
Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York

Don Mills, Ontario Wokingham, England Amsterdam Bonn

Sydney Singapore Tokyo Madrid San Juan

Paris Seoul Milan Mexico City Taipei

I N S I D E M A C I N T O S H

More Macintosh Toolbox

Apple Computer, Inc.

© 1993, Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, AppleShare, AppleTalk,
EtherTalk, ImageWriter, LaserWriter,
LocalTalk, Macintosh, MPW,
StyleWriter, and TokenTalk are
trademarks of Apple Computer, Inc.,
registered in the United States and
other countries.

Apple Desktop Bus, Balloon Help,
BalloonWriter, Chicago, Finder, Geneva,
KanjiTalk, QuickDraw, QuickTime,
ResEdit, System 7, and System 7.0 are
trademarks of Apple Computer, Inc.

Adobe Illustrator and PostScript are
trademarks of Adobe Systems
Incorporated, which may be registered
in certain jurisdictions.

AGFA is a trademark of Agfa-Gevaert.

America Online is a service mark of
Quantum Computer Services, Inc.

CompuServe is a registered service
mark of CompuServe, Inc.

FrameMaker is a registered trademark
of Frame Technology Corporation.

Helvetica and Palatino are registered
trademarks of Linotype Company.

Internet is a trademark of Digital
Equipment Corporation.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

ISBN 0-201-63299-3
1 2 3 4 5 6 7 8 9-CRW-9796959493
First Printing, October 1993

Library of Congress Cataloging-in-Publication Data

Inside Macintosh : more Macintosh toolbox / [Apple Computer, Inc.].
p. cm.

Includes index.
ISBN 0-201-63299-3
1. Macintosh (Computer)—Programming. 2. Macintosh Toolbox.

I. Apple Computer, Inc.
QA76.8.M315613 1993
005.265—dc20 93-33260

CIP

iii

Contents

Figures, Tables, and Listings xvii

Preface About This Book xxv

Format of a Typical Chapter xxvi

Conventions Used in This Book xxvii

Special Fonts xxvii

Types of Notes xxvii

Empty Strings xxviii

Assembly-Language Information xxviii

The Development Environment xxviii

Chapter 1 Resource Manager 1-1

Introduction to Resources 1-3

The Data Fork and the Resource Fork 1-4

Resource Types and Resource IDs 1-6

The Resource Map 1-8

Search Path for Resources 1-10

About the Resource Manager 1-12

Using the Resource Manager 1-13

Creating a Resource 1-15

Getting a Resource 1-18

Releasing and Detaching Resources 1-22

Opening a Resource Fork 1-24

Opening an Application’s Resource Fork 1-24

Creating and Opening a Resource Fork 1-25

Specifying the Current Resource File 1-28

Reading and Manipulating Resources 1-30

Writing Resources 1-36

Working With Partial Resources 1-40

Resource Manager Reference 1-42

Data Structure, Resource Types, and Resource IDs 1-42

The Resource Type 1-42

Resource IDs 1-46

Resource IDs of Owned Resources 1-47

Resource Names 1-49

Resource Manager Routines 1-49

Initializing the Resource Manager 1-50

Checking for Errors 1-51

Creating an Empty Resource Fork 1-53

iv

Opening Resource Forks 1-58

Getting and Setting the Current Resource File 1-68

Reading Resources Into Memory 1-71

Getting and Setting Resource Information 1-81

Modifying Resources 1-87

Writing to Resource Forks 1-92

Getting a Unique Resource ID 1-95

Counting and Listing Resource Types 1-97

Getting Resource Sizes 1-104

Disposing of Resources 1-106

Closing Resource Forks 1-110

Reading and Writing Partial Resources 1-111

Getting and Setting Resource Fork Attributes 1-116

Accessing Resource Entries in a Resource Map 1-119

Resource File Format 1-121

Resources in the System File 1-126

User Information Resources 1-127

Packages 1-128

Function Key Resources 1-129

Standard Icons 1-129

ROM Resources 1-134

Inserting the ROM Resource Map 1-134

Overriding ROM Resources 1-135

Summary of the Resource Manager 1-137

Pascal Summary 1-137

Constants 1-137

Data Type 1-139

Routines 1-139

C Summary 1-142

Constants 1-142

Data Type 1-143

Routines 1-144

Assembly-Language Summary 1-147

Trap Macros 1-147

Global Variables 1-147

Result Codes 1-148

Chapter 2 Scrap Manager 2-1

Introduction to the Scrap Manager 2-4

The Clipboard 2-10

Intelligent Cut and Paste 2-10

About the Scrap Manager 2-12

Location of the Scrap 2-12

Using the Scrap Manager 2-14

Getting Information About the Scrap 2-15

v

Putting Data in the Scrap 2-15

Handling the Cut Command 2-15

Handling the Copy Command 2-19

Handling Suspend Events 2-19

Getting Data From the Scrap 2-20

Handling the Paste Command 2-20

Handling Resume Events 2-25

Converting Data Between a Private Scrap and the Scrap 2-26

Converting Data Between the TextEdit Scrap and the Scrap 2-28

Handling Editing Operations in Dialog Boxes 2-31

Scrap Manager Reference 2-31

Data Structures 2-32

The Scrap Information Record 2-32

The Scrap Format Types 2-33

Routines 2-34

Getting Information About the Scrap 2-34

Writing Information to the Scrap 2-35

Reading Information From the Scrap 2-38

Transferring Data Between the Scrap in Memory and the Scrap on

Disk 2-40

Summary of the Scrap Manager 2-42

Pascal Summary 2-42

Constants 2-42

Data Types 2-42

Routines 2-42

C Summary 2-43

Data Types 2-43

Routines 2-44

Assembly-Language Summary 2-45

Data Structures 2-45

Result Codes 2-45

Chapter 3 Help Manager 3-1

About the Help Manager 3-6

How the Help Manager Displays Balloons 3-8

Default Help Balloons for Menus, Windows, and Icons 3-13

About BalloonWriter 3-17

Using the Help Manager 3-18

Providing Text or Pictures for Help Balloons 3-18

Defining Help Messages 3-19

Using Clear, Concise Phrases 3-20

Using Active Constructions 3-22

Using Parallel Structure 3-22

Offering Hints 3-22

Using Consistent Terminology 3-23

vi

Defining the Help Balloon Position 3-23

Specifying the Format for Help Messages 3-23

Specifying Options in Help Resources 3-25

Providing Help Balloons for Menus 3-27

Specifying Header Information for the 'hmnu' Resource 3-32

Specifying Help for Menu Items Missing From the Resource 3-33

Specifying Help for Menu Titles and for Items Dimmed by System

Software 3-36

Specifying Help for Menu Items 3-39

Specifying Help for a Changing Menu Item 3-43

Specifying Resources by Item Name 3-45

Providing Help Balloons for Menus You Disable for Dialog Boxes 3-47

Providing Help Balloons for Items in Dialog Boxes and Alert Boxes 3-51

Specifying Header Information for the 'hdlg' Resource 3-54

Specifying Missing-Item Information 3-54

Specifying Help for Items in an Alert or Dialog Box 3-56

Adding a Help Item to an Item List Resource 3-62

Using a Help Item Versus Using an 'hwin' Resource 3-63

Providing Help Balloons for Window Content 3-63

Providing Help Balloons for Static Windows 3-65

Specifying Header Information for the 'hrct' Resource 3-67

Specifying Help for Rectangles in Windows 3-67

Associating Help Resources With Static Windows 3-68

Specifying Header Information for the 'hwin' Resource 3-69

Specifying 'hdlg' or 'hrct' Resources in the 'hwin' Resource 3-69

Providing Help Balloons for Dynamic Windows 3-74

Overriding Help Balloons for Non-Document Icons 3-84

Specifying Header Information for the 'hfdr' Resource 3-85

Specifying Help for an Icon 3-85

Overriding Other Default Help Balloons 3-87

Specifying Header Information for the 'hovr' Resource 3-88

Overriding Default Help 3-88

Adding Menu Items to the Help Menu 3-90

Writing Your Own Balloon Definition Function 3-93

Help Manager Reference 3-95

Data Structures 3-95

The Help Message Record 3-95

The Help Manager String List Record 3-97

Help Manager Routines 3-97

Determining Balloon Help Status 3-98

Displaying and Removing Help Balloons 3-99

Enabling and Disabling Balloon Help Assistance 3-107

Adding Items to the Help Menu 3-108

Getting and Setting the Font Name and Size 3-110

Setting and Getting Information for Help Resources 3-114

Determining the Size of a Help Balloon 3-119

Getting the Message of a Help Balloon 3-122

vii

Application-Defined Routines 3-128

Resources 3-132

The Menu Help Resource 3-132

The Dialog-Item Help Resource 3-140

The Rectangle Help Resource 3-148

The Window Help Resource 3-154

The Finder Icon Help Resource 3-156

The Default Help Override Resource 3-160

Summary of the Help Manager 3-166

Pascal Summary 3-166

Constants 3-166

Data Types 3-168

Help Manager Routines 3-169

Application-Defined Routines 3-170

C Summary 3-170

Constants 3-170

Data Types 3-173

Help Manager Routines 3-173

Application-Defined Routines 3-175

Assembly-Language Summary 3-176

Data Structures 3-176

Trap Macros 3-176

Result Codes 3-177

Chapter 4 List Manager 4-1

Introduction to Lists 4-4

Appearance of Lists 4-4

Selection of List Items 4-9

Keyboard Navigation of Lists 4-15

Movement of a Selection With Arrow Keys 4-15

Extension of a Selection With Arrow Keys 4-16

Type Selection in a Text-Only List 4-20

Multiple Lists in a Window 4-20

About the List Manager 4-22

Using the List Manager 4-26

Creating a List 4-27

Adding Rows and Columns to a List 4-30

Responding to Events Affecting a List 4-32

Working With List Selections 4-34

Customizing Cell Highlighting 4-38

Manipulating List Cells 4-40

Searching a List for a Particular Item 4-43

Supporting Keyboard Navigation of Lists 4-45

Supporting Type Selection of List Items 4-45

Supporting Arrow-Key Navigation of Lists 4-48

viii

Supporting the Anchor Algorithm for Extending Lists With Arrow

Keys 4-52

Outlining the Current List 4-53

Writing Your Own List Definition Procedure 4-58

Responding to the Initialization Message 4-60

Responding to the Draw Message 4-60

Responding to the Highlighting Message 4-62

Responding to the Close Message 4-62

Using the Pictures List Definition Procedure 4-63

List Manager Reference 4-65

Data Structures 4-65

The Cell Record 4-65

The Data Handle 4-66

The List Record 4-66

List Manager Routines 4-70

Creating and Disposing of Lists 4-70

Adding and Deleting Columns and Rows To and From a List 4-73

Determining or Changing the Selection 4-77

Accessing and Manipulating Cell Data 4-79

Responding to Events Affecting Lists 4-84

Modifying a List’s Appearance 4-87

Searching a List for a Particular Item 4-90

Changing the Size of Cells and Lists 4-91

Getting Information About Cells 4-93

Application-Defined Routines 4-96

List Definition Procedures 4-96

Match Functions 4-99

Click-Loop Procedures 4-100

Summary of the List Manager 4-102

Pascal Summary 4-102

Constants 4-102

Data Types 4-102

List Manager Routines 4-103

Application-Defined Routines 4-105

C Summary 4-106

Constants 4-106

Data Types 4-106

List Manager Routines 4-107

Application-Defined Routines 4-109

Assembly-Language Summary 4-110

Data Structures 4-110

Trap Macros 4-111

ix

Chapter 5 Icon Utilities 5-1

Introduction to the Icon Utilities 5-3

About the Icon Utilities 5-6

Using the Icon Utilities 5-7

Drawing Icons in an Icon Family 5-8

Drawing an Icon Directly From a Resource 5-10

Getting an Icon Suite and Drawing One of Its Icons 5-11

Drawing Specific Icons From an Icon Family 5-12

Manipulating Icons 5-13

Drawing Icons That Are Not Part of an Icon Family 5-13

Icon Utilities Reference 5-17

Data Structure 5-17

The Color Icon Record 5-17

Icon Utilities Routines 5-18

Drawing Icons From Resources 5-19

Getting Icons From Resources That Don’t Belong to an Icon

Family 5-28

Disposing of Icons 5-30

Creating an Icon Suite 5-30

Getting Icons From an Icon Suite 5-34

Drawing Icons From an Icon Suite 5-35

Performing Operations on Icons in an Icon Suite 5-38

Getting and Setting the Label for an Icon Suite 5-40

Getting Label Information 5-41

Disposing of Icon Suites 5-42

Converting an Icon Mask to a Region 5-43

Determining Whether a Point or Rectangle Is Within an Icon 5-46

Working With Icon Caches 5-53

Application-Defined Routines 5-57

Icon Action Functions 5-57

Icon Getter Functions 5-58

Summary of the Icon Utilities 5-60

Pascal Summary 5-60

Constants 5-60

Data Types 5-62

Icon Utilities Routines 5-62

Application-Defined Routines 5-65

C Summary 5-65

Constants 5-65

Data Types 5-67

Icon Utilities Routines 5-68

Application-Defined Routines 5-71

Assembly-Language Summary 5-71

Data Structure 5-71

Trap Macros 5-72

Result Codes 5-73

x

Chapter 6 Component Manager 6-1

Introduction to Components 6-3

About the Component Manager 6-4

Using the Component Manager 6-6

Opening Connections to Components 6-7

Opening a Connection to a Default Component 6-7

Finding a Specific Component 6-8

Opening a Connection to a Specific Component 6-9

Getting Information About a Component 6-10

Using a Component 6-11

Closing a Connection to a Component 6-12

Creating Components 6-13

The Structure of a Component 6-13

Handling Requests for Service 6-18

Responding to the Open Request 6-19

Responding to the Close Request 6-21

Responding to the Can Do Request 6-22

Responding to the Version Request 6-22

Responding to the Register Request 6-23

Responding to the Unregister Request 6-24

Responding to the Target Request 6-25

Responding to Component-Specific Requests 6-26

Reporting an Error Code 6-28

Defining a Component’s Interfaces 6-28

Managing Components 6-30

Registering a Component 6-30

Creating a Component Resource 6-32

Establishing and Managing Connections 6-34

Component Manager Reference 6-37

Data Structures for Applications 6-37

The Component Description Record 6-37

Component Identifiers and Component Instances 6-40

Routines for Applications 6-41

Finding Components 6-42

Opening and Closing Components 6-44

Getting Information About Components 6-47

Retrieving Component Errors 6-51

Data Structures for Components 6-52

The Component Description Record 6-52

The Component Parameters Record 6-54

Routines for Components 6-56

Registering Components 6-57

Dispatching to Component Routines 6-63

Managing Component Connections 6-65

Setting Component Errors 6-69

Working With Component Reference Constants 6-70

xi

Accessing a Component’s Resource File 6-71

Calling Other Components 6-73

Capturing Components 6-75

Targeting a Component Instance 6-77

Changing the Default Search Order 6-78

Application-Defined Routines 6-79

Resources 6-80

The Component Resource 6-80

Summary of the Component Manager 6-86

Pascal Summary 6-86

Constants 6-86

Data Types 6-87

Routines for Applications 6-89

Routines for Components 6-90

Application-Defined Routines 6-92

C Summary 6-92

Constants 6-92

Data Structures 6-93

Routines for Applications 6-95

Routines for Components 6-96

Application-Defined Routines 6-97

Assembly-Language Summary 6-98

Trap Macros 6-98

Result Codes 6-99

Chapter 7 Translation Manager 7-1

About the Translation Manager 7-4

Opening Documents From the Finder 7-5

Opening Documents Within an Application 7-8

Translating Documents on the Desktop 7-9

Sharing Data Between Applications 7-10

Using the Translation Manager 7-10

Checking for the Translation Manager 7-12

Declaring the File Types Your Application Can Open 7-13

Declaring Custom Kind Strings 7-14

Using File-Opening Dialog Boxes 7-15

Translating Files Explicitly 7-17

Writing a Translation Extension 7-18

Creating a Translation Extension 7-19

Dispatching to Translation Extension-Defined Routines 7-24

Creating a Translation List 7-27

Identifying Files 7-32

Translating Files 7-33

Writing Application Translation Extensions 7-35

xii

Translation Manager Reference 7-36

Translation Manager Routines 7-36

Getting Translation Information 7-37

Translating Files 7-42

Resources 7-43

The Open Resource 7-44

The Kind Resource 7-45

Translation Extension Reference 7-46

Translation Extension Data Structures 7-46

File Type Specifications 7-46

File Translation Lists 7-48

Scrap Type Specifications 7-49

Scrap Translation Lists 7-49

Translation Extension Routines 7-50

Managing Translation Progress Dialog Boxes 7-50

Translation Extension-Defined Routines 7-54

File Translation Extension Routines 7-54

Scrap Translation Extension Routines 7-58

Summary of the Translation Manager 7-63

Pascal Summary 7-63

Constants 7-63

Data Types 7-63

Translation Manager Routines 7-64

C Summary 7-64

Constants 7-64

Data Types 7-65

Translation Manager Routines 7-65

Assembly-Language Summary 7-66

Data Structures 7-66

Trap Macros 7-66

Result Codes 7-67

Summary of Translation Extensions 7-68

Pascal Summary 7-68

Constants 7-68

Data Types 7-68

Translation Extension Routines 7-70

Translation Extension-Defined Routines 7-70

C Summary 7-71

Constants 7-71

Data Types 7-71

Translation Extension Routines 7-73

Translation Extension-Defined Routines 7-73

Assembly-Language Summary 7-74

Data Structures 7-74

Trap Macros 7-75

Result Codes 7-75

xiii

Chapter 8 Control Panels 8-1

About Control Panels 8-4

Control Panels 8-4

A Control Panel’s Resources 8-6

The Finder’s Interaction With Control Panels 8-7

Control Panels and System Extensions 8-8

About User Documentation for Control Panels 8-8

The Monitors Control Panel and Extensions to It 8-9

Creating Control Panel Files 8-12

Defining the User Interface for a Control Panel 8-12

Creating a Control Panel’s Resources 8-14

Resource IDs for Control Panels 8-14

Defining the Control Panel Rectangles 8-15

Creating the Item List Resource 8-17

Defining the Icon for a Control Panel 8-20

Specifying the Machine Resource 8-20

Creating the File Reference, Bundle, and Signature Resources 8-21

Providing Additional Resources for a Control Panel 8-22

Specifying the Font of Text in a Control Panel 8-23

Creating a Font Information Resource 8-23

Defining Text in a Control Panel as User Items 8-24

Writing a Control Panel Function 8-25

Determining If a Control Panel Can Run on the Current System 8-29

Initializing the Control Panel Items and Allocating Storage 8-29

Responding to Activate Events 8-33

Responding to Keyboard Events 8-37

Responding to Mouse Events 8-39

Responding to Update Events 8-43

Handling Text Defined as User Items 8-43

Responding to Null Events 8-45

Responding to the User Closing the Control Panel 8-45

Handling Edit Menu Commands 8-46

Handling Errors 8-47

Creating an Extension for the Monitors Control Panel 8-48

Designing the User Interface for a Monitors Extension 8-49

Creating the Required Resources for a Monitors Extension 8-51

Creating a Card Resource for a Monitors Extension 8-51

Defining a Rectangle for a Monitors Extension 8-52

Creating an Item List Resource for a Monitors Extension 8-54

Creating the Monitor Code Resource 8-56

Supplying Optional Resources for a Monitors Extension 8-56

Specifying an Icon for the Options Dialog Box 8-57

Specifying Version Information 8-58

Providing an Alternative Name for a Video Card 8-58

Supplying Gamma Table Resources 8-59

Creating File Reference, Bundle, and Signature Resources 8-59

xiv

Including a System Extension Resource 8-61

Writing a Monitors Extension Function 8-61

Handling the Startup Message 8-66

Performing Initialization 8-68

Responding to a Click in the OK Button 8-70

Responding to a Cancel Request 8-71

Handling Mouse Events for a Monitors Extension 8-71

Handling Keyboard Events 8-73

Including Another Control Panel Definition in a Monitors Extension

File 8-73

Control Panels Reference 8-74

Application-Defined Routines 8-74

Control Device Functions 8-74

Monitors Extension Functions 8-78

Resources 8-82

The Machine Resource 8-84

The Rectangle Positions Resource 8-85

The Font Information Resource 8-86

The Control Device Function Code Resource 8-87

The Card Resource 8-87

The Monitor Code Resource 8-88

The Rectangle Resource 8-88

Summary of Control Panels 8-89

Pascal Summary 8-89

Constants 8-89

Application-Defined Routines 8-90

C Summary 8-90

Constants 8-90

Application-Defined Routines 8-92

Chapter 9 Desktop Manager 9-1

About the Desktop Database 9-4

Using the Desktop Manager 9-4

Desktop Manager Reference 9-6

Data Structure 9-6

The Desktop Parameter Block 9-7

Routines 9-8

Locating, Opening, and Closing the Desktop Database 9-9

Reading the Desktop Database 9-12

Adding to the Desktop Database 9-17

Deleting Entries From the Desktop Database 9-20

Manipulating the Desktop Database Itself 9-23

Summary of the Desktop Manager 9-27

Pascal Summary 9-27

Constants 9-27

xv

Data Types 9-27

Routines 9-28

C Summary 9-30

Constants 9-30

Data Types 9-31

Routines 9-31

Assembly-Language Summary 9-34

Data Structures 9-34

Trap Macros 9-35

Result Codes 9-35

Glossary GL-1

Index IN-1

xvii

Figures, Tables, and Listings

Chapter 1 Resource Manager 1-1

Figure 1-1 The data fork and resource fork of a file 1-4
Figure 1-2 An application’s and a document’s data fork and resource

fork 1-6
Figure 1-3 Resource attributes 1-8
Figure 1-4 A typical search order for a specific resource 1-11
Figure 1-5 The ResEdit window for the SurfWriter application 1-15
Figure 1-6 The menus of the SurfWriter application 1-16
Figure 1-7 Getting a handle to a resource 1-19
Figure 1-8 A handle to a purgeable resource after the resource has been

purged 1-20
Figure 1-9 Detaching a resource 1-23
Figure 1-10 Resource ID of an owned resource 1-48
Figure 1-11 Format of a resource fork 1-121
Figure 1-12 Format of a resource header in a resource fork 1-122
Figure 1-13 Format of resource data for a single resource 1-122
Figure 1-14 Format of the resource map in a resource fork 1-123
Figure 1-15 Format of an item in a resource type list 1-123
Figure 1-16 Format of an entry in the reference list for a resource

type 1-124
Figure 1-17 Format of an item in a resource name list 1-124
Figure 1-18 Offsets in a resource fork and an entry for a single resource in a

reference list 1-125
Figure 1-19 Structure of a compiled ROM override ('ROv#') resource 1-136

Table 1-1 Typical locations of resources 1-12
Table 1-2 Standard resource types 1-43
Table 1-3 Resource types reserved for use by system software 1-46
Table 1-4 Document and application icons 1-130
Table 1-5 Folder icons 1-131
Table 1-6 System Folder icons 1-132
Table 1-7 Desktop icons 1-133
Table 1-8 Standard File Package icons 1-133

Listing 1-1 A menu in Rez input format 1-17
Listing 1-2 Safely changing a resource that is purgeable 1-21
Listing 1-3 Releasing a resource 1-22
Listing 1-4 Detaching a resource 1-24
Listing 1-5 Getting the file reference number for your application’s resource

fork 1-25
Listing 1-6 Creating an empty resource fork 1-26
Listing 1-7 Creating and opening a resource fork 1-27
Listing 1-8 Saving and restoring the current resource file 1-29
Listing 1-9 Getting a resource from a document file 1-32
Listing 1-10 Counting and indexing through resources 1-34

xviii

Listing 1-11 Saving a resource to a resource fork 1-38
Listing 1-12 Using partial resource routines 1-41

Chapter 2 Scrap Manager 2-1

Figure 2-1 Copying and pasting data between two applications using the
scrap 2-5

Figure 2-2 Writing both standard formats to the scrap 2-8
Figure 2-3 Using a private scrap 2-9
Figure 2-4 Intelligent cut and paste 2-11
Figure 2-5 Non-intelligent cut and paste 2-11
Figure 2-6 Location of the scrap in memory 2-13

Table 2-1 Actions your application perfoms in response to editing
commands 2-6

Listing 2-1 Writing data to the scrap 2-16
Listing 2-2 Writing data to a private scrap 2-18
Listing 2-3 Copying data from the scrap in response to suspend

events 2-19
Listing 2-4 Handling the Paste command using the scrap 2-21
Listing 2-5 Handling the Paste command using a private scrap 2-24
Listing 2-6 Handling resume events 2-25
Listing 2-7 Converting data between the scrap and a private scrap 2-27
Listing 2-8 Using TextEdit to handle the Cut command 2-29
Listing 2-9 Using TextEdit to handle the Paste command 2-30

Chapter 3 Help Manager 3-1

Figure 3-1 The Help menu for the Finder 3-7
Figure 3-2 A help balloon drawn with the standard balloon definition

function 3-8
Figure 3-3 The tip and hot rectangle for a help balloon 3-9
Figure 3-4 Standard balloon positions and their variation codes 3-10
Figure 3-5 Alternate positions of a help balloon 3-11
Figure 3-6 Default help balloons for the window frame 3-15
Figure 3-7 Default help balloons for the Apple and Help menus 3-16
Figure 3-8 Default help balloons for application and document icons 3-17
Figure 3-9 Help balloons for different states of the Cut command 3-29
Figure 3-10 A help balloon for an enabled menu title 3-37
Figure 3-11 A help balloon for a dimmed menu title 3-37
Figure 3-12 A help balloon for a menu title dimmed by the Dialog

Manager 3-38
Figure 3-13 A help balloon for menu items dimmed by the Dialog

Manager 3-38
Figure 3-14 A help balloon for a menu item 3-39
Figure 3-15 A help balloon for a dimmed menu item 3-40
Figure 3-16 Help balloons for a changing menu item 3-45
Figure 3-17 A help balloon in a modal dialog box 3-61
Figure 3-18 Static and dynamic windows 3-64

xix

Figure 3-19 A tool palette with a help balloon 3-70
Figure 3-20 A help balloon for a dialog box with a title 3-72
Figure 3-21 Default and custom help balloons for an application icon 3-86
Figure 3-22 The Help menu with an appended menu item 3-90
Figure 3-23 Structure of a compiled menu help ('hmnu') resource 3-133
Figure 3-24 Structure of an 'hmnu' component compiled with the

HMStringItem identifier 3-135
Figure 3-25 Structure of an 'hmnu' component compiled with the

HMStringResItem identifier 3-136
Figure 3-26 Structure of an 'hmnu' component compiled with the HMPictItem,

HMTEResItem, or HMSTRResItem identifier 3-137
Figure 3-27 Structure of an 'hmnu' component compiled with the HMSkipItem

identifier 3-138
Figure 3-28 Structure of a menu-item component compiled with the

HMCompareItem identifier 3-139
Figure 3-29 Structure of a menu-item component compiled with the

HMNamedResourceItem identifier 3-140
Figure 3-30 Structure of a compiled dialog-item help ('hdlg')

resource 3-141
Figure 3-31 Structure of an 'hdlg' component compiled with the

HMStringItem identifier 3-144
Figure 3-32 Structure of an 'hdlg' component compiled with the

HMStringResItem identifier 3-145
Figure 3-33 Structure of an 'hdlg' component compiled with the HMPictItem,

HMTEResItem, or HMSTRResItem identifier 3-146
Figure 3-34 Structure of an 'hdlg' component compiled with the HMSkipItem

identifier 3-148
Figure 3-35 Structure of a compiled rectangle help ('hrct') resource 3-149
Figure 3-36 Structure of an 'hrct' component compiled with the

HMStringItem identifier 3-150
Figure 3-37 Structure of an 'hrct' component compiled with the

HMStringResItem identifier 3-151
Figure 3-38 Structure of an 'hrct' component compiled with the HMPictItem,

HMTEResItem, or HMSTRResItem identifier 3-152
Figure 3-39 Structure of an 'hrct' component compiled with the HMSkipItem

identifier 3-153
Figure 3-40 Structure of a compiled window help ('hwin') resource 3-155
Figure 3-41 Structure of a compiled Finder icon help ('hfdr')

resource 3-157
Figure 3-42 Structure of an 'hfdr' component compiled with the

HMStringItem identifier 3-158
Figure 3-43 Structure of an 'hfdr' component compiled with the

HMStringResItem identifier 3-158
Figure 3-44 Structure of an 'hfdr' component compiled with the HMPictItem,

HMTEResItem, or HMSTRResItem identifier 3-159
Figure 3-45 Structure of an 'hfdr' component compiled with the HMSkipItem

identifier 3-160
Figure 3-46 Structure of a compiled default help override ('hovr')

resource 3-161
Figure 3-47 Structure of an 'hovr' component compiled with the

HMStringItem identifier 3-163
Figure 3-48 Structure of an 'hovr' component compiled with the

HMStringResItem identifier 3-163
Figure 3-49 Structure of an 'hovr' component compiled with the HMPictItem,

HMTEResItem, or HMSTRResItem identifier 3-164

xx

Figure 3-50 Structure of an 'hovr' component compiled with the HMSkipItem
identifier 3-165

Listing 3-1 Rez input for a partial 'hmnu' resource 3-31
Listing 3-2 Rez input for the missing-items component of an 'hmnu'

resource 3-35
Listing 3-3 Rez input for corresponding 'hmnu' and 'STR#'

resources 3-41
Listing 3-4 Rez input for an 'hmnu' resource that uses HMCompareItem for a

changing menu item 3-44
Listing 3-5 Rez input for specifying help messages with named

resources 3-46
Listing 3-6 Specifying an alternate 'hmnu' resource for a menu that your

application disables when it displays movable modal dialog
boxes 3-49

Listing 3-7 Reassigning 'hmnu' resources before displaying a movable modal
dialog box 3-50

Listing 3-8 Rez input for an item list resource and an 'hdlg'
resource 3-59

Listing 3-9 Rez input for corresponding 'hwin' and 'hrct'
resources 3-71

Listing 3-10 Rez input for specifying help for titled and untitled windows 3-72
Listing 3-11 Using a string resource as the help message for

HMShowBalloon 3-77
Listing 3-12 Using a picture resource as the help message for

HMShowBalloon 3-77
Listing 3-13 Using a handle to a picture resource as the help message for

HMShowBalloon 3-78
Listing 3-14 Using a string list resource as the help message for

HMShowBalloon 3-79
Listing 3-15 Using styled text resources as the help message for

HMShowBalloon 3-80
Listing 3-16 Using HMShowBalloon to display help balloons 3-82
Listing 3-17 Rez input for creating an 'hfdr' resource for an application

icon 3-86
Listing 3-18 Rez input for an 'hovr' resource 3-89
Listing 3-19 Rez input for specifying help balloons for items in the Help

menu 3-91
Listing 3-20 Responding to the user’s choice in a menu command 3-92
Listing 3-21 Using the HMExtractHelpMsg function 3-124
Listing 3-22 Using a tip function 3-131

Chapter 4 List Manager 4-1

Figure 4-1 A one-column, text-only list without a scroll bar 4-4
Figure 4-2 A one-column, text-only list with a vertical scroll bar 4-5
Figure 4-3 A list whose scroll bar has been disabled 4-6
Figure 4-4 A deactivated list 4-6
Figure 4-5 A list containing multiple columns and graphical elements 4-7
Figure 4-6 A list of items whose cells display more than one type of

information 4-8
Figure 4-7 A list with an item selected 4-9
Figure 4-8 Selection of a range of items in a list 4-10

xxi

Figure 4-9 Effect of dragging after Shift-clicking 4-11
Figure 4-10 Selection of discontiguous items in a list 4-12
Figure 4-11 Effect of Shift-clicking in a list that contains discontiguous

items 4-13
Figure 4-12 Notifying the user of nonstandard list behavior 4-14
Figure 4-13 Response to pressing the Command–Up Arrow keys 4-16
Figure 4-14 Response to user making a discontiguous selection, then pressing

Shift–Right Arrow followed by Shift–Left Arrow using the extend
algorithm 4-17

Figure 4-15 Response to Shift–Right Arrow using the anchor algorithm 4-19
Figure 4-16 An outlined list in a window with more than one list 4-21
Figure 4-17 Coordinates of cells 4-22
Figure 4-18 Selection flags 4-38
Figure 4-19 The Chooser’s use of a custom list definition procedure 4-58

Listing 4-1 Creating a list with a vertical scroll bar 4-27
Listing 4-2 Installing a list in a dialog box 4-29
Listing 4-3 Drawing a border around a list 4-30
Listing 4-4 Adding items from a string list to a one-column, text-only

list 4-31
Listing 4-5 Responding to a mouse-down event in a list 4-33
Listing 4-6 Responding to an update event in a list 4-33
Listing 4-7 Finding the first selected cell in a list 4-34
Listing 4-8 Finding the last selected cell in a list 4-35
Listing 4-9 Selecting a cell and deselecting other cells 4-36
Listing 4-10 Scrolling so that a particular cell is visible 4-37
Listing 4-11 Clearing all cell data 4-40
Listing 4-12 Getting a copy of the data of a cell 4-41
Listing 4-13 Directly accessing a cell’s data 4-41
Listing 4-14 Adding an item to a one-column, alphabetical text list 4-42
Listing 4-15 A match function 4-43
Listing 4-16 Searching a list for a cell containing certain text or the next cell

alphabetically 4-44
Listing 4-17 Resetting variables related to type selection 4-46
Listing 4-18 Selecting an item in response to a key-down event 4-47
Listing 4-19 Determining the location of a new cell in response to an arrow-key

event 4-49
Listing 4-20 Moving the selection in response to an arrow-key event 4-50
Listing 4-21 Extending the selection in response to an arrow-key event 4-51
Listing 4-22 Processing an arrow-key event 4-52
Listing 4-23 Drawing an outline around a list 4-54
Listing 4-24 Adding a list to the ring 4-55
Listing 4-25 Updating the outline of all lists in a window 4-56
Listing 4-26 Moving the outline to the next list in a window 4-57
Listing 4-27 Moving the outline to the previous list in a window 4-57
Listing 4-28 Processing messages to a list definition procedure 4-59
Listing 4-29 Using the default initialization method 4-60
Listing 4-30 Responding to the lDrawMsg message 4-61
Listing 4-31 Responding to the lHiliteMsg message 4-62
Listing 4-32 Responding to the lCloseMsg message 4-63
Listing 4-33 Setting the cell size of a list 4-63
Listing 4-34 Adding an icon to a list of icons 4-64

xxii

Chapter 5 Icon Utilities 5-1

Figure 5-1 The ResEdit view of an icon 5-4
Figure 5-2 An icon family 5-5

Listing 5-1 Drawing the icon from an icon family that is best suited to the
user’s display 5-10

Listing 5-2 Drawing the icon from an icon suite that is best suited to the
display device 5-11

Listing 5-3 Drawing a specific icon from an icon family or icon suite 5-12
Listing 5-4 Manipulating icon data in memory 5-13
Listing 5-5 Drawing an icon of resource type 'ICON' 5-14
Listing 5-6 Drawing an icon of resource type 'ICON' with a specific alignment

and transform 5-15
Listing 5-7 Drawing an icon of resource type 'cicn' 5-15
Listing 5-8 Drawing an icon of resource type 'cicn' with a specific alignment

and transform 5-16
Listing 5-9 Drawing an icon of resource type 'SICN' with a specific alignment

and transform 5-16

Chapter 6 Component Manager 6-1

Figure 6-1 The relationship between an application, the Component Manager,
and components 6-5

Figure 6-2 Supporting multiple component connections 6-34
Figure 6-3 Interaction between the componentFlags and

componentFlagsMask fields 6-40
Figure 6-4 Format of a component file 6-84
Figure 6-5 Structure of a compiled component ('thng') resource 6-85

Table 6-1 Request codes 6-14

Listing 6-1 Finding a component 6-9
Listing 6-2 Opening a specific component 6-10
Listing 6-3 Getting information about a component 6-10
Listing 6-4 Using a drawing component 6-11
Listing 6-5 A drawing component for ovals 6-16
Listing 6-6 Responding to an open request 6-20
Listing 6-7 Responding to a close request 6-21
Listing 6-8 Responding to the can do request 6-22
Listing 6-9 Responding to the setup request 6-26
Listing 6-10 Responding to the draw request 6-27
Listing 6-11 Responding to the erase request 6-27
Listing 6-12 Responding to the click request 6-27
Listing 6-13 Responding to the move to request 6-28
Listing 6-14 Registering a component 6-31
Listing 6-15 Rez input for a component resource 6-33
Listing 6-16 Delegating a request to another component 6-36

xxiii

Chapter 7 Translation Manager 7-1

Figure 7-1 The Finder’s application-unavailable alert box 7-5
Figure 7-2 The application-unavailable alert box for 'TEXT' and 'PICT'

documents 7-5
Figure 7-3 The translation choices dialog box 7-6
Figure 7-4 A translation progress dialog box 7-7
Figure 7-5 The modified application-unavailable alert box 7-7
Figure 7-6 The enhanced file-opening dialog box 7-8
Figure 7-7 Document Converter configuration dialog box 7-9
Figure 7-8 A translation group with multiple source and destination

types 7-29
Figure 7-9 A translation group with a single destination type 7-29
Figure 7-10 Point-to-point translation 7-30
Figure 7-11 Structure of a compiled open ('open') resource 7-44
Figure 7-12 Structure of a compiled kind ('kind') resource 7-45

Listing 7-1 Translation-specific selectors and response bit for
Gestalt 7-12

Listing 7-2 A sample resource of type 'open' 7-13
Listing 7-3 A sample resource of type 'kind' 7-15
Listing 7-4 Sample resources for a translation extension 7-22
Listing 7-5 Handling Component Manager request codes 7-25
Listing 7-6 Creating a file translation list 7-30
Listing 7-7 Identifying file types 7-33
Listing 7-8 Translating a document 7-34

Chapter 8 Control Panels 8-1

Figure 8-1 Two control panels, each with its own window 8-5
Figure 8-2 The General Controls control panel 8-6
Figure 8-3 Control panel icons in the Control Panels folder 8-9
Figure 8-4 The Monitors control panel 8-10
Figure 8-5 An Options dialog box for the SurfBoard video card 8-11
Figure 8-6 The River control panel interface 8-13
Figure 8-7 An icon for the River control panel file 8-14
Figure 8-8 The Color control panel 8-15
Figure 8-9 Coordinates defining the rectangles of the River control panel

display area 8-16
Figure 8-10 Example of an inactive control panel 8-34
Figure 8-11 An Options dialog box with standard controls 8-49
Figure 8-12 An Options dialog box with superuser controls 8-50
Figure 8-13 The SurfBoard monitors extension icon 8-51
Figure 8-14 Display area defined by a rectangle resource 8-53
Figure 8-15 The SurfBoard Options dialog box with superuser controls 8-54
Figure 8-16 Structure of a compiled machine ('mach') resource 8-84
Figure 8-17 Structure of a compiled rectangle positions ('nrct')

resource 8-85
Figure 8-18 Structure of a compiled font information ('finf') resource 8-86
Figure 8-19 Structure of a compiled card ('card') resource 8-87
Figure 8-20 Structure of a compiled rectangle ('RECT') resource 8-88

xxiv

Table 8-1 Possible settings for the machine resource masks 8-21
Table 8-2 Error codes and their meaning 8-47
Table 8-3 Messages from the Finder 8-76
Table 8-4 Messages from the Monitors control panel 8-80
Table 8-5 Possible settings for the machine resource masks 8-85

Listing 8-1 Rez input for a rectangle positions list ('nrct') resource 8-16
Listing 8-2 Rez input for an item list ('DITL') resource 8-18
Listing 8-3 Rez input for a machine ('mach') resource 8-21
Listing 8-4 Rez input for a file reference ('FREF') resource 8-21
Listing 8-5 Rez input for a signature resource 8-22
Listing 8-6 Rez input for a bundle ('BNDL') resource 8-22
Listing 8-7 A control panel’s static text defined as user items 8-24
Listing 8-8 A control device function 8-27
Listing 8-9 Initializing a control panel: Allocating memory and setting

controls 8-31
Listing 8-10 Responding to an activate event 8-35
Listing 8-11 Responding to a keyboard event 8-38
Listing 8-12 Responding to the user’s interaction with controls 8-41
Listing 8-13 Responding to update events 8-43
Listing 8-14 Drawing text defined as user items 8-44
Listing 8-15 Terminating a control device function when the user closes the

control panel 8-45
Listing 8-16 Responding to Edit menu commands 8-46
Listing 8-17 Rez input for a card ('card') resource 8-52
Listing 8-18 Rez input for a rectangle ('RECT') resource 8-53
Listing 8-19 Rez input for the SurfBoard monitors extension item list

resource 8-55
Listing 8-20 Rez input for icon family resources for a monitors

extension 8-57
Listing 8-21 Rez input for a version ('vers') resource 8-58
Listing 8-22 Rez input for the SurfBoard string list resource 8-59
Listing 8-23 Rez input for a file reference resource of a monitors

extension 8-60
Listing 8-24 Rez input for a bundle resource of a monitors extension 8-60
Listing 8-25 A monitors extension function 8-64
Listing 8-26 Handling the startup message 8-66
Listing 8-27 Using a normal user rectangle or extending it to display superuser

controls 8-67
Listing 8-28 Initializing a monitors extension 8-69
Listing 8-29 Drawing a line to separate superuser controls 8-70
Listing 8-30 Responding when a user clicks a control 8-72

xxv

P R E F A C E

About This Book

This book, Inside Macintosh: More Macintosh Toolbox, together with the book

Inside Macintosh: Macintosh Toolbox Essentials, describes features you can build

into your Macintosh application and documents the system software routines

for implementing those features.

For information about events, windows, menus, controls, alert boxes, and

dialog boxes and about how your application interacts with the Finder, see

Inside Macintosh: Macintosh Toolbox Essentials.

This book, More Macintosh Toolbox, describes how you can enhance your

application by supporting copy and paste and providing messages for help

balloons. In addition, it describes other features you may want to use in your

application, such as scrolling lists in dialog boxes and icons in windows. It

also explains how to create resources, components, translation extensions, and

control panels.

To read and write resources, see the chapter “Resource Manager.” This

chapter describes how you can use resources to store the descriptions of user

interface elements such as menus, windows, controls, dialog boxes, and icons.

You can also use resources to store variable settings, such as the location of

the window at the time the user closes it. When the user opens the document

again, your application can read the information in the resource and restore

the window to its previous location.

To support copy-and-paste operations in your application, see the chapter

“Scrap Manager.” By using the Scrap Manager, you can allow users to copy

and paste data between documents created by your application and

documents created by other applications.

To provide messages for help balloons for elements of your application, see

the chapter “Help Manager.” Help balloons are rounded-rectangle windows

that contain explanatory information for the user. With tips pointing at the

objects they annotate, help balloons look like the bubbles used for dialog in

comic strips. Help balloons are turned on by the user from the Help menu;

when Balloon Help assistance is on, a help balloon appears whenever the user

moves the cursor over the balloon’s hot rectangle.

To create lists in your application’s dialog boxes, including lists that contain

scroll bars, see the chapter “List Manager.” You can use the List Manager to

create one-column or multicolumn lists. Lists are useful for allowing the user

to select one or more items from a group of items.

To display icons in a window or dialog box of your application, see the

chapter “Icon Utilities.” By using Icon Utilities routines, you can

automatically draw the icon from an icon family that is best suited for the

current bit depth of the monitor.

xxvi

P R E F A C E

To use or create components, see the chapter “Component Manager.”

Components can provide your application with various services such as

image compression or decompression services. You can also provide services

to other applications by creating your own component.

To direct the translation of documents from one format to another, see the

chapter “Translation Manager.” Macintosh Easy Open uses the Translation

Manager to automatically provide some translation services for your

application. Optionally, you can enhance your application’s interaction with

Macintosh Easy Open or provide your own translation services.

To create a control panel or an extension to the Monitors control panel, see the

chapter “Control Panels.” Control panels allow the user to set preferences for

systemwide features, such as the the speaker volume, desktop pattern, or

picture displayed by a screen saver. Extensions to the Monitors control panel

should be created only by the manufacturer of a video device.

To get information from the desktop database, see the chapter “Desktop

Manager.” The desktop database contains information used by the Finder,

such as icon definitions and their associated file types, as well as any

comments that the user has added to the information window for desktop

objects.

If you are new to programming on the Macintosh computer, you should read

Inside Macintosh: Overview for an introduction to general concepts of

Macintosh programming and read Macintosh Human Interface Guidelines for a

complete discussion of user interface guidelines and principles that every

Macintosh application should follow.

Some related topics can be found in other Inside Macintosh books. For

information on how to read and write to the data fork of a file, see the chapter

“Introduction to File Management” in Inside Macintosh: Files. For information

about drawing into a window or other graphics port, see Inside Macintosh:
Imaging with QuickDraw. For information on handling text in your application,

see Inside Macintosh: Text. For information on communicating with other

applications, see Inside Macintosh: Interapplication Communication.

Format of a Typical Chapter
Almost all chapters in this book follow a standard structure. For example, the

chapter “Resource Manager” contains these sections:

■ “Introduction to Resources.” This section presents a general introduction to
resources, resource types, and resource forks.

■ “About the Resource Manager.” This section provides an overview of the
features provided by the Resource Manager.

■ “Using the Resource Manager.” This section describes the tasks you can
accomplish using the Resource Manager. It describes how to use the most
common routines, gives related user interface information, provides code
samples, and supplies additional information.

xxvii

P R E F A C E

■ “Resource Manager Reference.” This section provides a complete reference
to the Resource Manager by describing the data structures, routines, and
resources it uses. Each routine description also follows a standard format,
which presents the routine declaration followed by a description of every
parameter of the routine. Some routine descriptions also give additional
descriptive information, such as assembly-language information or
result codes.

■ “Summary of the Resource Manager.” This section provides the Pascal and
C interfaces for the constants, data structures, routines, and result codes
associated with the Resource Manager. It also includes relevant assembly-
language interface information.

Conventions Used in This Book
Inside Macintosh uses various conventions to present information. Words that

require special treatment appear in specific fonts or font styles. Certain

information, such as the contents of registers, use special formats so that you

can scan them quickly.

Special Fonts

All code listings, reserved words, and names of actual data structures,

fields, constants, parameters, and routines are shown in Courier (this
is Courier).

Words that appear in boldface are key terms or concepts and are defined in

the Glossary.

Types of Notes

There are several types of notes used in this book.

Note

A note like this contains information that is interesting but not essential
to an understanding of the main text. (An example appears on
page 1-9.) ◆

IMPORTANT

A note like this contains information that is essential for an
understanding of the main text. (An example appears on page 1-5.) ▲

▲ W A R N I N G

Warnings like this indicate potential problems that you should be aware
of as you design your application. Failure to heed these warnings could
result in system crashes or loss of data. (An example appears on page
page 1-5.) ▲

xxviii

P R E F A C E

Empty Strings

This book occasionally instructs you to provide an empty string in routine

parameters and resources. How you specify an empty string depends on what

language and development environment you are using. In Rez input files and

in C code, for example, you specify an empty string by using two double

quotation marks (""), and in Pascal you specify an empty string by using two

single quotation marks ('').

Assembly-Language Information

Inside Macintosh provides information about the registers for specific routines

like this:

In the “Assembly-Language Summary” section at the end of each chapter,

Inside Macintosh presents information about the fields of data structures in

this format:

The left column indicates the byte offset of the field from the beginning of the

data structure. The second column shows the field name as defined in the

MPW Pascal interface files; the third column indicates the size of that field.

The fourth column provides a brief description of the use of the field. For a

complete description of each field, see the discussion of the data structure in

the reference section of the chapter.

The Development Environment
The system software routines described in this book are available using

Pascal, C, or assembly-language interfaces. How you access these routines

depends on the development environment you are using. When showing

system software routines, this book uses the Pascal interface available with

the Macintosh Programmer’s Workshop (MPW).

All code listings in this book are shown in Pascal (except for listings that

describe resources, which are shown in Rez-input format). They show

methods of using various routines and illustrate techniques for accomplishing

particular tasks. All code listings have been compiled and in many cases

tested. However, Apple Computer, Inc., does not intend for you to use these

Registers on entry

A0 Contents of register A0 on entry

Registers on exit

D0 Contents of register D0 on exit

0 what word event code

2 message long event message

6 when long ticks since startup

xxix

P R E F A C E

code samples in your application. You can find the location of code listings in

the list of figures, tables, and listings beginning on page xvii. If you know the

name of a particular routine (such as DoPictBalloon or MyPlotAnICON)

shown in a code listing, you can find the page on which the routine occurs by

looking under the entry “sample routines” in the index of this book.

To make the code listings in this book more readable, they show only limited

error handling. You need to develop your own techniques for handling errors.

This book occasionally illustrates concepts by referring to a sample

application called SurfWriter; this book also refers to the sample applications

SurfPaint and SurfDB. These applications are not actual products of Apple

Computer, Inc. This book also refers to a River control panel and SurfBoard

display card. These are not actual products of Apple Computer, Inc. In

addition, the name River Change Systems is used to represent a fictitious

company.

APDA is Apple’s worldwide source for over three hundred development

tools, technical resources, training products, and information for anyone

interested in developing applications on Apple platforms. Customers receive

the quarterly APDA Tools Catalog featuring all current versions of Apple and

the most popular third-party development tools. Ordering is easy; there are

no membership fees, and application forms are not required for most

products. APDA offers convenient payment and shipping options including

site licensing.

To order products or to request a complimentary copy of the APDA Tools
Catalog, contact

APDA

Apple Computer, Inc.

P.O. Box 319

Buffalo, NY 14207-0319

Telephone: 800-282-2732 (United States)
800-637-0029 (Canada)
716-871-6555 (elsewhere in the world)

Fax: 716-871-6511

AppleLink: APDA

America Online: APDA

CompuServe: 76666,2405

Internet: APDA@applelink.apple.com

xxx

P R E F A C E

If you provide commercial products and services, call 408-974-4897 for

information on the developer support programs available from Apple.

For information on registering signatures, file types, and other technical

information, contact

Macintosh Developer Technical Support

Apple Computer, Inc.

20525 Mariani Avenue, M/S 303-2T

Cupertino, CA 95014-6299

Contents 1-1

C H A P T E R 1

Contents

Resource Manager

Introduction to Resources 1-3

The Data Fork and the Resource Fork 1-4

Resource Types and Resource IDs 1-6

The Resource Map 1-8

Search Path for Resources 1-10

About the Resource Manager 1-12

Using the Resource Manager 1-13

Creating a Resource 1-15

Getting a Resource 1-18

Releasing and Detaching Resources 1-22

Opening a Resource Fork 1-24

Opening an Application’s Resource Fork 1-24

Creating and Opening a Resource Fork 1-25

Specifying the Current Resource File 1-28

Reading and Manipulating Resources 1-30

Writing Resources 1-36

Working With Partial Resources 1-40

Resource Manager Reference 1-42

Data Structure, Resource Types, and Resource IDs 1-42

The Resource Type 1-42

Resource IDs 1-46

Resource IDs of Owned Resources 1-47

Resource Names 1-49

Resource Manager Routines 1-49

Initializing the Resource Manager 1-50

Checking for Errors 1-51

Creating an Empty Resource Fork 1-53

Opening Resource Forks 1-58

Getting and Setting the Current Resource File 1-68

Reading Resources Into Memory 1-71

C H A P T E R 1

1-2 Contents

Getting and Setting Resource Information 1-81

Modifying Resources 1-87

Writing to Resource Forks 1-92

Getting a Unique Resource ID 1-95

Counting and Listing Resource Types 1-97

Getting Resource Sizes 1-104

Disposing of Resources 1-106

Closing Resource Forks 1-110

Reading and Writing Partial Resources 1-111

Getting and Setting Resource Fork Attributes 1-116

Accessing Resource Entries in a Resource Map 1-119

Resource File Format 1-121

Resources in the System File 1-126

User Information Resources 1-127

Packages 1-128

Function Key Resources 1-129

Standard Icons 1-129

ROM Resources 1-134

Inserting the ROM Resource Map 1-134

Overriding ROM Resources 1-135

Summary of the Resource Manager 1-137

Pascal Summary 1-137

Constants 1-137

Data Type 1-139

Routines 1-139

C Summary 1-142

Constants 1-142

Data Type 1-143

Routines 1-144

Assembly-Language Summary 1-147

Trap Macros 1-147

Global Variables 1-147

Result Codes 1-148

C H A P T E R 1

Introduction to Resources 1-3

Resource Manager

This chapter describes how to use the Resource Manager to read and write resources.

You typically use resources to store the descriptions for user interface elements such as

menus, windows, controls, dialog boxes, and icons. In addition, your application can

store variable settings, such as the location of a window at the time the user closes the

window, in a resource. When the user opens the document again, your application can

read the information in the resource and restore the window to its previous location.

This chapter begins with an introduction to basic concepts you should understand before

you begin to use Resource Manager routines. The rest of the chapter describes how to

■ create resources

■ get a handle to a resource

■ release and detach resources

■ create and open a resource fork

■ set the current resource file

■ read and manipulate resources

■ write resources

■ read and write partial resources

To use this chapter, you should be familiar with basic memory management on

Macintosh computers and the Memory Manager. See the chapter “Introduction to

Memory Management” in Inside Macintosh: Memory for details. You should also be

familiar with the File Manager and the Standard File Package. See Inside Macintosh: Files

for this information.

For information on how to create resources using a high-level resource editor like the

ResEdit application or a resource compiler like Rez, see ResEdit Reference and

Macintosh Programmer’s Workshop Reference. (Rez is provided with Apple’s Macintosh

Programmer’s Workshop [MPW]; both MPW and ResEdit are available through APDA.)

To get information on the format of an individual resource type, see the documentation

for the manager that interprets that resource. For example, to get the format of a 'MENU'

resource, refer to the chapter “Menu Manager” in Inside Macintosh: Macintosh Toolbox
Essentials.

Introduction to Resources

A resource is data of any kind stored in a defined format in a file’s resource fork. The

Resource Manager keeps track of resources in memory and allows your application to

read or write resources.

Resources are a basic element of every Macintosh application. Resources typically

include data that describes menus, windows, controls, dialog boxes, sounds, fonts, and

icons. Because such resources are separate from the application’s code, you can easily

create and manage resources for menu titles, dialog boxes, and other parts of your

C H A P T E R 1

Resource Manager

1-4 Introduction to Resources

application without recompiling. Resources also simplify the process of translating

interface elements containing text into other languages.

Applications and system software interpret the data for a resource according to its

resource type. You usually create resources using a resource compiler or resource editor.

This book shows resources in Rez format (Rez is a resource compiler provided with

MPW). You can also use other resource tools, such as ResEdit, to create the resources for

your application.

Inside Macintosh: Macintosh Toolbox Essentials describes how other managers, such as the

Menu Manager, Window Manager, Dialog Manager, and Control Manager, use the

Resource Manager to read resources for you. For example, you can use the Menu

Manager, Window Manager, Dialog Manager, and Control Manager to read descriptions

of your application’s menus, windows, dialog boxes, and controls from resources. These

managers all interpret a resource’s data appropriately once it is read into memory.

Although you’ll typically use these managers to read resources for you, you can also use

the Resource Manager directly to read and write resources.

The Data Fork and the Resource Fork

In Macintosh system software, a file is a named, ordered sequence of bytes stored on a

volume and divided into two forks, the data fork and the resource fork. The data fork

usually contains data created by the user; the application creating the file can store and

interpret the data in the data fork in whatever manner is appropriate. The resource fork

of a file consists of a resource header, the resources themselves, and a resource map.

Figure 1-1 shows the data fork and resource fork of a file.

Figure 1-1 The data fork and resource fork of a file

C H A P T E R 1

Resource Manager

Introduction to Resources 1-5

The resource header includes offsets to the beginning of the resource data and

to the resource map. The resource map includes information about the resources in the

resource fork and offsets to the location of each resource.

A Macintosh file always contains both a resource fork and a data fork, although one or

both of those forks can be empty. The data fork of a document file typically contains data

created by the user, and the resource fork contains any document-specific resources, such

as preference settings and the document’s last window position. The resource fork of an

application file (that is, any file with the file type 'APPL') typically includes resources

that describe the application’s menus, windows, controls, dialog boxes, and icons, as

well as the application’s 'CODE' resources. The resource fork of a file is also called a

resource file, because in some respects you can treat it as if it were a separate file.

IMPORTANT

You should store all language-dependent data of your application, such
as text used in help balloons and dialog boxes, as resources. If you do
this, you can begin to localize your application by editing your
application’s resources without recompiling the application code. ▲

When your application writes data to a file, it writes to either the file’s resource fork or

its data fork. Typically, you use File Manager routines to read from and write to a file’s

data fork and Resource Manager routines to read from and write to a file’s resource fork.

Whether you store data in the data fork or the resource fork of a document file depends

largely on whether you can structure that data in a useful manner as a resource. For

example, it’s often convenient to store document-specific settings, such as the

document’s previous window size and location, as a resource in the document’s resource

fork. Data that the user is likely to edit is usually stored in the data fork of a document.

▲ W A R N I N G

Don’t use the resource fork of a file for data that is not in resource
format. The Resource Manager assumes that any information in a
resource fork can be interpreted according to the standard resource
format described in this chapter. ▲

C H A P T E R 1

Resource Manager

1-6 Introduction to Resources

Figure 1-2 illustrates the typical contents of the data forks and resource forks of an

application file and a document file.

Figure 1-2 An application’s and a document’s data fork and resource fork

A resource fork can contain at most 2727 resources. The Resource Manager uses a linear

search when searching a resource fork’s resource types and resource IDs. In general, you

should not create more than 500 resources of the same type in any one resource fork.

Resource Types and Resource IDs
You typically use resources to store structured data, such as icons and sounds, and

descriptions of menus, controls, dialog boxes, and windows. When you create a resource,

you assign it a resource type and resource ID. A resource type is a sequence of four

characters that uniquely identifies a specific type of resource, and a resource ID

identifies a specific resource of a given type by number. (You can also use a resource

name instead of a resource ID to identify a resource of a given type. However, a resource

ID is preferred because it’s generally more convenient to generate unique numbers than

unique names.)

For example, to create a description of a menu in a resource, you create a resource of

type 'MENU' and give it a resource ID or resource name that differs from any other

'MENU' resources that you have defined. In general, resource numbers 128 through

32767 are available for your use, although the numbers you can use for some types of

resources are more restricted. (See “Resource IDs” on page 1-46 for more information

about restrictions on the resource IDs used with specific resource types.)

C H A P T E R 1

Resource Manager

Introduction to Resources 1-7

System software defines a number of standard resource types. Here are some examples:

You can use these resource types to define their corresponding elements (for example,

use a 'WIND' resource to define a window). You can also create your own resource types

if your application needs resources other than the standard resource types defined by the

system software. See Table 1-2 on page 1-43 for a complete list of standard resource types.

The Resource Manager does not interpret the format of an individual resource type.

When you request a resource of a particular type with a given resource ID, the Resource

Manager looks for the specified resource and, if it finds it, reads the resource into

memory and returns a handle to it.

Your application or other system software routines can use the Resource Manager to

read resources into memory. For example, when you use the Window Manager to read a

description of a window from a 'WIND' resource, the Window Manager uses the

Resource Manager to read the resource into memory. Once the resource is in memory, the

Window Manager interprets the resource’s data and creates a window with the

characteristics described by the resource.

System software stores certain resources for its own use in the System file’s resource

fork. Although many of these resources are used only by the system software, your

application can use some of them if necessary. For example, the standard images for the

I-beam and wristwatch cursors are stored as resources of type 'CURS' in the System file.

Your application can use these resources to change the appearance of the cursor.

Resource
type Description

'ALRT' Alert box

'CNTL' Control

'CODE' Application code segment

'DITL' Item list in a dialog box or alert box

'DLOG' Dialog box

'ICN#' Large (32-by-32 pixel) black-and-white icon, with mask

'ICON' Large (32-by-32 pixel) black-and-white icon, without mask

'MBAR' Menu bar

'MENU' Menu

'NFNT' Bitmapped font

'STR ' String

'STR#' String list

'WIND' Window

'movv' QuickTime movie

'snd ' Sound

C H A P T E R 1

Resource Manager

1-8 Introduction to Resources

The Resource Map
The resource map in the resource fork of a file contains entries for each resource in the

resource fork. Each entry lists the resource’s resource type, resource ID, name, attributes,

and location. When the Resource Manager opens the resource fork of a file, it reads the

resource map into memory. The resource map remains in memory until the file is closed.

The entries in the resource map on disk give the locations of resources as offsets to

their locations in the resource fork. The entries in the resource map in memory specify

the location of resources using handles—a handle whose value is NIL, if the resource is

not currently in memory, or a handle to the resource’s location in memory.

Resource attributes are flags that tell the Resource Manager how to handle the resource.

For example, resource attributes specify whether the resource should be read into

memory immediately when the Resource Manager opens the resource fork or read

into memory only when needed; whether the resource should be read into the

application or system heap; and whether the resource is purgeable.

The resource attributes for a resource are described by bits in the low-order byte of an

integer value. Figure 1-3 shows which bits correspond to each resource attribute.

Figure 1-3 Resource attributes

When it first opens a resource fork, the Resource Manager examines the resource

attributes for each resource listed in the resource map. If the preloaded attribute of the

resource is set, the Resource Manager reads the resource into memory and specifies its

location by setting the resource’s resource map entry in memory to contain a handle to

the resource data. If the preloaded attribute of the resource is not set, the Resource

Manager does not read the resource into memory; instead, it specifies the resource’s

location in the resource map entry in memory with a handle whose value is NIL.

C H A P T E R 1

Resource Manager

Introduction to Resources 1-9

When searching for a resource, the Resource Manager always looks in the resource map

in memory, not the resource map of the resource fork on disk. If the resource map in

memory specifies a handle for a particular resource, the Resource Manager uses the

resource in memory; if the resource map in memory specifies a handle whose value is

NIL, the Resource Manager reads the resource from the resource fork on disk into

memory.

You can set the system heap attribute of a resource if you want to read a resource into the

system heap. In most cases you should not set this attribute. If you do not set the system

heap attribute, the Resource Manager reads the resource into relocatable blocks of your

application’s heap.

The purgeable attribute specifies whether the Resource Manager can purge a resource

from memory to make room in memory for other data. If you specify that a resource is

purgeable, you need to use the Resource Manager to make sure the resource is still in

memory before referring to it through its resource handle.

Some resources must not be purgeable. For example, the Menu Manager expects menu

resources to remain in memory, so you should not set the purgeable attribute of a

menu resource. Other resources, such as windows, controls, and dialog boxes, do not

have to remain in memory once the corresponding user interface element has been

created. You should set the purgeable attribute for these kinds of resources.

You can set the locked attribute of a resource if you do not want the resource to be

relocatable or purgeable. The locked attribute overrides the purgeable attribute; when

the locked attribute is set, the resource is not purgeable, even if the purgeable attribute

is set.

Note

If both the preloaded attribute and the locked attribute are set, the
Resource Manager loads the resource as low in the heap as possible. ◆

You can set the protected attribute of a resource to ensure that your application doesn’t

accidentally change the resource ID or name of the resource, modify its contents, or

remove the resource from its resource fork. In most cases you do not need to set this

attribute. If you do set the protected attribute of a resource, you can still use a Resource

Manager routine to change the protected attribute or to set other attributes of the

resource.

The changed attribute applies only while the resource map is in memory. You should

specify a value of 0 for the bit representing the changed attribute of a resource stored on

disk. The Resource Manager sets the changed attribute of a resource’s entry in the

resource map in memory whenever your application changes a resource using the

ChangedResource procedure, changes a resource map entry using the SetResAttrs

or SetResInfo procedure, or adds a resource using the AddResource procedure.

C H A P T E R 1

Resource Manager

1-10 Introduction to Resources

Search Path for Resources
When your application uses a Resource Manager routine to read or perform an operation

on a resource, the Resource Manager follows a defined search path to find the resource.

The file whose resource fork the Resource Manager searches first is referred to as the

current resource file. Whenever your application opens a resource fork of a file, that file

becomes the current resource file. Thus, the current resource file usually corresponds to

the file whose resource fork was opened most recently. However, your application can

change the current resource file if needed by using the UseResFile procedure.

Most of the Resource Manager routines assume that the current resource file is the file on

whose resource fork they should operate or, in the case of a search, the resource fork in

which to begin the search. If the Resource Manager can’t find the resource in the current

resource file, it continues searching until it either finds the resource or has searched all

files in the search path.

On startup, system software calls the InitResources function to initialize the

Resource Manager. The Resource Manager creates a special heap zone within the system

heap and builds a resource map that points to ROM-resident resources. It opens the

resource fork of the System file and reads its resource map into memory.

When a user opens your application, system software opens your application’s resource

fork. When your application opens a file, your application typically opens both the file’s

data fork and the file’s resource fork. When the Resource Manager searches for a

resource, it normally looks first in the resource map in memory of the last resource fork

that your application opened. So, if your application has a single file open, the

Resource Manager looks first in the resource map for that file’s resource fork. If

the Resource Manager doesn’t find the resource there, it continues to search the resource

maps of each resource fork open to your application in reverse order of opening (that is,

the most recently opened is searched first). After looking in the resource maps of the

resource files your application has opened, the Resource Manager searches your

application’s resource map. If it doesn’t find the resource there, it searches the System

file’s resource map.

This default search order allows your application to use resources defined in the System

file, to override resources defined in the System file, to share a single resource among

several files by storing it in your application’s resource fork, and to override

application-defined resources with document-specific resources.

When the Resource Manager opens a resource fork, the File Manager assigns that

resource fork a file reference number, which is a unique number identifying an access

path to the resource fork. Your application needs to keep track of the file reference

number of its own resource fork, so that it can refer specifically to that resource fork

when necessary. Your application may also need to keep track of the file reference

numbers for other resource forks that it opens.

For example, the SurfWriter application stores in its own resource fork the first few bars

of Beethoven’s Fifth Symphony as a resource of type 'snd '. The SurfWriter application

plays this sound whenever the user writes more than one page of text per hour. The user

can change this sound for all documents created by SurfWriter by using SurfWriter’s

Preferences command to specify or record a new sound.

C H A P T E R 1

Resource Manager

Introduction to Resources 1-11

SurfWriter also allows the user to associate a sound with a specific document by

using SurfWriter’s Set Reward Sound command to specify or record a new sound. When

SurfWriter wants to play the sound, it uses the Resource Manager to read the resource of

type 'snd ' with the resource ID kProductiveWriter. Figure 1-4 shows the search

path the Resource Manager takes to find this sound resource.

Figure 1-4 A typical search order for a specific resource

System software opens SurfWriter’s resource fork when the user opens the SurfWriter

application. On startup, SurfWriter opens its preferences file (SurfWriter Preferences).

When the user opens a SurfWriter document, SurfWriter opens the document’s data fork

and resource fork. When SurfWriter attempts to read an 'snd ' resource, the Resource

Manager looks first in the resource map in memory of the current resource file (in the

example illustrated in Figure 1-4, the SurfWriter document) for the requested resource. If

the Resource Manager doesn’t find the resource, it searches the resource map of the next

most recently opened file (in this example, SurfWriter Preferences). It continues

searching the resource forks in memory of any resource forks open to the SurfWriter

C H A P T E R 1

Resource Manager

1-12 About the Resource Manager

application until it either finds the resource or has searched the last resource map in its

search path. Typically the last resource map searched by the Resource Manager is the

resource map of the System file. This allows your application to use resources in the

System file as a default.

Table 1-1 summarizes the typical locations of resources used by an application.

Although you can take advantage of the Resource Manager’s search order to find a

particular resource, in general your application should set the current resource file to the

file whose resource fork contains the desired resource before reading and writing

resource data. In addition, you can restrict the Resource Manager search path by using

Resource Manager routines that look only in the current resource file’s resource map

when searching for a specific resource.

About the Resource Manager

The Resource Manager provides routines that allow your application (and system

software) to create, delete, open, read, modify, and write resources; get information

about them; and alter the Resource Manager’s search path.

Most Macintosh applications commonly read data from resources either indirectly, by

calling other system software routines (such as Menu Manager routines) that in turn call

the Resource Manager, or directly, by calling Resource Manager routines. At any time

during your application’s execution, at least two resource forks from which it can read

information are likely to be open: the System file’s resource fork and your application’s

resource fork.

Table 1-1 Typical locations of resources

Resource fork Resources contained in resource fork

Resource fork of System file Sounds, icons, cursors, and other elements available
for use by all applications, and code resources that
manage user interface elements such as menus,
controls, and windows

Resource fork of application Static data (such as text used in dialog boxes or help
balloons) and descriptions of menus, windows,
controls, icons, and other elements

Resource fork of application’s
preferences file

Data that encodes the user’s global preferences for the
application

Resource fork of document Data that defines characteristics specific only to this
document, such as its last size and location

C H A P T E R 1

Resource Manager

Using the Resource Manager 1-13

As previously described, system software opens the System file’s resource fork at startup

and your application’s resource fork at application launch. Your application is likely to

open the resource forks of several other files at various times while it is running. For

example, if your application saves the last position and size of a window (as determined

by the user), you can use Resource Manager routines to write this information to an

application-defined resource in the document file’s resource fork. The next time the user

opens the document, your application can use the Resource Manager to read the

information saved in this resource and position the document accordingly.

You can store the user’s general preferences, such as the default font or paper size, in

your application’s preferences file. You store a preferences file in the Preferences folder of

the System Folder. The name of an application’s preferences file typically consists of the

name of the application followed by the word “Preferences.” If your application can be

shared by multiple users, you can use the Resource Manager to create a separate

preferences file for each user.

Using the Resource Manager

You use the Resource Manager to perform operations on resources. To determine

whether certain features of the Resource Manager are available (support for FSSpec

records and partial resources), use the Gestalt function.

Two commonly used Resource Manager routines use a file system specification

(FSSpec) record: the FSpCreateResFile procedure and the FSpOpenResFile

function. These routines are available only in System 7 or later. Call the

Gestalt function with the gestaltFSAttr selector to determine whether the

Resource Manager routines that use FSSpec records exist. If the bit indicated by the

constant gestaltHasFSSpecCalls is set, then the routines are available.

CONST

gestaltFSAttr = 'fs '; {Gestalt selector for }

{ File Mgr attributes}

gestaltHasFSSpecCalls = 1; {check this bit in the }

{ response parameter}

In addition, the Resource Manager routines for reading and writing partial resources are

available only in System 7 or later versions of system software. Use the Gestalt

function to determine whether these features are available. Call the Gestalt function

with the gestaltResourceMgrAttr selector to determine whether the routines for

handling partial resources exist. If the bit indicated by the constant

gestaltPartialRsrcs is set, then the Resource Manager routines for handling partial

resources are available. For more information about the Gestalt function, see Inside
Macintosh: Operating System Utilities.

C H A P T E R 1

Resource Manager

1-14 Using the Resource Manager

CONST

gestaltResourceMgrAttr = 'rsrc'; {Gestalt selector for }

{ Resource Mgr attributes}

gestaltPartialRsrcs = 0; {check this bit in the }

{ response parameter}

You can use the ResError function to retrieve errors that may result from calling

Resource Manager routines. Resource Manager procedures do not report error

information directly. Instead, after calling a Resource Manager procedure your

application should call the ResError function to determine whether an error occurred.

Resource Manager functions usually return NIL or –1 as the function result when there’s

an error. For Resource Manager functions that return –1, your application can call the

ResError function to determine the specific error that occurred. For Resource Manager

functions that return handles, your application should always check whether the value

of the returned handle is NIL. If it is, your application can use ResError to obtain

specific information about the nature of the error. Note, however, that in some cases

ResError returns noErr even though the value of the returned handle is NIL.

The rest of this section describes how to create a resource using ResEdit or the Rez

resource compiler. It then describes how to use Resource Manager routines to

■ get a handle to a resource and modify a purgeable resource safely

■ release and detach resources

■ create and open a resource fork

■ set the current resource file (the file whose resource fork the Resource Manager
searches first)

■ read and manipulate resources

■ write resources

■ read and write partial resources

For detailed descriptions of all Resource Manager routines, see “Resource Manager

Reference” beginning on page 1-42. For information on writing data to a file’s data fork,

see Inside Macintosh: Files.

C H A P T E R 1

Resource Manager

Using the Resource Manager 1-15

Creating a Resource
You typically define the user interface elements of your application, such as menus,

windows, dialog boxes, and controls, by specifying descriptions of these elements in

resources. You can then use Menu Manager, Window Manager, Dialog Manager, or

Control Manager routines to create these elements—based on their resource

descriptions—as needed. You can create resource descriptions using a resource editor,

such as ResEdit, which lets you create the resources in a visual manner; or you can

provide a textual, formal description of resources in a file and then use a resource

compiler, such as Rez, to compile the description into a resource. Figure 1-5 shows the

window ResEdit displays for the SurfWriter application. This window lists all of the

resources in the resource fork of the SurfWriter application.

Figure 1-5 The ResEdit window for the SurfWriter application

C H A P T E R 1

Resource Manager

1-16 Using the Resource Manager

You can use ResEdit to examine any of your application’s resources. For example, to

view your application’s 'MENU' resources, double-click that resource in the ResEdit

window. Figure 1-6 shows how ResEdit displays the menus of the SurfWriter application.

Figure 1-6 The menus of the SurfWriter application

C H A P T E R 1

Resource Manager

Using the Resource Manager 1-17

Listing 1-1 shows the definition of SurfWriter’s Apple menu in Rez input format.

Listing 1-1 A menu in Rez input format

#define mApple 128

resource 'MENU' (mApple, preload) { /*resource ID, preload resource*/

mApple, /*menu ID*/

textMenuProc, /*uses standard menu definition */

/* procedure*/

0b1111111111111111111111111111101, /*enable About item, */

/* disable divider, */

/* enable all other items*/

enabled, /*enable menu title*/

apple, /*menu title*/

{

/*first menu item*/

"About SurfWriter…", /*text of menu item*/

noicon, nokey, nomark, plain; /*item characteristics*/

/*second menu item*/

"-", /*item text (divider)*/

noicon, nokey, nomark, plain /*item characteristics*/

}

};

Your application can also create, modify, and save resources as needed using various

Resource Manager routines.

You can store your application-specific resources in the application file itself. You need

not add resources to your application after it is created. Instead, store any

document-specific resources in the relevant document and store user preferences in a

preferences file in the Preferences folder of the System Folder.

To retrieve resources from your application’s resource fork, you usually use other

managers (such as the Menu Manager or Window Manager). To retrieve resources other

than menus, windows, dialog boxes, or controls, you usually use Resource Manager

routines.

C H A P T E R 1

Resource Manager

1-18 Using the Resource Manager

To retrieve a resource from a document file or a preferences file, your application needs

to open the resource fork of the file and then use Resource Manager routines to retrieve

any resources in the file. The section that follows, “Getting a Resource,” describes how

the Resource Manager returns a handle to a resource at your application’s request and

how to modify a purgeable resource safely. The sections “Opening a Resource Fork” and

“Reading and Manipulating Resources” beginning on page 1-24 and page 1-30,

respectively, describe in detail how to use Resource Manager routines to open and read

resources.

Getting a Resource
You usually use the GetResource function to read data from resources other than

menus, windows, dialog boxes, and controls. You supply the resource type and resource

ID of the desired resource, and the GetResource function searches the resource maps

of open resource forks (according to the search path described in “Search Path for

Resources” beginning on page 1-10) for that resource’s entry.

If the GetResource function finds an entry for the requested resource in the resource

map and the resource is in memory (that is, if the resource map in memory does not

specify the resource’s location with a handle whose value is NIL), GetResource returns

a handle to the resource. If the resource is listed in the resource map but is not in

memory (the resource map in memory specifies the resource’s location with a handle

whose value is NIL), GetResource reads the resource data from disk into memory,

replaces the entry for the resource’s location with a handle to the resource, and returns to

your application a handle to the resource. For a resource that cannot be purged (that is,

whose purgeable attribute is not set) you can use the returned handle to refer to the

resource in other Resource Manager routines. (Handles to purgeable resources are

discussed later in this section.)

For example, this code uses GetResource to get a handle to an 'snd ' resource with

resource ID 128.

VAR

resourceType: ResType;

resourceID: Integer;

myHndl: Handle;

resourceType := 'snd ';

resourceID := 128;

myHndl := GetResource(resourceType, resourceID);

C H A P T E R 1

Resource Manager

Using the Resource Manager 1-19

Figure 1-7 shows how GetResource returns a handle to a resource at your application’s

request.

Figure 1-7 Getting a handle to a resource

Note that the handle returned to your application is a copy of the handle in the resource

map. The resource map contains a handle to the resource data, and the Resource

Manager returns a handle to the same block of memory for use by your application. If

you use GetResource to get a handle to a resource that has the purgeable attribute set

or if you intend to modify such a resource, keep the following discussion in mind.

C H A P T E R 1

Resource Manager

1-20 Using the Resource Manager

If a resource is marked purgeable and the Memory Manager determines that it must

purge a resource to make more room in your application’s heap, it releases the memory

occupied by the resource. In this case, the handle to the resource data is no longer valid,

because the handle’s master pointer is set to NIL. If your application attempts to use the

handle previously returned by the Resource Manager, the handle no longer refers to the

resource. Figure 1-8 shows a handle to a resource that is no longer valid, because the

Memory Manager has purged the resource. To avoid this situation, you should call the

LoadResource procedure to make sure that the resource is in memory before

attempting to refer to it.

Figure 1-8 A handle to a purgeable resource after the resource has been purged

C H A P T E R 1

Resource Manager

Using the Resource Manager 1-21

If you need to make changes to a purgeable resource using routines that may cause the

Memory Manager to purge the resource, you should make the resource temporarily not

purgeable. You can use the Memory Manager procedures HGetState, HNoPurge, and

HSetState for this purpose. After calling HGetState and HNoPurge, change the

resource as necessary. To make the changes permanent, use the ChangedResource and

WriteResource procedures; then call HSetState when you’re finished. Listing 1-2

illustrates the use of these routines.

Listing 1-2 Safely changing a resource that is purgeable

VAR

resourceType: ResType;

resourceID: Integer;

myHndl: Handle;

state: SignedByte;

resourceType := 'snd ';

resourceID := 128;

{read the resource into memory}

myHndl := GetResource(resourceType, resourceID);

state := HGetState(myHndl); {get the state of the handle}

HNoPurge(myHndl); {mark the handle as not purgeable}

{modify the resource as needed}

{...}

ChangedResource(myHndl); {mark the resource as changed}

WriteResource(myHndl); {write the resource to disk}

HSetState(myHndl, state); {restore the handle's state}

Although you’ll usually want to use WriteResource to write a resource’s data to disk

immediately (as shown in Listing 1-2), you can instead use the SetResPurge procedure

and specify TRUE in the install parameter. If you do this, the Memory Manager calls

the Resource Manager before purging data specified by a handle. The Resource Manager

determines whether the passed handle is that of a resource in your application’s heap,

and, if so, calls WriteResource to write the resource to disk if its changed attribute is

set. You can call the SetResPurge procedure and specify FALSE in the install

parameter to restore the normal state, so that the Memory Manager purges resource data

in memory without checking with the Resource Manager.

C H A P T E R 1

Resource Manager

1-22 Using the Resource Manager

Releasing and Detaching Resources
When you’ve finished using a resource, you can call ReleaseResource to release the

memory associated with that resource. For a given resource, the ReleaseResource

procedure releases the memory associated with the resource, setting the handle’s master

pointer to NIL, thus making your application’s handle to the resource invalid. (This is

similar to the situation shown in Figure 1-8.) After releasing a resource, use another

Resource Manager routine if you need to use the resource again. For example, the code

in Listing 1-3 first uses GetResource to get a handle to a resource, manipulates

the resource, then uses ReleaseResource when the application has finished

using the resource. If the application needs the resource later, it must get a valid handle

to the resource by reading the resource into memory again (using GetResource, for

example).

Listing 1-3 Releasing a resource

PROCEDURE MyGetAndPlaySoundResource(resourceID: Integer);

VAR

myHndl: Handle;

BEGIN

myHndl := GetResource('snd ', resourceID);

{use the resource}

{when done, release the resource}

ReleaseResource(myHndl);

END;

Your application can also use the DetachResource procedure to replace a resource’s

handle in the resource map with a handle whose value is NIL. However, the

DetachResource procedure does not release the memory associated with the resource.

You can use DetachResource when you want your application to access the resource’s

data directly, without the aid of the Resource Manager, or when you need to pass the

handle to a routine that does not accept a resource handle. (For example, the

AddResource routine used in Listing 1-4 on page 1-24 takes a handle to data, not a

handle to a resource.) Once you detach a resource, the Resource Manager does not

recognize the resource’s handle in the resource map in memory as a valid handle to a

resource, but your application can still manipulate the resource’s data through its own

handle to the data.

Figure 1-9 shows how both your application and the Resource Manager have a handle to

a resource after your application calls GetResource. The figure also shows how the

Resource Manager replaces the handle in the resource map in memory with a handle

whose value is NIL when your application calls DetachResource.

C H A P T E R 1

Resource Manager

Using the Resource Manager 1-23

Figure 1-9 Detaching a resource

C H A P T E R 1

Resource Manager

1-24 Using the Resource Manager

You can also easily copy a resource by first reading in the resource using GetResource,

detaching the resource using DetachResource, then copying the resource by using

AddResource (and specifying a new resource ID). Listing 1-4 uses this technique to

copy a resource within the current resource file.

Listing 1-4 Detaching a resource

PROCEDURE MyCopyAResource(resourceType: ResType;

resourceID: Integer;

VAR myHndl: Handle);

VAR

newResourceID: Integer;

BEGIN

myHndl := GetResource(resourceType, resourceID);

DetachResource(myHndl); {detach the resource}

newResourceID := UniqueID(resourceType);

AddResource(myHndl, resourceType, newResourceID, '');

END;

Opening a Resource Fork
When your application opens a file’s resource fork or data fork, the File Manager returns

a file reference number. You use a file reference number in File Manager routines (and

in a few Resource Manager routines) to identify a unique access path to an open fork of a

specific file. Even though the file reference number of the data fork and the resource fork

usually match, you should use the file reference number of a file’s resource fork in

Resource Manager routines; don’t assume that it has the same value as the file reference

number for the same file’s data fork.

Opening an Application’s Resource Fork

Because system software automatically opens your application’s resource fork when the

user opens your application, you do not need to open it explicitly. However, you should

save your application’s file reference number. You can do this by calling the

CurResFile function early in your initialization procedure. (The CurResFile function

returns the file reference number of the current resource file.) Listing 1-5 shows the part

of SurfWriter’s initialization procedure that gets the file reference number of the

application’s resource fork.

C H A P T E R 1

Resource Manager

Using the Resource Manager 1-25

Listing 1-5 Getting the file reference number for your application’s resource fork

PROCEDURE MyInitialize;

BEGIN

 MaxApplZone; {extend heap zone to limit}

 MoreMasters; {get 64 more master pointers}

MoreMasters; {get 64 more master pointers}

 InitGraf(@thePort); {initialize QuickDraw}

 InitFonts; {initialize Font Manager}

InitWindows; {initialize Window Manager}

TEInit; {initialize TextEdit}

InitDialogs(Nil); {initialize Dialog Manager}

InitCursor; {set cursor to arrow}

{get the file ref num of this app's resource file }

{ and save it in a global variable}

gAppsResourceFork := CurResFile;

{do other initialization}

END;

SurfWriter uses an application-defined global variable (gAppsResourceFork) to refer

to its resource fork in subsequent calls to Resource Manager routines.

Creating and Opening a Resource Fork

To save resources in the resource fork of a file, you must first create the resource fork (if it

doesn’t already exist in a form that can be used by the Resource Manager) and obtain a

file reference number for it. After creating a new resource fork, you must open it before

writing any resources to it. You’ll usually want to save the file reference number of any

resource fork that your application opens.

To create a resource fork, use the FSpCreateResFile procedure. This procedure

requires four parameters: a file-system specification record (identifying the name and

location of the file), the signature of the application creating the file, the file type of the

file, and the script code for the file.

A file system specification record is a standard format for identifying a file or directory.

The file system specification record for files and directories is available in System 7 and

later versions of system software and is defined by the FSSpec data type.

TYPE FSSpec = {file system specification}

RECORD

vRefNum: Integer; {volume reference number}

parID: LongInt; {directory ID of parent directory}

name: Str63; {filename or directory name}

END;

C H A P T E R 1

Resource Manager

1-26 Using the Resource Manager

Certain File Manager routines—those that open a file’s data fork—also take a file system

specification record as a parameter. You can use the same FSSpec record in Resource

Manager routines that create or open the file’s resource fork.

If the file specified by the FSSpec record doesn’t already exist (that is, if the file has

neither a data fork nor a resource fork), the FSpCreateResFile procedure creates a

resource file—that is, a resource fork, including a resource map. In this case, the file has a

zero-length data fork. The FSpCreateResFile procedure also sets the creator, type,

and script code fields of the file’s catalog information record to the specified values.

If the file specified by the FSSpec record already exists and includes a resource fork with

a resource map, FSpCreateResFile does nothing, and the ResError function returns

an appropriate result code. If the data fork of the file specified by the FSSpec record

already exists but the file has a zero-length resource fork, FSpCreateResFile creates

an empty resource fork and resource map for the file; it also changes the creator, type,

and script code fields of the catalog information record of the file to the specified values.

Listing 1-6 shows a function that creates a new resource fork, including a resource map.

Listing 1-6 Creating an empty resource fork

FUNCTION MyCreateResourceFork (myFSSpec: FSSpec): OSErr;

BEGIN

FSpCreateResFile(myFSSpec, gAppSignature, 'TEXT',

 smSystemScript);

MyCreateResourceFork := ResError;

END;

After creating a resource fork, you can open it using the FSpOpenResFile function. The

FSpOpenResFile function returns a file reference number that you can use to change

or limit the Resource Manager’s search order or to close a resource fork.

After opening a resource fork, you can write resources to it using the routines described

in “Writing Resources” beginning on page 1-36. (You can also write to a resource fork

using File Manager routines; in general, you should use the Resource Manager.) When

you are finished using a resource fork that your application has specifically opened, you

should close it using the CloseResFile procedure. The Resource Manager

automatically closes any resource forks opened by your application that are still open

when your application calls ExitToShell.

C H A P T E R 1

Resource Manager

Using the Resource Manager 1-27

Listing 1-7 shows a routine that uses the application-defined function

MyCreateResourceFork (shown in Listing 1-6) to create a new resource fork, opens

the resource fork, writes resources to it, then closes the resource fork when it is finished.

Listing 1-7 Creating and opening a resource fork

FUNCTION MyCreateAndOpenResourceFork (myFSSpec: FSSpec): OSErr;

VAR

myErr: OSErr;

myRefNum: Integer;

BEGIN

{create a resource file}

myErr := MyCreateResourceFork(myFSSpec);

IF myErr = noErr THEN {open the resource file}

myRefNum := FSpOpenResFile(myFSSpec, fsRdWrPerm);

IF ResError = noErr THEN {write to the resource file}

myErr := MyWriteResourcesToFile(myRefNum);

CloseResFile(myRefNum); {close the resource file}

MyCreateAndOpenResourceFork := myErr;

END;

Note that when you open a resource fork, the Resource Manager resets the search path

so that the file whose resource fork you just opened becomes the current resource file.

For example, suppose the SurfWriter application file is open, and the user opens

document A, then document B. SurfWriter opens the resource forks of both documents.

In this case, the search order is

1. document B (the current resource file)

2. document A

3. the SurfWriter application

4. the System file

If the user is working with document A and SurfWriter uses the UseResFile procedure

to set the current resource file to document A, the new search order is

1. document A (the current resource file)

2. the SurfWriter application

3. the System file

C H A P T E R 1

Resource Manager

1-28 Using the Resource Manager

If the user opens another document, document C, and SurfWriter opens its resource fork,

the new search order becomes

1. document C (the current resource file)

2. document B

3. document A

4. the SurfWriter application

5. the System file

Specifying the Current Resource File

When you request a resource, the Resource Manager follows the search order described

in “Search Path for Resources” on page 1-10. To change the starting point of the search or

to restrict the search to the resource fork of a specific file, you can use CurResFile and

UseResFile. To get the file reference number for the current resource file, use the

CurResFile function. You can then use the UseResFile procedure to set the current

resource file to the desired file, use other Resource Manager routines to retrieve any

desired resources, and then use UseResFile again to restore the current resource file to

its previous setting.

For example, the SurfWriter application allows users to specify or record either a special

reward sound that applies only to a specific document or a general reward sound that

can apply to any document. SurfWriter stores a document-specific reward sound

resource in the document and the general reward sound resource in either the SurfWriter

Preferences file (if the reward sound is user-defined) or in the application file. If several

documents are open and SurfWriter needs to play a document-specific reward sound,

SurfWriter attempts to get the sound from that document without searching the resource

forks of any other documents that might be open. If the document doesn’t have the

specified reward sound, SurfWriter searches for the sound in the resource fork of the

preferences file and, if necessary, of the application file and System file.

Listing 1-8 shows how the SurfWriter application uses CurResFile and UseResFile

to get and play the appropriate reward sound for a given document. All reward sounds

share the same resource ID, kProductiveWriter. The application-defined procedure

MyGetAndPlayRewardSoundResource first checks whether the reward sound setting

for the document specifies a sound stored in that document or a general reward sound

stored in the preferences file or elsewhere. If the document has a reward sound, the

procedure sets the current resource file to that document, searches just that document’s

resource fork for the sound, and plays the sound. If the document doesn’t have a reward

sound, the MyGetAndPlayRewardSoundResource procedure sets the current resource

file to SurfWriter Preferences, searches the entire resource chain from that point on for

the sound, and plays the sound. This scheme ensures that SurfWriter always plays the

correct reward sound, even if different reward sound resources in different documents

share the same resource ID.

C H A P T E R 1

Resource Manager

Using the Resource Manager 1-29

Listing 1-8 Saving and restoring the current resource file

PROCEDURE MyGetAndPlayRewardSoundResource (refNum: Integer);

VAR

myHndl: Handle;

prevResFile: Integer;

BEGIN

prevResFile := CurResFile; {save the current resource file}

IF MyHasDocumentRewardSound(refNum) THEN

BEGIN

{first set the current resource file to a specific document}

UseResFile(refNum);

{get reward sound from the document using Get1Resource }

{ to limit search to current resource file and avoid }

{ searching the resource forks of any other open documents}

myHndl := Get1Resource('snd ', kProductiveWriter);

END

ELSE

BEGIN

{set current resource file to SurfWriter Preferences}

UseResFile(gSurfPrefsResourceFork);

{get reward sound resource using GetResource to search }

{ entire resource chain starting with preferences file}

myHndl := GetResource('snd ', kProductiveWriter);

END;

IF myHndl <> NIL THEN

BEGIN

MyPlayThisSound(myHndl);

ReleaseResource(myHndl);

END;

UseResFile(prevResFile);{restore the current resource }

{ file to its previous setting}

END;

C H A P T E R 1

Resource Manager

1-30 Using the Resource Manager

The MyGetAndPlayRewardSoundResource procedure saves the reference number of

the current resource file and then calls the application-defined routine

MyHasDocumentRewardSound to check whether the document has a reward sound

associated with it. If so, MyGetAndPlayRewardSoundResource sets the current

resource file to the value specified by the refNum parameter. The procedure then uses

the Get1Resource function to get, from the current resource file, a handle to the

resource of type 'snd ' with the ID specified by kProductiveWriter.

If the document doesn’t have a specified reward sound,

MyGetAndPlayRewardSoundResource uses UseResFile to set the current resource

file to the SurfWriter Preferences file’s resource fork and GetResource to search the

entire resource chain from that point. If GetResource locates a resource with the

specified resource ID in the SurfWriter Preferences file, it returns a handle to that

resource; if not, it continues to search until it finds the specified resource or reaches the

end of the resource chain. This ensures that the procedure won’t get a user-defined

resource with the same resource ID in some other SurfWriter document that is currently

open instead of the general reward sound saved in SurfWriter Preferences or in

SurfWriter itself.

If the call to Get1Resource or GetResource is successful (that is, if it does not return

a handle whose value is NIL), MyGetAndPlayRewardSoundResource plays the

appropriate reward sound, then uses ReleaseResource to release the memory

occupied by the sound resource. Finally, the procedure uses UseResFile to restore the

current resource file to its previous setting.

Reading and Manipulating Resources
The Resource Manager provides a number of routines that read resources from a

resource fork. When you request a resource, the Resource Manager follows the search

path described in “Search Path for Resources” on page 1-10. That is, the Resource

Manager searches each resource fork open to your application, beginning with the

current resource file, and continues until it either finds the resource or reaches the end of

the chain.

You can change where the Resource Manager starts its search using the UseResFile

procedure. (See the previous section, “Specifying the Current Resource File,” for details.)

You can limit the search to only the current resource file by using the Resource Manager

routines that contain a “1” in their names, such as Get1Resource,

Get1NamedResource, Get1IndResource, Unique1ID, and Count1Resources.

To get a resource, you can specify it by its resource type and resource ID or by its

resource type and resource name. By convention, most applications refer to a resource by

its resource type and resource ID, rather than by its resource type and resource name.

C H A P T E R 1

Resource Manager

Using the Resource Manager 1-31

You can use the SetResLoad procedure to enable and disable automatic loading of

resource data into memory for routines that return handles to resources. Such routines

normally read the resource data into memory if it’s not already there. This is the default

setting and the effect of calling SetResLoad with the load parameter set to TRUE. If

you call SetResLoad with the load parameter set to FALSE, subsequent calls to

routines that return handles to resources will not load the resource data into memory.

Instead, such routines return a handle whose master pointer is set to NIL unless the

resource is already in memory. This setting is useful when you want to read from the

resource map without reading the resource data into memory. To read the resource data

into memory after a call to SetResLoad with the load parameter set to FALSE, call

LoadResource.

▲ W A R N I N G

If you call SetResLoad with the load parameter set to FALSE, be sure
to call SetResLoad with the load parameter set to TRUE as soon as
possible. Other parts of system software that call the Resource Manager
rely on the default setting (the load parameter set to TRUE), and some
routines won’t work if resources are not loaded automatically. ▲

In addition to the SetResLoad procedure, you can use the preloaded attribute of an

individual resource to control loading of that resource’s data into memory. The Resource

Manager loads a resource into memory when it first opens a resource fork if the

resource’s preloaded attribute is set.

Note

If both the preloaded attribute and the locked attribute are set, the
Resource Manager loads the resource as low in the heap as possible. ◆

Here’s an example of a situation in which an application might need to read a resource.

The SurfWriter application always saves the last position of a document window when

the user saves the document, storing this information in a resource that it has defined for

this purpose. SurfWriter defines a resource with resource type rWinState and resource

ID kLastWinStateID to store information about the window (its position and its

state—that is, either the user state or the standard state). SurfWriter’s window state

resource has this format, defined by a record of type MyWindowState:

TYPE MyWindowState =

RECORD

userStateRect: Rect; {user state rectangle}

zoomState: Boolean; {window state: TRUE = standard; }

{ FALSE = user}

END;

MyWindowStatePtr = ^MyWindowState;

MyWindowStateHnd = ^MyWindowStatePtr;

C H A P T E R 1

Resource Manager

1-32 Using the Resource Manager

Listing 1-9 shows a procedure called MySetWindowPosition that the SurfWriter

application uses in the process of opening a document. The SurfWriter application stores

the last location of a document in its window state resource. When SurfWriter opens the

document again, it uses MySetWindowPosition to read the document’s window state

resource and uses the resource data to set the window’s location.

Listing 1-9 Getting a resource from a document file

PROCEDURE MySetWindowPosition (myWindow: WindowPtr);

VAR

myData: MyDocRecHnd;

lastUserStateRect: Rect;

stdStateRect: Rect;

curStateRect: Rect;

myRefNum: Integer;

myStateHandle: MyWindowStateHnd;

resourceGood: Boolean;

savePort: GrafPtr;

myErr: OSErr;

BEGIN

myData := MyDocRecHnd(GetWRefCon(myWindow)); {get document record}

HLock(Handle(myData)); {lock the record while manipulating it}

{open the resource fork and get its file reference number}

myRefNum := FSpOpenResFile(myData^^.fileFSSpec, fsRdWrPerm);

myErr := ResError;

IF myErr <> noErr THEN

Exit(MySetWindowPosition);

{get handle to rectangle that describes document's last window position}

myStateHandle := MyWindowStateHnd(Get1Resource(rWinState,

kLastWinStateID));

IF myStateHandle <> NIL THEN {handle to data succeeded}

BEGIN {retrieve the saved user state}

lastUserStateRect := myStateHandle^^.userStateRect;

resourceGood := TRUE;

END

ELSE

BEGIN

lastUserStateRect.top := 0; {force MyVerifyPosition to calculate }

resourceGood := FALSE; { the default position}

END;

C H A P T E R 1

Resource Manager

Using the Resource Manager 1-33

{verify that user state is practical and calculate new standard state}

MyVerifyPosition(myWindow, lastUserStateRect, stdStateRect);

IF resourceGood THEN {document had state resource}

IF myStateHandle^^.zoomState THEN {if window was in standard state }

curStateRect := stdStateRect { when saved, display it in }

{ newly calculated standard state}

ELSE {otherwise, current state is the user state}

curStateRect := lastUserStateRect

ELSE {document had no state resource}

curStateRect := lastUserStateRect; {use default user state}

{move window}

MoveWindow(myWindow, curStateRect.left, curStateRect.top, FALSE);

{convert to local coordinates and resize window}

GetPort(savePort);

SetPort(myWindow);

GlobalToLocal(curStateRect.topLeft);

GlobalToLocal(curStateRect.botRight);

SizeWindow(myWindow, curStateRect.right, curStateRect.bottom, TRUE);

IF resourceGood THEN {reset user state and standard }

BEGIN { state--SizeWindow may have changed them}

MySetWindowUserState(myWindow, lastUserStateRect);

MySetWindowStdState(myWindow, stdStateRect);

END;

ReleaseResource(Handle(myStateHandle)); {clean up}

CloseResFile(myRefNum);

HUnlock(Handle(myData));

SetPort(savePort);

END;

The MySetWindowPosition procedure uses the FSpOpenResFile function to open

the document’s resource fork, then uses Get1Resource to get a handle to the resource

that contains information about the window’s last position. The procedure can then

verify that the saved position is practical and move the window to that position.

Note that when a Resource Manager routine returns a handle to a resource, the routine

returns the resource using the Handle data type. You usually define a data type (such as

MyWindowState) to access the resource’s data. If you also define a handle to your

defined data type (such as MyWindowStateHnd), you need to coerce the returned

handle to the appropriate type, as shown in this line from Listing 1-9:

myStateHandle := MyWindowStateHnd(Get1Resource(rWinState, kLastWinStateID));

C H A P T E R 1

Resource Manager

1-34 Using the Resource Manager

If you use this method, you also need to coerce your defined handle back to a handle of

type Handle when you use other Resource Manager routines. For example, after it has

finished moving the window, MySetWindowPosition uses ReleaseResource to

release the memory allocated to the resource’s data (which also sets the master pointer of

the resource’s handle in the resource map in memory to NIL). As shown in this line from

Listing 1-9, SurfWriter coerces the defined handle back to a handle:

ReleaseResource(Handle(myStateHandle));

After releasing the resource data’s memory, MySetWindowPosition uses the

CloseResFile procedure to close the resource fork.

Note

Listing 1-9 assumes the window state resource is not purgeable. If it
were, MySetWindowPosition would need to call LoadResource
before accessing the data in the resource. ◆

The Resource Manager also provides routines that let you index through all resources of

a given type (for example, using CountResources and GetIndResource). This can be

useful whenever you want to read all the resources of a given type.

Listing 1-10 shows an application-defined procedure that allows a user to open a file that

contains sound resources. The SurfWriter application opens the specified file, counts the

number of 'snd ' resources in the file, then performs an operation on each 'snd '

resource (adding the name of each resource to its Sounds menu).

Listing 1-10 Counting and indexing through resources

PROCEDURE MyDoOpenSoundResources;

VAR

mySFReply: StandardFileReply;{reply record}

myNumTypes: Integer; {number of types to display}

myTypeList: SFTypeList; {file type of files}

myRefNum: Integer; {resource file reference no}

mySndHandle: Handle; {handle to sound resource}

numberOfSnds: Integer; {# of sounds in resource file}

index: Integer; {index of sound resource}

resName: Str255; {name of sound resource}

curRes: Integer; {saved current resource file}

myType: ResType; {resource type}

myResID: Integer; {resource ID of snd resource}

myWindow: WindowPtr; {window pointer}

menu: MenuHandle; {handle to Sounds menu}

myErr: OSErr; {error information}

C H A P T E R 1

Resource Manager

Using the Resource Manager 1-35

BEGIN

curRes := CurResFile;

myWindow := FrontWindow;

MyDoActivate(myWindow, FALSE); {deactivate front window}

myTypeList[0] := 'SFSD'; {show files of this type}

myNumTypes := 1;

{let user choose a file that contains sound resources}

StandardGetFile(NIL, myNumTypes, myTypeList, mySFReply);

IF mySFReply.sfGood = TRUE THEN

BEGIN

myRefNum := FSpOpenResFile(mySFReply.sfFile, fsRdWrPerm);

IF myRefNum = -1 THEN

DoError;

menu := GetMenuHandle(mSounds);

numberOfSnds := Count1Resources('snd ');

FOR index := 1 TO numberOfSnds DO

BEGIN {the loop}

mySndHandle := Get1IndResource('snd ', index);

IF mySndHandle = NIL THEN

DoError

ELSE

BEGIN

GetResInfo(mySndHandle, myResID, myType, resName);

AppendMenu(menu, resName);

ReleaseResource(mySndHandle);

END; {of mySndHandle <> NIL}

END; {of the loop}

UseResFile(curRes);

gSoundResFileRefNum := myRefNum;

END; {of sfReply.good}

END;

After the user selects a file that contains SurfWriter sound resources (that is, a file of type

'SFSD'), the MyDoOpenSoundResources procedure calls FSpOpenResFile to open

the file’s resource fork and obtain its file reference number. (If FSpOpenResFile fails to

open the resource fork, it returns –1 instead of a file reference number.) The

MyDoOpenSoundResources procedure then uses the Count1Resources function to

count the number of 'snd ' resources in the resource fork. It can then index through

the resources one at a time, using Get1IndResource to open each resource,

GetResInfo to get the resource’s name, and AppendMenu to append each name to

SurfWriter’s Sounds menu.

C H A P T E R 1

Resource Manager

1-36 Using the Resource Manager

Note
In most situations, you can use the Menu Manager procedure
AppendResMenu to add names of resources to a menu. See Inside
Macintosh: Macintosh Toolbox Essentials for details. ◆

Writing Resources
After opening a resource fork (as described in “Creating and Opening a Resource Fork”

beginning on page 1-25), you can write resources to it. You can write resources only to

the current resource file. To ensure that the current resource file is set to the appropriate

resource fork, you can use CurResFile to save the file reference number of the

current resource file, then UseResFile to set the current resource file to the desired

resource fork.

To specify data for a new resource, you usually use the AddResource procedure, which

creates a new entry for the resource in the resource map in memory and sets the entry’s

location to refer to the resource’s data. Note that AddResource changes only the

resource map in memory; it doesn’t change anything on disk. Use the UpdateResFile

or WriteResource procedure to write the resource to disk. The AddResource

procedure always adds the resource to the resource map in memory that corresponds to

the current resource file. For this reason, you usually need to set the current resource file

to the desired file before calling AddResource.

If you change a resource that is referenced through the resource map in memory, you use

the ChangedResource procedure to set the resChanged attribute of that resource’s

entry. You should then immediately call the UpdateResFile or WriteResource

procedure to write the changed resource data to disk. Note that although the

UpdateResFile procedure writes only those resources that have been added or

changed to disk, it also writes the entire resource map to disk (overwriting its previous

contents). The WriteResource procedure writes only the resource data of a single

resource to disk; it does not update the resource’s entry in the resource map on disk.

The ChangedResource procedure reserves enough disk space to contain the changed

resource. It does this every time it’s called, but the actual writing of the resource does not

take place until a call to WriteResource or UpdateResFile. Thus, if you call

ChangedResource several times on a large resource before the resource is actually

written, you may unexpectedly run out of disk space, because many times the amount of

space actually needed is reserved. When the resource is actually written, the file’s

end-of-file (EOF) is set correctly, and the next call to ChangedResource will work as

expected.

C H A P T E R 1

Resource Manager

Using the Resource Manager 1-37

IMPORTANT

If your application frequently changes the contents of resources
(especially large resources), you should call WriteResource or
UpdateResFile immediately after calling ChangedResource. ▲

To ensure that the Resource Manager does not purge a purgeable resource while your

application is in the process of changing it, use the Memory Manager procedures

HGetState, HNoPurge, and HSetState. First call HGetState and HNoPurge, then

change the resource as necessary. To make a change to a resource permanent, use the

ChangedResource and WriteResource (or UpdateResFile) procedures; then call

HSetState when you’re finished. (See Listing 1-2 on page 1-21 for an example of this

technique.) However, most applications do not make resources purgeable and therefore

don’t need to take this precaution.

Here’s an example of a situation in which an application might need to write a resource.

As previously described, the SurfWriter application always saves the last position of a

document window when the user saves the document, storing this information in a

resource that it has defined for this purpose. SurfWriter defines a resource with resource

type rWinState and resource ID kLastWinStateID to store the window state (its

position and state, that is, either the user or the standard state). SurfWriter’s window

state resource has this format, defined by a record of type MyWindowState:

TYPE MyWindowState =

RECORD

userStateRect: Rect; {user state rectangle}

zoomState: Boolean; {window state: TRUE = standard; }

{ FALSE = user}

END;

MyWindowStatePtr = ^MyWindowState;

MyWindowStateHnd = ^MyWindowStatePtr;

C H A P T E R 1

Resource Manager

1-38 Using the Resource Manager

Listing 1-11 shows SurfWriter’s application-defined routine for saving the last position of

a window in a window state resource in a document’s resource fork.

Listing 1-11 Saving a resource to a resource fork

PROCEDURE MySaveWindowPosition (myWindow: WindowPtr;

 myResFileRefNum: Integer);

VAR

lastWindowState: MyWindowState;

myStateHandle: MyWindowStateHnd;

curResRefNum: Integer;

BEGIN

{set user state provisionally and determine whether window is zoomed}

lastWindowState.userStateRect := WindowPeek(myWindow)^.contRgn^^.rgnBBox;

lastWindowState.zoomState := EqualRect(lastWindowState.userStateRect,

 MyGetWindowStdState(myWindow));

{if window is in standard state, then set the window's user state from }

{ the userStateRect field in the state data record}

IF lastWindowState.zoomState THEN {window was in standard state}

lastWindowState.userStateRect := MyGetWindowUserState(myWindow);

curResRefNum := CurResFile; {save the refNum of current resource file}

UseResFile(myResFileRefNum); {set the current resource file}

myStateHandle := MyWindowStateHnd(Get1Resource(rWinState,

 kLastWinStateID));

IF myStateHandle <> NIL THEN {a state data resource already exists}

BEGIN {update it}

myStateHandle^^ := lastWindowState;

ChangedResource(Handle(myStateHandle));

IF ResError <> noErr THEN

DoError;

END

ELSE {no state data has yet been saved}

BEGIN {add state data resource}

myStateHandle := MyWindowStateHnd(NewHandle(SizeOf(MyWindowState)));

IF myStateHandle <> NIL THEN

BEGIN

myStateHandle^^ := lastWindowState;

AddResource(Handle(myStateHandle), rWinState, kLastWinStateID,

'last window state');

END;

END;

C H A P T E R 1

Resource Manager

Using the Resource Manager 1-39

IF myStateHandle <> NIL THEN

BEGIN

UpdateResFile(myResFileRefNum);

ReleaseResource(Handle(myStateHandle));

END;

UseResFile(curResRefNum);

END;

The MySaveWindowPosition procedure first sets the userStateRect field of the

window state record to the bounds of the current content region of the window. It also

sets the zoomState field of the record to a Boolean value that indicates whether the

window is currently in the user state or standard state. If the window is in the standard

state, the procedure sets the userStateRect field of the window state record to the

user state of the window. (SurfWriter always saves the user state and the last state of the

window. When it opens a document, it sets the user state to its previous state, verifies

that this position is still valid, then calculates the window’s standard state.)

The MySaveWindowPosition procedure then saves the file reference number of the

current resource file and sets the current resource file to the document displayed in

the current window. The procedure then uses the Get1Resource function to determine

whether the resource file of the document already contains a window state resource. If

so, the procedure changes the resource data, then calls ChangedResource to set the

resChanged attribute of the resource’s entry of the resource map in memory. If the

resource doesn’t yet exist, the procedure simply adds the new resource using the

AddResource procedure.

Note that when a Resource Manager routine returns a handle to a resource, it returns the

resource using the Handle data type. You usually define a data type (such as

MyWindowState) to access the resource’s data. If you also define a handle to your

defined data type (such as MyWindowStateHnd), you need to coerce the returned

handle to the appropriate type, as shown in this line from Listing 1-11:

myStateHandle := MyWindowStateHnd(Get1Resource(rWinState, kLastWinStateID));

If you use this method, you also need to coerce your defined handle back to a handle of

type Handle when you use other Resource Manager routines, as shown in this line from

Listing 1-11:

AddResource(Handle(myStateHandle), rWinState, kLastWinStateID,

'last window state');

After MySaveWindowPosition changes or adds the resource (affecting only the

resource map and resource data in memory), the MySaveWindowPosition procedure

makes the change permanent by calling UpdateResFile and specifying the file

reference number of the resource fork to update on disk. The UpdateResFile

procedure writes the entire resource map in memory to disk and updates the resource

data of any resource whose resChanged attribute is set in the resource map in memory.

C H A P T E R 1

Resource Manager

1-40 Using the Resource Manager

(If you want to update only the resource that was just changed or added, you can use

WriteResource instead of UpdateResFile.)

Note

Listing 1-11 assumes the window state resource is not purgeable. If it
were, MySaveWindowPosition would need to call HGetState and
HNoPurge before changing the resource. ◆

When done with the resource, MySaveWindowPosition uses ReleaseResource,

which releases the memory allocated to the resource’s data (and at the same time sets the

master pointer of the resource’s handle in the resource map in memory to NIL). Then

MySaveWindowPosition restores the current resource file to its previous setting.

Working With Partial Resources
Some resources, such as the 'snd ' and 'sfnt' resources, can be quite large—

sometimes too large to fit in the available memory. The ReadPartialResource and

WritePartialResource procedures, which are available in System 7 and later

versions of system software, allow you to read a portion of the resource into memory or

alter a section of the resource while it is still on disk. You can also use the

SetResourceSize procedure to enlarge or reduce the size of a resource on disk. When

you use ReadPartialResource and WritePartialResource, you specify how far

into the resource you want to begin reading or writing and how many bytes you actually

want to read or write at that spot, so you must be sure of the location of the data.

▲ W A R N I N G

Be aware that having a copy of a resource in memory when you are
using the partial resource routines may cause problems. For example, if
you read the resource into memory using GetResource, modify the
resource in memory, and then access the resource on disk using either
the ReadPartialResource or WritePartialResource procedure,
note that these procedures work with the data in the buffer you specify,
not the data referenced through the resource’s handle. ▲

To read or write any part of a resource, call the SetResLoad procedure specifying

FALSE for its load parameter, then use the GetResource function to get an empty

handle (that is, a handle whose master pointer is set to NIL) to the resource. (Because of

the call to the SetResLoad procedure, the GetResource function does not load the

entire resource into memory.) Then call SetResLoad specifying TRUE for its load

parameter and use the partial resource routines to access portions of the resource.

C H A P T E R 1

Resource Manager

Using the Resource Manager 1-41

Listing 1-12 illustrates one way to deal with partial resources. The application-defined

procedure MyReadAPartial begins by calling SetResLoad (with the load parameter

set to FALSE) to ensure that the Resource Manager will not attempt to read the entire

resource into memory in the subsequent call to GetResource. After calling

GetResource and checking for errors, MyReadAPartial calls SetResLoad (with the

load parameter set to TRUE) to restore normal loading of resource data into memory.

The procedure then calls ReadPartialResource, specifying as parameters the handle

returned by GetResource, an offset to the beginning of the resource subsection to be

read, a buffer into which to read the subsection, and the length of the subsection. The

ReadPartialResource procedure reads the specified partial resource into the

specified buffer.

Listing 1-12 Using partial resource routines

PROCEDURE MyReadAPartial(myRsrcType: ResType; myRsrcID: Integer;

 start: LongInt; count: LongInt;

 VAR putItHere: Ptr);

VAR

myResHdl: Handle;

myErr: OSErr;

BEGIN

SetResLoad(FALSE); {don't load resource}

myResHdl := GetResource(myRsrcType, myRsrcID);

myErr := ResError;

SetResLoad(TRUE); {reset to always load}

IF myErr = noErr THEN

BEGIN

ReadPartialResource(myResHdl, start, putItHere, count);

myErr := ResError;

{check and report error}

IF myErr <> noErr THEN DoError(myErr);

END

ELSE {handle error from GetResource}

DoError(myErr);

END;

1-42 Resource Manager Reference

C H A P T E R 1

Resource Manager

Resource Manager Reference

This section begins by describing the data type, standard resource types, and ranges of

resource IDs used for various kinds of resources. “Resource Manager Routines”

beginning on page 1-49 describes the routines provided by the Resource Manager for

manipulating resources.

“Resource File Format” beginning on page 1-121 describes the format of a resource

fork. “Resources in the System File” beginning on page 1-126 describes System file

resources such as packages and icons. “ROM Resources” beginning on page 1-134

describes how to access ROM resources directly and how to override them.

Data Structure, Resource Types, and Resource IDs

This section describes the data type for the resource type, lists the standard resource

types, and describes the ranges of resource IDs available to your application for different

kinds of resources. The Resource Manager and your application use a resource type and

a resource ID to identify a specific resource.

The Resource Type

The Resource Manager uses the resource type along with the resource ID to identify a

resource uniquely. A resource type is defined by the ResType data type.

TYPE ResType = PACKED ARRAY[1..4] OF Char;

A resource type can be any sequence of four alphanumeric characters, including the

space character. You can define your own resource types, but they must consist of all

uppercase letters and must not conflict with any of the standard resource types.

IMPORTANT

When identifying resource types, the Resource Manager distinguishes
between uppercase letters and their lowercase counterparts. In addition,
Apple reserves for its own use all resource types that consist of all
lowercase letters, all spaces, or all international characters (characters
greater than $7F). ▲

C H A P T E R 1

Resource Manager

Resource Manager Reference 1-43

Table 1-2 lists the standard resource types.

Table 1-2 Standard resource types

Resource
type Description

'ADBS' Apple Desktop Bus service routine

'ALRT' Alert box

'BNDL' Bundle

'CDEF' Control definition function

'CDEV' Control device function for a control panel

'CNTL' Control

'CODE' Application code segment

'CURS' Cursor

'DITL' Item list in a dialog or alert box

'DLOG' Dialog box

'DRVR' Desk accessory or other device driver

'FKEY' Command-Shift-number combination

'FOND' Font family record

'FONT' Bitmapped font

'FREF' File reference

'ICN#' Large (32-by-32 pixel) black-and-white icon, with mask

'ICON' Large (32-by-32 pixel) black-and-white icon, without mask

'INIT' System extension

'KCAP' Physical keyboard description (used by Key Caps desk accessory)

'KCHR' Keyboard layout (software); maps virtual key codes to character codes

'LDEF' List definition procedure

'MBAR' Menu bar

'MDEF' Menu definition procedure

'MENU' Menu

'NFNT' Bitmapped font

'PACK' Package

'PAT ' Pattern

'PAT#' Pattern list

continued

C H A P T E R 1

Resource Manager

1-44 Resource Manager Reference

'PICT' QuickDraw picture

'POST' PostScript® resource

'PREC' Print record

'SICN' Small (16-by-16 pixel) icon (mask optional)

'SIZE' Size of application’s partition and other information

'STR ' String

'STR#' String list

'WDEF' Window definition function

'WIND' Window

'actb' Alert color table

'alis' Alias record

'card' Video card name

'cctb' Control color table

'cicn' Color icon

'clut' Color look-up table

'crsr' Color cursor

'dctb' Dialog color table

'ddev' Database extension

'eadr' Ethernet hardware address

'fctb' Font color table

'hdlg' Help for dialog box or alert box items

'hfdr' Help for application icons

'hmnu' Help for application menus

'hovr' Help that overrides Finder help

'hrct' Help for areas in windows

'hwin' Association of 'hrct' and 'hdlg' resources to specific windows

'icl4' Large (32-by-32 pixel) color icon with 4 bits of color data per pixel

'icl8' Large (32-by-32 pixel) color icon with 8 bits of color data per pixel

'ics#' Small (16-by-16 pixel) black-and-white icon, with mask

'ics4' Small (16-by-16 pixel) color icon with 4 bits of color data per pixel

'ics8' Small (16-by-16 pixel) color icon with 8 bits of color data per pixel

Table 1-2 Standard resource types (continued)

Resource
type Description

C H A P T E R 1

Resource Manager

Resource Manager Reference 1-45

'ictb' Item color table

'itl0' Date and time formats

'itl1' Names of days and months

'itl2' Text Utilities sort hooks

'itl4' Localizable tables and code

'itlk' Remappings of certain key combinations before the KeyTrans function is
called for the corresponding 'KCHR' resource

'kcs#' List of small black-and-white icons, with mask, for a corresponding
'KCHR' resource

'kcs4' Small (16-by-16 pixel) color icon with 4 bits of color data per pixel for a
corresponding 'KCHR' resource

'kcs8' Small (16-by-16 pixel) color icon with 8 bits of color data per pixel for a
corresponding 'KCHR' resource

'mctb' Menu color information table

'mntr' Monitors extension code resource

'movv' QuickTime movie

'pltt' Color palette

'ppat' Pixel pattern

'qdef' Query definition function

'qrsc' Query resource

'sect' Section record

'sfnt' Outline font

'snd ' Sound

'snth' Synthesizer

'styl' TextEdit style record

'sysz' System heap space required by a system extension

'vers' Version number

'wctb' Window color table

'wstr' String (uses word for length byte)

Table 1-2 Standard resource types (continued)

Resource
type Description

C H A P T E R 1

Resource Manager

1-46 Resource Manager Reference

Table 1-3 lists resource types that are reserved for use by system software. These resource

types consist entirely of uppercase letters or combinations of uppercase and lowercase

letters and the number sign (#). Other resource types specific to system software that

consist entirely of lowercase letters or other characters are not included in Table 1-3. This

list is provided for your information; you should not use these resource types in your

application.

Resource IDs

A resource is identified by its resource type and resource ID (or, optionally, its resource

type and resource name). The IDs for resources used by the system software and those

used by applications are assigned from separate ranges. By using these ranges correctly,

you can avoid resource ID conflicts.

Table 1-3 Resource types reserved for use by system software

Resource
type Description

'CACH' RAM cache code

'DSAT' System startup alert table

'FCMT' “Get Info” comments

'FMTR' 3.5-inch disk formatting code

'FOBJ' Folder information for an MFS volume

'FRSV' IDs of system fonts

'INTL' International resource (obsolete)

'KMAP' Keyboard mapping (hardware); maps raw key codes to virtual key codes

'KSWP' Defines special key combinations for Script Manager operations

'MBDF' Default menu definition function

'MMAP' Mouse-tracking code

'NBPC' AppleTalk bundle

'PDEF' Printing code

'PTCH' ROM patch code

'ROv#' List of ROM resources to override

'ROvr' Code for overriding ROM resources

'SERD' RAM Serial Driver

C H A P T E R 1

Resource Manager

Resource Manager Reference 1-47

In general, system resources use IDs in the range –32767 through 127, and application

resources must use IDs that fall between 128 and 32767. The IDs for some categories

of resources, such as definition procedures and font families, fall in different ranges or

in ranges that are broken down for more specific purposes. This list shows the resource

ID ranges used for most resources.

For a general discussion of font family resource IDs, see Inside Macintosh: Text.

The ID range of definition procedures (which are usually contained in resources such as

the 'WDEF' or 'CDEF' resources) is limited to 12 bits (0 through 4095). The system

software’s own definition procedures, which are located in the System file, have resource

IDs from 0 through 127. The IDs of your definition procedures should be in the range 128

through 4095.

Resource IDs of Owned Resources

Certain types of resources used by system software may have resources of their own in

the same resource fork; the “owning” resource consists of code that reads the “owned”

resource into memory. For example, a desk accessory might have its own pattern and

string resources. This section describes the numbering convention used for owned

resources. This information can be useful if you are writing a desk accessory or other

driver or special types of definition functions for windows, controls, or menus.

Range Description

–32768 through –16385 Reserved; do not use. Any application resource whose ID is
in this range will not work properly in current versions of
system software.

–16384 through –4065 Used for system resources owned by other system resources.

–4064 through –4033 Reserved for use by control panels. (See the chapter
“Control Panels” in this book.)

–4032 through –1 Used for system resources owned by other system
resources. The exception is the 'SIZE' resource, whose ID
can be –1, 0 (preferred size), or 1 (minimum size).

0 through 127 Used for system resources and any definition procedures in
the system software. Applications should not use these
resource IDs.

128 through 32767 Available for your use. Your application’s definition
procedures should use IDs in the range 128 through 4095,
although other resources may use these IDs as well. Font
families for individual script systems have additional
restrictions defined in the appendix on international
resources in Inside Macintosh: Text.

C H A P T E R 1

Resource Manager

1-48 Resource Manager Reference

You should use the numbering convention described in this section to associate owned

resources with the resources to which they belong. This allows resource-copying

programs (such as installers) to recognize which additional resources need to be copied

along with an owning resource. Figure 1-10 illustrates the ID of an owned resource.

Figure 1-10 Resource ID of an owned resource

Bits 14 and 15 are always 1. Bits 11 through 13 specify the type of the owning resource, as

follows:

Bits 5 through 10 contain the resource ID of the owning resource (limited to 0 through

63). Bits 0 through 4 contain any desired value (0 through 31).

Some types of resources can’t be owned because their IDs don’t conform to this

convention. For example, a resource of type 'WDEF' can own other resources but cannot

itself be owned, because its resource ID can’t be more than 12 bits long (see the chapter

“Window Manager” in Inside Macintosh: Macintosh Toolbox Essentials). The chapters

describing individual resources provide detailed information about such restrictions.

An owned resource may itself contain the ID of a resource associated with it. For

example, a dialog ('DLOG') resource owned by a desk accessory contains the resource

ID of its item list. Although the item list is associated with the dialog resource, it’s

actually owned (indirectly) by the desk accessory. The resource ID of the item list should

conform to the same special convention as the ID of the dialog resource. For example, if

the resource ID of the desk accessory is 17, the IDs of both the dialog resource and the

item list should contain the value 17 in bits 5 through 10.

Type bits Type

000 'DRVR'

001 'WDEF'

010 'MDEF'

011 'CDEF'

100 'PDEF'

101 'PACK'

110 Reserved for future use

111 Reserved for future use

C H A P T E R 1

Resource Manager

Resource Manager Reference 1-49

A program that copies resources may need to change the resource ID of a resource so as

not to duplicate an existing resource ID. Bits 5 through 10 of resources owned, directly or

indirectly, by the copied resource should also be changed when those resources are

copied. In the example just discussed, if the desk accessory must be given a new ID,

bits 5 through 10 of both the dialog resource and the item list resource should also

change.

▲ W A R N I N G

When a resource-copying program changes the ID of an owned
resource, it should also change the ID where it appears in
other resources (such as an item list’s ID contained in a dialog box
resource). ▲

Resource Names

You can use a resource name instead of a resource ID to identify a resource of a given

type. Like a resource ID, a resource name should be unique within each type. If you

assign the same resource name to two resources of the same type, the second assignment

of the name overrides the first, thereby making the first resource inaccessible by name.

When comparing resource names, the Resource Manager ignores case (but does not

ignore diacritical marks).

Resource Manager Routines

This section describes the routines provided by the Resource Manager. You can use these

routines to create, open, and close resource forks; get and set the current resource file;

read resources into memory; get and set resource information; modify resources; write

to resource forks on disk; get a unique resource ID; count and list resource types; get

resource sizes; dispose of resources; read and write partial resources; get and set resource

fork attributes; and access resource entries in the resource map.

The FSpCreateResFile procedure and the FSpOpenResFile function use a file

system specification (FSSpec) record. These routines are available only in System 7 or

later. Use the Gestalt function to determine if these routines are available. If they’re not

available, you can call the equivalent File Manager HFS routines, the HCreateResFile

procedure and the HOpenResFile function.

The Resource Manager provides a means for reporting errors specifically related to

resources. After calling a Resource Manager routine, you can call the ResError function

to determine whether any error occurred. The ResError function returns an integer

value identifying any error reported by the Resource Manager routine that was executed

last. The values listed in the ResError description signify only those errors dealing

specifically with resources. The ResError function can also return values

corresponding to Operating System result codes. The description for each Resource

Manager routine includes the errors ResError may report for that routine under the

subheading “Result Codes”; this list includes both the integer result codes for the

Resource Manager routine as well as common Operating System result codes.

C H A P T E R 1

Resource Manager

1-50 Resource Manager Reference

Initializing the Resource Manager

Unlike other Toolbox managers, the Resource Manager does not need to be explicitly

initialized. System software automatically calls the Resource Manager’s

two initialization routines, the InitResources function and the RsrcZoneInit

procedure—the former when the system starts up, and the latter when the system starts

up and when the Process Manager starts up. You should not call either of these routines

directly.

InitResources

When the system starts up, it automatically calls the InitResources function. This

routine is for system use only, and your application should not call it at any time.

FUNCTION InitResources: Integer;

DESCRIPTION

The InitResources function initializes the Resource Manager. InitResources

creates a special heap zone within the system heap and builds a resource map that points

to ROM-resident resources. It opens the resource fork of the System file and reads its

resource map into memory. The InitResources function returns an integer, which is

the file reference number for the System file’s resource fork.

Your application does not need to know the file reference number for the System file’s

resource fork, because every Resource Manager routine with a file reference number

parameter also accepts 0 to mean the System file’s resource fork.

ASSEMBLY-LANGUAGE INFORMATION

The InitResources function sets up three global variables: SysResName, SysMap,

and SysMapHndl. These contain, respectively, the name of the System file’s resource

fork, the file reference number for the resource fork, and a handle to the System file’s

resource map.

RsrcZoneInit

System software automatically calls the RsrcZoneInit procedure when system

software starts up and when the Process Manager starts up. Your application should not

call this routine directly.

PROCEDURE RsrcZoneInit;

C H A P T E R 1

Resource Manager

Resource Manager Reference 1-51

DESCRIPTION

System software automatically calls the RsrcZoneInit procedure at system startup

when extensions are loaded, because each extension has its own application heap.

System software calls RsrcZoneInit once again when the Process Manager starts up.

After that, the procedure is not called again.

Checking for Errors

You can use the ResError function in your application to retrieve errors that may result

from calling Resource Manager routines. You also can use ResError to check for an

error after application startup (system software opens the resource fork of your

application during application startup).

ResError

After calling a Resource Manager routine, you can use the ResError function to

determine whether an error occurred and, if so, what it was.

FUNCTION ResError: Integer;

DESCRIPTION

The ResError function reads the value stored in the system global variable ResErr

and returns an integer result code identifying errors, if any, that occurred. If no error

occurred, ResError returns noErr. If an error occurs at the Resource Manager level,

ResError returns one of the integer result codes listed in this section. If an error occurs

at the Operating System level, ResError returns an Operating System result code, such

as the Memory Manager error memFullErr or the File Manager error ioErr.

Resource Manager procedures do not report error information directly. Instead, after

calling a Resource Manager procedure, your application should call the ResError

function to determine whether an error occurred.

Resource Manager functions usually return NIL or –1 as the function result when there’s

an error. For Resource Manager functions that return –1, your application can call the

ResError function to determine the specific error that occurred. For Resource Manager

functions that return handles, your application should always check whether the value

of the returned handle is NIL. If it is, your application can use ResError to obtain

specific information about the nature of the error. Note, however, that in some cases

ResError returns noErr even though the value of the returned handle is NIL.

IMPORTANT

In certain cases, the ResError function returns noErr even though a
Resource Manager routine was unable to perform the requested
operation. See the individual routine descriptions for details about the
circumstances under which this happens. ▲

C H A P T E R 1

Resource Manager

1-52 Resource Manager Reference

Only those result codes dealing specifically with resources are listed in this section. See

the description of each Resource Manager routine for a list of errors specific to that

routine and that the ResError function returns.

ASSEMBLY-LANGUAGE INFORMATION

The global variable ResErr stores the current value of ResError, that is, the result code

of the most recently performed Resource Manager operation. In addition, you can

specify an application-defined procedure to be called whenever an error occurs. To do

this, store the address of the procedure in the global variable ResErrProc. The value of

the ResErrProc global variable is usually 0. Before returning a result code other than

noErr, the ResError function puts that result in register D0 and calls the procedure

identified by the ResErrProc global variable.

If you use ResErrProc to detect resource errors, you will get unexpected calls to your

application-defined procedure if you call GetMenu. The Menu Manager routine

GetMenu makes a call to GetResInfo, requesting resource information about

'MDEF' 0. Unfortunately, because ROMMapInsert is set to FALSE, this call fails, setting

ResErr to –192 (resNotFound). This, in turn, causes a call to your application-defined

procedure, even though the GetMenu routine has worked correctly.

To avoid this problem, follow these steps when you call GetMenu if you are using

ResErrProc:

1. Save the address of your application-defined procedure.

2. Clear ResErrProc.

3. Call GetResource for the menu resource you want to get.

4. Check whether GetResource returns a handle whose value is NIL; if so, process the
error in whatever way is appropriate for your application.

5. Call GetMenu.

6. When you are finished calling GetMenu, restore the previous value of ResErrProc.

RESULT CODES

noErr 0 No error
resNotFound –192 Resource not found
resFNotFound –193 Resource file not found
addResFailed –194 AddResource procedure failed
rmvResFailed –196 RemoveResource procedure failed
resAttrErr –198 Attribute inconsistent with operation
mapReadErr –199 Map inconsistent with operation

C H A P T E R 1

Resource Manager

Resource Manager Reference 1-53

Creating an Empty Resource Fork

You can use FSpCreateResFile, HCreateResFile, or CreateResFile when you

want to create an empty resource fork—that is, a resource fork that contains no resource

data but does include a resource map. Note that creating a resource fork does not

automatically open it. To open a resource fork of a file created with one of these routines,

use the corresponding routines FSpOpenResFile, HOpenResFile, or OpenResFile.

The FSpCreateResFile procedure is available only in System 7 and later versions of

system software. If FSpCreateResFile is not available, you can use

HCreateResFile or CreateResFile to create a resource fork. The HCreateResFile

procedure allows you to specify a directory ID and a volume reference number, and is

therefore preferred over CreateResFile. The CreateResFile procedure is an earlier

version of HCreateResFile that is still supported but has more restricted capabilities.

Don’t use the resource fork of a file for data that is not in resource format. The Resource

Manager assumes that any information in a resource fork can be interpreted according to

the standard resource format described in this chapter.

The File Manager assumes that the first block of a file’s resource fork is part of the

resource header and puts information there that it uses during scavenging—for example,

after the user presses the Reset switch. For this reason, if you copy a resource file, the

duplicate may not be exactly like the original.

FSpCreateResFile

You can use the FSpCreateResFile procedure to create an empty resource fork using

a file system specification (FSSpec) record.

PROCEDURE FSpCreateResFile (spec: FSSpec;

 creator, fileType: OSType;

 scriptTag: ScriptCode);

spec A file system specification record that indicates the name and location of
the file whose resource fork is to be created.

creator The signature of the application creating the file.

fileType The file type of the new file.

scriptTag The script code of the script system in which the Finder and standard file
dialog boxes display the file’s name.

C H A P T E R 1

Resource Manager

1-54 Resource Manager Reference

DESCRIPTION

The FSpCreateResFile procedure creates an empty resource fork for a file with the

specified type, creator, and script code in the location and with the name designated by

the spec parameter. (An empty resource fork contains no resource data but does include

a resource map.)

This procedure is available only in System 7 and later versions of system software. If

FSpCreateResFile is not available to your application, you can use

HCreateResFile or CreateResFile.

The spec parameter is a file system specification record, which is the standard format in

System 7 and later versions for identifying a file or directory. The file system

specification record for files and directories is defined by the FSSpec data type.

TYPE FSSpec = {file system specification}

RECORD

vRefNum: Integer; {volume reference number}

parID: LongInt; {directory ID of parent directory}

name: Str63; {filename or directory name}

END;

Certain File Manager routines—those that open a file’s data fork—also take a file system

specification record as a parameter. You can use the same FSSpec record in Resource

Manager routines that create or open the file’s resource fork.

The creator parameter of FSpCreateResFile contains the signature of the

application that creates the file. Whenever your application creates a document, it

assigns a creator and a file type to that document. Typically your application sets its

signature as the document’s creator.

The fileType parameter indicates the type of file. You can set the file type to a type

especially defined for your application or one of the existing general types, such as

'TEXT' for text (a stream of ASCII characters), or 'pref' for a preferences file.

Note

The file type should be as descriptive of the file’s data format as
possible. You should not use 'TEXT' as a file type unless the document
contains plain ASCII characters. ◆

The value of the scriptTag parameter is the script code of the script system in which

the Finder and the Standard File Package dialog boxes display the name of the file. For

example, to specify the Roman script system, specify the constant smRoman in the

scriptTag parameter.

If the file specified by the file system specification record doesn’t already exist (that is, if

it has neither a data fork nor a resource fork), the FSpCreateResFile procedure

creates a resource file—that is, a resource fork, including a resource map. In this case the

file has a zero-length data fork. The FSpCreateResFile procedure also sets the creator,

type, and script code fields of the file’s catalog information record to the specified values.

C H A P T E R 1

Resource Manager

Resource Manager Reference 1-55

If the file specified by the file system specification record already exists and includes a

resource fork with a resource map, FSpCreateResFile does nothing. If the data fork

of the file specified by the file system specification record already exists but the file has a

zero-length resource fork, FSpCreateResFile creates an empty resource fork and

resource map for the file; it also changes the creator, type, and script code fields of the

catalog information record of the file to the specified values.

If your application uses Standard File Package routines, note that the

StandardPutFile procedure returns a standard file reply record that contains a file

system specification record in the sfFile field.

Before you can work with the newly created file’s resource fork, you must use the

FSpOpenResFile function to open it.

SPECIAL CONSIDERATIONS

The FSpCreateResFile procedure may move or purge memory blocks in the

application heap. Your application should not call this procedure at interrupt time.

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51. For

information about using the Gestalt function to determine whether the

FSpCreateResFile procedure is available, see “Using the Resource Manager,”

beginning on page 1-13. For a discussion of the use of the FSpCreateResFile

procedure, see “Creating and Opening a Resource Fork” beginning on page 1-25. For a

description of the FSpOpenResFile function, see page 1-58. For information about the

StandardPutFile procedure and standard file reply records, see Inside Macintosh: Files.

For more information on creators and file types, see the chapter “Finder Interface” in

Inside Macintosh: Macintosh Toolbox Essentials.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the FSpCreateResFile procedure are

noErr 0 No error
dirFulErr –33 Directory full
dskFulErr –34 Disk full
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename or volume name (perhaps zero length)
tmfoErr –42 Too many files open
wPrErr –44 Disk is write-protected
fLckdErr –45 File is locked

Trap macro Selector

_HighLevelFSDispatch $000E

C H A P T E R 1

Resource Manager

1-56 Resource Manager Reference

HCreateResFile

If the FSpCreateResFile procedure is not available, you can use the

HCreateResFile procedure to create an empty resource fork.

PROCEDURE HCreateResFile (vRefNum: Integer; dirID: LongInt;

 fileName: Str255);

vRefNum The volume reference number of the volume on which the file is located.

dirID The directory ID of the directory where the file is located.

fileName The name of the file whose resource fork is to be created.

DESCRIPTION

The HCreateResFile procedure creates a file with an empty resource fork in the

directory specified by the vRefNum and dirID parameters. (An empty resource fork

contains no resource data but does include a resource map.)

If no other file with the given name exists in the specified directory, HCreateResFile

creates a resource file—that is, a resource fork, including a resource map. In this case the

file has a zero-length data fork.

If a file with the specified name already exists and includes a resource fork with a

resource map, HCreateResFile does nothing. If the data fork of the specified file

already exists but the file has a zero-length resource fork, HCreateResFile creates an

empty resource fork and resource map for the file.

Before you can work with the newly created file’s resource fork, you must first use

HOpenResFile or a related function to open it.

SPECIAL CONSIDERATIONS

The HCreateResFile procedure may move or purge memory blocks in the application

heap. Your application should not call this procedure at interrupt time.

RESULT CODES

noErr 0 No error
dirFulErr –33 Directory full
dskFulErr –34 Disk full
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename or volume name (perhaps zero length)
tmfoErr –42 Too many files open
wPrErr –44 Disk is write-protected
fLckdErr –45 File is locked

C H A P T E R 1

Resource Manager

Resource Manager Reference 1-57

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For a description of the HOpenResFile function, see page 1-62.

CreateResFile

If the FSpCreateResFile procedure is not available, you can use the CreateResFile

procedure to create an empty resource fork.

PROCEDURE CreateResFile (fileName: Str255);

fileName The name of the file to be created.

DESCRIPTION

The CreateResFile procedure creates a file with an empty resource fork in your

application’s default directory—that is, the directory in which your application is

located.

If no other file with the given name exists in the default directory or any of the other

directories searched by PBOpenRF (see the following section, “Special Considerations”),

CreateResFile creates a resource file—that is, a resource fork, including a resource

map. In this case the file has a zero-length data fork.

If a file with the specified name already exists and includes a resource fork with a

resource map, CreateResFile does nothing. Call ResError to determine whether an

error occurred. If the data fork of the specified file already exists but the file has a

zero-length resource fork, CreateResFile creates an empty resource fork and resource

map for the file.

Before you can work with the newly created file’s resource fork, you must use

OpenResFile or a related function to open it.

SPECIAL CONSIDERATIONS

The CreateResFile procedure may move or purge memory blocks in the application

heap. Your application should not call this procedure at interrupt time.

The CreateResFile procedure first checks whether a file with the specified name

exists. (If so, ResError returns the result code dupFNErr.) To perform this check,

CreateResFile calls PBOpenRF, which looks first in the default directory for a file

with the same name, then in the root directory of the boot volume (if the default

directory is on the boot volume), and then in the System Folder (if one exists on the same

volume as the default directory). It is thus impossible, for example, to use

CreateResFile to create a file in the default directory if a file with the same name

already exists in the System Folder. To avoid this problem, use FspCreateResFile or

HCreateResFile whenever possible.

C H A P T E R 1

Resource Manager

1-58 Resource Manager Reference

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For a description of the OpenResFile function, see page 1-66.

Opening Resource Forks

To open a resource fork, the Resource Manager calls the appropriate File Manager

routine and returns the file reference number that it gets from the File Manager. If the file

reference number returned is greater than 0, you can use this number to refer to the

resource fork in some other Resource Manager routines.

The FSpOpenResFile, HOpenResFile, OpenRFPerm, and OpenResFile functions all

open resource forks. Use the FSpOpenResFile function to open a resource fork using a

file system specification (FSSpec) record. You can determine whether

FSpOpenResFile is available by calling the Gestalt function with the

gestaltFSAttr selector code.

If FSpOpenResFile is not available, you can use HOpenResFile, OpenRFPerm, or

OpenResFile to open a resource fork. The HOpenResFile function allows you to

specify both a directory ID and a volume reference number, and is therefore preferred if

FSpOpenResFile is not available. The OpenRFPerm and OpenResFile functions are

earlier versions of HOpenResFile that are still supported but are more restricted in

their capabilities.

FSpOpenResFile

You can use the FSpOpenResFile function to open a file’s resource fork using a file

system specification (FSSpec) record.

FUNCTION FSpOpenResFile (spec: FSSpec;

 permission: SignedByte): Integer;

noErr 0 No error
dirFulErr –33 Directory full
dskFulErr –34 Disk full
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename or volume name (perhaps zero length)
tmfoErr –42 Too many files open
wPrErr –44 Disk is write-protected
fLckdErr –45 File is locked
dupFNErr –48 Another file with the same name exists in the default directory,

the root directory of the boot volume, or the System Folder

C H A P T E R 1

Resource Manager

Resource Manager Reference 1-59

spec A file system specification record specifying the name and location of the
file whose resource fork is to be opened.

permission
A value that specifies a read/write permission combination.

DESCRIPTION

The FSpOpenResFile function opens the resource fork of the file identified by the

spec parameter. It also makes this file the current resource file.

This function is available only in System 7 and later versions of system software. If

FSpOpenResFile is not available to your application, you can use HOpenResFile,

OpenRFPerm, or OpenResFile instead.

The spec parameter is a file system specification record, which is a standard format in

System 7 and later versions for identifying a file or directory. The file system

specification record for files and directories is defined by the FSSpec data type.

TYPE FSSpec = {file system specification}

RECORD

vRefNum: Integer; {volume reference number}

parID: LongInt; {directory ID of parent directory}

name: Str63; {filename or directory name}

END;

You can specify the access path permission for the resource fork by setting the

permission parameter to one of these constants:

CONST

fsCurPerm = 0; {whatever is currently allowed}

fsRdPerm = 1; {read-only permission}

fsWrPerm = 2; {write permission}

fsRdWrPerm = 3; {exclusive read/write permission}

fsRdWrShPerm= 4; {shared read/write permission}

Use fsCurPerm to request whatever permission is currently allowed. If write access is

unavailable (because the file is locked or because the resource fork is already open with

write access), then read permission is granted. Otherwise, read/write permission is

granted.

Use fsRdPerm to request permission to read the file, and fsWrPerm to write to it. If

write permission is granted, no other access paths are granted write permission. Because

the File Manager doesn’t support write-only access to a file, fsWrPerm is synonymous

with fsRdWrShPerm.

Use fsRdWrPerm and fsRdWrShPerm to request exclusive or shared read/write

permission, respectively. If your application is granted exclusive read/write permission,

no users are granted permission to write to the file; other users may, however, be granted

C H A P T E R 1

Resource Manager

1-60 Resource Manager Reference

permission to read the file. Shared read/write permission allows multiple access paths

for writing and reading.

The Resource Manager reads the resource map from the specified file’s resource fork into

memory. It also reads into memory every resource in the resource fork whose

resPreload attribute is set.

The FSpOpenResFile function returns a file reference number for the resource fork.

You can use this reference number to refer to the resource fork in other Resource

Manager routines.

If you attempt to use FSpOpenResFile to open a resource fork that is already open,

FSpOpenResFile returns the existing file reference number or a new one, depending

on the access permission for the existing access path. For example, your application

receives a new file reference number after a successful request for read-only access to a

file previously opened with write access, whereas it receives the same file reference

number in response to a second request for write access to the same file. In this case,

FSpOpenResFile doesn’t make that file the current resource file.

If the FSpOpenResFile function fails to open the specified file’s resource fork (for

instance, because there’s no file with the given file system specification record or because

there are permission problems), it returns –1 as the file reference number. Use the

ResError function to determine what kind of error occurred.

You don’t have to call FSpOpenResFile to open the System file’s resource fork or an

application file’s resource fork. These resource forks are opened automatically when the

system and the application start up, respectively. To get the file reference number for

your application, call the CurResFile function after your application starts up and

before you open any other resource forks.

The FSpOpenResFile function checks that the information in the resource map is

internally consistent. If it isn’t, ResError returns the result code mapReadErr.

To open a resource fork just for block-level operations, such as copying files without

reading the resource map into memory, use the File Manager function OpenRF.

SPECIAL CONSIDERATIONS

The FSpOpenResFile function may move or purge memory blocks in the application

heap. Your application should not call this function at interrupt time.

It’s possible to create multiple, unique, read-only access paths to a resource fork using

FSpOpenResFile; however, you should avoid doing so. If a resource fork is opened

twice—once with read/write permission and once with read-only permission—two

copies of the resource map exist in memory. If you change one of the resources in

memory using one of the resource maps, the two resource maps become inconsistent and

the file will appear damaged to the second resource map.

If you must use this technique for read-only access, call FSpOpenResFile immediately

before your application reads information from the file and close the file immediately

afterward. Otherwise, your application may get unexpected results.

C H A P T E R 1

Resource Manager

Resource Manager Reference 1-61

If an application attempts to open a second access path with write access and the

application is different from the one that originally opened the resource fork,

FSpOpenResFile returns –1, and the ResError function returns the result code

opWrErr.

