect request code.

The value passed to your MyPanelInstall function in the itemOffset parameter

may be different each time MyPanelInstall is called. You should not assume it is

always the same value.

RESULT CODES

Your MyPanelInstall function should return noErr if successful, or an appropriate

result code otherwise.

SEE ALSO

For an example of the MyPanelInstall function, see Listing 5-4 on page 5-15.

MyPanelGetTitle

A control panel extension should respond to the kPanelGetTitleSelect request code

but is not required to do so. A control panel sends this request code to your extension to

get the name of your panel extension. A control panel extension typically responds to the

kPanelGetTitleSelect request code by calling an extension-defined subroutine (for

example, MyPanelGetTitle) to handle the request.

FUNCTION MyPanelGetTitle (self: ComponentInstance; title: Str255)

 : ComponentResult;

self A component instance identifying the specific instance of your control
panel extension.

title On exit, the name of your control panel extension as you want it to
appear in the panel-selection pop-up menu of the control panel.

C H A P T E R 5

Control Panel Extensions

5-24 Control Panel Extensions Reference

DESCRIPTION

Your MyPanelGetTitle function should return, through the title parameter, a string

that is the desired title of your control panel extension. This name appears as a menu

item in the pop-up menu that lets the user select which panel to view.

SPECIAL CONSIDERATIONS

Currently, all control panels use the component name as the title of the control panel

extension. The MyPanelGetTitle function is intended to allow your extension to

assign a title different from the component name. Future control panels are likely to call

your MyPanelGetTitle function.

RESULT CODES

Your MyPanelGetTitle function should return noErr if successful, or an appropriate

result code otherwise.

MyPanelRemove

A control panel extension must respond to the kPanelRemoveSelect request code. A

control panel sends this request code to an extension just before removing the panel

from the enclosing dialog box. A control panel extension typically responds to the

kPanelRemoveSelect request code by calling an extension-defined subroutine (for

example, MyPanelRemove) to handle the request.

FUNCTION MyPanelRemove (globals: Handle; dialog: DialogPtr;

itemOffset: Integer): ComponentResult;

globals A handle to the control panel extension’s global data.

dialog A pointer to the dialog record of the owning control panel.

itemOffset
An offset to the panel’s first item.

DESCRIPTION

Your MyPanelRemove function should perform any processing that must occur

before your panel is removed from the enclosing dialog box. For example, your

MyPanelRemove function can save the current values of any items in the dialog box.

You can also use this opportunity to dispose of any user items (such as lists) in the dialog

box. If the control panel opened your component’s resource file, that file is still open at

the time MyPanelRemove is called.

The itemOffset parameter specifies the offset from 1 to the first item in your control

panel. The dialog items installed by your control panel extension are contained in a

larger dialog box containing other items; as a result, if you call the GetDialogItem

C H A P T E R 5

Control Panel Extensions

Control Panel Extensions Reference 5-25

procedure to obtain a handle to a dialog item, you need to increment the itemNo

parameter passed to GetDialogItem by the value of itemOffset.

The value passed to your MyPanelRemove function in the itemOffset parameter may

be different each time MyPanelRemove is called. You should not assume it is always the

same value.

RESULT CODES

Your MyPanelRemove function should return noErr if successful, or an appropriate

result code otherwise.

Handling Panel Events

A control panel extension should respond to the kPanelItemSelect and

kPanelEventSelect request codes. You typically define subroutines that

the main program of your control panel extension calls (using the

CallComponentFunctionWithStorage function) to handle these requests.

You can choose any name for these subroutines, but by convention they’re called

MyPanelItem and MyPanelEvent. These two routines should respond to mouse

clicks and other events in the items of the panel.

MyPanelItem

A control panel extension must respond to the kPanelItemSelect request code. In

general, a control panel sends this request code to your extension whenever the user

clicks an item in your panel. A control panel extension typically responds to the

kPanelItemSelect request code by calling an extension-defined subroutine (for

example, MyPanelItem) to handle the request.

FUNCTION MyPanelItem (globals: Handle; dialog: DialogPtr;

 itemOffset: Integer; itemNum: Integer)

 : ComponentResult;

globals A handle to the control panel extension’s global data.

dialog A pointer to the dialog record of the owning control panel. The owning
control panel displays your panel’s items in the dialog box (of the control
panel) referenced through this parameter.

itemOffset
An offset to the panel’s first item.

itemNum The item number of the item selected by the user. This item number is an
index into the list of items in the dialog box. To map this value to the item
list you passed to the control panel (in the MyPanelGetDITL function),
you need to compensate for the offset reported in the itemOffset
parameter.

C H A P T E R 5

Control Panel Extensions

5-26 Control Panel Extensions Reference

DESCRIPTION

Your MyPanelItem function should handle mouse clicks on specific items in your

panel. The owning control panel calls your control panel extension with the

kPanelItemSelect whenever your component returns FALSE in response to an

event-select request. Your MyPanelItem function is therefore typically invoked

each time the user clicks on some item in your panel. Your function should respond

appropriately, according to the item that was clicked.

As just described, note that when a click in one of your panel’s items occurs, the

owning control panel first sends your component an event-select request, giving your

component a chance to filter the event, if necessary. In this case, if your component

returns FALSE in the handled parameter, then the control panel sends your component

the item-select request code; if your component returns TRUE in the handled parameter,

the control panel does not send your component the subsequent item-select request code.

RESULT CODES

Your MyPanelItem function should return noErr if successful, or an appropriate result

code otherwise.

SEE ALSO

For an example of the MyPanelItem function, see Listing 5-5 on page 5-16. For

information on responding to events, see the description of the MyPanelEvent function

in the next section.

MyPanelEvent

A control panel extension must respond to the kPanelEventSelect request code. A

control panel sends this request code to your extension whenever an event occurs in

your panel. A control panel extension typically responds to the kPanelEventSelect

request code by calling an extension-defined subroutine (for example, MyPanelEvent)

to handle the request.

FUNCTION MyPanelEvent (globals: Handle; dialog: DialogPtr;

 itemOffset: Integer;

 theEvent: eventRecord;

 VAR itemHit: Integer;

 VAR handled: Boolean): ComponentResult;

globals A handle to the control panel extension’s global data.

dialog A pointer to the dialog record of the owning control panel. The owning
control panel displays your items in the dialog box (of the control panel)
referenced through this parameter.

C H A P T E R 5

Control Panel Extensions

Control Panel Extensions Reference 5-27

itemOffset
An offset to the panel’s first item.

theEvent An event record describing the event being reported to your control panel
extension.

itemHit On entry, the item number of an item. This number is valid only for
mouse events (on input, do not interpret this parameter for any other type
of event). On exit, if the MyPanelEvent function has handled the event,
it should return the item number of the associated item in this parameter.

handled On entry, the value FALSE for mouse events; the value TRUE for all other
events. On exit, the MyPanelEvent function should return a Boolean
value that indicates whether it has handled the event (TRUE) or has not
handled the event (FALSE).

DESCRIPTION

Your MyPanelEvent function is called whenever an event occurs in your panel. The

parameter theEvent contains a complete description of the event. A control panel

handles events in its own items and also gives your component a chance to handle

events in its own panel.

The MyPanelEvent function is intended to operate just like an event filter function

specified in calls to the ModalDialog procedure or other Dialog Manager routines.

The main difference between MyPanelEvent and other event filter functions is that

MyPanelEvent does not return a Boolean value as its function result. Instead, it

indicates whether it handled the event in the handled parameter.

If the specified event is a mouse event, you might prefer your extension’s MyPanelItem

function to handle the event. In that case, you should return FALSE in the handled

parameter. Otherwise, you should attempt to handle the event.

If your MyPanelEvent function does handle the event, it should update the itemHit

parameter to reflect the affected item and return TRUE in the handled parameter. If you

set handled to FALSE, the owning control panel sends your panel an item-select request.

RESULT CODES

Your MyPanelEvent function should return noErr if successful, or an appropriate

result code otherwise.

SEE ALSO

For an example MyPanelEvent function, see Listing 5-6 on page 5-18. See the

description of MyPanelItem on page 5-25 for information on handling clicks in dialog

items. For a description of the fields of the event record, see the chapter “Event

Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

C H A P T E R 5

Control Panel Extensions

5-28 Control Panel Extensions Reference

Managing Panel Settings

A control panel extension should respond to the kPanelValidateInputSelect,

kPanelGetSettingsSelect, and kPanelSetSettingsSelect request codes. You

typically define subroutines that the main program of your control panel extension calls

(using the routine CallComponentFunctionWithStorage) to handle these requests.

You can choose any name for these subroutines, but by convention they’re called

MyPanelValidateInput, MyPanelGetSettings, and MyPanelSetSettings.

These routines should manage item settings in a panel.

Note

Current versions of the Sound and Video control panels do not send the
kPanelValidateInputSelect, kPanelGetSettingsSelect, or
kPanelSetSettingsSelect request code. ◆

MyPanelValidateInput

A control panel extension must respond to the kPanelValidateInputSelect request

code. A control panel sends this request code to your extension whenever the user

clicks a control panel’s close box. A control panel extension typically responds to

the kPanelValidateInputSelect request code by calling an extension-defined

subroutine (for example, MyPanelValidateInput) to handle the request.

FUNCTION MyPanelValidateInput (globals: Handle; VAR ok: Boolean)

: ComponentResult;

globals A handle to the control panel extension’s global data.

ok On return, a Boolean value that indicates whether the panel’s current
values are valid (TRUE) or invalid (FALSE).

DESCRIPTION

Your MyPanelValidateInput function should perform any processing necessary to

validate the current settings in the panel. For example, if your panel contains any

editable text items, you might need to ensure that the text they contain makes sense.

The control panel calls this function when the user clicks the control panel’s close box.

If the current settings of the panel items are acceptable, set the ok parameter to TRUE

before returning from MyPanelValidateInput. If the current settings are not valid, set

ok to FALSE. When you set ok to FALSE, the control panel ignores any of the user’s

subsequent clicks in the panel’s OK button.

RESULT CODES

Your MyPanelValidateInput function should return noErr if successful, or an

appropriate result code otherwise.

C H A P T E R 5

Control Panel Extensions

Control Panel Extensions Reference 5-29

MyPanelGetSettings

A control panel extension must respond to the kPanelGetSettingsSelect request

code. A control panel sends this request code to your extension to get the panel’s

current settings. A control panel extension typically responds to the

kPanelGetSettingsSelect request code by calling an extension-defined

subroutine (for example, MyPanelGetSettings) to handle the request.

FUNCTION MyPanelGetSettings (globals: Handle; VAR ud: UserData;

 flags: LongInt): ComponentResult;

globals A handle to the control panel extension’s global data.

ud A handle to the control panel’s configuration data.

flags Reserved. This parameter is always 0.

DESCRIPTION

Your MyPanelGetSettings function should return, through the ud parameter, a copy

of the panel’s current settings. This copy is maintained privately by the control panel.

The control panel may subsequently restore your panel’s settings by passing those

settings to your MyPanelSetSettings function.

Your control panel extension is responsible for allocating storage for the configuration

data to which ud is a handle. You might do that when the Component Manager passes

your extension the kComponentOpenSelect parameter. Your extension should not

dispose of that storage until it closes (that is, when the Component Manager passes it

the kComponentCloseSelect parameter).

You can arrange the panel configuration data in any way you like. The data needs to

contain whatever information is necessary for your MyPanelSetSetting function to

set all relevant panel items to specified values. For example, the standard Apple sound

panels save information such as the component type of the default sound output device,

the current volumes levels, the current alert beep, and so forth. You might want to begin

the configuration data with a version number so that you can easily change the format of

the rest of the data, if necessary.

The information you return to the control panel may get stored as part of the owner’s

configuration information and might therefore persist across system restarts. As a result,

you should not store values that might change without the control panel’s knowledge

(such as component ID numbers, file reference numbers, and similar volatile

information).

RESULT CODES

Your MyPanelGetSettings function should return noErr if successful, or an

appropriate result code otherwise.

C H A P T E R 5

Control Panel Extensions

5-30 Control Panel Extensions Reference

MyPanelSetSettings

A control panel extension must respond to the kPanelSetSettingsSelect request

code. A control panel sends this request code to your extension to request that your

extension set the panel’s current settings to the specified values. A control panel

extension typically responds to the kPanelSetSettingsSelect request code by

calling an extension-defined subroutine (for example, MyPanelSetSettings) to

handle the request.

FUNCTION MyPanelSetSettings (globals: Handle; ud: UserData;

 flags: LongInt): ComponentResult;

globals A handle to the control panel extension’s global data.

ud A handle to the control panel’s configuration data.

flags Reserved. This parameter is always 0.

DESCRIPTION

Your MyPanelSetSettings function should parse the block of configuration data

passed in the ud parameter and set the values of the items in the panel based on that

data. The control panel calls this function just before your panel is displayed to the user

and whenever a user cancels changes to your panel. You can assume that the data passed

in the ud parameter was created by a previous call to your extension’s

MyPanelGetSetting function.

It’s possible that your extension might not able to set the value of one or more panel

items to the values specified in the configuration data. (For example, the hardware

environment might have changed since the configuration data was last stored by the

control panel.) When this happens, you should try to match the specified panel settings

as closely as possible. If you cannot match perfectly, you should return some nonzero

result code.

RESULT CODES

Your MyPanelSetSettings function should return noErr if successful, or an

appropriate result code otherwise.

C H A P T E R 5

Control Panel Extensions

Summary of Control Panel Extensions 5-31

Summary of Control Panel Extensions

Pascal Summary

Constants

CONST

{component types}

SoundPanelType = 'sndP'; {sound panel}

VideoPanelType = 'vidP'; {video panel}

{component subtypes}

kAlertSoundsPanel = 'alrt'; {alert sounds panel}

kInputsPanel = 'mics'; {input devices panel}

kOutputsPanel = 'spek'; {output devices panel}

kVolumesSubType = 'vols'; {volumes panel}

{component flags}

channelFlagDontOpenResFile = 2; {do not open resource file}

{Component Manager request codes for routines}

kPanelGetDitlSelect = 0; {get panel's item list}

kPanelGetTitleSelect = 1; {get panel's name}

kPanelInstallSelect = 2; {restore item settings}

kPanelEventSelect = 3; {handle event in panel}

kPanelItemSelect = 4; {handle click in a panel item}

kPanelRemoveSelect = 5; {panel is about to be removed}

kPanelValidateInputSelect = 6; {validate panel settings}

kPanelGetSettingsSelect = 7; {get panel settings}

kPanelSetSettingsSelect = 8; {set panel settings}

Control Panel Extension-Defined Routines

Managing Panel Components

FUNCTION MyPanelGetDITL (globals: Handle; VAR ditl: Handle)
: ComponentResult;

C H A P T E R 5

Control Panel Extensions

5-32 Summary of Control Panel Extensions

FUNCTION MyPanelInstall (globals: Handle; dialog: DialogPtr;
itemOffset: Integer): ComponentResult;

FUNCTION MyPanelGetTitle (self: ComponentInstance; title: Str255)
: ComponentResult;

FUNCTION MyPanelRemove (globals: Handle; dialog: DialogPtr;
itemOffset: Integer): ComponentResult;

Handling Panel Events

FUNCTION MyPanelItem (globals: Handle; dialog: DialogPtr;
itemOffset: Integer; itemNum: Integer)
: ComponentResult;

FUNCTION MyPanelEvent (globals: Handle; dialog: DialogPtr;
itemOffset: Integer; theEvent: eventRecord;
VAR itemHit: Integer; VAR handled: Boolean)
: ComponentResult;

Managing Panel Settings

FUNCTION MyPanelValidateInput
(globals: Handle; VAR ok: Boolean)
: ComponentResult;

FUNCTION MyPanelGetSettings (globals: Handle; VAR ud: UserData;
flags: LongInt): ComponentResult;

FUNCTION MyPanelSetSettings (globals: Handle; ud: UserData;
flags: LongInt): ComponentResult;

C Summary

Constants

/*component types*/

#define SoundPanelType 'sndP' /*sound panel*/

#define VideoPanelType 'vidP' /*video panel*/

/*component subtypes*/

#define kAlertSoundsPanel 'alrt' /*alert sounds panel*/

#define kInputsPanel 'mics' /*input devices panel*/

#define kOutputsPanel 'spek' /*output devices panel*/

#define kVolumesSubType 'vols' /*volumes panel*/

C H A P T E R 5

Control Panel Extensions

Summary of Control Panel Extensions 5-33

/*component flags*/

enum {

channelFlagDontOpenResFile = 2 /*do not open resource file*/

};

/*Component Manager request codes for routines*/

enum {

kPanelGetDitlSelect = 0, /*get panel's item list*/

kPanelGetTitleSelect, /*get panel's name*/

kPanelInstallSelect, /*restore item settings*/

kPanelEventSelect, /*handle event in panel*/

kPanelItemSelect, /*handle click in a panel item*/

kPanelRemoveSelect, /*panel is about to be removed*/

kPanelValidateInputSelect, /*validate panel settings*/

kPanelGetSettingsSelect, /*get panel settings*/

kPanelSetSettingsSelect /*set panel settings*/

};

Control Panel Extension-Defined Routines

Managing Panel Components

pascal ComponentResult MyPanelGetDITL
(Handle globals, Handle *ditl);

pascal ComponentResult MyPanelInstall
(Handle globals, DialogPtr dialog,
short itemOffset);

pascal ComponentResult MyPanelGetTitle
(ComponentInstance self, StringPtr title);

pascal ComponentResult MyPanelRemove
(Handle globals, DialogPtr dialog,
short itemOffset);

Handling Panel Events

pascal ComponentResult MyPanelItem
(Handle globals, DialogPtr dialog,
short itemOffset, short itemNum);

pascal ComponentResult MyPanelEvent
(Handle globals, DialogPtr dialog,
short itemOffset, eventRecord *theEvent,
short *itemHit, Boolean *handled);

C H A P T E R 5

Control Panel Extensions

5-34 Summary of Control Panel Extensions

Managing Panel Settings

pascal ComponentResult MyPanelValidateInput
(Handle globals, Boolean *ok);

pascal ComponentResult MyPanelGetSettings
(Handle globals, UserData *ud, long flags);

pascal ComponentResult MyPanelSetSettings
(Handle globals, UserData *ud, long flags);

Contents 6-1

C H A P T E R 6

Contents

Queue Utilities

About Queues 6-3

The Queue Header 6-5

The Queue Element 6-6

Using the Queue Utilities 6-8

Searching for an Element in an Operating-System Queue 6-9

Adding Elements to an Operating-System Queue 6-10

Removing Elements From an Operating-System Queue 6-11

Queue Utilities Reference 6-13

Data Structures 6-13

Queue Headers 6-13

Queue Elements 6-14

Routines 6-15

Summary of the Queue Utilities 6-18

Pascal Summary 6-18

Constants 6-18

Data Types 6-18

Routines 6-19

C Summary 6-19

Constants 6-19

Data Types 6-20

Routines 6-20

Assembly-Language Summary 6-21

Result Codes 6-21

C H A P T E R 6

About Queues 6-3

Queue Utilities

This chapter describes how your application can directly add elements to and remove

them from an operating-system queue. The Macintosh Operating System stores some of

the information it uses in data structures called queues. The Queue Utilities allow you to

manipulate those queues directly by adding and removing elements.

Ordinarily, you do not need to use the Queue Utilities. The Operating System itself is

responsible for managing the various operating-system queues that it creates internally,

and you should manipulate those queues only indirectly. For example, to add an element

to the notification queue maintained by the Notification Manager, you should call the

NMInstall function. To remove an element from that queue, you should call the

NMRemove function. But if you discover some unusual need for adding or removing

such elements directly, you can use the Queue Utilities routines. In addition, you can

use the Queue Utilities routines for directly manipulating queues that you create.

This chapter describes the general structure of operating-system queues and then

■ lists the routines your application should use to manipulate an operating-system
queue indirectly

■ shows how your application can use the Queue Utilities for directly manipulating
queues that you create.

About Queues

The Macintosh Operating System uses operating-system queues to keep track of a wide

variety of items, including VBL tasks, notifications, I/O requests, events, mounted

volumes, and disk drives (or other block-formatted devices). A queue is a list of

identically structured entries linked together by pointers. A single entry in a queue

is called a queue element. Figure 6-1 illustrates the general structure of an

operating-system queue.

C H A P T E R 6

Queue Utilities

6-4 About Queues

Figure 6-1 An operating-system queue

As you can see, the addresses of the first and last elements in the queue are stored in

a queue header. The queue header also contains some queue flags, which contain

information about the queue.

Each queue element contains the address of the next element in the queue (or the value

NIL if there is no next element), an indication of the type of queue to which the next

element belongs, and some data. The exact format and size of the data differs among the

various queue types. In some cases, the data in the queue element contains the address

of a routine to be executed. Table 6-1 on page 6-7 lists the different types of

operating-system queues used by the Macintosh Operating System.

C H A P T E R 6

Queue Utilities

About Queues 6-5

The Queue Header
The queue header is the head of a list of identically structured entries linked together by

pointers. Figure 6-2 shows the format of a queue header.

Figure 6-2 The format of a queue header

A queue header is a record defined by a data structure of type QHdr, which contains

three fields: flags, a pointer to the first element in the queue (qHead), and a pointer to the

last element in the queue (qTail). The flags field contains information specific to each

queue. Ordinarily, these flags are for use by the system software only, and your

application should not need to read or manipulate these flags. The qHead field is a

pointer to the first element in a queue, and the qTail field is a pointer to the last

element in a queue. If the queue has no elements, both of these fields are set to NIL.
Thus, if you have access to a variable myQueueHdr of type QHdrPtr, you can access the

corresponding first queue element of a non-empty queue with myQueueHdr^.qHead^

and access the last element with myQueueHdr^.qTail^.

Each queue element itself is a record of type QElem, which is described in the

next section.

C H A P T E R 6

Queue Utilities

6-6 About Queues

The Queue Element
The exact format of a queue element is not the same for all types of operating-system

queues; thus, a queue element is defined by a variant record that is a data structure of

type QElem. Figure 6-3 shows the format of a queue element.

Figure 6-3 The format of a queue element

Each queue element contains two fixed fields: a pointer to the next element in the queue

(qLink), a value describing the queue type (qType), and a variable data field specific to

each queue type.

The qLink field contains a pointer to the next element in the queue. All queue elements

are linked through these pointers. Each pointer points to the qLink field in the next

queue element, and the last queue element contains a NIL pointer. The data type of the

pointer to the next queue element is always QElemPtr.

The qType field contains an integer that usually designates the queue type; for example,

ORD(evType) for the event queue. Table 6-1 contains a list of all the supported

operating-system queue types.

C H A P T E R 6

Queue Utilities

About Queues 6-7

Table 6-1 Operating-system queue types

Often, you need to set the qType field of a queue element to an appropriate value before

installing the queue element. However, some operating-system queues use this field for

different purposes. For example, the Time Manager uses an operating-system queue to

track Time Manager tasks. In the high bit of this field, the revised Time Manager places a

flag to indicate whether a task timer is active. The Time Manager (along with other parts

of the Operating System that use this field for their own purposes) shields you from the

implementation-level details of operating a queue. Indeed, there is no way for you to

access a Time Manager queue directly, and the QElem data type does not support access

of Time Manager task records from Time Manager queue elements.

The third field contains data that is specific to the type of operating-system queue to

which the queue element belongs. For example, a queue element in a vertical retrace

queue, maintained by the Vertical Retrace Manager, includes information about the task

procedure to be called, the number of interrupts, and the task phase. A queue element in

a notification queue, maintained by the Notification Manager, includes information

about the alert box, the sound response, the item to be marked in the Application menu,

a response procedure, and some reserved values. Figure 6-4 shows the format of these

two different types of queue elements.

Constant Queue type Description

vType Vertical retrace queue A list of tasks to be executed during VBL
interrupts

ioQType File I/O queue (or
driver I/O queue)

A list of parameter blocks for all asynchronous
routines awaiting execution

drvQType Drive queue A list of all disk drives connected to the
computer

evType Event queue A list of pending events

fsQType Volume control block
queue

A list of volume control blocks for each
mounted volume

sIQType Slot interrupt queue A list of slot interrupts

dtQType Deferred task queue A list of deferred tasks

nmQType Notification queue A list of notification requests

slpQType Sleep queue A list of routines to be notified before a
Macintosh Portable or a PowerBook is put into
the sleep state

C H A P T E R 6

Queue Utilities

6-8 Using the Queue Utilities

Figure 6-4 Formats of a vertical retrace queue element and a notification queue element

Figure 6-4 illustrates how the format and size of an operating-system queue element can

vary because of the variable data field. For example, an element of type vType (a vertical

retrace queue element) uses 10 bytes for VBL-specific data, whereas an element of type

nmType (a notification queue element) uses 30 bytes for notification-specific data. All

operating-system queue elements use at least 6 bytes: 4 bytes to store a pointer to the

next element in the queue and 2 bytes to store a value indicating the queue type.

Using the Queue Utilities

The Queue Utilities provide routines for directly adding elements to a queue and

removing them from a queue. The Enqueue procedure lets you add elements to the

end of a queue, and the Dequeue function lets you remove elements from a queue.

C H A P T E R 6

Queue Utilities

Using the Queue Utilities 6-9

You should manipulate an operating-system queue used by the Macintosh Operating

System indirectly, by calling special-purpose routines. For example, to install a deferred

task into a deferred task queue, your application should use the DTInstall function

instead of the Enqueue procedure. However, if you create your own queues, you can

use the Enqueue procedure and the Dequeue function to manipulate these queues

directly. This section describes how to

■ search for an element in an operating-system queue

■ add an element to an operating-system queue

■ remove an element from an operating-system queue

Searching for an Element in an Operating-System Queue
You can search an operating-system queue for a specific element or elements. For

example, Listing 6-1 shows a simplified way to search a drive queue for all the drives

connected to the computer. The application-defined function, MySearchDriveQueue,

walks through the drive queue searches for all connected drives. If it finds any, it calls

the application-defined function DoDisplayDriveInfo to display information about

the connected drive.

Listing 6-1 Searching for drives in the drive queue

FUNCTION MySearchDriveQueue: Boolean;

VAR

driveQHdr: QHdrPtr;

result: Boolean;

BEGIN

result := FALSE; {assume no drivers in the queue}

driveQHdr := GetDrvQHdr; {get the drive queue header}

driveQPtr := DrvQElPtr(driveQHdr^.qHead);

WHILE (driveQPtr <> NIL) DO {while drive queue is not empty}

BEGIN

result := TRUE; {found a drive}

DoDisplayDriveInfo(driveQPtr); {display drive information}

{go to next drive in the queue}

driveQPtr := DrvQElPtr(driveQPtr^.qLink);

END; {of while}

MySearchDriveQueue := result; {return result of search}

END;

C H A P T E R 6

Queue Utilities

6-10 Using the Queue Utilities

Adding Elements to an Operating-System Queue
You should avoid direct manipulation of an operating-system queue used by the

Macintosh Operating System. Your application should, when possible, use the

installation routines in Table 6-2 to add new elements to an operating-system queue.