If you want to open the resource fork for another application (or any resource fork other

than your application’s that includes 'CODE' resources), you must bracket your calls to

FSpOpenResFile with calls to SetResLoad with the load parameter set to FALSE

and then to TRUE. You must also avoid making intersegment calls while the other

application’s resource fork is open. If you don’t do this, the Segment Loader Manager

treats any preloaded 'CODE' resources as your code resources when you make an

intersegment call that triggers a call to LoadSeg while the other application is first in the

resource chain. In this case, your application can begin executing the other application’s

code, and severe problems will ensue. If you need to get 'CODE' resources from the

other application’s resource fork, you can still prevent the Segment Loader Manager

problem by calling UseResFile with your application’s file reference number to make

your application the current resource file.

ASSEMBLY-LANGUAGE INFORMATION

A handle to the resource map for the most recently opened resource fork is stored in the

global variable TopMapHndl. The trap macro and routine selector for the

FSpOpenResFile are

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51. For

information about using the Gestalt function to determine whether the

FSpOpenResFile procedure is available, see “Using the Resource Manager” beginning

on page 1-13. For an example of the use of FSpOpenResFile to open a resource fork,

see Listing 1-7 on page 1-27.

Trap macro Selector

_HighLevelFSDispatch $0000

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename or volume name (perhaps zero length)
eofErr –39 End of file
tmfoErr –42 Too many files open
fnfErr –43 File not found
opWrErr –49 File already open with write permission
permErr –54 Permissions error (on file open)
extFSErr –58 Volume belongs to an external file system
memFullErr –108 Not enough room in heap zone
dirNFErr –120 Directory not found
mapReadErr –199 Map inconsistent with operation

C H A P T E R 1

Resource Manager

1-62 Resource Manager Reference

For information about the CurResFile and UseResFile routines, see page 1-68 and

page 1-69, respectively.

For more information about permission parameter constants or the OpenRF function,

see Inside Macintosh: Files.

HOpenResFile

If the FSpOpenResFile function is not available, you can use HOpenResFile to open a

file’s resource fork.

FUNCTION HOpenResFile (vRefNum: Integer; dirID: LongInt;

 fileName: Str255;

 permission: SignedByte): Integer;

vRefNum The volume reference number of the volume on which the file is located.

dirID The directory ID of the directory where the file is located.

fileName The name of the file whose resource fork is to be opened.

permission
A constant for one of the read/write permission combinations.

DESCRIPTION

The HOpenResFile function opens the resource fork of the file with the name specified

by the fileName parameter in the directory specified by the vRefNum and dirID

parameters. It also makes this file the current resource file.

You can specify the access path permission for the resource fork by setting the

permission parameter to one of these constants:

CONST

fsCurPerm = 0; {whatever is currently allowed}

fsRdPerm = 1; {read-only permission}

fsWrPerm = 2; {write permission}

fsRdWrPerm = 3; {exclusive read/write permission}

fsRdWrShPerm = 4; {shared read/write permission}

See page 1-59 for information about specifying access path permission with

FSpOpenResFile. The same information applies to HOpenResFile.

The Resource Manager reads the resource map from the resource fork of the specified file

into memory. It also reads into memory every resource whose resPreload attribute is

set.

C H A P T E R 1

Resource Manager

Resource Manager Reference 1-63

The HOpenResFile function returns a file reference number for the file. You can use this

file reference number to refer to the file in other Resource Manager routines. If the file’s

resource fork is already open, HOpenResFile returns the file reference number but does

not make that file the current resource file.

If the HOpenResFile function fails to open the specified file’s resource fork (because

there’s no file with the specified name or because there are permission problems), it

returns –1 as the file reference number. Use the ResError function to determine what

kind of error occurred.

You don’t have to call HOpenResFile to open the System file’s resource fork or an

application file’s resource fork. These files are opened automatically when the system

and the application start up, respectively. To get the file reference number for your

application, call the CurResFile function after the application starts up and before you

open the resource forks for any other files.

The HOpenResFile function checks that the information in the resource map is

internally consistent. If it isn’t, ResError returns the result code mapReadErr.

To open a resource fork just for block-level operations, such as copying files without

reading the resource map into memory, use the File Manager function OpenRF.

SPECIAL CONSIDERATIONS

The HOpenResFile function may move or purge memory blocks in the application

heap. Your application should not call this function at interrupt time.

It’s possible to create multiple, unique, read-only access paths to a resource fork using

HOpenResFile; however, you should avoid doing so. See page 1-60 for discussion of

this issue in relation to FSpOpenResFile. The HOpenResFile function works the

same way.

Versions of system software before System 7 do not allow you to use HOpenResFile to

open a second access path, with write access, to a resource fork. In this case,

HOpenResFile returns the reference number already assigned to the file.

If you want to open the resource fork for another application (or any resource fork other

than your application’s that includes 'CODE' resources), you must bracket your calls to

HOpenResFile with calls to SetResLoad with the load parameter set to FALSE and

then to TRUE. You must also avoid making intersegment calls while the other

application’s resource fork is open. The discussion of this issue in relation to

FSpOpenResFile (page 1-60) also applies to HOpenResFile.

ASSEMBLY-LANGUAGE INFORMATION

A handle to the resource map for the most recently opened resource fork is stored in the

global variable TopMapHndl.

C H A P T E R 1

Resource Manager

1-64 Resource Manager Reference

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For more information about permission parameter constants and the OpenRF

function, see Inside Macintosh: Files.

OpenRFPerm

If the FSpOpenResFile and HOpenResFile functions are not available, you can use

the OpenRFPerm function to open a file’s resource fork.

FUNCTION OpenRFPerm (fileName: Str255; vRefNum: Integer;

permission: SignedByte): Integer;

fileName The name of the file whose resource fork is to be opened.

vRefNum The volume reference number or directory ID for the volume or directory
in which the file is located.

permission
A constant for one of the read/write permission combinations.

DESCRIPTION

The OpenRFPerm function opens the resource fork of the file with the name specified by

the fileName parameter in the directory or volume specified by the vRefNum

parameter. It also makes this file the current resource file.

In addition to opening the resource fork for the file with the specified name,

OpenRFPerm lets you specify in the permission parameter the read/write permission

of the resource fork the first time it is opened.

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename or volume name (perhaps zero length)
eofErr –39 End of file
tmfoErr –42 Too many files open
fnfErr –43 File not found
opWrErr –49 File already open with write permission
permErr –54 Attempt to open locked file for writing
extFSErr –58 Volume belongs to an external file system
memFullErr –108 Not enough room in heap zone
dirNFErr –120 Directory not found
mapReadErr –199 Map inconsistent with operation

C H A P T E R 1

Resource Manager

Resource Manager Reference 1-65

You can use the OpenRFPerm function if the FSpOpenResFile function is not

available. You can determine whether FSpOpenResFile is available by calling the

Gestalt function with the gestaltFSAttr selector code. The OpenRFPerm is an

earlier version of the HOpenResFile function.

You can specify the access path permission for the resource fork by setting the

permission parameter to one of these constants:

CONST

fsCurPerm = 0; {whatever is currently allowed}

fsRdPerm = 1; {read-only permission}

fsWrPerm = 2; {write permission}

fsRdWrPerm = 3; {exclusive read/write permission}

fsRdWrShPerm = 4; {shared read/write permission}

See page 1-59 for information about specifying access path permission with

FSpOpenResFile. The same information applies to OpenRFPerm.

The Resource Manager reads the resource map from the resource fork for the specified

file into memory. It also reads into memory every resource in the resource fork whose

resPreload attribute is set.

The OpenRFPerm function returns a file reference number for the file whose resource

fork it has opened. You can use this file reference number to refer to the file in other

Resource Manager routines. If the file’s resource fork is already open, OpenRFPerm

returns the file reference number but does not make that file the current resource file.

If the OpenRFPerm function fails to open the specified file’s resource fork (because

there’s no file with the given name or because there are permission problems), it

returns –1 as the file reference number. Use the ResError function to determine what

kind of error occurred.

You don’t have to call OpenRFPerm to open the System file’s resource fork or an

application file’s resource fork. These files are opened automatically when the system

and the application start up, respectively. To get the file reference number for your

application, call the CurResFile function after the application starts up and before you

open the resource forks for any other files.

The OpenRFPerm function checks that the information in the resource map is internally

consistent. If it isn’t, ResError returns the result code mapReadErr.

To open a resource fork just for block-level operations, such as copying files without

reading the resource map into memory, use the File Manager function OpenRF.

SPECIAL CONSIDERATIONS

The OpenRFPerm function may move or purge memory blocks in the application heap.

Your application should not call this function at interrupt time.

It’s possible to create multiple, unique, read-only access paths to a resource fork using

OpenRFPerm; however, you should avoid doing so. See page 1-60 for discussion of this

issue in relation to FSpOpenResFile; OpenRFPerm works the same way.

C H A P T E R 1

Resource Manager

1-66 Resource Manager Reference

Versions of system software before System 7 do not allow you to use OpenRFPerm to

open a second access path, with write access, to a resource fork. In this case,

OpenRFPerm returns the reference number already assigned to the file.

If you want to open the resource fork for another application (or any resource fork other

than your application’s that includes 'CODE' resources), you must bracket your calls to

OpenRFPerm with calls to SetResLoad with the load parameter set to FALSE and then

to TRUE. You must also avoid making intersegment calls while the other application’s

resource fork is open. The discussion of this issue in relation to FSpOpenResFile

(page 1-60) also applies to OpenRFPerm.

ASSEMBLY-LANGUAGE INFORMATION

A handle to the resource map for the most recently opened resource fork is stored in the

global variable TopMapHndl.

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For more information about permission parameter constants and the OpenRF

function, see Inside Macintosh: Files.

OpenResFile

If the FSpOpenResFile function is not available, you can use the OpenResFile

function to open a resource fork.

FUNCTION OpenResFile (fileName: Str255): Integer;

fileName The name of the file whose resource fork is to be opened.

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename or volume name (perhaps zero length)
eofErr –39 End of file
tmfoErr –42 Too many files open
fnfErr –43 File not found
opWrErr –49 File already open with write permission
permErr –54 Attempt to open locked file for writing
extFSErr –58 Volume belongs to an external file system
memFullErr –108 Not enough room in heap zone
dirNFErr –120 Directory not found
mapReadErr –199 Map inconsistent with operation

C H A P T E R 1

Resource Manager

Resource Manager Reference 1-67

DESCRIPTION

The OpenResFile function opens the resource fork of the file with the name specified

by the fileName parameter in the application’s default directory—that is, the directory

in which the application is located. It also makes this file the current resource file.

Like the OpenRFPerm function, the OpenResFile function takes a filename and opens

the resource fork for the file with that name. Unlike OpenRFPerm, OpenResFile does

not let you specify the read/write permission of the resource fork the first time it is

opened. The OpenResFile function is an earlier version of the OpenRFPerm function.

If it finds the specified file in your application’s default directory, OpenResFile reads

the file’s resource map into memory and returns a file reference number for the file. It

also reads into memory every resource in the resource fork whose resPreload attribute

is set.

You can use the file reference number returned by OpenResFile to refer to the file in

other Resource Manager routines. If the file’s resource fork is already open,

OpenResFile returns the file reference number but does not make that file the current

resource file.

If the OpenResFile function fails to open the specified file’s resource fork (for instance,

because there’s no file with the given name), it returns –1 as the file reference number.

Use the ResError function to determine what kind of error occurred.

You don’t have to call OpenResFile to open the System file’s resource fork or an

application file’s resource fork. These resource forks are opened automatically when the

system and the application start up, respectively. To get the file reference number for

your application, call the CurResFile function after the application starts up and

before you open the resource forks for any other files.

The OpenResFile function checks that the information in the resource map is internally

consistent. If it isn’t, ResError returns the result code mapReadErr.

To open a resource fork just for block-level operations, such as copying files without

reading the resource map into memory, use the File Manager function OpenRF.

SPECIAL CONSIDERATIONS

The OpenResFile function may move or purge memory blocks in the application heap.

Your application should not call this function at interrupt time.

If you want to open the resource fork for another application (or any resource fork other

than your application’s that includes 'CODE' resources), you must bracket your calls to

OpenResFile with calls to SetResLoad with the load parameter set to FALSE and

then to TRUE. You must also avoid making intersegment calls while the other

application’s resource fork is open. The discussion of this issue in relation to

FSpOpenResFile (page 1-60) also applies to OpenResFile.

ASSEMBLY-LANGUAGE INFORMATION

A handle to the resource map for the most recently opened resource fork is stored in the

global variable TopMapHndl.

C H A P T E R 1

Resource Manager

1-68 Resource Manager Reference

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

Getting and Setting the Current Resource File

Most of the Resource Manager routines assume that the current resource file is the file on

whose resource fork they should operate or, in the case of a search, the file where they

should begin. In general, the current resource file is the last one whose resource fork

your application opened unless you specify otherwise.

Two routines work specifically with the current resource file: CurResFile and

UseResFile. The CurResFile function tells you which of the files whose resource

forks are currently open is the current resource file. The UseResFile procedure sets the

current resource file.

The HomeResFile function gets the file reference number associated with a particular

resource.

CurResFile

You can use the CurResFile function to get the file reference number of the current

resource file.

FUNCTION CurResFile: Integer;

DESCRIPTION

The CurResFile function returns the file reference number associated with the current

resource file. You can call this function when your application starts up (before opening

the resource fork of any other file) to get the file reference number of your application’s

resource fork.

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename or volume name (perhaps zero length)
eofErr –39 End of file
tmfoErr –42 Too many files open
fnfErr –43 File not found
opWrErr –49 File already open with write permission
permErr –54 Attempt to open locked file for writing
extFSErr –58 Volume belongs to an external file system
memFullErr –108 Not enough room in heap zone
dirNFErr –120 Directory not found
mapReadErr –199 Map inconsistent with operation

C H A P T E R 1

Resource Manager

Resource Manager Reference 1-69

If the current resource file is the System file, CurResFile returns the actual file

reference number. You can use this number or 0 with routines that take a file reference

number for the System file. All Resource Manager routines recognize both 0 and the

actual file reference number as referring to the System file.

ASSEMBLY-LANGUAGE INFORMATION

The current resource file’s reference number is stored in the global variable CurMap.

RESULT CODE

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For an example of the use of the CurResFile function, see Listing 1-8 on page 1-29.

UseResFile

You can use the UseResFile procedure to set the current resource file.

PROCEDURE UseResFile (refNum: Integer);

refNum The file reference number for a resource fork.

DESCRIPTION

The UseResFile procedure searches the list of files whose resource forks have been

opened for the file specified by the refNum parameter. If the specified file is found, the

Resource Manager sets the current resource file to the specified file. If there’s no resource

fork open for a file with that reference number, UseResFile does nothing. To set the

current resource file to the System file, use 0 for the refNum parameter.

Open resource forks are arranged as a linked list with the most recently opened resource

fork at the beginning. When searching open resource forks, the Resource Manager starts

with the most recently opened file. You can call the UseResFile procedure to set the

current resource file to a file opened earlier, and thereby start subsequent searches with

the specified file. In this way, you can cause any files higher in the resource chain to be

left out of subsequent searches.

When a new resource fork is opened, this action overrides previous calls to UseResFile

and the entire list is searched. For example, if five resource forks are opened in the order

R0, R1, R2, R3, and R4, the search order is R4-R3-R2-R1-R0. Calling UseResFile(R2)

changes the search order to R2-R1-R0; R4 and R3 are not searched. When the resource

fork of a new file (R5) is opened, the search order becomes R5-R4-R3-R2-R1-R0.

noErr 0 No error

C H A P T E R 1

Resource Manager

1-70 Resource Manager Reference

You typically call CurResFile to get and save the current resource file, UseResFile to

set the current resource file to the desired file, then (after you are finished using the

resource) UseResFile to restore the current resource file to its previous value. Calling

UseResFile(0) causes the Resource Manager to search only the System file’s resource

map. This is useful if you no longer wish to override a system resource with one by the

same name in your application’s resource fork.

SPECIAL CONSIDERATIONS

The FSpOpenResFile, HOpenResFile, and OpenResFile functions, which also set

the current resource file, override previous calls to UseResFile.

ASSEMBLY-LANGUAGE INFORMATION

The settings of the system global variables RomMapInsert and TmpResLoad affect

resource search order. These global variables determine whether the Resource Manager

searches ROM-resident resources before the System file’s resources.

The Resource Manager normally searches ROM resources only when you use the

RGetResource function to get a handle to the resource, and even then only after it

searches the System file’s resource fork. To search for a resource in ROM before searching

the System file’s resource fork, your application must first alter the resource search order

by inserting the ROM resource map in front of the System file’s resource map.

When the value of the system global variable RomMapInsert is TRUE, the Resource

Manager inserts the ROM resource map before the System file’s resource map for the

next call only (including any Resource Manager routine that gets a resource, not just

RGetResource). When the value of RomMapInsert is TRUE, the adjacent variable

TmpResLoad determines whether the value of the global variable ResLoad is

considered TRUE or FALSE, overriding the actual value of ResLoad for the next call

only. The values of the RomMapInsert and TmpResLoad variables are cleared after

each call to a Resource Manager routine.

You can use two global constants to set these variables in tandem. Set the system global

variable RomMapInsert to the global constant mapTrue to insert the ROM resource

map with SetResLoad(TRUE). Set the system global variable RomMapInsert to the

global constant mapFalse to insert the ROM resource map with SetResLoad(FALSE).

RESULT CODES

noErr 0 No error
resFNotFound –193 Resource file not found

C H A P T E R 1

Resource Manager

Resource Manager Reference 1-71

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For an example of the use of the UseResFile procedure, see Listing 1-8 on page 1-29.

For descriptions of the FSpOpenResFile, HOpenResFile, and OpenResFile

functions, see page 1-58 through page 1-66. For a description of the SetResLoad

procedure, see page 1-79.

HomeResFile

To get the file reference number associated with a particular resource, use the

HomeResFile function.

FUNCTION HomeResFile (theResource: Handle): Integer;

theResource
A handle to a resource.

DESCRIPTION

Given a handle to a resource, the HomeResFile function returns the file reference

number for the resource fork containing the specified resource. If the given handle isn’t a

handle to a resource, HomeResFile returns –1, and the ResError function returns the

result code resNotFound. If HomeResFile returns 0, the resource is in the System file’s

resource fork. If HomeResFile returns 1, the resource is ROM-resident.

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

Reading Resources Into Memory

The routines described in this section allow your application to read resource data into

memory. The GetResource and Get1Resource functions get a resource specified by a

resource type and a resource ID. The GetNamedResource and Get1NamedResource

functions get a resource specified by name. The RGetResource function searches the

ROM-resident resources as well as the open resource forks.

noErr 0 No error
resNotFound –192 Resource not found

C H A P T E R 1

Resource Manager

1-72 Resource Manager Reference

The SetResLoad procedure enables and disables automatic loading of resource data

into memory for routines that return handles to resources, and the LoadResource

procedure reads resource data into memory for a purged resource or after you’ve called

SetResLoad with the load parameter set to FALSE.

When your application requests a resource, the Resource Manager normally looks in the

current resource file’s resource map in memory. If it can’t find an entry for the specified

resource, the Resource Manager searches the resource maps for each open resource fork

in the reverse order that the resource forks were opened. If it can’t find an entry for the

specified resource in any of these resource maps, the Resource Manager searches your

application’s resource map. If it can’t find an entry for the specified resource in

your application’s resource map, the Resource Manager searches the resource map for

the System file.

The Resource Manager determines whether or not to load the specified resource into

memory according to the entry for that resource in the resource map. If the resource’s

resource map entry contains a valid handle, the Resource Manager returns that handle. If

the value of the handle is NIL, the Resource Manager reads the resource data into

memory.

Before reading the resource data into memory, the Resource Manager calls the Memory

Manager to allocate a relocatable block for the resource data. The Memory Manager

allocates the block, assigns a master pointer to the block, and returns to the Resource

Manager a pointer to the master pointer. The Resource Manager then installs this handle

in the resource map and also returns a handle to the resource.

If the resource’s resource map entry contains an empty handle (a handle whose master

pointer is set to NIL) and the value of the system global variable ResLoad is TRUE, the

Resource Manager routines that get resources reallocate the resource’s handle and read

the resource data from disk back into memory.

IMPORTANT

In certain situations, a Resource Manager routine can return an empty
handle (a handle whose master pointer is set to NIL). For instance, if
you’ve called SetResLoad with the load parameter set to FALSE and
the resource data isn’t already in memory, and then you call the
GetResource function (or any of the other Resource Manager routines
that get a resource), the Resource Manager routine returns an empty
handle (a handle whose master pointer is set to NIL). This can also
happen if you read resource data for a purgeable resource into memory
and then call SetResLoad with the load parameter set to FALSE. If the
resource data is later purged, when you call GetResource (or other
routines that get a resource), the Resource Manager returns an empty
handle. You should test for an empty handle in these situations. To make
the handle a valid handle to resource data in memory, you can call the
LoadResource procedure. ◆

C H A P T E R 1

Resource Manager

Resource Manager Reference 1-73

GetResource

You can use the GetResource function to get resource data for a resource specified by

resource type and resource ID.

FUNCTION GetResource (theType: ResType; theID: Integer): Handle;

theType A resource type.

theID An integer that uniquely identifies a resource of the specified type.

DESCRIPTION

The GetResource function searches the resource maps in memory for the resource

specified by the parameters theType and theID. The resource maps in memory, which

represent all the open resource forks, are arranged as a linked list. When searching this

list, GetResource starts with the current resource file and progresses through the list

(that is, searching the resource maps in reverse order of opening) until it finds the

resource’s entry in one of the resource maps.

If the GetResource function finds the specified resource entry in one of the resource

maps and the entry contains a valid handle, it returns that handle. If the entry contains a

a handle whose value is NIL, and if you haven’t called SetResLoad with the load

parameter set to FALSE, GetResource attempts to read the resource into memory.

If GetResource can’t find the resource data, it returns NIL, and ResError returns the

result code resNotFound. The GetResource function also returns NIL if the resource

data to be read into memory won’t fit, in which case ResError returns an appropriate

Memory Manager result code. If you call GetResource with a resource type that can’t

be found in any of the resource maps of the open resource forks, the function returns

NIL, but ResError returns the result code noErr. You should always check that the

value of the returned handle is not NIL.

You can change the resource map search order by calling the UseResFile procedure

before GetResource.

SPECIAL CONSIDERATIONS

Calling GetResource may move or purge memory blocks in the application heap. Your

application should not call this function at interrupt time.

RESULT CODES

noErr 0 No error
resNotFound –192 Resource not found

C H A P T E R 1

Resource Manager

1-74 Resource Manager Reference

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For examples of the use of GetResource, see page 1-18 through page 1-24.

To include ROM-resident system resources in the Resource Manager’s search of the

resource maps of open resource forks, use the RGetResource function as described on

page 1-78.

For information about the UseResFile and SetResLoad procedures, see page 1-69

and page 1-79, respectively.

Get1Resource

You can use the Get1Resource function to get resource data for a resource in the

current resource file.

FUNCTION Get1Resource (theType: ResType; theID: Integer): Handle;

theType A resource type.

theID An integer that uniquely identifies a resource of the specified type.

DESCRIPTION

The Get1Resource function searches the current resource file’s resource map in

memory for the resource specified by the theType and theID parameters. If

Get1Resource finds an entry for the resource in the current resource file’s resource

map and the entry contains a valid handle, it returns that handle. If the entry contains a

handle whose value is NIL, and if you haven’t called SetResLoad with the load

parameter set to FALSE, Get1Resource attempts to read the resource into memory.

If Get1Resource can’t find the resource data, it returns NIL, and ResError returns the

result code resNotFound. The Get1Resource function also returns NIL if the resource

data to be read into memory won’t fit, in which case ResError returns an appropriate

Memory Manager result code.

If you call Get1Resource with a resource type that can’t be found in the resource map

of the current resource file, the function returns NIL, but ResError returns the result

code noErr. You should always check that the value of the returned handle is not NIL.

You can change the resource map search order by calling the UseResFile procedure

before Get1Resource.

C H A P T E R 1

Resource Manager

Resource Manager Reference 1-75

SPECIAL CONSIDERATIONS

Calling Get1Resource may move or purge memory blocks in the application heap.

Your application should not call this function at interrupt time.

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For examples of the use of the Get1Resource function, see Listing 1-8 on page 1-29 and

Listing 1-9 on page 1-32.

To include ROM-resident system resources in the Resource Manager’s search of the

resource maps for open resource forks, use the RGetResource function as described on

page 1-78.

For information about the UseResFile and SetResLoad procedures, see page 1-69

and page 1-79, respectively.

GetNamedResource

You can use the GetNamedResource function to get a named resource.

FUNCTION GetNamedResource (theType: ResType; name: Str255)

: Handle;

theType A resource type.

name A name that uniquely identifies a resource of the specified type. Strings
passed in this parameter are case-sensitive.

DESCRIPTION

The GetNamedResource function searches the resource maps in memory for the

resource specified by the parameters theType and name. The resource maps in memory,

which represent all the open resource forks, are arranged as a linked list. When

GetNamedResource searches this list, it starts with the current resource file and

progresses through the list in order (that is, in reverse chronological order in which the

resource forks were opened) until it finds the resource’s entry in one of the resource

maps.

noErr 0 No error
resNotFound –192 Resource not found

C H A P T E R 1

Resource Manager

1-76 Resource Manager Reference

If GetNamedResource finds the specified resource entry in one of the resource maps

and the entry contains a valid handle, the function returns that handle. If the entry

contains a handle whose value is NIL, and if you haven’t called SetResLoad with the

load parameter set to FALSE, GetNamedResource attempts to read the resource into

memory.

If the GetNamedResource function can’t find the resource data, it returns NIL, and

ResError returns the result code resNotFound. The GetNamedResource function

also returns NIL if the resource data to be read into memory won’t fit, in which case

ResError returns an appropriate Memory Manager result code. If you call

GetNamedResource with a resource type that can’t be found in any of the resource

maps of the open resource forks, the function returns NIL as well, but ResError returns

the result code noErr. You should always check that the value of the returned handle is

not NIL.

You can change the resource map search order by calling the UseResFile procedure

before GetNamedResource.

SPECIAL CONSIDERATIONS

The GetNamedResource function may move or purge memory blocks in the

application heap. Your application should not call this function at interrupt time.

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

To include ROM-resident system resources in the Resource Manager’s search of the

resource maps for open resource forks, use the RGetResource function as described on

page 1-78.

For information about the UseResFile and SetResLoad procedures, see page 1-69

and page 1-79, respectively.

noErr 0 No error
resNotFound –192 Resource not found

C H A P T E R 1

Resource Manager

Resource Manager Reference 1-77

Get1NamedResource

You can use the Get1NamedResource function to get a named resource in the current

resource file.

FUNCTION Get1NamedResource (theType: ResType; name: Str255)

 : Handle;

theType A resource type.

name A name that uniquely identifies a resource of the specified type.

DESCRIPTION

The Get1NamedResource function searches the current resource file’s resource map in

memory for the resource specified by the parameters theType and name. If

Get1NamedResource finds an entry for the resource in the current resource file’s

resource map and the entry contains a valid handle, the function returns that handle. If

the entry contains a handle whose value is NIL, and if you haven’t called SetResLoad

with the load parameter set to FALSE, Get1NamedResource attempts to read the

resource into memory.

If it can’t find the resource data, Get1NamedResource returns NIL, and ResError

returns the result code resNotFound. The Get1NamedResource function also returns

NIL if the resource data to be read into memory won’t fit, in which case ResError

returns an appropriate Memory Manager result code.

If you call Get1NamedResource with a resource type that can’t be found in the

resource map of the current resource file, the function returns NIL, but ResError

returns the result code noErr. You should always check that the value of the returned

handle is not NIL.

You can change the search order by calling the UseResFile procedure before

Get1NamedResource.

SPECIAL CONSIDERATIONS

The Get1NamedResource function may move or purge memory blocks in the

application heap. Your application should not call this function at interrupt time.

RESULT CODES

noErr 0 No error
resNotFound –192 Resource not found

C H A P T E R 1

Resource Manager

1-78 Resource Manager Reference

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

To include ROM-resident system resources in the Resource Manager’s search of the

resource maps for open resource forks, use the RGetResource function, described next.

For information about the UseResFile and SetResLoad procedures, see page 1-69

and page 1-79, respectively.

RGetResource

You can use the RGetResource function to get resource data for a resource and include

ROM-resident system resources in the Resource Manager’s search of resource maps.

FUNCTION RGetResource (theType: ResType; theID: Integer): Handle;

theType A resource type.

theID An integer that uniquely identifies a resource of the specified type.

DESCRIPTION

The RGetResource function searches the resource maps in memory for the resource

specified by the parameters theType and theID. The resource maps in memory, which

represent all open resource forks, are arranged as a linked list. The RGetResource

function first uses GetResource to search this list. The GetResource function starts

with the current resource file and progresses through the list in order (that is, in reverse

chronological order in which the resource forks were opened) until it finds the resource’s

entry in one of the resource maps. If GetResource doesn’t find the specified resource in

its search of the resource maps of open resource forks (which includes the System file’s

resource fork), RGetResource sets the global variable RomMapInsert to TRUE, then

calls GetResource again. In response, GetResource performs the same search, but

this time it looks in the resource map of the ROM-resident resources before searching the

resource map of the System file.

If RGetResource finds the specified resource entry in one of the resource maps and the

entry contains a valid handle, the function returns that handle. If the entry contains a

handle whose value is NIL, and if you haven’t called SetResLoad with the load

parameter set to FALSE, RGetResource attempts to read the resource into memory.

If it can’t find the resource data, RGetResource returns NIL, and ResError returns the

result code resNotFound. The RGetResource function also returns NIL if the resource

data to be read into memory won’t fit, in which case ResError returns an appropriate

Memory Manager result code. If you call RGetResource with a resource type that can’t

be found in any of the resource maps of the open resource forks, the function returns

NIL, but ResError returns the result code noErr. You should always check that the

value of the returned handle is not NIL.

C H A P T E R 1

Resource Manager

Resource Manager Reference 1-79

SPECIAL CONSIDERATIONS

The RGetResource function may move or purge memory blocks in the application

heap. Your application should not call this function at interrupt time.

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For more information, see “Inserting the ROM Resource Map” beginning on page 1-134.

For a description of the UseResFile procedure, see page 1-69. The SetResLoad

procedure is described next.

SetResLoad

You can use the SetResLoad procedure to enable and disable automatic loading of

resource data into memory for routines that return handles to resources.

PROCEDURE SetResLoad (load: Boolean);

load A Boolean value that determines whether Resource Manager routines
should read resource data into memory. If you set this parameter to TRUE,
Resource Manager routines that return handles will, during subsequent
calls, automatically read resource data into memory if it is not already in
memory; if you set this parameter to FALSE, Resource Manager routines
will not automatically read resource data into memory.

DESCRIPTION

Routines that return handles to resources normally read the resource data into memory if

it’s not already there. The default setting (load = TRUE) maintains this state. If the

load parameter is set to FALSE, routines that return handles to resources will not,

during subsequent calls, load the resource data into memory. Instead, such routines

return a handle whose master pointer is set to NIL unless the resource is already in

memory. In addition, when first opening a resource fork the Resource Manager won’t

load into memory resources whose resPreload attribute is set.

You can use the SetResLoad procedure when you want to read from the resource map

without reading the resource data into memory. To read the resource data into memory

after a call to SetResLoad, call the LoadResource procedure, which is described next.

noErr 0 No error
resNotFound –192 Resource not found

C H A P T E R 1

Resource Manager

1-80 Resource Manager Reference

▲ W A R N I N G

If you call SetResLoad with the load parameter set to FALSE, be sure
to call SetResLoad with the load parameter set to TRUE as soon as
possible. Other parts of system software that call the Resource Manager
expect this value to be TRUE, and some routines won’t work if resources
are not loaded automatically. ▲

ASSEMBLY-LANGUAGE INFORMATION

The current value of SetResLoad is stored in the global variable ResLoad.

RESULT CODE

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For more information about the global variable ResLoad, see “Inserting the ROM

Resource Map” beginning on page 1-134.

LoadResource

You can use the LoadResource procedure to get resource data after you’ve called

SetResLoad with the load parameter set to FALSE or when the resource is purgeable.

PROCEDURE LoadResource (theResource: Handle);

theResource
A handle to a resource.

DESCRIPTION

Given a handle to a resource, LoadResource reads the resource data into memory. If

the resource is already in memory, or if the theResource parameter doesn’t contain a

handle to a resource, then LoadResource does nothing. To determine whether either of

these situations occurred, call ResError. If the resource is already in memory,

ResError returns noErr; if the handle is not a handle to a resource, ResError returns

resNotFound.

noErr 0 No error

C H A P T E R 1

Resource Manager

Resource Manager Reference 1-81

SPECIAL CONSIDERATIONS

If you’ve changed the resource data for a purgeable resource and the resource is purged

before being written to the file, the changes will be lost. In this case, LoadResource

rereads the original resource from the file’s resource fork. You should use

ChangedResource or SetResPurge before calling LoadResource to ensure that

changes made to purgeable resources are written to the resource fork.

ASSEMBLY-LANGUAGE INFORMATION

The LoadResource procedure preserves all registers.

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For information about the SetResLoad, ChangedResource, and SetResPurge

procedures, see page 1-79, page 1-88, and page 1-94, respectively.

Getting and Setting Resource Information

The Resource Manager provides four routines that allow you to get and set information

about resources. The GetResInfo procedure returns the resource ID, resource type, and

resource name for a specified resource. The SetResInfo procedure sets the resource

name and resource ID for a specified resource. The GetResAttrs function returns a

resource’s attributes, and the SetResAttrs function sets a resource’s attributes.

GetResInfo

You can use the GetResInfo procedure to get a resource’s resource ID, resource type,

and resource name.

PROCEDURE GetResInfo (theResource: Handle; VAR theID: Integer;

 VAR theType: ResType; VAR name: Str255);

theResource
A handle to a resource.

theID GetResInfo returns the resource ID of the specified resource in this
parameter.

noErr 0 No error
resNotFound –192 Resource not found

C H A P T E R 1

Resource Manager

1-82 Resource Manager Reference

theType GetResInfo returns the resource type of the specified resource in this
parameter.

name GetResInfo returns the name of the specified resource in this parameter.

DESCRIPTION

Given a handle to a resource, the GetResInfo procedure returns the resource’s

resource ID, resource type, and resource name. If the handle isn’t a valid handle to

a resource, GetResInfo does nothing; to determine whether this has occurred, call

ResError.

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

To set a resource’s ID, resource type, or resource name, use the SetResInfo procedure.

It is described next.

SetResInfo

You can use the SetResInfo procedure to change the name and resource ID of a

resource.

PROCEDURE SetResInfo (theResource: Handle; theID: Integer;

 name: Str255);

theResource
A handle to a resource.

theID The new resource ID.

name The new name or an empty string to preserve the resource name.

DESCRIPTION

Given a handle to a resource, SetResInfo changes the resource ID and the resource

name of the specified resource to the values given in theID and name. If you pass an

empty string for the name parameter, the resource name is not changed. The

SetResInfo procedure changes the information in the resource map in memory, not in

the resource file itself.

noErr 0 No error
resNotFound –192 Resource not found

C H A P T E R 1

Resource Manager

Resource Manager Reference 1-83

▲ W A R N I N G

Do not change a system resource’s resource ID or name. Other
applications may already access the resource and may not work
properly if you change the resource ID, resource name, or both. ▲

If the parameter theResource doesn’t contain a handle to an existing resource,

SetResInfo does nothing, and ResError returns the result code resNotFound. If

the resource map becomes too large to fit in memory (for example, after an unnamed

resource is given a name), SetResInfo does nothing, and ResError returns an

appropriate Memory Manager result code. The same is true if the resource data in

memory can’t be written to the resource fork (for example, because the disk is full). If the

resProtected attribute is set for the resource, SetResInfo does nothing, and

ResError returns the result code resAttrErr.

If you want to write changes to the resource map on disk after updating the resource

map in memory, call the ChangedResource procedure for the same resource after you

call SetResInfo.

IMPORTANT

Even if you don’t call ChangedResource after using SetResInfo to
change the name and resource ID of a resource, the change may be
written to disk when the Resource Manager updates the resource fork. If
you call ChangedResource for any resource in the same resource fork,
or if you add or remove a resource, the Resource Manager writes the
entire resource map to disk after a call to UpdateResFile or when
your application terminates. In these cases, all changes to resource
information in the resource map become permanent. If you want any of
the changes to be temporary, you should restore the original information
before the resource is updated. ▲

SPECIAL CONSIDERATIONS

The SetResInfo procedure may move or purge memory blocks in the application

heap. Your application should not call this procedure at interrupt time.

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For a description of the ChangedResource and UpdateResFile procedures, see

page 1-88 and page 1-92, respectively.

noErr 0 No error
resNotFound –192 Resource not found
resAttrErr –198 Attribute does not permit operation

C H A P T E R 1

Resource Manager

1-84 Resource Manager Reference

GetResAttrs

You can use the GetResAttrs function to get a resource’s attributes.

FUNCTION GetResAttrs (theResource: Handle): Integer;

theResource
A handle to a resource.

DESCRIPTION

Given a handle to a resource, the GetResAttrs function returns the resource’s

attributes as recorded in its entry in the resource map in memory. If the value of the

theResource parameter isn’t a handle to a valid resource, GetResInfo does nothing,

and the ResError function returns the result code resNotFound.

The GetResAttrs function returns the resource’s attributes in the low-order byte of the

function result. Each attribute is identified by a specific bit in the low-order byte. If the

bit corresponding to an attribute contains 1, then that attribute is set; if the bit contains 0,

then that attribute is not set. You can use these constants to refer to each attribute:

CONST

resSysHeap = 64; {set if read into system heap}

resPurgeable = 32; {set if purgeable}

resLocked = 16; {set if locked}

resProtected = 8; {set if protected}

resPreload = 4; {set if to be preloaded}

resChanged = 2; {set if to be written to resource fork}

The resSysHeap attribute indicates whether the resource is read into the system heap

(resSysHeap attribute is set to 1) or your application’s heap (resSysHeap attribute is

set to 0).

If the resPurgeable attribute is set to 1, the resource is purgeable; if it’s 0, the resource

is nonpurgeable.

Because a locked resource is nonrelocatable and nonpurgeable, the resLocked attribute

overrides the resPurgeable attribute. If the resLocked attribute is 1, the resource is

nonpurgeable regardless of whether resPurgeable is set. If it’s 0, the resource is

purgeable or nonpurgeable depending on the value of the resPurgeable attribute.

If the resProtected attribute is set to 1, your application can’t use Resource Manager

routines to change the resource ID or resource name, modify the resource contents, or

remove the resource from its resource fork. However, you can use the SetResAttrs

procedure to remove this protection.

If the resPreload attribute is set to 1, the Resource Manager reads the resource’s

resource data into memory immediately after opening its resource fork. You can use this

setting to make multiple resources available for your application as soon as possible,

C H A P T E R 1

Resource Manager

Resource Manager Reference 1-85

rather than reading each one into memory individually. If both the resPreload

attribute and the resLocked attribute are set, the Resource Manager loads the resource

as low in the heap as possible.

If the resChanged attribute is set to 1, the resource has been changed; if it’s 0, the

resource hasn’t been changed. This attribute is used only while the resource map is in

memory. The resChanged attribute must be 0 in the resource fork on disk.

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For more information about resource attributes, see “The Resource Map” beginning on

page 1-8.

To change a resource’s attributes in the resource map in memory, use the SetResAttrs

procedure. It is described next.

SetResAttrs

You can use the SetResAttrs procedure to change a resource’s attributes in the

resource map in memory.

PROCEDURE SetResAttrs (theResource: Handle; attrs: Integer);

theResource
A handle to a resource.

attrs The resource attributes to set.

DESCRIPTION

Given a handle to a resource, SetResAttrs changes the resource attributes of the

resource to those specified in the attrs parameter. The SetResAttrs procedure

changes the information in the resource map in memory, not in the file on disk. The

resProtected attribute changes immediately. Other attribute changes take effect the

next time the specified resource is read into memory but are not made permanent until

the Resource Manager updates the resource fork.

If the value of the parameter theResource isn’t a valid handle to a resource,

SetResAttrs does nothing, and the ResError function returns the result code

resNotFound.

noErr 0 No error
resNotFound –192 Resource not found

C H A P T E R 1

Resource Manager

1-86 Resource Manager Reference

Each attribute is identified by a specific bit in the low-order byte of a word. If the bit

corresponding to an attribute contains 1, then that attribute is set; if the bit contains 0,

then that attribute is not set. You can use these constants to specify each attribute:

CONST

resSysHeap = 64; {set if read into system heap}

resPurgeable = 32; {set if purgeable}

resLocked = 16; {set if locked}

resProtected = 8; {set if protected}

resPreload = 4; {set if to be preloaded}

resChanged = 2; {set if to be written to resource fork}

The resSysHeap attribute determines whether the resource is read into your

application’s heap (resSysHeap attribute set to 0) or the system heap (resSysHeap

attribute set to 1). You should set this bit to 0 for your application’s resources. Note that

if you do set the resSysHeap attribute to 1 and the resource is too large for the system

heap, the bit is cleared and the resource is read into the application heap.

Set the resPurgeable attribute to 1 to make the resource purgeable; you can set it to 0

to make the resource nonpurgeable. However, do not use SetResAttrs to make a

purgeable resource nonpurgeable.

Because a locked resource is nonrelocatable and nonpurgeable, the resLocked attribute

overrides the resPurgeable attribute. If you set the resLocked attribute to 1, the

resource is nonpurgeable regardless of whether or not you set resPurgeable. If you

set the resLocked attribute to 0, the resource is purgeable or nonpurgeable depending

on the value of the resPurgeable attribute.

If you set the resProtected attribute to 1, your application can’t use Resource

Manager routines to change the resource ID or resource name, modify the resource

contents, or remove the resource from its resource fork. If you set the resProtected

attribute to 0, you remove this protection. Note that this attribute change takes effect

immediately.

If you set the resPreload attribute to 1, the Resource Manager reads the resource’s

resource data into memory immediately after opening its resource fork. You can use this

setting to make multiple resources available for your application as soon as possible,

rather than reading each one into memory separately.

The resChanged attribute indicates whether or not the resource has been changed; do

not use SetResAttrs to set the resChanged attribute. Be sure the attrs parameter

passed to SetResAttrs doesn’t change the current setting of this attribute. To

determine the attribute’s current setting, call the GetResAttrs function. To set

the resChanged attribute, call the ChangedResource procedure. Note

that the resChanged attribute is used only while the resource map is in memory. The

resChanged attribute must be 0 in the resource fork on disk.

C H A P T E R 1

Resource Manager

Resource Manager Reference 1-87

If you want the Resource Manager to write the modified resource map to disk after a

subsequent call to UpdateResFile or when your application terminates, call the

ChangedResource procedure after you call SetResAttrs.

▲ W A R N I N G

Do not use SetResAttrs to change a purgeable resource. If you make a
purgeable resource nonpurgeable by setting the resPurgeable
attribute with SetResAttrs, the resource doesn’t become
nonpurgeable until the next time the specified resource is read into
memory. Thus, the resource might be purged while you’re changing it. ▲

SPECIAL CONSIDERATIONS

The SetResAttrs procedure does not return an error if you are setting the attributes of

a resource in a resource file that has a read-only resource map. To find out whether this is

the case, use GetResFileAttrs.

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For more information about resource attributes, see “The Resource Map” beginning on

page 1-8.

For a description of the GetResFileAttrs function, see page 1-116. To mark a resource

as changed, use the ChangedResource procedure, described next.

Modifying Resources

The Resource Manager provides two routines that change the resChanged attribute of a

specified resource. The ChangedResource procedure allows you to indicate that a

resource in memory has been changed, and the AddResource procedure allows you to

add a new resource to a resource map.

If the resChanged attribute for a resource has been set and your application calls

UpdateResFile or quits, the Resource Manager writes both the entire resource map

and the resource data for that resource to the resource fork of the corresponding file on

disk. If the resChanged attribute has been set and your application calls

WriteResource, the Resource Manager writes only the resource’s data to disk.

noErr 0 No error
resNotFound –192 Resource not found

C H A P T E R 1

Resource Manager

1-88 Resource Manager Reference

ChangedResource

If you’ve changed a resource’s data or changed an entry in a resource map, you can use

the ChangedResource procedure to set a flag in the resource’s resource map entry in

memory to show that you’ve made changes.

PROCEDURE ChangedResource (theResource: Handle);

theResource
A handle to a resource.

DESCRIPTION

Given a handle to a resource, the ChangedResource procedure sets the resChanged

attribute for that resource in the resource map in memory. If the resChanged attribute

for a resource has been set and your application calls UpdateResFile or quits, the

Resource Manager writes the resource data for that resource (and for all other resources

whose resChanged attribute is set) and the entire resource map to the resource fork of

the corresponding file on disk. If the resChanged attribute for a resource has been set

and your application calls WriteResource, the Resource Manager writes only the

resource data for that resource to disk.

If you change information in the resource map with a call to SetResInfo or

SetResAttrs and then call ChangedResource and UpdateResFile, the Resource

Manager still writes both the resource map and the resource data to disk. If you want

any of your changes to the resource map or resource data to be temporary, you must

restore the original information before the Resource Manager updates the resource fork

on disk.

After writing a resource to disk, the Resource Manager clears the resource’s

resChanged attribute in the appropriate entry of the resource map in memory.

If the given handle isn’t a handle to a resource, if the modified resource data can’t be

written to the resource fork, or if the resProtected attribute is set for the modified

resource, ChangedResource does nothing. To find out whether any of these errors

occurred, call ResError.

When your application calls ChangedResource, the Resource Manager attempts to

reserve enough disk space to contain the changed resource. If the modified resource data

can’t be written to the resource fork (for example, if there’s not enough room on disk),

the resChanged attribute is not set to 1. If this is the case and you call UpdateResFile

or WriteResource, the Resource Manager won’t know that the resource data has been

changed. Thus, the routine won’t write the modified resource data to the resource fork

and won’t return an error. For this reason, always make sure that the ResError function

returns the result code noErr after a call to ChangedResource.

C H A P T E R 1

Resource Manager

Resource Manager Reference 1-89

IMPORTANT

If you need to make changes to a purgeable resource using routines that
may cause the Memory Manager to purge the resource, you should
make the resource temporarily not purgeable. To do so, use the Memory
Manager procedures HGetState, HNoPurge, and HSetState to make
sure the resource data remains in memory while you change it and until
the resource data is written to disk. (You can’t use the SetResAttrs
procedure for this purpose, because the changes don’t take effect
immediately.) First call HGetState and HNoPurge, then change the
resource as necessary. To make a change to a resource permanent, use
ChangedResource and UpdateResFile or WriteResource; then
call HSetState when you’re finished. Or, instead of calling
WriteResource to write the resource data immediately, you can call
SetResPurge with the install parameter set to TRUE before making
changes to purgeable resource data.

If your application doesn’t make its resources purgeable, or if the
changes you are making to a purgeable resource don’t involve routines
that may cause the resource to be purged, you don’t need to take these
precautions. ▲

SPECIAL CONSIDERATIONS

The ChangedResource procedure may move or purge memory blocks in the

application heap. Your application should not call this procedure at interrupt time.

When called, ChangedResource reserves disk space for the changed resource. The

procedure reserves space every time you call it, but the resource is not actually written

until you call WriteResource or UpdateResFile. Thus, if you call

ChangedResource several times before the resource is actually written, the procedure

reserves much more space than is needed. If the resource is large, you may unexpectedly

run out of disk space. When the resource is actually written, the file’s end-of-file (EOF) is

set correctly, and the next call to ChangedResource will work as expected.

If your application frequently changes the contents of resources (especially large

resources), you should call WriteResource or UpdateResFile immediately after

calling ChangedResource.

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For examples of the use of the ChangedResource procedure, see Listing 1-2 on

page 1-21 and Listing 1-11 on page 1-38.

noErr 0 No error
resNotFound –192 Resource not found
resAttrErr –198 Attribute inconsistent with operation

C H A P T E R 1

Resource Manager

1-90 Resource Manager Reference

For descriptions of the UpdateResFile and WriteResource procedures, see

page 1-92 and page 1-93, respectively. For descriptions of the SetResInfo,

SetResAttrs, and SetResPurge procedures, see page 1-82, page 1-85, and page 1-94,

respectively.

For information about using the Memory Manager procedures HGetState, HNoPurge,

and HSetState, see Inside Macintosh: Memory.

AddResource

You can use the AddResource procedure to add a resource to the current resource file.

PROCEDURE AddResource (theData: Handle; theType: ResType;

 theID: Integer; name: Str255);

theData A handle to data in memory to be added as a resource to the current
resource file (not a handle to an existing resource).

theType The resource type of the resource to be added.

theID The resource ID of the resource to be added.

name The name of the resource to be added.

DESCRIPTION

Given a handle to any type of data in memory (but not a handle to an existing resource),

AddResource adds the given handle, resource type, resource ID, and resource name to

the current resource file’s resource map in memory. The AddResource procedure sets

the resChanged attribute to 1; it does not set any of the resource’s other attributes—that

is, all other attributes are set to 0.

▲ W A R N I N G

The AddResource procedure doesn’t verify whether the resource ID
you pass in the parameter theID is already assigned to another resource
of the same type. You should call the UniqueID or Unique1ID function
to get a unique resource ID before adding a resource with
AddResource. ▲

If the resChanged attribute of a resource has been set and your application calls

UpdateResFile or quits, the Resource Manager writes both the resource map and the

resource data for that resource to the resource fork of the corresponding file on disk. If

the resChanged attribute for a resource has been set and your application calls

WriteResource, the Resource Manager writes only the resource data for that resource

to disk.

C H A P T E R 1

Resource Manager

Resource Manager Reference 1-91

If you add a resource to the current resource file, the Resource Manager writes the

entire resource map to disk when it updates the file. If you want any of your changes to

the resource map or resource data to be temporary, you must restore the original

information before the Resource Manager updates the file on disk.

If the value of the parameter theData is an empty handle (that is, a handle whose

master pointer is set to NIL), the Resource Manager writes zero-length resource data to

disk when it updates the resource. If the value of theData is either NIL or a handle to

an existing resource, AddResource does nothing, and the ResError function returns

the result code addResFailed. If the resource map becomes too large to fit in memory,

AddResource does nothing, and ResError returns an appropriate result code. The

same is true if the resource data in memory can’t be written to the resource fork (for

example, because the disk is full).

When your application calls AddResource, the Resource Manager attempts to reserve

disk space for the new resource. If the new resource data can’t be written to the resource

fork (for example, if there’s not enough room on disk), the resChanged attribute is not

set to 1. If this is the case and you call UpdateResFile or WriteResource, the

Resource Manager won’t know that resource data has been added. Thus, the routine

won’t write the new resource data to the resource fork and won’t return an error. For this

reason, always make sure that the ResError function returns the result code noErr

after a call to AddResource.

To copy an existing resource, get a handle to the resource you want to copy, call the

DetachResource procedure, then call AddResource. To add the same resource data to

several different resource forks, call the Memory Manager function HandToHand to

duplicate the handle for each resource.

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For examples of the use of the AddResource procedure, see Listing 1-4 on page 1-24

and Listing 1-11 on page 1-38.

For descriptions of the UpdateResFile and WriteResource procedures, see

page 1-92 and page 1-93, respectively. For descriptions of the UniqueID and

Unique1ID functions, see page 1-96. For a description of the DetachResource

procedure, see page 1-108.

For information about using the Memory Manager procedure HandToHand, see Inside
Macintosh: Memory.

noErr 0 No error
addResFailed –194 AddResource procedure failed

C H A P T E R 1

Resource Manager

1-92 Resource Manager Reference

Writing to Resource Forks

The Resource Manager provides three procedures that you can use to write resource

information to disk. The UpdateResFile procedure updates the resource map and

resource data of a resource fork on disk so that it matches the corresponding resource

map and resource data in memory. The WriteResource procedure updates the

resource data of just one resource on disk. The SetResPurge procedure sets up

the Resource Manager’s own purge-warning procedure so that the Memory Manager

checks with the Resource Manager before purging a purgeable resource.

UpdateResFile

You can use the UpdateResFile procedure to update the resource map and resource

data for a resource fork without closing it.

PROCEDURE UpdateResFile (refNum: Integer);

refNum A file reference number for a resource fork.

DESCRIPTION

Given the reference number of a file whose resource fork is open, UpdateResFile

performs three tasks. The first task is to change, add, or remove resource data in the

file’s resource fork to match the resource map in memory. Changed resource data for

each resource is written only if that resource’s resChanged bit has been set by a

successful call to ChangedResource or AddResource. The UpdateResFile

procedure calls the WriteResource procedure to write changed or added resources to

the resource fork.

The second task is to compact the resource fork, closing up any empty space created

when a resource was removed, made smaller, or made larger. If a resource is made

larger, the Resource Manager writes it at the end of the resource fork rather than at its

original location. It then compacts the space occupied by the original resource data. The

actual size of the resource fork is adjusted when a resource is removed or made larger,

but not when a resource is made smaller.

The third task is to write the resource map in memory to the resource fork if your

application has called the ChangedResource procedure for any resource listed in the

resource map or if it has added or removed a resource. All changes to resource

information in the resource map become permanent at this time; if you want any of these

changes to be temporary, you must restore the original information before calling

UpdateResFile.

C H A P T E R 1

Resource Manager

Resource Manager Reference 1-93

If there’s no open resource fork with the given reference number, UpdateResFile

does nothing, and the ResError function returns the result code resNotFound. If the

value of the refNum parameter is 0, it represents the System file’s resource fork. If you

call UpdateResFile but the mapReadOnly attribute of the resource fork is set,

UpdateResFile does nothing, and the ResError function returns the result code

resAttrErr.

Because the CloseResFile procedure calls UpdateResFile before it closes the

resource fork, you need to call UpdateResFile directly only if you want to update the

file without closing it.

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For an example of the use of UpdateResFile, see Listing 1-11 on page 1-38. For

descriptions of the ChangedResource, AddResource, and CloseResFile

procedures, see page 1-88, page 1-90, and page 1-110, respectively. The

WriteResource procedure is described next.

WriteResource

You can use the WriteResource procedure to write resource data in memory

immediately to a file’s resource fork. Note that WriteResource does not write the

resource’s resource map entry to disk.

PROCEDURE WriteResource (theResource: Handle);

theResource
A handle to a resource.

DESCRIPTION

Given a handle to a resource, WriteResource checks the resChanged attribute of that

resource. If the resChanged attribute is set to 1 (after a successful call to the

ChangedResource or AddResource procedure), WriteResource writes the resource

data in memory to the resource fork, then clears the resChanged attribute in the

resource’s resource map in memory.

noErr 0 No error
resNotFound –192 Resource not found
resAttrErr –198 Attribute inconsistent with operation

C H A P T E R 1

Resource Manager

1-94 Resource Manager Reference

Note
When your application calls ChangedResource or AddResource, the
Resource Manager attempts to reserve disk space for the changed
resource. If the modified resource data can’t be written to the resource
fork (for example, if there’s not enough room on disk), the resChanged
attribute is not set to 1. If this is the case and you call WriteResource,
the Resource Manager won’t know that the resource data has been
changed. Thus, the routine won’t write the modified resource data to the
resource fork and won’t return an error. For this reason, always make
sure that the ResError function returns the result code noErr after a
call to ChangedResource or AddResource. ◆

If the resource is purgeable and has been purged, WriteResource writes zero-length

resource data to the resource fork. If the resource’s resProtected attribute is set to 1,

WriteResource does nothing, and the ResError function returns the result code

noErr. The same is true if the resChanged attribute is not set (that is, set to 0). If the

given handle isn’t a handle to a resource, WriteResource does nothing, and

ResError returns the result code resNotFound.

The resource fork is updated automatically when your application quits, when you

call UpdateResFile, or when you call CloseResFile (which in turn calls

UpdateResFile). Thus, you should call WriteResource only if you want to write just

one or a few resources immediately.

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For more information about resource attributes, see “The Resource Map” beginning on

page 1-8. For descriptions of the ChangedResource and AddResource procedures,

see page 1-88 and page 1-90, respectively. For a description of the UpdateResFile

procedure, see page 1-92. For a description of the CloseResFile procedure, see

page 1-110.

SetResPurge

You can use the SetResPurge procedure to have the Memory Manager pass the handle

of a resource to the Resource Manager before purging the data specified by that handle.

PROCEDURE SetResPurge (install: Boolean);

install A Boolean value that specifies whether the Memory Manager checks with
the Resource Manager before purging a resource handle.

noErr 0 No error
resNotFound –192 Resource not found

C H A P T E R 1

Resource Manager

Resource Manager Reference 1-95

DESCRIPTION

Specify TRUE in the install parameter to make the Memory Manager pass the handle

for a resource to the Resource Manager before purging the resource data to which the

handle points. The Resource Manager determines whether the handle points to a

resource in the application heap. It also checks if the resource’s resChanged attribute is

set to 1. If these two conditions are met, the Resource Manager calls the

WriteResource procedure to write the resource’s resource data to the resource fork

before returning control to the Memory Manager.

Specify FALSE in the install parameter to restore the normal state, so that the

Memory Manager purges resource data when it needs to without calling the Resource

Manager.

You can use SetResPurge in applications that modify purgeable resources. You should

also take precautions in such applications to ensure that the resource won’t be purged

while you’re changing it.

SPECIAL CONSIDERATIONS

If you call SetResPurge with the install parameter set to TRUE and then call the

Memory Manager procedure MoveHHi to move a handle to a resource, the Resource

Manager calls the WriteResource procedure to write the resource data to disk even if

the data has not been changed. To prevent this, call SetResPurge with the install

parameter set to FALSE before you call MoveHHi, then call SetResPurge with the

install parameter set to TRUE immediately after you call MoveHHi.

Whenever you call SetResPurge with the install parameter set to TRUE, the

Resource Manager installs its own purge-warning procedure, overriding any

purge-warrning procedure you’ve specified to the Memory Manager.

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For descriptions of the SetResAttrs and WriteResource procedures, see page 1-85

and page 1-93, respectively.

For more information about the Memory Manager procedure MoveHHi, see Inside
Macintosh: Memory.

Getting a Unique Resource ID

The Resource Manager provides two routines that return a unique resource ID. The

UniqueID function returns a resource ID that isn’t currently assigned to any resource of

the specified type in any open resource fork. The Unique1ID function returns a resource

ID that isn’t currently assigned to any resource of the specified type in the resource fork

of the current resource file.

C H A P T E R 1

Resource Manager

1-96 Resource Manager Reference

UniqueID

You can use the UniqueID function to get a unique resource ID for a resource.

FUNCTION UniqueID (theType: ResType): Integer;

theType A resource type.

DESCRIPTION

The UniqueID function returns as its function result a resource ID greater than 0 that

isn’t currently assigned to any resource of the specified type in any open resource fork.

You should use this function before adding a new resource to ensure that you don’t

duplicate a resource ID and override an existing resource.

SPECIAL CONSIDERATIONS

In versions of system software earlier than System 7, the UniqueID function may return

a resource ID in the range 0 through 127, which is generally reserved for system

resources. You should check that the resource ID returned is not in this range. If it is, call

UniqueID again, and continue doing so until you get a resource ID greater than 127.

In System 7 and later versions, UniqueID won’t return a resource ID of less than 128.

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For more information about restrictions on resource IDs for specific resource types, see

“Resource IDs” on page 1-46.

Unique1ID

You can use the Unique1ID function to get a resource ID that’s unique with respect to

resources in the current resource file.

FUNCTION Unique1ID (theType: ResType): Integer;

theType A resource type.

C H A P T E R 1

Resource Manager

Resource Manager Reference 1-97

DESCRIPTION

The Unique1ID function returns as its function result a resource ID greater than 0 that

isn’t currently assigned to any resource of the specified type in the current resource file.

You should use this routine before adding a new resource to ensure that you don’t

duplicate a resource ID and override an existing resource.

SPECIAL CONSIDERATIONS

In versions of system software earlier than System 7, the Unique1ID function may

return a resource ID in the range 0 through 127, which is generally reserved for system

resources. You should check that the resource ID returned is not in this range. If it is, call

Unique1ID again, and continue doing so until you get a resource ID greater than 127.

In System 7 and later versions, Unique1ID won’t return a resource ID of less than 128.

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For more information about restrictions on resource IDs for specific resource types, see

“Resource IDs” on page 1-46.

Counting and Listing Resource Types

The Resource Manager provides several routines that count or list resource types. The

CountResources function returns the total number of resources of a given type that are

currently available in all resource forks open to your application, and the

Count1Resources function returns the total number of resources of a given type in the

current resource file.

You can call the GetIndResource function repeatedly to generate handles to all

resources of a given type in all resource forks open to your application. You can call the

Get1IndResource function repeatedly to generate handles to all resources of a given

type in the current resource file.

The CountTypes function tells you the number of resource types in all resource forks

open to your application. The Count1Types function tells you the number of resource

types in the current resource file. You can call the GetIndType procedure repeatedly to

get all the resource types available in all resource forks open to your application.

Similarly, you can call the Get1IndType procedure repeatedly to get all the resource

types available in the current resource file.

C H A P T E R 1

Resource Manager

1-98 Resource Manager Reference

CountResources

You can use the CountResources function to get the total number of available

resources of a given type.

FUNCTION CountResources (theType: ResType): Integer;

theType A resource type.

DESCRIPTION

Given a resource type, the CountResources function reads the resource maps in

memory for all resource forks open to your application. It returns as its function result

the total number of resources of the given type in all resource forks open to your

application.

RESULT CODE

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

Count1Resources

You can use the Count1Resources function to get the total number of resources of a

given type in the current resource file.

FUNCTION Count1Resources (theType: ResType): Integer;

theType A resource type.

DESCRIPTION

Given a resource type, the Count1Resources function reads the resource map in

memory of the current resource file. It returns as its function result the total number of

resources of the given type in the current resource file only.

RESULT CODE

noErr 0 No error

noErr 0 No error

C H A P T E R 1

Resource Manager

Resource Manager Reference 1-99

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For an example of the use of the Count1Resources function, see Listing 1-10 on

page 1-34.

GetIndResource

You can use the GetIndResource function repeatedly to get handles to all resources of

a given type in all resource forks open to your application.

FUNCTION GetIndResource (theType: ResType;

 index: Integer): Handle;

theType A resource type.

index An integer ranging from 1 to the number of resources of a given type
returned by CountResources, which is the number of resource types in
all open resource forks.

DESCRIPTION

Given an index ranging from 1 to the number of resources of a given type returned by

CountResources (that is, the number of resources of that type in all resource forks

open to your application), the GetIndResource function returns a handle to a resource

of the given type. If you call GetIndResource repeatedly over the entire range of the

index, it returns handles to all resources of the given type in all resource forks open to

your application.

The function reads the resource data into memory if it’s not already there, unless you’ve

called SetResLoad with the load parameter set to FALSE.

IMPORTANT

If you’ve called SetResLoad with the load parameter set to FALSE
and the data isn’t already in memory, GetIndResource returns an
empty handle (a handle whose master pointer is set to NIL). This can
also happen if you read resource data for a purgeable resource into
memory and then call SetResLoad with the load parameter set to
FALSE. If the resource data is later purged and you call the
GetIndResource function, GetIndResource returns an empty
handle. You should test for an empty handle in these situations. To make
the handle a valid handle to resource data in memory, you can call the
LoadResource procedure. ◆

The GetIndResource function returns handles for all resources in the most recently

opened resource fork first, and then for those in resource forks opened earlier in reverse

chronological order.

C H A P T E R 1

Resource Manager

1-100 Resource Manager Reference

Note
The UseResFile procedure affects which file the Resource Manager
searches first when looking for a particular resource; this is not the case
when you use GetIndResource to get an indexed resource. ◆

If you want to find out how many resources of a given type are in a particular resource

fork, set the current resource file to that resource fork, then call Count1Resources and

use Get1IndResource to get handles to the resources of that type.

If you provide an index to GetIndResource that’s either 0 or negative,

GetIndResource returns NIL, and the ResError function returns the result code

resNotFound. If the given index is larger than the value returned by

CountResources, GetIndResource returns NIL,and ResError returns the result

code resNotFound. If the resource to be read won’t fit into memory, GetIndResource

returns NIL, and ResError returns the appropriate result code.

SPECIAL CONSIDERATIONS

The GetIndResource function may move or purge memory blocks in the application

heap. Your application should not call this function at interrupt time.

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For a description of the CountResources function, see page 1-98. For a description of

the UseResFile procedure, see page 1-69. For descriptions of the SetResLoad and

LoadResource procedures, see page 1-79 and page 1-80, respectively.

Get1IndResource

You can use the Get1IndResource function repeatedly to get handles to all resources

of a given type in the current resource file.

FUNCTION Get1IndResource (theType: ResType;

 index: Integer): Handle;

theType A resource type.

index An integer ranging from 1 to the number of resources of a given type
returned by Count1Resources, which is the number of resource types
in the current resource file.

noErr 0 No error
resNotFound –192 Resource not found

C H A P T E R 1

Resource Manager

Resource Manager Reference 1-101

DESCRIPTION

Given an index ranging from 1 to the number of resources of a given type returned by

Count1Resources (that is, the number of resources of that type in the current resource

file), the Get1IndResource function returns a handle to a resource of the given type. If

you call Get1IndResource repeatedly over the entire range of the index, it returns

handles to all resources of the given type in the current resource file.

The function reads the resource data into memory if it’s not already there, unless you’ve

called SetResLoad with the load parameter set to FALSE.

IMPORTANT

If you’ve called SetResLoad with the load parameter set to FALSE
and the data isn’t already in memory, Get1IndResource returns an
empty handle (that is, a handle whose master pointer is set to NIL). This
can also happen if you read resource data for a purgeable resource into
memory and then call SetResLoad with the load parameter set to
FALSE. If the resource data is later purged and you call the
Get1IndResource function, Get1IndResource returns an empty
handle. You should test for an empty handle in these situations. To make
the handle a valid handle to resource data in memory, you can call the
LoadResource procedure. ◆

If you provide an index to Get1IndResource that’s either 0 or negative,

Get1IndResource returns NIL, and the ResError function returns the result code

resNotFound. If the given index is larger than the value returned by

Count1Resources, Get1IndResource returns NIL, and ResError returns the result

code resNotFound. If the resource to be read won’t fit into memory,

Get1IndResource returns NIL, and ResError returns the appropriate result code.

SPECIAL CONSIDERATIONS

The Get1IndResource function may move or purge memory blocks in the application

heap. Your application should not call this function at interrupt time.

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For an example of the use of the Get1IndResource function, see Listing 1-10 on

page 1-34.

For a description of the Count1Resources function, see page 1-98. For a description of

the UseResFile procedure, see page 1-69. For descriptions of the SetResLoad and

LoadResource procedures, see page 1-79 and page 1-80, respectively.

noErr 0 No error
resNotFound –192 Resource not found

C H A P T E R 1

Resource Manager

1-102 Resource Manager Reference

CountTypes

You can use the CountTypes function to get the number of resource types in all

resource forks open to your application.

FUNCTION CountTypes: Integer;

DESCRIPTION

The CountTypes function reads the resource maps in memory for all resource forks

open to your application. It returns an integer representing the total number of unique

resource types.

RESULT CODE

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

Count1Types

You can use the Count1Types function to get the number of resource types in the

current resource file.

FUNCTION Count1Types: Integer;

DESCRIPTION

The Count1Types function reads the resource map in memory for the current resource

file. It returns an integer representing the total number of unique resource types in the

current resource file.

RESULT CODE

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

noErr 0 No error

noErr 0 No error

C H A P T E R 1

Resource Manager

Resource Manager Reference 1-103

GetIndType

You can call the GetIndType procedure repeatedly to get all the resource types

available in all resource forks open to your application.

PROCEDURE GetIndType (VAR theType: ResType; index: Integer);

theType GetIndType returns, in this parameter, the resource type for the
specified index among all the resource forks open to your application.

index An integer ranging from 1 to the number of resource types in all resource
forks open to your application.

DESCRIPTION

Given an index number from 1 to the number of resource types in all resource forks open

to your application (as returned by CountTypes), the GetIndType procedure returns a

resource type in the parameter theType. You can call GetIndType repeatedly over the

entire range of the index to get all the resource types available in all resource forks open

to your application. If the given index isn’t in the range from 1 to the number of resource

types as returned by CountTypes, GetIndType returns four null characters (ASCII

code 0).

SPECIAL CONSIDERATIONS

The GetIndType procedure may move or purge memory blocks in the application

heap. Your application should not call this procedure at interrupt time.

RESULT CODE

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For more information about the CountTypes function, see page 1-102.

noErr 0 No error

C H A P T E R 1

Resource Manager

1-104 Resource Manager Reference

Get1IndType

You can use the Get1IndType procedure to get all the resource types available in the

current resource file.

PROCEDURE Get1IndType (VAR theType: ResType; index: Integer);

theType Get1IndType returns, in this parameter, the resource type with the
specified index in the current resource file.

index An integer ranging from 1 to the number of resource types in the current
resource file.

DESCRIPTION

Given an index number from 1 to the number of resource types in the current resource

file (as returned by Count1Types), the Get1IndType procedure returns a resource

type in the parameter theType.You can call Get1IndType repeatedly over the entire

range of the index to get all the resource types available in the current resource file. If the

given index isn’t in the range from 1 to the number of resource types as returned by

Count1Types, Get1IndType returns four null characters (ASCII code 0).

SPECIAL CONSIDERATIONS

The Get1IndType procedure may move or purge memory blocks in the application

heap. Your application should not call this procedure at interrupt time.

RESULT CODE

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For a description of the Count1Types function, see page 1-102.

Getting Resource Sizes

The Resource Manager provides two routines that allow you to get the size of a

resource. The GetResourceSizeOnDisk and GetMaxResourceSize functions get

the exact size and maximum size, respectively, of a resource. To change the size of a

resource on disk, use the SetResourceSize procedure.

noErr 0 No error

C H A P T E R 1

Resource Manager

Resource Manager Reference 1-105

GetResourceSizeOnDisk

You can use the GetResourceSizeOnDisk function to get the exact size of a resource.

The GetResourceSizeOnDisk function is also available as the SizeResource

function.

FUNCTION GetResourceSizeOnDisk (theResource: Handle): LongInt;

theResource
A handle to a resource.

DESCRIPTION

Given a handle to a resource, the GetResourceSizeOnDisk function checks the

resource on disk (not in memory) and returns its exact size, in bytes. If the handle isn’t a

handle to a valid resource, GetResourceSizeOnDisk returns –1, and ResError

returns the result code resNotFound.

You can call GetResourceSizeOnDisk before reading a resource into memory to make

sure there’s enough memory available to do so successfully.

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

GetMaxResourceSize

You can use the GetMaxResourceSize function to get the approximate size of a

resource. The GetMaxResourceSize function is also available as the MaxSizeRsrc

function.

FUNCTION GetMaxResourceSize (theResource: Handle): LongInt;

theResource
Handle to a resource.

noErr 0 No error
resNotFound –192 Resource not found

C H A P T E R 1

Resource Manager

1-106 Resource Manager Reference

DESCRIPTION

Like GetResourceSizeOnDisk, GetMaxResourceSize takes a handle and returns

the size of the corresponding resource. However, GetMaxResourceSize does not

check the resource on disk; instead, it either checks the resource size in memory or, if

the resource is not in memory, calculates its size, in bytes, on the basis of information

in the resource map in memory. This gives you an approximate size for the resource that

you can count on as the resource’s maximum size. It’s possible that the resource is

actually smaller than the offsets in the resource map indicate because the file has not yet

been compacted. If you want the exact size of a resource on disk, either call

GetResourceSizeOnDisk or call UpdateResFile before calling

GetMaxResourceSize.

If the value of the theResource parameter isn’t a handle to a valid resource,

GetMaxResourceSize returns –1, and ResError returns the result code

resNotFound.

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For a description of the UpdateResFile and GetResourceSizeOnDisk routines, see

page 1-92 and page 1-105, respectively.

Disposing of Resources

The Resource Manager provides three procedures for disposing of resources. The

ReleaseResource procedure releases the memory associated with a resource,

setting the handle’s master pointer to NIL, thus making your application’s handle to

the resource invalid. The DetachResource procedure sets a resource’s handle in the

resource map to NIL but keeps the resource data in memory. The RemoveResource

procedure removes the resource’s entry from the resource map in memory; the

Resource Manager removes the resource data from memory (and from the file’s resource

fork) when it updates the file’s resource fork.

noErr 0 No error
resNotFound –192 Resource not found

C H A P T E R 1

Resource Manager

Resource Manager Reference 1-107

ReleaseResource

You can use the ReleaseResource procedure to release the memory a resource

occupies when you have finished using it.

PROCEDURE ReleaseResource (theResource: Handle);

theResource
A handle to a resource.

DESCRIPTION

Given a handle to a resource, ReleaseResource releases the memory occupied by the

resource data, if any, and sets the master pointer of the resource’s handle in the resource

map in memory to NIL. If your application previously obtained a handle to that

resource, the handle is no longer valid. If your application subsequently calls the

Resource Manager to get the released resource, the Resource Manager assigns a new

handle.

If the given resource isn’t a handle to a resource, ReleaseResource does nothing, and

ResError returns the result code resNotFound. Be aware that ReleaseResource

won’t release a resource whose resChanged attribute has been set, but ResError still

returns the result code noErr.

SPECIAL CONSIDERATIONS

The ReleaseResource procedure may move or purge memory blocks in the

application heap. Your application should not call this procedure at interrupt time.

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For more information about releasing resources, see “Releasing and Detaching

Resources” beginning on page 1-22. For an example of the use of the

ReleaseResource procedure, see Listing 1-8 on page 1-29.

noErr 0 No error
resNotFound –192 Resource not found

C H A P T E R 1

Resource Manager

1-108 Resource Manager Reference

DetachResource

You can use the DetachResource procedure to set the value of a resource’s handle in

the resource map in memory to NIL while keeping the resource data in memory.

PROCEDURE DetachResource (theResource: Handle);

theResource
A handle to a resource.

DESCRIPTION

Given a handle to a resource, DetachResource sets the value of the resource’s handle

in the resource map in memory to NIL. After this call, the Resource Manager no longer

recognizes the handle as a handle to a resource. However, DetachResource does not

release the memory used for the resource data, and the master pointer is still valid. Thus,

you can access the resource data directly by using the handle.

If your application subsequently calls a Resource Manager routine to get the released

resource, the Resource Manager assigns a new handle. If the parameter theResource

doesn’t contain a handle to a resource or if the resource’s resChanged attribute is set,

DetachResource does nothing. To determine whether either of these errors occurred,

call ResError.

You can use DetachResource if you want to access the resource data directly without

using Resource Manager routines. You can also use the DetachResource procedure to

keep resource data in memory after closing a resource fork.

To copy a resource and install an entry for the duplicate in the resource map, call

DetachResource, then call AddResource using a different resource ID.

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For more information about detaching resources, see “Releasing and Detaching

Resources” beginning on page 1-22. For an example of the use of the DetachResource

procedure, see Listing 1-4 on page 1-24.

For a description of the AddResource procedure, see page 1-90.

noErr 0 No error
resNotFound –192 Resource not found
resAttrErr –198 Attribute does not permit operation

C H A P T E R 1

Resource Manager

Resource Manager Reference 1-109

RemoveResource

You can use the RemoveResource procedure to remove a resource’s entry from the

current resource file’s resource map in memory. The RemoveResource procedure is also

available as the RmveResource procedure.

PROCEDURE RemoveResource (theResource: Handle);

theResource
A handle to a resource.

DESCRIPTION

Given a handle to a resource in the current resource file, RemoveResource removes the

resource entry (resource type, resource ID, resource name, if any, and resource attributes)

from the current resource file’s resource map in memory.

The RemoveResource procedure doesn’t immediately release the memory occupied by

the resource data; instead, the Resource Manager releases the memory when your

application quits, when you call UpdateResFile, or when you call CloseResFile

(which in turn calls UpdateResFile). If the resProtected attribute for the resource is

set or if the theResource parameter doesn’t contain a handle to a resource,

RemoveResource does nothing, and ResError returns the result code rmvResFailed.

IMPORTANT

If you’ve removed a resource, the Resource Manager writes the entire
resource map when it updates the resource fork, and all changes
made to the resource map become permanent. If you want any of the
changes to be temporary, you should restore the original information
before the Resource Manager updates the resource fork. ▲

If you want to release the memory before updating or closing the resource fork, call the

Memory Manager procedure DisposeHandle after you call RemoveResource.

SPECIAL CONSIDERATIONS

The RemoveResource procedure may move or purge memory blocks in the application

heap. Your application should not call this procedure at interrupt time.

RESULT CODES

noErr 0 No error
rmvResFailed –196 RemoveResource procedure failed

C H A P T E R 1

Resource Manager

1-110 Resource Manager Reference

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For descriptions of the AddResource and UpdateResFile procedures, see page 1-90

and page 1-92, respectively. The CloseResFile procedure is described next.

For more information about the Memory Manager procedure DisposeHandle, see

Inside Macintosh: Memory.

Closing Resource Forks

When your application terminates, the Resource Manager automatically closes every

resource fork open to your application except the System file’s resource fork. The

CloseResFile procedure allows you to close a resource fork before your application

terminates.

CloseResFile

You can use the CloseResFile procedure to close a resource fork before your

application terminates.

PROCEDURE CloseResFile (refNum: Integer);

refNum The file reference number for the resource fork to close.

DESCRIPTION

Given a file reference number for a file whose resource fork is open, the

CloseResFile procedure performs four tasks. First, it updates the file by calling the

UpdateResFile procedure. Second, it releases the memory occupied by each resource

in the resource fork by calling the DisposeHandle procedure. Third, it releases the

memory occupied by the resource map. The fourth task is to close the resource fork.

If the refNum parameter does not contain a file reference number for a file whose

resource fork is open, CloseResFile does nothing, and the ResError function

returns the result code resFNotFound. If the value of the refNum parameter is 0, it

represents the System file and is ignored. You cannot close the System file’s resource fork.

When your application terminates, the Resource Manager automatically closes every

resource fork open to your application except the System file’s resource fork. You need to

call the CloseResFile procedure only if you want to close a resource fork before your

application terminates.

RESULT CODES

noErr 0 No error
resFNotFound –193 Resource file not found

C H A P T E R 1

Resource Manager

Resource Manager Reference 1-111

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For an example of the use of the CloseResFile procedure, see Listing 1-9 on page 1-32.

For descriptions of the UpdateResFile and ReleaseResource procedures, see

page 1-92 and page 1-107, respectively.

Reading and Writing Partial Resources

You can use the ReadPartialResource, WritePartialResource, and

SetResourceSize procedures to work with a portion of a large resource that may not

otherwise fit in memory.

When using partial resource routines, you should call the SetResLoad procedure,

specifying FALSE for the load parameter, before you call GetResource. Using the

SetResLoad procedure prevents the Resource Manager from reading the entire

resource into memory. Be sure to restore the normal state by calling SetResLoad again,

with the load parameter set to TRUE, immediately after you call GetResource.

Then use ReadPartialResource to read a portion of the resource into a buffer and

WritePartialResource as needed to write a portion of the resource from a buffer

to disk.

Note that the partial resources routines work with the data in the memory pointed to by

the buffer parameter, not the memory referenced through the resource’s handle.

Therefore, you may experience problems if you have a copy of a resource in memory

when you are using the partial resource routines. If you have modified the copy in

memory and then access the resource on disk using the ReadPartialResource

procedure, ReadPartialResource reads the data on disk, not the data in memory,

which is referenced through the resource’s handle. Similarly, WritePartialResource

writes data from the specified buffer, not from the data in memory, which is referenced

through the resource’s handle.

ReadPartialResource

You can use the ReadPartialResource procedure to read part of a resource into

memory and work with a small subsection of a large resource.

PROCEDURE ReadPartialResource (theResource: Handle;

 offset: LongInt; buffer: UNIV Ptr;

 count: LongInt);

theResource
A handle to a resource.

offset The beginning of the resource subsection to be read, measured in bytes
from the beginning of the resource.

C H A P T E R 1

Resource Manager

1-112 Resource Manager Reference

buffer A pointer to the buffer into which the partial resource is to be read.

count The length of the resource subsection.

DESCRIPTION

The ReadPartialResource procedure reads the resource subsection identified by the

theResource, offset, and count parameters into a buffer specified by the buffer

parameter. Your application is responsible for the buffer’s memory management. You

cannot use the ReleaseResource procedure to release the memory the buffer occupies.

The ReadPartialResource procedure always tries to read resources from disk. If a

resource is already in memory, the Resource Manager still reads it from disk, and the

ResError function returns the result code resourceInMemory. If you try to read past

the end of a resource or the value of the offset parameter is out of bounds, ResError

returns the result code inputOutOfBounds. If the handle in the parameter

theResource doesn’t refer to a resource in an open resource fork, ResError returns

the result code resNotFound.

When using partial resource routines, you should call the SetResLoad procedure,

specifying FALSE for the load parameter, before you call GetResource. Using the

SetResLoad procedure prevents the Resource Manager from reading the entire

resource into memory. Be sure to restore the normal state by calling SetResLoad again,

with the load parameter set to TRUE, immediately after you call GetResource. Then

use ReadPartialResource to read a portion of the resource into a buffer.

Note

If the entire resource is in memory and you want only part of its data,
it’s faster to use the Memory Manager procedure BlockMove instead of
the ReadPartialResource procedure. If you read a partial resource
into memory and then change its size, you can use SetResourceSize
to change the entire resource’s size on disk as necessary. ◆

SPECIAL CONSIDERATIONS

The ReadPartialResource procedure may move or purge memory blocks in the

application heap. Your application should not call this procedure at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine se.lector for ReadPartialResource are

Trap macro Selector

_ResourceDispatch $7001

C H A P T E R 1

Resource Manager

Resource Manager Reference 1-113

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For an example of the use of the ReadPartialResource procedure, see Listing 1-12 on

page 1-41.

For descriptions of the GetResource, SetResLoad, and ReleaseResource routines,

see page 1-73, page 1-79, and page 1-107, respectively. For a description of the

SetResourceSize procedure, see page 1-115.

For information about the Memory Manager procedure BlockMove, see Inside
Macintosh: Memory.

WritePartialResource

You can use the WritePartialResource procedure to write part of a resource to disk

when working with a small subsection of a large resource.

PROCEDURE WritePartialResource (theResource: Handle;

 offset: LongInt; buffer: UNIV Ptr;

 count: LongInt);

theResource
A handle to a resource.

offset The beginning of the resource subsection to write, measured in bytes
from the beginning of the resource.

buffer A pointer to the buffer containing the data to write.

count The length of the resource subsection to write.

DESCRIPTION

The WritePartialResource procedure writes the data specified by the buffer

parameter to the resource subsection identified by the theResource, offset, and

count parameters. Your application is responsible for the buffer’s memory management.

noErr 0 No error
resourceInMemory –188 Resource already in memory
inputOutOfBounds –190 Offset or count out of bounds
resNotFound –192 Resource not found

C H A P T E R 1

Resource Manager

1-114 Resource Manager Reference

If the disk or the file is locked, the ResError function returns an appropriate File

Manager result code. If you try to write past the end of a resource, the Resource Manager

attempts to enlarge the resource. The ResError function returns the result code

writingPastEnd if the attempt succeeds. If the Resource Manager cannot enlarge the

resource, ResError returns an appropriate File Manager result code. If you pass an

invalid value in the offset parameter, ResError returns the result code

inputOutOfBounds.

The WritePartialResource procedure tries to write the data from the buffer to disk.

If the attempt is successful and the resource data (referenced through the resource’s

handle) is in memory, ResError returns the result code resourceInMemory. In this

situation, be aware that the data of the resource subsection on disk matches the data

from the buffer, not the resource data referenced through the resource’s handle. If the

attempt to write the data from the buffer to the disk fails, ResError returns an

appropriate error.

When using partial resource routines, you should call the SetResLoad procedure,

specifying FALSE for the load parameter, before you call GetResource. Doing so

prevents the Resource Manager from reading the entire resource into memory. Be sure to

restore the normal state by calling SetResLoad again, with the load parameter set to

TRUE, immediately after you call GetResource.

If you read a partial resource into memory and then change its size, you must use

SetResourceSize to change the entire resource’s size on disk as necessary before you

write the partial resource.

SPECIAL CONSIDERATIONS

The WritePartialResource procedure may move or purge memory blocks in the

application heap. Your application should not call this procedure at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for WritePartialResource are

RESULT CODES

Trap macro Selector

_ResourceDispatch $7002

noErr 0 No error
dskFulErr –34 Disk full
resourceInMemory –188 Resource already in memory
writingPastEnd –189 Writing past end of file
inputOutOfBounds –190 Offset or count out of bounds

C H A P T E R 1

Resource Manager

Resource Manager Reference 1-115

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For descriptions of the GetResource and SetResLoad routines, see page 1-73 and

page 1-79, respectively. The SetResourceSize procedure is described next.

SetResourceSize

You can use the SetResourceSize procedure to change the size of a resource on disk.

This procedure is normally used only with ReadPartialResource and

WritePartialResource.

PROCEDURE SetResourceSize (theResource: Handle; newSize: LongInt);

theResource
A handle to a resource.

newSize The size, in bytes, that you want the resource to occupy on disk.

DESCRIPTION

Given a handle to a resource, SetResourceSize sets the size field of the specified

resource on disk without writing the resource data. You can change the size of

any resource, regardless of the amount of memory you have available.

If the specified size is smaller than the resource’s current size on disk, you lose any data

from the cutoff point to the end of the resource. If the specified size is larger than the

resource’s current size on disk, all data is preserved, but the additional area is

uninitialized (arbitrary data).

If you read a partial resource into memory and then change its size, you must use

SetResourceSize to change the entire resource’s size on disk as necessary. For

example, suppose the entire resource occupies 1 MB and you use

ReadPartialResource to read in a 200 KB portion of the resource. If you then

increase the size of this partial resource to 250 KB, you must call SetResourceSize to

set the size of the resource on disk to 1.05 MB. Note that in this case you must also keep

track of the resource data on disk and move any data that follows the original partial

resource on disk. Otherwise, there will be no space for the additional 50 KB when you

call WritePartialResource to write the modified partial resource to disk.

Under certain circumstances, the Resource Manager overrides the size you set with a call

to SetResourceSize. For instance, suppose you read an entire resource into memory

by calling GetResource or related routines, then use SetResourceSize successfully

to set the resource size on disk, and finally attempt to write the resource to disk using

UpdateResFile or WriteResource. In this case, the Resource Manager adjusts the

resource size on disk to conform with the size of the resource in memory.

C H A P T E R 1

Resource Manager

1-116 Resource Manager Reference

If the disk is locked or full, or the file is locked, the SetResourceSize procedure does

nothing, and the ResError function returns an appropriate File Manager result code. If

the resource is in memory, the Resource Manager tries to set the size of the resource on

disk. If the attempt succeeds, ResError returns the result code resourceInMemory,

and the Resource Manager does not update the copy in memory. If the attempt fails,

ResError returns an appropriate File Manager result code.

SPECIAL CONSIDERATIONS

The SetResourceSize procedure may move or purge memory blocks in the

application heap. Your application should not call this procedure at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for SetResourceSize are

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

Getting and Setting Resource Fork Attributes

The GetResFileAttrs function and the SetResFileAttrs procedure allow you to

get and set a resource fork’s attributes. You usually don’t need to use these routines.

GetResFileAttrs

You can use the GetResFileAttrs function to get the attributes of a resource fork.

FUNCTION GetResFileAttrs (refNum: Integer): Integer;

refNum A file reference number for the resource fork whose attributes you want
to get.

Trap macro Selector

_ResourceDispatch $7003

noErr 0 No error
resourceInMemory –188 Resource already in memory
writingPastEnd –189 Writing past end of file

C H A P T E R 1

Resource Manager

Resource Manager Reference 1-117

DESCRIPTION

Given a file reference number, the GetResFileAttrs function returns the attributes of

the file’s resource fork. Specify 0 in the refNum parameter to get the attributes of the

System file’s resource fork. If there’s no open resource fork for the given file reference

number, GetResFileAttrs does nothing, and the ResError function returns the

result code resFNotFound.

Like individual resources, resource forks have attributes that are specified by bits in the

low-order byte of a word. The Resource Manager provides the following masks for

testing these bits:

CONST

mapReadOnly = 128; {set if file is read-only}

mapCompact = 64; {set to compact file on update}

mapChanged = 32; {set to write map on update}

When the mapReadOnly attribute is set to 1, the Resource Manager doesn’t write

anything to the resource fork on disk. It also doesn’t check whether the resource data can

be written to disk when the resource map is modified. When this attribute is set to 1, the

UpdateResFile and WriteResource procedures do nothing, but the ResError

function returns the result code noErr.

When the mapCompact attribute is set to 1, the Resource Manager compacts the resource

fork when it updates the file. The Resource Manager sets this attribute when a resource

is removed or when a resource is made larger and thus must be written at the end of a

resource fork. You may want to set the mapCompact attribute to force the Resource

Manager to compact a resource fork when your changes have made resources smaller.

When the mapChanged attribute is set to 1, the Resource Manager writes the resource

map to disk when the file is updated. For example, you can set mapChanged if you’ve

changed resource attributes only and don’t want to call ChangedResource because you

don’t want to write the resource data to disk.

SPECIAL CONSIDERATIONS

The Resource Manager sets the mapChanged attribute for the resource fork when you

call the ChangedResource, the AddResource, or the RemoveResource procedure.

RESULT CODES

noErr 0 No error
resFNotFound –193 Resource file not found

C H A P T E R 1

Resource Manager

1-118 Resource Manager Reference

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For descriptions of the ChangedResource and AddResource procedures, see

page 1-88 and page 1-90, respectively. For descriptions of the UpdateResFile and

WriteResource procedures, see page 1-92 and page 1-93, respectively. For a

description of the RemoveResource procedure, see page 1-109.

SetResFileAttrs

You can use the SetResFileAttrs procedure to change a resource fork’s attributes.

PROCEDURE SetResFileAttrs (refNum: Integer; attrs: Integer);

refNum A file reference number for the resource fork whose attributes you want
to set.

attrs The attributes to set.

DESCRIPTION

Given a file reference number, the SetResFileAttrs procedure sets the attributes of

the file’s resource fork to those specified in the attrs parameter. If the refNum

parameter is 0, it represents the System file’s resource fork. However, you shouldn’t

change the attributes of the System file’s resource fork. If there’s no resource fork with

the given reference number, SetResFileAttrs does nothing, and the ResError

function returns the result code noErr.

Like individual resources, resource forks have attributes that are specified by bits in the

low-order byte of a word. The Resource Manager provides the following masks for

setting these bits:

CONST

mapReadOnly = 128; {set to make file read-only}

mapCompact = 64; {set to compact file on update}

mapChanged = 32; {set to write map on update}

When the mapReadOnly attribute is set to 1, the Resource Manager doesn’t write

anything to the resource fork on disk. It also doesn’t check whether the resource data can

be written to disk when the resource map is modified. When this attribute is set to 1, the

UpdateResFile and WriteResource procedures do nothing, but the ResError

function returns the result code noErr.

C H A P T E R 1

Resource Manager

Resource Manager Reference 1-119

▲ W A R N I N G

If you set the mapReadOnly attribute but later clear it, the resource data
is written to disk even if there’s no room for it. This operation may
destroy the resource fork. ▲

When the mapCompact attribute is set to 1, the Resource Manager compacts the resource

fork when it updates the file. The Resource Manager sets this attribute when a resource

is removed or when a resource is made larger and thus must be written at the end of a

resource fork. You may want to set the mapCompact attribute to force the Resource

Manager to compact a resource fork when your changes make resources smaller.

When the mapChanged attribute is set to 1, the Resource Manager writes the resource

map to disk when the file is updated. For example, you can set mapChanged if you’ve

changed resource attributes only and don’t want to call ChangedResource because you

don’t want to write the resource data to disk.

When the Resource Manager first creates a resource fork after a call to

FSpOpenResFile or a related routine, it does not set any of the resource forks’s

attributes—that is, they are all set to 0.

SPECIAL CONSIDERATIONS

The Resource Manager sets the mapChanged attribute for the resource fork when you

call the ChangedResource, the AddResource, or the RemoveResource procedure.

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For descriptions of the ChangedResource and AddResource procedures, see

page 1-88 and page 1-90, respectively. For descriptions of the UpdateResFile and

WriteResource procedures, see page 1-92 and page 1-93, respectively. For a

description of the RemoveResource procedure, see page 1-109.

Accessing Resource Entries in a Resource Map

The RsrcMapEntry function is an advanced routine that provides a way to access the

resource entries in a resource map in memory. Because the Resource Manager provides

routines for opening, retrieving, and changing resources, there’s usually no reason to

access resource entries directly.

noErr 0 No error
resFNotFound –193 Resource file not found

C H A P T E R 1

Resource Manager

1-120 Resource Manager Reference

RsrcMapEntry

To access the resource entries in a resource map in memory directly, you can use the

RsrcMapEntry function.

FUNCTION RsrcMapEntry (theResource: Handle): LongInt;

theResource
A handle to a resource.

DESCRIPTION

Given a handle to a resource, RsrcMapEntry returns the offset of the specified

resource’s entry from the beginning of the resource map in memory. If it doesn’t find

the resource entry, RsrcMapEntry returns 0, and the ResError function returns the

result code resNotFound. If you pass a handle whose value is NIL, RsrcMapEntry

returns arbitrary data, but ResError returns the result code noErr.

▲ W A R N I N G

Because the Resource Manager provides routines for opening,
retrieving, and changing resources, there’s usually no reason to access a
resource map directly. To avoid damaging the file for which it’s called,
you should use RsrcMapEntry extremely carefully. ▲

RESULT CODES

SEE ALSO

For an overview of the resource map, see “The Resource Map” beginning on page 1-8.

For details of the structure of the resource map, see Figure 1-14 on page 1-123.

noErr 0 No error
resNotFound –192 Resource not found

C H A P T E R 1

Resource Manager

Resource Manager Reference 1-121

Resource File Format

You need to know the exact format of a resource fork, which is described in this section,

only if you’re writing an application that creates or modifies a resource fork directly,

without using Resource Manager routines.

Figure 1-11 shows the format of a compiled resource fork.

Figure 1-11 Format of a resource fork

As Figure 1-11 shows, every resource fork begins with a resource header. Because the

resource header contains an offset to the resource map, the resource map does not

necessarily have to be located at the end of the resource fork.

C H A P T E R 1

Resource Manager

1-122 Resource Manager Reference

Figure 1-12 shows the format of a resource header.

Figure 1-12 Format of a resource header in a resource fork

The resource data in a resource fork consists of the data in its individual resources.

Figure 1-13 shows the format of resource data for a single resource.

Figure 1-13 Format of resource data for a single resource

For detailed descriptions of the resource data for various standard resource types, see the

appropriate books in the Inside Macintosh series.

The resource data in a resource fork is followed by the resource map. Figure 1-14 shows

the format of a resource map.

C H A P T E R 1

Resource Manager

Resource Manager Reference 1-123

Figure 1-14 Format of the resource map in a resource fork

After reading the resource map into memory, the Resource Manager stores the indicated

information in the reserved areas at the beginning of the map.

Each item in a resource type list specifies one resource type used in the resource fork, the

number of resources of that type, and the location of the reference list for that type.

Figure 1-15 shows the format of an item in a resource type list.

Figure 1-15 Format of an item in a resource type list

C H A P T E R 1

Resource Manager

1-124 Resource Manager Reference

The resource type list is followed by the reference lists for each type of resource. Each

resource type has a corresponding reference list that contains entries for each resource of

that type. The reference lists are contiguous and in the same order as the types in the

resource type list.

Figure 1-16 shows the format of an entry in a reference list.

Figure 1-16 Format of an entry in the reference list for a resource type

If a resource does not have a name, the offset to the resource name in the resource’s entry

in the reference list is –1. If a resource does have a name, the offset identifies the location

of the name’s entry in the resource name list. Figure 1-17 shows the format of an item in

the resource name list.

Figure 1-17 Format of an item in a resource name list

C H A P T E R 1

Resource Manager

Resource Manager Reference 1-125

Figure 1-18 illustrates the use of various offsets in the resource header and resource map,

including the offsets for an entry in a reference list for an individual resource. Although

the figure shows the resource map after the resource data, the resource map can be

located almost anywhere in the resource fork as long as the offset to the map in the

resource header points to the right location.

Figure 1-18 Offsets in a resource fork and an entry for a single resource in a reference list

C H A P T E R 1

Resource Manager

1-126 Resource Manager Reference

Resources in the System File

The System file’s resource fork contains resources that are shared by all applications and

system software. The sections that follow describe these resources.

▲ W A R N I N G

Your application should not directly add resources to, delete resources
from, or modify resources in the System file. ▲

If your application needs to install drivers, you should ship it with the Installer and an

Installer script for drivers. To distribute the Installer, you need to license the Apple

system software, which includes the Installer.

The next section describes resources in the System file that provide information

about the computer on which your application is currently running, such as the user’s

name, the computer name, and the current printer type. You can use Resource Manager

routines or the Gestalt function to obtain this information. Subsequent sections list

system software routines kept in packages in the System file and function key resources.

In System 7 and later versions of system software, users can add resources such as

scripts, keyboards, and sounds to the System file by dragging the resource icons to the

System Folder. Desk accessories and resources such as system extensions are stored in

the subdirectories of the System Folder, not in the System file. In System 7.0, users can

also add resources such as fonts to the System file by dragging their icons to the System

Folder. In System 7.1 and later versions, fonts are stored in a subdirectory of the

System Folder rather than in the System file. (See the chapter “Finder Interface” in Inside
Macintosh: Macintosh Toolbox Essentials for details.)

The folders in the System Folder and some system resources are represented by standard

icons. “Standard Icons” beginning on page 1-129 lists the most important standard icons.

C H A P T E R 1

Resource Manager

Resource Manager Reference 1-127

User Information Resources

The following resources in the resource fork of the System file provide the user’s name,

the computer name, the model of computer, the icon for the computer model, and the

current printer type:

Information Resource ID
Resource
type Description

User name –16096 'STR ' The name of the person who “owns” the
computer or is the current user. Use the
GetString function with this resource
ID to return the user name.

Computer
name

–16413 'STR ' The name of the computer, which is
distinct from the user name and from any
internal hard disks that may be present.
The default name of the computer is “User
name’s Macintosh.” Use the GetString
function with this resource ID to return
the computer name.

Computer
model

–16395 'STR#' The model of the computer, such as
Macintosh SE/30 or Macintosh IIci. The
Gestalt selector for the computer model
is gestaltMachineModel, and the
Gestalt function returns a response
value for this selector. You can use
this value as an index into the 'STR#'
resource using the GetIndString
procedure. You should never use the
model of the computer as an indication of
what software features or hardware may
be available.

Computer
icon

Value of
response
parameter
returned
from
Gestalt

'ICN#'
'icl4'
'icl8'
'ics#'
'ics4'
'ics8'

The icon for the computer model, such as
the Macintosh II or Macintosh IIci. The
icons for computers are stored in icon
families. The Gestalt selector for the
computer icon is gestaltMachineIcon.
Use the value from the response value
for this selector as the resource ID of the
icon resource you want. (For more
information about icon families, see the
chapter “Finder Interface” in Inside
Macintosh: Macintosh Toolbox Essentials.)

Printer
type

–8192 'STR ' The type of printer to which the computer
sends documents, such as a LaserWriter
printer. There is no method for retrieving
the name of the printer. Use the
GetString function to return the type of
printer.

C H A P T E R 1

Resource Manager

1-128 Resource Manager Reference

You should use GetString, not GetResource, to get the string for the user name or

the computer name. Once you have the string, you should not release it, dispose of it, or

make it purgeable. You will find that the resource was already loaded when you asked

for it, so it should remain loaded when you are finished. Do not change the contents of

either of these strings or mark them as changed. System 6 and earlier versions of system

software do not necessarily have the computer name resource, and for this reason you

should provide error checking as appropriate.

The GetString function, GetIndString procedure, and Gestalt function are

documented in Inside Macintosh: Operating System Utilities.

Packages

A package is a set of routines and data types that forms a part of the Toolbox or

Operating System and is stored as a resource of type 'PACK'. In early models of the

Macintosh computer, all packages were disk-based and brought into memory only when

needed; some packages are now in ROM. The System file contains the standard

Macintosh packages and the resources they use or own.

Package name Resource ID

List Manager 0

Disk Initialization Manager 2

Standard File Package 3

Floating-Point Arithmetic Package 4

Transcendental Functions Package 5

Text Utilities 6

Text Utilities (formerly referred to
as the Binary-Decimal Conversion
Package)

7

Apple Event Manager 8

PPC Browser 9

Edition Manager 11

Color Picker 12

Data Access Manager 13

Help Manager 14

Picture Utilities 15

C H A P T E R 1

Resource Manager

Resource Manager Reference 1-129

Function Key Resources

Function key resources (of the 'FKEY' resource type) are Command-Shift-number key

combinations that are captured and processed by the WaitNextEvent function. The

screen utility resource (a function key resource with resource ID 3) produces a picture of

the main screen, contained in a 'PICT' file, when the user presses Command-Shift-3.

The 'FKEY' resource IDs 0 through 4 are reserved for future use by Apple Computer,

Inc. The WaitNextEvent function is described in the chapter “Event Manager” in Inside
Macintosh: Macintosh Toolbox Essentials.

Standard Icons

System software uses icons to represent documents, applications, folders, disks, and

other elements of the Macintosh interface. Many of these standard icons are stored in the

System file. You can design your own icons for your application and its documents. If

you do not provide your own icons, the Finder displays a default icon. Your application

can retrieve any of the icons in the System file by using the GetResource function. You

should refer to these icons by their constant names and not by their resource IDs. For a

description of the GetResource function, see page 1-73.

Most icons are available in at least two sizes: large (32 by 32 pixels) and small

(16 by 16 pixels). They are also available in three bit depths: 8-bit, 4-bit, and

black-and-white. An icon family consists of the large and small icons for an object, each

with a mask, and each available in the three different color depths. See the chapter

“Finder Interface” in Inside Macintosh: Macintosh Toolbox Essentials for information about

how to create your own icons.

Many of the icons in the System file are also available in a small size (16 by 16 pixels),

represented by the 'SICN' resource. These icons are used in Standard File Package

dialog boxes. The Finder also uses icons in the System file to display in its windows the

contents of disks or folders by name, date, size, or kind. The Views menu in System 7

allows the user to display large or small icons for a given window.

The icons listed in Table 1-4 represent default icons for documents (including special

classes of documents such as stationery), applications, and desk accessories. The icons

show the 'icl8' resource from the icons’ icon family. You can include customized

versions of the icons in Table 1-4 with your documents and applications. There are icon

families and 'SICN' resources for all of these icons unless otherwise noted.

C H A P T E R 1

Resource Manager

1-130 Resource Manager Reference

Table 1-4 Document and application icons

Constant name and icon Resource ID Description

genericDocumentIconResource –4000 The default document icon. The Finder
displays this icon if your application
does not provide its own icon for
documents.

genericApplicationIconResource –3996 The default application icon. The
Finder displays this icon for any
application that does not provide its
own icon.

genericDeskAccessoryIconResource –3991 The default desk accessory icon. In
System 7 and later versions, desk
accessories are represented on the
desktop as applications are, each with
its own icon. The Finder displays this
icon for any desk accessory that does
not provide its own icon.

genericEditionFileIconResource –3989 The default edition file icon. (See Inside
Macintosh: Interapplication
Communication for information about
editions.)

genericStationeryIconResource –3985 The default stationery file icon. (See
Inside Macintosh: Macintosh Toolbox
Essentials for information about
stationery.)

genericPreferencesIconResource –3971 The default preferences file
icon. Preference files appear in the
Preferences folder, which is located
inside the System Folder. There is no
'SICN' resource for this icon.

genericQueryDocumentIconResource

–16506 The default query document icon. (See
Inside Macintosh: Interapplication
Communication for information about
query documents.) There is no 'SICN'
resource for this icon.

genericExtensionIconResource

–16415 The default extension icon. The Finder
displays this icon for any extension
that does not have its own icon.
Extension files appear in the
Extensions folder, which is located
inside the System Folder. There is no
'SICN' resource for this icon.

C H A P T E R 1

Resource Manager

Resource Manager Reference 1-131

The icons listed in Table 1-5 represent the different types of folders found on the desktop.

The icons shown are the 'icl8' resource for the icons’ icon families. There are icon

families and 'SICN' resources for all of these icons unless otherwise noted.

Table 1-5 Folder icons

Constant name and icon Resource ID Description

genericFolderIconResource –3999 The default folder icon.

privateFolderIconResource –3994 The icon for a folder to which the user does not
have access. It is dimmed and has a distinctly
marked border. The Finder displays an alert box
when a user without privileges attempts to
open this folder.

ownedFolderIconResource –3980 The icon for a folder that is owned by a
particular user, usually on a shared volume
such as a file server. There is no 'SICN'
resource for this icon.

dropFolderIconResource –3979 The icon for a folder in which any user may
store documents, applications, and so on, but
from which only a specified group of users can
retrieve the contents. There is no 'SICN'
resource for this icon.

sharedFolderIconResource –3978 The icon for a folder that the owner has made
available for file sharing. There is no 'SICN'
resource for this icon.

mountedFolderIconResource –3977 The icon for a folder that a guest has mounted
on a remote volume. This icon appears only for
the guest. There is no 'SICN' resource for this
icon.

C H A P T E R 1

Resource Manager

1-132 Resource Manager Reference

The icons listed in Table 1-6 represent the different types of folders found in the System

Folder. The icons shown are the 'icl8' resource for the icons’ icon families. You should

not alter the appearance of these icons. There are only icon families for these icons.

Table 1-6 System Folder icons

Constant name and icon Resource ID Description

systemFolderIconResource –3983 The System Folder icon. This folder
contains the System file and other
system-related folders.

appleMenuFolderIconResource –3982 The Apple Menu Items folder icon. This
folder contains items found in the Apple
menu.

startupFolderIconResource –3981 The Startup Items folder icon. This folder
contains documents, aliases,
applications, and other objects that open
when the computer starts up.

controlPanelFolderIconResource –3976 The Control Panels folder icon. This
folder contains control panels.

printMonitorFolderIconResource –3975 The PrintMonitor Documents folder
icon. This folder contains documents that
are in the queue to be printed.

preferencesFolderIconResource –3974 The Preferences folder icon. This folder
contains preferences files for the Finder
and other software that needs to
remember user preferences.

extensionsFolderIconResource –3973 The Extensions folder icon. This folder
contains system extensions.

fontsFolderIconResource –3968 The Fonts folder icon. This folder
contains fonts (both bitmapped and
outline).

C H A P T E R 1

Resource Manager

Resource Manager Reference 1-133

The icons listed in Table 1-7 appear on the desktop. The icons shown are the 'icl8'

resource for the icons’ icon families. There are icon families and 'SICN' resources for

these icons unless otherwise noted.

The icons listed in Table 1-8 are used only by the Standard File Package and are available

only as an 'SICN' resource. The pop-up menu in the standard file dialog boxes

indicates where the list of files shown in the dialog box is located (whether on the

desktop, at the top level of a volume, or inside a series of folders on a volume).

Table 1-7 Desktop icons

Constant name and icon Resource ID Description

floppyIconResource –3998 The default icon for any disk, 3.5-inch or otherwise,
whose driver doesn’t supply its own icon.

trashIconResource –3993 The default empty Trash icon.

fullTrashIconResource –3984 The default full Trash icon, with bulging midsection.
There is no 'SICN' resource for this icon.

Table 1-8 Standard File Package icons

Constant name and icon Resource ID Description

openFolderIconResource –3997 The open folder icon, which appears in a
pop-up menu only. The standard file
dialog boxes display this icon to indicate
which folder is currently open.

genericHardDiskIconResource –3995 The hard disk icon, which appears in a
pop-up menu only. The same icon is used
to represent internal and external disks. A
different icon may appear on the desktop,
because the manufacturer of the hard disk
can design a special icon for a particular
volume.

continued

C H A P T E R 1

Resource Manager

1-134 Resource Manager Reference

ROM Resources

The information in this section is useful only for designers of specialized programs that

need to access ROM resources directly, bypassing any patches in the System file, or

that need to override ROM resources.

Inserting the ROM Resource Map

Many system resources are stored in ROM. System software calls the InitResources

function during system startup, and the Resource Manager creates a special heap zone in

the system heap and builds a resource map that points to the ROM resources.

The Resource Manager normally searches ROM resources only when you use the

RGetResource function to get a handle to the resource, and even then only after it

searches the System file’s resource fork. To search for a resource in ROM before searching

the System file’s resource fork, your application must first alter the resource search order

by inserting the ROM resource map in front of the System file’s resource map.

desktopIconResource –3992 The desktop icon, which appears in a
pop-up menu only. The standard file
dialog boxes display this icon to indicate
which files and folders are available on the
desktop.

genericFileServerIconResource –3972 The file server volume icon. This
represents any servers open on the
desktop. A different icon may appear on
the desktop, because the manufacturer can
design a special icon for a particular
server.

genericSuitcaseIconResource –3970 The suitcase icon. This represents any
suitcase, such as font suitcases or desk
accessory suitcases. There are different
icons for these suitcases in larger sizes,
depending on the contents.

Table 1-8 Standard File Package icons (continued)

Constant name and icon Resource ID Description

C H A P T E R 1

Resource Manager

Resource Manager Reference 1-135

When the value of the global variable RomMapInsert is TRUE, the Resource Manager

inserts the ROM resource map before the System file’s resource map for the next call

only. When the value of RomMapInsert is TRUE, the adjacent variable TmpResLoad

determines whether the value of the global variable ResLoad is considered TRUE or

FALSE, overriding the actual value of ResLoad for the next call only. The values of the

RomMapInsert and TmpResLoad variables are cleared after each call to a Resource

Manager routine.

The RGetResource function first calls GetResource. If GetResource cannot locate

the requested resource in the resource chain, RGetResource sets RomMapInsert to

TRUE, then calls GetResource again.

To set the RomMapInsert and TmpResLoad variables in tandem yourself, you can use

two global constants. Set the system global variable RomMapInsert to the global

constant mapTrue to insert the ROM resource map with SetResLoad(TRUE). Set

RomMapInsert to the global constant mapFalse to insert the ROM resource map with

SetResLoad(FALSE).

There is no real resource fork associated with the ROM resources; the ROM resource map

has a path number of 1 (an illegal path reference number). There are two ways to

determine whether a handle references a ROM resource. First, you can set up

RomMapInsert and TmpResLoad and call HomeResFile; if 1 is returned, the handle is

to a ROM resource. Second, you can dereference the handle and check whether the

master pointer points to ROM by comparing it to the global variable ROMBase.

Overriding ROM Resources

You can override some of the ROM resources, such as 'CURS' resources, simply by

putting the substitute resource in your application’s resource fork. Other ROM resources,

however, such as 'DRVR' and 'PACK' resources, cannot be overridden in this way

because they are already referenced and in use when your application is launched.

On startup, system software creates a list of ROM resources that should not be

referenced. This list is based on information stored in the System file’s resource fork in

an 'ROv#' resource whose version word matches the version word of the ROM. You can

modify the 'ROv#' resource so that it includes the ROM resources that you want to

override.

▲ W A R N I N G

You should not override ROM resources unless absolutely necessary.
Before overriding ROM resources, you should understand the situation
completely. ▲

C H A P T E R 1

Resource Manager

1-136 Resource Manager Reference

Figure 1-19 shows the structure of an 'ROv#' resource.

Figure 1-19 Structure of a compiled ROM override ('ROv#') resource

For information on modifying an 'ROv#' resource, write to Macintosh Developer

Technical Support.

C H A P T E R 1

Resource Manager

Summary of the Resource Manager 1-137

Summary of the Resource Manager

Pascal Summary

Constants

CONST

gestaltResourceMgrAttr = 'rsrc'; {Gestalt selector ResMgr}

gestaltPartialRsrcs = 0; {check this bit in the }

{ response parameter}

{resource attributes}

resSysHeap = 64; {set if read into system }

{ heap}

resPurgeable = 32; {set if purgeable}

resLocked = 16; {set if locked}

resProtected = 8; {set if protected}

resPreload = 4; {set if to be preloaded}

resChanged = 2; {set if to be written to }

{ resource fork}

{resource file attributes}

mapReadOnly = 128; {set to make file read-only}

mapCompact = 64; {set to compact file on }

{ update}

mapChanged = 32; {set to write map on update}

{values for setting the RomMapInsert and TmpResLoad global variables}

mapTrue = $FFFF; {insert ROM map w/ }

{ TmpResLoad = TRUE}

mapFalse = $FF00; {insert ROM map w/ }

{ TmpResLoad = FALSE}

{system icon definition IDs}

genericDocumentIconResource = -4000; {default document icon}

genericFolderIconResource = -3999; {default folder icon}

floppyIconResource = -3998; {default disk icon}

openFolderIconResource = -3997; {open folder icon}

genericApplicationIconResource = -3996; {default application }

{ icon}

C H A P T E R 1

Resource Manager

1-138 Summary of the Resource Manager

genericHardDiskIconResource = -3995; {hard disk icon}

privateFolderIconResource = -3994; {folder without privileges }

{ for this user icon}

trashIconResource = -3993; {default empty Trash icon}

desktopIconResource = -3992; {desktop icon}

genericDeskAccessoryIconResource = -3991; {default desk accessory icon}

genericEditionFileIconResource = -3989; {default edition icon}

genericStationeryIconResource = -3985; {default stationery icon}

systemFolderIconResource = -3983; {System Folder icon}

appleMenuFolderIconResource = -3982; {Apple Menu Items }

{ folder icon}

genericFileServerIconResource = -3972; {file server icon}

genericPreferencesIconResource = -3971; {default preferences }

{ file icon}

genericSuitcaseIconResource = -3970; {default suitcase icon}

genericMoverObjectIconResource = -3969; {System file object icon}

genericQueryDocumentIconResource = -16506; {default query }

{ document icon}

genericExtensionIconResource = -16415; {default extensions icon}

fullTrashIconResource = -3984; {default full Trash icon}

startupFolderIconResource = -3981; {Startup Items folder icon}

ownedFolderIconResource = -3980; {owned folder icon}

dropFolderIconResource = -3979; {drop folder icon}

sharedFolderIconResource = -3978; {shared folder icon}

mountedFolderIconResource = -3977; {mounted folder icon}

controlPanelFolderIconResource = -3976; {Control Panels folder icon}

printMonitorFolderIconResource = -3975; {PrintMonitor }

{ Documents folder icon}

preferencesFolderIconResource = -3974; {Preferences folder icon}

extensionsFolderIconResource = -3973; {Extensions folder icon}

fontsFolderIconResource = -3968; {Fonts folder icon}

C H A P T E R 1

Resource Manager

Summary of the Resource Manager 1-139

Data Type

TYPE ResType = PACKED ARRAY[1..4] OF Char;

Routines

Initializing the Resource Manager

FUNCTION InitResources: Integer;

PROCEDURE RsrcZoneInit;

Checking for Errors

FUNCTION ResError: Integer;

Creating an Empty Resource Fork

PROCEDURE FSpCreateResFile (spec: FSSpec; creator: OSType;
fileType: OSType; scriptTag: ScriptCode);

PROCEDURE HCreateResFile (vRefNum: Integer; dirID: LongInt;
fileName: Str255);

PROCEDURE CreateResFile (fileName: Str255);

Opening Resource Forks

FUNCTION FSpOpenResFile (spec: FSSpec; permission: SignedByte): Integer;

FUNCTION HOpenResFile (vRefNum: Integer; dirID: LongInt;
fileName: Str255;
permission: SignedByte): Integer;

FUNCTION OpenRFPerm (fileName: Str255; vRefNum: Integer;
permission: SignedByte): Integer;

FUNCTION OpenResFile (fileName: Str255): Integer;

Getting and Setting the Current Resource File

FUNCTION CurResFile: Integer;

PROCEDURE UseResFile (refNum: Integer);

FUNCTION HomeResFile (theResource: Handle): Integer;

C H A P T E R 1

Resource Manager

1-140 Summary of the Resource Manager

Reading Resources Into Memory

FUNCTION GetResource (theType: ResType; theID: Integer): Handle;

FUNCTION Get1Resource (theType: ResType; theID: Integer): Handle;

FUNCTION GetNamedResource (theType: ResType; name: Str255): Handle;

FUNCTION Get1NamedResource (theType: ResType; name: Str255): Handle;

FUNCTION RGetResource (theType: ResType; theID: Integer): Handle;

PROCEDURE SetResLoad (load: Boolean);

PROCEDURE LoadResource (theResource: Handle);

Getting and Setting Resource Information

PROCEDURE GetResInfo (theResource: Handle; VAR theID: Integer;
VAR theType: ResType; VAR name: Str255);

PROCEDURE SetResInfo (theResource: Handle; theID: Integer;
name: Str255);

FUNCTION GetResAttrs (theResource: Handle): Integer;

PROCEDURE SetResAttrs (theResource: Handle; attrs: Integer);

Modifying Resources

PROCEDURE ChangedResource (theResource: Handle);

PROCEDURE AddResource (theData: Handle; theType: ResType;
theID: Integer; name: Str255);

Writing to Resource Forks

PROCEDURE UpdateResFile (refNum: Integer);

PROCEDURE WriteResource (theResource: Handle);

PROCEDURE SetResPurge (install: Boolean);

Getting a Unique Resource ID

FUNCTION UniqueID (theType: ResType): Integer;

FUNCTION Unique1ID (theType: ResType): Integer;

Counting and Listing Resource Types

FUNCTION CountResources (theType: ResType): Integer;

FUNCTION Count1Resources (theType: ResType): Integer;

FUNCTION GetIndResource (theType: ResType; index: Integer): Handle;

FUNCTION Get1IndResource (theType: ResType; index: Integer): Handle;

C H A P T E R 1

Resource Manager

Summary of the Resource Manager 1-141

FUNCTION CountTypes: Integer;

FUNCTION Count1Types: Integer;

PROCEDURE GetIndType (VAR theType: ResType; index: Integer);

PROCEDURE Get1IndType (VAR theType: ResType; index: Integer);

Getting Resource Sizes

{these routines also available as SizeResource and MaxSizeRsrc, respectively}

FUNCTION GetResourceSizeOnDisk
(theResource: Handle): LongInt;

FUNCTION GetMaxResourceSize
(theResource: Handle): LongInt;

Disposing of Resources

PROCEDURE ReleaseResource (theResource: Handle);

PROCEDURE DetachResource (theResource: Handle);

{The RemoveResource procedure is also available as RmveResource}

PROCEDURE RemoveResource (theResource: Handle);

Closing Resource Forks

PROCEDURE CloseResFile (refNum: Integer);

Reading and Writing Partial Resources

PROCEDURE ReadPartialResource
(theResource: Handle;
offset: LongInt; buffer: UNIV Ptr;
count: LongInt);

PROCEDURE WritePartialResource
(theResource: Handle;
offset: LongInt; buffer: UNIV Ptr;
count: LongInt);

PROCEDURE SetResourceSize (theResource: Handle; newSize: LongInt);

Getting and Setting Resource Fork Attributes

FUNCTION GetResFileAttrs (refNum: Integer): Integer;

PROCEDURE SetResFileAttrs (refNum: Integer; attrs: Integer);

Accessing Resource Entries in a Resource Map

FUNCTION RsrcMapEntry (theResource: Handle): LongInt;

C H A P T E R 1

Resource Manager

1-142 Summary of the Resource Manager

C Summary

Constants

enum {

#define gestaltResourceMgrAttr 'rsrc' /*Gestalt selector ResMgr*/

#define gestaltPartialRsrcs = 0 /*check this bit in the */

/* response parameter*/

};

enum {

/*resource attributes*/

resSysHeap = 64, /*set if read into system heap*/

resPurgeable = 32, /*set if purgeable*/

resLocked = 16, /*set if locked*/

resProtected = 8, /*set if protected*/

resPreload = 4, /*set if to be preloaded*/

resChanged = 2, /*set if to be written */

/* to resource fork*/

/*resource fork attributes*/

mapReadOnly = 128, /*set to make file */

/* read-only*/

mapCompact = 64, /*set to compact file */

/* on update*/

mapChanged = 32, /*set to write map */

/* on update*/

/*values for setting the RomMapInsert and TmpResLoad global variables*/

mapTrue = 0xFFFF,/*insert ROM map w/ */

/* TmpResLoad = TRUE*/

mapFalse = 0xFF00 /*insert ROM map w/ */

/* TmpResLoad = FALSE*/

};

enum {

/*system icon definition IDs*/

genericDocumentIconResource = -4000, /*default document icon*/

genericStationeryIconResource = -3985, /*default stationery icon*/

genericEditionFileIconResource = -3989, /*default edition icon*/

genericApplicationIconResource = -3996, /*default application icon*/

genericDeskAccessoryIconResource = -3991, /*default desk accessory */

/* icon*/

genericFolderIconResource = -3999, /*default folder icon*/

privateFolderIconResource = -3994, /*folder without privileges*/

/* for this user icon*/

C H A P T E R 1

Resource Manager

Summary of the Resource Manager 1-143

floppyIconResource = -3998, /*default disk icon*/

trashIconResource = -3993, /*default empty Trash icon*/

desktopIconResource = -3992, /*desktop icon*/

openFolderIconResource = -3997, /*open folder icon*/

genericHardDiskIconResource = -3995, /*hard disk icon*/

genericFileServerIconResource = -3972, /*file server icon*/

genericSuitcaseIconResource = -3970, /*default suitcase icon*/

genericMoverObjectIconResource = -3969, /*System file object icon*/

genericPreferencesIconResource = -3971, /*default preferences */

/* file icon*/

genericQueryDocumentIconResource = -16506, /*default query doc icon*/

genericExtensionIconResource = -16415, /*default extension icon*/

systemFolderIconResource = -3983, /*System Folder icon*/

appleMenuFolderIconResource = -3982, /*Apple Menu Items */

/* folder icon*/

};

enum {

startupFolderIconResource = -3981, /*Startup Items folder icon*/

ownedFolderIconResource = -3980, /*owned folder icon*/

dropFolderIconResource = -3979, /*drop folder icon*/

sharedFolderIconResource = -3978, /*shared folder icon*/

mountedFolderIconResource = -3977, /*mounted folder icon*/

controlPanelFolderIconResource = -3976, /*Control Panels folder */

/* icon*/

printMonitorFolderIconResource = -3975, /*PrintMonitor */

/* Documents folder icon*/

preferencesFolderIconResource = -3974, /*Preferences folder icon*/

extensionsFolderIconResource = -3973, /*Extensions folder icon*/

fontsFolderIconResource = -3968, /*Fonts folder icon*/

fullTrashIconResource = -3984 /*default full Trash icon*/

};

Data Type

typedef unsigned long ResType;

C H A P T E R 1

Resource Manager

1-144 Summary of the Resource Manager

Routines

Initializing the Resource Manager

pascal short InitResources (void);

pascal void RsrcZoneInit (void);

Checking for Errors

pascal short ResError (void);

Creating an Empty Resource Fork

pascal void FSpCreateResFile
(const FSSpec *spec, OSType creator,
OSType fileType, ScriptCode scriptTag);

pascal void HCreateResFile (short vRefNum, long dirID,
ConstStr255Param fileName);

pascal void CreateResFile (ConstStr255Param fileName);

Opening Resource Forks

pascal short FSpOpenResFile
(const FSSpec *spec, SignedByte permission);

pascal short HOpenResFile (short vRefNum, long dirID,
ConstStr255Param fileName,
char permission);

pascal short OpenRFPerm (ConstStr255Param fileName, short vRefNum,
char permission);

pascal short OpenResFile (ConstStr255Param fileName);

Getting and Setting the Current Resource File

pascal short CurResFile (void);

pascal void UseResFile (short refNum);

pascal short HomeResFile (Handle theResource);

Reading Resources Into Memory

pascal Handle GetResource (ResType theType, short theID);

pascal Handle Get1Resource (ResType theType, short theID);

pascal Handle GetNamedResource
(ResType theType, ConstStr255Param name);

pascal Handle Get1NamedResource
(ResType theType, ConstStr255Param name);

C H A P T E R 1

Resource Manager

Summary of the Resource Manager 1-145

pascal Handle RGetResource (ResType theType, short theID);

pascal void SetResLoad (Boolean load);

pascal void LoadResource (Handle theResource);

Getting and Setting Resource Information

pascal void GetResInfo (Handle theResource, short *theID,
ResType *theType, Str255 name);

pascal void SetResInfo (Handle theResource, short theID,
ConstStr255Param name);

pascal short GetResAttrs (Handle theResource);

pascal void SetResAttrs (Handle theResource, short attrs);

Modifying Resources

pascal void ChangedResource
(Handle theResource);

pascal void AddResource (Handle theData, ResType theType,
short theID, ConstStr255Param name);

Writing to Resource Forks

pascal void UpdateResFile (short refNum);

pascal void WriteResource (Handle theResource);

pascal void SetResPurge (Boolean install);

Getting a Unique Resource ID

pascal short UniqueID (ResType theType);

pascal short Unique1ID (ResType theType);

Counting and Listing Resource Types

pascal short CountResources
(ResType theType);

pascal short Count1Resources
(ResType theType);

pascal Handle GetIndResource
(ResType theType, short index);

pascal Handle Get1IndResource
(ResType theType, short index);

pascal short CountTypes (void);

pascal short Count1Types (void);

C H A P T E R 1

Resource Manager

1-146 Summary of the Resource Manager

pascal void GetIndType (ResType *theType, short index);

pascal void Get1IndType (ResType *theType, short index);

Getting Resource Sizes

/*the GetResourceSizeOnDisk routine is also available as SizeResource*/

pascal long GetResourceSizeOnDisk
(Handle theResource);

/*the GetMaxResourceSize routine is also available as MaxSizeRsrc*/

pascal long GetMaxResourceSize
(Handle theResource);

Disposing of Resources

pascal void ReleaseResource
(Handle theResource);

pascal void DetachResource (Handle theResource);

/*the RemoveResource routine is also available as RvmeResource*/

pascal void RemoveResource (Handle theResource);

Closing Resource Forks

pascal void CloseResFile (short refNum);

Reading and Writing Partial Resources

pascal void ReadPartialResource
(Handle theResource, long offset,
void *buffer, long count);

pascal void WritePartialResource
(Handle theResource, long offset,
const void *buffer, long count);

pascal void SetResourceSize
(Handle theResource, long newSize);

Getting and Setting Resource Fork Attributes

pascal short GetResFileAttrs
(short refNum);

pascal void SetResFileAttrs
(short refNum, short attrs);

C H A P T E R 1

Resource Manager

Summary of the Resource Manager 1-147

Accessing Resource Entries in a Resource Map

pascal long RsrcMapEntry (Handle theResource);

Assembly-Language Summary

Trap Macros

Trap Macros Requiring Routine Selectors

_ResourceDispatch

_HighLevelFSDispatch

Global Variables

Selector Routine

$7001 ReadPartialResource

$7002 WritePartialResource

$7003 SetResourceSize

Selector Routine

$0000 FSpOpenResFile

$000E FSpCreateResFile

TopMapHndl long Handle to resource map of most recently opened
resource fork

SysMapHndl long Handle to System file’s resource fork

SysMap word File reference number of System file’s resource fork

CurMap word File reference number of current resource file

ResLoad word Current SetResLoad state

ResErr word Current value of ResError
ResErrProc long Address of resource error procedure

SysResName length byte followed
by up to 19 characters

Name of System file’s resource fork

RomMapInsert byte Flag for whether to insert ROM resource map

TmpResLoad byte Temporary SetResLoad state for calls using
RomMapInsert

C H A P T E R 1

Resource Manager

1-148 Summary of the Resource Manager

Result Codes
noErr 0 No error
dirFulErr –33 Directory full
dskFulErr –34 Disk full
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename or volume name (perhaps zero length)
eofErr –39 End of file
tmfoErr –42 Too many files open
fnfErr –43 File not found
wPrErr –44 Disk is write-protected
fLckdErr –45 File is locked
vLckdErr –46 Volume is locked
dupFNErr –48 Duplicate filename (rename)
opWrErr –49 File already open with write permission
permErr –54 Permissions error (on file open)
extFSErr –58 Volume belongs to an external file system
memFullErr –108 Not enough room in heap zone
dirNFErr –120 Directory not found
resourceInMemory –188 Resource already in memory
writingPastEnd –189 Writing past end of file
inputOutOfBounds –190 Offset or count out of bounds
resNotFound –192 Resource not found
resFNotFound –193 Resource file not found
addResFailed –194 AddResource procedure failed
rmvResFailed –196 RemoveResource procedure failed
resAttrErr –198 Attribute inconsistent with operation
mapReadErr –199 Map inconsistent with operation

Contents 2-1

C H A P T E R 2

Contents

Scrap Manager

Introduction to the Scrap Manager 2-4

The Clipboard 2-10

Intelligent Cut and Paste 2-10

About the Scrap Manager 2-12

Location of the Scrap 2-12

Using the Scrap Manager 2-14

Getting Information About the Scrap 2-15

Putting Data in the Scrap 2-15

Handling the Cut Command 2-15

Handling the Copy Command 2-19

Handling Suspend Events 2-19

Getting Data From the Scrap 2-20

Handling the Paste Command 2-20

Handling Resume Events 2-25

Converting Data Between a Private Scrap and the Scrap 2-26

Converting Data Between the TextEdit Scrap and the Scrap 2-28

Handling Editing Operations in Dialog Boxes 2-31

Scrap Manager Reference 2-31

Data Structures 2-32

The Scrap Information Record 2-32

The Scrap Format Types 2-33

Routines 2-34

Getting Information About the Scrap 2-34

Writing Information to the Scrap 2-35

Reading Information From the Scrap 2-38

Transferring Data Between the Scrap in Memory and the Scrap on
Disk 2-40

C H A P T E R 2

2-2 Contents

Summary of the Scrap Manager 2-42

Pascal Summary 2-42

Constants 2-42

Data Types 2-42

Routines 2-42

C Summary 2-43

Data Types 2-43

Routines 2-44

Assembly-Language Summary 2-45

Data Structures 2-45

Result Codes 2-45

C H A P T E R 2

2-3

Scrap Manager

This chapter describes how your application can allow the user to cut, copy, and paste

data between documents or within a document by using the Scrap Manager. When you

copy data, your application writes the data to a specific location, and your application

writes the data using a standard format. The Scrap Manager makes this data available to

other applications. Furthermore, when your application copies data such as text or

graphics, you write the data using the standard formats that all Macintosh applications

should support. By using standard formats, the user can copy and paste data between

documents created by your application and others.

The Scrap Manager supports the sharing of static data between applications. That is,

once the data is pasted into another document, there is no connection between the data

that was pasted and the original source of the data. To support dynamic sharing of data,

where the user can copy data from one document into another document and receive

automatic updating of the information when the data in the original document changes,

use the Edition Manager. See Inside Macintosh: Interapplication Communication for

information on the Edition Manager.

You can also support the copying and pasting of sounds, movies, publishers or

subscribers, and other formats. For specific information on supporting sounds and

movies, see Inside Macintosh: Sound and Inside Macintosh: QuickTime, respectively. For

information on supporting publishers and subscribers, see the chapter “Edition

Manager” in Inside Macintosh: Interapplication Communication.

If the Translation Manager is available, the Scrap Manager uses its services as necessary

to translate data in one format into another format. For specific information on the

Translation Manager, see the chapter “Translation Manager” in this book.

If your application uses only TextEdit for all text input, you can use TextEdit routines to

cut, copy, and paste data. For complete information on TextEdit, see the chapter

“TextEdit” in Inside Macintosh: Text.

To support the copying and pasting of data in dialog boxes, use Dialog Manager

routines. See the chapter “Dialog Manager” in Inside Macintosh: Macintosh Toolbox
Essentials for information on how to create and handle dialog boxes.

This chapter discusses the Edit menu commands Cut, Copy, and Paste. For specific

information on how to create and handle menus in your application, see the chapter

“Menu Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

To use this chapter, you should be familiar with the Event Manager, in particular, how to

handle suspend and resume events. See the chapter “Event Manager” in Inside
Macintosh: Macintosh Toolbox Essentials for additional information on the Event Manager.

This chapter begins by describing how the copy-and-paste operation works and the user

interface behind it. The chapter then discusses how you can

■ get information about the current contents of the scrap

■ read data from the scrap

■ write data to the scrap

C H A P T E R 2

Scrap Manager

2-4 Introduction to the Scrap Manager

Introduction to the Scrap Manager

You can use the Scrap Manager to

■ copy and paste data within a document created by your application

■ copy and paste data between different documents created by your application

■ copy and paste data between documents created by your application and documents
created by other applications

Figure 2-1 shows two documents from two applications (SurfPaint and SurfWriter) that

the user currently has open. The user can select the data to copy from the SurfPaint

document, choose Copy from the Edit menu, activate the SurfWriter document, then

choose Paste from the Edit menu.

In the example shown in Figure 2-1, when the user chooses Copy, the SurfPaint

application writes the selected data to the scrap. When the user chooses Paste, the

SurfWriter application reads any data from the scrap and inserts the data at the current

insertion point.

For each application, the Scrap Manager maintains a storage area to hold the last data

cut or copied by the user. The area that is available to an application for this purpose is

referred to as the scrap. The scrap can reside either in memory or on disk. All

applications that support copy-and-paste operations read data from and write data to

the scrap.

Whenever the user cuts or copies data, your application should write the data to the

scrap (replacing the previous contents of the scrap); and whenever the user pastes data,

your application should read the data from the scrap. Alternatively, your application can

choose to use its own private scrap, and only write data to and read data from the scrap

when necessary. If you use a private scrap, you must copy the data from your private

scrap to the scrap upon receiving a suspend event. Upon receiving a resume event you

should determine whether the data in the scrap has changed and, if so, either

immediately copy the data from the scrap to your private scrap or copy the data from

the scrap to your private scrap when the user next chooses the Paste command.

C H A P T E R 2

Scrap Manager

Introduction to the Scrap Manager 2-5

Figure 2-1 Copying and pasting data between two applications using the scrap

C H A P T E R 2

Scrap Manager

2-6 Introduction to the Scrap Manager

You use the Edit menu commands Cut, Copy, and Paste to support cutting, copying, and

pasting of data within a document and between documents. Table 2-1 describes the

actions your application should perform to support these three commands.

You should implement the editing commands as described in Table 2-1 so that when the

user chooses the Paste command—whether applied to the same document or another, in

the same application or another—the data last operated upon by the user (cut or copied)

can be inserted into the current document. Note that if your application implements the

Clear command, in response to the Clear command your application should remove the

data in the current selection but should not save the data into the scrap.

The nature of the data that the user can transfer varies between the application that the

user copies data from and the application that the user pastes data into. The amount of

information retained also depends on the capabilities of the applications supporting the

copy-and-paste operation. For example, an application that allows a user to record and

edit sounds may write a copied sound to the scrap both in 'snd ' and 'TEXT' formats.

Other applications choose which format to read from the scrap. A word processor that

attempts to paste the sound data may not be able to read the sound in the 'snd '

format but should be able to read the data in the 'TEXT' format.

Table 2-1 Actions your application perfoms in response to editing commands

Edit command Actions your application performs

Cut Remove the data in the current selection (if any) and save the data,
either in the scrap or in your application’s private scrap.

Copy Copy the data in the current selection (if any) and save the copied
data, either in the scrap or in your application’s private scrap.

Paste Paste the last data (if any) that the user cut or copied (you get the
data to paste by reading the scrap or your application’s private
scrap). Paste the data at the insertion point, replacing any current
selection.

C H A P T E R 2

Scrap Manager

Introduction to the Scrap Manager 2-7

You write data to the scrap using the standard formats that all Macintosh applications

should support: 'PICT' and 'TEXT'. These scrap format types are defined as follows:

■ 'TEXT': a series of ASCII characters

■ 'PICT': a QuickDraw picture, which is a saved sequence of drawing commands that
can be played back with the DrawPicture procedure

Your application must be able to write at least one standard format ('PICT' or 'TEXT')

to the scrap and should be able to read both. In addition, your application can support

other optional popular scrap format types (such as 'snd ' or 'movv'). Your

application can also write its own private format to the scrap, but must always write one

of the standard formats as well.

When your application requests data from the scrap, it must specify the scrap format

type that the Scrap Manager should retrieve from the scrap. Your application typically

requests its preferred scrap format first; if that format isn’t available, it requests the data

specifying another format type.

If you request a scrap format type that isn’t in the scrap and the Translation Manager is

available, the Scrap Manager uses the Translation Manager to attempt to convert the

data of a scrap format type that does exist in the scrap into the scrap format type

requested by your application. For example, if the SurfWriter application requests data

from the scrap in the 'SURF' scrap format type, and the data in the scrap is available

in the format types 'TEXT', 'PICT', and 'SDBS'(SurfDB’s private scrap format type),

the Scrap Manager uses the Translation Manager to convert any one of the scrap format

types 'TEXT', 'PICT', or 'SDBS' into the 'SURF' scrap format type. The Translation

Manager looks in the Extensions folder for a translator that can perform one of these

translations. If such a translator is available (for example, a translator that can translate

the 'SDBS' scrap format type into the 'SURF' scrap format type), the Translation

Manager uses the translator to translate the data in the scrap into the requested scrap

format type. If the translation is successful, the Scrap Manager returns to your

application the data from the scrap in the requested scrap format type.

C H A P T E R 2

Scrap Manager

2-8 Introduction to the Scrap Manager

Whenever possible, your application should write both of the standard data types to the

scrap. For example, a graphics application, such as SurfPaint, can choose to write both

'PICT' and 'TEXT' formats to the scrap when the user copies a picture consisting of

text. Figure 2-2 shows a SurfPaint document and a SurfWriter document. The user

copies, then pastes, a picture consisting of text. The SurfPaint application can choose to

write only the 'PICT' format; if it does so, then SurfWriter reads the data from the scrap

in 'PICT' format and inserts the data as a picture in the SurfWriter document. If the

SurfPaint document writes both 'PICT' and 'TEXT' formats to the scrap, SurfWriter

can choose which format to read. In this case, SurfWriter can choose to read the 'TEXT'

format of the data and insert the data as editable text into the document.

Figure 2-2 Writing both standard formats to the scrap

The SurfPaint application uses an application-defined data type to describe the data in

its documents. It uses this same format in its private scrap; this implementation works

well as long as the user is working exclusively with SurfPaint documents. When the

SurfPaint application receives a suspend event, indicating that another application is

about to become the foreground process, SurfPaint copies the data from its private scrap

to the scrap. SurfPaint writes data to the scrap in its own private format ('SFPN'), in

'PICT' format, and if the picture contains text, it writes the data to the scrap in 'TEXT'

C H A P T E R 2

Scrap Manager

Introduction to the Scrap Manager 2-9

format as well. Upon receiving a resume event, SurfPaint determines whether the

contents of the scrap have changed and if so, copies the new data from the scrap into its

private scrap. Figure 2-3 shows how the SurfPaint application uses its own private scrap.

Figure 2-3 Using a private scrap

Note that when your application receives a resume event, it should determine whether

the contents of the scrap have changed. If your application uses a private scrap, either

you can choose to copy the data from the scrap to your private scrap immediately or you

can delay copying until the data is needed.

C H A P T E R 2

Scrap Manager

2-10 Introduction to the Scrap Manager

If your application writes data to the scrap in more than one format, it should write the

data in its order of preference. For example, the SurfPaint application writes its preferred

scrap format type first (its own private format, 'SFPN'), then writes the data in 'PICT'

format, and then, if appropriate, writes the data in 'TEXT' format. However, the size of

the scrap is limited; therefore, when your application needs to write a large amount of

data to the scrap and there isn’t enough room in the scrap for both your application’s

private scrap format type and one of the standard formats, write the data in the standard

format.

As previously described, the Scrap Manager uses the Translation Manager (if it’s

available) to convert data in one scrap format type into another. If your application

writes its own private scrap format type to the scrap, you may want to provide one or

more translators that translate your private scrap format type into other format types.

See the chapter “Translation Manager” in this book for information on how to write

translators.

The Clipboard
The Clipboard refers to what the user views as residing in the scrap. Your application

can provide a Show Clipboard/Hide Clipboard command to show or hide a window,

referred to as the Clipboard window. When the user chooses this command, your

application should display in its Clipboard window the current contents of the scrap.

Although multiple scrap format types may reside in the scrap, applications that support

a Clipboard window typically display the data in only one format.

If your application provides this command, your application should hide its Clipboard

window (if it’s showing) whenever it receives a suspend event. It can show the

Clipboard window again when it receives a resume event.

Intelligent Cut and Paste
When the user selects text and then chooses the Cut command, or sets the insertion point

and then chooses Paste, your application should apply “intelligent cut and paste,” that

is, discard extra spaces or add spaces, as outlined here. In general, your application

should follow these rules to provide intelligent cut and paste:

■ If the user selects a word or range of words, highlight the selection but not any
adjacent spaces.

■ When the user chooses the Cut command, if the character to the left of the selection is
a space, discard it. Otherwise, if the character to the right of the selection is a space,
discard it.

■ When the user chooses the Paste command, if the character to the left or right of the
current selection or if the character to the left or right of the insertion point is part of a
word, insert a space before pasting the text.

C H A P T E R 2

Scrap Manager

Introduction to the Scrap Manager 2-11

Figure 2-4 shows examples of intelligent cut and paste.

Figure 2-4 Intelligent cut and paste

Figure 2-5 shows the results of applying the same operations in an application that

doesn’t support intelligent cut and paste.

Figure 2-5 Non-intelligent cut and paste

See Macintosh Human Interface Guidelines for details of selection techniques and

guidelines for selecting words and paragraphs.

C H A P T E R 2

Scrap Manager

2-12 About the Scrap Manager

About the Scrap Manager

You can use the Scrap Manager to support copying and pasting of data. If your

application uses TextEdit (in its windows or dialog boxes), be aware that TextEdit also

maintains its own private scrap. You use TextEdit routines to copy data from the TextEdit

scrap (if any) to the scrap. See “Converting Data Between the TextEdit Scrap and the

Scrap” beginning on page 2-28 for information on TextEdit’s scrap.

The next section describes the location of the scrap. “Using the Scrap Manager”

beginning on page 2-14 provides specific information on how you can use Scrap

Manager routines in your application.

Location of the Scrap
System software allocates space in each application’s heap for the scrap and

allocates a handle to reference the scrap. The system global variable ScrapHandle

contains a handle to the scrap of the current process. When system software launches

an application, it copies the data from the scrap of the previously active application into

the application heap of the newly active application. If the scrap is too large to fit in the

application’s application heap, system software copies the scrap to disk and sets the

value of the handle to the scrap in the application heap to NIL to indicate that the scrap

is on disk.

Figure 2-6 shows two applications (SurfWriter and SurfPaint) that are in memory and

shows the handles and allocated space for the scrap in each application’s heap. In this

example, SurfPaint was the previously active application and the user switches to the

SurfWriter application. At this moment, the system global variable ScrapHandle

references the scrap in SurfPaint’s application heap. SurfPaint’s application heap

contains a handle to the scrap in its application heap.

System software sends SurfPaint a suspend event to begin the switch to the SurfWriter

application. Because SurfPaint uses a private scrap, upon receiving the suspend event it

copies data from its private scrap to the scrap. After SurfPaint responds to the suspend

event, system software copies the data from the scrap in SurfPaint’s application heap to

SurfWriter’s application heap, resizing the scrap in SurfWriter’s application heap as

necessary. System software sets the handle in SurfWriter’s application heap to reference

the new scrap and sets the system global variable ScrapHandle to reference the scrap

in SurfWriter’s application heap. System software sends SurfWriter a resume event and

sets the convertClipboardFlag bit in the message field of the event record. System

software sets this bit when the contents of the scrap have changed since the previous

suspend event, indicating to the application that it should copy the scrap to its

private scrap.

C H A P T E R 2

Scrap Manager

About the Scrap Manager 2-13

Figure 2-6 Location of the scrap in memory

You can get the size of the scrap and a handle to the scrap in your application’s heap by

calling the InfoScrap function.

Although the scrap is usually located in memory, your application can write the contents

of the scrap in memory to a scrap file using the UnloadScrap function. After writing

the contents of the scrap to disk, the UnloadScrap function releases the memory

previously occupied by the scrap in your application’s heap; thereafter, any operations

your application performs on data in the scrap affect the scrap as stored in the scrap file

on disk.

You can use the LoadScrap function to read the contents of the scrap file back into

memory. The LoadScrap function allocates memory in your application’s heap for the

scrap and reads the contents of the scrap on disk into memory; thereafter, any operations

your application performs on data in the scrap affect the scrap in memory.

C H A P T E R 2

Scrap Manager

2-14 Using the Scrap Manager

The Scrap Manager keeps track of whether the scrap is in memory or on disk and always

reads data from and writes data to the scrap’s current location. As a result, your

application seldom needs to know the location of the scrap. Your application should use

the UnloadScrap function only if the scrap in memory isn’t large enough to hold the

data you need to write to the scrap.

If your application transfers the scrap from memory to disk and is then switched to the

background, system software reads the scrap from disk into the newly active

application’s heap. When your application returns to the foreground, system software

writes the scrap from the previous application’s application heap back to disk.

Using the Scrap Manager

This section explains how you can use the Scrap Manager to support copy-and-paste

operations in your application. In particular, this section explains how you can

■ get information about the current contents of the scrap

■ handle the Cut and Copy commands

■ respond to suspend events

■ handle the Paste command

■ respond to resume events

■ use TextEdit to support the editing commands

■ support copying and pasting of data in dialog boxes

The Scrap Manager uses the services of the Translation Manager (if it’s available). To

determine whether the Scrap Manager can use the Translation Manager, call the

Gestalt function with the gestaltScrapMgrAttr selector and check

the value of the response parameter. If the bit indicated by the constant

gestaltScrapMgrTranslationAware is set, then the Scrap Manager uses the

Translation Manager when needed to translate scrap format types.

CONST

gestaltScrapMgrAttr = 'scra';{Gestalt selector for }

{ Scrap Mgr attributes}

gestaltScrapMgrTranslationAware = 0; {check this bit in the }

{ response parameter }

C H A P T E R 2

Scrap Manager

Using the Scrap Manager 2-15

Getting Information About the Scrap
To get information about the scrap, you can use the InfoScrap function. The

InfoScrap function returns a pointer to a scrap information record. (See “The Scrap

Information Record” on page 2-32 for detailed information on the fields of this record.)

The information in the scrap information record provides

■ the size (in bytes) of the scrap

■ a handle to the scrap if it’s in memory

■ a count, or number that your application can use to determine whether the contents of
the scrap have changed

■ the location of the scrap (whether in memory or on disk)

■ the filename of the scrap when it is on the disk

For example, this code uses the InfoScrap function to get the size of the scrap.

VAR

curScrapInfoPtr: PScrapStuff;

curScrapSize: LongInt;

curScrapInfoPtr := InfoScrap;

curScrapSize := curScrapInfoPtr^.scrapSize;

Putting Data in the Scrap
Your application should write data to the scrap (or to its own private scrap) whenever

the user chooses the Cut or Copy command and the document the user is working with

contains a selection. In addition, if your application uses a private scrap, your

application must copy the contents of its private scrap to the scrap upon receiving a

suspend event. The next sections explain how to perform these tasks.

Handling the Cut Command

When the user chooses the Cut command and the document the user is working with

contains a selection, your application should remove the data from the selection and

save the data (either in the scrap or in your application’s private scrap).

C H A P T E R 2

Scrap Manager

2-16 Using the Scrap Manager

The SurfWriter application doesn’t use a private scrap; whenever the user performs a cut

operation, SurfWriter writes the current selection to the scrap. The SurfWriter application

does define its own private scrap format type and writes this format to the scrap, along

with one of the standard scrap formats. Listing 2-1 shows SurfWriter’s routine for

handling the Cut command (it also uses this routine for the Copy command).

Listing 2-1 Writing data to the scrap

PROCEDURE DoCutOrCopyCmd (cut: Boolean);

VAR

window: WindowPtr;

windowType: Integer;

isText: Boolean;

ptrToScrapData: Ptr;

length, myLongErr: LongInt;

BEGIN

window := FrontWindow;

windowType := MyGetWindowType(window);

IF windowType = kMyDocWindow THEN

BEGIN

ptrToScrapData := NewPtr(kDefaultSize);

isText := MyIsSelectionText;

IF isText THEN {selection contains text}

BEGIN

MyGetSelection('SURF', ptrToScrapData, length);

myLongErr := ZeroScrap;

myLongErr := PutScrap(length, 'SURF', ptrToScrapData);

IF myLongErr <> noErr THEN DoError(myLongErr);

MyGetSelection('TEXT', ptrToScrapData, length);

myLongErr := PutScrap(length, 'TEXT', ptrToScrapData);

IF myLongErr <> noErr THEN DoError(myLongErr);

END

ELSE {selection contains graphics}

BEGIN

MyGetSelection('PICT', ptrToScrapData, length);

myLongErr := ZeroScrap;

myLongErr := PutScrap(length, 'PICT', ptrToScrapData);

IF myLongErr <> noErr THEN DoError(myLongErr);

END;

DisposePtr(ptrToScrapData);

IF cut THEN

MyDeleteSelection;

END

C H A P T E R 2

Scrap Manager

Using the Scrap Manager 2-17

ELSE

IF windowType <> kNIL THEN

BEGIN {window is a dialog box}

IF cut THEN

DialogCut(window)

ELSE

DialogCopy(window);

END;

END;

The DoCutOrCopyCmd procedure first determines the type of window that is frontmost.

If the frontmost window is a document window, DoCutOrCopyCmd uses another

application-defined routine, MyIsSelectionText, to determine whether the current

selection contains text or graphics. If the selection contains only text, SurfWriter writes

the data to the scrap using two formats: its own private format ('SURF') and the

standard format 'TEXT'. The DoCutOrCopyCmd procedure uses another

application-defined routine, MyGetSelection, to return the current selection in a

particular format. DoCutOrCopyCmd then calls the ZeroScrap function to clear the

contents of the scrap. After calling ZeroScrap, DoCutOrCopyCmd calls PutScrap,

specifying the length of the data, a pointer to the data, and identifying the scrap format

type as 'SURF'. DoCutOrCopyCmd then uses the MyGetSelection routine again, this

time to return the current selection in the 'TEXT' format type. DoCutOrCopyCmd calls

PutScrap to write the data to the scrap, specifying a pointer to the data and identifying

the scrap format type as 'TEXT'.

If the selection contains a picture, DoCutOrCopyCmd uses the MyGetSelection routine

to return the current selection using the 'PICT' format type. After calling ZeroScrap,

DoCutOrCopyCmd calls PutScrap to write the data to the scrap, specifying a pointer to

the data and identifying the scrap format type as 'PICT'.

Finally, if DoCutOrCopyCmd was called as a result of the user performing a cut

operation, DoCutOrCopyCmd deletes the selection from the current document.

If the frontmost window is a dialog box, DoCutOrCopyCmd uses the Dialog Manager’s

DialogCut (or DialogCopy) procedure to write the selected data to the scrap.

Note that you should always call ZeroScrap before writing data to the scrap. If you

write multiple formats to the scrap, call ZeroScrap once before you write the first

format to the scrap.

You should always write data to the scrap in your application’s preferred order

of formats. For example, SurfWriter’s preferred format for text data is its own private

format ('SURF'), so it writes that format first and then writes the standard format

'TEXT'.

If your application uses TextEdit in its document windows, then use the TextEdit routine

TECut (or TECopy) instead of ZeroScrap and PutScrap. See Listing 2-8 on page 2-29

for an application-defined routine that uses TextEdit routines to help handle the Cut and

Copy commands.

C H A P T E R 2

Scrap Manager

2-18 Using the Scrap Manager

If your application uses a private scrap, then copy the selected data to your private scrap

rather than to the scrap. For example, the SurfPaint application uses a private scrap.

Listing 2-2 shows SurfPaint’s application-defined routine that handles the Cut command

by writing the selected data to its private scrap.

Listing 2-2 Writing data to a private scrap

PROCEDURE DoCutOrCopyCmd (cut: Boolean);

VAR

window: WindowPtr;

windowType: Integer;

BEGIN

window := FrontWindow;

windowType := MyGetWindowType(window);

IF windowType = kMyDocWindow THEN

BEGIN

MyWriteDataToPrivateScrap;

{reset gScrapNewData to indicate that this app's private }

{ scrap now contains the most recent data}

IF gScrapNewData THEN

gScrapNewData := FALSE;

IF cut THEN

MyDeleteSelection;

END

ELSE

IF windowType <> kNil THEN

BEGIN {window is a dialog window}

IF cut THEN

DialogCut(window)

ELSE

DialogCopy(window);

END;

END;

The application-defined DoCutOrCopyCmd procedure shown in Listing 2-2 calls another

application-defined procedure, MyWriteDataToPrivateScrap, to write the data in

the current selection to the application’s private scrap. SurfPaint uses the

application-defined global variable gScrapNewData to indicate when data should be

read from the scrap instead of its own private scrap as a result of the user choosing the

Paste command. Upon receiving a resume event, if the contents of the scrap have

changed, SurfPaint sets the gScrapNewData global variable to TRUE. If the user chooses

Paste and gScrapNewData is TRUE, SurfPaint reads the scrap to get the data to paste;

otherwise SurfPaint reads its own private scrap to get the data to paste.

C H A P T E R 2

Scrap Manager

Using the Scrap Manager 2-19

If the user chooses Cut or Copy before the next Paste command, SurfPaint writes the

newly selected data to its private scrap, eliminating the need to read the previous

contents of the scrap, and thus the DoCutOrCopyCmd procedure resets the

gScrapNewData global variable to FALSE.

Handling the Copy Command

When the user chooses the Copy command and the document the user is working with

contains a selection, your application should copy the selected data (without deleting it)

and save the copied data (either in the scrap or in your application’s private scrap). See

Listing 2-1 on page 2-16, Listing 2-2 on page 2-18, and Listing 2-8 on page 2-29 for

application-defined routines that handle the Copy command.

Handling Suspend Events

As previously described, if your application uses a private scrap, your application must

copy the contents of its private scrap to the scrap upon receiving a suspend event. In

addition, if your application supports the Show Clipboard command, it should hide the

Clipboard window if it’s currently showing (because the contents of the scrap may

change while your application yields time to another application).

Listing 2-3 shows SurfPaint’s routine that responds to suspend events (and resume

events).

Listing 2-3 Copying data from the scrap in response to suspend events

PROCEDURE DoSuspendResumeEvent (event: EventRecord);

VAR

currentFrontWindow: WindowPtr;

BEGIN

currentFrontWindow := FrontWindow;

IF (BAnd(event.message, resumeFlag) <> 0) THEN

BEGIN {it's a resume event; }

END { handle as shown in Listing 2-6}

ELSE

BEGIN {it's a suspend event}

{copy private scrap to the scrap}

MyConvertScrap(kPrivateToClipboard);

gInBackground := TRUE;

{deactivate front window}

DoActivate(currentFrontWindow, NOT gInBackground, event);

MyHideClipboardWindow; {hide Clipboard window if showing}

MyHideFloatingWindows; {hide any floating windows}

END;

END;

C H A P T E R 2

Scrap Manager

2-20 Using the Scrap Manager

Listing 2-3 shows a procedure that responds to suspend and resume events. The

DoSuspendResumeEvent procedure first gets a pointer to the front window using the

Window Manager function FrontWindow. It then examines bit 0 of the message field of

the event record to determine whether the event is a suspend or resume event. See

Listing 2-6 on page 2-25 for details on handling resume events.

For suspend events, the DoSuspendResumeEvent procedure calls the

application-defined MyConvertScrap procedure to copy the contents of its private

scrap to the scrap. (See Listing 2-7 on page 2-27 for the MyConvertScrap procedure.) It

then sets the private global flag gInBackground to TRUE to indicate that the

application is in the background. It calls another application-defined routine to

deactivate the application’s front window. It also calls the application-defined routine

MyHideClipboardWindow to hide the Clipboard window if it’s currently showing.

Getting Data From the Scrap
Your application should read data from the scrap (or from its own private scrap)

whenever the user chooses the Paste command. In addition, if your application uses a

private scrap, upon receiving a resume event your application should determine

whether the contents of the scrap have changed since the previous resume event, and if

so, it should take the appropriate actions. The next sections explain how to perform these

tasks.

Handling the Paste Command

When the user chooses the Paste command, your application should paste the data last

cut or copied by the user. You should insert the new data at the current insertion point

or, if a selection exists, replace the selection with the new data. You get the data to paste

by reading the data from the scrap or from your application’s private scrap.

When you read data from the scrap, your application should request the data in its

preferred scrap format type. If that type of format doesn’t exist in the scrap, then request

the data in another format. For example, SurfWriter’s preferred format type is 'surf',

so it requests data from the scrap in this format. If this format isn’t in the scrap,

SurfWriter requests its next preferred type, 'TEXT'. Finally, if the 'TEXT' format isn’t in

the scrap, SurfWriter requests the data in the 'PICT' format.

If your application doesn’t have a preferred scrap format type, then read from the scrap

each format type your application supports. Along with a pointer to the data of the

requested format type, the GetScrap function returns an offset, a value that indicates

the relative offset of the start of that format of data in the scrap. (Note that the returned

value for the offset is valid only if the Translation Manager isn’t available; if the

Translation Manager is available, then your application should not rely on the offset

value.) The format type with the lowest offset is the preferred format type of the

application that put the data in the scrap; thus a format with a lower offset is more likely

to contain more information than formats in the scrap with higher offsets. So when the

Translation Manager isn’t available, use the format with the lowest offset when your

application doesn’t have a particular scrap format that it prefers.

C H A P T E R 2

Scrap Manager

Using the Scrap Manager 2-21

If you request a scrap format type that isn’t in the scrap and the Translation Manager is

available, the Scrap Manager uses the Translation Manager to convert any one of the

scrap format types currently in the scrap into the scrap format type requested by your

application. The Translation Manager looks for a translator that can perform one of these

translations. If such a translator is available (for example, a translator that can translate

the 'SDBS' scrap format type into the 'SURF' scrap format type), the Translation

Manager uses the translator to translate the data in the scrap into the requested scrap

format type. If the translation is successful, the Scrap Manager returns to your

application the data from the scrap in the requested scrap format type.

Listing 2-4 shows SurfWriter’s routine for handling the Paste command. The SurfWriter

application doesn’t use a private scrap; whenever the user performs a paste operation,

SurfWriter reads the data that is to be pasted from the scrap.

For document windows, the SurfWriter application first determines whether the data in

the scrap exists in its own private scrap format ('SURF') by using the GetScrap

function. If you specify a NIL handle as the location to return the data, GetScrap does

not return the data but does return as its function result the number of bytes (if any) of

data of the specified format that exists in the scrap. If data of this format does exist,

SurfWriter reads the data in this format. SurfWriter allocates the handle to hold any

returned data but does not need to size the handle; GetScrap automatically resizes the

handle passed to it to the required size to hold the retrieved data. Once the data is

retrieved in 'SURF' format, SurfWriter pastes the data into the current document.

If the scrap does not contain data in 'SURF' format (and the available translators can’t

convert any of the scrap format types in the scrap to the 'SURF' format), SurfWriter

determines whether any data in 'TEXT' format exists in the scrap. If so, SurfWriter uses

GetScrap to retrieve the data. Once the data is retrieved in 'TEXT' format, SurfWriter

pastes the data into the current document.

If the scrap does not contain data in 'TEXT' format, SurfWriter determines whether any

data in 'PICT' format exists in the scrap. If so, SurfWriter uses GetScrap to retrieve

the data. Once the data is retrieved in 'PICT' format, SurfWriter determines the

destination rectangle, that is, the rectangle where the picture should be displayed, then

uses the QuickDraw DrawPicture procedure to draw the picture in the window.

SurfWriter stores a handle to this picture and sets other application-defined variables as

needed.

Listing 2-4 Handling the Paste command using the scrap

 PROCEDURE DoPasteCommand;

 VAR

window: windowPtr;

windowType: LongInt;

offset: LongInt;

sizeOfSurfData: LongInt;

sizeOfPictData: LongInt;

sizeOfTextData: LongInt;

C H A P T E R 2

Scrap Manager

2-22 Using the Scrap Manager

hDest: Handle;

myData: MyDocRecHnd;

teHand: TEHandle;

destRect: Rect;

myErr: OSErr;

BEGIN

window := FrontWindow;

windowType := MyGetWindowType(window);

IF windowType = kMyDocWindow THEN

BEGIN {handle Paste command in document window. Check }

{ whether the scrap contains any data. This app }

{ checks for its preferred format type, 'SURF', first}

sizeOfSurfData := GetScrap(NIL, 'SURF', offset);

IF sizeOfSurfData > 0 THEN

BEGIN

{allocate handle to hold data from scrap--GetScrap }

hDest := NewHandle(0); { automatically resizes it}

HLock(hDest);

{put data into memory referenced thru hDest handle}

sizeOfSurfData := GetScrap(hDest, 'SURF', offset);

{paste the data into the current document}

MyPasteSurfData(hDest);

HUnlock(hDest);

DisposeHandle(hDest);

END

ELSE

BEGIN {if no 'SURF' data in scrap, check for 'TEXT'}

sizeOfTextData := GetScrap(NIL, 'TEXT', offset);

IF sizeOfTextData > 0 THEN

BEGIN

{allocate handle to hold data from scrap--GetScrap }

hDest := NewHandle(0); { automatically resizes it}

HLock(hDest);

{put data into memory referenced thru hDest handle}

sizeOfTextData := GetScrap(hDest, 'TEXT', offset);

{paste the text into the current document}

MyPasteText(hDest);

HUnlock(hDest);

DisposeHandle(hDest);

END

ELSE {if no 'TEXT' data in scrap, check for 'PICT'}

BEGIN

sizeOfPictData := GetScrap(NIL, 'PICT', offset);

C H A P T E R 2

Scrap Manager

Using the Scrap Manager 2-23

IF sizeOfPictData > 0 THEN

BEGIN

{allocate handle to hold scrap data--GetScrap }

hDest := NewHandle(0); { automatically resizes it}

HLock(hDest);

{put data into memory referenced thru hDest handle}

sizeOfPictData := GetScrap(hDest, 'PICT', offset);

{calculate destination rectangle for plotting the }

{ picture}

MyGetDestRect(hDest, destRect);

DrawPicture(PicHandle(hDest), destRect);

{save information about the picture}

myData := MyDocRecHnd(GetWRefCon(window));

myData^^.pictNum := myData^^.pictNum +1;

myData^^.pictDestRect[myData^^.pictNum] :=

 destRect;

IF myData^^.windowPicHndl[myData^^.pictNum] = NIL

THEN

myData^^.windowPicHndl[myData^^.pictNum] :=

PicHandle(NewHandle(Size(sizeOfPictData)));

myData^^.windowPicHndl[myData^^.pictNum] :=

PicHandle(hDest);

myErr := HandToHand(Handle

(myData^^.windowPicHndl[myData^^.pictNum]));

HUnlock(hDest);

DisposeHandle(hDest);

END; {of sizeOfPictData > 0}

END; {of "if no 'TEXT' data, check for 'PICT'"}

END; {of "if no 'surf' data, check for 'TEXT'"}

END {of "if windowType = kMyDocWindow"}

ELSE {window is not a document window}

BEGIN

IF windowType <> kNil THEN

BEGIN {handle Paste command in dialog box, }

{ DialogPaste checks whether the dialog box has any }

{ editText items and if so, uses TEPaste to paste }

{ any text from the scrap to the currently selected }

{ editText item, if any}

DialogPaste(window);

END;

END;

END;

C H A P T E R 2

Scrap Manager

2-24 Using the Scrap Manager

If your application uses TextEdit in its document windows, then use the TextEdit routine

TEPaste instead of GetScrap to read the data to paste. See Listing 2-9 on page 2-30 for

an application-defined routine that uses TextEdit to help handle the application’s Paste

command.

If your application uses a private scrap, then read the data from your private scrap

rather than from the scrap (unless the scrap contains the more recent data). Listing 2-5

shows SurfPaint’s application-defined routine that handles the Paste command by

reading the desired data from its private scrap.

Listing 2-5 Handling the Paste command using a private scrap

PROCEDURE DoPasteCmd;

VAR

window: WindowPtr;

windowType: Integer;

dataToPaste: Ptr;

BEGIN

window := FrontWindow;

windowType := MyGetWindowType(window);

IF windowType = kMyDocWindow THEN

BEGIN

IF gNewScrap THEN {if new data in scrap, }

BEGIN { copy to private scrap}

MyConvertScrap(kClipboardToPrivate);

gNewScrap := FALSE;

END;

{get the data to paste from app's private scrap}

dataToPaste := NewPtr(kDefaultSize);

MyReadDataFromPrivateScrap(dataToPaste);

MyPasteData(dataToPaste);

DisposePtr(dataToPaste);

END

ELSE

IF windowType <> kNil THEN

BEGIN {window is a dialog box}

DialogPaste(window);

END;

END;

The SurfPaint application uses a private scrap, and when it receives a resume event, it

determines whether the contents of the scrap have changed. If so, SurfPaint sets an

application-defined global variable, gScrapNewData, but does not immediately read in

the contents of the scrap. Instead, whenever the user chooses the Paste command,

SurfPaint checks the value of this global variable. If gScrapNewData is TRUE SurfPaint

C H A P T E R 2

Scrap Manager

Using the Scrap Manager 2-25

reads the new data from the scrap to its private scrap, resets the gScrapNewData global

variable to FALSE, and then performs the paste operation. SurfPaint also resets the value

of the gScrapNewData global variable to FALSE whenever the user chooses the Cut or

Copy command. By using this method, SurfPaint reads in new data from the scrap only

when necessary and avoids reading in data that the user might not use. This method also

decreases the time it takes for the application to return to the foreground, as the

application avoids or delays any lengthy translation of data from the scrap.

Handling Resume Events

As previously described, when your application receives a resume event (and your

application uses a private scrap), your application should determine whether the

contents of the scrap have changed since the previous suspend event. If the contents of

the scrap have changed, your application must be sure to use the new data in the scrap

for the user’s next Paste command (unless the user chooses Cut or Copy before choosing

Paste).

In addition, if your application supports the Show Clipboard command and the

Clipboard window was showing at the time of the previous suspend event, your

application should update its Clipboard window to show the new contents of the scrap.

Listing 2-6 shows SurfPaint’s procedure for handling resume events (and suspend

events).

Listing 2-6 Handling resume events

PROCEDURE DoSuspendResumeEvent (event: EventRecord);

VAR

currentFrontWindow: WindowPtr;

BEGIN

currentFrontWindow := FrontWindow;

IF (BAnd(event.message, resumeFlag) <> 0) THEN

BEGIN {it's a resume event}

IF (BAnd(event.message, convertClipboardFlag) <> 0) THEN

BEGIN

{set flag to indicate there's new data in the scrap}

gNewScrap := TRUE;

END;

gInBackground := FALSE; {app no longer in background}

{activate front window}

DoActivate(currentFrontWindow, NOT gInBackground, event);

{show Clipboard window if it was showing at last suspend }

{ event and update its contents to match scrap}

MyShowClipboardWindow(gNewScrap);

MyShowFloatingWindows; {show any floating windows}

END

C H A P T E R 2

Scrap Manager

2-26 Using the Scrap Manager

ELSE

BEGIN {it's a suspend event, }

{ handle as shown in Listing 2-3}

END;

END;

Listing 2-6 shows a procedure that responds to suspend and resume events. The

DoSuspendResumeEvent procedure first gets a pointer to the front window using the

Window Manager function FrontWindow. It then examines bit 0 of the message field of

the event record to determine whether the event is a suspend or resume event. If the

event is a resume event, the code examines bit 1 of the message field of the event record

to determine whether it needs to read in the contents of the scrap. If so, the code sets an

application-defined global variable, gNewScrap, to indicate that new data exists in the

scrap. When the user next chooses the Paste command, SurfPaint checks the value of the

gNewScrap global variable and, if it’s TRUE, reads the data from the scrap to its private

scrap and then performs the paste operation. If the user chooses the Cut or Copy

command before choosing Paste, then SurfPaint resets the gNewScrap global variable to

FALSE to indicate that its private scrap contains the most recent data for the Paste

command. This technique allows SurfPaint to delay or avoid any lengthy translation of

data from the scrap to its private scrap and decreases the time it takes for SurfPaint to

return to the foreground.

The DoSuspendResumeEvent procedure then sets a private global flag,

gInBackground, to FALSE, to indicate that the application is not in the background. It

then calls another application-defined routine, DoActivate, to activate the application’s

front window. It also calls the application-defined routine MyShowClipboardWindow

to show the Clipboard window and update its contents if it was showing at the time of

the previous suspend event.

Converting Data Between a Private Scrap and the Scrap
If you use a private scrap, you need to copy the data from your private scrap to the scrap

upon receiving a suspend event. Upon receiving a resume event, you need to determine

whether the contents of the scrap have changed since the previous suspend event. If so,

your application must be sure to use the new data in the scrap for the user’s next Paste

command (unless the user chooses Cut or Copy before choosing Paste). In addition, your

application needs to update the contents of its Clipboard window, if necessary.

Listing 2-7 shows the application-defined procedure MyConvertScrap. This procedure

is called either indirectly as a result of a resume event (indicated by the

kClipboardToPrivate, constant) or directly as a result of a suspend event (indicated

by the kPrivateToClipboard constant). If the whichWay parameter contains

kClipboardToPrivate, then the contents of the scrap have changed. In this

case, MyConvertScrap uses GetScrap to read the contents of the scrap. The

MyConvertScrap procedure checks the scrap for 'PICT' data first, and then for

'TEXT' data if the scrap doesn’t contain any data in 'PICT' format. MyConvertScrap

then copies this data to its private scrap.

C H A P T E R 2

Scrap Manager

Using the Scrap Manager 2-27

If the MyConvertScrap procedure is called as a result of a suspend event, the

procedure copies the data from its private scrap to the scrap. It writes the data to the

scrap in its own private format, in 'PICT' format, and, if appropriate, in 'TEXT' format.

Listing 2-7 Converting data between the scrap and a private scrap

PROCEDURE MyConvertScrap (whichWay: Integer);

VAR

sizeOfTextData: LongInt;

sizeOfPictData: LongInt;

offset: LongInt;

hDest: Handle;

ptrToScrapData: Ptr;

length: LongInt;

myLongErr: LongInt;

BEGIN

IF whichWay = kClipboardToPrivate THEN

BEGIN {copy scrap to private scrap}

sizeOfPictData := GetScrap(NIL, 'PICT', offset);

IF sizeOfPictData > 0 THEN

BEGIN

{get handle to hold data from scrap, GetScrap }

hDest := NewHandle(0); { automatically resizes it}

HLock(hDest);

{put data into memory referenced by hDest handle}

sizeOfPictData := GetScrap(hDest, 'PICT', offset);

MyCopyToPrivateScrap(hDest);

HUnlock(hDest);

DisposeHandle(hDest);

END

ELSE {if no 'PICT' data on scrap, check for 'TEXT'}

BEGIN

sizeOfTextData := GetScrap(NIL, 'TEXT', offset);

IF sizeOfTextData > 0 THEN

BEGIN

{allocate handle to hold scrap data--GetScrap }

hDest := NewHandle(0); { automatically resizes it}

HLock(hDest);

{put data into memory referenced by hDest handle}

sizeOfTextData := GetScrap(hDest, 'TEXT', offset);

{copy data to private scrap}

MyCopyToPrivateScrap(hDest);

HUnlock(hDest);

C H A P T E R 2

Scrap Manager

2-28 Using the Scrap Manager

DisposeHandle(hDest);

END

END;

END

ELSE

 BEGIN {copy private scrap into scrap}

IF MyGetPrivateScrapSize > 0 THEN {if private scrap }

myLongErr := ZeroScrap; { not empty, clear the scrap}

ptrToScrapData := NewPtr(kDefaultSize);

{retrieve data from private scrap in private format}

IF (MyGetScrap('SURF', ptrToScrapData, length) > 0) THEN

BEGIN {copy data to the scrap}

myLongErr := PutScrap(length, 'SURF', ptrToScrapData);

IF myLongErr <> noErr THEN DoError(myLongErr);

END;

{retrieve data from private scrap in 'PICT' format}

IF (MyGetScrap('PICT', ptrToScrapData, length) > 0) THEN

BEGIN {copy data to the scrap}

myLongErr := PutScrap(length, 'PICT', ptrToScrapData);

IF myLongErr <> noErr THEN DoError(myLongErr);

END;

{retrieve data from private scrap in 'TEXT' format}

IF (MyGetScrap('TEXT', ptrToScrapData, length) > 0) THEN

BEGIN {copy data to the scrap}

myLongErr := PutScrap(length, 'TEXT', ptrToScrapData);

IF myLongErr <> noErr THEN DoError(myLongErr);

END;

DisposePtr(ptrToScrapData);

END;

END;

Converting Data Between the TextEdit Scrap and the Scrap
If your application uses TextEdit to handle text in its document windows, then use

TextEdit routines instead of Scrap Manager routines to implement editing commands.

For example, use the TextEdit procedures TECut, TECopy, and TEPaste to implement

the Cut, Copy, and Paste commands. Upon receiving a suspend event, use TEToScrap

instead of PutScrap to write the data to the scrap (always call ZeroScrap before

calling TEToScrap). Upon receiving a resume event, use TEFromScrap instead of

GetScrap to read data from the scrap. TextEdit uses a private scrap and handles

copying data between its private scrap and the scrap. See Inside Macintosh: Text for

complete information on TextEdit.

C H A P T E R 2

Scrap Manager

Using the Scrap Manager 2-29

To implement the Cut (or Copy) commands, use the TextEdit routines TECut (or

TECopy) instead of ZeroScrap and PutScrap. The TextEdit procedures TECut

and TECopy copy the data in the current selection to TextEdit’s private scrap. For

example, Listing 2-8 shows an application-defined routine that uses TextEdit to

help handle the application’s Cut command (assuming the application uses TextEdit to

handle text editing in its document windows).

Listing 2-8 Using TextEdit to handle the Cut command

PROCEDURE DoCutOrCopyCmd (cut: Boolean);

VAR

window: WindowPtr;

windowType: Integer;

myData: MyDocRecHnd;

teHand: TEHandle;

BEGIN

window := FrontWindow;

windowType := MyGetWindowType(window);

IF windowType = kMyDocWindow THEN

BEGIN

myData := MyDocRecHnd(GetWRefCon(window));

teHand := myData^^.editRec;

IF cut THEN

TECut(teHand)

ELSE

TECopy(teHand);

END

ELSE

IF windowType <> kNIL THEN

BEGIN {window is a dialog box}

IF cut THEN

DialogCut(window)

ELSE

DialogCopy(window);

END;

END;

C H A P T E R 2

Scrap Manager

2-30 Using the Scrap Manager

Use the TextEdit routine TEPaste instead of GetScrap to read the data to paste. The

TEPaste procedure reads the data to paste from TextEdit’s private scrap. Listing 2-9

shows an application-defined routine that uses TextEdit to help handle the application’s

Paste command (assuming the application uses TextEdit to handle text editing in its

document windows).

Listing 2-9 Using TextEdit to handle the Paste command

PROCEDURE DoPasteCmd;

VAR

window: WindowPtr;

windowType: Integer;

myData: MyDocRecHnd;

teHand: TEHandle;

BEGIN

window := FrontWindow;

windowType := MyGetWindowType(window);

IF windowType = kMyDocWindow THEN

BEGIN

myData := MyDocRecHnd(GetWRefCon(window));

teHand := myData^^.editRec;

TEPaste(teHand);

END

ELSE

IF windowType <> kNIL THEN

BEGIN {window is a dialog box}

DialogPaste(window);

END;

END;

Upon receiving a suspend event, use ZeroScrap and then the TextEdit procedure

TEToScrap to copy data from TextEdit’s private scrap to the scrap. Upon receiving a

resume event, use the TextEdit procedure TEFromScrap to copy data from the scrap to

TextEdit’s private scrap. As with any other private scrap and as explained in “Handling

Resume Events” on page 2-25, either you can choose to immediately copy the data from

the scrap to TextEdit’s private scrap or you can delay performing the copy until the data

is needed. See Listing 2-5 on page 2-24 and Listing 2-6 on page 2-25 for code that uses

this approach.

C H A P T E R 2

Scrap Manager

Scrap Manager Reference 2-31

Handling Editing Operations in Dialog Boxes
You can use the Dialog Manager to handle most editing operations in dialog boxes. In

general, use the procedures DialogCut, DialogCopy, and DialogPaste to support

the Cut, Copy, and Paste commands in editable text items in your dialog boxes. As

shown in Listing 2-2 on page 2-18 and Listing 2-5 on page 2-24, when the user chooses

the Cut, Copy, or Paste command, the application-defined routine uses Dialog Manager

routines to perform the editing operation.

The Dialog Manager uses TextEdit to perform the editing operation. TextEdit copies data

between its private scrap and the editable text item in the dialog box. TextEdit uses a

private scrap, which allows the user to copy and paste data between dialog boxes.

However, your application must make sure the user can copy and paste data between

your application’s dialog boxes and its document windows. That is, when the user

selects text in a document window and chooses Copy, then activates a dialog box and

chooses Paste, the data previously copied from the document window should appear in

the active editable text item. Your application is responsible for maintaining consistency

between the scrap (or your application’s private scrap) and TextEdit’s private scrap.

If your application uses TextEdit for all text editing in its document windows, then you

can easily allow the user to copy and paste between your application’s document

windows and its dialog boxes, as your application uses TECut, TECopy, and TEPaste

for its document windows and DialogCut, DialogCopy, and DialogPaste (which in

turn use TextEdit routines) for its dialog boxes. These routines all use TextEdit’s private

scrap, which maintains consistency of data between editing operations.

If your application does not use TextEdit for text handling in your document windows

and uses a private scrap, then when the user activates a dialog box you should copy any

text data in your private scrap to TextEdit’s private scrap. When a document window

becomes active, if there’s data in TextEdit’s private scrap, you should copy the data to

your private scrap (or the scrap if your application doesn’t use a private scrap).

Similarly, before displaying the Standard File Package’s save dialog box, your

application should copy any text data in its private scrap to the scrap. The Standard File

Package reads the data from the scrap when the user chooses an editing operation and a

standard file dialog box is active. So your application needs to put the text data (if any)

from the last Cut or Copy command in the scrap before calling StandardPutFile.

Scrap Manager Reference

This section describes the data structures and routines that are specific to the Scrap

Manager. The “Data Structures” section describes the scrap information record and scrap

format types. The “Routines” section describes the routines that your application can use

to read and write data to the scrap and to get information about data in the scrap.

C H A P T E R 2

Scrap Manager

2-32 Scrap Manager Reference

Data Structures

This section describes the scrap information record and the standard scrap format types.

The Scrap Information Record

The Scrap Manager returns information about the scrap in a scrap information record.

The scrap information record is defined by the ScrapStuff data type.

TYPE

ScrapStuff = {scrap information record}

RECORD

scrapSize: LongInt; {size (in bytes) of scrap}

scrapHandle: Handle; {handle to scrap}

scrapCount: Integer; {indicates whether the contents }

{ of the scrap have changed}

scrapState: Integer; {indicates state and location }

{ of scrap}

scrapName: StringPtr; {filename of the scrap}

END;

PScrapStuff = ^ScrapStuff; {pointer to scrap info record}

Field descriptions

scrapSize The size of the scrap in bytes.

scrapHandle A handle to the scrap if it’s in memory; otherwise, this field is NIL.

scrapCount A number that changes each time your application (or another
application) calls the ZeroScrap function. When your application
receives a suspend event, it should copy any data from its private
scrap to the scrap and it can save the value of the scrapCount
field. Upon receiving a resume event, your application can use the
InfoScrap function to examine the current value of the
scrapCount field. If the value in the scrapCount field is different
from the previous value, the contents of the scrap have changed and
your application should copy the data from the scrap to its private
scrap.

Alternatively, rather than saving and examining the value of the
scrapCount field, your application can check the
convertClipboardFlag bit of the event record for a resume
event. If this bit is set, the contents of the scrap have changed and
your application should take the appropriate actions.

C H A P T E R 2

Scrap Manager

Scrap Manager Reference 2-33

scrapState The location and state of the scrap. This field is positive if the scrap
data is in memory, 0 if the scrap data is on the disk, or negative if
the scrap hasn’t been initialized.

Note

In unusual circumstances the value of scrapState might be 0
when the scrap is actually in memory. This can occur if the user
deletes the scrap file on disk and then performs a cut or copy
operation. ◆

scrapName The filename of the scrap when the scrap is stored on disk. Usually
the scrap file is named “Clipboard”. The scrap file is always stored
on the startup volume.

The Scrap Format Types

Data in the scrap is defined by a scrap format type, a four-character sequence that

defines the type of data.

TYPE ResType = PACKED ARRAY[1..4] OF Char;

The standard scrap format types are

■ 'TEXT': a series of ASCII characters

■ 'PICT': a QuickDraw picture, which is a saved sequence of QuickDraw commands
that can be displayed using the DrawPicture procedure

Optional scrap format types include

■ 'styl': a series of bytes that have the same format as a TextEdit 'styl' resource
and that describe styled text data

■ 'snd ': a series of bytes that have the same format as an 'snd ' resource and that
define a sound

■ 'movv': a series of bytes that have the same format as an 'movv' resource and that
define a movie

Your application should support the 'TEXT' and 'PICT' scrap format types and

should optionally support any other scrap format types (such as 'snd ') that are

appropriate to your application.

In general, when your application writes data to the scrap, the Scrap Manager appends

the data to the scrap in this format:

Number
of bytes Contents

4 Scrap format type

4 Length of following data in bytes

n Data; n must be even

C H A P T E R 2

Scrap Manager

2-34 Scrap Manager Reference

Routines

This section describes the routines you use to

■ get information about the scrap

■ write data to the scrap

■ read data from the scrap

■ store the scrap in memory onto disk

■ read the scrap from disk into memory

Getting Information About the Scrap

You can get information about the scrap using the InfoScrap function.

InfoScrap

You can use the InfoScrap function to get information about the scrap.

FUNCTION InfoScrap: PScrapStuff;

DESCRIPTION

The InfoScrap function returns a pointer to a scrap information record. The

information in the scrap information record provides

■ the size (in bytes) of the scrap

■ a handle to the scrap if it’s in memory

■ a count, or number, that your application can use to determine whether the contents
of the scrap have changed

■ the location of the scrap (whether in memory or on disk)

■ the filename of the scrap when it is on the disk

ASSEMBLY-LANGUAGE INFORMATION

You can also access the same information as that stored in the scrap information record

using system global variables that have the same names as the fields of the scrap

information record.

C H A P T E R 2

Scrap Manager

Scrap Manager Reference 2-35

SEE ALSO

See “Getting Information About the Scrap” on page 2-15 for an example that uses the

InfoScrap function to get information about the scrap. See page 2-32 for information

on the fields of the scrap information record.

Writing Information to the Scrap

To write information to the scrap, first use the ZeroScrap function to clear the contents

of the scrap, and then use the PutScrap function to write data in a specific format to the

scrap. You can use the PutScrap function multiple times to place data in more than one

format in the scrap.

ZeroScrap

You use the ZeroScrap function to clear the contents of the scrap before writing data to

the scrap.

FUNCTION ZeroScrap: LongInt;

DESCRIPTION

If the scrap already exists (in memory or on the disk), the ZeroScrap function clears its

contents; otherwise, ZeroScrap initializes the scrap in memory. Whenever your

application needs to write data to the scrap as a result of a cut or copy operation by the

user, you should call ZeroScrap before calling PutScrap. Whenever your application

needs to write data in one or more formats to the scrap, you should call ZeroScrap

before the first time you call PutScrap.

If your application uses TEToScrap to write TextEdit’s scrap to the scrap, your

application should call ZeroScrap to clear the contents of the scrap first. However, note

that your application does not have to call ZeroScrap before calling TECut or TECopy.

The ZeroScrap function returns a long integer with the value noErr if ZeroScrap

successfully clears the contents of or initializes the scrap. Otherwise, the ZeroScrap

function returns a nonzero value, whose value corresponds to a result code.

SPECIAL CONSIDERATIONS

Your application should not call the ZeroScrap function at interrupt time.

RESULT CODES

noErr 0 No error
ioErr –36 I/O error
memFullErr –108 Not enough memory in heap zone

C H A P T E R 2

Scrap Manager

2-36 Scrap Manager Reference

PutScrap

You can use the PutScrap function to write data in a specific format to the scrap.

FUNCTION PutScrap (length: LongInt; theType: ResType; source: Ptr)

: LongInt;

length The number of bytes of data to write to the scrap.

theType The scrap format type of the data to be written to the scrap. The scrap
format type is a four-character sequence that refers to the particular
data format, such as 'TEXT', 'PICT', 'styl', 'snd ', or 'movv'.

source A pointer to the data that the PutScrap function should write to the
scrap.

DESCRIPTION

The PutScrap function writes the specified number of bytes of data from the memory

location pointed to by the source parameter to the scrap. The Scrap Manager writes the

data to the current location of the scrap (your application’s heap or disk).

Whenever your application needs to write data to the scrap as a result of a cut or copy

operation, your application uses the PutScrap function to write a representation of the

data to the scrap. If your application uses a private scrap, it should copy data from its

private scrap to the scrap using the PutScrap function whenever it receives a suspend

event. Your application can use the PutScrap function multiple times to write different

formats of the same data to the scrap.

IMPORTANT

Whenever your application needs to write data in one or more formats
to the scrap, you should call ZeroScrap before the first time you call
PutScrap. ▲

If your application writes multiple formats to the scrap, you should write

your application’s preferred scrap format type first. For example, if the SurfWriter

application’s preferred scrap format type is a private scrap format type called 'SURF'

and SurfWriter also supports the scrap format types 'TEXT' and 'PICT', then

SurfWriter should write the data to the scrap using the 'SURF' scrap format type first,

and then write any other scrap format types that it supports in subsequent order of

preference.

C H A P T E R 2

Scrap Manager

Scrap Manager Reference 2-37

▲ W A R N I N G

Do not write data to the scrap that has the same scrap format type as
any data already in the scrap. If you do so, the new data is appended to
the scrap. Note that when you request data from the scrap using the
GetScrap function, GetScrap returns the first data that it finds with
the requested scrap format type; thus you cannot retrieve any appended
data of the same format type using GetScrap. ▲

If your application uses TextEdit to handle text in its documents, use TextEdit routines to

implement cut and copy operations and to write the TextEdit scrap to the scrap. If your

application uses the Dialog Manager to handle editable text in your application’s dialog

boxes and a dialog box is the frontmost window, use the Dialog Manager procedure

DialogCut or DialogCopy to copy the data from the current editable text item to the

scrap.

If the scrap does not already exist (in memory or on the disk), the PutScrap function

returns a long integer with the value noScrapErr. The PutScrap function returns

other nonzero values corresponding to result codes if an error occurs.

SPECIAL CONSIDERATIONS

The PutScrap function may move or purge memory blocks in the application heap.

Your application should not call this function at interrupt time.

RESULT CODES

SEE ALSO

See Listing 2-1 on page 2-16, Listing 2-2 on page 2-18, and Listing 2-7 on page 2-27 for

examples that write data to the scrap. If your application uses a private scrap, see

“Handling Editing Operations in Dialog Boxes” on page 2-31 for information on

maintaining consistency of the scrap when copying and pasting data between document

windows and dialog boxes. See Inside Macintosh: Text for information on TextEdit. See

Inside Macintosh: Imaging With QuickDraw for information on the QuickDraw 'PICT'

format.

noErr 0 No error
noScrapErr –100 Scrap does not exist (not initialized)

C H A P T E R 2

Scrap Manager

2-38 Scrap Manager Reference

Reading Information From the Scrap

To read information from the scrap, use the GetScrap function.

GetScrap

You can use the GetScrap function to read data of a specific format from the scrap.

FUNCTION GetScrap (hDest: Handle; theType: ResType;

 VAR offset: LongInt): LongInt;

hDest A handle to the memory location where the GetScrap function should
place the data from the scrap. If you specify NIL in this parameter, the
GetScrap function does not read in the data but does return the offset of
the data in the scrap and the number of bytes of the requested scrap data
type if the requested type exists in the scrap.

theType The scrap format type of the data to be read from the scrap.

offset The GetScrap function returns in this parameter the location of the data
in the scrap. This value is expressed as an offset (in bytes) from the
beginning of the scrap. If the Translation Manager is available, the value
of the offset parameter is undefined.

DESCRIPTION

The GetScrap function looks in the scrap for any data of the requested scrap format

type and returns the first data of the requested type that it finds. The GetScrap function

writes the data to the memory location specified by the hDest parameter.

The GetScrap function reads the data from the scrap, makes a copy of it in memory,

and sets the handle specified by the hDest parameter to refer to this copy. The

GetScrap function resizes the handle specified by the hDest parameter if necessary.

Your application can use the GetScrap function multiple times to read different formats

of the same data from the scrap. If more than one format of the same scrap format type

exists in the scrap, the GetScrap function returns the first occurrence of that format

type that it finds. For example, if data of type 'TEXT', 'PICT', and 'TEXT' exist on the

scrap, and your application requests the data in the scrap with scrap format type

'TEXT', the GetScrap function returns the first data of type 'TEXT' that it finds.

If your application supports more than one scrap format type, your application should

attempt to read its preferred scrap format type first. If your application doesn’t prefer

one scrap format type over any other type, it should try reading each of the scrap format

types that it supports and use the type that returns the lowest offset. The scrap

format type with the lowest offset indicates that this format type was written before any

of the others and therefore was preferred by the application that wrote it.

C H A P T E R 2

Scrap Manager

Scrap Manager Reference 2-39

Note
The returned value for the offset parameter is valid only if the
Translation Manager isn’t available; if the Translation Manager is
available, then your application should not rely on the offset value. ◆

If you request a scrap format type that isn’t in the scrap and the Translation Manager is

available, the Scrap Manager uses the Translation Manager to convert the data of a scrap

format type that does exist in the scrap into the scrap format type requested by your

application. For example, if the SurfWriter application requests data from the scrap in

the 'SURF' scrap format type, and the data in the scrap is available in the format types

'TEXT', 'PICT', and 'SDBS'(SurfDB’s private scrap format type), the Scrap Manager

uses the Translation Manager to convert any one of the scrap format types 'TEXT',

'PICT', or'SDBS' into the 'SURF' scrap format type. The Translation Manager looks

for a translator that can perform one of these translations. If such a translator is available

(for example, a translator that can translate the 'SDBS' scrap format type into the

'SURF' scrap format type), the Translation Manager uses the translator to translate the

data in the scrap into the requested scrap format type. If the translation is successful, the

Scrap Manager returns to your application the data from the scrap in the requested scrap

format type.

If your application uses TextEdit to handle text in its documents, use TextEdit routines to

implement the paste operation and to copy data from the scrap to the TextEdit scrap. If

your application uses the Dialog Manager to handle editable text items in your

application’s dialog boxes and a dialog box is the frontmost window, use the Dialog

Manager procedure DialogPaste to copy data from the scrap to the current editable

text item.

If the GetScrap function successfully reads the data of the requested scrap format type

from the scrap, GetScrap returns as its function result the length (in bytes) of the data.

Otherwise, GetScrap returns a negative function result that indicates the error. If

GetScrap returns the constant noTypeErr, then the data in the scrap isn’t available in

the scrap format type requested by your application. If the Translation Manager is

available and GetScrap returns the constant noTypeErr, this value also indicates that

the Translation Manager could not find any translators to convert the data into the scrap

format type requested by your application.

CONST noTypeErr = -102;{no data of the requested scrap format type}

SPECIAL CONSIDERATIONS

The GetScrap function may move or purge memory blocks in the application heap.

Your application should not call this function at interrupt time.

C H A P T E R 2

Scrap Manager

2-40 Scrap Manager Reference

SEE ALSO

See Listing 2-4 on page 2-21, Listing 2-5 on page 2-24, and Listing 2-7 on page 2-27 for

examples that read data from the scrap. If your application uses a private scrap, see

“Handling Editing Operations in Dialog Boxes” on page 2-31 for information on

maintaining consistency of the scrap when copying and pasting data between document

windows and dialog boxes. See Inside Macintosh: Text for information on TextEdit. See

Inside Macintosh: Imaging With QuickDraw for information on the QuickDraw 'PICT'

format.

Transferring Data Between the Scrap in Memory and the Scrap on Disk

When system software launches your application, it initially allocates space in your

application’s heap for the scrap. To write the scrap from memory to the scrap file, use the

UnloadScrap function. To read data from a scrap file into memory, use the LoadScrap

function.

UnloadScrap

You can use the UnloadScrap function to write the scrap from memory to the scrap file.

FUNCTION UnloadScrap: LongInt;

DESCRIPTION

The UnloadScrap function writes the scrap in memory to the scrap file and releases the

memory occupied by the scrap in your application’s heap. The scrap file is located in the

System Folder of the startup volume and has the filename as indicated by the

scrapName field of the scrap information record (usually “Clipboard”). If the scrap is

already on the disk, the UnloadScrap function does nothing.

UnloadScrap returns as its function result a long integer corresponding to a result code.

SPECIAL CONSIDERATIONS

The UnloadScrap function may move or purge memory blocks in the application heap.

Your application should not call this function at interrupt time.

RESULT CODES

noErr 0 No error
dskFulErr –34 Disk full
ioErr –36 I/O error

C H A P T E R 2

Scrap Manager

Scrap Manager Reference 2-41

LoadScrap

You can use the LoadScrap function to read the scrap from the scrap file into memory.

FUNCTION LoadScrap: LongInt;

DESCRIPTION

The LoadScrap function allocates memory in your application’s heap to hold the scrap

and then reads the scrap from the scrap file into memory. The scrap file is located in the

System Folder of the startup volume and has the filename (usually “Clipboard”) as

indicated by the scrapName field of the scrap information record. If the scrap is already

in memory, LoadScrap does nothing.

LoadScrap returns as its function result a long integer corresponding to a result code.

SPECIAL CONSIDERATIONS

The LoadScrap function may move or purge memory blocks in the application heap.

Your application should not call this function at interrupt time.

RESULT CODES

noErr 0 No error
ioErr –36 I/O error
memFullErr –108 Not enough memory in heap zone

C H A P T E R 2

Scrap Manager

2-42 Summary of the Scrap Manager

Summary of the Scrap Manager

Pascal Summary

Constants

gestaltScrapMgrAttr = 'scra';{Gestalt selector for }

{ Scrap Mgr attributes}

gestaltScrapMgrTranslationAware = 0; {check this bit in the }

{ response parameter to see }

{ whether Scrap Mgr supports }

{ Translation Mgr}

Data Types

TYPE

ScrapStuff = {scrap information record}

RECORD

scrapSize: LongInt; {size (in bytes) of scrap}

scrapHandle: Handle; {handle to scrap}

scrapCount: Integer; {indicates whether the contents }

{ of the scrap have changed}

scrapState: Integer; {indicates state and location }

{ of scrap}

scrapName: StringPtr; {filename of the scrap}

END;

PScrapStuff = ^ScrapStuff; {pointer to a scrap information record}

Routines

Getting Information About the Scrap

FUNCTION InfoScrap : PScrapStuff;

C H A P T E R 2

Scrap Manager

Summary of the Scrap Manager 2-43

Writing Information to the Scrap

FUNCTION ZeroScrap : LongInt;

FUNCTION PutScrap (length: LongInt; theType: ResType; source: Ptr)
: LongInt;

Reading Information From the Scrap

FUNCTION GetScrap (hDest: Handle; theType: ResType;
VAR offset: LongInt): LongInt;

Transferring Data Between the Scrap in Memory and the Scrap on Disk

FUNCTION UnloadScrap : LongInt;

FUNCTION LoadScrap : LongInt;

C Summary

enum {

#define gestaltScrapMgrAttr 'scra' /*Gestalt selector for */

/* Scrap Mgr attributes*/

gestaltScrapMgrTranslationAware = 0 /*check this bit in the */

/* response parameter to see */

/* whether Scrap Mgr supports */

/* Translation Mgr*/

};

Data Types

struct ScrapStuff { /*scrap information record*/

long scrapSize; /*size (in bytes) of scrap*/

Handle scrapHandle;/*handle to scrap*/

short scrapCount; /*indicates whether the contents */

/* of the scrap have changed*/

short scrapState; /*indicates state and location */

/* of scrap*/

StringPtr scrapName; /*filename of the scrap*/

};

typedef struct ScrapStuff ScrapStuff;

typedef ScrapStuff *PScrapStuff;

C H A P T E R 2

Scrap Manager

2-44 Summary of the Scrap Manager

Routines

Getting Information About the Scrap

pascal PScrapStuff InfoScrap
(void);

Writing Information to the Scrap

pascal long ZeroScrap (void);

pascal long PutScrap (long length, ResType theType, Ptr source);

Reading Information From the Scrap

pascal long GetScrap (Handle hDest, ResType theType, long *offset);

Transferring Data Between the Scrap in Memory and the Scrap on Disk

pascal long UnloadScrap (void);

pascal long LoadScrap (void);

C H A P T E R 2

Scrap Manager

Summary of the Scrap Manager 2-45

Assembly-Language Summary

Data Structures

Scrap Information Data Structure

Result Codes

0 ScrapSize long size (in bytes) of the scrap
4 ScrapHandle long handle to scrap
8 ScrapCount 2 bytes indicates whether the contents of the scrap have changed

10 ScrapState 2 bytes indicates state and location of scrap
12 ScrapName long pointer to the filename of the scrap

noErr 0 No error
dskFulErr –34 Disk full
ioErr –36 I/O error
noScrapErr –100 Scrap does not exist (not initialized)
noTypeErr –102 No data of the requested scrap format type in scrap
memFullErr –108 Not enough memory in heap zone

Contents 3-1

C H A P T E R 3

Contents

Help Manager

About the Help Manager 3-6

How the Help Manager Displays Balloons 3-8

Default Help Balloons for Menus, Windows, and Icons 3-13

About BalloonWriter 3-17

Using the Help Manager 3-18

Providing Text or Pictures for Help Balloons 3-18

Defining Help Messages 3-19

Using Clear, Concise Phrases 3-20

Using Active Constructions 3-22

Using Parallel Structure 3-22

Offering Hints 3-22

Using Consistent Terminology 3-23

Defining the Help Balloon Position 3-23

Specifying the Format for Help Messages 3-23

Specifying Options in Help Resources 3-25

Providing Help Balloons for Menus 3-27

Specifying Header Information for the 'hmnu' Resource 3-32

Specifying Help for Menu Items Missing From the Resource 3-33

Specifying Help for Menu Titles and for Items Dimmed by System
Software 3-36

Specifying Help for Menu Items 3-39

Specifying Help for a Changing Menu Item 3-43

Specifying Resources by Item Name 3-45

Providing Help Balloons for Menus You Disable for Dialog Boxes 3-47

Providing Help Balloons for Items in Dialog Boxes and Alert Boxes 3-51

Specifying Header Information for the 'hdlg' Resource 3-54

Specifying Missing-Item Information 3-54

Specifying Help for Items in an Alert or Dialog Box 3-56

Adding a Help Item to an Item List Resource 3-62

Using a Help Item Versus Using an 'hwin' Resource 3-63

C H A P T E R 3

3-2 Contents

Providing Help Balloons for Window Content 3-63

Providing Help Balloons for Static Windows 3-65

Specifying Header Information for the 'hrct' Resource 3-67

Specifying Help for Rectangles in Windows 3-67

Associating Help Resources With Static Windows 3-68

Specifying Header Information for the 'hwin' Resource 3-69

Specifying 'hdlg' or 'hrct' Resources in the 'hwin' Resource 3-69

Providing Help Balloons for Dynamic Windows 3-74

Overriding Help Balloons for Non-Document Icons 3-84

Specifying Header Information for the 'hfdr' Resource 3-85

Specifying Help for an Icon 3-85

Overriding Other Default Help Balloons 3-87

Specifying Header Information for the 'hovr' Resource 3-88

Overriding Default Help 3-88

Adding Menu Items to the Help Menu 3-90

Writing Your Own Balloon Definition Function 3-93

Help Manager Reference 3-95

Data Structures 3-95

The Help Message Record 3-95

The Help Manager String List Record 3-97

Help Manager Routines 3-97

Determining Balloon Help Status 3-98

Displaying and Removing Help Balloons 3-99

Enabling and Disabling Balloon Help Assistance 3-107

Adding Items to the Help Menu 3-108

Getting and Setting the Font Name and Size 3-110

Setting and Getting Information for Help Resources 3-114

Determining the Size of a Help Balloon 3-119

Getting the Message of a Help Balloon 3-122

Application-Defined Routines 3-128

Resources 3-132

The Menu Help Resource 3-132

The Dialog-Item Help Resource 3-140

The Rectangle Help Resource 3-148

The Window Help Resource 3-154

The Finder Icon Help Resource 3-156

The Default Help Override Resource 3-160

Summary of the Help Manager 3-166

Pascal Summary 3-166

Constants 3-166

Data Types 3-168

Help Manager Routines 3-169

Application-Defined Routines 3-170

C Summary 3-170

Constants 3-170

Data Types 3-173

Help Manager Routines 3-173

C H A P T E R 3

Contents 3-3

Application-Defined Routines 3-175

Assembly-Language Summary 3-176

Data Structures 3-176

Trap Macros 3-176

Result Codes 3-177

C H A P T E R 3

3-5

Help Manager

This chapter describes how you can use the Help Manager to provide your users with

Balloon Help online assistance—information that describes the actions, behaviors, or

properties of your application’s features. When the user turns on Balloon Help

assistance, the Help Manager displays small help balloons as the user moves the cursor

over areas such as controls, menus, and rectangular areas in your windows. Help
balloons are rounded-rectangle windows that contain explanatory information for the

user. (With tips pointing at the objects they annotate, help balloons look like the balloons

used for dialog in comic strips.) You provide help messages in the form of descriptive

text or pictures that appear inside help balloons. Your help messages should be short and

pertinent to the object over which the cursor is located.

For example, when a user moves the cursor to a menu command, a help balloon should

point to that command and explain its purpose. The help balloon remains displayed

until the user moves the cursor away.

The user turns on Balloon Help online assistance for all applications by choosing the

Show Balloons command from the Help menu. All normally available features of your

application are still active when Balloon Help is enabled. The help balloons only provide

information; the actions that the user performs by pressing the mouse button still take

effect as they normally would.

The Help Manager is available in System 7. Use the Gestalt function to determine

whether the Help Manager is present.

Read this chapter if you want to provide help balloons for your application, desk

accessory, control panel, Chooser extension, or other software that interacts with the

user. If you offer an additional help facility for your users, you should give users access

to your information through the Help menu. This chapter explains how you can add

your own menu items to the Help menu to provide one convenient and consistent place

for users to look for help information.

You can provide help balloons for your menus, dialog boxes, alert boxes, and

non-document icons by simply adding resources to your resource file. To provide help

for the content area of windows, you can use either resources or Help Manager routines.

Both methods are described in this chapter.

You typically provide help balloons for your application by creating resources—such as

the 'hmnu' resource, which the Help Manager uses when displaying help balloons for

your menu items. In the 'hmnu' resource, you specify help balloons for menu titles and

menu items in their enabled and disabled (that is, dimmed) states. Menus are described

in the chapter “Menu Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

To provide help balloons for alert boxes and dialog boxes, you typically create an

'hdlg' resource that specifies help balloons for the various items identified in the item

list ('DITL') resource for the alert box or dialog box. If the items include any controls,

such as simple buttons, checkboxes, or complex multipart controls, you specify help

according to the control’s state—active or inactive (that is, dimmed), and checked or not

checked (if applicable). For every item that is not a control, you can provide different

help balloons depending on whether the item is enabled or disabled—that is, depending

on whether you asked the Dialog Manager to return information regarding events in that

item. Dialog boxes and alert boxes are described in the chapter “Dialog Manager” in

C H A P T E R 3

Help Manager

3-6 About the Help Manager

Inside Macintosh: Macintosh Toolbox Essentials; controls are described in the chapter

“Control Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

Depending on whether your windows are static or whether they contain changing or

scrolling information, you use Help Manager resources or Help Manager routines to

provide the content areas of your windows with help balloons. To provide help balloons

for the static windows of your application without modifying its code, you create a

resource of type 'hwin' and another resource of type 'hrct' or of type 'hdlg'. The

'hwin' resource identifies windows by the titles or the windowKind values in their

window records. To provide help balloons for portions of windows that change or scroll,

you must identify, track, and update those portions within your windows, and then use

the Help Manager function HMShowBalloon to display help balloons for those portions.

Windows are described in the chapter “Window Manager” in Inside Macintosh: Macintosh
Toolbox Essentials.

This chapter provides a brief description of how the Help Manager displays help

balloons. It provides information on the default help balloons and then discusses how to

■ use text or a picture for the help message inside a balloon

■ create resources for help balloons for menus, dialog boxes, and alert boxes

■ create resources for help balloons for windows

■ override the default help balloons provided by system software

■ add your own menu items to the Help menu

■ write your own balloon definition function

About the Help Manager

You can use the Help Manager to provide help for these interface features of your

application:

■ menu titles and menu items

■ dialog boxes and alert boxes

■ windows, including any object in the frame or content area

■ icons for any desktop objects other than documents

■ other application-defined areas

Providing help balloons for menus, dialog boxes, or alert boxes is quite simple, because

you need only to create resources; you don’t have to alter any of your existing code. The

Help Manager automatically sizes, positions, and draws the help balloon and its help

message for you. It is equally simple to provide help balloons for a window whose

contents don’t change location within its content area.

It takes a little more work to provide help balloons for windows in your application that

contain objects that are dynamic or that change their position within the content areas of

their windows. You provide Balloon Help assistance for these objects by tracking the

C H A P T E R 3

Help Manager

About the Help Manager 3-7

cursor yourself and using Help Manager routines to display help balloons. You can let

the Help Manager remove help balloons, or your application can determine when to

remove help balloons.

The user turns on Balloon Help online assistance by choosing Show Balloons from the

Help menu, which is shown in Figure 3-1. Once the user chooses Show Balloons, help is

enabled for all applications. The Help menu appears to the right of all your menus and

to the left of the Application menu (and to the left of the Keyboard menu if a non-Roman

script system is installed). Users can turn on Balloon Help assistance even when your

application presents an alert box or a modal dialog box, because the Help menu is

always enabled.

Figure 3-1 The Help menu for the Finder

When Balloon Help assistance is enabled, the Help Manager displays any help balloons

for the current application whenever the user moves the cursor over a rectangular area

that has a help balloon associated with it. For those balloons defined in Help Manager

resources, the Help Manager automatically tracks the cursor and generates the shape

and calculates the position for the help balloon. The Help Manager removes the help

balloon when the cursor is no longer located over the associated area.

The Help Manager provides a default help balloon for inactive windows and displays

default help balloons for the title bar and other parts of the active window. The Help

Manager also displays default help balloons for other standard features of an

application’s user interface. “Default Help Balloons for Menus, Windows, and Icons”

beginning on page 3-13 describes the default help balloons. (Though you probably won’t

want or need to change the messages in these default balloons, you have the ability to do

so, as described in “Overriding Other Default Help Balloons” on page 3-87.) The Help

Manager displays the default help balloons for your application whenever Balloon Help

assistance is enabled, even if your application does not explicitly use or create help

balloons.

Help balloons do not interfere with your application. Because the Help Manager can

display a balloon whether the mouse button is down or up, the user can still click and

double-click to use the normal features of your application.

When the user chooses Hide Balloons from the Help menu, the Help Manager removes

any visible help balloon and stops displaying help balloons until Balloon Help assistance

is enabled again.

C H A P T E R 3

Help Manager

3-8 About the Help Manager

How the Help Manager Displays Balloons
The Help Manager performs most of the work involved with rendering help balloons for

your application. This section gives an overview of the facilities that the Help Manager

uses to display help balloons.

The Help Manager uses the Window Manager to create a special type of window for the

help balloon and then draws the help message in the port rectangle of the window. The

Help Manager is responsible for

■ calculating the size of the help balloon (based on the help message you provide)

■ determining line breaks for text in a help balloon

■ calculating a position for the help balloon so that it appears onscreen

■ drawing the help balloon and your help message onscreen

A balloon definition function, which is an implementation of a window definition

function, defines the general appearance of the help balloon. A standard balloon

definition function is provided for you, and it is responsible for

■ calculating the help balloon’s content region and structure region, which are based on
the rectangle calculated by the Help Manager

■ drawing the frame of the help balloon

For help balloons, the content region is the area inside the balloon frame; it contains the

help message. The structure region is the boundary region of the entire balloon,

including the content area and the pointer that extends from one of the help balloon’s

corners.

The standard balloon definition function is the window definition function (a 'WDEF'

resource) with resource ID 126. Figure 3-2 shows the general shape of a help balloon

drawn with this standard balloon definition function.

Figure 3-2 A help balloon drawn with the standard balloon definition function

Every help balloon is further defined by its hot rectangle, its tip, and a variation code.

C H A P T E R 3

Help Manager

About the Help Manager 3-9

Figure 3-3 The tip and hot rectangle for a help balloon

The hot rectangle encloses the area for which you want to provide Balloon Help online

assistance. When the user moves the cursor over a hot rectangle, the Help Manager

displays the rectangle’s help balloon; the Help Manager removes the help balloon when

the user moves the cursor away from the hot rectangle. To prevent balloons from

flashing excessively, the Help Manager does not display a balloon unless the user leaves

the cursor at the same location for a short time (around one-tenth of a second). This

length of time is set by the system software and cannot be changed.

In Figure 3-3, the help balloon is displayed for a hot rectangle defined by coordinates

(48,23,67,202), which are local to the window. The Help Manager displays and removes

the help balloon as the cursor moves in and out of the area defined by the hot rectangle.

A small pointer extends from a corner of every help balloon, indicating the object or area

that is explained in the help balloon. The tip is the point at the end of this extension.

Figure 3-3 shows an example of a help balloon for a control. The balloon tip is at the

coordinates (10,10), which are local to the hot rectangle.

A variation code specifies the preferred position of the help balloon relative to the hot

rectangle. The balloon definition function draws the frame of the help balloon based on

that variation code.

C H A P T E R 3

Help Manager

3-10 About the Help Manager

As shown in Figure 3-4, the standard balloon definition function provides eight different

positions, which you can specify with a variation code from 0 to 7. The figure also shows

the boundary rectangle for each shape. Note that the tip of the help balloon always

aligns with an edge of the boundary rectangle. If you write your own balloon definition

function, you should support the tip locations defined by the standard variation codes.

Figure 3-4 Standard balloon positions and their variation codes

For most of the help balloons it displays, the Finder uses variation code 6. A balloon with

variation code 6 has its tip in the lower-left corner and projects up slightly and to the

right.

If a help balloon is on the screen and not in the menu bar, the Help Manager uses the

specified variation code to display the help balloon. If a help balloon is offscreen or in

the menu bar, the Help Manager attempts to display the help balloon by using different

variation codes and by moving the tip. Usually, the Help Manager moves the tip by

transposing it across the horizontal and vertical planes of the hot rectangle.

C H A P T E R 3

Help Manager

About the Help Manager 3-11

Figure 3-5 shows the Help Manager making three attempts to fit a help balloon onscreen

by moving the tip to three different sides of the hot rectangle and using an appropriate

variation code for each tip.

Figure 3-5 Alternate positions of a help balloon

When positioning a help balloon onscreen, the Help Manager first determines whether

the screen has enough horizontal space and then enough vertical space to display the

balloon using the specified variation code and tip. If the help balloon is either too wide

or too long to fit onscreen at this position, the Help Manager tries a combination of

different variation codes and transpositions around the hot rectangle. In Figure 3-5, the

Help Manager uses a new variation code, moves the tip to a different side of the hot

rectangle, and again tests whether the help balloon fits onscreen. If, after exhausting all

possible positions, the Help Manager still cannot fit the entire help balloon onscreen, the

Help Manager displays a help balloon at the position that best fits onscreen and clips the

help message to fit the balloon at this position.

When you use dialog-item help ('hdlg') resources or the HMShowBalloon and

HMShowMenuBalloon functions, the Help Manager allows you to specify alternate
rectangles, which give you additional flexibility in positioning your help balloons

onscreen. The Help Manager uses the alternate rectangle instead of the hot rectangle for

transposing help balloons to make them fit onscreen. If you make your alternate

rectangle smaller than your hot rectangle, for example, you have greater assurance that

the Help Manager will be able to fit the help balloon onscreen; if you specify an alternate

rectangle that is larger than your hot rectangle, you have greater assurance that the help

balloon will not obscure some object explained by the balloon.

C H A P T E R 3

Help Manager

3-12 About the Help Manager

To provide help balloons under most circumstances, you create help resources, which

specify the help messages, the balloon definition functions, the variation codes, and,

when necessary, the tips and the hot rectangles or alternate rectangles for the Help

Manager to use in drawing help balloons. These help resources are

■ the menu help ('hmnu') resource, which provides help balloons for menus and menu
items

■ the dialog-item help ('hdlg') resource, which provides help balloons for items in
dialog boxes and alert boxes

■ the rectangle help ('hrct') resource, which associates a help balloon with a hot
rectangle in a static window

■ the window help ('hwin') resource, which associates an 'hrct' or 'hdlg' resource
with a hot rectangle in a window or with an item in a dialog box or alert box

■ the Finder icon help ('hfdr') resource, which provides a custom help balloon
message for your application icon

■ the default help override ('hovr') resource, which overrides the help messages of
default help balloons provided in system software

To put help balloons in your application, you have a number of responsibilities:

■ You must create any necessary help resources for your application.

■ You must provide the help messages that appear in the balloons. Although you can
store these messages in the help resources themselves or in data structures, localizing
your help messages is much easier if you store them in other resources—such as
'PICT', 'STR#', 'STR ', 'TEXT', and 'styl' resources—that are easier to edit.

■ In your help resources you must specify a balloon definition function for your help
balloons. Typically, you should use the standard balloon definition function that
draws shapes similar to that shown in Figure 3-2 on page 3-8. This helps maintain a
consistent look across all help balloons used by the Finder and other applications.
However, if you feel absolutely compelled to change the shape of help balloons in
your application, you can write your own balloon definition function as described in
“Writing Your Own Balloon Definition Function” on page 3-93. Be aware, however,
that a different help balloon shape may initially confuse your users.

■ In your help resources you must specify a variation code. The variation code positions
your balloons onscreen according to the general shape described by their balloon
definition function. If you use the standard balloon definition function, you’ll use
variation codes 0 to 7 to display the help balloons shown in Figure 3-4 on page 3-10.
The preferred variation code is 0. If you are unsure of which variation code to use,
specify 0; the Help Manager will use a different variant if another is more appropriate.
If you write your own balloon definition function, you must define your own
variation codes.

C H A P T E R 3

Help Manager

About the Help Manager 3-13

For objects other than menu items, you have these additional responsibilities:

■ In your help resources you must specify coordinates for the balloon’s tip. For menu
items, the Help Manager automatically places the tip just inside the right edge of the
menu item.

■ You must specify rectangles in your help resources. (The hot rectangles for items in
menus, alert boxes, and dialog boxes are automatically defined for you by their
display rectangles.) For 'hdlg' resources, you specify alternate rectangles for
moving the help balloon. For 'hrct' resources, you specify hot rectangles, which
define the areas onscreen for association with help balloons.

■ You must track the cursor in dynamic windows, and, when the cursor moves over a
hot rectangle in your window, you must call Help Manager routines (such as
HMShowBalloon) to display your help balloons. You can let your application or the
Help Manager remove the help balloon when the user moves the cursor out of the hot
rectangle.

In summary, the Help Manager automatically displays help balloons in the following

manner. The user turns Balloon Help assistance on, then moves the cursor to an area

described by a hot rectangle. The Help Manager calculates the size of the help balloon

based on its help message. The Help Manager uses TextEdit to determine word breaks

and line breaks of text in the help balloon. The Help Manager then determines the size of

the help balloon and uses the Window Manager to create a new help balloon. The

Window Manager calls the balloon definition function to determine the help balloon’s

general shape and position. (If the variation code places the help balloon offscreen or in

the menu bar, the Help Manager tries a different variation code or moves the tip of the

help balloon to another side of the hot rectangle or the alternate rectangle.) The window

definition function draws the frame for the help balloon, and the Help Manager draws

the help message of the help balloon.

For most interface features that you want to provide help for, you create the help

message (preferably in a separate, easily edited resource) and, in the help resources

themselves, you specify the standard balloon definition function, one of the eight

variation codes, the tip’s coordinates, and (often) a hot rectangle.

The Help Manager does not automatically display help balloons for dynamic

windows or for menus using custom menu definition procedures. If you want to provide

help balloons for either of these types of objects, or if you want more control over help

balloons, you must identify hot rectangles, create your own data structures to store their

locations, track the cursor yourself, and call HMShowBalloon when the cursor moves to

your hot rectangles. If you wish, you can also write your own balloon definition function

and tip function.

Default Help Balloons for Menus, Windows, and Icons
The Help Manager displays many default help balloons for an application when help is

enabled and the user moves the cursor to certain standard areas of the user interface.

These areas include the standard window frame and the menu titles and menu items in

C H A P T E R 3

Help Manager

3-14 About the Help Manager

the Apple menu, Help menu, Keyboard menu, and Application menu. You don’t need to

create any resources or use any Help Manager routines to take advantage of the default

help balloons.

The following list summarizes the items that have default help balloons.

■ Application icon in the Finder. Default help balloons are also provided for desk
accessory, system extension, and control panel icons. You can override these help
messages.

■ Document icon in the Finder. You cannot override the help message for this icon.

■ Standard file dialog boxes. You supply balloons for items that you add to these dialog
boxes; you cannot override the help messages for the other items.

■ Window title bar. A default help balloon is provided for the title bars of windows
created with both standard and custom window definition functions (WDEFs). You
can override the default help message.

■ Window close box. A default help balloon is provided for the close boxes of windows
created with both standard and customized WDEFs. You can override the default help
message.

■ Window zoom box. A default help balloon is provided for the zoom boxes of
windows created with both standard and customized WDEFs. You can override the
default help message.

■ Inactive window. You can override the default help message for inactive windows.

■ Apple menu title. The default help balloon for the title of the Apple menu is available
only if your application uses the standard menu definition procedure. You cannot
override the default help message for this title.

■ Apple menu items. Default balloons are provided for items that the user moves to
the Apple Menu Items folder, but there is no default balloon for the About command
or other items that your application adds to this menu; you must provide help
balloons for such items.

■ Help menu title. The default help balloon for the title of the Help menu is available
only if your application uses the standard menu definition procedure. You cannot
override the default help message for this title.

■ Help menu items. Default balloons are provided only for the About Balloon Help and
Hide/Show Balloons commands; you must provide help balloons for items you add
to this menu. You cannot override the default help messages.

■ Application menu title and items. Default help balloons for the title and items of
the Application menu are available only if your application uses the standard menu
definition procedure. You cannot override these default help messages.

■ Keyboard menu title. The default help balloon for the title of the Keyboard menu is
available only if your application uses the standard menu definition procedure. You
cannot override the default help message.

C H A P T E R 3

Help Manager

About the Help Manager 3-15

System software uses the Help Manager to display help balloons for most of its dialog

boxes and alert boxes. (For example, the Standard File Package provides help balloons

for its standard file dialog boxes.) If your application uses a system software routine

(such as the StandardPutFile procedure) that provides help balloons, and the user

has enabled Balloon Help assistance, the Help Manager displays each help balloon as the

user moves the cursor to each hot rectangle. If you’ve added your own buttons,

checkboxes, or other controls to such a dialog box or alert box, you can also provide

these controls with help balloons.

The Help Manager uses the window definition function of a window to determine

whether the cursor is in the window frame and, if so, which region of the window (title

bar, close box, or zoom box) the cursor is in. If the cursor is in any of these regions, the

Help Manager displays the associated help balloon. Figure 3-6 shows the default help

balloons for the active window of an application that uses the standard window

definition function. If you use a custom window definition function, the Help Manager

also displays these default help balloons for the corresponding regions of your windows.

Figure 3-6 Default help balloons for the window frame

C H A P T E R 3

Help Manager

3-16 About the Help Manager

The Help Manager also provides these default help balloons for the title bars, close

boxes, and zoom boxes of windows in the Finder. The Finder specifies additional help

for other window regions—for example, the scroll bar and size box—although the Help

Manager does not automatically provide your window with this help.

The Help Manager displays help balloons for the standard window frame and other

standard areas named in the 'hovr' resource. You can override any of the default help

balloons defined in the 'hovr' resource by providing your own resource of type

'hovr'. See “Overriding Other Default Help Balloons” on page 3-87 for more

information.

The Help Manager displays default help balloons for the Apple menu, Help menu, and

Application menu. The Menu Manager uses the Help Manager to display help balloons

for these menus regardless of whether you supply help balloons for the rest of your

menus. The Help Manager also provides default help balloons for the Keyboard menu

when a non-Roman script system is installed. Figure 3-7 shows the default help balloons

for the Apple menu and Help menu titles.

Note

For all menus and menu items, the Help Manager displays help balloons
only for applications that use the standard menu definition procedure. If
you use your own menu definition procedure, your application must
track the cursor and use Help Manager routines to display and remove
help balloons, as described in “Displaying and Removing Help
Balloons” on page 3-99. ◆

Figure 3-7 Default help balloons for the Apple and Help menus

The Help Manager does not provide default help balloons for items you put at the top of

your application’s Apple menu or items you add to the Help menu. You typically put

one item at the top of the Apple menu: the About command for your application. If you

have additional user help facilities, list them in the Help menu—not in the Apple menu.

You have control only over those items that you add to the Apple and Help menus.

C H A P T E R 3

Help Manager

About the Help Manager 3-17

The Finder provides default help balloons for your application icon and any documents

created by your application. Figure 3-8 shows the default help balloon for the SurfWriter

application and a document created by this application. You can customize the help

balloon for your application icon by providing an 'hfdr' resource; however, you can’t

customize the default help balloon for the documents created by your application.

Figure 3-8 Default help balloons for application and document icons

About BalloonWriter
Apple Computer, Inc., makes available a tool that greatly facilitates the creation of help

balloons. Called BalloonWriter, this tool gives nonprogrammers an easy, intuitive way to

create help balloons. Writers who have no programming experience can use

BalloonWriter to provide your application with fully functional resource code for menus,

dialog and alert boxes, static windows, and non-document Finder icons. In its user’s

guide, BalloonWriter refers to help balloons for these interface features as standard
balloons. For these types of help balloons, BalloonWriter creates 'hmnu', 'hdlg',

'hwin', 'hrct', and 'hfdr' resources, as appropriate, and places them in the

resource file of your application. BalloonWriter likewise creates and stores 'STR ',

'STR#', and 'TEXT' resources that contain the help messages authored by your

nonprogramming writers.

For dynamic windows and for menus that use custom menu definition procedures, your

application must track the cursor and use the HMShowBalloon function to display help

balloons. The BalloonWriter documentation refers to these balloons as custom balloons.
BalloonWriter does not create the necessary resources or code that automatically

displays these types of help balloons. However, nonprogrammers can use BalloonWriter

to provide you with conveniently delimited ASCII text that you can then use in

conjunction with HMShowBalloon to display the desired help balloons.

BalloonWriter is available from APDA.

C H A P T E R 3

Help Manager

3-18 Using the Help Manager

Using the Help Manager

You can use the Help Manager to provide information to the user that describes the

action, behavior, or properties of your application’s features. For example, you can create

a help balloon for each menu item to describe what it does.

To determine whether the Help Manager is available, use the Gestalt function with

the gestaltHelpMgrAttr selector. Test the bit field indicated by the

gestaltHelpMgrPresent constant in the response parameter. If the bit is set, then

the Help Manager is present.

CONST gestaltHelpMgrPresent = 0; {if this bit is set, then }

{ Help Manager is present}

The Help Manager is initialized at startup time. The user controls whether help is

enabled by choosing the Show Balloons or Hide Balloons command from the Help menu.

The Help menu is specific to each application, just as the File and Edit menus are specific

to each application. The Help menu items that are defined by the Help Manager are

common to all applications, but you can add your own menu items for help-related

information.

The Help Manager automatically appends the Help menu when your application inserts

an Apple menu into its menu bar. The Menu Manager automatically appends the Help

menu to the right of all your menus and to the left of the Application menu (and to the

left of the Keyboard menu if a non-Roman script system is installed).

You can create help balloons for the menus, dialog boxes, alert boxes, or content area of

windows belonging to your application. You can also override some of the default help

balloons—such as the default help balloon for the title bar of a window.

You can specify the help message by using plain text, styled text, or pictures. Although

you should always strive for brevity in your help messages, plain text strings can contain

up to 255 characters. Styled text can contain up to 32 KB of information. The Help

Manager determines the actual size of the help balloon and, for text strings, uses

TextEdit to determine word breaks and line breaks.

The Help Manager automatically tracks the cursor and generates help balloons defined

in standard help resources. Your application can also track the cursor and use Help

Manager routines to display and remove help balloons.

Providing Text or Pictures for Help Balloons
Use help balloons to provide the user with information that describes or explains

interface features of your application. The information you supply in help balloons

should follow a few general guidelines in order to provide the most useful information

to the user. This section describes these guidelines.

C H A P T E R 3

Help Manager

Using the Help Manager 3-19

For examples of how your application should use help balloons, observe the help

balloons that the Finder, the TeachText application, and system software use.

Defining Help Messages

Use help balloons to explain parts of your application’s interface that might confuse a

new user or features that could help a user become an expert user. The information you

provide in help balloons should identify interface features in your application or

describe how to use them.

The help balloon for an item appears when the user moves the cursor to that item.

Because the user knows exactly what the text is referring to, this is a powerful method of

providing information. But the method has some limitations. There are some kinds of

information that help balloons cannot display effectively.

■ Help balloons can show users what they will accomplish by using onscreen objects,
including menu commands, dialog boxes, and tool palettes.

■ Help balloons can help experienced Macintosh users who prefer to learn programs by
using them, rather than by reading manuals.

■ Help balloons can’t help users who don’t know what they want to do or users who
don’t know where to look.

■ Help balloons can’t teach your program by themselves. They can’t substitute for
task-oriented paper or electronic documentation or training.

■ Help balloons can’t teach novice Macintosh users the concepts they need to know in
order to use the Macintosh computer.

Help balloons work best when you keep your audience in mind as you write. Ask

yourself these questions when you are planning balloons for your program:

■ Who will be using your program?

■ What aspects of your program are users unfamiliar with?

■ What terminology are your users likely to know?

Unless your application has a specialized audience, it’s best to write for users who

already know something about using the Macintosh (although they may not be experts)

but who don’t know much about your application.

Each help balloon should answer at least one of these questions:

■ What is this? For example, when the user moves the cursor to the item count in the
upper-right corner of a Finder window, the Finder displays a help balloon that reads
“This is the number of files or folders in this window.”

■ What does this do? For example, when the user moves the cursor to the Find
command in the Finder’s File menu, the Finder displays a help balloon that reads
“Finds and selects items with the characteristics you specify.”

■ What happens when I click this? For example, when the user moves the cursor to the
close box of a window, the Window Manager displays a help balloon that first names
the object (“Close box”) and then explains, “To close this window, click here.”

C H A P T E R 3

Help Manager

3-20 Using the Help Manager

Help messages should be short and easy to understand. You should not include lengthy

instructions or numbered steps in help balloons. Use help balloons to clarify the meaning

of objects in your application—for example, tool icons in palettes.

Use simple, clear language in the information you provide. Include definitions in help

balloons when appropriate.

You can use graphics or styled text in help balloons to illustrate the effects of a

command. For example, to demonstrate the effect of the Bold command in a

word-processing application, you might use styled text to show a word in boldface.

You can provide separate help balloons for two display states—enabled and dimmed

(disabled)—of a menu item. You can also provide separate help balloons for two display

states—active and dimmed (inactive)—of a control. The help balloon that you provide

for an enabled menu item should explain the effect of choosing the item. The help

balloon that you provide for a dimmed menu item should explain why it isn’t currently

available, or, if more appropriate, how to make it available. Similarly, the help balloon

that you provide for an active control should explain the effect of clicking or selecting the

control, and the help balloon that you provide for a dimmed control should explain why

it isn’t currently available, or, if more appropriate, how to make it available.

Complicated dialog boxes can often benefit from help balloons that explain what’s

essential about the dialog box. You can use help balloons to describe groups of controls

rather than individual controls. For example, if a dialog box has several distinct regions

that contain radio buttons or checkboxes, you could provide a help balloon for each set

of radio buttons, rather than providing a separate balloon for each button.

If you use a function to customize standard dialog boxes, use as many of the existing

help balloons as possible. For example, if your application uses any of the standard file

dialog boxes and provides an extra button, you can create a help balloon for the extra

button, and the Help Manager continues to use the default help balloons for other items

in the dialog box.

To make localization easier, you should store your help messages in resources separate

from the help resources. To avoid problems with grammar and sentence structure when

you localize your application, never combine separately stored phrases into one help

message.

Using Clear, Concise Phrases

You can provide up to 255 characters of information using text strings in help balloons.

(You can use up to 32 KB if you use styled text.) However, you should include only the

most relevant information in the help balloon. To determine what to provide, decide

what information would be most useful to a user. This information usually omits

the object’s name, which normally doesn’t matter to the user, and instead tells what the

object is for and what the object does, which does matter to the user.

You might eventually translate your help messages into other languages, so try to keep

the messages as short as possible. When translated, your help messages may require

more words or longer words—and therefore larger balloons and more screen space.

Expect English text to expand 20–30 percent after translation. To keep the translated text

C H A P T E R 3

Help Manager

Using the Help Manager 3-21

within the Help Manager’s 255-character limit for text strings, limit English text to

approximately 180 characters.

If an item already has a commonly used name, or if it’s a special case of a larger category

of objects, name it in the balloon. The Finder, for example, displays the message “Drag

the title bar to move the window,” since title bars and windows are commonly used

names. However, you don’t need to name everything in your application just so that you

can refer to it in a help balloon. For example, because the tip of the help balloon points to

the subject of the help balloon, you can easily say “To apply the style, click here,” rather

than “The Apply button activates the Styles command. Click the button to activate the

command.”

Many of the items onscreen don’t need names. An item needs a name only if the name

helps the user remember how to use the application. The following items are likely to

need names:

■ icons that don’t already have names on the screen

■ tools in a palette

■ controls on a ruler

■ controls in a paint program

■ Finder icons whose names can be changed

If you decide to name an item, make sure that the name you use in the balloon matches

the name used in other documentation.

For balloons that describe menu items, you can use sentence fragments; the grammatical

subject is obvious from the context. For example, the help balloon for the Open

command could read “Opens the selected file” rather than “This command opens the

selected file”; the grammatical subject is obvious from the context. Using sentence

fragments lets users assimilate the message more quickly because they have fewer words

to read.

When you describe a menu item or a button, try to use a word that’s different from the

one that appears onscreen. Using a synonym in this way helps users who aren’t sure

what the item’s name means. For example, the help balloon for a Paste command in the

Edit menu might say something like “Inserts the contents of the Clipboard into the

document.”

Help balloons are usually inappropriate for describing multiple-step procedures,

because a help balloon does not stay on the screen while the user performs the various

steps. The user may begin a procedure described in a help balloon and then become

confused when the information disappears.

You can, however, describe a very simple two-step procedure in a balloon. This is

probably most appropriate for a tool in a palette. For example, the balloon for an eraser

tool might first define the tool as an eraser and then explain, “To remove parts of your

drawing, click this icon, then drag to erase those parts you want to remove.”

C H A P T E R 3

Help Manager

3-22 Using the Help Manager

Using Active Constructions

Try to use short, active phrases in help balloons. Avoid passive constructions. An active

construction is more forceful because it communicates how the grammatical subject

(usually the user in this context) performs an action. In the sentence “To turn the page,

click here,” the implied “you” (that is, the user) is the subject, and “click” is the action

that the subject performs. Passive constructions show subjects being acted upon rather

than performing an action. For example, in the sentence “The page will be turned when

this button is clicked,” both “page” and “button” are acted upon.

Research suggests that instructional materials are more effective when they present the

goal clause before the action clause, helping readers quickly recognize how the

information meets their needs. A goal might be “To turn the page,” “To calculate the

result,” or “To apply the style.” For example, the message “To turn the page, click here”

starts with a goal statement and then describes the action necessary to fulfill it; users find

this more helpful than a purely descriptive message like “This button turns the page.”

If there is more than one way for the user to achieve a goal, mention only the method

that involves the item to which the user is pointing. In other words, if the user is

pointing to a button, the balloon should tell the user how to use the button, not how to

use a keyboard shortcut for that button. For example, a help balloon for a Save button

might state, “To save the changes you have made to the settings in the dialog box, click

this button”—but the help balloon should not add “or press the Return key.”

If there is more than one method for using the item to which the user is pointing,

describe the method that’s simplest to explain and understand.

Using Parallel Structure

Use similar syntax for help balloons that describe similar objects. For example, all help

balloons that describe buttons should have the same structure. In a style dialog box, you

might provide these messages for the buttons: “To see the style, click Apply,” “To

implement the style, click OK,” and “To do nothing to change the previous style, click

Cancel.”

Users see help balloons provided by many different applications, so a consistent

approach within your application helps them to identify types of balloons quickly and to

develop realistic expectations about their help messages.

Offering Hints

If there are just a few interesting features in your application that would be difficult to

discover, then it’s appropriate to use balloons to call those features to users’ attention.

But if you want to give a hint or shortcut in a balloon, ask yourself these questions:

■ Is the balloon reasonably short, even with the hint?

■ How often will users need the information? If a feature is very obscure and few
people will need it, the balloon probably shouldn’t describe it.

C H A P T E R 3

Help Manager

Using the Help Manager 3-23

■ Are hints and shortcuts available somewhere else—for example, in a “shortcuts”
dialog box or a quick-reference card? Not all users will look at balloons. If your
program includes many shortcuts and tricks, be sure to list them in other
documentation as well.

■ Does the need for hints indicate the need for a different design? If your application
contains many hidden shortcuts and features, then you may need to redesign your
application to make these features more easily accessible to users.

If you include a hint or shortcut, put the hint at the bottom of the balloon and separate it

from the rest of the message by a blank line. For example, the Clean Up Window

command in the Finder’s Special menu initially describes the command’s effect: “Neatly

arranges the icons in the active window.” Then there is a blank line followed by a hint:

“Tip: for other cleanup commands, hold down the Shift or Option key while choosing

this command.”

Using Consistent Terminology

You should employ consistent terminology in all your help balloons. Use language that

users understand; avoid introducing technical jargon or computer terminology into help

balloons. Follow the style and usage standardized by Apple Computer, Inc., in the Apple
Publications Style Guide (available through APDA) to make the most effective use of the

information and vocabulary with which users are already familiar. A supplement to the

Apple Publications Style Guide, titled “How to Write Balloons,” spells out the guidelines

that Apple writers use for the wording and phrasing of help messages. This supplement

also provides many examples of clear and useful help messages as well as

counterexamples of types of messages to avoid.

Defining the Help Balloon Position

When you provide a help balloon, you specify its help message, the tip of the help

balloon, and the variation code for its preferred position. The tip of the help balloon

should point to the object that the help balloon describes. You should specify the tip and

the variation code so that the help balloon doesn’t obscure the object for which you’re

providing help. In most cases, the tip of the help balloon should point to an edge of the

object.

You should also consider how the Help Manager repositions the balloon if the variation

code places it offscreen. “How the Help Manager Displays Balloons” on page 3-8

describes how the Help Manager repositions the help balloon if necessary.

Specifying the Format for Help Messages
You specify the format for your help messages as text strings within help resources, as

text strings within 'STR ' resources, as lists of text strings within 'STR#' resources, as

styled text using 'TEXT' and 'styl' resources, or as pictures described in 'PICT'

resources.

C H A P T E R 3

Help Manager

3-24 Using the Help Manager

Later sections in this chapter describe all the help resources in detail. Common to all

the help resources are the following identifiers, by which you identify the format of your

help messages.

You specify the identifiers within the help resources; the Help Manager reads these

identifiers to determine where and how your help messages are stored. You can use the

HMStringItem identifier to store Pascal strings directly in a help resource. However,

you can make it much easier to localize your product by storing your help messages in

separate resources—namely, in 'STR#', 'PICT', 'STR ', and 'TEXT' resources—that

can be modified by nonprogrammers using tools like BalloonWriter and the ResEdit

resource editor.

To display a diagram or illustration in 'PICT' format, use the HMPictItem identifier.

You provide a help message by specifying the resource ID of the 'PICT' resource that

contains the diagram or illustration, and the Help Manager displays the picture in a help

balloon.

To display a text string stored in a string list ('STR#') resource, use the

HMStringResItem identifier. You provide a help message by specifying two items in

your help resource: the resource ID of an 'STR#' resource, and the index to a particular

text string from within that list. For more information on these items, see “Providing

Help Balloons for Menus” beginning on page 3-27.

To display styled text, use the HMTEResItem identifier. You provide a help message by

specifying a resource ID that is common to both a style scrap ('styl') resource and a

'TEXT' resource, and the Help Manager employs TextEdit routines to display your text

with your prescribed styles. For example, you might create a 'TEXT' resource with

resource ID 1000 that contains the words “Displays your text in boldface print” and a

'styl' resource with resource ID 1000 that applies boldface style to the message. (See

the chapter “TextEdit” in Inside Macintosh: Text for a description of the style scrap.)

To display text from a simple text string ('STR ') resource, use the HMSTRResItem

identifier. You provide a help message by specifying the resource ID of an 'STR '

resource, and the Help Manager displays the text from that resource in a help balloon.

With 'STR ' resources, each text string must be stored in a separate resource. It is

usually more convenient to group related help messages in a single 'STR#' resource

and use the HMStringResItem identifier as previously described.

You can use the HMSkipItem identifier for items for which you don’t want to provide a

help balloon. For example, you specify HMSkipItem for the divider lines that appear in

menus. (Divider lines cannot have help balloons.)

Identifier Help message format

HMStringItem A text string (a Pascal string stored in the help resource)

HMPictItem A picture (stored in a 'PICT' resource)

HMStringResItem A text string (stored in a list of strings as an 'STR#' resource)

HMTEResItem Styled text (stored in both a 'TEXT' and an 'styl' resource)

HMSTRResItem A text string (stored in an 'STR ' resource)

HMSkipItem No help message—skip this item

C H A P T E R 3

Help Manager

Using the Help Manager 3-25

Specifying Options in Help Resources
Each help resource contains an element that allows you to specify certain options. Notice

the options element in the following header component for an 'hmnu' resource.

resource 'hmnu' (130, "Edit", purgeable) {

HelpMgrVersion, /*version of Help Manager*/

hmDefaultOptions, /*options*/

0, /*balloon definition function*/

0, /*variation code*/

You should normally use the hmDefaultOptions constant, as shown in the preceding

example, to get the standard behavior for help balloons. However, you can also use the

constants listed here for the options element. (Note that not all options are available for

every help resource.)

CONST hmDefaultOptions = 0; {use defaults}

hmUseSubID = 1; {use subrange resource IDs }

{ for owned resources}

hmAbsoluteCoords = 2; {ignore coords of window }

{ origin and treat upper-left }

{ corner of window as 0,0}

hmSaveBitsNoWindow = 4; {don't create window; save }

{ bits; no update event}

hmSaveBitsWindow = 8; {save bits behind window }

{ and generate update event}

hmMatchInTitle = 16; {match window by string }

{ anywhere in title string}

If you’re providing help balloons for a desk accessory or a driver that uses owned

resources, use the hmUseSubID constant in the options element. Otherwise, the Help

Manager treats the resource IDs specified in the rest of your help resource as standard

resource IDs. (See the chapter “Resource Manager” in this book for a discussion of

owned resources and their resource IDs.)

As described later in this chapter, you often specify tip and rectangle coordinates in your

help resources. When specifying these coordinates within a scrolling window or

whenever the window origin is offset from the origin of the port rectangle, you may

want to use the hmAbsoluteCoords constant. This causes the Help Manager to ignore

the local coordinates of the port rectangle when tracking the cursor and instead to track

the mouse location relative to the window origin. When you specify the

hmAbsoluteCoords constant as an option in a help resource, the Help Manager

subtracts the coordinates of the window origin from the coordinates of the mouse

location and uses the results for the current mouse location, as shown here:

mousepoint.h := mousepoint.h – portRect.left;

mousepoint.v := mousepoint.v – portRect.top;

C H A P T E R 3

Help Manager

3-26 Using the Help Manager

With the hmAbsoluteCoords constant specified, the Help Manager always assigns

coordinates (0,0) to the point in the upper-left corner of the window. So, for example, if

the cursor is positioned at point (4,5) in a port rectangle and the window origin is at

(3,4), the Help Manager calculates the cursor at (1,1). If this option is not specified, the

Help Manager uses the port rectangle’s local coordinates when tracking the cursor—for

example, when using the GetMouse procedure.

The Help Manager draws and removes help balloons in three different ways. For all help

resources except 'hmnu' resources, the Help Manager by default draws and removes

help balloons as if they were windows. That is, when drawing a balloon, the Help

Manager does not save bits behind the balloon, and, when removing the balloon, the

Help Manager generates an update event. By specifying the hmDefaultOptions

constant in your help resources, you always get the standard behavior of help balloons.

However, you can often specify two options that change the way balloons are drawn and

removed from the screen.

If you specify the hmSaveBitsNoWindow constant for the options element, the

Help Manager does not create a window for displaying the balloon. Instead,

the Help Manager creates a help balloon that is more like a menu than a window. The

Help Manager saves the bits behind the balloon when it creates the balloon. When it

removes the balloon, the Help Manager restores the bits without generating an update

event. You should use this option only in a modal environment where the bits behind the

balloon cannot change from the time the balloon is drawn to the time it is removed. For

example, you might choose the hmSaveBitsNoWindow option in a modal environment

when providing help balloons that overlay complex graphics, which might take a long

time to redraw with an update event. Note that the Help Manager always uses this

behavior when drawing and removing help balloons specified in your 'hmnu'

resources. That is, when you specify the hmDefaultOptions constant in an

'hmnu' resource, the Help Manager provides this sort of balloon instead of drawing a

window for a balloon. (In an 'hmnu' resource, you cannot even specify options for

drawing a window for a balloon.)

If you specify the hmSaveBitsWindow constant, the Help Manager treats the help

balloon as a hybrid having properties of both a menu and a window. That is, the Help

Manager saves the bits behind the balloon when it creates the balloon and, when it

removes the balloon, it both restores the bits and generates an update event. You’ll rarely

need this option. It is necessary only in a modal environment that might immediately

change to a nonmodal environment—that is, where the bits behind the help balloon are

static when the balloon is drawn, but can possibly change before the help balloon is

removed. For example, if you use an 'hmnu' resource to provide help balloons for menu

titles and menu items, you’ll notice that the Help Manager automatically provides this

sort of behavior (even when you don’t specify the hmSaveBitsWindow option) when

creating help balloons for menu titles.

In the preceding list of constants, the values for the constants represent bit positions that

are set to 1. To override more than one default, add the values of the bit positions for the

desired options and specify this sum, instead of a constant, for the options element. For

example, to use subrange IDs, ignore the window port origin coordinates, and save bits

behind the help balloon without generating an update event, you should add the values

C H A P T E R 3

Help Manager

Using the Help Manager 3-27

of the bit positions of these options (1, 2, and 4) and specify their sum (7) for the options

element.

If you supply the hmDefaultOptions constant, the Help Manager treats the resource

IDs in this resource as regular resource IDs and not as subrange IDs; it uses the port

rectangle’s local coordinates when tracking the cursor; and it generally creates windows

when drawing balloons and then generates update events without saving or restoring

bits when removing balloons.

The hmMatchInTitle constant is used only in window help ('hwin') resources to

match windows containing a specified number of characters in their titles. This constant

is explained in more detail in “Providing Help Balloons for Static Windows” on

page 3-65.

The next sections describe how to create help resources that provide help balloons for

the standard user interface features of your application.

Providing Help Balloons for Menus
If your application uses the standard menu definition procedure, you’ll find that it’s

easier to provide help balloons for menus than for any of your other interface features.

This section is relatively lengthy compared to the sections describing dialog boxes, alert

boxes, and windows because it explains in detail much of the work you’ll also perform

when supplying help balloons for those items.

This section assumes that your application uses the standard menu definition procedure.

If your application uses its own menu definition procedure, you must use Help Manager

routines to display and remove help balloons. These routines are described in

“Displaying and Removing Help Balloons” on page 3-99. Even if you use these routines,

you should read this section so that your balloons emulate the behavior that the Help

Manager provides for menus using the standard menu definition function.

To create help balloons for a menu—pull-down, pop-up, or hierarchical—that uses the

standard menu definition procedure, create a resource of type 'hmnu' in which you

specify help balloons for the menu title and for each menu item. You create a separate

'hmnu' resource for each menu.

Note

BalloonWriter, available from APDA, is a tool that gives
nonprogrammers an easy, intuitive way to create help balloons for
menus. BalloonWriter creates 'hmnu' resources as appropriate and
places them in the resource file of your application; BalloonWriter
likewise creates and stores 'STR ', 'STR#', and 'TEXT' resources that
contain the help messages authored by nonprogramming writers.
For menus that use custom menu definition procedures,
nonprogrammers can use BalloonWriter to provide you with delimited
ASCII text that you can then use in conjunction with HMShowBalloon
to display the desired help balloons. ◆

C H A P T E R 3

Help Manager

3-28 Using the Help Manager

The Help Manager can display different help balloons for the various states of a menu

item. Each menu item can have up to four help balloons associated with it, one for each

state:

■ enabled

■ disabled (that is, dimmed)

■ enabled and checked

■ enabled and marked (that is, marked by a symbol other than a checkmark—for
example, a bullet or a diamond)

For example, you can define a help balloon that the Help Manager displays when the

Cut command is enabled and another help balloon for display when the Cut command

is dimmed. Remember that the help balloon you provide for a dimmed menu item

should explain why it isn’t currently available or, if more appropriate, how to make it

available.

Note

Although enabled and disabled are the constants you use in a
resource file to display or dim menus and menu items, you shouldn’t
use these terms in your help balloons or user guides. Rather, use the
term menus, menu commands, or menu items for those that are enabled,
and use the term not available or dimmed to distinguish those that have
been disabled. ◆

When your application calls the Menu Manager function MenuSelect or MenuKey, the

Menu Manager automatically tracks the cursor, highlights enabled menu items, and

displays any additional hierarchical or pop-up menus as the user moves the mouse. As

the user drags the cursor across or through a menu, the Menu Manager uses the Help

Manager to display any help balloons associated with the current state of the menu title

or menu item.

If there is sufficient memory, the standard menu definition procedure saves the bits

behind the help balloon and restores these bits for quick updating of the screen. If there

isn’t sufficient memory to save the bits behind the help balloon, then—as with menus—

the procedure generates appropriate update events. Figure 3-9 shows help balloons for

two instances of a menu, one with the Cut command dimmed, the other with the Cut

command enabled.

C H A P T E R 3

Help Manager

Using the Help Manager 3-29

Figure 3-9 Help balloons for different states of the Cut command

You don’t specify hot rectangles or tip coordinates for menus. The rectangles defined by

the Menu Manager for menu titles and menu items are used as hot rectangles. The Help

Manager initially tries to draw a help balloon for a menu item using variation code 0

(shown in Figure 3-4 on page 3-10) with the tip placed 8 pixels inside the right edge and

halfway between the top and bottom edges of the menu item’s rectangle. If the balloon’s

initial position lies wholly or partially offscreen, the Help Manager tries to redraw the

balloon by moving its tip to the left edge of the item’s rectangle and using variation

code 3. The Help Manager uses variation codes 1 and 2 in its attempts to draw help

balloons for menu titles. The Help Manager never moves the tip for menu titles; instead,

the tip is always located just below the bottom of the menu bar at the midpoint of the

menu title’s text.

The resource ID of each 'hmnu' resource should match the corresponding menu ID. For

example, to provide help balloons for a menu with ID 130, create an 'hmnu' resource

with resource ID 130.

The 'hmnu' resource contains four types of components, listed below. Each component

consists of several elements that contain information used by the Help Manager.

■ The header component is where you specify information that applies to all help
balloons specified in this resource—information such as the version number of the
Help Manager, the balloon definition function, and the variation code.

■ The missing-items component is where you specify help messages for any menu
items missing from or unspecified in the rest of the resource. This is useful, for
example, for allowing several menu items to share the same help message.

C H A P T E R 3

Help Manager

3-30 Using the Help Manager

■ The menu-title component is where you specify help messages for the menu title.

■ A menu-item component is where you specify the help messages for a particular
menu item. You can include any number of menu-item components; however,
the menu-item components in the 'hmnu' resource must appear in the order in which
their corresponding menu items appear in the menu. If you do not provide menu-item
components for any items at the bottom of a menu, a help message from the
missing-items component is used.

Here is the general Rez input format of an 'hmnu' resource. (Rez is the resource

compiler provided with Apple’s Macintosh Programming Workshop [MPW], available

from APDA.)

Listing 3-1 shows Rez input code for the 'hmnu' resource for an Edit menu.

Component Element

Header Help Manager version

Options

Balloon definition function

Variation code

Missing item Identifier

Help message for missing enabled items

Help message for missing items dimmed by application

Help message for missing enabled-and-checked items

Help message for missing enabled-and-marked items

Menu title Identifier

Help message for enabled menu title

Help message for menu title dimmed by application

Help message for menu title dimmed by system software

Help message for menu items dimmed by system software

First menu item Identifier

Help message for enabled menu item

Help message for menu item dimmed by your application

Help message for enabled-and-checked menu item

Help message for enabled-and-marked menu item

Next menu item (Same as for first menu item)

.

.

.

Last menu item (Same as for first menu item)

C H A P T E R 3

Help Manager

Using the Help Manager 3-31

Listing 3-1 Rez input for a partial 'hmnu' resource

resource 'hmnu' (130, "Edit", purgeable) {

/*header component*/

HelpMgrVersion,

hmDefaultOptions, /*options*/

0, /*balloon definition function*/

0, /*variation code*/

/*missing-items component*/

HMSkipItem {

/*no missing items, so skip to menu-title component*/

},

{ /*menu-title component*/

HMStringItem { /*use following P-strings*/

/*use string below when menu is enabled*/

"Edit menu\n\nUse this menu to manipulate text.",

/*use string below when app dims menu*/

"Edit menu\n\nUse this menu to manipulate text. "

"Not available because you do not have permission "

"to alter this file.",

/*use string below for title dimmed by system */

/* software for an alert or modal dialog box*/

"Edit menu\n\nUse this menu to manipulate text. "

"Not available because a dialog box is on "

"the screen.",

/*use string below for all items when system */

/* software dims them for an alert or modal */

/* dialog box*/

"This item is not available because a dialog box "

"is on the screen.",

},

/*first menu-item component: Undo command*/

HMStringItem {/*use following P-strings*/

/*use string below when command is enabled*/

"Cancels your last edit.",

/*use string below when app dims the command*/

"Cancels your last edit. Not available because "

"you haven't performed an editing action yet.",

/*can't check the item, so empty string goes below*/

"",

/*can't mark the item, so empty string goes below*/

"",

},

C H A P T E R 3

Help Manager

3-32 Using the Help Manager

/*second menu-item component: divider line*/

HMSkipItem { /*no help balloons for divider lines*/

},

/*third menu-item component: Cut command*/

HMStringItem { /*use following P-strings*/

/*use string below when command is enabled*/

"Cuts the selected text to the Clipboard.",

/*use string below when app dims the command*/

"Cuts the selected text to the Clipboard. "

"Not available now because no text is selected.",

/*can't check item, so empty string goes below*/

"",

/*can't mark item, so empty string goes below*/

"",

}

/*menu-item components for Copy, Paste, and Clear */

/* commands go here*/

}

};

Specifying Header Information for the 'hmnu' Resource

The header component of an 'hmnu' resource consists of these elements:

1. Help Manager version.

2. Options.

3. Balloon definition function.

4. Variation code.

Always specify the HelpMgrVersion constant for the Help Manager version element.

For the options element, you must specify the constant hmDefaultOptions.

The third element in the header component specifies the resource ID of the window

definition function that is used to draw the frame of the help balloon. To use the

standard balloon definition function, specify 0 for this element; this is the suggested

default. If you use your own balloon definition function (as described in “Writing Your

Own Balloon Definition Function” on page 3-93), specify its resource ID for this element.

C H A P T E R 3

Help Manager

Using the Help Manager 3-33

The fourth element in the header component specifies the preferred position of the help

balloon. For example, the standard balloon definition function displays help balloons

according to eight different positions. If you specified the standard balloon definition for

the preceding element, supply a variation code from 0 to 7 to display the balloon

according to one of the eight positions shown in Figure 3-4 on page 3-10. The preferred

variation code is 0. If you are unsure of which variation code to use, specify 0; the Help

Manager will use a different variant if another is more appropriate. If you use your own

balloon definition function, you specify its variation code for this element of the header

component.

Specifying Help for Menu Items Missing From the Resource

After the header component, you specify the format and help messages for help balloons

for missing items, for the menu title, and for the menu items.

Use the missing-items component of the 'hmnu' resource to specify how the Help

Manager handles menu items that are not described in this resource. You can also use the

missing-items component to supply help messages for menu items that are described in

the 'hmnu' resource but that lack help messages for any particular states.

The missing-items component of this resource is useful when you have menu items with

similar characteristics or when the number of menu items is variable. For example, if

the help message for a dimmed item applies to all dimmed menu items, you can specify

a help message once in the third element of the missing-items component instead of

repeating it in every third element of the various menu-item components.

The missing-items component consists of the following five elements:

1. An identifier (either HMStringItem, HMSTRResItem, HMStringResItem,
HMPictItem, HMTEResItem, or HMSkipItem) for the format of the help messages.

2. The help message when a menu item is enabled. This message is displayed either
when the item itself is not specified in a menu-item component of this 'hmnu'
resource or when its help message is specified in a menu-item component, but
specified with either an empty string or a resource ID of 0.

3. The help message when your application dims the menu item. This message is
displayed either when the item itself is not specified in a menu-item component of
this 'hmnu' resource or when its help message is specified in a menu-item
component, but specified with either an empty string or a resource ID of 0.

4. The help message when a menu item is enabled and checked. This message is
displayed either when the item itself is not specified in a menu-item component of
this 'hmnu' resource or when its help message is specified in a menu-item
component, but specified with either an empty string or a resource ID of 0.

5. The help message when a menu item is enabled and marked (with a character other
than a checkmark). This message is displayed either when the item itself is not
specified in a menu-item component of this 'hmnu' resource or when its help
message is specified in a menu-item component, but specified with either an empty
string or a resource ID of 0.

C H A P T E R 3

Help Manager

3-34 Using the Help Manager

For missing items (as for the rest of the items listed in an 'hmnu' resource), you store the

help messages in text strings within this resource or in separate 'STR ', 'STR#',

'PICT', or 'TEXT' and 'styl' resources. For the first element in the missing-items

component, use one of the identifiers described in “Specifying the Format for Help

Messages” on page 3-23. These identifiers indicate how and where you store your

help messages. Then, depending on the identifier you specify, for the next four elements

supply either text strings for help messages or resource IDs of resources that contain

help messages.

There are two additional identifiers that you can specify for menu items in 'hmnu'

resources. These identifiers are explained in “Specifying Help for a Changing Menu

Item” on page 3-43 and in “Specifying Resources by Item Name” on page 3-45.

Listing 3-2 on page 3-35 illustrates the help resource for a menu titled Colors. Notice in

the missing-items component that the element describing dimmed states for menu items

has the message “Not available; either you have not selected text to color, or your

monitor does not support color.” Because this resource doesn’t specify a message for any

individual command’s dimmed state, this message appears in help balloons for the Blue,

Green, and Red commands whenever the application disables them. If there are many

reasons why your application may have dimmed an item, don’t name them all. Instead,

describe one or two of the most likely reasons.

Note

As described in the chapter “Dialog Manager” in Inside Macintosh:
Macintosh Toolbox Essentials, system software automatically dims your
application’s menus as appropriate whenever an alert box or a
fixed-position modal dialog box appears on the screen. You supply help
messages for menu titles and menu items dimmed by system software
in the third and fourth elements of the menu-title component of the
'hmnu' resource, as described in the next section. If your application
uses movable modal dialog boxes or modeless dialog boxes, your
application must dim its menus as appropriate and provide an alternate
'hmnu' resource for this state, as described in “Providing Help Balloons
for Menus You Disable for Dialog Boxes” beginning on page 3-47. ◆

Identifier Purpose

HMCompareItem The Help Manager displays help for the current menu
item only when it matches a specified string.

HMNamedResourceItem The Help Manager displays the help message from the
resource that has the same name as the current menu item.

C H A P T E R 3

Help Manager

Using the Help Manager 3-35

Listing 3-2 Rez input for the missing-items component of an 'hmnu' resource

resource 'hmnu' (132, "Colors", purgeable) {

/*header component*/

HelpMgrVersion, hmDefaultOptions, 0, 0,

/*missing-items component*/

HMStringItem {

"", /*no missing enabled items*/

/*help messages for all items that app dims are below*/

"Not available; either you have not selected "

"text to color, or your monitor does "

"not support color.",

"", /*no missing enabled-and-checked items*/

"", /*no missing enabled-and-marked items*/

},

{ /*menu-title component*/

HMStringItem { /*use these P-strings for help messages*/

/*use string below when menu is enabled*/

"Colors menu\n\nUse this menu to display text in color.",

/*use string below when app dims menu title*/

"Colors menu\n\nUse this menu to display text in color."

"Not available because this monitor does not

support color.",

/*use string below when system software dims menu */

/* title for an alert or modal dialog box*/

"Colors menu\n\nUse this menu to display text in color. "

"Not available because a dialog box is on the "

"screen.",

/*use string below for all items when system dims */

/* them for alert and modal dialog boxes*/

"Colors your selected text. This item is not "

"available because a dialog box is on the screen.",

},

/*first menu-item component: Blue command*/

HMStringItem {/*use these P-strings for help messages*/

/*use string below when command is enabled*/

"Displays the selected text in blue.",

"", /*use missing-items help when app dims menu*/

"", /*can't check command, so use empty string here*/

"", /*can't mark command, so use empty string here*/

},

C H A P T E R 3

Help Manager

3-36 Using the Help Manager

/*second menu-item component: Green command*/

HMStringItem {/*use these P-strings for help messages*/

/*use string below when command is enabled*/

"Displays the selected text in green.",

"", /*use missing-items help when app dims menu*/

"", /*can't check command, so use empty string here*/

"", /*can't mark command, so use empty string here*/

},

/*third menu-item component: Red command*/

HMStringItem {/*use these P-strings for help messages*/

/*use string below when command is enabled*/

"Displays the selected text in red.",

"", /*use missing-items help when app dims menu*/

"", /*can't check command, so use empty string here*/

"", /*can't mark command, so use empty string here*/

}

}

};

Specifying Help for Menu Titles and for Items Dimmed by System
Software

After the missing-items component, use the menu-title component to specify the help

messages for the menu title and for menu items dimmed by system software. The

menu-title component consists of the following five elements:

1. An identifier (either HMStringItem, HMSTRResItem, HMStringResItem,
HMPictItem, HMTEResItem, or HMSkipItem) that indicates the format of the help
messages.

2. The help message for the menu title when the menu title is enabled.

3. The help message for the menu title when your application dims the menu title.

4. The help message for the menu title when system software dims the menu title at the
appearance of an alert box or a modal dialog box.

5. The help message for all menu items when system software dims them at the
appearance of an alert box or a modal dialog box.

As in the missing-items component, use the first element in the menu-title component to

specify an identifier that describes the format for the help messages. Depending on the

identifier you specify, for the other elements you supply either text strings for the help

messages or the resource IDs of resources that contain the help messages. The second,

third, and fourth elements correspond to states of the menu title; the fifth element

corresponds to a state of all the menu items.

C H A P T E R 3

Help Manager

Using the Help Manager 3-37

Use the second element of the menu-title component to specify a help message that

describes the purpose of the menu when it’s enabled. For menus in the menu bar, the

beginning of the message should name the menu and then concisely describe what kinds

of commands are in the menu, as shown in Figure 3-10. (Listing 3-2 on page 3-35

specifies the menu title—“Colors menu”—and then includes the special characters \n\n

to specify two new lines in a Rez input file before specifying a description of the menu

itself.)

Figure 3-10 A help balloon for an enabled menu title

Because some pull-down menus in the menu bar are identified by icons, not words, offer

additional clarification in your help balloon by always providing a name for pull-down

menus. For pop-up menus, simply describe what the user does with the menu; don’t

give the menu a name.

Use the third element of the menu-title component to specify a help message that

identifies the menu, describes what it does, and then describes why your application has

dimmed the menu title. As much as possible, repeat the text that you use for the title’s

enabled state, then describe why it is not enabled. See Figure 3-11 for an example and see

Listing 3-2 on page 3-35 for the Rez input that specifies the help message for the help

balloon shown in the figure.

Figure 3-11 A help balloon for a dimmed menu title

In general, you should use the phrase “Not available because” to introduce your

explanation of a dimmed title. If there are several reasons why a menu title might be

dimmed, don’t name them all. Instead, describe one or two of the most likely reasons.

C H A P T E R 3

Help Manager

3-38 Using the Help Manager

Use the fourth element of the menu-title component to specify a help message that

describes why system software has dimmed the menu title—that is, because the user

must respond to an alert box or modal dialog box on the screen. Figure 3-12 illustrates an

appropriate help balloon for this situation.

Figure 3-12 A help balloon for a menu title dimmed by the Dialog Manager

Starting with system software version 7.0, users have been able to use selected menus

while the screen displays an alert box or a modal dialog box. For example, the Show

Balloons (or Hide Balloons) command is always available from the Help menu so that

users can see your help balloons for the modal dialog box or alert box. While some

menus are accessible (in particular, the Help, Keyboard, and—when appropriate—

Edit menus), others aren’t. The chapter “Dialog Manager” in Inside Macintosh: Macintosh
Toolbox Essentials describes the circumstances under which menus are enabled or

disabled when alert boxes and dialog boxes are displayed.

Note
If your application uses movable modal dialog boxes, you must dim your
menus and provide an alternate 'hmnu' resource for this state, as
described in “Providing Help Balloons for Menus You Disable for Dialog
Boxes” beginning on page 3-47. ◆

Use the fifth element to specify the help message for all menu items whenever system

software dims them because of an alert box or a modal dialog box. Because this message

is used for all items in the menu, it needs to be somewhat general, as shown in

Figure 3-13.

Figure 3-13 A help balloon for menu items dimmed by the Dialog Manager

C H A P T E R 3

Help Manager

Using the Help Manager 3-39

Specifying Help for Menu Items

After you create the header component, the missing-items component, and the

menu-title component, you specify help messages in a menu-item component for

each menu item. The menu-item components in the 'hmnu' resource must appear in the

order in which their corresponding menu items appear in the menu. (Because of this, if

you have menu items that your application can add while it is running, you should add

these dynamic items to the end of the menu to simplify your implementation of help

balloons for your nondynamic items.)

The menu-item component consists of the following five elements:

1. An identifier (either HMStringItem, HMSTRResItem, HMStringResItem,
HMPictItem, HMTEResItem, or HMSkipItem) that indicates the format of the help
messages.

2. The help message for the menu item when the item is enabled.

3. The help message for the menu item when your application dims the item.

4. The help message for the menu item when the item is enabled and checked.

5. The help message for the menu item when the item is enabled and marked with a
character other than a checkmark.

For the first element of each menu-item component, supply an identifier to describe the

format of the help messages in that component. Then, depending on the identifier you

specify, use the other elements of the menu-item component to supply either text strings

for the help messages or the resource IDs of resources that contain the help messages.

You can use the HMSkipItem identifier for items that appear in your menu but for

which you don’t provide a help balloon. For example, you can specify HMSkipItem for

divider lines that appear in menus. (Divider lines cannot have help balloons.) If you

specify HMSkipItem, the Help Manager does not display help balloons for that menu

item, even if the missing-items component specifies a help message.

For the second element, specify a help message that describes what the item usually

does. Don’t name the menu item. Begin with a verb describing what happens when the

user chooses the item. For example, the help balloon for the Undo command in an Edit

menu should contain something similar to the information in Figure 3-14.

Figure 3-14 A help balloon for a menu item

C H A P T E R 3

Help Manager

3-40 Using the Help Manager

For menu items that display a dialog box, it is usually unnecessary to state that a dialog

box will appear. The fact that a menu item displays a dialog box is not what the user

wants to know; the user wants to know what choosing the menu item ultimately

accomplishes.

For the third element, specify a help message that describes what the menu item does

and why your application has dimmed the item. As much as possible, repeat the text

that you use for the item’s enabled state, and then describe why it is not enabled. In

general, you should use the phrase “Not available because” to introduce your

explanation of the dimmed item. If there are multiple reasons why an item might be

dimmed, don’t name them all. Instead, describe one or two of the most likely reasons.

Figure 3-15 gives an example of a help message for a dimmed Undo command.

Figure 3-15 A help balloon for a dimmed menu item

If your application checks or otherwise marks a menu item, use the fourth and fifth

elements of that item’s component in the 'hmnu' resource to describe the special

condition indicated by that state. As with dimmed states, try to repeat the text that you

use for the title’s enabled state, and then describe why it is checked or marked. If there

are multiple reasons why an item might be checked or marked, don’t name them all.

Instead, describe one or two of the most likely reasons.

Note that, for any component in the resource, you can specify only one format for all of

its help messages. For example, if you specify the HMSTRResItem identifier in a

menu-item component for the Undo command, you must store all help messages

specified in that component in 'STR ' resources. (However, if you specify a resource ID

of 0 or an empty string as the help message of any item in order to use the help message

from the missing-items component, the help message follows the format specified in the

missing-items component.)

You do not have to provide a help message for every state of a menu item. If you do

not provide a help message for a particular state, the Help Manager uses the help

message specified in the missing-items component. If the missing-items component does

not specify a help message for that state either, the Help Manager does not display a help

balloon.

C H A P T E R 3

Help Manager

Using the Help Manager 3-41

Listing 3-3 shows a sample 'hmnu' resource for another Edit menu.

Although Listing 3-1 and Listing 3-2 illustrate 'hmnu' resources that contain their own

Pascal-string help messages, you should keep your help messages in separate, more

easily localized resources. The 'hmnu' resource in Listing 3-3 stores its help messages in

a separate 'STR#' resource (which is given a corresponding resource ID of 130 for easier

maintenance).

Listing 3-3 Rez input for corresponding 'hmnu' and 'STR#' resources

resource 'hmnu' (130, "Edit menu help", purgeable) {

HelpMgrVersion, 0, 0, 0, /*standard header component*/

HMSkipItem { /*missing-items component*/

/*no missing items, so skip to menu-title component*/

},

{ /*menu title and items below*/

/*menu-title component*/

HMStringResItem {/*use an 'STR#' for help messages*/

130,1, /*'STR#' res ID, index when menu is enabled*/

130,2, /*'STR#' res ID, index when app dims menu*/

130,3, /*'STR#', index for title that system */

/* software dims for all alert and modal */

/* dialog boxes*/

130,4 /*'STR#', index for items that system */

/* software dims for all alert and modal */

/* dialog boxes*/

},

/*first menu-item component: Undo command*/

HMStringResItem { /*use 'STR#' resource for help messages*/

130,5, /*'STR#' res ID, index when item is enabled*/

130,6, /*'STR#' res ID, index when item is dimmed*/

0,0, /*can't check command*/

0,0 /*can't mark command*/

},

/*second menu-item component: divider line*/

HMSkipItem { /*no balloon help for divider lines*/

},

/*third menu-item component: Cut command*/

HMStringResItem { /*use an 'STR#' for help messages*/

130,7, /*'STR#' res ID, index when item is enabled*/

130,8, /*'STR#' res ID, index when app dims item*/

0,0, /*can't check command*/

0,0 /*can't mark command*/

},

C H A P T E R 3

Help Manager

3-42 Using the Help Manager

/*menu-item component for Copy command goes here*/

}

};

resource 'STR#' (130, "Edit menu help strings") {

/*help text for Edit menu*/

{ /*array StringArray: 17 elements*/

/*[1] help text for enabled Edit menu title*/

"Use this menu to cancel your last action, to manipulate "

"text, to select the entire content of a document, "

"and to show what's on the Clipboard.";

/*[2] help text for Edit menu title dimmed by app*/

"Use this menu to cancel your last action, to manipulate "

"text, to select the entire content of a document, "

"and to show what's on the Clipboard. Not "

"available now.";

/*[3] help text for Edit menu title dimmed by system */

/* software for all alert and modal dialog boxes */

/* that don't contain editable text items*/

"Use this menu to cancel your last action, to manipulate "

"text, to select the entire content of a document, and "

"to show what's on the Clipboard. Not available "

"because a dialog box is on the screen.";

/*[4] help for Edit menu items that system software dims */

/* for all alert and modal dialog boxes */

/* that don't contain editable text items*/

"Not available because a dialog box is on the screen.";

/*[5] help text for enabled Undo command*/

"Cancels your last action. Use this command to replace "

"material you have cut or cleared, or to remove material "

"you have pasted or typed.";

/*[6] help text for Undo command dimmed by app*/

"Cancels your last action. Use this command to replace "

"material you have cut or cleared, or to remove material "

"you have pasted or typed. Not available because your "

"last action did not involve cutting, pasting, "

"or typing.";

/*help text for all other commands goes here*/

}

};

C H A P T E R 3

Help Manager

Using the Help Manager 3-43

The 'hmnu' resource in Listing 3-3 specifies the standard balloon definition function

and variation code in the third and fourth elements of the header component. The

missing-items component is specified using the HMSkipItem identifier, meaning that

this 'hmnu' resource does not provide any help balloons for menu items that are

missing from this resource or that do not have help messages specified for any states.

Following the menu-title component, the menu-item components for the menu items are

listed in the order in which the items appear in the menu. For menu-item components

that do not specify information for a particular state, the Help Manager normally uses

the information from the missing-items component. However, in Listing 3-3 the 'hmnu'

resource does not specify a help message in the missing-items component. Instead, all

help messages are specified in each menu-item component in this resource. Because

there are no enabled-and-checked or enabled-and-marked states for the Undo and Copy

commands, these states are specified with resource IDs of 0.

As described in the chapter “Dialog Manager” in Inside Macintosh: Macintosh Toolbox
Essentials, system software does not dim your application’s Edit menu when you display

a dialog box that contains editable text items. Listing 3-3 nevertheless provides help

messages for a dimmed Edit menu for those instances when the application displays

alert boxes and dialog boxes that do not contain editable text items.

Specifying Help for a Changing Menu Item

If you have a menu item that changes names, you can use the HMCompareItem

identifier to compare a string against the current menu item in that position. If the string

specified after the HMCompareItem identifier matches the name of the current menu

item, the Help Manager displays the help messages specified in the next four elements of

the 'hmnu' resource. Because of performance considerations, the HMCompareItem

identifier shouldn’t be used unless necessary.

A menu-item component that uses the HMCompareItem identifier uses a different

format than other menu-item components do. Here are the seven elements you use for

specifying help in an 'hmnu' resource for a changing menu item.

1. The HMCompareItem identifier.

2. The string to compare against current menu item.

3. The identifier (either HMStringItem, HMSTRResItem, HMStringResItem,
HMPictItem, HMTEResItem, or HMSkipItem) that indicates the format of the help
messages.

4. The help message for the menu item when the item is enabled.

5. The help message for the menu item when the item is dimmed.

6. The help message for the menu item when the item is enabled and checked.

7. The help message for the menu item when the item is enabled and marked.

C H A P T E R 3

Help Manager

3-44 Using the Help Manager

Create a component that uses the HMCompareItem identifier for every item name that

can appear in a particular menu position. For example, Listing 3-4 shows an 'hmnu'

resource for a menu command that toggles between Show Colors and Hide Colors.

Note

It is important to provide components for all possible strings that can
appear in the changing item. Also note that if you use the
HMCompareItem identifier for a menu item, you should ensure that the
following menu item has a text string that is different from the one that
the HMCompareItem menu-item component compares against. ◆

Listing 3-4 Rez input for an 'hmnu' resource that uses HMCompareItem for a changing menu
item

resource 'hmnu' (132, "Colors menu help", purgeable) {

/*see Listing 3-2 for missing-items example*/

/*see Listing 3-2 for Colors menu title's help example*/

HMCompareItem { /*help message if first command is */

/* called Show Colors*/

"Show Colors",

HMStringResItem {

132, 1, /*enabled*/

0, 0, /*use missing items*/

0, 0, /*item can't be checked*/

0, 0 /*no marked state*/

},

},

HMCompareItem { /*help if the first command is */

/* called Hide Colors*/

"Hide Colors",

HMStringResItem {

132, 2, /*enabled*/

0, 0, /*use missing items*/

0, 0, /*item can't be checked*/

0, 0 /*no marked state*/

},

},

/*Blue command's help messages*/

HMStringItem { /*use these P-strings for help messages*/

/*use string below when command is enabled*/

"Displays the selected text in blue.",

"", /*use missing-items help when menu is dimmed*/

"", /*can't check command--use empty string here*/

"", /*can't mark command--use empty string here*/

C H A P T E R 3

Help Manager

Using the Help Manager 3-45

},

/*see Listing 3-2 for other commands' examples*/

}

};

resource 'STR#' (132, "Hide & Show Colors commands help text") {

{

/*[1] help text for enabled Show command*/

"Shows text in previously selected colors.";

/*[2] help text for enabled Hide command*/

"Shows text in black and white only.";

}

};

As illustrated in Figure 3-16, when the menu command is Show Colors, the Help

Manager displays the help message described by the first HMCompareItem component.

When the menu command is Hide Colors, the Help Manager displays the help message

described by the second HMCompareItem identifier.

Figure 3-16 Help balloons for a changing menu item

Specifying Resources by Item Name

You can also specify help messages in a component with the HMNamedResourceItem

identifier, which causes the Help Manager to use a resource whose name matches the

name and state of the current menu item. A menu-item component that uses the

HMNamedResourceItem identifier uses a different format than the other menu-item

components do. Here are the two elements you use for specifying named resources as

help messages in an 'hmnu' resource.

1. The HMNamedResourceItem identifier.

2. A resource type (either 'STR ', 'PICT', or, for text, 'TEXT') that contains the help
messages for the current menu item. If you specify 'TEXT', you also get style
information for the 'TEXT' resource by creating a resource of type 'styl' with the
same name.

C H A P T E R 3

Help Manager

3-46 Using the Help Manager

To provide help for a menu item when it is enabled, create a resource with the same

name as the menu item, then put the help message for the enabled menu item in

this resource. The Help Manager uses the GetNamedResource function to find the

resource—of the type specified in the second element of the menu-item component—that

has the same name as the current menu item.

To provide help for a menu item when it is dim, create a resource with a name consisting

of the menu item and an exclamation point (!), then put the help message for the

dimmed menu item in this resource. When the menu item is dimmed, the Help Manager

appends an exclamation point to the name of the menu item and searches for a resource

by that name. Similarly, if a menu item is enabled and marked with a checkmark or other

mark, the Help Manager appends the mark to the name of the current menu item and

looks for a resource by that name.

For example, the 'hmnu' resource in Listing 3-5 specifies that the Help Manager extracts

the help message from a resource named Red of type 'STR ' when displaying a help

balloon for an enabled menu command named Red. If the menu item is dimmed, the

Help Manager gets the 'STR ' resource with the name Red! and uses its text string for

the help message. If the Red command could be marked with an asterisk (*), the Help

Manager would search for the resource with the name Red* of type 'STR '.

Listing 3-5 Rez input for specifying help messages with named resources

resource 'hmnu' (132, "Colors menu help", purgeable) {

/*see Listing 3-2 for header, missing-items, */

/* menu-title, and menu-item components*/

HMNamedResourceItem { /*Red command's help message*/

'STR '/*use the 'STR ' resource named "Red"*/

}

}

};

resource 'STR ' (333, "Red") { /*help text for enabled */

/* Red command*/

"Displays the selected text in red."

};

resource 'STR ' (334, "Red!") { /*help text for dimmed */

/* Red command*/

"Not available; either you have not selected text to "

"color, or your monitor does not support color.",

};

C H A P T E R 3

Help Manager

Using the Help Manager 3-47

Providing Help Balloons for Menus You Disable for Dialog Boxes

The Dialog Manager and the Menu Manager interact to provide various degrees of

access to the menus in your menu bar. For alert boxes and modal dialog boxes without

editable text items, you can simply allow system software to dim your menu titles and

menu items as appropriate. As described in “Specifying Help for Menu Titles and for

Items Dimmed by System Software” beginning on page 3-36, you specify help balloons

for these dimmed menu titles and menu items in the fourth and fifth elements of your

'hmnu' resources’ menu-title components.

However, because system software cannot handle the Undo or Clear command (or any

other context-appropriate command) for you, your application should handle its own

menu bar access for modal dialog boxes with editable text items by performing the

following tasks:

■ Use the Menu Manager function DisableItem to disable the Apple menu or the first
item in the Apple menu (typically, your application’s About command) in order to
take control of its menu bar access when displaying a modal dialog box.

■ Use the Menu Manager function DisableItem to disable all of your application’s
menus except the Edit menu, as well as any inappropriate commands in the Edit
menu.

■ Use the Dialog Manager procedures DialogCut, DialogCopy, DialogPaste, and
DialogDelete to support the Cut, Copy, Paste, and Clear commands in editable text
items.

■ Provide your own code for supporting the Undo command.

■ Use the Menu Manager function EnableItem to enable your application’s items in
the Help menu as appropriate (system software disables all items except the Hide
Balloons/Show Balloons command).

You don’t need to do anything else for the system-handled menus—namely, Application,

Keyboard, and Help. System software handles these menus for you automatically.

Although it always leaves the Help, Keyboard, and Application menus and their

commands enabled, system software does nothing else to manage the menu bar when

you display movable modal and modeless dialog boxes. Instead, your application

should allow or deny access to the rest of your menus as appropriate to the context. For

example, if your application displays a modeless dialog box for a search-and-replace

command, you should allow access to the Edit menu to assist the user with the editable

text items, and you should allow use of the File menu so that the user can open another

file to be searched. However, you should disable other menus if their commands cannot

be used inside the active modeless dialog box.

C H A P T E R 3

Help Manager

3-48 Using the Help Manager

When creating a modeless dialog box, your application should perform the following

tasks:

■ Use the Menu Manager function DisableItem to disable only those menus whose
commands are invalid in the current context.

■ If the modeless dialog box includes editable text items, use the Dialog Manager
procedures DialogCut, DialogCopy, DialogPaste, and DialogDelete to
support the Cut, Copy, Paste, and Clear commands in editable text items.

■ Enable your application’s items in the Help menu, as appropriate. (System software
disables all items except the Hide Balloons/Show Balloons command.)

When your application creates a movable modal dialog box, it should perform the

following tasks:

■ Leave the Apple menu enabled so that the user can open other applications with it.

■ If your movable modal dialog box contains editable text items, leave the Edit menu
enabled but use the Dialog Manager procedures DialogCut, DialogCopy,
DialogPaste, and DialogDelete to support the Cut, Copy, Paste, and Clear
commands.

■ Use the Menu Manager function DisableItem to disable all of your other menus.

See the chapters “Menu Manager” and “Dialog Manager” in Inside Macintosh: Macintosh
Toolbox Essentials for more information about menus, alert boxes, and dialog boxes.

When you use the Menu Manager function DisableItem to dim your menus, the Help

Manager does not know that you have dimmed them because you’re displaying a dialog

box; instead, the Help Manager assumes that you’ve dimmed them for some other

reason. Whenever you dim your own menus—for whatever reason—the Help Manager

always uses the second element of your menu-title component and the second elements

of your menu-item components.

To provide help messages that explain that the menu and its items are dim because your

application dimmed them to display a dialog box, you must use an alternate 'hmnu'

resource.

For example, if an application were to allow only one document at a time to be opened, it

would dim the New command in the File menu whenever a document were open. The

second element of that item’s component specifies a help message similar to this.

/*help message for dimmed New command*/

"Opens a new SurfWriter document called \"Untitled\". "

"Not available now because a SurfWriter document is "

"already open. (SurfWriter can open only one document "

"at a time.)";

This is not an appropriate message for the item’s help balloon when the application

displays a modal dialog box that contains an editable text item—but unless the

application changes the 'hmnu' resource for its File menu, this is the message that the

Help Manager displays.

C H A P T E R 3

Help Manager

Using the Help Manager 3-49

To handle those menus that you dim for dialog boxes, your application must use

alternate 'hmnu' resources. In an alternate 'hmnu' resource, use the second element of

the missing-items component and the second element of the menu-title component to

specify help balloons for the menu’s dimmed title and all of its dimmed items, as shown

in Listing 3-6.

Listing 3-6 Specifying an alternate 'hmnu' resource for a menu that your application
disables when it displays movable modal dialog boxes

resource 'hmnu' (kFileHelpID, purgeable)

{ /*use this when my application dims the menu to display */

/* a modal dialog box with editable text items*/

/*header component*/

HelpMgrVersion, hmDefaultOptions, 0, 0,

/*missing-items component*/

HMStringResItem {

0, 0, /*missing enabled items: not applicable */

/* because they're all dim*/

256, 1, /*use this help string for all dimmed */

/* menu items--they're all missing from */

/* this resource*/

0, 0, /*missing enabled-and-checked items: not */

/* applicable because they'd be dimmed*/

0, 0, /*missing enabled-and-marked items: not */

/* applicable because they'd be dimmed*/

},

/*menu-title component*/

{ /*File menu title help when dimmed for a movable modal*/

HMStringResItem {

0, 0, /*no enabled title: it's dimmed*/

256, 2, /*use this help string for menu title */

/* dimmed for a movable modal dialog*/

0, 0, /*Help Manager doesn't look here for */

/* movable modal dialogs*/

0, 0, /*Help Manager doesn't look here for*/

/* movable modal dialogs*/

},

} /*use missing-items info for all dimmed menu items*/

};

resource 'STR#' (256, "help messages for dimmed menus") {

/*use these when my application dims menus to show a */

/* modal dialog box*/

{

/*[1] Dimmed items help text*/

C H A P T E R 3

Help Manager

3-50 Using the Help Manager

"Not available now because a dialog box is on "

"the screen.".

/*[2] help message for dimmed File menu title*/

"File menu\n\nUse this menu to open, close, save, and print "

"SurfWriter documents, and to quit SurfWriter. "

"Not available because a dialog box is on the screen.";

/*[3] help message for dimmed Tools menu title*/

"Tools menu\n\nUse this menu to ... " /*more text goes here*/

"Not available because a dialog box is on the screen.";

/*help messages for other dimmed menu titles go here*/

};

Use the HMSetMenuResID function to associate alternate 'hmnu' resources with your

menus whenever your application displays a movable modal dialog box. Listing 3-7

illustrates how an application disables its menus and then reassigns them appropriately,

using alternate 'hmnu' resources before displaying a dialog box.

Listing 3-7 Reassigning 'hmnu' resources before displaying a movable modal dialog box

PROCEDURE MyAdjustMenusForDialogs;

VAR

window: WindowPtr;

windowType: Integer;

myErr: OSErr;

menu: MenuHandle;

BEGIN

window := FrontWindow;

windowType := MyGetWindowType(window);

CASE windowType OF

kMyModalDialogs:

BEGIN

menu := GetMenuHandle(mApple); {get handle to Apple menu}

IF menu = NIL THEN

EXIT(MyAdjustMenusForDialogs);

DisableItem(menu, 0); {disable Apple menu to get control of menus}

myErr := HMSetMenuResID(mFile, kFileHelpID); {set up help balloons}

menu := GetMenuHandle(mFile); {get handle to File menu}

IF menu = NIL THEN

EXIT(MyAdjustMenusForDialogs);

DisableItem(menu, 0); {disable File menu}

myErr := HMSetMenuResID(mFile, kFileHelpID); {set up help balloons}

IF myErr <> NoErr THEN

EXIT(MyAdjustMenusForDialogs);

C H A P T E R 3

Help Manager

Using the Help Manager 3-51

menu := GetMenuHandle(mTools); {get handle to Tools menu}

IF menu = NIL THEN

EXIT(MyAdjustMenusForDialogs);

DisableItem(menu, 0); {disable Tools menu}

myErr := HMSetMenuResID(mTools, kToolsHelpID); {help balloons}

IF myErr <> NoErr THEN

EXIT(MyAdjustMenusForDialogs);

MyAdjustEditMenuForModalDialogs;

END; {of kMyModalDialogs CASE}

kMyGlobalChangesModelessDialog:

; {adjust menus here as needed}

kMyMovableModalDialog:

; {adjust menus here as follows: }

{ diable all menus except Apple, }

{ call MyAdjustEditMenuForModalDialogs for editable text items}

END; {of CASE}

END;

The MyAdjustMenusForDialogs routine in Listing 3-7 first determines what type of

dialog box is in front: modal, movable modal, or modeless. For modal dialog boxes,

MyAdjustMenusForDialogs disables the Apple menu so that the application can take

control of its menus away from the Dialog Manager. The MyAdjustMenusForDialogs

routine then uses the Menu Manager routines GetMenuHandle and DisableItem to

disable all other application menus except the Edit menu.

To adjust the items in the Edit menu, MyAdjustMenusForDialogs calls another

application-defined routine, MyAdjustEditMenuForModalDialogs. The

MyAdjustEditMenuForModalDialogs routine, which is not shown in this volume,

uses application-defined code to implement the Undo command; uses the Menu

Manager procedure EnableItem to enable the Cut, Copy, Paste, and Clear commands

when appropriate; and disables the commands that support Edition Manager

capabilities.

After removing a dialog box from the screen, enable the appropriate menus again and

use the HMSetMenuResID function to reassociate your original help balloons with the

reenabled menus. (You can pass –1 to the HMSetMenuResID function to remap menus to

their previous 'hmnu' resources.)

Providing Help Balloons for Items in Dialog Boxes and
Alert Boxes
For dialog boxes and alert boxes defined with item list ('DITL') resources, you can

provide help balloons for individual items in the dialog box or alert box by supplying a

resource of type 'hdlg' (dialog-item help). When an item has a help balloon associated

with it, the Help Manager automatically displays and removes the help balloon as the

user moves the cursor into and out of the item’s display rectangle. The Help Manager

C H A P T E R 3

Help Manager

3-52 Using the Help Manager

can display different help balloons for various states of an item—by highlight value if

the item is a control, and by enabled and disabled states for items that are not controls.

Note

BalloonWriter, available from APDA, gives nonprogrammers an easy,
intuitive way to create help balloons for dialog and alert boxes.
BalloonWriter creates 'hdlg' resources as appropriate and places them
in the resource file of your application; BalloonWriter likewise creates
and stores 'STR ', 'STR#', and 'TEXT' resources that contain the
help messages authored by nonprogramming writers. ◆

You can also provide help balloons for other areas of a dialog box or alert box using the

'hwin' (window help) resource as described in “Providing Help Balloons for Static

Windows” on page 3-65.

To create help balloons for items in dialog boxes or alert boxes, create an 'hdlg'

resource that corresponds to an item list resource. You associate the information defined

in the 'hdlg' resource to the alert or dialog box in one of three ways:

■ by adding an item of type HelpItem to the item list resource

■ by supplying a resource of type 'hwin'

■ by calling the HMScanTemplateItems function from your application

The 'hdlg' resource specifies the tip, the alternate rectangle, and help messages for

items in a dialog box or alert box. The item list resource describes the items, and, if it

includes an item of type HelpItem, it can contain the resource ID of a corresponding

'hdlg' resource. The Help Manager uses the display rectangles defined in the item list

resource as the hot rectangles for the items. The Help Manager uses the alternate

rectangles specified in the 'hdlg' resource for transposing help balloons’ tips when

trying to fit the balloons onscreen.

For those items designated in the 'hdlg' resource, the Help Manager automatically

tracks the cursor and displays help balloons when the following conditions are met: the

dialog or alert box has an item of type HelpItem in its item list resource; your

application calls the Dialog Manager routine ModalDialog, IsDialogEvent,

NoteAlert, StopAlert, CautionAlert, or Alert; and help is enabled.

If the cursor passes over any active windows, including dialog or alert boxes, the Help

Manager searches the current resource file for resources of type 'hwin' (described in

“Providing Help Balloons for Static Windows” on page 3-65). The Help Manager

attempts to match either the title of the window or the windowKind value in its window

record with the title or windowKind value specified in an 'hwin' resource. The

matched 'hwin' resource, in turn, specifies the resource ID of an 'hdlg' or 'hrct'

(rectangle help) resource that contains the relevant help message. (The 'hrct' resource

is described in “Providing Help Balloons for Static Windows” on page 3-65.) As

described in “Providing Help Balloons for Window Content” on page 3-63, the 'hwin'

resource can provide help for various other interface features across the entire window

as well as for items in a dialog box or an alert box.

If you prefer, you can track and display help balloons for modal dialog boxes and alert

boxes yourself by using an event-filter function and calling the HMScanTemplateItems

C H A P T E R 3

Help Manager

Using the Help Manager 3-53

function. Using HMScanTemplateItems requires you to modify your code. For further

information on HMScanTemplateItems, see “Setting and Getting Information for Help

Resources” beginning on page 3-114.

As shown here, a Rez input file for an 'hdlg' resource contains a header component, a

missing-items component, and dialog-item components.