IMPORTANT

It is not recommended that you directly add elements to an
operating-system queue used by the Macintosh Operating System. If
at all possible, your application should use the installation routines
provided by the various managers. ▲

If you have created a queue for your own use, you can use the Enqueue procedure

to add a new element to your queue. For example, Listing 6-2 presents the

application-defined procedure DoAddBankCustomer, which uses the Enqueue

procedure for directly installing a customer into a bank-teller queue.

* No comparative installation routine available.

Table 6-2 Installation routines for operating-system queue elements

Queue element Installation routine Additional information

Slot-based VBL task SlotVInstall The chapter “Vertical Retrace Manager” in
Inside Macintosh: Processes

System-based VBL task VInstall The chapter “Vertical Retrace Manager” in
Inside Macintosh: Processes

Parameter block for an
asynchronous routine
awaiting execution

* The chapter “File Manager” in Inside Macintosh: Files

Disk drive AddDrive The chapter “File Manager” in Inside Macintosh: Files

Event PPostEvent
and PostEvent

The chapter “Event Manager” in Inside Macintosh:
Macintosh Toolbox Essentials

Volume control block * The chapter “File Manager” in Inside Macintosh: Files

Deferred task DTInstall The chapter “Deferred Task Manager” in
Inside Macintosh: Processes

Slot interrupt SIntInstall The chapter “Slot Manager” in Inside Macintosh:
Devices

Notification request NMInstall The chapter “Notification Manager” in
Inside Macintosh: Processes

Sleep SleepQInstall The chapter “Power Manager” in Inside Macintosh:
Devices

C H A P T E R 6

Queue Utilities

Using the Queue Utilities 6-11

Listing 6-2 Using the Enqueue procedure to add a bank customer to a teller queue

PROCEDURE DoAddBankCustomer(myQueueHdrPtr: QHdrPtr,

 Var bankCustomer: MyCustomerRecord);

BEGIN

WITH bankCustomer^ DO {get bank customer data}

BEGIN

qType := kTellerQType; {queue type for the bank-teller queue}

account := MyGetNextAccount; {get account number}

action := MyGetBankAction; {get action to perform}

amount := MyGetAmount; {get the amount}

END;

Enqueue(QElemPtr(bankCustomer), myQueueHdrPtr); {add customer to queue}

END;

Note that you are responsible for allocating memory for a queue element before you

insert into a queue and for deallocating that memory when you remove the queue

element.

Removing Elements From an Operating-System Queue

This section describes how your application can remove elements from an

operating-system queue. Whenever possible, your application should use the removal

routines listed in Table 6-3 to remove elements indirectly from an operating-system

queue used by the Macintosh Operating System.

C H A P T E R 6

Queue Utilities

6-12 Using the Queue Utilities

IMPORTANT

It is not recommended that you directly remove queue elements from an
operating-system queue used by the Macintosh Operating System. If at
all possible, your application should use the removal routines provided
by the various managers. ▲

If you have created a queue for your own use, you can use the Dequeue function to

remove elements from that queue.

Listing 6-3 shows the application-defined function DoRemoveBankCustomer, which

uses the Dequeue procedure for directly removing the first customer from a bank-teller

queue. The DoRemoveBankCustomer function returns TRUE if it removes the customer.

Listing 6-3 Using Dequeue to remove the first customer in the bank-teller queue

FUNCTION DoRemoveBankCustomer (VAR myQueueHdr: QHdr): BOOLEAN;

VAR

bankCustomerPtr: MyCustomerRecordPtr;

customerRemoved: Boolean;

* No comparative removal routine available.

Table 6-3 Removal routines for operating-system elements

Queue element Removal routine Additional information

Slot-based VBL task SlotVRemove The chapter “Vertical Retrace Manager” in
Inside Macintosh: Processes

System-based VBL task VRemove The chapter “Vertical Retrace Manager” in
Inside Macintosh: Processes

Parameter block for an
asynchronous routine
awaiting execution

* The chapter “File Manager” in Inside Macintosh: Files

Disk drive * The chapter “File Manager” in Inside Macintosh: Files

Event WaitNextEvent The chapter “Event Manager” in Inside Macintosh:
Macintosh Toolbox Essentials

Volume control block * The chapter “File Manager” in Inside Macintosh: Files

Deferred task * The chapter “Deferred Task Manager” in
Inside Macintosh: Processes

Slot interrupt SIntRemove The chapter “Slot Manager” in Inside Macintosh:
Devices

Notification request NMRemove The chapter “Notification Manager” in
Inside Macintosh: Processes

Sleep SleepQRemove The chapter “Power Manager” in Inside Macintosh:
Devices

C H A P T E R 6

Queue Utilities

Queue Utilities Reference 6-13

BEGIN

customerRemoved := FALSE;

bankCustomerPtr := MyCustomerRecordPtr(myQueueHdr.qHead);

IF bankCustomerPtr <> NIL THEN {Check for non-empty queue}

BEGIN

Dequeue(QElemPtr(bankCustomerPtr),&myQueueHdr) {remove customer}

customerRemoved := TRUE;

END; {of queue not empty}

DoRemoveCustomer := customerRemoved;

END;

Queue Utilities Reference

This section describes the data structures of operating-system queues and two Queue

Utilities routines for directly adding elements to and removing them from queues that

you create.

Data Structures

Each operating-system queue created and maintained by the Macintosh Operating

System consists of a queue header and a linked list of queue elements. This section

describes the structure of queue headers and queue elements.

Queue Headers

A queue header is a block of data that contains information about a queue. The QHdr

data type defines the structure of a queue header.

TYPE QHdr =

RECORD

qFlags: Integer; {information on queue}

qHead: QElemPtr; {pointer to first queue entry}

qTail: QElemPtr; {pointer to last queue entry}

END;

Field descriptions

qFlags Queue flags. This field contains information that is different for
each queue type. Ordinarily, these flags are reserved for use by
system software.

qHead A pointer to the first element in the queue. If a queue has no
elements, this field is set to NIL.

C H A P T E R 6

Queue Utilities

6-14 Queue Utilities Reference

qTail A pointer to the last element in the queue. If a queue has no
elements, this field is set to NIL.

Queue Elements

A queue element is a single entry in a queue. The exact structure of an element in an

operating-system queue depends on the type of the queue. The different queue types

that are accessible to your application are defined by the QTypes data type.

TYPE QTypes =

(dummyType, {reserved}

vType, {vertical retrace queue type}

ioQType, {file I/O or driver I/O queue type}

drvQType, {drive queue type}

evType, {event queue type}

fsQType, {volume-control-block queue type}

sIQType, {slot interrupt queue type}

dtQType, {deferred task queue type}

{nmType,} {notification queue type}

{slpQType} {sleep queue type}

);

Each of these enumerated queue types determines a different type of queue element. The

QElem data type defines the available queue elements.

TYPE QElem =

RECORD

CASE QTypes OF

vType: (vblQElem: VBLTask);

ioQType: (ioQElem: ParamBlockRec);

drvQType: (drvQElem: DrvQEl);

evType: (evQElem: EvQEl);

fsQType: (vcbQElem: VCB);

dtQType: (dtQElem: DeferredTask);

{siQType: (siQElem: SlotIntQElement);}

{nmType: (nmQElem: NMRec);}

{slpQType: (slpQElem: SleepQRec);}

END;

QElemPtr = ^QElem;

C H A P T E R 6

Queue Utilities

Queue Utilities Reference 6-15

Routines

The Queue Utilities provide two routines: Enqueue and Dequeue. The Enqueue

procedure allows you to add queue elements directly to an operating-system queue, and

the Dequeue function allows you to remove the element. Ordinarily, these routines are

used only by system software. If possible, you should manipulate an operating-system

queue indirectly, by calling special-purpose routines. For example, to install a task record

into a slot-based vertical retrace queue, your application should use the SlotVInstall

function (provided by the Vertical Retrace Manager) instead of the Enqueue procedure.

In addition, you can use the Queue Utilities routines for directly manipulating queues

that you create.

Enqueue

You can use the Enqueue procedure to add elements directly to an operating-system

queue or a queue that you create.

PROCEDURE Enqueue (qElement: QElemPtr; qHeader: QHdrPtr);

qElement A pointer to the queue element to add to a queue.

qHeader A pointer to a queue header.

Data type Additional information

VBLTask The chapter “Vertical Retrace Manager” in
Inside Macintosh: Processes

ParamBlockRec The chapter “File Manager” in Inside
Macintosh: Files

DrvQEl The chapter “File Manager” in Inside
Macintosh: Files

EvQEl The chapter “Event Manager” in Inside
Macintosh: Macintosh Toolbox Essentials

VCB The chapter “File Manager” in Inside
Macintosh: Files

DeferredTask The chapter “Deferred Task Manager” in
Inside Macintosh: Processes

SlotIntQElement The chapter “Slot Manager” in Inside
Macintosh: Devices

NMRec The chapter “Notification Manager” in Inside
Macintosh: Processes

SleepQRec The chapter “Power Manager” in Inside
Macintosh: Devices

C H A P T E R 6

Queue Utilities

6-16 Queue Utilities Reference

DESCRIPTION

The Enqueue procedure adds the queue element specified by qElement parameter to

the end of the queue specified by the qHeader parameter. The specified queue header is

updated to reflect the new queue element.

SPECIAL CONSIDERATIONS

Because interrupt routines are likely to manipulate operating-system queues, interrupts

are disabled for a short time while the specified queue is updated. You can call the

Enqueue procedure at interrupt time. Whenever possible, use the installation routines

listed in Table 6-2 on page 6-10 instead of the Enqueue procedure.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for the Enqueue procedure are

SEE ALSO

For a description of the QElem record, see page 6-14; for a description of the QHdr

record, see page 6-13.

Dequeue

You can use the Dequeue function to remove a queue element directly from an

operating-system queue or from a queue that you have created.

FUNCTION Dequeue (qElement: QElemPtr; qHeader: QHdrPtr): OSErr;

qElement A pointer to a queue element to remove from a queue.

qHeader A pointer to a queue header.

DESCRIPTION

The Dequeue function attempts to find the queue element specified by the qElement

parameter in the queue specified by the qHeader parameter. If Dequeue finds the

element, it removes the element from the queue, adjusts the other elements in the queue

accordingly, and returns noErr. Otherwise, it returns qErr, indicating that it could not

Registers on entry

A0 Pointer to the queue element to be added

A1 Pointer to the queue header

Registers on exit

A1 Pointer to the queue header

C H A P T E R 6

Queue Utilities

Queue Utilities Reference 6-17

find the element in the queue. The Dequeue function does not deallocate the memory

occupied by the queue element.

SPECIAL CONSIDERATIONS

The Dequeue function disables interrupts as it searches through the queue for the

element to be removed. The time during which interrupts are disabled depends on the

length of the queue and the position of the entry in the queue. The Dequeue function

can be called at interrupt time. Whenever possible, use the removal routines listed in

Table 6-3 on page 6-12 instead the Dequeue function.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for the Dequeue function are

RESULT CODES

SEE ALSO

For a description the QElem record, see page 6-14; for a description of the QHdr record,

see page 6-13.

Registers on entry

A0 Pointer to the queue element to be removed

A1 Pointer to the queue header

Registers on exit

A1 Pointer to the queue header

D0 Result code

noErr 0 No error
qErr –1 Entry is not in specified queue

C H A P T E R 6

Queue Utilities

6-18 Summary of the Queue Utilities

Summary of the Queue Utilities

Pascal Summary

Constants

CONST {queue types}

vType = 1; {vertical retrace queue type}

ioQType = 2; {file I/O or driver I/O queue type}

drvQType = 3; {drive queue type}

evType = 4; {event queue type}

fsQType = 5; {volume-control-block queue type}

sIQType = 6; {slot interrupt queue type}

dtQType = 7; {deferred task queue type}

nmType = 8; {notification queue type}

slpQType = 16; {sleep queue type}

Data Types

TYPE QHdr = {queue header record}

RECORD

qFlags: Integer; {information on queue}

qHead: QElemPtr; {pointer to the first queue element}

qTail: QElemPtr; {pointer to the last queue element}

END;

QHdrPtr = ^QHdr;

QTypes = ({queue types}

dummyType, {reserved}

vType, {vertical retrace queue type}

ioQType, {file I/O or driver I/O queue type}

drvQType, {drive queue type}

evType, {event queue type}

fsQType, {volume-control-block queue type}

sIQType, {slot interrupt queue type}

dtQType, {deferred task queue type}

C H A P T E R 6

Queue Utilities

Summary of the Queue Utilities 6-19

{nmType,} {notification queue type}

{slpQType} {sleep queue type}

);

QElem = {queue element record}

RECORD

CASE QTypes OF

dtQType: (dtQElem: DeferredTask); {deferred task }

{ queue element}

vType: (vblQElem: VBLTask); {vertical retrace }

{ queue element}

ioQType: (ioQElem: ParamBlockRec); {file I/O queue element}

drvQType: (drvQElem: DrvQEl); {drive queue element}

evType: (evQElem: EvQEl); {event queue element}

fsQType: (vcbQElem: VCB); {volume-control-block }

{ queue element}

{sIQType: (siQElem: SlotIntQElement;} {slot interupt }

{ queue element}

{nmType: (nmQElem: NMRec);} {notification }

{ queue element}

{slpQType: (slpQElem: SleepQRec);} {sleep queue element}

END;

QElemPtr = ^QElem;

Routines

PROCEDURE Enqueue (qElement: QElemPtr; qHeader: QHdrPtr);

FUNCTION Dequeue (qElement: QElemPtr; qHeader: QHdrPtr): OSErr;

C Summary

Constants

enum { /*queue types*/

vType = 1, /*vertical retrace queue type*/

ioQType = 2, /*file I/O or driver I/O queue type*/

drvQType = 3, /*drive queue type*/

evType = 4, /*event queue type*/

fsQType = 5, /*volume-control-block queue type*/

C H A P T E R 6

Queue Utilities

6-20 Summary of the Queue Utilities

sIQType = 6, /*slot interrupt queue type*/

dtQType = 7, /*deferred task queue type*/

};

enum { /*value for the notification queue type*/

nmType = 8 /*notification queue type*/

};

enum { /*value for the sleep queue type*/

slpQType = 16 /*sleep queue type*/

};

Data Types

struct QHdr { /*queue header record*/

short qFlags; /*information on queue*/

QElemPtr qHead; /*pointer to the first queue element*/

QElemPtr qTail; /*pointer to the last queue element*/

};

typedef struct QHdr QHdr;

typedef QHdr *QHdrPtr;

typedef unsigned short QTypes; /*queue types*/

struct QElem { /*queue element record*/

struct QElem *qLink; /*pointer to the next queue element*/

short qType; /*type of queue element*/

short qData[1]; /*variable array of data; type of data and */

/* length depend on the queue type, */

/* specified in the qType field*/

};

typedef struct QElem QElem;

typedef QElem *QElemPtr;

Routines

pascal void Enqueue (QElemPtr qElement, QHdrPtr qHeader);

pascal OSErr Dequeue (QElemPtr qElement, QHdrPtr qHeader);

C H A P T E R 6

Queue Utilities

Summary of the Queue Utilities 6-21

Assembly-Language Summary

QHdr Data Structure

QElem Data Structure

Result Codes

0 qFlags word information on queue

2 qHead long pointer to first queue entry

6 qTail long pointer to last queue entry

0 qLink long pointer to the next queue element

4 qType word type of queue element

6 qData word variable array of data; type of data and length depend on
the queue type, specified in the qType field

noErr 0 No error
qErr –1 Entry is not in specified queue

Contents 7-1

C H A P T E R 7

Contents

Parameter RAM Utilities

About Parameter RAM 7-3

Using the Parameter RAM Utilities 7-7

Parameter RAM Utilities Reference 7-8

Data Structures 7-9

The System Parameters Record 7-9

Routines 7-10

Summary of the Parameter RAM Utilities 7-14

Pascal Summary 7-14

Data Types 7-14

Routines 7-14

C Summary 7-15

Data Types 7-15

Routines 7-15

Assembly-Language Summary 7-16

Data Structures 7-16

Global Variables 7-16

Result Codes 7-16

C H A P T E R 7

About Parameter RAM 7-3

Parameter RAM Utilities

This chapter describes how your application can access and modify the information used

by the system software at system startup time. Various user settings, such as the volume

setting for the built-in speaker, need to be present at the next system startup. This startup

information is stored in battery-powered parameter RAM, located in the computer’s

real-time clock chip. The Parameter RAM Utilities available in the Macintosh Operating

System allow you to manipulate startup information stored in parameter RAM.

Because you can use Toolbox routines to indirectly access most of the useful information

stored in parameter RAM, you should not need to use the utility routines described in

this chapter. However, if you should discover some important need to directly

manipulate the startup information in parameter RAM, you can use the Parameter RAM

Utilities routines.

To use this chapter, you should already understand how to read and change the values

of low-memory global variables. See the chapter “Memory Manager” in Inside Macintosh:
Memory for a discussion on how to read and write system global variables.

This chapter

■ introduces the kinds of information stored in parameter RAM

■ describes some of the values stored in parameter RAM

About Parameter RAM

Most user settings that need to be present at system startup are stored in parameter
RAM. Parameter RAM takes up 256 bytes of battery-powered RAM: 20 bytes are

documented in this chapter, and 236 bytes are reserved by the system software. The 236

bytes of parameter RAM are also known as extended parameter RAM. The parameter

RAM is located in the computer’s real-time clock chip, together with the date and time

setting. No matter what system disk is used at system startup, parameter RAM ensures

that certain settings remain the same on a given computer from one session to another.

Much of the information stored in parameter RAM is used exclusively by the system

software. For example, system software uses 2 bits of parameter RAM to keep track of

how many times menu items should blink after being selected. Other values stored in

parameter RAM are useful to applications. For example, parameter RAM stores the

suggested time interval that your application should use when determining whether two

mouse clicks constitute a double-click. You can access this double-click time indirectly by

using the Toolbox Event Manager’s GetDblTime function. Whenever possible, you

should use Toolbox routines to access parameter RAM values.

▲ W A R N I N G

The operating-system routines described in this chapter let you
directly manipulate values in parameter RAM; however, because the
organization of parameter RAM is subject to change, you should rarely
use them. Instead, use the appropriate Toolbox routines to indirectly
manipulate values in parameter RAM. ▲

C H A P T E R 7

Parameter RAM Utilities

7-4 About Parameter RAM

The 20 bytes of parameter RAM that are commonly accessible by applications are copied

into low memory at system startup. Figure 7-1 illustrates the interaction between

parameter RAM and low memory. Parameter RAM is read into low memory at system

startup, and any modifications to this low-memory copy of parameter RAM are written

back to the clock chip.

Figure 7-1 Interaction between parameter RAM and low memory

The 20 accessible bytes of parameter RAM are described by the system parameters
record, which is defined by a data structure of type SysParmType.

Figure 7-2 shows the general structure of the system parameters record, which

contains 11 fields.

C H A P T E R 7

Parameter RAM Utilities

About Parameter RAM 7-5

Figure 7-2 The format of the system parameter record

A system parameters record contains 11 fields. See page 7-9 for the exact structure of

each field.

The first field of the system parameters record contains information about the validity

status of the clock chip. Whenever a write to the clock chip is successful, the value $A8 is

stored in this field. The status is examined when the clock chip is read at system startup.

The second and third fields contain information about the node ID for the modem port

and printer port.

The fourth field tells which device or devices may use each of the serial ports.

The fifth field contains the baud rate, data bits, stop bits, and parity for the modem port.

Bits 0–9 define the baud rate; bits 10 and 11 define the number of data bits; bits 12 and 13

define the parity; and bits 14 and 15 define the number of stop bits.

The sixth field contains the baud rate, data bits, stop bits, and parity for the printer port.

As with the modem port, bits 0–9 define the baud rate; bits 10 and 11 define the number

of data bits; bits 12 and 13 define the parity; and bits 14 and 15 define the number of

stop bits.

The seventh field contains the time at which the alarm clock should sound. The time is

defined in terms of seconds since midnight, January 1, 1904.

The eighth field contains the default application font number minus 1.

The ninth field contains the settings for the printer and for the keyboard. Bit 0 designates

whether the currently chosen printer (if any) is connected to the printer port (0) or the

C H A P T E R 7

Parameter RAM Utilities

7-6 About Parameter RAM

modem port (1). Bits 1–7 are reserved for future use. Bits 8–11 of this field contain the

auto-key rate, the rate at which a character key repeats when it’s held down; this value is

stored in 2-tick units. Bits 12–15 contain the auto-key threshold, the length of time a key

must be held down before it begins to repeat; this value is stored in 4-tick units.

The tenth field contains miscellaneous user settings. Bits 0–3 contain the caret-blink time,

and bits 4–7 contain the double-click time; both values are stored in four-tick units. The

caret-blink time is the interval between blinks of a caret that marks the insertion point

in text. The double-click time is the greatest interval between a mouse-up and

mouse-down event that would qualify two mouse clicks as a double click. Bits 8–10

contain the speaker volume setting, which ranges from silent (0) to loud (7).

The last field contains more miscellaneous user settings. Bits 2 and 3 contain a value

from 0 to 3 designating the menu-blink time, which is how many times a menu item

blinks when the user chooses it. Because system software automatically calls both

standard and nonstandard menu definition procedures the appropriate number of

times, you should not need to worry about that value in parameter RAM. Bit 4 indicates

whether the preferred system startup disk is in an internal (0) or external (1) drive. If

there is any problem using the disk in the specified drive, the other drive is used. Bit 6

designates whether mouse scaling is on (1) or off (0). If mouse scaling is on, cursor

movement doubles if the user moves the mouse more than a certain number of pixels

between vertical retrace interrupts.

The global variable SysParam contains the address of the start of the system parameters

record. Other global variables allow you to access individual fields of the system

parameters record directly. These global variables all begin with the letters SP and point

directly into the system parameters record stored in low memory. Other global variables

referencing memory locations outside of the system parameters record are used to store

copies of individual fields of the system parameters record.

▲ W A R N I N G

The default values for parameter RAM vary depending on the version of
the system software. Therefore, do not rely on any one default value
being the same for all machines. ▲

Though default values can vary, most of the U.S. system software “shares” default

values. The default values for parameter RAM, for U.S. system software, are shown

in Table 7-1.

C H A P T E R 7

Parameter RAM Utilities

Using the Parameter RAM Utilities 7-7

In System 7, a user can clear the current settings in the parameter RAM and restore the

default values by holding down the -Option-P-R keys at system startup. When system

software detects this key combination, it resets parameter RAM to the default values and

then restarts the computer again. Clearing the current settings in the parameter RAM

also causes system software to change other settings not stored in parameter RAM to

default values. These settings include the desktop pattern and the color depth of the

default monitor.

Using the Parameter RAM Utilities

The Parameter RAM Utilities provide two functions—GetSysPPtr and WriteParam—

that allow you to directly manipulate parameter RAM. The GetSysPPtr function lets

you access the low-memory copy of the parameter RAM, and the WriteParam function

lets you write the modified low-memory copy back to parameter RAM. A third function,

InitUtil, is used by the system software only. At system startup, this function reads

the values from parameter RAM into low memory.

You may find it necessary to read the values in parameter RAM or even change them.

You read from and write to parameter RAM using the GetSysPPtr and WriteParam

functions.

Table 7-1 Default values for parameter RAM (for U.S. system software)

Description Default value

Validity status $A8

Node ID hint for modem port 0

Node ID hint for printer port 0

Serial port use 0 (both ports)

Modem port configuration 9600 baud, 8 data bits, no parity, 2 stop bits

Printer port configuration 9600 baud, 8 data bits, no parity, 2 stop bits

Alarm setting 0 (midnight, January 1, 1904)

Application font minus 1 2 (indicating Geneva)

Auto-key threshold 6 (24 ticks)

Auto-key rate 3 (6 ticks)

Printer connection 0 (printer port)

Caret-blink time 8 (32 ticks)

Double-click time 8 (32 ticks)

Speaker volume 3 (medium)

Menu-blink time 3

Preferred system start-up disk 0 (internal drive)

Mouse scaling 1 (on)

C H A P T E R 7

Parameter RAM Utilities

7-8 Parameter RAM Utilities Reference

Many of the values held in parameter RAM are also copied at system startup into other

low-memory locations. Therefore, to change a value in parameter RAM, you must

change all low-memory copies representing the value before you call WriteParam to

write the values back to the clock chip. For example, the global variable SPVolCtl

points to the location within the system parameters record that stores the speaker

volume, and the global variable SdVolume references a copy of this information stored

elsewhere in low memory. You could change one without changing the other, although

ordinarily you change both simultaneously.

▲ W A R N I N G

It is not recommended that you directly manipulate parameter RAM.
Your application should, if at all possible, use the routines provided by
the Toolbox to read the information stored in parameter RAM. ▲

The global variable SysParam points to the beginning of the system parameters record

stored in low memory. You can access the system parameters record directly by using

this global variable, or you can use the GetSysPPtr routine to return a pointer to the

system parameters record. Thus, you can access the low-memory system parameters

record like this:

WITH GetSysPPtr^ DO

BEGIN

... {access the system parameters record directly here}

END;

IMPORTANT

Though system software automatically copies parameter RAM into low
memory at startup, it does not automatically do the reverse. Therefore,
after you make a change to the information in the low-memory system
parameters record, you must use the WriteParam function to copy
values from that record back to the clock chip to make the change
permanent. ▲

At startup, system software calls the InitUtil function (which you should never need

to call yourself) to copy the values stored in parameter RAM into low memory. (It then

copies those values into other appropriate global variables.) When you make changes to

the low-memory copy of parameter RAM, you must call the WriteParam function to

record your changes in the clock chip.

Parameter RAM Utilities Reference

This section describes the data structure and routines that are specific to the Parameter

RAM Utilities. The section “Data Structures” shows the Pascal data structure for the

system parameters record. The section “Routines” describes the routines that are used

to access and manipulate the startup information stored in parameter RAM.

C H A P T E R 7

Parameter RAM Utilities

Parameter RAM Utilities Reference 7-9

Data Structures

This section describes the systems parameter record, which contains the current settings

for startup information stored in parameter RAM. For information about parameter

RAM default values, see Table 7-1 on page 7-7.

The System Parameters Record

The SysParmType data type describes a system parameters record.