Component Element

Header Help Manager version

Index number of starting item (first item is number 0)

Options

Balloon definition function

Variation code

Missing items Tip’s coordinates

Alternate rectangle

Identifier for help messages

Help message for missing, unselected active controls (that is, those
with highlight values of 0), or for missing enabled items that are
not controls

Help message for missing dimmed controls (that is, those with
highlight values of 255), or for missing disabled items that are not
controls

Help message for missing active controls that are “on” (that is,
those with highlight values of 1)

Help message for missing active controls with highlight values
other than 0, 1, and 255

First dialog item Tip’s coordinates

Alternate rectangle

Identifier for help messages

Help message for an active, unselected control (that is, one with a
highlight value of 0), or for an enabled item that is not a control

Help message for a dimmed control (that is, one with a highlight
values of 255), or for a disabled item that is not a control

Help message for an active control that is “on” (that is, one with a
highlight value of 1)

Help message for an active control with a highlight value other
than 0, 1, and 255

Next dialog item (Same as for first dialog item)

.

.

.

Last dialog item (Same as for first dialog item)

C H A P T E R 3

Help Manager

3-54 Using the Help Manager

As described in greater detail later, the way the Help Manager interprets many of the

elements depends on whether the item it describes is a control, such as a checkbox or

radio button, or something else, such as static text or an icon.

Specifying Header Information for the 'hdlg' Resource

Use the header component to specify the Help Manager version number, the starting

index, options, the balloon definition function, and the variation code. As in the other

help resources, specify the HelpMgrVersion constant for the first element of the header

component of the 'hdlg' resource.

You use the second element to associate the help messages beginning at any item

number and then continuing sequentially through the item list ('DITL') resource. To

derive an item number to start from, the Help Manager adds the index number you

specify for this element to the number of the first item in the item list resource. Thus,

index number 0 starts with the item number 1 in the item list resource (because 0 plus 1

equals 1). For example, to describe help messages for only the fifth through seventh

items, specify 4 as the starting index in the header component and, because 4 plus 1

equals 5, provide help messages that start with the fifth and proceed through the sixth

and seventh items.

For the options element, specify a constant (normally, hmDefaultOptions) or the sum

of several constants’ values from this list. (These options are described in “Specifying

Options in Help Resources” beginning on page 3-25.)

CONST hmDefaultOptions = 0; {use defaults}

hmUseSubID = 1; {use subrange resource IDs }

{ for owned resources}

hmAbsoluteCoords = 2; {ignore coords of window }

{ origin and treat upper-left }

{ corner of window as 0,0}

hmSaveBitsNoWindow = 4; {don't create window; save }

{ bits; no update event}

hmSaveBitsWindow = 8; {save bits behind window }

{ and generate update event}

Specify the balloon definition function and variation code (both typically 0) in the fourth

and fifth elements of the header component. (These are described in detail in “Specifying

Header Information for the 'hmnu' Resource” beginning on page 3-32.)

Specifying Missing-Item Information

Following the header component, you can specify the help message for items that are

missing from the 'hdlg' resource or that are present but have no help messages defined

for a particular state. (The function of the missing-items component of the 'hdlg'

resource is similar to that of the missing-items component of the 'hmnu' resource. For

details, see “Specifying Help for Menu Items Missing From the Resource” beginning on

page 3-33.)

C H A P T E R 3

Help Manager

Using the Help Manager 3-55

In the missing-items component, use the first element to specify a set of tip coordinates

and use the second element to specify an alternate rectangle. Both specifications apply to

the help messages specified in the other elements of this component.

The tip’s coordinates are always relative to the item’s position in the dialog box. If you

specify the point (0,0) as a default tip, then it is placed 10 pixels from the right and 10

pixels from the bottom of the item’s rectangle (as specified in the item list resource) for

all missing items. To move the missing item’s tip relative to this default location, you can

specify positive or negative integers in place of the coordinates (0,0).

If you want an alternate rectangle that is either larger or smaller than a display rectangle,

use the missing item’s alternate rectangle to specify offsets that apply to the display

rectangles for all items in the dialog box. (Remember that the alternate rectangle is used

by the Help Manager for transposing the tip if a help balloon does not fit onscreen.) The

Help Manager adds the top, left, bottom, and right offsets to the coordinates of an item’s

display rectangle. For example, if you specify (0,0,0,0) as the missing item’s alternate

rectangle offsets, the Help Manager uses the display rectangles as alternate rectangles for

all missing items. You can specify positive or negative integers for these offsets to move

an alternate rectangle’s coordinates relative to a display rectangle’s coordinates.

Use the third element of the missing-items component to supply one of these identifiers:

HMStringItem, HMSTRResItem, HMStringResItem, HMPictItem, HMTEResItem,

or HMSkipItem, described in “Specifying the Format for Help Messages” on page 3-23.

In the remaining four elements of this component, supply the help messages for items

in the item list resource that do not otherwise have help messages specified in this

'hdlg' resource. You can supply either text strings for the help messages or the

resource IDs of resources that contain the help messages.

When displaying help balloons for a control, the Help Manager examines the highlight

value in the contrlHilite field of the control record. An active control that is not

selected by the user has a highlight value of 0. Specify a help message for all missing

highlighted controls in the fourth element of the missing-items component of the

'hdlg' resource.

An inactive—that is, dimmed—control has a highlight value of 255. Specify a help

message for all missing dimmed controls in the fifth element of the missing-items

component.

Note

Don’t confuse a disabled item with an inactive control. When you don’t
want the Control Manager to display visual responses to mouse events
in a control, you make it inactive by using the Control Manager
procedure HiliteControl. When you don’t want the Dialog Manager
to report events involving an item in a dialog box, you mark it
disabled in the item list resource. The Dialog Manager makes no
visual distinction between disabled and enabled items. See the chapters
“Control Manager” and “Dialog Manager” in Inside Macintosh: Macintosh
Toolbox Essentials for more information. ◆

C H A P T E R 3

Help Manager

3-56 Using the Help Manager

When, as with checkboxes and radio buttons, the user turns on an on-and-off control,

the control has a highlight value of 1. Specify a help message for all missing, active, “on”

controls in the sixth element of the missing-items component.

In addition to the values 0, 1, and 255, multipart controls—such as scroll bars—can also

take highlight values between 2 and 253, signifying the part code for the part of the

control that has been selected by the user. However, you can specify only one message

for all possible highlight values that a control might have other than 0, 1, and 255. You

can use the seventh element of the missing-items component to specify this message for

missing controls.

The following section offers guidelines about what sorts of messages to provide for

different types of controls according to their states. For more detailed information about

controls, see the chapter “Control Manager” in Inside Macintosh: Macintosh Toolbox
Essentials.

When displaying help for items that are not controls, the Help Manager examines only

whether the item is enabled or disabled, as specified in the item list resource. For an

enabled item (other than a control), you specify a help message in the fourth element of

its component in the 'hdlg' resource. In the fifth element, you specify the help message

for the item when it is disabled. The sixth and seventh elements apply only to controls.

You should supply these elements with either empty strings or resource IDs of 0,

depending on the format indicated by the identifier you specified in the third element of

the component.

Specifying Help for Items in an Alert or Dialog Box

After the missing-items component, create dialog-item components that specify help

messages for the individual items. The first dialog-item component must relate to the

item number indexed in the header component; list the remaining dialog-item

components in the same order in which they appear in the item list resource. (See the

chapter “Dialog Manager” in Inside Macintosh: Macintosh Toolbox Essentials for

information on the item list resource.)

Use the first element of a dialog-item component to specify the coordinates of the help

balloon’s tip for that item. Use coordinates local to the item’s display rectangle (which is

specified in the item list resource) to specify the tip. You can specify (0,0) to place the tip

10 pixels from the right and 10 pixels from the bottom of the item’s display rectangle.

Use the second element of a dialog-item component to specify an alternate rectangle for

the item. Note that you cannot specify hot rectangles—only alternate rectangles—in an

'hdlg' resource. This is because the Help Manager uses the display rectangles specified

in the item list resource as the hot rectangles for help balloons. (If you must specify hot

rectangles that are different from the items’ rectangles, use the 'hrct' resource as

described in “Specifying Help for Rectangles in Windows” on page 3-67.) You can,

however, specify alternate rectangles in 'hdlg' resources that are different from the

display rectangles defined in the item list resource. Alternate rectangles give you

additional flexibility in positioning your help balloons onscreen. If you make your

alternate rectangle smaller than the display rectangle, for example, you have greater

assurance that the Help Manager will be able to fit the help balloon onscreen; if you

C H A P T E R 3

Help Manager

Using the Help Manager 3-57

specify an alternate rectangle that is larger than the display rectangle, you have greater

assurance that the help balloon will not obscure some important portion within the

display rectangle.

Specify offsets from the item’s display rectangle if you want an alternate rectangle that is

different from the display rectangle. The Help Manager adds the top, left, bottom, and

right offsets that you specify to the coordinates of the item’s display rectangle. For

example, if you specify (0,0,0,0) as the alternate rectangle’s offsets, the Help Manager

uses the item’s display rectangle as its alternate rectangle. You can specify positive or

negative integers for these offsets to move the alternate rectangle’s coordinates relative

to the display rectangle’s coordinates.

Use the third element of a dialog-item component to supply one of these identifiers:

HMStringItem, HMSTRResItem, HMStringResItem, HMPictItem, HMTEResItem,

or HMSkipItem, described in “Specifying the Format for Help Messages” on page 3-23.

Note that in any one dialog-item component in the resource, you can specify only one

format for all help messages.

The remaining elements in a dialog-item component specify help messages for the

related item. As previously described in “Specifying Missing-Item Information” on

page 3-54, the Help Manager uses these elements differently according to whether the

item is or is not a control. For elements four through seven in a dialog-item component,

supply either text strings for the help messages or the resource IDs of resources that

contain the help messages.

You do not have to provide a help message for every state of an item. If you do not

provide a help message for a particular state, the Help Manager uses the help message

specified in the missing-items component. If the missing-items component does not

specify a help message for that state, then the Help Manager does not display a help

balloon for that state of that item.

In your help balloons for buttons, use the construction “To [perform action], click this

button.” For example, the help message for the OK button in a Spell Check dialog box

should state something similar to “To check the spelling of this document with the

options you’ve chosen, click this button.”

For an unselected radio button or checkbox, use the fourth element of the corresponding

dialog-item component to describe what happens when the user selects the button or

checkbox. For example, an unselected radio button titled “Left” might have a help

balloon that states, “To align all text along the left margin of the document, click this

button.”

For a selected radio button (that is, one that is “on”), use the sixth element of the

corresponding dialog-item component to describe what the selected button does,

beginning with a verb. At the end of the message, state that the button is selected. For

example, a selected radio button titled “Left” might have a help balloon that states,

“Aligns all text along the left margin of the document. This option is selected.”

For a selected checkbox (that is, one that is “on”), use the sixth element of the

corresponding dialog-item component to describe what the selected checkbox does, then

describe how to turn off the option. For example, a selected checkbox titled “On Line”

C H A P T E R 3

Help Manager

3-58 Using the Help Manager

might have a help balloon that states, “Your Macintosh is connected to a remote

computer. To disconnect, click this box.”

For a radio button or a checkbox that is dimmed, use the fifth element of the

corresponding dialog-item component to describe what it does when it is selected. Use a

sentence fragment that begins with a verb. Then explain why the radio button or

checkbox is not available. For example, a dimmed radio button titled “Left” might have

a help balloon that states, “Aligns all text along the left margin of a document. Not

available because no documents are open.”

For an editable text item in a dialog box, use the word “here” in your help message

to describe the item. Explain what type of information the user should enter, but don’t

describe standard Macintosh editing procedures. For example, an editable text item

identified by static text reading “Name” might have a help balloon that states, “Type

your name here.” Since an editable text item is typically disabled, you’ll use the fifth

element of that item’s component to specify a help balloon.

Since users typically don’t interact with your static text items, you generally shouldn’t

provide them with help balloons.

You can use the HMSkipItem identifier for an item for which you do not want to

provide help. If you specify HMSkipItem, the Help Manager does not display help

balloons for that item, even if the missing-items component specifies a help message.

In most cases, you should try to describe only the item the balloon is pointing to. It may

be tempting to discuss the relationships among items, but this much information can

become complex and difficult to read. Remember that the user can point at other items to

find out what they are. For example, a button titled “Print” might have a help balloon

that states, “To print the document with the options you’ve chosen, click this button.” Do

not complicate the message with information like “To print the number of copies of the

document that you’ve selected to the left, using the printer named at the top of this

dialog box,” and so on.

Listing 3-8 shows a sample dialog-item help resource along with its associated item list

and string list resources.

C H A P T E R 3

Help Manager

Using the Help Manager 3-59

Listing 3-8 Rez input for an item list resource and an 'hdlg' resource

resource 'DITL' (145, "Spelling options", purgeable) {

{ {124, 194, 144, 254},

Button {

enabled,

"OK"

},

{48, 23, 67, 202},

CheckBox {

enabled,

"Ignore Words in All Caps"

},

{83, 23, 101, 196},

CheckBox {

enabled,

"Ignore Slang Terms"

},

{13, 23, 33, 254},

StaticText {

disabled,

"WipeOut typing correction options:"

},

/*item for Cancel button goes here*/

{0,0,0,0}, /*for help balloon: scan 'hdlg' with */

/* res ID 145*/

HelpItem {

disabled,

HMScanhdlg /*scan resource type 'hdlg'*/

{145} /*get the resource with ID 145*/

}

}

};

resource 'hdlg' (145, "Spell options help", purgeable) {

/*header component*/

HelpMgrVersion, /*version of Help Manager*/

0, /*start help with first item in 'DITL'*/

hmDefaultOptions, /*options*/

0, /*balloon definition ID*/

3, /*variation code: hang left of items*/

/*missing-items component*/

HMSkipItem { /*no missing-items help messages*/

},

{ /*help messages for items*/

C H A P T E R 3

Help Manager

3-60 Using the Help Manager

/*first dialog-item component: OK button*/

HMStringResItem { /*store help messages in 'STR#' 145*/

{10, 10}, /*place tip inside left edge of button*/

{0,0,0,0}, /*default alternate rectangle: use */

/* display rectangle*/

145, 1, /*enabled OK button*/

0, 0, /*OK button is never dimmed*/

0, 0, /*no enabled-and-checked state for */

/* button*/

0, 0 /*no other marked states for button*/

},

/*second dialog-item component: All Caps checkbox*/

HMStringResItem { /*store help messages in 'STR#' 145*/

{6, 6}, /*place tip in checkbox*/

{0,0,0,0}, /*default alternate rectangle: use */

/* display rectangle*/

145, 2, /*highlighted state of checkbox*/

145, 3, /*dimmed state of checkbox*/

145, 4, /*checkbox is checked*/

0, 0 /*not applicable to this control*/

},

/*third dialog-item component: Slang Terms checkbox*/

HMStringResItem { /*store help messages in 'STR#' 145*/

{6, 6}, /*place tip in checkbox*/

{0,0,0,0}, /*default alternate rectangle: use */

/* display rectangle*/

145, 5, /*highlighted state of checkbox*/

145, 6, /*dimmed state of checkbox*/

145, 7, /*checkbox is checked*/

0, 0 /*not applicable to this control*/

}

/*dialog-item component for Cancel button goes here*/

}

};

resource 'STR#' (145, "Spell options help text") {

{

/*[1]*/

"To check the spelling of this document with the "

"options you've chosen, click this button.";

/*[2]*/

"To prevent the spelling checker from tagging "

"words--such as acronyms--that consist entirely "

"of capital letters, click this option.";

C H A P T E R 3

Help Manager

Using the Help Manager 3-61

/*[3]*/

"Prevents the spelling checker from tagging "

"words--such as acronyms--that consist entirely "

"of capital letters. Not available until ";

"you install the main dictionary.";

/*[4]*/

"The spelling checker is not tagging "

"words--such as acronyms--that consist entirely "

"of capital letters. Click here to make the ";

"spelling checker tag such words.";

/*[5]*/

"To prevent the spelling checker from tagging words "

"considered to be slang, click this option.";

/*[6]*/

"Prevents the spelling checker from tagging "

"words considered to be slang. "

"Not available until you install the slang dictionary.";

/*[7]*/

"The spelling checker is not tagging "

"words considered to be slang. "

"Click here to make the spelling checker tag such words.";

/*help strings for Cancel button go here*/

}

};

The 'hdlg' resource in Listing 3-8 specifies help messages for the first three items in the

item list resource. Figure 3-17 shows the Help Manager displaying a help balloon for the

second item.

Figure 3-17 A help balloon in a modal dialog box

C H A P T E R 3

Help Manager

3-62 Using the Help Manager

Adding a Help Item to an Item List Resource

In Listing 3-8 on page 3-59, an item of type HelpItem is included in the item list

('DITL') resource. This item isn’t visible to the user; it’s provided so that the Help

Manager can find the 'hdlg' or 'hrct' resource in which you’ve specified the help

messages for your dialog box or alert box.

When creating a help item in an item list resource, specify an empty rectangle—that is,

one with coordinates (0,0,0,0)—for the item’s display rectangle. Specify HelpItem for

the item’s type, and specify disabled for the item’s state. Then, specify one of these

three identifiers:

If you specify help messages for your dialog box or alert box in an 'hdlg' resource, use

either the HMScanhdlg or the HMScanAppendhdlg identifier. Use the

HMScanAppendhdlg identifier, however, only when you use the Dialog Manager

procedure AppendDITL to append the item list resource to another item list resource.

The AppendDITL procedure is useful, for example, when adding your own items to the

standard file dialog box or print dialog box. When you use the AppendDITL procedure

to add items to an existing dialog box or alert box, the HMScanAppendhdlg identifier

allows you to provide help balloons for the new items in addition to those balloons

already provided for the dialog box or alert box. See the chapter “Dialog Manager” in

Inside Macintosh: Macintosh Toolbox Essentials for more information on the AppendDITL

procedure.

As described in “Specifying Help for Rectangles in Windows” on page 3-67, you can also

use the 'hrct' resource to specify help balloons for areas of your dialog box or alert

box. If you specify help messages for a dialog box or alert box in an 'hrct' resource,

you can use the HMScanhrct identifier in the help item of the box’s item list resource.

Conclude a help item by specifying the resource ID of the 'hdlg' or 'hrct' resource

that provides the help messages for the dialog box or alert box.

Identifier Purpose

HMScanhdlg For the items in an item list resource, the Help Manager
displays the help messages specified in an 'hdlg' resource.

HMScanAppendhdlg For the items in one item list resource that are appended to
those in another item list resource, the Help Manager
displays help messages specified in an 'hdlg' resource.

HMScanhrct For rectangular areas in the dialog box or alert box, the Help
Manager displays help messages specified in an 'hrct'
resource.

C H A P T E R 3

Help Manager

Using the Help Manager 3-63

Using a Help Item Versus Using an 'hwin' Resource

Adding an item of type HelpItem to an item list resource is the simplest method of

associating the help balloons defined in your 'hdlg' (or 'hrct') resource with the

item list resource. A slightly more involved method requires you to create an 'hwin'

(window help) resource. The advantages and disadvantages of the two methods are

listed here.

The advantages of adding an item for help to the item list resource are that

■ it’s simple (you have to create only one resource, the 'hdlg' or 'hrct' resource)

■ it works for dialog boxes or alert boxes that have no titles and for those whose
windowKind values do not adequately differentiate them from other windows
(the windowKind field of window records is described in the chapter “Window
Manager” in Inside Macintosh: Macintosh Toolbox Essentials)

The disadvantage of adding an item for help to the item list resource is that it allows you

to associate help balloons only with items listed in the item list resource.

The advantages of using 'hwin' (window help) resources are that

■ you can provide a single help balloon for a group of related items (rather than having
separate help balloons for all the items)

■ you can provide help balloons for areas instead of items inside the dialog box or alert
box

The disadvantages of using 'hwin' resources are that

■ it’s slightly more complex, because you must create an 'hwin' resource in addition to
either an 'hdlg' or an 'hrct' resource

■ it works only for dialog boxes and alert boxes that have titles or windowKind values
that differentiate them from other windows in your application

Using the 'hwin' resource requires treating the dialog box or alert box as a static

window. When the cursor passes over an active window, the Help Manager attempts to

match either the title of the window or the windowKind value (from its window record)

with a title or windowKind value you specify in an 'hwin' resource. “Associating Help

Resources With Static Windows” beginning on page 3-68 describes how to use

'hwin' resources for dialog boxes, alert boxes, and other kinds of static windows you

may wish to define.

Providing Help Balloons for Window Content
You can create help balloons for objects within the content area of your windows. How

you choose to provide help balloons for the content area of your windows depends

mainly on whether your windows are static or dynamic.

A static window doesn’t change its title or reposition any of the objects within its

content area. A dynamic window can reposition any of its objects within the content

area, or its title may change.

C H A P T E R 3

Help Manager

3-64 Using the Help Manager

For example, any window that scrolls past areas of interest to the user is a dynamic

window, because the objects with associated help balloons can change location as the

user scrolls. A window that displays only a picture that cannot be resized or scrolled is

an example of a static window. Figure 3-18 shows examples of static and dynamic

windows. “Providing Help Balloons for Static Windows” beginning on page 3-65,

“Associating Help Resources With Static Windows” beginning on page 3-68, and

“Providing Help Balloons for Dynamic Windows” beginning on page 3-74 describe how

to provide help balloons for these types of windows.

Figure 3-18 Static and dynamic windows

C H A P T E R 3

Help Manager

Using the Help Manager 3-65

Providing Help Balloons for Static Windows
To provide help balloons for the static windows of your application without modifying

its code, create a resource of type 'hwin' (window help) and additional resources of

type 'hrct' (rectangle help) or 'hdlg' (dialog-item help). With these resources, the

Help Manager automatically tracks the cursor and displays and removes help balloons

as the cursor moves into and out of the hot rectangles associated with these resources.

The 'hwin' resource allows you to associate 'hrct' and 'hdlg' resources with your

static windows. You use the 'hrct' and 'hdlg' resources to define help balloons for

the individual objects within your windows. While the Help Manager uses the display

rectangles defined in the item list resource as the hot rectangles for 'hdlg' resources,

you can specify your own hot rectangles for alert boxes and dialog boxes and other static

windows by using 'hrct' resources.

Note

BalloonWriter gives nonprogrammers an easy, intuitive way to create
help balloons for static windows and dialog and alert boxes.
BalloonWriter creates 'hdlg', 'hwin', and 'hrct' resources as
appropriate and places them in the resource file of your application;
BalloonWriter likewise creates and stores 'STR ', 'STR#', and 'TEXT'
resources that contain the help messages authored by nonprogramming
writers. ◆

You use an 'hrct' resource to specify tip coordinates, hot rectangles, balloon definition

functions, variation codes, and help messages for areas within a static window.

As explained in “Providing Help Balloons for Items in Dialog Boxes and Alert Boxes” on

page 3-51, you use the 'hdlg' resource to specify the tip, alternate rectangle, and help

messages for items in an alert box or dialog box. “Using a Help Item Versus Using an

'hwin' Resource” on page 3-63 describes how to associate either an 'hdlg' or an

'hrct' resource with an alert box or a dialog box by adding an item of type HelpItem

to the box’s item list resource. This section describes how you can instead treat your

dialog boxes or alert boxes as static windows and use an 'hwin' resource instead of

HelpItem items to associate 'hdlg' and 'hrct' resources with the boxes.

The 'hwin' resource identifies windows by their titles or by their windowKind values.

You can list all of your windows within one 'hwin' resource, or you can create separate

'hwin' resources for your separate windows. (You’ll probably find it easier to maintain

your window help if you create only one 'hwin' resource, but, as described later in this

section, you must create separate 'hwin' resources for windows that require different

options. For example, one window may be matched to its 'hwin' resource by a string

anywhere in the window’s title, and another window may be matched to its 'hwin'

resource only by the exact string of the window’s title.) An 'hwin' resource contains

the resource ID (or IDs) of one or more 'hrct' or 'hdlg' resources. With an 'hwin'

resource, you can use both 'hrct' and 'hdlg' resources for various parts of the same

window.

C H A P T E R 3

Help Manager

3-66 Using the Help Manager

To use an 'hwin' resource, the window’s window record must specify either a title

or a windowKind value that adequately distinguishes it from other windows.

Within an 'hwin' resource, you could identify the Verb Tenses window shown in

Figure 3-20 on page 3-72 by its title, and you could identify the palette window

in Figure 3-19 on page 3-70 by its windowKind value.

The chapter “Window Manager” in Inside Macintosh: Macintosh Toolbox Essentials

describes the windowKind field of the window record. Note that windowKind values of

0, 1, and 3 through 7 are reserved by system software and that dialog boxes or alert

boxes must have a value of 2. Because your dialog boxes and alert boxes must have a

windowKind value of 2, you can use this value to define only one 'hwin' resource for

all untitled dialog boxes and alert boxes. You may find it difficult—using 'hwin',

'hrct', and 'hdlg' resources alone—to provide help balloons for untitled dialog and

alert boxes. However, you can use an 'hwin' resource to associate generic help for the

common objects of all your untitled dialog boxes and alert boxes, and you can use the

HMSetDialogResID function to provide help for the unique objects among them.

The HMSetDialogResID function is explained on page 3-117.

You describe the tip, a rectangle, and help messages for each object in static windows

using either 'hrct' or 'hdlg' resources. As shown here, an 'hrct' resource consists

of two types of components: a header component and a hot-rectangle component. You

use hot-rectangle components to specify the hot rectangles within the window and the

help messages for each hot rectangle. (For a description of 'hdlg' resources, see

“Providing Help Balloons for Items in Dialog Boxes and Alert Boxes” beginning on

page 3-51.)

Component Element

Header Help Manager version

Options

Balloon definition function

Variation code

First hot rectangle Identifier for help message

Tip’s coordinates

Hot rectangle coordinates

Help message for hot rectangle

Next hot rectangle (Same as for first hot rectangle)

.

.

.

Last hot rectangle (Same as for first hot rectangle)

C H A P T E R 3

Help Manager

Using the Help Manager 3-67

Specifying Header Information for the 'hrct' Resource

As with the other help resources, specify the HelpMgrVersion constant for the first

element of the header component of the 'hrct' resource. For the second element,

specify a constant (normally, hmDefaultOptions) or the sum of several constants’

values from the following list. (“Specifying Options in Help Resources” beginning on

page 3-25 describes these options.)

CONST hmDefaultOptions = 0; {use defaults}

hmUseSubID = 1; {use subrange resource IDs }

{ for owned resources}

hmAbsoluteCoords = 2; {ignore coords of window }

{ origin and treat upper-left }

{ corner of window as 0,0}

hmSaveBitsNoWindow = 4; {don't create window; save }

{ bits; no update event}

hmSaveBitsWindow = 8; {save bits behind window }

{ and generate update event}

Specify the balloon definition function and the variation code (both typically 0) in the

third and fourth elements, respectively, of the header component. (The balloon definition

function and the variation code are described in detail in “Specifying Header

Information for the 'hmnu' Resource” on page 3-32.)

Specifying Help for Rectangles in Windows

Following the header component, use hot-rectangle components to specify tip

coordinates, hot rectangles, and help messages for all the areas in the window that

would benefit from having help balloons.

For the first element of each hot-rectangle component, specify the format that the help

messages take. As with the other help resources, specify the format using one of these

identifiers: HMStringItem, HMSTRResItem, HMStringResItem, HMPictItem,

HMTEResItem, or HMSkipItem, described in “Specifying the Format for Help

Messages” on page 3-23.

Use the second element of the hot-rectangle component to specify the coordinates (local

to the window) of the balloon tip. Use the third element to specify the coordinates

(local to the window) of the hot rectangle. Use the fourth element to specify your help

message, as either a text string or a resource ID.

In a hot-rectangle component, you specify the tip, hot rectangle, and help message for

every applicable area in the window. As explained in “Using a Help Item Versus Using

an 'hwin' Resource” on page 3-63, you can associate an 'hrct' resource with an alert

box or a dialog box by adding an item of type HelpItem to the box’s item list resource.

For windows, you create an 'hwin' resource that contains the resource ID of this

'hrct' resource and that associates the 'hrct' resource with the window. In either

C H A P T E R 3

Help Manager

3-68 Using the Help Manager

case, the Help Manager automatically tracks the cursor and displays and removes help

balloons as the user moves the cursor into and out of the hot rectangles defined in this

'hrct' resource.

If you need to supply a help balloon for an area within a larger area that needs a

different help balloon, create 'hrct' resources for both the inner and outer areas and

specify their areas as hot rectangles. In your resource file, list the 'hrct' resource

for the inner area before the 'hrct' resource for the outer area. Then, when the cursor is

in the inner hot rectangle, the Help Manager scans its 'hrct' resource first and displays

its help balloon instead of the help balloon for the outer hot rectangle. When the cursor

moves from the inner hot rectangle to the outer, the Help Manager removes the inner

area’s help balloon and displays the balloon for the outer hot rectangle.

As previously explained, you can create an 'hdlg' resource to specify the tips, alternate

rectangles, balloon definitions, variation codes, and help messages for items in an item

list resource, and you can use an 'hwin' resource to associate that 'hdlg' resource

with a dialog box or alert box. When help is enabled and your application calls the

Dialog Manager routine ModalDialog, IsDialogEvent, Alert, NoteAlert,

CautionAlert, or StopAlert, the Help Manager automatically tracks the cursor and

displays and removes help balloons for items specified in the 'hdlg' resource.

Associating Help Resources With Static Windows
To associate 'hrct' and 'hdlg' resources with static windows, create an 'hwin'

resource. As shown here, an 'hwin' resource consists of two types of components: a

header component and a window component. Use a window component to associate an

'hrct' or 'hdlg' resource with a particular window.

Component Element

Header Help Manager version

Options

First window Resource ID of an 'hrct' or 'hdlg' resource

Resource type ('hdlg' or 'hrct')

Length used to compare title strings—or, if flagged by a
 minus sign (–), the windowKind value of an untitled window

Window title string—or empty string if window is untitled

Next window (Same as the first window component)

.

.

.

Last window (Same as the first window component)

C H A P T E R 3

Help Manager

Using the Help Manager 3-69

Specifying Header Information for the 'hwin' Resource

Specify the HelpMgrVersion constant for the first element of the header component.

For the second element, specify a constant (normally, hmDefaultOptions) or the sum

of several constants’ values from this list.

CONST hmDefaultOptions = 0 {use defaults}

hmUseSubID = 1; {use subrange resource IDs }

{ for owned resources}

hmMatchInTitle = 16; {match window by string }

{ anywhere in title string}

Notice that options regarding local coordinates and bits behind the balloon are not

applicable to the 'hwin' resource, but, compared to the other resources related to the

Help Manager, the 'hwin' resource has a unique option: hmMatchInTitle.

If you’re providing help balloons for a desk accessory or a driver that owns other

resources, use the hmUseSubID constant in the second element. (See the chapter

“Resource Manager” in this book for a discussion of owned resources and their resource

IDs.)

You can specify the hmMatchInTitle constant to match windows containing a

specified number of sequential characters starting with any character position in the

window title. If you do not specify the hmMatchInTitle constant for the second

element of the header component, the Help Manager matches characters starting with

the first character of the window title.

For example, if an 'hwin' resource specifies the hmMatchInTitle constant in the

header component, specifies in the window component that four characters should be

matched, and specifies the character string Test as the window’s title string, the Help

Manager uses this 'hwin' resource when the cursor is located in any active window

that is titled Test, Window Test, or Test Case or is given a title with any other string that

contains the characters Test.

If you supply the hmDefaultOptions constant, the Help Manager treats the resource

IDs in this resource as regular resource IDs and not as subrange IDs, and it begins

matching characters at the first character of the window strings specified in each

window component. As long as the window components all use the same options, you

can list help for all your windows in a single 'hwin' resource. You must create separate

'hwin' resources for window components that require different options.

Specifying 'hdlg' or 'hrct' Resources in the 'hwin' Resource

You can specify multiple window components after the header component.

Within the 'hwin' resource you identify 'hrct' resources and 'hdlg' resources by

their resource IDs and by their types. Use the first element of a window component to

specify the resource ID of either an 'hrct' or an 'hdlg' resource. Use the second

element to specify that resource’s type—either 'hrct' or 'hdlg'. Use the next

two elements to specify the window with which you want to associate the 'hrct' or

'hdlg' resource identified in the first two elements.

C H A P T E R 3

Help Manager

3-70 Using the Help Manager

You specify windows in one of these two ways:

■ by specifying the number of characters used for matching a window title in the third
element of the window component, and by specifying a string consisting of this
number of sequential characters from the window’s title in the fourth element

■ by flagging the third element of the component with a minus sign (–), specifying the
windowKind value from the window’s window record in the third element, and
leaving an empty string in the fourth element

When an active window has a title or windowKind value that matches an 'hwin'

resource, the Help Manager provides help balloons for the hot rectangles associated with

the specified 'hrct' and 'hdlg' resources.

Figure 3-19 shows a sample palette an application might use and the help balloon

displayed for the hammer tool.

Figure 3-19 A tool palette with a help balloon

Note that the help message in Figure 3-19 names the tool. It’s a good idea to name tools,

because the name of a tool often helps the user determine the purpose of the tool. After

naming the tool, describe one or two likely ways to use it. Don’t describe every shortcut

or trick you can do with the modifier keys.

For dialog boxes and alert boxes, you can use 'hrct' resources to define hot rectangles

in addition to or instead of those associated with the items. For example, you might want

to use an 'hwin' and an 'hrct' resource in a dialog box to associate a single help

balloon with a group of related items rather than provide separate help balloons for all

the individual items. (To provide help balloons for individual items by using 'hdlg'

resources alone, see “Providing Help Balloons for Items in Dialog Boxes and

Alert Boxes” beginning on page 3-51.)

When providing one help balloon for a group of options in a dialog box, describe first

how to implement the options, and then describe how to tell whether an option is

selected. If, for example, radio buttons titled Left, Right, and Middle appear in a dialog

box grouped under the heading Alignment, a single help balloon explaining this group

might state, “To line up the selected text along the left margin, right margin, or middle of

C H A P T E R 3

Help Manager

Using the Help Manager 3-71

the page, click one of these buttons. A dot indicates the selected option.” A help balloon

for several checkboxes grouped under the heading Style might state, “To apply design

elements to the selected text, click the styles you want. To remove design elements, click

the styles you want to remove. An X means a style has been applied.”

Listing 3-9 shows the 'hwin' resource and the 'hrct' resource for the palette in

Figure 3-19.

Listing 3-9 Rez input for corresponding 'hwin' and 'hrct' resources

resource 'hwin' (128, "Window help resource", purgeable) {

HelpMgrVersion, hmDefaultOptions,/*header component*/

{ /*window component*/

128, /*resource ID of type specified on next line*/

'hrct', /*resource type for defining help*/

5, /*length to use when comparing strings*/

"Tools" /*window's title string*/

}

};

resource 'hrct' (128, "Tools palette help") {

/*header component*/

HelpMgrVersion,

hmDefaultOptions,

0, /*balloon definition function*/

0, /*variation code*/

{

/*hot-rectangle component for saw tool goes here*/

/*hot-rectangle component for hammer tool*/

HMStringResItem {

{50, 127}, /*tip's coordinates*/

{22,99,54,131}, /*hot rectangle*/

147,2 /*'STR#' resource ID and index*/

}

/*hot-rectangle components for other tools go here*/

}

};

resource 'STR#' (147, "Tools palette help text") {

{

/*[1] saw tool*/

/*help text for saw tool goes here*/

/*[2] hammer tool*/

"Hammer\n\nTo construct a simple sentence, point to the "

"space between a verb and a noun, and then click "

C H A P T E R 3

Help Manager

3-72 Using the Help Manager

"repeatedly.";

/*help for other tools goes here*/

}

};

You can also use the 'hwin' resource to associate help for items in an alert box or a

dialog box. Figure 3-20 shows the Help Manager displaying a help balloon for an item in

the dialog box titled Verb Tenses.

Figure 3-20 A help balloon for a dialog box with a title

Listing 3-10 shows how the 'hwin' resource associates an 'hdlg' resource with the

dialog box illustrated in Figure 3-20. This 'hwin' resource associates help with three

different windows: the first is the window titled Tools, the second is an untitled window

with a windowKind value of 10, and the third is the dialog box titled Verb Tenses.

Listing 3-10 Rez input for specifying help for titled and untitled windows

resource 'hwin' (128, "Window help resource", purgeable) {

/*header component*/

HelpMgrVersion, hmDefaultOptions,

{ /*first window component*/

128, /*help resource ID for Tools window*/

'hrct', /*resource type for defining help*/

5, /*length to use when comparing strings*/

"Tools", /*window's title string*/

/*second window component*/

129, /*help resource ID for untitled window*/

'hdlg', /*resource type for defining help*/

-10, /*match on windowKind values of 10*/

"", /*matching on windowKind, so empty */

/* string goes here*/

/*third window component*/

130, /*help res ID for Verb Tenses window*/

C H A P T E R 3

Help Manager

Using the Help Manager 3-73

'hdlg', /*resource type for defining help*/

11, /*length to use when comparing strings*/

"Verb Tenses", /*dialog box's title string*/

}

};

resource 'hdlg' (130, "Help for Verb Tense control", purgeable) {

/*header component*/

HelpMgrVersion, /*version of Help Manager*/

0, /*start with first item in item list*/

hmDefaultOptions, /*options*/

0, /*balloon definition ID*/

0, /*variation code*/

/*missing-items component*/

HMSkipItem {/*no missing-item help message*/

},

{ /*first dialog-item component*/

HMStringResItem {

{20, 130}, /*tip--local to item's display rectangle*/

{0,0,0,0}, /*default alternate rectangle: use */

/* item's display rectangle*/

131, 1, /*highlighted control for future tense*/

131, 2, /*dimmed control for future tense*/

0, 0, /*no checked state for control*/

0, 0 /*no other states for control*/

},

/*second dialog-item component*/

HMStringResItem {

{20, 130}, /*tip--local to item's display rectangle*/

{0,0,0,0}, /*default alternate rectangle: use */

/* item's display rectangle*/

131, 3, /*highlighted control for past tense*/

131, 4, /*dimmed control for past tense*/

0, 0, /*no enabled-and-checked control*/

0, 0 /*no other marks for control*/

}

}

};

resource 'STR#' (131, "Verb tense help strings") {

{

/*[1] highlighted control for future tense: help text*/

"Click here to replace the selected verb with its "

"future tense.";

/*[2] dimmed control for future tense: help text*/

C H A P T E R 3

Help Manager

3-74 Using the Help Manager

"Click here to replace a verb with its future tense. "

"Not available now because you have not selected a verb.";

/*[3] /*highlighted control for past tense: help text*/

"Click here to replace the selected verb with its past tense.";

/*[4] dimmed control for past tense: help text*/

"Click here to replace a verb with its past tense. "

"Not available now because you have not selected a verb.";

}

};

Providing Help Balloons for Dynamic Windows
To create help balloons for objects whose location in the content area of windows may

vary, your application needs to use Help Manager routines to display and remove

balloons as the user moves the cursor.

Note

Nonprogrammers can use the BalloonWriter tool to provide you with
delimited ASCII text that you can then use in conjunction with Help
Manager routines to display balloons for dynamic windows. However,
BalloonWriter does not create the resources or routines necessary to
automatically display help balloons for these types of windows. ◆

You should display or remove help balloons for dynamic windows at the same time that

you normally check the mouse location to display or change the cursor. For example,

if you provide your own DoIdle procedure (as described in the chapter “Event

Manager” in Inside Macintosh: Macintosh Toolbox Essentials), you can also check the mouse

location and, if the cursor is located in a hot rectangle, you should display the associated

help balloon.

To create help balloons for the content area of a dynamic window, you need to

■ identify the hot rectangles for each area or object

■ create data structures to store the locations of the hot rectangles

■ determine how to calculate their changing locations

■ track and update the hot rectangles

■ use the HMShowBalloon function to display a help balloon when the cursor is located
in a hot rectangle

After defining all the hot rectangles within your content region, create separate 'STR ',

'STR#', 'PICT', or 'TEXT' and 'styl' resources for the help balloons’ messages.

You don’t have to store the help messages in these resources when using

HMShowBalloon, but doing so makes your application easier to localize.

C H A P T E R 3

Help Manager

Using the Help Manager 3-75

When you use the HMShowBalloon function, your application is responsible for

tracking the cursor and determining when to display the help balloon. If you use the

HMShowBalloon function, you can let the Help Manager track the cursor and determine

when to remove the help balloon, or your application can remove the balloon when

necessary by calling the HMRemoveBalloon function. If you display your own help

balloons using the HMShowBalloon function, you should use the HMGetBalloons

function to determine whether help is enabled before displaying a help balloon. If help is

not enabled, you don’t need to call any Help Manager routines that display balloons,

because they won’t do anything unless HMGetBalloons returns TRUE.

The HMShowBalloon function is useful for

■ windows whose content changes

■ windows that can be resized

■ windows that contain hot rectangles with variable locations

■ situations in which you want your application to have more control over the display
and removal of the help balloon

For example, windows with scrolling icons (such as the Users & Groups dynamic

window shown in Figure 3-18 on page 3-64) require you to use HMShowBalloon to

display help balloons for the icons. Likewise, if you have tools—such as rulers that users

configure for tab stops in a word-processing document—that scroll with a document,

you’ll need to use HMShowBalloon to display help balloons for the scrolling tools.

When using HMShowBalloon, you specify the help message, the balloon tip’s

coordinates, an alternate rectangle to use if the Help Manager needs to move the tip, an

optional pointer to a function that can modify the tip and alternate rectangle coordinates,

the balloon definition function, and the variation code. In the final parameter to the

HMShowBalloon function, provide a constant that tells the Help Manager whether to

save the bits behind the balloon.

myErr := HMShowBalloon(aHelpMsg, tip, alternateRect, tipProc,

 theProc, variant, method);

Specify the help message in a help message record, which you pass in the aHelpMsg

parameter to the HMShowBalloon function. You can specify the help message for each

hot rectangle using text strings, 'STR ' resources, 'STR#' resources, styled text

resources, 'PICT' resources, handles to styled text records, or handles to pictures.

C H A P T E R 3

Help Manager

3-76 Using the Help Manager

The HMMessageRecord data type defines the help message record.

TYPE HMMessageRecord =

RECORD

hmmHelpType: Integer; {type of next field}

CASE Integer OF

khmmString: (hmmString: Str255); {Pascal string}

khmmPict: (hmmPict: Integer); {'PICT' resource ID}

khmmStringRes: (hmmStringRes: HMStringResType);

{'STR#' resource }

{ ID and index}

khmmTEHandle: (hmmTEHandle: TEHandle);

{TextEdit handle}

khmmPictHandle: (hmmPictHandle: PicHandle);

{picture handle}

khmmTERes: (hmmTERes: Integer); {'TEXT'/'styl' }

{ resource ID}

khmmSTRRes: (hmmSTRRes: Integer);{'STR ' resource ID}

END;

The hmmHelpType field specifies the data type of the second field of the help message

record. You specify one of these constants for the hmmHelpType field.

CONST khmmString = 1; {Pascal string}

khmmPict = 2; {'PICT' resource ID}

khmmStringRes = 3; {'STR#' resource ID and index}

khmmTEHandle = 4; {TextEdit handle}

khmmPictHandle = 5; {picture handle}

khmmTERes = 6; {'TEXT' and 'styl' resource ID}

khmmSTRRes = 7; {'STR ' resource ID}

You specify the help message itself in the second field of the help message record.

You can specify the help message by using a text string, a text string stored in a resource

of type 'STR ', or a text string stored as an 'STR#' resource. You can also provide the

information using styled text resources, or you can provide a handle to a styled text

record. If you want to provide a picture for the help message, you can use a resource of

type 'PICT' or provide a handle to a picture.

Listing 3-11 illustrates how to specify a Pascal string using the khmmString constant in

the help message record. (Although you can specify a string from within your code,

storing the strings in resources and then accessing them through the Resource Manager

makes localization easier.)

C H A P T E R 3

Help Manager

Using the Help Manager 3-77

Listing 3-11 Using a string resource as the help message for HMShowBalloon

PROCEDURE DoTextStringBalloon;

VAR

aHelpMsg: HMMessageRecord;

tip: Point;

alternateRect: RectPtr;

err: OSErr;

BEGIN

aHelpMsg.hmmHelpType := khmmString;

aHelpMsg.hmmString := 'To turn the page, click here.';

MySetTipAndAltRect(tip, alternateRect); {initialize values}

err := HMShowBalloon(aHelpMsg, tip, alternateRect,

NIL, 0, 0, kHMRegularWindow);

END;

To use a picture, you can either store the picture as a 'PICT' resource or create the

'PICT' graphic from within your application and provide a handle to it. Because the

Help Manager uses the resource itself or the actual handle that you pass to

HMShowBalloon, your 'PICT' resource should be purgeable, or, when using a handle

to a 'PICT' resource, you should release the handle or dispose of it when you are

finished with it.

Listing 3-12 illustrates how to use the khmmPict constant for specifying a 'PICT'

resource ID in a help message record. The help message record is then passed in the

aHelpMsg parameter of the HMShowBalloon function.

Listing 3-12 Using a picture resource as the help message for HMShowBalloon

PROCEDURE DoPictBalloon;

VAR

aHelpMsg: HMMessageRecord;

tip: Point;

alternateRect: RectPtr;

err: OSErr;

BEGIN

aHelpMsg.hmmHelpType := khmmPict;

aHelpMsg.hmmPict := 128; {resource ID of 'PICT' resource}

MySetTipAndAltRect(tip, alternateRect); {initialize values}

err := HMShowBalloon(aHelpMsg, tip, alternateRect,

NIL, 0, 0, kHMRegularWindow);

END;

C H A P T E R 3

Help Manager

3-78 Using the Help Manager

Listing 3-13 illustrates how to specify a handle to a 'PICT' resource using the

khmmPictHandle constant in the help message record. The help message record is then

passed to the HMShowBalloon function in the aHelpMsg parameter.

Listing 3-13 Using a handle to a picture resource as the help message for HMShowBalloon

PROCEDURE DoPictBalloon2;

VAR

pict: PicHandle;

aHelpMsg: HMMessageRecord;

tip: Point;

pictFrame: Rect;

alternateRect: RectPtr;

err: OSErr;

BEGIN

MySetPictFrame(pictFrame); {initialize pictFrame}

pict := OpenPicture(pictFrame);

DrawString('Test Balloon');

ClosePicture;

aHelpMsg.hmmHelpType := khmmPictHandle;

aHelpMsg.hmmPictHandle := pict;

MySetTipAndAltRect(tip, alternateRect); {initialize values}

err := HMShowBalloon(aHelpMsg, tip, alternateRect,

NIL, 0, 0, kHMRegularWindow);

KillPicture(pict);

END;

To specify a help message stored in a string list ('STR#' resource) in a help message

record, you must first create a Help Manager string list record. The HMStringResType

data type defines a Help Manager string list record.

TYPE HMStringResType =

RECORD

hmmResID: Integer; {resource ID of 'STR#' resource}

hmmIndex: Integer; {index of string}

END;

C H A P T E R 3

Help Manager

Using the Help Manager 3-79

The hmmResID field specifies the resource ID of the 'STR#' resource, and the

hmmIndex field specifies the index of a string within that resource.

To use a string stored in an 'STR#' resource with the HMShowBalloon function, use the

khmmStringRes constant in the hmmHelpType field of the help message record, and

supply the hmmStringRes field with a Help Manager string list record, as shown in

Listing 3-14.

Listing 3-14 Using a string list resource as the help message for HMShowBalloon

PROCEDURE DoStringListBalloon;

VAR

aHelpMsg: HMMessageRecord;

tip: Point;

alternateRect: RectPtr;

khmmStringRes: HMStringResType;

err: OSErr;

BEGIN

aHelpMsg.hmmHelpType := khmmStringRes;

aHelpMsg.hmmStringRes.hmmResID := 1000;

aHelpMsg.hmmStringRes.hmmIndex := 1;

MySetTipAndAltRect(tip, alternateRect); {initialize values}

err := HMShowBalloon(aHelpMsg, tip, alternateRect,

NIL, 0, 0, kHMRegularWindow);

END;

To use styled text resources with the HMShowBalloon function, use the khmmTERes

constant in the hmmHelpType field of the help message record. In the next field, supply

a resource ID that is common to both a 'TEXT' resource and a style scrap ('styl')

resource. For example, you might create a 'TEXT' resource that contains the words

“Displays your text in boldface print.” You would also create a 'styl' resource (with

the same resource ID as the 'TEXT' resource) that applies boldface style to the word

“boldface.” When you specify the HMTEResItem constant and the resource ID number

of the 'TEXT' and 'styl' resources, the Help Manager employs TextEdit routines to

display your text with your prescribed styles.

C H A P T E R 3

Help Manager

3-80 Using the Help Manager

To use a handle to a styled text record, supply the khmmTEHandle constant in the

hmmHelpType field, as illustrated in Listing 3-15.

Listing 3-15 Using styled text resources as the help message for HMShowBalloon

PROCEDURE DoStyledTextBalloon;

VAR

aHelpMsg: HMMessageRecord;

tip: Point;

alternateRect: RectPtr;

hTE: TEHandle;

err: OSErr;

BEGIN

hTE := TEStyleNew(destRect, viewRect); {or, use TENew}

{be sure to fill in data in handle here}

aHelpMsg.hmmHelpType := khmmTEHandle;

aHelpMsg.hmmTEHandle := hTE;

MySetTipAndAltRect(tip, alternateRect); {initialize values}

err := HMShowBalloon(aHelpMsg, tip, alternateRect,

NIL, 0, 0, kHMRegularWindow);

END;

When using the HMShowBalloon function, you specify the tip in the tip parameter and

the rectangle pointed to in the alternateRect parameter in global coordinates. The

Help Manager calculates the location and size of the help balloon. If the help balloon fits

onscreen, the Help Manager displays the help balloon using the specified tip.

If you use the previously described help resources to define help balloons, the Help

Manager uses the hot rectangles you specify in the help resources for two purposes: first,

to associate areas of the screen with help balloons and, second, to move the tip if the help

balloon doesn’t fit onscreen.

However, if you use the HMShowBalloon function to display help balloons, you must

identify hot rectangles, create your own data structures to store their locations, track the

cursor yourself, and call HMShowBalloon when the cursor moves to your hot

rectangles. The Help Manager does not know the locations of your hot rectangles, so it

cannot use them for moving the tip if the help balloon is placed offscreen. Instead, the

Help Manager uses the alternate rectangle that you point to with the alternateRect

parameter. Often, you specify the same coordinates for the alternate rectangle that you

specify for your hot rectangle. However, you may choose to make your alternate

rectangle smaller or larger than your hot rectangle. If you make your alternate rectangle

smaller than your hot rectangle, you have greater assurance that the Help Manager will

be able to fit the help balloon onscreen; if you specify an alternate rectangle that is larger

than your hot rectangle, you have greater assurance that the help balloon will not

obscure some object explained by the balloon.

C H A P T E R 3

Help Manager

Using the Help Manager 3-81

By specifying a rectangle in the alternateRect parameter, you tell the Help Manager

to call HMRemoveBalloon to automatically remove the balloon when the cursor leaves

the area bounded by the rectangle. However, if you specify NIL for the alternateRect

parameter, your application is responsible for tracking the cursor and determining when

to remove the help balloon. When you specify NIL, the Help Manager also does not

attempt to calculate a new tip position if the help balloon is offscreen.

Use the tipProc parameter (the fourth parameter to HMShowBalloon) to specify the

tip function called by the Help Manager before displaying the balloon. Specify NIL to

use the Help Manager’s default tip function, or supply your own tip function and point

to it in this parameter. Writing your own tip function is described in

“Application-Defined Routines” beginning on page 3-128.

Note

When you call the HMShowBalloon function, the Help Manager does
not display the help balloon or attempt to move the tip under either of
these conditions:

The help balloon’s tip is offscreen or in the menu bar, and you don’t
specify an alternate rectangle.

Both the help balloon’s tip and the alternate rectangle are offscreen. ◆

Use the parameter theProc (the fifth parameter) to specify a balloon definition

function. To use the standard balloon definition function, specify 0 in this parameter. To

use your own balloon definition function, specify the resource ID of the 'WDEF' resource

containing your balloon definition function. Writing your own balloon definition

function is described in “Writing Your Own Balloon Definition Function” on page 3-93.

Supply a variation code for the balloon definition function in the variant parameter

(the sixth parameter to HMShowBalloon). Specify 0 in the variant parameter to use

the default help balloon shape, specify a code from 1 to 7 to use one of the other

positions provided by the standard balloon definition function, or specify a code to use

one of the positions provided by your own balloon definition function.

Use the method parameter (the last parameter to HMShowBalloon) to specify how the

Help Manager should draw and remove the balloon. Use the following constants for the

parameter.

CONST kHMRegularWindow = 0; {don't save bits; just update}

kHMSaveBitsNoWindow = 1; {save bits; don't do update}

kHMSaveBitsWindow = 2; {save bits; do update event}

If you specify kHMRegularWindow, the Help Manager draws and removes the help

balloon as if it were a window. That is, when drawing the balloon, the Help Manager

does not save bits behind the balloon, and when removing the balloon, the Help

Manager generates an update event. This is the standard behavior of help balloons; it is

the behavior you should normally use.

C H A P T E R 3

Help Manager

3-82 Using the Help Manager

If you specify kHMSaveBitsNoWindow in the method parameter, the Help Manager

does not create a window for displaying the balloon. Instead, the Help Manager creates a

help balloon that is more like a menu than a window. The Help Manager saves the bits

behind the balloon when it creates the balloon. When it removes the balloon, the Help

Manager restores the bits without generating an update event. You should use this

technique only in a modal environment where the bits behind the balloon cannot change

from the time the balloon is drawn to the time it is removed. For example, you might

specify the kHMSaveBitsNoWindow constant when providing help balloons for pop-up

menus that overlay complex graphics, which might take a long time to redraw with an

update event.

If you specify kHMSaveBitsWindow, the Help Manager treats the help balloon as a

hybrid having properties of both a menu and a window. That is, the Help Manager saves

the bits behind the balloon when it creates the balloon, and when it removes the balloon,

it both restores the bits and generates an update event. You’ll rarely need this option. It is

necessary only in a modal environment that might immediately change to a nonmodal

environment—that is, where the bits behind the help balloon are static when the balloon

is drawn, but can possibly change before the help balloon is removed.

Listing 3-16 shows a sample routine that displays help balloons for hot rectangles within

the content area of a window.

Listing 3-16 Using HMShowBalloon to display help balloons

PROCEDURE FindAndShowBalloon (window: WindowPtr);

VAR

i: Integer;

mouse: Point;

savePort: GrafPtr;

helpMsg: HMMessageRecord;

inRect: Boolean;

hotRect: Rect;

result: OSErr;

BEGIN

IF (window = FrontWindow) THEN {only do frontmost windows}

BEGIN

GetPort(savePort); {save the old port for later}

SetPort(window); {set the port to the front window}

GetMouse(mouse); {get the mouse location in local }

{ coords}

inRect := FALSE; {clear flag saying mouse location }

{ wasn't in any hot rectangle}

IF PtInRect(mouse, window^.portRect) THEN

{if the cursor is in the window}

C H A P T E R 3

Help Manager

Using the Help Manager 3-83

FOR i := 1 TO 10 DO {check all ten predefined hot }

{ rectangles in the window}

IF PtInRect(mouse, MyPredefinedRects[i]) THEN

BEGIN {the cursor is in a hot rectangle}

IF (i <> gLastBalloon) THEN

{user moved cursor to a different hot rectangle}

BEGIN

hotRect := MyPredefinedRects[i];

LocalToGlobal(hotRect.topLeft);

{converting rect to global}

LocalToGlobal(hotRect.botRight);

WITH hotRect DO {put the tip in the middle}

SetPt(mouse, (right + left) div 2,

(bottom + top) div 2);

helpMsg.hmmHelpType := khmmStringRes;

{get help message from an 'STR#' resource}

helpMsg.hmmStringRes.hmmResID := kHelpMsgsID;

helpMsg.hmmStringRes.hmmIndex := i;

result := HMShowBalloon

(helpMsg, {use just-made help msg}

 mouse, {pointing to this tip}

 @MyPredefinedRects[i], {use hot }

{ rect for alt rect}

 NIL, {no special tip proc}

 0,0, {using default balloon}

kHMRegularWindow);{don't save bits behind}

IF (result = noErr) THEN {then remember balloon}

gLastBalloon := i;

END;

inRect := TRUE; {remember when the }

{ cursor is in any hot rect}

END;

IF not inRect THEN

gLastBalloon := -1; {clear last balloon global for }

{ no hit}

SetPort(savePort); {restore the port}

END;

END; {FindAndShowBalloon}

The FindAndShowBalloon procedure in Listing 3-16 tracks the cursor, and, if the

cursor is located in a predefined hot rectangle, it displays a help balloon for that

rectangle. In this example there are ten predefined rectangles (in the

MyPredefinedRects array) and ten corresponding help messages in an 'STR#'

C H A P T E R 3

Help Manager

3-84 Using the Help Manager

resource (of ID kHelpMsgsID)—one message for each hot rectangle. Other supporting

routines can update the coordinates of the hot rectangles as their locations change.

You can also use the HMShowBalloon function from the event filter function of a modal

dialog box or an alert box. See the chapter “Dialog Manager” in Inside Macintosh:
Macintosh Toolbox Essentials for information on event filter functions.

Overriding Help Balloons for Non-Document Icons
The Finder displays default help balloons for all icon types. By specifying an 'hfdr'

resource in your application’s resource fork, you can provide your own help balloon for

the Finder to display when the user moves the cursor over your non-document icons.

Note

BalloonWriter, available from APDA, is a tool that gives
nonprogrammers an easy way to create help balloons for most of the
icons that the Finder displays for your software. BalloonWriter creates
an 'hfdr' resource and places it in the resource fork of the file
represented by the icon; BalloonWriter likewise creates and stores an
'STR ' resource that contains the help message. ◆

To override the Finder’s default help balloons for your application icon, desk accessory

icon, system extension icon, or control panel icon, create an 'hfdr' resource in your

resource file. As shown here, an 'hfdr' resource consists of two components: a header

component and an icon component. Use the icon component to specify a help message

for your application’s Finder icon.

Note

You cannot override the default help balloon that the Finder uses for
document icons. ◆

Use resource ID –5696 for your 'hfdr' resource. If an 'hfdr' resource with that ID

exists for an application, the Help Manager uses it instead of the default help balloon

supplied by the Finder.

Component Element

Header Help Manager version

Options

Balloon definition function

Variation code

Icon Identifier for help message

Help message for application icon

C H A P T E R 3

Help Manager

Using the Help Manager 3-85

Specifying Header Information for the 'hfdr' Resource

As with the other help resources, specify the HelpMgrVersion constant for the first

element of the header component of the 'hfdr' resource. For the second element,

specify a constant (normally, hmDefaultOptions) or the sum of several constants’

values from the following list. (“Specifying Options in Help Resources” beginning on

page 3-25 describes these options.)

CONST hmDefaultOptions = 0; {use defaults}

hmUseSubID = 1; {use subrange resource IDs }

{ for owned resources}

hmAbsoluteCoords = 2; {ignore coords of window }

{ origin and treat upper-left }

{ corner of window as 0,0}

hmSaveBitsNoWindow = 4; {don't create window; save }

{ bits; no update event}

hmSaveBitsWindow = 8; {save bits behind window }

{ and generate update event}

Specify the balloon definition function and variation code (both typically 0) in the third

and fourth elements, respectively, of the header component. (These are described in

detail earlier in “Specifying Header Information for the 'hmnu' Resource” on page 3-32.)

Specifying Help for an Icon

In the icon component, use the first element to specify the format that the help message

takes. As with the other help resources, specify the format using one of these identifiers:

HMStringItem, HMSTRResItem, HMStringResItem, HMPictItem, HMTEResItem,

or HMSkipItem. These identifiers are described in “Specifying the Format for Help

Messages” on page 3-23. (If you specify HMSkipItem, no help balloon appears.)

C H A P T E R 3

Help Manager

3-86 Using the Help Manager

In the second element of the icon component, specify the help message. Your help

message doesn’t have to describe how to open icons; you can assume that users know

how.

Figure 3-21 shows the default help balloon for application icons on the left. A custom

help balloon for the same icon appears on the right.

Figure 3-21 Default and custom help balloons for an application icon

The custom help balloon on the right side of Figure 3-21 is supplied with the resources

shown in Listing 3-17.

Listing 3-17 Rez input for creating an 'hfdr' resource for an application icon

resource 'hfdr' (-5696) { /*help for SurfWriter icon*/

/*header component*/

HelpMgrVersion, hmDefaultOptions, 0, 0,

{ /*icon component*/

HMSTRResItem { /*use 'STR ' resource 1001*/

1001

}

}

};

resource 'STR ' (1001) { /*help message for SurfWriter icon*/

"Use the SurfWriter word processor to wrote or edit the "

"swellest documents you ever wrote on "

"your Macintosh computer."

};

C H A P T E R 3

Help Manager

Using the Help Manager 3-87

Overriding Other Default Help Balloons
The Help Manager also provides default help balloons for the title bar and the close and

zoom boxes of an active window, for the windows of inactive applications, for inactive

windows of an active application, and for the area outside a modal dialog box.

Apple Computer, Inc., has researched and tested these help messages to ensure that they

are as effective as possible for users. Normally, you shouldn’t need to override them.

However, you can override one or more of these defaults if you feel you absolutely must

by creating a resource of type 'hovr'.

Using an 'hovr' resource sets the default help balloons for your application only. It

does not affect the default help balloons used by other applications.

An 'hovr' resource consists of exactly nine components: a header component, a

missing-items component, and seven components that specify help messages for seven

standard user interface features.

Component Element

Header Help Manager version

Options

Balloon definition function

Variation code

Missing-items help Identifier for help message

Help message for items missing from this resource or
lacking help messages

Title bar help Identifier for help message

Help message for title bar of active window

Reserved HMSkipItem identifier (always used here)

No help message; reserved for future use

Close box help Identifier for help message

Help message for close box of active window

Zoom box help Identifier for help message

Help message for zoom box of active window

Help for active
application’s inactive
windows

Identifier for help message

Help message for inactive window of active application

Help for inactive
application’s
windows

Identifier for help message

Help message for window of inactive application

Help for area outside
a modal dialog box
or alert box

Identifier for help message

Help message for area outside a modal dialog box or an alert
box

C H A P T E R 3

Help Manager

3-88 Using the Help Manager

Specifying Header Information for the 'hovr' Resource

As with the other help resources, specify the HelpMgrVersion constant for the first

element of the header component of the 'hovr' resource. For the second element,

specify a constant (normally, hmDefaultOptions) or the sum of several constants’

values from the following list. (“Specifying Options in Help Resources” beginning on

page 3-25 describes these options.)

CONST hmDefaultOptions = 0; {use defaults}

hmUseSubID = 1; {use subrange resource IDs }

{ for owned resources}

hmAbsoluteCoords = 2; {ignore coords of window }

{ origin and treat upper-left }

{ corner of window as 0,0}

hmSaveBitsNoWindow = 4; {don't create window; save }

{ bits; no update event}

hmSaveBitsWindow = 8; {save bits behind window }

{ and generate update event}

Specify the balloon definition function and variation code (both typically 0) in the third

and fourth elements, respectively, of the header component. (The balloon definition

function and variation code are described in detail earlier in “Specifying Header

Information for the 'hmnu' Resource” on page 3-32.)

Overriding Default Help

In the first element of the missing-items component, supply an identifier. As with the

other help resources, use one of these identifiers: HMStringItem, HMSTRResItem,

HMStringResItem, HMPictItem, HMTEResItem, or HMSkipItem. These identifiers

are described in “Specifying the Format for Help Messages” on page 3-23. For the second

element, supply either a text string for the help message or the resource ID of the

resource that contains the help message.

The Help Manager expects the remaining components of an 'hovr' resource to be listed

in the order previously shown. If you specify fewer than seven components in the Rez

input file, the Help Manager adds components to the end of your list until there are

seven. Each component that the Help Manager adds uses the message specified in the

missing-items component. The Help Manager also uses the missing-items component’s

help message if the Rez input file specifies an empty string or a resource ID of 0 for any

other component’s help message.

For the first element of each of the remaining components, specify one of these

identifiers: HMStringItem, HMSTRResItem, HMStringResItem, HMPictItem,

HMTEResItem, or HMSkipItem. To use any of the default help balloons, use the

HMSkipItem identifier. For the second element of each of the remaining components,

supply either a text string for the help message or the resource ID of the resource that

contains the help message.

C H A P T E R 3

Help Manager

Using the Help Manager 3-89

Listing 3-18 shows a resource of type 'hovr' that overrides all of the default help

balloons.

Listing 3-18 Rez input for an 'hovr' resource

resource 'hovr' (1000) {

/*header component*/

HelpMgrVersion,

hmDefaultOptions, /*options*/

0, /*the balloon definition ID*/

0, /*variation code*/

/*missing-items component*/

HMStringItem { /*missing items in case this resource is */

/* short of components*/

"Missing override message"

},

{

/*remaining components: for overriding default messages*/

HMSkipItem { /*title bar help*/

/*HMSkipItem means use default help balloon for this element*/

},

HMSkipItem { /*reserved; always specify HMSkipItem*/

},

HMStringItem { /*close box help*/

"" /*empty string means use missing-items help*/

},

HMStringItem { /*zoom box help*/

"Get this message if in Zoom In or Zoom Out box."

},

HMStringItem { /*help for active app's inactive window*/

"Get this message if in inactive window of "

"active application."

},

HMStringItem { /*help for inactive app's window*/

"Get this message if in window of inactive application."

},

HMStringItem { /*help when outside of modal dialog box*/

"Get this message if outside modal dialog box."

}

}

};

C H A P T E R 3

Help Manager

3-90 Using the Help Manager

Adding Menu Items to the Help Menu
The Help menu is specific to each application, just as the File and Edit menus are. The

Help menu items defined by the Help Manager should be common to all applications,

but you can add your own menu items for help-related information.

If you provide your users with help information in addition to help balloons, you should

append a command to the Help menu for this information. The Help menu gives users

one consistent place to obtain help information.

When adding your own items to the Help menu, include the name of your application in

the command so that users can easily determine which application the help command

relates to. For example, Figure 3-22 shows the Help menu with an item appended to it by

the active application.

Figure 3-22 The Help menu with an appended menu item

You add items to the Help menu by using the HMGetHelpMenuHandle function and by

providing an 'hmnu' resource and specifying the kHMHelpMenuID constant as the

resource ID.

The HMGetHelpMenuHandle function returns a copy of the handle to the Help menu.

Do not use the Menu Manager function GetMenuHandle to get a handle to the Help

menu, because GetMenuHandle returns a handle to the global Help menu, not the

Help menu that is specific to your application. Once you have a handle to the Help menu

that is specific to your application, you can add items to it using the AppendMenu

procedure or other Menu Manager routines. For example, this code adds the menu item

displayed in Figure 3-22.

VAR

mh: MenuHandle;

err: OSErr;

BEGIN

err := HMGetHelpMenuHandle(mh);

IF err = noErr THEN

IF mh <> NIL THEN

BEGIN

AppendMenu(mh, 'SurfWriter Help…');

END;

C H A P T E R 3

Help Manager

Using the Help Manager 3-91

DrawMenuBar;

END;

Be sure to use an 'hmnu' resource to provide help balloons for items you’ve added to

the Help menu. Use the kHMHelpMenuID constant (–16490) to specify the 'hmnu'

resource ID. After the header component of the 'hmnu' resource, provide a

missing-items component and then the components for your appended items. You don’t

provide a menu-title component here; instead, the Help Manager automatically creates

the help balloons for the Help menu title and the standard Help menu items. The Help

Manager also automatically adds a divider line between the end of the standard Help

menu items and your appended items.

Listing 3-19 shows an 'hmnu' resource for the appended menu item shown in

Figure 3-22.

Listing 3-19 Rez input for specifying help balloons for items in the Help menu

resource 'hmnu' (kHMHelpMenuID, "Help", purgeable) {

HelpMgrVersion, 0, 0, 0, /*header component*/

HMSkipItem { /*missing-items component*/

/*no missing items, so skip to first appended menu-item */

/* component*/

},

{ /*first menu-item component: SurfWriter Help command*/

 HMStringResItem { /*use an 'STR#' for help messages*/

146, 1, /*'STR#' res ID, index when item is enabled*/

146, 2, /*'STR#' res ID, index when item is dimmed*/

146, 3, /*'STR#' res ID, index when item is checked*/

0, 0 /*item can't be marked*/

},

}

};

resource 'STR#' (146, "My help menu items' strings") {

{ /*array StringArray: six elements*/

/*[1] enabled SurfWriter Help command help text*/

"Offers tutorial help for the SurfWriter text processor.";

/*[2] dimmed SurfWriter Help command help text*/

"Offers tutorial help for the SurfWriter text processor. "

"Not available until you open a SurfWriter document.";

/*[3] checked SurfWriter Help command help text*/

"Closes tutorial help for the SurfWriter text processor.";

}

};

C H A P T E R 3

Help Manager

3-92 Using the Help Manager

As previously explained in “Providing Help Balloons for Menus” beginning on

page 3-27, the 'hmnu' resource allows you to specify help balloons for four states of a

menu item: enabled, dimmed, enabled and checked, and enabled and marked with a

symbol other than a checkmark. You cannot specify a help balloon for a Help menu item

that system software dims when an alert box or a modal dialog box appears, because

you don’t have access to the missing-items component of the Help menu. When an alert

box or a modal dialog box appears, the Help Manager displays a default help balloon for

all dimmed Help menu items.

The Help Manager automatically processes the event when a user chooses any of the

standard menu items in the Help menu. The Help Manager automatically enables and

disables help when the user chooses Show Balloons or Hide Balloons from the Help

menu. The setting of help is global and affects all applications.

The MenuSelect and MenuKey functions return a result with the menu ID in the high

word and the menu item in the low word. Both functions return the kHMHelpMenuID

constant (–16490) in the high word when the user chooses an appended item from the

Help menu. The menu item number of the appended item is returned in the low word of

the function result. The DoMenuCommand procedure shown in Listing 3-20 handles

mouse clicks for those items defined by the application to appear in the Help menu.

Listing 3-20 Responding to the user’s choice in a menu command

PROCEDURE DoMenuCommand (menuResult: LongInt);

VAR

menuID, menuItem: Integer;

BEGIN

menuID := HiWrd(menuResult); {get menu ID}

menuItem := LoWrd(menuResult); {get menu item number}

CASE menuID OF

mApple: DoAppleMenuCommand(menuItem);

mFile: DoFileMenuCommand(menuItem);

mEdit: DoEditMenuCommand(menuItem);

mFont: DoFontMenuCommand(menuItem);

kHMHelpMenuID: DoHelpMenuCommand(menuItem);

END;

HiliteMenu(0);

END;

C H A P T E R 3

Help Manager

Using the Help Manager 3-93

In the future, Apple may choose to add other items to the Help menu. To determine the

number of items in the Help menu, call the CountMItems function, which is described

in the chapter “Menu Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

Writing Your Own Balloon Definition Function
The Help Manager takes care of positioning, sizing, and drawing your help balloons,

and the standard balloon definition function provides a consistent and attractive shape

to balloons across all applications.

Although it takes extra work on your part, and your balloons will not share the

consistent appearance of help balloons used by the Finder and by other applications, you

can create your own balloon definition function. The balloon definition function defines

the appearance of the help balloon, which is a special type of window. You implement a

balloon definition function by writing a window definition function that performs the

tasks described in this section. The standard balloon definition function is of type

'WDEF' with resource ID 126.

A balloon definition function is responsible for calculating the content region and

structure region of the help balloon window and drawing the frame of the help balloon.

The content region is the area inside the balloon frame; it contains the help message. The

structure region is the boundary region of the entire balloon, including the content area

and the pointer that extends from one of the help balloon’s corners. (Figure 3-4 on

page 3-10 illustrates the structure regions of the eight standard help balloons.)

The Help Manager first calculates the size of the rectangle that can enclose the help

message and determines where to display the help balloon. The Help Manager uses

TextEdit to determine any word and line breaks in the help message. The Help Manager

determines where to display the help balloon based on the tip and alternate rectangle.

The Help Manager then adds a system-defined distance to the size of the rectangle. This

distance allows for the tip of the help balloon. Note that the tip must always align with

an edge of the boundary rectangle. The Help Manager uses the resulting rectangle as the

boundary rectangle for the help balloon window.

To create the help balloon, the Help Manager uses the Window Manager function

NewWindow. The Help Manager specifies the calculated rectangle and the window

definition ID as parameters to NewWindow.

The NewWindow function calls the balloon definition function in the same manner as a

window definition function. See the chapter “Window Manager” in Inside Macintosh:
Macintosh Toolbox Essentials for more information on writing a window definition

function.

C H A P T E R 3

Help Manager

3-94 Using the Help Manager

The NewWindow function calls your balloon definition function with four parameters:

the variation code that specifies the shape and relative tip position of the help balloon, a

pointer to the window, the action to perform, and a parameter that has variable contents

depending on the action to perform.

Here’s an example that shows the declaration for a balloon definition function called

MyBalloonDef.

FUNCTION MyBalloonDef (variant: Integer; theBalloon: WindowPtr;

 message: Integer;

 param: LongInt): LongInt;

The variant parameter is the variation code used to specify the shape and position of

the help balloon. You should use the same relative position for the tip of the help balloon

that the standard variation codes 0 through 7 specify (see Figure 3-4 on page 3-10). This

ensures that the tip of the help balloon points to the object that the help balloon describes.

The parameter theBalloon is a pointer to the window of the help balloon.

The message parameter identifies the action your balloon definition function should

perform. Your balloon definition function can be sent the same messages as a window

definition function, but the only ones your balloon definition function needs to process

are the wDraw and wCalcRgns messages.

When your balloon definition function receives the wCalcRgns message, your function

should calculate the content region and structure region of the help balloon. When your

balloon definition function receives the wDraw message, your function should draw the

frame of the help balloon. If you want to process other messages in your balloon

definition function (for example, performing any additional initialization), you can also

process the other standard 'WDEF' messages. These messages, along with the wDraw

and wCalcRgns messages, are described in the chapter “Window Manager” in Inside
Macintosh: Macintosh Toolbox Essentials.

The value of the param parameter depends on the value of the message parameter. The

wCalcRgns and wDraw messages do not use this parameter.

If you want the Help Manager to use your balloon definition function, you specify its

resource ID and the desired variation code either in the HMShowBalloon function or in

the appropriate elements of the 'hmnu', 'hdlg', or 'hrct' resource. The Help

Manager derives your balloon’s window definition ID from its resource ID.

C H A P T E R 3

Help Manager Reference 3-95

Help Manager

Help Manager Reference

This section describes the data structures, routines, and resources that are specific to the

Help Manager.

The “Data Structures” section shows the data structures for the help message record and

the Help Manager string list record. The “Help Manager Routines” section describes

routines for determining Balloon Help status, displaying and removing help balloons,

adding items to the Help menu, getting and setting the name and size of the font for help

messages, setting and getting information for your application’s help resources,

determining the size of a help balloon, and getting the message of a help balloon. Should

you want to replace the Help Manager’s default balloon definition function and tip

function with your own functions, the “Application-Defined Routines” section describes

how. The “Resources” section describes the resources you can create to provide help

balloons for your menus, alert and dialog boxes, and static windows; you can also create

resources to override default help balloons provided by system software for various

interface elements such as non-document Finder icons.

Data Structures

You can use two data structures to specify a help message to the HMShowBalloon

function.

You use the help message record to describe the format and location of a help

message. You specify the help message record as a parameter to the HMShowBalloon

function.

If the message you want to pass to the HMShowBalloon function is stored in a string list

('STR#') resource, you use a Help Manager string list record to specify the resource ID

of a string list as well as an index to one of the strings in that list. You specify a Help

Manager string list record in a field of a help message record.

The Help Message Record

A help message record describes a help message. The Help Manager displays a help

balloon with that message when the help message record is passed in the aHelpMsg

parameter to the HMShowBalloon function. The HMMessageRecord data type defines

the help message record.

TYPE HMMessageRecord =

RECORD

hmmHelpType: Integer; {type of next field}

CASE Integer OF

khmmString: (hmmString: Str255); {Pascal string}

khmmPict: (hmmPict: Integer); {'PICT' resource ID}

C H A P T E R 3

Help Manager

3-96 Help Manager Reference

khmmStringRes: (hmmStringRes: HMStringResType);

{'STR#' resource ID }

{ and index}

khmmTEHandle: (hmmTEHandle: TEHandle);

{TextEdit handle}

khmmPictHandle:(hmmPictHandle: PicHandle);

{picture handle}

khmmTERes: (hmmTERes: Integer); {'TEXT'/'styl' }

{ resource ID}

khmmSTRRes: (hmmSTRRes: Integer) {'STR ' resource ID}

END;

Field descriptions

hmmHelpType Specifies the data type of the next field of the help message record.
You specify one of these constants for the hmmHelpType field.

CONST

khmmString = 1; {Pascal string}

khmmPict = 2; {'PICT' resource ID}

khmmStringRes = 3; {'STR#' resource ID/index}

khmmTEHandle = 4; {TextEdit handle}

khmmPictHandle = 5; {picture handle}

khmmTERes = 6; {'TEXT'/'styl' resource ID}

khmmSTRRes = 7; {'STR ' resource ID}

Only one field follows the hmmHelpType field, but it can be one of
seven different data types. The field that follows the hmmHelpType
field specifies the help message itself.

hmmString Contains a Pascal string for a help message when you supply the
khmmString constant in the hmmHelpType field. (This is generally
not recommended; instead, you should store the help message in a
resource, which makes localization easier.)

hmmPict Contains the resource ID of a 'PICT' resource for a help message
when you supply the khmmPict constant in the hmmHelpType
field.

hmmStringRes Contains a Help Manager string list record (described in “The Help
Manager String List Record” on page 3-97) when you supply the
khmmStringRes constant in the hmmHelpType field.

hmmTEHandle Specifies a TextEdit handle to a help message when you supply the
khmmTEHandle constant in the hmmHelpType field.

hmmPictHandle Specifies a handle to a 'PICT' graphic containing a help message
when you supply the khmmPictHandle constant in the
hmmHelpType field.

C H A P T E R 3

Help Manager

Help Manager Reference 3-97

hmmTERes Specifies the resource ID of both a 'TEXT' and an 'styl' resource
for a help message when you supply the khmmTEHandle constant
in the hmmHelpType field.

hmmSTRRes Specifies the resource ID of an 'STR ' resource for a help message
when you supply the khmmSTRRes constant in the hmmHelpType
field.

Because the Help Manager uses the resource itself or the actual handle that you pass to

HMShowBalloon, your 'PICT' resource should be purgeable, or, when using a handle

to a 'PICT' resource, you should release the handle or dispose of it when you are

finished with it.

Examples of how to use a help message record are provided in “Providing Help Balloons

for Dynamic Windows” on page 3-74.

The Help Manager String List Record

To display a help message stored in an 'STR#' resource with the HMShowBalloon

function, use the khmmStringRes constant in the hmmHelpType field of the help

message record (which you pass as a parameter to HMShowBalloon), and supply the

hmmStringRes field of the help message record with a Help Manager string list record.

(The help message record is described in the previous section.) The HMStringResType

data type defines a Help Manager string list record.

TYPE HMStringResType =

RECORD

hmmResID: Integer; {'STR#' resource ID}

hmmIndex: Integer; {index of string}

END;

Field descriptions

hmmResID Specifies the resource ID of the 'STR#' resource.

hmmIndex Specifies the index of a string within the 'STR#' resource to use for
a help message.

Help Manager Routines

This section describes the routines you use to display help balloons for the windows of

your application. It also describes how to determine whether help is enabled; how to get

the name and size of the text font in help balloons; how to set or override the help

resources used with a menu, dialog box, or window; and how to get information about

the window the help balloon is displayed in.

If you want to provide help balloons for the menus, alert boxes, dialog boxes, and static

windows of your application, or if you want to override default help balloons provided

by system software for various interface elements (such as non-document Finder icons),

you only need to create the resources containing the descriptive information. “Using the

Help Manager” beginning on page 3-18 gives details on how to create these resources.

C H A P T E R 3

Help Manager

3-98 Help Manager Reference

If help is not enabled, most Help Manager routines do nothing and return the

hmHelpDisabled result code.

IMPORTANT

All of the Help Manager routines may move or purge memory blocks in
the application heap or for some other reason should not be called from
within an interrupt. Your application should not call Help Manager
routines at interrupt time. ▲

Determining Balloon Help Status

The user turns on Balloon Help assistance by choosing Show Balloons from the

Help menu. To determine whether help is currently enabled, you can use

the HMGetBalloons function. If you display your own help balloons using the

HMShowBalloon function, you should use the HMGetBalloons function to determine

whether help is enabled before displaying a help balloon. If help is not enabled, you

cannot display any help balloons. You can use the HMIsBalloon function to determine

whether a help balloon is currently displayed on the screen.

HMGetBalloons

To determine whether Balloon Help assistance is enabled, use the HMGetBalloons

function.

FUNCTION HMGetBalloons: Boolean;

DESCRIPTION

The HMGetBalloons function returns TRUE if help is currently enabled and FALSE if

help is not currently enabled. Because the HMGetBalloons function does not load the

Help Manager into memory, it provides a fast way to determine whether Balloon Help

assistance is enabled.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the HMGetBalloons function are

SEE ALSO

To determine whether Balloon Help assistance is available, use the Gestalt function as

described in “Using the Help Manager” on page 3-18.

Trap macro Selector

_Pack14 $0003

C H A P T E R 3

Help Manager

Help Manager Reference 3-99

HMIsBalloon

To determine whether the Help Manager is currently displaying a help balloon, use the

HMIsBalloon function.

FUNCTION HMIsBalloon: Boolean;

DESCRIPTION

The HMIsBalloon function returns TRUE if a help balloon is currently displayed on the

screen and FALSE if a help balloon is not currently displayed. This function is useful for

determining whether a balloon is showing before you redraw the screen. For example,

you might want to determine whether a balloon is displayed so that you can remove it

before opening or closing a window.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the HMIsBalloon function are

Displaying and Removing Help Balloons

When the user turns on Balloon Help assistance, the Help Manager automatically tracks

the cursor and displays and removes help balloons as the cursor moves over hot

rectangles specified in 'hrct' resources or over display rectangles associated with

menu items specified in 'hmnu' resources and items specified in 'hdlg' resources. If

you want to provide help balloons for areas not defined in these resources, then your

application is responsible for tracking the cursor and displaying and removing balloons

for these application-defined areas.

To display a help balloon in your application-defined area, use the HMShowBalloon

function. If your application uses its own menu definition procedure, use the

HMShowMenuBalloon function to display a balloon described by the standard balloon

definition function. To remove a balloon that you display using HMShowMenuBalloon,

you must use the HMRemoveBalloon function. To remove a balloon that you display

using HMShowBalloon, you can either use the HMRemoveBalloon function to remove

the help balloon, or you can let the Help Manager remove it for you.

Trap macro Selector

_Pack14 $0007

C H A P T E R 3

Help Manager

3-100 Help Manager Reference

 HMShowBalloon

To display a help balloon of the content area of any window of your application, you can

use the HMShowBalloon function. If the user has enabled Balloon Help assistance, the

HMShowBalloon function displays a help balloon containing the message specified by

the aHelpMsg parameter.

FUNCTION HMShowBalloon (aHelpMsg: HMMessageRecord;

 tip: Point; alternateRect: RectPtr;

 tipProc: Ptr; theProc, variant: Integer;

 method: Integer): OSErr;

aHelpMsg The message displayed in the help balloon.

tip The location, in global coordinates, of the help balloon’s tip.

alternateRect
A rectangle, in global coordinates, that the Help Manager uses if
necessary to calculate a new tip location. If you specify a rectangle in this
parameter, the Help Manager automatically calls the HMRemoveBalloon
function to remove the help balloon when the user moves the cursor
outside the area bounded by the rectangle. If you instead pass NIL in this
parameter, your application must use the HMRemoveBalloon function to
remove the help balloon when appropriate.

tipProc The tip function called by the Help Manager before displaying the
balloon. Specify NIL to use the Help Manager’s default tip function, or
supply your own tip function and point to it in this parameter.

theProc The balloon definition function. To use the standard balloon
definition function, specify 0 in this parameter. To use your own
balloon definition function, specify the resource ID of the 'WDEF'
resource containing your balloon definition function.

variant The variation code for the balloon definition function. Specify 0 in the
variant parameter to use the default help balloon position, specify a
code from 1 to 7 to use one of the other positions provided by the
standard balloon definition function, or specify another code to use one of
the positions provided by your own balloon definition function.

method A value that indicates whether the Help Manager should save the bits
behind the balloon and whether to generate an update event.
You can pass one of the following constants in this parameter:
kHMRegularWindow, kHMSaveBitsNoWindow,
or kHMSaveBitsWindow.

C H A P T E R 3

Help Manager

Help Manager Reference 3-101

DESCRIPTION

If help is enabled, the HMShowBalloon function displays a help balloon with the help

message you specify in the aHelpMsg parameter. You use global coordinates to specify

the tip and the rectangle pointed to by the alternateRect parameter. The Help

Manager calculates the location and size of the help balloon. If it fits onscreen, the

Help Manager displays the help balloon using the specified tip location.

If you use the HMShowBalloon function to display help balloons, you must identify hot

rectangles, create your own data structures to store their locations, track the cursor

yourself, and call HMShowBalloon when the cursor moves to your hot rectangles. The

Help Manager does not know the locations of your hot rectangles, so it cannot use them

for moving the tip if the help balloon is placed offscreen. Instead, the Help Manager uses

the alternate rectangle that you point to with the alternateRect parameter. Often,

you specify the same coordinates for the alternate rectangle that you specify for your hot

rectangle. However, you may choose to make your alternate rectangle smaller or larger

than your hot rectangle. If you make your alternate rectangle smaller than your hot

rectangle, you have greater assurance that the Help Manager will be able to fit the help

balloon onscreen; if you specify an alternate rectangle that is larger than your hot

rectangle, you have greater assurance that the balloon will not obscure the object it

explains.

If you specify a rectangle in the alternateRect parameter, the Help Manager

automatically calls HMRemoveBalloon to remove the balloon when the cursor leaves

the area bounded by the rectangle.

If the balloon’s first position is partly offscreen or if it intersects the menu bar, the Help

Manager tries a combination of different balloon variation codes and different tip

positions along the sides of the alternate rectangle to make the balloon fit. Figure 3-5 on

page 3-11 shows what happens when the balloon’s first two positions are located

offscreen. If, after exhausting all possible positions, the Help Manager cannot fit the

entire balloon onscreen, the Help Manager displays a balloon at the position that best fits

onscreen and clips the help message to fit at this position. If the coordinates specified by

both the original tip and the alternateRect parameter are offscreen, the Help

Manager does not display the balloon at all.

If you specify NIL for the alternateRect parameter, your application is responsible

for tracking the cursor and determining when to remove the balloon. The Help Manager

also does not attempt to calculate a new tip location if the balloon is offscreen.

Once the Help Manager determines the location and size of the help balloon, the Help

Manager calls the function pointed to by the tipProc parameter before displaying the

balloon. Specify NIL in the tipProc parameter to use the Help Manager’s default tip

function.

You can supply your own tip function and point to it in the tipProc parameter. The

Help Manager calls the tip function after calculating the location of the balloon and

before displaying it. In the parameters of your tip function, the Help Manager returns

the tip, the region boundary of the entire balloon, the region boundary for the content

area within the balloon frame, and the variation code to be used for the balloon. This

allows you to examine and possibly adjust the balloon before it is displayed.

C H A P T E R 3

Help Manager

3-102 Help Manager Reference

The Help Manager reads the balloon definition function specified by the parameter

theProc into memory if it isn’t already in memory. If the balloon definition function

can’t be read into memory, the help balloon is not displayed and the HMShowBalloon

function returns the resNotFound result code.

The method parameter specifies whether the Help Manager should save the bits behind

the balloon and whether to generate an update event. You can supply one of these

constants for the parameter.

CONST kHMRegularWindow = 0; {don't save bits; just update}

kHMSaveBitsNoWindow = 1; {save bits; don't do update}

kHMSaveBitsWindow = 2; {save bits; do update event}

If you specify kHMRegularWindow, the Help Manager draws and removes the help

balloon as if it were a window. That is, when drawing the balloon, the Help Manager

does not save bits behind the balloon, and, when removing the balloon, the Help

Manager generates an update event. This is the standard behavior of help balloons; it is

the behavior you should normally use.

If you specify kHMSaveBitsNoWindow in the method parameter, the Help Manager

does not create a window for displaying the balloon. Instead, the Help Manager creates a

help balloon that is more like a menu than a window. The Help Manager saves the bits

behind the balloon when it creates the balloon. When it removes the balloon, the Help

Manager restores the bits without generating an update event. You should use this

method only in a modal environment where the bits behind the balloon cannot change

from the time the balloon is drawn to the time it is removed. For example, you might

specify the kHMSaveBitsNoWindow constant when providing help balloons for pop-up

menus that overlay complex graphics, which might take a long time to redraw with an

update event.

If you specify kHMSaveBitsWindow, the Help Manager treats the help balloon as a

hybrid having properties of both a menu and a window. That is, the Help Manager saves

the bits behind the balloon when it creates the balloon, and, when it removes the balloon,

it both restores the bits and generates an update event. You’ll rarely need this option. It is

necessary only in a modal environment that might immediately change to a nonmodal

environment—that is, where the bits behind the balloon are static when the balloon is

drawn, but can possibly change before the balloon is removed.

HMShowBalloon returns the noErr result code if the help balloon was successfully

displayed.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and the routine selector for the HMShowBalloon function are

Trap macro Selector

_Pack14 $0B01

C H A P T E R 3

Help Manager

Help Manager Reference 3-103

RESULT CODES

SEE ALSO

You specify the help message in the aHelpMsg parameter. “Providing Help Balloons for

Dynamic Windows” beginning on page 3-74 shows how to specify this information.

You can supply your own tip function (as explained in the description of the MyTip

function, which begins on page 3-130) and point to it in the tipProc parameter.

Figure 3-4 on page 3-10 illustrates the variation codes you can specify in the variant

parameter and their corresponding help balloon positions for the standard balloon

definition function.

If your application uses its own menu definition procedure, you can use the

HMShowMenuBalloon function to display help balloons for the menus that your menu

definition procedure manages. The HMShowMenuBalloon function is next.

HMShowMenuBalloon

The Help Manager displays help balloons for applications that provide 'hmnu'

resources and use the standard menu definition procedure. If your application uses your

own menu definition procedure, you can still use the Help Manager to display help

balloons for the menus that your menu definition procedure manages. Use the

HMShowMenuBalloon function to display balloons described by the standard balloon

definition function. If you want to use your own balloon definition function from within

your menu definition procedure, call the HMShowBalloon function (described in the

previous section) and specify the kHMSaveBitsNoWindow constant for the method

parameter. You can also use the HMShowMenuBalloon function as an alternative to

creating an 'hmnu' resource for your menu.

FUNCTION HMShowMenuBalloon (itemNum: Integer; itemMenuID: Integer;

 itemFlags: LongInt;

itemReserved: LongInt;

 tip: Point; alternateRect: RectPtr;

tipProc: Ptr; theProc: Integer;

variant: Integer): OSErr;

noErr 0 No error; the help balloon was displayed
paramErr –50 Error in parameter list
memFullErr –108 Not enough room in heap zone
resNotFound –192 Unable to read resource
hmHelpDisabled –850 Help balloons are not enabled
hmBalloonAborted –853 Because of constant cursor movement, the

help balloon wasn’t displayed
hmOperationUnsupported –861 Invalid value passed in the method

parameter

C H A P T E R 3

Help Manager

3-104 Help Manager Reference

itemNum The number of the menu item over which the cursor is currently located.
Use a positive number in the itemNum parameter to specify a menu item,
use –1 if the cursor is located over a divider line, or use 0 if the cursor is
located over the menu title.

itemMenuID
The ID of the menu in which the cursor is currently located.

itemFlags A long integer from the menu flags, telling whether a menu item is
enabled or dimmed and whether the menu itself is enabled or dimmed.
The Help Manager uses this value to determine which balloon to display
from the 'hmnu' resource.

itemReserved
Reserved for future use by Apple. Specify 0 in this parameter.

tip The tip for the help balloon. The standard menu definition procedure
places the tip 8 pixels from either the right or left edge of the menu item.
For menu titles, the standard menu definition procedure centers the tip at
the bottom of the menu bar; you should not specify a tip with coordinates
in the menu bar for any menu titles.

The Help Manager uses the tip you specify in this parameter unless it
places the help balloon offscreen or in the menu bar. If the tip is offscreen,
the Help Manager uses the rectangle specified in the alternateRect
parameter to calculate a new tip location.

alternateRect
The rectangle that the Help Manager uses to calculate a new tip location.
(The standard menu definition procedure specifies the alternate rectangle
as the rectangle that encloses the menu title or menu item.) If the
balloon’s first position is offscreen or in the menu bar, the Help Manager
tries a different balloon variation code or calculates a new tip by
transposing it to an opposite side of the alternate rectangle. If you specify
NIL for the alternateRect parameter, the Help Manager does not
attempt to calculate a new tip position when the help balloon is offscreen.

tipProc The tip function that the Help Manager calls before displaying the
balloon. Specify NIL to use the Help Manager’s default tip function, or
supply your own tip function and point to it in this parameter.

theProc Reserved for use by Apple. Specify 0 in this parameter.

variant The variation code for the standard balloon definition function. Specify 0
to use the default balloon position or a code between 1 and 7 to use one of
the other standard positions shown in Figure 3-4 on page 3-10.

DESCRIPTION

The HMShowMenuBalloon function saves the bits behind the help balloon before

displaying the help balloon. When you remove the balloon, the Help Manager restores

the bits that were previously behind it.

C H A P T E R 3

Help Manager

Help Manager Reference 3-105

After your menu definition procedure determines that the cursor is located in a menu

item, you can use the HMShowMenuBalloon function to display any help balloons

associated with that item. You must then use the HMRemoveBalloon function to remove

the balloon when the cursor moves away from the menu item.

If you use the HMShowMenuBalloon function to display help balloons, you must

identify hot rectangles, create your own data structures to store their locations, track the

cursor yourself, and call HMShowMenuBalloon when the cursor moves to your hot

rectangles. The Help Manager does not know the locations of your hot rectangles, so it

cannot use them for moving the tip if the balloon is placed offscreen. Instead, the Help

Manager uses the alternate rectangle that you point to with the alternateRect

parameter.

Unlike the way the alternateRect parameter works in the HMShowBalloon function,

specifying an alternate rectangle to HMShowMenuBalloon does not cause the Help

Manager to track the cursor and remove the balloon for you. You must still track the

cursor and use the HMRemoveBalloon function to remove the balloon when the cursor

moves out of the area specified by the hot rectangle.

Specify NIL in the tipProc parameter to use the tip function values calculated by the

Help Manager. If you supply your own tip function and specify it in the tipProc

parameter, the Help Manager returns the tip, the region boundary of the entire balloon,

the region boundary for the content area within the balloon frame, and the variation

code to be used for the help balloon before displaying it. This allows you to examine and

possibly adjust the balloon before it is displayed.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the HMShowMenuBalloon function are

RESULT CODES

SEE ALSO

You can supply your own tip function (as explained in the description of the MyTip

function, which begins on page 3-130) and point to it in the tipProc parameter.

The HMRemoveBalloon function is described next.

Trap macro Selector

_Pack14 $0E05

noErr 0 No error; the help balloon was displayed
memFullErr –108 Not enough room in heap zone
hmHelpDisabled –850 Help balloons are not enabled
hmBalloonAborted –853 Because of constant cursor movement, the help

balloon wasn’t displayed
hmSameAsLastBalloon –854 Menu and item are same as last menu and item

C H A P T E R 3

Help Manager

3-106 Help Manager Reference

HMRemoveBalloon

To remove a help balloon that your application displays using the function

HMShowMenuBalloon, use the HMRemoveBalloon function. If your application

does not specify an alternate rectangle to the HMShowBalloon function, use

HMRemoveBalloon to remove the help balloon you display with HMShowBalloon.

FUNCTION HMRemoveBalloon: OSErr;

DESCRIPTION

The HMRemoveBalloon function removes any balloon that is currently visible—unless

the user is using Close View and is pressing the Shift key. (This action keeps the help

balloon onscreen even while the user moves away from the hot rectangle under Close

View.)

If you use the HMShowBalloon function to display help balloons, you can either let the

Help Manager track the cursor and remove the balloon when the cursor moves out of the

hot rectangle, or your application can track the cursor and determine when to remove

the balloon. To let the Help Manager track the cursor and remove the balloon when

using the HMShowBalloon function, specify a rectangle in the alternateRect

parameter. If you want your application to track the cursor and remove the balloon

when using the HMShowBalloon function, specify NIL in the alternateRect

parameter. You must then use the HMRemoveBalloon function to remove the balloon

when the user moves the cursor outside the rectangle.

If you use the HMShowMenuBalloon function to display help balloons, you must always

track the cursor and use the HMRemoveBalloon function to remove the balloon when

the cursor moves out of the hot rectangle.

▲ W A R N I N G

The HMRemoveBalloon function removes any help balloon that is
currently visible, regardless of the application that displayed it. You
should call HMRemoveBalloon only when the cursor is in the content
area of your application window but not in a hot rectangle, and you
should never call it when your application is in the background. ▲

If the user is using Close View and is pressing the Shift key, the help balloon stays

onscreen even while the user moves away from the hot rectangle. The

HMRemoveBalloon function returns a result code of hmCloseViewActive in this case.

If you use your own menu definition procedure, you should call HMRemoveBalloon

when your procedure receives messages about saving or restoring bits. (These messages

are described in the chapter “Menu Manager” in Inside Macintosh: Macintosh Toolbox
Essentials.)

C H A P T E R 3

Help Manager

Help Manager Reference 3-107

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the HMRemoveBalloon function are

RESULT CODES

SEE ALSO

The description of the HMShowBalloon function begins on page 3-100; the description

of the HMShowMenuBalloon function begins on page 3-103.

Enabling and Disabling Balloon Help Assistance

You can enable or disable help using the HMSetBalloons function. If you enable or

disable help, you do so for all applications. Because the setting of Balloon Help

assistance should be under the user’s control, in most cases you should not modify the

user’s setting. However, if you feel your application absolutely must enable or disable

Balloon Help assistance, you can use the HMSetBalloons function. If you modify this

setting, return it to its previous state as soon as possible.

HMSetBalloons

To enable or disable Balloon Help assistance for the user, use the HMSetBalloons

function.

FUNCTION HMSetBalloons (flag: Boolean): OSErr;

flag Specifies whether help should be enabled or disabled for all applications
and the system software.

DESCRIPTION

If the value of the flag parameter is TRUE, HMSetBalloons enables Balloon Help

assistance. If the value of the flag parameter is FALSE, HMSetBalloons disables

Balloon Help assistance. If a help balloon is showing, you must first remove it using the

HMRemoveBalloon function before you use HMSetBalloons to disable Balloon Help

assistance.

Trap macro Selector

_Pack14 $0002

noErr 0 No error or the help balloon was removed
hmHelpDisabled –850 Help balloons are not enabled
hmNoBalloonUp –862 No balloon showing
hmCloseViewActive –863 Balloon can’t be removed because Close View

is in use

C H A P T E R 3

Help Manager

3-108 Help Manager Reference

SPECIAL CONSIDERATIONS

When Balloon Help assistance is disabled, the Help Manager does not display help

balloons for any applications. When help is disabled, the HMShowBalloon and

HMShowMenuBalloon functions do not display help balloons; they return nonzero

result codes.

Because the setting of Balloon Help assistance should be under the user’s control, you

generally should not use the HMSetBalloons function.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the HMSetBalloons function are

RESULT CODES

SEE ALSO

The description of the HMShowBalloon function begins on page 3-100; the description

of the HMShowMenuBalloon function begins on page 3-103.

Adding Items to the Help Menu

The Help Manager automatically appends the Help menu when your application inserts

an Apple menu into its menu bar. The Menu Manager automatically appends the Help

menu to the right of all your menus and to the left of the Application menu (and to the

left of the Keyboard menu if a non-Roman script system is installed).

The Help menu is specific to each application. The Help menu items defined by the Help

Manager should be common to all applications, but you can append your own menu

items for help-related information by using the HMGetHelpMenuHandle function.

HMGetHelpMenuHandle

To append items to the Help menu, use the HMGetHelpMenuHandle function.

FUNCTION HMGetHelpMenuHandle (VAR mh: MenuHandle): OSErr;

mh A copy of a handle to the Help menu.

Trap macro Selector

_Pack14 $0104

noErr 0 No error
paramErr –50 Error in parameter list
memFullErr –108 Not enough room in heap zone
resNotFound –192 Unable to read resource

C H A P T E R 3

Help Manager

Help Manager Reference 3-109

DESCRIPTION

The HMGetHelpMenuHandle function returns in its mh parameter a handle to your

application’s help menu. With this handle, you can append items to the Help menu by

using the AppendMenu procedure or other related Menu Manager routines. The Help

Manager automatically adds the divider line that separates your items from the rest of

the Help menu.

Be sure to define help balloons for your items in the Help menu by creating an 'hmnu'

resource and specifying the kHMHelpMenuID constant as its resource ID.

The Menu Manager functions MenuSelect and MenuKey return a result with the menu

ID in the high word and the menu item in the low word. Both functions return the

HelpMgrID constant in the high word when the user chooses an appended item from

the Help menu. The number of the appended menu item is returned in the low word

of the function result. In the future, Apple Computer, Inc., may choose to add other items

to the Help menu. To determine the number of items in the Help menu, call the Menu

Manager function CountMItems.

SPECIAL CONSIDERATIONS

Do not use the Menu Manager function GetMenuHandle to get a handle to the Help

menu, because GetMenuHandle returns a handle to the global Help menu, not the

Help menu that is specific to your application.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the HMGetHelpMenuHandle function are

RESULT CODES

SEE ALSO

“Adding Menu Items to the Help Menu” beginning on page 3-90 provides details and

illustrative sample code for using HMGetHelpMenuHandle. The 'hmnu' resource is

described in detail in “Providing Help Balloons for Menus” beginning on page 3-27. See

the chapter “Menu Manager” in Inside Macintosh: Macintosh Toolbox Essentials for

information about AppendMenu, MenuSelect, MenuKey, and other Menu Manager

routines.

Trap macro Selector

_Pack14 $0200

noErr 0 No error
paramErr –50 Error in parameter list
memFullErr –108 Not enough room in heap zone
resNotFound –192 Unable to read resource
hmHelpManagerNotInited –855 Help menu not set up

C H A P T E R 3

Help Manager

3-110 Help Manager Reference

Getting and Setting the Font Name and Size

Using the HMGetFont and HMGetFontSize functions, you can get information about

the font name and size currently used for text strings displayed in help balloons.

Using the HMSetFont and HMSetFontSize functions, you can change the font name

and size.

HMGetFont

To get information about the font that is currently used to display text in help balloons,

use the HMGetFont function.

FUNCTION HMGetFont (VAR font: Integer): OSErr;

font The global font number used to display text in help balloons.

DESCRIPTION

The HMGetFont function returns in its font parameter the global font number used to

display text in help balloons. HMGetFont returns this information only for Pascal strings

stored in the help resources themselves and for strings from 'STR#' and 'STR '

resources; it does not return information about text in 'PICT' or styled text resources, or

in handles to either of these resources.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the HMGetFont function are

RESULT CODES

SEE ALSO

The chapter “TextEdit” in Inside Macintosh: Text describes global font numbers.

Trap macro Selector

_Pack14 $020A

noErr 0 No error
memFullErr –108 Not enough room in heap zone

C H A P T E R 3

Help Manager

Help Manager Reference 3-111

HMGetFontSize

To get information about the font size that is currently used to display text in help

balloons, use the HMGetFontSize function.

FUNCTION HMGetFontSize (VAR fontSize: Integer): OSErr;

fontSize The global font size used to display text in help balloons.

DESCRIPTION

The HMGetFontSize function returns in its fontSize parameter the global font size

used to display text in help balloons. This information applies only to Pascal strings

stored in the help resources themselves and to strings from 'STR#' and 'STR '

resources; it does not apply to text in 'PICT' or styled text resources, or in handles to

either of these resources.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the HMGetFontSize function are

RESULT CODES

SEE ALSO

See the chapter “TextEdit” in Inside Macintosh: Text for detailed information about font

sizes.

Trap macro Selector

_Pack14 $020B

noErr 0 No error
memFullErr –108 Not enough room in heap zone

C H A P T E R 3

Help Manager

3-112 Help Manager Reference

HMSetFont

You can use the HMSetFont function to specify the font used to display text in help

balloons.

FUNCTION HMSetFont (font: Integer): OSErr;

font A global font number.

DESCRIPTION

The HMSetFont function sets the font for help balloons in all applications that display

help balloons.

This function applies only to Pascal strings stored in the help resources themselves and

to strings from 'STR#' and 'STR ' resources; it does not apply to text in 'PICT' or

styled text resources, or in handles to either of these resources.

SPECIAL CONSIDERATIONS

Use this function with extreme restraint, because the default font provides a consistent

look across applications. If your application uses this function to change the font name

or size, the change affects all applications that display help balloons.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the HMSetFont function are

RESULT CODES

SEE ALSO

See the chapter “TextEdit” in Inside Macintosh: Text for detailed information about fonts

and font numbers.

Trap macro Selector

 _Pack14 $0108

noErr 0 No error
memFullErr –108 Not enough room in heap zone

C H A P T E R 3

Help Manager

Help Manager Reference 3-113

HMSetFontSize

You can use the HMSetFontSize function to specify the font size used to display text in

help balloons.

FUNCTION HMSetFontSize (fontSize: Integer): OSErr;

fontSize The global font size the Help Manager uses to display text in help
balloons.

DESCRIPTION

The HMSetFontSize function sets the font size for help balloons in all applications and

software that display help balloons. This function applies only to Pascal strings stored in

the help resources themselves and to strings from 'STR#' and 'STR ' resources; it does

not apply to text in 'PICT' or styled text resources, or in handles to either of these

resources.

SPECIAL CONSIDERATIONS

Use this function with extreme restraint, because the default font size provides a

consistent look across applications. If your application uses this function to change the

font size, the change affects all applications that display help balloons.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the HMSetFontSize function are

RESULT CODES

SEE ALSO

See the chapter “TextEdit” in Inside Macintosh: Text for detailed information about fonts

and font sizes.

Trap macro Selector

_Pack14 $0109

noErr 0 No error
memFullErr –108 Not enough room in heap zone

C H A P T E R 3

Help Manager

3-114 Help Manager Reference

Setting and Getting Information for Help Resources

Using the HMSetMenuResID or HMScanTemplateItems function, you can set help

resources for menus, dialog boxes, or windows of your application that do not currently

have help resources associated with them. You can also supplement the 'hmnu' and

'hdlg' resources currently associated with the menus and dialog boxes of your

application by using the HMSetMenuResID or HMSetDialogResID function. You can

use the HMGetMenuResID function to determine the 'hmnu' resource ID associated

with a menu.

When you use the HMSetDialogResID function, you can supplement any 'hdlg'

resources that are specified in item list ('DITL') resources. The resource you specify in

the HMSetDialogResID function adds to any help that already exists in the form of

an 'hdlg' resource for the next dialog box or alert box to be displayed. You can use an

'hdlg' resource (described in “Providing Help Balloons for Items in Dialog Boxes and

Alert Boxes” on page 3-51) to provide help balloons for items common to several dialog

boxes and alert boxes, and you can use the HMSetDialogResID function to provide

help balloons for items that you add to individual dialog boxes and alert boxes.

You can use the HMGetDialogResID function to get the resource ID of the 'hdlg'

resource that will be used by the next dialog box as a result of a previous call to the

HMSetDialogResID function. If the 'hdlg' resource currently in use has not been

overridden by a call to HMSetDialogResID, the HMGetDialogResID function returns

a result code of resNotFound.

You can use the HMGetDialogResID and HMSetDialogResID functions when

displaying nested dialog boxes (although, in general, you should close one dialog box

before displaying another). For example, you can save the 'hdlg' resource of the

current dialog box, set a new 'hdlg' resource, display the new dialog box, and then

restore the setting of the previous 'hdlg' resource when you close the second dialog

box.

HMSetMenuResID

You can use the HMSetMenuResID function to set the 'hmnu' resource for a menu that

did not previously have one or to supplement the existing 'hmnu' resource for a menu.

FUNCTION HMSetMenuResID (menuID, resID: Integer): OSErr;

menuID The menu to associate with the 'hmnu' resource.

resID The resource ID of the 'hmnu' resource to use for the menu specified by
the menuID parameter.

C H A P T E R 3

Help Manager

Help Manager Reference 3-115

DESCRIPTION

The resID parameter specifies the resource ID of the 'hmnu' resource to use for the

menu specified by the menuID parameter. The menu identified by the menuID

parameter should correspond to an existing menu in your menu list. The Help Manager

maintains a list of the menus whose 'hmnu' resources you set using the

HMSetMenuResID function.

Before your application terminates, specify –1 in the resID parameter to disassociate a

particular menu and an 'hmnu' resource that you previously associated using the

HMSetMenuResID function.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the HMSetMenuResID function are

RESULT CODES

SEE ALSO

“Providing Help Balloons for Menus You Disable for Dialog Boxes” beginning on

page 3-47 describes how to use HMSetMenuResID to associate an alternate 'hmnu'

resource with a menu that your application dims when it displays a dialog box.

HMGetMenuResID

After you use the HMSetMenuResID function to associate a menu with an 'hmnu'

resource, you can use the HMGetMenuResID function to get the resource ID of the

'hmnu' resource.

FUNCTION HMGetMenuResID (menuID: Integer;

 VAR resID: Integer): OSErr;

menuID The menu for which you want the associated 'hmnu' resource. The value
specified in the menuID parameter must have been previously associated
using the HMSetMenuResID function.

resID The resource ID of the 'hmnu' resource associated with the specified
menu.

Trap macro Selector

_Pack14 $020D

noErr 0 No error
memFullErr –108 Not enough room in heap zone

C H A P T E R 3

Help Manager

3-116 Help Manager Reference

DESCRIPTION

HMGetMenuResID returns in its resID parameter the resource ID of the 'hmnu'

resource associated with the menu specified by the menuID parameter. If the menu does

not have an 'hmnu' resource that was previously set using HMSetMenuResID, the

HMGetMenuResID function returns –1 in the resID parameter and a nonzero result

code.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the HMGetMenuResID function are

RESULT CODES

SEE ALSO

The HMSetMenuResID function is described on page 3-114.

HMScanTemplateItems

You can use the HMScanTemplateItems function to search for a resource of type

'hdlg' or 'hrct'.

FUNCTION HMScanTemplateItems (whichID, whichResFile: Integer;

whichType: ResType): OSErr;

whichID The resource ID of the 'hdlg' or 'hrct' resource to search for.

whichResFile
The file reference number of the resource file to search.

whichType The type of help resource to search for—either 'hdlg' or 'hrct'.

DESCRIPTION

The HMScanTemplateItems function searches a resource file for resources of type

'hdlg' or 'hrct'. Specify the resource ID of the 'hdlg' or 'hrct' resource to search

for in the whichID parameter. Specify the resource type in the whichType parameter.

When HMScanTemplateItems returns the value for noErr, the Help Manager applies

the help messages in the specified 'hdlg' or 'hrct' resource to the active window.

Trap macro Selector

_Pack14 $0314

noErr 0 No error
resNotFound –192 Unable to read resource

C H A P T E R 3

Help Manager

Help Manager Reference 3-117

The resource file specified in the whichResFile parameter must already be open.

Specify –1 in the whichResFile parameter to search the current resource file.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the HMScanTemplateItems function are

RESULT CODES

SEE ALSO

If you want the capability that HMScanTemplateItems provides without modifying

your code, you can add a HelpItem item to your item list ('DITL') resources or add an

'hwin' resource—as described in “Using a Help Item Versus Using an 'hwin' Resource”

on page 3-63 and in “Associating Help Resources With Static Windows” on page 3-68.

HMSetDialogResID

You can use the HMSetDialogResID function to set the 'hdlg' resource that specifies

help balloons for the next dialog box or alert box.

FUNCTION HMSetDialogResID (resID: Integer): OSErr;

resID The resource ID of the 'hdlg' resource to use when your application
displays the next dialog box or alert box.

DESCRIPTION

The HMSetDialogResID function uses the 'hdlg' resource specified in the resID

parameter to supplement whatever 'hdlg' resource might already be associated with

the next dialog box or alert box that you display. HMSetDialogResID supplements the

help messages specified by a HelpItem item in the next dialog or alert box’s item list

('DITL') resource. Specify –1 in the resID parameter to reset or clear a previous call to

the HMSetDialogResID function.

Trap macro Selector

_Pack14 $0410

noErr 0 No error
fnOpnErr –38 File not open
memFullErr –108 Not enough room in heap zone
resNotFound –192 Unable to read resource

C H A P T E R 3

Help Manager

3-118 Help Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the HMSetDialogResID function are

RESULT CODES

SEE ALSO

You typically use HMSetDialogResID in conjunction with the HMGetDialogResID

function, which is described in the following section.

HMGetDialogResID

You can use the HMGetDialogResID function to get the resource ID of the 'hdlg'

resource that will be used by the next dialog box as a result of a previous call to the

HMSetDialogResID function.

FUNCTION HMGetDialogResID (VAR resID: Integer): OSErr;

resID The resource ID of the last 'hdlg' resource set with the
HMSetDialogResID function.

DESCRIPTION

The HMGetDialogResID function returns in its resID parameter the resource ID of the

last 'hdlg' resource set with the HMSetDialogResID function.

You can use the HMGetDialogResID and HMSetDialogResID functions when your

application displays nested dialog boxes (although you should generally close one

dialog box before displaying another). For example, you can save the 'hdlg' resource

of the current dialog box, set a new 'hdlg' resource, display the new dialog box, and

then restore the setting of the previous 'hdlg' resource when you close the second

dialog box.

If the 'hdlg' resource currently in use was not set by a call to the HMSetDialogResID

function, the HMGetDialogResID function returns a result code of resNotFound.

Trap macro Selector

_Pack14 $010C

noErr 0 No error
memFullErr –108 Not enough room in heap zone

C H A P T E R 3

Help Manager

Help Manager Reference 3-119

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the HMGetDialogResID function are

RESULT CODES

SEE ALSO

You typically use HMGetDialogResID in conjunction with the HMSetDialogResID

function, which is described on page 3-117.

Determining the Size of a Help Balloon

If your application does extensive drawing, the Help Manager provides three functions

that may be helpful for determining the dimensions of your help balloons before

displaying them. Then you can ensure that your help balloons don’t obscure an area that

requires an inordinate amount of time to update.

To get the size of a help balloon before the Help Manager displays it, use the

HMBalloonRect or HMBalloonPict function. To get the size of the currently

displayed help balloon, use the HMGetBalloonWindow function.

HMBalloonRect

To get information about the size of a help balloon before the Help Manager displays it,

you can use the HMBalloonRect function.

FUNCTION HMBalloonRect (aHelpMsg: HMMessageRecord;

 VAR coolRect: Rect): OSErr;

aHelpMsg The help message for the help balloon.

coolRect The coordinates of the rectangle that encloses the help message. The
upper-left corner of the rectangle has the coordinates (0,0).

Trap macro Selector

_Pack14 $0213

noErr 0 No error
memFullErr –108 Not enough room in heap zone
resNotFound –192 Unable to read resource

C H A P T E R 3

Help Manager

3-120 Help Manager Reference

DESCRIPTION

The HMBalloonRect function calculates the coordinates that the Help Manager uses for

a particular balloon, permitting you to specify the help message for a help balloon and

then obtaining the size (but not the position) of the rectangle used for the balloon. Note

that the HMBalloonRect function does not display the help balloon.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the HMBalloonRect function are

RESULT CODES

SEE ALSO

The aHelpMsg parameter is of data type HMMessageRecord, which is described in

“Providing Help Balloons for Dynamic Windows” beginning on page 3-74.

HMBalloonPict

To get a handle to a picture before displaying it in a help balloon, use the

HMBalloonPict function.

FUNCTION HMBalloonPict (aHelpMsg: HMMessageRecord;

 VAR coolPict: PicHandle): OSErr;

aHelpMsg The help message for the help balloon; in this case, a picture.

coolPict A handle to the picture that the Help Manager will use if you later choose
to display the help balloon.

DESCRIPTION

The HMBalloonPict function does not display the help balloon; it returns a handle to

the picture that the Help Manager will use if you later choose to display a help balloon

with the specified help message.

The pictFrame field of the picture handle in the coolPict parameter contains the

same rectangle as the rectangle obtained from the HMBalloonRect function. The

rectangle specifies the display rectangle that surrounds the picture.

Trap macro Selector

_Pack14 $040E

noErr 0 No error
paramErr –50 Error in parameter list
memFullErr –108 Not enough room in heap zone

C H A P T E R 3

Help Manager

Help Manager Reference 3-121

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the HMBalloonPict function are

RESULT CODES

SEE ALSO

The aHelpMsg parameter is of data type HMMessageRecord. “Providing Help Balloons

for Dynamic Windows” beginning on page 3-74 describes the fields of this record.

HMGetBalloonWindow

The Help Manager displays help balloons in special windows; to get a pointer to the

window record of the currently displayed help balloon, use the HMGetBalloonWindow

function.

FUNCTION HMGetBalloonWindow (VAR window: WindowPtr): OSErr;

window A pointer to the window record for the currently displayed help balloon.

DESCRIPTION

In its window parameter, HMGetBalloonWindow returns a pointer to the window

record for the currently displayed help balloon. The window record contains a graphics

port record, which in turn defines the port’s rectangle.

If no help balloon is currently displayed, the HMGetBalloonWindow function returns

NIL in the window parameter. The HMGetBalloonWindow function also returns NIL for

balloons created with the HMShowMenuBalloon function because no windows are

created; likewise, NIL is returned for balloons created with the HMShowBalloon

function when the kHMSaveBitsNoWindow constant is specified as the method

parameter.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the HMGetBalloonWindow function are

Trap macro Selector

_Pack14 $040F

noErr 0 No error
paramErr –50 Error in parameter list
memFullErr –108 Not enough room in heap zone

Trap macro Selector

_Pack14 $0215

C H A P T E R 3

Help Manager

3-122 Help Manager Reference

RESULT CODES

SEE ALSO

The description of the HMShowMenuBalloon function begins on page 3-103; the

description of the HMShowBalloon function begins on page 3-100.

Getting the Message of a Help Balloon

Using the HMExtractHelpMsg and HMGetIndHelpMsg functions, you can extract

information from existing help resources.

You can use HMExtractHelpMsg to extract the help messages specified in existing help

resources. You might find this useful if you have duplicate commands and you want to

store help messages in only one resource. For example, if you have a dialog box that

replicates portions of a pull-down menu, you could specify help messages in the 'hmnu'

resource for the pull-down menu, and use HMExtractHelpMsg to extract those help

messages to use with the related items in the dialog box’s 'hdlg' resource.

HMExtractHelpMsg

You can use the HMExtractHelpMsg function to extract the help balloon messages from

existing help resources.

FUNCTION HMExtractHelpMsg (whichType: ResType;

 whichResID, whichMsg,

 whichState: Integer;

 VAR aHelpMsg: HMMessageRecord): OSErr;

whichType The type of help resource. You can use one of these constants:
kHMMenuResType, kHMDialogResType, kHMRectListResType,
kHMOverrideResType, or kHMFinderApplResType.

whichResID
The resource ID of the help resource whose help message you wish to
extract.

whichMsg The index of the component you wish to extract. The header and
missing-items components don’t count as components to index, because
this function always skips those two components. For help resources that
include both header and missing-items components, specify 1 to get the
help messages contained in a help resource’s menu-title component.

noErr 0 No error
memFullErr –108 Not enough room in heap zone

C H A P T E R 3

Help Manager

Help Manager Reference 3-123

whichState
For menu items and items in alert or dialog boxes, specifies the state of
the item whose message you wish to extract. Use one of the following
constants: kHMEnabledItem, kHMDisabledItem, kHMCheckedItem,
or kHMOtherItem.

aHelpMsg A help message record.

DESCRIPTION

The HMExtractHelpMsg function returns in its aHelpMsg parameter the help message

for an item in a specified state.

The whichType parameter identifies the type of resource from which you are extracting

the help message. You can use one of these constants for the whichType parameter.

CONST kHMMenuResType = 'hmnu';{menu help resource type}

kHMDialogResType = 'hdlg';{dialog help resource type}

kHMWindListResType = 'hwin';{window help resource type}

kHMRectListResType = 'hrct';{rectangle help resource type}

kHMOverrideResType = 'hovr';{help override resource }

{ type}

kHMFinderApplResType = 'hfdr';{application icon help }

{ resource type}

The whichState parameter specifies the state of the item whose message you want to

extract. You can use one of these constants for the whichState parameter.

CONST kHMEnabledItem = 0; {enabled state for menu items; }

{ contrlHilite value of 0 for }

{ controls}

kHMDisabledItem = 1; {disabled state for menu items; }

{ contrlHilite value of 255 for }

{ controls}

kHMCheckedItem = 2; {enabled-and-checked state for }

{ menu items; contrlHilite value }

{ of 1 for controls that are "on"}

kHMOtherItem = 3; {enabled-and-marked state for menu }

{ items; contrlHilite value }

{ between 2 and 253 for controls}

For the kHMRectListResType, kHMOverrideResType, and

kHMFinderApplResType resource types—which don’t have states—supply

the kHMEnabledItem constant for the whichState parameter.

C H A P T E R 3

Help Manager

3-124 Help Manager Reference

The application-defined procedure shown in Listing 3-21 extracts the help balloon

message from the 'hmnu' resource with a resource ID of 128. A value of 1 is supplied as

the whichMsg parameter to retrieve information about the resource’s first component

(after the header and missing-items components, that is), which is the menu title. The

menu title has four possible states; to retrieve the help message for the menu title in its

dimmed state, the constant kHMDisabledItem is used for the whichState parameter.

The help message record returned in aHelpMsg is then passed to HMShowBalloon,

which displays the message in a balloon whose tip is located at the point specified in the

tip parameter.

Listing 3-21 Using the HMExtractHelpMsg function

FUNCTION MyShowBalloonForDimMenuTitle: OSErr;

VAR

aHelpMsg: HMMessageRecord;

tip: Point;

alternateRect: Rect;

err: OSErr;

BEGIN

err := HMExtractHelpMsg(kHMMenuResType, 128, 1,

kHMDisabledItem, aHelpMsg);

IF err = noErr THEN

{be sure to assign a tip and rectangle coordinates here}

err := HMShowBalloon(aHelpMsg, tip, alternateRect,

NIL, 0, 0, kHMRegularWindow);

MyShowBalloonForDimMenuTitle:= err;

END;

To retrieve all of the help messages for a given resource, set whichMsg to 1 and make

repeated calls to HMExtractHelpMsg, incrementing whichMsg by 1 on each

subsequent call until it returns the hmSkippedBalloon result code.

SPECIAL CONSIDERATIONS

If HMCompareItem appears as a component of an 'hmnu' resource that you’re

examining, neither this function nor HMGetIndHelpMsg performs a comparison against

the current name of any menu item. Instead, these functions return the messages listed

in your HMCompareItem components in the order in which they appear in the 'hmnu'

resource.

When supplying an index for the whichMsg parameter, don’t count the header

component or the missing-items component as components to index. This function

always skips both components; therefore, for help resources that include both header

and missing-items components, specify 1 to get the help messages contained in a help

resource’s menu-title component.

C H A P T E R 3

Help Manager

Help Manager Reference 3-125

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the HMExtractHelpMsg function are

RESULT CODES

SEE ALSO

The aHelpMsg parameter is of data type HMMessageRecord. “Providing Help Balloons

for Dynamic Windows” beginning on page 3-74 describes the fields of the help message

record.

HMGetIndHelpMsg

To extract the help messages in existing help resources as well as additional information

regarding the help resource, such as its variation code, tip location, and so on, use the

HMGetIndHelpMsg function.

FUNCTION HMGetIndHelpMsg (whichType: ResType;

 whichResID, whichMsg,

 whichState: Integer;

 VAR options: LongInt; VAR tip: Point;

 VAR altRect: Rect; VAR theProc: Integer;

 VAR variant: Integer;

 VAR aHelpMsg: HMMessageRecord;

 VAR count: Integer): OSErr;

whichType The type of help resource. You can use one of these constants:
kHMMenuResType, kHMDialogResType, kHMRectListResType,
kHMOverrideResType, or kHMFinderApplResType.

whichResID
The resource ID of the help resource whose help message you wish to
extract.

Trap macro Selector

_Pack14 $0711

noErr 0 No error
paramErr –50 Error in parameter list
memFullErr –108 Not enough room in heap zone
resNotFound –192 Unable to read resource
hmSkippedBalloon –857 No help message to fill in
hmWrongVersion –858 Wrong version of Help Manager resource
hmUnknownHelpType –859 Help message record contained a bad type

C H A P T E R 3

Help Manager

3-126 Help Manager Reference

whichMsg The index of the component you wish to extract. The header and
missing-items components don’t count as components to index, because
this function always skips those two components. For help resources that
include both header and missing-items components, specify 1 to get the
help messages contained in a help resource’s menu-title component.

whichState
For menu items and items in alert and dialog boxes, specifies the state of
the item whose message you wish to extract. Use one of the following
constants: kHMEnabledItem, kHMDisabledItem, kHMCheckedItem,
or kHMOtherItem.

options The value of the options element of the help resource.

tip The coordinates of the help balloon’s tip location.

altRect The coordinates of the help balloon’s alternate rectangle.

theProc The resource ID of the help balloon’s 'WDEF' resource.

variant The balloon definition function’s variation code.

aHelpMsg The help message.

count The number of components defined in the resource (not counting the
header and missing-items components).

DESCRIPTION

Like the HMExtractHelpMsg function, the HMGetIndHelpMsg function returns in its

aHelpMsg parameter the help message for an item in a specified state. The

HMGetIndHelpMsg function uses additional parameters to return even more

information about the help balloon than does HMExtractHelpMsg.

To retrieve all of the help balloon messages and related information for a given resource,

set whichMsg to 1 and make repeated calls to HMGetIndHelpMsg, incrementing

whichMsg by 1 on each subsequent call until it returns the hmSkippedBalloon result

code.

The whichType parameter identifies the type of resource from which you are extracting

the help message. You can use one of these constants for the whichType parameter.

CONST kHMMenuResType = 'hmnu';{menu help resource type}

kHMDialogResType = 'hdlg';{dialog help resource type}

kHMWindListResType = 'hwin';{window help resource type}

kHMRectListResType = 'hrct';{rectangle help resource type}

kHMOverrideResType = 'hovr';{help override resource }

{ type}

kHMFinderApplResType = 'hfdr';{application icon help }

{ resource type}

C H A P T E R 3

Help Manager

Help Manager Reference 3-127

The whichState parameter specifies the state of the item whose message you want to

extract. You can use one of these constants for the whichState parameter.

CONST kHMEnabledItem = 0; {enabled state for menu items; }

{ contrlHilite value of 0 for }

{ controls}

kHMDisabledItem = 1; {disabled state for menu items; }

{ contrlHilite value of 255 for }

{ controls}

kHMCheckedItem = 2; {enabled-and-checked state for }

{ menu items; contrlHilite value }

{ of 1 for controls that are "on"}

kHMOtherItem = 3; {enabled-and-marked state for menu }

{ items; contrlHilite value }

{ between 2 and 253 for controls}

For the kHMRectListResType, kHMOverrideResType, and

kHMFinderApplResType resource types—which don’t have states—supply

the kHMEnabledItem constant for the whichState parameter.

SPECIAL CONSIDERATIONS

If HMCompareItem appears as a component of an 'hmnu' resource that you’re

examining, neither this function nor HMExtractHelpMsg performs a comparison

against the current name of any menu item. Instead, these functions return the messages

listed in your HMCompareItem components in the order in which they appear in the

'hmnu' resource.

When supplying an index for the whichMsg parameter, don’t count the header

component or the missing-items component as components to index. This function

always skips both components; therefore, for help resources that include both header

and missing-items components, specify 1 to get the help messages contained in a help

resource’s menu-title component.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the HMGetIndHelpMsg function are

Trap macro Selector

_Pack14 $1306

C H A P T E R 3

Help Manager

3-128 Help Manager Reference

RESULT CODES

SEE ALSO

The aHelpMsg parameter is of data type HMMessageRecord. “Providing Help Balloons

for Dynamic Windows” beginning on page 3-74 describes the fields of the help message

record.

Application-Defined Routines

A balloon definition function is responsible for calculating the content region and

structure region of the help balloon window and drawing the frame of the help balloon.

The Help Manager takes care of positioning, sizing, and drawing your help balloons,

and the standard balloon definition function provides a consistent and attractive shape

to balloons across all applications. Though it takes extra work on your part, and your

balloons will not share the consistent appearance of help balloons used by the Finder

and by other applications, you can create your own balloon definition function,

described in this section as MyBalloonDef.

When you use the HMShowBalloon and HMShowMenuBalloon functions to display

help balloons, you pass a pointer to a tip function in the tipProc parameter. Normally,

you supply NIL in this parameter to use the Help Manager’s default tip function.

However, you can also supply your own tip function, described in this section as MyTip.

The Help Manager calls your tip function after calculating the size and the location of a

help balloon and before displaying it. This allows you to examine and, if necessary,

adjust the balloon before it is displayed. For example, if you determine that the help

balloon would obscure an object that requires extensive redrawing, you might use a

different variation code to move the balloon.

noErr 0 No error
paramErr –50 Error in parameter list
memFullErr –108 Not enough room in heap zone
resNotFound –192 Unable to read resource
hmSkippedBalloon –857 No help message to fill in
hmWrongVersion –858 Wrong version of Help Manager resource
hmUnknownHelpType –859 Help message record contained a bad type

C H A P T E R 3

Help Manager

Help Manager Reference 3-129

MyBalloonDef

Here’s a sample declaration for a balloon definition function called MyBalloonDef.

FUNCTION MyBalloonDef (variant: Integer; theBalloon: WindowPtr;

 message: Integer;

 param: LongInt): LongInt;

variant The variation code used to specify the shape and position of the help
balloon. You should use the same relative position for the tip of the
help balloon that the standard variation codes 0 through 7 specify. This
ensures that the tip of the help balloon points to the object that the help
balloon describes.

theBalloon
A pointer to the window of the help balloon.

message Identifies the action your balloon definition function should perform.
Your balloon definition function can be sent the same messages as a
window definition function, but the only ones your balloon definition
function needs to process are the wCalcRgns and wDraw messages.

When your balloon definition function receives the wCalcRgns message,
your function should calculate the content region and structure region of
the help balloon.

When your balloon definition function receives the wDraw message, your
function should draw the frame of the help balloon.

If you want to process other messages in your balloon definition function
(for example, performing any additional initialization), you can also
process the other standard 'WDEF' messages.

param As with a window definition function, the value of this parameter
depends on the value of the message parameter. Because this parameter
is not used by the wCalcRgns and wDraw messages, your balloon
definition function should disregard the value of this parameter.

DESCRIPTION

Your balloon definition function must define the appearance of the help balloon, which

is a special type of window. You can implement your own balloon definition function by

writing a window definition function that performs the tasks described in this section.

(The standard balloon definition function is of type 'WDEF' with resource ID 126.)

Your balloon definition function is also responsible for calculating the content region and

structure region of the help balloon window and drawing the frame of the help balloon.

The content region is the area inside the balloon frame; it contains the help message. The

structure region is the boundary region of the entire balloon, including the content area

and the pointer that extends from one of the help balloon’s corners.

If you want the Help Manager to use your balloon definition function, you specify its

resource ID and the desired variation code either in the HMShowBalloon function or in

C H A P T E R 3

Help Manager

3-130 Help Manager Reference

the appropriate elements of the 'hmnu', 'hdlg', or 'hrct' resource. The Help

Manager derives your balloon’s window definition ID from its resource ID.

SEE ALSO

In the variant parameter, you should use the same relative position for the tip of the

help balloon that the standard variation codes 0 through 7 specify, as illustrated in

Figure 3-4 on page 3-10.

The wCalcRgns and wDraw messages are described in the chapter “Window Manager”

of Inside Macintosh: Macintosh Toolbox Essentials.

MyTip

Here’s a sample declaration of a tip function called MyTip.

FUNCTION MyTip (tip: Point; structure: RgnHandle; VAR r: Rect;

 VAR variant: Integer): OSErr;

tip The location of the help balloon tip.

structure A handle to the help balloon’s region structure. The Help Manager
returns this value. The structure region is the boundary region of the
entire balloon, including the content area and the pointer that extends
from one of the help balloon’s corners.

r The coordinates of the help balloon’s content region. The content region is
the area inside the balloon frame; it contains the help message. If this
rectangle is not appropriate for the current screen display, you can specify
different coordinates in this parameter.

variant Variation code to be used for the help balloon. If this variation code is not
appropriate for the current screen display, you can specify different
coordinates in this parameter.

DESCRIPTION

Before displaying a help balloon created with the HMShowBalloon or

HMShowMenuBalloon function, the Help Manager calls this function if you point to it in

the tipProc parameter of either HMShowBalloon or HMShowMenuBalloon. The Help

Manager returns the location of the help balloon tip, a handle to the help balloon’s

region structure, the coordinates of its content region, and the variation code to be used

for the help balloon. If the help balloon that HMShowBalloon or HMShowMenuBalloon

initially calculates is not appropriate for your current screen display, you can make

minor adjustments to it by specifying a different rectangle in the r parameter (in which

case the Help Manager automatically adjusts the structure parameter so that the

entire balloon is larger or smaller as necessary) or by specifying a different variation

code in the variant parameter.

C H A P T E R 3

Help Manager

Help Manager Reference 3-131

If you need to make a major adjustment to the help balloon, return the

hmBalloonAborted result code and call HMShowBalloon or HMShowMenuBalloon

with appropriate new parameter values. To use the values returned in your tip function’s

parameters, return the noErr result code.

Listing 3-22 shows an example of using a tip function to refrain from displaying a

balloon if it obscures an area of the screen that requires extensive drawing.

Listing 3-22 Using a tip function

VAR

temprect: Rect;

DontObscureRect: Rect;

tip: Point;

structure: RgnHandle;

aHelpMsg: HMMessageRecord;

BEGIN

{be sure to determine DontObscureRect and fill in aHelpMsg}

IF HMShowBalloon(aHelpMsg, tip, NIL, @MyTip, 0, 0,

 kHMRegularwindow) = noErr

THEN

{test whether balloon obscures complex graphic }

{ in DontObscureRect}

IF SectRect(structure^^.rgnBBox, DontObscureRect,

temprect) THEN

{don't show this balloon but call HMShowBalloon later}

MyTip := hmBalloonAborted

ELSE {use the balloon as calculated by the Help Manager}

MyTip := noErr;

END;

SEE ALSO

Figure 3-4 on page 3-10 illustrates the structure regions and positions of the eight

standard help balloons.

The HMShowBalloon function is described on page 3-100, and the

HMShowMenuBalloon function is described on page 3-103.

C H A P T E R 3

Help Manager

3-132 Help Manager Reference

Resources

This section describes the resources that the Help Manager uses to size, position, and

draw help balloons for menus, alert and dialog boxes, static windows, non-document

Finder icons, and several default help balloons provided by system software.

Help resources generally specify help messages, a balloon definition function, a variation

code, and, when necessary, the balloon tip and either a hot rectangle or an alternate

rectangle. The Help Manager uses this information as appropriate when drawing help

balloons. These help resources are

■ the menu help ('hmnu') resource, which provides help balloons for menus and menu
items

■ the dialog-item help ('hdlg') resource, which provides help balloons for items in
dialog boxes and alert boxes

■ the rectangle help ('hrct') resource, which associates a help balloon with a hot
rectangle in a static window

■ the window help ('hwin') resource, which associates an 'hrct' or 'hdlg' resource
with a hot rectangle in a window or with an item in a dialog box or alert box

■ the Finder icon help ('hfdr') resource, which provides a custom help balloon for
your application icon

■ the default help override ('hovr') resource, which overrides the help messages of
default help balloons provided in system software

This section describes the structures of these resources after they are compiled by the Rez

resource compiler, available from APDA. If you are interested in creating the Rez input

files for these resources, see “Using the Help Manager” beginning on page 3-18 for

detailed information.

The Menu Help Resource

To provide help balloons for a menu—pull-down, pop-up, or hierarchical—that uses the

standard menu definition procedure, you can create a menu help resource. A menu help

resource is a resource of type 'hmnu'; in it, you specify help balloons for the menu title

and for each item in the menu. You create a separate 'hmnu' resource for each menu. All

'hmnu' resources must have resource IDs greater than 128.

The format of a Rez input file for an 'hmnu' resource differs from its compiled output

form. This section describes the structure of a Rez-compiled 'hmnu' resource. If you are

concerned only with creating 'hmnu' resources, see “Providing Help Balloons for

Menus” beginning on page 3-27. That section gives a detailed description, using several

code samples, of how to use Rez input files to create 'hmnu' resources.

C H A P T E R 3

Help Manager

Help Manager Reference 3-133

An 'hmnu' resource consists of a header component, a missing-items component, a

menu-title component, and a variable number of menu-item components. Figure 3-23

shows the general structure of a compiled 'hmnu' resource.

Figure 3-23 Structure of a compiled menu help ('hmnu') resource

If you examine a compiled version of an 'hmnu' resource, you find that the header

component consists of the following elements:

■ Help Manager version. The version of the Help Manager to use; specified in a Rez
input file with the HelpMgrVersion constant.

■ Options. The sum of the values of available options, described in “Specifying Options
in Help Resources” beginning on page 3-25.

■ Balloon definition function. The resource ID of the window definition function used
for drawing the help balloon. The standard balloon definition function is of type
'WDEF' with resource ID 126; this can be specified by the number 0 in the Rez input
file.

C H A P T E R 3

Help Manager

3-134 Help Manager Reference

■ Variation code. A number signifying the preferred position of the help balloon relative
to the hot rectangle. The balloon definition function draws the frame of the help
balloon based on the variation code specified here. The eight variation codes and how
they affect the standard balloon definition function are illustrated in Figure 3-4 on
page 3-10.

■ Item count. The number of remaining components—including the missing-items,
menu-title, and menu-item components—defined in the rest of this resource.

The Help Manager identifies each component by its order in the resource. The

missing-items component always follows the header component of an 'hmnu' resource.

The menu-title component always follows the missing-items component. Then a variable

number of menu-item components are stored in this resource. The Help Manager

determines the end of the 'hmnu' resource by using the item count information in the

header component.

The structures of the missing-items component, the menu-title component, and the

menu-item components depend on identifiers specified inside the components. The

identifiers used in a Rez input file are described in “Specifying the Format for Help

Messages” on page 3-23.

The missing-items component, the menu-title component, and the menu-item

components can each specify four different help messages:

■ First help message.

■ In the missing-items component, this is the help message for missing enabled items.

■ In the menu-title component, this is the help message for the enabled menu title.

■ In all subsequent menu-item components, this is the help message for enabled
menu items.

■ Second help message.

■ In the missing-items component, this is the help message for missing items that are
dimmed by the application.

■ In the menu-title component, this is the help message for the menu title when the
application dims it.

■ In all subsequent menu-item components, this is the help message for menu items
when the application dims them.

■ Third help message.

■ In the missing-items component, this is the help message for missing
enabled-and-checked items.

■ In the menu-title component, this is the help message for the menu title when
system software dims it at the appearance of an alert box or a modal dialog box.

■ In all subsequent menu-item components, this is the help message for
enabled-and-checked menu items.

C H A P T E R 3

Help Manager

Help Manager Reference 3-135

■ Fourth help message.

■ In the missing-items component, this is the help message for missing
enabled-and-marked items.

■ In the menu-title component, this is the help message for all menu items when
system software dims them at the appearance of an alert box or a modal dialog box.

■ In all subsequent menu-item components, this is the help message for
enabled-and-marked menu items.

An empty string or a resource ID of 0 for any messages in the menu-title or menu-item

components causes the Help Manager to use the appropriate help message contained in

the missing-items component.

Since they all adhere to the formats specified by the previously described identifiers, the

missing-items component, the menu-title component, and the menu-item components

can have similar structures. The Help Manager determines the end of a component by

examining its length, which is stored in the first 2 bytes of the component.

Figure 3-24 shows the structure of a component that stores its help messages as Pascal

strings within the 'hmnu' resource itself.

Figure 3-24 Structure of an 'hmnu' component compiled with the HMStringItem identifier

C H A P T E R 3

Help Manager

3-136 Help Manager Reference

If you examine a compiled version of an 'hmnu' resource, you find that a component

identified in a Rez input file by the HMStringItem identifier consists of the following

elements:

■ Size. The number of bytes contained in this component.

■ Type of data. The value 1 is specified here when the help messages are stored as
Pascal strings within this component.

■ Text string. The first help message (as previously described).

■ Text string. The second help message (as previously described).

■ Text string. The third help message (as previously described).

■ Text string. The fourth help message (as previously described).

■ Alignment bytes. Zero or one bytes used to make the previous text strings end on a
word boundary.

Figure 3-25 shows the structure of an 'hmnu' component that specifies its help messages

as text strings stored in string list ('STR#') resources.

Figure 3-25 Structure of an 'hmnu' component compiled with the HMStringResItem identifier

C H A P T E R 3

Help Manager

Help Manager Reference 3-137

If you examine a compiled version of an 'hmnu' resource, you find that a component

identified in a Rez input file by the HMStringResItem identifier consists of the

following elements:

■ Size. The number of bytes contained in this component.

■ Type of data. The value 3 is specified here when the help messages for this component
are stored in string list ('STR#') resources.

■ Resource ID. The resource ID of an 'STR#' resource.

■ Index into the string list resource. A number used as an index to a particular text
string within the 'STR#' resource. This text string is used for the first help message
(as previously described).

Three more pairs of resource IDs/index numbers follow. The text strings that these pairs

refer to are used for the second, third, and fourth help messages, respectively.

Figure 3-26 shows the structure of an 'hmnu' component that specifies its help messages

in picture ('PICT') resources, styled text ('TEXT' and 'styl') resources, or string

('STR ') resources.

Figure 3-26 Structure of an 'hmnu' component compiled with the HMPictItem, HMTEResItem,
or HMSTRResItem identifier

C H A P T E R 3

Help Manager

3-138 Help Manager Reference

If you examine a compiled version of an 'hmnu' resource, you find that a component

identified in a Rez input file by either the HMPictItem, HMTEResItem, or

HMSTRResItem identifier consists of the following elements:

■ Size. The number of bytes contained in this component.

■ Type of data.

■ The value 2 is specified here when the help messages for this component are stored
in 'PICT' resources.

■ The value 6 is specified here when the help messages for this component are stored
as styled text—that is, in both 'TEXT' and 'styl' resources.

■ The value 7 is specified here when the help messages for this component are stored
in 'STR ' resources.

■ Resource ID.

■ The resource ID of a 'PICT' resource when the value 2 is specified as the type of
data. The Help Manager uses the picture contained in this resource for the first help
message (as previously described).

■ The resource ID common to both a 'TEXT' and an 'styl' resource when the
value 6 is specified as the type of data. The Help Manager uses the styled text
specified by these resources for the first help message.

■ The resource ID of an 'STR ' resource when the value 7 is specified as the type of
data. The Help Manager uses the text contained in this resource for the first help
message.

Three more resource IDs follow; the Help Manager uses these resources (either 'PICT',

'TEXT' and 'styl', or 'STR ') for the second, third, and fourth help messages,

respectively (as previously described).

Figure 3-27 shows the structure of an 'hmnu' component that specifies no help

messages.

Figure 3-27 Structure of an 'hmnu' component compiled with the HMSkipItem identifier

If you examine a compiled version of an 'hmnu' resource, you find that a component

identified by the HMSkipItem identifier consists of the following elements:

■ Size. The value 4, for the number of bytes contained in this component.

■ Type of data. The value 256.

C H A P T E R 3

Help Manager

Help Manager Reference 3-139

For menu-item components, two additional identifiers are available: HMCompareItem

and HMNamedResourceItem. When the HMCompareItem identifier is specified, the

Help Manager compares a string specified in the component against the current menu

item. If the string matches the current menu item, the Help Manager uses the help

messages specified in the rest of the component, shown in Figure 3-28. This type of

component is useful for a menu item that can change names.

Figure 3-28 Structure of a menu-item component compiled with the HMCompareItem identifier

If you examine a compiled version of an 'hmnu' resource, you find that a component

identified in a Rez input file by the HMCompareItem identifier consists of these elements:

■ Size. The number of bytes contained in this component.

■ Type of data. The value 512 appears here when the Help Manager is to use the help
messages specified in this component only when the current menu item matches a
specified text string.

■ Text string. The string against which to compare the current menu item. If the current
menu item matches this string, then the Help Manager uses the help messages
specified in this component.

■ Alignment bytes. Zero or one bytes used to make the previous text string end on a
word boundary.

■ Help messages. The four help messages for the menu item. The structure may follow
that of any of the previously described menu-item components; that is, this element
consists of a value representing the format of the help messages specified in the rest of
the component, the size of the rest of the component, and specifications for four actual
help messages for the menu item.

When the identifier HMNamedResourceItem is specified, the Help Manager retrieves

help messages from a resource that matches the name and state of the current menu item.

C H A P T E R 3

Help Manager

3-140 Help Manager Reference

Figure 3-29 shows the format of a menu-item component that uses named resources for

help messages.

Figure 3-29 Structure of a menu-item component compiled with the HMNamedResourceItem
identifier

If you examine a compiled version of an 'hmnu' resource, you find that a component

identified in a Rez input file by the HMNamedResourceItem identifier consists of these

elements:

■ Size. The number of bytes contained in this component.

■ Type of data. The number 1024 is specified here when the Help Manager is to use
named resources for help messages.

■ Resource type. The resource type ('STR ', 'STR#', 'PICT', or, for text, 'TEXT') of
the resource that contains the help messages for the current menu item. The Help
Manager then uses the GetNamedResource function to find the resource with the
same name as the current menu item. (If 'TEXT' is specified, the Help Manager also
uses the style information contained in an 'styl' resource with the same name.) If
the menu item is dimmed, the Help Manager appends an exclamation point (!) to the
menu item string and searches for a resource by that name. If the menu item is
enabled and marked with a checkmark or other mark, the Help Manager appends the
mark to the menu item string and looks for a resource with that name.

The Dialog-Item Help Resource

You can provide help balloons for individual items in a dialog box or an alert box by

supplying a dialog-item help resource, which is a resource of type 'hdlg'. You specify

different help balloons for various states of an item—by highlight value if the item is a

control, and by enabled or disabled states for items that are not controls.

To associate an 'hdlg' resource with a particular alert box or dialog box, either you

must include an item of type HelpItem in the box’s item list ('DITL') resource, or you

must create an 'hwin' resource. Listing 3-8 on page 3-59 shows how to use an item of

type HelpItem—and Listing 3-10 on page 3-72 shows you how to use an 'hwin'

C H A P T E R 3

Help Manager

Help Manager Reference 3-141

resource—for associating an 'hdlg' resource with a particular alert box or dialog box.

For detailed information about using an item of type HelpItem, see “Using a Help Item

Versus Using an 'hwin' Resource” on page 3-63. For detailed information on using an

'hwin' resource, see “Associating Help Resources With Static Windows” on page 3-68.

All 'hdlg' resources must have resource IDs greater than 128.

The format of a Rez input file for an 'hdlg' resource differs from its compiled output

form. This section describes the structure of a Rez-compiled 'hdlg' resource. If you are

concerned only with creating 'hdlg' resources, see “Providing Help Balloons for Items

in Dialog Boxes and Alert Boxes” on page 3-51 for a detailed description, using several

code samples, of how to use Rez input files to create 'hdlg' resources.

An 'hdlg' resource consists of a header component, a missing-items component, and a

variable number of dialog-item components. Figure 3-30 shows the general structure of a

compiled 'hdlg' resource.

Figure 3-30 Structure of a compiled dialog-item help ('hdlg') resource

C H A P T E R 3

Help Manager

3-142 Help Manager Reference

If you examine a compiled version of an 'hdlg' resource, you find that the header

component consists of the following elements:

■ Help Manager version. The version of the Help Manager to use. This is usually
specified in a Rez input file with the HelpMgrVersion constant.

■ Index. An index (starting with 0) into an item list ('DITL') resource. The Help
Manager adds the value of this index to the number of the first item in the item
list resource and then associates the result with an item number within the item list
resource; therefore, index 0 corresponds to item 1 in the item list resource (because 0
plus 1 equals 1). The Help Manager then uses the first dialog-item component in the
'hdlg' resource to provide help for the item to which this index corresponds.
Subsequent dialog-item components specify help messages for subsequent items in
the item list resource. For example, when 4 is specified as the index, the first
dialog-item component specifies help messages for the fifth item in an item list
resource. (As explained earlier, either an item of type helpItem in the item
list resource or an 'hwin' resource is used to associate the messages in the
dialog-item components of this 'hdlg' resource with the items of a particular dialog
box or alert box.)

■ Options. The sum of the values of available options, described in “Specifying Options
in Help Resources” beginning on page 3-25.

■ Balloon definition function. The resource ID of the window definition function used
for drawing the help balloon. The standard balloon definition function is of type
'WDEF' with resource ID 126; this can be specified by the number 0 in the Rez input
file.

■ Variation code. A number signifying the preferred position of the help balloon relative
to the hot rectangle. The balloon definition function draws the frame of the help
balloon based on the variation code specified here. The eight variation codes and how
they affect the standard balloon definition function are illustrated in Figure 3-4 on
page 3-10.

■ Item count. The number of remaining components—that is, the missing-items
component plus all dialog-item components—defined in the rest of this resource.

The missing-items component always follows the header component of an 'hdlg'

resource. Then a variable number of dialog-item components are stored in this resource.

The Help Manager determines the end of the 'hdlg' resource by using the item count

information in the header component. The Help Manager determines the type of each

component by its order in the resource.

The structures of the missing-items component and the dialog-item components depend

on identifiers specified inside the components. The identifiers used in a Rez input file are

described in “Specifying the Format for Help Messages” on page 3-23.

C H A P T E R 3

Help Manager

Help Manager Reference 3-143

The missing-items component and the dialog-item components can each specify four

different help messages:

■ First help message.

■ In the missing-items component, this is the help message both for missing, active,
unselected controls (that is, those with highlight values of 0) and for missing
enabled items that are not controls.

■ In dialog-item components, this is the help message for an active, unselected
control (that is, one with a highlight value of 0) or for an enabled item that is not
a control.

■ Second help message.

■ In the missing-items component, this is the help message both for missing dimmed
controls (that is, those with highlight values of 255) and for missing disabled items
that are not controls.

■ In dialog-item components, this is the help message for a dimmed control (that is,
one with a highlight value of 255) or for a disabled item that is not a control.

■ Third help message.

■ In the missing-items component, this is the help message for missing active
controls that are checked (that is, those with highlight values of 1).

■ In dialog-item components, this is the help message for an active control that is
checked (that is, one with a highlight value of 1).

■ Fourth help message.

■ In the missing-items component, this is the help message for missing, selected
controls with highlight values between 2 and 253.

■ In dialog-item components, this is the help message for a selected control with any
highlight value between 2 and 253.

An empty string or a resource ID of 0 for a message in any dialog-item component

causes the Help Manager to use the appropriate help message contained in the

missing-items component.

Since they both adhere to the formats specified by the previously described identifiers,

the missing-items component and the dialog-item components can have similar

structures. The Help Manager determines the end of a component by examining its

length, which is stored in the first 2 bytes of the component.

C H A P T E R 3

Help Manager

3-144 Help Manager Reference

Figure 3-31 shows the structure of a component that stores its help messages as Pascal

strings within the 'hdlg' resource itself.

Figure 3-31 Structure of an 'hdlg' component compiled with the HMStringItem identifier

If you examine a compiled version of an 'hdlg' resource, you find that a component

identified in a Rez input file by the HMStringItem identifier consists of the following

elements:

■ Size. The number of bytes contained in this component.

■ Type of data. The value 1 is specified here when the help messages are stored as
Pascal strings within this component.

■ Tip’s coordinates. The coordinates of the help balloon’s tip. The tip’s coordinates are
local to the item’s display rectangle.

■ Alternate rectangle. The coordinates for a rectangle used by the Help Manager for
transposing the tip if a help balloon does not fit onscreen. These coordinates are local
to the item’s display rectangle.

C H A P T E R 3

Help Manager

Help Manager Reference 3-145

■ Text string. The first help message (as previously described).

■ Text string. The second help message (as previously described).

■ Text string. The third help message (as previously described).

■ Text string. The fourth help message (as previously described).

■ Alignment bytes. Zero or one bytes used to make the previous text strings end on a
word boundary.

Figure 3-32 shows the structure of an 'hdlg' component that specifies its help messages

as text strings stored in string list ('STR#') resources.

Figure 3-32 Structure of an 'hdlg' component compiled with the HMStringResItem identifier

If you examine a compiled version of an 'hdlg' resource, you find that a component

identified in a Rez input file by the HMStringResItem identifier consists of the

following elements:

■ Size. The number of bytes contained in this component.

■ Type of data. The value 3 is specified here when the help messages for this component
are stored in string list ('STR#') resources.

■ Tip’s coordinates. The coordinates of the help balloon’s tip. The tip’s coordinates are
local to the item’s display rectangle.

C H A P T E R 3

Help Manager

3-146 Help Manager Reference

■ Alternate rectangle. The coordinates for a rectangle used by the Help Manager for
transposing the tip if a help balloon does not fit onscreen. These coordinates are local
to the item’s display rectangle.

■ Resource ID. The resource ID of an 'STR#' resource.

■ Index into the string list resource. A number used as an index to a particular text
string within the 'STR#' resource. This text string is used for the first help message
(as previously described).

Three more pairs of resource IDs and their index numbers follow. The text strings

referenced by these pairs are used for the second, third, and fourth help messages,

respectively.

Figure 3-33 shows the structure of an 'hdlg' component that specifies its help messages

in picture ('PICT') resources, styled text ('TEXT' and 'styl') resources, or string

('STR ') resources.

Figure 3-33 Structure of an 'hdlg' component compiled with the HMPictItem, HMTEResItem,
or HMSTRResItem identifier

C H A P T E R 3

Help Manager

Help Manager Reference 3-147

If you examine a compiled version of an 'hdlg' resource, you find that a component

identified in a Rez input file by either the HMPictItem, HMTEResItem, or

HMSTRResItem identifier consists of the following elements:

■ Size. The number of bytes contained in this component.

■ Type of data.

■ The value 2 is specified here when the help messages for this component are stored
in 'PICT' resources.

■ The value 6 is specified here when the help messages for this component are stored
as styled text—that is, in both 'TEXT' and 'styl' resources.

■ The value 7 is specified here when the help messages for this component are stored
in 'STR ' resources.

■ Tip’s coordinates. The coordinates of the help balloon’s tip. The tip’s coordinates are
local to the item’s display rectangle.

■ Alternate rectangle. The coordinates for a rectangle used by the Help Manager for
transposing the tip if a help balloon does not fit onscreen. These coordinates are local
to the item’s display rectangle.

■ Resource ID.

■ The resource ID of a 'PICT' resource when the value 2 is specified as the type of
data. The Help Manager uses the picture contained in this resource for the first help
message (as previously described).

■ The resource ID common to both a 'TEXT' and an 'styl' resource when the
value 6 is specified as the type of data. The Help Manager uses the styled text
specified by these resources for the first help message.

■ The resource ID of an 'STR ' resource when the value 7 is specified as the type of
data. The Help Manager uses the text contained in this resource for the first help
message.

Three more resource IDs follow; the Help Manager uses these resources (either 'PICT',

'TEXT' and 'styl', or 'STR ') for the second, third, and fourth help messages,

respectively (as previously described).

C H A P T E R 3

Help Manager

3-148 Help Manager Reference

Figure 3-34 shows the structure of an 'hdlg' component that specifies no help

messages.

Figure 3-34 Structure of an 'hdlg' component compiled with the HMSkipItem identifier

If you examine a compiled version of an 'hdlg' resource, you find that a component

identified by the HMSkipItem identifier consists of the following elements:

■ Size. The value 4, for the number of bytes contained in this component.

■ Type of data. The value 256.

The Rectangle Help Resource

You can use a rectangle help resource to define hot rectangles for displaying help

balloons within a static window, and to specify the help messages for those balloons. A

rectangle help resource is a resource of type 'hrct'. All 'hrct' resources must have

resource IDs greater than 128.

To associate the hot rectangles and help messages defined in an 'hrct' resource with a

particular window, you must also create a window help ('hwin') resource, which is

described in “Associating Help Resources With Static Windows” on page 3-68.

The format of a Rez input file for an 'hrct' resource differs from its compiled output

form. This section describes the structure of a Rez-compiled 'hrct' resource. If you are

concerned only with creating 'hrct' resources, see “Specifying Help for Rectangles in

Windows” on page 3-67 for a detailed description of how to use Rez input files to create

'hrct' resources.

An 'hrct' resource consists of a header component and a variable number of

hot-rectangle components. Figure 3-35 shows the general structure of a compiled

'hrct' resource.

C H A P T E R 3

Help Manager

Help Manager Reference 3-149

Figure 3-35 Structure of a compiled rectangle help ('hrct') resource

If you examine a compiled version of an 'hrct' resource, you find that the header

component consists of the following elements:

■ Help Manager version. The version of the Help Manager to use. This is usually
specified in a Rez input file with the HelpMgrVersion constant.

■ Options. The sum of the values of available options, described in “Specifying Options
in Help Resources” beginning on page 3-25.

■ Balloon definition function. The resource ID of the window definition function used
for drawing the help balloon. The standard balloon definition function is of type
'WDEF' with resource ID 126; this can be specified by 0 in the Rez input file.

■ Variation code. A number signifying the preferred position of the help balloon relative
to the hot rectangle. The balloon definition function draws the frame of the help
balloon based on the variation code specified here. The eight variation codes and how
they affect the standard balloon definition function are illustrated in Figure 3-4 on
page 3-10.

■ Hot-rectangle component count. The number of hot-rectangle components defined in
the rest of this resource.

C H A P T E R 3

Help Manager

3-150 Help Manager Reference

The Help Manager determines the end of the 'hrct' resource by using the component

count information in the header component.

The structures of the hot-rectangle components depend on identifiers specified inside the

components. The identifiers used in a Rez input file are described in “Specifying the

Format for Help Messages” on page 3-23.

Figure 3-36 shows the structure of a component that stores its help message as a Pascal

string within the 'hrct' resource itself.

Figure 3-36 Structure of an 'hrct' component compiled with the HMStringItem identifier

If you examine a compiled version of an 'hrct' resource, you find that a component

identified in a Rez input file by the HMStringItem identifier consists of the following

elements:

■ Size. The number of bytes contained in this component.

■ Type of data. The value 1 is specified here when the help message is stored as a Pascal
string within this component.

■ Tip’s coordinates. The coordinates of the help balloon’s tip. The tip’s coordinates are
local to the window.

■ Hot rectangle. The coordinates (local to the window) of a rectangle. The Help
Manager displays a help message when the user moves the cursor over this rectangle.

C H A P T E R 3

Help Manager

Help Manager Reference 3-151

■ Text string. The help message that the Help Manager displays when the user moves
the cursor over the hot rectangle.

■ Alignment bytes. Zero or one bytes used to make the previous text strings end on a
word boundary.

Figure 3-37 shows the structure of a hot-rectangle component that specifies its help

message as a text string stored in a string list ('STR#') resource.

Figure 3-37 Structure of an 'hrct' component compiled with the HMStringResItem identifier

If you examine a compiled version of an 'hrct' resource, you find that a component

identified in a Rez input file by the HMStringResItem identifier consists of the

following elements:

■ Size. The number of bytes contained in this component.

■ Type of data. The value 3 is specified here when the help message for this component
is stored in an 'STR#' resource.

■ Tip’s coordinates. The coordinates of the help balloon’s tip. The tip’s coordinates are
local to the window.

■ Hot rectangle. The coordinates (local to the window) of a rectangle. The Help
Manager displays a help message when the user moves the cursor over this rectangle.

■ Resource ID. The resource ID of an 'STR#' resource.

■ Index into the string list resource. A number used as an index to a particular text
string within the 'STR#' resource. When the user moves the cursor over the hot
rectangle, the Help Manager displays this text string for the help message.

C H A P T E R 3

Help Manager

3-152 Help Manager Reference

Figure 3-38 shows the structure of a hot-rectangle component that specifies its help

message in a picture ('PICT') resource, in styled text ('TEXT' and 'styl') resources,

or in a string ('STR ') resource.

Figure 3-38 Structure of an 'hrct' component compiled with the HMPictItem, HMTEResItem,
or HMSTRResItem identifier

If you examine a compiled version of an 'hrct' resource, you find that a component

identified in a Rez input file by either the HMPictItem, HMTEResItem, or

HMSTRResItem identifier consists of the following elements:

■ Size. The number of bytes contained in this component.

■ Type of data.

■ The value 2 is specified here when the help message for this component is stored in
a 'PICT' resource.

■ The value 6 is specified here when the help message for this component is stored as
styled text—that is, in both 'TEXT' and 'styl' resources.

■ The value 7 is specified here when the help message for this component is stored in
an 'STR ' resource.

■ Tip’s coordinates. The coordinates of the help balloon’s tip. The tip’s coordinates are
local to the window.

■ Hot rectangle. The coordinates (local to the window) of a rectangle. The Help
Manager displays a help message when the user moves the cursor over this rectangle.

C H A P T E R 3

Help Manager

Help Manager Reference 3-153

■ Resource ID.

■ The resource ID of a 'PICT' resource when the value 2 is specified as the type of
data. When the user moves the cursor over the hot rectangle, the Help Manager
displays the picture stored in this resource for the help message.

■ The resource ID common to both a 'TEXT' and an 'styl' resource when the
value 6 is specified as the type of data. When the user moves the cursor over the
hot rectangle, the Help Manager displays the styled text specified in these resources
for the help message.

■ The resource ID of an 'STR ' resource when the value 7 is specified as the type of
data. When the user moves the cursor over the hot rectangle, the Help Manager
uses the text string stored in this resource for the help message.

Figure 3-39 shows the structure of a hot-rectangle component that doesn’t specify a help

message.

Figure 3-39 Structure of an 'hrct' component compiled with the HMSkipItem identifier

If you examine a compiled version of an 'hrct' resource, you find that a component

identified by the HMSkipItem identifier consists of the following elements:

■ Size. The value 4, for the number of bytes contained in this component.

■ Type of data. The value 256.

■ Tip’s coordinates. In this instance, the Help Manager does not use this information
because it does not display a help balloon.

■ Hot rectangle. The coordinates (local to the window) of a rectangle that is to be
skipped. When the user moves the cursor over this rectangle, the Help Manager does
not display any help messages.

C H A P T E R 3

Help Manager

3-154 Help Manager Reference

The Window Help Resource

To associate the help balloons defined in an 'hrct' resource with a particular window,

you must create a window help resource. Unless you include an item of type HelpItem

in an item list resource, you also must create a window help resource to associate an

'hdlg' resource with a particular alert box or dialog box. The window help resource is

a resource of type 'hwin'. All 'hwin' resources must have resource IDs greater

than 128.

The 'hwin' resource merely associates 'hrct' and 'hdlg' resources with windows.

To specify hot rectangles, help balloon characteristics, and help messages for areas in a

static window, you must use 'hrct' or 'hdlg' resources, which are described in

“Specifying Help for Rectangles in Windows” on page 3-67 and “Providing Help

Balloons for Items in Dialog Boxes and Alert Boxes” on page 3-51, respectively.

The format of a Rez input file for an 'hwin' resource differs from its compiled output

form. This section describes the structure of a Rez-compiled 'hwin' resource. If you are

concerned only with creating 'hwin' resources, see “Associating Help Resources With

Static Windows” on page 3-68 for a detailed description of how to use Rez input files to

create 'hwin' resources.

An 'hwin' resource consists of a header component and a variable number of window

components. Figure 3-40 shows the general structure of a compiled 'hwin' resource.

C H A P T E R 3

Help Manager

Help Manager Reference 3-155

Figure 3-40 Structure of a compiled window help ('hwin') resource

C H A P T E R 3

Help Manager

3-156 Help Manager Reference

If you examine a compiled version of an 'hwin' resource, you find that the header

component consists of the following elements:

■ Help Manager version. The version of the Help Manager to use. This is usually
specified in a Rez input file with the HelpMgrVersion constant.

■ Options. The sum of the values of available options, described in “Specifying Options
in Help Resources” beginning on page 3-25.

■ Window component count. The number of window components defined in the rest of
this resource. The Help Manager determines the end of the 'hwin' resource by
using this component count information.

If you examine a compiled version of an 'hwin' resource, you find that a window

component consists of the following elements:

■ Resource ID. The ID of the associated resource (either 'hrct' or 'hdlg') that
specifies the help messages for the window.

■ Type of associated resource. A resource type; either 'hrct' or 'hdlg'.

■ Length of comparison string—or a windowKind value. If the integer in this element is
positive, this is the number of characters used for matching this component to a
window’s title. If the integer in this element is negative, this is a value used for
matching this component to a window by the windowKind value in the window’s
window record.

■ Window title string. If the previous element is a positive integer, this element consists
of characters that the Help Manager uses to match this component to a window by the
window’s title. If the previous element is a negative integer, this is an empty string.

■ Alignment bytes. Zero or one bytes used to make the window title string end on a
word boundary.

The Finder Icon Help Resource

The Help Manager displays default help messages for all Finder icon types. By creating a

Finder icon help override resource, you can provide your own help message for the Help

Manager to display when the user moves the cursor over your non-document icons. A

Finder icon help resource is a resource of type 'hfdr'. An 'hfdr' resource must have a

resource ID of –5696.

The format of a Rez input file for an 'hfdr' resource differs from its compiled output

form. This section describes the structure of a Rez-compiled 'hfdr' resource. If you are

concerned only with creating 'hfdr' resources, see “Overriding Help Balloons for

Non-Document Icons” on page 3-84 for a detailed description of how to use Rez input

files to create an 'hfdr' resource.

C H A P T E R 3

Help Manager

Help Manager Reference 3-157

An 'hfdr' resource consists of a header component and one icon component.

Figure 3-41 shows the general structure of a compiled 'hfdr' resource.

Figure 3-41 Structure of a compiled Finder icon help ('hfdr') resource

If you examine a compiled version of an 'hfdr' resource, you find that the header

component consists of the following elements:

■ Help Manager version. The version of the Help Manager to use. This is usually
specified in a Rez input file with the HelpMgrVersion constant.

■ Options. The sum of the values of available options, described in “Specifying Options
in Help Resources” beginning on page 3-25.

■ Balloon definition function. The resource ID of the window definition function used
for drawing the help balloon. The standard balloon definition function is of type
'WDEF' with resource ID 126; this can be specified by the number 0 in the Rez input
file.

■ Variation code. A number signifying the preferred position of the help balloon relative
to the hot rectangle. The balloon definition function draws the frame of the help
balloon based on the variation code specified here. The eight variation codes and how
they affect the standard balloon definition function are illustrated in Figure 3-4 on
page 3-10.

■ Icon component count. The value 1, because only one icon component can be defined
in this resource.

The structure of the icon component depends on the identifier specified for that

component. The identifiers used in a Rez input file are described in “Specifying the

Format for Help Messages” on page 3-23.

C H A P T E R 3

Help Manager

3-158 Help Manager Reference

Figure 3-42 shows the structure of an icon component that stores its help message as a

Pascal string within the 'hfdr' resource itself.

Figure 3-42 Structure of an 'hfdr' component compiled with the HMStringItem identifier

If you examine a compiled version of an 'hfdr' resource, you find that a component

identified in a Rez input file by the HMStringItem identifier consists of the following

elements:

■ Size. The number of bytes contained in this component.

■ Type of data. The value 1 is specified here when the help messages are stored as a
Pascal string within this component.

■ Text string. The help message that the Help Manager displays when the user moves
the cursor over the icon.

■ Alignment bytes. Zero or one bytes used to make the previous text strings end on a
word boundary.

Figure 3-43 shows the structure of an icon component that specifies its help message as a

text string stored in a string list ('STR#') resource.

Figure 3-43 Structure of an 'hfdr' component compiled with the HMStringResItem identifier

C H A P T E R 3

Help Manager

Help Manager Reference 3-159

If you examine a compiled version of an 'hfdr' resource, you find that a component

identified in a Rez input file by the HMStringResItem identifier consists of the

following elements:

■ Size. The number of bytes contained in this component.

■ Type of data. The value 3 is specified here when the help messages for this component
are stored in string list ('STR#') resources.

■ Resource ID. The resource ID of an 'STR#' resource.

■ Index into the string list resource. A number used as an index to a particular text
string within the 'STR#' resource. The Help Manager displays this text string for the
help message.

Figure 3-44 shows the structure of an icon component that specifies its help message in a

picture ('PICT') resource, in styled text ('TEXT' and 'styl') resources, or in a string

('STR ') resource.

Figure 3-44 Structure of an 'hfdr' component compiled with the HMPictItem, HMTEResItem,
or HMSTRResItem identifier

If you examine a compiled version of an 'hfdr' resource, you find that a component

identified in a Rez input file by either the HMPictItem, HMTEResItem, or

HMSTRResItem identifier consists of the following elements:

■ Size. The number of bytes contained in this component.

■ Type of data.

■ The value 2 is specified here when the help message for this component is stored in
a 'PICT' resource.

■ The value 6 is specified here when the help message for this component is stored as
styled text—that is, in both 'TEXT' and 'styl' resources.

■ The value 7 is specified here when the help message for this component is stored in
an 'STR ' resource.

C H A P T E R 3

Help Manager

3-160 Help Manager Reference

■ Resource ID.

■ The resource ID of a 'PICT' resource when the value 2 is specified as the type of
data. The Help Manager displays the picture stored in this resource for the help
message.

■ The resource ID common to both a 'TEXT' and an 'styl' resource when the
value 6 is specified as the type of data. The Help Manager displays the styled text
specified in these resources for the help message.

■ The resource ID of an 'STR ' resource when the value 7 is specified as the type of
data. The Help Manager uses the text string stored in this resource for the help
message.

Figure 3-45 shows the structure of an icon component that doesn’t specify a help

message.

Figure 3-45 Structure of an 'hfdr' component compiled with the HMSkipItem identifier

If you examine a compiled version of an 'hfdr' resource, you find that a component

identified by the HMSkipItem identifier consists of the following elements:

■ Size. The value 4, for the number of bytes contained in this component.

■ Type of data. The value 256.

The Default Help Override Resource

The Help Manager also provides default help balloons for the title bar and the close and

zoom boxes of an active window, for the windows of inactive applications, for inactive

windows of an active application, and for the area outside a modal dialog box.

Apple has researched and tested these help messages to ensure that they are as effective

as possible for users. Normally, you don’t need to override them. However, by creating a

default help override resource you can override one or more of these defaults if

absolutely necessary. A default help override resource is a resource of type 'hovr'. The

'hovr' resource must have a resource ID greater than 128.

The format of a Rez input file for an 'hovr' resource differs from its compiled output

form. This section describes the structure of a Rez-compiled 'hovr' resource. If you are

concerned only with creating 'hovr' resources, see “Overriding Other Default Help

Balloons” on page 3-87 for a detailed description of how to use Rez input files to create

'hovr' resources.

C H A P T E R 3

Help Manager

Help Manager Reference 3-161

An 'hovr' resource consists of a header component, a missing-items component, and

seven additional components for various interface elements. Figure 3-46 shows the

general structure of a compiled 'hovr' resource.

Figure 3-46 Structure of a compiled default help override ('hovr') resource

C H A P T E R 3

Help Manager

3-162 Help Manager Reference

If you examine a compiled version of an 'hovr' resource, you find that the header

component consists of the following elements:

■ Help Manager version. The version of the Help Manager to use. This is usually
specified in a Rez input file with the HelpMgrVersion constant.

■ Options. The sum of the values of available options, described in “Specifying Options
in Help Resources” beginning on page 3-25.

■ Balloon definition function. The resource ID of the window definition function used
for drawing the help balloon. The standard balloon definition function is of type
'WDEF' with resource ID 126; this can be specified by 0 in the Rez input file.

■ Variation code. A number signifying the preferred position of the help balloon relative
to the hot rectangle. The balloon definition function draws the frame of the help
balloon based on the variation code specified here. The eight variation codes and how
they affect the standard balloon definition function are illustrated in Figure 3-4 on
page 3-10.

■ Item count. The value 8 for the number of components defined in the rest of this
resource.

The Help Manager uses the order of the components in this resource to determine their

purposes.

The structures of the remaining components depend on identifiers specified inside the

components. The identifiers used in a Rez input file are described in “Specifying the

Format for Help Messages” on page 3-23.

Each component can specify one help message, as listed here.

■ Missing-items component. The Help Manager expects seven more components to
follow, in the order listed here. If fewer than seven components are specified in the
Rez input file, the Help Manager adds components to the end of the list until there are
seven. Each component that the Help Manager adds uses the message specified in the
missing-items component. The Help Manager also uses the missing-items
component’s help message if the input file specifies an empty string or a resource ID
of 0 for any other component’s help message.

■ Title-bar component. The help message for title bar of the active window.

■ Reserved component. This element is reserved and should have no help message. The
HMSkipItem identifier should always be specified in the Rez input file for this
component.

■ Close-box component. The help message for the close box of the active window.

■ Zoom-box component. The help message for the zoom box of the active window.

■ Component for active application’s inactive windows. The help message for the
inactive windows of the active application.

■ Component for inactive applications’ windows. The help message for the windows of
inactive applications.

■ Component for area outside modal box. The help message for the desktop area
outside a modal dialog box or an alert box.

C H A P T E R 3

Help Manager

Help Manager Reference 3-163

Figure 3-47 shows the structure of an 'hovr' component that stores its help message as

a Pascal string within the 'hovr' resource itself.

Figure 3-47 Structure of an 'hovr' component compiled with the HMStringItem identifier

If you examine a compiled version of an 'hovr' resource, you find that a component

identified in a Rez input file by the HMStringItem identifier consists of the following

elements:

■ Size. The number of bytes contained in this component.

■ Type of data. The value 1 is specified here when the help message is stored as a Pascal
string within this component.

■ Text string. The help message appropriate for the component (as previously
described).

■ Alignment bytes. Zero or one bytes used to make the text string end on a word
boundary.

Figure 3-48 shows the structure of an 'hovr' component that specifies its help message

as a text string stored in a string list ('STR#') resource.

Figure 3-48 Structure of an 'hovr' component compiled with the HMStringResItem identifier

C H A P T E R 3

Help Manager

3-164 Help Manager Reference

If you examine a compiled version of an 'hovr' resource, you find that a component

identified in a Rez input file by the HMStringResItem identifier consists of the

following elements:

■ Size. The number of bytes contained in this component.

■ Type of data. The value 3 is specified here when the help message for this component
is stored in a string list ('STR#') resource.

■ Resource ID. The resource ID of an 'STR#' resource.

■ Index into the string list resource. A number used as an index to a particular text
string within the 'STR#' resource. The Help Manager uses this text string for the
help message of the appropriate component (as previously described).

Figure 3-49 shows the structure of an 'hovr' component that specifies its help message

in a picture ('PICT') resource, in styled text ('TEXT' and 'styl') resources, or in a

string ('STR ') resource.

Figure 3-49 Structure of an 'hovr' component compiled with the HMPictItem, HMTEResItem,
or HMSTRResItem identifier

If you examine a compiled version of an 'hovr' resource, you find that a component

identified in a Rez input file by either the HMPictItem, HMTEResItem, or

HMSTRResItem identifier consists of the following elements:

■ Size. The number of bytes contained in this component.

■ Type of data.

■ The value 2 is specified here when the help message for this component is stored in
a 'PICT' resource.

■ The value 6 is specified here when the help message for this component is stored as
styled text—that is, in both 'TEXT' and 'styl' resources.

■ The value 7 is specified here when the help message for this component is stored in
an 'STR ' resource.

C H A P T E R 3

Help Manager

Help Manager Reference 3-165

■ Resource ID.

■ The resource ID of a 'PICT' resource when the value 2 is specified as the type of
data. The Help Manager displays the picture stored in this resource for the help
message.

■ The resource ID common to both a 'TEXT' and an 'styl' resource when the
value 6 is specified as the type of data. The Help Manager displays the styled text
specified in these resources for the help message.

■ The resource ID of an 'STR ' resource when the value 7 is specified as the type of
data. The Help Manager uses the text string stored in this resource for the help
message.

Figure 3-50 shows the structure of an 'hovr' component that doesn’t specify a help

message.

Figure 3-50 Structure of an 'hovr' component compiled with the HMSkipItem identifier

If you examine a compiled version of an 'hovr' resource, you find that a component

identified in the Rez input file by the HMSkipItem identifier consists of the following

elements:

■ Size. The value 4, for the number of bytes contained in this component.

■ Type of data. The value 256.

C H A P T E R 3

Help Manager

3-166 Summary of the Help Manager

Summary of the Help Manager

Pascal Summary

Constants

CONST

gestaltHelpMgrAttr = 'help'; {Gestalt selector}

gestaltHelpMgrPresent = 0; {if this bit is set, then }

{ Help Manager is present}

hmBalloonHelpVersion = $0002; {Help Manager version}

kBalloonWDEFID = 126; {resource ID of standard balloon }

{ 'WDEF' function}

kHMHelpID = -5696; {ID of various Help Manager }

{ resources (in Pack14 range); }

{ also used for 'hfdr' resource ID}

{Help menu constants}

kHMAboutHelpItem = 1; {About Balloon Help menu item}

kHMHelpMenuID = -16490; {Help menu resource ID}

kHMShowBalloonsItem = 3; {Show/Hide Balloons menu item}

{HelpItem type for 'DITL' resources}

helpItem = 1; {help item}

{option bits for help resources}

hmDefaultOptions = 0; {use defaults}

hmUseSubID = 1; {use subrange resource IDs }

{ for owned resources}

hmAbsoluteCoords = 2; {ignore coords of window }

{ origin and treat upper-left }

{ corner of window as 0,0}

hmSaveBitsNoWindow = 4; {don't create window; save }

{ bits; no update event}

hmSaveBitsWindow = 8; {save bits behind window and }

{ generate update event}

hmMatchInTitle = 16; {match window by string }

{ anywhere in title string}

C H A P T E R 3

Help Manager

Summary of the Help Manager 3-167

{constants for hmmHelpType field of HMMessageRecord}

khmmString = 1; {Pascal string}

khmmPict = 2; {'PICT' resource ID}

khmmStringRes = 3; {'STR#' res ID and index}

khmmTEHandle = 4; {TextEdit handle}

khmmPictHandle = 5; {picture handle}

khmmTERes = 6; {'TEXT' and 'styl' resource ID}

khmmSTRRes = 7; {'STR ' resource ID}

{resource types for styled text in resources}

kHMTETextResType = 'TEXT'; {'TEXT' resource type}

kHMTEStyleResType = 'styl'; {'styl' resource type}

{constants for whichState parameter when extracting help }

{ message records from 'hmnu' and 'hdlg' resources}

kHMEnabledItem = 0; {enabled state for menu items; }

{ contrlHilite value of 0 for }

{ controls}

kHMDisabledItem = 1; {disabled state for menu items; }

{ contrlHilite value of 255 for }

{ controls}

kHMCheckedItem = 2; {enabled-and-checked state for }

{ menu items; contrlHilite }

{ value of 1 for controls that }

{ are "on"}

kHMOtherItem = 3; {enabled-and-marked state for }

{ menu items; contrlHilite }

{ value between 2 and 253 for }

{ controls}

{resource types for whichType parameter used when extracting }

{ help message}

kHMMenuResType = 'hmnu'; {menu help resource type}

kHMDialogResType = 'hdlg'; {dialog help resource type}

kHMWindListResType = 'hwin'; {window help resource type}

kHMRectListResType = 'hrct'; {rectangle help resource type}

kHMOverrideResType = 'hovr'; {help override resource type}

kHMFinderApplResType = 'hfdr'; {app icon help resource type}

{constants for method parameter in HMShowBalloon}

kHMRegularWindow = 0; {don't save bits; just update}

kHMSaveBitsNoWindow = 1; {save bits; don't do update}

kHMSaveBitsWindow = 2; {save bits; do update event}

C H A P T E R 3

Help Manager

3-168 Summary of the Help Manager

{constants for help types in 'hmnu', 'hdlg', 'hrct', 'hovr', and }

{ 'hfdr' resources--useful only for walking these resources}

kHMStringItem = 1; {Pascal string}

kHMPictItem = 2; {'PICT' resource ID}

kHMStringResItem = 3; {'STR#' resource ID & index}

kHMTEResItem = 6; {'TEXT' & 'styl' resource ID}

kHMSTRResItem = 7; {'STR ' resource ID}

kHMSkipItem = 256; {don't display a balloon}

kHMCompareItem = 512; {for 'hmnu', use help message }

{ if menu item matches string}

kHMNamedResourceItem = 1024; {for 'hmnu', use menu item to }

{ get a named resource}

kHMTrackCntlItem = 2048; {reserved}

Data Types

TYPE HMStringResType = {Help Manager string list record}

RECORD

hmmResID: Integer; {'STR#' resource ID}

hmmIndex: Integer; {index of string}

END;

HMMessageRecPtr = ^HMMessageRecord;

HMMessageRecord = {help message record}

RECORD

hmmHelpType: Integer; {type of next field}

CASE Integer OF

khmmString: (hmmString: Str255); {Pascal string}

khmmPict: (hmmPict: Integer); {'PICT' resource ID}

khmmStringRes: (hmmStringRes: HMStringResType);

{'STR#' resource }

{ ID and index}

khmmTEHandle: (hmmTEHandle: TEHandle);{TextEdit handle}

khmmPictHandle: (hmmPictHandle: PicHandle);

{picture handle}

khmmTERes: (hmmTERes: Integer); {'TEXT'/'styl' }

{ resource ID}

khmmSTRRes: (hmmSTRRes: Integer) {'STR ' resource ID}

END;

C H A P T E R 3

Help Manager

Summary of the Help Manager 3-169

Help Manager Routines

Determining Help Balloon Status

FUNCTION HMGetBalloons : Boolean;

FUNCTION HMIsBalloon : Boolean;

Displaying and Removing Help Balloons

FUNCTION HMShowBalloon (aHelpMsg: HMMessageRecord; tip: Point;
alternateRect: RectPtr; tipProc: Ptr;
theProc: Integer; variant: Integer;
method: Integer): OSErr;

FUNCTION HMShowMenuBalloon (itemNum: Integer; itemMenuID: Integer;
itemFlags: LongInt; itemReserved: LongInt;
tip: Point; alternateRect: RectPtr;
tipProc: Ptr; theProc: Integer;
variant: Integer): OSErr;

FUNCTION HMRemoveBalloon : OSErr;

Enabling and Disabling Balloon Help Assistance

FUNCTION HMSetBalloons (flag: Boolean): OSErr;

Adding Items to the Help Menu

FUNCTION HMGetHelpMenuHandle
(VAR mh: MenuHandle): OSErr;

Getting and Setting the Font Name and Size

FUNCTION HMGetFont (VAR font: Integer): OSErr;

FUNCTION HMGetFontSize (VAR fontSize: Integer): OSErr;

FUNCTION HMSetFont (font: Integer): OSErr;

FUNCTION HMSetFontSize (fontSize: Integer): OSErr;

Setting and Getting Information for Help Resources

FUNCTION HMSetMenuResID (menuID: Integer; resID: Integer): OSErr;

FUNCTION HMGetMenuResID (menuID: Integer; VAR resID: Integer): OSErr;

FUNCTION HMScanTemplateItems
(whichID: Integer; whichResFile: Integer;
whichType: ResType): OSErr;

FUNCTION HMSetDialogResID (resID: Integer): OSErr;

FUNCTION HMGetDialogResID (VAR resID: Integer): OSErr;

C H A P T E R 3

Help Manager

3-170 Summary of the Help Manager

Determining the Size of a Help Balloon

FUNCTION HMBalloonRect (aHelpMsg: HMMessageRecord;
VAR coolRect: Rect): OSErr;

FUNCTION HMBalloonPict (aHelpMsg: HMMessageRecord;
VAR coolPict: PicHandle): OSErr;

FUNCTION HMGetBalloonWindow
(VAR window: WindowPtr): OSErr;

Getting the Message of a Help Balloon

FUNCTION HMExtractHelpMsg (whichType: ResType;
whichResID: Integer; whichMsg: Integer;
whichState: Integer;
VAR aHelpMsg: HMMessageRecord): OSErr;

FUNCTION HMGetIndHelpMsg (whichType: ResType;
whichResID: Integer; whichMsg: Integer;
whichState: Integer;
VAR options: LongInt; VAR tip: Point;
VAR altRect: Rect; VAR theProc: Integer;
VAR variant: Integer;
VAR aHelpMsg: HMMessageRecord;
VAR count: Integer): OSErr;

Application-Defined Routines

FUNCTION MyBalloonDef (variant: Integer; theBalloon: WindowPtr;
message: Integer; param: LongInt): LongInt;

FUNCTION MyTip (tip: Point; structure: RgnHandle;
VAR r: Rect; VAR variant: Integer): OSErr;

C Summary

Constants

enum {

#define gestaltHelpMgrAttr 'help' /*Gestalt selector*/

gestaltHelpMgrPresent = 0 /*if this bit is set, then */

/* Help Manager is present*/

};

enum {

hmBalloonHelpVersion = 0x0002, /*Help Manager version*/

C H A P T E R 3

Help Manager

Summary of the Help Manager 3-171

kBalloonWDEFID = 126, /*resource ID of standard balloon */

/* 'WDEF' function*/

kHMHelpID = -5696, /*ID of various Help Manager */

/* resources (in Pack14 range); */

/* also used for 'hfdr' resource ID*/

/*Help menu constants*/

kHMAboutHelpItem = 1, /*About Balloon Help menu item*/

kHMHelpMenuID = -16490, /*Help menu resource ID*/

kHMShowBalloonsItem = 3, /*Show/Hide Balloons menu item*/

/*help item type for 'DITL' resources*/

HelpItem = 1, /*help item*/

/*option bits for help resources*/

hmDefaultOptions = 0, /*use defaults*/

hmUseSubID = 1, /*use subrange resource IDs */

/* for owned resources*/

hmAbsoluteCoords = 2 /*ignore coords of window */

/* origin and treat upper-left */

/* corner of window as 0,0*/

};

enum {

hmSaveBitsNoWindow = 4, /*don't create window; save */

/* bits; no update event*/

hmSaveBitsWindow = 8, /*save bits behind window and */

/* generate update event*/

hmMatchInTitle = 16, /*match window by string */

/* anywhere in title string*/

/*constants for hmmHelpType field of HMMessageRecord*/

khmmString = 1, /*Pascal string*/

khmmPict = 2, /*'PICT' resource ID*/

khmmStringRes = 3, /*'STR#' res ID and index*/

khmmTEHandle = 4, /*TextEdit handle*/

khmmPictHandle = 5, /*picture handle*/

khmmTERes = 6, /*'TEXT' and 'styl' resource ID*/

khmmSTRRes = 7, /*'STR ' resource ID*/

/*resource types for styled text in resources*/

#define kHMTETextResType 'TEXT' /*'TEXT' resource type*/

#define kHMTEStyleResType 'styl' /*'styl' resource type*/

C H A P T E R 3

Help Manager

3-172 Summary of the Help Manager

/*constants for whichState parameter when extracting help */

/* message records from 'hmnu' and 'hdlg' resources*/

kHMEnabledItem = 0, /*enabled state for menu items; */

/* contrlHilite value of 0 for */

/* controls*/

};

enum {

kHMDisabledItem = 1, /*disabled state for menu items; */

/* contrlHilite value of 255 for */

/* controls*/

kHMCheckedItem = 2, /*enabled-and-checked state for */

/* menu items; contrlHilite */

/* value of 1 for controls that */

/* are "on"*/

kHMOtherItem = 3, /*enabled-and-marked state for */

/* menu items; contrlHilite */

/* value between 2 and 253 for */

/* controls*/

/*resource types for whichType parameter used when extracting */

/* help message*/

#define kHMMenuResType 'hmnu' /*menu help resource type*/

#define kHMDialogResType 'hdlg' /*dialog help resource type*/

#define kHMWindListResType 'hwin' /*window help resource type*/

#define kHMRectListResType 'hrct' /*rectangle help resource type*/

#define kHMOverrideResType 'hovr' /*help override resource type*/

#define kHMFinderApplResType 'hfdr' /*app icon help resource type*/

/*constants for method parameter in HMShowBalloon*/

kHMRegularWindow = 0, /*don't save bits; just update*/

kHMSaveBitsNoWindow = 1, /*save bits; don't do update*/

kHMSaveBitsWindow = 2 /*save bits; do update event*/

};

enum {

/*constants for help types in 'hmnu', 'hdlg', 'hrct', 'hovr', and */

/* 'hfdr' resources--useful only for walking these resources*/

kHMStringItem = 1, /*Pascal string*/

kHMPictItem = 2, /*'PICT' resource ID*/

kHMStringResItem = 3, /*'STR#' resource ID & index*/

kHMTEResItem = 6, /*'TEXT' & 'styl' resource ID*/

kHMSTRResItem = 7, /*'STR ' resource ID*/

kHMSkipItem = 256, /*don't display a balloon*/

C H A P T E R 3

Help Manager

Summary of the Help Manager 3-173

kHMCompareItem = 512, /*for 'hmnu', use help message */

/* if menu item matches string*/

kHMNamedResourceItem = 1024, /*for 'hmnu', use menu item to */

/* get a named resource*/

kHMTrackCntlItem = 2048 /*reserved*/

};

Data Types

struct HMStringResType { /*Help Manager string list record*/

short hmmResID; /*'STR#' resource ID*/

short hmmIndex; /*index of string*/

};

typedef struct HMStringResType HMStringResType;

struct HMMessageRecord { /*help message record*/

short hmmHelpType; /*type of next field*/

union {

char hmmString[256]; /*Pascal string*/

short hmmPict; /*'PICT' resource ID*/

Handle hmmTEHandle; /*TextEdit handle*/

HMStringResType hmmStringRes; /*'STR#' resource ID and index*/

short hmmPictRes; /*unused*/

Handle hmmPictHandle; /*picture handle*/

short hmmTERes; /*'TEXT'/'styl' resource ID*/

short hmmSTRRes; /*'STR ' resource ID*/

} u;

};

typedef struct HMMessageRecord HMMessageRecord;

typedef HMMessageRecord *HMMessageRecPtr;

Help Manager Routines

Determining Help Balloon Status

pascal Boolean HMGetBalloons
(void);

pascal Boolean HMIsBalloon (void);

C H A P T E R 3

Help Manager

3-174 Summary of the Help Manager

Displaying and Removing Help Balloons

pascal OSErr HMShowBalloon (const HMMessageRecord *aHelpMsg, Point tip,
RectPtr alternateRect, Ptr tipProc,
short theProc, short variant, short method);

pascal OSErr HMShowMenuBalloon
(short itemNum, short itemMenuID,
long itemFlags, long itemReserved,
Point tip, RectPtr alternateRect,
Ptr tipProc, short theProc, short variant);

pascal OSErr HMRemoveBalloon
(void);

Enabling and Disabling Balloon Help Assistance

pascal OSErr HMSetBalloons (Boolean flag);

Adding Items to the Help Menu

pascal OSErr HMGetHelpMenuHandle
(MenuHandle *mh);

Getting and Setting the Font Name and Size

pascal OSErr HMGetFont (short *font);

pascal OSErr HMGetFontSize (short *fontSize);

pascal OSErr HMSetFont (short font);

pascal OSErr HMSetFontSize (short fontSize);

Setting and Getting Information for Help Resources

pascal OSErr HMSetMenuResID
(short menuID, short resID);

pascal OSErr HMGetMenuResID
(short menuID, short *resID);

pascal OSErr HMScanTemplateItems
(short whichID, short whichResFile,
ResType whichType);

pascal OSErr HMSetDialogResID
(short resID);

pascal OSErr HMGetDialogResID
(short *resID);

C H A P T E R 3

Help Manager

Summary of the Help Manager 3-175

Determining the Size of a Help Balloon

pascal OSErr HMBalloonRect (const HMMessageRecord *aHelpMsg,
Rect *coolRect);

pascal OSErr HMBalloonPict (const HMMessageRecord *aHelpMsg,
PicHandle *coolPict);

pascal OSErr HMGetBalloonWindow
(WindowPtr *window);

Getting the Message of a Help Balloon

pascal OSErr HMExtractHelpMsg
(ResType whichType, short whichResID,
short whichMsg, short whichState,
HMMessageRecord *aHelpMsg);

pascal OSErr HMGetIndHelpMsg
(ResType whichType, short whichResID,
short whichMsg, short whichState,
long *options, Point *tip, Rect *altRect,
short *theProc, short *variant,
HMMessageRecord *aHelpMsg, short *count);

Application-Defined Routines

pascal long MyBalloonDef (short variant, WindowPtr theBalloon,
short message, long param);

pascal OSErr MyTip (Point tip, RgnHandle structure,
Rect *r, short *variant);

C H A P T E R 3

Help Manager

3-176 Summary of the Help Manager

Assembly-Language Summary

Data Structures

Help Message Data Structure

Trap Macros

Trap Macros Requiring Routine Selectors

_Pack14

0 hmmHelpType word Resource type
2 hmmHelpMessage variable Help balloon message

Selector Routine

$0002 HMRemoveBalloon

$0003 HMGetBalloons

$0007 HMIsBalloon

$0104 HMSetBalloons

$0108 HMSetFont

$0109 HMSetFontSize

$010C HMSetDialogResID

$0200 HMGetHelpMenuHandle

$020A HMGetFont

$020B HMGetFontSize

$020D HMSetMenuResID

$0213 HMGetDialogResID

$0215 HMGetBalloonWindow

$0314 HMGetMenuResID

$040E HMBalloonRect

$040F HMBalloonPict

$0410 HMScanTemplateItems

$0711 HMExtractHelpMsg

$0B01 HMShowBalloon

$0E05 HMShowMenuBalloon

$1306 HMGetIndHelpMsg

C H A P T E R 3

Help Manager

Summary of the Help Manager 3-177

Result Codes
noErr 0 No error
fnOpnErr –38 File not open
paramErr –50 Error in parameter list
memFullErr –108 Not enough room in heap zone
resNotFound –192 Unable to read resource
hmHelpDisabled –850 Help balloons are not enabled
hmBalloonAborted –853 Because of constant cursor movement, the help balloon

wasn’t displayed
hmSameAsLastBalloon –854 Menu and item are same as previous menu and item
hmHelpManagerNotInited –855 Help menu not set up
hmSkippedBalloon –857 No help message to fill in
hmWrongVersion –858 Wrong version of Help Manager resource
hmUnknownHelpType –859 Help message record contained a bad type
hmOperationUnsupported –861 Invalid value passed in the method parameter
hmNoBalloonUp –862 No balloon showing
hmCloseViewActive –863 Balloon can’t be removed because Close View is in use

Contents 4-1

C H A P T E R 4

Contents

List Manager

Introduction to Lists 4-4

Appearance of Lists 4-4

Selection of List Items 4-9

Keyboard Navigation of Lists 4-15

Movement of a Selection With Arrow Keys 4-15

Extension of a Selection With Arrow Keys 4-16

Type Selection in a Text-Only List 4-20

Multiple Lists in a Window 4-20

About the List Manager 4-22

Using the List Manager 4-26

Creating a List 4-27

Adding Rows and Columns to a List 4-30

Responding to Events Affecting a List 4-32

Working With List Selections 4-34

Customizing Cell Highlighting 4-38

Manipulating List Cells 4-40

Searching a List for a Particular Item 4-43

Supporting Keyboard Navigation of Lists 4-45

Supporting Type Selection of List Items 4-45

Supporting Arrow-Key Navigation of Lists 4-48

Supporting the Anchor Algorithm for Extending Lists With Arrow
Keys 4-52

Outlining the Current List 4-53

Writing Your Own List Definition Procedure 4-58

Responding to the Initialization Message 4-60

Responding to the Draw Message 4-60

Responding to the Highlighting Message 4-62

Responding to the Close Message 4-62

Using the Pictures List Definition Procedure 4-63

C H A P T E R 4

4-2 Contents

List Manager Reference 4-65

Data Structures 4-65

The Cell Record 4-65

The Data Handle 4-66

The List Record 4-66

List Manager Routines 4-70

Creating and Disposing of Lists 4-70

Adding and Deleting Columns and Rows To and From a List 4-73

Determining or Changing the Selection 4-77

Accessing and Manipulating Cell Data 4-79

Responding to Events Affecting Lists 4-84

Modifying a List’s Appearance 4-87

Searching a List for a Particular Item 4-90

Changing the Size of Cells and Lists 4-91

Getting Information About Cells 4-93

Application-Defined Routines 4-96

List Definition Procedures 4-96

Match Functions 4-99

Click-Loop Procedures 4-100

Summary of the List Manager 4-102

Pascal Summary 4-102

Constants 4-102

Data Types 4-102

List Manager Routines 4-103

Application-Defined Routines 4-105

C Summary 4-106

Constants 4-106

Data Types 4-106

List Manager Routines 4-107

Application-Defined Routines 4-109

Assembly-Language Summary 4-110

Data Structures 4-110

Trap Macros 4-111

C H A P T E R 4

4-3

List Manager

This chapter describes how your application can use the List Manager to create scrollable

lists that allow the user to select one or more of a group of items. The List Manager lets

you create one-column lists or multicolumn lists. By default, it creates lists that contain

only unstyled text, but with extra effort, you can use the List Manager to create lists that

display items graphically.

Read the information in this chapter if you need to allow users to select one or more

items from a group of items. If you only need to allow the user to select one item from a

small group of items, a pop-up menu may be more appropriate than a list. If, however,

you would like the user to be able to select one of many items or to be able to select

multiple items, the List Manager provides a convenient and intuitive interface.

If the contents of a group of items might change, use a list rather than a pop-up menu.

Users generally expect the contents of pop-up menus to remain the same, whereas a list

provides instant visual feedback when its contents change, thus preventing user

confusion. For example, you might use the List Manager to create a list of appointments

and allow the user to add or remove appointments to or from the list.

Although the List Manager can handle small, simple lists effectively, it is not suitable for

displaying large amounts of data (such as that used by a spreadsheet application). The

List Manager cannot maintain lists that occupy more than 32 KB of memory, and

performance degrades sharply well before the 32 KB limit. Also, the List Manager

expects all cells to be equal in size. Thus, if you are writing a spreadsheet application,

you should use the Control Manager and your own internal data structures.

However, you should still read the sections of this chapter that concern selection of list

items so that your application can have a user interface consistent with the List

Manager’s.

To use this chapter, you should be familiar with the concepts of the Control Manager, the

Event Manager, and the Window Manager, and, if you plan to create a list in a modal or

modeless dialog box, with the Dialog Manager. For more information on these topics, see

Inside Macintosh: Macintosh Toolbox Essentials.

This chapter begins by describing lists and the user interface for them. The chapter then

discusses how you can

■ create lists

■ respond to events affecting lists

■ get information about a list

■ get or change the contents of list items

■ search through a list for a particular item

■ support keyboard navigation of lists

■ manage multiple lists within the same window or dialog box

■ write your own list definition procedure to handle nonstandard lists, such as lists of
pictures

C H A P T E R 4

List Manager

4-4 Introduction to Lists

Introduction to Lists

You can use the List Manager to store and update elements of data within a list and to

display the list in a rectangle within a window. The List Manager provides routines that

allow you to create, manipulate, and display lists. It can also respond appropriately to a

mouse click within a list by, for example, scrolling a list when the user clicks in a scroll

bar. Thus, using the List Manager is easier than using the Control Manager and

QuickDraw to create a scrolling list of items.

Appearance of Lists
A list is a series of items displayed within a rectangle. Each item in a list is contained

within an invisible rectangular cell. All cells in a list created by the List Manager are the

same size, but cells may contain different types of data. Your application may allow the

user to select one or more items in a list by clicking them. When a user selects an item,

the List Manager highlights the cell containing the item.

Figure 4-1 illustrates a window that includes a list of six items.

Figure 4-1 A one-column, text-only list without a scroll bar

C H A P T E R 4

List Manager

Introduction to Lists 4-5

The font used for a text-only list is determined by the font of the current graphics port.

Usually, you should create lists in the system font. Regardless of the font your

application uses, if a string is too long to fit in a list using the current font, the List

Manager uses condensed type in an effort to fit it. If the string is still too long, the

List Manager truncates the string displayed and appends an ellipsis to it. Both of these

techniques are illustrated in Figure 4-1. Both the strings “Deluxe sixteen-fruit

combination” and “Marshmallow chocolate ribbon” are condensed; the first of these is

also truncated.

Lists may contain a vertical scroll bar, a horizontal scroll bar, or both. By using scroll

bars, you can include more items in a list than can fit in the list’s rectangle, and the user

can scroll to view multiple items. If there is any chance that a list may contain more cells

than can fit within the list’s rectangle, you should include a scroll bar in the list.

Figure 4-2 illustrates a list that includes a vertical scroll bar.

Figure 4-2 A one-column, text-only list with a vertical scroll bar

C H A P T E R 4

List Manager

4-6 Introduction to Lists

If a list includes a scroll bar but there are a small enough number of items in the list that

all the list’s items are visible, the List Manager automatically disables the scroll bar. For

example, Figure 4-3 shows such a list.

Figure 4-3 A list whose scroll bar has been disabled

When a window containing one or more lists becomes deactivated, your application

should call the List Manager to deactivate the lists as well. Figure 4-4 shows a

deactivated list.

Figure 4-4 A deactivated list

C H A P T E R 4

List Manager

Introduction to Lists 4-7

Your application can create one-column lists of the type illustrated in Figure 4-2 through

Figure 4-4 using the List Manager. Your application can also create lists that contain two

or more columns. For example, the Network control panel allows the user to select

a network connection from a three-column list. In Figure 4-5, there are only two possible

network connections, so there are no items in the third column of the list.

Figure 4-5 A list containing multiple columns and graphical elements

Note that the list in Figure 4-5 contains graphical elements rather than just text. To create

a list with graphical elements, you must write a custom list definition procedure, because

the default list definition procedure supports only the display of text. A list definition
procedure is a code resource of type 'LDEF' that defines the characteristics of a list. In

addition to using a list definition procedure to support graphical items in lists, you can

write one to customize the display of text in a list. For example, to use styled text in a list,

you would need to create a list definition procedure.

C H A P T E R 4

List Manager

4-8 Introduction to Lists

You can also use a list definition procedure to create lists that contain cells which display

more than one type of information. For example, the Finder’s “About This Macintosh”

modeless dialog box contains a list of applications that are currently in use. Each cell in

the list includes a small icon of the application, the name of the application, the amount

of memory in the application’s partition, and a graphical indication of how much of that

memory has been used, as illustrated in Figure 4-6.

Figure 4-6 A list of items whose cells display more than one type of information

Note that the list in Figure 4-6 is not a multicolumn list. It is a one-column list, but each

cell of the list displays several types of information.

Your application specifies whether the List Manager should leave room for a size box,

although your application is responsible for drawing any grow icon; the List Manager

does not draw the grow icon automatically. Usually, size boxes are useful only for lists

that are on the bottom of the windows that contain them, like the list in Figure 4-6. In

this case, resizing the window changes the size of the list. Your application should

ensure that the user cannot shrink the size of the window so much that the list is no

longer visible.

In addition to requesting a vertical scroll bar, your application may request that the List

Manager use a horizontal scroll bar for your list. A second scroll bar is useful mainly if

your application allows the user to resize a window containing a list both horizontally

and vertically so that only a portion of the list is visible. A second scroll bar is also useful

to allow the user to scroll through a table of cells. Usually, however, if you are

implementing a spreadsheet-like application, you should not be using the List Manager.

Most multicolumn lists created by the List Manager, such as the one illustrated in

Figure 4-5, should not include two scroll bars.

C H A P T E R 4

List Manager

Introduction to Lists 4-9

Selection of List Items
Sometimes, an application might create a list simply for the user to view. For example, a

desktop-publishing application might create a list of fonts used in a document. The user

should be able to scroll the list to examine all of the fonts, but the application can ensure

(by ignoring mouse clicks on list cells) that clicking cells of the list has no effect. More

often, however, applications create lists so that users can select items from them by

clicking the items’ cells.

Your application can allow the user to select items in a list by calling the LClick

function whenever a mouse-down event occurs. The LClick function handles all user

interaction, including highlighting of items, until the user releases the mouse button. The

LClick function also examines the state of the modifier keys (specifically the Shift and

Command keys) and changes the selection appropriately.

Figure 4-7 illustrates the Sound control panel, which allows users to select a system alert

sound from a list of available alert sounds.

Figure 4-7 A list with an item selected

When the user selects a cell (such as the “Indigo” system alert sound) by clicking the

item’s cell, the List Manager highlights the cell. In the list shown in Figure 4-7, the user

can also select a cell by clicking another cell and dragging the cursor to the desired cell

(such as the cell containing “Indigo”) before releasing the mouse button. This type of list

allows the user to select only one item, because there can be only one system alert sound.

While you can create a list that has this behavior, the List Manager by default allows the

user to select a range of cells or even several discontiguous ranges of cells by using the

Shift and Command keys.

C H A P T E R 4

List Manager

4-10 Introduction to Lists

The user can use the Shift key to select a range of cells. By pressing the Shift key when

clicking a cell, the user can select all items in a given range. For example, in Figure 4-8

the user extends a selection of just one item to cover several items by pressing the Shift

key and clicking another item. The List Manager then highlights all cells ranging from

the already selected cell to the newly selected cell, thus making the entire range of cells

selected. In a one-column list, like that in Figure 4-8, the List Manager highlights a

rectangular range of cells in response to a Shift-click.

Figure 4-8 Selection of a range of items in a list

After pressing the mouse button while also pressing the Shift key (but before

releasing the mouse button), the user can extend or shrink the range of cells selected by

dragging the cursor. The user can even drag the cursor below the list to select a range

that includes items not initially visible. For example, Figure 4-9 illustrates the effect of

dragging after the initial selection of the range of cells illustrated in Figure 4-8.

C H A P T E R 4

List Manager

Introduction to Lists 4-11

Figure 4-9 Effect of dragging after Shift-clicking

Virtually every application that supports Shift-clicking to extend list selections should

also support the selection of discontiguous ranges of list cells. The default behavior of

the List Manager is to allow a user to add a cell to the current selection by pressing the

Command key when clicking a cell. If a user Command-clicks a cell that is already

selected, the List Manager removes the cell from the selection.

To add or remove a range of cells from the current selection, a user can press the mouse

button while also pressing the Command key and then drag the cursor over other cells.

The List Manager determines whether to add or remove selections in a range of cells by

checking the status of the first cell clicked in. If that cell is initially selected, then

Command-dragging deselects all cells in the range over which the cursor passes. If that

cell is initially not selected, then Command-dragging selects all cells in the range over

which the cursor passes. Once the user changes a cell’s selection status by

Command-dragging over a cell, the selection status of the cell stays the same for the

duration of the drag even if the user moves the cursor back over the cell. In this way, the

use of the Command key differs from that of the Shift key.

C H A P T E R 4

List Manager

4-12 Introduction to Lists

Figure 4-10 illustrates use of the Command key. This example shows a list created by an

application that allows a user to choose what vegetables to include in a salad to be

tossed by a device attached to the computer.

Figure 4-10 Selection of discontiguous items in a list

Initially, the user has selected “Celery” and “Corn.” By pressing the Command key and

the mouse button while the cursor is over the item “Spinach,” then dragging the cursor

downward to “Turnips” (which automatically scrolls into view), the user can select

additional items. Without the feature of Command-clicking to select discontiguous

ingredients, a user of this list would be able to select only alphabetical ranges

of ingredients for the salad.

C H A P T E R 4

List Manager

Introduction to Lists 4-13

If a user Shift-clicks a cell after having created discontiguous selection ranges,

the discontiguity is lost. The List Manager selects all cells in the range of the first

selected cell and the newly selected cell, unless the newly selected cell precedes the

first selected cell, in which case the List Manager selects all cells in the range of the

newly selected cell and the last selected cell. Figure 4-11 illustrates how the selection

changes when a user Shift-clicks a cell that follows one range of selected cells but

precedes another. In this example, after selecting “Celery,” “Corn,” “Spinach,” and

“Tomatoes,” the user Shift-clicks the item labeled “Mushrooms.”

Figure 4-11 Effect of Shift-clicking in a list that contains discontiguous items

If a user presses both the Command and Shift keys when clicking a cell, then the

pressing of the Shift key is ignored and the List Manager behaves as if only the

Command key is pressed.

Your application can customize the algorithm the List Manager uses to manage the

selection of list items. (You can do this by setting one or more flags in the selFlags

field of the list record.) For example, your application can permit the user to select only

one element of a list at a time, in which case the Shift and Command keys are ignored.

C H A P T E R 4

List Manager

4-14 Introduction to Lists

Some applications may wish to make the Shift key work in lists just like the Command

key. This is especially useful for applications geared toward novice users, who might not

think of using the Command key to select several discontiguous items in a list. If your

application uses a nonstandard behavior, then it should make this clear to the user. For

example, the Installer application includes a list that treats Shift-clicks like

Command-clicks, and it indicates to the user that Shift-clicking selects multiple items.

This is illustrated in Figure 4-12.

Figure 4-12 Notifying the user of nonstandard list behavior

The List Manager provides a number of other ways that your application can customize

the selection of items within a list. In particular, your application can

■ allow only one item to be selected at a time. (By default, the List Manager allows
multiple items to be selected.)

■ allow the user to select a range of items by clicking the first item and dragging to the
last item without necessarily pressing the Shift or Command key. Ordinarily, dragging
in this manner results in only the last item’s being selected.

■ disable discontiguous selections, while still allowing the user to select a range of items.

■ cause all previously selected cells to be deselected when the user Shift-clicks.

■ allow the user to deselect a range of cells by Shift-dragging. Ordinarily, Shift-dragging
causes cells to become selected even if the first cell clicked is already selected.

C H A P T E R 4

List Manager

Introduction to Lists 4-15

■ disable the feature that allows the user to shrink a selection by Shift-clicking to select a
range of cells and then dragging the cursor to a position within that range. When this
feature is disabled, all cells in the cursor’s path during a Shift-drag become selected
even if the user drags the cursor back over the cell.

■ turn off the highlighting of selected cells that contain no data.

“Customizing Cell Highlighting” beginning on page 4-38 discusses the techniques that

your application can use to customize the selection of lists.

Keyboard Navigation of Lists
Although it is easy to use the mouse to select list items, some users prefer to use the

keyboard. Keyboard navigation and selection of list items is a particularly useful feature

for long lists. Your application should support keyboard navigation of lists in two ways.

First, your application should support the use of the arrow keys to move or extend a

selection. Second, if your application uses text-only lists (or lists whose items can be

identified by text strings), your application should allow the user to select an item

simply by typing the text associated with it.

The List Manager does not provide any routines to automatically handle

keyboard navigation of lists, but your application can provide code to manage keyboard

navigation of lists. “Supporting Keyboard Navigation of Lists” beginning on page 4-45

shows code that handles keyboard navigation.

Movement of a Selection With Arrow Keys

When a user presses an arrow key and is not pressing the Shift or Command key, the

user is attempting to move the selection one cell. For example, your application should

respond to the pressing of the Up Arrow key by selecting the cell that is one cell above

the first selected cell and deselecting any other selected cells. If the first selected cell is

already in the first row, then your application should respond simply by deselecting all

cells other than that first selected cell. Your application should respond to the pressing of

the Left Arrow key by moving the selection one cell to the left. Your application should

respond to the pressing of the Down Arrow key or the Right Arrow key by selecting the

cell that is one cell below or to the right of the last selected cell and deselecting

any other selected cells. If the last selected cell is already in the last row, then

your application should respond simply by deselecting all cells other than that last

selected cell.

C H A P T E R 4

List Manager

4-16 Introduction to Lists

When a user presses an arrow key while pressing the Command key, your application

should move the first (or last) selected cell as far as it can move in the appropriate

direction. For example, Command–Left Arrow indicates that the first selected cell should

be moved as far left as possible (and all other cells should be deselected). Figure 4-13

illustrates how an application responds to the pressing of the Command–Up Arrow keys.

Figure 4-13 Response to pressing the Command–Up Arrow keys

Extension of a Selection With Arrow Keys

A user may press the Shift key when pressing an arrow key to extend the current

selection. There are two different algorithms that your application can use to respond to

a Shift–arrow key combination.

The first potential response is the extend algorithm, in which your application simply

finds the first (or last) selected cell, and then selects another cell in the direction of the

arrow key. For example, if the user presses Shift–Right Arrow, your application should

find the last selected cell and highlight the cell one column to the right of it, unless that

cell is already highlighted. If the user presses Command–Shift–Up Arrow, your

application should select the cell in the first row that was in the same column as the first

selected cell and select all cells in between.

Figure 4-14 shows the effect of the extend algorithm when the user selects items using

the Shift key and arrow keys. In this example, after selecting two discontiguous

ranges, the user then presses Shift–Right Arrow, extending the last selected cell by one

cell to the right. The user then presses Shift–Left Arrow, extending the selection one cell

to the left of the first selected cell.

C H A P T E R 4

List Manager

Introduction to Lists 4-17

Figure 4-14 Response to user making a discontiguous selection, then pressing Shift–Right
Arrow followed by Shift–Left Arrow using the extend algorithm

C H A P T E R 4

List Manager

4-18 Introduction to Lists

While the extend algorithm is intuitive and works well for simple lists, a more

powerful algorithm for managing extensions of selections with the arrow keys is the

anchor algorithm. This algorithm is far more difficult to implement than the extend

algorithm, but allows the user more power than the extend algorithm to extend a list in

whatever way is desired, and it works more intuitively both for lists that are likely to

contain many discontiguous items and for multicolumn lists.

The anchor algorithm works by moving the user’s selection relative to an anchor

cell. The application should determine which cell to make the anchor cell by examining

the last cell in the rectangular range of cells last selected by the user. If the user has

pressed either the Right Arrow or Down Arrow key, the anchor cell should be the first

cell in this range; otherwise, it should be the last cell. The application then finds the cell

that is on the other end of the rectangular range of cells last selected by the user. It then

attempts to move this cell in the direction specified by the arrow key, and it highlights all

cells in the rectangle whose corners are the anchor cell and the moving cell. Figure 4-15

illustrates this process.

C H A P T E R 4

List Manager

Introduction to Lists 4-19

Figure 4-15 Response to Shift–Right Arrow using the anchor algorithm

The top window of Figure 4-15 shows two rectangular ranges of selected cells. Suppose

the application determines that the range of cells last selected by the user is the range

containing “D Octave 2” and “D Octave 3.” Because the user pressed Shift–Right Arrow,

the application designates the first cell in this range to be the anchor cell. It then extends

each row of the rectangular range one cell to the right, as shown in the bottom window

of Figure 4-15.

C H A P T E R 4

List Manager

4-20 Introduction to Lists

The application must remember the anchor cell in case the user clicks another

Shift–arrow key combination before making any other changes to the list. If this occurs,

the application should keep the same anchor cell. Thus in Figure 4-15, if, after pressing

Shift–Right Arrow, the user presses Shift–Left Arrow, then the application keeps the

same anchor cell (ordinarily, if the Shift–Left Arrow keys are pressed, the last cell in the

range becomes the anchor cell). The rectangular range of cells previously extended one

cell to the right thus reverts to its original state. Therefore, if your application supports

the anchor algorithm, the user can use Shift–arrow key combinations to extend a

rectangular range of cells in any direction around an anchor cell that is determined by

the first arrow key pressed.

Type Selection in a Text-Only List

In a text-only list, when the user types the name of an item in a list, your application

should respond by scrolling to that item and selecting it. This behavior (allowing a user

to type the name of an item in a list to select it) is known as type selection. Rather than

requiring the user to type the entire name of a list item, however, your application

should continually attempt to determine the best match in the list for the user’s typing.

In particular, every time the user types a character, your application should add it to a

string that keeps track of the characters the user has typed in searching the list. Your

application should attempt to find an exact match for this string, or if no exact match

exists, your application should select the first item that alphabetically follows the text

indicated by the string.

Sometimes the user may start to type the name of one list item and then type the name of

another. Your application should support this by automatically resetting the internal

string used to keep track of the user’s typing after a given amount of time has elapsed

without the user’s pressing a key. To compute the amount of time after which your

application should reset the string, you can use a formula (provided later in this chapter)

that depends on the value the user sets for the autokey threshhold in the Keyboard

control panel. For users who specify a long delay until keys repeat, your application

should use a long time span before it resets the internal string it uses to keep track of the

user’s typing.

Multiple Lists in a Window
In a window with multiple lists that support keyboard navigation, you need to show

which list is the target of keyboard input. To help the user in such a window, your

application should draw a 2-pixel-wide outline around the current list, that is, the list

that would be affected by typing. The box should surround the entire list, including any

scroll bars, and there should be 1 pixel of white space between the outline and the list’s

border. Figure 4-16 illustrates a window containing more than one list.

C H A P T E R 4

List Manager

Introduction to Lists 4-21

Figure 4-16 An outlined list in a window with more than one list

In Figure 4-16, the second list is outlined. Thus, the user knows that using the keyboard

affects this list only. Your application should allow the user to press the Tab key to move

the outline to the next list in a window. In a window with more than two lists, your

application should allow the user to press Shift-Tab to move the outline to the previous

list in a window.

Ordinarily, your application should not outline a list that is the only list in its window.

However, if there is an editable text item in a dialog box containing a list, or if keyboard

input could have some other effect, then your application should outline a list when the

user can navigate it with the keyboard. The user should be able to use the Tab key to

switch between a list and an editable text item; however, there is no need to outline the

editable text item, since the insertion point indicates to the user that using the keyboard

results in any text being inserted there.

When a window containing multiple lists is deactivated, your application should

remove the outline from the current list and not replace it until the window is activated.

C H A P T E R 4

List Manager

4-22 About the List Manager

About the List Manager

The List Manager uses a list record to keep track of information about a list. In most

cases your application can get or set the information in a list record using List Manager

routines. When necessary, your application can examine fields of the list record directly.

Each cell in a list can be described by a data structure of type Cell:

TYPE Cell = Point;

The Cell data type has the same structure as the Point data type; however, the fields

(horizontal and vertical coordinates) of a cell record have different meaning. The

horizontal coordinate of a cell specifies its column number, and the vertical coordinate of

a cell specifies the cell’s row number. Note, however, that the first cell in a list is defined

to be cell (0,0). So a cell with coordinates (3,4) is in the fourth column and fifth row. Thus

you can visually identify a cell’s coordinates using the formula (column–1, row–1).

Figure 4-17 illustrates a list in which each cell item’s text is set to the coordinates of

the cell.

Figure 4-17 Coordinates of cells

A list record is defined by the ListRect data type.

TYPE ListRec =

RECORD

rView: Rect; {list's display rectangle}

port: GrafPtr; {list's graphics port}

indent: Point; {indent distance for drawing}

cellSize: Point; {size in pixels of a cell}

visible: Rect; {boundary of visible cells}

vScroll: ControlHandle; {vertical scroll bar}

hScroll: ControlHandle; {horizontal scroll bar}

selFlags: SignedByte; {selection flags}

lActive: Boolean; {TRUE if list is active}

C H A P T E R 4

List Manager

About the List Manager 4-23

lReserved: SignedByte; {reserved}

listFlags: SignedByte; {automatic scrolling flags}

clikTime: LongInt; {TickCount at time of last click}

clikLoc: Point; {position of last click}

mouseLoc: Point; {current mouse location}

lClikLoop: Ptr; {routine called by LClick}

lastClick: Cell; {last cell clicked}

refCon: LongInt; {for application use}

listDefProc: {list definition procedure}

Handle;

userHandle: Handle; {for application use}

dataBounds: Rect; {boundary of cells allocated}

cells: DataHandle; {cell data}

maxIndex: Integer; {used internally}

cellArray: {offsets to data}

ARRAY[1..1] OF Integer;

END;

ListPtr = ^ListRec; {pointer to a list record}

ListHandle = ^ListPtr; {handle to a list record}

The only fields of a list record that you need to be familiar with are the rView, port,

cellSize, visible, and dataBounds fields.

The rView field specifies the rectangle in which the list’s visible rectangle is located, in

local coordinates of the graphics port specified by the port field. Note that the list’s

visible rectangle does not include the area needed for the list’s scroll bars. The width of a

vertical scroll bar (which equals the height of a horizontal scroll bar) is 15 pixels.

The cellSize field specifies the size in pixels of each cell in the list. Usually, you let the

List Manager automatically calculate the dimensions of a cell. It determines the default

vertical size of a cell by adding the ascent, descent, and leading of the port’s font. (This is

16 pixels for 12-point Chicago, for example.) For best results, you should make the

height of your application’s list equal to a multiple of this height. The List Manager

determines the default horizontal size of a cell by dividing the width of the list’s visible

rectangle by the number of columns in the list.

The visible field specifies which cells in a list are visible within the area specified by

the rView field. The List Manager sets the left and top fields of visible to the

coordinates of the first visible cell; however, the List Manager sets the right and

bottom fields so that each is 1 greater than the horizontal and vertical coordinates of the

last visible cell. For example, if a list contains 4 columns and 10 rows but only the first 2

columns and the first 5 rows are visible (that is, the last visible cell has coordinates (1,4)),

the List Manager sets the visible field to (0,0,2,5).

The List Manager sets the visible field using this method so that you can test whether

a cell is visible within a list by calling QuickDraw’s PtInRect function with a given cell

and the contents of this field. Also, this allows your application to compute the number

of visible rows, for example, by subtracting the top field of visible from bottom.

C H A P T E R 4

List Manager

4-24 About the List Manager

The dataBounds field (located near the end of the list record) specifies the total cell

dimensions of the list, including cells that are not visible. It works much like the

visible field; that is, its right and bottom fields are each 1 greater than the

horizontal and vertical coordinates of the last cell in the list. For example, if a list

contains 4 columns and 10 rows (that is, the last cell in the list has coordinates (3,9)), the

List Manager sets the dataBounds field to (0,0,4,10).

Your application seldom needs to access the remaining fields of the list record, although

they are described here for your quick reference.

The indent field indicates the location, relative to the top-left corner of a cell, at which

drawing should begin. For example, the default list definition procedure sets the vertical

coordinate of this field to near the bottom of the cell, so that characters drawn with

QuickDraw’s DrawText procedure appear in the cell.

The vScroll and hScroll fields are handles to the vertical and horizontal scroll bars

associated with a list. You can determine which scroll bars a list contains by checking

whether these fields are NIL.

The lActive field is TRUE if a list is active or FALSE if it is inactive. You should not

change the value in this field directly, but should use the LActivate procedure to

activate or inactivate a list.

The selFlags field specifies the algorithm that the List Manager uses to select cells in

response to a click in a list. This field is described in more detail in “Customizing Cell

Highlighting” on page 4-38.

The listFlags field indicates whether automatic vertical and horizontal scrolling is

enabled. If automatic scrolling is enabled, then a list scrolls when the user clicks a cell

but then drags the cursor out of the rectangle specified by the rView field. For example,

if a user drags the cursor below this field, the list scrolls downward. By default, the List

Manager enables vertical automatic scrolling if your list has a vertical scroll bar; it

enables horizontal scrolling if your list has a horizontal scroll bar. Your application can

disable or enable automatic scrolling by using the following bit values:

CONST lDoVAutoScroll = 2; {allows vertical autoscrolling}

lDoHAutoScroll = 1; {allows horizontal autoscrolling}

The clikTime and clikLoc fields indicate the time at which the user last clicked the

mouse and the local coordinates of the click. The lastClick field (located later in the

list record) indicates the cell coordinates of the last click. You can access the value in the

lastClick field via the LLastClick function. If your application depends on the

accuracy of the values in these fields, and if your application treats keyboard selection of

list items identically to mouse selection of list items, then it should update the values of

these fields after highlighting a cell in response to a keyboard event. (In particular, this is

necessary if your application implements the anchor algorithm for extending cell

selections with the arrow keys.)

C H A P T E R 4

List Manager

About the List Manager 4-25

The mouseLoc field indicates the current location of the cursor in local coordinates

(v, h). Ordinarily, you should use the Event Manager’s GetMouse procedure to obtain

this information, but this field may be more convenient to access from within a click-loop

procedure (explained next).

The lClikLoop field usually contains NIL, but your application may place a pointer to

a custom click-loop procedure in this field. A click-loop procedure manages the

selection of list items and the scrolling of a list in response to a mouse click in the visible

rectangle of a list. It is unlikely that your application will need to define its own

click-loop procedures, because the List Manager’s LClick function provides a

default click-loop procedure that uses a robust algorithm to respond to mouse clicks.

Your application needs to use a custom click-loop procedure only if it needs to perform

some special processing while the user drags the cursor after clicking in a list. For more

information on click-loop procedures, see “Click-Loop Procedures” on page 4-100.

The refCon and userHandle fields are for your application’s use. You might, for

example, use the refCon field to store the value of the A5 register, or to keep track of

whether a list should be outlined. Typically, an application uses the userHandle field to

store a handle to some additional storage associated with a list, but you can use the field

in any way that is convenient for your application.

The listDefProc field contains a handle to the code used by the list definition

procedure.

The cells field contains a handle to data that stores the list contents. The handle is

declared like this:

TYPE DataArray = PACKED ARRAY[0..32000] OF Char;

DataPtr = ^DataArray;

DataHandle = ^DataPtr;

Because of the way the cells field is defined, no list can contain more than 32,000 bytes

of data. The List Manager slows down considerably when a list approaches this size, and

the List Manager may fail if you attempt to store more data than this in a list.

The List Manager uses the cellArray field to store offsets to data in the relocatable

block specified by the cells field.

Your application will never need to access the lReserved and maxIndex fields.

▲ W A R N I N G

Your application should not change the cells field directly or access
the information in the cellArray field directly. The List Manager
provides routines that you can use to manipulate the information in a
list. ▲

C H A P T E R 4

List Manager

4-26 Using the List Manager

Using the List Manager

This section explains how you can take advantage of the List Manager’s features and

how you can customize lists that your application creates by providing support for

features not built into the List Manager. In particular, this section explains how you can

■ use the LNew function and the LDispose procedure to create a list within a rectangle
in a window and then dispose of that list

■ add rows and columns to a list by using the LAddColumn and LAddRow functions
along with the LSetCell procedure; delete them by using the LDelColumn and
LDelRow procedures; and temporarily disable drawing of a list while adding multiple
columns or rows by using the LSetDrawingMode procedure

■ call the LClick function to let the List Manager automatically respond to mouse
clicks in a list by scrolling the list and changing the selection as appropriate; and call
the LUpdate and LActivate procedures to respond to update and activate events

■ use the LGetSelect function and the LSetSelect procedure to get information
about which cells are selected or to change the selection; and use the LAutoScroll
and LScroll procedures to scroll to a particular cell

■ customize the algorithm that the List Manager uses to highlight cells in response to a
mouse click by modifying the selFlags field of the list record

■ manipulate list items by using the LAddToCell, LClrCell,
LGetCellDataLocation, and LGetCell procedures

■ search through a list for a particular item by using the LSearch function and writing
a custom match function

■ respond to arrow-key and other key-down events to change or extend the selection

■ manage multiple lists within the same window or dialog box by drawing an outline
around the list that would be affected by keyboard input using the refCon field of
the list record to link the lists

■ write your own list definition procedure

C H A P T E R 4

List Manager

Using the List Manager 4-27

Creating a List
To create a list, you can use the LNew function. Listing 4-1 shows a typical use of the

LNew function to create a vertically scrolling list in a rectangular space in a window.

Listing 4-1 Creating a list with a vertical scroll bar

FUNCTION MyCreateVerticallyScrollingList

(myWindow: WindowPtr; myRect: Rect;

 columnsInList: Integer;

 myLDEF: Integer): ListHandle;

CONST

kDoDraw = TRUE; {always draw list after changes}

kNoGrow = FALSE; {don't leave room for size box}

kIncludeScrollBar = TRUE; {leave room for scroll bar}

kScrollBarWidth = 15; {width of vertical scroll bar}

VAR

myDataBounds: Rect; {initial dimensions of the list}

myCellSize: Point; {size of each cell in list}

BEGIN

{specify dimensions of the list}

{start with a list that contains no rows}

SetRect(myDataBounds, 0, 0, columnsInList, 0);

{let the List Manager calculate the size of a cell}

SetPt(myCellSize, 0, 0);

{adjust the rectangle to leave room for the scroll bar}

myRect.right := myRect.right - kScrollBarWidth;

{create the list}

MyCreateVerticallyScrollingList :=

LNew(myRect, myDataBounds, myCellSize, myLDEF, myWindow,

 kDoDraw, kNoGrow, NOT kIncludeScrollBar,

 kIncludeScrollBar);

END;

The LNew function called in the last line of Listing 4-1 takes a number of parameters that

let you specify the characteristics of the list you wish to create.

C H A P T E R 4

List Manager

4-28 Using the List Manager

The first parameter to LNew sets the rectangle for the list’s visible rectangle, specified in

local coordinates of the window specified in the fifth parameter to LNew. Because this

rectangular area does not include room for scroll bars, the

MyCreateVerticallyScrollingList function adjusts the right of this rectangle to

leave enough room.

The second parameter to LNew specifies the data bounds of the list. By setting the

topLeft field of this rectangle to (0,0), you can use the botRight field to specify the

number of columns and rows you want in the list. The

MyCreateVerticallyScrollingList function initially creates a list of no rows.

While your application is free to preallocate rows when creating a list, it is often easier to

only preallocate columns and then add rows after creating the list, as described in the

next section.

The third parameter is the size of a cell. By setting this parameter to (0,0), you let the List

Manager compute the size automatically. The algorithm the List Manager uses to

compute this size is given in the discussion of the cellSize field of the list record in

“About the List Manager” beginning on page 4-22.

To specify that you wish to use the default list definition procedure, pass 0 as the fourth

parameter to LNew. To use a custom list definition procedure, pass the resource ID of the

list definition procedure. Note that the code for the appropriate list definition procedure

is loaded into your application’s heap; the code for the default list definition procedure is

about 150 bytes in size.

In the sixth parameter to LNew, your application can specify whether the List Manager

should initially enable the automatic drawing mode. When this mode is enabled, the List

Manager always redraws the list after changes. Usually, your application should set this

parameter to TRUE. This does not preclude your application from temporarily disabling

the automatic drawing mode.

The last three parameters to LNew specify whether the List Manager should leave room

for a size box, whether it should include a horizontal scroll bar, and whether it should

include a vertical scroll bar. Note that while the List Manager draws scroll bars

automatically, it does not draw the grow icon in the size box. Usually, your application

can draw the grow icon by calling the Window Manager’s DrawGrowIcon procedure.

The LNew function creates a list according your specifications and returns a handle to the

list’s list record. Your application uses the returned handle to refer to the list when using

other List Manager routines.

C H A P T E R 4

List Manager

Using the List Manager 4-29

Lists are often used in dialog boxes. Because the Control Manager does not define a

control for lists, you must define a list in a dialog item list as a user item. Listing 4-2

shows an application-defined procedure that creates a one-column, text-only list in a

dialog box.

Listing 4-2 Installing a list in a dialog box

FUNCTION MyCreateTextListInDialog (myDialog: DialogPtr;

 myItemNumber: Integer)

 : ListHandle;

CONST

kTextLDEF = 0; {resource ID of default LDEF}

VAR

myUserItemRect: Rect; {enclosure of user item}

myUserItemType: Integer; {for GetDialogItem}

myUserItemHdl: Handle; {for GetDialogItem}

BEGIN

GetDialogItem(myDialog, myItemNumber, myUserItemType,

myUserItemHdl, myUserItemRect);

MyCreateTextListInDialog :=

MyCreateVerticallyScrollingList(myDialog, myUserItemRect,

 1, kTextLDEF);

END;

The MyCreateTextListInDialog function defined in Listing 4-2 calls the

MyCreateVerticallyScrollingList function defined in Listing 4-1, after finding

the rectangle in which to install the new list by using the Dialog Manager’s

GetDialogItem procedure. For more information on the Dialog Manager, see Inside
Macintosh: Macintosh Toolbox Essentials.

C H A P T E R 4

List Manager

4-30 Using the List Manager

The List Manager does not automatically draw a 1-pixel border around a list. Listing 4-3

shows an application-defined procedure that draws a border around a list.

Listing 4-3 Drawing a border around a list

PROCEDURE MyDrawListBorder (myList: ListHandle);

VAR

myBorder: Rect; {box for list}

myPenState: PenState; {current status of pen}

BEGIN

myBorder := myList^^.rView; {get view rectangle}

GetPenState(myPenState); {store pen state}

PenSize(1, 1); {set pen to 1 pixel}

InsetRect(myBorder, -1, -1); {adjust rectangle for framing}

FrameRect(myBorder); {draw border}

SetPenState(myPenState); {restore old pen state}

END;

The MyDrawListBorder procedure defined in Listing 4-3 uses standard QuickDraw

routines to save the state of the pen, set the pen size to 1 pixel, draw the border, and

restore the pen state.

When you are finished using a list, you should dispose of it using the LDispose

procedure, passing a handle to the list as the only parameter. The LDispose procedure

disposes of the list record, as well as the data associated with the list; however, it does

not dispose of any application-specific data that you might have stored in a relocatable

block specified by the userHandle field of the list record. Thus, if you use this field to

store a handle to a relocatable block, you should dispose of the relocatable block before

calling LDispose.

Adding Rows and Columns to a List
Your application can choose to preallocate the cells it needs when it creates a list. For

example, an application might preallocate the columns it needs, and then add rows to

the list one by one. Other applications might create a list and add both rows and

columns to it later. Regardless of the technique your application uses to create its cells, it

can set the data in a cell by using the LSetCell procedure.

You specify the data, the length of the data, the location of the cell whose data you wish

to set, and a handle to the list containing the cell, as parameters to the LSetCell

procedure. Listing 4-4 demonstrates an application-defined procedure that adds rows to

a one-column list based on the contents of a string list resource. The

MyAddItemsFromStringList procedure adds each row to the list using the LAddRow

function, then sets the data of the cell in the first (and only) column of the newly added

row using the LSetCell procedure.

C H A P T E R 4

List Manager

Using the List Manager 4-31

Listing 4-4 Adding items from a string list to a one-column, text-only list

PROCEDURE MyAddItemsFromStringList (myList: ListHandle;

stringListID: Integer);

VAR

index: Integer; {index within string list}

rowNum: Integer; {row number to add string to}

myString: Str255; {string to add}

aCell: Cell; {cell to store string in}

BEGIN

{compute new row number}

rowNum := myList^^.dataBounds.bottom;

index := 1; {start with first string}

REPEAT

GetIndString(myString, stringListID, index);

IF myString <> '' THEN

BEGIN {add new row for string}

{specify #rows to add, row number of first new row}

rowNum := LAddRow(1, rowNum, myList);

{prepare to set cell data--specify }

{ the cell's column number, row number}

SetPt(aCell, 0, rowNum);

{set cell data to string}

LSetCell(@myString[1], Length(myString), aCell,

myList);

END;

rowNum := rowNum + 1;

index := index + 1;

UNTIL myString = '';

END;

The MyAddItemsFromStringList procedure defined in Listing 4-4 adds strings from

a string list resource to the end of a list. It keeps track of the index of the string in the

string list with the index variable, and it tracks the number of the new row to add in the

rowNum variable.

The MyAddItemsFromStringList procedure adds a new row by calling the LAddRow

function. The first parameter to LAddRow specifies the number of rows to add, and the

second parameter specifies the row number of the first new row. LAddRow returns the

row number of the first row added, which differs from the second parameter only if that

parameter specifies a row number that is out of range.

After creating a new row, MyAddItemsFromStringList sets the cell in the first

column of the added row to the text contained within the string. Note that the procedure

does not copy the length byte of the string.

C H A P T E R 4

List Manager

4-32 Using the List Manager

To add columns to a list, your application can use the LAddColumn function, which

works just like LAddRow.

To delete a row or column from a list, your application can call the LDelRow procedure

or the LDelColumn procedure. The first parameter of each of these procedures is

the number of rows (or columns) to delete, and the second parameter is the row or

column number of the first to be deleted. For example, this code deletes the first row

of a list:

LDelRow(1, 0, myList);{#rows to delete, starting row number}

When making many changes to a list, your application should temporarily disable the

automatic drawing mode (unless the list is in a window that is not yet visible). To do so,

call the LSetDrawingMode procedure to turn off the automatic drawing mode, make

the changes to the list, turn the automatic drawing mode back on, and redraw the list (by

invalidating a rectangle containing the list and its scroll bars and later calling the

LUpdate procedure when your application receives an update event). You might do

these steps as follows:

LSetDrawingMode (FALSE, myList);

{...(make changes to the list)...}

LSetDrawingMode (TRUE, myList);

InvalRect(myList^^.rView);

IF (myList^^.vScroll <> NIL) THEN

InvalRect(myList^^.vScroll^^.contrlRect);

IF (myList^^.hScroll <> NIL) THEN

InvalRect(myList^^.hScroll^^.contrlRect);

Responding to Events Affecting a List
Your application must respond to several different types of events involving a list by

calling appropriate List Manager routines. If a mouse-down event occurs in a list, your

application should call the LClick function. If your application receives an update

event, and some part of the list is within the update region, then it should call the

LUpdate procedure. If a window containing a list is activated or deactivated, your

application should activate or deactivate the list by calling the LActivate procedure.

Finally, if a key-down event occurs, your application may need to call its own internal

procedures to scroll the list or select items as necessary. This section explains how to

handle mouse-down, update, and activate events; for information on handling

key-down events, see “Supporting Keyboard Navigation of Lists” on page 4-45.

C H A P T E R 4

List Manager

Using the List Manager 4-33

The LClick function automatically responds to a mouse-down event by handling user

interaction until the user releases the mouse button. The List Manager performs any

scrolling as necessary and changes the selection as appropriate. After handling the event,

the LClick function returns TRUE if the click was a double click. Listing 4-5 shows an

application-defined procedure that uses the LClick function to handle mouse-down

events in a list.

Listing 4-5 Responding to a mouse-down event in a list

PROCEDURE MyHandleMouseDownInList (theEvent: EventRecord;

 theList: ListHandle);

BEGIN

SetPort(theList^^.port);

GlobalToLocal(theEvent.where);

IF LClick(theEvent.where, theEvent.modifiers, theList) THEN

MyDoubleClick(theList);

END;

In response to a double click, your application should simulate the selection of the

default button if there is one. If your dialog box does not contain a default button, then

your application can respond to a double click with some other appropriate behavior.

Listing 4-6 illustrates an application-defined procedure that responds to an update event

affecting a list.

Listing 4-6 Responding to an update event in a list

PROCEDURE MyUpdateList (theList: ListHandle);

BEGIN

SetPort(theList^^.port); {set up the drawing environment}

{update list and scroll bars}

LUpdate(theList^^.port^.visRgn, theList);

MyDrawListBorder(theList); {draw border around list}

END;

C H A P T E R 4

List Manager

4-34 Using the List Manager

Your list update procedure might also do some other drawing appropriate to a

particular list. For example, if your application supports multiple lists in a window, then

your list-updating procedure should redraw an outline around the current list in

response to an update event. For more information on outlining the current list, see

“Outlining the Current List” on page 4-53.

Note that the call to the LUpdate procedure must be bracketed by calls to the

Window Manager’s BeginUpdate and EndUpdate procedures. See the

chapter “Window Manager” in Inside Macintosh: Macintosh Toolbox Essentials for more

information.

In response to an activate event, your application should call LActivate for each list in

the window. For example, this code deactivates a list:

LActivate (FALSE, myList);

To activate a list, pass TRUE as the first parameter to LActivate.

Working With List Selections
The List Manager provides routines that make it easy to determine what the selection

is or to change the selection, whether your list allows just one item to be selected at a

time or allows many items to be selected. The List Manager also provides a routine that

allows you to automatically scroll the first selected cell to the upper-left corner of the

list’s visible rectangle. In addition, you can write your own routine to scroll a list just

enough so that a particular cell is visible.

Your application can use the LGetSelect function to determine whether a given cell is

selected or to find the next selected cell. Your application can use the LSetSelect

procedure to select or deselect a given cell.

Listing 4-7 shows an application-defined procedure that finds the first cell in a selection.

Listing 4-7 Finding the first selected cell in a list

FUNCTION MyGetFirstSelectedCell (theList: ListHandle;

VAR theCell: Cell): Boolean;

BEGIN

SetPt(theCell, 0, 0);

MyGetFirstSelectedCell := LGetSelect(TRUE, theCell, theList);

END;

C H A P T E R 4

List Manager

Using the List Manager 4-35

The first parameter (TRUE) passed to the LGetSelect function indicates that

LGetSelect should search the list (beginning with the cell specified in the second

parameter) for the first selected cell. If you pass TRUE as the first parameter,

LGetSelect sets the cell specified in the second parameter to the coordinates of the first

selected cell that it finds, or it returns FALSE if no cells including or after the cell

specified by the second parameter are selected. If you pass FALSE as the first parameter

to LGetSelect, then the function returns TRUE only if the cell specified in the second

parameter is selected. The MyGetFirstSelectedCell function defined in Listing 4-7

thus returns TRUE only if at least one cell is selected, in which case the second parameter

to the function is set to the coordinates of that cell.

Finding the last selected cell in a list is slightly more complex. Listing 4-8 illustrates how

this might be done.

Listing 4-8 Finding the last selected cell in a list

PROCEDURE MyGetLastSelectedCell (theList: ListHandle;

VAR theCell: Cell);

VAR

aCell: Cell;

moreCellsInList: Boolean;

BEGIN

IF MyGetFirstSelectedCell(theList, aCell) THEN

REPEAT

theCell := aCell;

moreCellsInList := LNextCell(TRUE, TRUE, aCell, theList);

UNTIL NOT LGetSelect(TRUE, aCell, theList);

END;

The MyGetLastSelectedCell procedure goes from one selected cell to the next until

there are no more selected cells. It calls the LNextCell function to move from one cell to

the next cell in the list. If it did not do this, then the procedure would loop infinitely,

since LGetSelect would repeatedly return TRUE for the first selected cell. The first two

parameters to LNextCell indicate whether the function should return the next cell in

the current row, the next cell in the current column, or, if both are set to TRUE, the next

cell regardless of location.

C H A P T E R 4

List Manager

4-36 Using the List Manager

Your application can use the LSetSelect procedure to set or deselect a cell by passing

TRUE or FALSE, respectively, as the first parameter to the routine. Listing 4-9 illustrates a

useful procedure that uses LSetSelect and LGetSelect to select a single cell in a list

while deselecting all other cells.

Listing 4-9 Selecting a cell and deselecting other cells

PROCEDURE MySelectOneCell (theList: ListHandle; theCell: Cell);

VAR

nextSelectedCell: Cell;

moreCellsInList: Boolean;

BEGIN

IF MyGetFirstSelectedCell(theList, nextSelectedCell) THEN

WHILE LGetSelect(TRUE, nextSelectedCell, theList) DO

BEGIN {move to next selected cell...}

IF (nextSelectedCell.h <> theCell.h) OR

(nextSelectedCell.v <> theCell.v) THEN

{...and remove cell from selection}

LSetSelect(FALSE, nextSelectedCell, theList)

ELSE

moreCellsInList :=

{move to next cell}

LNextCell(TRUE, TRUE, nextSelectedCell, theList);

END;

LSetSelect(TRUE, theCell, theList);

END;

The MySelectOneCell procedure defined in Listing 4-9 deselects each selected cell,

except that if it encounters the cell that is ultimately to be selected, then it does not

deselect that cell. This prevents an annoying flickering that would otherwise occur if you

were to call MySelectOneCell to select a cell already selected.

The List Manager provides the LAutoScroll procedure to enable your application to

scroll the first selected cell to the upper-left corner of the list’s visible rectangle—for

example:

LAutoScroll(myList);

C H A P T E R 4

List Manager

Using the List Manager 4-37

Sometimes, you might want your application to scroll a list just enough so that a certain

cell (such as a cell the user has just selected using the keyboard) is visible. For example,

this is how the Standard File Package responds if the user presses the Down Arrow key

when the currently selected item is on the bottom of the list’s visible rectangle. You can

mimic this effect by calling the LScroll procedure, which requires that your application

indicate how many columns and rows to scroll. Negative numbers indicate scrolling up

or to the left. Positive numbers indicate scrolling down or to the right. Listing 4-10

illustrates the use of the LScroll procedure.

Listing 4-10 Scrolling so that a particular cell is visible

PROCEDURE MyMakeCellVisible (theList: ListHandle; theCell: Cell);

VAR

visibleRect: Rect; {rectangle enclosing visible cells}

dCols, dRows: Integer; {number of rows to scroll}

BEGIN

visibleRect := theList^^.visible;

IF NOT PtInRect(theCell, visibleRect) THEN

BEGIN {cell is not already visible}

WITH theCell, visibleRect DO

BEGIN

IF h > right - 1 THEN

dCols := h - right + 1 {move to left}

ELSE IF h < left THEN

dCols := h - left; {move to right}

IF v > bottom - 1 THEN

dRows := v - bottom + 1 {move up}

ELSE IF v < top THEN

dRows := v - top; {move down}

END;

LScroll(dCols, dRows, theList);

END;

END;

The MyMakeCellVisible procedure defined in Listing 4-10 simply computes the

number of cells between the last visible row and column and the selected cell. Note that

the last visible column for a list is equal to theList^^.visible.right – 1, and the

last visible row is theList^^.visible.bottom – 1.

C H A P T E R 4

List Manager

4-38 Using the List Manager

Customizing Cell Highlighting
You can change the selFlags field of the list record to modify the algorithm the List

Manager uses to select cells in response to a mouse click. “Selection of List Items”

beginning on page 4-9 explains the different customizations you can make. Figure 4-18

illustrates the bits in the selFlags field.

Figure 4-18 Selection flags

The List Manager defines constants for each flag:

CONST

lOnlyOne = -128; {allow only 1 item to be selected at once}

lExtendDrag = 64; {enable selection of multiple items }

{ by dragging without Shift}

lNoDisjoint = 32; {prevent discontiguous selections }

{ using Command key}

lNoExtend = 16; {deselect all items before }

{ responding to Shift-click}

lNoRect = 8; {select all items in cursor's path }

{ during Shift-drag}

lUseSense = 4; {allow user to use Shift key to }

{ deselect one or more items}

lNoNilHilite= 2; {disable highlighting of empty cells}

C H A P T E R 4

List Manager

Using the List Manager 4-39

When you create a list, the List Manager clears all bits in the selFlags fields. To change

any of these defaults, set the appropriate bits in the selFlags field. For example, this

code sets the selFlags field so that only one selection is allowed in a list:

myList^^.selFlags := lOnlyOne;

Many of the constants are often used additively. For example, your application might

allow the user to select a new range of cells simply by dragging over them, as shown in

the following code:

myList^^.selFlags := lExtendDrag + lNoDisjoint + lNoExtend

+ lNoRect + lUseSense;

The lExtendDrag constant allows users to select a range of items simply by dragging

the cursor. Ordinarily, if the user clicks one cell and drags the cursor to another,

only the last cell remains set.

The lNoDisjoint constant ensures that only one range of cells can be selected.

The lNoExtend constant disables the List Manager feature that responds to a Shift-click

by selecting all cells in the range of the newly clicked cell and the first (or last) selected

cell. Instead, the List Manager simply deselects all cells in the range if this bit is set.

To allow the user to select a number of cells simply by moving the cursor over them, you

can set the bit corresponding to the lNoRect constant. This prevents the deselection of

cells should the user drag the cursor first in one direction and then the other.

You can set the bit corresponding to the lUseSense constant so that if a user Shift-clicks

a selected cell, the cell is deselected. Ordinarily, Shift-clicking a selected cell has no

effect.

You might also wish to make the Shift key work just like the Command key in your

application. You can accomplish that with the following code:

myList^^.selFlags := lNoRect + lNoExtend + lUseSense;

The lNoNilHilite constant is somewhat different from the others, in that it affects the

display of a list, not the way that the List Manager selects items in response to a click. If

the bit corresponding to this constant is set, then the List Manager does not select or

highlight cells that do not contain any data.

C H A P T E R 4

List Manager

4-40 Using the List Manager

Manipulating List Cells
In addition to the LSetCell procedure, the List Manager provides four procedures,

LAddToCell, LClrCell, LGetCellDataLocation, and LGetCell, that allow you to

manipulate cell item data. You can use the LAddToCell procedure to append data to list

items and the LClrCell procedure to remove all data from a list item. The

LGetCellDataLocation procedure indicates the location of the beginning of a cell’s

data within the cells field of the list record as well as the length of that data, and the

LGetCell procedure copies a cell’s data to a buffer that your application specifies.

Listing 4-11 illustrates the use of LClrCell to clear the data from all cells in a list.

Listing 4-11 Clearing all cell data

PROCEDURE MyClearAllCellData (myList: ListHandle);

VAR

aCell: Cell;

BEGIN

SetPt(aCell, 0, 0);

REPEAT

LClrCell(aCell, myList);

UNTIL NOT LNextCell(TRUE, TRUE, aCell, myList);

END;

Because LClrCell simply does nothing if passed a cell not in the list, the

MyClearAllCellData procedure defined in Listing 4-11 will not crash when

attempting to clear the first cell even if there are no cells in the list.

Listing 4-12 uses the LGetCell procedure to return the data of a specific cell.

C H A P T E R 4

List Manager

Using the List Manager 4-41

Listing 4-12 Getting a copy of the data of a cell

PROCEDURE MyGetCellData (dataPtr: Ptr; VAR dataLen: Integer;

 aCell: Cell; myList: ListHandle);

BEGIN

LGetCell(dataPtr, dataLen, aCell, myList);

END;

The LGetCell procedure copies cell data to memory beginning at the location specified

by dataPtr. It copies only the number of bytes specified by the value passed in the

dataLen parameter; it returns in that parameter the number of bytes actually copied.

Because the LGetCell procedure duplicates existing bytes of memory, if your

application needs to access a cell’s data but does not need to manipulate the data, then it

should use the LGetCellDataLocation procedure to access cell data directly.

Listing 4-13 uses the LGetCellDataLocation procedure to get a cell’s data.

Listing 4-13 Directly accessing a cell’s data

PROCEDURE MyGetDirectAccessToCellData

(VAR offset: Integer; VAR len: Integer;

 aCell: Cell; myList: ListHandle);

BEGIN

LGetCellDataLocation(offset, len, aCell, myList);

END;

The LGetCellDataLocation procedure simply returns in the offset and len

parameters the offset and length of the appropriate cell’s data within the cells field of

the list record.

Listing 4-14 shows an application-defined procedure that uses

LGetCellDataLocation in conjunction with the LSetCell procedure

and the LAddRow function to add a new string to a one-column, alphabetical text-only

list. To compare two strings, the procedure uses the Text Utilities CompareText

function, which requires that data be specified by a pointer and length, thus making

LGetCellDataLocation perfect for this purpose. For more information on the

CompareText function, see Inside Macintosh: Text.

C H A P T E R 4

List Manager

4-42 Using the List Manager

Listing 4-14 Adding an item to a one-column, alphabetical text list

PROCEDURE MyAddItemAlphabetically (myList: ListHandle; myString: Str255);

VAR

found: Boolean; {flag variable}

myRows: Integer; {number of rows in list}

currentRow: Integer; {row being examined}

cellDataOffset, cellDataLength: Integer; {data being compared to string}

aCell: Cell; {cell coordinates}

BEGIN

found := FALSE; {initialize flag variable}

WITH myList^^.dataBounds DO

myRows := bottom - top; {compute number of rows}

currentRow := -1; {start before first row}

WHILE NOT found DO

BEGIN {try to insert before next row}

currentRow := currentRow + 1; {move to next row}

IF currentRow = myRows THEN {past the end of the list?}

found := TRUE {insert string at this row}

ELSE

BEGIN

SetPt(aCell, 0, currentRow); {prepare to check cell data}

{find location of data}

LGetCellDataLocation(cellDataOffset, cellDataLength, aCell, myList);

HLockHi(Handle(myList^^.cells)); {lock list data in memory}

IF CompareText(@myString[1], {skip length byte of string}

Ptr(ORD4(myList^^.cells^) + cellDataOffset),

Length(myString), cellDataLength, gitl2Hdl) = -1 THEN

found := TRUE; {new string should precede }

{ this row's string}

HUnlock(Handle(myList^^.cells)); {unlock list data}

END;

END;

{add new row for string}

currentRow := LAddRow(1, currentRow, myList);

SetPt(aCell, 0, currentRow); {prepare to set cell data}

{set data}

LSetCell(@myString[1], Length(myString), aCell, myList);

END;

The MyAddItemAlphabetically procedure defined in Listing 4-14 simply compares a

string to the text in each row of a list, until the string follows the row text alphabetically

or until there are no more rows, that is, the row number (which is 0-based) is equal to the

number of rows, in which case the string is appended to the end of the list.

C H A P T E R 4

List Manager

Using the List Manager 4-43

Searching a List for a Particular Item
Sometimes, your application might need to search through a list for a particular item.

For example, your application might need to search a list of pictures to see which cell

contains a certain picture, or your application might wish to search for an item that

matches a certain string. You can use the LSearch function and specify your own match

function to make this possible.

The LSearch function returns TRUE if it is able to find the specified data in a cell greater

than or equal to the specified cell. If it does find the data, it also returns the coordinates

of the cell that contains the data.

In addition to specifying the cell to search, your application also specifies a pointer to a

match function, the data to search for, and the length of the data, as parameters to the

LSearch function.

If your application specifies NIL for the match function, the LSearch function searches

the list for the first cell whose data matches the specified data. In particular, the

LSearch function calls the Text Utilities IUMagIDString function to compare each

cell’s data with the specified data until IUMagIDString returns 0. Because

IUMagIDString compares strings for equality without regard for secondary ordering,

using this default match function is useful only for text-only lists. For more information

on IUMagIDString, see Inside Macintosh: Text.

Your application can use a different match function from IUMagIDString as long as it

is defined just like IUMagIDString. For example, your application could use the

IUMagString function so that secondary ordering is taken into consideration. To do so,

your application might use the following code:

found := LSearch(myData, myLength, @IUMagString, myCell, myList);

You can also write your own match function. Listing 4-15 shows an example match

function.

Listing 4-15 A match function

FUNCTION MySearchPartialMatch

(cellDataPtr, searchDataPtr: Ptr;

 cellDataLen, searchDataLen: Integer): Integer;

BEGIN

IF (cellDataLen > 0) AND (cellDataLen >= searchDataLen) THEN

MySearchPartialMatch :=

IUMagIDString(cellDataPtr, searchDataPtr,

 searchDataLen, searchDataLen)

ELSE

MySearchPartialMatch := 1;

END;

C H A P T E R 4

List Manager

4-44 Using the List Manager

Your match function should return 0 if it finds a match and 1 otherwise. The match

function defined in Listing 4-15 works just like the default match function but allows the

cell data to be longer than the data being searched for. For example, a search for the text

“rose” would match a cell containing the text “Rosebud”.

Listing 4-16 defines a more complex but potentially more useful match function for

text-only lists.

Listing 4-16 Searching a list for a cell containing certain text or the next cell alphabetically

FUNCTION MyMatchNextAlphabetically

(cellDataPtr, searchDataPtr: Ptr;

 cellDataLen, searchDataLen: Integer): Integer;

BEGIN

MyMatchNextAlphabetically := 1; {set default return value}

IF (cellDataLen > 0) THEN

BEGIN

IF IUMagIDString(cellDataPtr, searchDataPtr,

searchDataLen, searchDataLen) = 0 THEN

MyMatchNextAlphabetically := 0{strings are equal}

ELSE IF IUMagString(cellDataPtr, searchDataPtr,

cellDataLen, searchDataLen) = 1 THEN

MyMatchNextAlphabetically := 0; {search data is after }

{ cell data}

END;

END;

Using the LSearch function with the MyMatchNextAlphabetically function

defined in Listing 4-16 results in the finding of the cell that is alphabetically greater than

or equal to the search text. For example, if you use the LSearch function with this match

function to search a list of the 50 states (not including the District of Columbia) for the

text “Washington, D.C.”, then the LSearch function returns the coordinates of the cell

containing the text “West Virginia”.

Note

The MyMatchNextAlphabetically function defined in Listing 4-16
works only for lists that are alphabetically arranged. ◆

C H A P T E R 4

List Manager

Using the List Manager 4-45

Supporting Keyboard Navigation of Lists
This section discusses how your application can support keyboard navigation of lists. In

particular, this section first shows how your application can respond to the user’s typing

to select an item in a text-only list. Second, this section shows how your application can

respond to the user’s pressing of the arrow keys.

Supporting Type Selection of List Items

To support type selection of list items, your application must keep a record of the

characters the user has typed, the time when the user last typed a character, and which

list the last typed character affected. For example, the SurfWriter application defines the

following four variables to keep track of this information:

VAR

gListNavigateString: {current string being searched}

Str255;

gTSThresh: Integer; {ticks before type selection resets}

gLastKeyTime: LongInt; {time in ticks of last click time}

gLastListHit: ListHandle; {last list type selection affected}

The gListNavigateString variable stores the current status of the type selection. For

example, if the user types 'h' and then 'e' and then 'l' and then 'l' and then 'o',

this string should be 'hello'.

The gTSThresh variable stores the number of ticks after which type selection resets. For

example, if the user has typed 'hello' but then waits more than this amount of time

before typing 'g', the SurfWriter application sets gListNavigateString to 'g', not

to 'hellog'. The value of gTSThresh is dependent on the value the user sets for

“Delay Until Repeat” in the Keyboard control panel. SurfWriter also resets the type

selection if the user begins typing in a different list from the list last typed in. Thus, if the

difference between the current tick count and the gLastKeyTime variable is greater

than gTSThresh, or if gLastListHit is not equal to the current list, then the

SurfWriter application must reset the type selection.

C H A P T E R 4

List Manager

4-46 Using the List Manager

Listing 4-17 shows how the SurfWriter application initializes or resets its type-selection

variables.

Listing 4-17 Resetting variables related to type selection

PROCEDURE MyResetTypeSelection;

CONST

KeyThresh = $18E; {location of low-memory word}

kMaxKeyThresh = 120; {120 ticks = 2 seconds}

TYPE

IntPtr = ^Integer; {for accessing low memory}

BEGIN

gListNavigateString := ''; {reset navigation string}

gLastListHit := NIL; {remember active list}

gLastKeyTime := 0; {no keys yet hit}

gTSThresh := 2 * IntPtr(KeyThresh)^;{update type-selection }

{ threshold}

IF gTSThresh > kMaxKeyThresh THEN

gTSThresh := kMaxKeyThresh; {set threshold to maximum}

END;

The MyResetTypeSelection procedure defined in Listing 4-17 initializes three of the

variables to default values and sets the gTSThresh variable to twice the value of the

system global variable KeyThresh, up to a maximum of 120 ticks. By using the same

formula as MyResetTypeSelection for computing the type-selection threshold, you

make sure your application is consistent with other applications as well as with the

Finder. The SurfWriter application calls the MyResetTypeSelection procedure when

it starts up and when it wishes to reset the type selection because the type-selection

threshold has expired. It also calls the procedure whenever it receives a resume event,

because the user might have used the Keyboard control panel, in which case SurfWriter

needs to update the value of the type-selection threshold.

C H A P T E R 4

List Manager

Using the List Manager 4-47

Having initialized variables related to type selection, the SurfWriter application needs to

respond to appropriate key-down events. Listing 4-18 illustrates an application-defined

procedure that does this.

Listing 4-18 Selecting an item in response to a key-down event

PROCEDURE MyKeySearchInList (theList: ListHandle; theEvent: EventRecord);

VAR

newChar: Char; {character to add to search string}

theCell: Cell; {cell containing found string}

BEGIN

newChar := CHR(BAnd(theEvent.message, charCodeMask));

IF (gLastListHit <> theList) OR

(theEvent.when - gLastKeyTime >= gTSThresh) OR

(Length(gListNavigateString) = 255) THEN

MyResetTypeSelection;

gLastListHit := theList; {remember list keyed in}

gLastKeyTime := theEvent.when; {record time of key-down event}

{set length of string}

gListNavigateString[0] := Char(Length(gListNavigateString) + 1);

{add character to string}

gListNavigateString[Length(gListNavigateString)] := newChar;

SetPt(theCell, 0, 0);

IF LSearch(@gListNavigateString[1], Length(gListNavigateString),

@MyMatchNextAlphabetically, theCell, theList) THEN

BEGIN

{deselect all cells but new cell}

MySelectOneCell(theList, theCell);

{make sure new selection is visible}

MyMakeCellVisible(theList, theCell);

END;

END;

C H A P T E R 4

List Manager

4-48 Using the List Manager

The MyKeySearchInList procedure defined in Listing 4-18 first updates variables

related to type selection. Then it searches through the list for a cell containing the current

search string or for the next cell alphabetically. It searches using the LSearch function in

conjunction with a custom match function defined in Listing 4-15 on page 4-43. The

procedure also uses the MySelectOneCell procedure defined in Listing 4-9 on

page 4-36 and the MyMakeCellVisible procedure defined in Listing 4-10 on page 4-37.

Note

If your compiler enforces range checking, you may need to disable it
before using the code in Listing 4-18, because the code accesses the
length byte of a string directly. See your development system’s
documentation for more information on range checking. ◆

Supporting Arrow-Key Navigation of Lists

This section discusses how your application can support the use of arrow keys to move

the current selection or to extend the current selection using a simple extension

algorithm. For information on implementing a more complex anchor algorithm for

extending the selection, read this section and then the next section, beginning on

page 4-52.

The following constants define the ASCII character codes for the various arrow keys.

These ASCII values for these keys are the same for U.S. and international keyboards.

CONST

kLeftArrow = Char(28); {move left}

kRightArrow = Char(29); {move right}

kUpArrow = Char(30); {move up}

kDownArrow = Char(31); {move down}

To support both the moving of a selection (the user’s pressing an arrow key without

pressing the Shift key) and the extending of a selection (the user’s pressing of an arrow

key while pressing the Shift key), your application needs to define a routine that

computes a new selection location given an old one. For example, if the user presses

Command–Left Arrow, the routine should find the cell as far to the left of the first

currently selected cell as possible. Listing 4-19 illustrates an application-defined

procedure that does this.

C H A P T E R 4

List Manager

Using the List Manager 4-49

Listing 4-19 Determining the location of a new cell in response to an arrow-key event

PROCEDURE MyFindNewCellLoc

(theList: ListHandle; oldCellLoc: Cell;

 VAR newCellLoc: Cell; keyHit: Char;

 moveToExtreme: Boolean);

VAR

listRows, listColumns: Integer; {list dimensions}

BEGIN

WITH theList^^.dataBounds DO

BEGIN

listRows := bottom - top; {number of rows in list}

listColumns := right - left; {number of columns in list}

END;

newCellLoc := oldCellLoc;

IF moveToExtreme THEN

CASE keyHit OF

kUpArrow:

newCellLoc.v := 0; {move to row 0}

kDownArrow:

newCellLoc.v := listRows - 1; {move to last row}

kLeftArrow:

newCellLoc.h := 0; {move to column 0}

kRightArrow:

newCellLoc.h := listColumns - 1; {move to last column}

END

ELSE

CASE keyHit OF

kUpArrow:

IF oldCellLoc.v <> 0 THEN

newCellLoc.v := oldCellLoc.v - 1; {row up}

kDownArrow:

IF oldCellLoc.v <> listRows - 1 THEN

newCellLoc.v := oldCellLoc.v + 1; {row down}

kLeftArrow:

IF oldCellLoc.h <> 0 THEN

newCellLoc.h := oldCellLoc.h - 1; {column left}

kRightArrow:

IF oldCellLoc.h <> listColumns - 1 THEN

newCellLoc.h := oldCellLoc.h + 1; {column right}

END;

END;

C H A P T E R 4

List Manager

4-50 Using the List Manager

The MyFindNewCellLoc procedure defined in Listing 4-19 computes the coordinates of

the cell referenced by the newCellLoc parameter based on the coordinates of the

oldCellLoc parameter and the direction of the arrow key pressed. The oldCellLoc

parameter contains the coordinates of the first or last cell in a selection, depending on

which arrow key was pressed. The behavior of MyFindNewCellLoc also depends on

the value passed in the moveToExtreme parameter. For example, if the user pressed the

Command key while pressing an arrow key, the SurfWriter application passes TRUE;

otherwise, it passes FALSE. If moveToExtreme is TRUE, then MyFindNewCellLoc

returns in newCellLoc a cell that is as far as possible from the cell specified in

oldCellLoc. Otherwise, it returns a cell that is within one cell of oldCellLoc. If a cell

cannot be moved in the direction specified by the arrow key, newCellLoc is equivalent

on exit to oldCellLoc.

Having defined the MyFindNewCellLoc procedure, it is easy to move or extend a

selection in response to an arrow-key event. Listing 4-20 illustrates an

application-defined procedure that moves the selection in response to the user’s pressing

an arrow key without pressing the Shift key.

Listing 4-20 Moving the selection in response to an arrow-key event

PROCEDURE MyArrowKeyMoveSelection (theList: ListHandle;

 keyHit: Char;

 moveToExtreme: Boolean);

VAR

currentSelection: Cell;

newSelection: Cell;

BEGIN

IF MyGetFirstSelectedCell(theList, currentSelection) THEN

BEGIN

IF (keyHit = kRightArrow) OR (keyHit = kDownArrow) THEN

{find last selected cell}

MyGetLastSelectedCell(theList, currentSelection);

{move relative to appropriate cell}

MyFindNewCellLoc(theList, currentSelection,

 newSelection, keyHit, moveToExtreme);

{make this cell the selection}

MySelectOneCell(theList, newSelection);

{make sure new selection is visible}

MyMakeCellVisible(theList, newSelection);

END;

END;

C H A P T E R 4

List Manager

Using the List Manager 4-51

The MyArrowKeyMoveSelection procedure defined in Listing 4-20 calls the

MyFindNewCellLoc procedure defined in Listing 4-19 to find the coordinates of a cell

to select. It computes the coordinates of that new cell relative to the first selected cell if

the user pressed a Left Arrow or Up Arrow key; otherwise, it computes the coordinates

of the new cell relative to the last selected cell. After computing the coordinates of the

new cell, MyArrowKeyMoveSelection selects it by calling routines defined in

Listing 4-9 and Listing 4-10.

Listing 4-21 illustrates an application-defined procedure that extends the selection in

response to the user’s pressing an arrow key while pressing the Shift key.

Listing 4-21 Extending the selection in response to an arrow-key event

PROCEDURE MyArrowKeyExtendSelection (theList: ListHandle;

keyHit: Char;

moveToExtreme: Boolean);

VAR

currentSelection: Cell;

newSelection: Cell;

BEGIN

IF MyGetFirstSelectedCell(theList, currentSelection) THEN

BEGIN

IF (keyHit = kRightArrow) OR (keyHit = kDownArrow) THEN

{find last selected cell}

MyGetLastSelectedCell(theList, currentSelection);

{move relative to appropriate cell}

MyFindNewCellLoc(theList, currentSelection,

 newSelection, keyHit, moveToExtreme);

{add a new cell to the selection}

IF NOT LGetSelect(FALSE, newSelection, theList) THEN

LSetSelect(TRUE, newSelection, theList);

{make sure new selection is visible}

MyMakeCellVisible(theList, newSelection);

END;

END;

The MyArrowKeyExtendSelection procedure defined in Listing 4-21 works just

like the MyArrowKeyMoveSelection procedure defined in Listing 4-20, but it does not

deselect all other cells besides the newly selected cell.

C H A P T E R 4

List Manager

4-52 Using the List Manager

Listing 4-22 shows an application-defined procedure that takes advantage of the

code listings provided in this section. The SurfWriter application calls the procedure in

Listing 4-22 every time it receives an arrow-key event that affects a list.

Listing 4-22 Processing an arrow-key event

PROCEDURE MyArrowKeyInList (theList: ListHandle; theEvent: EventRecord;

allowExtendedSelections: Boolean);

BEGIN

IF (NOT allowExtendedSelections) OR

(BAnd(theEvent.modifiers, shiftKey) = 0) THEN

MyArrowKeyMoveSelection(theList,

CHR(BAnd(theEvent.message, charCodeMask)),

BAnd(theEvent.modifiers, cmdKey) <> 0)

ELSE

MyArrowKeyExtendSelection(theList,

 CHR(BAnd(theEvent.message, charCodeMask)),

 BAnd(theEvent.modifiers, cmdKey) <> 0);

END;

The MyArrowKeyInList procedure defined in Listing 4-22 takes three parameters, the

third of which is a Boolean variable that indicates whether the application supports the

use of Shift–arrow key combinations to extend the current selection. If the application

does support this and the user held down the Shift key, the MyArrowKeyInList

procedure calls the procedure in Listing 4-21 to extend the selection. Otherwise, it calls

the procedure in Listing 4-20 to move the selection. Either way, it checks the status of the

Command key to determine whether the appropriate procedure should move as far in

the direction of the arrow key as possible before selecting a new cell.

Supporting the Anchor Algorithm for Extending Lists With Arrow Keys

This section summarizes how your application can support the anchor method for

extending lists with arrow keys. Implementing this method takes a lot of work, but the

extra work may pay off if you expect many users of your application’s lists to make

range selections or if your application uses multicolumn lists. For a comparison between

the anchor algorithm and the extension algorithm illustrated in the previous section, see

“Extension of a Selection With Arrow Keys” on page 4-16.

To support the anchor algorithm, your application must keep track of several types of

information between Shift–arrow key events. Most importantly, your application must

store information about which cell in a list is the anchor cell and which cell is the moving

cell. In response to a Shift–arrow key event, your application should change the location

of the moving cell. It should then highlight all cells in the rectangle whose corners are

C H A P T E R 4

List Manager

Using the List Manager 4-53

the anchor cell and the moving cell. This permits the user to use several consecutive

Shift–arrow key combinations to move a rectangular range of cells around the anchor

cell.

Your application must thus save the location of the anchor cell the first time the user uses

a Shift–arrow key combination to affect a certain rectangular range of cells. For example,

if the user presses Shift–Right Arrow and the user has not before used a Shift–arrow key

combination, then your application should store as the anchor cell the upper-left cell in

the rectangular range of cells to be affected. The moving cell is then one cell to the right

of what was the lower-right corner of this range.

Your application can determine what rectangular range of cells a Shift–arrow key

combination is meant to affect by using the LLastClick function, which returns the

coordinates of the last cell that was clicked. (If your application relies on this function, it

must always update the lastClick field of the list record in response to keyboard

selection of any list item, since keyboard selection of a list item is functionally equivalent

to clicking.) Your application must check the selection status of adjacent cells to find as

big a rectangular range of selected cells surrounding this cell as possible.

Your application can check whether a Shift–arrow key event is affecting a new range of

cells simply by checking the clikTime field of the list record. (Your application must

thus also update this field in response to keyboard selection of any list item.) If the last

click time changes between Shift–arrow key events, your application knows that the user

has clicked the list or used the keyboard to change the selection. In this case, your

application must compute a new anchor cell and moving cell based on the LLastClick

function and the direction of the arrow key pressed. Otherwise, your application can

keep the same anchor cell, move the moving cell in the direction specified by the arrow

key, and highlight cells in the rectangular range of the anchor cell and the moving cell.

In summary, if your application is to support the anchor algorithm for extending a list

selection, it must keep track of an anchor cell, a moving cell, and the time of the last click

in a list. (Your application might store a handle to a relocatable block containing this

information in the userHandle field of the list record.) Whenever a Shift–arrow key

event is meant to affect a new range of cells, your application updates all three of these

variables. Otherwise, it only changes the coordinates of the moving cell from one

Shift–arrow key event to the next.

Outlining the Current List
If a window in your application contains two lists, or contains one list and an editable

text item, then your application should place a 2-pixel outline around a list whenever the

list is the current list and active, that is, whenever typing would affect the list. Your

application should outline the current list so that the user knows that typing affects the

list.

C H A P T E R 4

List Manager

4-54 Using the List Manager

Listing 4-23 shows an application-defined procedure that checks whether a list is the

current list. If it is both current and active, it draws a 2-pixel outline around the list.

Otherwise, it draws in the background color of the dialog box to remove the outline.

Listing 4-23 Drawing an outline around a list

PROCEDURE MyDrawOutline (myList: ListHandle);

CONST

kScrollBarWidth = 15; {width of scroll bar}

VAR

myOutlineRect: Rect; {rectangle for outline border}

myPenState: PenState; {current status of pen}

BEGIN

{get list's visible rectangle}

myOutlineRect := myList^^.rView;

{compensate for scroll bars}

IF myList^^.vScroll <> NIL THEN

myOutlineRect.right := myOutlineRect.right

+ kScrollBarWidth;

IF myList^^.hScroll <> NIL THEN

myOutlineRect.bottom := myOutlineRect.bottom

+ kScrollBarWidth;

{draw 2-pixel outline 3 pixels from border}

SetPort(myList^^.port); {set port to list's port}

{move out 4 pixels}

InsetRect(myOutlineRect, -4, -4);

GetPenState(myPenState); {store pen state}

IF (myList = gCurrentList) AND myList^^.lActive THEN

PenPat(black) {draw border}

ELSE

PenPat(white); {remove border}

PenSize(2, 2); {use 2-pixel pen}

FrameRect(myOutlineRect); {draw outline}

SetPenState(myPenState); {restore old pen state}

END;

The MyDrawOutline procedure defined in Listing 4-23 determines the rectangle to

draw in by adjusting the list’s visible rectangle to compensate for scroll bars and by then

moving each side of the rectangle 4 pixels. (One pixel is already taken by the list border,

an additional pixel is needed for space between the border and the outline, and the pen

size for the outline is 2 pixels.) The list determines whether to draw or remove a list by

C H A P T E R 4

List Manager

Using the List Manager 4-55

comparing the list passed in with an an application-defined global variable,

gCurrentList. If the variable indicates that a list is the current list, and the

MyDrawOutline procedure determines that the list is active, then it draws the outline;

otherwise, it removes it.

Your application can use the refCon field of the list record to create a linked ring list of

all of the lists in a window to make it easier to support outlining. That is, the refCon

field of the first list in a window contains a handle to the second list in a window; the

refCon field of the second list in a window contains a handle to the third, and so on,

until the refCon field of the last list in a window contains a handle to the first.

The advantage of implementing such a ring list is that it makes it easy to change which

list is the current list. In response to a Tab-key event, your application need only find the

next list in a window by looking at the current list’s refCon field and setting the

gCurrentList variable to the list referenced by that field. Without using such a

strategy, your application would need to examine the gCurrentList variable,

determine which of a window’s lists the variable corresponded to, determine which list

in the window is the next list, and then set the gCurrentList variable to this next list.

Listing 4-24 shows an application-defined procedure that adds a list to a ring being

maintained for a particular window.

Listing 4-24 Adding a list to the ring

PROCEDURE MyTrackList (myList: ListHandle);

VAR

aList: ListHandle;

BEGIN

aList := gCurrentList;

IF aList = NIL THEN

gCurrentList := myList {first ListHandle to be tracked}

ELSE

BEGIN

{look for last ListHandle in ring}

WHILE (ListHandle(aList^^.refCon) <> gCurrentList) DO

{move to next ListHandle in ring}

aList^^.refCon := ListHandle(aList^^.refCon)^^.refCon;

{insert myList into ring}

ListHandle(aList^^.refCon) := myList;

END;

{add link from myList to current list}

ListHandle(myList^^.refCon) := gCurrentList;

END;

C H A P T E R 4

List Manager

4-56 Using the List Manager

The SurfWriter application calls the MyTrackList procedure defined in Listing 4-24

once for each list in a window when it first opens that window. The first list added to the

ring is automatically set to be the current list. SurfWriter initializes the gCurrentList

variable to NIL before creating a ring for each window that uses multiple lists. In

addition, SurfWriter stores the value of the gCurrentList variable whenever a

window containing multiple lists is deactivated and then resets it when the window is

activated again. That way, the gCurrentList variable always stores a handle to the

current list of the active window.

Once all the lists in a window are linked in a ring, it is easy to write a routine that

ensures that only the current list is outlined. Listing 4-25 illustrates such a routine.

Listing 4-25 Updating the outline of all lists in a window

PROCEDURE MyUpdateListOutlines;

VAR

listToUpdate: ListHandle;

BEGIN

listToUpdate := gCurrentList;

IF listToUpdate <> NIL THEN

REPEAT

{move to next list in ring}

listToUpdate := ListHandle(listToUpdate^^.refCon);

MyDrawOutline(listToUpdate);

UNTIL listToUpdate = gCurrentList;

END;

The MyUpdateListOutlines procedure defined in Listing 4-25 simply calls the

MyDrawOutline procedure for each list in the active window’s ring of lists. The

SurfWriter application calls this procedure each time your application changes which list

is current.

C H A P T E R 4

List Manager

Using the List Manager 4-57

Listing 4-26 shows an application-defined procedure that responds to the user’s pressing

the Tab key when the Shift key is not also pressed.

Listing 4-26 Moving the outline to the next list in a window

PROCEDURE MyOutlineNextList;

BEGIN

gCurrentList := ListHandle(gCurrentList^^.refCon);

MyUpdateListOutlines;

END;

If the user presses Shift-Tab, your application should respond by changing the current

list to the previous list. Listing 4-27 shows an application-defined procedure that does

this.

Listing 4-27 Moving the outline to the previous list in a window

PROCEDURE MyOutlinePreviousList;

VAR

previousList: ListHandle;

BEGIN

{compute the coordinates of the list before the current list}

previousList := gCurrentList;

WHILE (ListHandle(previousList^^.refCon) <> gCurrentList) DO

previousList := ListHandle(previousList^^.refCon);

{now switch the outline to this list}

gCurrentList := previousList;

MyUpdateListOutlines;

END;

The MyOutlineNextList and MyOutlinePreviousList procedures defined in

Listing 4-26 and Listing 4-27 work the same if a window contains exactly two lists.

C H A P T E R 4

List Manager

4-58 Using the List Manager

Writing Your Own List Definition Procedure
The default list definition procedure supports only the display of unstyled text.

If your application needs to display items graphically, you can create your own

list definition procedure. For example, the Chooser desk accessory uses its own list

definition procedure to display icons and names corresponding to Chooser extensions.

Figure 4-19 illustrates the Chooser’s use of a custom list definition procedure.

Figure 4-19 The Chooser’s use of a custom list definition procedure

This section explains how you can write a list definition procedure. After writing a list

definition procedure, you must compile it as a resource of type 'LDEF' and store it in

the resource fork of any application that uses the list definition procedure.

This section provides code for a list definition procedure that supports the display of

QuickDraw pictures. It works by requiring the application that uses it to store as cell

data variables of type PicHandle. That way, each cell stores only 4 bytes of data, and

the List Manager’s 32 KB limit is not at risk of being approached for small lists. This list

definition procedure provides enough versatility to display virtually any type of image.

You can write your own list definition procedure to store some type of data other than

unstyled text. You can give your list definition procedure any name you choose, but it

must be defined like this:

PROCEDURE MyLDEF (message: Integer; selected: Boolean;

VAR cellRect: Rect; theCell: Cell;

dataOffset: Integer; dataLen: Integer;

theList: ListHandle);

C H A P T E R 4

List Manager

Using the List Manager 4-59

The List Manager can send four types of messages to your list definition procedure, as

indicated by a value passed in the message parameter. The following constants define

the different types of messages:

CONST

lInitMsg = 0; {do any special list initialization}

lDrawMsg = 1; {draw the cell}

lHiliteMsg = 2; {invert cell's highlight state}

lCloseMsg = 3; {take any special disposal action}

Of the second through seventh parameters to a list definition procedure, only the

theList parameter, which contains a handle to a list record, can be accessed by your list

definition procedure in response to all four messages.

The selected, cellRect, theCell, dataOffset, and dataLen parameters pass

information to your list definition procedure only when the value in the message

parameter contains the lDrawMsg or the lHiliteMsg constant. These parameters

provide information about the cell to be affected by the message. The selected

parameter indicates whether the cell should be highlighted. The cellRect and

theCell parameters indicate the cell’s rectangle and coordinates. Finally, the

dataOffset and dataLen parameters specify the offset and length of the cell’s data

within the relocatable block referenced by the cells field of the list record.

Listing 4-28 shows a list definition procedure that processes messages sent to it by the

List Manager.

Listing 4-28 Processing messages to a list definition procedure

PROCEDURE MyLDEF (message: Integer; selected: Boolean;

VAR cellRect: Rect; theCell: Cell;

dataOffset: Integer; dataLen: Integer;

theList: ListHandle);

BEGIN

CASE message OF

lInitMsg:

MyLDEFInit(theList);

lDrawMsg:

MyLDEFDraw(selected, cellRect, theCell, dataOffset,

dataLen, theList);

lHiliteMsg:

MyLDEFHighlight(selected, cellRect, theCell,

 dataOffset, dataLen, theList);

lCloseMsg:

MyLDEFClose(theList);

END;

END;

C H A P T E R 4

List Manager

4-60 Using the List Manager

The MyLDEF procedure defined in Listing 4-28 calls procedures defined later in this

section to handle the various messages specified by the message parameter. It passes all

relevant parameters to these message-handling procedures. Thus, it passes only the

theList parameter to the procedures that handle the initialization and close messages.

Responding to the Initialization Message

The List Manager automatically allocates memory for a list and fills out the fields of a list

record before calling your list definition procedure with a lInitMsg message. Your

application might respond to the initialization message by changing fields of the list

record, such as the cellSize and indent fields. (These fields are by default set

according to a formula discussed in “About the List Manager” beginning on page 4-22.)

Many list definition procedures do not need to perform any action in response to the

initialization message. For example, the list definition procedure that allows the

Standard File Package to display small icons next to the names of files uses the standard

cell size and thus does not need to perform any special initialization.

Since pictures can come in a variety of sizes, the pictures list definition procedure

introduced in Listing 4-28 does not need to perform any special initialization either; it

depends on the application that uses the list definition procedure to define the correct

cell size. Thus, Listing 4-29 shows how the pictures list definition procedure responds to

the initialization method.

Listing 4-29 Using the default initialization method

PROCEDURE MyLDEFInit (theList: ListHandle);

BEGIN

END;

Note

Your list definition procedure does not actually need to call a procedure
that responds to the initialization message if it does not need to perform
any special action. ◆

Responding to the Draw Message

Your list definition procedure must respond to the lDrawMsg message by examining the

specified cell’s data and drawing the cell as appropriate. At the same time, your list

definition procedure must ensure that it does not alter the characteristics of the drawing

environment.

Listing 4-30 shows how the pictures list definition procedure responds to the draw

message.

C H A P T E R 4

List Manager

Using the List Manager 4-61

Listing 4-30 Responding to the lDrawMsg message

PROCEDURE MyLDEFDraw (selected: Boolean; cellRect: Rect;

 theCell: Cell; dataOffset: Integer;

 dataLen: Integer; theList: ListHandle);

VAR

savedPort: GrafPtr; {old graphics port}

savedClip: RgnHandle; {old clip region}

savedPenState: PenState; {old pen state}

myPicture: PicHandle; {handle to a picture}

BEGIN

{set up the drawing environment}

GetPort(savedPort); {remember the port}

SetPort(theList^^.port); {set port to list's port}

savedClip := NewRgn; {create new region}

GetClip(savedClip); {set region to clip region}

ClipRect(cellRect); {set clip region to cell }

{ rectangle}

GetPenState(savedPenState); {remember pen state}

PenNormal; {use normal pen type}

{draw the cell if it contains data}

EraseRect(cellRect); {erase before drawing}

IF dataLen = SizeOf(PicHandle) THEN

BEGIN

{get handle to picture}

LGetCell(@myPicture, dataLen, theCell, theList);

{draw the picture}

DrawPicture(myPicture, cellRect);

END;

{select the cell if necessary}

IF selected THEN {highlight cell}

MyLDEFHighlight(selected, cellRect, theCell, dataOffset,

 dataLen, theList);

{restore graphics environment}

SetPort(savedPort); {restore saved port}

SetClip(savedClip); {restore clip region}

DisposeRgn(savedClip); {free region memory}

SetPenState(savedPenState); {restore pen state}

 END;

C H A P T E R 4

List Manager

4-62 Using the List Manager

The MyLDEFDraw procedure defined in Listing 4-30 begins by saving characteristics

of the current graphics environment, such as the graphics port, the clipping region, and

the pen state. It also sets the pen to a normal state, and sets the clipping region to the

cell’s rectangle. The MyLDEFDraw procedure then draws in the cell rectangle by erasing

the rectangle, getting the handle stored as the cell’s data, and drawing the picture

referenced by that handle. Then, if the cell should be selected, it simply calls

the MyLDEFHighlight procedure defined in the next section. Before returning,

MyLDEFDraw restores the graphics environment to its previous state and disposes of the

memory it used to remember the clipping region.

Note

For more information on the QuickDraw routines and data structures
used in Listing 4-30, see Inside Macintosh: Imaging With QuickDraw. ◆

Responding to the Highlighting Message

Virtually every list definition procedure should respond to the lHiliteMsg message in

the same way, by inverting the bits in the cell’s rectangle. Your list definition procedure

would need to respond in a different way if selected list items should not simply be

highlighted. For example, in a list of patterns, simply highlighting selected cells could

confuse the user because highlighted patterns look just like other patterns.

Listing 4-31 shows how your list definition procedure can respond to the lHiliteMsg

message in a way that is compatible with all Macintosh models, including models that

do not support Color QuickDraw.

Listing 4-31 Responding to the lHiliteMsg message

PROCEDURE MyLDEFHighlight (selected: Boolean; cellRect: Rect;

theCell: Cell; dataOffset: Integer;

dataLen: Integer; theList: ListHandle);

BEGIN

{use color highlighting if possible}

BitClr(Ptr(HiliteMode), pHiliteBit);

InvertRect(cellRect); {highlight cell rectangle}

END;

For more information on highlighting, see Inside Macintosh: Imaging With QuickDraw.

Responding to the Close Message

The List Manager sends your list definition procedure the lCloseMsg message

immediately before disposing of the data occupied by a list. Your list definition

procedure needs to respond to the close message only if it needs to perform some special

processing before a list is disposed, such as releasing memory associated with a list that

would not be released by the LDispose procedure.

C H A P T E R 4

List Manager

Using the List Manager 4-63

The pictures list definition procedure responds to the close message by freeing memory

occupied by the list’s pictures, whose handles are stored in the list. While the LDispose

procedure will dispose of the picture handles themselves, it cannot dispose of the

relocatable blocks referenced by the picture handles.

Listing 4-32 shows how the pictures list definition procedure responds to the

lCloseMsg message.

Listing 4-32 Responding to the lCloseMsg message

PROCEDURE MyLDEFClose (theList: ListHandle);

VAR

aCell: Cell; {cell in the list}

myPicHandle: PicHandle; {handle stored as cell data}

myDataLength: Integer; {length in bytes of cell data}

BEGIN

SetPt(aCell, 0, 0);

IF PtInRect(aCell, theList^^.dataBounds) THEN

REPEAT

{free memory only if cell's data is 4 bytes long}

myDataLength := SizeOf(PicHandle);

LGetCell(@myPicHandle, myDataLength, aCell, theList);

IF myDataLength = SizeOf(PicHandle) THEN

KillPicture(myPicHandle);

UNTIL NOT LNextCell(TRUE, TRUE, aCell, theList);

END;

Using the Pictures List Definition Procedure

The pictures list definition procedure introduced in Listing 4-28 can display a list

containing pictures. For example, the SurfWriter application uses it to display a list of

icons. SurfWriter first creates a list using the MyCreateVerticallyScrollingList

function shown in Listing 4-1 on page 4-27. After creating the list, rather than using the

default cell size as calculated by the List Manager, the SurfWriter application sets the size

of the cells using the LCellSize procedure, as shown in Listing 4-33.

Listing 4-33 Setting the cell size of a list

PROCEDURE MySetCellSizeForIconList(myCellSize: Point;

 myList: ListHandle);

BEGIN

LCellSize(myCellSize, myList);

END;

C H A P T E R 4

List Manager

4-64 Using the List Manager

To later add an icon to a list of icons, the SurfWriter application uses the procedure

shown in Listing 4-34.

Listing 4-34 Adding an icon to a list of icons

PROCEDURE MyAddIconToList(myCellRect: Rect; myPlotRect: Rect;

 myCell: Cell; theList: ListHandle;

 VAR myPicHandle: PicHandle;

 resID: Integer);

CONST

kIconWidth = 32; {width of an icon}

kIconHeight = 32; {height of an icon}

kExtraSpace = 2; {extra space on top and to left of icon}

VAR

myIcon: Handle;

BEGIN

{picture occupies entire cell rectangle}

SetRect(myCellRect, 0, 0, kIconWidth + kExtraSpace,

 kIconHeight + kExtraSpace);

{plot icon over portion of rectangle}

SetRect(myPlotRect, kExtraSpace, kExtraSpace, kIconWidth +

 kExtraSpace, kIconHeight + kExtraSpace);

{load icon from resource file}

myIcon := GetIcon(resID);

{create the picture}

myPicHandle := OpenPicture(myCellRect);

PlotIcon(myPlotRect, myIcon);

ClosePicture;

{store handle to picture as cell data}

LSetCell(@myPicHandle, SizeOf(PicHandle), myCell, theList);

{release icon resource}

ReleaseResource(myIcon);

END;

Note that the MyAddIconToList procedure uses the QuickDraw routines

OpenPicture and ClosePicture to bracket the set of drawing commands that it uses

to define the picture data for a particular cell. It then stores the handle to the picture

as the cell’s data, so that the pictures list definition procedure can draw the picture

within the cell.