TYPE SysParmType =

PACKED RECORD

valid: Byte; {validity status}

aTalkA: Byte; {node ID hint for modem port}

aTalkB: Byte; {node ID hint for printer port}

config: Byte; {use types for serial ports}

portA: Integer; {modem port configuration}

portB: Integer; {printer port configuration}

alarm: LongInt; {alarm setting}

font: Integer; {application font number minus 1}

kbdPrint: Integer; {printer connection, auto-key settings}

volClik: Integer; {caret blink, double click, speaker vol.}

misc: Integer; {menu blink, startup disk, mouse scaling }

END;

SysPPtr = ^SysParmType;

Field descriptions

valid Contains information about the validity status of the clock chip.
Whenever a write to the clock chip is successful, the value $A8 is
stored in this field. The status is examined when the clock chip
is read at system startup.

aTalkA Contains the node ID hint for the modem port.

aTalkB Contains the node ID hint for the printer port.

config Indicates which device or devices may use each of the serial ports.

portA Contains the baud rate, data bits, parity, and stop bits for the
modem port. Bits 0–9 define the baud rate; bits 10 and 11 define the
number of data bits; bits 12 and 13 define the parity; and bits 14 and
15 define the number of stop bits.

portB Contains the baud rate, data bits, parity, and stop bits for the printer
port. Bits 0–9 define the baud rate; bits 10 and 11 define the number
of data bits; bits 12 and 13 define the parity; and bits 14 and 15
define the number of stop bits.

alarm Contains the time at which the alarm clock should sound. The time
is defined in terms of seconds since midnight, January 1, 1904.

font Adding 1 to this field produces the font number of the default
application font.

C H A P T E R 7

Parameter RAM Utilities

7-10 Parameter RAM Utilities Reference

kbdPrint Contains the settings for the printer and for the keyboard. Bit 0
designates whether the currently chosen printer (if any) is
connected to the printer port (0) or the modem port (1). Bits 1–7 are
reserved for future use. Bits 8–11 of this field contain the auto-key
rate, whose value is stored in 2-tick units. Bits 12–15 contain the
auto-key threshold, whose value is stored in 4-tick units.

volClik Contains miscellaneous user settings, including the caret-blink time,
double-click time, and the speaker volume setting.

misc Contains more miscellaneous user settings. Bits 2 and 3 contain a
value from 0 to 3 designating the menu-blink time. Because system
software automatically calls both standard and nonstandard menu
definition procedures many times, you should not need to worry
about that value in parameter RAM. Bit 4 indicates whether the
preferred startup disk is in an internal (0) or external (1) drive. If
there is any problem with using the disk in the specified drive, the
other drive is used. Bit 6 designates whether mouse scaling is on (1)
or off (0).

Routines

The Parameter RAM Utilities provide two functions for use by your application and

one function for use by system software. At startup, system software uses the InitUtil

function to read parameter RAM values into low memory. You can access the values

through a system parameters record of type SysParmType described in the previous

section. To obtain a pointer to the low-memory system parameters record, call the

GetSysPPtr function. To copy the values in the system parameters record back into

the clock chip, call the WriteParam function.

▲ W A R N I N G

The organization of parameter RAM is subject to change. Therefore, you
should not manipulate parameter RAM values directly using the
operating-system routines described in this chapter; instead, use the
appropriate Toolbox routines. ▲

InitUtil

System software uses the InitUtil function at startup time to copy values from

parameter RAM and date and time information into low memory. Your application

should never need to use this function.

FUNCTION InitUtil: OSErr;

C H A P T E R 7

Parameter RAM Utilities

Parameter RAM Utilities Reference 7-11

DESCRIPTION

The InitUtil function copies the contents of parameter RAM into 20 bytes of low

memory and calls the Date, Time, and Measurement Utilities’ ReadDateTime function

to copy the date and time from the clock chip into a separate low-memory location.

If the validity status in parameter RAM is not $A8 when InitUtil is called, InitUtil

returns a non-zero result code. In this case, the default values are read into the

low-memory copy of parameter RAM; these values are then written to the clock chip.

ASSEMBLY-LANGUAGE INFORMATION

The registers on exit for the InitUtil function are

RESULT CODES

SEE ALSO

For more information about the ReadDateTime function, see the chapter “Date, Time,

and Measurement Utilities” in this book.

GetSysPPtr

You can use the GetSysPPtr function to obtain a pointer to the low-memory copy of

parameter RAM.

FUNCTION GetSysPPtr: SysPPtr;

DESCRIPTION

The GetSysPPtr function returns a pointer to the low-memory copy of parameter

RAM. The copied parameter RAM values are accessible through the system parameters

record.

You can examine the values stored in the various fields of this record, or you can change

them and call the WriteParam function to copy your changes back into parameter RAM.

Registers on exit

D0 Result code

noErr 0 No error
prInitErr –88 Validity status not $A8

C H A P T E R 7

Parameter RAM Utilities

7-12 Parameter RAM Utilities Reference

SPECIAL CONSIDERATIONS

Because of the organization of parameter RAM is subject to change, you should not use

the GetSysPPtr function to change the values in parameter RAM. Instead use the

appropriate Toolbox routines to modify values in parameter RAM.

ASSEMBLY-LANGUAGE INFORMATION

The global variable SysParam contains the address of the start of the system parameters

record. Other global variables allow you to access individual fields of the system

parameters record directly. These global variables all begin with the letters SP and point

directly into the system parameters record stored in low memory. Other global variables

referencing memory locations outside of the system parameters record are used to store

copies of individual fields of the system parameters record.

SEE ALSO

For information about the system parameters record, see page 7-9. For a list of global

variables associated with the system parameters record, see “Global Variables” on

page 7-16. The WriteParam function is described next.

WriteParam

You can use the WriteParam function to write the modified values in the system

parameters record to parameter RAM.

FUNCTION WriteParam: OSErr;

DESCRIPTION

The WriteParam function writes the modified values in the system parameters record

to parameter RAM. Your application should call this function only after making changes

to the system parameters record (returned by the GetSysPPtr function described in the

previous section).

The WriteParam function also attempts to verify the values written by reading them

back in and comparing them to the values in the low-memory copy.

SPECIAL CONSIDERATIONS

Because the organization of parameter RAM is subject to change, you should not use

the WriteParam function to change the values in parameter RAM. Instead use the

appropriate Toolbox routines to modify values in parameter RAM.

C H A P T E R 7

Parameter RAM Utilities

Parameter RAM Utilities Reference 7-13

Note
If you accidentally use WriteParam to write incorrect values into
parameter RAM, the user can clear the current settings in the parameter
RAM and restore the default values by holding down the -Option-P-R
keys at system startup. ◆

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for the WriteParam functions are

For historical reasons, you must set up register A0 with the global variable SysParam

and register D0 with the global variable MinusOne. When WriteParam returns, register

D0 contains the result code.

RESULT CODES

SEE ALSO

For a description of the system parameters record, see page 7-9.

Registers on entry

A0 SysParam

D0 MinusOne

Registers on exit

D0 Result code

noErr 0 No error
prWrErr –87 Parameter RAM written did not verify

C H A P T E R 7

Parameter RAM Utilities

7-14 Summary of the Parameter RAM Utilities

Summary of the Parameter RAM Utilities

Pascal Summary

Data Types

TYPE SysParmType =

PACKED RECORD

valid: Byte; {validity status}

aTalkA: Byte; {node ID hint for modem port}

aTalkB: Byte; {node ID hint for printer port}

config: Byte; {use types for serial ports}

portA: Integer; {modem port configuration}

portB: Integer; {printer port configuration}

alarm: LongInt; {alarm setting}

font: Integer; {application font number minus 1}

kbdPrint: Integer; {printer connection, auto-key settings}

volClik: Integer; {caret blink, double click, speaker volume}

misc: Integer; {menu blink, startup disk, mouse scaling}

END;

SysPPtr = ^SysParmType;

Routines

FUNCTION InitUtil : OSErr;

FUNCTION GetSysPPtr : SysPPtr;

FUNCTION WriteParam : OSErr;

C H A P T E R 7

Parameter RAM Utilities

Summary of the Parameter RAM Utilities 7-15

C Summary

Data Types

struct SysParmType {

char valid; /*validity status*/

char aTalkA; /*node ID hint for modem port*/

char aTalkB; /*node ID hint for printer port*/

char config; /*use types for serial ports*/

short portA; /*modem port configuration*/

short portB; /*printer port configuration*/

long alarm; /*alarm setting*/

short font; /*application font number minus 1*/

short kbdPrint; /*printer connection, auto-key settings*/

short volClik; /*caret blink, double click, speaker volume*/

short misc; /*menu blink, startup disk, mouse scaling*/

};

typedef struct SysParmType SysParmType;

typedef SysParmType *SysPPtr;

Routines

pascal OSErr InitUtil (void);

SysPPtr GetSysPPtr (void);

pascal OSErr WriteParam (void);

C H A P T E R 7

Parameter RAM Utilities

7-16 Summary of the Parameter RAM Utilities

Assembly-Language Summary

Data Structures

SysParmType Data Structure

Global Variables

Result Codes

0 valid 1 byte validity status

1 aTalkA 1 byte node ID hint for modem port

2 aTalkB 1 byte node ID hint for printer port

3 config 1 byte use types for serial ports

4 portA word modem port configuration

6 portB word printer port configuration

8 alarm long alarm setting

12 font word application font number minus 1

14 kbdPrint word printer connection, auto-key settings

16 volClik word caret blink, double click, speaker volume

18 misc word menu blink, system startup disk, mouse scaling

GetParam System parameter scratch

SPAlarm The alarm setting

SPATalkA The node ID hint for modem port

SPATalkB The node ID hint for printer port

SPClikCaret The double-click and caret-blink times

SPConfig The use types for serial ports

SPFont The application font number minus 1

SPKbd The auto-key threshold and rate

SPMisc1 Miscellaneous

SPMisc2 The setting for mouse scaling, the system startup disk, and menu-blink time

SPPortA The modem port configuration

SPPortB The printer port configuration

SPPrint The printer connection

SPValid The validity status of parameter RAM

SPVolCtl The speaker volume

SysParam The low-memory copy of parameter RAM

noErr 0 No error
prWrErr –87 Parameter RAM written did not verify
prInitErr –88 Validity status is not $A8

Contents 8-1

C H A P T E R 8

Contents

Trap Manager

About the Trap Manager 8-3

Trap Dispatch Tables 8-5

Process for Accessing System Software Routines 8-5

Patches and System Software Routines 8-6

Daisy Chain of Patches 8-8

Head Patch (Normal Patch) 8-8

Tail Patch 8-8

Come-From Patch (Used Only by Apple) 8-8

Patch for One Application 8-9

Patch for All Applications 8-9

A-Line Instructions 8-10

A-Line Instructions for Operating System Routines 8-11

Calling Conventions for Register-Based Routines 8-12

Parameter-Passing Conventions for Operating System Routines 8-13

Function Results 8-13

Flag Bits 8-14

A-Line Instructions for Toolbox Routines 8-14

Calling Conventions for Stack-Based Routines 8-16

Parameter-Passing Conventions for Toolbox Routines 8-18

Function Results 8-19

The Auto-Pop Bit 8-20

About Trap Macros 8-20

About Routine Selectors 8-21

Using the Trap Manager 8-21

Determining If a System Software Routine is Available 8-21

Patching a System Software Routine 8-23

Trap Manager Reference 8-25

Routines 8-25

Accessing Addresses From the Trap Dispatch Tables 8-25

Installing Patch Addresses Into the Trap Dispatch Tables 8-28

C H A P T E R 8

8-2 Contents

Detecting Unimplemented System Software Routines 8-32

Manipulating One Trap Dispatch Table (Obsolete Routines) 8-32

Summary of the Trap Manager 8-34

Pascal Summary 8-34

C Summary 8-35

Assembly-Language Summary 8-36

C H A P T E R 8

About the Trap Manager 8-3

Trap Manager

This chapter describes how your application can use the Trap Manager to augment or

override an existing system software routine.

Although this chapter describes patching in some depth, you should rarely, if ever, find

a need to use patches in an application. The primary purposes of patches, as their name

suggests, are to fix problems and augment routines in ROM code.

To use this chapter, you should have some knowledge of assembly language. For

information about the instruction sets of microprocessors in the Motorola MC680x0

family, see the appropriate user’s manual, for example, the MC68020 32-Bit
Microprocessor User’s Manual.

This chapter describes how the Trap Manager works and then shows how you can use

the Trap Manger to

■ check for the availability of a system software routine

■ alter the behavior of a system software routine

About the Trap Manager

The Trap Manager is a collection of routines that lets you add extra capabilities to system

software routines.

In order to execute system software routines, system software takes advantage of the

unimplemented instruction feature of the MC680x0 family of microprocessors, which

are the central processing units (CPUs) used in the Macintosh family of computers.

The MC680x0, like other microprocessors, executes a stream of instructions. Information

encoded in an instruction indicates the operation to be performed by the microprocessor.

The MC680x0 family of microprocessors recognizes a defined set of instructions. When

the microprocessor encounters an instruction that it doesn’t recognize, an exception

is generated. An exception refers to bus errors, interrupts, and unimplemented

instructions. When an exception occurs, the microprocessor suspends normal execution

and transfers control to an appropriate exception handler.

In the MC680x0 family of microprocessors, all instructions starting with the hexadecimal

digit $A are unimplemented instructions. These unimplemented instructions are also

called A-line instructions. System software uses these unimplemented A-line

instructions to execute system software routines. When you call a system software

routine, the call to the system software routine is translated into an A-line instruction.

The MC680x0 microprocessor doesn’t recognize this A-line instruction, and transfers

control to an exception handler.

System software provides an exception handler, called a trap dispatcher, to handle

exceptions generated by A-line instructions. Whenever a MC680x0 microprocessor

encounters an A-line instruction, an exception is generated, and the microprocessor

transfers control to the trap dispatcher. An exception generated by an A-line instruction

is called a trap.

C H A P T E R 8

Trap Manager

8-4 About the Trap Manager

When the trap dispatcher receives the A-line instruction, it looks into a table, called a
trap dispatch table, to find the address of the called system software routine. After the

trap dispatcher retrieves the address, it transfers control to the specified system software

routine. Figure 8-1 illustrates the processing of instructions that include the A-line

instructions that the microprocessor does not recognize.

Figure 8-1 How the CPU processes A-line instructions

You can use the Trap Manager routines to read from and write to the two trap dispatch

tables maintained by system software.

C H A P T E R 8

Trap Manager

About the Trap Manager 8-5

Trap Dispatch Tables
System software uses trap dispatch tables to locate the address of system software

routines. System software maintains two trap dispatch tables: an Operating System

trap dispatch table and a Toolbox trap dispatch table. Figure 8-2 illustrates the two trap

dispatch tables.

Figure 8-2 Trap dispatch tables

At system startup time, system software builds the trap dispatch tables and places

them in RAM. The Operating System trap dispatch table contains 256 entries, and the

Toolbox trap dispatch table contains 1024 entries. Each entry in the Operating System

trap dispatch table contains a 32-bit address of an Operating System routine, and each

entry in the Toolbox trap dispatch table contains a 32-bit address of a Toolbox routine.

The system software routines can be located in either ROM or RAM.

Process for Accessing System Software Routines
As previously described, when your application calls a system software routine, an

A-line instruction is sent to the microprocessor. The microprocessor does not recognize

this instruction, and an exception is generated. This exception is then handled by the

trap dispatcher. When the trap dispatcher receives the A-line instruction, it looks into

one of the two trap dispatch tables to find the address of the called system software

routine. When the trap dispatcher retrieves the address, it transfers control to the

specified system software routine. For example, Figure 8-3 illustrates a call to the

Toolbox procedure, FillRect. When the application calls the FillRect procedure,

an exception is generated. The trap dispatcher looks into the Toolbox trap dispatch table

to find the address of the FillRect procedure. When the address is found, the trap

dispatcher transfers control to the FillRect procedure.

C H A P T E R 8

Trap Manager

8-6 About the Trap Manager

Figure 8-3 Accessing the FillRect procedure

Note
Not all A-line instructions are defined. When the trap dispatcher
receives an undefined A-line instruction, the trap dispatcher returns the
address of the Toolbox procedure Unimplemented. When called, the
Unimplemented procedure triggers a system error. ◆

Patches and System Software Routines
You can modify the trap dispatch table so that the address that gets returned to the trap

dispatcher points to a different routine instead of the intended system software routine;

this is useful if you want to augment or override an existing system software routine.

The routine that augment an existing system software routine is called a patch. The

method of augmenting or overriding a system software routine is called patching a trap.

For example, you can augment the FillRect procedure with your own procedure

MyPatchFillRect. Figure 8-4 illustrates another call to the Toolbox procedure

FillRect. When the application calls the FillRect procedure the application-defined

patch MyPatchFillRect is executed first. After the application-defined patch

MyPatchFillRect completes its primary action, it transfers control (through a JMP

instruction) to the original FillRect procedure.

C H A P T E R 8

Trap Manager

About the Trap Manager 8-7

IMPORTANT

Although this chapter describes patching in some detail, you should
avoid any unnecessary patching of the system software. One very good
reason to avoid patching is that is causes a performance reduction. The
performance reduction is especially substantial when your patch is
executed on a PowerPC processor-based Macintosh computer, where it
is necessary to switch execution environments when entering and
exiting your patch code. For more information about patching PowerPC
system software, see Inside Macintosh: PowerPC System Software. ▲

Figure 8-4 Augmenting the FillRect procedure with a single patch

Note

To prevent dangling patch addresses, you must ensure that your patch
routine is in a locked memory block while its address is in the trap
dispatch table. ◆

C H A P T E R 8

Trap Manager

8-8 About the Trap Manager

Daisy Chain of Patches

It is possible to patch a system software routine with more than just one patch; this is

called a daisy chain of patches. Typically, you extract from the trap dispatch table the

address of the routine you wish to patch, save this address, and then install your own

patch routine. When your patch has completed its tasks, it should jump to the address

you previously extracted from the trap dispatch table. In this way, the patches take the

general form of a daisy chain. Each patch will execute in turn and jump to the next patch

until the last link in the chain, which returns control to the trap dispatcher.

IMPORTANT

Although this chapter describes patching in some depth, you should
rarely, if ever, find a need to use patches in an application. The primary
purposes of patches, as their name suggests, are to fix problems and
augment routines in ROM code. ▲

A patch can be implemented as either a head patch, tail patch, or come-from patch.

These are described in the next sections.

Head Patch (Normal Patch)

A head patch, also referred to as a normal patch, is a routine that gets executed before

the original system software routine. A head patch performs its primary action and then

uses a jump instruction (JMP) to jump to the system software routine. Thus the head

patch does not regain control after the execution of the system software routine. After

the execution of the system software routine, control is transferred back to the trap

dispatcher.

Tail Patch

A tail patch is a routine that gets executed before the original system software routine

and regains control after the execution of the system software routine. A tail patch uses

a jump-subroutine instruction (JSR) to transfer control to the system software routine.

After the system software routine returns control to the tail patch, the tail patch returns

control to the trap dispatcher.

▲ W A R N I N G

You should never install tail patches in system software versions earlier
than System 7. Tail patches may conflict with come-from patches,
installed by Apple. ▲

Come-From Patch (Used Only by Apple)

A come-from patch, also called a system patch, is a type of patch used only by Apple.

Come-from patches are used to replace erroneous code or to add capabilities not in ROM.

When a come-from patch is invoked, it examines the stack to determine where it was

called from. If the come-from patch was invoked from a particular place in ROM (a spot

where the code needs to be augmented or deleted), the come-from patch executes the

C H A P T E R 8

Trap Manager

About the Trap Manager 8-9

modifying code. Otherwise, if the come-from patch was called from a part of the system

that does not need to be augmented, it transfers control to the next routine in the daisy

chain. This routine could be another patch or the system software routine.

Beginning with System 7, the addresses of come-from patches are permanently placed in

the trap dispatch table at system startup time. The addresses of come-from patches are

hidden and cannot be manipulated by any of the Trap Manger routines.

For example, if a system software routine has a come-from patch and if you use the

Trap Manger function NGetTrapAddress to retrieve the address of the system software

routine, you will not get the address in the trap dispatch table (which is the address of

the come-from patch). NGetTrapAddress instead returns the address of the routine

that is executed immediately after the come-from patch. This address could be the

address of another patch or the system software routine.

If a system software routine has a come-from patch and if you use the Trap Manager

procedure NSetTrapAddress to install a patch to the system software routine,

the address of the patch is not written into the trap dispatch table. Instead, the

NSetTrapAddress procedure installs the address of the patch into the last come-from

patch. The patch is executed after the completion of the come-from patch.

▲ W A R N I N G

In system software before System 7, if a come-from patch is invoked by a
tail-patch, the come-from patch does not work correctly. The come-from
patch never sees the ROM address on the stack—only the return address
of the tail-patch. ▲

Patch for One Application

If you install a patch into your application heap, the patch applies only to your

application. When your application is switched out, your application’s heap

(and patch) is swapped out. For example, if you patch FillRect with the patch

MyPatchFillRect, the MyPatchFillRect patch is executed only when the

FillRect procedure is called from your application.

Note

When running in System 7 or under MultiFinder in System 6, each
application has its own copy of the trap dispatch tables. This ensures
that an application’s patches apply only when it is running and that
they’re discarded when the application quits. ◆

Patch for All Applications

If you install a patch from a system extension during system startup, your patch is

placed in the system heap and applies to all applications. For example, if you patch the

FillRect procedure with the patch MyPatchFillRect from a system extension, the

MyPatchFillRect patch is executed every time the FillRect procedure is called, no

matter which application calls it.

C H A P T E R 8

Trap Manager

8-10 About the Trap Manager

A-Line Instructions
When your application calls a Toolbox or an Operating System routine, an A-line

instruction is sent to the microprocessor. Each A-line instruction contains information

about the called system software routine. Figure 8-5 shows the layout of an A-line

instruction.

Figure 8-5 A-line instruction format

The high-order 4 bits of an A-line instruction have the hexadecimal value $A, hence

the name A-line instruction. Bit 11 of the A-line instruction indicates the type of system

software routine to be invoked: a value of 0 in bit 11 indicates an Operating System

routine, a value of 1 in bit 11 indicates a Toolbox routine. The trap number in an A-line

instruction is used as an index into the appropriate dispatch table. The meaning of the

flags vary accordingly to the type of A-line instruction.

When your application calls a system software routine (thereby generating an

exception), the microprocessor pushes an exception stack frame onto the stack. Figure

8-6 shows a typical exception stack frame. After pushing the exception stack frame on

the stack, the microprocessor transfers control to the trap dispatcher.

Figure 8-6 Exception stack frame (on Macintosh computers with a MC68020 microprocessor
or greater)

C H A P T E R 8

Trap Manager

About the Trap Manager 8-11

The trap dispatcher discards the status register and vector offset. Depending on whether

the A-line instruction is used to invoke an Operating System routine or a Toolbox

routine, the trap dispatcher deals with the stack and registers in two very different ways,

as described in the next section, “A-line Instructions for Operating System Routines,”

and in the section “A-Line Instructions for Toolbox Routines” beginning on page 8-14.

Note

The exception handler is located at address $28 on computers with an
MC68000 microprocessor and at address $28 offset from the address in
the microprocessor’s Vector Base Register (VBR) on computers with
other MC680x0 microprocessors. Consult the relevant microprocessor
handbook for the precise details of exception handling on the MC680x0
microprocessor of interest to you. ◆

A-Line Instructions for Operating System Routines
An Operating System trap is an exception that is caused by an A-line instruction that

executes an Operating System routine.

When dispatching an Operating System trap, the trap dispatcher extracts the trap

number from the A-line instruction and uses it as an index into the Operating System

trap dispatch table. The entry in the Operating System trap dispatch table contains the

address of the desired Operating System routine. Figure 8-7 illustrates an A-line

instruction for an Operating System routine.

Figure 8-7 An A-line instruction for an Operating System routine

Bit 11 tells the trap dispatcher that this A-line instruction invokes an Operating System

routine. Two flag bits, bit 10 and bit 9, are reserved for use by the Operating System

routine itself and are discussed in detail in “Flag Bits” on page 8-14. Bit 8 indicates

whether the value in register A0 is returned from the Operating System routine. If bit 8

is 0, the value in register A0 is returned from the Operating System routine. If bit 8 is 1,

the value in register A0 is not returned by the Operating System routine. As previously

described, the trap number is in bits 7–0 and is used to determine which of the

256 possible Operating System routines is executed.

For example, a call to the Operating System function GetPtrSize is translated to the

A-line instruction $A021. This A-line instruction causes the microprocessor to transfer

C H A P T E R 8

Trap Manager

8-12 About the Trap Manager

control to the trap dispatcher, which deals with any instruction of the form $Axxx. The

trap dispatcher first saves registers D0, D1, D2, A1, and, if bit 8 is 0, A0. The trap

dispatcher places the A-line instruction itself into the low-order word of register D1 so

that the Operating System routine can inspect the flag bits. Next, the trap dispatcher

examines the other bits in the A-line instruction. The value (0) of bit 11 indicates that

GetPtrSize is an Operating System routine, and that the value in bits 7–0 is the index

into the Operating System trap dispatch table. The trap dispatcher uses the index (which

is 33 in this example) to find the address of the GetPtrSize function in the Operating

System trap dispatch table. When the address is found, the trap dispatcher transfers

control to the GetPtrSize function.

Figure 8-8 illustrates the stack after the trap dispatcher has transferred control to an

Operating System routine.

Figure 8-8 The stack on entry to an Operating System routine

The Operating System routine may alter any of the registers D0–D2 and A0–A2, but it

must preserve registers D3–D7 and A3–A6. The Operating System routine may return

information in register D0 (and A0 if bit 8 is set). To return to the trap dispatcher, the

Operating System routine executes the RTS (return from subroutine) instruction.

When the trap dispatcher resumes control, first it restores the value of registers D1, D2,

A1, A2, and, if bit 8 is 0, A0. The values in registers D0 and, if bit 8 is 1, in A0 are not

restored.

Calling Conventions for Register-Based Routines

Register-based routines receive their parameters from microprocessor registers, and they

pass their results in microprocessor registers. Virtually all Operating System routines are

register-based routines.

C H A P T E R 8

Trap Manager

About the Trap Manager 8-13

An Operating System routine returns information only in registers D0 and, if bit 8 is 1,

A0. The stack and all other registers are unchanged.

Many Operating System routines return a result code in the low-memory word of

register D0 to report whether the requested operation was performed successfully.

A result code of 0 indicates that the routine completed successfully; any other value

typically indicates an error. Just before the trap dispatcher finishes execution, it tests

the low-order word of register D0 with a TST.W instruction to set the condition codes

of the microprocessor.

Note

Calling conventions for PowerPC microprocessor-based Macintosh
computers are different from the calling conventions described for in
this section. For information about calling conventions for PowerPC
processor-based Macintosh computers, see Inside Macintosh: PowerPC
System Software. ◆

Parameter-Passing Conventions for Operating System Routines

By convention, register-based routines normally use register A0 for passing addresses

(such as pointers to data objects) and register D0 for other data values (such as integers).

For routines that take more than two parameters, the parameters are normally collected

in a parameter block in memory and a pointer to the parameter block is passed in

register A0. See the description of an individual routine in the appropriate

Inside Macintosh book for exact details.

Function Results

Most Operating System functions return their function result (or result code) in register

D0. Parameters are returned through register A0, usually as a pointer to a parameter

block.