C H A P T E R 4

List Manager

List Manager Reference 4-65

List Manager Reference

This section describes the data structures and routines that are specific to the List

Manager. The “Data Structures” section shows the data structures for the cell, the data

handle, and the list record. The “List Manager Routines” section beginning on page 4-70

describes the routines that your application can use to create, manipulate, get

information about, and dispose of lists. The “Application-Defined Routines” section

beginning on page 4-96 describes list definition procedures, match functions, and

click-loop procedures.

Data Structures

This section describes the data structures that the List Manager uses to store information

about a list.

Your application can use the cell record to specify the coordinates of a cell. For

example, your application must specify cell coordinates to the LAddToCell procedure

to add data to a cell.

The List Manager uses a data handle internally to store information about the contents of

a list’s cells. The List Manager provides routines that allow you to access information

contained in this data handle.

Finally, the List Manager uses a list record to store a variety of information about a list.

To obtain some types of information about a list, your application might need to access

the fields of the list record directly.

The Cell Record

A cell record specifies the coordinates of a cell in a list. The Cell data type defines a cell

record.

TYPE Cell = Point;

Field descriptions

v The row number of the cell.

h The column number of the cell.

Note that column and row numbers are 0-based. Also note that this chapter designates

cells using the notation (column–1, row–1), so that a cell with coordinates (2,5) is in the

third column and sixth row of a list. You specify a cell with coordinates (2,5) by setting

the cell’s h field to 2 and its v field to 5.

C H A P T E R 4

List Manager

4-66 List Manager Reference

The Data Handle

The List Manager uses a data handle to store information about a list. The DataHandle

data type defines a data handle.

TYPE DataArray = PACKED ARRAY[0..32000] OF Char;

DataPtr = ^DataArray;

DataHandle = ^DataPtr;

Your application should not change the information in a data handle directly. Your

application can, however, read data stored in a list’s data handle directly by calling the

GetCellDataLocation procedure to find the offset of a cell’s data into the data handle

and the length of the cell’s data.

The List Record

The List Manager uses a list record to store many types of information about a list.

Usually you access a list record through a handle to the list record defined by the data

type ListHandle. The ListRec data type defines a list record.

TYPE ListRec =

RECORD

rView: Rect; {list's display rectangle}

port: GrafPtr; {list's graphics port}

indent: Point; {indent distance for drawing}

cellSize: Point; {size in pixels of a cell}

visible: Rect; {boundary of visible cells}

vScroll: ControlHandle; {vertical scroll bar}

hScroll: ControlHandle; {horizontal scroll bar}

selFlags: SignedByte; {selection flags}

lActive: Boolean; {TRUE if list is active}

lReserved: SignedByte; {reserved}

listFlags: SignedByte; {automatic scrolling flags}

clikTime: LongInt; {TickCount at time of last click}

clikLoc: Point; {position of last click}

mouseLoc: Point; {current mouse location}

lClikLoop: Ptr; {routine called by LClick}

lastClick: Cell; {last cell clicked}

refCon: LongInt; {for application use}

listDefProc: {list definition procedure}

Handle;

C H A P T E R 4

List Manager

List Manager Reference 4-67

userHandle: Handle; {for application use}

dataBounds: Rect; {boundary of cells allocated}

cells: DataHandle; {cell data}

maxIndex: Integer; {used internally}

cellArray: {offsets to data}

ARRAY[1..1] OF Integer;

END;

ListPtr = ^ListRec; {pointer to a list record}

ListHandle = ^ListPtr; {handle to a list record}

Field descriptions

rView Specifies the rectangle in which the list’s visible rectangle is located,
in local coordinates of the graphics port specified by the port field.
Note that the list’s visible rectangle does not include the area
needed for the list’s scroll bars. The width of a vertical scroll bar
(which equals the height of a horizontal scroll bar) is 15 pixels.

port Specifies the graphics port of the window containing the list.

indent Defines the location, relative to the upper-left corner of a cell, at
which drawing should begin. List definition procedures should set
this field to a value appropriate to the type of data that a cell in a list
is to contain.

cellSize Contains the size in pixels of each cell in the list. When your
application creates a list, it can either specify the cell size or let the
List Manager calculate the cell size. You should not change the
cellSize field directly; if you need to change the cell size after
creating a list, use the LCellSize procedure.

visible Specifies the cells in a list that are visible within the area specified
by the rView field. The List Manager sets the left and top fields
of visible to the coordinates of the first visible cell; however, the
List Manager sets the right and bottom fields so that each is 1
greater than the horizontal and vertical coordinates of the last
visible cell. For example, if a list contains 4 columns and 10 rows
but only the first 2 columns and the first 5 rows are visible (that is,
the last visible cell has coordinates (1,4)), the List Manager sets the
visible field to (0,0,2,5).

vScroll Contains a control handle for a list’s vertical scroll bar, or NIL if a
list does not have a vertical scroll bar.

hScroll Contains a control handle for a list’s horizontal scroll bar, or NIL if a
list does not have a vertical scroll bar.

C H A P T E R 4

List Manager

4-68 List Manager Reference

selFlags Indicates the selection flags for a list. When your application creates
a list, the List Manager clears the selFlags field to 0. This defines
the List Manager’s default selection algorithm. To change the
default behavior for a particular list, set the desired bits in the list’s
selFlags field.

You can use these constants to refer to bits in this field:

CONST

{allow only one item to be selected at once}

lOnlyOne = -128;

{enable multiple item selection without Shift}

lExtendDrag = 64;

{prevent discontiguous selections}

lNoDisjoint = 32;

{reset list before responding to Shift-click}

lNoExtend = 16;

{Shift-drag selects items passed by cursor}

lNoRect = 8;

{allow use of Shift key to deselect items}

lUseSense = 4;

{disable highlighting of empty cells}

lNoNilNilite = 2;

lActive Indicates whether the list is active (TRUE if active, FALSE if inactive).

lReserved Reserved.

listFlags Indicates whether the List Manager should automatically scroll the
list if the user clicks the list and then drags the cursor outside
the list display rectangle.

The following constants define bits in this field that determine
whether horizontal autoscrolling and vertical autoscrolling are
enabled:

CONST

{allow automatic vertical scrolling}

lDoVAutoscroll = 2;

{allow automatic horizontal scrolling}

lDoHAutoscroll = 1;

By default, the List Manager enables horizontal autoscrolling for a
list if the list includes a horizontal scroll bar, and enables vertical
autoscrolling for a list if the list includes a vertical scroll bar.

C H A P T E R 4

List Manager

List Manager Reference 4-69

clikTime Specifies the time in ticks of the last click in the list. If your
application depends on the value contained in this field, then
your application should update the field should the application
select a list item in response to keyboard input.

clikLoc Specifies the location in local coordinates of the last click in the list.

mouseLoc Indicates the current location of the cursor in local coordinates. This
value is continuously updated by the LClick function after the
user clicks a list.

lClikLoop Contains a pointer to a click-loop procedure repeatedly called by
the LClick function, or NIL if the default click-loop procedure is to
be used. For information on click-loop procedures, see “Click-Loop
Procedures” beginning on page 4-100.

lastClick Specifies the coordinates of the last cell in the list that was clicked.
This may not be the same as the last cell selected if the user selects a
range of cells by Shift-dragging or Command-dragging. If your
application depends on the value contained in this field, then
your application should update the field whenever your application
selects a list item in response to keyboard input.

refCon Contains 4 bytes for use by your application.

listDefProc Contains a handle to the code for the list definition procedure that
defines how the list is drawn.

userHandle Contains 4 bytes that your application can use as needed. For
example, your application might use this field to store a handle to
additional storage associated with the list. However, the LDispose
procedure does not automatically release this storage when
disposing of the list.

dataBounds Specifies the range of cells in a list. When your application creates a
list, it specifies the initial bounds of the list. As your application
adds rows and columns, the List Manager updates this field. The
List Manager sets the left and top fields of dataBounds to the
coordinates of the first cell in the list; the List Manager sets the
right and bottom fields so that each is 1 greater than the
horizontal and vertical coordinates of the last cell. For example, if a
list contains 4 columns and 10 rows (that is, the last cell in the list
has coordinates (3,9)), the List Manager sets the dataBounds field
to (0,0,4,10).

cells Contains a handle to a relocatable block used to store cell data. Your
application should not change the contents of this relocatable block
directly.

maxIndex Used internally.

cellArray Contains offsets to data that indicate the location of different cells’
data within the data handle specified by the cells parameter. Your
application should not access this field directly.

C H A P T E R 4

List Manager

4-70 List Manager Reference

List Manager Routines

This section describes the routines you can use to

■ create and dispose of lists

■ add and delete rows and columns to and from lists

■ find or change cells’ selection status

■ read or change cell data

■ respond to list events

■ affect the display of a list

■ get information about cells

■ change the size of a list or of a cell contained in a list

▲ W A R N I N G

The List Manager’s routines are contained in a resource of resource type
'PACK'. Calling any of the routines described in this section could
result in the loading of the package resource and the allocation of
memory. Thus, your application should not call any of the routines
described in this section at interrupt time. For more information on
packages, see Inside Macintosh: Operating System Utilities. ▲

Creating and Disposing of Lists

You can create a list by calling the LNew function. When you are through with the

list, you can dispose of it by calling the LDispose procedure.

LNew

You can use the LNew function to create a new list in a window.

FUNCTION LNew (rView, dataBounds: Rect; cSize: Point;

theProc: Integer; theWindow: WindowPtr;

drawit, hasGrow, scrollHoriz, scrollVert: Boolean)

: ListHandle;

rView The rectangle in which to display the list, in local coordinates of the
window specified by the theWindow parameter. This rectangle does not
include the area to be taken up by the list’s scroll bars.

dataBounds The initial data bounds for the list. By setting the left and top fields of
this rectangle to (0,0) and the right and bottom fields to
(kMyInitialColumns,kMyInitialRows), your application can create
a list that has kMyInitialColumns columns and kMyInitialRows
rows.

C H A P T E R 4

List Manager

List Manager Reference 4-71

cSize The size of each cell in the list. If your application specifies (0,0) and is
using the default list definition procedure, the List Manager sets the v
coordinate of this parameter to the sum of the ascent, descent, and
leading of the current font, and it sets the h coordinate using the
following formula:

cSize.h := (rView.right - rView.left) DIV

(dataBounds.right – dataBounds.left)

theProc The resource ID of the list definition procedure to use for the list. To use
the default list definition procedure, which supports the display of
unstyled text, specify a resource ID of 0.

theWindow A pointer to the window in which to install the list.

drawIt A Boolean value that indicates whether the List Manager should initially
enable the automatic drawing mode. When the automatic drawing mode
is enabled, the List Manager automatically redraws the list whenever a
change is made to it. You can later change this setting using the
LSetDrawingMode procedure. Your application should leave the
automatic drawing mode disabled only for short periods of time when
making changes to a list (by, for example, adding rows and columns).

hasGrow A Boolean value that indicates whether the List Manager should leave
room for a size box. The List Manager does not actually draw the grow
icon. Usually, your application can draw it with the Window Manager’s
DrawGrowIcon procedure.

scrollHoriz
A Boolean value that indicates whether the list should contain a
horizontal scroll bar. Specify TRUE if your list requires a horizontal scroll
bar; specify FALSE otherwise.

scrollVert
Indicates whether the list should contain a vertical scroll bar. Specify
TRUE if your list requires a vertical scroll bar; specify FALSE otherwise.

DESCRIPTION

The LNew function attempts to create a list defined by the function’s parameters and

returns a handle to the newly created list. If the LNew function cannot allocate the list,

it returns NIL. This might happen if there is not enough memory available or if LNew

cannot load the resource specified by the theProc parameter. If the LNew function

returns successfully, then all of the fields of the list record referenced by the returned

handle are correctly set.

If the list contains a horizontal or vertical scroll bar and the window specified by the

parameter theWindow is visible, LNew draws the scroll bar for the new list in the

window just outside the list’s visible rectangle specified by the rView parameter. The

LNew function does not, however, draw a 1-pixel border around the list’s visible

rectangle.

C H A P T E R 4

List Manager

4-72 List Manager Reference

SPECIAL CONSIDERATIONS

You should not call the LNew function from within an interrupt, such as in a completion

routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LNew function are

SEE ALSO

See Listing 4-1 on page 4-27 for an example of how to use the LNew function.

LDispose

You can use the LDispose procedure to dispose of the memory associated with a list

that you no longer need.

PROCEDURE LDispose (lHandle: ListHandle);

lHandle The list to be disposed of.

DESCRIPTION

The LDispose procedure releases all memory allocated by the List Manager in creating

a list. First, LDispose issues a close request to the list definition procedure and calls the

Control Manager procedure DisposeControl for the list’s scroll bars (if any).

LDispose then uses the Memory Manager to free the memory referenced by the cells

field, then disposes of the list record itself.

Because LDispose disposes of data associated with cells in your list, there is no need to

clear the data from list cells or to delete individual rows and columns before calling

LDispose.

The LDispose procedure does not dispose of any memory associated with a list that the

List Manager has not allocated. In particular, LDispose does not dispose of any

memory referenced by the userHandle field of the list record. Your application is

responsible for deallocating any memory it has allocated through the userHandle field

before calling LDispose.

SPECIAL CONSIDERATIONS

You should not call the LDispose procedure from within an interrupt, such as in a

completion routine or VBL task.

Trap macro Selector

_Pack0 $0044

C H A P T E R 4

List Manager

List Manager Reference 4-73

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LDispose procedure are

Adding and Deleting Columns and Rows To and From a List

You can use the LAddColumn and LAddRow functions to add one or more columns or

rows to a list, and you can use the LDelColumn and LDelRow procedures to delete one

or more columns or rows from a list.

LAddColumn

You can use the LAddColumn function to add one or more columns to a list.

FUNCTION LAddColumn (count: Integer; colNum: Integer;

lHandle: ListHandle): Integer;

count The number of columns to add.

colNum The column number of the first column to add.

lHandle The list to which to add the columns.

DESCRIPTION

The LAddColumn function inserts into the given list the number of columns specified by

the count parameter, starting at the column specified by the colNum parameter. The

LAddColumn function returns as its function result the column number of the first

column added, which is equal to the value specified by the colNum parameter if that

value is a valid column number.

If the column number specified by colNum is not already in the list, then new last

columns are added. The value returned by the LAddColumn function thus has

significance only in this case.

▲ W A R N I N G

If there is insufficient memory in the heap to add the new columns, the
LAddColumn function may fail to add the new columns although it
returns a positive function result. Be sure there is enough memory in the
heap to allocate the new columns before calling LAddColumn. ▲

Columns whose column numbers are initially greater than colNum have their column

numbers increased by count.

If the automatic drawing mode is enabled and the columns added by LAddColumn are

visible, then the list (including its scroll bars) is updated. New cells created by a call to

LAddColumn are initially empty.

Trap macro Selector

_Pack0 $0028

C H A P T E R 4

List Manager

4-74 List Manager Reference

You may add columns to a list that does not yet have rows. The dataBounds field of the

list record reflects that the list has columns, but you can only access cells when both rows

and columns have been added.

SPECIAL CONSIDERATIONS

You should not call the LAddColumn function from within an interrupt, such as in a

completion routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LAddColumn function are

LAddRow

You can use the LAddRow function to add one or more rows to a list.

FUNCTION LAddRow (count: Integer; rowNum: Integer;

lHandle: ListHandle): Integer;

count The number of rows to add.

rowNum The row number of the first row to add.

lHandle The list to add the rows to.

DESCRIPTION

The LAddRow function inserts into the given list the number of rows specified by the

count parameter, starting at the row specified by the rowNum parameter. The LAddRow

function returns as its function result the row number of the first row added, which is

equal to the value specified by the rowNum parameter if that value is a valid row number.

If the row number specified by rowNum is not already in the list, then new last rows are

added. The value returned by the LAddRow function thus has significance only in this

case.

▲ W A R N I N G

If there is insufficient memory in the heap to add the new rows, the
LAddRow function may fail to add the new rows although it returns a
positive function result. Be sure there is enough memory in the heap to
allocate the new rows before calling LAddRow. ▲

Rows whose row numbers are initially greater than rowNum have their row numbers

increased by count.

Trap macro Selector

_Pack0 $0004

C H A P T E R 4

List Manager

List Manager Reference 4-75

If the automatic drawing mode is enabled and the rows added by LAddRow are visible,

then the list (including its scroll bars) is updated. New cells created by a call to LAddRow

are initially empty.

You may add rows to a list that does not yet have columns. The dataBounds field of the

list record reflects that the list has rows, but you can only access cells when both rows

and columns have been added.

SPECIAL CONSIDERATIONS

You should not call the LAddRow function from within an interrupt, such as in a

completion routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LAddRow function are

SEE ALSO

For an example that adds rows to a list, see Listing 4-4 on page 4-31.

LDelColumn

You can use the LDelColumn procedure to delete one or more columns from a list.

PROCEDURE LDelColumn (count: Integer; colNum: Integer;

 lHandle: ListHandle);

count The number of columns to delete, or 0 to delete all columns.

colNum The column number of the first column to delete.

lHandle The list from which to delete the columns.

DESCRIPTION

The LDelColumn procedure deletes the number of columns specified by the count

parameter, starting at the column specified by the colNum parameter.

If the column specified by colNum is invalid, then nothing is done.

Your application can quickly delete all columns from a list (and thus delete all cell data)

simply by setting the count parameter to 0. The number of rows is left unchanged. Your

application can achieve the same effect by setting the colNum parameter to

lHandle^^.dataBounds.left and setting the count parameter to a value greater

than lHandle^^.dataBounds.right – lHandle^^.dataBounds.left.

Trap macro Selector

_Pack0 $0008

C H A P T E R 4

List Manager

4-76 List Manager Reference

Columns whose column numbers are initially greater than colNum have their column

numbers decreased by count.

If the automatic drawing mode is enabled and one or more of the columns deleted by

LDelColumn are visible, then the list (including its scroll bars) is updated.

SPECIAL CONSIDERATIONS

You should not call the LDelColumn procedure from within an interrupt, such as in a

completion routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LDelColumn procedure are

LDelRow

You can use the LDelRow procedure to delete one or more rows from a list.

PROCEDURE LDelRow (count: Integer; rowNum: Integer;

lHandle: ListHandle);

count The number of rows to delete, or 0 to delete all rows.

rowNum The row number of the first row to delete.

lHandle The list from which to delete the rows.

DESCRIPTION

The LDelRow procedure deletes the number of rows specified by the count parameter,

starting at the row specified by the rowNum parameter.

If the row specified by rowNum is invalid, then nothing is done.

Your application can quickly delete all rows from a list (and thus delete all cell data)

simply by setting the count parameter to 0. The number of columns is left unchanged.

Your application can achieve the same effect by setting the rowNum parameter to

lHandle^^.dataBounds.top and setting the count parameter to a value greater

than lHandle^^.dataBounds.bottom – lHandle^^.dataBounds.top.

Rows whose row numbers are initially greater than rowNum have their row numbers

decreased by count.

If the automatic drawing mode is enabled and one or more of the rows deleted by

LDelRow are visible, then the list (including its scroll bars) is updated.

Trap macro Selector

_Pack0 $0020

C H A P T E R 4

List Manager

List Manager Reference 4-77

SPECIAL CONSIDERATIONS

You should not call the LDelRow procedure from within an interrupt, such as in a

completion routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LDelRow procedure are

Determining or Changing the Selection

Your application can use the LGetSelect function to determine whether a certain cell is

selected or to find the next selected cell. To select or deselect a specific cell, your

application can use the LSetSelect procedure.

LGetSelect

You can use the LGetSelect function to get information about which cells are selected.

FUNCTION LGetSelect (next: Boolean; VAR theCell: Cell;

lHandle: ListHandle): Boolean;

next A Boolean value that indicates whether LGetSelect should check only
the cell specified by the parameter theCell (next = FALSE), or
whether it should try to find the next selected cell (next = TRUE).

theCell On input, specifies the first cell whose selection status should be checked.
If next is TRUE, then this parameter on output indicates the next selected
cell greater than or equal to the cell specified on input. Otherwise, this
parameter remains unchanged.

lHandle The list in which the selection is being checked.

DESCRIPTION

The behavior of the LGetSelect function depends on the value specified in the next

parameter.

If next is TRUE, then LGetSelect searches the list for the first selected cell beginning at

the cell specified by theCell. (In particular, LGetSelect first checks cells in row

theCell.v, and then cells in the next row, and so on.) If it finds a selected cell,

LGetSelect returns TRUE and sets the parameter theCell to the coordinates of the

selected cell. If it does not find a selected cell, LGetSelect returns FALSE.

If next is FALSE, then LGetSelect checks only the cell specified by the parameter

theCell. If the cell is selected, LGetSelect returns TRUE. Otherwise, it returns FALSE.

Trap macro Selector

_Pack0 $0024

C H A P T E R 4

List Manager

4-78 List Manager Reference

SPECIAL CONSIDERATIONS

You should not call the LGetSelect function from within an interrupt, such as in a

completion routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LGetSelect function are

SEE ALSO

For examples that determine which items are selected in a list, see “Working With List

Selections” beginning on page 4-34.

LSetSelect

You can use the LSetSelect procedure to select or deselect a cell.

PROCEDURE LSetSelect (setIt: Boolean; theCell: Cell;

 lHandle: ListHandle);

setIt A Boolean value that indicates whether the LSetSelect procedure
should select or deselect the specified cell. Specify TRUE to select the cell;
specify FALSE to deselect the cell.

theCell The cell to be selected or deselected.

lHandle The list containing the cell to be selected or deselected.

DESCRIPTION

If setIt is TRUE, then the LSetSelect procedure selects the cell specified by the

theCell parameter in the list specified by lHandle. If the cell is already selected,

LSetSelect does nothing.

If setIt is FALSE, then LSetSelect deselects the cell specified by theCell. If the cell

is already deselected, LSetSelect does nothing.

If a cell’s selection status is changed and the cell is visible, LSetSelect redraws the cell.

SPECIAL CONSIDERATIONS

You should not call the LSetSelect procedure from within an interrupt, such as in a

completion routine or VBL task.

Trap macro Selector

_Pack0 $003C

C H A P T E R 4

List Manager

List Manager Reference 4-79

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LSetSelect procedure are

SEE ALSO

For examples that change the items selected in a list, see “Working With List Selections”

beginning on page 4-34.

Accessing and Manipulating Cell Data

To change the data contained in a cell, your application ordinarily uses the LSetCell

procedure. Alternatively, it can use the LAddToCell procedure to append data to a cell,

or the LClrCell procedure to clear all data from a cell. To find the data in a cell, your

application can use the LGetCellDataLocation procedure to find the location of a

cell’s data in memory. Or, your application can use the LGetCell procedure to copy the

data elsewhere in memory.

LSetCell

You can use the LSetCell procedure to change the data contained in a cell.

PROCEDURE LSetCell (dataPtr: Ptr; dataLen: Integer; theCell: Cell;

 lHandle: ListHandle);

dataPtr A pointer to the new data for a cell.

dataLen The length in bytes of the data pointed to by the dataPtr parameter.

theCell The coordinates of the cell to hold the new data.

lHandle The list containing the cell given in the theCell parameter.

DESCRIPTION

The LSetCell procedure sets the data of the cell specified by the parameter theCell to

dataLen bytes of data beginning at the location specified by dataPtr. Any previous

cell data in theCell is replaced.

If the cell coordinates specified by the theCell parameter are invalid, then LSetCell

does nothing.

▲ W A R N I N G

If there is insufficient memory in the heap, the LSetCell procedure
may fail to set the cell’s data. ▲

Trap macro Selector

_Pack0 $005C

C H A P T E R 4

List Manager

4-80 List Manager Reference

If the data of a visible cell is changed and the automatic drawing mode is enabled,

LSetCell updates the list.

SPECIAL CONSIDERATIONS

You should not call the LSetCell procedure from within an interrupt, such as in a

completion routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LSetCell procedure are

SEE ALSO

For an example that sets the data of cells in a list, see Listing 4-4 on page 4-31.

LAddToCell

You can use the LAddToCell procedure to append data to the data already contained in

a cell.

PROCEDURE LAddToCell (dataPtr: Ptr; dataLen: Integer;

 theCell: Cell; lHandle: ListHandle);

dataPtr A pointer to the data to be appended.

dataLen The length in bytes of the data pointed to by the dataPtr parameter.

theCell The coordinates of the cell to which the data should be appended.

lHandle The list containing the cell given in the theCell parameter.

DESCRIPTION

The LAddToCell procedure appends dataLen bytes of data beginning at the location

specified by dataPtr to data already contained in the cell specified by the parameter

theCell.

If the cell coordinates specified by the parameter theCell are invalid, then the

LAddToCell procedure does nothing.

If the data of a visible cell is changed and the automatic drawing mode is enabled,

LAddToCell updates the list.

Trap macro Selector

_Pack0 $0058

C H A P T E R 4

List Manager

List Manager Reference 4-81

SPECIAL CONSIDERATIONS

You should not call the LAddToCell procedure from within an interrupt, such as in a

completion routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LAddToCell procedure are

LClrCell

You can use the LClrCell procedure to clear the data contained in a cell.

PROCEDURE LClrCell (theCell: Cell; lHandle: ListHandle);

theCell The coordinates of the cell to be cleared.

lHandle The list containing the cell given in the theCell parameter.

DESCRIPTION

The LClrCell procedure clears the data contained in the cell specified by the theCell

parameter.

If the cell coordinates specified by the theCell parameter are invalid, then the

LClrCell procedure does nothing.

If the data of a visible cell is cleared and the automatic drawing mode is enabled,

LClrCell updates the list.

SPECIAL CONSIDERATIONS

You should not call the LClrCell procedure from within an interrupt, such as in a

completion routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LClrCell procedure are

Trap macro Selector

_Pack0 $000C

Trap macro Selector

_Pack0 $001C

C H A P T E R 4

List Manager

4-82 List Manager Reference

LGetCellDataLocation

You can find the memory location of cell data by using the LGetCellDataLocation

procedure. The LGetCellDataLocation procedure is also available as the

LFind procedure.

PROCEDURE LGetCellDataLocation (VAR offset, len: Integer;

 theCell: Cell;

 lHandle: ListHandle);

offset The LGetCellDataLocation procedure returns in this parameter the
offset of the cell’s data, specified from the beginning of the data handle
referenced by the cells field of the list record.

len The LGetCellDataLocation procedure returns in this parameter the
length of the cell’s data in bytes.

theCell The cell whose data’s location is sought.

lHandle The list containing the cell specified by the parameter theCell.

DESCRIPTION

Your application can use the LGetCellDataLocation procedure to read cell data. The

cells field of the list record contains a handle to a relocatable block used to store all cell

data. When LGetCellDataLocation returns, the offset parameter contains the

offset of the specified cell’s data in this relocatable block, and the len parameter

specifies the length in bytes of the cell’s data. In other words, the first byte of cell data is

located at Ptr(ORD4(lHandle^^.cells^) + offset), and the last byte of cell data

is located at Ptr(ORD4(lHandle^^.cells^) + offset + len).

If the cell coordinates specified by the parameter theCell are invalid, then

LGetCellDataLocation sets the offset and len parameters to –1.

▲ W A R N I N G

Your application should not modify the contents of the cells field
directly. To change a cell’s data, use the LSetCell procedure or the
LAddToCell procedure. ▲

SPECIAL CONSIDERATIONS

You should not call the LGetCellDataLocation procedure from within an interrupt,

such as in a completion routine or VBL task.

C H A P T E R 4

List Manager

List Manager Reference 4-83

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LGetCellDataLocation procedure are

SEE ALSO

For an example that uses the LGetCellDataLocation procedure to get the data of a

cell, see Listing 4-13 on page 4-41.

LGetCell

You can use the LGetCell procedure to copy a cell’s data.

PROCEDURE LGetCell (dataPtr: Ptr; VAR dataLen: Integer;

 theCell: Cell; lHandle: ListHandle);

dataPtr A pointer to the location to which to copy the cell’s data.

dataLen On entry, specifies the maximum number of bytes to copy. On exit,
indicates the number of bytes actually copied.

theCell The cell whose data is to be copied.

lHandle The list containing the cell specified by the parameter theCell.

DESCRIPTION

The LGetCell procedure copies up to dataLen bytes of the data of the cell specified by

theCell to the memory location pointed to by dataPtr. If the cell data is longer than

dataLen, only dataLen bytes are copied and the dataLen parameter is unchanged. If

the cell data is shorter than dataLen, then LGetCell sets dataLen to the length in

bytes of the cell’s data.

SPECIAL CONSIDERATIONS

You should not call the LGetCell procedure from within an interrupt, such as in a

completion routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LGetCell procedure are

Trap macro Selector

_Pack0 $0034

Trap macro Selector

_Pack0 $0038

C H A P T E R 4

List Manager

4-84 List Manager Reference

Responding to Events Affecting Lists

Your application can respond to mouse-down events in a list, activate events for a

window containing a list, and update events for a window containing a list simply by

calling the LClick function, the LActivate procedure, and the LUpdate procedure,

respectively. The List Manager does not include a routine that automatically responds to

keyboard events; for information on responding to those, see “Supporting Keyboard

Navigation of Lists” beginning on page 4-45.

LClick

To process a mouse-down event in a list, use the LClick function.

FUNCTION LClick (pt: Point; modifiers: Integer;

 lHandle: ListHandle): Boolean;

pt The location in local coordinates of the mouse-down event. Your
application can simply call GlobalToLocal(myEvent.where) and
then pass myEvent.where in this parameter.

modifiers An integer value corresponding to the modifiers field of the event
record.

lHandle The list in which the mouse-down event occurred.

DESCRIPTION

The LClick function responds to the mouse-down event whose location and modifiers

are specified by the pt and modifiers parameters. The LClick function handles all

user interaction until the user releases the mouse button. The LClick function returns

TRUE if the click was a double-click, or FALSE otherwise.

If the pt parameter specifies a portion of the list’s visible rectangle, then cells are

selected with an algorithm that depends on the list’s selection flags and on the

modifiers parameter. If the user drags the cursor above or below the list’s visible

rectangle and vertical autoscrolling is enabled, then the List Manager vertically

autoscrolls the list. If the user drags the cursor to the right or the left of the list’s visible

rectangle and horizontal autoscrolling is enabled, then the List Manager horizontally

autoscrolls the list.

If the pt parameter specifies a point within the list’s scroll bar, then the List Manager

calls the scroll bar’s control definition procedure to track the cursor and it scrolls the list

appropriately.

SPECIAL CONSIDERATIONS

You should not call the LClick function from within an interrupt, such as in a

completion routine or VBL task.

C H A P T E R 4

List Manager

List Manager Reference 4-85

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LClick function are

SEE ALSO

For information on enabling and disabling autoscrolling, see “About the List Manager”

beginning on page 4-22. For information on responding to mouse-down events, see

“Responding to Events Affecting a List” on page 4-32.

LActivate

When your application receives an activate event for a window containing a list, it

should activate or deactivate the list as appropriate. You can use the LActivate

procedure to perform highlighting of the cells and to show or hide any scroll bars.

PROCEDURE LActivate (act: Boolean; lHandle: ListHandle);

act A Boolean value that indicates whether the list should be activated.
Specify TRUE to activate the list. Specify FALSE to deactivate the list.

lHandle The list to be activated or deactivated.

DESCRIPTION

The LActivate procedure activates the list specified by the lHandle parameter if act

is TRUE and deactivates it otherwise.

If a list is being deactivated, LActivate removes highlighting from selected cells and

hides the scroll bars. If a list is being activated, LActivate highlights selected cells and

shows the scroll bars.

The LActivate procedure has no effect on a list’s size box, if one exists.

SPECIAL CONSIDERATIONS

You should not call the LActivate procedure from within an interrupt, such as in a

completion routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LActivate procedure are

Trap macro Selector

_Pack0 $0018

Trap macro Selector

_Pack0 $0000

C H A P T E R 4

List Manager

4-86 List Manager Reference

SEE ALSO

For information on responding to activate events in lists, see “Responding to Events

Affecting a List” beginning on page 4-32. For general information on events, see the

chapter “Event Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

LUpdate

To respond to an update event, use the LUpdate procedure.

PROCEDURE LUpdate (theRgn: RgnHandle; lHandle: ListHandle);

theRgn The visible region of the list’s port after a call to the Window Manager’s
BeginUpdate procedure.

lHandle The list to be updated.

DESCRIPTION

The LUpdate procedure redraws all visible cells in the list specified by the lHandle

parameter that intersect the region specified by the parameter theRgn. It also redraws

the scroll bars if they intersect the region.

You should bracket calls to LUpdate by calls to the Window Manager procedures

BeginUpdate and EndUpdate.

SPECIAL CONSIDERATIONS

You should not call the LUpdate procedure from within an interrupt, such as in a

completion routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LUpdate procedure are

SEE ALSO

For information on responding to update events in lists, see “Responding to Events

Affecting a List” beginning on page 4-32. For general information on events, see the

chapter “Event Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

Trap macro Selector

_Pack0 $0064

C H A P T E R 4

List Manager

List Manager Reference 4-87

Modifying a List’s Appearance

Your application can use the LSetDrawingMode procedure to enable or disable

automatic drawing of lists. If your application uses LSetDrawingMode to temporarily

disable list drawing, then it must call the LDraw procedure to draw a cell when its

appearance changes, or when new rows or columns are added to the list. To

automatically scroll a list so that the first selected cell is the first cell visible, your

application can use the LAutoScroll procedure. To scroll a list a certain number of cells

horizontally and vertically, your application can use the LScroll procedure.

LSetDrawingMode

You can use the LSetDrawingMode procedure to change the automatic drawing mode

specified when creating a list. The LSetDrawingMode procedure is also available as the

LDoDraw procedure.

PROCEDURE LSetDrawingMode (drawIt: Boolean; lHandle: ListHandle);

drawIt A Boolean value that indicates whether the List Manager should enable
the automatic drawing mode. Specify TRUE to enable the automatic
drawing mode. Specify FALSE to disable the automatic drawing mode.

lHandle The list whose drawing mode is being changed.

DESCRIPTION

The LSetDrawingMode procedure sets the List Manager’s drawing mode for the list

specified by the lHandle parameter to the state specified by the drawIt parameter.

While the automatic drawing mode is turned off, all cell drawing and highlighting

are disabled, and the scroll bar does not function properly. Thus, your application should

disable the automatic drawing mode only for short periods of time. After enabling it,

your application should ensure that the list is redrawn.

SPECIAL CONSIDERATIONS

You should not call the LSetDrawingMode procedure from within an interrupt, such as

in a completion routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LSetDrawingMode procedure are

Trap macro Selector

_Pack0 $002C

C H A P T E R 4

List Manager

4-88 List Manager Reference

SEE ALSO

For an example that disables and then reenables the automatic drawing mode, see

“Adding Rows and Columns to a List” beginning on page 4-30.

LDraw

You can use the LDraw procedure to draw a cell in a list. Ordinarily, you should only

need to use LDraw when the automatic drawing mode has been disabled.

PROCEDURE LDraw (theCell: Cell; lHandle: ListHandle);

theCell The cell to draw.

lHandle The list containing the cell identified by the parameter theCell.

DESCRIPTION

The LDraw procedure draws the cell specified by the parameter theCell. The List

Manager makes the list’s graphics port the current port, sets the clipping region to the

cell’s rectangle, and calls the list definition procedure to draw the cell. It restores the

clipping region and port before exiting.

SPECIAL CONSIDERATIONS

You should not call the LDraw procedure from within an interrupt, such as in a

completion routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LDraw procedure are

LAutoScroll

You can use the LAutoScroll procedure to make the first selected cell visible.

PROCEDURE LAutoScroll (lHandle: ListHandle);

lHandle The list to be scrolled.

Trap macro Selector

_Pack0 $0030

C H A P T E R 4

List Manager

List Manager Reference 4-89

DESCRIPTION

The LAutoScroll procedure scrolls the list specified by the lHandle parameter so that

the first selected cell is in the upper-left corner of the list’s visible rectangle.

SPECIAL CONSIDERATIONS

You should not call the LAutoScroll procedure from within an interrupt, such as in a

completion routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LAutoScroll procedure are

LScroll

You can use the LScroll procedure to scroll a list a specified number of rows and

columns.

PROCEDURE LScroll (dCols: Integer; dRows: Integer;

 lHandle: ListHandle);

dCols The number of columns to scroll. Specify a positive number to scroll
down (that is, each cell moves up), and a negative number to scroll up.

dRows The number of rows to scroll. Specify a positive number to scroll right
(that is, each cell moves left), and a negative number to scroll left.

lHandle The list to be scrolled.

DESCRIPTION

The LScroll procedure scrolls the list specified by the lHandle procedure the number

of columns and rows specified by dCols and dRows. The List Manager will not scroll

beyond the data bounds of the list.

If the automatic drawing mode is enabled, LScroll does all necessary updating of the

list.

SPECIAL CONSIDERATIONS

You should not call the LScroll procedure from within an interrupt, such as in a

completion routine or VBL task.

Trap macro Selector

_Pack0 $0010

C H A P T E R 4

List Manager

4-90 List Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LScroll procedure are

Searching a List for a Particular Item

You can use the LSearch function to search a list for a particular item.

LSearch

You can use the LSearch function to find a cell whose data matches data that you

specify.

FUNCTION LSearch (dataPtr: Ptr; dataLen: Integer; searchProc: Ptr;

VAR theCell: Cell; lHandle: ListHandle)

: Boolean;

dataPtr A pointer to the data being searched for.

dataLen The length in bytes of the data being searched for.

searchProc
A pointer to a function to be used to compare the data being searched for
with cell data. If NIL, the Text Utilities Package function
IUMagIDString is used.

theCell The first cell to be searched. If LSearch finds a match, it returns in this
parameter the coordinates of the first cell whose data matches the data
being searched for.

lHandle The list to be searched.

DESCRIPTION

Your application can use the LSearch function to search the list specified by the

lHandle parameter beginning at the cell specified by the parameter theCell for a

match. If LSearch finds a match, it returns TRUE and sets the parameter theCell to the

coordinates of the first cell whose data matches the data specified by the dataPtr and

dataLen parameters. Otherwise, LSearch returns FALSE.

The LSearch function determines whether a cell’s data matches the search data by

calling the IUMagIDString function, or the function specified by the searchProc

parameter. If that function returns 0, LSearch has found a match; otherwise, LSearch

checks the next cell in the list.

Trap macro Selector

_Pack0 $0050

C H A P T E R 4

List Manager

List Manager Reference 4-91

SPECIAL CONSIDERATIONS

You should not call the LSearch function from within an interrupt, such as in a

completion routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LSearch function are

SEE ALSO

For examples of use of the LSearch function, see “Searching a List for a Particular Item”

beginning on page 4-43. For information on the syntax of a custom match function, see

“Match Functions” beginning on page 4-99. For information on the IUMagIDString

function, see Inside Macintosh: Text.

Changing the Size of Cells and Lists

Usually, once your application creates a list, it should not need to change the cell size or

the size of the list itself. However, there may be instances in which changing one or both

is desirable. For example, if your list is on the lower-right side of a window that is

resizable, then your application must resize the list if the window containing it is resized.

Your application can do that with the LSize procedure. To resize the cells in a list, your

application can use the LCellSize procedure.

LSize

You can change the size of a list by using the LSize procedure. Usually, you need to do

this only after calling the Window Manager procedure SizeWindow.

PROCEDURE LSize (listWidth: Integer; listHeight: Integer;

 lHandle: ListHandle);

listWidth The new width (in pixels) of the list’s visible rectangle.

listHeight
The new height (in pixels) of the list’s visible rectangle.

lHandle The list whose size is being changed.

Trap macro Selector

_Pack0 $0054

C H A P T E R 4

List Manager

4-92 List Manager Reference

DESCRIPTION

The LSize procedure adjusts the lower-right side of the list specified by the lHandle

parameter so that the list’s visible rectangle is the width and height specified by the

listWidth and listHeight parameters.

Because the list’s visible rectangle does not include room for the scroll bars, your

application should make listWidth 15 pixels less than the desired width of the list if it

contains a vertical scroll bar, and it should make listHeight 15 pixels less than the

desired height of the list if it contains a horizontal scroll bar.

The contents of the list and the scroll bars are adjusted and redrawn as necessary.

However, LSize does not draw a border around the list’s rectangle. Also, it does not

erase any portions of the old list that may still be visible. However, this approach should

not be a problem if your application only calls LSize after the user resizes a window

containing a list in its lower-right corner.

SPECIAL CONSIDERATIONS

You should not call the LSize procedure from within an interrupt, such as in a

completion routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LSize procedure are

SEE ALSO

For information on the Window Manager’s SizeWindow procedure, see the chapter

“Window Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

LCellSize

You can change the size of cells by using the LCellSize procedure. All cells in a list

must be the same size, however.

PROCEDURE LCellSize (cSize: Point; lHandle: ListHandle);

cSize The new size of each cell in the list.

lHandle The list whose cells’ size is being changed.

Trap macro Selector

_Pack0 $0060

C H A P T E R 4

List Manager

List Manager Reference 4-93

DESCRIPTION

The LCellSize procedure sets the cellSize field of the list record referenced by the

lHandle parameter to the value of the cSize parameter. That is, the list’s new cells will

be of width cSize.h and of height cSize.v.

The LCellSize procedure updates the list’s visible rectangle to contain cells of the

specified size. However, LCellSize does not redraw any cells.

SPECIAL CONSIDERATIONS

You should not call the LCellSize procedure from within an interrupt, such as in a

completion routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LCellSize procedure are

Getting Information About Cells

The List Manager provides three routines that allow your application to obtain

information related to cells. Your application can use the LNextCell function to find the

next cell in a list; this is useful, for example, when performing some operation on all cells

in a list. To find the local QuickDraw coordinates of a cell’s rectangle, your application

can use the LRect procedure. Finally, to determine the cell coordinates of the last cell

clicked, your application can use the LLastClick function.

LNextCell

You can use the LNextCell function to find the next cell in a given row, in a given

column, or in an entire list.

FUNCTION LNextCell (hNext: Boolean; vNext: Boolean;

 VAR theCell: Cell; lHandle: ListHandle)

 : Boolean;

hNext A Boolean value that indicates whether LNextCell should check
columns other than the current column.

vNext A Boolean value that indicates whether LNextCell should check rows
other than the current row.

theCell The coordinates of the current cell.

lHandle The list in which to find the next cell.

Trap macro Selector

_Pack0 $0014

C H A P T E R 4

List Manager

4-94 List Manager Reference

DESCRIPTION

The behavior of the LNextCell function hinges on the values of the hNext and vNext

parameters.

If hNext is TRUE and vNext is FALSE, then LNextCell tries to find a cell whose

coordinates are greater than those of the cell specified in theCell parameter but that is

in the same row as theCell. If successful, LNextCell sets the value of the theCell

parameter to the first such cell and returns TRUE. If the cell initially specified by

theCell is the last cell in its row, however, LNextCell returns FALSE.

If hNext is FALSE and vNext is TRUE, then LNextCell tries to find a cell whose

coordinates are greater than those of the cell specified in theCell parameter but that is

in the same column as theCell. If successful, LNextCell sets the value of the

theCell parameter to the first such cell and returns TRUE. If, however, the cell initially

specified by theCell is the last cell in its column, LNextCell returns FALSE.

If both hNext and vNext are TRUE, then LNextCell tries to find a cell whose

coordinates are greater than those of the cell specified in the parameter theCell. If

successful, LNextCell sets the value of the theCell parameter to the first such cell

and returns TRUE. If, however, the cell initially specified by theCell is the last cell in

the list, LNextCell returns FALSE.

Finally, if both hNext and vNext are FALSE, LNextCell simply returns FALSE.

SPECIAL CONSIDERATIONS

You should not call the LNextCell function from within an interrupt, such as in a

completion routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LNextCell function are

SEE ALSO

Listing 4-7 on page 4-34 and Listing 4-8 on page 4-35 show how to find the first and last

selected cell in a list.

Trap macro Selector

_Pack0 $0048

C H A P T E R 4

List Manager

List Manager Reference 4-95

LRect

You can use the LRect procedure to find a rectangle that encloses a cell. Because the List

Manager automatically draws cells, few applications need to call this procedure directly.

PROCEDURE LRect (VAR cellRect: Rect; theCell: Cell;

 lHandle: ListHandle);

cellRect The LRect procedure returns in this parameter the rectangle enclosing
the cell, specified in local coordinates of the list’s graphics port. This
rectangle is not necessarily within the list’s rectangle.

theCell The cell for which an enclosing rectangle is sought.

lHandle The list containing the cell specified by the parameter theCell.

DESCRIPTION

The LRect procedure calculates the coordinates of the rectangle enclosing the cell

specified by the theCell parameter. The procedure does not check whether the cell is

actually contained within the list’s visible rectangle.

If the theCell parameter specifies cell coordinates not contained within the list, the

LRect procedure sets the cellRect parameter to (0,0,0,0).

SPECIAL CONSIDERATIONS

You should not call the LRect procedure from within an interrupt, such as in a

completion routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LRect procedure are

Trap macro Selector

_Pack0 $004C

C H A P T E R 4

List Manager

4-96 List Manager Reference

LLastClick

You can use the LLastClick function to determine the coordinates of the last cell

clicked in a particular list.

FUNCTION LLastClick (lHandle: ListHandle): Cell;

lHandle The list to be checked for the last cell clicked.

DESCRIPTION

The LLastClick function returns the cell coordinates of the last cell clicked. If the user

has not clicked a cell since the creation of the list, then both the h and v fields of the cell

returned contain negative numbers.

Note that the last cell clicked is not necessarily the last cell selected. The user could

Shift-click in one cell and then drag the cursor to select other cells.

SPECIAL CONSIDERATIONS

You should not call the LLastClick function from within an interrupt, such as in a

completion routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LLastClick function are

Application-Defined Routines

The List Manager provides several ways that your application can customize its

routines. First, your application can define a list definition procedure to create a list that

displays cells graphically. Second, your application can create a custom match function

to search for a particular item in a list. Finally, you can override the default click-loop

procedure by providing a custom click-loop procedure.

List Definition Procedures

Your application can write a list definition procedure to customize list display. For

example, you can write a list definition procedure to support the display of color icons.

A custom list definition procedure must be compiled as a code resource of type 'LDEF'

and added to the resource file of the application that needs to use it.

Trap macro Selector

_Pack0 $0040

C H A P T E R 4

List Manager

List Manager Reference 4-97

MyLDEF

A list definition procedure has the following syntax:

PROCEDURE MyLDEF (message: Integer; selected: Boolean;

VAR cellRect: Rect; theCell: Cell;

dataOffset: Integer; dataLen: Integer;

theList: ListHandle);

message A value that identifies the operation to be performed. These constants
specify the four types of messages:

CONST

lInitMsg = 0; {do any special initialization}

lDrawMsg = 1; {draw the cell}

lHiliteMsg = 2; {invert cell's highlight state}

lCloseMsg = 3; {do any special disposal action}

selected A Boolean value that indicates whether the cell specified by the theCell
parameter should be highlighted. This parameter is defined only for the
lDrawMessage and lHiliteMsg messages.

cellRect The rectangle (in local coordinates of the list’s graphics port) that encloses
the cell specified by the theCell parameter. Although this parameter is
defined as a VAR parameter, your list definition procedure must not
change the coordinates of the rectangle. This parameter is defined only for
the lDrawMessage and lHiliteMsg messages.

theCell The coordinates of the cell to be drawn or highlighted. This parameter is
defined only for the lDrawMessage and lHiliteMsg messages.

dataOffset
The location of the cell data associated with the cell specified by the
theCell parameter. The location is specified as an offset from the
beginning of the relocatable block referenced by the cells field of the list
record. This parameter is defined only for the lDrawMessage and
lHiliteMsg messages.

dataLen The length in bytes of the cell data associated with the cell specified by
the theCell parameter. This parameter is defined only for the
lDrawMessage and lHiliteMsg messages.

theList The list for which a message is being sent. Your application can access the
list’s list record, or it can call List Manager routines to manipulate the list.

DESCRIPTION

The List Manager calls your list definition procedure whenever an application using the

procedure creates a new list with the LNew function, needs a cell to be drawn, needs a

cell’s highlighting state to be reversed, or has called the LDispose procedure to dispose

of a list.

C H A P T E R 4

List Manager

4-98 List Manager Reference

In response to the lInitMsg message, your list definition procedure should perform

any special initialization needed for a list. For example, the procedure might set fields of

the list record, such as the cellSize and indent fields, to appropriate values. Your list

definition procedure does not necessarily need to do anything in response to the

initialization message. If it does nothing, then memory is still allocated for the list, and

fields of the list record are set to the same values as they would be set to if the default list

definition procedure were being used. (For more information on those values, see

“About the List Manager” beginning on page 4-22.)

Your list definition procedure should draw the cell specified by the theCell parameter

after receiving an lDrawMsg message. The procedure must ensure that it does not draw

anywhere but within the rectangle specified by the cellRect parameter. If the

selected parameter is TRUE, then your list definition procedure should draw the cell

in its highlighted state; otherwise, it should draw the cell without highlighting. When

drawing, your list definition procedure should take care not to permanently change any

characteristics of the drawing environment.

Your list definition procedure should respond to the lHiliteMsg message by reversing

the selection status of the cell contained within the rectangle specified by the cellRect

parameter. If a cell is highlighted, your list definition procedure should remove the

highlighting; if a cell is not highlighted, your list definition procedure should highlight it.

The List Manager sends your list definition procedure an lCloseMsg message before it

disposes of a list and its data. Your list definition procedure need only respond to this

message if additional memory has been allocated for the list. For example, your list

definition procedure might allocate a relocatable block in response to the lInitMsg

message. In this case, your list definition procedure would need to dispose of this

relocatable block in response to the lCloseMsg message. Or, if your list definition

procedure defines cells simply to contain pointers or handles to data stored elsewhere in

memory, it would need to dispose of that memory in response to the lCloseMsg

message.

SPECIAL CONSIDERATIONS

You must compile a list definition procedure as a resource of type 'LDEF' before it can

be used by an application.

Because a list definition procedure is stored in a code resource, it cannot have its own

global variables that it accesses through the A5 register. (Some development systems,

however, may allow code resources to access global variables through some other

register, such as A4. See your development system’s documentation for more

information.) If your list definition procedure needs access to global data, it might store a

handle to such data in the refCon or userHandle fields of the list record; however,

applications would not then be able to use these fields for their own purposes.

C H A P T E R 4

List Manager

List Manager Reference 4-99

ASSEMBLY-LANGUAGE INFORMATION

The entry point of a list definition procedure must be at the beginning.

SEE ALSO

For an example of a list definition procedure, see “Writing Your Own List Definition

Procedure” beginning on page 4-58.

Match Functions

You can pass a pointer to a custom match function as the third parameter to the

LSearch function. Alternatively, your application can specify NIL to use the Text

Utilities function IUMagIDString, the default match function.

MyMatchFunction

A match function must have the following syntax:

FUNCTION MyMatchFunction (cellDataPtr, searchDataPtr: Ptr;

 cellDataLen, searchDataLen: Integer)

 : Integer;

cellDataPtr
A pointer to the data contained in a cell.

searchDataPtr
A pointer to the data being searched for.

cellDataLen
The number of bytes of data contained in the cell specified by the
cellDataPtr parameter.

searchDataLen
The number of bytes of data contained in the cell specified by the
searchDataPtr parameter.

DESCRIPTION

A custom match function must compare the data defined by the cellDataPtr and

cellDataLen parameters with the data defined by the searchDataPtr and

searchDataLen parameters. If the cell data matches the search data, your match

function should return 0. Otherwise, your match function should return 1.

C H A P T E R 4

List Manager

4-100 List Manager Reference

Your match function can use any technique you choose to compare the data. For

example, your match function might consider the search data to be equivalent to the cell

data if both are the same length. Or, your match function might only report a match if

the search data can be found somewhere within the cell data.

The default match function, IUMagIDString, returns 0 if the search data exactly

matches the cell data, but IUMagIDString considers the strings 'Rose' and 'rosé' to

be equivalent. If your application simply needs a match function that works like

IUMagIDString but considers 'Rose' to be different from 'rosé', you do not need to

write a custom match function. Instead, your application can simply pass

@IUMagString as the third parameter to the LSearch function.

SPECIAL CONSIDERATIONS

A custom match function does not execute at interrupt time. Instead, it is called directly

by the LSearch function. Thus, a match function can allocate memory, and it does not

need to adjust the value contained in the A5 register.

SEE ALSO

For information on the IUMagIDString function and the IUMagString function, see

Inside Macintosh: Operating System Utilities.

For examples of match functions, see “Searching a List for a Particular Item” beginning

on page 4-43.

Click-Loop Procedures

The List Manager supports the use of custom click-loop procedures to allow you to

override the standard click-loop procedure that is used to select cells and automatically

scroll a list. To define a custom click-loop procedure, specify a pointer to your procedure

in the lClikLoop field of the list record. Because the selFlags field of the list record

(described in “Customizing Cell Highlighting” beginning on page 4-38) already provides

a means of customizing the algorithm the List Manager uses to highlight list cells, in

most cases you should not need to define a custom click-loop procedure.

C H A P T E R 4

List Manager

List Manager Reference 4-101

MyClickLoop

A click-loop procedure must have the following syntax:

PROCEDURE MyClickLoop;

DESCRIPTION

If your application defines a custom click-loop procedure, then the LClick function

repeatedly calls the procedure until the user releases the mouse button. A click-loop

procedure may perform any processing desired when it is executed.

Because no parameters are passed to the click-loop procedure, your click-loop procedure

probably needs to access a global variable that contains a handle to the list record, which

contains information about the location of the cursor and other information potentially

of interest to a click-loop procedure. You might also create a global variable that stores

the state of the modifier keys immediately before a call to the LClick function. You

would need to set these global variables immediately before calling LClick.

A click-loop procedure should ordinarily set the Z flag to 1 just before returning. If a

click-loop procedure sets the Z flag to 0, then the LClick function immediately returns.

SPECIAL CONSIDERATIONS

A click-loop procedure does not execute at interrupt time. Instead, it is called directly by

the LClick function. Thus, a click-loop procedure can allocate memory, and it does not

need to adjust the value contained in the A5 register.

ASSEMBLY-LANGUAGE INFORMATION

Your click-loop procedure should ordinarily set register D0 to 1. To stop the LClick

function from calling your procedure for the current mouse-down event, set register D0

to 0.

For your convenience, register D5 contains the current mouse location.

C H A P T E R 4

List Manager

4-102 Summary of the List Manager

Summary of the List Manager

Pascal Summary

Constants

CONST

{masks for listFlags field of list record}

lDoVAutoScroll = 2; {allow vertical autoscrolling}

lDoHAutoScroll = 1; {allow horizontal autoscrolling}

{masks for selFlags field of list record}

lOnlyOne = -128; {allow only one item to be selected at once}

lExtendDrag = 64; {enable multiple item selection without Shift}

lNoDisjoint = 32; {prevent discontiguous selections}

lNoExtend = 16; {reset list before responding to Shift-click}

lNoRect = 8; {Shift-drag selects items passed by cursor}

lUseSense = 4; {allow use of Shift key to deselect items}

lNoNilHilite = 2; {disable highlighting of empty cells}

{messages to list definition procedure}

lInitMsg = 0; {do any special list initialization}

lDrawMsg = 1; {draw the cell}

lHiliteMsg = 2; {invert cell's highlight state}

lCloseMsg = 3; {take any special disposal action}

Data Types

TYPE

Cell = Point; {cell.v contains row number}

{cell.h contains column number}

DataArray = PACKED ARRAY[0..32000] OF Char;

DataPtr = ^DataArray;

DataHandle = ^DataPtr;

C H A P T E R 4

List Manager

Summary of the List Manager 4-103

ListRec =

RECORD

rView: Rect; {list's display rectangle}

port: GrafPtr; {list's graphics port}

indent: Point; {indent distance for drawing}

cellSize: Point; {size in pixels of a cell}

visible: Rect; {boundary of visible cells}

vScroll: ControlHandle; {vertical scroll bar}

hScroll: ControlHandle; {horizontal scroll bar}

selFlags: SignedByte; {selection flags}

lActive: Boolean; {TRUE if list is active}

lReserved: SignedByte; {reserved}

listFlags: SignedByte; {automatic scrolling flags}

clikTime: LongInt; {TickCount at time of last click}

clikLoc: Point; {position of last click}

mouseLoc: Point; {current mouse location}

lClikLoop: Ptr; {routine called by LClick}

lastClick: Cell; {last cell clicked}

refCon: LongInt; {for application use}

listDefProc: {list definition procedure}

Handle;

userHandle: Handle; {for application use}

dataBounds: Rect; {boundary of cells allocated}

cells: DataHandle; {cell data}

maxIndex: Integer; {used internally}

cellArray: {offsets to data}

ARRAY[1..1] OF Integer;

END;

ListPtr = ^ListRec; {pointer to a list record}

ListHandle = ^ListPtr; {handle to a list record}

List Manager Routines

Creating and Disposing of Lists

FUNCTION LNew (rView: Rect; dataBounds: Rect; cSize: Point;
theProc: Integer; theWindow: WindowPtr;
drawIt, hasGrow, scrollHoriz,
scrollVert: Boolean): ListHandle;

PROCEDURE LDispose (lHandle: ListHandle);

C H A P T E R 4

List Manager

4-104 Summary of the List Manager

Adding and Deleting Columns and Rows To and From a List

FUNCTION LAddColumn (count: Integer; colNum: Integer;
lHandle: ListHandle): Integer;

FUNCTION LAddRow (count: Integer; rowNum: Integer;
lHandle: ListHandle): Integer;

PROCEDURE LDelColumn (count: Integer; colNum: Integer;
lHandle: ListHandle);

PROCEDURE LDelRow (count: Integer; rowNum: Integer;
lHandle: ListHandle);

Determining or Changing the Selection

FUNCTION LGetSelect (next: Boolean; VAR theCell: Cell;
lHandle: ListHandle): Boolean;

PROCEDURE LSetSelect (setIt: Boolean; theCell: Cell;
lHandle: ListHandle);

Accessing and Manipulating Cell Data

PROCEDURE LSetCell (dataPtr: Ptr; dataLen: Integer; theCell: Cell;
lHandle: ListHandle);

PROCEDURE LAddToCell (dataPtr: Ptr; dataLen: Integer; theCell: Cell;
lHandle: ListHandle);

PROCEDURE LClrCell (theCell: Cell; lHandle: ListHandle);

{the LGetCellDataLocation procedure is also available as the LFind procedure}

PROCEDURE LGetCellDataLocation
(VAR offset, len: Integer; theCell: Cell;
lHandle: ListHandle);

PROCEDURE LGetCell (dataPtr: Ptr; VAR dataLen: Integer;
theCell: Cell; lHandle: ListHandle);

Responding to Events Affecting Lists

FUNCTION LClick (pt: Point; modifiers: Integer;
lHandle: ListHandle): Boolean;

PROCEDURE LActivate (act: Boolean; lHandle: ListHandle);

PROCEDURE LUpdate (theRgn: RgnHandle; lHandle: ListHandle);

C H A P T E R 4

List Manager

Summary of the List Manager 4-105

Modifying a List’s Appearance

{the LSetDrawingMode procedure is also available as the LDoDraw procedure}

PROCEDURE LSetDrawingMode (drawIt: Boolean; lHandle: ListHandle);

PROCEDURE LDraw (theCell: Cell; lHandle: ListHandle);

PROCEDURE LAutoScroll (lHandle: ListHandle);

PROCEDURE LScroll (dCols: Integer; dRows: Integer;
lHandle: ListHandle);

Searching a List for a Particular Item

FUNCTION LSearch (dataPtr: Ptr; dataLen: Integer;
searchProc: Ptr; VAR theCell: Cell;
lHandle: ListHandle): Boolean;

Changing the Size of Cells and Lists

PROCEDURE LSize (listWidth: Integer; listHeight: Integer;
lHandle: ListHandle);

PROCEDURE LCellSize (cSize: Point; lHandle: ListHandle);

Getting Information About Cells

FUNCTION LNextCell (hNext: Boolean; vNext: Boolean;
VAR theCell: Cell;
lHandle: ListHandle): Boolean;

PROCEDURE LRect (VAR cellRect: Rect; theCell: Cell;
lHandle: ListHandle);

FUNCTION LLastClick (lHandle: ListHandle): Cell;

Application-Defined Routines

PROCEDURE MyLDEF (message: Integer; selected: Boolean;
VAR cellRect: Rect; theCell: Cell;
dataOffset: Integer; dataLen: Integer;
theList: ListHandle);

FUNCTION MyMatchFunction (cellDataPtr, searchDataPtr: Ptr;
cellDataLen, searchDataLen: Integer): Integer;

PROCEDURE MyClickLoop;

C H A P T E R 4

List Manager

4-106 Summary of the List Manager

C Summary

Constants

/*masks for listFlags field of list record*/

enum {

lDoVAutoScroll = 2, /*allow vertical autoscrolling*/

lDoHAutoScroll = 1, /*allow horizontal autoscrolling*/

/*masks for selFlags field of list record*/

lOnlyOne = -128, /*allow only one item to be selected at once*/

lExtendDrag = 64, /*enable multiple item selection without Shift*/

lNoDisjoint = 32, /*prevent discontiguous selections*/

lNoExtend = 16, /*reset list before responding to Shift-click*/

lNoRect = 8, /*Shift-drag selects items passed by cursor*/

lUseSense = 4, /*allow use of Shift key to deselect items*/

lNoNilHilite = 2, /*disable highlighting of empty cells*/

/*messages to list definition procedure*/

lInitMsg = 0, /*do any special list initialization*/

lDrawMsg = 1, /*draw the cell*/

lHiliteMsg = 2, /*invert cell's highlight state*/

lCloseMsg = 3 /*take any special disposal action*/

};

Data Types

typdef Point Cell; /*cell.v contains row number*/

/*cell.h contains column number*/

typedef char DataArray[32001], *DataPtr, **DataHandle;

C H A P T E R 4

List Manager

Summary of the List Manager 4-107

struct ListRec {

Rect rView; /*list's display rectangle*/

GrafPtr ptr; /*list's graphics port*/

Point indent; /*indent distance for drawing*/

Point cellSize; /*size in pixels of a cell*/

Rect visible; /*boundary of visible cells*/

ControlHandle vScroll; /*vertical scroll bar*/

ControlHandle hScroll; /*horizontal scroll bar*/

char selFlags; /*selection flags*/

Boolean lActive; /*TRUE if list is active*/

char lReserved; /*reserved*/

char listFlags; /*automatic scrolling flags*/

long clikTime; /*TickCount at time of last click*/

Point clikLoc; /*position of last click*/

Point mouseLoc; /*current mouse location*/

ProcPtr lClikLoop; /*routine called by LClick*/

Cell lastClick; /*last cell clicked*/

long refCon; /*for application use*/

Handle listDefProc; /*list definition procedure*/

Handle userHandle; /*for application use*/

Rect dataBounds; /*boundary of cells allocated*/

DataHandle cells; /*cell data*/

short maxIndex; /*used internally*/

short cellArray[1]; /*offsets to data*/

};

typedef struct ListRect ListRect;

typedef ListRect *ListPtr, **ListHandle;

List Manager Routines

Creating and Disposing of Lists

pascal ListHandle LNew (const Rect *rView, Rect *dataBounds,
Point *cSize, short theProc,
WindowPtr theWindow, Boolean drawIt,
Boolean hasGrow, Boolean scrollHoriz,
Boolean scrollVert);

pascal void LDispose (ListHandle lHandle);

C H A P T E R 4

List Manager

4-108 Summary of the List Manager

Adding and Deleting Columns and Rows To and From a List

pascal short LAddColumn (short count, short colNum, ListHandle lHandle);

pascal short LAddRow (short count, short rowNum, ListHandle lHandle);

pascal void LDelColumn (short count, short colNum, ListHandle lHandle);

pascal void LDelRow (short count, short rowNum, ListHandle lHandle);

Determining or Changing the Selection

pascal Boolean LGetSelect (Boolean next, Cell *theCell,
ListHandle lHandle);

pascal void LSetSelect (Boolean setIt, Cell theCell,
ListHandle lHandle);

Accessing and Manipulating Cell Data

pascal void LSetCell (const void *dataPtr, short dataLen,
Cell theCell, ListHandle lHandle);

pascal void LAddToCell (const void *dataPtr, short dataLen,
Cell theCell, ListHandle lHandle);

pascal void LClrCell (Cell theCell, ListHandle lHandle);

/*the LGetCellDataLocation procedure is also available as */

/* the LFind procedure*/

pascal void LGetCellDataLocation
(short *offset, short *len, Cell theCell,
ListHandle lHandle);

pascal void LGetCell (void *dataPtr, short *dataLen, Cell theCell,
ListHandle lHandle);

Responding to Events Affecting Lists

pascal Boolean LClick (Point pt, short modifiers, ListHandle lHandle);

pascal void LActivate (Boolean act, ListHandle lHandle);

pascal void LUpdate (RgnHandle theRgn, ListHandle lHandle);

C H A P T E R 4

List Manager

Summary of the List Manager 4-109

Modifying a List’s Appearance

/*the LSetDrawingMode procedure is also available as the LDoDraw procedure*/

pascal void LSetDrawingMode
(Boolean drawIt, ListHandle lHandle);

pascal void LDraw (Cell theCell, ListHandle lHandle);

pascal void LAutoScroll (ListHandle lHandle);

pascal void LScroll (short dCols, short dRows, ListHandle lHandle);

Searching for a List Containing a Particular Item

pascal Boolean LSearch (const void *dataPtr, short dataLen,
SearchProcPtr searchProc, Cell *theCell,
ListHandle lHandle);

Changing the Size of Cells and Lists

pascal void LSize (short listWidth, short listHeight,
ListHandle lHandle);

pascal void LCellSize (Point cSize, ListHandle lHandle);

Getting Information About Cells

pascal Boolean LNextCell (Boolean hNext, Boolean vNext, Cell *theCell,
ListHandle lHandle);

pascal void LRect (Rect *cellRect, Cell theCell,
ListHandle lHandle);

pascal Cell LLastClick (ListHandle lHandle);

Application-Defined Routines

pascal void MyLDEF (short message, Boolean selected,
Rect *cellRect, Cell theCell,
short dataOffset, short dataLen,
ListHandle theList);

pascal short MyMatchFunction
(Ptr cellDataPtr, Ptr searchDataPtr,
 short cellDataLen, short searchDataLen);

pascal void MyClickLoop (void);

C H A P T E R 4

List Manager

4-110 Summary of the List Manager

Assembly-Language Summary

Data Structures

ListRect Data Structure

0 rView 8 bytes list’s display rectangle
8 port long list’s graphics port

12 indent 4 bytes indent distance for drawing
16 cellSize 4 bytes size in pixels of a cell
20 visible 8 bytes boundary of visible cells
28 vScroll long vertical scroll bar
32 hScroll long horizontal scroll bar
36 selFlags byte selection flags
37 lActive byte nonzero if list is active
38 lReserved byte reserved
39 listFlags byte automatic scrolling flags
40 clikTime long ticks at time of last click
44 clikLoc 4 bytes position of last click
48 mouseLoc 4 bytes current mouse location
52 lClikLoop long pointer to routine called by LClick
56 lastClick 4 bytes last cell clicked
60 refCon long for application use
64 listDefProc long handle to code for list definition procedure
68 userHandle long for application use
72 dataBounds 8 bytes boundary of cells allocated
80 cells long handle to cell data
84 maxIndex word used internally
86 cellArray variable offsets to data

C H A P T E R 4

List Manager

Summary of the List Manager 4-111

Trap Macros

Trap Macros Requiring Routine Selectors

_Pack0

Selector Routine

$0000 LActivate

$0004 LAddColumn

$0008 LAddRow

$000C LAddToCell

$0010 LAutoScroll

$0014 LCellSize

$0018 LClick

$001C LClrCell

$0020 LDelColumn

$0024 LDelRow

$0028 LDispose

$002C LSetDrawingMode

$0030 LDraw

$0034 LGetCellDataLocation

$0038 LGetCell

$003C LGetSelect

$0040 LLastClick

$0044 LNew

$0048 LNextCell

$004C LRect

$0050 LScroll

$0054 LSearch

$0058 LSetCell

$005C LSetSelect

$0060 LSize

$0064 LUpdate

Contents 5-1

C H A P T E R 5

Contents

Icon Utilities

Introduction to the Icon Utilities 5-3

About the Icon Utilities 5-6

Using the Icon Utilities 5-7

Drawing Icons in an Icon Family 5-8

Drawing an Icon Directly From a Resource 5-10

Getting an Icon Suite and Drawing One of Its Icons 5-11

Drawing Specific Icons From an Icon Family 5-12

Manipulating Icons 5-13

Drawing Icons That Are Not Part of an Icon Family 5-13

Icon Utilities Reference 5-17

Data Structure 5-17

The Color Icon Record 5-17

Icon Utilities Routines 5-18

Drawing Icons From Resources 5-19

Getting Icons From Resources That Don’t Belong to an Icon
Family 5-28

Disposing of Icons 5-30

Creating an Icon Suite 5-30

Getting Icons From an Icon Suite 5-34

Drawing Icons From an Icon Suite 5-35

Performing Operations on Icons in an Icon Suite 5-38

Getting and Setting the Label for an Icon Suite 5-40

Getting Label Information 5-41

Disposing of Icon Suites 5-42

Converting an Icon Mask to a Region 5-43

Determining Whether a Point or Rectangle Is Within an Icon 5-46

Working With Icon Caches 5-53

Application-Defined Routines 5-57

Icon Action Functions 5-57

Icon Getter Functions 5-58

C H A P T E R 5

5-2 Contents

Summary of the Icon Utilities 5-60

Pascal Summary 5-60

Constants 5-60

Data Types 5-62

Icon Utilities Routines 5-62

Application-Defined Routines 5-65

C Summary 5-65

Constants 5-65

Data Types 5-67

Icon Utilities Routines 5-68

Application-Defined Routines 5-71

Assembly-Language Summary 5-71

Data Structure 5-71

Trap Macros 5-72

Result Codes 5-73

C H A P T E R 5

Introduction to the Icon Utilities 5-3

Icon Utilities

This chapter describes how your application can use the Icon Utilities to draw icons,

including small, large, black-and-white, and color icons. The Finder draws and manages

the icons that a user sees on the desktop, but if your application needs to display icons

within its windows, it can use Icon Utilities routines to draw them.

For information on how to create icons and associate them with your application and its

document, see the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox
Essentials. For information on how to design icons, see the chapter “Icons” in Macintosh
Human Interface Guidelines.

This chapter begins with a brief overview of the various kinds of icons you can provide.

The rest of the chapter describes how you can draw each kind of icon.

Introduction to the Icon Utilities

An icon on a Macintosh screen is an image that graphically represents some object, such

as a file, a folder, or the Trash. On the desktop, the Finder displays icons representing

your application and the documents it creates. The Finder also allows users to

manipulate icons on the desktop and in folders.

If necessary, your application can also display icons in its menus, dialog boxes, or

windows. You define an icon for a menu item by providing the icon’s icon number in the

'MENU' resource that describes the menu item. If you define an icon for a menu item in

this manner, the Menu Manager automatically displays the icon whenever you display

the menu using the MenuSelect function.

You usually define icons in dialog boxes by defining an item of type Icon and providing

the resource ID of the icon in the item list ('DITL') resource that describes the dialog. If

you define an icon for a dialog item in this manner, the Dialog Manager automatically

displays the icon whenever you display the dialog box using Dialog Manager routines.

Both the Menu Manager and Dialog Manager allow you to display icons of resource type

'ICON' or 'cicn'. The Menu Manager also allows you to display icons of resource

type 'SICN'. To display other types of icons in your menu items, you can write your

own menu definition procedure and use the routines described in this chapter to draw

the icons. To display other types of icons in your dialog items, define items of type

userItem and use the routines in this chapter to draw your icons.

To display icons of any kind in your windows, use Icon Utilities routines. Icons in

windows can be useful for representing files and folders in certain applications, such as

archiving applications, groupware, and electronic mail applications. Other programs,

such as games, might allow users to move or manipulate icons in windows for a variety

of purposes.

C H A P T E R 5

Icon Utilities

5-4 Introduction to the Icon Utilities

Whenever you design an icon, you should generally begin by creating a black-and-white

icon and then add color using the resource types that define color icons. Typically you

use a high-level tool such as the ResEdit application to design icons. Figure 5-1 shows

the ResEdit view of a black-and-white icon. When you are satisfied with the appearance

of your icons, you can use the DeRez decompiler to convert them into Rez input.

Figure 5-1 The ResEdit view of an icon

For more information about designing and creating icons, see Macintosh Human Interface
Guidelines and the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox
Essentials.

To display an icon most effectively at different sizes and on display devices with

different bit depths, you should create an icon family for each icon you wish to use. An

icon family is the set of icons that represent a single object. An entire icon family consists

of large (32-by-32 pixel) and small (16-by-16 pixel) icons, each with a mask, and each

available in three different versions of color: black and white, 4 bits of color data per

pixel, and 8 bits of color data per pixel. Specifically, the following icons make up the icon

family for a single icon:

■ a large (32-by-32 pixel) black-and-white icon and mask—both of which you define in
an icon list ('ICN#') resource

■ a small (16-by-16 pixel) black-and-white icon and mask—both of which you define
in a small icon list ('ics#') resource

■ a large (32-by-32 pixel) color icon with 4 bits of color data per pixel—which you
define in a large 4-bit color icon ('icl4') resource

C H A P T E R 5

Icon Utilities

Introduction to the Icon Utilities 5-5

■ a small (16-by-16 pixel) color icon with 4 bits of color data per pixel—which you
define in a small 4-bit color icon ('ics4') resource

■ a large (32-by-32 pixel) color icon with 8 bits of color data per pixel—which you
define in a large 8-bit color icon ('icl8') resource

■ a small (16-by-16 pixel) color icon with 8 bits of color data per pixel—which you
define in a small 8-bit color icon ('ics8') resource

An icon family can contain only one icon of each resource type listed.

Figure 5-2 shows the icon family for the icon that represents the SurfWriter application.

To see these icons in color, see Plate 3 in Inside Macintosh: Macintosh Toolbox Essentials.

Figure 5-2 An icon family

C H A P T E R 5

Icon Utilities

5-6 About the Icon Utilities

Somewhat related to these resources are the icon ('ICON') resource and the color icon

('cicn') resource. You can use either to describe a 32-by-32 pixel icon within some

element of your application. As previously discussed, both the Menu Manager and

Dialog Manager allow you to display icons with the resource type 'ICON' or 'cicn',

and the Menu Manager also allows you to display icons of resource type 'SICN'. These

are the only kinds of icons you can use in menu items and dialog boxes if you want the

Menu Manager and Dialog Manager to display the icons automatically for you. If you

provide a color icon ('cicn') resource with the same resource ID as an icon ('ICON')

resource, the Menu Manager and the Dialog Manager display the color icon instead of

the black-and-white icon.

The icon ('ICON') resource contains a bitmap for a 32-by-32 pixel black-and-white icon.

Because it is always displayed on a white background, and never in the Finder, it doesn’t

need a mask.

The color icon ('cicn') resource has a special format that includes a pixel map, a

bitmap, and a mask. You can use it to define a color icon of any size without a mask or a

32-by-32 pixel color icon with a mask. You can also define the bit depth for a color icon

resource. For information about the format of a 'cicn' resource, see Inside Macintosh:
Imaging With QuickDraw.

Many of the icons in the System file are available in a small size; these icons are stored in

'SICN' resources. The icons in an 'SICN' resource are 12 by 16 pixels, even though

they are stored in the resource as 16-by-16 pixel bitmaps. An 'SICN' resource consists of

a list of 16-by-16 pixel bitmaps for black-and-white icons; by convention, the list includes

only two bitmaps, and the second bitmap is considered a mask. The Menu Manager lets

you use an 'SICN' resource as an icon in a menu item; however, you cannot use the

Dialog Manager to display an 'SICN' icon in a dialog box.

The Finder does not use or display any resources that you create of type 'ICON',

'cicn', or 'SICN'. To create an icon for display by the Finder, create one or more of the

icons in an icon family.

About the Icon Utilities

The Icon Utilities allow your application (and system software) to manipulate and draw

icons of any standard resource type in windows and if necessary in menus or dialog

boxes. You need to use these routines only if you wish to draw icons in your

application’s windows or to draw icons whose resource types are not recognized by the

Menu Manager and Dialog Manager in menus and dialog boxes.

To display an icon most effectively at a variety of sizes and bit depths, you should

provide an icon family. You can then draw the appropriate member of the family for a

given size and bit depth either by passing the family’s resource ID to an Icon Utilities

routine or by reading the family’s icon resources into memory as an icon suite and

passing the suite’s handle to Icon Utilities routines.

C H A P T E R 5

Icon Utilities

Using the Icon Utilities 5-7

The next section, “Using the Icon Utilities,” begins by describing how to draw icons in

an icon family. After a brief overview of icon families, icon suites, icon caches, and

related Icon Utilities routines, it describes in detail how to

■ draw the most appropriate icon for a given destination rectangle and bit depth
directly from an icon family member’s resource

■ get an icon suite and draw the most appropriate icon from that suite for a given
destination rectangle and bit depth

■ draw specific icons from an icon family or suite

■ get a handle to an icon suite member’s icon data so you can manipulate it

■ draw icons that are not part of an icon family

You can use also Icon Utilities routines to

■ perform operations on icons in an icon suite

■ manipulate labels associated with specific icon suites

■ dispose of icon suites and color icon records

■ convert an icon mask to a region and perform hit-testing for an icon

■ create an icon cache by associating an icon suite with an icon getter function and a
pointer to data that you can use as a reference constant

For detailed descriptions of all Icon Utilities routines, including those used to perform

these tasks, see “Icon Utilities Reference” beginning on page 5-17.

In addition to the resource types described earlier in this chapter, some Icon Utilities

routines operate on icons of resource types 'icm#', 'icm4', and 'icm8'. These mini
icons are 12-by-16 pixel icons. Like the icons in an icon family, the three resource types

for mini icons identify the icon list, 4-bit color icons, and 8-bit color icons, respectively.

Using the Icon Utilities

This section explains how you can use routines in the Icon Utilities to draw icons in your

application’s windows (or dialog boxes and menu items if needed).

Most of the Icon Utilities routines are available only in System 7 and later. To

determine whether they are available, call the Gestalt function with the

gestaltIconUtilitiesAttr selector and check the value of the response

parameter. If the bit indicated by the constant gestaltIconUtilitiesPresent

is set, then the Icon Utilities are available.

CONST

gestaltIconUtilitiesAttr = 'icon'; {Icon Utils attributes}

gestaltIconUtilitiesPresent = 0; {check this bit in the }

{ response parameter}

C H A P T E R 5

Icon Utilities

5-8 Using the Icon Utilities

The GetIcon, PlotIcon, GetCIcon, PlotCIcon, and DisposeCIcon routines are

available in both System 6 and System 7.

Drawing Icons in an Icon Family
You can define different versions of an icon for specific sizes and bit depths as part of a

single icon family whose members share the same resource ID. If you define all your

application’s icons in icon families, you can use Icon Utilities routines to draw the icon

using the icon family member that is best suited for the destination rectangle and the

current bit depth of the display device. When your application uses Icon Utilities

routines like PlotIconSuite or PlotIconID to plot icons, it doesn’t have to

determine which icon in the icon family is best suited for a given destination rectangle

and bit depth; instead, the routines automatically display the appropriate icon.

You can also define individual icons of resource type 'ICON', 'cicn', or 'SICN' that

are not part of an icon family and use Icon Utilities routines to draw them when

necessary. For information about drawing these types of icons, see the section “Drawing

Icons That Are Not Part of an Icon Family” beginning on page 5-13.

You can use the Icon Utilities to draw icons using modes or transforms that alter the

icon’s appearance in standard ways that are analogous to Finder states for icons. For

example, the Finder draws a selected icon differently than it draws one that is not

selected; to do so, the Finder specifies the transform constant ttSelected when it calls

Icon Utilities routines to draw a selected icon. If you need to apply a particular transform

to an icon, some Icon Utilities routines allow you to apply transforms for both standard

Finder states and Finder label colors when you draw the icon.

Many of the Icon Utilities routines can also automatically align an icon within its

destination rectangle. For example, the generic document icon that appears in the Finder

is taller than it is wide. Some Icon Utilities routines allow you to draw such an icon

without any special alignment, align it at the left or right of the destination rectangle, or

use various other alignments.

Depending on the size of the rectangle, the Icon Utilities routines may stretch or shrink

the icon to fit. To draw icons without stretching them, these routines require that the

destination rectangle have the exact dimensions of a standard icon: that is, depending on

the icon resource type, 32 by 32 pixels, 16 by 16 pixels, or 12 by 16 pixels. If you use

destination rectangles of other sizes, these routines stretch or shrink the icons to fit the

rectangles.

An icon family is a collection of icons representing a single object. Each icon in the family

shares the same resource ID as other icons in the family but has its own resource type

identifying the icon data it contains. The simplest way to draw an icon from an icon

family is to pass the family’s resource ID to the PlotIconID function, which draws the

appropriate icon from the family for the specified destination rectangle and bit depth.

The next section, “Drawing an Icon Directly From a Resource,” describes how to use

PlotIconID.

C H A P T E R 5

Icon Utilities

Using the Icon Utilities 5-9

Alternatively, you can first use the GetIconSuite function to read the resource data for

some or all icons in an icon family into memory. Given a resource ID and one or more

resource types, the GetIconSuite function reads in resource data for each icon with

the specified resource ID and resource types and collects handles to the resource data in

an icon suite. An icon suite typically consists of one or more handles to icon resources

from a single icon family that have been read into memory. The GetIconSuite function

returns a handle for the requested icon suite; you can pass this handle to

PlotIconSuite and other Icon Utilities routines. Like PlotIconID, PlotIconSuite

draws the appropriate icon from an icon suite for the specified destination rectangle and

bit depth. The section “Getting an Icon Suite and Drawing One of Its Icons” on page 5-11

describes how to use the GetIconSuite and PlotIconSuite routines.

An icon suite can in turn contain handles to each of the six icon resources that an icon

family can contain, or it can contain handles to only a subset of the icon resources in an

icon family. However, for best results, an icon suite should always include a

black-and-white icon and icon mask for any icons you provide; that is, it should include

a resource of type 'ICN#' in addition to any other large icons you provide as well as a

resource of type 'ics#' in addition to any other small icons you provide. When you

create an icon suite from icon family resources, the associated resource file should

remain open while you use Icon Utilities routines.

Two types of handles exist in an icon suite: handles to icon data associated with a

resource and handles to icon data that isn’t associated with a resource. You typically use

GetIconSuite to fill an icon suite with handles to icon resource data. You typically

use AddIconToSuite to add to an icon suite handles to icon data. When you use

AddIconToSuite, the handles that you add to the suite do not have to be associated

with a resource fork. For example, your application might get icon data from the desktop

database rather than reading it from a resource, or your application might read icon data

from a resource and then detach it. In either case, you can provide a handle to the icon

data and use AddIconToSuite to add the handle to the icon suite.

An icon cache is like an icon suite, except that an icon cache also contains a pointer to an

application-defined icon getter function and a pointer to data that is associated with the

icon suite. You can pass a handle to an icon cache to any of the Icon Utilities routines that

accept a handle to an icon suite. An icon cache typically does not contain handles to the

icon resources for all icon family members. Instead, if the icon cache does not contain an

entry for a specific type of icon in an icon family, the Icon Utilities routines call your

application’s icon getter function to retrieve the data for that icon type. The icon getter

function should return either a handle to the icon data or NIL to indicate that no icon

data exists for the specified icon type.

C H A P T E R 5

Icon Utilities

5-10 Using the Icon Utilities

Drawing an Icon Directly From a Resource

To draw an icon from an icon family without first creating an icon suite, use the

PlotIconID function. Listing 5-1 shows an application-defined procedure that draws

an icon from an icon family. Given a resource ID, the PlotIconID function determines

which member of the icon family to draw and then draws the icon in the given rectangle

with the specified transform and alignment.

Listing 5-1 Drawing the icon from an icon family that is best suited to the user’s display

PROCEDURE MyDrawIconFromFamily (resID: Integer; destRect: Rect);

VAR

align: IconAlignmentType;

transform: IconTransformType;

myErr: OSErr;

BEGIN

align := atAbsoluteCenter; {specify alignment (centered)}

transform := ttNone; {specify no special transforms}

{draw the icon, using the icon type best suited for the }

{ destination rect and current bit depth of the display device}

myErr := PlotIconID(destRect, align, transform, resID);

END;

The PlotIconID function determines, from the size of the specified destination

rectangle and the current bit depth of the display device, which icon of a given size

from an icon family to draw. For example, if the coordinates of the destination rectangle

are (100,100,116,116) and the display device is set to 4-bit color, the PlotIconID

function draws the icon of type 'ics4' if that icon is available in the icon family.

If the width or height of a destination rectangle is greater than or equal to 32,

PlotIconID uses the 32-by-32 pixel icon with the appropriate bit depth for the display

device. If the destination rectangle is less than 32 by 32 pixels and greater than 16 pixels

wide or 12 pixels high, PlotIconID uses the 16-by-16 pixel icon with the appropriate

bit depth. If the destination rectangle’s height is less than or equal to 12 pixels or its

width is less than or equal to 16 pixels, PlotIconID uses the 12-by-16 pixel icon with

the appropriate bit depth. (Typically only the Finder and the Standard File Package use

12-by-16 pixel icons.)

Depending on the size of the rectangle, the PlotIconID function may stretch or shrink

the icon to fit. To draw icons without stretching them, PlotIconID requires that the

destination rectangle have the exact dimensions of a standard icon: that is, depending on

the icon resource type, 32 by 32 pixels, 16 by 16 pixels, or 12 by 16 pixels. If you use

destination rectangles of other sizes, PlotIconID stretches or shrinks the icons to fit the

rectangles.

C H A P T E R 5

Icon Utilities

Using the Icon Utilities 5-11

Getting an Icon Suite and Drawing One of Its Icons

Listing 5-2 shows how you can use the GetIconSuite and PlotIconSuite functions

to get an icon suite and then draw the icon from the suite that is best suited to the

destination rectangle and the current bit depth of the display device.

Listing 5-2 Drawing the icon from an icon suite that is best suited to the display device

PROCEDURE MyDrawIconInSuite (resID: Integer; destRect: Rect;

 VAR iconSuiteHdl: Handle);

VAR

iconType: IconSelectorValue;

align: IconAlignmentType;

transform: IconTransformType;

myErr: OSErr;

BEGIN

iconType := svAllAvailable; {get all icons in icon family}

myErr := GetIconSuite(iconSuiteHdl, resID, iconType);

IF iconSuiteHdl <> NIL THEN

BEGIN

align := atAbsoluteCenter; {specify alignment (centered)}

transform := ttNone; {specify no special transforms}

{draw the icon, using the icon type best suited for the }

{ destination rect & current bit depth of display device}

myErr := PlotIconSuite(destRect, align, transform,

 iconSuiteHdl);

END;

END;

The application-defined procedure MyDrawIconInSuite shown in Listing 5-2 first uses

the GetIconSuite function, specifying the constant svAllAvailable in the third

parameter, to get all icons from the icon family with the specified resource ID and to

collect the handles to the data for each icon into an icon suite. (You can use other

constants in the third parameter of GetIconSuite to request only certain members of

an icon family for an icon suite.) The MyDrawIconInSuite procedure then draws an

icon from this suite using the PlotIconSuite function.

Like the PlotIconID function described in the previous section, the PlotIconSuite

function determines, from the size of the specified destination rectangle and the current

bit depth of the display device, which icon from the icon suite to draw.

You can also specify various transforms and alignments to PlotIconSuite. For

example, the code in Listing 5-2 specifies that PlotIconSuite should center the icon

within the destination rectangle.

C H A P T E R 5

Icon Utilities

5-12 Using the Icon Utilities

Drawing Specific Icons From an Icon Family

In most cases you should use PlotIconID or PlotIconSuite to draw an icon from an

icon family, because these routines automatically select the best version of an icon to

display for a given destination rectangle and bit depth. The preceding sections,

“Drawing an Icon Directly From a Resource” and “Getting an Icon Suite and Drawing

One of Its Icons,” describe how to use these routines.

If you need to plot a specific icon from an icon family rather than using the Icon Utilities

to select a family member, you must first create an icon suite that contains only the icon

from the desired resource type and its corresponding mask. You can then use

PlotIconSuite to plot the icon. In this case PlotIconSuite still attempts to use the

best icon available for the given destination rectangle and bit depth; however, by

limiting the icon resources available in the icon suite, you can force PlotIconSuite to

plot either the black-and-white icon from the 'ICN#' resource or just one of the other

available resources. Listing 5-3 demonstrates how to do this.

Listing 5-3 Drawing a specific icon from an icon family or icon suite

PROCEDURE MyDrawThisIcon (destRect: Rect; resID: Integer;

 VAR iconSuiteHdl: Handle);

VAR

align: IconAlignmentType;

transform: IconTransformType;

myErr: OSErr;

BEGIN

{get only the 'ICN#' and 'icl4' icons and collect them in an }

{ icon suite}

myErr := GetIconSuite(iconSuiteHdl, resID,

 svLarge1Bit + svLarge4Bit);

IF iconSuiteHdl <> NIL THEN

BEGIN

align := atAbsoluteCenter; {specify alignment (centered)}

transform := ttNone; {specify no special transforms}

{draw the best icon from the suite referenced by the icon }

{ suite handle; since the suite contains only 'ICN#' and }

{ 'icl4' icons, PlotIconSuite draws the best of the two}

myErr := PlotIconSuite(destRect, align, transform,

 iconSuiteHdl);

END;

END;

The application-defined procedure MyDrawThisIcon passes the constants

svLarge1Bit and svLarge4Bit to GetIconSuite. In response, GetIconSuite

reads only the 'ICN#' and 'icl4' resources into memory, storing handles to the icon

C H A P T E R 5

Icon Utilities

Using the Icon Utilities 5-13

resource data in the icon suite. MyDrawThisIcon then uses PlotIconSuite to plot the

best available icon from the suite.

If the bit depth of the display device is 1, the PlotIconSuite function in Listing 5-3

displays the black-and-white version of the icon from the 'ICN#' resource, regardless

of the size of the destination rectangle. If the bit depth of the display device is greater

than 1, PlotIconSuite draws the icon from the 'icl4' resource, regardless of the

size of the destination rectangle.

Manipulating Icons

You can use the GetIconFromSuite function to get a handle to the pixel data for a

specific icon from an icon suite. You can use the handle returned by the function
GetIconFromSuite to manipulate the icon data—for example, to alter its color or add

three-dimensional shading—but not to draw the icon with other Icon Utilities routines

such as PlotIconHandle.

Listing 5-4 provides an example of an application-defined procedure, MyGetIconData,

that calls GetIconFromSuite and manipulates the icon data.

Listing 5-4 Manipulating icon data in memory

PROCEDURE MyGetIconData (iconType: ResType; iconSuite: Handle;

 VAR iconHandle: Handle);

VAR

myErr: OSErr;

BEGIN

{get the data for the icon with iconType from the suite}

myErr := GetIconFromSuite(iconHandle, iconSuite, iconType);

{do whatever with the data}

myErr := MyManipulateIconData(iconHandle, iconType);

END;

The Icon Utilities also include routines that allow you to perform an action on one or

more icons in an icon suite and to perform hit-testing on icons. For information about

these routines, see “Performing Operations on Icons in an Icon Suite” and “Determining

Whether a Point or Rectangle Is Within an Icon” beginning on page 5-38 and page 5-46,

respectively.

Drawing Icons That Are Not Part of an Icon Family
To draw icons of resource type 'ICON' or 'cicn' in menus and dialog boxes, you can

use the Menu Manager and Dialog Manager as described in Inside Macintosh: Macintosh
Toolbox Essentials. You can also use Menu Manager routines to draw resources of type

'SICN'.

C H A P T E R 5

Icon Utilities

5-14 Using the Icon Utilities

To draw resources of resource type 'ICON', 'cicn', or 'SICN' in your application’s

windows, you can use these routines:

The routines in this list that end in Handle allow you to specify alignment and

transforms for the icons. You are responsible for disposing of the handle you pass to any

of these routines.

Note

Unlike PlotCIcon, PlotCIconHandle doesn’t honor the current
foreground and background colors. ◆

The listings that follow provide examples of how to draw each of the three icon resource

types that are not part of an icon family.

Listing 5-5 shows how to use PlotIcon to draw an icon of resource type 'ICON'

without specifying alignment or transforms. The application-defined procedure

MyPlotAnICON uses GetIcon to get a handle to the data for the desired icon and then

passes the destination rectangle and the handle to PlotIcon.

Listing 5-5 Drawing an icon of resource type 'ICON'

PROCEDURE MyPlotAnICON (resID: Integer; destRect: Rect;

VAR myIcon: Handle);

BEGIN

myIcon := GetIcon(resID);

PlotIcon(destRect, myIcon);

END;

IMPORTANT

When you are finished using a handle obtained from GetIcon, use the
ReleaseResource procedure to release the memory occupied by the
icon resource data; for more information about ReleaseResource, see
the chapter “Resource Manager” in this book. ▲

Resource type Routines

'ICON' PlotIconHandle
PlotIcon

'cicn' PlotCIconHandle
PlotCIcon

'SICN' PlotSICNHandle

C H A P T E R 5

Icon Utilities

Using the Icon Utilities 5-15

Listing 5-6 shows how to use PlotIconHandle to draw an icon of resource type

'ICON' with a specific alignment and transform. The application-defined procedure

MyPlotAnICONWithAlignAndTransform uses GetIcon to get a handle to the data

for the desired icon and then passes the destination rectangle, alignment, transform, and

handle to PlotIconHandle.

Listing 5-6 Drawing an icon of resource type 'ICON' with a specific alignment and transform

PROCEDURE MyPlotAnICONWithAlignAndTransform

 (resID: Integer; destRect: Rect;

align: IconAlignmentType;

transform: IconTransformType; VAR myIcon: Handle);

VAR

myErr: OSErr;

BEGIN

myIcon := GetIcon(resID);

myErr := PlotIconHandle(destRect, align, transform, myIcon);

END;

For the PlotIconHandle function in Listing 5-6 to draw the icon without

stretching it, the destination rectangle passed in the destRect parameter of

MyPlotAnICONWithAlignAndTransform must be exactly 32 by 32 pixels. If the

destination rectangle is not 32 by 32 pixels, PlotIconHandle expands or shrinks the

icon to fit.

Listing 5-7 shows how to use PlotCIcon to draw an icon of resource type 'cicn'

without specifying alignment or transform. The MyPlotAcicn procedure uses

GetCIcon to get a handle to the color icon record of the desired icon and then passes the

destination rectangle and handle to PlotCIcon.

Listing 5-7 Drawing an icon of resource type 'cicn'

PROCEDURE MyPlotAcicn (resID: Integer; destRect: Rect;

 VAR myCicnIcon: CIconHandle);

BEGIN

myCicnIcon := GetCIcon(resID);

PlotCIcon(destRect, myCicnIcon);

END;

C H A P T E R 5

Icon Utilities

5-16 Using the Icon Utilities

Listing 5-8 shows how to use PlotCIconHandle to draw an icon of resource type

'cicn' with a specific alignment and transform. Listing 5-8 uses GetCIcon to get a

handle to the color icon record of the desired icon and then passes the destination

rectangle, alignment, transform, and handle to PlotCIconHandle.

Listing 5-8 Drawing an icon of resource type 'cicn' with a specific alignment and transform

PROCEDURE MyPlotAcicnWithAlignAndTransform

 (resID: Integer; destRect: Rect;

align: IconAlignmentType;

transform: IconTransformType;

VAR myCicnIcon: CIconHandle);

VAR

myErr: OSErr;

BEGIN

myCicnIcon := GetCIcon(resID);

myErr := PlotCIconHandle(destRect, align, transform,

 myCicnIcon);

END;

Listing 5-9 shows how to use PlotSICNHandle to draw an icon of resource type

'SICN' with a specific alignment and transform. The application-defined procedure

MyPlotAnSICNWithAlignAndTransform uses GetResource to get a handle to the

data for the desired icon and then passes the destination rectangle, alignment, transform,

and handle to PlotSICNHandle.

Listing 5-9 Drawing an icon of resource type 'SICN' with a specific alignment and transform

PROCEDURE MyPlotAnSICNWithAlignAndTransform

 (resID: Integer; destRect: Rect;

align: IconAlignmentType;

transform: IconTransformType; VAR myIcon: Handle);

VAR

myErr: OSErr;

BEGIN

myIcon := GetResource('SICN', resID);

myErr := PlotSICNHandle(destRect, align, transform, myIcon);

END;

C H A P T E R 5

Icon Utilities

Icon Utilities Reference 5-17

For the PlotSICNHandle function in Listing 5-9 to draw the icon without

stretching it, the destination rectangle passed in the destRect parameter of

MyPlotAnSICNWithAlignAndTransform must be exactly 16 by 16 pixels. If the

destination rectangle is not this size, PlotSICNHandle expands or shrinks the

icon to fit.

Icon Utilities Reference

The sections that follow describe the data structure and routines provided by the Icon

Utilities.

The first section, “Data Structure,” describes the color icon record. “Icon Utilities

Routines” beginning on page 5-18 describes the routines for drawing and manipulating

icons. “Application-Defined Routines” beginning on page 5-57 describes the syntax of

the icon action and icon getter functions that your application can provide for use by

Icon Utilities routines.

Data Structure

This section describes the color icon record. Note that you use the color icon record only

for icons of resource type 'cicn'; you do not need to use the color icon record for any

of the color icons in an icon family.

The Color Icon Record

The GetCIcon function reads in a color icon resource—that is, an icon resource of type

'cicn'—and returns a handle to a color icon record. A color icon record is defined by

the CIcon data type.

TYPE

CIcon =

RECORD

iconPMap: PixMap; {the icon's pixel map}

iconMask: BitMap; {the icon's mask}

iconBMap: BitMap; {the icon's bitmap}

iconData: Handle; {handle to the icon's data}

iconMaskData: {the data for the icon's mask}

ARRAY[0..0] OF Integer;

END;

CIconPtr = ^CIcon; {pointer to color icon record}

CIconHandle = ^CIconPtr; {handle to color icon record}

C H A P T E R 5

Icon Utilities

5-18 Icon Utilities Reference

Field descriptions

iconPMap The pixel map describing the icon. Note that this is a pixel map
record, not a handle to a pixel map record.

iconMask A bitmap of the icon’s mask.

iconBMap A bitmap of the icon.

iconData A handle to the icon’s pixel image.

iconMaskData An array containing the icon’s mask data followed by the icon’s
bitmap data. This is used only when the icon is stored as a resource.

Your application can load a color icon resource into memory using the GetCIcon

function. All color icon resources should be marked purgeable. To draw a color icon, you

can use the PlotCIcon or PlotCIconHandle function. When your application has

finished using a color icon, it can dispose of the color icon record by calling the

DisposeCIcon function.

You can use icons of resource type 'cicn' in menus the same way that you use

resources of type 'ICON'. If a menu item specifies an icon number, the menu definition

procedure first tries to load in a 'cicn' resource with the specified resource ID. If it

doesn’t find one, the menu definition procedure tries to load in an 'ICON' resource with

the same ID. The Dialog Manager also uses a 'cicn' resource instead of an 'ICON'

resource if it finds one with the same resource ID. For more information, see Inside
Macintosh: Macintosh Toolbox Essentials.

For information about the format of a color icon resource, see Inside Macintosh: Imaging
With QuickDraw.

Icon Utilities Routines

This section describes the Icon Utilities routines. You can use these routines to draw

icons in windows and, if necessary, in menus and dialog boxes. You can also use Icon

Utilities routines to perform operations on icons in an icon suite, get and set labels

associated with specific icon suites, dispose of icon suites and color icon records, convert

an icon mask to a region, perform hit-testing, and create and manipulate icon caches.

Note that you can pass a handle to an icon cache to any of the Icon Utilities routines that

accept a handle to an icon suite.

Most of the Icon Utilities routines are available only in System 7 and later. To

determine whether they are available, call the Gestalt function with the

gestaltIconUtilitiesAttr selector and check the value of the response

parameter. If the bit indicated by the constant gestaltIconUtilitiesPresent is set,

then the Icon Utilities are available. The GetIcon, PlotIcon, GetCIcon, PlotCIcon,

and DisposeCIcon routines are available in both System 6 and System 7.

C H A P T E R 5

Icon Utilities

Icon Utilities Reference 5-19

Note
The Icon Utilities routines do not place any restrictions on whether icon
resources are purgeable or nonpurgeable; however, in general, you
should specify your icon resources as purgeable. ◆

This section first describes the routines you can use to draw icons from an icon family

and then describes the routines that work with icon suites and icon caches.

IMPORTANT

All of the Icon Utilities routines may move or purge memory blocks in
the application heap or for some other reason should not be called from
within an interrupt. Your application should not call Icon Utilities
routines at interrupt time. ▲

Assembly-Language Note

You can invoke Icon Utilities routines by using the trap
_IconDispatch with the appropriate routine selector. The routine
selectors are listed in “Assembly-Language Summary” beginning on
page 5-71. ◆

Drawing Icons From Resources

The routines described in this section allow you to plot an icon directly from a resource

without first creating an icon suite.

To draw an icon from an icon family (that is, those resources of type 'ICN#', 'ics#',

'icl4', 'icl8', 'ics4', or 'ics8' that share the same resource ID), use the

PlotIconID function. This function gets the icon’s data from its resource and also

allows you to specify transforms and alignment. The PlotIconID function also

determines, from the destination rectangle in which the icon is to be drawn and the

current bit depth of the display device, which resource type to get from the icon family.

To draw an icon obtained with the aid of an icon getter function, use the

PlotIconMethod function. For information about icon getter functions, see “Icon

Getter Functions” beginning on page 5-58.

To plot an icon of resource types 'ICON' and 'cicn' from an icon handle previously

obtained from the GetIcon or GetCIcon function, use the PlotIconHandle and

PlotCIconHandle functions, respectively. These functions allow you to specify

transforms and alignment.

You can also plot an icon of resource types 'ICON' and 'cicn' using the PlotIcon

and PlotCIcon procedures, respectively. However, neither of these procedures allow

you to specify transforms and alignment.

To plot an icon of resource type 'SICN', use the PlotSICNHandle function. This

function allows you to specify transforms and alignment.

C H A P T E R 5

Icon Utilities

5-20 Icon Utilities Reference

PlotIconID

You can use the PlotIconID function to draw the icon described by an icon family.

From the icon family, PlotIconID selects the most appropriate icon resource for the

current bit depth of the display device and the rectangle in which the icon is to be drawn.

FUNCTION PlotIconID (theRect: Rect; align: IconAlignmentType;

transform: IconTransformType;

theResID: Integer): OSErr;

theRect The rectangle, specified in local coordinates of the current graphics port,
in which to draw the icon. The PlotIconID function determines, from
the size of the specified destination rectangle and the current bit depth
of the display device, which icon of a given size to draw from an icon
family.

align A value that specifies how PlotIconID should align the icon within the
rectangle. For example, you can specify that PlotIconID center the icon
within the rectangle or align it at one side or the other. See the description
that follows for a list of constants you can use in this parameter.

transform A value that specifies how PlotIconID should modify the appearance
of the icon. See the description that follows for a list of constants you can
use in this parameter.

theResID The resource ID of the icon to draw. The icon resource must be of resource
type 'ICN#', 'ics#', 'icl4', 'icl8', 'ics4', or 'ics8'.

DESCRIPTION

The PlotIconID function plots a single icon from the icon family specified by

theResID. You cannot determine which icon from the family it will draw; PlotIconID

bases this decision on the size of the specified destination rectangle and the current bit

depth of the display device. For example, if the destination rectangle has the coordinates

(100,100,116,116) and the display device is set to 4-bit color, the PlotIconID function

draws the icon of type 'ics4' if that icon is available in the icon family.

If the width or height of a destination rectangle is greater than or equal to 32,

PlotIconID uses the 32-by-32 pixel icon with the appropriate bit depth for the display

device. If the destination rectangle is less than 32 by 32 pixels and greater than 16 pixels

wide or 12 pixels high, PlotIconID uses the 16-by-16 pixel icon with the appropriate

bit depth. If the destination rectangle’s height is less than or equal to 12 pixels or its

width is less than or equal to 16 pixels, PlotIconID uses the 12-by-16 pixel icon with

the appropriate bit depth. (Typically only the Finder and Standard File Package use

12-by-16 pixel icons.)

C H A P T E R 5

Icon Utilities

Icon Utilities Reference 5-21

You can use these constants in the align parameter to specify the alignment of the icon

within the rectangle specified by the theRect parameter:

CONST

atNone = $0; {no special alignment}

atVerticalCenter = $1; {centered vertically}

atTop = $2; {top aligned}

atBottom = $3; {bottom aligned}

atHorizontalCenter = $4; {centered horizontally}

atLeft = $8; {left aligned}

atRight = $C; {right aligned}

atAbsoluteCenter = (atVerticalCenter + atHorizontalCenter);

atCenterTop = (atTop + atHorizontalCenter);

atCenterBottom = (atBottom + atHorizontalCenter);

atCenterLeft = (atVerticalCenter + atLeft);

atTopLeft = (atTop + atLeft);

atBottomLeft = (atBottom + atLeft);

atCenterRight = (atVerticalCenter + atRight);

atTopRight = (atTop + atRight);

atBottomRight = (atBottom + atRight);

The destination rectangle passed in the theRect parameter of PlotIconID must be

exactly 32 by 32 pixels, 16 by 16 pixels, or 12 by 16 pixels for PlotIconID to draw the

icon without stretching it. If the destination rectangle is not one of these standard sizes,

PlotIconID expands or shrinks the icon to fit. After stretching or shrinking the icon,

the PlotIconID function aligns the icon according to the value specified in the align

parameter, moving the icon so that the edges of its mask align with the specified side or

direction.

You can pass constants in the transform parameter to specify how you want the icon

modified, if at all, when plotted by PlotIconID. If you don’t want to specify any

transform constants, specify ttNone in the transform parameter.

CONST ttNone = $0;

You can use these constants in the transform parameter to transform the icon in a

manner analogous to certain Finder states for icons:

CONST

ttDisabled = $1;

ttOffline = $2;

ttOpen = $3;

ttSelected = $4000;

ttSelectedDisabled = (ttSelected + ttDisabled);

ttSelectedOffline = (ttSelected + ttOffline);

ttSelectedOpen = (ttSelected + ttOpen);

C H A P T E R 5

Icon Utilities

5-22 Icon Utilities Reference

You can use another group of constants to color the icon using the Finder label colors. To

determine the appropriate label for a file’s icon, you can check bits 1–3 of the fdFlags

field in the file’s file information record. These bits contain a number from 0 to 7

indicating the label setting (0 indicates no label). Simply add the corresponding constant

from this list to the transform parameter when you call PlotIconID:

CONST

ttLabel1 = $0100;

ttLabel2 = $0200;

ttLabel3 = $0300;

ttLabel4 = $0400;

ttLabel5 = $0500;

ttLabel6 = $0600;

ttLabel7 = $0700;

RESULT CODES

SEE ALSO

For an example of the use of the PlotIconID function, see Listing 5-1 on page 5-10.

To restrict the icons from an icon family that are available for use by the Icon Utilities,

see “Drawing Specific Icons From an Icon Family” on page 5-12.

For information about the file information record, see the chapter “Finder Interface” in

Inside Macintosh: Macintosh Toolbox Essentials.

PlotIconMethod

You can use the PlotIconMethod function to plot an icon obtained with the aid of an

icon getter function for a specified destination rectangle and alignment.

FUNCTION PlotIconMethod (theRect: Rect; align: IconAlignmentType;

 transform: IconTransformType;

 theMethod: IconGetter;

 yourDataPtr: UNIV Ptr): OSErr;

theRect The rectangle in which to draw the icon, specified in local coordinates of
the current graphics port.

align A value that specifies how to align the icon within the rectangle specified
by theRect. See the description of PlotIconID on page 5-20 for a list of
constants you can use in this parameter.

noErr 0 No error
resNotFound –192 Resource not found
noMaskFoundErr –1000 No mask found

C H A P T E R 5

Icon Utilities

Icon Utilities Reference 5-23

transform A value that specifies how PlotIconMethod should modify the
appearance of the icon. See the description of PlotIconID beginning on
page 5-20 for a list of constants you can use in this parameter.

theMethod A pointer to an icon getter function.

yourDataPtr
A pointer to data that is passed to your icon getter function.

DESCRIPTION

The PlotIconMethod function uses your icon getter function to obtain the icon to

draw. Then PlotIconMethod draws this icon in the specified destination rectangle,

with the specified transform and alignment.

PlotIconMethod passes to your icon getter function the type of the icon to draw and

the value specified in the yourDataPtr parameter. The PlotIconMethod function

examines the current bit depth of the display devices and calls your icon getter function

once for each display device that intersects the rectangle specified in the parameter

theRect. Your icon getter function should return a handle to the requested icon’s data.

Your icon getter function can get the icon data using whatever method is appropriate to

your application. For example, your application might maintain its own cache of icons or

use its icon getter function to get an icon from the desktop database.

RESULT CODES

SEE ALSO

For more information about icon getter functions, see page 5-58.

PlotIcon

You can use the PlotIcon procedure to plot an icon of resource type 'ICON'. You must

have previously obtained a handle to the icon using GetIcon (or GetResource or

other Resource Manager routines).

PROCEDURE PlotIcon (theRect: Rect; theIcon: Handle);

theRect The rectangle in which to draw the icon, specified in local coordinates of
the current graphics port.

theIcon A handle to the icon to draw.

noErr 0 No error
noMaskFoundErr –1000 No mask found

C H A P T E R 5

Icon Utilities

5-24 Icon Utilities Reference

DESCRIPTION

The PlotIcon procedure draws the icon specified by the given handle. Unlike

PlotIconHandle, PlotIcon does not allow you to specify any transforms or

alignment. The PlotIcon procedure uses the QuickDraw procedure CopyBits with

the srcCopy transfer mode.

If the destination rectangle is not 32 by 32 pixels, PlotIcon stretches or shrinks the icon

to fit.

To plot an icon of resource type 'ICON' with a specified transform and alignment, use

PlotIconHandle (described next).

SEE ALSO

For an example of the use of the PlotIcon procedure, see Listing 5-5 on page 5-14. For

information on GetIcon, see page 5-28. For information on the QuickDraw procedure

CopyBits, see Inside Macintosh: Imaging With QuickDraw.

PlotIconHandle

You can use the PlotIconHandle function to plot an icon of resource type 'ICON' or

'ICN#'. You must have previously obtained a handle to the icon using GetIcon (or

GetResource or other Resource Manager routines).

FUNCTION PlotIconHandle (theRect: Rect; align: IconAlignmentType;

 transform: IconTransformType;

 theIcon: Handle): OSErr;

theRect The rectangle in which to draw the icon, specified in local coordinates of
the current graphics port.

align A value that specifies how PlotIconHandle should align the icon
within the rectangle. See the description of PlotIconID on page 5-20 for
a list of constants you can use in this parameter.

transform A value that specifies how PlotIconHandle should modify the
appearance of the icon. See the description of PlotIconID beginning on
page 5-20 for a list of constants you can use in this parameter.

theIcon A handle to the icon to draw.

C H A P T E R 5

Icon Utilities

Icon Utilities Reference 5-25

DESCRIPTION

The PlotIconHandle function draws the icon specified by the theIcon parameter

with the transform and alignment specified by the transform and align parameters.

IMPORTANT

To plot an icon from an icon suite, you should normally use
PlotIconSuite. The PlotIconHandle function may not draw the
icon correctly if you pass it the handle returned in the theIconData
parameter of GetIconFromSuite. ▲

RESULT CODES

SEE ALSO

For an example of the use of the PlotIconHandle function, see Listing 5-6 on

page 5-15. For information on GetIcon, see page 5-28.

PlotCIcon

You can plot a color icon of resource type 'cicn' using the PlotCIcon procedure. You

must have previously obtained a handle to the icon using GetCIcon (or GetResource

or other Resource Manager routines).

PROCEDURE PlotCIcon (theRect: Rect; theIcon: CIconHandle);

theRect The rectangle in which to draw the icon, specified in local coordinates of
the current graphics port.

theIcon A handle to the color icon record of the color icon to draw.

DESCRIPTION

The PlotCIcon procedure draws the color icon specified by the given handle. The

iconMask field of the color icon record determines which pixels in the iconPMap field

are drawn and which are not. Only pixels with 1s in corresponding positions in the

iconMask field are drawn. If the screen depth is 1 or 2 bits per pixel, PlotCIcon uses

the iconBMap field instead of the iconPMap field (unless the rowBytes field of

IconBMap contains 0, indicating that there is no bitmap for the icon).

noErr 0 No error
noMaskFoundErr –1000 No mask found

C H A P T E R 5

Icon Utilities

5-26 Icon Utilities Reference

When PlotCIcon draws the icon, it uses the bounds field of iconPMap as the source

rectangle of the image. If the destination rectangle is not the same size as the icon or its

mask, PlotCIcon stretches or shrinks the icon to fit. The icon’s pixels are remapped to

the current depth and color table, if necessary. The bounds fields of iconPMap,

iconBMap, and iconMask are expected to be equal in size.

Unlike PlotIconHandle, PlotCIcon does not allow you to specify any transforms or

alignment. The PlotCIcon procedure uses the QuickDraw procedure CopyMask and

doesn’t send any of its drawing commands through QuickDraw bottleneck routines.

Therefore, calls to PlotCIcon are not recorded as pictures.

RESULT CODE

SEE ALSO

For a description of the color icon record, see “The Color Icon Record” on page 5-17. For

information on GetCIcon, see page 5-29. For information on the QuickDraw procedure

CopyMask, see Inside Macintosh: Imaging With QuickDraw.

For an example of the use of the PlotCIcon procedure, see Listing 5-7 on page 5-15.

PlotCIconHandle

You can use the PlotCIconHandle function to plot an icon of resource type

'cicn'. You must have previously obtained a handle to the icon using GetCIcon (or

GetResource or other Resource Manager routines).

FUNCTION PlotCIconHandle (theRect: Rect; align: IconAlignmentType;

 transform: IconTransformType;

 theCIcon: CIconHandle): OSErr;

theRect The rectangle in which to draw the icon, specified in local coordinates of
the current graphics port.

align A value that specifies how PlotCIconHandle should align the icon
within the rectangle. See the description of PlotIconID on page 5-20 for
a list of constants you can use in this parameter.

transform A value that specifies how PlotCIconHandle should modify the
appearance of the icon. See the description of PlotIconID beginning on
page 5-20 for a list of constants you can use in this parameter.

theCIcon A handle to the color icon record of the icon to draw.

noErr 0 No error

C H A P T E R 5

Icon Utilities

Icon Utilities Reference 5-27

DESCRIPTION

The PlotCIconHandle function draws the specified color icon with the transform and

alignment specified by the transform and align parameters. Unlike PlotCIcon,

PlotCIconHandle doesn’t honor the current foreground and background colors.

RESULT CODES

SEE ALSO

For an example of the use of PlotCIconHandle, see Listing 5-8 on page 5-16. For

information on GetCIcon, see page 5-29. For a description of the color icon record, see

page 5-17.

PlotSICNHandle

You can use the PlotSICNHandle function to plot a small icon of resource type 'SICN'

with a specified transform and alignment. You must have previously obtained a handle

to the icon using GetResource (or other Resource Manager routines).

FUNCTION PlotSICNHandle (theRect: Rect; align: IconAlignmentType;

 transform: IconTransformType;

 theSICN: Handle): OSErr;

theRect The rectangle in which to draw the icon, specified in local coordinates of
the current graphics port.

align A value that specifies how PlotSICNHandle should align the icon
within the rectangle. See the description of PlotIconID on page 5-20 for
a list of constants you can use in this parameter.

transform A value that specifies how PlotSICNHandle should modify the
appearance of the icon. See the description of PlotIconID beginning on
page 5-20 for a list of constants you can use in this parameter.

theSICN A handle to the icon to draw.

DESCRIPTION

The PlotSICNHandle function draws the specified small icon with the transform and

alignment specified by the transform and align parameters. Only 'SICN' resources

with a single member—or with two members, the second of which is a mask for the

first—plot correctly.

noErr 0 No error
paramErr –50 Error in parameter list

C H A P T E R 5

Icon Utilities

5-28 Icon Utilities Reference

RESULT CODES

SEE ALSO

For an example of the use of the PlotSICNHandle function, see Listing 5-9 on

page 5-16.

Getting Icons From Resources That Don’t Belong to an Icon Family

You can get a handle to an 'ICON' or 'cicn' resource using the GetIcon and

GetCIcon functions. You can then draw these icons using the routines PlotIcon,

PlotCIcon, PlotIconHandle, or PlotCIconHandle (see “Drawing Icons From

Resources” beginning on page 5-19).

To get a handle to an icon suite for a given icon family, use the routines described in

“Creating an Icon Suite” beginning on page 5-30.

GetIcon

You can use the GetIcon function to get a handle to an icon resource of type 'ICON'.

FUNCTION GetIcon (iconID: Integer): Handle;

iconID The resource ID for an icon of resource type 'ICON'.

DESCRIPTION

The GetIcon function reads in the 'ICON' resource with the specified resource ID and

returns a handle to it. The GetIcon function searches the current resource chain for the

resource. If GetIcon finds the resource, it reads the resource and returns a handle to the

icon as its function result. If GetIcon can’t find the resource, it returns NIL as its

function result.

To draw an icon obtained from GetIcon in a specified rectangle, you can use either

PlotIcon or PlotIconHandle. Unlike PlotIcon, PlotIconHandle allows you to

specify transforms and alignments.

When you are finished using a handle obtained from GetIcon, use the

ReleaseResource procedure to release the memory occupied by the icon resource data.

noErr 0 No error
noMaskFoundErr –1000 No mask found

C H A P T E R 5

Icon Utilities

Icon Utilities Reference 5-29

RESULT CODES

SEE ALSO

For a description of the PlotIcon procedure and PlotIconHandle function, see

page 5-23 and page 5-24, respectively. For information about ReleaseResource, see

the chapter “Resource Manager” in this book.

GetCIcon

You can use GetCIcon to get a handle to a color icon of resource type 'cicn'.

FUNCTION GetCIcon (iconID: Integer): CIconHandle;

iconID The resource ID for an icon of resource type 'cicn'.

DESCRIPTION

The GetCIcon function reads in the 'cicn' resource with the specified resource ID and

returns a handle to it. The GetCIcon function searches the current resource chain for the

resource. If GetCIcon finds the resource, it reads the resource, creates a color icon record

for the icon, and initializes the fields of the record according to the information

contained in the 'cicn' resource. GetCIcon returns a handle to the color icon record as

its function result. If GetCIcon can’t find the resource, it returns NIL as its function

result.

To draw an icon obtained from GetCIcon in a specified rectangle, you can use either the

PlotCIcon or PlotCIconHandle routine. Unlike PlotCIcon, PlotCIconHandle

allows you to specify transforms and alignments.

When you are finished with a handle obtained from GetCIcon, use the DisposeCIcon

procedure to release the memory occupied by the color icon record.

RESULT CODES

SEE ALSO

For information about the color icon record, see “The Color Icon Record” on

page 5-17. For information about the format of the 'cicn' resource, see Inside
Macintosh: Imaging With QuickDraw.

For descriptions of the PlotCIcon procedure and PlotCIconHandle function, see

page 5-25 and page 5-26, respectively. The DisposeCIcon procedure is described next.

noErr 0 No error
resNotFound –192 Resource not found

noErr 0 No error
resNotFound –192 Resource not found

C H A P T E R 5

Icon Utilities

5-30 Icon Utilities Reference

Disposing of Icons

When you are finished with a handle obtained from GetCIcon, use the DisposeCIcon

procedure to release the memory occupied by the color icon record.

When you are finished using a handle obtained from GetIcon or GetResource, use

the ReleaseResource procedure to release the memory occupied by the icon resource

data; for more information about GetResource and ReleaseResource, see the

chapter “Resource Manager” in this book.

To dispose of icons in an icon suite, use the DisposeIconSuite function described on

page 5-42.

DisposeCIcon

You can use the DisposeCIcon procedure to release the memory occupied by an icon

color record obtained from the GetCIcon function. The DisposeCIcon procedure is

also available as the DisposCIcon procedure.

PROCEDURE DisposeCIcon (theIcon: CIconHandle);

theIcon A handle to the color icon record to dispose of.

DESCRIPTION

The DisposeCIcon procedure disposes of any structure allocated by GetCIcon.

Creating an Icon Suite

You typically create an icon suite by reading all resources from a specific icon family into

memory and storing handles to the icon resource data in a new icon suite. You can do

this using the GetIconSuite function. Alternatively, you can create an empty icon suite

using the NewIconSuite function and then add icons to it one at a time using the

AddIconToSuite function.

Although you typically create an icon suite using GetIconSuite (which fills the suite

with handles to icon resource data), you can also create an icon suite and then add

handles to icon data. The handles that you add to the suite do not have to be associated

with a resource fork. For example, your application might get icon data from the desktop

database rather than reading it from a resource, or your application might read icon data

from a resource and then detach it. In either case, you can provide a handle to the icon

data and use AddIconToSuite to add the handle to the icon suite. You need to release

the memory occupied by the icon suite when you’re finished using it. The

DisposeIconSuite function releases this memory but does not release the memory

of any resource handles. You can request DisposeIconSuite to release the memory of

any other handles to icon data in the suite.

C H A P T E R 5

Icon Utilities

Icon Utilities Reference 5-31

Note
When you create an icon suite from icon family resources, the associated
resource file should remain open while you use Icon Utilities routines. ◆

GetIconSuite

You can use the GetIconSuite function to create an icon suite in memory that contains

handles to a specified icon family’s resources and to return a handle to the icon suite.

FUNCTION GetIconSuite (VAR theIconSuite: Handle;

 theResID: Integer;

 selector: IconSelectorValue): OSErr;

theIconSuite
GetIconSuite allocates the memory for and returns, in this parameter,
a handle to an icon suite for the requested icon family. To release the
memory occupied by an icon suite, you must use the
DisposeIconSuite function.

theResID The resource ID of the icons in the icon family to be read into memory.

selector A value that indicates which icons from the icon family to include in the
icon suite. See the description that follows for a list of constants you can
use in this parameter.

DESCRIPTION

The GetIconSuite function returns a handle to a suite of icons for the icon family

whose resource ID is specified in the theResID parameter. Use one or more of these

constants in the selector parameter to specify which members of the family to include

in the icon suite:

CONST

svLarge1Bit = $00000001; {'ICN#' resource}

svLarge4Bit = $00000002; {'icl4' resource}

svLarge8Bit = $00000004; {'icl8' resource}

svSmall1Bit = $00000100; {'ics#' resource}

svSmall4Bit = $00000200; {'ics4' resource}

svSmall8Bit = $00000400; {'ics8' resource}

svMini1Bit = $00010000; {'icm#' resource}

svMini4Bit = $00020000; {'icm4' resource}

svMini8Bit = $00040000; {'icm8' resource}

svAllLargeData = $000000FF; {'ICN#', 'icl4', and 'icl8' }

 { resources}

svAllSmallData = $0000FF00; {'ics#', 'ics4', and 'ics8' }

 { resources}

C H A P T E R 5

Icon Utilities

5-32 Icon Utilities Reference

svAllMiniData = $00FF0000; {'icm#', 'icm4', and 'icm8' }

 { resources}

svAll1BitData = (svLarge1Bit + svSmall1Bit + svMini1Bit);

svAll4BitData = (svLarge4Bit + svSmall4Bit + svMini4Bit);

svAll8BitData = (svLarge8Bit + svSmall8Bit + svMini8Bit);

svAllAvailableData= $FFFFFFFF; {all resources of given ID}

These constants are additive; that is, you can add several constants to include the

corresponding family members in the icon suite.

When you create an icon suite using GetIconSuite, it sets the default label for the

suite to none. To set a new default label for an icon suite, use the SetSuiteLabel

function.

If you call SetResLoad with the load parameter set to FALSE before you call

GetIconSuite, the suite is filled with unloaded resource handles.

To perform operations on one or more icons in an icon suite, use the ForEachIconDo

function.

To draw the icon described by the icon suite using the icon family member that is most

suitable for the current bit depth of the display device, use the PlotIconSuite

function.

RESULT CODES

SEE ALSO

For examples of the use of the GetIconSuite function, see Listing 5-2 and Listing 5-3

on page 5-11 and page 5-12, respectively.

For a description of the PlotIconSuite and ForEachIconDo functions, see page 5-35

and page 5-38, respectively. For information on the DisposeIconSuite function, see

page 5-42.

NewIconSuite

You can use the NewIconSuite function to get a handle to an empty icon suite.

Then you can use AddIconToSuite to add handles to icon data.

FUNCTION NewIconSuite (VAR theIconSuite: Handle): OSErr;

theIconSuite
NewIconSuite allocates the memory for a new icon suite and returns, in
this parameter, a handle to an empty icon suite.

noErr 0 No error
memFullErr –108 Not enough memory in heap zone

C H A P T E R 5

Icon Utilities

Icon Utilities Reference 5-33

DESCRIPTION

The NewIconSuite function returns a handle to an empty icon suite in the parameter

theIconSuite. When you create an icon suite using NewIconSuite, it sets the default

label for the suite to none. To set a new default label for an icon suite, use the

SetSuiteLabel function. NewIconSuite allocates the memory for the icon suite

handle. To release the memory occupied by an icon suite, you must use the

DisposeIconSuite function.

RESULT CODES

SEE ALSO

For information on the DisposeIconSuite function, see page 5-42.

AddIconToSuite

You can use the AddIconToSuite function to add icons to an icon suite. This function

is most often used to read icons into an empty icon suite created with NewIconSuite.

FUNCTION AddIconToSuite (theIconData: Handle; theSuite: Handle;

 theType: ResType): OSErr;

theIconData
A handle to the data for the new icon to be added to the icon suite. You
can obtain a handle to icon data using various routines, such as GetIcon
or GetResource.

theSuite A handle to the icon suite to which to add the icon.

theType The resource type of the new icon. The resource type should be that of an
icon family member.

DESCRIPTION

The AddIconToSuite function adds the handle to the icon data to the specified icon

suite at the location reserved for icon data of type theType. If the icon suite already

includes a handle to icon data for that type, AddIconToSuite replaces the handle to the

old data without disposing of it. In this case you may want to call GetIconFromSuite

(described next) first to obtain the old handle so that you can dispose of it.

RESULT CODES

noErr 0 No error
memFullErr –108 Not enough memory in heap zone

noErr 0 No error
paramErr –50 No such type in icon family

C H A P T E R 5

Icon Utilities

5-34 Icon Utilities Reference

Getting Icons From an Icon Suite

The GetIconFromSuite function returns a handle to the specified icon in an icon suite.

GetIconFromSuite

You can use the GetIconFromSuite function to get an icon from an icon suite.

FUNCTION GetIconFromSuite (VAR theIconData: Handle;

theSuite: Handle;

theType: ResType): OSErr;

theIconData
GetIconFromSuite returns a handle to the data for the requested icon
in this parameter. If an icon of the specified type does not exist in the
given icon suite, GetIconFromSuite returns NIL in this parameter.

theSuite A handle to the icon suite from which to get the icon.

theType The resource type of the desired icon.

DESCRIPTION

The GetIconFromSuite function returns a handle to the data for the icon of type

theType in the icon suite specified by theSuite. If you intend to dispose of the handle,

pass a NIL handle to the AddIconToSuite function to delete the corresponding entry

in the suite.

You can use the handle returned by GetIconFromSuite to manipulate the icon data,

for example, to alter its color or add three-dimensional shading. However, you should

not use the returned handle to draw the icon with other Icon Utilities routines.

IMPORTANT

To plot an icon from an icon suite, you should normally use
PlotIconSuite. The PlotIconHandle function may not draw the
icon correctly if you pass it the handle returned in the theIconData
parameter of GetIconFromSuite. ▲

RESULT CODES

noErr 0 No error
paramErr –50 Requested type not present in suite

C H A P T E R 5

Icon Utilities

Icon Utilities Reference 5-35

SEE ALSO

For an example of the use of the GetIconFromSuite function, see Listing 5-4 on

page 5-13.

For a description of the AddIconToSuite function, see page 5-33. The

PlotIconSuite function is described next.

Drawing Icons From an Icon Suite

To draw an icon from an icon suite using the icon that that is most appropriate for a

specified rectangle and the current bit depth of the display device, use the

PlotIconSuite function.

To draw an icon from a resource, use the routines described in “Drawing Icons From

Resources” beginning on page 5-19. For example, to draw an icon from an icon family,

use the PlotIconID function.

PlotIconSuite

You can use the PlotIconSuite function to draw the icon described by an icon suite

using the most appropriate icon in the suite for the current bit depth of the display

device and the rectangle in which the icon is to be drawn.

FUNCTION PlotIconSuite (theRect: Rect;

align: IconAlignmentType;

transform: IconTransformType;

theIconSuite: Handle): OSErr;

theRect The rectangle in which to draw the icon. The PlotIconSuite function
uses the size of the specified destination rectangle and the current bit
depth of the display device to determine which icon from an icon suite to
draw.

align A value that specifies how PlotIconSuite should align the icon within
the rectangle. For example, you can specify that PlotIconSuite
center the icon within the rectangle or align it at one side or the other. See
the description that follows for a list of constants you can use in this
parameter.

transform A value that specifies how PlotIconSuite should modify the
appearance of the icon. See the description that follows for a list of
constants you can use in this parameter.

theIconSuite
A handle to the icon suite from which PlotIconSuite gets the icon to
draw. You can get a handle to an icon suite using the GetIconSuite or
NewIconSuite function.

C H A P T E R 5

Icon Utilities

5-36 Icon Utilities Reference

DESCRIPTION

The PlotIconSuite function plots a single icon from an icon suite in the current

graphics port. You cannot determine which icon from a given suite it will draw;

PlotIconSuite bases this decision on the size of the specified destination rectangle

and the current bit depth of the display device. For example, if the destination rectangle

has the coordinates (100,100,116,116) and the display device is set to 4-bit color, the

PlotIconSuite function draws the icon of type 'ics4' if that icon is available in the

icon suite.

If the width or height of a destination rectangle is greater than or equal to 32 pixels,

PlotIconSuite uses the 32-by-32 pixel icon with the appropriate bit depth for the

display device. If the destination rectangle is less than 32 by 32 pixels and greater than 16

pixels wide or 12 pixels high, PlotIconSuite uses the 16-by-16 pixel icon with the

appropriate bit depth. If the destination rectangle’s height is less than or equal

to 12 pixels or its width is less than or equal to 16 pixels, PlotIconSuite uses the

12-by-16 pixel icon with the appropriate bit depth. (Typically, only the Finder and

Standard File Package use 12-by-16 pixel icons.)

You can use these constants in the align parameter to specify the alignment of the icon

within the rectangle specified by the parameter theRect:

CONST

atNone = $0; {no special alignment}

atVerticalCenter = $1; {centered vertically}

atTop = $2; {top aligned}

atBottom = $3; {bottom aligned}

atHorizontalCenter = $4; {centered horizontally}

atLeft = $8; {left aligned}

atRight = $C; {right aligned}

atAbsoluteCenter = (atVerticalCenter + atHorizontalCenter);

atCenterTop = (atTop + atHorizontalCenter);

atCenterBottom = (atBottom + atHorizontalCenter);

atCenterLeft = (atVerticalCenter + atLeft);

atTopLeft = (atTop + atLeft);

atBottomLeft = (atBottom + atLeft);

atCenterRight = (atVerticalCenter + atRight);

atTopRight = (atTop + atRight);

atBottomRight = (atBottom + atRight);

The destination rectangle passed in the theRect parameter of PlotIconSuite must

be exactly 32 by 32 pixels, 16 by 16 pixels, or 12 by 16 pixels for PlotIconSuite to

draw the icon without stretching it. If the destination rectangle is not one of these

standard sizes, PlotIconSuite expands or shrinks the icon to fit. After stretching or

shrinking the icon, the PlotIconSuite function aligns the icon according to the value

specified in the align parameter, moving the icon so that the edges of its mask align

with the specified side or direction.

C H A P T E R 5

Icon Utilities

Icon Utilities Reference 5-37

You can pass constants in the transform parameter to specify how you want the icon

modified, if at all, when plotted by PlotIconSuite. If you don’t want to specify any

transform constants, specify ttNone in the transform parameter.

CONST ttNone = $0;

You can use these constants in the transform parameter to transform the icon in a

manner analogous to certain Finder states for icons:

CONST

ttDisabled = $1;

ttOffline = $2;

ttOpen = $3;

ttSelected = $4000;

ttSelectedDisabled = (ttSelected + ttDisabled);

ttSelectedOffline = (ttSelected + ttOffline);

ttSelectedOpen = (ttSelected + ttOpen);

You can use another group of constants to color the icons using the Finder label colors.

To determine the appropriate label for a file’s icon, you can check bits 1–3 of the

fdFlags field in the file’s file information record. These bits contain a number from 0 to

7 indicating the label setting (0 indicates no label). Simply add the corresponding

constant from this list to the transform parameter when you call PlotIconSuite:

CONST

ttLabel1 = $0100;

ttLabel2 = $0200;

ttLabel3 = $0300;

ttLabel4 = $0400;

ttLabel5 = $0500;

ttLabel6 = $0600;

ttLabel7 = $0700;

If you don’t specify a label constant in the transform parameter, PlotIconSuite

displays the icon using the default label for that icon suite. When you create an icon suite

using GetIconSuite or NewIconSuite, these functions set the default label for the

suite to none. To set a new default label for an icon suite, use the SetSuiteLabel

function.

RESULT CODES

noErr 0 No error
noMaskFoundErr –1000 No mask found

C H A P T E R 5

Icon Utilities

5-38 Icon Utilities Reference

SEE ALSO

For examples of the use of the PlotIconSuite function, see Listing 5-2 and Listing 5-3,

starting on page 5-11.

For information on the SetSuiteLabel function, see page 5-40. See the chapter “Finder

Interface” in Inside Macintosh: Macintosh Toolbox Essentials for more information about the

file information record.

Performing Operations on Icons in an Icon Suite

You can perform an action on one or more icons in an icon suite using the

ForEachIconDo function.

ForEachIconDo

You can use the ForEachIconDo function to perform an action on one or more icons in

an icon suite.

FUNCTION ForEachIconDo (theSuite: Handle;

selector: IconSelectorValue;

action: IconAction;

yourDataPtr: Ptr): OSErr;

theSuite A handle to an icon suite.

selector A long integer whose bits determine which icons in the suite to perform
the operation on. See the description that follows for a list of constants
you can use in this parameter.

action A pointer to your icon action function.

yourDataPtr
A pointer to data that is passed to your icon action function.

DESCRIPTION

The ForEachIconDo function uses the icon action function identified by the action

parameter to perform an action on the specified icons in the icon suite. You can use these

constants in the selector parameter to specify the icons on which to perform the

action:

CONST

svLarge1Bit = $00000001; {'ICN#' resource}

svLarge4Bit = $00000002; {'icl4' resource}

svLarge8Bit = $00000004; {'icl8' resource}

svSmall1Bit = $00000100; {'ics#' resource}

svSmall4Bit = $00000200; {'ics4' resource}

C H A P T E R 5

Icon Utilities

Icon Utilities Reference 5-39

svSmall8Bit = $00000400; {'ics8' resource}

svMini1Bit = $00010000; {'icm#' resource}

svMini4Bit = $00020000; {'icm4' resource}

svMini8Bit = $00040000; {'icm8' resource}

svAllLargeData = $000000FF; {'ICN#', 'icl4', and 'icl8' }

 { resources}

svAllSmallData = $0000FF00; {'ics#', 'ics4', and 'ics8' }

 { resources}

svAllMiniData = $00FF0000; {'icm#', 'icm4', and 'icm8' }

 { resources}

svAll1BitData = (svLarge1Bit + svSmall1Bit + svMini1Bit);

svAll4BitData = (svLarge4Bit + svSmall4Bit + svMini4Bit);

svAll8BitData = (svLarge8Bit + svSmall8Bit + svMini8Bit);

svAllAvailableData= $FFFFFFFF; {all resources of given ID}

These constants are additive; that is, you can add several constants to include the

corresponding family members in the icon suite.

You can use the yourDataPtr parameter to pass a pointer to data or other information

required by your icon action function. Typically, you use this parameter to specify which

action your icon action function should perform.

ForEachIconDo calls your icon action function once for each type of icon specified in

the selector parameter. ForEachIconDo passes to your icon action function a handle

to the icon to perform the action on. Your icon action function should perform any action

as indicated by the yourDataPtr parameter and return a result code. ForEachIconDo

returns the result code returned by your icon action function. If your icon action

function returns a nonzero function result, ForEachIconDo immediately returns to the

application.

RESULT CODE

SEE ALSO

See “Icon Action Functions” beginning on page 5-57 for more information about icon

action functions.

noErr 0 No error

C H A P T E R 5

Icon Utilities

5-40 Icon Utilities Reference

Getting and Setting the Label for an Icon Suite

The GetSuiteLabel and SetSuiteLabel functions allow you to get and set the

default label associated with an icon suite.

GetSuiteLabel

You can use the GetSuiteLabel function to get the default label setting associated with

an icon suite.

FUNCTION GetSuiteLabel (theSuite: Handle): Integer;

theSuite A handle to an icon suite.

DESCRIPTION

The GetSuiteLabel function returns, as its function result, the default label setting

associated with the specified icon suite. The default label setting is an integer from 1 to 7

that specifies which of the label colors shown in the Finder’s Label menu is applied to

icons of that suite when your application displays them. GetSuiteLabel returns 0 if

the suite doesn’t have a label.

You can override the default label setting for a suite by specifying a label in the

transform parameter of the PlotIconSuite function.

SEE ALSO

To get information about the color and string for a specific label, you can use the

GetLabel function, which is described on page 5-41.

SetSuiteLabel

You can use the SetSuiteLabel function to specify the default label associated with an

icon suite.

FUNCTION SetSuiteLabel (theSuite: Handle;

theLabel: Integer): OSErr;

theSuite A handle to an icon suite.

theLabel An integer from 1 to 7 that specifies a label for the icon suite, or 0 to set
the icon suite’s label to none.

C H A P T E R 5

Icon Utilities

Icon Utilities Reference 5-41

DESCRIPTION

The SetSuiteLabel function sets the label associated with the specified icon suite. The

default label setting helps to determine which of the label colors shown in the Finder’s

Label menu is applied to icons of that suite when your application displays them.

You can override the default label setting for a suite by specifying a label in the

transform parameter of the PlotIconSuite function. For example, suppose the color

currently set for the third label displayed in the Finder’s Label menu is red, and the color

for the fourth label is green. If you set the default label for a suite using

SetSuiteLabel(theSuite,3), then draw an icon from the same suite using

PlotIconSuite and specifying ttNone in the transform parameter, the label color

red is applied to the icon. However, if you specify ttLabel4 in the transform

parameter of the PlotIconSuite function, the label color green is applied to the icon.

RESULT CODES

SEE ALSO

For a description of the PlotIconSuite function, see page 5-35.

Getting Label Information

If you wish to display an icon in your application with the label color and label string

associated with a specific label in the Finder, you can use the GetLabel function to get

the current label information for that label.

GetLabel

You can use the GetLabel function to get the color and string used for a given label in

the Label menu of the Finder and in the Labels control panel.

FUNCTION GetLabel (labelNumber: Integer; VAR labelColor: RGBColor;

 VAR labelString: Str255): OSErr;

labelNumber
An integer from 1 to 7 indicating which label’s information is requested.

labelColor
GetLabel returns, in this parameter, the color of the specified label.

labelString
GetLabel returns, in this parameter, the string associated with the
specified label.

noErr 0 No error
paramErr –50 The theLabel parameter is greater than 7

C H A P T E R 5

Icon Utilities

5-42 Icon Utilities Reference

DESCRIPTION

The GetLabel function returns the color and string used for a specified label in the

Label menu of the Finder and in the Labels control panel.

RESULT CODES

SEE ALSO

For information on the RGBColor record, see Inside Macintosh: Imaging With QuickDraw.

Disposing of Icon Suites

When you are finished with an icon suite, you can release the memory it occupies by

calling the DisposeIconSuite function.

DisposeIconSuite

You can use the DisposeIconSuite function to release the memory occupied by an

icon suite.

FUNCTION DisposeIconSuite (theIconSuite: Handle;

disposeData: Boolean): OSErr;

theIconSuite
A handle to the icon suite to be disposed of.

disposeData
A Boolean value indicating whether or not to dispose of handles in the
icon suite that are not associated with a resource fork.

DESCRIPTION

The DisposeIconSuite function releases the memory occupied by the specified icon

suite. However, DisposeIconSuite does not release the memory of any icons

explicitly associated with an open resource fork, that is, any handles to icon resource

data that your application added to the suite using GetIconSuite or

AddIconToSuite. For handles to icon data that your application added to the icon

suite using AddIconToSuite (for example, if your application read in an icon resource,

detached it, then added the handle to the suite), you can request that AddIconToSuite

release the memory associated with the handles.

noErr 0 No error
paramErr –50 The labelNumber parameter is greater than 7

C H A P T E R 5

Icon Utilities

Icon Utilities Reference 5-43

Set disposeData to TRUE to automatically release icon data that is associated with the

specified icon suite but not explicitly associated with a resource fork. If you set

disposeData to FALSE, DisposeIconSuite does not dispose of any icon data that is

associated with the specified icon suite.

RESULT CODES

SEE ALSO

For more information on icon suites, see “Creating an Icon Suite” beginning on page 5-30.

Converting an Icon Mask to a Region

The IconSuiteToRgn, IconIDToRgn, and IconMethodToRgn functions create a

region from an icon’s mask. IconSuiteToRgn and IconIDToRgn operate on an icon

identified by a handle to a suite and an icon ID, respectively. The IconMethodToRgn

function performs this operation on the icon mask that it obtains with the aid of

your icon getter function. Once you have a region that describes the icon mask for a

given icon, you can use it to perform accurate hit-testing and outline dragging of the

icon in your application.

IconSuiteToRgn

You can use the IconSuiteToRgn function to convert, to a region, the icon mask in an

icon suite. You specify a rectangle as one of the parameters to this function.

IconSuiteToRgn determines, from the size of the specified rectangle, which mask from

the icon suite to convert. Once it has determined which icon mask to convert,

IconSuiteToRgn uses the specified rectangle as the bounding box of the region.

FUNCTION IconSuiteToRgn (theRgn: RgnHandle; iconRect: Rect;

 align: IconAlignmentType;

 theIconSuite: Handle): OSErr;

theRgn IconSuiteToRgn returns a handle to the requested region in this
parameter. You must allocate memory for the region handle before calling
IconSuiteToRgn.

iconRect The rectangle in which the icon is to be drawn, specified in local
coordinates of the current graphics port. IconSuiteToRgn uses this
rectangle as the bounding box of the region. IconSuiteToRgn
determines, from the size of the rectangle specified in this parameter,
which icon mask to use from the icon suite.

noErr 0 No error
memWZErr –111 Attempt to operate on a free block

C H A P T E R 5

Icon Utilities

5-44 Icon Utilities Reference

align A value that specifies how IconSuiteToRgn should align the region
within the rectangle. See the description of PlotIconSuite on page 5-35
for a list of constants you can use in this parameter.

theIconSuite
A handle to an icon suite.

DESCRIPTION

The IconSuiteToRgn function modifies the region referred to by the handle in the

theRgn parameter. The returned region corresponds to the icon’s mask (the mask

defined by either an 'ICN#' or 'ics#' entry in an icon suite, according to the rectangle

and alignment specified in the iconRect and align parameters).

RESULT CODES

IconIDToRgn

You can use the IconIDToRgn function to convert, to a region, the icon mask in an icon

family. You specify a rectangle as one of the parameters to this function. IconIDToRgn

determines, from the size of the specified rectangle, which mask from the icon family to

convert. Once it has determined which icon mask to convert, IconIDToRgn uses the

specified rectangle as the bounding box of the region.