Whether the trap dispatcher preserves register A0 depends on the setting of bit 8 in the

A-line instruction. If bit 8 is 0, the trap dispatcher saves and restores register A0; if it’s 1,

the routine passes back register A0 unchanged. Thus, bit 8 of the A-line instruction

should be set to 1 only for those routines that use register A0 to return information.

The trap macros automatically set this bit correctly for each routine.

To see in which register the function passes the function result, see the description of

the individual function in the appropriate Inside Macintosh book.

C H A P T E R 8

Trap Manager

8-14 About the Trap Manager

Flag Bits

Many Operating System routines use the flag bits in an A-line instruction to encode

additional information used by the routine. For example, the A-line instructions that

invoke Memory Manager routines define the two flag bits like this:

These two bits are defined in assembly language as:

CLEAR EQU $200 ;initialize block to zero

SYS EQU $400 ;use the system heap

When used with a Memory Manager A-line instruction, these modifiers cause flag bits

9 and 10, respectively, to be set. They could be used in an assembly-language instruction

sequence like

MOVEQ #124,D0 ;need 124 bytes

_NewPtr SYS,CLEAR ;allocate requested memory in

; system heap and initialize to

; zeroes

The SYS modifier specifies allocation from the system heap, regardless of the value of

the global variable TheZone, and the CLEAR modifier specifies that the Memory

Manager should initialize the block contents to zero. For further details, consult Inside
Macintosh: Memory.

A-Line Instructions for Toolbox Routines
A Toolbox trap is an exception that is caused by an A-line instruction that executes a

Toolbox routine.

When dispatching a Toolbox trap, the trap dispatcher extracts the trap number from the

A-line instruction and uses it as an index into the Toolbox trap dispatch table. The index

points to the entry in the Toolbox trap dispatch table that contains the address of the

desired Toolbox routine. Figure 8-9 illustrates an A-line instruction that is used to access

a Toolbox routine.

Bit Explanation

9 If 1, initialize all bytes in the allocated memory to 0.
If 0, do not initialize all bytes in the allocated memory to 0.

8 If 1, allocate memory from the system heap.
If 0, allocate memory from the application heap.

C H A P T E R 8

Trap Manager

About the Trap Manager 8-15

Figure 8-9 An A-line instruction for a Toolbox routine

Bit 11 tells the trap dispatcher that this A-line instruction is used to access a Toolbox

routine. Bit 10 is the auto-pop bit. Bits 9–0 contain the trap number which, as previously

described, determine which of the 1024 possible Toolbox routines is executed. The

auto-pop bit is described in detail in “The Auto-Pop Bit” on page 8-20.

For example, a call to the Toolbox function WaitNextEvent is translated to the A-line

instruction $A860. This A-line instruction causes the microprocessor to transfer control

to the trap dispatcher, which deals with any instruction of the form $Axxx. The trap

dispatcher examines the other bits in the A-line instruction. The value (0) of bit 11

indicates that WaitNextEvent is a Toolbox routine and that the value in bits 9–0 is

the index into the Toolbox trap dispatch table. The trap dispatcher uses the index (which

is $60 in this example) to find the address of the WaitNextEvent function in the

Toolbox trap dispatch table. When the address is found, the trap dispatcher transfers

control to the WaitNextEvent function.

Figure 8-10 illustrates the stack after the trap dispatcher has transferred control to a

Toolbox routine.

Figure 8-10 Stack when entering a Toolbox routine

The value of the Program Counter that is left on the stack before entry to the Toolbox

routine points to the instruction that is executed after the completion of the

Toolbox routine.

C H A P T E R 8

Trap Manager

8-16 About the Trap Manager

After the trap dispatcher completes execution, the internal status of the stack is restored,

and normal execution resumes from the point at which processing was suspended.

A Toolbox routine changes the Stack Pointer in register A7 and pops the return address

and any input parameters. A routine might also alter registers D0–D2, A0, and A1.

▲ W A R N I N G

Some Toolbox routines (for example the LongMul procedure described
in the chapter “Mathematical and Logical Utilities” in this book)
preserve more than the required set of registers. However, you should
assume all of registers D0–D2, A0, and A1 are altered by Toolbox
routines. ▲

Calling Conventions for Stack-Based Routines

Stack-based routines receive their parameters on the stack and return their results on the

stack. Virtually all Toolbox routines are stack-based routines.

Most Toolbox routines follow Pascal calling conventions; that is, Toolbox routine

parameters are evaluated from left to right and are pushed onto the stack in the order

in which they are evaluated. Function results are returned by value or by address on the

stack. Space for the function result is allocated by the caller before the parameters are

pushed on the stack. The caller is responsible for removing the result from the stack

after the call.

Note

Calling conventions for PowerPC microprocessor-based Macintosh
computers are different from the calling conventions described in this
section. For information about calling conventions for PowerPC
processor-based Macintosh computers, see Inside Macintosh: PowerPC
System Software. ◆

Figure 8-11 illustrates Pascal calling conventions. In this example, a routine calls the

application-defined function MyPascalFn. When the application calls the function

MyPascalFn, the application must first make room on the stack for the function result,

then push the parameters on the stack in left-to-right order.

C H A P T E R 8

Trap Manager

About the Trap Manager 8-17

Figure 8-11 Pascal calling convention

Figure 8-12 illustrates C calling conventions. In this example, a routine calls the

application-defined function MyCFn. When the application calls the function MyCFn, the

application pushes the parameters on the stack in right-to-left order. The function result

is returned in register D0, and not on the stack.

Figure 8-12 C calling convention

C H A P T E R 8

Trap Manager

8-18 About the Trap Manager

Parameter-Passing Conventions for Toolbox Routines

All variable parameters (parameters of type VAR) are passed as pointers to the actual

storage location. In the case of byte-sized types, parameters of type VAR may have odd

values.

Nonvariable parameters are passed in different ways, depending on the type of the

parameter. Values of type Boolean, elements of an enumerated type with fewer than

128 elements, and subranges within the range –128 to 127 are passed as signed byte

values. Values of type Integer and, Char and all other enumerations and subranges

are passed as signed word values. Pointers and values of type LongInt are passed as

signed 32-bit values. Table 8-1 summarizes the parameter-passing conventions.

A parameter of type SET is passed by rounding its size up to the next whole word, if

necessary, then pushing its value so that the lowest-order word is pushed last. In the case

of a byte-size SET, the called procedure accesses only the low-order half of the word that

is pushed.

Table 8-1 Toolbox parameter-passing conventions

Parameter type Data object pushed on stack

Boolean Byte: range 0 to 1

Char 16 bits: range 0 to 255

Integer 16 bits: range –32768 to 32767

LongInt 32 bits

Pointer 32 bits

Enumeration: range 0 to 127 Byte: range 0 to 127

Enumeration: range 0 to 32767 16 bits: range 0 to 32767

Subrange: range –128 to 127 16 bits: range –128 to 127

Subrange: range –32768 to 32767 Word: range –32768 to 32767

Real Address of Extended copy

Double Address of Extended copy

Comp Address of Extended copy

Extended Address of argument

ARRAY, RECORD, string ≤ 4 bytes Value (word or long word)

ARRAY, RECORD, string > 4 bytes Address of value

SET SET value rounded to whole number of words

C H A P T E R 8

Trap Manager

About the Trap Manager 8-19

Note
A byte pushed on the stack occupies the high-order byte of the word
allocated for it, according to conventions for the MC680x0
microprocessors. ◆

▲ W A R N I N G

A value of type Char is passed as a word value. The value occupies the
low-order half of the word. ▲

Function Results

Function results are returned by value or by address on the stack. Space for the function

result is allocated by the caller before the parameters are pushed. The caller is

responsible for removing the result from the stack after the call.

For types Boolean, Char, and Integer and for enumerated and subrange types, the

caller allocates a word on the stack to make space for the function result. Values of type

Boolean, enumerated types with fewer than 128 elements, and subranges within the

range –128 to 127 are returned as signed byte values. The value is placed in the

high-order byte of the word.

Values of type Integer and Char and all enumerated and subrange types not covered

above are returned as signed word values.

Pointers and values of type LongInt are returned as signed 32-bit values. Values of type

Real are returned as 32-bit real values. For types whose values are greater than 4 bytes

in size, the caller pushes a pointer to a temporary location into which the function places

the result; these types include Double (8 bytes), Comp (8 bytes), and Extended (10 or 12

bytes); types SET, ARRAY, RECORD; and strings greater than 4 bytes in size.

For a 1-byte SET, for types SET, ARRAY, and RECORD, and for strings whose size is one

word, the caller allocates a word on the stack. For types SET, ARRAY, and RECORD and

strings whose size is two words, the caller allocates a long word on the stack.

The conventions for returning results of functions are summarized in Table 8-2.

Table 8-2 Conventions for returning results from Toolbox functions

Function result type
Data object left on stack or returned
through pointer on stack

Boolean Byte: range 0 to 1

Char 16 bits: range 0 to 255

Integer 16 bits: range –32768 to 32767

LongInt 32 bits

Pointer 32 bits

Enumeration: range 0 to 127 Byte: range 0 to 127

Enumeration: range 0 to 32767 16 bits: range 0 to 32767

continued

C H A P T E R 8

Trap Manager

8-20 About the Trap Manager

Note

A 1 byte-size return value occupies the high-order byte of the word
allocated for it. ◆

The Auto-Pop Bit

The auto-pop bit is bit 10 in an A-line instruction for a Toolbox routine. Some language

systems prefer to generate jump-subroutine calls (JSR) to intermediate routines, called

glue routines, which then call Toolbox routines instead of executing the Toolbox routine

directly. This glue method would normally interfere with Toolbox traps because the

return address of the glue subroutine is placed on the stack between the Toolbox

routine's parameters and the address of the place where the glue routine was called

from (where control returns once the Toolbox routine has completed execution).

The auto-pop bit forces the trap dispatcher to remove the top 4 bytes from the stack

before dispatching to the Toolbox routine. After the Toolbox routine completes execution,

control is transferred back to the place where the glue routine was called from, not back

to the glue routine.

Most development environments, including MPW, do not use this feature.

About Trap Macros
A trap macro is an assembly-language macro that assembles into an A-line instruction,

used for calling a Toolbox or Operating System routine from assembly language. The

names of all trap macros begin with the underscore character (_), followed by the name

Subrange: range –128 to 127 Byte: range –128 to 127

Subrange: range –32768 to 32767 16 bits: range –32768 to 32767

Real Real

Double Double at address given by pointer

Comp Comp at address given by pointer

Extended Extended at address given by pointer

ARRAY, RECORD, string ≤ 4 bytes Value (word or long word)

ARRAY, RECORD, string > 4 bytes Value at address given by pointer

SET: one byte Byte value

SET: one word 16-bits value

SET: two words 32-bits value

SET > two words Value at address given by pointer

Table 8-2 Conventions for returning results from Toolbox functions (continued)

Function result type
Data object left on stack or returned
through pointer on stack

C H A P T E R 8

Trap Manager

Using the Trap Manager 8-21

of the corresponding routine. As a rule, the macro name is the same as the name used

to call the routine from Pascal. For example, to call the Window Manager function

NewWindow, you should use an instruction with the macro name _NewWindow. There

are some exceptions, however, in which the spelling of the macro differs from the name

of the Pascal routine itself; these are noted in the documentation for the individual

routines.

Trap macros for Toolbox routines take no arguments; any parameters must be pushed

on the stack before invoking the routine. See “Calling Conventions for Stack-Based

Routines” on page 8-16 for more information. Trap macros for Operating System

routines may have as many as three optional arguments. The first argument, if present,

is used to load a register with a parameter value for the routine you’re calling. The

remaining arguments control the settings of the various flag bits in the A-line instruction.

About Routine Selectors
A routine selector is a value that is pushed on the stack to select a particular routine from

a group of routines to be executed. Many trap macros take routine selectors. For

example, the trap macro _HFSDispatch has the possibility of calling 42 different

system software routines. Hence, the trap macro has 42 different routine selectors. The

routine selector that is passed on the stack (for _HFSDispacth to access) selects which

of the 42 software routines _HFSDispatch executes.

Most system software routines that are accessed through a trap macro and a routine

selector also have a corresponding macro that expands to call the original trap macro

and automatically puts the correct routine selector on the stack. For example, the trap

macro _GetCatInfo expands to call _HFSDispatch and places the selector $0009 on

the stack after the parameters.

Using the Trap Manager

You can use the Trap Manger to read from and write to a trap dispatch table. To

read an address from a trap dispatch table, you can call the NGetTrapAddress,

GetOSTrapAddress, or GetToolboxTrapAddress functions. To write an address to

a trap dispatch table, you can use the NGetTrapAddress, GetOSTrapAddress, or

GetToolboxTrapAddress procedures.

This section shows how you can use the Trap Manager to

■ determine if a system software routine is available

■ patch a system software routine

Determining If a System Software Routine is Available
You can use the Trap Manager to determine the availability of system software routines.

C H A P T E R 8

Trap Manager

8-22 Using the Trap Manager

The Gestalt Manager, introduced in System 6.0.4 and discussed in the chapter “Gestalt

Manager” in this book, is the primary tool for querying the system about its features. But

if you expect your application to run on a system older than System 6.0.4, the Gestalt

Manager may not be available.

The example in this section shows how you can use the Trap Manager to check whether

a particular system software routine is available on the installed system.

At startup time, system software places the address of the Unimplemented procedure

into all entries of each trap dispatch table that do not contain an address of a Toolbox or

Operating System routine (or the address of a come-from patch). Listing 8-1 illustrates

how you can use these Unimplemented addresses to determine whether a particular

system software routine is available on the user’s system. If a system software routine

is available, its address differs from the address of the Unimplemented procedure.

Listing 8-1 Determining if a system software routine is available

FUNCTION MySWRoutineAvailable (trapWord: Integer): Boolean;

VAR

trType: TrapType;

BEGIN

{first determine whether it is an Operating System or Toolbox routine}

IF ORD(BAND(trapWord, $0800)) = 0 THEN

trType := OSTrap

ELSE

trType := ToolTrap;

{filter cases where older systems mask with $1FF rather than $3FF}

IF (trType = ToolTrap) AND (ORD(BAND(trapWord, $03FF)) >= $200) AND

(GetToolboxTrapAddress($A86E) = GetToolboxTrapAddress($AA6E)) THEN

MySWRoutineAvailable := FALSE

ELSE

MySWRoutineAvailable := (NGetTrapAddress(trapWord, trType) <>

GetToolboxTrapAddress(_Unimplemented));

END;

Note

Macintosh Plus and Macintosh SE computers with system software prior
to System 7 masked their trap numbers with $1FF in the
GetToolboxTrapAddress function so that the address of A-line
instruction $AA6E (whether implemented or not) would be the same as
A-line instruction $A86E, which invokes the InitGraf routine. ◆

You can use the application-defined procedure MySWRoutineAvailable to check for

system software routines not supported by the Gestalt Manager. A notable example is

the WaitNextEvent function, which has never had Gestalt selectors. Listing 8-2

shows two common uses of the application-defined MySWRoutineAvailable

procedure.

C H A P T E R 8

Trap Manager

Using the Trap Manager 8-23

Listing 8-2 Determining whether WaitNextEvent and Gestalt are available

VAR

gHasWNE, gHasGestalt: Boolean;

{check for the availability of WaitNextEvent}

gHasWNE := MySWRoutineAvailable(_WaitNextEvent);

{check for the availability of Getstalt}

gHasGestalt := MySWRoutineAvailable(_Gestalt);

Patching a System Software Routine
Although this chapter describes patching in some depth, you should rarely, if ever, find

a need to use patches in an application. The primary purposes of patches, as their name

suggests, are to fix problems and augment routines in ROM code. The examples in this

section are only included for the sake of completeness.

Listing 8-3 illustrates a patch for the SysBeep Operating System procedure. When

SysBeep is called, this application-defined patch MySysBeep is executed before

transferring control to the original SysBeep procedure.

Listing 8-3 Patching the SysBeep Operating System procedure

PROCEDURE MySysBeep (duration: Integer);

VAR

oldPort: GrafPtr;

wMgrPort: GrafPtr;

i: Integer;

BEGIN

GetPort(oldPort);

GetWMgrPort(wMgrPort);

SetPort(wMgrPort);

FOR := 3 DOWNTO 0 DO BEGIN

InvertRect(wMgrPort^.portBits.bounds);

END;

SetPort(oldPort);

END; {of MySysBeep}

To transfer control to the next routine in the daisy chain (in this example the

original SysBeep procedure), the application-defined MyInstallAPatch procedure

(Listing 8-5) uses the application-defined procedure MyFollowDaisyChain, shown in

Listing 8-4. The MyFollowDaisyChain duplicates the parameter for the SysBeep

procedure and then pushes the address of the SysBeep procedure on the stack.

Listing 8-4 shows the application-defined procedure MyFollowDaisyChain.

C H A P T E R 8

Trap Manager

8-24 Using the Trap Manager

Listing 8-4 Jumping to the next routine in the daisy chain

MyFollowDaisyChain PROC EXPORT

IMPORT MYSYSBEEP

BRA.S @2

@1 DC.L $50FFC001

@2 MOVE.W $4(A7),-(A7) ;duplicate the parameters

MOVE.L @1,-(A7) ; and push the chain link

BRA.S MYSYSBEEP

NOP

ENDPROC

END

The application-defined procedure MyInstallAPatch in Listing 8-5 installs a patch

into the daisy chain (in this example, the MySysBeep patch). First, the procedure calls

the NGetTrapAddress function to get the address of the next routine in the daisy chain.

This address could be the address of another patch or the system software routine. Next,

MyInstallAPatch calls the NSetTrapAddress procedure to put the address of the

new patch (in this example, the address of MySysBeep patch) into the trap dispatch

table.

Listing 8-5 Installing a patch

PROGRAM MyPatchInstaller;

USES Memory, ToolIntf, OSIntf, OSUtils,Windows,

ToolUtils, Traps, Resources, SamplePatch;

TYPE

PatchCodeHandle = ^PatchCodePtr;

PatchCodePtr = ^PatchCodeHeader;

PatchCodeHeader =

RECORD

branch: Integer;

oldTrapAddress: LongInt;

END;

PROCEDURE MyFollowDaisyChain (duration: Integer); EXTERNAL;

PROCEDURE MyInstallAPatch (trapNumber: Integer; tType: TrapType;

 pPatchCode: PatchCodePtr);

BEGIN

pPatchCode^.oldTrapAddress := NGetTrapAddress(trapNumber,

 tType);

NSetTrapAddress (ORD4(pPatchCode), trapNumber, tType);

END; {of MyInstallAPAtch}

C H A P T E R 8

Trap Manager

Trap Manager Reference 8-25

BEGIN

InitGraf (@qd.thePort);

InitFonts;

InitWindows;

MyInstallAPatch(_SysBeep, ToolTrap,

 PatchCodePtr(@MyFollowDaisyChain));

SysBeep(1);

END. {of MyPatchInstaller}

Note

The MyInstallAPatch procedure used in this example was designed
to install both Operating System and Toolbox patches; it uses the
NGetTrapAddress and NSetTrapAddress routines. The
NGetTrapAddress and NSetTrapAddress routines both need
a parameter that indicates which type of routine is being patched,
an Operating System or Toolbox routine. ◆

Trap Manager Reference

This section describes the routines provided by the Trap Manager. You can use these

routines to

■ access an address in a trap dispatch table

■ install a patch address into a trap dispatch table

This section also documents the Unimplemented procedure.

Routines

This section describes the routines provided by the Trap Manager.

Accessing Addresses From the Trap Dispatch Tables

You can access the address of a system software routine by using the

GetOSTrapAddress, GetToolboxTrapAddress or NGetTrapAddress function.

The GetOSTrapAddress function retrieves only an Operating System routine address,

and the GetToolboxTrapAddress retrieves only a Toolbox routine address. The

NGetTrapAddress function is the most general of these functions; you can use the

function to retrieve the address of an Operating System routine or a Toolbox routine.

C H A P T E R 8

Trap Manager

8-26 Trap Manager Reference

GetOSTrapAddress

You can use the GetOSTrapAddress function to access the address of an Operating

System routine, that is located in the Operating System trap dispatch table.

FUNCTION GetOSTrapAddress (trapNum: Integer): LongInt;

trapNum Operating System A-line instruction or a trap number. If you specify an
Operating System A-line instruction, the function extracts the trap
number for you.

DESCRIPTION

The GetOSTrapAddress function returns the address of the Operating System routine

specified by the trapNum parameter. If the desired Operating System routine is not

supported on the installed system software, the GetOSTrapAddress function returns

the address of the Unimplemented procedure. The trapNum parameter should contain

a trap number in bits 0–7. GetOSTrapAddress masks the irrelevant high-order bits.

A GetOSTrapAddress(trapNum) function call performs the same operation as a

NGetTrapAddress(trapNum, OSTrap) function call.

SEE ALSO

For more information about the Unimplemented procedure, see page 8-32. For

information about the NGetTrapAddress function, see page 8-27.

GetToolboxTrapAddress

You an use the GetToolboxTrapAddress function to access the address of a Toolbox

routine, which is located in the Toolbox trap dispatch table. The

GetToolboxTrapAddress function is also available as the GetToolTrapAddress

function.

FUNCTION GetToolboxTrapAddress (trapNum: Integer): LongInt;

trapNum Toolbox A-line instruction or a trap number. If you specify a Toolbox
A-line instruction, the function extracts the trap number for you.

DESCRIPTION

The GetToolboxTrapAddress function returns the address of the Toolbox routine

specified by the trapNum parameter. If the desired Toolbox routine is not supported

on the installed system software, the GetToolboxTrapAddress function returns the

address of the Unimplemented procedure. The trapNum parameter should contain a

trap number in bits 0–9. GetToolboxTrapAddress masks the irrelevant high-order

C H A P T E R 8

Trap Manager

Trap Manager Reference 8-27

bits. A GetToolboxTrapAddress(trapNum) function call performs the same

operation as a NGetTrapAddress(trapNum, ToolTrap) function call.

SEE ALSO

For more information about the Unimplemented procedure, see page 8-32. The

NGetTrapAddress function is described next. For an example of how to use the

GetToolboxTrapAddress function, see Listing 8-1 on page 8-22.

NGetTrapAddress

You can use the NGetTrapAddress function to retrieve the address of either an

Operating System routine or a Toolbox routine.

FUNCTION NGetTrapAddress (trapNum: Integer; tTyp: TrapType)

:LongInt;

trapNum A-line instruction or a trap number. If you specify an A-line instruction,
the function extracts the trap number for you.

tTyp The trap type. If you supply the tTyp parameter with the constant
OSTrap, the NGetTrapAddress function retrieves the address from the
Operating System trap dispatch table. If you supply tTyp parameter with
the constant ToolTrap, the NGetTrapAddress function retrieves the
address from the Toolbox trap dispatch table.

DESCRIPTION

The NGetTrapAddress function returns the address of the system software routine

specified by the tTyp and trapNum parameters. If tTyp is OSTrap, the

NGetTrapAddress function retrieves the address from the Operating System trap

dispatch table. If tTyp is ToolTrap, the NGetTrapAddress function retrieves the

address from the Toolbox trap dispatch table. If the desired system software routine is

not supported on the installed system software, NGetTrapAddress returns the address

of the Unimplemented procedure. The trapNum parameter should contain a trap

number in bits 0–7 if tTyp is OSTrap, and in bits 0–9 if tTyp is ToolTrap.

The trapNum parameter may have any word value; its irrelevant high-order bits are

masked according to the value of the tTyp parameter.

Note
If the system software routine has a come-from patch, the
NGetTrapAddress function returns the address of the routine
immediately following the come-from patch. ◆

C H A P T E R 8

Trap Manager

8-28 Trap Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for the _GetTrapAddress macro are

When calling the _GetTrapAddress macro, you set bit 9 of the A-line instruction to

indicate a “new” system; that is, any version since the Macintosh Plus or Macintosh

512K. You use bit 10 to indicate whether the trap in question is a Toolbox routine (by

setting bit 10 to 1) or an Operating System routine (by setting bit 10 to 0). Macintosh

development environments provide the modifier words newTool and newOS to be used

as arguments in the _GetTrapAddress macro.

To obtain the address of a Toolbox trap whose number is in register D0, you use

the macro

_GetTrapAddress newTool

This is equivalent to calling NGetTrapAddress (trapNum, newTool). The trapNum

parameter is the A-line trap word placed in register D0 for the assembly-language call.

Similarly, to obtain the address of an Operating System routine whose A-line trap word

is in register D0, you use the macro

_GetTrapAddress newOS

This is equivalent to calling NGetTrapAddress(trapNum, newOS).

SEE ALSO

For information about the Unimplemented procedure, see page 8-29. For information

about the NSetTrapAddress function, see page 8-30.

Installing Patch Addresses Into the Trap Dispatch Tables

You can install the address of a patch into a trap dispatch table by using the

SetOSTrapAddress, SetToolboxTrapAddress, or NSetTrapAddress procedure.

The SetOSTrapAddress procedure installs a patch address into the Operating System

trap dispatch table, and the SetToolboxTrapAddress installs a patch address into the

Toolbox trap dispatch table. The NSetTrapAddress procedure is the most general of

these procedures. You can use the NSetTrapAddress procedure to install a patch

address into the Operating System trap dispatch table or into the Toolbox trap

dispatch table.

Registers on entry

D0 An A-line trap word

Registers on exit

A0 Address of next routine in the daisy chain (a system software routine or a patch)

C H A P T E R 8

Trap Manager

Trap Manager Reference 8-29

SetOSTrapAddress

You can use the SetOSTrapAddress procedure to install an Operating System patch

address into an Operating System trap dispatch table.

PROCEDURE SetOSTrapAddress (trapAddr: LongInt; trapNum: Integer);

trapAddr The Operating System patch address.

trapNum Operating System A-line instruction or a trap number. If you specify
an Operating System A-line instruction, the function extracts the trap
number (located in bits 0–7) for you.

DESCRIPTION

The SetOSTrapAddress procedure places the Operating System patch address

specified by the trapAddr parameter into the Operating System trap dispatch

table. The trapNum parameter specifies the location of the Operating System

patch address in the Operating System trap dispatch table. The procedure call
SetOSTrapAddress(trapAddr, trapNum) performs the same operation as

a NSetTrapAddress(trapAddr, trapNum, OSTrap) procedure call.

Note
If the system software routine that is being patched has any come-from
patches, the SetOSTrapAddress procedure installs the address of the
patch into the exit JMP instruction of the last come-from patch in the
chain rather than into the trap dispatch table. ◆

SEE ALSO

For information about the Unimplemented procedure, see page 8-32. For more

information about the NSetTrapAddress function, see page 8-30.

SetToolboxTrapAddress

You can use the SetToolboxTrapAddress procedure to install a Toolbox patch

address into the Toolbox trap dispatch table. The SetToolboxTrapAddress procedure

is also available as the SetToolTrapAddress procedure.

PROCEDURE SetToolboxTrapAddress (trapAddr: LongInt;

 trapNum: Integer);

trapAddr The Toolbox patch address.

trapNum Toolbox A-line instruction or a trap number. If you specify a Toolbox
A-line instruction, the function extracts the trap number (located in
bits 0–9) for you.

C H A P T E R 8

Trap Manager

8-30 Trap Manager Reference

DESCRIPTION

The SetToolboxTrapAddress procedure places the Toolbox patch address specified

by the trapAddr parameter into the Toolbox trap dispatch table. The trapNum

parameter specifies the location of the Toolbox patch address in the Toolbox trap

dispatch table. The SetToolboxTrapAddress(trapAddr, trapNum) procedure

performs the same operation as a NSetTrapAddress(trapAddr, trapNum,

ToolTrap) procedure call.

Note

If the system software routine that is being patched has any come-from
patches, the SetToolboxTrapAddress procedure installs the address
of the patch into the exit JMP instruction of the last come-from patch in
the chain rather than into the trap dispatch table. ◆

SEE ALSO

For information about the Unimplemented procedure, see page 8-32. The

NSetTrapAddress function is described next.

NSetTrapAddress

You can use the NSetTrapAddress procedure to install a patch address into either an

Operating System trap dispatch table or a Toolbox trap dispatch table.

PROCEDURE NSetTrapAddress (trapAddr: LongInt; trapNum: Integer;

tTyp: TrapType);

trapAddr The patch address.

trapNum A-line instruction or a trap number. If you specify a A-line instruction, the
function extracts the trap number you.

tTyp The trap type. If you supply the tTyp parameter with the constant
OSTrap, the NSetTrapAddress procedure installs the address into the
Operating System trap dispatch table. If you supply the tTyp parameter
with the constant ToolTrap, the NGetTrapAddress function installs
the address into the Toolbox trap dispatch table.

DESCRIPTION

The NSetTrapAddress procedure places the patch address specified by the trapAddr

parameter into a trap dispatch table. Use the tTyp parameter to specify whether the

patch address belongs in the Operating System trap dispatch table or the Toolbox trap

dispatch table. If tTyp is OSTrap, the NSetTrapAddress procedure installs the

address into the Operating System trap dispatch table. If tTyp is ToolTrap, the

NGetTrapAddress function installs the address into the Toolbox trap dispatch table.

Use the trapNum parameter to specify the location of the patch address in the dispatch

C H A P T E R 8

Trap Manager

Trap Manager Reference 8-31

table. The trap number may be any word value; its irrelevant high-order bits are masked

according to the value of the tTyp parameter.

Note

If the system software routine that is being patched has a come-from
patch, the NSetTrapAddress procedure installs the address of the
patch into the exit JMP instruction of the come-from patch (rather than
into the trap dispatch table). ◆

▲ W A R N I N G

If the first 4 bytes of the trapAddr parameter is $60064EF9 (indicating a
come-from patch), NSetTrapAddress triggers a system error. ▲

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry for the _SetTrapAddress macro are

When calling the _SetTrapAddress macro, you set bit 9 of the A-line trap word to

indicate a “new” system; that is, any version since the Macintosh Plus or Macintosh

512K. You use bit 10 to indicate whether the system software routine that is being

patched is a Toolbox routine (by setting bit 10 to 1) or an Operating System routine

(by setting bit 10 to 0).

Macintosh development environments provide the modifier words newTool and newOS

to be used as arguments in the _SetTrapAddress macro.

Given an A-line instruction in register D0 and a system software address in register A0,

you set the Toolbox routine with the trap number in register D0 to have the address in

A0, you use the macro

_SetTrapAddress newTool

This is equivalent to calling NSetTrapAddress(trapAddr, trapNum, newTool).

The trapAddr parameter is the address placed in register A0. The trapNum parameter

is the A-line instruction placed in D0 for the assembly-language call. Similarly, to set the

address of an Operating System trap whose A-line instruction is in register D0 to the

address in register A0 you use the macro

_SetTrapAddress newOS

This is equivalent to calling NSetTrapAddress(trapAddr, trapNum, newOS).

Registers on entry

D0 An A-line trap word

A0 Address of next routine in the daisy chain (a system software routine or a patch)

C H A P T E R 8

Trap Manager

8-32 Trap Manager Reference

SEE ALSO

The Unimplemented procedure is described next. For information about the

NGetTrapAddress function, see page 8-27. For an example of how to use the

NSetTrapAddress function, see Listing 8-5 on page 8-24.

Detecting Unimplemented System Software Routines

This section describes the Unimplemented procedure. The address of this procedure

is placed in all undefined entries of a trap dispatch table. When invoked, the

Unimplemented procedure triggers a system error.

Unimplemented

The Unimplemented procedure triggers a system error when called.

PROCEDURE Unimplemented;

DESCRIPTION

The address of the Unimplemented procedure is at system startup time placed into all

entries of each trap dispatch table that do not contain an address of a system software

routine. When called, the Unimplemented procedure triggers the system error 12,

dsCoreErr, which crashes the currently running application.

▲ W A R N I N G

Your application should never use this procedure. ▲

Manipulating One Trap Dispatch Table (Obsolete Routines)

This section describes two obsolete Trap Manager routines: GetTrapAddress and

SetTrapAddress. Though a description of the routines are included here, any use

of these routines is discouraged.

GetTrapAddress

The GetTrapAddress function is obsolete and is documented here only for the sake

of completeness.

FUNCTION GetTrapAddress (trapNum: Integer): LongInt;

trapNum Toolbox A-line instruction or a trap number. If you specify an A-line
instruction, the function extracts the trap number for you.

C H A P T E R 8

Trap Manager

Trap Manager Reference 8-33

DESCRIPTION

The GetTrapAddress function was used when both the Operating System trap

addresses and Toolbox trap addresses were located in the same trap dispatch table.

Today, any system software routine with the trap number $00 to $4F, $54, or $57 is

drawn from the Operating System dispatch table; any other software routine is taken

from the Toolbox dispatch table.

▲ W A R N I N G

The GetTrapAddress function is not supported under Power PC. ▲

▲ W A R N I N G

The GetTrapAddress procedure ignores the high-order bits in
the trapNum parameter; the procedure is not able to differentiate
between Operating System routines and Toolbox routines. The
GetTrapAddress procedure is not reliable on any computer today. ▲

SetTrapAddress

The SetTrapAddress procedure is obsolete, and is documented here only for the sake

of completeness.

PROCEDURE SetTrapAddress (trapAddr: LongInt; trapNum: Integer);

trapAddr The address of the system software routine.

trapNum A-line instruction or a trap number. If you specify an A-line instruction,
the function extracts the trap number you.

DESCRIPTION

The SetTrapAddress procedure was used when both the Operating System routine

addresses and Toolbox routine adddresses were located in the same trap dispatch table.

Today, any routine address with the trap number $00 to $4F, $54, or $57 is installed

into the Operating System dispatch table; any other system software routine is installed

into the Toolbox dispatch table.

▲ W A R N I N G

The SetTrapAddress procedure is not supported under Power PC. ▲

▲ W A R N I N G

The SetTrapAddress procedure ignores the high-order bits in
the trapNum parameter; the procedure is not able to differentiate
between Operating System routines and Toolbox routines. The
SetTrapAddress procedure is not reliable on any computer today. ▲

C H A P T E R 8

Trap Manager

8-34 Summary of the Trap Manager

Summary of the Trap Manager

Pascal Summary

Constants

CONST

{Gestalt selectors}

gestaltOSTable = 'ostt'; {base of Operating System dispatch }

{ table}

gestaltToolboxTable = 'tbtt'; {base of Toolbox dispatch table}

gestaltExtToolboxTable = 'xttt'; {0, unless Toolbox dispatch table }

{ is disjoint, in which case base }

{ of upper half}

{system errors triggered by the Trap Manager}

dsCoreErr = 12; {unimplemented trap error}

dsBadPatchHeader = 83; {attempt to install a come-from patch}

Data Types

TYPE TrapType = (OSTrap, ToolTrap);

Routines

Accessing Addresses From the Trap Dispatch Tables

FUNCTION GetOSTrapAddress (trapNum: Integer): LongInt;

{GetToolboxTrapAddress is also spelled as GetToolTrapAddress}

FUNCTION GetToolboxTrapAddress
(trapNum: Integer): LongInt;

FUNCTION NGetTrapAddress (trapNum: Integer; tTyp: TrapType): LongInt;

Installing Patch Addresses Into the Trap Dispatch Tables
PROCEDURE SetOSTrapAddress (trapAddr: LongInt; trapNum: Integer);

{SetToolboxTrapAddress is also spelled as SetToolTrapAddress}

C H A P T E R 8

Trap Manager

Summary of the Trap Manager 8-35

PROCEDURE SetToolboxTrapAddress
(trapAddr: LongInt; trapNum: Integer);

PROCEDURE NSetTrapAddress (trapAddr: LongInt; trapNum: Integer;
 tTyp: TrapType);

Detecting Unimplemented System Software Routines

PROCEDURE Unimplemented;

Manipulating One Trap Dispatch Table (Obsolete Routines)

FUNCTION GetTrapAddress (trapNum: Integer): LongInt;

PROCEDURE SetTrapAddress (trapAddr: LongInt; trapNum: Integer);

C Summary

Constants

/*Gestalt selectors*/

#define gestaltOSTable 'ostt' /*base of Operating System dispatch */

/* table*/

#define gestaltToolboxTable 'tbtt' /*base of Toolbox dispatch table*/

#define gestaltExtToolboxTable'xttt' /*0, unless Toolbox dispatch table */

/* is disjoint, in which case base */

/* of upper half*/

/*values of TrapType*/

enum {OSTrap, ToolTrap};

/*system errors triggered by Trap Manager*/

enum {

dsCoreErr = 12, /*unimplemented trap error*/

dsBadPatchHeader = 83 /*attempt to install come-from patch*/

};

Data Types

typedef unsigned char TrapType;

C H A P T E R 8

Trap Manager

8-36 Summary of the Trap Manager

Routines

Accessing Addresses From the Trap Dispatch Tables

pascal long NGetTrapAddress
(short trapNum, TrapType tTyp);

pascal long GetOSTrapAddress
(short trapNum);

/*GetToolboxTrapAddress is also spelled as GetToolTrapAddress*/

pascal long GetToolboxTrapAddress
(short trapNum);

Installing Patch Addresses Into the Trap Dispatch Tables
pascal void NSetTrapAddress

(long trapAddr, short trapNum,
 TrapType tTyp);

pascal void SetOSTrapAddress
(long trapAddr, short trapNum);

/*SetToolboxTrapAddress is also spelled as SetToolTrapAddress*/

pascal void SetToolboxTrapAddress
(long trapAddr, short trapNum);

pascal void SetToolTrapAddress
(long trapAddr, short trapNum);

Detecting Unimplemented System Software Routines

pascal void Unimplemented (void);

Manipulating One Trap Dispatch Table (Obsolete Routines)

pascal long GetTrapAddress (short trapNum);

pascal void SetTrapAddress (long trapAddr, short trapNum);

Assembly-Language Summary

Constants

newOS EQU $200 ;access Operating System trap dispatch table;

newTool EQU $600 ;access Toolbox trap dispatch table

C H A P T E R 8

Trap Manager

Summary of the Trap Manager 8-37

Trap Macros

Trap Macros Requiring Register Setup

Trap macro name Registers on entry Registers on exit

_GetTrapAddress D0: trap number A0: address of patch

_SetTrapAddress D0: trap number
A0: address of patch

_Unimplemented

Contents 9-1

C H A P T E R 9

Contents

Start Manager

System Initialization and Startup 9-3

System Initialization 9-3

System Startup 9-4

Boot Blocks 9-6

Global Timing Variables 9-9

About the Start Manager 9-9

Using the Start Manager 9-9

Writing a System Extension 9-10

Profile of a System Extension 9-10

Defining the User Interface for a System Extension 9-14

Creating a System Extension’s Resources 9-15

Creating Icons for a System Extension 9-16

Creating a System Heap Zone Resource for a System Extension 9-16

Building a System Extension 9-17

Start Manager Reference 9-18

Data Structures 9-18

The Default Startup Device Parameter Block 9-18

The Default Video Device Parameter Block 9-19

The Default Operating System Parameter Block 9-19

Routines 9-20

Identifying and Setting the Default Startup Device 9-20

Identifying and Setting the Default Video Device 9-23

Identifying and Setting the Default Operating System 9-25

Getting and Setting the Timeout Interval 9-27

Summary of the Start Manager 9-29

Pascal Summary 9-29

Data Types 9-29

Routines 9-30

C Summary 9-30

Data Types 9-30

C H A P T E R 9

9-2 Contents

Routines 9-31

Assembly-Language Summary 9-32

Data Structures 9-32

Trap Macros 9-33

Global Variables 9-33

C H A P T E R 9

System Initialization and Startup 9-3

Start Manager

This chapter describes the system initialization and system startup process performed by

the Macintosh computer. It describes the Start Manager, which lets you specify a few

global settings that affect the startup process, and it describes initialization-dependent

code, such as system extensions, that the system runs while starting up the computer.

You should read this chapter if you are developing a device driver or other code that is

installed at some point during the system initialization and startup process, or if you

want to use the Start Manager routines.

This chapter begins with a description of the initialization and startup process

performed on Macintosh computers. It then

■ describes the boot blocks and defines the fields in the boot block header

■ defines global variables that provide timing information

■ discusses the Start Manager routines you can use to identify and set default devices
and to get and set the timeout interval for the startup drive

■ describes how to write a system extension

System Initialization and Startup

When a Macintosh computer is first turned on, but before it can load and run an

application, it must go through system initialization and system startup. At system
initialization, the system initialization code located in ROM is executed: memory is

tested and initialized, slot cards are initialized, ROM drivers are installed, device drivers

are located, and more. The next section, “System Initialization,” describes the various

steps included in system initialization. At system startup, the system code that is located

on the startup disk is executed: various software modules are initialized and system

extensions are run. The section “System Startup” on page 9-4 describes various steps

included in system startup.

▲ W A R N I N G

The system initialization and system startup process is not the same for
all Macintosh models. In addition, the system initialization sequence
and system startup sequence listed in this chapter are both subject to
change; therefor use the information in these sections only for
informational purposes. ▲

You should read this section if you provide a system extension that installs software,

such as a device driver or other code, during system initialization or system startup.

System Initialization
Initialization on a Macintosh computer begins as soon as the power is first supplied to it.

Built-in hardware circuits initialize the main processor and other ICs and temporarily

alter the memory mapping to make an image of the ROM appear at the location where

RAM normally starts (address 0), while making RAM appear at a location higher in

C H A P T E R 9

Start Manager

9-4 System Initialization and Startup

memory. This mapping scheme allows the startup routines in the initialization code to

obtain critical low-memory vectors. After the initialization code begins executing and

obtains the low-memory vectors, it resets the memory mapping back to normal. For

further details on this process, see the Guide to Macintosh Family Hardware.

The following list summarizes the events that typically take place when the initialization

code in ROM is executed.

IMPORTANT

The system initialization sequence is subject to change; the information
in this section is provided for informational purposes only. ▲

1. Hardware is initialized. The initialization code performs a set of diagnostic tests to
verify functionality of some vital hardware components. If the diagnostics succeed,
the initialization code initializes these hardware components. If diagnostics fail, the
initialization code issues diagnostic tones to indicate the type of hardware failure.
The initialization code determines how much RAM is available and tests it, then
validates the parameter RAM (PRAM). Parameter RAM contains a user’s preferences
for settings of various control panel settings and port configurations.
The initialization code determines the global timing variables, TimeDBRA,
TimeSCCDB, and TimeSCSIDB. (See “Global Timing Variables” on page 9-9 for
more information) and initializes the Resource Manager, Notification Manager,
Time Manager, and Deferred Task Manager.

2. On machines with expansion slots, the initialization code initializes the Slot Manager.
The Slot Manager then initializes any installed cards by executing the primary
initialization code in each card’s declaration ROM. Video expansion cards, including
built-in video, initialize themselves by determining the type of connected monitor,
and then set the display to 1 bit per pixel, and display a gray screen (alternating black
and white dots).

3. The initialization code initializes the Vertical Retrace Manager and Gestalt Manager.
ROM drivers for all built-in functionality are installed in the unit table and initialized.
The initialization code initializes the Apple Desktop Bus (ADB) Manager that then
initializes each ADB device. The initialization code initializes the Sound Manager and
SCSI Manager.

4. The initialization code loads drivers from all on-line SCSI devices.

5. The initialization code chooses the boot device, and calls the boot blocks to begin
initialization of the System Software.

Having initialized the computer’s slots, drivers, and hardware, as well as some of the

Operating System managers, the initialization code dispatches to the startup code,

which immediately begins the startup procedure described in the next section,

“System Startup.”

System Startup
System startup begins as soon as the initialization code in ROM transfers control to the

system startup code. The system startup code is responsible for initializing AppleTalk,

C H A P T E R 9

Start Manager

System Initialization and Startup 9-5

the debugger, and system extensions. System extensions are covered in detail in the

section “Writing a System Extension” beginning on page 9-10.

This section covers the startup sequence for Macintosh computers running System 7 or

later; it then describes the boot blocks and defines the boot block header.

The following list summarizes the events that take place when the system startup code

is executed.

IMPORTANT

The system startup sequence is subject to change; the information in this
section is provided for informational purposes only. ▲

1. The system startup code looks for an appropriate startup device. It first checks the
internal 3.5-inch floppy drive. If a disk is found, it attempts to read it and looks for a
System file. If it doesn’t find a disk or System file, it checks the default startup device
specified by the user in the Startup Disk control panel. If no default device is specified
or if the device specified is not connected, it checks for other devices connected to the
SCSI port, beginning with the internal drive and proceeding successively from drive 6
through drive 1. If it doesn’t find a startup device, it displays the question-mark disk
icon until a disk is inserted. If the startup device itself fails, the startup code displays
the sad Macintosh icon until the computer is turned off.

2. After selecting a startup device, the system startup code reads system startup
information from the startup device. The system startup information is located in the
boot blocks, the logical blocks 0 and 1 on the startup disk. The boot blocks contain
important information such as the name of the System file and the Finder. The boot
blocks are described in detail in the next section.

3. The system startup code displays the happy Macintosh icon.

4. The system startup code reads the System file and uses that information to initialize
the System Error Handler and the Font Manager.

5. The system startup code verifies that the necessary hardware is available to boot the
system software and displays on the startup screen an alert box with the message
“Welcome to Macintosh.”

6. The system startup code performs miscellaneous tasks: it verifies that enough RAM
is available to boot the system software, it loads and turns on Virtual Memory if it is
enabled in the Memory control panel, it loads the debugger, if present. (The system
startup information contains the name of the debugger —usually MacsBug), it sets up
the disk cache for the file system, and it loads and executes CPU-specific software
patches. At this point, the system begins to trace mouse movement.

7. For any NuBus cards installed, the system startup code executes the secondary init
code on the card’s declaration ROM.

8. The system startup code loads and initializes all script systems, including components
for all keyboard input methods. It also executes the initialization resources in the
System file.

9. The system startup code loads and executes system extensions. (System extensions
can be located in the Extensions folder, in the Control Panels folder, and in the
System Folder).

C H A P T E R 9

Start Manager

9-6 System Initialization and Startup

10. The system startup code launches the Process Manager, which takes over at this point
and launches the Finder. The Finder then displays the desktop and the menu bar. The
desktop shows all mounted volumes; it also shows any windows that were open
the last time the computer was shut down. The Memory Manager sets up a large,
unsegmented application heap, which is divided into partitions as applications
start up.

At this point, the system has successfully booted.

The next section, “Boot Blocks,” describes the format of the boot block header. This

header contains information that the startup code uses to start up the system.

Boot Blocks

The first two logical blocks on every Macintosh volume are boot blocks. These blocks

contain system startup information: instructions and information necessary to start up

(or “boot”) a Macintosh computer. This information consists of certain configurable

system parameters (such as the capacity of the event queue, the number of open files

allowed, and so forth) and is contained in a boot block header. The system startup

information also includes actual machine-language instructions that could be used to

load and execute the System file. Usually these instructions follow immediately after the

boot block header. Generally, however, the boot code stored on disk is ignored in favor of

boot code stored in a resource in the System file.

The boot block header has a structure that can be described by the BootBlkHdr

data type.

▲ W A R N I N G

The format of the boot block header is subject to change. If your
application relies on the information presented here, it should check the
boot block header version number and react gracefully if that number is
greater than that documented here. ▲

Note that there are two boot block header formats. The current format includes two

fields at the end that are not contained in the older format. These fields allow the

Operating System to size the system heap relative to the amount of available physical

RAM. A boot block header that conforms to the older format sizes the system heap

absolutely, using values specified in the header itself. You can determine whether a boot

block header uses the current or the older format by inspecting a bit in the high-order

byte of the bbVersion field, as explained in its field description.

TYPE BootBlkHdr = {boot block header}

RECORD

bbID: Integer; {boot blocks signature}

bbEntry: LongInt; {entry point to boot blocks}

bbVersion: Integer; {boot blocks version number}

bbPageFlags: Integer; {used internally}

bbSysName: Str15; {System filename}

bbShellName: Str15; {Finder filename}

bbDbg1Name: Str15; {first debugger filename}

C H A P T E R 9

Start Manager

System Initialization and Startup 9-7

bbDbg2Name: Str15; {second debugger filename}

bbScreenName: Str15; {name of startup screen}

bbHelloName: Str15; {name of startup program}

bbScrapName: Str15; {name of system scrap file}

bbCntFCBs: Integer; {number of FCBs to allocate}

bbCntEvts: Integer; {number of event queue elements}

bb128KSHeap: LongInt; {system heap size on 128K Mac}

bb256KSHeap: LongInt; {system heap size on 256K Mac}

bbSysHeapSize: LongInt; {system heap size on all machines}

filler: Integer; {reserved}

bbSysHeapExtra:LongInt; {additional system heap space}

bbSysHeapFract:LongInt; {fraction of RAM for system heap}

END;

Field descriptions

bbID A signature word. For Macintosh volumes, this field always
contains the value $4C4B.

bbEntry The entry point to the boot code stored in the boot blocks. This field
contains machine-language instructions that translate to BRA.S
*+$90 (or BRA.S *+$88, if the older block header format is used),
which jumps to the main boot code following the boot block header.
This field is ignored, however, if bit 6 is clear in the high-order byte
of the bbVersion field or if the low-order byte in that field
contains $D.

bbVersion A flag byte and boot block version number. The high-order byte of
this field is a flag byte whose bits have the following meanings:

If bit 7 is clear, then bits 5 and 6 are ignored and the version number
is found in the low-order byte of this field. If that byte contains a
value that is less than $15, the Operating System ignores any values
in the bb128KSHeap and bbSysHeapSize fields and configures
the system heap to the default value contained in the
bbSysHeapSize field. If that byte contains a value that is greater
than or equal to $15, the Operating System sets the system heap to
the value in bbSysHeapSize. In addition, the Operating System
executes the boot code in the bbEntry field only if the low-order
byte contains $D.

If bit 7 is set, the Operating System inspects bit 6 to determine
whether to execute the boot code contained in the bbEntry field
and inspects bit 5 to determine whether to use relative sizing of the

Bit Meaning

0-4 Reserved; must be 0

5 Set if relative system heap sizing is to be used

6 Set if the boot code in boot blocks is to be executed

7 Set if new boot block header format is used

C H A P T E R 9

Start Manager

9-8 System Initialization and Startup

system heap. If bit 5 is clear, the Operating System sets the system
heap to the value in bbSysHeapSize. If bit 5 is set, the system
heap is extended by the value in bbSysHeapExtra plus the
fraction of available RAM specified in bbSysHeapFract.

bbPageFlags Used internally.

bbSysName The name of the System file.

bbShellName The name of the shell file. Usually, the system shell is the Finder.

bbDbg1Name The name of the first debugger installed during the boot process.
Typically this is Macsbug.

bbDbg2Name The name of the second debugger installed during the boot process.
Typically, this is Disassembler.

bbScreenName The name of the file containing the information (welcome message)
initially displayed on the startup screen. Usually, this is
StartUpScreen.

bbHelloName The name of the startup program. Usually, this is the Finder.

bbScrapName The name of the system scrap file. Usually, this is the Clipboard.

bbCntFCBs The number of file control blocks (FCBs) to put in the FCB buffer.
In System 7 and later, this field specifies only the initial number of
FCBs in the FCB buffer because the Operating System can usually
resize the FCB buffer if necessary. See the chapter “File Manager”
in Inside Macintosh: Files for details on the file control block
(FCB) buffer.

bbCntEvts The number of event queue elements to allocate. This number
determines the maximum number of events that can be stored by
the Event Manager at any one time. Usually this field contains the
value 20.

bb128KSHeap The size of the system heap on a Macintosh computer having
128 KB of RAM.

bb256KSHeap Reserved.

bbSysHeapSize The size of the system heap on a Macintosh computer having
512 KB or more of RAM. This field might be ignored, as explained
in the description of the bbVersion field.

filler Reserved.

bbSysHeapExtra The minimum amount of additional system heap space required.
If bit 5 of the high-order word of the bbVersion field is set, this
value is added to the bbSysHeapSize.

bbSysHeapFract The fraction of RAM available to be used for the system heap. If bit
5 of the high-order word of the bbVersion field is set, this fraction
of available RAM is added to the bbSysHeapSize.

C H A P T E R 9

Start Manager

About the Start Manager 9-9

Global Timing Variables
During system initialization, the initialization code initializes the following global

variables with timing information.

Note

The TimeDBRA value is calculated in ROM and is affected by the
processing method of the CPU. Accordingly, for routines running in
RAM, it is not necessarily a good measure of how fast the computer is. ◆

About the Start Manager

The Start Manager lets you set the Macintosh computer’s default startup and video

devices. The Start Manager also lets you get or set the timing interval for the startup

drive.

The Start Manager provides routines that let you specify a default startup device, a

default video device, a default operating system, and a default timeout interval for the

startup drive. Because all Start Manager routines run under the Macintosh Operating

System, you cannot execute them early enough in the initialization process to transfer

control to another operating system. Start Manager routines constitute just a small part

of the process required to boot another operating system on a Macintosh computer. Most

programmers should have no reason to use these routines.

The next section gives an overview of how to use the Start Manager routines.

Using the Start Manager

The Start Manager provides a set of simple routines that get and set information in a

word in parameter RAM. This information indicates the default status of some

peripheral devices connected to the Macintosh computer. Three of these routines get

information about the default startup device, default video device, and the default

operating system. Another three routines enable you to set this information. The

remaining two routines get and set the timeout interval for the startup drive.

The GetDefaultStartup procedure returns information about the default startup

device, and the SetDefaultStartup procedure lets you specify a slot or SCSI device

as the default startup device. The default startup device is the drive on which the

startup code first attempts to start up the Operating System. The Startup Disk control

Variable Contents

TimeDBRA The number of times the DBRA (decrement branch always instruction)
can be executed per millisecond.