FUNCTION IconIDToRgn (theRgn: RgnHandle; iconRect: Rect;

 align: IconAlignmentType;

 iconID: Integer): OSErr;

theRgn IconIDToRgn returns a handle to the requested region in this parameter.
You must allocate memory for the region handle before calling
IconIDToRgn.

iconRect The rectangle in which to draw the icon, specified in local coordinates of
the current graphics port. IconIDToRgn uses this rectangle as the
bounding box of the region. IconIDToRgn determines, from the size of
the rectangle specified in this parameter, which icon mask to use from the
icon family specified by iconID.

align A value that specifies how IconIDToRgn should align the mask within
the rectangle. See the description of PlotIconID on page 5-20 for a list of
constants you can use in this parameter.

iconID The resource ID of the icon for which to create a region.

noErr 0 No error
noMaskFoundErr –1000 No mask found

C H A P T E R 5

Icon Utilities

Icon Utilities Reference 5-45

DESCRIPTION

The IconIDToRgn function modifies the region referred to by the handle in the theRgn

parameter. The returned region corresponds to the icon’s mask (the mask defined by

either an 'ICN#' or 'ics#' resource in an icon family, according to the rectangle and

alignment specified in the iconRect and align parameters).

RESULT CODES

IconMethodToRgn

You can use the IconMethodToRgn function to convert, to a region, the mask for an

icon that IconMethodToRgn obtains with the aid of your icon getter function.

FUNCTION IconMethodToRgn (theRgn: RgnHandle; iconRect: Rect;

 align: IconAlignmentType;

 theMethod: IconGetter;

 yourDataPtr: Ptr): OSErr;

theRgn IconMethodToRgn returns a handle to the requested region in this
parameter. You must allocate memory for the region handle before calling
IconMethodToRgn.

iconRect The rectangle in which to draw the icon, specified in local coordinates of
the current graphics port. The IconMethodToRgn function obtains the
data for the icon mask from your icon getter function and then converts
the icon mask to a region. IconMethodToRgn uses the rectangle
specified in this parameter as the bounding box of the region.

align A value that specifies how IconMethodToRgn should align the region
within the rectangle. See the description of PlotIconID on page 5-20 for
a list of constants you can use in this parameter.

theMethod A pointer to an icon getter function.

yourDataPtr
A pointer to data that is passed to your icon getter function.

DESCRIPTION

The IconMethodToRgn function modifies the region referred to by the handle in the

theRgn parameter. The region corresponds to the icon’s mask (as returned by your icon

getter function, and according to the rectangle and alignment specified in the iconRect

and align parameters).

noErr 0 No error
noMaskFoundErr –1000 No mask found

C H A P T E R 5

Icon Utilities

5-46 Icon Utilities Reference

IconMethodToRgn passes to your icon getter function the type of the icon to get and

the value specified in the yourDataPtr parameter. The IconMethodToRgn function

examines the size of the rectangle and requests the appropriate icon from your icon

getter function—an icon of icon type 'ICN#' or 'ics#'. Your icon getter function

should return a handle to the data of the requested icon type. The IconMethodToRgn

function extracts the mask from the icon data that your icon getter function returns. If

your icon getter function returns data that does not correspond to an icon of type

'ICN#' or type 'ics#', IconMethodToRgn attempts to generate a mask from the

returned data.

Your icon getter function can get the data for the icon and its mask using whatever

method is appropriate to your application. For example, your application might

maintain its own cache of icons (and pass a pointer to it in the yourDataPtr parameter)

or use its icon getter function to get an icon from the desktop database.

RESULT CODES

Determining Whether a Point or Rectangle Is Within an Icon

You can use several Icon Utilities routines to perform hit-testing for points or rectangles

against a specified icon. You specify a destination rectangle and alignment of the icon

within the rectangle as parameters to these functions. The functions use this information

to determine whether a specified point or rectangle is within the icon as it appears in the

destination rectangle.

The PtInIconSuite and PtInIconID functions hit-test a specified point against the

appropriate icon mask from an icon suite or icon family. The PtInIconMethod function

hit-tests a specified point against an icon mask obtained with the aid of your icon getter

function.

The RectInIconSuite and RectInIconID functions hit-test a specified rectangle

against the appropriate icon mask from an icon suite or icon family. The

RectInIconMethod function hit-tests a specified rectangle against an icon mask

obtained with the aid of your icon getter function.

noErr 0 No error
noMaskFoundErr –1000 No mask found

C H A P T E R 5

Icon Utilities

Icon Utilities Reference 5-47

PtInIconSuite

You can use the PtInIconSuite function to determine whether a specified point is

within an icon. (A point is considered to be within an icon if the point is within the icon’s

mask.) For example, you might use this function to determine whether a user clicked an

icon in a window of your application. You specify as parameters to PtInIconSuite the

same rectangle and alignment that you last used to draw the icon. PtInIconSuite uses

the size of this rectangle to determine which icon mask from the icon suite to use for the

operation. The PtInIconSuite function uses the location of this rectangle (along with

the alignment) to determine whether a specified point is within the icon.

FUNCTION PtInIconSuite (testPt: Point; iconRect: Rect;

align: IconAlignmentType;

theIconSuite: Handle): Boolean;

testPt The point to be tested, specified in local coordinates of the current
graphics port.

iconRect The rectangle in which the icon appears, specified in local coordinates
of the current graphics port. PtInIconSuite determines, from the
size of the rectangle specified in this parameter, which icon mask from the
icon suite specified by theIconSuite to test the point against.
PtInIconSuite then uses the location of this rectangle (and the location
of the icon in the rectangle) to determine whether the specified point is
within the icon.

align A value that specifies how the icon against which to hit-test is aligned
within the rectangle specified by iconRect. See the description of
PlotIconSuite on page 5-35 for a list of constants you can use in this
parameter.

theIconSuite
A handle to an icon suite.

DESCRIPTION

The PtInIconSuite function hit-tests the point specified by testPt against the

appropriate icon mask from the specified icon suite. PtInIconSuite determines which

icon mask to use ('ICN#' or 'ics#') according to the rectangle specified in iconRect.

The parameters iconRect and align should be the same as when the icon was last

drawn. The PtInIconSuite function returns TRUE if the point is in the icon mask and

FALSE if it is not.

C H A P T E R 5

Icon Utilities

5-48 Icon Utilities Reference

PtInIconID

You can use the PtInIconID function to determine whether a specified point is within

an icon. (A point is considered to be within an icon if the point is within the icon’s mask.)

For example, you might use this function to determine whether a user clicked an icon in

a window of your application. You specify as parameters to PtInIconID the same

rectangle and alignment that you last used to draw the icon. PtInIconID uses the size

of this rectangle to determine which icon mask from the icon family to use for the

operation. The PtInIconID function uses the location of this rectangle (along with the

alignment) to determine whether a specified point is within the icon.

FUNCTION PtInIconID (testPt: Point; iconRect: Rect;

align: IconAlignmentType;

iconID: Integer): Boolean;

testPt The point to be tested, specified in local coordinates of the current
graphics port.

iconRect The rectangle in which the icon appears, specified in local coordinates of
the current graphics port. PtInIconID determines, from the size of the
rectangle specified in this parameter, which icon mask from the icon
family specified by iconID to test the point against. PtInIconID then
uses the location of this rectangle (and the alignment of the icon in the
rectangle) to determine whether the specified point is within the icon.

align A value that specifies how the icon against which to hit-test is aligned
within the rectangle specified by iconRect. See the description of
PlotIconID on page 5-20 for a list of constants you can use in this
parameter.

iconID A resource ID for an icon family.

DESCRIPTION

The PtInIconID function hit-tests the point specified by testPt against the

appropriate icon mask from the icon family identified by iconID, using the destination

rectangle and alignment specified by iconRect and align. The parameters iconRect

and align should be the same as when the icon was last drawn. The PtInIconID

function returns TRUE if the point is in the icon mask and FALSE if it is not.

C H A P T E R 5

Icon Utilities

Icon Utilities Reference 5-49

PtInIconMethod

You can use the PtInIconMethod function to determine whether a specified point is

within an icon. (A point is considered to be within an icon if the point is within the icon’s

mask.) The PtInIconMethod function obtains the icon to test against with the aid of

your icon getter function.

FUNCTION PtInIconMethod (testPt: Point; iconRect: Rect;

 align: IconAlignmentType;

 theMethod: IconGetter;

 yourDataPtr: Ptr): Boolean;

testPt The point to be tested, specified in local coordinates of the current
graphics port.

iconRect The rectangle in which the icon appears, specified in local coordinates of
the current graphics port.

align A value that specifies how the icon against which to hit-test is aligned
within the rectangle specified by iconRect. See the description of
PlotIconID on page 5-20 for a list of constants you can use in this
parameter.

theMethod A pointer to an icon getter function.

yourDataPtr
A pointer to data that is passed to your icon getter function.

DESCRIPTION

The PtInIconMethod function hit-tests the point specified by testPt against an icon

obtained with the aid of an icon getter function, using the destination rectangle and

alignment specified by iconRect and align. The parameters iconRect and align

should be the same as when the icon was last drawn. The PtInIconMethod function

returns TRUE if the point is in the icon mask and FALSE if it is not.

PtInIconMethod passes to your icon getter function the type of icon your function

should retrieve (either 'ICN#' or 'ics#') and also passes the value specified in the

yourDataPtr parameter. The PtInIconMethod function examines the size of the

specified rectangle and requests the appropriate icon from your icon getter function.

Your icon getter function should return a handle to the requested icon’s data. The

PtInIconMethod function extracts the mask from the icon data that your icon getter

function returns. If your icon getter function returns data that does not correspond to an

icon of type 'ICN#' or type 'ics#', PtInIconMethod attempts to generate a mask

from the returned data.

C H A P T E R 5

Icon Utilities

5-50 Icon Utilities Reference

Your icon getter function can get the icon’s data using whatever method is appropriate

to your application. For example, your application might maintain its own cache of icons

(and pass a pointer to it in the yourDataPtr parameter) or use its icon getter function

to get an icon from the desktop database.

SEE ALSO

For more information about icon getter functions, see page 5-58.

RectInIconSuite

You can use the RectInIconSuite function to hit-test a rectangle against the

appropriate icon mask from an icon suite for a specified destination rectangle and

alignment.

FUNCTION RectInIconSuite (testRect: Rect; iconRect: Rect;

 align: IconAlignmentType;

 theIconSuite: Handle): Boolean;

testRect The rectangle to be tested, specified in local coordinates of the current
graphics port.

iconRect The rectangle in which the icon appears, specified in local coordinates of
the current graphics port. Like PtInIconSuite, RectInIconSuite
determines, from the size of the rectangle specified in this parameter,
which icon mask from the icon suite specified by theIconSuite to test
the testRect parameter against.

align A value that specifies how the icon against which to hit-test is aligned
within the rectangle specified by iconRect. See the description of
PlotIconSuite on page 5-35 for a list of constants you can use in this
parameter.

theIconSuite
A handle to an icon suite.

DESCRIPTION

The RectInIconSuite function hit-tests the rectangle specified by testRect

against the appropriate icon mask from the icon suite as it appears in the iconRect

rectangle. The parameters iconRect and align should be the same as when the icon

was last drawn. The RectInIconSuite function returns TRUE if the rectangle

intersects the icon mask and FALSE if it doesn’t.

C H A P T E R 5

Icon Utilities

Icon Utilities Reference 5-51

For example, if the coordinates of the iconRect parameter are (100,100,116,116) and the

icon cache contains entries for each icon family member, RectInIconSuite

uses the icon mask defined by the 'ics#' entry. The function aligns this mask

(according to the align parameter) within the iconRect rectangle. The function then

intersects the rectangle specified by testRect with the icon mask in the iconRect

rectangle. Continuing with this example, if the icon mask is left-aligned so that its

rightmost pixel appears at coordinates (112,112) and the coordinates of testRect are

(114,114,130,130), then RectInIconSuite returns FALSE.

RectInIconID

You can use the RectInIconID function to hit-test a rectangle against the appropriate

icon mask from an icon family for a specified destination rectangle and alignment.

FUNCTION RectInIconID (testRect: Rect; iconRect: Rect;

 align: IconAlignmentType;

 iconID: Integer): Boolean;

testRect The rectangle to be tested, specified in local coordinates of the current
graphics port.

iconRect The rectangle in which the icon appears, specified in local coordinates of
the current graphics port. Like PtInIconID, RectInIconID
determines, from the size of the rectangle specified in this parameter,
which icon mask from the icon family to test the testRect parameter
against.

align A value that specifies how the icon against which to hit-test is aligned
within the rectangle specified by iconRect. See the description of
PlotIconID on page 5-20 for a list of constants you can use in this
parameter.

iconID A resource ID for an icon family.

DESCRIPTION

The RectInIconID function hit-tests the rectangle specified by testRect against the

appropriate icon mask from the icon family as it appears in the iconRect rectangle. The

parameters iconRect and align should be the same as when the icon was last drawn.

The RectInIconID function returns TRUE if the rectangle intersects the icon mask and

FALSE if it doesn’t.

C H A P T E R 5

Icon Utilities

5-52 Icon Utilities Reference

RectInIconMethod

You can use the RectInIconMethod function to hit-test a rectangle against an icon

obtained by your icon getter function for a specified destination rectangle and alignment.

FUNCTION RectInIconMethod (testRect: Rect; iconRect: Rect;

align: IconAlignmentType;

theMethod: IconGetter;

yourDataPtr: Ptr): Boolean;

testRect The rectangle to be tested, specified in local coordinates of the current
graphics port.

iconRect The rectangle in which the icon appears, specified in local coordinates of
the current graphics port.

align A value that specifies how the icon against which to hit-test is aligned
within the rectangle specified by iconRect. See the description of
PlotIconID on page 5-20 for a list of constants you can use in this
parameter.

theMethod A pointer to an icon getter function.

yourDataPtr
A pointer to data that is passed to your icon getter function.

DESCRIPTION

The RectInIconMethod function hit-tests the rectangle specified by testRect against

an icon mask obtained with the aid of an icon getter function and as the icon appears in

the destination rectangle. The parameters iconRect and align should be the same as

when the icon was last drawn. The function returns TRUE if the rectangle intersects the

icon mask and FALSE if it doesn’t.

RectInIconMethod passes to your icon getter function the type of the icon your

function should retrieve and the value specified in the yourDataPtr parameter. The

RectInIconMethod function examines the size of the rectangle and requests the

appropriate icon from your icon getter function—an icon of icon type 'ICN#' or

'ics#'. Your icon getter function should return a handle to the data of the requested

icon type. The RectInIconMethod function extracts the mask from the icon data that

your icon getter function returns. If your icon getter function returns data that does not

correspond to an icon of type 'ICN#' or type 'ics#', RectInIconMethod attempts to

generate a mask from the returned data.

Your icon getter function can get the data for the icon and its mask using whatever

method is appropriate to your application. For example, your application might

maintain its own cache of icons (and pass a pointer to it in the yourDataPtr parameter)

or use its icon getter function to get an icon from the desktop database.

C H A P T E R 5

Icon Utilities

Icon Utilities Reference 5-53

SEE ALSO

For more information about icon getter functions, see page 5-58.

Working With Icon Caches

All the Icon Utilities routines that accept a handle to an icon suite also accept a handle to

an icon cache. An icon cache is like an icon suite except that it also contains a pointer

to an application-defined icon getter function and a pointer to data that can be used as a

reference constant. An icon cache typically does not contain handles to the icon resources

for all icon family members. Instead, if the icon cache does not contain an entry for a

specific type of icon in an icon family, the Icon Utilities routines call your application’s

icon getter function to retrieve the data for that icon type.

You can use the routines described in this section to create and manipulate icon caches.

To create an empty icon cache, you can use the MakeIconCache function, much as you

use the NewIconSuite function to create an empty icon suite. Before drawing an icon in

an icon cache, you can use the LoadIconCache function to load icon data for a specified

destination rectangle, bit depth of the display device, and alignment.

To get and set the data associated with an icon cache or the icon getter function used

with an icon cache, you can use the GetIconCacheData, SetIconCacheData,

GetIconCacheProc, and SetIconCacheProc functions.

MakeIconCache

You can use the MakeIconCache function to get a handle to an empty icon cache, to

which you can add icon data using the LoadIconCache function.

FUNCTION MakeIconCache (VAR theHandle: Handle;

makeIcon: IconGetter;

yourDataPtr: UNIV Ptr): OSErr;

theHandle MakeIconCache allocates memory for a new icon cache and returns a
handle to the new icon cache in this parameter.

makeIcon A pointer to an icon getter function to associate with the icon cache.

yourDataPtr
A pointer to the data to associate with the icon cache.

DESCRIPTION

MakeIconCache returns a handle to an empty icon cache in the parameter theHandle.

The MakeIconCache function associates the icon getter function and the value specified

in the parameters makeIcon and yourDataPtr with the new icon cache.

C H A P T E R 5

Icon Utilities

5-54 Icon Utilities Reference

RESULT CODES

LoadIconCache

You can use the LoadIconCache function to load into an icon cache a handle to the

appropriate icon data for a specified destination rectangle and the current bit depth, for

drawing later with a specified alignment and transform.

FUNCTION LoadIconCache (theRect: Rect; align: IconAlignmentType;

transform: IconTransformType;

theIconCache: Handle): OSErr;

theRect The rectangle in which to draw the icon, specified in local coordinates of
the current graphics port. LoadIconCache uses the rectangle specified in
this parameter and the bit depth of the display device to determine which
icon type to load into the cache.

align A value that specifies how to align the icon within the rectangle. See the
description of PlotIconSuite on page 5-35 for a list of constants you
can use in this parameter.

transform A value that specifies how to modify the appearance of the icon. See the
description of PlotIconSuite beginning on page 5-35 for a list of
constants you can use in this parameter.

theIconCache
A handle to the icon cache into which to load the icon data.

DESCRIPTION

You can load icon data into an icon cache with the LoadIconCache function for

drawing at a later time. For example, this can be useful if you suspect that the icon may

be drawn at a time not convenient for loading resource data (for instance, when the

resource fork isn’t in the current resource chain). The LoadIconCache function uses the

same criteria as PlotIconSuite to select the icon to load.

LoadIconCache uses the icon getter function associated with the icon cache to get the

appropriate icon. The icon getter function returns a handle to the requested icon data,

and LoadIconCache adds the returned handle to the entry for that icon in the icon

cache.

noErr 0 No error
memFullErr –108 Not enough memory in heap zone

C H A P T E R 5

Icon Utilities

Icon Utilities Reference 5-55

After calling LoadIconCache, you can pass the same parameters to PlotIconSuite

to plot the icon data. Note that if you specify an alignment when you call

LoadIconCache, then call PlotIconSuite and specify no alignment,

PlotIconSuite draws the icon using the alignment that you originally specified to

LoadIconCache.

RESULT CODES

SEE ALSO

For a description of the PlotIconSuite function, see page 5-35.

GetIconCacheData

You can use the GetIconCacheData function to get the data associated with an icon

cache.

FUNCTION GetIconCacheData (theCache: Handle;

VAR theData: Ptr): OSErr;

theCache A handle to the icon cache whose data is desired.

theData GetIconCacheData returns, in this parameter, a pointer to the data
associated with the icon cache.

DESCRIPTION

The GetIconCacheData function returns, in the parameter theData, a pointer to the

data associated with the specified icon cache. You associate data with an icon cache

when you first create the cache using MakeIconCache. You can also set this data using

SetIconCacheData.

RESULT CODES

noErr 0 No error
noMaskFoundErr –1000 No mask found

noErr 0 No error
paramErr –50 The parameter theCache must be a handle to an icon cache

C H A P T E R 5

Icon Utilities

5-56 Icon Utilities Reference

SetIconCacheData

You can use the SetIconCacheData function to set the data associated with an icon

cache.

FUNCTION SetIconCacheData (theCache: Handle; theData: Ptr): OSErr;

theCache A handle to the icon cache whose data is to be set.

theData A pointer to the data to set.

DESCRIPTION

The SetIconCacheData function sets the data associated with the specified icon cache

to the data identified by theData parameter.

RESULT CODES

GetIconCacheProc

You can use the GetIconCacheProc function to get the icon getter function associated

with an icon cache.

FUNCTION GetIconCacheProc (theCache: Handle;

VAR theProc: IconGetter): OSErr;

theCache A handle to the icon cache whose icon getter function is desired.

theProc GetIconCacheProc returns a pointer to the requested icon getter
function in this parameter.

DESCRIPTION

The GetIconCacheProc function returns, in the parameter theProc, a pointer to the

icon getter function currently associated with the specified icon cache.

RESULT CODES

noErr 0 No error
paramErr –50 The parameter theCache must be a handle to an icon cache

noErr 0 No error
paramErr –50 The parameter theCache must be a handle to an icon cache

C H A P T E R 5

Icon Utilities

Icon Utilities Reference 5-57

SetIconCacheProc

You can use the SetIconCacheProc function to set the icon getter function associated

with an icon cache.

FUNCTION SetIconCacheProc (theCache: Handle;

theProc: IconGetter): OSErr;

theCache A handle to the icon cache whose icon getter function is to be set.

theProc A pointer to the icon getter function to set.

DESCRIPTION

The SetIconCacheProc function sets the icon getter function for the specified icon

cache to the icon getter function specified by the parameter theProc.

RESULT CODES

Application-Defined Routines

Your application can provide two functions for use by Icon Utilities routines. If you want

to use the ForEachIconDo function to perform operations on icons, you must provide

an icon action function. If you use icon caches or use any of the routines that end in

Method, you must provide at least one icon getter function.

Icon Action Functions

You can perform operations on every icon in an icon suite by providing a pointer to an

icon action function as a parameter to the ForEachIconDo function. The

ForEachIconDo function calls your icon action function for specified icon resource

types.

noErr 0 No error
paramErr –50 The parameter theCache must be a handle to an icon cache

C H A P T E R 5

Icon Utilities

5-58 Icon Utilities Reference

MyIconAction

The action parameter of ForEachIconDo must point to a function that uses this

syntax:

FUNCTION MyIconAction (theType: ResType; VAR theIcon: Handle;

 yourDataPtr: Ptr): OSErr;

theType The resource type of the icon.

theIcon A handle to the icon on which to perform the operation.

yourDataPtr
A pointer to data as specified in the yourDataPtr parameter of
the ForEachIconDo function. When your application calls
ForEachIconDo, it typically provides in the yourDataPtr parameter a
value that identifies the action your function should perform.

DESCRIPTION

The ForEachIconDo function uses your icon action function to perform actions on

specified icons in an icon suite. Your icon action function should return a result code

indicating whether it sucessfully performed the action on the icon.

RESULT CODE

SEE ALSO

For a description of the ForEachIconDo function, see page 5-38.

Icon Getter Functions

If you use icon caches, you must provide at least one icon getter function. You provide a

pointer to an icon getter function as a parameter to the MakeIconCache function.

Subsequent calls to Icon Utilities routines that use icon types not present in the icon

cache use the icon getter function associated with the icon cache to return a handle to the

icon data.

You can also specify an icon getter function as a parameter to Icon Utilities routines that

end in Method. Like Icon Utilities routines that work with icon caches, the icon getter

function that you provide as a parameter to PlotIconMethod should return a handle to

the requested icon’s data. Note that the icon getter function that you provide as a

parameter to IconMethodToRgn, PtInIconMethod, and RectInIconMethod should

also return a handle to the requested icon; these three functions then extract the icon

mask from the icon data your icon getter function returns.

noErr 0 No error

C H A P T E R 5

Icon Utilities

Icon Utilities Reference 5-59

MyIconGetter

Here is the syntax of an icon getter function:

FUNCTION MyIconGetter (theType: ResType;

 yourDataPtr: Ptr): Handle;

theType The resource type of the icon.

yourDataPtr
If your icon getter was called by an icon cache routine, this parameter
contains a pointer to the data associated with the icon cache. Otherwise,
this parameter contains the value your application specified in the
yourDataPtr parameter. For icon caches, you initially set this value
when you first create a cache using MakeIconCache. You can change this
value using SetIconCacheData. The icon getter function can use this
data as needed.

DESCRIPTION

An icon getter function should return as its function result a handle to the requested

icon’s data.

The MakeIconCache function takes a pointer to an icon getter function for use with a

new icon cache. To get and set an existing icon cache’s icon getter function, use the

GetIconCacheProc and SetIconCacheProc functions. You can also specify an icon

getter function for use by the PlotIconMethod, IconMethodToRgn,

PtInIconMethod, and RectInIconMethod functions.

SEE ALSO

For descriptions of the MakeIconCache, GetIconCacheProc, and

SetIconCacheProc functions, see “Working With Icon Caches” beginning on

page 5-53.

For information on the PlotIconMethod function, see page 5-22. For a description of

the IconMethodToRgn function, see “Converting an Icon Mask to a Region” beginning

on page 5-43.

For descriptions of the PtInIconMethod and RectInIconMethod functions, see

“Determining Whether a Point or Rectangle Is Within an Icon” beginning on page 5-46.

C H A P T E R 5

Icon Utilities

5-60 Summary of the Icon Utilities

Summary of the Icon Utilities

Pascal Summary

Constants

CONST

gestaltIconUtilitiesAttr = 'icon'; {Icon Utilities attributes}

gestaltIconUtilitiesPresent= 0; {check this bit in the }

 { response parameter}

{types for icon families}

large1BitMask = 'ICN#'; {icon list resource for large icons}

large4BitData = 'icl4'; {large 4-bit color icon resource}

large8BitData = 'icl8'; {large 8-bit color icon resource}

small1BitMask = 'ics#'; {icon list resource for small icons}

small4BitData = 'ics4'; {small 4-bit color icon resource}

small8BitData = 'ics8'; {small 8-bit color icon resource}

mini1BitMask = 'icm#'; {icon list resource for mini icons}

mini4BitData = 'icm4'; {4-bit color mini icon}

mini8BitData = 'icm8'; {8-bit color mini icon resource}

{IconAlignmentType values}

atNone = $0; {no alignment}

atVerticalCenter = $1; {centered vertically}

atTop = $2; {top aligned}

atBottom = $3; {bottom aligned}

atHorizontalCenter = $4; {centered horizontally}

atLeft = $8; {left aligned}

atRight = $C; {right aligned}

atAbsoluteCenter = (atVerticalCenter + atHorizontalCenter);

atCenterTop = (atTop + atHorizontalCenter);

atCenterBottom = (atBottom + atHorizontalCenter);

atCenterLeft = (atVerticalCenter + atLeft);

atTopLeft = (atTop + atLeft);

atBottomLeft = (atBottom + atLeft);

atCenterRight = (atVerticalCenter + atRight);

atTopRight = (atTop + atRight);

atBottomRight = (atBottom + atRight);

C H A P T E R 5

Icon Utilities

Summary of the Icon Utilities 5-61

{IconTransformType values}

ttNone = $0;

ttDisabled = $1;

ttOffline = $2;

ttOpen = $3;

ttLabel1 = $0100;

ttLabel2 = $0200;

ttLabel3 = $0300;

ttLabel4 = $0400;

ttLabel5 = $0500;

ttLabel6 = $0600;

ttLabel7 = $0700;

ttSelected = $4000;

ttSelectedDisabled = (ttSelected + ttDisabled);

ttSelectedOffline = (ttSelected + ttOffline);

ttSelectedOpen = (ttSelected + ttOpen);

{IconSelectorValue masks}

svLarge1Bit = $00000001; {'ICN#' resource}

svLarge4Bit = $00000002; {'icl4' resource}

svLarge8Bit = $00000004; {'icl8' resource}

svSmall1Bit = $00000100; {'ics#' resource}

svSmall4Bit = $00000200; {'ics4' resource}

svSmall8Bit = $00000400; {'ics8' resource}

svMini1Bit = $00010000; {'icm#' resource}

svMini4Bit = $00020000; {'icm4' resource}

svMini8Bit = $00040000; {'icm8' resource}

svAllLargeData = $000000FF; {'ICN#', 'icl4', and 'icl8' }

 { resources}

svAllSmallData = $0000FF00; {'ics#', 'ics4', and 'ics8' }

 { resources}

svAllMiniData = $00FF0000; {'icm#', 'icm4', and 'icm8' }

 { resources}

svAll1BitData = (svLarge1Bit + svSmall1Bit + svMini1Bit);

svAll4BitData = (svLarge4Bit + svSmall4Bit + svMini4Bit);

svAll8BitData = (svLarge8Bit + svSmall8Bit + svMini8Bit);

svAllAvailableData = $FFFFFFFF; {all resources of given ID}

C H A P T E R 5

Icon Utilities

5-62 Summary of the Icon Utilities

Data Types

TYPE

CIcon =

RECORD

iconPMap: PixMap; {the icon's pixel map}

iconMask: BitMap; {the icon's mask}

iconBMap: BitMap; {the icon's bitmap}

iconData: Handle; {handle to the icon's data}

iconMaskData: {the data for the icon's mask}

ARRAY[0..0] OF Integer;

END;

CIconPtr = ^CIcon; {pointer to color icon record}

CIconHandle = ^CIconPtr; {handle to color icon record}

IconSelectorValue = LongInt; {icon selector type}

IconAlignmentType = Integer; {icon alignment type}

IconTransformType = Integer; {icon transform type}

IconAction = ProcPtr; {pointer to action function}

IconGetter = ProcPtr; {pointer to icon getter function}

Icon Utilities Routines

Drawing Icons From Resources

FUNCTION PlotIconID (theRect: Rect; align: IconAlignmentType;
transform: IconTransformType;
theResID: Integer): OSErr;

FUNCTION PlotIconMethod (theRect: Rect; align: IconAlignmentType;
transform: IconTransformType;
theMethod: IconGetter;
yourDataPtr: UNIV Ptr): OSErr;

PROCEDURE PlotIcon (theRect: Rect; theIcon: Handle);

FUNCTION PlotIconHandle (theRect: Rect; align: IconAlignmentType;
transform: IconTransformType;
theIcon: Handle): OSErr;

PROCEDURE PlotCIcon (theRect: Rect; theIcon: CIconHandle);

FUNCTION PlotCIconHandle (theRect: Rect; align: IconAlignmentType;
transform: IconTransformType;
theCIcon: CIconHandle): OSErr;

C H A P T E R 5

Icon Utilities

Summary of the Icon Utilities 5-63

FUNCTION PlotSICNHandle (theRect: Rect; align: IconAlignmentType;
transform: IconTransformType;
theSICN: Handle): OSErr;

Getting Icons From Resources That Don’t Belong to an Icon Family

FUNCTION GetIcon (iconID: Integer): Handle;

FUNCTION GetCIcon (iconID: Integer): CIconHandle;

Disposing of Icons

PROCEDURE DisposeCIcon (theIcon: CIconHandle);

Creating an Icon Suite

FUNCTION GetIconSuite (VAR theIconSuite: Handle; theResID: Integer;
selector: IconSelectorValue): OSErr;

FUNCTION NewIconSuite (VAR theIconSuite: Handle): OSErr;

FUNCTION AddIconToSuite (theIconData: Handle; theSuite: Handle;
theType: ResType): OSErr;

Getting Icons From an Icon Suite

FUNCTION GetIconFromSuite (VAR theIconData: Handle; theSuite: Handle;
theType: ResType): OSErr;

Drawing Icons From an Icon Suite

FUNCTION PlotIconSuite (theRect: Rect; align: IconAlignmentType;
transform: IconTransformType;
theIconSuite: Handle): OSErr;

Performing Operations on Icons in an Icon Suite

FUNCTION ForEachIconDo (theSuite: Handle; selector: IconSelectorValue;
action: IconAction; yourDataPtr: Ptr): OSErr;

Getting and Setting the Label for an Icon Suite

FUNCTION GetSuiteLabel (theSuite: Handle): Integer;

FUNCTION SetSuiteLabel (theSuite: Handle; theLabel: Integer): OSErr;

Getting Label Information

FUNCTION GetLabel (labelNumber: Integer; VAR labelColor: RGBColor;
VAR labelString: Str255): OSErr;

C H A P T E R 5

Icon Utilities

5-64 Summary of the Icon Utilities

Disposing of Icon Suites

FUNCTION DisposeIconSuite (theIconSuite: Handle;
disposeData: Boolean): OSErr;

Converting an Icon Mask to a Region

FUNCTION IconSuiteToRgn (theRgn: RgnHandle; iconRect: Rect;
align: IconAlignmentType;
theIconSuite: Handle): OSErr;

FUNCTION IconIDToRgn (theRgn: RgnHandle; iconRect: Rect;
align: IconAlignmentType;
iconID: Integer): OSErr;

FUNCTION IconMethodToRgn (theRgn: RgnHandle; iconRect: Rect;
align: IconAlignmentType;
theMethod: IconGetter;
yourDataPtr: Ptr): OSErr;

Determining Whether a Point or Rectangle Is Within an Icon

FUNCTION PtInIconSuite (testPt: Point; iconRect: Rect;
align: IconAlignmentType;
theIconSuite: Handle): Boolean;

FUNCTION PtInIconID (testPt: Point; iconRect: Rect;
align: IconAlignmentType;
iconID: Integer): Boolean;

FUNCTION PtInIconMethod (testPt: Point; iconRect: Rect;
align: IconAlignmentType;
theMethod: IconGetter;
yourDataPtr: Ptr): Boolean;

FUNCTION RectInIconSuite (testRect: Rect; iconRect: Rect;
align: IconAlignmentType;
theIconSuite: Handle): Boolean;

FUNCTION RectInIconID (testRect: Rect; iconRect: Rect;
align: IconAlignmentType;
iconID: Integer): Boolean;

FUNCTION RectInIconMethod (testRect: Rect; iconRect: Rect;
align: IconAlignmentType;
theMethod: IconGetter;
yourDataPtr: Ptr): Boolean;

Working With Icon Caches

FUNCTION MakeIconCache (VAR theHandle: Handle;
makeIcon: IconGetter;
yourDataPtr: UNIV Ptr): OSErr;

C H A P T E R 5

Icon Utilities

Summary of the Icon Utilities 5-65

FUNCTION LoadIconCache (theRect: Rect; align: IconAlignmentType;
transform: IconTransformType;
theIconCache: Handle): OSErr;

FUNCTION GetIconCacheData (theCache: Handle; VAR theData: Ptr): OSErr;

FUNCTION SetIconCacheData (theCache: Handle; theData: Ptr): OSErr;

FUNCTION GetIconCacheProc (theCache: Handle;
VAR theProc: IconGetter): OSErr;

FUNCTION SetIconCacheProc (theCache: Handle; theProc: IconGetter): OSErr;

Application-Defined Routines

Icon Action Functions

FUNCTION MyIconAction (theType: ResType; VAR theIcon: Handle;
yourDataPtr: Ptr): OSErr;

Icon Getter Functions

FUNCTION MyIconGetter (theType: ResType; yourDataPtr: Ptr): Handle;

C Summary

Constants

enum {

#define gestaltIconUtilitiesAttr 'icon' /*Icon Utilities attributes*/

gestaltIconUtilitiesPresent = 0 /*check this bit in the */

/* response parameter*/

};

/*types for icon families*/

#define large1BitMask 'ICN#' /*icon list resource for large icons*/

#define large4BitData 'icl4' /*large 4-bit color icon resource*/

#define large8BitData 'icl8' /*large 8-bit color icon resource*/

#define small1BitMask 'ics#' /*icon list resource for small icons*/

#define small4BitData 'ics4' /*small 4-bit color icon resource*/

#define small8BitData 'ics8' /*small 8-bit color icon resource*/

#define mini1BitMask 'icm#' /*icon list resource for mini icons*/

#define mini4BitData 'icm4' /*mini 4-bit color icon resource*/

#define mini8BitData 'icm8' /*mini 4-bit color icon resource*/

C H A P T E R 5

Icon Utilities

5-66 Summary of the Icon Utilities

enum { /*IconAlignmentType values*/

atNone = 0x0, /*no alignment*/

atVerticalCenter = 0x1, /*centered vertically*/

atTop = 0x2, /*top aligned*/

atBottom = 0x3, /*bottom aligned*/

atHorizontalCenter = 0x4, /*centered horizontally*/

atAbsoluteCenter = (atVerticalCenter | atHorizontalCenter),

atCenterTop = (atTop | atHorizontalCenter),

atCenterBottom = (atBottom | atHorizontalCenter),

atLeft = 0x8, /*left aligned*/

atCenterLeft = (atVerticalCenter | atLeft),

atTopLeft = (atTop | atLeft),

atBottomLeft = (atBottom | atLeft),

atRight = 0xC, /*right aligned*/

atCenterRight = (atVerticalCenter | atRight),

atTopRight = (atTop | atRight),

atBottomRight = (atBottom | atRight),

};

enum { /*IconTransformType values*/

ttNone = 0x0,

ttDisabled = 0x1,

ttOffline = 0x2,

ttOpen = 0x3,

ttLabel1 = 0x0100,

ttLabel2 = 0x0200,

ttLabel3 = 0x0300,

ttLabel4 = 0x0400,

ttLabel5 = 0x0500,

ttLabel6 = 0x0600,

ttLabel7 = 0x0700,

ttSelected = 0x4000,

ttSelectedDisabled = (ttSelected | ttDisabled),

ttSelectedOffline = (ttSelected | ttOffline),

ttSelectedOpen = (ttSelected | ttOpen),

};

enum { /*IconSelectorValue masks*/

svLarge1Bit = 0x00000001, /*'ICN#' resource*/

svLarge4Bit = 0x00000002, /*'icl4' resource*/

svLarge8Bit = 0x00000004, /*'icl8' resource*/

svSmall1Bit = 0x00000100, /*'ics#' resource*/

svSmall4Bit = 0x00000200, /*'ics4' resource*/

C H A P T E R 5

Icon Utilities

Summary of the Icon Utilities 5-67

svSmall8Bit = 0x00000400, /*'ics8' resource*/

svMini1Bit = 0x00010000, /*'icm#' resource*/

svMini4Bit = 0x00020000, /*'icm4' resource*/

svMini8Bit = 0x00040000, /*'icm8' resource*/

svAllLargeData = 0x000000FF, /*'ICN#', 'icl4', and 'icl8' */

 /* resources*/

svAllSmallData = 0x0000FF00, /*'ics#', 'ics4', and 'ics8' */

 /* resources*/

svAllMiniData = 0x00FF0000, /*'icm#', 'icm4', and 'icm8' */

 /* resources*/

svAll1BitData = (svLarge1Bit | svSmall1Bit | svMini1Bit),

svAll4BitData = (svLarge4Bit | svSmall4Bit | svMini4Bit),

svAll8BitData = (svLarge8Bit | svSmall8Bit | svMini8Bit),

svAllAvailableData = (long)0xFFFFFFFF /*all resources of given ID*/

};

Data Types

struct CIcon {

PixMap iconPMap; /*the icon's pixel map*/

BitMap iconMask; /*the icon's mask*/

BitMap iconBMap; /*the icon's bitmap*/

Handle iconData; /*handle to the icon's data*/

short iconMaskData: /*the data for the icon's mask*/

};

typedef struct CIcon CIcon;

typedef Cicon *CIconPtr, **CIconHandle; /*ptr, handle to color icon record*/

typedef unsigned long IconSelectorValue;/*icon selector type*/

typedef short IconAlignmentType; /*icon alignment type*/

typedef short IconTransformType; /*icon transform type*/

/*pointer to action function*/

typedef pascal OSErr (*IconActionProcPtr)(ResType theType, Handle *theIcon,

 void *yourDataPtr);

typedef IconActionProcPtr IconAction;

/*pointer to icon getter function*/

typedef pascal Handle (*IconGetterProcPtr)(ResType theType,

 void *yourDataPtr);

typedef IconGetterProcPtr IconGetter;

C H A P T E R 5

Icon Utilities

5-68 Summary of the Icon Utilities

Icon Utilities Routines

Drawing Icons From Resources

pascal OSErr PlotIconID (const Rect *theRect, IconAlignmentType align,
IconTransformType transform, short theResID);

pascal OSErr PlotIconMethod
(const Rect *theRect, IconAlignmentType align,
IconTransformType transform,
IconGetterProcPtr theMethod,
void *yourDataPtr);

pascal void PlotIcon (const Rect *theRect, Handle theIcon);

pascal OSErr PlotIconHandle
(const Rect *theRect, IconAlignmentType align,
IconTransformType transform, Handle theIcon);

pascal OSErr PlotCIcon (const Rect *theRect, CIconHandle theIcon);

pascal OSErr PlotCIconHandle
(const Rect *theRect, IconAlignmentType align,
IconTransformType transform,
CIconHandle theCIcon);

pascal OSErr PlotSICNHandle
(const Rect *theRect, IconAlignmentType align,
IconTransformType transform, Handle theSICN);

Getting Icons From Resources That Don’t Belong to an Icon Family

pascal Handle GetIcon (short iconID);

pascal CIconHandle GetCIcon
(short iconID);

Disposing of Icons

pascal OSErr DisposeCIcon (CIconHandle theIcon);

Creating an Icon Suite

pascal OSErr GetIconSuite (Handle *theIconSuite, short theResID,
IconSelectorValue selector);

pascal OSErr NewIconSuite (Handle *theIconSuite);

C H A P T E R 5

Icon Utilities

Summary of the Icon Utilities 5-69

pascal OSErr AddIconToSuite
(Handle theIconData, Handle theSuite,
ResType theType);

Getting Icons From an Icon Suite

pascal OSErr GetIconFromSuite
(Handle *theIconData, Handle theSuite,
ResType theType);

Drawing Icons From an Icon Suite

pascal OSErr PlotIconSuite (const Rect *theRect, IconAlignmentType align,
IconTransformType transform,
Handle theIconSuite);

Performing Operations on Icons in an Icon Suite

pascal OSErr ForEachIconDo (Handle theSuite, IconSelectorValue selector,
IconActionProcPtr action, void *yourDataPtr);

Getting and Setting the Label for an Icon Suite

pascal short GetSuiteLabel (Handle theSuite);

pascal OSErr SetSuiteLabel (Handle theSuite, short theLabel);

Getting Label Information

pascal OSErr GetLabel (short labelNumber, RGBColor *labelColor,
Str255 labelString);

Disposing of Icon Suites

pascal OSErr DisposeIconSuite
(Handle theIconSuite, Boolean disposeData);

Converting an Icon Mask to a Region

pascal OSErr IconSuiteToRgn
(RgnHandle theRgn, const Rect *iconRect,
IconAlignmentType align, Handle theIconSuite);

pascal OSErr IconIDToRgn (RgnHandle theRgn, const Rect *iconRect,
IconAlignmentType align, short iconID);

C H A P T E R 5

Icon Utilities

5-70 Summary of the Icon Utilities

pascal OSErr IconMethodToRgn
(RgnHandle theRgn, const Rect *iconRect,
IconAlignmentType align,
IconGetterProcPtr theMethod,
void *yourDataPtr);

Determining Whether a Point or Rectangle Is Within an Icon

pascal Boolean PtInIconSuite
(Point testPt, const Rect *iconRect,
IconAlignmentType align, Handle theIconSuite);

pascal Boolean PtInIconID (Point testPt, const Rect *iconRect,
IconAlignmentType align, short iconID);

pascal Boolean PtInIconMethod
(Point testPt, const Rect *iconRect,
IconAlignmentType align,
IconGetterProcPtr theMethod,
void *yourDataPtr);

pascal Boolean RectInIconSuite
(const Rect *testRect, const Rect *iconRect,
IconAlignmentType align, Handle theIconSuite);

pascal Boolean RectInIconID
(const Rect *testRect, const Rect *iconRect,
IconAlignmentType align, short iconID);

pascal Boolean RectInIconMethod
(const Rect *testRect, const Rect *iconRect,
IconAlignmentType align,
IconGetterProcPtr theMethod,
void *yourDataPtr);

Working With Icon Caches

pascal OSErr MakeIconCache (Handle *theHandle, IconGetterProcPtr makeIcon,
void *yourDataPtr);

pascal OSErr LoadIconCache (const Rect *theRect, IconAlignmentType align,
IconTransformType transform,
Handle theIconCache);

C H A P T E R 5

Icon Utilities

Summary of the Icon Utilities 5-71

pascal OSErr GetIconCacheData
(Handle theCache, void **theData);

pascal OSErr SetIconCacheData
(Handle theCache, void *theData);

pascal OSErr GetIconCacheProc
(Handle theCache, IconGetter *theProc);

pascal OSErr SetIconCacheProc
(Handle theCache, IconGetter theProc);

Application-Defined Routines

Icon Action Functions

pascal OSErr MyIconAction (ResType theType, Handle *theIcon,
void *yourDataPtr);

Icon Getter Functions

pascal Handle MyIconGetter (ResType theType, void *yourDataPtr);

Assembly-Language Summary

Data Structure

Color Icon Data Structure

0 iconPMap 60 bytes icon’s pixel map
50 iconMask 14 bytes icon’s mask
64 iconBMap 14 bytes icon’s bitmap
78 iconData 4 bytes handle to icon’s data
82 iconMaskData variable data for icon’s mask

C H A P T E R 5

Icon Utilities

5-72 Summary of the Icon Utilities

Trap Macros

Trap Macros Requiring Routine Selectors

_IconDispatch

Selector Routine

$0702 NewIconSuite

$1702 GetSuiteLabel

$0203 DisposeIconSuite

$1603 SetSuiteLabel

$1904 GetIconCacheData

$1A04 SetIconCacheData

$1B04 GetIconCacheProc

$1C04 SetIconCacheProc

$0005 PlotIconID

$0105 GetIconSuite

$0B05 GetLabel

$0306 PlotIconSuite

$0406 MakeIconCache

$0606 LoadIconCache

$0806 AddIconToSuite

$0906 GetIconFromSuite

$0D06 PtInIconID

$1006 RectInIconID

$1306 IconIDToRgn

$1D06 PlotIconHandle

$1E06 PlotSICNHandle

$1F06 PlotCIconHandle

$0E07 PtInIconSuite

$1107 RectInIconSuite

$1407 IconSuiteToRgn

$0A08 ForEachIconDo

$0508 PlotIconMethod

$0F09 PtInIconMethod

$1209 RectInIconMethod

$1509 IconMethodToRgn

C H A P T E R 5

Icon Utilities

Summary of the Icon Utilities 5-73

Result Codes
noErr 0 No error
paramErr –50 Error in parameter list
memFullErr –108 Not enough memory in heap zone
memWZErr –111 Attempt to operate on a free block
resNotFound –192 Resource not found
noMaskFoundErr –1000 Cannot find or create mask for the icon family

Contents 6-1

C H A P T E R 6

Contents

Component Manager

Introduction to Components 6-3

About the Component Manager 6-4

Using the Component Manager 6-6

Opening Connections to Components 6-7

Opening a Connection to a Default Component 6-7

Finding a Specific Component 6-8

Opening a Connection to a Specific Component 6-9

Getting Information About a Component 6-10

Using a Component 6-11

Closing a Connection to a Component 6-12

Creating Components 6-13

The Structure of a Component 6-13

Handling Requests for Service 6-18

Responding to the Open Request 6-19

Responding to the Close Request 6-21

Responding to the Can Do Request 6-22

Responding to the Version Request 6-22

Responding to the Register Request 6-23

Responding to the Unregister Request 6-24

Responding to the Target Request 6-25

Responding to Component-Specific Requests 6-26

Reporting an Error Code 6-28

Defining a Component’s Interfaces 6-28

Managing Components 6-30

Registering a Component 6-30

Creating a Component Resource 6-32

Establishing and Managing Connections 6-34

Component Manager Reference 6-37

Data Structures for Applications 6-37

The Component Description Record 6-37

C H A P T E R 6

6-2 Contents

Component Identifiers and Component Instances 6-40

Routines for Applications 6-41

Finding Components 6-42

Opening and Closing Components 6-44

Getting Information About Components 6-47

Retrieving Component Errors 6-51

Data Structures for Components 6-52

The Component Description Record 6-52

The Component Parameters Record 6-54

Routines for Components 6-56

Registering Components 6-57

Dispatching to Component Routines 6-63

Managing Component Connections 6-65

Setting Component Errors 6-69

Working With Component Reference Constants 6-70

Accessing a Component’s Resource File 6-71

Calling Other Components 6-73

Capturing Components 6-75

Targeting a Component Instance 6-77

Changing the Default Search Order 6-78

Application-Defined Routine 6-79

Resources 6-80

The Component Resource 6-80

Summary of the Component Manager 6-86

Pascal Summary 6-86

Constants 6-86

Data Types 6-87

Routines for Applications 6-89

Routines for Components 6-90

Application-Defined Routine 6-92

C Summary 6-92

Constants 6-92

Data Structures 6-93

Routines for Applications 6-95

Routines for Components 6-96

Application-Defined Routine 6-97

Assembly-Language Summary 6-98

Trap Macros 6-98

Result Codes 6-99

C H A P T E R 6

Introduction to Components 6-3

Component Manager

This chapter describes how you can use the Component Manager to allow your

application to find and utilize various software objects (components) at run time. It also

discusses how you can create your own components and how you can use the

Component Manager to help manage your components. You should read this chapter if

you are developing an application that uses components or if you plan to develop your

own components.

The rest of this chapter

■ contains a general introduction to components and the features provided by the
Component Manager

■ discusses how to use the facilities of the Component Manager to call components

■ describes how to create a component

Several of the sections in this chapter are divided into two main topics: one describes

how applications can use components, and one describes how to create your own

components. If you are developing an application that uses components, you should

focus on the material that describes how to use existing components—you do not need

to read the material that describes how to create a component. If you are developing a

component, however, you should be familiar with all the information in this chapter.

For information on a specific component, see the documentation supplied with that

component. For example, for information on the components that Apple supplies with

QuickTime, see Inside Macintosh: QuickTime Components.

Introduction to Components

A component is a piece of code that provides a defined set of services to one or more

clients. Applications, system extensions, as well as other components can use the

services of a component. A component typically provides a specific type of service to its

clients. For example, a component might provide image compression or image

decompression capabilities; an application could call such a component, providing the

image to compress, and the component could perform the desired operation and return

the compressed image to the application.

Multiple components can provide the same type of service. For example, separate

components might exist that can compress an image by 20 percent, 40 percent, or 50

percent, with varying degrees of fidelity. All components of the same type must support

the same basic interface. This allows your application to use the same interface for any

given type of component and get the same type of service, yet allows your application to

obtain different levels of service.

The Component Manager provides access to components and manages them by, for

example, keeping track of the currently available components and routing requests to

the appropriate component.

C H A P T E R 6

Component Manager

6-4 About the Component Manager

The Component Manager classifies components by three main criteria: the type of

service provided, the level of service provided, and the component manufacturer. The

Component Manager uses a component type to identify the type of service provided by

a component. Like resource types, a component type is a sequence of four characters. All

components of the same component type provide the same type of services and support

a common application interface. For example, all image compressor components have a

component type of 'imco'. Other types of components include video digitizers, timing

sources, movie controllers, and sequence capturers.

Note

Component types consisting of only lowercase characters are reserved
for definition by Apple. You can define component types using other
combinations of characters, but you must register any new component
types with Apple’s Component Registry Group (AppleLink
REGISTRY). ◆

The Component Manager allows components to identify variations on the basic interface

they must support by specifying a four-character component subtype. The value of the

component subtype is meaningful only in the context of a given component type. For

example, image compressor components use the component subtype to specify the

compression algorithm supported by the component.

All components of a given type-subtype combination must support a common

application interface. However, components that share a type-subtype specification may

support routines that are not part of the basic interface defined for their type. In this

manner, components can provide enhanced services to client applications while still

supporting the basic application interface.

Finally, the Component Manager allows components to have a four-character

manufacturer code that identifies the manufacturer of the component. You must register

your component with Apple’s Component Registry Group to receive a manufacturer

code for your component. The manufacturer code allows applications to further

distinguish between components of the same type-subtype.

About the Component Manager

The Component Manager provides services that allow applications to obtain run-time

location of and access to functional objects (in much the same way that the Resource

Manager allows applications that are running to access data objects dynamically).

The Component Manager creates an interface between components and clients, which

can be applications, other components, system extensions, and so on. Instead of

implementing support for a particular data format, protocol, or model of a device, you

can use a standard interface through which your application communicates with all

components of a given type. You can then use the Component Manager to locate and

communicate with components of that type. Those components, in turn, provide the

appropriate services to your client application.

C H A P T E R 6

Component Manager

About the Component Manager 6-5

Given a particular component type, the Component Manager can locate and query all

components of that type. You can find out how many components of a specific type are

available and you can get further details about a component’s capabilities without

having to open it first. For each component, the Component Manager keeps track of

many characteristics, including its name, icon, and information string.

For example, components of type 'imdc' provide image decompression services. All

components of type 'imdc' share a common application interface, but each image

decompressor component may support a unique compression technique or take

advantage of a special hardware implementation. Individual components may support

additions to the defined application interface, as long as they support the common

routines. Any algorithm-dependent or implementation-dependent variations of the

general decompression interface can be implemented by each 'imdc' component as

extensions to the basic interface.

Figure 6-1 shows the relationship between an application, the Component Manager, and

several components. Applications and other clients use the Component Manager to

access components. In this figure, four components are available to the application: an

image decompression component (of type 'imdc'), two drawing components (of type

'draw'), and a clock component (of type 'clok'). Note that the two drawing

components have different subtypes: 'oval' and 'rect'. The drawing component

with subtype 'oval' draws ovals, and the drawing component with subtype 'rect'

draws rectangles.

Figure 6-1 The relationship between an application, the Component Manager, and
components

C H A P T E R 6

Component Manager

6-6 Using the Component Manager

The Component Manager allows a single component to serve multiple client

applications at the same time. Each client application has a unique access path to the

component. These access paths are called component connections. You identify

a component connection by specifying a component instance. The Component Manager

provides this component instance to your application when you open a connection to a

component. The component maintains separate status information for each open

connection.

For example, multiple applications might each open a connection to an image

decompression component. The Component Manager routes each application request to

the component instance for that connection. Because a component can maintain separate

storage for each connection, application requests do not interfere with each other and

each application has full access to the services provided by the component.

(See Figure 6-2 on page 6-34 for an illustration of multiple aplications using the services

of the same component.)

Using the Component Manager

This section describes how you can use the Component Manager to

■ gain access to components

■ locate components and take advantage of their services

■ get information about a component

■ close a connection to a component

The Component Manager is available in System 7.1 or later and may be present in

System 7. To determine whether the Component Manager is available, call the Gestalt

function with the gestaltComponentMgr selector and check the value of the

response parameter.

CONST

gestaltComponentMgr = 'cpnt';

The Gestalt function returns in the response parameter a 32-bit value indicating the

version of the Component Manager that is installed. Version 3 and above supports

automatic version control, the unregister request, and icon families. You should test the

version number before using any of these features.

This section presents several examples demonstrating how to use components and the

Component Manager. All of these examples use the services of a drawing component—a

simple component that draws an object of a particular shape on the screen. Drawing

components have a component type of 'draw'. The component subtype value indicates

the type of object the component draws. For example, a drawing component that draws

C H A P T E R 6

Component Manager

Using the Component Manager 6-7

an oval has a component subtype of 'oval'. For information on creating your own

components and for listings that show the code for a drawing component, see “Creating

Components” beginning on page 6-13.

Opening Connections to Components
When your application requires the services of a component, you typically perform these

steps:

■ open a connection to the desired component

■ use the services of the component

■ close the connection to the component

The following sections describe each of these steps in more detail.

Opening a Connection to a Default Component

Your application must use the Component Manager to gain access to a component. The

first step is to locate an appropriate component. You can locate the component yourself,

or you can allow the Component Manager to locate a suitable component for you. Your

application then opens a connection to that component. Once you have opened a

connection to a component, you can use the services provided by that component. When

you have finished using the component, you should close the connection.

If you are interested only in using a component of a particular type-subtype and you do

not need to specify any other characteristics of the component, use the

OpenDefaultComponent function and specify only the component type and subtype—

the Component Manager then selects a component for you and opens a connection to

that component. This is the easiest technique for opening a component connection. The

OpenDefaultComponent function searches its list of available components and

attempts to open a connection to a component with the specified type and subtype.

If more than one component of the specified type and subtype is available,

OpenDefaultComponent selects the first one in the list. If successful,

the OpenDefaultComponent function returns a component instance that identifies

your connection to the component. You can then use that connection to employ the

services of the selected component.

This code demonstrates the use of the OpenDefaultComponent function. The code

opens a connection to a component of type 'draw' and subtype 'oval'—a drawing

component that draws an oval.

VAR

aDrawOvalComp: ComponentInstance;

aDrawOvalComp := OpenDefaultComponent('draw', 'oval');

C H A P T E R 6

Component Manager

6-8 Using the Component Manager

If it cannot find or open a component of the specified type-subtype, the

OpenDefaultComponent function returns a function result of NIL.

To open a connection to a component with a specific type-subtype-manufacturer code or

with other specified characteristics, first use the FindNextComponent function to find

the desired component, then open the component using the OpenComponent function.

These operations are described in the next two sections.

Finding a Specific Component

If you are interested in asserting greater control over the selection of a component, you

can use the Component Manager to find a component that provides a specified service.

For example, you can use the FindNextComponent function in a loop to retrieve

information about all the components that are registered on a given computer. Each time

you call this function, the Component Manager returns information about a single

component. You can obtain a count of all the components on a given computer by calling

the CountComponents function. Both of these functions allow you to specify search

criteria, for example, by component type and subtype, or by manufacturer. By using

these criteria to narrow your search, you can quickly and easily find a component that

meets your needs.

You specify the search criteria for the component using a component description record.

A component description record is defined by the ComponentDescription data type.

For more information on the fields of this record, see “The Component Description

Record” beginning on page 6-37.

TYPE

 ComponentDescription =

RECORD

componentType: OSType; {type}

componentSubType: OSType; {subtype}

componentManufacturer: OSType; {manufacturer}

componentFlags: LongInt; {control flags}

componentFlagsMask: LongInt; {mask for flags}

END;

By default, the Component Manager considers all fields of the component description

record when performing a search. Your application can override the default behavior of

which fields the Component Manager considers for a search. Specify 0 in any field of the

component description record to prevent the Component Manager from considering the

information in that field when performing the search.

C H A P T E R 6

Component Manager

Using the Component Manager 6-9

Listing 6-1 shows an application-defined procedure, MyFindVideoComponent, that fills

out a component description record to specify the search criteria for the desired

component. The MyFindVideoComponent procedure then uses the

FindNextComponent function to return the first component with the specified

characteristics—in this example, any component with the type

VideoDigitizerComponentType.

Listing 6-1 Finding a component

PROCEDURE MyFindVideoComponent(VAR videoCompID: Component);

VAR

videoDesc: ComponentDescription;

BEGIN

{find a video digitizer component}

videoDesc.componentType := VideoDigitizerComponentType;

videoDesc.componentSubType := OSType(0); {any subtype}

videoDesc.componentManufacturer:= OSType(0);{any manufacturer}

videoDesc.componentFlags := 0;

videoDesc.componentFlagsMask := 0;

videoCompID := FindNextComponent(Component(0), videoDesc);

END;

The FindNextComponent function requires two parameters: a value that indicates

which component to begin the search with and a component description record. You can

specify 0 in the first parameter to start the search at the beginning of the component list.

Alternatively, you can specify a component identifier obtained from a previous call to

FindNextComponent.

The FindNextComponent function returns a component identifier to your

application. The returned component identifier identifies a given component to the

Component Manager. You can use this identifier to retrieve more information about the

component or to open a connection to the component. The next two sections describe

these tasks.

Opening a Connection to a Specific Component

You can open a connection to a specific component by calling the OpenComponent

function (alternatively, you can use the OpenDefaultComponent function, as discussed

in “Opening a Connection to a Default Component” on page 6-7). Your application must

provide a component identifier to the OpenComponent function. You get a component

identifier from the FindNextComponent function, as described in the previous section.

C H A P T E R 6

Component Manager

6-10 Using the Component Manager

The OpenComponent function returns a component instance that identifies your

connection to the component. Listing 6-2 shows how to use the OpenComponent

function to gain access to a specific component. The application-defined procedure

MyGetComponent uses the MyFindVideoComponent procedure (defined in

Listing 6-1) to find a video digitizer component and then opens the component.

Listing 6-2 Opening a specific component

PROCEDURE MyGetComponent

(VAR videoCompInstance: ComponentInstance);

VAR

videoCompID: Component;

BEGIN

{first find a video digitizer component}

MyFindVideoComponent(videoCompID);

{now open it}

IF videoCompID <> NIL THEN

videoCompInstance := OpenComponent(videoCompID);

END;

Getting Information About a Component
You can use the GetComponentInfo function to retrieve information about a

component, including the component name, icon, and other information. Listing 6-3

shows an application-defined procedure that retrieves information about a video

digitizer component.

Listing 6-3 Getting information about a component

PROCEDURE MyGetCompInfo (compName, compInfo, compIcon: Handle;

 VAR videoDesc: ComponentDescription);

VAR

videoCompID: Component;

myErr: OSErr;

BEGIN

{first find a video digitizer component}

MyFindVideoComponent(videoCompID);

{now get information about it}

IF videoCompID <> NIL THEN

myErr := GetComponentInfo(videoCompID, videoDesc, compName,

 compInfo, compIcon);

END;

C H A P T E R 6

Component Manager

Using the Component Manager 6-11

You specify the component in the first parameter to GetComponentInfo. You specify

the component using either a component identifier (obtained from

FindNextComponent or RegisterComponent) or a component instance (obtained

from OpenDefaultComponent or OpenComponent).

The GetComponentInfo function returns information about the component in the

second through fifth parameters of the function. The GetComponentInfo function

returns information about the component (such as its type, subtype, and manufacturer)

in a component description record. The function also returns the component name, icon,

and other information through handles. You must allocate these handles before calling

GetComponentInfo. (Alternatively, you can specify NIL in the compName, compInfo,

and compIcon parameters if you do not want the information returned.) The icon

returned in the compIcon parameter is a handle to a black-and-white icon. If a

component has an icon family, you can retrieve a handle to its icon suite using

GetComponentIconSuite.

Using a Component
Once you have established a connection to a component, you can use its services.

Each time you call a component routine, you must specify the component instance that

identifies your connection and provide any other parameters as required by the routine.

For example, Listing 6-4 illustrates the use of a drawing component. The

application-defined procedure establishes a connection to a drawing component, calls

the component’s DrawerSetup function to establish the rectangle in which to draw the

desired object, and then draws the object using the DrawerDraw function.

Listing 6-4 Using a drawing component

PROCEDURE MyDrawAnOval (VAR aDrawOvalComp: ComponentInstance);

VAR

r: Rect;

result: ComponentResult;

BEGIN

{open a connection to a drawing component}

aDrawOvalComp := OpenDefaultComponent('draw', 'oval');

IF aDrawOvalComp <> NIL THEN

BEGIN

SetRect(r, 40, 40, 80, 80);

{set up rectangle for oval}

result := DrawerSetup(aDrawOvalComp, r);

IF result = noErr THEN

result := DrawerDraw(aDrawOvalComp);{draw oval}

END;

END;

C H A P T E R 6

Component Manager

6-12 Using the Component Manager

If you specify an invalid connection as a parameter to a component routine, the

Component Manager sets the function result of the component routine to

badComponentInstance.

Each component type supports a defined set of functions. You must refer to the

appropriate documentation for a description of the functions supported by a component.

You also need to refer to the component’s documentation for information on the

appropriate interface files that you must include to use the component (the interface files

for the drawing component are shown beginning on page 6-28). The components that

Apple provides with QuickTime are described in Inside Macintosh: QuickTime Components.
As an example, drawing components support the following functions:

FUNCTION DrawerSetup(myInstance: ComponentInstance;

VAR r: Rect): ComponentResult;

FUNCTION DrawerClick(myInstance: ComponentInstance;

p: Point): ComponentResult;

FUNCTION DrawerMove (myInstance: ComponentInstance; x: Integer;

y: Integer): ComponentResult;

FUNCTION DrawerDraw (myInstance: ComponentInstance)

: ComponentResult;

FUNCTION DrawerErase(myInstance: ComponentInstance)

: ComponentResult;

Closing a Connection to a Component
When you finish using a component, you must close your connection to that component.

Use the CloseComponent function to close the connection. For example, this code calls

the application-defined procedure MyDrawAnOval (see Listing 6-4), which opens a

connection to a drawing component and uses that component to draw an oval. This code

closes the oval drawer component after it is finished using it.

VAR

aDrawOvalComp: ComponentInstance;

result: OSErr;

MyDrawAnOval(aDrawOvalComp); {open component and draw an oval}

result := DrawerErase(aDrawOvalComp); {erase the oval}

result := CloseComponent(aDrawOvalComp); {close the component}

C H A P T E R 6

Component Manager

Creating Components 6-13

Creating Components

This section describes how to create a component and how your component interacts

with the Component Manager. This section also describes many of the routines that the

Component Manager provides to help you manage your component. If you are

developing a component, you should read the material in this section.

If you are developing an application that uses components, you may find this material

interesting, but you do not need to be familiar with it. You should read the preceding

section, “Using the Component Manager,” and then use the “Component Manager

Reference” section as needed.

This section discusses how you can

■ structure your component

■ respond to requests from the Component Manager

■ define the functions that applications may call to request service from your component

■ manage your component with the help of the Component Manager

■ make your component available for use by applications

This section presents several examples demonstrating how to create components and

register them with the Component Manager. All of these examples are based on a

“drawing component”—a simple component that draws an object of a particular shape

on the screen. This section includes the code for a drawing component.

The Structure of a Component
Every component must have a single entry point that returns a value of type

ComponentResult (a long integer). Whenever the Component Manager receives a

request for your component, it calls your component’s entry point and passes

any parameters, along with information about the current connection, in a component

parameters record. The Component Manager also passes a handle to the global storage

(if any) associated with that instance of your component.

When your component receives a request, it should examine the parameters to

determine the nature of the request, perform the appropriate processing, set an error

code if necessary, and return an appropriate function result to the Component Manager.

C H A P T E R 6

Component Manager

6-14 Creating Components

The component parameters record is defined by a data structure of type

ComponentParameters.

TYPE ComponentParameters =

PACKED RECORD

flags: Char; {reserved}

paramSize: Char; {size of parameters}

what: Integer; {request code}

params: ARRAY[0..0] OF LongInt; {actual parameters}

END;

The what field contains a value that specifies the type of request. Negative values are

reserved for definition by Apple. You can use values greater than or equal to 0 to define

other requests that are supported by your component. Follow these guidelines when

defining your request codes: request codes between 0 and 256 are reserved for definition

by components of a given type and a given type-subtype. Use request codes greater than

256 for requests that are unique to your component. For example, a certain component of

a certain type-subtype might support values 0 through 5 as requests that are supported

by all components of that type, values 128 through 140 as requests that are supported by

all components of that given type-subtype, and values 257 through 260 as requests

supported only by that component.

Table 6-1 shows the request codes defined by Apple and the actions your component

should take upon receiving them. Note that four of the request codes—open, close, can

do, and version—are required. Your component must respond to these four request

codes. These request codes are described in greater detail in “Handling Requests for

Service” beginning on page 6-18.

Table 6-1 Request codes

Request code
Action your component should
perform Required

kComponentOpenSelect Open a connection Yes

kComponentCloseSelect Close an open connection Yes

kComponentCanDoSelect Determine whether your
component supports a particular
request

Yes

kComponentVersionSelect Return your component’s version
number

Yes

kComponentRegisterSelect Determine whether your
component can operate in the
current environment

No

C H A P T E R 6

Component Manager

Creating Components 6-15

The example drawing component (shown in Listing 6-5 on page 6-16) supports the four

required request codes, and in addition supports the request codes that are required for

all components of the type 'draw'. All drawing components must support these request

codes:

CONST

kDrawerSetUpSelect = 0; {set up drawing region}

kDrawerDrawSelect = 1; {draw the object}

kDrawerEraseSelect = 2; {erase the object}

kDrawerClickSelect = 3; {determine if cursor is }

{ inside of the object}

kDrawerMoveSelect = 4; {move the object}

The params field of the component parameters record is an array that contains the

parameters specified by the application that called your component. You can directly

extract the parameters from this array, or you can use the CallComponentFunction or

CallComponentFunctionWithStorage function to extract the parameters from this

array and pass these parameters to a subroutine of your component (see page 6-63 and

page 6-64 for more information about these functions).

Listing 6-5 shows the structure of a drawing component—a simple component that

draws an object on the screen. The component subtype of a drawing component

indicates the type of object the component draws. This particular drawing component is

of the subtype 'oval'; it draws oval objects.

Whenever an application calls your component, the Component Manager calls your

component’s main entry point (for example, the OvalDrawer function). This entry point

must be the first function in the component’s code segment.

As previously described, the Component Manager passes two parameters to your

component: a component parameters record and a parameter of type Handle.

The parameters specified by the calling application are contained in the component

parameters record. Your component can access the parameters directly from this record.

Alternatively, as shown in Listing 6-5, you can use Component Manager routines to

extract the parameters from this array and invoke a subroutine of your component. By

taking advantage of these routines, you can simplify the structure of your component

code.

kComponentTargetSelect Call another component whenever
it would call itself (as a result of
your component being used by
another component)

No

kComponentUnregisterSelect Perform any operations that are
necessary as a result of your
component being unregistered

No

Table 6-1 Request codes (continued)

Request code
Action your component should
perform Required

C H A P T E R 6

Component Manager

6-16 Creating Components

The OvalDrawer function first examines the value of the what field of the component

parameters record. The what field contains the request code. The OvalDrawer function

performs the action specified by the request code. The OvalDrawer function uses a

number of subroutines to carry out the desired action. It uses the Component Manager

routines CallComponentFunction and CallComponentFunctionWithStorage to

extract the parameters from the component parameters record and to call the specified

component’s subroutine with these parameters.

For example, when the drawing component receives the request code

kComponentOpenSelect, it calls the function CallComponentFunction. It passes

the component parameters record and a pointer to the component’s OvalOpen

subroutine as parameters to CallComponentFunction. This function extracts the

parameters and calls the OvalOpen function. The OvalOpen function allocates memory

for this instance of the component. Your component can allocate memory to hold global

data when it receives an open request. To do this, allocate the memory and then call the

SetComponentInstanceStorage function. This function associates the allocated

memory with the current instance of your component. The next time this instance of

your component is called, the Component Manager passes a handle to your previously

allocated memory in the storage parameter. For additional information on handling

the open request, see “Responding to the Open Request” on page 6-19.

When the drawing component receives the drawing setup request (indicated by the

kDrawerSetupSelect constant), it calls the Component Manager function

CallComponentFunctionWithStorage. Like CallComponentFunction, this

function extracts the parameters and calls the specified subroutine (OvalSetup) . The

CallComponentFunctionWithStorage function also passes as a parameter to the

subroutine a handle to the memory associated with this instance of the component. The

OvalSetup subroutine can use this memory as needed. For additional information on

handling the drawing setup request, see “Responding to Component-Specific Requests”

on page 6-26.

Listing 6-5 A drawing component for ovals

UNIT Ovals;

INTERFACE

{include a USES statement if required}

FUNCTION OvalDrawer (params: ComponentParameters;

storage: Handle): ComponentResult;

IMPLEMENTATION

CONST

kOvalDrawerVersion = 0; {version number of this component}

kDrawerSetUpSelect = 0; {set up drawing region}

C H A P T E R 6

Component Manager

Creating Components 6-17

kDrawerDrawSelect = 1; {draw the object}

kDrawerEraseSelect = 2; {erase the object}

kDrawerClickSelect = 3; {determine if cursor is }

{ inside of the object}

kDrawerMoveSelect = 4; {move the object}

TYPE

GlobalsRecord =

RECORD

bounds: Rect;

boundsRgn: RgnHandle;

self: ComponentInstance;

END;

GlobalsPtr = ^GlobalsRecord;

GlobalsHandle = ^GlobalsPtr;

{any subroutines used by the component go here}

FUNCTION OvalDrawer (params: ComponentParameters;

storage: Handle): ComponentResult;

BEGIN

{perform action corresponding to request code}

IF params.what < 0 THEN {handle the required request codes}

CASE (params.what) OF

kComponentOpenSelect:

OvalDrawer := CallComponentFunction(params,

 ComponentRoutine(@OvalOpen));

kComponentCloseSelect:

OvalDrawer := CallComponentFunctionWithStorage(storage, params,

 ComponentRoutine(@OvalClose));

kComponentCanDoSelect:

 OvalDrawer := CallComponentFunction(params,

 ComponentRoutine(@OvalCanDo));

kComponentVersionSelect:

OvalDrawer := kOvalDrawerVersion;

OTHERWISE

OvalDrawer := badComponentSelector;

END {of CASE}

ELSE {handle component-specific request codes}

CASE (params.what) OF

kDrawerSetupSelect:

OvalDrawer := CallComponentFunctionWithStorage

(storage, params,

 ComponentRoutine(@OvalSetup));

C H A P T E R 6

Component Manager

6-18 Creating Components

kDrawerDrawSelect:

OvalDrawer := CallComponentFunctionWithStorage

(storage, params,

 ComponentRoutine(@OvalDraw));

kDrawerEraseSelect:

OvalDrawer := CallComponentFunctionWithStorage

(storage, params,

 ComponentRoutine(@OvalErase));

kDrawerClickSelect:

OvalDrawer := CallComponentFunctionWithStorage

(storage, params,

 ComponentRoutine(@OvalClick));

kDrawerMoveSelect:

OvalDrawer := CallComponentFunctionWithStorage

(storage, params,

 ComponentRoutine(@OvalMoveTo));

 OTHERWISE

OvalDrawer := badComponentSelector;

END; {of CASE}

END; {of OvalDrawer}

END.

The next section describes how your component should respond to the required request

codes. Following sections provide more information on

■ defining your component’s interfaces

■ registering your component

■ how to store your component in a component resource file

Handling Requests for Service
Whenever an application requests services from your component, the Component

Manager calls your component and passes two parameters: the application’s parameters

in a component parameters record and a handle to the memory associated with the

current connection. The component parameters record also contains information

identifying the nature of the request.

There are two classes of requests: requests that are defined by the Component Manager

and requests that are defined by your component. The Component Manager defines

seven request codes: open, close, can do, version, register, unregister, and target. All

components must support open, close, can do, and version requests. The register,

unregister, and target requests are optional. Apple reserves all negative request codes for

definition by the Component Manager. You are free to assign request codes greater than

or equal to 0 to the functions supported by a component whose interface you have

C H A P T E R 6

Component Manager

Creating Components 6-19

defined. (However, request codes between 0 and 256 are reserved for definition by

components of a given type and a given type-subtype. Request codes greater than 256

are available for requests that are unique to your component.)

You can refer to the standard request codes with these constants.

CONST kComponentOpenSelect = -1; {open request}

kComponentCloseSelect = -2; {close request}

kComponentCanDoSelect = -3; {can do request}

kComponentVersionSelect = -4; {version request}

kComponentRegisterSelect = -5; {register request}

kComponentTargetSelect = -6; {target request}

kComponentUnregisterSelect = -7; {unregister request}

The following sections discuss what your component must do when it receives these

Component Manager requests.

Responding to the Open Request

The Component Manager issues an open request to your component whenever an

application or any other client tries to open a connection to your component by calling

the OpenComponent (or OpenDefaultComponent) function. The open request allows

your component to establish the environment to support the new connection. Your

component must support this request.

Your component should perform the necessary processing to establish the new

connection. At a minimum, you must allocate the memory for any global data for

the connection. Be sure to allocate this memory in the current heap zone, not in the

system heap. You should call the SetComponentInstanceStorage procedure to

inform the Component Manager that you have allocated memory. The Component

Manager stores a handle to the memory and provides that handle to your component as

a parameter in subsequent requests.

You may also want to open and read data from your component’s resource file—if you

do so, use the OpenComponentResFile function to open the file and be sure to close

the resource file before returning.

If your component uses the services of other components, open connections to them

when you receive the open request.

Once you have successfully set up the connection, set your component’s function result

to 0 and return to the Component Manager.

You can also refuse the connection. If you cannot successfully establish the environment

for a connection (for example, there is insufficient memory to support the connection, or

required hardware is unavailable), you can refuse the connection by setting the

component’s function result to a nonzero value. You can also use the open request as an

opportunity to restrict the number of connections your component can support.

If your application is registered globally, you should also set the A5 world for your

component in response to the open request. You can do this using the

C H A P T E R 6

Component Manager

6-20 Creating Components

SetComponentInstanceA5 procedure. (See page 6-68 for information on this

procedure.)

The Component Manager sets these fields in the component parameters record that it

provides to your component on an open request:

Field descriptions

what The Component Manager sets this field to
kComponentOpenSelect.

params The first entry in this array contains the component instance that
identifies the new connection.

Listing 6-6 shows the subroutine that handles the open request for the drawing

component. Note that your component can directly access the parameters from

the component parameters record, or use subroutines and the

CallComponentFunction and CallComponentFunctionWithStorage functions

to extract the parameters for you (see Listing 6-5 on page 6-16). The code in this chapter

takes the second approach.

The OvalOpen function allocates memory to hold global data for this instance of the

component. It calls the SetComponentInstanceStorage function so that the

Component Manager can associate the allocated memory with this instance of

the component. The Component Manager passes a handle to this memory in subsequent

calls to this instance of the component.

Listing 6-6 Responding to an open request

FUNCTION OvalOpen (self: ComponentInstance): ComponentResult;

VAR

myGlobals: GlobalsHandle;

BEGIN

{allocate storage}

myGlobals :=

GlobalsHandle(NewHandleClear(sizeof(GlobalsRecord)));

IF myGlobals = NIL THEN

OvalOpen := MemError

ELSE

BEGIN

myGlobals^^.self := self;

myGlobals^^.boundsRgn := NewRgn;

SetComponentInstanceStorage(myGlobals^^.self,

 Handle(myGlobals));

{if your component is registered globally, set }

{ its A5 world before returning}

OvalOpen := noErr;

END;

END;

C H A P T E R 6

Component Manager

Creating Components 6-21

Responding to the Close Request

The Component Manager issues a close request to your component when a client

application closes its connection to your component by calling the CloseComponent

function. Your component should dispose of the memory associated with the connection.

Your component must support this request. Your component should also close any files

or connections to other components that it no longer needs.

The Component Manager sets these fields in the component parameters record that it

provides to your component on a close request:

Field descriptions

what The Component Manager sets this field to
kComponentCloseSelect.

params The first entry in this array contains the component instance that
identifies the open connection.

Listing 6-7 shows the subroutine that handles the close request for the

drawing component (as defined in Listing 6-5 on page 6-16). The OvalClose

function closes the open connection. The drawing component uses the

CallComponentFunctionWithStorage function to call the OvalClose function (see

Listing 6-5). Because of this, in addition to the parameters specified in the component

parameters record, the Component Manager also passes to the OvalClose function a

handle to the memory associated with the component instance.

Listing 6-7 Responding to a close request

FUNCTION OvalClose (globals: GlobalsHandle;

 self: ComponentInstance): ComponentResult;

BEGIN

IF globals <> NIL THEN

BEGIN

DisposeRgn(globals^^.boundsRgn);

DisposeHandle(Handle(globals));

END;

OvalClose := noErr;

END;

IMPORTANT

When responding to a close request, you should always test the handle
passed to your component against NIL because it is possible for your
close request to be called with a NIL handle in the storage parameter.
For example, you can receive a NIL handle if your component returns a
nonzero function result in response to an open request. ▲

C H A P T E R 6

Component Manager

6-22 Creating Components

Responding to the Can Do Request

The Component Manager issues a can do request to your component when an

application calls the ComponentFunctionImplemented function to determine

whether your component supports a given request code. Your component must support

this request.

Set your component’s function result to 1 if you support the request code; otherwise, set

your function result to 0.

The Component Manager sets these fields in the component parameters record that it

provides to your component on a can do request:

Field descriptions

what The Component Manager sets this field to
kComponentCanDoSelect.

params The first entry in this array contains the request code as an integer
value.

Listing 6-8 shows the subroutine that handles the can do request for the drawing

component (as defined in Listing 6-5 on page 6-16). The OvalCanDo function examines

the specified request code and compares it with the request codes that it supports. It

returns a function result of 1 if it supports the request code; otherwise, it returns 0.

Listing 6-8 Responding to the can do request

FUNCTION OvalCanDo (selector: Integer): ComponentResult;

BEGIN

IF ((selector >= kComponentVersionSelect) AND

(selector <= kDrawerMoveSelect)) THEN

OvalCanDo := 1 {valid request}

ELSE

OvalCanDo := 0; {invalid request}

END;

Responding to the Version Request

The Component Manager issues a version request to your component when an

application calls the GetComponentVersion function to retrieve your component’s

version number. Your component must support this request.

In response to a version request, your component should return its version number as its

function result. Use the high-order 16 bits to represent the major version and the

low-order 16 bits to represent the minor version. The major version should represent the

component specification level; the minor version should represent your

implementation’s version number.

C H A P T E R 6

Component Manager

Creating Components 6-23

If the Component Manager supports automatic version control (a feature available

in version 3 and above of the manager), it automatically resolves conflicts between

different versions of the same component. For more information on this feature, see the

next section, “Responding to the Register Request.”

The Component Manager sets only the what field in the component parameters record

that it provides to your component on a version request:

Field description

what The Component Manager sets this field to
kComponentVersionSelect.

Listing 6-5 on page 6-16 shows how the drawing component handles the version request.

It simply returns its version number as its function result.

Responding to the Register Request

The Component Manager may issue a register request when your component is

registered. This request gives your component an opportunity to determine whether it

can operate in the current environment. For example, your component might use the

register request to verify that a specific piece of hardware is available on the computer.

This is an optional request—your component is not required to support it.

The Component Manager issues this request only if you have set the

cmpWantsRegisterMessage flag to 1 in the componentFlags field of your

component’s component description record (see “Data Structures for Components”

beginning on page 6-52 for more information about the component description record).

Your component should not normally allocate memory in response to the register

request. The register request is provided so that your application can determine whether

it should be registered and made available to any clients. Once a client attempts to

connect to your component, your component receives an open request, at which time it

can allocate any required memory. Because your component might not be opened during

a particular session, following this guideline allows other applications to make use of

memory that isn’t currently needed by your component.

If you want the Component Manager to provide automatic version control (a feature

available in version 3 and above of the manager), your component can specify the

componentDoAutoVersion flag in the optional extension to the component resource.

If you specify this flag, the Component Manager registers your component only if there

is no later version available. If an older version is already registered, the Component

Manager unregisters it. If a newer version of the same component is registered after

yours, the Component Manager automatically unregisters your component. You can use

this automatic version control feature to make sure that the most recent version of your

component is registered, regardless of the number of versions that are installed.

Set your function result to TRUE to indicate that you do not want your component to be

registered; otherwise, set the function result to FALSE.

C H A P T E R 6

Component Manager

6-24 Creating Components

The Component Manager sets only the what field in the component parameters record

that it provides to your component on a register request:

Field description

what The Component Manager sets this field to
kComponentRegisterSelect.

If you request that your component receive a register request, the Component Manager

actually sends your component a series of three requests: an open request, then the

register request, followed by a close request.

For more information about the process the Component Manager uses to register

components, see “Registering a Component” on page 6-30.

Responding to the Unregister Request

The unregister request is supported only in version 3 and above of the Component

Manager. If your component specifies the componentWantsUnregister flag in the

componentRegisterFlags field of the optional extension to the component resource,

the Component Manager may issue an unregister request when your component is

unregistered. This request gives your component an opportunity to perform any

clean-up operations, such as resetting the hardware. This is an optional request—your

component is not required to support it.

Return any error information as your component’s function result.

The Component Manager sets only the what field in the component parameters record

that it provides to your component on an unregister request:

Field description

what The Component Manager sets this field to
kComponentUnregisterSelect.

If you have specified that your component should not receive a register request, then

your component does not receive an unregister request if it has not been opened.

However, if a client opens and closes your component, and then later the Component

Manager unregisters your component, the Component Manager does send your

component an unregister request (in a series of three requests: open, unregister, close).

If you have specified that your component should receive a register request, when your

component is registered the Component Manager sends your component a series of

three requests: an open request, then the register request, followed by a close request. In

this situation, even if your component is not opened by a client, the Component

Manager sends your component an unregister request when it unregisters your

component.

C H A P T E R 6

Component Manager

Creating Components 6-25

For more information about the componentWantsUnregister flag, see “Resources”

beginning on page 6-80.

Responding to the Target Request

The Component Manager issues a target request to inform an instance of your

component that it has been targeted by another component. The component that targets

another component instance may also choose to first capture the component, but it is not

necessary to do so. Thus, a component can choose to

■ capture a component and target an instance of it

■ capture a component without targeting any instance of it

■ target a component instance without capturing the component

To first capture another component, the capturing component calls the

CaptureComponent function. When a component is captured, the Component

Manager removes it from the list of available components. This makes the captured

component available only to the capturing component and to any clients currently

connected to it. Typically, a component captures another component when it wants to

override one or more functions of the other component.

After calling the CaptureComponent function, the capturing component can choose to

target a particular instance of the component. However, a component can capture

another component without targeting it.

A component uses the ComponentSetTarget function to send a target request to a

specific component instance. After receiving a target request, whenever the targeted

component instance would call itself (that is, call any of its defined functions), instead it

should always call the component that targeted it.

For example, a component called NewMath might first capture a component called

OldMath. NewMath does this by using FindNextComponent to get a component

identifier for OldMath. NewMath then calls CaptureComponent to remove OldMath

from the list of available components. At this point, no other clients can access OldMath,

except for those clients previously connected to it.

NewMath might then call ComponentSetTarget to target a particular component

instance of OldMath. The ComponentSetTarget function sends a target request to the

specified component instance. When OldMath receives a target request, it saves the

component instance of the component that targeted it. When OldMath receives a request,

it processes it as usual. However, whenever OldMath calls one of its defined functions:

in its defined API, it calls NewMath instead. (Suppose OldMath provides request codes

for these functions: DoMultiply, DoAdd, DoDivide, and DoSubtract. If OldMath’s

DoMultiply function calls its own DoAdd function, then OldMath calls NewMath to

perform the addition.)

The target request is an optional request—your component is not required to support it.

C H A P T E R 6

Component Manager

6-26 Creating Components

The Component Manager sets these fields in the component parameters record that it

provides to your component on a target request:

Field descriptions

what The Component Manager sets this field to
kComponentTargetSelect.

params The first entry in this array contains the component instance that
identifies the component issuing the target request.

Responding to Component-Specific Requests

When your component receives a component-specific request, it should handle the

request as appropriate. For example, the drawing component responds to five

component-specific requests: setup, draw, erase, click, and move to. See Listing 6-5 on

page 6-16 for the code that defines the drawing component’s entry point. The drawing

component uses CallComponentFunctionWithStorage to extract the parameters

and call the appropriate subroutine.

Listing 6-9 shows the drawing component’s OvalSetup function. This function sets up

the data structures that must be in place before drawing the oval.

Listing 6-9 Responding to the setup request

FUNCTION OvalSetup (globals: GlobalsHandle;

 boundsRect: Rect): ComponentResult;

VAR

ignoreErr: ComponentResult;

BEGIN

globals^^.bounds := boundsRect;

OpenRgn;

ignoreErr := OvalDraw(globals);

CloseRgn(globals^^.boundsRgn);

OvalSetup := noErr;

END;

Listing 6-10 shows the drawing component’s OvalDraw function. This function draws

an oval in the previously allocated region.

C H A P T E R 6

Component Manager

Creating Components 6-27

Listing 6-10 Responding to the draw request

FUNCTION OvalDraw (globals: GlobalsHandle): ComponentResult;

BEGIN

FrameOval(globals^^.bounds);

OvalDraw := noErr;

END;

Listing 6-11 shows the drawing component’s OvalErase function. This function erases

an oval.

Listing 6-11 Responding to the erase request

FUNCTION OvalErase (globals: GlobalsHandle): ComponentResult;

BEGIN

EraseOval(globals^^.bounds);

OvalErase := noErr;

END;

Listing 6-12 shows the drawing component’s OvalClick function. This function

determines whether the given point is within the oval. If so, the function returns 1;

otherwise, it returns 0. Because the OvalClick function returns information other than

error information as its function result, OvalClick sets any error information using

SetComponentInstanceError.

Listing 6-12 Responding to the click request

FUNCTION OvalClick (globals: GlobalsHandle; p: Point)

 : ComponentResult;

BEGIN

IF PtInRgn(p, globals^^.boundsRgn) THEN

OvalClick := 1

ELSE

OvalClick := 0;

SetComponentInstanceError(globals^^.self, noErr);

END;

C H A P T E R 6

Component Manager

6-28 Creating Components

Listing 6-13 shows the drawing component’s OvalMoveTo function. This function

moves the oval’s coordinates to the specified location. Note that this function does not

erase or draw the oval; the calling application is responsible for issuing the appropriate

requests. For example, the calling application can issue requests to draw, erase, move to,

and draw—to draw the oval in one location, then erase the oval, move it to a new

location, and finally draw the oval in its new location.

Listing 6-13 Responding to the move to request

FUNCTION OvalMoveTo (globals: GlobalsHandle; x, y: Integer)

: ComponentResult;

VAR

r: Rect;

BEGIN

r := globals^^.bounds;

x := x - (r.right + r.left) DIV 2;

y := y - (r.bottom + r.top) DIV 2;

OffsetRect(globals^^.bounds, x, y);

OffsetRgn(globals^^.boundsRgn, x, y);

OvalMoveTo := noErr;

END;

Reporting an Error Code

The Component Manager maintains error state information for all currently active

connections. In general, your component returns error information in its function result;

a nonzero function result indicates an error occurred, and a function result of 0 indicates

the request was successful. However, some requests require that your component return

other information as its function result. In these cases, your component can use the

SetComponentInstanceError procedure to report its latest error state to the

Component Manager. You can also use this procedure at any time during your

component’s execution to report an error.

Defining a Component’s Interfaces
You define the interfaces supported by your component by declaring a set of functions

for use by applications. These function declarations specify the parameters that must be

provided for each request. The following code illustrates the general form of these

function declarations, using the setup request defined for the sample drawing

component as an example:

FUNCTION DrawerSetup (myInstance: ComponentInstance;

 VAR r: Rect): ComponentResult;

C H A P T E R 6

Component Manager

Creating Components 6-29

This example declares a function that supports the setup request. The first parameter to

any component function must be a parameter that accepts a component instance. The

Component Manager uses this value to correctly route the request. The calling

application must supply a valid component instance when it calls your component. The

second and following parameters are those required by your component function. For

example, the DrawerSetup function takes one additional parameter, a rectangle. Finally,

all component functions must return a function result of type ComponentResult (a

long integer).

These function declarations must also include inline code. This code identifies the

request code assigned to the function, specifies the number of bytes of parameter data

accepted by the function, and executes a trap to the Component Manager. To continue

with the Pascal example used earlier, the inline code for the DrawerSetup function is

INLINE $2F3C, $0004, $0000, $7000, $A82A;

The first element of this code, $2F3C, is the opcode for a move instruction that loads the

contents of the next two elements onto the stack. The Component Manager uses these

values when it invokes your component.

The second element, $0004, defines an integer value that specifies the number of bytes

of parameter data required by the function, not including the component instance

parameter. In this case, the size of a pointer to the rectangle is specified: 4 bytes.

Note

Note that Pascal calling conventions require that Boolean and 1-byte
parameters are passed as 16-bit integer values. ◆

The third element, $0000, specifies the request code for this function as an integer value.

Each function supported by your component must have a unique request code. Your

component uses this request code to identify the application’s request. You may define

only request code values greater than or equal to 0; negative values are reserved for

definition by the Component Manager. Recall from the oval drawing component that the

request code for the setup request, kDrawerSetUpSelect, has a value of 0.

The fourth element, $7000, is the opcode for an instruction that sets the D0 register to 0,

which tells the Component Manager to call your component rather than to field the

request itself.

The fifth element, $A82A, is the opcode for an instruction that executes a trap to the

Component Manager.

If you are declaring functions for use by Pascal-language applications, your declarations

should take the following form:

FUNCTION DrawerSetup (myInstance: ComponentInstance;

 VAR r: Rect): ComponentResult;

INLINE $2F3C, $0004, $0000, $7000, $A82A;

C H A P T E R 6

Component Manager

6-30 Creating Components

If you are declaring functions for use by C-language applications, your declarations can

take the following form:

pascal ComponentResult DrawerSetup

(ComponentInstance myInstance, Rect *r) =

{0x2F3C,0x4,0x0,0x7000,0xA82A};

Alternatively, you can define the following statement to replace the inline code:

#define ComponentCall (callNum, paramSize)

 {0x2F3C,paramSize,callNum,0x7000,0xA82A}

Using this statement results in the following declaration format:

pascal ComponentResult DrawerSetup

(ComponentInstance myInstance, Rect *r) =

 ComponentCall (kDrawerSetUpSelect, 4);

When a client application calls your function, the system executes the inline code, which

invokes the Component Manager. The Component Manager then formats a component

parameters record, locates the storage for the current connection, and invokes your

component. The Component Manager provides the component parameters record and a

handle to the storage of the current connection to your component as function

parameters.

Managing Components
This section discusses the Component Manager routines that help you manage your

component. It describes how to register your component and how to allow applications

to connect to your component.

Registering a Component

Applications must use the services of the Component Manager to find components that

meet their needs. Before an application can find a component, however, that component

must be registered with the Component Manager. When you register your component,

the Component Manager adds the component to its list of available components.

There are two mechanisms for registering a component with the Component Manager.

First, during startup processing, the Component Manager searches the Extensions folder

(and all of the folders within the Extensions folder) for files of type 'thng'. If the file

contains all the information needed for registration (see “Creating a Component

Resource” on page 6-32 for more information on creating a component file),

the Component Manager automatically registers the component stored in the file.

Components registered in this manner are registered globally; that is, the component is

made available to all applications and other clients.

C H A P T E R 6

Component Manager

Creating Components 6-31

Second, your application (or another application) can register your component. When

you register your component in this manner, you can specify whether the component

should be made available to all applications (global registration) or only to your

application (local registration). Your application can register a component that is in

memory or that is stored in a resource. You use the RegisterComponent function to

register a component that is in memory. You use the RegisterComponentResource

function to register a component that is stored in a component resource. See “The

Component Resource” on page 6-80 for a description of the format and content of

component resources. The code in Listing 6-14 demonstrates how an application can use

the RegisterComponent function to register a component that is in memory.

Listing 6-14 Registering a component

VAR

cd: ComponentDescription;

draw: Component;

WITH cd DO

BEGIN {initialize the component description record}

componentType := 'draw';

componentSubtype := 'oval';

componentManufacturer := 'appl';

componentFlags := 0;

componentFlagsMask := 0;

END;

{register the component}

draw := RegisterComponent(cd, ComponentRoutine(@OvalDrawer),

 0, NIL, NIL, NIL);

The code in Listing 6-14 specifies six parameters to the RegisterComponent

function. The first three are a component description record, a pointer to the

component’s entry point, and a value of 0 to indicate that this component should be

made available only to this application. A component that is registered locally is visible

only within the A5 world of the registering program. The last three parameters are

specified as NIL to indicate that the component doesn’t have a name, an information

string, or an icon. See page 6-57 for more information on the RegisterComponent

function.

When a component is registered and the cmpWantsRegisterMessage bit is not set in

the componentFlags field of the component description record, the Component

Manager adds the component to its list of registered components. Whenever a client

requests access to or information about a component (for example, by using

OpenDefaultComponent, FindNextComponent, or GetComponentInfo), the

Component Manager searches its list of registered components.

C H A P T E R 6

Component Manager

6-32 Creating Components

If a component’s cmpWantsRegisterMessage bit is set, the Component Manager does

not automatically add your component to its list of registered components. Instead, it

sends your component a series of three requests: open, register, and close. If your

component returns a nonzero value as its function result in response to the register

request, your component is not added to the Component Manager’s list of registered

components. Thus, clients are not able to connect to or get information about

your component. You might choose to set the cmpWantsRegisterMessage bit if, for

example, your application requires specific hardware.

Alternatively, you can let your component be automatically registered. Your component

can then check for any specific hardware requirements upon receiving an open request.

This lets clients attempt to connect to your component and also lets them get information

about your component. However, in most cases, if your component requires specific

hardware to operate, you should set the cmpWantsRegisterMessage bit and respond

to the register request appropriately.

If your component controls a hardware resource, you should register your component

once for each hardware resource that is available (rather than registering once and

allowing multiple instances of your component). This allows clients to easily determine

how many hardware resources are available by using the FindNextComponent

function. If you register a component multiple times, be sure that you specify a unique

name for each registration.

If the feature is available, you can request that the Component Manager provide

automatic version control for your component (this feature is available only in version 3

and above of the manager). To request automatic version control, specify the

componentDoAutoVersion flag in the optional extension to the component resource.

If you specify this flag, the Component Manager registers your component only if there

is no later version available. If an older version is already registered, the Component

Manager unregisters it. If a newer version of the same component is registered after

yours, the Component Manager automatically unregisters your component. You can use

this automatic version control feature to make sure that the most recent version of your

component is registered, regardless of the number of versions that are installed.

Creating a Component Resource

You can create a component resource (a resource of type 'thng') in a component file. A

component file is a file whose resource fork contains a component resource and other

required resources for the component. If you store your component in a component file,

either you can allow applications to use the RegisterComponentResource function

to register your component as needed, or you can automatically register your component

at startup by storing your component file in the Extensions folder.

C H A P T E R 6

Component Manager

Creating Components 6-33

A component file consists of

■ a component description record that specifies the characteristics of your component
(its type, subtype, manufacturer, and control flags)

■ the resource type and resource ID of your component’s code resource

■ the resource type and resource ID of your component’s name string

■ the resource type and resource ID of your component’s information string

■ the resource type and resource ID of your component’s icon

■ optional information about the component (its version number, additional flags, and
resource ID of the component’s icon family)

■ the actual resources for your component’s code, name, information string, and icon

Listing 6-15 shows, in Rez format, a component resource that defines an oval drawing

component. This drawing component does not specify optional information (see

Figure 6-5 on page 6-85 for the contents of the optional extension to the component

resource). For compatibility with early versions of the Component Manager,

component resources should be locked.

Listing 6-15 Rez input for a component resource

resource 'thng' (128, locked) {

'draw', /*component type*/

 'oval', /*component subtype*/

'appl', /*component manufacturer*/

$00000000, /*component flags: 0*/

$00000000, /*reserved (component flags mask): 0*/

'CODE', /*component code resource type*/

128, /*component code resource ID*/

'STR ', /*component name resource type*/

128, /*component name resource ID*/

'STR ', /*component info resource type*/

129, /*component info resource ID*/

'ICON', /*component icon resource type*/

128 /*component icon resource ID*/

/*optional information (if any) goes here*/

};

The component resource, and the resources that define the component’s code, name,

information string, and icon, must be in the same file. A component file must have the

file type 'thng' and reside in the Extensions folder in order to be automatically

registered by the Component Manager at startup.

C H A P T E R 6

Component Manager

6-34 Creating Components

Establishing and Managing Connections

Your component may support one or more connections at a time. In addition, a single

application may have open connections with two or more different components at the

same time. In fact, a single application can use more than one connection to a single

component. Figure 6-2 shows two applications and two components: the first

application, SurfPaint, uses two connections to component A; the second application,

SurfWriter, uses one connection to component A and one to component B.

Figure 6-2 Supporting multiple component connections

A component can allocate separate storage for each open connection. A component can

also set the A5 world for a specific component instance and can maintain separate error

information for each instance. A component can also use a reference constant value to

maintain global data for the component.

When an application requests that the Component Manager open a connection to your

component, the Component Manager issues an open request to your component. At this

time, your component should allocate any memory it needs in order to maintain a

connection for the requesting application. Be sure to allocate this memory in the current

heap zone rather than in the system heap. As described in “Responding to the Open

Request” on page 6-19, you can use the SetComponentInstanceStorage procedure

to associate the allocated memory with the component instance. Whenever the

application requests services from your component, the Component Manager supplies

C H A P T E R 6

Component Manager

Creating Components 6-35

you with the handle to this memory. You can also use the open request as an opportunity

to restrict the number of connections your component can support.

To allocate global data for your component, you can maintain a reference constant for

use by your component. The Component Manager provides two routines,

SetComponentRefcon and GetComponentRefcon, that allow you to work with your

component’s reference constant. Note that your component has one reference constant,

regardless of the number of connections maintained by your component.

If your component uses its reference constant and is registered globally, be aware that in

certain situations the Component Manager may clone your component. This situation

occurs only when the Component Manager opens a component that is registered

globally and there’s no available space in the system heap. In this case, the Component

Manager clones your component, creating a new registration of the component in the

caller’s heap, and returns to the caller the component identifier of the cloned component,

not the component identifier of the original registration. The reference constant of the

original component is not preserved in the cloned component. Thus you need to take

extra steps to set the reference constant of the cloned component to the same value as

that of the original component.

To determine whether your component has been cloned, you can examine your

component’s A5 world using the GetComponentInstanceA5 function. If the returned

value of the A5 world is nonzero, your component is cloned (only components registered

globally can be cloned; if your component is registered locally it has a valid, nonzero A5

world and you don’t need to check whether it’s been cloned). If you determine that your

component is cloned, you can retrieve the original reference constant by using the

FindNextComponent function to iterate through all registrations of your component.

You should compare the component identifier of the cloned component with the

component identifier returned by FindNextComponent. Once you find a component

with the same component description but a different component identifier, you’ve found

the original component. You can then use GetComponentRefcon to get the reference

constant of the original component and then use SetComponentRefcon to set the

reference constant of the cloned component appropriately. This technique works if a

component registers itself only once or registers itself multiple times but with a unique

name for each registration. This technique does not work if a component registers itself

multiple times using the same name.

When responding to a request from an application, your component can invoke the

services of other components. The Component Manager provides two techniques for

calling other components. First, your component can call another component using the

standard mechanisms also used by applications. The Component Manager then passes

the requests to the appropriate component, and your component receives the results of

those requests.

Second, your component can redirect a request to another component. For example, you

might want to create two similar components that provide different levels of service to

applications. Rather than completely implementing both components, you could design

one to rely on the capabilities of the other. Use the DelegateComponentCall function

to pass a request on to another component.

C H A P T E R 6

Component Manager

6-36 Creating Components

Listing 6-16 shows an example of delegating a request to another component. The

component in this example is a drawing component that draws rectangles. The

RectangleDrawer component handles open, close, and setup requests. It delegates all

other requests to another component. When the RectangleDrawer component receives

an open request, it opens the component to which it will later delegate requests, and

stores in its allocated storage the delegated component’s component instance. It then

specifies this value when it calls the DelegateComponentCall function.

Listing 6-16 Delegating a request to another component

FUNCTION RectangleDrawer(params: ComponentParameters;

 storage: Handle): ComponentResult;

VAR

theRtn: ComponentRoutine;

safe: Boolean;

BEGIN

safe := FALSE;

CASE (params.what) OF

kComponentOpenSelect:

theRtn := ComponentRoutine(@RectangleOpen);

kComponentCloseSelect:

theRtn := ComponentRoutine(@RectangleClose);

kDrawerSetupSelect:

theRtn := ComponentRoutine(@RectangleSetup);

OTHERWISE

BEGIN

safe := TRUE;

IF (storage <> NIL) THEN

RectangleDrawer :=

DelegateComponentCall

(params,

 ComponentInstance(StorageHdl(storage)^^.delegateInstance))

ELSE

RectangleDrawer := badComponentSelector;

END;

END; {of CASE}

IF NOT safe THEN

RectangleDrawer :=

CallComponentFunctionWithStorage(storage, params, theRtn);

END;

C H A P T E R 6

Component Manager

Component Manager Reference 6-37

Component Manager Reference

This section provides information about the data structures, routines, and resources

defined by the Component Manager. This section is divided into the following topics:

■ “Data Structures for Applications” describes the data structures used by applications.

■ “Routines for Applications” discusses the Component Manager routines that are
available to applications that use components.

■ “Data Structures for Components” describes the data structures used by components.

■ “Routines for Components” describes the Component Manager routines that are used
by components.

■ “Application-Defined Routine” describes how to define a component function and
supply the appropriate registration information.

■ “Resources” describes the format and content of component resources.

Assembly-Language Note

You can invoke Component Manager routines by using the trap
_ComponentDispatch with the appropriate routine selector. The
routine selectors are listed in “Assembly-Language Summary”
beginning on page 6-98. ◆

Data Structures for Applications
This section describes the format and content of the data structures used by applications

that use components.

Your application can use the component description record to find components that

provide specific services or meet other selection criteria.

The Component Description Record

The component description record identifies the characteristics of a component,

including the type of services offered by the component and its manufacturer.

Applications and components use component description records in different ways.

An application that uses components specifies the selection criteria for finding a

component in a component description record. A component uses the component

description record to specify its registration information and capabilities. If you are

developing a component, see page 6-52 for information on how a component uses the

component description record.

The ComponentDescription data type defines the component description record.

C H A P T E R 6

Component Manager

6-38 Component Manager Reference

TYPE ComponentDescription =

RECORD

componentType: OSType; {type}

componentSubType: OSType; {subtype}

componentManufacturer: {manufacturer}

OSType;

componentFlags: LongInt; {control flags}

componentFlagsMask: LongInt; {mask for control }

{ flags}

END;

Field descriptions

componentType
A four-character code that identifies the type of component. All
components of a particular type must support a common set of
interface routines. For example, drawing components all have a
component type of 'draw'.

Your application can use this field to search for components of a
given type. You specify the component type in the
componentType field of the component description record you
supply to the FindNextComponent or CountComponents
routine. A value of 0 operates as a wildcard.

componentSubType
A four-character code that identifies the subtype of the component.
Different subtypes of a component type may support additional
features or provide interfaces that extend beyond the standard
routines for a given component type. For example, the subtype of
drawing components indicates the type of object the component
draws. Drawing components that draw ovals have a subtype
of 'oval'.

Your application can use the componentSubType field to
perform a more specific lookup operation than is possible using
only the componentType field. For example, you may want your
application to use only components of a certain
component type ('draw') that also have a specific entry
in the componentSubType field ('oval'). By specifying
particular values for both fields in the component description
record that you supply to the FindNextComponent or
CountComponents routine, your application retrieves information
about only those components that meet both of these search criteria.
A value of 0 operates as a wildcard.

C H A P T E R 6

Component Manager

Component Manager Reference 6-39

componentManufacturer
A four-character code that identifies the manufacturer of the
component. This field allows for further differentiation between
individual components. For example, components made by a
specific manufacturer may support an extended feature set.
Components provided by Apple use a manufacturer value
of 'appl'.

Your application can use this field to find components from a
certain manufacturer. Specify the appropriate manufacturer code in
the componentManufacturer field of the component description
record you supply to the FindNextComponent or
CountComponents routine. A value of 0 operates as a wildcard.

componentFlags
A 32-bit field that provides additional information about a
particular component.

The high-order 8 bits are defined by the Component Manager. You
should usually set these bits to 0.

The low-order 24 bits are specific to each component type. These
flags can be used to indicate the presence of features or capabilities
in a given component.

Your application can use these flags to further narrow the
search criteria applied by the FindNextComponent or
CountComponents routine. If you use the componentFlags field
in a component search, you use the componentFlagsMask field to
indicate which flags are to be considered in the search.

componentFlagsMask
A 32-bit field that indicates which flags in the componentFlags
field are relevant to a particular component search operation.

For each flag in the componentFlags field that is to be considered
as a search criterion by the FindNextComponent or
CountComponents routine, your application should set the
corresponding bit in the componentFlagsMask field to 1. The
Component Manager considers only these flags during the search.
You specify the desired flag value (either 0 or 1) in the
componentFlags field.

For example, to look for a component with a specific control flag
that is set to 0, set the appropriate bit in the ComponentFlags field
to 0 and the same bit in the ComponentFlagsMask field to 1. To
look for a component with a specific control flag that is set to 1,
set the bit in the ComponentFlags field to 1 and the same bit in
the ComponentFlagsMask field to 1. To ignore a flag, set the bit
in the ComponentFlagsMask field to 0.

C H A P T E R 6

Component Manager

6-40 Component Manager Reference

Figure 6-3 shows how the various fields interact during a search. In
the case depicted in the figure, the componentFlagsMask field of
a component description record supplied to a search routine
specifies that only the low-order four flags of the componentFlags
field are to be examined during the search. The componentFlags
fields in the component description records of components A and B
have a number of flags set. However, in this example the mask
specifies that the Component Manager examine only the low-order
4 bits, and therefore only component A meets the search criteria.

Figure 6-3 Interaction between the componentFlags and componentFlagsMask fields

Component Identifiers and Component Instances

In general, when using Component Manager routines, your application must specify the

particular component using either a component identifier or component instance.

The Component Manager identifies each component by a component identifier. The

Component Manager identifies each instance of a component by a component instance.

Thus, when your application searches for a component with a particular type and

subtype using the FindNextComponent function, FindNextComponent returns a

component identifier that identifies the component. Similarly, your application specifies

a component identifier to the GetComponentInfo function to obtain information

about a component.

When you open a connection to a component, the OpenDefaultComponent and

OpenComponent functions return a component instance. The returned component

instance identifies that specific instance of the component. If you open the same

component again, the Component Manager returns a different component instance. So a

C H A P T E R 6

Component Manager

Component Manager Reference 6-41

component has a single component identifier and can have multiple component

instances. To use a component function, your application specifies a component instance.

Although conceptually component identifiers and component instances

serve different purposes, Component Manager routines (with the exception of

DelegateComponentCall) allow you to use component identifiers and component

instances interchangeably. If you do this, you must always coerce the data type

appropriately.

A component identifier is defined by the data type Component:

TYPE

{component identifier}

Component = ^ComponentRecord;

ComponentRecord =

RECORD

data: ARRAY[0..0] OF LongInt;

END;

A component instance is defined by the data type ComponentInstance:

TYPE

{component instance}

ComponentInstance = ^ComponentInstanceRecord;

ComponentInstanceRecord =

RECORD

data: ARRAY[0..0] OF LongInt;

END;

Routines for Applications

This section discusses the Component Manager routines that are used by applications.

If you are developing an application that uses components, you should read this

section. If you are developing an application that registers components, you should also

read “Registering Components” beginning on page 6-57.

If you are developing a component, you should read this section and “Routines for

Components” beginning on page 6-56.

This section describes the routines that allow your application to

■ search for components

■ gain access to and release components

■ get detailed information about specific components

■ get component error information

C H A P T E R 6

Component Manager

6-42 Component Manager Reference

Note
Any of the routines discussed in this section that require a component
identifier also accept a component instance. Similarly, you can supply a
component identifier to any routine that requires a component instance
(except for the DelegateComponentCall function). If you do this, you
must always coerce the data type appropriately. ◆

Finding Components

The Component Manager provides routines that allow your application to search for

components. Your application specifies the search criteria in a component description

record. (See “Data Structures for Applications” beginning on page 6-37 for information

about the component description record.) Based on the values you specify in fields of the

component description record, the Component Manager attempts to find components

that meet the needs of your application.

You can use the CountComponents function to determine the number of components

that match a component description. Use the FindNextComponent function to find an

individual component that matches a description.

You can use the GetComponentListModSeed function to determine whether the list of

registered components has changed.

FindNextComponent

The FindNextComponent function returns the component identifier for the next

registered component that meets the selection criteria specified by your application. You

specify the selection criteria in a component description record.

Your application can use the component identifier returned by this function to get more

information about the component or to open the component.

FUNCTION FindNextComponent (aComponent: Component;

 looking: ComponentDescription)

 : Component;

aComponent
The starting point for the search. Set this field to 0 to to start the search at
the beginning of the component list. If you are continuing a search, you
can specify a component identifier previously returned by the
FindNextComponent function. The function then searches the
remaining components.

looking A component description record. Your application specifies the criteria for
the component search in the fields of this record.

The Component Manager ignores fields in the component description
record that are set to 0. For example, if you set all the fields to 0, all
components meet the search criteria. In this case, your application can

C H A P T E R 6

Component Manager

Component Manager Reference 6-43

retrieve information about all of the components that are registered in the
system by repeatedly calling FindNextComponent and
GetComponentInfo until the search is complete. Similarly, if you set all
fields to 0 except for the componentManufacturer field, the
Component Manager searches all registered components for a component
supplied by the manufacturer you specify. Note that the
FindNextComponent function does not modify the contents of the
component description record you supply. To retrieve detailed
information about a component, you need to use the
GetComponentInfo function to get the component description record
for each returned component.

DESCRIPTION

The FindNextComponent function returns the component identifier of a component

that meets the search criteria. FindNextComponent returns a function result of 0 when

there are no more matching components.

SEE ALSO

Use the GetComponentInfo function, described on page 6-48, to retrieve more

information about a component. To open a component, use the

OpenDefaultComponent or OpenComponent function, described on page 6-45 and

page 6-46, respectively. See page 6-37 for information on the component description

record.

See Listing 6-1 on page 6-9 for an example of searching for a specific component.

CountComponents

Your application can use the CountComponents function to determine the number of

registered components that meet your selection criteria. You specify the selection criteria

in a component description record. The CountComponents function returns the

number of components that meet those search criteria.

FUNCTION CountComponents (looking: ComponentDescription): LongInt;

looking A component description record. Your application specifies the criteria for
the component search in the fields of this record.

The Component Manager ignores fields in the component description
record that are set to 0. For example, if you set all the fields to 0, the
Component Manager returns the number of components registered in the
system. Similarly, if you set all fields to 0 except for the
componentManufacturer field, the Component Manager returns the
number of registered components supplied by the manufacturer you
specify.

C H A P T E R 6

Component Manager

6-44 Component Manager Reference

DESCRIPTION

The CountComponents function returns a long integer containing the number of

components that meet the specified search criteria.

SEE ALSO

See page 6-37 for information on the component description record.

GetComponentListModSeed

The GetComponentListModSeed function allows you to determine if the list of

registered components has changed. This function returns the value of the component

registration seed number. By comparing this value to values previously returned by the

this function, you can determine whether the list has changed. Your application may

use this information to rebuild its internal component lists or to trigger other activity

that is necessary whenever new components are available.

FUNCTION GetComponentListModSeed: LongInt;

DESCRIPTION

The GetComponentListModSeed function returns a long integer containing the

component registration seed number. Each time the Component Manager registers or

unregisters a component it generates a new, unique seed number.

Opening and Closing Components

The OpenDefaultComponent, OpenComponent, and CloseComponent functions

allow your application to gain access to and release components. Your application must

open a component before it can use the services provided by that component. Similarly,

your application must close the component when it is finished using the component.

You can use the OpenDefaultComponent function to open a component of a specified

component type and subtype. You do not have to supply a component description

record or call the FindNextComponent function to use this function.

You use the OpenComponent function to gain access to a specified component. To use

this function, your application must have previously obtained a component identifier for

the desired component by using the FindNextComponent function. (If your application

registers a component, it can also obtain a component identifier from the

RegisterComponent or RegisterComponentResource function.)

Once you are finished using a component, use the CloseComponent function to release

the component.

C H A P T E R 6

Component Manager

Component Manager Reference 6-45

OpenDefaultComponent

The OpenDefaultComponent function allows your application to gain access to the

services provided by a component. Your application must open a component before it

can call any component functions. You specify the component type and subtype values

of the component to open. The Component Manager searches for a component that

meets those criteria. If you want to exert more control over the selection process, you can

use the FindNextComponent and OpenComponent functions.

FUNCTION OpenDefaultComponent (componentType: OSType;

 componentSubType: OSType)

 : ComponentInstance;

componentType
A four-character code that identifies the type of component. All
components of a particular type support a common set of interface
routines. Your application uses this field to search for components of a
given type.

componentSubType
A four-character code that identifies the subtype of the component.
Different subtypes of a component type may support additional features
or provide interfaces that extend beyond the standard routines for a
given component type. For example, the subtype of an image compressor
component indicates the compression algorithm employed by the
compressor.

Your application can use the componentSubType field to perform a
more specific lookup operation than is possible using only the
componentType field. For example, you may want your application to
use only components of a certain component type ('draw') that also
have a specific subtype ('oval'). Set this parameter to 0 to select a
component with any subtype value.

DESCRIPTION

The OpenDefaultComponent function searches its list of registered components for a

component that meets the search criteria. If it finds a component that matches the search

criteria, OpenDefaultComponent opens a connection to the component and returns a

component instance. The returned component instance identifies your application’s

connection to the component. You must supply this component instance whenever you

call the functions provided by the component. When you close the component, you must

also supply this component instance to the CloseComponent function.

If more than one component in the list of registered components meets the search

criteria, OpenDefaultComponent opens the first one that it finds in its list.

If it cannot open the specfied component, the OpenDefaultComponent function

returns a function result of NIL.

C H A P T E R 6

Component Manager

6-46 Component Manager Reference

SEE ALSO

For an example that opens a component using the OpenDefaultComponent function,

see “Opening a Connection to a Default Component” beginning on page 6-7.

OpenComponent

The OpenComponent function allows your application to gain access to the services

provided by a component. Your application must open a component before it can call

any component functions. You specify the component with a component identifier that

your application previously obtained from the FindNextComponent function.

Alternatively, you can use the OpenDefaultComponent function, as previously

described, to open a component without calling the FindNextComponent function.

Note that your application may maintain several connections to a single component, or it

may have connections to several components at the same time.

FUNCTION OpenComponent (aComponent: Component): ComponentInstance;

aComponent
A component identifier that specifies the component to open. Your
application obtains this identifier from the FindNextComponent
function. If your application registers a component, it can also obtain a
component identifier from the RegisterComponent or
RegisterComponentResource function.

DESCRIPTION

The OpenComponent function returns a component instance. The returned component

instance identifies your application’s connection to the component. You must supply this

component instance whenever you call the functions provided by the component. When

you close the component, you must also supply this component instance to the

CloseComponent function.

If it cannot open the specfied component, the OpenComponent function returns a

function result of NIL.

SEE ALSO

For examples of opening a specific component by using the FindNextComponent and

OpenComponent functions, see Listing 6-1 on page 6-9 and Listing 6-2 on page 6-10,

respectively. For a description of the FindNextComponent function, see page 6-42.

C H A P T E R 6

Component Manager

Component Manager Reference 6-47

CloseComponent

The CloseComponent function terminates your application’s access to the services

provided by a component. Your application specifies the connection to be closed with the

component instance returned by the OpenComponent or OpenDefaultComponent

function.

FUNCTION CloseComponent

(aComponentInstance: ComponentInstance): OSErr;

aComponentInstance
A component instance that specifies the connection to close. Your
application obtains the component instance from the OpenComponent
function or the OpenDefaultComponent function.

DESCRIPTION

The CloseComponent function closes only a single connection. If your application has

several connections to a single component, you must call the CloseComponent function

once for each connection.

RESULT CODES

SEE ALSO

For a description of the OpenDefaultComponent and OpenComponent functions, see

page 6-45 and page 6-46, respectively.

Getting Information About Components

Your application can get the registration information for any component using the

GetComponentInfo function. You can use the GetComponentIconSuite function to

get a handle to the component’s icon suite, if any.

In addition, for components to which your application already has a connection, your

application can obtain the component’s version number and also determine whether the

component supports a particular request by using the GetComponentVersion and

ComponentFunctionImplemented functions.

noErr 0 No error
invalidComponentID –3000 No component with this component identifier

C H A P T E R 6

Component Manager

6-48 Component Manager Reference

GetComponentInfo

The GetComponentInfo function returns all of the registration information for a

component. Your application specifies the component with a component identifier

returned by the FindNextComponent function. The GetComponentInfo function

returns information about the component in a component description record. The

GetComponentInfo function also returns the component’s name, information string,

and icon. (To get a handle to the component’s icon suite, if it provides one, use the

GetComponentIconSuite function.)

A component provides this registration information when it is registered with the

Component Manager.

FUNCTION GetComponentInfo (aComponent: Component;

VAR cd: ComponentDescription;

componentName: Handle;

componentInfo: Handle;

componentIcon: Handle): OSErr;

aComponent
A component identifier that specifies the component for the operation.
Your application obtains a component identifier from the
FindNextComponent function. If your application registers a
component, it can also obtain a component identifier from the
RegisterComponent or RegisterComponentResource function.

You may supply a component instance rather than a component identifier
to this function. (If you do so, you must coerce the data type
appropriately.) Your application can obtain a component instance from
the OpenComponent function or the OpenDefaultComponent function.

cd A component description record. The GetComponentInfo function
returns information about the specified component in a component
description record.

componentName
An existing handle that is to receive the component’s name. If the
component does not have a name, the GetComponentInfo function
returns an empty handle. Set this field to NIL if you do not want to
receive the component’s name.

componentInfo
An existing handle that is to receive the component’s information string.
If the component does not have an information string, the
GetComponentInfo function returns an empty handle. Set this field to
NIL if you do not want to receive the component’s information string.

componentIcon
An existing handle that is to receive the component’s icon. If the
component does not have an icon, the GetComponentInfo function
returns an empty handle. Set this field to NIL if you do not want to
receive the component’s icon.

C H A P T E R 6

Component Manager

Component Manager Reference 6-49

DESCRIPTION

The GetComponentInfo function returns information about the specified component

in the cd, componentName, componentInfo, and componentIcon parameters.

RESULT CODES

SEE ALSO

For information on the component description record, see page 6-37. For information on

the FindNextComponent function, see page 6-42. For information on registering

components, see “Registering Components” beginning on page 6-57.

For an example of the use of the GetComponentInfo function, see Listing 6-3 on

page 6-10.

GetComponentIconSuite

The GetComponentIconSuite function returns a handle to the component’s icon suite

(if it provides one).

FUNCTION GetComponentIconSuite (aComponent: Component;

 VAR iconSuite: Handle): OSErr;

aComponent
A component identifier that specifies the component for the operation.
Your application obtains a component identifier from the
FindNextComponent function. If your application registers a
component, it can also obtain a component identifier from the
RegisterComponent or RegisterComponentResource function.

iconSuite GetComponentIconSuite returns, in this parameter, a handle to the
component’s icon suite, if any. If the component has not provided an icon
suite, GetComponentIconSuite returns NIL in this parameter.

DESCRIPTION

The GetComponentIconSuite function returns a handle to the component’s icon

suite. A component provides to the Component Manager the resource ID of its icon

family in the optional extensions to the component resource. Your application is

responsible for disposing of the returned icon suite handle.

noErr 0 No error
invalidComponentID –3000 No component with this component identifier

C H A P T E R 6

Component Manager

6-50 Component Manager Reference

SPECIAL CONSIDERATIONS

The GetComponentIconSuite function is available only in version 3 of the

Component Manager.

RESULT CODES

SEE ALSO

For information about icon suites and icon families, see the chapter “Icon Utilities” in

this book.

GetComponentVersion

The GetComponentVersion function returns a component’s version number.

FUNCTION GetComponentVersion (ci: ComponentInstance): LongInt;

ci The component instance from which you want to retrieve version
information. Your application obtains the component instance from the
OpenDefaultComponent or OpenComponent function.

DESCRIPTION

The GetComponentVersion function returns a long integer containing the version

number of the component you specify. The high-order 16 bits represent the major

version, and the low-order 16 bits represent the minor version. The major version

specifies the component specification level; the minor version specifies a particular

implementation’s version number.

ComponentFunctionImplemented

The ComponentFunctionImplemented function allows you to determine whether a

component supports a specified request. Your application can use this function to

determine a component’s capabilities.

FUNCTION ComponentFunctionImplemented (ci: ComponentInstance;

 ftnNumber: Integer)

: LongInt;

noErr 0 No error
invalidComponentID –3000 No component with this component identifier

C H A P T E R 6

Component Manager

Component Manager Reference 6-51

ci A component instance that specifies the connection for this operation.
Your application obtains the component instance from the
OpenDefaultComponent or OpenComponent function.

ftnNumber A request code value. See Inside Macintosh: QuickTime Components for
information about the request codes supported by the components
supplied by Apple with QuickTime. For other components, see the
documentation supplied with the component for request code values.

DESCRIPTION

The ComponentFunctionImplemented function returns a long integer indicating

whether the component supports the specified request. You can interpret this long

integer as if it were a Boolean value. If the returned value is TRUE, the component

supports the specified request. If the returned value is FALSE, the component does

not support the request.

Retrieving Component Errors

The Component Manager provides a routine that allows your application to retrieve the

last error code that was generated by a component instance. Some component routines

return error information as their function result. Other component routines set an error

code that your application can retrieve using the GetComponentInstanceError

function. Refer to the documentation supplied with the component for information on

how that particular component handles errors.

GetComponentInstanceError

The GetComponentInstanceError function returns the last error generated by a

specific connection to a component.

FUNCTION GetComponentInstanceError

(aComponentInstance: ComponentInstance): OSErr;

aComponentInstance
A component instance that specifies the connection from which you want
error information. Your application obtains the component instance from
the OpenDefaultComponent or OpenComponent function.

DESCRIPTION

Once you have retrieved an error code, the Component Manager clears the error code for

the connection. If you want to retain that error value, you should save it in your

application’s local storage.

C H A P T E R 6

Component Manager

6-52 Component Manager Reference

RESULT CODES

Data Structures for Components
This section describes the format and content of the data structures used by components.

Components, and applications that register components, use the component description

record to identify a component. A component resource incorporates the information in a

component description record and also includes other information. If you are developing

a component or an application that registers components, you must be familiar with

both the component description record and component resource; see “Resources”

beginning on page 6-80 for a description of the component resource.

The Component Manager passes information about a request to your component in a

component parameters record.

The Component Description Record

The component description record identifies the characteristics of a component,

including the type of services offered by the component and the manufacturer of the

component.

Components use component description records to identify themselves to

the Component Manager. If your component is stored in a component resource, the

information in the component description record must be part of that resource (see the

description of the component resource, on page 6-80). If you have developed an

application that registers your component, that application must supply a component

description record to the RegisterComponent function (see “Registering

Components” on page 6-57 for information about registering components).

The ComponentDescription data type defines the component description record.

Note that the valid values of fields in the component description record are determined

by the component type specification. For example, all image compressor components

must use the componentSubType field to specify the compression algorithm used by

the compressor.

TYPE ComponentDescription =

RECORD

componentType: OSType; {type}

componentSubType: OSType; {subtype}

componentManufacturer: {manufacturer}

OSType;

componentFlags: LongInt; {control flags}

componentFlagsMask: LongInt; {reserved}

END;

noErr 0 No error
invalidComponentID –3000 No component with this component identifier

C H A P T E R 6

Component Manager

Component Manager Reference 6-53

Field descriptions

componentType
A four-character code that identifies the type of component. All
components of a particular type must support a common set of
interface routines. For example, drawing components all have a
component type of 'draw'.

Your component must support all of the standard routines for the
component type specified by this field. Type codes with all
lowercase characters are reserved for definition by Apple. See Inside
Macintosh: QuickTime Components for information about the
QuickTime components supplied by Apple. You can define your
own component type code as long as you register it with Apple’s
Component Registry Group.

componentSubType
A four-character code that identifies the subtype of the component.
Different subtypes of a component type may support additional
features or provide interfaces that extend beyond the standard
routines for a given component. For example, the subtype of a
drawing component indicates the type of object the component
draws. Drawing components that draw ovals have a subtype of
'oval'.

Your component may use this field to indicate more specific
information about the capabilities of the component. There are no
restrictions on the content you assign to this field. If no additional
information is appropriate for your component type, you may set
the componentSubType field to 0.

componentManufacturer
A four-character code that identifies the manufacturer of the
component. This field allows for further differentiation between
individual components. For example, components made by a
specific manufacturer may support an extended feature set.
Components provided by Apple use a manufacturer value of
'appl'.

Your component uses this field to indicate the manufacturer of the
component. You obtain your manufacturer code, which can be the
same as your application signature, from Apple’s Component
Registry Group.

componentFlags
A 32-bit field that provides additional information about a
particular component.

The high-order 8 bits are reserved for definition by the Component
Manager and provide information about the component. The
following bits are currently defined:

CONST

 cmpWantsRegisterMessage = $80000000;

 cmpFastDispatch = $40000000;

C H A P T E R 6

Component Manager

6-54 Component Manager Reference

The setting of the cmpWantsRegisterMessage bit determines
whether the Component Manager calls this component during
registration. Set this bit to 1 if your component should be called
when it is registered; otherwise, set this bit to 0. If you want to
automatically dispatch requests to your component to the
appropriate routine that handles the request (rather than your
component calling CallComponentFunction or
CallComponentFunctionWithStorage), set the
cmpFastDispatch bit. If you set this bit, you must write your
component’s entry point in assembly language. If you set this
bit, the Component Manager calls your component’s entry point
with the call’s parameters, the handle to that instance’s storage, and
the caller’s return address already on the stack. The Component
Manager passes the request code in register D0 and passes the stack
location of the instance’s storage in register A0. Your component can
then use the request code in register D0 to directly dispatch the
request itself (for example, by using this value as an index into a
table of function addresses). Be sure to note that the standard
request codes have negative values. Also note that the function
parameter that the caller uses to specify the component instance
instead contains a handle to the instance’s storage. When the
component function completes, control returns to the calling
application.

For more information about component registration and
initialization, see “Responding to the Register Request” on
page 6-23.

The low-order 24 bits are specific to each component type. You can
use these flags to indicate any special capabilities or features of your
component. Your component may use all 24 bits, as appropriate to
its component type. You must set all unused bits to 0.

componentFlagsMask
Reserved. (However, note that applications can use this field when
performing search operations, as described on page 6-39.)

Your component must set the componentFlagsMask field in its
component description record to 0.

The Component Parameters Record

The Component Manager uses the component parameters record to pass information to

your component about a request from an application. The information in this record

completely defines the request. Your component services the request as appropriate.

C H A P T E R 6

Component Manager

Component Manager Reference 6-55

The ComponentParameters data type defines the component parameters record.

ComponentParameters =

PACKED RECORD

flags: Char; {reserved}

paramSize: Char; {size of parameters}

what: Integer; {request code}

params: ARRAY[0..0] OF LongInt; {actual parameters}

END;

Field descriptions

flags Reserved for use by Apple.

paramSize Specifies the number of bytes of parameter data for this request. The
actual parameters are stored in the params field.

what Specifies the type of request. Component designers define the
meaning of positive values and assign them to requests that are
supported by components of a given type. Negative values are
reserved for definition by Apple. Apple has defined these request
codes:

CONST

kComponentOpenSelect = -1; {required}

kComponentCloseSelect = -2; {required}

kComponentCanDoSelect = -3; {required}

kComponentVersionSelect = -4; {required}

kComponentRegisterSelect = -5; {optional}

kComponentTargetSelect = -6; {optional}

kComponentUnregisterSelect = -7; {optional}

params An array that contains the parameters specified by the
application that called your component.
You can use the CallComponentFunction or
CallComponentFunctionWithStorage routine to convert this
array into a Pascal-style invocation of a subroutine in your
component.

For information on how your component responds to requests, see “Handling Requests

for Service” beginning on page 6-18.

C H A P T E R 6

Component Manager

6-56 Component Manager Reference

Routines for Components

This section describes the Component Manager routines that are used by components. It

also discusses routines a component or application can use to register a component. This

section first describes the routines for registering components then describes the routines

that allow your component to

■ extract the parameters from a component parameters record and invoke a subroutine
of your component with these parameters

■ manage open connections

■ associate storage with a specific connection

■ pass error information to the Component Manager for later use by the calling
application

■ store and retrieve your component’s reference constant

■ open and close its resource file

■ call other components

■ capture other components

■ target a component instance

Note that version 3 and above of the Component Manager supports automatic version

control, the unregister request, and icon families. You should test the version number

before using any of these features. You can use the Gestalt function with the

gestaltComponentMgr selector to do this. When you specify this selector, Gestalt

returns in the response parameter a 32-bit value indicating the version of the

Component Manager that is installed.

If you are developing an application that uses components but does not register them,

you do not have to read this material, though it may be interesting to you. For a

discussion of the Component Manager routines that support applications that use

components, see “Routines for Applications” beginning on page 6-41.

If you are developing an application that registers components, you should read the next

section, “Registering Components.” You may also find the other topics in this section

interesting.

If you are developing a component, you should read this entire section. For more

information about creating components, see “Creating Components” beginning on

page 6-13.

Several of the routines discussed in this section use the component parameters record.

For a complete description of that structure, see “Data Structures for Components”

beginning on page 6-52. For information on the distinction between component

identifiers and component instances, see page 6-40.

C H A P T E R 6

Component Manager

Component Manager Reference 6-57

Note
Any of the routines discussed in this section that require a component
identifier also accept a component instance. Similarly, you can supply a
component identifier to any routine that requires a component instance
(except for the DelegateComponentCall function). If you do this, you
must always coerce the data type appropriately. For more information,
see “Component Identifiers and Component Instances” on page 6-40. ◆

Registering Components

Before a component can be used by an application, the component must be registered

with the Component Manager. The Component Manager automatically registers

component resources stored in files with file types of 'thng' that are stored in the

Extensions folder (for information about the content of component resources, see

“Resources” beginning on page 6-80).

Alternatively, you can use either the RegisterComponent function or the

RegisterComponentResource function to register components. Both applications

and components can use these routines to register components.

Furthermore, you can use the RegisterComponentResourceFile function to register

all components specified in a given resource file.

Once you have registered your component, applications can find the component and

retrieve information about it using the Component Manager routines described earlier in

this chapter in “Routines for Applications” beginning on page 6-41.

Finally, you can use the UnregisterComponent function to remove a component from

the registration list.

Note

When an application quits, the Component Manager automatically
closes any component connections to that application. In addition, if the
application has registered components that reside in its heap space, the
Component Manager automatically unregisters those components. ◆

RegisterComponent

The RegisterComponent function makes a component available for use by

applications (or other clients). Once the Component Manager has registered a

component, applications can find and open the component using the standard

Component Manager routines. To register a component, you provide information

identifying the component and its capabilities. The Component Manager returns a

component identifier that uniquely identifies the component to the system.

C H A P T E R 6

Component Manager

6-58 Component Manager Reference

Components you register with the RegisterComponent function must be in memory

when you call this function. If you want to register a component that is stored in the

resource fork of a file, use the RegisterComponentResource function. Use the

RegisterComponentResourceFile function to register all components in the

resource fork of a file.

Note that a component residing in your application heap remains registered until your

application unregisters it or quits. A component residing in the system heap and

registered by your application remains registered until your application unregisters it or

until the computer is shut down.

FUNCTION RegisterComponent (cd: ComponentDescription;

 componentEntryPoint: ComponentRoutine;

 global: Integer;

 componentName: Handle;

 componentInfo: Handle;

 componentIcon: Handle): Component;

cd A component description record that describes the component to be
registered. You must correctly fill in the fields of this record before calling
the RegisterComponent function. When applications search for
components using the FindNextComponent function, the Component
Manager compares the attributes you specify here with those specified by
the application. If the attributes match, the Component Manager returns
the component identifier to the application.

componentEntryPoint
The address of the main entry point of the component you are
registering. The routine referred to by this parameter receives all requests
for the component.

global A set of flags that control the scope of component registration. You can
use these flags to specify a value for the global parameter:

registerCmpGlobal = 1;
Specify this flag to indicate that this component should be
made available to other applications and clients as well as
the one performing the registration. If you do not specify
this flag, the component is available for use only by the
registering application or component (that is, the
component is local to the A5 world of the registering
program).

registerCmpNoDuplicates = 2;
Specify this flag to indicate that if a component with
identical characteristics to the one being registered already
exists, then the new one should not be registered
(RegisterComponent returns 0 in this situation). If you
do not specify this flag, the component is registered even if
a component with identical characteristics to the one being
registered already exists.

C H A P T E R 6

Component Manager

Component Manager Reference 6-59

registerCompAfter = 4;
Specify this flag to indicate that this component should be
registered after all other components with the same
component type. Usually components are registered before
others with identical descriptions; specifying this flag
overrides that behavior.

componentName
A handle to the component’s name. Set this parameter to NIL if you do
not want to assign a name to the component.

componentInfo
A handle to the component’s information string. Set this parameter to
NIL if you do not want to assign an information string to the component.

componentIcon
A handle to the component’s icon (a 32-by-32 pixel black-and-white icon).
Set this parameter to NIL if you do not want to supply an icon for this
component. Note that this icon is not used by the Finder; you supply an
icon only so that other components or applications can display your
component’s icon if needed.

DESCRIPTION

The RegisterComponent function registers the specified component, recording the

information specified in the cd, componentName, componentInfo, and

componentIcon parameters. The function returns the component identifier assigned to

the component by the Component Manager. If it cannot register the component, the

RegisterComponent function returns a function result of NIL.

SEE ALSO

For a complete description of the component description record, see “Data Structures for

Components” beginning on page 6-52.

RegisterComponentResource

The RegisterComponentResource function makes a component available for use by

applications (or other clients). Once the Component Manager has registered a

component, applications can find and open the component using the standard

Component Manager routines. You provide information identifying the component and

specifying its capabilities. The Component Manager returns a component identifier that

uniquely identifies the component to the system.

Components you register with the RegisterComponentResource function must be

stored in a resource file as a component resource (see “The Component Resource”

beginning on page 6-80 for a description of the format and content of component

resources). If you want to register a component that is in memory, use the

RegisterComponent function.

C H A P T E R 6

Component Manager

6-60 Component Manager Reference

The RegisterComponentResource function does not actually load the code specified

by the component resource into memory. Rather, the Component Manager loads the

component code the first time an application opens the component. If the code is not in

the same file as the component resource or if the Component Manager cannot find the

file, the open request fails.

Note that a component registered locally by your application remains registered until

your application unregisters it or quits. A component registered globally by your

application remains registered until your application unregisters it or until the computer

is shut down.

FUNCTION RegisterComponentResource (cr: ComponentResourceHandle;

global: Integer): Component;

cr A handle to a component resource that describes the component to be
registered. The component resource contains all the information required
to register the component.

global A set of flags that controls the scope of component registration. You can
use these flags to specify a value for the global parameter:

registerCmpGlobal = 1;
Specify this flag to indicate that this component should be
made available to other applications and clients as well as
the one performing the registration. If you do not specify
this flag, the component is available for use only by the
registering application or component (that is, the
component is local to the A5 world of the registering
program).

registerCmpNoDuplicates = 2;
Specify this flag to indicate that if a component with
identical characteristics to the one being registered already
exists, then the new one should not be registered
(RegisterComponentResource returns 0 in this
situation). If you do not specify this flag, the component is
registered even if a component with identical
characteristics to the one being registered already exists.

registerCompAfter = 4;
Specify this flag to indicate that this component should be
registered after all other components with the same
component type. Usually components are registered before
others with identical descriptions; specifying this flag
overrides that behavior.

DESCRIPTION

The RegisterComponentResource function returns the component

identifier assigned to the component by the Component Manager. If the

RegisterComponentResource function could not register the component, it

returns a function result of NIL.

C H A P T E R 6

Component Manager

Component Manager Reference 6-61

SEE ALSO

For a description of the format and content of component resources, see “Resources”

beginning on page 6-80.

RegisterComponentResourceFile

The RegisterComponentResourceFile function registers all component resources

in the given resource file according to the flags specified in the global parameter.

FUNCTION RegisterComponentResourceFile (resRefNum: integer;

 global: integer): LongInt;

resRefNum The reference number of the resource file containing the components to
register.

global A set of flags that control the scope of the registration of the components
in the resource file specified in the resRefNum parameter. You can use
these flags to specify a value for the global parameter:

registerCmpGlobal = 1;
Specify this flag to indicate that each component in the
resource file should be made available to other applications
and clients as well as the one performing the registration. If
you do not specify this flag, each component is available
for use only by the registering application or component
(that is, the component is local to the A5 world of the
registering program).

registerCmpNoDuplicates = 2;
Specify this flag to indicate that if a component with
identical characteristics to the one being registered already
exists, then the new one should not be registered
(RegisterComponentResourceFile returns 0 in this
situation). If you do not specify this flag, the component is
registered even if a component with identical
characteristics to the one being registered already exists.

registerCompAfter = 4;
Specify this flag to indicate that as
RegisterComponentResourceFile registers a
component, it should register the component after all
other components with the same component type. Usually
components are registered before others with identical
descriptions; specifying this flag overrides that behavior.

DESCRIPTION

The RegisterComponentResourceFile function registers components in a resource

file. If the RegisterComponentResourceFile function successfully registers all

components in the specified resource file, RegisterComponentResourceFile returns

C H A P T E R 6

Component Manager

6-62 Component Manager Reference

a function result that indicates the number of components registered. If the

RegisterComponentResourceFile function could not register one or more of the

components in the resource file or if the specified file reference number is invalid, it

returns a negative function result.

SEE ALSO

For a description of the format and content of component resources, see “Resources”

beginning on page 6-80.

UnregisterComponent

The UnregisterComponent function removes a component from the Component

Manager’s registration list. Most components are registered at startup and remain

registered until the computer is shut down. However, you may want to provide some

services temporarily. In that case you dispose of the component that provides the

temporary service by using this function.

FUNCTION UnregisterComponent (aComponent: Component): OSErr;

aComponent
A component identifier that specifies the component to be removed.
Applications that register components may obtain this identifier from the
RegisterComponent or RegisterComponentResource functions.

DESCRIPTION

The UnregisterComponent function removes the component with the specified

component identifier from the list of available components. The component to be

removed from the registration list must not be in use by any applications or components.

If there are open connections to the component, the UnregisterComponent function

returns a negative result code.

RESULT CODES

SEE ALSO

If you provide a component that supports the unregister request, see “Responding to the

Register Request” on page 6-23 for more information.

noErr 0 No error
invalidComponentID –3000 No component with this component identifier
validInstancesExist –3001 This component has open connections

C H A P T E R 6

Component Manager

Component Manager Reference 6-63

Dispatching to Component Routines

This section discusses routines that simplify the process of calling subroutines within

your component.

When an application requests service from your component, your component receives

a component parameters record containing the information for that request. That

component parameters record contains the parameters that the application provided

when it called your component. Your component can use this record to access the

parameters directly. Alternatively, you can use the routines described in this section to

extract those parameters and pass them to a subroutine of your component. By taking

advantage of these routines, you can simplify the structure of your component code. For

more information about the interface between the Component Manager and your

component, see “Creating Components” beginning on page 6-13.

Use the CallComponentFunction function to call a component subroutine

without providing it access to global data for that connection. Use the

CallComponentFunctionWithStorage function to call a component subroutine and

to pass it a handle to the memory that stores the global data for that connection.

CallComponentFunction

The CallComponentFunction function invokes a specified function of your

component with the parameters originally provided by the application that called

your component. You pass these parameters by specifying the same component

parameters record passed to your component’s main entry point.

FUNCTION CallComponentFunction (params: ComponentParameters;

 func: ComponentFunction): LongInt;

params The component parameters record that your component received from
the Component Manager.

func The address of the function that is to handle the request. The Component
Manager calls the routine referred to by the func parameter as a Pascal
function with the parameters that were originally provided by the
application. The routine referred to by this parameter must return a
function result of type ComponentResult (a long integer) indicating the
success or failure of the operation.

DESCRIPTION

CallComponentFunction returns the value that is returned by the routine referred to

by the func parameter. Your component should use this value to set the current error for

this connection.

C H A P T E R 6

Component Manager

6-64 Component Manager Reference

SPECIAL CONSIDERATIONS

If your component subroutine does not need global data, your component should use

CallComponentFunction. If your component subroutine requires memory in which

to store global data for the component, your component must use

CallComponentFunctionWithStorage, which is described next.

SEE ALSO

For an example that uses CallComponentFunction, see Listing 6-5 on page 6-16. You

can use the SetComponentInstanceError procedure, described on page 6-69, to set

the current error.

CallComponentFunctionWithStorage

The CallComponentFunctionWithStorage function invokes a specified function

of your component with the parameters originally provided by the application that

called your component. You pass these parameters by specifying the same component

parameters record that was received by your component’s main entry point. The

CallComponentFunctionWithStorage function also provides a handle to the

memory associated with the current connection.

FUNCTION CallComponentFunctionWithStorage

(storage: Handle; params: ComponentParameters;

 func: ComponentFunction): LongInt;

storage A handle to the memory associated with the current connection. The
Component Manager provides this handle to your component along with
the request.

params The component parameters record that your component received from
the Component Manager.

func The address of the function that is to handle the request. The Component
Manager calls the routine referred to by the func parameter as a Pascal
function with the parameters that were originally provided by the
application. These parameters are preceded by a handle to the memory
associated with the current connection. The routine referred to by the
func parameter must return a function result of type ComponentResult
(a long integer) indicating the success or failure of the operation.

DESCRIPTION

The CallComponentFunctionWithStorage function returns the value that is

returned by the function referred to by the func parameter. Your component should use

this value to set the current error for this connection.

C H A P T E R 6

Component Manager

Component Manager Reference 6-65

SPECIAL CONSIDERATIONS

CallComponentFunctionWithStorage takes as a parameter a handle to the memory

associated with the connection, so subroutines of a component that don’t need global

data should use the CallComponentFunction routine described in the previous

section instead.

If your component subroutine requires a handle to the memory associated with the

connection, you must use CallComponentFunctionWithStorage. You allocate the

memory for a given connection each time your component is opened. You inform the

Component Manager that a connection has memory associated with it by calling the

SetComponentInstanceStorage procedure.

SEE ALSO

For an example that uses CallComponentFunctionWithStorage,

see Listing 6-5 on page 6-16. Use the SetComponentInstanceError procedure,

described on page 6-69, to set the current error for a connection. A description of the

SetComponentInstanceStorage procedure is given next.