TimeSCCDB The number of times the SCC can be accessed per millisecond.

TimeSCSIDB The number of times the SCSI can be accessed per millisecond.

C H A P T E R 9

Start Manager

9-10 Writing a System Extension

panel calls the GetDefaultStartup and SetDefaultStartup procedures when

the user changes the startup disk. Another pair of routines, the GetVideoDefault

and SetVideoDefault procedures, get information about and set the default video
device— essentially, the monitor on which the Macintosh computer displays the

message “Welcome to Macintosh” and other startup information. The Monitors control

panel calls the GetVideoDefault and SetVideoDefault procedures when the user

changes the startup screen. Any changes made to settings in the Monitors control panel

take affect at the next system startup.

A third pair of routines, the GetOSDefault and SetOSDefault procedures, enable

you to get information about and set the default operating system—the operating

system that the processor attempts to initialize and start up. At present, the only default

operating systems allowed is the Macintosh Operating System.

The last two routines, the GetTimeout and SetTimeout procedures, get or set the

timeout interval for the startup drive. The timeout interval is the interval of time the

system waits for the startup drive to respond while the computer is booting. A disk

driver might need to change the timeout interval, for example if the drive takes a long

time to reach operating speed.

Writing a System Extension

This section discusses

■ the profile of a system extension

■ the user interface for a system extension

■ how to create additional resources for a system extension

■ how to compile a system extension

Before you begin to write a system extension, consider whether the feature that you have

in mind is best governed by a system extension. A system extension does not enjoy the

full status of an application. The user cannot launch a system extension. During system

startup, each system extension is simply loaded and executed in a temporary heap that

the system deallocates after the extension is called.

Profile of a System Extension
A system extension is a file (of file type 'INIT') containing a code resource of type 'INIT'

and additional other resources. A system extension typically contains code that provides

a system-level service, such as a printer driver or a patch to a system software routine,

and it contains code that loads this system-level service into the system at system

startup time.

Listing 9-1 illustrates code for a simple system extension called MySampleINIT. When

launched at system startup, MySampleINIT loads the MyShutDownBeep code resource

into the system heap, installs a pointer to the shutdown code in the shutdown queue,

C H A P T E R 9

Start Manager

Writing a System Extension 9-11

and displays an icon indicating whether the installation succeeded or failed. The

MyShutDownBeep procedure is executed just before the Macintosh computer shuts

down or restarts. For more information about the shutdown process and the Shutdown

Manager, see the chapter “Shutdown Manager” in Inside Macintosh: Processes.

The code for MySampleINIT places the MyShutDownBeep procedure in the system

heap, making this procedure available after system startup. The MyShutDownBeep

procedure calls SysBeep just before the Macintosh computer shuts down or restarts.

Listing 9-1 The MySampleINIT system extension

UNIT MySampleINIT {write a Pascal system extension as a UNIT}

INTERFACE

USES

Types, Events, Errors, Resources, Memory, Shutdown;

CONST

kIconIDSuccess = 128; {icon of this system extension}

kIconIDFailure = 129; {icon of this system extension }

{ with an “X” on it}

kMyShutDownResourceType = 'SHUT'

kMyShutDownResourceID = 128;

moveX = -1;

IMPLEMENTATION

PROCEDURE MyShowINIT(theIcon, moveX: Integer); EXTERNAL;

PROCEDURE MyShutDownBeep; FORWARD;

PROCEDURE MyINIT;

VAR

theIcon: Char;

myShutDownCodeHndl: Handle;

myShutDownCodePtr: ProcPtr;

BEGIN

theIcon := kIconIDSuccess;

{retrieve a handle to MyShutDownBeep procedure}

myShutDownCodeHndl := GetResource(kMyShutDownResourceType,

kMyShutDownResourceID);

IF ((myShutDownCodeHndl = NIL) OR

(ResError <> noErr)) THEN

theIcon := kIconIDFailed;

C H A P T E R 9

Start Manager

9-12 Writing a System Extension

IF (theIcon = kIconIDSuccess) THEN

BEGIN

{the MyShutDownBeep code resource is present, detach it}

{ from the resource file and check for an error}

DetachResource(myShutDownCodeHndl);

IF (ResError <> noErr) THEN

theIcon = kIconIDFailed;

ELSE

ReleaseResource(myShutDownCodeHndl);

END;

IF (theIcon = kIconIDSuccess) THEN

BEGIN

MoveHHi(myShutDownCodeHndl);

HLock(myShutDownCodeHndl);

END;

MyShowINIT(theIcon, moveX);{place the icon at boot time}

{install MyShutDownBeep procedure into shutdown queue}

myShutDownCodePtr := myShutDownCodeHndl^);

ShutDwnInstall(myShutDownCodePtr, sdOnUnmount);

END;

PROCEDURE MyShutDownBeep;

BEGIN

SysBeep(40);

END;

END. {of UNIT}

Notice that the code for the MySampleINIT extension is defined as a Pascal UNIT rather

than a PROGRAM. This distinction is important because Pascal programs are applications

that require an application heap, an initialized A5 register, the Segment Loader, and the

services of other Operating System and Toolbox managers. By comparison, a Pascal unit

is merely a collection of routines. It does not enjoy the full status of an application. You

cannot launch a system extension. It is simply loaded and executed in a temporary heap

that the system deallocates soon after the system finishes booting the computer.

When MySampleINIT calls the application-defined procedure MyShowInit,

MyShowInit displays an icon on the bottom left of the startup screen, and it does not

erase the screen. If you want an icon displayed at system startup time, you must supply

this application-defined procedure.

IMPORTANT

If you provide a procedure that displays an icon of your system
extension, do no erase the screen. ▲

C H A P T E R 9

Start Manager

Writing a System Extension 9-13

For information about compiling system extensions, see the section “Building a System

Extension” beginning on page 9-17.

Note

System extensions are not well equipped to declare global variables
and deal with the A5 world. Stand-alone code modules that do these
things are not system extensions and thus are beyond the scope of
this discussion. See the chapter “Writing Stand-Alone Code” in
Building and Managing Programs in MPW for information on this topic. ◆

Because a system extension possesses no A5 world of its own, it cannot easily define

global variables: the system allocates no space for them, and the A5 register contains no

meaningful value. Extension code that defines global variables usually compiles and

links successfully without a warning from the linker; however, the extension’s global

variables typically overwrite globals defined by the current application.

▲ W A R N I N G

Code containing references to global variables defined in the MPW
libraries, such as QuickDraw globals, generate fatal link errors. ▲

As a general rule, a system extension can call Operating System managers at any time,

but it can call only a few of the Toolbox managers before the startup process completes.

It can call the routines from the File Manager, Memory Manager, Resource Manager, and

the Notification Manager before the system extension is completely launched, but it

must refrain from calling the InitFonts, InitWindows, InitDialogs, InitMenus

and TEInit procedures, as well as other QuickDraw, Window Manager, Dialog

Manager, and Font Manager routines. (Note that the code installed by a system extension

can utilize the full set of Operating System and Toolbox routines.)

A system extension must do without the services of the Segment Loader, which divides

application code into segments that the processor can handle. The size of a system

extension’s code resource should not exceed 32 KB.

You should consider installing your system extension in the system heap if you want its

resources to be available after the computer finishes booting. For example, some system

extensions leave routines in the system heap that can be called through patches to those

routines. The MySampleINIT system extension shown in Listing 1-1 on page 9-11 loads

the MyShutDownBeep procedure in the system heap.

The procedure your system extension uses to install code in the system heap varies

according to what you want to accomplish. Basically, you have to request a block of

memory in the system heap and store the code or resources you want to preserve in the

block. To allocate memory in the system heap in System 7 and later, you merely need to

call the appropriate Memory Manager routines, and the system heap expands

dynamically to meet your requests. In earlier versions of system software, you must use

a system heap space resource of type 'sysz' to indicate how much the Operating System

should increase the size of the system zone.

See the chapter “Memory Manager” in Inside Macintosh: Memory for details on how to

allocate memory in the system heap.

C H A P T E R 9

Start Manager

9-14 Writing a System Extension

Defining the User Interface for a System Extension
The user interface for a system extension consists of

■ the system extension icon

■ other elements your system extension needs to communicate with the user

You should provide an icon for the file that contains your system extension. An

extension icon looks like a puzzle piece. Figure 9-1 illustrates the default icon for a

system extension that appears in the Finder if you don’t supply a custom icon for your

system extension. You can customize an extension icon by adding a graphic to the

default icon. You can display the system extension icon in a horizontal or vertical

orientation with the protruding part facing any direction. If you do add graphics, keep

them simple so that the icon still looks good when scaled to the small, 16-by-16 pixel

icon size.

Figure 9-1 The default system extension icon

The code in your system extension should also display the icon for your system

extension when it is first executed at system startup time. You typically display this icon

near the bottom-left corner of the startup screen. If the code installed by your extension

requires resources or hardware that is not available at system startup, your extension can

instead display a crossed-out version of the system extensions icon in the bottom-left

corner of the screen.

You should design a system extension so that a user can install it by dragging the icon on

top of the System Folder. The Finder then asks the user whether to place the system

extension in the Extensions folder. Do not install system extensions in the System file.

When designing a system extension, avoid displaying dialog or alert boxes that interrupt

system booting. Whenever possible, use the Notification Manager to notify users of

important messages. See the chapter “Notification Manager” in Inside Macintosh:
Processes for a description on how to send a notification request. You should also avoid

calling routines like InitWindows that wipe the entire screen clean, obliterating any

startup icons that other system extensions and drivers might have displayed.

Your system extension may only create files in the Preferences folder during execution. It

is important that your system extension does not create files in the Extensions folder, the

Control Panels folder, or the System Folder during execution. The system reads the files

in each of these folders sequentially. Creating an additional file in one of these folders

shifts the location of the other files, causing the system to either skip a system extension

or execute one twice.

If your system extension requires a user interface, you can also create a control panel. If

you use a system extension with your control panel, include it in the control panel file

C H A P T E R 9

Start Manager

Writing a System Extension 9-15

along with the required resources and any other optional resources you use. In System 7,

system extensions can be installed in the Control Panels folder or in the Extensions

folder (both of which are stored in the System Folder) or directly in the System Folder.

However, if it contains a system extension, your control panel file must reside in the

Controls Panels folder within the System Folder. At startup time, the system software

opens files of type 'cdev' that reside in the Control Panels folder and executes any

system extensions that it finds there. If the system extension portion of a control panel

is not loaded at startup, the control panel won’t function properly. For additional

information about control panels, see the chapter Control Panels in Inside Macintosh:
More Macintosh Toolbox.

Creating a System Extension’s Resources
A file comprising a system extension contains a resource of type 'INIT' and additional

resources. A resource of type 'INIT' contains the code that loads the system-level service

into the system at system startup time, and it often contains the code that provides the

system-level service. You can use additional resources to describe the icons for the

system extension, specify a version number and copyright information for the

information window displayed by the Get Info command, increase the size of the system

heap, and more.

This list describes some of the additional resources you typically use when you create a

system extension:

■ The version ('vers') resource, which you can use to record version information for
your system extension. The version resource allows you to store a version number,
a version message, and a region code.

■ The bundle ('BNDL') resource, which groups together your system extension’s icons.

■ Icon family resources ('ICN#', 'ics#', ic18', 'ic14', ics8', and 'ics4') to represent
your system extension in the Finder.

■ The system heap space ('sysz') resource.

The 'sysz' resource is described in this section. See the chapter “Finder Interface” in

Inside Macintosh: Macintosh Toolbox Essentials for additional information about the other

resources mentioned in this section.

Figure 9-2 shows a ResEdit window containing additional resources for a system

extension. These additional resources can be compiled with an 'INIT' resource into

a system extension that goes in the Extensions folder.

C H A P T E R 9

Start Manager

9-16 Writing a System Extension

Figure 9-2 Typical resources for a system extension

Not all of the resources in Figure 9-2 are required for all system extensions, but they do

add useful features to a system extension.

Note
You can use a high-level tool such as the ResEdit application, which is
available through APDA, to create your resources. See ResEdit Reference
for details on using ResEdit. ◆

Creating Icons for a System Extension

You should provide two sets of icons for your system extension:

■ an icon family for the file that contains your system extension

■ an icon that your system extension displays at system startup time. This icon indicate
whether the installation succeeded or failed

You should provide icon family resources for the file that contains your system

extension. See the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox
Essentials for a detailed description of the icon family resources.

You can create a color icon resource of type 'cicn' for your system extension if you want

to display a color startup icon at the bottom left of the screen. You can implement this

feature by creating your own application-defined MyShowINIT procedure, or you can

use a similar program called ShowInit. You can obtain the ShowInit program from

various on-line services. (You can also contact APDA for further developer product

information). To use ShowINIT, you pass the resource ID of your system extension’s

'cicn' resource to the ShowINIT procedure, and ShowINIT displays the 'cicn' icon

on the bottom-left corner of the screen.

Creating a System Heap Zone Resource for a System Extension

You should read the information in this section only if you plan to install code from your

system extension into the system heap and run your system extension on system

software prior to System 7.

C H A P T E R 9

Start Manager

Writing a System Extension 9-17

If you install code in the system heap and run your system extension on system software

prior to System 7, you should include a system heap space resource of type 'sysz'. The

'sysz' resource tells the system software the amount of memory the system heap needs

to expand by, in order to accommodate space for code installed by your system extension.

Note

It is not necessary to include a 'sysz' resource for system extensions
running only on System 7 and later. The system heap in System 7
grows dynamically and expands as long as there is any unused
RAM available. ◆

Using a 'sysz' resource, you can request the system software to increase the memory in

the system heap by the amount specified in the 'sysz' resource. If the system software

is able to allocate the needed memory in the system heap, your system extension will

execute. If the system is unable to allocate the extra memory to the system heap, your

system extension will not be able to execute.

To create a 'sysz' resource, you can use an editor like the ResEdit application. Specify, in

bytes, the amount of memory you want the system heap to increase by. For example, if

your system extension takes 8 KB to execute, you should increase the system heap by

that amount.

You do not need to allocate memory for the actual system extension code ('INIT'

resource), only for the amount of memory for any code installed by your system

extension needs to execute.

Building a System Extension

Once you have created a file containing the 'INIT' resource and a file containing all the

additional resources, you can build your system extension. To build a system extension,

compile and link the 'INIT' resource and the additional resources into an executable

file for your system extension.

When you compile the 'INIT' resource and your additional resources, you should keep

the following points in mind:

■ Make sure that the file type of the system extension is of type 'INIT' .

■ Specify a creator if you want the Finder to use icons for your system extension.

■ Specify the resource type 'INIT' and a resource ID (usually 128).

■ Specify the main entry point for your system extension. When written in Pascal, the
main entry point of a module is the first written instruction.

■ Specify that the 'INIT' resource be loaded into the system heap if you want its
resources to be available after the computer finishes booting.

■ Specify the 'INIT' resource (code resource) as locked to prevent the system from
moving the resource during execution.

■ Make sure that all additional resources are unlocked and purgeable.

C H A P T E R 9

Start Manager

9-18 Start Manager Reference

Start Manager Reference

This section describes the data structures and routines that are specific to the Start

Manager. The “Data Structures” section explains the data structures for the default

startup device parameter block, the default video device parameter block, and the

default operating system record. The “Routines” section describes routines that get

information about and set devices or values that the system uses as defaults when

booting a Macintosh computer.

Data Structures

This section describes the data structures that you use to provide information to the Start

Manager or the Start Manager uses to return information to your application.

The Default Startup Device Parameter Block

Two procedures, GetDefaultStartup and SetDefaultStartup, use the default

startup device parameter block. You can use these procedures and the default startup

device parameter block to get or set the default startup device. As defined by the

DefStartType data type, a startup device is either a slot or a SCSI device. The

DefStartRec data type defines the default startup device parameter block.

TYPE DefStartType = (slotDev, scsiDev);

DefStartRec =

RECORD

CASE DefStartType OF

slotDev:

sdExtDevID: SignedByte; {external device ID}

sdPartition:SignedByte; {reserved}

sdSlotNum: SignedByte; {slot number}

sdSRsrcID: SignedByte; {SResourceID}

scsiDev:

sdReserved1:SignedByte; {reserved}

sdReserved2:SignedByte; {reserved}

sdRefNum: Integer; {driver reference number}

END;

DefStartPtr = ^DefStartRec;

C H A P T E R 9

Start Manager

Start Manager Reference 9-19

Field descriptions

sdExtDevID The external device ID specified by a slot’s driver. This ID identifies
one of perhaps several devices connected through a single slot.

sdPartition Reserved.

sdSlotNum A number that identifies the location of the NuBus slot containing
the default startup card. (Currently, these numbers range from
$9 through $E on six-slot computers.)

sdSRsrcID The resource ID (SResourceID) for the slot.

sdReserved1 Reserved.

sdReserved2 Reserved.

sdRefNum A negative value in this field indicates the driver reference number
for a SCSI device. A positive number indicates a slot device, in
which case the fields in the slotDev variant.

The Default Video Device Parameter Block

Two procedures, GetVideoDefault and SetVideoDefault, use the default video

device parameter block. You can use these procedures with the default video device

parameter block to get or set the default video device. The DefVideoRec data type

defines the default video device parameter block.

TYPE DefVideoRec =

RECORD

sdSlot: SignedByte; {slot number}

sdsResource:SignedByte; {SResourceID}

END;

DefVideoPtr = ^DefVideoRec;

Field descriptions

sdSlot The physical slot number for the default video device. A value of 0
indicates no video device is the default.

sdSResource The slot resource ID (SResourceID) for the default video device.

The Default Operating System Parameter Block

Two procedures, GetDefaultOS and SetDefaultOS, use the default operating system

parameter block. You can use these procedures with the default operating system

parameter block to get or set the default operating system. The DefOSRec data type

defines the default operating system parameter block.

TYPE DefOSRec =

RECORD

sdReserved: SignedByte; {reserved}

C H A P T E R 9

Start Manager

9-20 Start Manager Reference

sdOSType: SignedByte; {operating-system type}

END;

DefOSPtr = ^DefOSRec;

Field descriptions

sdReserved Reserved.

sdOSType A value identifying the operating system installed at startup.
A 1 indicates the Macintosh Operating System. The numbers
0 through 15 are reserved.

Routines

This section describes the Start Manager routines you can use to identify and change the

default startup device, the default video device, default operating system, and the

default timeout value for the startup drive.

Many Start Manager routines specify a pointer to a parameter block as a parameter. For

these routines, the routine description includes a list of the fields in the parameter block

used by the routine. For each routine that uses a parameter block, information about the

fields appears in the following format:

Parameter block

The arrow on the far left indicates whether the field is an input or output parameter. You

must supply values for all input parameters. The routine returns values in the output

parameters. The next column shows the field name as defined in the MPW interface files,

followed by the data type of that field. This matches the MPW interface name of the data

type as shown in the parameter block. The fourth column contains a comment about or a

brief definition of the field.

Identifying and Setting the Default Startup Device

You can use the routines in this section to get information that identifies the default

startup device or to supply information that sets a default startup device. These routines

provide applications with the same capability that the Startup Disk control panel

supplies for Macintosh users.

GetDefaultStartup

You can use the GetDefaultStartup procedure to return information about the

default startup device.

PROCEDURE GetDefaultStartup (paramBlock: DefStartPtr);

→ input1 LongInt Input parameter comment.
← output1 LongInt Output parameter comment.

C H A P T E R 9

Start Manager

Start Manager Reference 9-21

paramBlock A pointer to a default startup device parameter block.

Parameter block

DESCRIPTION

The GetDefaultStartup procedure returns information about the default startup

device from parameter RAM. The default startup device parameter block of data type

DefStartType defines two kinds of startup devices: either a slot or a SCSI device. The

GetDefaultStartup procedure returns in the sdRefNum field a value indicating the

startup device type. A negative value indicates a SCSI device. A positive value indicates

a slot device. If the value is negative, the sdRefNum field contains the driver reference

number needed to identify that device. If the value is positive, the slotDev variant of

the default startup device parameter block contains information about the slot device.

You cannot read the system’s default startup device parameter block directly. Instead,

create another parameter block to which the GetDefaultStartup procedure can write

and pass GetDefaultStartup a pointer to that parameter block.

ASSEMBLY LANGUAGE INFORMATION

The registers on entry and exit for this routine are

SEE ALSO

For more information about the default startup device parameter block

see “The Default Startup Device Parameter Block” beginning on page 9-18.

To specify the default startup device, see the description of the SetDefaultStartup

procedure described next.

← sdExtDevID SignedByte External device ID.
← sdPartition SignedByte Reserved.
← sdSlotNum SignedByte Physical slot number.
← sdSRsrcID SignedByte Slot resource ID (SResourceID).
← sdReserved1 SignedByte Reserved.
← sdReserved2 SignedByte Reserved.
← sdRefNum Integer Driver reference number.

Registers on entry

A0 Address of the default startup device parameter block

Registers on exit

A0 Address of the default startup device parameter block

C H A P T E R 9

Start Manager

9-22 Start Manager Reference

SetDefaultStartup

You can use the SetDefaultStartup procedure to write information to parameter

RAM that specifies the default startup device.

PROCEDURE SetDefaultStartup (paramBlock: DefStartPtr);

paramBlock A pointer to a default startup device parameter block.

Parameter block for a slot device

Parameter block for a SCSI device

DESCRIPTION

The SetDefaultStartup procedure writes information to parameter RAM that

specifies the default startup device. The default startup parameter block of data type

DefStartType defines two kinds of startup devices: either a slot or a SCSI device.

To specify a slot device as the default, pass the external device ID, the slot number, and

the slot resource ID. The external device ID, supplied by the slot’s driver, identifies a

particular device connected through that slot. It’s possible that the card in this slot could

have several devices connected to it.

To specify a SCSI device as the default, pass its driver reference number (always

negative) in the sdRefNum field. To specify no device as the default, pass a value

of 0 in this field.

ASSEMBLY LANGUAGE INFORMATION

The registers on entry and exit for this routine are

→ sdExtDevID SignedByte External device ID.
→ sdPartition SignedByte Reserved.
→ sdSlotNum SignedByte Physical slot number.
→ sdSRsrcID SignedByte Slot resource ID (SResourceID).

→ sdReserved1 SignedByte Reserved.
→ sdReserved2 SignedByte Reserved.
→ sdRefNum Integer Driver reference number.

Registers on entry

A0 Address of the default startup device parameter block

Registers on exit

A0 Address of the default startup device parameter block

C H A P T E R 9

Start Manager

Start Manager Reference 9-23

SEE ALSO

For more information about the default startup device parameter block see “The Default

Startup Device Parameter Block” beginning on page 9-18.

To retrieve information about the default startup device, see the description of the

GetDefaultStartup procedure described on page 9-20.

Identifying and Setting the Default Video Device

You can use the routines in this section to get information about the default video device

or to supply information that sets or changes a default video device. These routines

provide applications with the same capability that the Monitors control panel supplies

for Macintosh users. The default video device is equivalent to the monitor that displays

the startup message “Welcome to Macintosh” as well as other startup indications.

GetVideoDefault

You can use the GetVideoDefault procedure to return information that identifies the

default video device.

PROCEDURE GetVideoDefault (paramBlock: DefVideoPtr);

paramBlock A pointer to a default video device parameter block.

Parameter block

DESCRIPTION

The GetVideoDefault procedure returns information from parameter RAM that

identifies the default video device. If the sdSlot field returns a 0, indicating no default

video device, the Start Manager chooses the first available video device when the

computer starts up.

ASSEMBLY LANGUAGE INFORMATION

The registers on entry and exit for this routine are

← sdSlot SignedByte Physical slot number.
← sdSResource SignedByte Slot resource ID (SResourceID).

Registers on entry

A0 Address of the default video device parameter block

Registers on exit

A0 Address of the default video device parameter block

C H A P T E R 9

Start Manager

9-24 Start Manager Reference

SEE ALSO

For more information about the default startup device parameter block see “The Default

Video Device Parameter Block” beginning on page 9-19.

To specify the default video device, see the description of the SetVideoDefault

procedure described next.

SetVideoDefault

You can use the SetVideoDefault procedure to write information to parameter RAM

that sets or changes the default video device.

PROCEDURE SetVideoDefault (paramBlock: DefVideoPtr);

paramBlock A pointer to a default video device parameter block.

Parameter block

DESCRIPTION

The SetVideoDefault procedure writes information to parameter RAM that sets or

changes the default video device. If you set the sdSlot field to 0, indicating no default

video device, the Start Manager chooses the first available video device when the

computer starts up.

ASSEMBLY LANGUAGE INFORMATION

The registers on entry and exit for this routine are

SEE ALSO

For more information about the default video device parameter block see “The Default

Video Device Parameter Block” beginning on page 9-19.

To retrieve information about the default video device, see the description of the

GetVideoDefault procedure on page 9-23.

→ sdSlot SignedByte Physical slot number.
→ sdSResource SignedByte Slot resource ID (SResourceID).

Registers on entry

A0 Address of the default video device parameter block

Registers on exit

A0 Address of the default video device parameter block

C H A P T E R 9

Start Manager

Start Manager Reference 9-25

Identifying and Setting the Default Operating System

You can use the routines in this section to get information about the default operating

system or to supply information that sets or changes a default operating system. These

routines read from and write to a byte in parameter RAM.

GetOSDefault

You can use the GetOSDefault procedure to identify the operating system that gets

booted on the Macintosh computer.

Procedure GetOSDefault (paramBlock: DefOSPtr);

paramBlock A pointer to a default operating system parameter block.

Parameter block

DESCRIPTION

The GetOSDefault procedure identifies the operating system that gets booted on the

Macintosh computer. A value of 1 returned in the sdOSType field indicates the

Macintosh Operating System. Apple Computer, Inc. reserves the numbers 0 through 15

for its use.

When the Macintosh Operating System boots, certain startup routines call

GetOSDefault and compare the value it returns with the value in the ddType field of

the driver’s portion of the driver descriptor record. Each driver for the startup device

has its own block of fields in this record. The startup routine tries to match the

operating-system type returned by GetOSDefault with the value in one of the ddType

fields. If it finds a match, the computer continues to boot; if it doesn’t, the startup routine

searches other drives attached to the computer. The boot process does not continue until

the startup routine finds a ddType value that matches the one returned by

GetOSDefault.

ASSEMBLY LANGUAGE INFORMATION

The registers on entry and exit for this routine are

← sdReserved byte Reserved.
← sdOSType byte Operating-system type.

Registers on entry

A0 Address of the default operating system parameter block

Registers on exit

A0 Address of the default operating system parameter block

C H A P T E R 9

Start Manager

9-26 Start Manager Reference

SEE ALSO

For more information about the default operating system parameter block, see “The

Default Operating System Parameter Block” beginning on page 9-19.

For information about the driver descriptor record, see the chapter “SCSI Manager”

in Inside Macintosh: Devices.

To specify the default operating system, see the description of the SetOSDefault

procedure described next.

SetOSDefault

You can use the SetOSDefault procedure to set a byte in parameter RAM that

indicates the operating system that gets booted on the Macintosh computer.

PROCEDURE SetOSDefault (paramBlock: DefOSPtr);

paramBlock A pointer to a default operating system parameter block.

Parameter block

DESCRIPTION

The SetOSDefault procedure sets a byte in parameter RAM that indicates the

operating system that gets booted on the Macintosh computer. Setting a value of 1 in the

sdOSType field indicates the Macintosh Operating System, which is currently the only

default operating system allowed. The numbers 0 through 15 are reserved by Apple

Computer.

Unless the value in the sdOSType field matches the value in one of the ddType fields of

the driver descriptor record, the computer cannot continue booting. Every drive

connected to the computer has a driver descriptor record at the beginning of physical

block 0.

ASSEMBLY LANGUAGE INFORMATION

The registers on entry and exit for this routine are

→ sdReserved SignedByte Reserved.
→ sdOSType SignedByte Operating-system type.

Registers on entry

A0 Address of the parameter block for the default operating system record

Registers on exit

A0 Address of the parameter block for the default operating system record

C H A P T E R 9

Start Manager

Start Manager Reference 9-27

SEE ALSO

For information about the driver descriptor record, see the chapter “SCSI Manager” in

Inside Macintosh: Devices.

Getting and Setting the Timeout Interval

You can use the routines in this section to get or set the default timeout interval for the

startup drive. This timeout indicates how long the system waits for the startup drive to

respond while the computer is booting.

GetTimeout

You can use the GetTimeout procedure to identify the current timeout interval set for

the startup drive.

PROCEDURE GetTimeout (VAR count: Integer);

count Indicates the number of seconds the system waits for the startup drive to
respond during the boot cycle. A value of 0 indicates the default timeout
of 20 seconds.

DESCRIPTION

The GetTimeout procedure identifies the current timeout interval set for the

startup drive. Timeout values increment in 1-second intervals, from 1 to a maximum of

31 seconds. A count of 1 equals 1 second.

ASSEMBLY LANGUAGE INFORMATION

The register on exit from the routine is

The _GetTimeout macro expands to invoke another trap macro, whose routine selector

is passed in the A0 register.

Registers on exit

A0 Value of count field

Trap Macro Selector

_InternalWait $0000

C H A P T E R 9

Start Manager

9-28 Start Manager Reference

SetTimeout

You can use the SetTimeout procedure to set the timeout interval for the startup drive.

PROCEDURE SetTimeout (count: Integer);

count Indicates the number of seconds that you want the system to wait for the
startup drive to respond during the boot cycle. A value of 0 indicates the
default timeout of 20 seconds. The maximum value is 31 seconds.

DESCRIPTION

The SetTimeout procedure sets the timeout interval for the startup drive. Timeout

values increment in 1-second intervals, from 1 to a maximum of 31 seconds. Setting the

count parameter to a value of 1 indicates 1 second.

ASSEMBLY LANGUAGE INFORMATION

The registers on entry for this routine are

The _SetTimeout macro expands to invoke another trap macro, whose routine selector

is passed in the A0 register:

Registers on entry

A0 $0001

Trap Macro Selector

_InternalWait $0001

C H A P T E R 9

Start Manager

Summary of the Start Manager 9-29

Summary of the Start Manager

Pascal Summary

Data Types

TYPE

DefStartType = (slotDev, scsiDev);

DefStartRec =

RECORD

CASE DefStartType OF

slotDev:

sdExtDevID: SignedByte; {external device ID}

sdPartition:SignedByte; {reserved}

sdSlotNum: SignedByte; {slot number}

sdSRsrcID: SignedByte; {SResourceID}

scsiDev:

sdReserved1:SignedByte; {reserved}

sdReserved2:SignedByte; {reserved}

sdRefNum: Integer {driver reference number}

END;

DefStartPtr = ^DefStartRec; {pointer to a start definition record}

DefVideoRec =

RECORD

sdSlot: SignedByte; {slot number}

sdsResource:SignedByte; {SResourceID}

END;

DefVideoPtr = ^DefVideoRec; {pointer to a video definition record}

DefOSRec =

RECORD

sdReserved: SignedByte; {reserved--should be 0}

sdOSType: SignedByte; {operating-system type}

C H A P T E R 9

Start Manager

9-30 Summary of the Start Manager

END;

DefOSPtr = ^DefOSRec; {pointer to a default Operating System Record}

Routines

Identifying and Setting the Default Startup Device

PROCEDURE GetDefaultStartup (paramBlock: DefStartPtr);

PROCEDURE SetDefaultStartup (paramBlock: DefStartPtr);

Identifying and Setting the Default Video Device

PROCEDURE GetVideoDefault (paramBlock: DefVideoPtr);

PROCEDURE SetVideoDefault (paramBlock: DefVideoPtr);

Identifying and Setting the Default Operating System

PROCEDURE GetOSDefault (paramBlock: DefOSPtr);

PROCEDURE SetOSDefault (paramBlock: DefOSPtr);

Getting and Setting the Timeout Interval

PROCEDURE GetTimeout (VAR count: Integer);

PROCEDURE SetTimeout (count: Integer);

C Summary

Data Types

struct SlotDev {

char sdExtDevId; /*external device ID*/

char sdPartition; /*reserved*/

char sdSlotNum; /*slot number*/

char sdSRsrcID; /*SResourceID*/

};

typedef struct SlotDev SlotDev;

struct SCSIDev {

char sdReserved1; /*reserved*/

char sdReserved2; /*reserved*/

C H A P T E R 9

Start Manager

Summary of the Start Manager 9-31

short sdRefNum; /*driver reference number*/

};

typedef struct SCSIDev SCSIDev;

union DefStartRec {

SlotDev slotDev;

SCSIDev scsiDev;

};

typedef union DefStartRec DefStartRec;

typedef DefStartRec *DefStartPtr;

struct DefVideoRec {

char sdSlot; /*slot number*/

char sdsResource; /*SResourceID*/

};

typedef struct DefVideoRec DefVideoRec;

typedef DefVideoRec *DefVideoPtr;

struct DefOSRec {

char sdReserved; /*reserved —should be 0*/

char sdOSType; /*operating-system type*/

};

typedef struct DefOSRec DefOSRec;

typedef DefOSRec *DefOSPtr;

Routines

Identifying and Setting the Default Startup Device

pascal void GetDefaultStartup (DefStartPtr paramBlock);

pascal void SetDefaultStartup (DefStartPtr paramBlock);

Identifying and Setting the Default Video Device

pascal void GetVideoDefault (DefVideoPtr paramBlock);

pascal void SetVideoDefault (DefVideoPtr paramBlock);

Identifying and Setting the Default Operating System

pascal void GetOSDefault (DefOSPtr paramBlock);

C H A P T E R 9

Start Manager

9-32 Summary of the Start Manager

pascal void SetOSDefault (DefOSPtr paramBlock);

Getting and Setting the Timeout Interval

pascal void GetTimeout (short *count);

pascal void SetTimeout (short count);

Assembly-Language Summary

Data Structures

Default Startup Device Data Structure

Default Video Device Data Structure

Default Operating System Data Structure

0 sdExtDevID byte external device ID
1 sdPartition byte reserved
2 sdSlotNum byte slot number
3 sdSRsrcID byte slot resource ID

0 sdReserved1 byte reserved
1 sdReserved2 byte reserved
2 sdRefNum word driver reference number

0 sdSlot byte slot number
1 sdSResource byte slot resource ID

0 sdReserved byte reserved
1 sdOSType byte operating-system type

C H A P T E R 9

Start Manager

Summary of the Start Manager 9-33

Trap Macros

Trap Macros Requiring Register Setup

Trap Macros Requiring Routine Selectors

_InternalWait

Global Variables

Trap macro name Registers on entry Registers on exit

_GetDefaultStartup A0: address of default video
device parameter block

A0: address of default startup device
parameter block

_SetDefaultStartup A0: address of default video
device parameter block

A0: address of default startup device
parameter block

_GetVideoDefault A0: address of default video
device parameter block

A0: address of default video device
parameter block

_SetVideoDefault A0: address of default video
device parameter block

A0: address of default video device
parameter block

_GetDefaultOS A0: address of default operating
system parameter block

A0: address of default operating
system parameter block

_SetDefaultOS A0: address of default operating
system parameter block

A0: address of default operating
system parameter block

_GetTimeout D0: count (word)

_SetTimeout D0: count (word)

Selector Routine

$0000 GetTimeout

$0001 SetTimeout

TimeDBRA The number of times the DBRA instruction is executed per millisecond.

TimeSCCDB The number of times the SCC is accessed per millisecond.

TimeSCSIDB The number of times the SCSI is accessed per millisecond.

Contents 10-1

C H A P T E R 1 0

Contents

Package Manager

About the Package Manager 10-3

Using the Package Manager 10-6

Package Manager Reference 10-6

Routines 10-6

Initialization of Packages 10-7

Summary of the Package Manager 10-8

Pascal Summary 10-8

Constants 10-8

Routines 10-8

C Summary 10-9

Constants 10-9

Routines 10-9

Assembly-Language Summary 10-10

Trap Macros 10-10

C H A P T E R 1 0

About the Package Manager 10-3

Package Manager

This chapter describes the Package Manager, the part of the system software that loads

packages into memory. The packages include one for presenting the standard user

interface when a file is to be saved or opened and others for doing more specialized

operations such as floating-point arithmetic.

Read the information in this chapter to get a complete list of all packages and to get a

description of the Package Manager routines that load the packages into memory.

Ordinarily, you do not need to use the Package Manager routines described in this

chapter. The Operating System itself is responsible for installing the packages when an

application is launched. While your application probably won’t ever need to use these

routines, for the sake of completeness they are described in this chapter.

About the Package Manager

The Package Manager lets you load packages into memory. A package is a set of routines

and data types that is stored as a resource of type 'PACK'. In early models of the

Macintosh computer, all packages were disk-based and brought into memory only when

needed; some packages are now in ROM. The System file contains the standard

Macintosh packages and the resources they use or own. Table 10-1 lists the standard

Macintosh packages.

Table 10-1 The standard Macintosh packages

Package Description Resource ID

List Manager Provides routines that your
application can use to create
scrollable lists that allow the user
to select one or more of a group of
items.

0

Disk Initialization Manager Provides routines that initialize
and name new floppy disks. This
package is called by the Standard
File Package and applications.

2

Standard File Package Provides routines that your
application can use to display
dialog boxes that let the user
specify the locations of files to be
saved or opened.

3

Floating-Point Arithmetic
Package

Provides routines that support
extended-precision arithmetic
according to IEEE Standard 754.

4

continued

C H A P T E R 1 0

Package Manager

10-4 About the Package Manager

Transcendental Functions
Package

Provides routines that support
trigonometric, logarithmic,
exponential, and financial
functions, and a random number
generator.

5

Text Utilities
(formerly referred to as the
International Utilities
Package)

Provides routines that your
application can use to specify
strings for various purposes, to
format numbers and currency,
format date and time, search and
replace text, and more.

6

Text Utilities
(formerly referred to as the
Binary-Decimal Conversion
Package)

Provides routines that your
application can use to specify
strings for various purposes, to
format numbers and currency,
format date and time, search and
replace text, and more.

7

Apple Event Manager Provides routines that your
application can use to respond,
send, and record Apple events.

8

PPC Browser Provides routines that your
application can use to display the
program linking dialog box, which
allows a user to select a port to
communicate with.

9

Edition Manager Provides routines that your
application can use to allow users
to share and automatically update
data and numerous documents and
applications.

11

Color Picker Provides routines that your
application can use to display a
standard dialog box for choosing a
color, and converts color
specifications from one color model
to another.

12

Table 10-1 The standard Macintosh packages (continued)

Package Description Resource ID

C H A P T E R 1 0

Package Manager

About the Package Manager 10-5

If the Package Manager is not able to load a package, the Package Manager adds the

resource ID number of the affected package to 17 to get an error number. The System

Error Handler uses this error number to display an error message. Originally this

approach worked because there were only 7 packages, and the error number would fall

between 17 and 24, which are the error numbers that define the “Can’t load package”

error. However, now there are more packages and the resulting error messages from

packages with resource IDs greater than 7 are misleading.

The error messages that corresponds to packages with resource IDs greater than 7 are as

follows:

The system errors are described in detail in the chapter “System Error Handler” in

this book.

* There is not a defined system error for this error ID.

Data Access Manager Provides routines that your
application can use to gain access
to data in another application, and
provides templates to be used for
data transactions.

13

Help Manager Provides routines that your
application can use to provide
Balloon Help online assistance.

14

Picture Utilities Provides routines that obtain
qualitative and quantitative
information about pictures and
pixel maps.

15

Resource ID Package Error ID Error

9 Apple Event Manager 25 Out of memory

9 PPC Toolbox 26 Can’t launch file

11 Edition Manager 28 Stack overflow

12 Color Picker 29 *

13 Data Access Manager 30 Disk insertion required

14 Help Manager 31 Wrong disk inserted

15 Picture Utilities 32 *

Table 10-1 The standard Macintosh packages (continued)

Package Description Resource ID

C H A P T E R 1 0

Package Manager

10-6 Using the Package Manager

Using the Package Manager

The Package Manager provides two routines: the InitPack procedure and the

InitAllPacks procedure. The InitPack procedure loads one specified package into

memory. To specify which package to load, you pass, as a parameter to the InitPack

procedure, the package’s resource ID. You can use the InitAllPacks procedure to load

all packages into memory. Typically, you do not need to use either of these two

procedures because the InitAllPacks procedure is automatically called when your

application is launched.

The InitPack and InitAllPacks procedures do not initialize the packages. Consult

the description of the specific package to see if it needs to be initialized before your

application can utilize all of its routines. For example, to use the Data Access Manager

routines, your application must first call the InitDBPack function (an initialization

routine provided by the Data Access Manager). If a package needs to be initialized, it

provides an initialization routine.

Note

You can access a routine in a package through a trap macro and a
routine selector. The name of the trap macro includes the word “Pack”
and the resource ID of the specific package. For example, the trap macro
for the routines in the Edition Manager is _Pack11. Most system
software routines that are accessed through a trap macro and a routine
selector also have a corresponding macro that expands to call the
original trap macro and automatically puts the correct routine selector
on the stack. For example, to access the Standard File Package routine
StandardGetFile, you can call the _StandardGetFile macro. The
_StandardGetFile macro then expands to call the _Pack3 trap
macro and places the routine selector on the stack (in this example the
routine selector is $0006). See the chapter “Trap Manager” in this book
for more information about trap macros and routine selectors. ◆

Package Manager Reference

This section describes routines that are specific to the Package Manager.

Routines

This section describes the two routines in the Package Manager. One routine lets you

load a specified package into memory, and one routine lets you load all packages into

memory.

C H A P T E R 1 0

Package Manager

Package Manager Reference 10-7

Initialization of Packages

You use the routines in this section to load one specified package or all packages into

memory.

InitPack

You can use the InitPack procedure to load a specified package into memory.

PROCEDURE InitPack (packID: Integer);

packID A package resource ID.

DESCRIPTION

The InitPack procedure loads the package specified by the packID parameter into

memory. The packID parameter is the package’s resource ID. To initialize a specific

package or manager, consult the documentation of the specific package or manager.

InitAllPacks

You can use the InitAllPacks procedure to load all packages into memory.

PROCEDURE InitAllPack;

DESCRIPTION

The InitAllPacks procedure loads all the packages into memory. The InitAllPacks

procedure is automatically called when your application is launched.

C H A P T E R 1 0

Package Manager

10-8 Summary of the Package Manager

Summary of the Package Manager

Pascal Summary

Constants

CONST

listMgr = 0; {List Manager}

dskInit = 2; {Disk Initialization Manager}

stdFile = 3; {Standard File Package}

flPoint = 4; {Floating-Point Arithmetic Package}

trFunc = 5; {Transcendental Functions Package}

textUtil1 = 6; {Text Utilities}

textUtil2 = 7; {Text Utilities}

aevtMgr = 8; {Apple Event Manager}

ppcBrowser = 9; {PPC Browser}

editionMgr = 11; {Edition Manager}

colorPicker = 12; {Color Picker}

dataAccess = 13; {Data Access Manager}

helpMgr = 14; {Help Manager}

pictUtil = 15; {Picture Utilities}

intUtil = 6; {Text Utilities}

bdConv = 7; {Text Utilities}

Routines

Initializing Packages

PROCEDURE InitPack (packID: Integer);

PROCEDURE InitAllPacks;

C H A P T E R 1 0

Package Manager

Summary of the Package Manager 10-9

C Summary

Constants

enum {

listMgr = 0, /*List Manager*/

dskInit = 2, /*Disk Initialization Manager*/

stdFile = 3, /*Standard File Package*/

flPoint = 4, /*Floating-Point Arithmetic Package*/

trFunc = 5, /*Transcendental Functions Package*/

textUtil1 = 6, /*Text Utilities*/

textUtil2 = 7, /*Text Utilities*/

aevtMgr = 8, /*Apple Event Manager*/

ppcBrowser = 9, /*PPC Browser*/

editionMgr = 11, /*Edition Manager*/

colorPicker = 12, /*Color Picker*/

dataAccess = 13, /*Data Access Manager*/

helpMgr = 14, /*Help Manager*/

pictUtil = 15, /*Picture Utilities*/

intUtil = 6, /*Text Utilities*/

bdConv = 7 /*Text Utilities*/

};

Routines

Initializing Packages

pascal void InitPack (short packID);

pascal void InitAllPacks (void);

C H A P T E R 1 0

Package Manager

10-10 Summary of the Package Manager

Assembly-Language Summary

Trap Macros

Trap Macros Requiring Routine Selectors

_Pack0 ;List Manager

_Pack2 ;Disk Initialization Manager

_Pack3 ;Standard File Package

_Pack6 ;Text Utilities

_Pack7 ;Text Utilities

_Pack8 ;Apple Event Manager

_Pack9 ;PPC Browser

_Pack11 ;Edition Manager

_Pack12 ;Color Picker

_Pack13 ;Data Access Manager

_Pack14 ;Help Manager

_Pack15 ;Picture Utilities

GL-1

A-line instruction An unimplemented
instruction of the form $Axxx (the high-order
4 bits have the hexadecimal value $A).

auto-key rate The rate at which a character key
repeats after it’s begun to do so.

auto-key threshold The length of time a
character key must be held down before it
begins to repeat.

auto-pop bit Bit 10 of a Toolbox trap word,
signifying that an extra return address is placed
on the stack.

bit The atomic memory unit. Each bit can be
either set (the value of the bit is 1) or cleared
(the value of the bit is 0).

bomb box See system error alert box.

boot blocks The first two logical blocks on
every Macintosh volume. Boot blocks contain
instructions and information necessary to start
up (or “boot”) a Macintosh computer.

byte A bit quantity, used to store 28, or 256,
different possible values. In the MC680x0
bit-numbering scheme, the first bit in a byte
is bit number 7, and the last bit is bit number 0.
See also reversed bit-numbering.

caret A generic term meaning a symbol that
indicates where something should be inserted in
text. The specific symbol used is a vertical bar(|).

caret-blink time The interval between blinks of
the caret that marks an insertion point.

clock chip A special integrated circuit (IC) used
for storing parameter RAM and the current date
and time. This IC is powered by a battery when
the system is off, thus keeping correct time and
preserving the parameter RAM information.

come-from patch A system software patch used
only by Apple to add enhancements to system
software. Come-from patches are placed before
any other types of patches in a patch daisy chain.

control panel A modeless dialog box that
contains controls that let users specify basic
settings and preferences for a systemwide
feature, such as the speaker volume, desktop
pattern, or picture displayed by a screen saver.

control panel extension A collection of routines
that manages a certain part of a control panel’s
display area.

daisy chain A chain of any number of patches
and one system software routine.

dangling reference Typically, a pointer whose
target has been either destroyed or moved
elsewhere in memory.

date-time record A data structure that
represents date and time as a record rather than
a 32-bit long integer. The date-time record is a
translation of the standard date-time value, so
it can represent only dates and times between
midnight on January 1, 1904 and 6:28:15 A.M. on
February 6, 2040.

default operating system The operating system
that gets initialized and booted on a Macintosh
computer. Currently, the only default operating
system allowed is the Macintosh Operating
System.

default startup device The first drive on which
the boot code attempts to start up the Macintosh
Operating System.

default video device The first monitor on
which the system displays the startup message
“Welcome to Macintosh.” and other startup
indications.

double-click time The greatest interval
between a mouse-up and mouse-down event that
would qualify two mouse clicks as a double-click.

environmental selector A Gestalt selector code,
used with the Gestalt function, that returns
information about the operating environment
that can be used by an application to guide its
actions. Compare informational selector.

Glossary

G L O S S A R Y

GL-2

exception Any of various situations in which
the normal flow of execution of a program is
interrupted, with control passing to a system
exception handler.

exception handler A system routine invoked
automatically by the processor in any of a variety
of exceptional circumstances. For example, the
trap dispatcher is an exception handler that is
called by the processor, to dispatch
unimplemented A-line instructions.

exception stack frame A block of data placed
on the stack automatically by the processor when
an exception occurs.

extended parameter RAM The 236 bytes of
parameter RAM that is reserved by the system
software.

fatal system error A system error that causes
the entire system to crash.

Gestalt Manager The part of the Macintosh
Operating System that you can use to determine
the features of the current software and hardware
operating environment.

glue routine A runtime library routine, usually
provided by the development environment, that
provides a linkage between high-level language
code and a system routine with an interface
protocol different from that of the high-level
language.

head patch A patch that, upon completion
does not regain control. A head patch jumps
to the next routine. Compare tail patch.

high-order bit The bit contributing the greatest
value in a string of bits. For example, in the
MC680x0 numbering scheme bit number 7
contributes a value of 27, or 128. Same as
most significant bit. Compare low-order bit.

informational selector A Gestalt selector code,
used with the Gestalt function, that supplies
information about the operating environment
that cannot be used to determine whether a
software or hardware feature is available.
Compare environmental selector.

least significant bit The bit contributing the
least value in a string of bits. For example, in the
MC680x0 numbering scheme bit number 0 in a
byte contributes a value of 20, or 1. Same as
low-order bit. Compare most significant bit

long date-time record A data structure that
represents date and time as a record rather than
a 64-bit long integer.

long date-time value A 64-bit integer in SANE
comp format that represents date and time purely
in seconds. This format allows dates and times
before and after the range of the date-time record
(30,000 B.C. to 30,000 A.D.).

long word A 32-bit quantity used to store 232
(or 4,294,967,296) values.

long-word boundary The memory location that
divides two long words.

low-order bit The bit contributing the least
value in a string of bits. For example, in the
MC680x0 numbering scheme bit number 0 in
a byte contributes a value of 20, or 1. Same as
least significant bit. Compare high-order bit.

MC680x0 bit-numbering The bit-numbering
scheme used by Motorola. Bit numbers are
counted from right to left. (That is, the most
significant bit has the highest bit number, and
the least significant bit number has the lowest bit
number). Compare reversed bit-numbering.

menu-blink time The number of times a menu
item blinks when the user chooses it.

mouse-down event An event indicating that the
user pressed the mouse button.

most significant bit The bit contributing the
greatest value in a string of bits. For example, in
the MC680x0 numbering scheme bit number 7 in
a byte contributes a value of 27, or 128. Same as
high-order bit. Compare least significant bit.

mouse scaling A feature that causes the cursor
to move twice as far during a mouse stroke as it
would have otherwise, provided the change in
the cursor’s position exceeds the mouse-scaling
threshold within one tick after the mouse is
moved.

G L O S S A R Y

GL-3

mouse-scaling threshold A number of pixels
that, if exceeded by the sum of the horizontal and
vertical changes in the cursor’s position during
one tick of mouse movement, causes mouse
scaling to occur (if that feature is turned on);
normally six pixels.

mouse-up event An event indicating that the
user released the mouse button.

operating-system queue A queue used by the
Macintosh Operating System.

Operating System trap An exception that is
caused by an A-line instruction that executes an
Operating System routine.

Operating System trap dispatch table A table
in RAM containing addresses of Operating
System routines.

package A set of routines and data types that’s
stored as a resource of type 'PACK' and only
brought into memory when needed.

Package Manager A set of routines that loads
the packages into memory.

pad byte The extra byte added to make 2 bytes,
when you declare a variable of type Byte.

panel The area managed by a control panel
extension. A panel contains controls and other
dialog items related to the features managed by
control panel extensions.

parameter RAM Battery-powered RAM
(random-access memory) contained in the clock
chip, which preserves settings such as those
made with the control panels. Parameter RAM
takes up 256 bytes of battery-powered RAM: 20
bytes are commonly accessible by applications,
and 236 bytes are reserved by the system
software. See also clock chip.

patch Generally, any code used to repair or
augment an existing piece of code. In the context
of system software, a patch repairs or augments a
system software routine. See also head patch, tail
patch, and come-from patch.

pseudo-random number generator An
algorithm that is designed to return a value
that is as random as possible.

queue A list of identically structured entries
linked together by pointers.

queue element A data structure that contains a
pointer to the next queue element in the queue,
a value indicating the queue type, and a variable
data field.

queue header A data structure that contains
flags specific to the queue, a pointer to the first
element in the queue, and a pointer to the last
element in the queue.

Queue Utilities The collection of routines for
directly adding a queue element to a queue or
directly removing a queue element from a queue.

resume procedure A procedure within an
application that allows the application to recover
from system errors.

reversed bit-numbering A bit-numbering
scheme opposite that of the MC680x0 numbering
scheme. Bit numbers are counted from left to
right instead of right to left. For example, using
the reversed bit-numbering scheme on a byte,
the first bit is bit number 0 and the last bit is bit
number 7. (That is, the most significant bit has
the lowest bit number, and the least significant
bit number highest bit number). Compare
MC680x0 bit-numbering.

selector See selector code.

selector code A parameter to the Gestalt
function that specifies what information about
the operating environment the caller requires.
See environmental selector and informational
selector.

selector function A function that is executed
when an application calls Gestalt and passes
the associated selector code.

standard date-time value A 32-bit long integer
that represents date and time purely in seconds.
The standard date-time value can track dates and
times only between midnight on January 1, 1904
and 6:28:15 A.M. on February 6, 2040.

Start Manager A collection of routines that let
you get and set system startup information
located parameter RAM.

system environment record A description
of the operating environment filled in by the
SysEnvirons function and defined by the
SysEnvRec data type.

G L O S S A R Y

GL-4

system error An error generated by the
Operating System.

system error alert box An alert box displayed
by the System Error Handler when a system
error has occurred.

system error alert table resource A resource
that determines the appearance and function
of system error alert boxes and system startup
alert boxes.

System Error Handler The part of the
Operating System that displays an alert box
when an system error occurs and manages
display of the “Welcome to Macintosh” alert
box at system startup time.

system error ID An ID number that may
appear in a system error alert box to identify
the error.

system extension A file (with the file type
'INIT') containing a code resource of type 'INIT'
and additional other resources. A system
extension typically contains code that performs
a system-level service and code that loads this
system-level service into the system at system
startup time.

system initialization The process when the
system initialization code located in ROM is
executed. Memory is tested and initialized, ROM
drivers are installed, device drivers are located,
and more.

system startup The process when the system
startup code located in ROM is executed.
Memory is tested and initialized, ROM drivers
are installed, device drivers are located, and
more.

system startup alert box The alert box
displayed at system startup time. It contains
the startup greeting “Welcome to Macintosh.”

system startup information Configurable
system parameters and machine-language
instructions needed to start up a Macintosh
computer.

tail patch A patch that transfers control to
routine, and then regains control after the routine
completes execution. Compare head patch.

timeout interval The interval of time the
system waits for the startup drive to respond
while the computer is booting.

Toolbox trap An exception that is caused by an
A-line instruction that executes a Toolbox routine.

Toolbox trap dispatch table A table in RAM
that contains addresses to Toolbox routines.

trap An exception caused by an A-line
instruction.

trap dispatcher The exception handler that
deals with the occurrence of A-line instructions.

trap dispatch table A table of entry points to
system routines that are invoked with A-line
instructions. Compare Operating System trap
dispatch table and Toolbox trap dispatch table.

Trap Manager A collection of routines that lets
you add extra capabilities to system software
routines.

trap number The bits of a trap word (bits 0–7
for an Operating System routine, bits 0–9 for a
Toolbox routine) that serve as an index into the
trap dispatch tables.

trap word See A-line instruction

vertical retrace interrupt An interrupt
generated 60 times a second by the Macintosh
video circuitry while the beam of the display
tube returns from the bottom of the screen to
the top; also known as vertical blanking interrupt.

word A 16-bit quantity, used to store 216
(or 65,536) possible values.

word boundary The memory location that
divides two words.

IN-1

Index

Numerals

32-bit addressing
testing for availability 1-15

32-bit quantities
multiplying to obtain 64-bit quantities 3-26

64-bit integer record 3-27

A

A5 register
saving when using Gestalt selector functions 1-11

address errors 2-7
Alarm Clock 4-6

default alarm time 7-5
alert boxes

avoiding use of by system extensions 9-14
alert definitions (System Error Handler) 2-17
Alias Manager

testing for features 1-15
A-line exception errors 2-8
A-line instructions 8-10 to 8-20

for Operating System routines 8-11 to 8-14
for Toolbox routines 8-14 to 8-20
trap number 8-11

AND (logical) operation on bits 3-16 to 3-17
AngleFromSlope function 3-12, 3-38
angles

defined 3-12
angle-slope conversion utilities 3-12 to 3-14

accuracy of 3-14
Apple Desktop Bus

testing for last keyboard used 1-19
Apple Event Manager

and Package Manager 10-4
testing for availability 1-15

AppleTalk drivers
testing for version 1-15

AppleTalk node ID
and parameter RAM 7-5

application creator string, as Gestalt selector
code 1-11

auto-key rate
and parameter RAM 7-6

auto-key threshold
and parameter RAM 7-6

auto-pop bit 8-20

A/UX
testing for version 1-16

B

binary values
converting to hexadecimal values 3-5

BitAnd function 3-16, 3-30
BitClr procedure 3-15, 3-16, 3-29
BitNot function 3-17, 3-31 to 3-32
bit-numbering, reversed 3-7 to 3-8
BitOr function 3-16, 3-30 to 3-31
bits

defined 3-4
manipulating 3-14 to 3-16
testing 3-14 to 3-16

BitSet procedure 3-15, 3-28 to 3-29
BitShift function 3-17, 3-32
BitTst function 3-14, 3-28
BitXor function 3-16, 3-31
bomb box. See also system errors 2-5
BootBlkHdr data type 9-6
boot block header

formats for 9-6
boot block header record 9-6
boot blocks 9-6 to 9-8

defined 9-6
bus errors 2-7
button definitions (System Error Handler) 2-19 to 2-20
buttons

created by System Error Handler 2-5
button-title definitions (System Error Handler) 2-20
bytes

defined 3-4
hardcoding values into 3-19
masking out 3-17

C

calendars
Arabic CLC 4-17
Gregorian 4-17
Jewish 4-17
Julian 4-17

I N D E X

IN-2

caret-blink time
and parameter RAM 7-6

check exception errors 2-8
CHK instructions 2-8
clock chip 4-3

validity of settings 7-5
Color Picker

and Edition Manager 10-4
come-from patches 8-8 to 8-9
Communications Resource Manager

testing for availability 1-16
Communications Toolbox

testing for features 1-16
ComponentDescription data type

and control panel extensions 5-7
Component Manager

checking for features 1-7
ComponentResource data type

and control panel extensions 5-6
compression utilities 3-8 to 3-9, 3-20 to 3-22
Connection Manager

testing for features 1-16
Continue button (system error alert) 2-5
control panel extension-defined routines
MyPanelEvent function 5-26 to 5-27
MyPanelGetDITL function 5-21 to 5-22
MyPanelGetSettings function 5-29
MyPanelGetTitle function 5-23 to 5-24
MyPanelInstall function 5-22 to 5-23
MyPanelItem function 5-25 to 5-26
MyPanelRemove function 5-24 to 5-25
MyPanelSetSettings function 5-30
MyPanelValidateInput function 5-28

control panel extensions 5-3 to 5-34
creating a component for 5-6 to 5-9
extension-defined routines 5-20 to 5-30
opening resource files of 5-13

control panels
and control panel extensions 5-4 to 5-6
creating 5-3, 5-8
sound 5-8
video 5-8

CPUs, testing for type 1-22
crashes. See system errors
CustomGetFile procedure

testing for availability 1-24
CustomPutFile procedure

testing for availability 1-24

D

daisy chains 8-8

Data Access Manager
and Package Manager 10-5
testing for availability 1-16

data compression 3-8, 3-9
data decompression 3-8, 3-9
date

getting the current 4-9 to 4-10
Date & Time control panel 4-6
Date, Time, and Measurement Utilities 4-3 to 4-61

data structures in 4-23 to 4-32
routines in 4-32 to 4-49

Date2Secs procedure. See DateToSeconds procedure
date and time

getting the current 4-9 to 4-10, 4-33 to 4-36
updating 4-10 to 4-12, 4-36 to 4-38

dates
calculating 4-14 to 4-16
converting from short to long formats 4-13

date-time formats
converting between 4-14 to 4-16, 4-38 to 4-40

DateTimeRec data type 4-4 to 4-5, 4-23 to 4-25
date-time record 4-23 to 4-25
DateToSeconds procedure 4-38
day

getting the current 4-9 to 4-10
daylight saving time 4-19
decompression utilities 3-8 to 3-9
default application font

and parameter RAM 7-5
default operating system

data structure for 9-19
defined 9-10
identifying 9-25, 9-26
routines for 9-25 to 9-26

default operating system parameter block 9-19
default startup device

data structure for 9-18
defined 9-10
identifying 9-20
routines for 9-20 to 9-22
setting 9-22
timeout interval for 9-10
types of 9-18, 9-21

default startup device parameter block 9-18
default system errors 2-11
default timeout interval

defined 9-27
setting for startup drive 9-28

default video device
data structure for 9-19
defined 9-10
identifying 9-23
routines for 9-23 to 9-24
setting 9-24

default video device parameter block 9-19

I N D E X

IN-3

Deferred Task Manager
and Queue Utilities 6-10, 6-12, 6-15

DefOSRec data type 9-19
DefVideoRec data type 9-19
Dequeue function 6-11 to 6-13, 6-16 to 6-17
dialog boxes

avoiding use of by system extensions 9-14
Dialog Manager

testing for features 1-17
Dictionary Manager

testing for availability 1-7
Disk Initialization Manager

and Package Manager 10-3
disk-insertion required errors 2-10
division by zero 2-8
DIVS instructions 2-8
DIVU instructions 2-8
dlsDelta field 4-29
double-click time

and parameter RAM 7-6
driver descriptor record

use during system startup 9-25
'DSAT' resource type 2-16 to 2-20

E

Easy Access
testing for features 1-17

Edition Manager
and Package Manager 10-4
testing for features 1-17

Enqueue procedure 6-10 to 6-11, 6-15 to 6-16
environment, getting information about. See Gestalt

Manager
era 4-6, 4-26
errors

system. See system errors
Event Manager

and Queue Utilities 6-10, 6-12, 6-15
exception errors 2-8
exception stack frames 8-10
extensions. See system extensions

F

File Manager
and Queue Utilities 6-10, 6-12, 6-15

file map destroyed errors 2-10
file system, testing for features 1-18
File Transfer Manager

testing for features 1-18

Finder not found errors 2-11
FindFolder function

testing for availability 1-18
Fix2Frac function 3-44
Fix2Long function 3-44
Fix2X function 3-45
FixATan2 function 3-42 to 3-43
FixDiv function 3-39 to 3-40
Fixed data type 3-11
Fixed data type. See also fixed-point data types
fixed-point data types 3-11 to 3-12

converting to other numeric types 3-24 to 3-26
division by 0 3-12
overflow handling 3-12
performing operations on 3-24 to 3-26

FixMul function 3-38 to 3-39
FixRatio function 3-25, 3-46 to 3-47
FixRound function 3-25, 3-47
F-line exception errors 2-8
Floating-Point Arithmetic Package

and Package Manager 10-3
floating-point errors 2-9
floating-point unit (FPU)

testing for type 1-18
Font Manager

testing for features 1-18
FPU. See floating-point unit
Frac2Fix function 3-44
Frac2X function 3-46
FracCos function 3-42
FracDiv function 3-40 to 3-41
FracMul function 3-40
FracSin function 3-42
FracSqrt function 3-41
Fract data type. See also fixed-point data types

range of values
function results

Operating System routines 8-13
Toolbox routines 8-19 to 8-20

G

geographic location 4-7, 4-18 to 4-21
geographic location record 4-29 to 4-30
Gestalt function 1-31 to 1-33

adding selectors to 1-10 to 1-13
relation to SysEnvirons and Environs 1-4
selector codes 1-14 to 1-28
testing for availability 1-5

Gestalt Manager 1-3 to 1-68
constants 1-14 to 1-28
data structures in 1-28 to 1-30
response parameter of 1-6

I N D E X

IN-4

routines in 1-30 to 1-36
testing for availability 1-5
testing for version 1-25

Gestalt selector codes
adding 1-11 to 1-13, 1-33
defined 1-6
environmental 1-7 to 1-9, 1-15 to 1-25
environmental versus informational 1-7
informational 1-9, 1-26 to 1-28
modifying 1-11 to 1-13, 1-35
suffixes in 1-9

GetDateTime procedure 4-35
GetDefaultStartup procedure 9-20
GetOSDefault procedure 9-25
GetOSTrapAddress function 8-26
GetSysPPtr function 7-7 to 7-8, 7-11 to 7-12
GetTimeout procedure 9-27
GetTime procedure 4-35
GetToolboxTrapAddress function 8-26 to 8-27
GetTrapAddress function 8-32 to 8-33
GetVideoDefault procedure 9-23
global timing variables 9-9
global variables. See system global variables 1-19
GMT (Greenwich mean time) 4-18
Greenwich mean time (GMT) 4-18
Gregorian calendar 4-17

H

hardware environment, testing for features 1-26
head patches 8-8
Help Manager

and Package Manager 10-5
testing for availability 1-18

hexadecimal values
converting to binary values 3-5

high-order bit 3-4
HiWord function 3-18, 3-33

I, J

icon definitions (System Error Handler) 2-18 to 2-19
icons

default for system extensions 9-14, 9-16
Icon Utilities

checking for availability 1-18
illegal instruction errors 2-8
Image Compression Manager

checking for version 1-7
InitAllPacks procedure 10-7
InitPack procedure 10-7

InitUtil function 7-7, 7-8, 7-10
Int64Bit data type 3-27
interrupt time

calling Gestalt at 1-31
I/O system errors 2-9
IsMetric function 4-48 to 4-49
'itl0' resource

determining the measurement system 4-21

K

kComponentCloseSelect constant 5-9
kComponentOpenSelect constant 5-9
keyboards

testing for type with Gestalt 1-18
testing for type with SysEnvirons 1-30

L

latitude 4-19, 4-29
least significant bit 3-4
List Manager

and Package Manager 10-3
logical operations. See Mathematical and Logical

Utilities
logical RAM, testing for size 1-19
Long2Fix function 3-43
LongDate2Secs. See LongDateToSeconds procedure
long date-time formats

converting between 4-40 to 4-41
LongDateCvt data type 4-25
LongDateRec data type 4-5 to 4-6, 4-26 to 4-28
long date-time record 4-5 to 4-6

long date-time record 4-26 to 4-28
long date-time value 4-25
LongDateToSeconds procedure 4-41
longitude 4-19, 4-29
LongMul procedure 3-26, 3-47
LongSecondsToDate procedure 4-40 to 4-41
LongSecs2Date. See LongSecondsToDate procedure
long words

performing logical operations on 3-16 to 3-18
setting high word of 3-19
setting low word of 3-19

low-memory global variables
testing for size 1-19

LoWord function 3-18, 3-33

I N D E X

IN-5

M

machine icon, testing for 1-26
MachineLocation datatype 4-29
machine name 1-27
machine type, testing for 1-26, 1-29
MacPaint images

compressing 3-9
Map control panel 4-7
masking out bytes 3-17
Mathematical and Logical Utilities 3-3 to 3-52

calculating angle from slope 3-12 to 3-14
calculating slope from angle 3-12 to 3-14
clearing bits 3-15
data structures in 3-27
logical operations on bits 3-16 to 3-18
obtaining pseudorandom numbers 3-22 to 3-24
routines in 3-27 to 3-47
setting bits 3-15
shifting bits 3-17 to 3-18
working with Fixed numbers 3-11 to 3-12

MC680x0 microprocessor, testing for type 1-29
measurement systems

determining 4-21
English system 4-8
metric system 4-8

memory management unit (MMU)
testing for type 1-20

menu blinking
and parameter RAM 7-6
setting in parameter RAM 7-3

menu purged errors 2-11
metric system

measurement system 4-8
Microseconds procedure 4-49
miscellaneous exception errors 2-9
modem port

communications settings of 7-5
month field 4-23
most significant bit 3-4
mouse scaling

and parameter RAM 7-6
.MPP driver, determining version number 1-15
MyPanelEvent function 5-26 to 5-27
MyPanelGetDITL function 5-21 to 5-22
MyPanelGetSettings function 5-29
MyPanelGetTitle function 5-23 to 5-24
MyPanelInstall function 5-22 to 5-23
MyPanelItem function 5-25 to 5-26
MyPanelRemove function 5-24 to 5-25
MyPanelSetSettings function 5-30
MyPanelValidateInput function 5-28
MyResumeProc procedure 2-15
MySelectorFunction function 1-37

N

negative zcbFree value errors 2-11
NewGestalt function 1-11, 1-12, 1-34 to 1-35
NGetTrapAddress function 8-27 to 8-28
NOT (logical) operation on bits 3-17 to 3-18
Notification Manager

and Queue Utilities 6-10, 6-12, 6-15
testing for availability 1-20
use by system extensions 9-14

NSetTrapAddress procedure 8-30 to 8-31
NuBus slots

testing for locations 1-20
numeric-format resource

determining measurement system 4-21

O

Operating System
testing for features 1-20

operating system
default on startup. See default operating system

Operating System parameter-passing conventions 8-13
operating-system queues 6-3 to 6-21

adding new elements to 6-10, 6-15
generic routines for manipulating 6-15 to 6-17
queue elements 6-6 to 6-11
queue headers 6-5
removing elements from 6-11, 6-16

Operating System trap dispatch table 8-5
testing for base address 1-21

Operating System traps 8-10, 8-11
OR (logical) operation on bits 3-16 to 3-17
outline fonts

testing for availability 1-18
out-of-memory errors 2-9

P

Package Manager 10-3 to 10-10
and Apple Event Manager 10-4
and Color Picker 10-4
and Data Access Manager 10-5

Package Manager (continued)
and Disk Initialization Manager 10-3
and Edition Manager 10-4
and Floating-Point Arithmetic Package 10-3
and Help Manager 10-5
and List Manager 10-3
and Picture Utilites 10-5
and PPC Browser 10-4

I N D E X

IN-6

and Standard File Package 10-3
and Text Utilities 10-4
and Transcendental Functions Package 10-4
routines in 10-6 to 10-7

package resource IDs 10-3 to 10-5
package resources 10-3 to 10-5
packages 10-3 to 10-5
PackBits procedure 3-8, 3-9, 3-20, 3-34 to 3-35
'PACK' resource type 10-3
pages (memory), testing for size 1-19
panels

and control panel extensions 5-4 to ??
parameter-passing conventions

Operating System routines 8-13
Toolbox routines 8-18 to 8-19

parameter RAM
changing settings in 7-7 to 7-8
information stored in 7-3 to 7-7
low-memory copy of 7-8
restoring default values in 7-7, 7-13

Parameter RAM Utilities 7-3 to 7-16
data structures in 7-9 to 7-10
routines in 7-10 to 7-13

parity-checking, testing for attributes 1-21
parity RAM, testing for size 1-20
patches 8-6 to 8-9

come-from 8-8 to 8-9
daisy chain of 8-8
head 8-8
tail 8-8

patching a system software routine 8-6 to 8-8, 8-23 to
8-25

patching a trap. See patching a system software routine
physical RAM, testing for size 1-21
Picture Utilities

and Package Manager 10-5
pop-up control definition

testing for availability 1-21
Power Manager

and Queue Utilities 6-15
testing for 1-21

PPC Browser
and Package Manager 10-4

printer port
communications settings of 7-5

privilege violation errors 2-8
Program-to-Program Communications (PPC) Toolbox

testing for features 1-21
pseudorandom number generation 3-9 to 3-10

obtaining a pseudorandom number 3-22 to 3-24

Q

QElem data type 6-6 to 6-11, 6-14 to 6-15
QHdr data type 6-5, 6-13 to 6-14
QTypes data type 6-14
queue elements

adding new 6-10, 6-15
defined 6-6
removing from queues 6-11, 6-16

queue headers 6-5, 6-13
queues. See operating-system queues
queue types 6-7
Queue Utilities 6-3 to 6-21

and Deferred Task Manager 6-10, 6-12, 6-15
and Event Manager 6-10, 6-12, 6-15
and File Manager 6-10, 6-12, 6-15
and Notification Manager 6-10, 6-12, 6-15
and Power Manager 6-15
and Slot Manager 6-10, 6-12, 6-15
and Time Manager 6-7
and Vertical Retrace Manager 6-10, 6-12, 6-15
data structures in 6-13 to 6-15
routines in 6-15 to 6-17

QuickDraw
testing for features 1-22
testing for version 1-22

R

RAM
checking size of 1-21
parity 1-21

Random function 3-36 to 3-37
distribution of output 3-10
example of 3-23

random number generation. See pseudorandom
number generation

randSeed global variable 3-10, 3-37
ReadDateTime function 4-34
ReadLocation procedure 4-46 to 4-47
register-based routines 8-12
ReplaceGestalt function 1-13, 1-35 to 1-36
Resource Manager

testing for features 1-22
resources

compressing 3-20 to 3-21
resources (continued)

decompressing 3-21 to 3-22
package 10-3
system heap zone 9-16

ResourceSpec data type
and control panel extensions 5-7

resource types

I N D E X

IN-7

'DSAT' 2-16 to 2-20
'PACK' 10-3
'sysz' 9-16
'thng' 5-6 to 5-8

Restart button (system error alert) 2-5
Resume button (system error alert) 2-5
resume procedures 2-11 to 2-12
reversed bit-numbering 3-7 to 3-8
RndSeed system global variable 3-37
ROM

testing for size 1-28
testing for version 1-28

routine selectors 8-21
RTE instructions

erroneous execution of 2-8

S

sad Macintosh icon 2-13
Scrap Manager

testing for features 1-23
Script Manager

testing for version 1-23
script systems

testing for number 1-23
scrolling throttle, testing for 1-20
SCSI (based on 53C80 chip)

checking for availability 1-26
SecondsToDate procedure 4-38 to 4-39
Secs2Date procedure. See SecondsToDate procedure
segment loader errors 2-9, 2-10
selector codes. See Gestalt selector codes
selectors. See Gestalt selector codes
serial hardware, testing for features 1-8
SetDateTime function 4-36 to 4-37
SetDefaultStartup procedure 9-22
SetOSDefault procedure 9-26
SetOSTrapAddress procedure 8-29
SetTimeout procedure 9-28
SetTime procedure 4-37
SetToolboxTrapAddress procedure 8-29 to 8-30
SetTrapAddress procedure 8-33
SetVideoDefault procedure 9-24
shifting bits 3-17 to 3-18
SHIFT operation on bits 3-17 to 3-18
signed values 3-5
64-bit integer record 3-27
SlopeFromAngle function 3-12, 3-37
slopes

defined 3-13
Slot Manager

and Queue Utilities 6-10, 6-12, 6-15
slots

testing for locations 1-20
slot secondary init code

when initialized 9-5
Sound control panel

and panels 5-4
sound hardware

testing for features 1-23
sound panels

creating 5-8
speaker volume

and parameter RAM 7-6
special folders

testing for availability 1-18
spurious interrupt errors 2-9
square menu bar, testing for 1-20
stack-based routines

calling conventions 8-16 to 8-17
stack overflow errors 2-10
Standard File Package

and Package Manager 10-3
testing for features 1-24

StandardGetFile procedure
testing for 1-24

StandardNBP function
testing for 1-24

StandardPutFile procedure
testing for 1-24

Start Manager 9-9 to 9-28
data structures in 9-18 to 9-20
routines in 9-20 to 9-28

startup device
default. See default startup device

startup disk
and parameter RAM 7-6

startup process
message during 2-4

StuffHex procedure 3-19, 3-33 to 3-34
SysEnvirons function 1-4, 1-14, 1-32 to 1-33
SysEnvRec data type 1-28 to 1-30
SysError procedure 2-13 to 2-14

calling directly from an application 2-6
SysParam global variable 7-8
SysParmType data type 7-4 to 7-7, 7-9 to 7-10

default values of 7-7
system environment records 1-28 to 1-30
system error alert 2-5
system error alert box

layout of 2-5
system error alert table 2-16 to 2-20
system error alert table resources 2-16 to 2-20

structure of 2-16 to 2-17
System Error Handler 2-3 to 2-22

display mechanism 2-3
resources in 2-15 to 2-20
routines in 2-13 to 2-14

I N D E X

IN-8

system error IDs 2-7 to 2-11
system errors 2-3 to 2-22

default 2-11
I/O 2-9
list of 2-7 to 2-11
transparent 2-6

system extensions
and system startup 9-5
differences from an application 9-12
example of 9-11
human interface guidelines for 9-16
installing and removing 9-14
writing 9-10 to 9-13

System file, testing for version 1-28
system global variables

testing for size 1-19
system heap zone resources 9-16
system initialization, process of 9-3 to 9-4
system parameters record 7-5, 7-9

default values of 7-7
system software routines

determining if available 8-21 to 8-23
patching 8-23 to 8-25

system startup, process of 9-4 to 9-6
system startup alert box 2-4
system startup information

defined 9-6
system startup messages 2-4

T

tail patches 8-8
temporary memory

testing for features 1-20
Terminal Manager

testing for features 1-25
text definitions (System Error Handler) 2-17 to 2-18
TextEdit

testing for version 1-25
Text Services Manager

testing for version 1-9
Text Utilites

and Package Manager 10-4
'thng' resource type

for control panel extensions 5-6 to 5-8
time

getting the current 4-9 to 4-10
GMT 4-18
setting 4-10 to 4-12
setting. See Alarm Clock, Date & Time control panel

TimeDBRA global variable
limitations of 9-9

Time Manager

and operating-system queues 6-7
testing for version 1-25

TimeSCCDB global variable 9-9
TimeSCSIDB global variable 9-9
time-zone information 4-7, 4-18 to 4-21

reading 4-46 to 4-48
setting 4-46 to 4-48

ToggleDate function 4-42 to 4-44
toggle parameter block 4-30 to 4-32
TogglePB data type 4-30
Toolbox trap dispatch table 8-5

testing for base address 1-25
testing for discontiguous half 1-17

Toolbox traps 8-14
trace exception errors 2-8
Transcendental Functions Package

and Package Manager 10-4
Translation Manager

testing for availability 1-17
trap dispatcher 8-12, 8-15
trap dispatch table

testing for base address 1-21, 1-25
trap dispatch tables 8-5
trap macros 8-20 to 8-21
Trap Manager 8-3 to 8-33

getting a trap address 8-25 to 8-28
patching a trap 8-6 to 8-8, 8-23 to 8-25
routines 8-25 to 8-33
setting a trap address 8-28 to 8-33

trap-on-overflow exception errors 2-8
TRAPV instructions 2-8
TrueType fonts

testing for availability 1-18

U

unimplemented core routine errors 2-9
Unimplemented procedure 8-6, 8-32
UnpackBits procedure 3-8, 3-20, 3-35 to 3-36
unsigned wide record 4-32

V

ValidDate function 4-45 to 4-46
Vector Base Register (VBR) 8-11
Vertical Retrace Manager

and Queue Utilities 6-10, 6-12, 6-15
video device

default on startup. See default video device
video panels

creating 5-8

I N D E X

IN-9

VideoPanelType constant 5-8
virtual memory

testing for availability 1-25

W

word boundaries 3-5
words

defined 3-5
extracting from long words 3-18

working directory reference number, of System
file 1-14

WriteLocation procedure 4-47 to 4-48
WriteParam function 7-7 to 7-8, 7-12 to 7-13
wrong disk inserted errors 2-10

X, Y

X2Fix function 3-45
X2Frac function 3-46
XOR (logical) operation on bits 3-16 to 3-17

Z

zero divide errors 2-8

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages were created on an Apple
LaserWriter Pro 630 printer. Final page
negatives were output directly from text
files on an Optrotech SPrint 220
imagesetter. Line art was created
using Adobe Illustrator™ and
Adobe Photoshop™. PostScript™, the
page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Apple Courier.

LEAD WRITER

Sharon Everson

WRITERS

Ulla Hald, Tim Monroe,
Michael Abramowicz

DEVELOPMENTAL EDITORS

George Truett, Antonio Padial,
Laurel Rezeau

ILLUSTRATORS

Bruce Lee, Ruth Anderson

COVER DESIGNER

Barb Smyth

PRODUCTION EDITOR

Gerri Gray

PROJECT MANAGER

Trish Eastman

Special thanks to Tony Francis,
Jim Mensch, Alex Rosenberg

Acknowledgments to Sam Barone,
Ray Chiang, Lorraine Findlay,
Carl Hewitt, Nick Kledzik, Jim Luther,
Sue Luttner, Joseph Maurer,
Josephine Manuele, Brian McGhie,
Martin Minow, and the entire
Inside Macintosh team.