Managing Component Connections

The Component Manager provides a number of routines that help your component

manage the connections it maintains with its client applications and components.

Use the SetComponentInstanceStorage procedure to inform the Component

Manager of the memory your component is using to maintain global data for a

connection. Whenever the client application issues a request to the connection, the

Component Manager provides to your component the handle to the allocated memory

for that connection along with the parameters for the request. You can also use the

GetComponentInstanceStorage function to retrieve a handle to the storage for a

connection.

Use the CountComponentInstances function to count all the connections that are

currently maintained by your component. This routine is similar to the

CountComponents routine that the Component Manager provides to client

applications and components.

Use the SetComponentInstanceA5 procedure to set the A5 world for a connection.

Once you set the A5 world for a connection, the Component Manager automatically

switches the contents of the A5 register when your component receives a request for that

connection. When your component returns to the Component Manager,

the Component Manager restores the A5 register. Your component can use the

GetComponentInstanceA5 function to retrieve the A5 world for a connection.

C H A P T E R 6

Component Manager

6-66 Component Manager Reference

SetComponentInstanceStorage

When an application or component opens a connection to your component, the

Component Manager sends your component an open request. In response to this open

request, your component should set up an environment to service the connection.

Typically, your component should allocate some memory for the connection. Your

component can then use that memory to maintain state information appropriate to the

connection.

The SetComponentInstanceStorage procedure allows your component to pass a

handle to this memory to the Component Manager. The Component Manager then

provides this handle to your component each time the client application requests service

from this connection.

PROCEDURE SetComponentInstanceStorage

(aComponentInstance: ComponentInstance; theStorage: Handle);

aComponentInstance
The connection to associate with the allocated memory. The Component
Manager provides a component instance to your component when the
connection is opened.

theStorage
A handle to the memory that your component has allocated for the
connection. Your component must allocate this memory in the current
heap. The Component Manager saves this handle and provides it to your
component, along with other parameters, in subsequent requests to this
connection.

DESCRIPTION

The SetComponentInstanceStorage procedure associates the handle

passed in the parameter theStorage with the connection specified by the

aComponentInstance parameter. Your component should dispose of any allocated

memory for the connection only in response to the close request.

SPECIAL CONSIDERATIONS

Note that whenever an open request fails, the Component Manager

always issues the close request. Furthermore, the value stored with

SetComponentInstanceStorage is always passed to the close request, so

it must be valid or NIL. If the open request tries to dispose of its allocated memory

before returning, it should call SetComponentInstanceStorage again with a NIL

handle to keep the Component Manager from passing an invalid handle to the close

request.

C H A P T E R 6

Component Manager

Component Manager Reference 6-67

SEE ALSO

For an example that allocates memory in response to an open request, see Listing 6-6 on

page 6-20.

GetComponentInstanceStorage

The GetComponentInstanceStorage function allows your component

to retrieve a handle to the memory associated with a connection. Your

component tells the Component Manager about this memory by calling the

SetComponentInstanceStorage procedure. Typically, your component does not

need to use this function, because the Component Manager provides this handle to your

component each time the client application requests service from this connection.

FUNCTION GetComponentInstanceStorage

(aComponentInstance: ComponentInstance): Handle;

aComponentInstance
The connection for which to retrieve the associated memory. The
Component Manager provides a component instance to your component
when the connection is opened.

DESCRIPTION

The GetComponentInstanceStorage function returns a handle to the memory

associated with the specified connection.

CountComponentInstances

The CountComponentInstances function allows you to determine the number of

open connections being managed by a specified component. This function can be useful

if you want to restrict the number of connections for your component or if your

component needs to perform special processing based on the number of open

connections.

FUNCTION CountComponentInstances (aComponent: Component): LongInt;

aComponent
The component for which you want a count of open connections. You can
use the component instance that your component received in its open
request to identify your component.

C H A P T E R 6

Component Manager

6-68 Component Manager Reference

DESCRIPTION

The CountComponentInstances function returns the number of open connections for

the specified component.

SetComponentInstanceA5

The SetComponentInstanceA5 procedure allows your component to set the A5 world

for a connection.

PROCEDURE SetComponentInstanceA5

(aComponentInstance: ComponentInstance; theA5: LongInt);

aComponentInstance
The connection for which to set the A5 world. The Component Manager
provides a component instance to your component when the connection
is opened.

theA5 The value of the A5 register for the connection. The Component Manager
sets the A5 register to this value automatically, and it restores the previous
A5 value when your component returns to the Component Manager.

DESCRIPTION

The SetComponentInstanceA5 procedure sets the A5 world for the specified

component instance. Once you set the A5 world for a connection, the Component

Manager automatically switches the contents of the A5 register when your component

receives a request over that connection. When your component returns to the

Component Manager, the Component Manager restores your client’s A5 value.

If your component has been registered globally and you have not set an A5 value, the A5

register is set to 0. In this case you should set the A5 world of your component instance

to your client’s A5 value by using SetComponentInstanceA5.

In general, your component uses this procedure only if it is registered globally; in this

case, it typically calls SetComponentInstanceA5 when processing the open request

for a new connection.

GetComponentInstanceA5

You can use the GetComponentInstanceA5 function to retrieve the value of the A5

register for a specified connection. Your component sets the A5 register by calling the

SetComponentInstanceA5 function, as previously described. The Component

Manager then sets the A5 register for your component each time the client requests

C H A P T E R 6

Component Manager

Component Manager Reference 6-69

service on this connection. If your component has been registered globally and you have

not set an A5 value, the A5 register is set to 0. In this case you should use your client’s A5

value.

FUNCTION GetComponentInstanceA5

(aComponentInstance: ComponentInstance): LongInt;

aComponentInstance
The connection for which to retrieve the A5 value. The Component
Manager provides a component instance to your component when the
connection is opened.

DESCRIPTION

The GetComponentInstanceA5 function returns the value of the A5 register for the

connection.

Setting Component Errors

The Component Manager maintains error state information for all currently active

components. In general, your component returns error information in its function result;

a nonzero function result indicates an error occurred, and a function result of 0 indicates

the request was successful. However, some requests require that your component return

other information as its function result. In these cases, your component can use the

SetComponentInstanceError procedure to report its latest error state to the

Component Manager. You can also use this procedure at any time during your

component’s execution to report an error

SetComponentInstanceError

Although your component usually returns error information as its function result, your

component can choose to use the SetComponentInstanceError procedure to pass

error information to the Component Manager. The Component Manager uses this error

information to set the current error value for the appropriate connection. Applications

can then retrieve this error information by calling the GetComponentInstanceError

function. The documentation for your component should specify how the component

indicates errors.

PROCEDURE SetComponentInstanceError

(aComponentInstance: ComponentInstance; theError: OSErr);

C H A P T E R 6

Component Manager

6-70 Component Manager Reference

aComponentInstance
A component instance that specifes the connection for which to set the
error. The Component Manager provides a component instance to your
component when the connection is opened. The Component Manager
also provides a component instance to your component as the first
parameter in the params field of the parameters record.

theError The new value for the current error. The Component Manager uses this
value to set the current error for the connection specified by the
aComponentInstance parameter.

DESCRIPTION

The SetComponentInstanceError procedure sets the error associated with the

specified component instance to the value specified by the parameter theError.

SEE ALSO

For a description of the GetComponentInstanceError function, see page 6-51.

Working With Component Reference Constants

The Component Manager provides routines that manage access to the reference

constants that are associated with components. There is one reference constant for

each component, regardless of the number of connections to that component. When your

component is registered, the Component Manager sets this reference constant to 0.

The reference constant is a 4-byte value that your component can use in any way you

decide. For example, you might use the reference constant to store the address of a data

structure that is shared by all connections maintained by your component. You should

allocate shared structures in the system heap. Your component should deallocate the

structure when its last connection is closed or when it is unregistered.

Use the SetComponentRefcon procedure to set the value of the reference constant for

your component. Use the GetComponentRefcon function to retrieve the value of the

reference constant.

SetComponentRefcon

You can use the SetComponentRefcon procedure to set the reference constant for your

component.

PROCEDURE SetComponentRefcon (aComponent: Component;

theRefcon: LongInt);

C H A P T E R 6

Component Manager

Component Manager Reference 6-71

aComponent
A component identifier that specifies the component whose reference
constant you wish to set.

theRefCon The reference constant value that you want to set for your component.

DESCRIPTION

The SetComponentRefcon procedure sets the value of the reference constant for your

component. Your component can later retrieve the reference constant using the

GetComponentRefcon function, described next.

GetComponentRefcon

The GetComponentRefcon function retrieves the value of the reference constant for

your component.

FUNCTION GetComponentRefcon (aComponent: Component): LongInt;

aComponent
A component identifier that specifies the component whose reference
constant you wish to get.

DESCRIPTION

The GetComponentRefcon function returns a long integer containing the reference

constant for the specified component.

Accessing a Component’s Resource File

If you store your component in a component resource and register your

component using the RegisterComponentResource function or

RegisterComponentResourceFile function, or if the Component Manager

automatically registers your component, the Component Manager allows your

component to gain access to its resource file. You can store read-only data for

your component in its resource file. For example, the resource file may contain the color

icon for the component, static data needed to initialize private storage, or any other data

that may be useful to the component. Note that there is only one resource file associated

with a component.

If you store your component in a component resource but register the component with

the RegisterComponent function, rather than with the

RegisterComponentResource or RegisterComponentResourceFile function,

your component cannot access its resource file with the routines described in this section.

C H A P T E R 6

Component Manager

6-72 Component Manager Reference

The routines described in this section allow your component to gain access to its

resource file. These routines provide read-only access to the data in the resource file. If

your component opens its resource file, it must close the file before returning to the

calling application.

Use the OpenComponentResFile function to open your component’s resource file. Use

the CloseComponentResFile function to close the resource file before returning to the

calling application.

OpenComponentResFile

The OpenComponentResFile function allows your component to gain access to its

resource file. This function opens the resource file with read permission and returns a

reference number that your component can use to read data from the file. The

Component Manager adds the resource file to the current resource chain. Your

component must close the resource file with the CloseComponentResFile function

before returning to the calling application.

Your component can use FSpOpenResFile or equivalent Resource Manager routines to

open other resource files, but you must use OpenComponentResFile to open your

component’s resource file.

FUNCTION OpenComponentResFile (aComponent: Component): Integer;

aComponent
A component identifier that specifies the component whose resource file
you wish to open. Applications that register components may obtain this
identifier from the RegisterComponentResource function.

DESCRIPTION

The OpenComponentResFile function returns a reference number for the appropriate

resource file. This function returns 0 or a negative number if the specified component

does not have an associated resource file or if the Component Manager cannot open the

resource file.

Note that when working with resources, your component should always first save the

current resource file, perform any resource operations, then restore the current resource

file to its previous value before returning.

C H A P T E R 6

Component Manager

Component Manager Reference 6-73

CloseComponentResFile

This function closes the resource file that your component opened previously with the

OpenComponentResFile function.

FUNCTION CloseComponentResFile (refnum: Integer): OSErr;

refnum The reference number that identifies the resource file to be closed. Your
component obtains this value from the OpenComponentResFile
function.

DESCRIPTION

The CloseComponentResFile function closes the specified resource file. Your

component must close any open resource files before returning to the calling application.

RESULT CODES

Calling Other Components

The Component Manager provides two techniques that allow a component to call other

components. First, your component may invoke the services of another component using

the standard mechanisms also used by applications. The Component Manager then

passes the requests to the appropriate component, and your component receives the

results of those requests.

Second, your component may supplement its capabilities by using the services of

another component to directly satisfy application requests. The Component Manager

provides the DelegateComponentCall function, which allows your component to

pass a request to a specified component. For example, you might want to create two

similar components that provide different levels of service to applications. Rather than

completely implementing both components, you could design one to rely on the

capabilities of the other. In this manner, you have to implement only that portion of the

more capable component that provides additional services.

noErr 0 No error
resFNotFound –193 Resource file not found

C H A P T E R 6

Component Manager

6-74 Component Manager Reference

DelegateComponentCall

The DelegateComponentCall function provides an efficient mechanism for passing

on requests to a specified component. Your component must open a connection to the

component to which the requests are to be passed. Your component must close that

connection when it has finished using the services of the other component.

Note
The DelegateComponentCall function does not accept a component
identifier in place of a component instance. In addition, your component
should never use the DelegateComponentCall function with open or
close requests from the Component Manager—always use the
OpenComponent and CloseComponent functions to manage
connections with other components. ◆

FUNCTION DelegateComponentCall

(originalParams: ComponentParameters;

 ci: ComponentInstance): LongInt;

originalParams
The component parameters record provided to your component by the
Component Manager.

ci The component instance that is to process the request. The Component
Manager provides a component instance to your component when it
opens a connection to another component with the OpenComponent or
OpenDefaultComponent function. You must specify a component
instance; this function does not accept a component identifier.

DESCRIPTION

The DelegateComponentCall function calls the component instance specified by the

ci parameter, and passes it the specified component parameters record.

DelegateComponentCall returns a long integer containing the component result

returned by the specified component.

SEE ALSO

See “The Component Parameters Record” on page 6-54 for a description of the

component parameters record. See page 6-45, page 6-46, and page 6-47, respectively, for

information on the OpenDefaultComponent, OpenComponent, and

CloseComponent functions.

See Listing 6-16 on page 6-36 for an example of the use of the

DelegateComponentCall function.

C H A P T E R 6

Component Manager

Component Manager Reference 6-75

Capturing Components

The Component Manager allows your component to capture another component. When

a component is captured, the Component Manager removes the captured component

from its list of available components. The FindNextComponent function does not

return information about captured components. Also, other applications or clients

cannot open or access captured components unless they have previously received a

component identifier or component instance for the captured component. The routines

described in this section allow your component to capture and uncapture other

components.

Typically, your component captures another component when you want to override all

or some of the features provided by a component or to provide new features. For

example, a component called NewMath might capture a component called OldMath.

Suppose the NewMath component provides a new function, DoExponent. Whenever

NewMath gets an exponent request, it can handle the request itself. For all other

requests, NewMath might call the OldMath component to perform the request.

After capturing a component, your component might choose to target a particular

instance of the captured component. For information on targeting a component instance,

see “Responding to the Target Request” beginning on page 6-25 and “Targeting a

Component Instance” on page 6-77.

Use the CaptureComponent function to capture a component. Use the

UncaptureComponent function to restore a previously captured component to the

search list.

CaptureComponent

The CaptureComponent function allows your component to capture another

component. In response to this function, the Component Manager removes the

specified component from the search list of components. As a result, applications cannot

retrieve information about the captured component or gain access to it. Current clients of

the captured component are not affected by this function.

FUNCTION CaptureComponent (capturedComponent: Component;

capturingComponent: Component)

: Component;

capturedComponent
The component identifier of the component to be captured. Your
component can obtain this identifier from the FindNextComponent
function or from the component registration routines.

capturingComponent
The component identifier of your component. Note that you can use the
component instance (appropriately coerced) that your component
received in its open request in this parameter.

C H A P T E R 6

Component Manager

6-76 Component Manager Reference

DESCRIPTION

The CaptureComponent function removes the specified component from the search

list of components and returns a new component identifier. Your component can use this

new identifier to refer to the captured component. For example, your component

can open the captured component by providing this identifier to the

OpenComponent function. Your component must provide this identifier to the

UncaptureComponent function to specify the component to be restored to the

search list.

If the component specified by the capturedComponent parameter is already captured,

the CaptureComponent function returns a component identifier set to NIL.

SEE ALSO

See “Responding to the Target Request” on page 6-25 and “Targeting a Component

Instance” on page 6-77 for information about target requests. For information related to

the Component Manager’s use of its list of available components, see page 6-42 for

details on the FindNextComponent function and page 6-45 for details on the

OpenDefaultComponent function. See “Registering Components” beginning on

page 6-57 for details of the component registration routines.

UncaptureComponent

The UncaptureComponent function allows your component to uncapture a previously

captured component.

FUNCTION UncaptureComponent (aComponent: Component): OSErr;

aComponent
The component identifier of the component to be uncaptured. Your
component obtains this identifier from the CaptureComponent function.

DESCRIPTION

The UncaptureComponent function restores the specified component to the search list

of components. Applications can then access the component and retrieve information

about the component using Component Manager routines.

RESULT CODES

noErr 0 No error
invalidComponentID –3000 No component has this component identifier
componentNotCaptured –3002 This component has not been captured

C H A P T E R 6

Component Manager

Component Manager Reference 6-77

Targeting a Component Instance

Your component can target a component instance without capturing the component

or your component can first capture the component and then target a specific instance of

the component. For information on capturing components, see “Capturing Components”

beginning on page 6-75. To target a component instance, use the ComponentSetTarget

function.

ComponentSetTarget

You can use the ComponentSetTarget function to call a component’s target request

routine (that is, the routine that handles the kComponentTargetSelect request code).

The target request informs a component that it has been targeted by another component.

You should not target a component instance if the component does not support the

target request. Before calling this function, you should issue a can do request to the

component instance you want to target to verify that the component supports the target

request. If the component supports it, use the ComponentSetTarget function to send a

target request to the component instance you wish to target. After receiving a target

request, the targeted component instance should call the component instance that

targeted it whenever the targeted component instance would normally call one of its

defined functions.

FUNCTION ComponentSetTarget (ci: ComponentInstance;

 target: ComponentInstance): LongInt;

ci The component instance to which to send a target request (the component
that has been targeted).

target The component instance of the component issuing the target request.

DESCRIPTION

The ComponentSetTarget function returns a function result of

badComponentSelector if the targeted component does not support the target

request. Otherwise, the ComponentSetTarget function returns as its function result

the value that the targeted component instance returned in response to the target request.

SEE ALSO

For details on how to handle the target request, see “Responding to the Target Request”

on page 6-25.

C H A P T E R 6

Component Manager

6-78 Component Manager Reference

Changing the Default Search Order

You can use the SetDefaultComponent function to change the order in which the list

of registered components is searched.

SetDefaultComponent

The SetDefaultComponent function allows your component to change the search

order for registered components. You specify a component that is to be placed at the

front of the search chain, along with control information that governs the reordering

operation. The order of the search chain influences which component the Component

Manager selects in response to an application’s use of the OpenDefaultComponent

and FindNextComponent functions.

FUNCTION SetDefaultComponent (aComponent: Component;

flags: Integer): OSErr;

aComponent
A component identifier that specifies the component for this operation.

flags A value specifying the control information governing the operation. The
value of this parameter controls which component description fields the
Component Manager examines during the reorder operation. Set the
appropriate flags to 1 to define the fields that are examined during the
reorder operation. The following flags are defined:

defaultComponentIdentical
The Component Manager places the specified component
in front of all other components that have the same
component description.

defaultComponentAnyFlags
The Component Manager ignores the value of the
componentFlags field during the reorder operation.

defaultComponentAnyManufacturer
The Component Manager ignores the value of the
componentManufacturer field during the reorder
operation.

defaultComponentAnySubType
The Component Manager ignores the value of the
componentSubType field during the reorder operation.

C H A P T E R 6

Component Manager

Component Manager Reference 6-79

DESCRIPTION

The SetDefaultComponent function changes the search order of registered

components by moving the specified component to the front of the search chain,

according to the value specified in the flags parameter.

SPECIAL CONSIDERATIONS

Note that the SetDefaultComponent function changes the search order for all

applications. As a result, you should use this function carefully.

RESULT CODES

Application-Defined Routine

To provide a component, you define a component function and supply the appropriate

registration information. You store your component function in a code resource and

typically store your component’s registration information as resources in a component

file. For additional information on this process, see “Creating Components” beginning

on page 6-13.

MyComponent

Here’s how to declare a component function named MyComponent:

FUNCTION MyComponent (params: ComponentParameters;

 storage: Handle): ComponentResult;

params A component parameters record. The what field of the component
parameters record indicates the action your component should perform.
The parameters that the client invoked your function with are contained
in the params field of the component parameters record. Your component
can use the CallComponentFunction or
CallComponentFunctionWithStorage routine to extract the
parameters from this record.

storage A handle to any memory that your component has associated with the
connection. Typically, upon receiving an open request, your component
allocates memory and uses the SetComponentInstanceStorage
function to associate the allocated memory with the component
connection.

noErr 0 No error
invalidComponentID –3000 No component has this component identifier

C H A P T E R 6

Component Manager

6-80 Component Manager Reference

DESCRIPTION

When your component receives a request, it should perform the action specified in the

what field of the component parameters record. Your component should return a value

of type ComponentResult (a long integer). If your component does not return error

information as its function result, it should indicate errors using the

SetComponentInstanceError procedure.

SEE ALSO

For information on the component parameters record, see page 6-54. For information on

writing a component, see “Creating Components” beginning on page 6-13.

Resources

This section describes the resource you use to define your component. If you are

developing a component, you should be familiar with the format and content of a

component resource.

The Component Resource

A component resource (a resource of type 'thng') stores all of the information about a

component in a single file. The component resource contains all the information needed

to register a code resource as a component. Information in the component resource tells

the Component Manager where to find the code for the component.

If you are developing an application that uses components, you do not need to know

about component resources.

If you are developing a component or an application that registers components, you

should be familiar with component resources. The Component Manager automatically

registers any components that are stored in component files in the Extensions folder. The

file type for component files must be set to 'thng'. If you store your component in a

component file in the Extensions folder, you do not need to create an application to

register the component.

The Component Manager provides routines that register components. The

RegisterComponent function registers components that are not stored in resource

files. The RegisterComponentResource and RegisterComponentResourceFile

functions register components that are stored as component resources in a component

file. If you are developing an application that registers components, you should use the

routine that is appropriate to the storage format of the component. For more information

about how your application can register components, see “Registering Components”

beginning on page 6-57.

C H A P T E R 6

Component Manager

Component Manager Reference 6-81

This section describes the component resource, which must be provided by all

components stored in a component file. Applications that register a component using the

RegisterComponent function must also provide the same information as that

contained in a component resource.

IMPORTANT

For compatibility with early versions of the Component Manager, a
component resource must be locked. ▲

The ComponentResource data type defines the structure of a component resource.

(You can also optionally append to the end of this structure the information defined by

the ComponentResourceExtension data type, as shown in Figure 6-5 on page 6-85.)

ComponentResource =

RECORD

cd: {registration information}

ComponentDescription;

component: ResourceSpec; {code resource}

componentName: ResourceSpec; {name string resource}

componentInfo: ResourceSpec; {info string resource}

componentIcon: ResourceSpec; {icon resource}

END;

Field descriptions

cd A component description record that specifies the characteristics of
the component. For a complete description of this record, see
page 6-52.

component A resource specification record that specifies the type and ID of the
component code resource. The resType field of the resource
specification record may contain any value. The component’s main
entry point must be at offset 0 in the resource.

componentName A resource specification record that specifies the resource type and
ID for the name of the component. This is a Pascal string. Typically,
the component name is stored in a resource of type 'STR '.

componentInfo A resource specification record that specifies the resource type and
ID for the information string that describes the component. This is a
Pascal string. Typically, the information string is stored in a resource
of type 'STR '. You might use the information stored in this
resource in a Get Info dialog box.

componentIcon A resource specification record that specifies the resource type and
ID for the icon for a component. Component icons are stored as
32-by-32 bit maps. Typically, the icon is stored in a resource of type
'ICON'. Note that this icon is not used by the Finder; you supply
an icon only so that other components or applications can display
your component’s icon in a dialog box if needed.

C H A P T E R 6

Component Manager

6-82 Component Manager Reference

A resource specification record, defined by the data type ResourceSpec, describes the

resource type and resource ID of the component’s code, name, information string, or

icon. The resources specified by the resource specification records must reside in the

same resource file as the component resource itself.

ResourceSpec =

RECORD

resType: OSType; {resource type}

resId: Integer; {resource ID}

END;

You can optionally include in your component resource the information defined by the

ComponentResourceExtension data type:

ComponentResourceExtension =

RECORD

componentVersion: LongInt; {version of component}

componentRegisterFlags: LongInt; {additional flags}

componentIconFamily: Integer; {resource ID of icon }

{ family}

END;

Field descriptions

componentVersion
The version number of the component. If you specify the
componentDoAutoVersion flag in componentRegisterFlags,
the Component Manager must obtain the version number of your
component when your component is registered. Either you can
provide a version number in your component’s resource, or you can
specify a value of 0 for its version number. If you specify 0, the
Component Manager sends your component a version request to
get the version number of your component.

componentRegisterFlags
A set of flags containing additional registration information. You
can use these constants as flags:

CONST

componentDoAutoVersion = 1;

componentWantsUnregister = 2;

componentAutoVersionIncludeFlags = 4;

C H A P T E R 6

Component Manager

Component Manager Reference 6-83

Specify the componentDoAutoVersion flag if you want the
Component Manager to resolve conflicts between different versions
of the same component. If you specify this flag, the Component
Manager registers your component only if there is no later version
available. If an older version is already registered, the Component
Manager unregisters it. If a newer version of the same component is
registered after yours, the Component Manager automatically
unregisters your component. You can use this automatic version
control feature to make sure that the most recent version of your
component is registered, regardless of the number of versions that
are installed.

Specify the componentWantsUnregister flag if you want your
component to receive an unregister request when it is unregistered.

Specify the flag componentAutoVersionIncludeFlags if you
want the Component Manager to include the componentFlags
field of the component description record when it searches for
identical components in the process of performing automatic
version control for your component. If you do not specify this flag,
the Component Manager searches only the componentType,
componentSubType, and componentManufacturer fields.

When the Component Manager performs automatic version control
for your component, it searches for components with identical
values in the componentType, componentSubType, and
componentManufacturer fields (and optionally, in
the componentFlags field). If it finds a matching component, it
compares version numbers and registers the most recent version of
the component. Note that the setting of the
componentAutoVersionIncludeFlags flag affects automatic
version control only and does not affect the search operations
performed by FindNextComponent and CountComponents.

componentIconFamily
The resource ID of an icon family. You can provide an icon family in
addition to the icon provided in the componentIcon field. Note
that members of this icon family are not used by the Finder; you
supply an icon family only so that other components or applications
can display your component’s icon in a dialog box if needed.

C H A P T E R 6

Component Manager

6-84 Component Manager Reference

You store a component resource, along with other resources for the component, in the

resource fork of a component file. Figure 6-4 shows the structure of a component file.

Figure 6-4 Format of a component file

You can also store other resources for your component in your component file. For

example, you should include 'FREF', 'BNDL', and icon family resources so that the

Finder can associate the icon identifying your component with your component file.

When designing the icon for your component file, you should follow the same

guidelines as those for system extension icons. See Macintosh Human Interface Guidelines

for information on designing an icon. See the chapter “Finder Interface” in Inside
Macintosh: Macintosh Toolbox Essentials for information on the 'FREF'and 'BNDL'

resources.

Figure 6-5 shows the structure of a component resource.

C H A P T E R 6

Component Manager

Component Manager Reference 6-85

Figure 6-5 Structure of a compiled component ('thng') resource

C H A P T E R 6

Component Manager

6-86 Summary of the Component Manager

Summary of the Component Manager

Pascal Summary

Constants

CONST

gestaltComponentMgr = 'cpnt';

kComponentOpenSelect = -1; {open request}

kComponentCloseSelect = -2; {close request}

kComponentCanDoSelect = -3; {can do request}

kComponentVersionSelect = -4; {version request}

kComponentRegisterSelect = -5; {register request}

kComponentTargetSelect = -6; {target request}

kComponentUnregisterSelect = -7; {unregister request}

{wildcard values for searches}

kAnyComponentType = 0; {any type}

kAnyComponentSubType = 0; {any subtype}

kAnyComponentManufacturer = 0; {any manufacturer}

kAnyComponentFlagsMask = 0; {any flags}

{component description flag}

cmpWantsRegisterMessage = $80000000; {send register request}

{flags for optional extension to component resource}

componentDoAutoVersion = 1; {provide version control}

componentWantsUnregister = 2; {send unregister request}

componentAutoVersionIncludeFlags = 4; {include flags in search}

{flags for SetDefaultComponent function}

defaultComponentIdentical = 0;

defaultComponentAnyFlags = 1;

defaultComponentAnyManufacturer = 2;

defaultComponentAnySubType = 4;

defaultComponentAnyFlagsAnyManufacturer

= defaultComponentAnyFlags +

 defaultComponentAnyManufacturer;

C H A P T E R 6

Component Manager

Summary of the Component Manager 6-87

defaultComponentAnyFlagsAnyManufacturerAnySubType

= defaultComponentAnyFlags

+ defaultComponentAnyManufacturer

+ defaultComponentAnySubType;

{flags for the global parameter of RegisterComponentResourceFile function}

registerCmpGlobal = 1; {other apps can communicate with component}

registerCmpNoDuplicates = 2; {don't register if duplicate component }

{ exists}

registerCompAfter = 4; {component registered after all others of }

{ same type}

Data Types

TYPE

ComponentDescription =

RECORD

componentType: OSType; {type}

componentSubType: OSType; {subtype}

componentManufacturer: OSType; {manufacturer}

componentFlags: LongInt; {control flags}

componentFlagsMask: LongInt; {mask for control flags }

{ (reserved when }

{ registering a component)}

END;

ResourceSpec =

RECORD

resType: OSType; {resource type}

resID: Integer; {resource ID}

END;

ComponentResourcePtr = ^ComponentResource;

ComponentResourceHandle = ^ComponentResourcePtr;

ComponentResource = {component resource}

RECORD

cd: ComponentDescription; {registration information}

component: ResourceSpec; {code resource}

componentName: ResourceSpec; {name string resource}

componentInfo: ResourceSpec; {info string resource}

componentIcon: ResourceSpec; {icon resource}

END;

C H A P T E R 6

Component Manager

6-88 Summary of the Component Manager

ComponentResourceExtension = {optional extension to resource}

RECORD

componentVersion: LongInt; {version of component}

componentRegisterFlags: LongInt; {additional flags}

componentIconFamily: Integer; {resource ID of icon }

{ family}

END;

{component parameters record}

ComponentParameters =

PACKED RECORD

flags: Char; {reserved}

paramSize: Char; {size in bytes of actual }

{ parameters passed to }

{ this routine}

what: Integer; {request code- }

{ negative for requests }

{ defined by Component Mgr}

params: ARRAY[0..0] OF LongInt; {actual parameters for }

{ the indicated routine}

END;

{component identifier}

Component = ^ComponentRecord;

ComponentRecord =

RECORD

data: ARRAY[0..0] OF LongInt;

END;

{component instance}

ComponentInstance = ^ComponentInstanceRecord;

ComponentInstanceRecord =

RECORD

data: ARRAY[0..0] OF LongInt;

END;

ComponentResult = LongInt;

ComponentRoutine = ProcPtr;

ComponentFunction = ProcPtr;

C H A P T E R 6

Component Manager

Summary of the Component Manager 6-89

Routines for Applications

Finding Components

FUNCTION FindNextComponent (aComponent: Component;
looking: ComponentDescription): Component;

FUNCTION CountComponents (looking: ComponentDescription): LongInt;

FUNCTION GetComponentListModSeed: LongInt;

Opening and Closing Components

FUNCTION OpenDefaultComponent
(componentType: OSType;
componentSubType: OSType): ComponentInstance;

FUNCTION OpenComponent (aComponent: Component): ComponentInstance;

FUNCTION CloseComponent (aComponentInstance: ComponentInstance): OSErr;

Getting Information About Components

FUNCTION GetComponentInfo (aComponent: Component;
VAR cd: ComponentDescription;
componentName: Handle; componentInfo: Handle;
componentIcon: Handle): OSErr;

FUNCTION GetComponentIconSuite
(aComponent: Component;
VAR iconSuite: Handle): OSErr;

FUNCTION GetComponentVersion
(ci: ComponentInstance): LongInt;

FUNCTION ComponentFunctionImplemented
(ci: ComponentInstance; ftnNumber: Integer)
: LongInt;

Retrieving Component Errors

FUNCTION GetComponentInstanceError
(aComponentInstance: ComponentInstance): OSErr;

C H A P T E R 6

Component Manager

6-90 Summary of the Component Manager

Routines for Components

Registering Components

FUNCTION RegisterComponent (cd: ComponentDescription;
componentEntryPoint: ComponentRoutine;
global: Integer; componentName: Handle;
componentInfo: Handle;
componentIcon: Handle): Component;

FUNCTION RegisterComponentResource
(cr: ComponentResourceHandle;
global: Integer): Component;

FUNCTION RegisterComponentResourceFile
(resRefNum: integer; global: integer); LongInt;

FUNCTION UnregisterComponent
(aComponent: Component): OSErr;

Dispatching to Component Routines

FUNCTION CallComponentFunction
(params: ComponentParameters;
func: ComponentFunction): LongInt;

FUNCTION CallComponentFunctionWithStorage
(storage: Handle;
params: ComponentParameters;
func: ComponentFunction): LongInt;

Managing Component Connections

PROCEDURE SetComponentInstanceStorage
(aComponentInstance: ComponentInstance;
theStorage: Handle);

FUNCTION GetComponentInstanceStorage
(aComponentInstance: ComponentInstance): Handle;

FUNCTION CountComponentInstances
(aComponent: Component): LongInt;

PROCEDURE SetComponentInstanceA5
(aComponentInstance: ComponentInstance;
theA5: LongInt);

FUNCTION GetComponentInstanceA5
(aComponentInstance: ComponentInstance)
: LongInt;

C H A P T E R 6

Component Manager

Summary of the Component Manager 6-91

Setting Component Errors

PROCEDURE SetComponentInstanceError
(aComponentInstance: ComponentInstance;
theError: OSErr);

Working With Component Reference Constants

PROCEDURE SetComponentRefcon
(aComponent: Component; theRefcon: LongInt);

FUNCTION GetComponentRefcon
(aComponent: Component): LongInt;

Accessing a Component’s Resource File

FUNCTION OpenComponentResFile
(aComponent: Component): Integer;

FUNCTION CloseComponentResFile
(refnum: Integer): OSErr;

Calling Other Components

FUNCTION DelegateComponentCall
(originalParams: ComponentParameters;
ci: ComponentInstance): LongInt;

Capturing Components

FUNCTION CaptureComponent (capturedComponent: Component;
capturingComponent: Component): Component;

FUNCTION UncaptureComponent
(aComponent: Component): OSErr;

Targeting a Component Instance

FUNCTION ComponentSetTarget (ci: ComponentInstance;
target: ComponentInstance): LongInt;

Changing the Default Search Order

FUNCTION SetDefaultComponent
(aComponent: Component; flags: Integer): OSErr;

C H A P T E R 6

Component Manager

6-92 Summary of the Component Manager

Application-Defined Routine

FUNCTION MyComponent (params: ComponentParameters;
storage: Handle): ComponentResult;

C Summary

Constants

#define gestaltComponentMgr 'cpnt' /*Gestalt selector*/

/*required component routines*/

#define kComponentOpenSelect -1 /*open request*/

#define kComponentCloseSelect -2 /*close request*/

#define kComponentCanDoSelect -3 /*can do request*/

#define kComponentVersionSelect -4 /*version request*/

#define kComponentRegisterSelect -5 /*register request*/

#define kComponentTargetSelect -6 /*target request*/

#define kComponentUnregisterSelect -7 /*unregister request*/

/*wildcard values for searches*/

#define kAnyComponentType 0 /*any type*/

#define kAnyComponentSubType 0 /*any subtype*/

#define kAnyComponentManufacturer 0 /*any manufacturer*/

#define kAnyComponentFlagsMask 0 /*any flags*/

/*component description flags*/

enum {

cmpWantsRegisterMessage = 1L<<31 /*send register request*/

};

/*flags for optional extension to component resource*/

enum {

componentDoAutoVersion = 1, /*provide version control*/

componentWantsUnregister = 2, /*send unregister request*/

componentAutoVersionIncludeFlags = 4 /*include flags in search*/

};

enum { /*flags for SetDefaultComponent function*/

defaultComponentIdentical = 0,

defaultComponentAnyFlags = 1,

defaultComponentAnyManufacturer = 2,

C H A P T E R 6

Component Manager

Summary of the Component Manager 6-93

defaultComponentAnySubType = 4,

};

#define defaultComponentAnyFlagsAnyManufacturer

(defaultComponentAnyFlags+defaultComponentAnyManufacturer)

#define defaultComponentAnyFlagsAnyManufacturerAnySubType

(defaultComponentAnyFlags+defaultComponentAnyManufacturer

 +defaultComponentAnySubType)

enum {

/*flags for the global parameter of RegisterComponentResourceFile function*/

registerCmpGlobal = 1, /*other apps can communicate with */

/* component*/

registerCmpNoDuplicates = 2, /*duplicate component exists*/

registerCompAfter = 4 /*component registered after all others */

/* of same type*/

};

Data Structures

struct ComponentDescription {

OSType componentType; /*type*/

OSType componentSubType; /*subtype*/

OSType componentManufacturer; /*manufacturer*/

unsigned long componentFlags; /*control flags*/

unsigned long componentFlagsMask; /*mask for control flags */

/* (reserved when registering */

/* a component)*/

};

typedef struct ComponentDescription ComponentDescription;

struct ResourceSpec {

OSType ResType; /*resource type*/

short ResID; /*resource ID*/

};

typedef struct ResourceSpec ResourceSpec;

C H A P T E R 6

Component Manager

6-94 Summary of the Component Manager

struct ComponentResource {

ComponentDescription cd; /*registration information*/

ResourceSpec component; /*code resource*/

ResourceSpec componentName; /*name string resource*/

ResourceSpec componentInfo; /*info string resource*/

ResourceSpec componentIcon; /*icon resource*/

};

typedef struct ComponentResource ComponentResource;

typedef ComponentResource *ComponentResourcePtr, **ComponentResourceHandle;

/*optional extension to component resource*/

struct ComponentResourceExtension {

long componentVersion; /*version number*/

long componentRegisterFlags; /*additional flags*/

short componentIconFamily; /*resource ID of icon family*/

};

typedef struct ComponentResourceExtension ComponentResourceExtension;

/*structure received by component*/

struct ComponentParameters {

unsigned char flags; /*reserved*/

unsigned char paramSize; /*size in bytes of actual parameters passed */

/* to this routine*/

short what; /*request code, negative for requests */

/* defined by Component Mgr*/

long params[1]; /*actual parameters for the indicated */

/* routine*/

};

typedef struct ComponentParameters ComponentParameters;

/*component identifier*/

typedef struct privateComponentRecord *Component;

/*component instance*/

typedef struct privateComponentInstanceRecord *ComponentInstance;

typedef long ComponentResult;

typedef pascal ComponentResult (*ComponentRoutine)

(ComponentParameters *cp, Handle componentStorage);

typedef pascal ComponentResult (*ComponentFunction)();

#define ComponentCallNow(callNumber, paramSize) \

{0x2F3C, paramSize, callNumber, 0x7000, 0xA82A}

C H A P T E R 6

Component Manager

Summary of the Component Manager 6-95

Routines for Applications

Finding Components

pascal Component FindNextComponent
(Component aComponent,
ComponentDescription *looking);

pascal long CountComponents
(ComponentDescription *looking);

pascal long GetComponentListModSeed
(void);

Opening and Closing Components

pascal ComponentInstance OpenDefaultComponent
(OSType componentType,
OSType componentSubType);

pascal ComponentInstance OpenComponent
(Component aComponent);

pascal OSErr CloseComponent
(ComponentInstance aComponentInstance);

Getting Information About Components

pascal OSErr GetComponentInfo
(Component aComponent,
ComponentDescription *cd,
Handle componentName, Handle componentInfo,
Handle componentIcon);

pascal OSErr GetComponentIconSuite
(Component aComponent,
Handle *iconSuite);

pascal long GetComponentVersion
(ComponentInstance ci);

pascal long ComponentFunctionImplemented
(ComponentInstance ci, short ftnNumber);

Retrieving Component Errors

pascal OSErr GetComponentInstanceError
(ComponentInstance aComponentInstance);

C H A P T E R 6

Component Manager

6-96 Summary of the Component Manager

Routines for Components

Registering Components

pascal Component RegisterComponent
(ComponentDescription *cd,
ComponentRoutine componentEntryPoint,
short global, Handle componentName,
Handle componentInfo, Handle componentIcon);

pascal Component RegisterComponentResource
(ComponentResourceHandle cr, short global);

pascal long RegisterComponentResourceFile
(short resRefNum, short global);

pascal OSErr UnregisterComponent
(Component aComponent);

Dispatching to Component Routines

pascal long CallComponentFunction
(ComponentParameters *params,
ComponentFunction func);

pascal long CallComponentFunctionWithStorage
(Handle storage, ComponentParameters *params,
ComponentFunction func);

Managing Component Connections

pascal void SetComponentInstanceStorage
(ComponentInstance aComponentInstance,
Handle theStorage);

pascal Handle GetComponentInstanceStorage
(ComponentInstance aComponentInstance);

pascal long CountComponentInstances
(Component aComponent);

pascal void SetComponentInstanceA5
(ComponentInstance aComponentInstance,
long theA5);

pascal long GetComponentInstanceA5
(ComponentInstance aComponentInstance);

Setting Component Errors

pascal void SetComponentInstanceError
(ComponentInstance aComponentInstance,
OSErr theError);

C H A P T E R 6

Component Manager

Summary of the Component Manager 6-97

Working With Component Reference Constants

pascal void SetComponentRefcon
(Component aComponent, long theRefcon);

pascal long GetComponentRefcon
(Component aComponent);

Accessing a Component’s Resource File

pascal short OpenComponentResFile
(Component aComponent);

pascal OSErr CloseComponentResFile
(short refnum);

Calling Other Components

pascal long DelegateComponentCall
(ComponentParameters *originalParams,
ComponentInstance ci);

Capturing Components

pascal Component CaptureComponent
(Component capturedComponent,
Component capturingComponent);

pascal OSErr UncaptureComponent
(Component aComponent);

Targeting a Component Instance

pascal long ComponentSetTarget
(ComponentInstance ci,
ComponentInstance target);

Changing the Default Search Order

pascal OSErr SetDefaultComponent
(Component aComponent, short flags);

Application-Defined Routine

pascal ComponentResult MyComponent
(ComponentParameters* params,
Handle storage);

C H A P T E R 6

Component Manager

6-98 Summary of the Component Manager

Assembly-Language Summary

Trap Macros

Trap Macros Requiring Routine Selectors

_ComponentDispatch

Selector Routine

$7001 RegisterComponent

$7002 UnregisterComponent

$7003 CountComponents

$7004 FindNextComponent

$7005 GetComponentInfo

$7006 GetComponentListModSeed

$7007 OpenComponent

$7008 CloseComponent

$700A GetComponentInstanceError

$700B SetComponentInstanceError

$700C GetComponentInstanceStorage

$700D SetComponentInstanceStorage

$700E GetComponentInstanceA5

$700F SetComponentInstanceA5

$7010 GetComponentRefcon

$7011 SetComponentRefcon

$7012 RegisterComponentResource

$7013 CountComponentInstances

$7014 RegisterComponentResourceFile

$7015 OpenComponentResFile

$7018 CloseComponentResFile

$701C CaptureComponent

$701D UncaptureComponent

$701E SetDefaultComponent

$7021 OpenDefaultComponent

$7024 DelegateComponentCall

$70FF CallComponentFunction

$70FF CallComponentFunctionWithStorage

C H A P T E R 6

Component Manager

Summary of the Component Manager 6-99

Result Codes
noErr 0 No error
resFNotFound –193 Resource file not found
invalidComponentID –3000 No component has this component identifier
validInstancesExist –3001 This component has open connections
componentNotCaptured –3002 This component has not been captured
badComponentInstance $800008001 Invalid component passed to Component Manager
badComponentSelector $800008002 Component does not support the specified request code

Contents 7-1

C H A P T E R 7

Contents

Translation Manager

About the Translation Manager 7-4

Opening Documents From the Finder 7-5

Opening Documents Within an Application 7-8

Translating Documents on the Desktop 7-9

Sharing Data Between Applications 7-10

Using the Translation Manager 7-10

Checking for the Translation Manager 7-12

Declaring the File Types Your Application Can Open 7-13

Declaring Custom Kind Strings 7-14

Using File-Opening Dialog Boxes 7-15

Translating Files Explicitly 7-17

Writing a Translation Extension 7-18

Creating a Translation Extension 7-19

Dispatching to Translation Extension-Defined Routines 7-24

Creating a Translation List 7-27

Identifying Files 7-32

Translating Files 7-33

Writing Application Translation Extensions 7-35

Translation Manager Reference 7-36

Translation Manager Routines 7-36

Getting Translation Information 7-37

Translating Files 7-42

Resources 7-43

The Open Resource 7-44

The Kind Resource 7-45

Translation Extension Reference 7-46

Translation Extension Data Structures 7-46

File Type Specifications 7-46

File Translation Lists 7-48

Scrap Type Specifications 7-49

C H A P T E R 7

7-2 Contents

Scrap Translation Lists 7-49

Translation Extension Routines 7-50

Managing Translation Progress Dialog Boxes 7-50

Translation Extension-Defined Routines 7-54

File Translation Extension Routines 7-54

Scrap Translation Extension Routines 7-58

Summary of the Translation Manager 7-63

Pascal Summary 7-63

Constants 7-63

Data Types 7-63

Translation Manager Routines 7-64

C Summary 7-64

Constants 7-64

Data Types 7-65

Translation Manager Routines 7-65

Assembly-Language Summary 7-66

Data Structures 7-66

Trap Macros 7-66

Result Codes 7-67

Summary of Translation Extensions 7-68

Pascal Summary 7-68

Constants 7-68

Data Types 7-68

Translation Extension Routines 7-70

Translation Extension-Defined Routines 7-70

C Summary 7-71

Constants 7-71

Data Types 7-71

Translation Extension Routines 7-73

Translation Extension-Defined Routines 7-73

Assembly-Language Summary 7-74

Data Structures 7-74

Trap Macros 7-75

Result Codes 7-75

C H A P T E R 7

7-3

Translation Manager

This chapter describes how you can use the Translation Manager to direct the translation

of documents from one format to another. This chapter also gives an overview of

Macintosh Easy Open. Macintosh Easy Open uses the Translation Manager to provide

extensive data translation services for Macintosh computers. Macintosh Easy Open uses

the Translation Manager to provide

■ automatic translation of a document from one format to some other format if the
application that created it is not available when the user attempts to open the
document

■ automatic translation of documents drop-launched onto an application

■ enhanced Standard File Package file-opening dialog boxes and (when necessary)
automatic translation of documents the user selects in those dialog boxes

■ batch desktop translation of documents

■ automatic translation of data pasted from the Clipboard

■ automatic translation of data in editions

Most applications take advantage of these services automatically if they use the system

software to open documents. You can, however, enhance your application’s interaction

with Macintosh Easy Open by adding several resources to your application’s resource

file. For example, the Finder and Macintosh Easy Open work with the Standard File

Package to list in the file opening dialog box all files that your application can open,

including those that it can open only after they have been translated from their current

format to another format. See “Declaring the File Types Your Application Can Open” on

page 7-13 for instructions on adding the required resources to your application. If,

however, your application doesn’t use the Standard File Package when opening files,

you might also need to use the Translation Manager to direct the translation. See

“Translating Files Explicitly” on page 7-17 for more information.

This chapter also describes how to write a translation extension. Macintosh Easy Open

doesn’t do any translating itself; instead, it uses translation extensions to translate

documents (data in files) and scraps (data in memory) in the situations listed above.

Translation extensions also need to be able to report the kinds of files or scraps they can

handle and to identify specific files that need to be translated. You’re likely to need to

write a translation extension only if you are developing file or scrap translators (also

known as convertors or filters).

Macintosh Easy Open and the Translation Manager are not available in all system

software versions. You should use the Gestalt function to ensure that the services you

need are available before calling them. See “Checking for the Translation Manager” on

page 7-12 for details.

To use this chapter, you should already be familiar with the Standard File Package, the

Scrap Manager, the Edition Manager, Finder-related resources, and the Component

Manager. For information on the Standard File Package, see Inside Macintosh: Files. For

information on the Scrap Manager and the Component Manager, see their corresponding

chapters in this book. For information on the Edition Manager, see Inside Macintosh:
Interapplication Communication. For information on Finder-related resources, see Inside
Macintosh: Macintosh Toolbox Essentials.

C H A P T E R 7

Translation Manager

7-4 About the Translation Manager

About the Translation Manager

The Translation Manager provides extensive data translation services for Macintosh

computers. Macintosh Easy Open uses the Translation Manager to provide four basic

services:

■ translation of documents opened from the Finder

■ automatic translation of documents opened by applications that use the Standard File
Package

■ batch translation of documents at the desktop level

■ automatic translation of data in editions or pasted from the Clipboard

These services allow your application to open documents created by other applications

(possibly running on other operating systems) and to import data from other

applications with better fidelity than previously possible.

Macintosh Easy Open provides the services that the Finder and the Standard File

Package use to implement implicit translation (the conversion of a file or scrap without

direct intervention from the application). The Finder needs to know which applications

are capable of opening a document, either directly or after the document has been

translated to another file format. The Standard File Package needs to know which other

file types can be translated to some file type that the application can read. Both the

Finder and the Standard File Package then call Macintosh Easy Open to translate a file to

another format.

Macintosh Easy Open does not do any translating itself, and it does not have any

knowledge of translation data models. Instead, it delegates these functions to translation

extensions or to applications with built-in translation capability. Translation extensions

and application translation capabilities operate as “black boxes” to Macintosh Easy Open.

A translation extension is responsible for many things, including recognizing and

translating files or scraps. A translation extension might be a complete entity, able to

recognize and translate all by itself. Other translation extensions might require external

files, usually called translators or filters, to perform their work. In either case, the whole

is called a translation system.

At system startup (or whenever new translation extensions become available),

Macintosh Easy Open catalogs the translation capability of each translation extension

and each application, and then invokes each as needed. Macintosh Easy Open can

support multiple translation systems.

C H A P T E R 7

Translation Manager

About the Translation Manager 7-5

There are two types of translation systems: file translation systems and scrap translation

systems. A file translation system can translate from one file format to another. A scrap
translation system can translate buffers in memory. Macintosh Easy Open distinguishes

between the two because a file format in memory might differ from the same file format

on disk. A single translation system, however, might contain both kinds of translators.

The following four sections describe in greater detail the capabilities of Macintosh Easy

Open and its interactions with other pieces of the Macintosh system software.

Opening Documents From the Finder
A user can ask the Finder to open a document in several ways, for example, by selecting

the document’s icon and choosing the Open command in the Finder’s File menu or

(more typically) by double-clicking the document’s icon. If Macintosh Easy Open is not

present in the operating environment and the user attempts to open a document created

by an application that isn’t available, the Finder displays the alert box shown in

Figure 7-1.

Figure 7-1 The Finder’s application-unavailable alert box

If the document the user wants to open is of type 'TEXT' or 'PICT' and the creator

application cannot be found, the Finder instead displays the alert box shown in

Figure 7-2, which allows the user to try to open the document using the TeachText

application.

Figure 7-2 The application-unavailable alert box for 'TEXT' and 'PICT' documents

C H A P T E R 7

Translation Manager

7-6 About the Translation Manager

When Macintosh Easy Open is available, it intercedes in the Finder’s document-opening

process. For example, if the user attempts to open the document “Important Data” (of

type 'SURF') created by the SurfWriter application and that application isn’t available

on the user’s system, the Finder displays a dialog box like the one shown in Figure 7-3.

This dialog box contains a list of all applications that can open a document of that type.

Figure 7-3 The translation choices dialog box

In this dialog box, the user can select a translation path from the document’s current

format to one that can be opened by some application that is available. In this way, the

user can open documents created by missing or unavailable applications.

Macintosh Easy Open lists two kinds of applications in the dialog box shown in

Figure 7-3, applications that can open the file natively (that is, in its current format) and

those that can open the document only after the document has been translated into some

other format. When the user selects an application requiring translation and clicks the

Open button, Macintosh Easy Open calls the appropriate translation extension to

translate the original document. During the translation, Macintosh Easy Open displays a

translation progress dialog box, as shown in Figure 7-4.

C H A P T E R 7

Translation Manager

About the Translation Manager 7-7

Figure 7-4 A translation progress dialog box

The progress dialog box displays the name of the document being translated, its original

format, and its target format. The top portion of the dialog box shows an advertisement

provided by the particular translation extension that Macintosh Easy Open called to

perform the translation. (In this case, the Hang Ten Translation Extension is being used.)

It’s possible that two or more translation extensions can translate the same original

document; if so, they’ll all be listed in the translation choices dialog box.

If none of the available translation extensions can translate a particular document, the

Finder may present a modified version of the application-unavailable alert box, shown in

Figure 7-5.

Figure 7-5 The modified application-unavailable alert box

To have another application open a document, the user can drop-launch the document.

(To drop-launch a document is to drag the document’s icon onto the application’s icon.)

If Macintosh Easy Open knows how to translate the document into a format that can be

opened by that application, the Finder highlights the application’s icon as the user drags

the document icon over it. When the user drop-launches the document, Macintosh Easy

Open displays a dialog box that is similar to the translation choices dialog box (see

Figure 7-3).

C H A P T E R 7

Translation Manager

7-8 About the Translation Manager

Opening Documents Within an Application
When present in the operating environment, Macintosh Easy Open modifies the

Standard File Package so that its file-opening dialog boxes display not only the file types

your application can open by itself but also the file types that can be translated into

those your application can open. The result is that users can open more documents using

your application than they previously could. Figure 7-6 shows the enhanced file-opening

dialog box.

Figure 7-6 The enhanced file-opening dialog box

In the case shown in Figure 7-6, the application can open SurfWriter documents without

translating them. In addition, Macintosh Easy Open can translate SurfDB and SurfPaint

documents to SurfWriter documents; as a result, any SurfDB and SurfPaint documents in

the current directory are displayed in the dialog box.

If the user selects a document that your application can open only after some sort of

translation, Macintosh Easy Open displays the translation progress dialog box (shown in

Figure 7-4) and translates the document into a format that your application recognizes.

Notice in Figure 7-6 that the small, black-and-white generic document icons (of type

'SICN') usually displayed by the Standard File Package have been replaced by small

color icons (displayed in this figure in grayscale) that are specific to each type of

document. When Macintosh Easy Open is present, the Standard File Package uses small

color icons (of type 'ics4' or 'ics8', according to the current bit depth of the display

device) to show document types. This allows the user to distinguish more easily between

documents of different file types and provides a clue to which documents belong to your

application and which belong to some other application but can be opened after

translation.

C H A P T E R 7

Translation Manager

About the Translation Manager 7-9

IMPORTANT

To have the Standard File Package display your application’s small color
icons in the file-opening dialog box, your application’s resource fork
should contain the appropriate small color icons (of type 'ics4' or
'ics8'). In addition, if your application uses custom Standard File
Package file-opening dialog boxes, your resource fork should contain a
dialog color table resource (of type 'dctb') whose resource ID is the
same as the resource ID of the dialog box. See the chapter “Finder
Interface” in Inside Macintosh: Macintosh Toolbox Essentials for complete
information about small color icons; see the chapter “Dialog Manager”
in that same book for information about dialog color tables. ▲

Translating Documents on the Desktop
Macintosh Easy Open includes a tool, called Document Converter, that allows users to

convert documents without opening them. This tool is useful if a user wants to convert a

number of documents (batch translation) or wants to give the translated documents to

other users who don’t have either Macintosh Easy Open or the appropriate translation

extensions installed on their machines.

To translate documents on the desktop, the user needs to configure the Document

Converter tool. When the user opens the Document Converter, it displays the dialog box

shown in Figure 7-7.

Figure 7-7 Document Converter configuration dialog box

This dialog box lists target document types, not applications. The user selects a target

document type and clicks the Set button to complete the configuration. At that point, the

Document Converter application quits and changes its own name to reflect the

conversion path of documents subsequently dropped onto it.

C H A P T E R 7

Translation Manager

7-10 Using the Translation Manager

Once the Document Converter has been configured, the user can translate documents by

dropping them onto the Document Converter icon. The Document Converter creates a

new document in the target format and leaves the original document unmodified. The

user can also drop a group of documents—or even a folder of documents—onto the

Document Converter icon; in these cases, the Document Convertor translates all the

documents in the group.

Sharing Data Between Applications
Macintosh Easy Open can translate not only documents (data stored in files) but also

scraps (data stored in memory) and other data. For instance, when a user copies a

selection in one document and pastes the data into a document created by some other

application, Macintosh Easy Open steps in, if necessary, to translate the data from its

original format (as contained on the Clipboard) to the format of the target document.

Because the source and target formats are known, Macintosh Easy Open doesn’t need to

present the translation choices dialog box (shown in Figure 7-3 on page 7-6).

Instead, Macintosh Easy Open proceeds directly with the translation. The only sign that

Macintosh Easy Open is at work is the translation progress dialog box.

Data shared in editions might also need to be translated from one format to another.

When a user subscribes to an edition (or updates an existing subscriber) and the data in

the edition is not already in the format of the subscribing application, Macintosh Easy

Open translates the data. Once again, it displays the translation progress dialog box to

show the user that it’s at work.

Using the Translation Manager

Most applications benefit from the services of Macintosh Easy Open automatically if

they use the standard Macintosh system software (such as the Standard File Package, the

Edition Manager, and the Scrap Manager) to open files or exchange data with other

applications. If the appropriate translators are present on a particular computer,

Macintosh Easy Open implicitly translates file and scrap formats into those supported by

your application. To facilitate this translation, however, you should

■ Make your application stationery-aware. When Macintosh Easy Open passes
your application a translated document, the document’s stationery bit is set if your
application is stationery-aware. The user should be prompted to save any changes to
the translated document under a new name when closing the document.

■ Add a resource of type 'open' to your application. This resource indicates what file
types your application can open. See “Declaring the File Types Your Application Can
Open” on page 7-13 for complete details.

C H A P T E R 7

Translation Manager

Using the Translation Manager 7-11

■ Add a resource of type 'kind' to your application. This resource allows the Finder to
display custom kind strings in its windows. See “Declaring Custom Kind Strings”
beginning on page 7-14 for complete details.

■ Add a resource of type 'dctb' to your application if it uses custom Standard File
Package file-opening dialog boxes. This resource allows the Standard File Package to
display the enhanced small color icons in its dialog boxes. See the chapter “Dialog
Manager” in Inside Macintosh: Macintosh Toolbox Essentials for information on creating
resources of type 'dctb'.

■ Avoid using a file filter function as the only method of specifying file types when
calling the Standard File Package routines StandardGetFile and CustomGetFile
(or the original SFGetFile and SFPGetFile). Instead of a file filter function (or in
addition to it), you should use the typeList parameter to specify file types to list in
the file-opening dialog box. Alternatively, you can pass the special value
kUseOpenResourceTypes in the numTypes parameter to have the file types read
from your application’s 'open' resource. See “Using File-Opening Dialog Boxes” on
page 7-15 for more details.

■ Use the Scrap Manager properly:

■ Put formats on the scrap in order of fidelity.

■ Get formats from the scrap in the order that your application can best interpret.

■ Don’t call GetScrap unless the user has just pasted, because doing so may cause a
lengthy translation.

■ Be able to put the popular scrap formats (such as 'styl') on the scrap.

■ Don’t rely on the offset parameter returned by GetScrap. It is undefined after
implicit translation.

■ Avoid using 'TEXT' as a file type of a document your application creates unless the
document contains plain ASCII text intended to be viewed by the user as plain text.

■ Use file types that accurately indicate the format type of the documents your
application creates. When you revise your application and make extensive changes to
the file format of a document, previous versions of your application will not be able to
read the document. In this case, you should assign a different file type to the new
format.

If your application does not use the Standard File Package to allow the user to select files

to open, you can use the Translation Manager to make your application compatible with

Macintosh Easy Open. See “Translating Files Explicitly” on page 7-17 for details.

C H A P T E R 7

Translation Manager

7-12 Using the Translation Manager

Checking for the Translation Manager
Macintosh Easy Open and the Translation Manager are not available in all system

software versions. You can use the Gestalt function to determine whether the services

you need are available before calling them. To get information about the Translation

Manager, you pass Gestalt the selector gestaltTranslationAttr.

CONST

gestaltTranslationAttr = 'xlat'; {Translation Manager}

Gestalt returns in the response parameter a bit field that encodes information about

the Translation Manager. Currently only 1 bit is used:

CONST

gestaltTranslationMgrExists = 0; {TM is present}

If the indicated bit (bit 0) is set, the Translation Manager is available and you can safely

call the routines it provides. Otherwise, if that bit is clear, the Translation Manager is not

available.

As you have seen, Macintosh Easy Open works with the Standard File Package, the

Edition Manager, and the Scrap Manager to translate files and scraps implicitly. In most

cases, you don’t need to know that a file or scrap has been implicitly translated, but in

some cases you might need this information. You can use Gestalt to determine

whether these other system software parts are capable of supporting the capabilities of

Macintosh Easy Open. Listing 7-1 lists the translation-specific Gestalt selectors and bit

numbers of the response parameter for the Standard File Package, the Edition

Manager, and the Scrap Manager.

Listing 7-1 Translation-specific selectors and response bit for Gestalt

CONST

gestaltStandardFileAttr = 'stdf'; {Standard File Package}

gestaltStandardFileTranslationAware = 1;

gestaltStandardFileHasColorIcons = 2;

gestaltEditionMgrAttr = 'edtn'; {Edition Manager}

gestaltEditionMgrTranslationAware = 1;

gestaltScrapMgrAttr = 'scra'; {Scrap Manager}

gestaltScrapMgrTranslationAware = 0;

For complete information about the Gestalt function, see the chapter “Gestalt

Manager” in Inside Macintosh: Operating System Utilities.

C H A P T E R 7

Translation Manager

Using the Translation Manager 7-13

Declaring the File Types Your Application Can Open
In system software versions 7.0 and later, the Finder determines which types of files your

application can open by inspecting the resources of type 'FREF' whose resource IDs are

listed in your application’s bundle (that is, your application’s resource of type 'BNDL').

The Finder uses this information to determine which file types can be drop-launched on

your application. All file types in the 'FREF' resources listed in your application’s

bundle, regardless of whether they have associated icons, are considered droppable on

your application.

Note

See the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox
Essentials for a complete description of resources of types 'FREF' and
'BNDL'. ◆

In some cases, however, your application might include 'FREF' resources for file types

that you don’t want the user to open. For example, your application might use

non-document files such as dictionaries and help files. Even though these files should

have icons and hence deserve 'FREF' resources, their contents should not be displayed

to the user. Similarly, your application might read data from preferences files; this data is

intended to be used internally by the application, not opened by the user as a document.

Because the list of file types your application can open may be different from the list of

types that have icons, the Translation Manager defines a new resource of type 'open'.

The open resource declares which file types your application can open as documents

(and hence can be dropped onto your application). Listing 7-2 shows a sample resource

of type 'open', in Rez input format.

Listing 7-2 A sample resource of type 'open'

/*open resource for TeachText*/

resource 'open' (128)

{

'ttxt', { 'ttro', 'PICT', 'TEXT' }

};

An open resource consists of an application signature followed by a list of file types. It

indicates that the specified application can open files whose types occur in the list. For

example, TeachText can open documents created in its own private format, 'ttro', as

well as documents of file type 'PICT' and 'TEXT'. If Macintosh Easy Open is

available, the Finder allows the user to drop documents of those types onto the

application. In addition, if any translation extensions are installed, all documents that

can be translated to one of the specified types can also be dropped on the application. So,

if a translation extension exists that can translate documents from type 'SURF' to type

'ttro', the user can drop SurfWriter documents onto TeachText.

C H A P T E R 7

Translation Manager

7-14 Using the Translation Manager

You should list file types in your open resource in order of decreasing preference. If the

Translation Manager has to choose between multiple file types as the destination file

type for a translation, it chooses the file type that occurs earliest in the list.

The open resource is also used by the routine StandardOpenDialog to determine

which documents should be listed in the file-opening dialog box. See “Using

File-Opening Dialog Boxes” on page 7-15 for details on StandardOpenDialog.

IMPORTANT

If you use the StandardOpenDialog function, the open resource in
your application should have resource ID 128. ▲

Your application might need to determine dynamically which types of files it can open

(perhaps by inspecting which filters are available in a certain folder). If so, you cannot

list those file types statically in an open resource. Instead, you can write a simple

translation extension to generate a list of openable file types at runtime. See “Writing

Application Translation Extensions” beginning on page 7-35 for details.

Declaring Custom Kind Strings
A file’s kind string is the string displayed in the “Kind” column in a Finder window

when a folder’s contents are viewed by name, size, kind, label, or date (that is, by any

method other than by icon or small icon). The Finder determines the kind string for a file

by taking the name of the application that created it and, in the case of English,

appending “document” to that name (for example “SurfWriter document”). If the user

does not have the application that created the file, the kind string is simply “document”.

Note

Localized versions of the Finder determine the kind string in other
ways. For instance, the Finder may prepend some string (for example,
“document de SurfWriter”). ◆

If the application isn’t available on the computer (the situation in which the user is most

likely to want the kind information), the kind string is not particularly helpful. In that

case, the displayed string is “document” (or some localization thereof), and the user has

no idea which application created it. Moreover, the documents of applications that

support many kinds of documents all have the same kind string, even though those

documents may be of entirely different kinds (such as word-processing documents,

spreadsheet documents, graphics documents, and so forth). It would be better to have

the Finder list more information about a document than its creator.

To solve these problems, Macintosh Easy Open allows you to define a custom kind string

for each type of file your application creates. You do this by including a kind resource (a

resource of type 'kind') in your application’s resource file. The custom kind strings

defined in a kind resource override the algorithm the Finder uses to create kind strings.

Listing 7-3 shows a sample kind resource, in Rez input format.

C H A P T E R 7

Translation Manager

Using the Translation Manager 7-15

Listing 7-3 A sample resource of type 'kind'

/*sample kind resource for SurfSoft Works*/

resource 'kind' (1000)

{

'WAVE',

verUS,

{

ftApplicationName, "SurfSoft Works",

'SWTD', "SurfSoft Works text document",

'SWSS', "SurfSoft Works spreadsheet",

'SWDB', “SurfSoft Works database",

}

};

A kind resource consists of an application signature, a localization code, and a list of file

types and their corresponding kind strings. Each file type is associated with one kind

string.

To reduce the number of entries in a kind resource, you can declare your application’s

name by including an entry having the special file type ftApplicationName, as

illustrated in Listing 7-3. Then, whenever Macintosh Easy Open encounters a document

that belongs to your application but whose file type isn’t listed in your application’s kind

resource, the Finder uses its standard algorithm to generate a kind string in the form

“<application name> document”.

Note

Because a kind resource contains the application signature, an
application’s kind resource can be located in some file other than
the application’s resource file. This feature allows translation extensions
to provide kind strings for applications that might not be present on a
particular computer. However, the kind resource in an application’s
resource file overrides any kind resource located elsewhere. ◆

The Finder uses only custom kind strings that have the same localization as the current

system itself.

Using File-Opening Dialog Boxes
Macintosh Easy Open works with the Standard File Package to list in the file-opening

dialog box all files that your application can open, including those that it can open after

they have been translated from their current format to some new format. In general, you

don’t need to rewrite your application (or even include any additional resources) to

receive this service. Macintosh Easy Open provides it automatically when present in the

operating environment.

C H A P T E R 7

Translation Manager

7-16 Using the Translation Manager

There are, however, some cases in which Macintosh Easy Open cannot provide this

service and that might therefore require you to modify your application if you want to

maximize compatibility with Macintosh Easy Open. In particular, if you use a file filter

function when calling the Standard File Package routines as the only way of determining

which files appear in the list of files to open, Macintosh Easy Open cannot safely add any

files to that list. This is a problem only when you specify –1 as the value for the

numTypes parameter in a call to StandardGetFile or CustomGetFile.

Note

For complete information about file filter functions, see the chapter
“Standard File Package” in Inside Macintosh: Files. ◆

If you use a file filter function when calling the Standard File Package, you should make

sure that the list of file types you pass in the typeList parameter isn’t empty (that is,

that the value of the numTypes parameter isn’t 0). In that case, Macintosh Easy Open is

able to expand the list of file types your application can open, regardless of whether you

use a file filter function. Macintosh Easy Open inspects the file types passed in the

typeList parameter and adds to them all file types that can be translated into those file

types. In short, you can use a file filter function and benefit from the translation services

of Macintosh Easy Open if you specify a non-empty list of file types in the typeList

parameter.

IMPORTANT

If for some reason you want to prevent Macintosh Easy Open from
expanding the list of file types your application can open, simply set the
numTypes parameter to –1 when calling StandardGetFile or
CustomGetFile. ▲

When Macintosh Easy Open is present, you can pass the special value

kUseOpenResourceTypes in the numTypes parameter to have the file types read from

your application’s 'open' resource.

CONST

kUseOpenResourceTypes = -2;

When numTypes is set to kUseOpenResourceTypes, typeList is set to NIL, and

fileFilter is set to NIL, the Standard File Package displays in the file-opening dialog

box all files whose types are listed in your application’s 'open' resource (having

resource ID 128) as well as all files whose types can be translated into those types.

You can achieve this same result by calling the new Standard File Package function

StandardOpenDialog.

FUNCTION StandardOpenDialog (VAR reply: StandardFileReply): OSErr;

The StandardOpenDialog function operates exactly like the StandardGetFile

function, whose parameters fileFilter, numTypes, and typeList are given the

values NIL, kUseOpenResourceTypes, and NIL, respectively.

C H A P T E R 7

Translation Manager

Using the Translation Manager 7-17

IMPORTANT

The StandardOpenDialog function is implemented as glue code and
is available in System 6 and later if you link your application with the
appropriate object library. ▲

Translating Files Explicitly
It’s possible that your application might open some document files without the

assistance of the Finder or the Standard File Package. For example, your application

might execute a script that contains the name of a file to open. Because you’re bypassing

the system software services that invoke implicit translation, you might need to modify

your application to perform explicit translation (the conversion of a file or scrap with

direct intervention from your application). The Translation Manager provides several

routines that you can use to retrieve information about documents and about the

document types that an application can open, as well as to translate documents from one

format to another.

IMPORTANT

Before calling the routines described in this section, you must make sure
that they are available in the current operating environment. See
“Checking for the Translation Manager” on page 7-12 for details. ▲

You can use the GetFileTypesThatAppCanNativelyOpen function to get a list of file

types that an application can open by itself. This function takes a volume reference

number (where the application resides), an application signature, and a pointer to a

buffer to be filled with up to 64 file types. It returns a pointer to the list of the file types

that the application can open without translation.

You can use the ExtendFileTypeList function to get a list of all file types that the

Translation Manager can translate into file types in a given list. This routine takes the

original list, the number of file types in it, a pointer to a buffer to be filled with file types,

and the maximum number of file types that can be put into the extended list. The

ExtendFileTypeList function returns a list of all the file types that can be translated

into some type in the original list.

You can use the CanDocBeOpened function to verify that a specified application can

open the document that it is being requested to open. It takes the source document

record, the volume reference number of the application that is to open the document, the

creator application signature, and the list of file types that the application can open

without translation. It returns a document-opening method (howToOpen) and

document-translation method (howToTranslate). The choices for document-opening

method are

■ domCannot

■ domNative

■ domTranslateFirst

■ domWildcard

C H A P T E R 7

Translation Manager

7-18 Writing a Translation Extension

The Translation Manager uses howToTranslate to get information on converting the

document into a format the application can read. For more information on the

CanDocBeOpened function, see page 7-40.

You can call the function TranslateFile to translate a file from one format to another.

It takes the source document record, the destination document record, and the

howToTranslate parameter returned by CanDocBeOpened. In the destination

document record, TranslateFile returns the name and location of the translated file.

Writing a Translation Extension

A translation extension is a component that works with Macintosh Easy Open to provide

data recognition and translation capabilities. Because a translation extension is a

component, it must be able to respond to the required request codes sent by the

Component Manager. In addition, a translation extension can

■ communicate its translation capability to Macintosh Easy Open

■ identify the formats of specific documents and scraps

■ translate documents and scraps

Translation extensions can identify and translate files, scraps, or both. You specify

whether a translation extension handles files or scraps by setting bits in the component

flags field in the component resource (see “Creating a Translation Extension” beginning

on page 7-19 for details).

IMPORTANT

The information in this section describes how to write translation
extensions. If you simply want to make your application compatible
with Macintosh Easy Open, see “Using the Translation Manager”
beginning on page 7-10. If your application needs to determine
dynamically which file types it can open, see “Writing Application
Translation Extensions” beginning on page 7-35. ▲

Macintosh Easy Open and the Translation Manager specify file and scrap formats using

the FileType and ScrapType data types:

TYPE

FileType = OSType; {file types}

ScrapType = ResType; {scrap types}

C H A P T E R 7

Translation Manager

Writing a Translation Extension 7-19

The ScrapType data type describes the format of data in memory. In general, the scrap

types used by Macintosh Easy Open are identical to scrap types used by the Scrap

Manager. There is, however, one notable exception. Macintosh Easy Open defines a new

scrap type, 'stxt', to describe styled text. A scrap having format 'stxt' is formed by

appending the text (as contained in a scrap of format 'TEXT') to the style information

(as contained in a scrap of format 'styl'). This is necessary to have a single scrap to

pass to your scrap translation extension.

The FileType data type describes the format of a file. Often, but not always, the format

of a file’s data can be identified by inspecting the file’s type, as maintained in the

hierarchical file system catalog file (hereafter called the file’s catalog type). For purposes

of translation, however, it is sometimes necessary to use a more specific identification.

For example, some developer might revise an application but retain the existing file type

for documents the application creates. This could cause problems for translation

extensions, which might be able to translate a specific version of the application’s data

format but not later ones. Similarly, some applications that create files on Macintosh

computers (such as electronic mail programs or disk-mounting utilities) often use

standard file types (such as 'TEXT' or 'BINA') as the default new file type. Once again,

your translation extension needs more information about the actual format of the data in

the file before it can translate it to some other format.

To avoid problems with using a file’s catalog type as the only indication of the file’s data

format, Macintosh Easy Open and the Translation Manager allow you to define a

translation file type. As just indicated, the catalog file type is often sufficient as the

translation file type. However, Macintosh Easy Open always gives your translation

extension the opportunity to inspect a particular file to see whether its catalog file type is

in fact sufficient for translation purposes. If your extension can identify a more specific

format, it should return that information to Macintosh Easy Open. (Ideally, application

developers should assign catalog file types that can be used as translation file types.)

The rest of this section describes how to create a file translation extension. You create a

scrap translation extension in like fashion, substituting the scrap data types for the

corresponding file data types.

Creating a Translation Extension
A translation extension is a component. It contains a number of resources, including

icons, strings, pictures, and the standard component resource (a resource of type 'thng')

required of any Component Manager component. In addition, a translation extension

must contain code to handle required request codes passed to it by the Component

Manager as well as translation-specific request codes.

C H A P T E R 7

Translation Manager

7-20 Writing a Translation Extension

For complete details on components and their structure, see the chapter “Component

Manager” in this book. This section provides specific information about translation

extensions.

The component resource binds together all the relevant resources contained in a

component; its structure is defined by the ComponentResource data type.

TYPE ComponentResource =

RECORD

cd: ComponentDescription;

component: ResourceSpec;

componentName: ResourceSpec;

componentInfo: ResourceSpec;

componentIcon: ResourceSpec;

END;

The component field specifies the resource type and resource ID of the component’s

executable code. By convention, for translation extensions this resource should be of type

'xlat'. (You can, however, specify some other resource type if you wish.) The resource

ID can be any integer greater than or equal to 128. See the following section for further

information about this code resource. The ResourceSpec data type has this structure:

TYPE ResourceSpec =

RECORD

resourceType: ResType;

resourceID: Integer;

END;

The componentName field specifies the resource type and resource ID of the resource

that contains the component’s name. Usually the name is contained in a resource of type

'STR '. Macintosh Easy Open uses the component’s name in several of the dialog boxes

it displays. (For example, in Figure 7-3 on page 7-6, one of the translation extensions has

the component name “Hang Ten.”) This string should be as short as possible.

The componentInfo field specifies the resource type and resource ID of the resource

that contains a description of the component. Usually the description is contained in a

resource of type 'STR '. This information is not currently used by Macintosh Easy

Open, but some development tools may use it.

The componentIcon field specifies the resource type and resource ID of the resource

that contains an icon for the component. Usually the icon is contained in a resource of

type 'ICON'. This icon is not currently used by Macintosh Easy Open, but some

development tools may use it.

C H A P T E R 7

Translation Manager

Writing a Translation Extension 7-21

Note

The icon displayed in Figure 7-4 on page 7-7 is part of the translation
extension’s advertisement; it is not supplied by Macintosh Easy Open
itself. ◆

The cd field of the ComponentResource structure is a component description record,

which contains additional information about the component. A component description

record is defined by the ComponentDescription data structure.

TYPE ComponentDescription =

RECORD

componentType: LongInt;

componentSubType: LongInt;

componentManufacturer: LongInt;

componentFlags: LongInt;

componentFlagsMask: LongInt;

END;

For translation extensions, the componentType field must be set to 'xlat'. In

addition, the componentSubType field must be set to 0 (because there are currently no

subtypes of translation extensions). The componentManufacturer field identifies the

supplier of the component. You should register your component with Apple’s

Component Registry Group to receive a unique manufacturer code; this code typically

corresponds to the signature of your translation extension.

The componentFlags field of the component description for a translation extension

contains bit flags that encode information about the extension. Currently, you can use

this field to specify whether the extension supports file translation routines or scrap

translation routines, or both. (See the chapter “Component Manager” in this book for

information about the standard flags that you can also specify in the componentFlags

field.)

CONST

kSupportsFileTranslation = 1; {file translation extension}

kSupportsScrapTranslation = 2; {scrap translation extension}

You should set the componentFlagsMask field to 0.

IMPORTANT

For compatibility with early versions of the Component Manager, a
'thng' resource should be locked. You can set the other resource
attributes in any way you wish. ▲

C H A P T E R 7

Translation Manager

7-22 Writing a Translation Extension

In addition to the component resource, a translation extension must contain the string

and icon resources specified in the component resource (for example, the resource that

contains the extension’s name). You might also want to include several other resources in

the translation extension, including the standard 'BNDL', 'FREF', and 'ICN#'

resources used by the Finder and a 'PICT' resource that contains an advertisement or

banner to be displayed in the translation progress dialog box. You should also include a

'kind' resource listing kind strings for all the file types your extension can translate

from or to; this allows the Finder to display correct kind strings once your extension is

installed. Listing 7-4 shows, in Rez input format, the component resource and associated

resources of a sample translation extension.

Listing 7-4 Sample resources for a translation extension

/*a component resource*/

resource 'thng' (128, locked) {

'xlat', /*all translation extensions have this type*/

0, /*subtype is unused*/

'MYCO', /*creator signature of extension*/

kSupportsFileTranslation, /*only file routines are implemented*/

0, /*mask is unused and should be 0*/

'xlat',128, /*resource type & ID of translation extension*/

'STR ',128, /*resource type and ID of name string*/

'STR ',129, /*resource type and ID of information string*/

'ICON',128 /*resource type and ID of icon*/

};

/*strings*/

resource 'STR ' (128, purgeable) {

"Hang Ten"

};

resource 'STR ' (129, purgeable) {

"Hang Ten Translation Extension"

};

/*an icon*/

resource 'ICON' (128, purgeable) {

$"7FFF FFF0 8000 0008 8000 0008 8000 0008"

$"8000 0008 8000 0008 8000 0008 8000 0008"

$"A000 0008 D000 000A 9000 000D 1000 0009"

$"1000 0001 1000 0001 1000 0001 1000 0001"

$"1000 0001 1000 0001 1000 0001 1000 0001"

$"1000 0009 9000 000D D000 000A A000 0008"

$"8000 0008 8000 0008 8000 0008 8000 0008"

C H A P T E R 7

Translation Manager

Writing a Translation Extension 7-23

$"8000 0008 8000 0008 8000 0008 7FFF FFF0",

};

/*kind strings for document types supported by this extension*/

resource 'kind' (128, purgeable) {

'SURF',

verUS,

{

ftApplicationName, "SurfWriter",

'SURF', "SurfWriter document",

}

};

resource 'kind' (129, purgeable) {

'SPNT',

verUS,

{

ftApplicationName , "SurfPaint",

'SPNT', "SurfPaint document",

}

};

resource 'kind' (130, purgeable) {

'ttxt',

verUS,

{

ftApplicationName , "TeachText",

'ttro', "TeachText document",

}

};

Your translation extension is contained in a resource file. The creator of the file can be

any type you wish, but the type of the file must be 'thng'. If the extension contains a

'BNDL' resource, then the file’s bundle bit must be set.

IMPORTANT

The Finder looks for open and kind resources only in files that have their
bundle bit set. ▲

C H A P T E R 7

Translation Manager

7-24 Writing a Translation Extension

Dispatching to Translation Extension-Defined Routines
As explained in the previous section, the code stored in the translation extension

component should be contained in a resource of type 'xlat'. The Component Manager

expects that the entry point in this resource is a function having this format:

FUNCTION TranslateEntry (VAR params: ComponentParameters;

 storage: Handle): ComponentResult;

The Component Manager calls your extension by passing TranslateEntry a request

code in the params.what field of the components parameter record passed in the

params parameter; TranslateEntry must interpret the request code and possibly

dispatch to some other routine in the resource. Your extension must be able to handle the

required request codes, defined by these constants:

CONST

kComponentOpenSelect = -1;

kComponentCloseSelect = -2;

kComponentCanDoSelect = -3;

kComponentVersionSelect = -4;

For complete details on required request codes, see the chapter “Component Manager”

in this book.

In addition, your extension must be able to respond to translation-specific request codes.

Currently, Macintosh Easy Open defines these six request codes:

CONST

kTranslateGetFileTranslationList = 0;

kTranslateIdentifyFile = 1;

kTranslateTranslateFile = 2;

kTranslateGetScrapTranslationList = 10;

kTranslateIdentifyScrap = 11;

kTranslateTranslateScrap = 12;

You can respond to these request codes by calling the Component Manager routine

CallComponentFunctionWithStorage, passing it a pointer to a translation

extension-defined routine. Listing 7-5 illustrates how to define a file translation extension

entry point routine.

C H A P T E R 7

Translation Manager

Writing a Translation Extension 7-25

Listing 7-5 Handling Component Manager request codes

FUNCTION TranslateEntry (VAR params: ComponentParameters;

 storage: Handle): ComponentResult;

TYPE

LongPtr = ^LongInt;

LongHandle = ^LongPtr;

VAR

mySelf: ComponentInstance;

myHandle: Handle;

selector: Integer;

BEGIN

CASE params.what OF

kComponentOpenSelect: {component is opening}

BEGIN

mySelf := ComponentInstance(params.params[0]);

myHandle := NewHandle(SizeOf(ComponentInstance));

IF myHandle <> NIL THEN

BEGIN

LongHandle(myHandle)^^ := ORD4(mySelf);

SetComponentInstanceStorage(mySelf, myHandle);

TranslateEntry := noErr;

END

ELSE

TranslateEntry := MemError;

END;

kComponentCloseSelect: {component is closing; clean up}

BEGIN

IF storage <> NIL THEN

DisposeHandle(storage);

TranslateEntry := noErr;

END;

kComponentCanDoSelect: {return known selectors}

BEGIN

selector := Integer((Ptr(params.params)^));

IF (((kComponentVersionSelect <= selector)

AND (selector <= kComponentOpenSelect))

OR ((kTranslateGetFileTranslationList <= selector)

AND (selector <= kTranslateTranslateFile))) THEN

TranslateEntry := 1

ELSE

TranslateEntry := 0;

END;

C H A P T E R 7

Translation Manager

7-26 Writing a Translation Extension

kComponentVersionSelect: {provide version number}

TranslateEntry := kMyTranslateVersionNumber;

kTranslateGetFileTranslationList: {give file translation list}

TranslateEntry := CallComponentFunctionWithStorage

(Handle(storage^^), params,

ComponentFunction(@DoGetFileTranslationList));

kTranslateIdentifyFile: {identify a file}

TranslateEntry := CallComponentFunctionWithStorage

(Handle(storage^^), params,

ComponentFunction(@DoIdentifyFile));

kTranslateTranslateFile: {translate a file}

TranslateEntry := CallComponentFunctionWithStorage

(Handle(storage^^), params,

ComponentFunction(@DoTranslateFile));

OTHERWISE {unrecognized selector}

TranslateEntry := badComponentSelector;

END; {CASE}

END;

As you can see, the TranslateEntry function defined in Listing 7-5 simply

inspects the params.what field to determine which request code to handle. For

translation-specific request codes, it dispatches to the appropriate function in

the translation extension. See the following three sections for more details on handling

translation-specific request codes.

Your extension can be dynamically loaded or unloaded at any time. When Macintosh

Easy Open first discovers the extension, it loads it into memory and then asks it to return

a list specifying which file or scrap types it can translate into which other types. Your

extension is also called during a translation to identify files or scraps and, if necessary, to

translate them.

Macintosh Easy Open loads your extension into a subheap of some existing heap. In all

likelihood, your extension is loaded into either the system heap or temporary memory.

In some cases, however, your extension might be loaded into an application’s heap. Your

extension is guaranteed 32 KB of available heap space. You should do all allocation in

that heap using normal Memory Manager routines. Any memory leaks are reclaimed

when your routine returns and the heap is destroyed.

C H A P T E R 7

Translation Manager

Writing a Translation Extension 7-27

There is no support for using global variables in the dispatcher defined in Listing 7-5. In

general, the routines you need to implement are separate and self-contained, and so you

shouldn’t need to use global variables. You can, however, have your dispatcher set up an

A5 world that contains global variables.

▲ W A R N I N G

If you use PC-relative global variables (that is, data addressed relative to
the program counter), be warned that the Component Manager may
purge and reload your code resource. Therefore, all PC-relative global
variables must be preinitialized at compile time (not at load time). ▲

If you need to access resources that are stored in your translation extension, you should

use OpenComponentResFile and CloseComponentResFile. The open routine

requires the ComponentInstance parameter supplied to your routine. See Listing 7-7

on page 7-33 for an example. You should not call the Resource Manager routines such as

OpenResFile or CloseResFile.

▲ W A R N I N G

Do not leave any resource files open when your translation extension
exits. Their maps will be left in the subheap when the subheap is freed,
causing the Resource Manager to crash. ▲

The following sections show how to respond to the

kTranslateGetFileTranslationList, kTranslateIdentifyFile,

and kTranslateTranslateFile request codes by defining the three file translation

extension functions DoGetFileTranslationList, DoIdentifyFile, and

DoTranslateFile. You would handle scrap translation in a similar manner.

Creating a Translation List
Your translation extension must be able to inform Macintosh Easy Open of its translation

capabilities in response to the kTranslateGetFileTranslationList request code.

To do this, you can define a DoGetFileTranslationList function in which you fill in

a file translation list, defined by a FileTranslationList record. From the file

translation list you return, Macintosh Easy Open learns which types of files your

extension can translate into which other types. On the basis of this information, it may

later call your extension to identify a particular document and possibly to translate it.

C H A P T E R 7

Translation Manager

7-28 Writing a Translation Extension

The FileTranslationList record has this structure:

TYPE FileTranslationList =

RECORD

modDate: LongInt;

groupCount: LongInt;

{group1SrcCount: LongInt;}

{group1SrcEntrySize: LongInt;}

{group1SrcTypes: ARRAY[1..group1SrcCount] OF FileTypeSpec;}

{group1DstCount: LongInt;}

{group1DstEntrySize: LongInt;}

{group1DstTypes: ARRAY[1..group1DstCount] OF FileTypeSpec;}

{repeat above six lines for a total of groupCount times}

END;

This record contains a modification date and a count of the number of translation groups

that follow. Each translation group in the file translation list specifies a collection of file

types from which the extension can translate (the group1SrcTypes field) and a

collection of file types into which the extension can translate (the group1DstTypes

field). Within a translation group, your extension must be able to translate any of the

source types into any of the destination types.

You might have different translation groups corresponding to different categories of

documents. For instance, you can place word-processing documents in one group,

spreadsheet documents in another, and so on. You are, however, free to group file types

in whatever manner you like.

In most cases, group1SrcCount and group1DstCount will each be greater than 1,

because most translators operate by translating through a particular data model. In these

cases, it’s also quite likely that the source and destination file types overlap or even

coincide. Figure 7-8 illustrates a typical translation group.

C H A P T E R 7

Translation Manager

Writing a Translation Extension 7-29

Figure 7-8 A translation group with multiple source and destination types

Similarly, you might write a translation extension that converts other file types into your

own proprietary document format. In this case, you would have multiple source

document types but only one destination type (group1DstCount equal to 1), as

illustrated in Figure 7-9.

Figure 7-9 A translation group with a single destination type

C H A P T E R 7

Translation Manager

7-30 Writing a Translation Extension

It’s possible, however, to have both group1SrcCount and group1DstCount equal

to 1. This kind of translation is known as point-to-point translation. Figure 7-10

illustrates point-to-point translation.

Figure 7-10 Point-to-point translation

Note

The number of translation groups you can specify in a file translation list
is limited by memory considerations only. ◆

Within any particular group of file types, you specify a particular document format

using a file type specification, defined by the FileTypeSpec data type.

TYPE FileTypeSpec =

RECORD

format: FileType;

hint: LongInt;

flags: TranslationAttributes;

catInfoType: OSType;

catInfoCreator: OSType;

END;

A file type specification includes the file type, a hint reserved for use by your extension,

a flags field, and the original file type and creator. See “File Type Specifications”

beginning on page 7-46 for complete details on these fields.

Listing 7-6 shows a simple routine that creates a file translation list. The translation

extension containing this routine can translate both SurfWriter and SurfPaint documents

to a format understood by TeachText.

Listing 7-6 Creating a file translation list

FUNCTION DoGetFileTranslationList

(self: ComponentInstance;

 translationList: FileTranslationListHandle)

 : ComponentResult;

C H A P T E R 7

Translation Manager

Writing a Translation Extension 7-31

TYPE

MyList =

RECORD

modDate: LongInt;

groupCount: LongInt;

group1SrcCount: LongInt;

group1SrcEntrySize: LongInt;

group1SrcTypes: ARRAY[1..2] OF FileTypeSpec;

group1DstCount: LongInt;

group1DstEntrySize: LongInt;

group1DstTypes: ARRAY[1..1] OF FileTypeSpec;

END;

MyListPtr = ^MyList;

MyListHandle = ^MyListPtr;

VAR

myErr: OSErr;

myPtr: MyListPtr;

CONST

kStamp = $A74520A8; {date of original list creation}

BEGIN

myErr := noErr;

IF translationList^^.modDate <> kStamp THEN

BEGIN

{resize the handle so there's enough room}

SetHandleSize(Handle(translationList), SizeOf(MyList));

myErr := MemError;

IF myErr = noErr THEN

BEGIN

myPtr := MyListHandle(translationList)^;

WITH myPtr^ DO

BEGIN

modDate := kStamp; {set creation date}

groupCount := 1; {only 1 translation group}

group1SrcCount := 2; {source side has two types}

group1SrcEntrySize := SizeOf(FileTypeSpec);

WITH group1SrcTypes[1] DO

BEGIN

format := 'SURF'; {SurfWriter document format}

hint := 0; {no hint}

flags := 0; {no flags}

catInfoType := 'SURF'; {catalog type}

catInfoCreator := 'TONY'; {catalog creator}

END;

C H A P T E R 7

Translation Manager

7-32 Writing a Translation Extension

WITH group1SrcTypes[2] DO

BEGIN

format := 'SPNT'; {SurfPaint document format}

hint := 0; {no hint}

flags := 0; {no flags}

catInfoType := 'SPNT'; {catalog type}

catInfoCreator := 'TONY'; {catalog creator}

END;

group1DstCount := 1; {destination side has one type}

group1DstEntrySize := SizeOf(FileTypeSpec);

WITH group1DstTypes[1] DO

BEGIN

format := 'ttro'; {TeachText document format}

hint := 0; {no hint}

flags := taDstDocNeedsResourceFork;

{TeachText documents need a }

{ resource fork (for pictures)}

catInfoType := 'ttro'; {catalog type}

catInfoCreator := 'ttxt'; {catalog creator}

END;

END; {WITH myPtr^}

END; {IF}

END; {IF}

DoGetFileTranslationList := myErr;

END;

Because the list of file types that this extension can translate never changes,

DoGetFileTranslationList fills out a file translation list the first time Macintosh

Easy Open calls it; every other time it is called, DoGetFileTranslationList simply

passes back the list it was passed.

In all likelihood, your translation extension will rely on external translators to perform

the actual translation of files or scraps. If so, it’s also likely that the user will be able to

add and remove translators used by your extension—possibly by moving translators

into or out of some specific folder. In that case, your DoGetFileTranslationList

function could read the modification date of that folder and compare with a value you

previously put in the modDate field to determine whether to regenerate the translation

list.

Identifying Files
Once Macintosh Easy Open knows the types of files from and to which your extension

can translate, it might call your extension to determine whether your extension can

translate a particular file. This further check is necessary because some documents might

have file types that are not specific enough for translation purposes. For example, a

C H A P T E R 7

Translation Manager

Writing a Translation Extension 7-33

document imported from a different operating system might have a file type of 'TEXT'.

Your translation extension might be able to determine, however, that the file actually

contains SurfWriterPC data and hence deserves special format conversion treatment.

When your translation extension is called with the kTranslateIdentifyFile request

code, your extension should identify the particular document. The TranslateEntry

extension (shown in Listing 7-5 on page 7-25) dispatches to its DoIdentifyFile

function when it receives this request code. Listing 7-7 shows the skeleton of a

DoIdentifyFile function.

Listing 7-7 Identifying file types

FUNCTION DoIdentifyFile (self: ComponentInstance; theDoc: FSSpec;

 VAR docKind: FileType): ComponentResult;

VAR

isKnown: Boolean; {indicates whether this extension can identify the file}

BEGIN

{call an extension-defined routine to do the real work}

isKnown := MyIdentifyDocument(theDoc, docKind);

IF isKnown THEN

DoIdentifyFile := noErr

ELSE

DoIdentifyFile := noTypeErr;

END;

Some documents can be identified simply by inspecting their file type and creator. Other

documents (in particular, those of type 'TEXT') might require opening the files and

examining their contents to determine whether they can be translated by your extension.

If your extension cannot recognize the document type, DoIdentifyFile should return

noTypeErr. Otherwise, DoIdentifyFile should return noErr, and the docKind

parameter should be set to the recognized file type.

Note

Your DoIdentifyFile function should not return 'TEXT' as a file
type unless it’s certain that the document consists of plain, unformatted
ASCII text. ◆

You should be aware that even if your extension identifies a particular document as one

that it can translate, Macintosh Easy Open might not in fact call your extension to do the

translation.

Translating Files
If your translation extension identifies a document as one that it can translate and the

user chooses to use your translation extension, your extension is called with the

kTranslateTranslateFile request code to translate the document. The

C H A P T E R 7

Translation Manager

7-34 Writing a Translation Extension

TranslateEntry extension (shown in Listing 7-5 on page 7-25) dispatches to its

DoTranslateFile function when it receives this request code. Listing 7-8 shows the

skeleton of a DoTranslateFile function.

Listing 7-8 Translating a document

FUNCTION DoTranslateFile (self: ComponentInstance;

refNum: TranslationRefNum;

srcDoc: FSSpec;

srcType: FileType;

srcTypeHint: LongInt;

dstDoc: FSSpec;

dstType: FileType;

dstTypeHint: LongInt): ComponentResult;

VAR

myAdvert: Handle;

myResFile: Integer;

myResult: OSErr;

CONST

rProgressAdvertismentResID = 150;

BEGIN

myResFile := OpenComponentResFile(Component(self));

IF myResFile <> -1 THEN

BEGIN

{get advertisement}

myAdvert := Get1Resource('PICT', rProgressAdvertismentResID);

DetachResource(myAdvert);

{display progress dialog box and show advertisement}

myResult := SetTranslationAdvertisement(refNum, PicHandle(myAdvert));

myResult := CloseComponentResFile(myResFile);

END;

{now call your routine to translate the file}

DoTranslateFile := MyDoTranslation

(refNum, srcDoc, srcType, dstDoc, dstType);

DisposeHandle(myAdvert);

END;

By the time the DoTranslateFile routine is called, the file specified by the dstDoc

parameter already exists. The destination file has a data fork; it also has a resource fork if

the flags field in the appropriate destination file type specification (in your extension’s

file translation list) has the taDstDocNeedsResourceFork bit set. Your extension

should open the destination file and fill it with the translated data.

C H A P T E R 7

Translation Manager

Writing a Translation Extension 7-35

In Listing 7-8, the DoTranslateFile function calls the

SetTranslationAdvertisement function to install an advertisement in the progress

dialog box. The routine that does the actual data translation (MyDoTranslation)

should periodically call UpdateTranslationProgress to update the progress bar in

the dialog box.

If an error occurs during the translation, you should make sure to close any files you

might have opened (for instance, the destination file’s data fork and resource fork), do

any other necessary cleaning up, and then return a nonzero result code through your

component selector dispatcher. When Macintosh Easy Open receives a nonzero result

code, it automatically deletes the destination file.

Writing Application Translation Extensions
Most applications can open only a certain number of file types and can therefore declare

those openable file types by including an open resource in their resource forks. (See

“Declaring the File Types Your Application Can Open” on page 7-13 for details about the

open resource.) Some applications, however, need to determine dynamically which files

they can open (perhaps because those applications already contain data-conversion

capabilities using external filters). For these applications, the open resource alone is

inadequate to specify which kinds of files they can open.

A simple way to generate dynamically a list of your application’s openable file types is

to provide an application translation extension, a translation extension that can create a

list of file types and identify files, but which performs no actual translation. Essentially,

the application translation extension exists solely to generate the dynamic list of file

types your application can open. The source list in the file translation list that your

extension returns to Macintosh Easy Open should contain a file type specification for

each of those types; for the destination list of types, the file translation list should contain

a single file type specification whose format field contains some arbitrary and

otherwise unused file type. Suppose this destination file type is 'VOID'.

The open resource in your application should then consist of a static list containing at

least the value in the format field of the sole destination file type specification in the file

translation list (that is, 'VOID'). The net effect, as far as Macintosh Easy Open is

concerned, is that your application can open documents of type 'VOID' and that a

translation extension exists that can translate some other file types into type 'VOID'. As

a result, the types in that list—which was generated dynamically—are now considered

openable by your application.

Of course, in the situation imagined here, you don’t want the application translation

extension to do any actual data conversion. You indicate this by setting the

taDstIsAppTranslation bit in the flags field of the destination file type

specification. If this bit is set, Macintosh Easy Open gives the source document directly

to your application without translation. No destination document is created.

C H A P T E R 7

Translation Manager

7-36 Translation Manager Reference

Note

In the translation choices dialog box (illustrated in Figure 7-3 on
page 7-6), a file type whose file type specification has the
taDstIsAppTranslation bit set is listed by the application name
only; the name of the application translation extension is not listed. ◆

Translation Manager Reference

This section describes the routines and resources that are specific to the Translation

Manager. To take full advantage of the implicit translation capabilities of Macintosh Easy

Open, you need to include appropriate resources in your application’s resource fork.

(See “Resources” beginning on page 7-43 for information on the open and kind

resources.) In addition, you might need to call Translation Manager routines if your

application doesn’t use the Standard File Package or if it needs information about

an application’s translation capabilities.

IMPORTANT

The routines described in this section are intended for use by
applications that bypass the Standard File Package or that need
information about some application’s ability to translate documents.
Most applications don’t need to use these routines. ▲

See “Translation Extension Reference” beginning on page 7-46 for information about

data structures and routines you can use to write a translation extension.

IMPORTANT

The Translation Manager is not available in all operating environments.
You should call the Gestalt function to ensure that it is available
before calling any of its routines. See “Checking for the Translation
Manager” on page 7-12 for details on calling Gestalt. ▲

Translation Manager Routines

The Translation Manager provides a number of routines that your application can call to

get information about the documents and document types an application can open and

to translate files and scraps. Normally, you need to use these routines only if your

application doesn’t use the Standard File Package to ask the user for names and locations

of files to open, or if your application has other special needs.

C H A P T E R 7

Translation Manager

Translation Manager Reference 7-37

Getting Translation Information

The Translation Manager provides several routines that you can use to get or set

information about the file types that an application can open.

GetFileTypesThatAppCanNativelyOpen

You can use the GetFileTypesThatAppCanNativelyOpen function to obtain a list of

file types that an application can open by itself.

FUNCTION GetFileTypesThatAppCanNativelyOpen

(appVRefNumHint: Integer; appSignature: OSType;

 VAR nativeTypes: TypesBlock): OSErr;

appVRefNumHint
The volume reference number of volume containing the application. The
search for the specified application begins on this volume; if the
application isn’t found there, the search continues to other mounted
volumes.

appSignature
The signature of the application.

nativeTypes
On exit, a zero-terminated file types that the application can open without
translation.

DESCRIPTION

The GetFileTypesThatAppCanNativelyOpen function returns, through the

nativeTypes parameter, a list of all the file types that can be opened by the application

having the signature appSignature. If GetFileTypesThatAppCanNativelyOpen

returns successfully, the nativeTypes parameter contains a list of up to 64 file types.

The structure of the list is defined by the TypesBlock data type.

TYPE

TypesBlock = ARRAY[0..63] OF FileType;

TypesBlockPtr = ^TypesBlock;

If fewer than 64 types are returned, the end of the list is indicated by an entry whose

value is 0.

C H A P T E R 7

Translation Manager

7-38 Translation Manager Reference

SPECIAL CONSIDERATIONS

The GetFileTypesThatAppCanNativelyOpen function is not available in all

versions of system software; use the Gestalt function to determine whether the

Translation Manager is available before calling it.

The GetFileTypesThatAppCanNativelyOpen function might cause memory to be

moved or purged; you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for GetFileTypesThatAppCanNativelyOpen are

RESULT CODES

ExtendFileTypeList

You can use the ExtendFileTypeList function to create a list of file types that can be

translated into a type in a given list. The Standard File Package calls this function

internally; your application probably won’t need to use it.

FUNCTION ExtendFileTypeList (originalTypeList: FileTypePtr;

 numberOriginalTypes: Integer;

 extendedTypeList: FileTypePtr;

 VAR numberExtendedTypes: Integer)

 : OSErr;

originalTypeList
A pointer to a list of file types.

numberOriginalTypes
The number of file types in originalTypeList.

Trap macro Selector

_TranslationDispatch $001C

noErr 0 No error
wrgVolTypErr –123 Volume does not support Desktop Manager
afpItemNotFound –5012 Information not found

C H A P T E R 7

Translation Manager

Translation Manager Reference 7-39

extendedTypeList
On exit, a pointer to a list of file types that can be translated into the types
in originalTypeList.

numberExtendedTypes
On entry, the maximum number of file types that can be put into the
extendedTypeList parameter. On exit, the actual number of file types
put into the extended type list.

DESCRIPTION

The ExtendFileTypeList function takes the set of types in the originalTypeList

parameter and returns (in the extendedTypeList parameter) a list of types that can be

translated into those types. The extendedTypeList parameter is of type

FileTypePtr, which is a pointer to a file type.

TYPE

FileTypePtr = ^FileType;

Note that the number of types specified in the parameters numberOriginalTypes and

numberExtendedTypes is limited only by available memory.

SPECIAL CONSIDERATIONS

The ExtendFileTypeList function is not available in all versions of system software;

use the Gestalt function to determine whether the Translation Manager is available

before calling it.

The ExtendFileTypeList function might cause memory to be moved or purged; you

should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the ExtendFileTypeList procedure are

RESULT CODE

Trap macro Selector

_TranslationDispatch $0009

noErr 0 No error

C H A P T E R 7

Translation Manager

7-40 Translation Manager Reference

CanDocBeOpened

You can use the CanDocBeOpened function to determine whether a specified

application can open a particular document.

FUNCTION CanDocBeOpened

(targetDocument: FSSpec;

 appVRefNumHint: Integer;

 appSignature: OSType;

 nativeTypes: TypesBlockPtr;

 onlyNative: Boolean;

 VAR howToOpen: DocOpenMethod;

 VAR howToTranslate: FileTranslationSpec)

 : OSErr;

targetDocument
The document to check.

appVRefNumHint
The volume reference number of the volume containing the
application. The search for the specified application begins on this
volume; if the application isn’t found there, the search continues to other
mounted volumes.

appSignature
The signature of the application.

nativeTypes
A zero-terminated list of file types that the application can open without
translation; if this parameter contains NIL, the default list of file types
returned by the GetFileTypesThatAppCanNativelyOpen function is
used.

onlyNative
If TRUE, determine only whether the application can open the document
without translation; otherwise, determine whether the application can
open the document after translation.

howToOpen On exit, the method of opening the document. This field contains a
meaningful value only if CanDocBeOpened returns noErr (indicating
that the specified document can be opened).

howToTranslate
On exit, a buffer of information (in a private format) indicating how to
translate the document.

C H A P T E R 7

Translation Manager

Translation Manager Reference 7-41

DESCRIPTION

The CanDocBeOpened function determines whether a document can be opened by a

particular application. If the application can open the document, CanDocBeOpened

returns the result code noErr and sets the howToOpen parameter to a constant that

indicates the method that the application would use to open the document. The

howToOpen parameter contains a document-opening method:

TYPE DocOpenMethod =

(domCannot, domNative, domTranslateFirst, domWildcard);

The domCannot constant indicates that the application cannot open the document. The

domNative constant indicates that the application can open the document natively.

The domTranslateFirst constant indicates that the application can open the

document only after it’s been translated. The domWildcard constant indicates that the

application has the file type '****' in its list of the file types that it can open and hence

can open any type of document.

If the document needs to be translated before it can be opened (as indicated by the

domTranslateFirst method), CanDocBeOpened returns in the howToTranslate

parameter a buffer of information indicating how to translate the document. The format

of this information is private.

TYPE

FileTranslationSpec = ARRAY[1..12] OF LongInt;

You pass the information returned in the howToTranslate parameter to the

TranslateFile function.

SPECIAL CONSIDERATIONS

A preference must have already been set (using the Document Converter tool) on how to

open the document.

The CanDocBeOpened function is not available in all versions of system software; use

the Gestalt function to determine whether the Translation Manager is available before

calling it.

The CanDocBeOpened function might cause memory to be moved or purged; you

should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the CanDocBeOpened procedure are

Trap macro Selector

_TranslationDispatch $001E

C H A P T E R 7

Translation Manager

7-42 Translation Manager Reference

RESULT CODES

Translating Files

The Translation Manager provides a routine that you can use to translate files.

TranslateFile

You can use TranslateFile to translate a document from one format to another.

FUNCTION TranslateFile (sourceDocument: FSSpec;

destinationDocument: FSSpec;

howToTranslate: FileTranslationSpec)

: OSErr;

sourceDocument
The document to translate.

destinationDocument
The file to put the translated document into.

howToTranslate
A buffer of information indicating how to translate the document.

DESCRIPTION

The TranslateFile function reads the file specified by the sourceDocument

parameter and translates it into another format. You specify in the

destinationDocument parameter the name and location of a file to contain the

translated data. Note that your application only specifies the name and location for

the file; TranslateFile creates the file and puts the translated data into it. The

destination file must not exist before you call TranslateFile.

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 File not found
paramErr –50 Parameter error
extFSErr –58 External file system
dirNFErr –120 Directory not found or incomplete pathname
badTranslationSpecErr –3031 Translation path is invalid
noPrefAppErr –3032 No translation preference available
afpItemNotFound –5012 Information not found

C H A P T E R 7

Translation Manager

Translation Manager Reference 7-43

The translation is performed according to the information provided in the

howToTranslate parameter. Usually, you’ll get that information by calling

CanDocBeOpened.

SPECIAL CONSIDERATIONS

The TranslateFile function is not available in all versions of system software; use the

Gestalt function to determine whether the Translation Manager is available before

calling it.

The TranslateFile function might cause memory to be moved or purged; you should

not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the TranslateFile procedure are

RESULT CODES

Resources

This section describes the resources used by the Translation Manager.

■ The 'open' resource indicates which kinds of documents your application can open.

■ The 'kind' resource defines a custom kind string for your application’s documents.

Information from these resources is stored in a volume’s desktop database. Any changes

made to an application’s open or kind resources won’t appear until the desktop is rebuilt.

Trap macro Selector

_TranslationDispatch $000C

noErr 0 No error
dirFulErr –33 Directory full
dskFulErr –34 Disk full
nvsErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
tmfoErr –42 Too many files open
fnfErr –43 File not found
wPrErr –44 Disk is write protected
fLckdErr –45 File is locked
vLckdErr –46 Volume is locked
dupFNErr –48 Duplicate filename (rename)
opWrErr –49 File already open with write permission
extFSErr –58 External file system
dirNFErr –120 Directory not found
userCanceledErr –128 User canceled
badTranslationSpecErr –3031 howToTranslate is invalid

C H A P T E R 7

Translation Manager

7-44 Translation Manager Reference

The Open Resource

To make your application compatible with the Translation Manager, you should add an

open resource to your application’s resource file. This resource, of type 'open',

indicates which types of files your application can open. Figure 7-11 shows the format of

a compiled open resource.

Figure 7-11 Structure of a compiled open ('open') resource

An open resource consists of your application’s signature and a list of file types. The

Finder allows the user to launch your application by dropping documents of any of

those types on your application’s icon. In addition, if any translation extensions are

installed, all documents that can be translated into one of those file types can also be

dropped onto your application’s icon. Your application’s open resource having resource

ID 128 is used by the Standard File Package routine StandardOpenDialog to

determine the file types displayed in the standard file-opening dialog box.

IMPORTANT

The file types in the open resource should be ordered by preference. If
the Translation Manager has to choose between multiple file types as the
destination file type for a translation, it chooses the file type that occurs
earliest in the list. ▲

Because your application’s signature is included in the open resource, the resource

can be in some file other than the application’s resource fork. However, an open

resource located in an application’s resource fork overrides any open resource for

that application located elsewhere. It also overrides the openable file types as listed in

the application’s 'FREF' resource.

See Listing 7-2 on page 7-13 for a sample open resource.

C H A P T E R 7

Translation Manager

Translation Manager Reference 7-45

The Kind Resource

You should add a kind resource to your application’s resource file. This resource, of type

'kind', specifies custom kind strings, which override the Finder’s normal algorithm for

generating kind strings. Figure 7-12 shows the format of a compiled kind resource.

Figure 7-12 Structure of a compiled kind ('kind') resource

A kind resource consists of your application’s signature and a list of file types and their

associated custom kind strings. The Finder displays a document’s kind string when a

folder’s contents are viewed by name, size, kind, label, or date (that is, by any method

other than by icon or small icon).

Because your application’s signature is included in the kind resource, the resource can

be located in some file other than the application’s resource fork. However, a kind

resource located in an application’s resource fork overrides any kind resource for that

application located elsewhere.

A kind resource contains a region code, which specifies the region code of the kind

strings contained in the resource. The Finder uses only custom kind strings that have the

same region code as the current system itself.

In the list of file types and associated kind strings, you can use the special file type

ftApplicationName to specify the name of your application. Whenever Macintosh

Easy Open encounters a document that belongs to your application but whose file type

C H A P T E R 7

Translation Manager

7-46 Translation Extension Reference

isn’t listed in your application’s kind resource, the Finder uses its standard algorithm to

generate a kind string in the form “<application name> document”.

Note

See Listing 7-3 on page 7-15 for a sample kind resource. ◆

Translation Extension Reference

This section describes the data structures and routines you can use to write a translation

extension. It also describes the routines that your translation extension has to contain.

See “Translation Manager Reference” beginning on page 7-36 for a description of the

routines and resources that are specific to the Translation Manager.

Translation Extension Data Structures

This section describes the data structures you’ll need to use when writing a translation

extension.

File Type Specifications

You use file type specifications to describe document formats in a file translation list.

(See the next section for a description of file translation lists.) The interpretation of some

of the fields of a file type specification depends on whether the specification occurs in the

list of source document types or in the list of destination document types. A file type

specification is defined by the FileTypeSpec data structure.

TYPE FileTypeSpec =

RECORD

format: FileType;

hint: LongInt;

flags: TranslationAttributes;

catInfoType: OSType;

catInfoCreator: OSType;

END;

C H A P T E R 7

Translation Manager

Translation Extension Reference 7-47

Field descriptions

format The translation file type of the document. Macintosh Easy Open
uses this field as the canonical way to describe the format of a file
for translation purposes.

hint A 4-byte value reserved for use by your translation extension.

flags A 4-byte value consisting of bit flags that specify how to control the
translation. This field is used only for destination file types; you
should set it to 0 for all source file type specifications. Currently 2
bits are defined; all other bits should be cleared to 0:

CONST

taDstDocNeedsResourceFork = 1;

taDstIsAppTranslation = 2;

Before Macintosh Easy Open sends your translation extension the
kTranslateTranslateFile request code, it has already created
the destination file’s data fork. The bit specified by the constant
taDstDocNeedsResourceFork should be set if the translated
document also needs a resource fork.

The bit specified by the constant taDstIsAppTranslation
should be set if your extension doesn’t actually perform the
translation because an associated application can already translate
the specified file type into the desired format. See “Writing
Application Translation Extensions” on page 7-35 for more details.

catInfoType The type of the file as contained in the volume’s catalog file.

catInfoCreator
The creator of the file as contained in the volume’s catalog file.

In file type specifications occurring in the list of source document types in a file

translation list, Macintosh Easy Open uses the format and catInfoCreator fields to

determine the kind string displayed in the “From” format specification of the translation

progress dialog box (see Figure 7-4 on page 7-7).

In file type specifications occurring in the list of destination document types in a file

translation list, Macintosh Easy Open uses the format and catInfoCreator fields to

determine the kind string displayed in the “To” format specification in the translation

progress dialog box (see Figure 7-4 on page 7-7). The format and catInfoCreator

fields are also used to get the information displayed in the Document Converter dialog

box (Figure 7-7 on page 7-9). However, Macintosh Easy Open uses the catInfoType

and catInfoCreator fields to set the catalog type and creator of the destination file.

Note

See page 7-19 for a discussion of why the translation file type described
in the format field may differ from the catalog type described in the
catInfoType field. ◆

C H A P T E R 7

Translation Manager

7-48 Translation Extension Reference

File Translation Lists

You use the FileTranslationList data structure to describe which file formats your

extension can translate into which other file formats. The Translation Manager uses the

file translation list that it gets from each translation system to create a master database of

format translations it can direct.

TYPE FileTranslationList =

RECORD

modDate: LongInt;

groupCount: LongInt;

{group1SrcCount: LongInt;}

{group1SrcEntrySize: LongInt;}

{group1SrcTypes: ARRAY[1..group1SrcCount] OF FileTypeSpec;}

{group1DstCount: LongInt;}

{group1DstEntrySize: LongInt;}

{group1DstTypes: ARRAY[1..group1DstCount] OF FileTypeSpec;}

{repeat above six lines for a total of groupCount times}

END;

FileTranslationListPtr = ^FileTranslationList;

FileTranslationListHandle = ^FileTranslationListPtr;

A file translation list consists of a field indicating the modification date of the list and a

count of the number of groups that follow those two fields. The size of the translation list

prepared by an extension is variable, depending upon the number of groups, the file

specification record size, and the number of file types that the extension knows about.

Field descriptions

modDate The creation date of the file translation list. If your extension uses
external translators, you might set this field to the modification date
of a folder containing those translators.

groupCount The number of translation groups that follow.

group1SrcCount
The number of file types that the extension can read in a group.

group1SrcEntrySize
The size of the file specification records in the array that follows this
field. In general, you can set this field to SizeOf(FileTypeSpec).

group1SrcTypes
An array of file specification records. You should include a file
specification record in this array for each file type that your
extension knows how to translate.

group1DstCount
The number of file types that the extension can write in a group.

C H A P T E R 7

Translation Manager

Translation Extension Reference 7-49

group1DstEntrySize
The size of the file specification records in the array that follows this
field. In general, you can set this field to SizeOf(FileTypeSpec).

group1DstTypes
An array of file specification records. You should include a file
specification record in this array for each file type that your
extension can translate into.

Scrap Type Specifications

You use the ScrapTypeSpec data structure to describe a specific scrap format.

TYPE ScrapTypeSpec =

RECORD

format: ScrapType;

hint: LongInt;

END;

Field descriptions

format The type of the specified scrap.

hint A 4-byte value reserved for use by your translation extension.

Scrap Translation Lists

You use the ScrapTranslationList data structure to describe which scrap formats

your extension can translate into which other scrap formats. The Translation Manager

uses the scrap translation list that it gets from each translation system to create a master

database of its translation capability.

TYPE ScrapTranslationList =

RECORD

modDate: LongInt;

groupCount: LongInt;

{group1SrcCount: LongInt;}

{group1SrcEntrySize: LongInt;}

{group1SrcTypes: ARRAY[1..group1SrcCount] OF ScrapTypeSpec;}

{group1DstCount: LongInt;}

{group1DstEntrySize: LongInt;}

{group1DstTypes: ARRAY[1..group1DstCount] OF ScrapTypeSpec;}

{repeat above six lines for a total of groupCount times}

END;

ScrapTranslationListPtr = ^ScrapTranslationList;

ScrapTranslationListHandle = ^ScrapTranslationListPtr;

C H A P T E R 7

Translation Manager

7-50 Translation Extension Reference

A scrap translation list consists of a field indicating the modification date of the list and a

count of the number of groups that follow those two fields. The size of the translation list

prepared by an extension is variable, depending upon the number of groups, the scrap

specification record size, and the number of scrap types that the extension knows about.

Field descriptions

modDate The creation date of the scrap translation list. If your extension uses
external translators, you might set this field to the modification date
of a folder containing those translators.

groupCount The number of translation groups that follow.

group1SrcCount
The number of scrap types that the extension can read in a group.

group1SrcEntrySize
The size of the scrap specification records in the array that follows
this field. In general, you can set this field to
SizeOf(ScrapTypeSpec).

group1SrcTypes
An array of scrap specification records. You should include a scrap
specification record in this array for each scrap type that your
extension knows how to translate.

group1DstCount
The number of scrap types that the extension can write in a group.

group1DstEntrySize
The size of the scrap specification records in the array that follows
this field. In general, you can set this field to
SizeOf(ScrapTypeSpec).

group1DstTypes
An array of scrap specification records. You should include a scrap
specification record in this array for each scrap type that your
extension can translate into.

Translation Extension Routines

This section describes two routines that you can call from within a translation extension.

Managing Translation Progress Dialog Boxes

You can use the SetTranslationAdvertisement function to display the progress

dialog box and, optionally, to include a logo or other identifying picture in the

progress dialog box. You can use the UpdateTranslationProgress function to show

the user the progress of a translation and allow the user to cancel a translation.

C H A P T E R 7

Translation Manager

Translation Extension Reference 7-51

SetTranslationAdvertisement

A translation extension can call SetTranslationAdvertisement to install an

advertisement into the progress dialog box.

FUNCTION SetTranslationAdvertisement (refNum: TranslationRefNum;

advertisement: PicHandle)

: OSErr;

refNum A translation reference number.

advertisement
A handle to a picture to display in the upper portion of the dialog box.

DESCRIPTION

The SetTranslationAdvertisement function installs a translation extension-specific

picture into the upper portion of a translation progress dialog box, then displays the

dialog box. The advertisement parameter should be a handle to the picture to display.

If the value of advertisement is NIL, no advertisement is displayed and the upper

portion of the dialog box is removed before the box is displayed to the user.

Your translation extension can read the picture data from its resource fork, but it should

detach the resource from the resource fork (by calling DetachResource) and make the

handle unpurgeable before calling SetTranslationAdvertisement. Because you’ll

usually load the picture data into the temporary heap provided for the translation

extension, the picture data is automatically disposed of when that heap is destroyed. If

your translation extension loads the picture data elsewhere in memory, you are

responsible for disposing of it before returning from your DoTranslateFile or

DoTranslateScrap routine.

The size of the picture to display can be no larger than 280 by 50 pixels. If the picture you

specify is smaller than that, it is automatically centered (both vertically and horizontally)

in the available space.

You should set the refNum parameter to the translation reference number passed to

your DoTranslateFile or DoTranslateScrap routine. The Translation Manager

uses that number internally.

SPECIAL CONSIDERATIONS

Your translation extension should call SetTranslationAdvertisement only in

response to the kTranslateTranslateFile or kTranslateTranslateScrap

request code (that is, in your DoTranslateFile or DoTranslateScrap routine). Do

not call this function in response to any other request code or from any code that isn’t a

translation extension.

C H A P T E R 7

Translation Manager

7-52 Translation Extension Reference

You must call SetTranslationAdvertisement before you call the

UpdateTranslationProgress procedure for the first time.

The SetTranslationAdvertisement function might cause memory to be moved or

purged; you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SetTranslationAdvertisement function

are

RESULT CODES

SEE ALSO

See Figure 7-4 on page 7-7 for a sample translation progress dialog box showing an

advertisement. See Listing 7-8 on page 7-34 for an example of the use of

SetTranslationAdvertisement.

UpdateTranslationProgress

A translation extension can call UpdateTranslationProgress to update the progress

dialog box that is displayed during file and scrap translation and to give the user a

chance to click the Cancel button.

FUNCTION UpdateTranslationProgress (refNum: TranslationRefNum;

percentDone: Integer;

VAR canceled: Boolean)

: OSErr;

refNum A translation reference number.

percentDone
An integer in the range 0–100 that indicates the percentage of the
translation that has been completed.

Trap macro Selector

_TranslationDispatch $0002

noErr 0 No error
paramErr –50 Parameter error
memFullErr –108 Not enough memory

C H A P T E R 7

Translation Manager

Translation Extension Reference 7-53

canceled On exit, UpdateTranslationProgress returns TRUE in this parameter
if the user clicked the Cancel button in the progress dialog box; otherwise,
UpdateTranslationProgress returns FALSE in this parameter.

DESCRIPTION

The UpdateTranslationProgress function updates the translation progress dialog

box. You should call this function periodically during a translation to update the

progress bar and to give the user an opportunity to cancel the translation. If the user

clicks the Cancel button in the dialog box (or types Command-period while the box is

displayed), the canceled parameter is set to TRUE; otherwise, it is set to FALSE. When

canceled returns TRUE, you should stop the translation, and your application-defined

routine DoTranslateFile or DoTranslateScrap should return the result code

userCancelledErr.

The percentDone parameter specifies the approximate percentage of time elapsed until

completion. You should call UpdateTranslationProgress periodically at reasonable

time intervals to allow the user to cancel the translation. When the translation is

complete, you should call UpdateTranslationProgress with percentDone set to

100 so that the user can see that the translation is complete.

You should set the refNum parameter to the translation reference number passed to

your DoTranslateFile or DoTranslateScrap routine. The Translation Manager

uses that number internally.

SPECIAL CONSIDERATIONS

Your translation extension should call UpdateTranslationProgress only in

response to the kTranslateTranslateFile or kTranslateTranslateScrap

request code (that is, in your DoTranslateFile or DoTranslateScrap routine). Do

not call this function in response to any other request code or from any code that isn’t a

translation extension.

You should already have called SetTranslationAdvertisement before calling

UpdateTranslationProgress.

The UpdateTranslationProgress function might cause memory to be moved or

purged; you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the UpdateTranslationProgress function

are

Trap macro Selector

_TranslationDispatch $0001

C H A P T E R 7

Translation Manager

7-54 Translation Extension Reference

RESULT CODES

Translation Extension-Defined Routines

This section describes the routines you’ll need to define in order to write a translation

extension. You can create both file and scrap translation extensions.

To construct a translation extension to translate files, you need to create a component

that responds to the kTranslateGetFileTranslationList,

kTranslateIdentifyFile, and kTranslateTranslateFile request codes. In

response to these request codes, you typically dispatch to one of the extension-defined

routines DoGetFileTranslationList, DoIdentifyFile, and DoTranslateFile.

To construct a translation extension that translates scraps, you need to create a

component that responds to the kTranslateGetScrapTranslationList,

kTranslateIdentifyScrap, and kTranslateTranslateScrap request codes. In

response to these request codes, you typically dispatch to one of the extension-defined

routines DoGetScrapTranslationList, DoIdentifyScrap, and

DoTranslateScrap.

All routines return result codes. If they succeed, they should return noErr. The

Component Manager requires these routines to return a value of type

ComponentResult—a value of type LongInt—to simplify dispatching.

See “Dispatching to Translation Extension-Defined Routines” beginning on page 7-24 for

a description of how you call these routines from within a translation extension.

File Translation Extension Routines

To write a file translation extension, you need to define three routines:

■ DoGetFileTranslationList

■ DoIdentifyFile

■ DoTranslateFile

DoGetFileTranslationList

A file translation extension must respond to the

kTranslateGetFileTranslationList request code. Whenever it first notices the

extension, Macintosh Easy Open calls your extension with this request code to obtain a

noErr 0 No error
paramErr –50 Parameter error
memFullErr –108 Not enough memory

C H A P T E R 7

Translation Manager

Translation Extension Reference 7-55

list of the file types that the extension can translate. You can handle this request by

calling the CallComponentFunctionWithStorage function and passing it a pointer

to a function with the syntax defined by the DoGetFileTranslationList function.

FUNCTION DoGetFileTranslationList

(self: ComponentInstance;

 translationList: FileTranslationListHandle)

 : ComponentResult;

self A component instance that identifies the component containing the
translation extension.

translationList
A handle to a file translation list.

DESCRIPTION

Your DoGetFileTranslationList function should return, through the

translationList parameter, a handle to a list of the file types from and into which

your translation extension can translate. On entry to DoGetFileTranslationList,

the translationList parameter contains a handle to a structure of type

FileTranslationList. If your translation extension can translate any files at all, your

DoGetFileTranslationList function should resize that handle and fill the block

with a list of the file types it can translate. If the translation list whose handle you return

in translationList has the groupCount field set to 0, Macintosh Easy Open

assumes that your extension cannot translate any file types.

Macintosh Easy Open calls your translation extension’s DoGetFileTranslationList

function when it first becomes aware of your extension. For improved performance,

Macintosh Easy Open remembers each translation extension’s most recently returned file

translation list and passes that list to DoGetFileTranslationList in the

translationList parameter. If you determine that the list hasn’t changed, you should

simply return the same handle to Macintosh Easy Open.

RESULT CODES

The DoGetFileTranslationList function should return noErr if successful, or an

appropriate result code otherwise.

SEE ALSO

See “File Translation Lists” on page 7-48 for a description of the

FileTranslationList data structure. See “Writing a Translation Extension”

beginning on page 7-18 for more information about implementing a translation

extension. See Listing 7-6 on page 7-30 for a routine that constructs a sample file

translation list.

C H A P T E R 7

Translation Manager

7-56 Translation Extension Reference

DoIdentifyFile

A file translation extension must respond to the kTranslateIdentifyFile request

code. The Translation Manager uses this request code to allow the translation extension

to identify a file as having a format that the extension can translate. You can handle this

request by calling the CallComponentFunctionWithStorage function and passing it

a pointer to a function with the syntax defined by the DoIdentifyFile function.

FUNCTION DoIdentifyFile (self: ComponentInstance;

 theDoc: FSSpec;

 VAR docKind: FileType)

 : ComponentResult;

self A component instance that identifies the component containing the
translation extension.

theDoc A file system specification record that specifies the document that the
translation extension must identify.

docKind On exit, the file format type of the document as identified by your
translation extension.

DESCRIPTION

Your DoIdentifyFile function returns, through the docKind parameter, the file type

of the file specified by the FSSpec record passed in the theDoc parameter. If your

translation extension does not recognize the type of the specified file, DoIdentifyFile

should return the result code noTypeErr.

SPECIAL CONSIDERATIONS

Your DoIdentifyFile function should not return 'TEXT' as a file type unless you

determine that the document consists solely of a plain, unformatted stream of ASCII

characters.

RESULT CODES

noErr 0 No error
noTypeErr –102 Unrecognized file type

C H A P T E R 7

Translation Manager

Translation Extension Reference 7-57

DoTranslateFile

A file translation extension must respond to the kTranslateTranslateFile request

code. The Translation Manager uses this request code to allow the translation extension

to translate a file from one format to another. You can handle this request by calling the

CallComponentFunctionWithStorage function and passing it a pointer to a

function with the syntax defined by the DoTranslateFile function.

FUNCTION DoTranslateFile (self: ComponentInstance;

 refNum: TranslationRefNum;

 srcDoc: FSSpec;

 srcType: FileType;

 srcTypeHint: LongInt;

 dstDoc: FSSpec;

 dstType: FileType;

 dstTypeHint: LongInt): ComponentResult;

self A component instance that identifies the component containing your
translation extension.

refNum The translation reference number for this translation.

srcDoc A file system specification record that specifies the source document.

srcType The format of the file to be translated.

srcTypeHint
The value in the hint field of the source document’s file type
specification.

dstDoc A file system specification record that specifies the destination document.

dstType The format into which to translate the source document.

dstTypeHint
The value in the hint field of the destination document’s file type
specification.

DESCRIPTION

Your DoTranslateFile function translates a document from one format into another.

The document to be translated is specified by the srcDoc parameter, and your routine

should put the translated document into the file specified by the dstDoc parameter. The

data fork of the destination file already exists by the time DoTranslateFile is called.

In addition, if the flags field in the appropriate destination file type specification in

your extension’s file translation list has the taDstDocNeedsResourceFork bit set,

the destination file already contains a resource fork. Your function should open the

destination file and fill its data or resource fork (or both) with the appropriate translated

data.

C H A P T E R 7

Translation Manager

7-58 Translation Extension Reference

The refNum parameter is a reference number that Macintosh Easy Open assigns to the

translation. Each translation is assigned a unique number to distinguish the translation

from any other translations that might occur. You need to pass this reference number to

any Macintosh Easy Open routines you call from within the file translation extension; for

instance, if by calling the SetTranslationAdvertisement function you display the

progress dialog box, you’ll pass that reference number in the refNum parameter.

The DoTranslateFile function can translate the source file itself or rely upon external

translators. If it cannot translate the source file, your function should return a result code

different from noErr. In that case, Macintosh Easy Open will automatically delete the

destination file.

Your translation extension should call the SetTranslationAdvertisement function

to display the progress dialog box and the UpdateTranslationProgress function to

update the dialog box periodically.

Your DoTranslateFile function should return noErr if successful or an appropriate

result code otherwise.

RESULT CODES

Scrap Translation Extension Routines

To write a scrap translation extension, you need to define three routines:

■ DoGetScrapTranslationList

■ DoIdentifyScrap

■ DoTranslateScrap

DoGetScrapTranslationList

A scrap translation extension must respond to the

kTranslateGetScrapTranslationList request code. At system startup time, the

Translation Manager calls your extension with this request code to obtain a list of the

noErr 0 No error
userCanceledErr –128 User canceled the translation
invalidTranslationPathErr –3025 srcType to dstType is not a valid

translation path
couldNotParseSourceFileErr –3026 The source document is not of type

srcType

C H A P T E R 7

Translation Manager

Translation Extension Reference 7-59

scrap types that the extension can translate. You can handle this request by calling the

CallComponentFunctionWithStorage function and passing it a pointer to a

function with the syntax defined by the DoGetScrapTranslationList function.

FUNCTION DoGetScrapTranslationList

(self: ComponentInstance;

 list: ScrapTranslationListHandle)

 : ComponentResult;

self A component instance that identifies the component containing the
translation extension.

list A handle to a scrap translation list.

DESCRIPTION

The DoGetScrapTranslationList function returns, through the list parameter, a

handle to a list of the scrap types from and into which your translation extension can

translate. On entry to DoGetScrapTranslationList, the list parameter contains a

handle to a structure of type ScrapTranslationList. If your translation extension

can translate any scrap types at all, your DoGetScrapTranslationList function

should resize that handle and fill the block with a list of the scrap types it can translate. If

the translation list whose handle you return in list has the groupCount field set to 0,

Macintosh Easy Open assumes that your extension cannot translate any scrap types.

When it first becomes aware of your extension, Macintosh Easy Open calls your

translation extension’s DoGetScrapTranslationList function. For improved

performance, Macintosh Easy Open remembers each translation extension’s most

recently returned scrap translation list and passes that list to

DoGetScrapTranslationList in the list parameter. If you determine that the list

hasn’t changed, you should simply return the same handle to Macintosh Easy Open.

RESULT CODES

The DoGetScrapTranslationList function should return noErr if successful, or an

appropriate result code otherwise.

SEE ALSO

See “Scrap Translation Lists” on page 7-49 for a description of the

ScrapTranslationList data structure. See “Writing a Translation Extension”

beginning on page 7-18 for more information about implementing a translation

extension.

C H A P T E R 7

Translation Manager

7-60 Translation Extension Reference

DoIdentifyScrap

A scrap translation extension must respond to the kTranslateIdentifyScrap

request code. The Translation Manager uses this request code to allow the translation

extension to identify a scrap as one that the extension can translate. You can handle this

request by calling the CallComponentFunctionWithStorage function and passing it

a pointer to a function with the syntax defined by the DoIdentifyScrap function.

FUNCTION DoIdentifyScrap (self: ComponentInstance;

 dataPtr: Ptr;

 dataLength: Size;

 VAR dataFormat: ScrapType)

 : ComponentResult;

self A component instance that identifies the component containing the
translation extension.

dataPtr A pointer to the scrap.

dataLength
The size of the scrap to be translated.

dataFormat
On entry, the type of the scrap format. On exit, the type of the scrap
format as recognized by your translation extension.

DESCRIPTION

Your DoIdentifyScrap function returns, through the dataFormat parameter, the

scrap type of the scrap specified by the dataPtr and dataLength parameters. If your

translation extension does not recognize the type of the specified scrap,

DoIdentifyScrap should return the result code noTypeErr.

In general, the scrap that your DoIdentifyScrap function is asked to identify is

always in one of the formats listed among the source formats in the translation groups

contained in your extension’s scrap translation list. Your scrap translation extension

therefore needs only to verify that the indicated scrap is of the specified format.

RESULT CODES

noErr 0 No error
noTypeErr –102 Unrecognized scrap type

C H A P T E R 7

Translation Manager

Translation Extension Reference 7-61

DoTranslateScrap

A scrap translation extension must respond to the kTranslateTranslateScrap

request code. The Translation Manager sends this request code to allow the extension to

translate scraps from one format to another. You can handle this request by calling the

CallComponentFunctionWithStorage function and passing it a pointer to a

function with the syntax defined by the DoTranslateScrap function.

FUNCTION DoTranslateScrap (self: ComponentInstance;

refNum: TranslationRefNum;

srcDataPtr: Ptr;

srcDataLength: Size;

srcType: ScrapType;

srcTypeHint: LongInt;

dstData: Handle;

dstType: ScrapType;

dstTypeHint: LongInt)

: ComponentResult;

self A component instance that identifies the component containing the
translation extension.

refNum The translation reference number for this translation.

srcDataPtr
A pointer to the scrap to be translated.

srcDataLength
The size of the scrap to be translated.

srcType The format of the scrap to be translated.

srcTypeHint
The value in the hint field of the source document’s scrap type
specification.

dstData A handle to the destination to be filled in.

dstType The format into which to translate the source scrap.

dstTypeHint
The value in the hint field of the destination document’s scrap type
specification.

DESCRIPTION

The DoTranslateScrap function translates a scrap from one format into another. The

scrap to be translated is specified by the srcDataPtr and srcDataLength parameters,

and your routine should put the translated data into the block specified by the dstData

parameter. Your function should resize that block as necessary and fill it with the

appropriate translated data.

C H A P T E R 7

Translation Manager

7-62 Translation Extension Reference

The refNum parameter is a reference number that Macintosh Easy Open assigns to the

translation. Each translation is assigned a unique number to distinguish the translation

from any other translations that might be occurring. You need to pass this reference

number to any Macintosh Easy Open routines you call from within the scrap translation

extension; for instance, if you display the progress dialog box by calling the

SetTranslationAdvertisement function, you’ll pass that reference number in the

refNum parameter.

The DoTranslateScrap function can translate the source file itself or rely upon

external translators. If it cannot translate the source scrap, your function should return a

result code different from noErr.

Your translation extension should call the SetTranslationAdvertisement function

to display the progress dialog box and the UpdateTranslationProgress function to

update the dialog box periodically.

RESULT CODES

The DoTranslateScrap function should return noErr if successful, or an appropriate

result code otherwise.

C H A P T E R 7

Translation Manager

Summary of the Translation Manager 7-63

Summary of the Translation Manager

This section provides Pascal, C, and assembly-language summaries for the constants,

data types, and routines provided by the Translation Manager for use by applications.

For a summary of the constants, data types, and routines that you can use or need to

define if you’re writing a translation extension, see “Summary of Translation Extensions”

beginning on page 7-68.

Pascal Summary

Constants

CONST

{Gestalt selectors and response bit numbers}

gestaltTranslationAttr = 'xlat'; {Translation Manager}

gestaltTranslationMgrExists = 0; {TM is present}

gestaltStandardFileAttr = 'stdf'; {Standard File Package}

gestaltStandardFile58 = 0;

gestaltStandardFileTranslationAware = 1;

gestaltStandardFileHasColorIcons = 2;

gestaltEditionMgrAttr = 'edtn'; {Edition Manager}

gestaltEditionMgrPresent = 0;

gestaltEditionMgrTranslationAware = 1;

gestaltScrapMgrAttr = 'scra'; {Scrap Manager}

gestaltScrapMgrTranslationAware = 0;

Data Types

TYPE

FileType = OSType; {file types}

ScrapType = ResType; {scrap types}

FileTypePtr = ^FileType;

FileTranslationSpec = ARRAY[1..12] OF LongInt;

C H A P T E R 7

Translation Manager

7-64 Summary of the Translation Manager

TypesBlock = ARRAY[0..63] OF FileType;

TypesBlockPtr = ^TypesBlock;

DocOpenMethod = (domCannot,

domNative,

domTranslateFirst,

domWildcard);

Translation Manager Routines

Getting Translation Information

FUNCTION GetFileTypesThatAppCanNativelyOpen
(appVRefNumHint: Integer; appSignature: OSType;
VAR nativeTypes: TypesBlock): OSErr;

FUNCTION ExtendFileTypeList
(originalTypeList: FileTypePtr;
numberOriginalTypes: Integer;
extendedTypeList: FileTypePtr;
VAR numberExtendedTypes: Integer): OSErr;

FUNCTION CanDocBeOpened (targetDocument: FSSpec;
appVRefNumHint: Integer;
appSignature: OSType;
nativeTypes: TypesBlockPtr;
onlyNative: Boolean;
VAR howToOpen: DocOpenMethod;
VAR howToTranslate: FileTranslationSpec)
: OSErr;

Translating Files

FUNCTION TranslateFile (sourceDocument: FSSpec;
destinationDocument: FSSpec;
howToTranslate: FileTranslationSpec): OSErr;

C Summary

Constants

/*Gestalt selectors and response bit numbers*/

enum {

#define gestaltTranslationAttr 'xlat' /*Translation Manager*/

C H A P T E R 7

Translation Manager

Summary of the Translation Manager 7-65

gestaltTranslationMgrExists = 0 /*TM is present*/

};

enum {

#define gestaltStandardFileAttr 'stdf' /*Std File Package*/

gestaltStandardFile58 = 0,

gestaltStandardFileTranslationAware = 1,

gestaltStandardFileHasColorIcons = 2

};

enum {

#define gestaltEditionMgrAttr 'edtn' /*Edition Manager*/

gestaltEditionMgrPresent = 0,

gestaltEditionMgrTranslationAware = 1

};

enum {

#define gestaltScrapMgrAttr 'scra' /*Scrap Manager*/

gestaltScrapMgrTranslationAware = 0

};

enum {domCannot, domNative, domTranslateFirst, domWildcard};

Data Types

typedef OSType FileType; /*file types*/

typedef ResType ScrapType; /*scrap types*/

typedef long FileTranslationSpec[12];

typedef short DocOpenMethod;

Translation Manager Routines

Getting Translation Information

pascal OSErr GetFileTypesThatAppCanNativelyOpen
(short appVRefNumHint, OSType appSignature,
FileType* nativeTypes);

pascal OSErr ExtendFileTypeList
(const FileType* originalTypeList,
short numberOriginalTypes,
FileType* extendedTypeList,
short* numberExtendedTypes);

C H A P T E R 7

Translation Manager

7-66 Summary of the Translation Manager

pascal OSErr CanDocBeOpened
(const FSSpec* targetDocument,
short appVRefNumHint,
OSType appSignature,
const FileType* nativeTypes,
Boolean onlyNative,
DocOpenMethod* howToOpen,
FileTranslationSpec* howToTranslate);

Translating Files

pascal OSErr TranslateFile (const FSSpec* sourceDocument,
const FSSpec* destinationDocument,
const FileTranslationSpec* howToTranslate);

Assembly-Language Summary

Data Structures

File Translation Specification

Trap Macros

Trap Macros Requiring Routine Selectors

_TranslationDispatch

0 data 48 bytes private data used by the Translation Manager

Selector Routine

$0009 ExtendFileTypeList

$000C TranslateFile

$001C GetFileTypesThatAppCanNativelyOpen

$001E CanDocBeOpened

C H A P T E R 7

Translation Manager

Summary of the Translation Manager 7-67

Result Codes
noErr 0 No error
dirFulErr –33 Directory full
dskFulErr –34 Not enough disk space to translate file
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
tmfoErr –42 Too many files open
fnfErr –43 File not found
wPrErr –44 Disk is write protected
fLckdErr –45 File is locked
vLckdErr –46 Volume is locked
dupFNErr –48 Duplicate filename (rename)
opWrErr –49 File already open with write permission
paramErr –50 Parameter error
extFSErr –58 External file system
noTypeErr –102 Unrecognized file type
memFullErr –108 Not enough RAM to translate file
dirNFErr –120 Directory not found or incomplete pathname
wrgVolTypErr –123 Volume does not support Desktop Manager
userCanceledErr –128 The user canceled the translation
invalidTranslationPathErr –3025 howToTranslate is invalid
noTransSysInstalledErr –3027 No translation systems installed
noTranslationPathErr –3030 Application cannot open document
badTranslationSpecErr –3031 Translation path is invalid
noPrefAppErr –3032 No translation preference available
afpItemNotFound –5012 Could not determine kind string; or, application

information not found

C H A P T E R 7

Translation Manager

7-68 Summary of Translation Extensions

Summary of Translation Extensions

This section provides Pascal, C, and assembly-language summaries for the constants,

data types, and routines you can use to write a translation extension. For a summary of

the constants, data types, and routines that applications can use, see “Summary of the

Translation Manager” beginning on page 7-63.

Pascal Summary

Constants

CONST

{component flags}

kSupportsFileTranslation = 1; {file translation extension}

kSupportsScrapTranslation = 2; {scrap translation extension}

{translation attributes}

taDstDocNeedsResourceFork = 1; {doc needs a resource fork}

taDstIsAppTranslation = 2; {app will translate doc}

{request codes for translation extensions}

kTranslateGetFileTranslationList = 0;

kTranslateIdentifyFile = 1;

kTranslateTranslateFile = 2;

kTranslateGetScrapTranslationList = 10;

kTranslateIdentifyScrap = 11;

kTranslateTranslateScrap = 12;

Data Types

TYPE

FileType = OSType; {file types}

ScrapType = ResType; {scrap types}

TranslationAttributes = LongInt;

FileTypeSpec =

RECORD

format: FileType;

C H A P T E R 7

Translation Manager

Summary of Translation Extensions 7-69

hint: LongInt;

flags: TranslationAttributes;

catInfoType: OSType;

catInfoCreator: OSType;

END;

FileTranslationList =

RECORD

modDate: LongInt;

groupCount: LongInt;

{group1SrcCount: LongInt;}

{group1SrcEntrySize: LongInt;}

{group1SrcTypes: ARRAY[1..group1SrcCount] OF FileTypeSpec;}

{group1DstCount: LongInt;}

{group1DstEntrySize: LongInt;}

{group1DstTypes: ARRAY[1..group1DstCount] OF FileTypeSpec;}

{repeat above six lines for a total of groupCount times}

END;

FileTranslationListPtr = ^FileTranslationList;

FileTranslationListHandle = ^FileTranslationListPtr;

ScrapTypeSpec =

RECORD

format: ScrapType;

hint: LongInt;

END;

ScrapTranslationList =

RECORD

modDate: LongInt;

groupCount: LongInt;

{group1SrcCount: LongInt;}

{group1SrcEntrySize: LongInt;}

{group1SrcTypes: ARRAY[1..group1SrcCount] OF ScrapTypeSpec;}

{group1DstCount: LongInt;}

{group1DstEntrySize: LongInt;}

{group1DstTypes: ARRAY[1..group1DstCount] OF ScrapTypeSpec;}

{repeat above six lines for a total of groupCount times}

END;

ScrapTranslationListPtr = ^ScrapTranslationList;

ScrapTranslationListHandle = ^ScrapTranslationListPtr;

TranslationRefNum = LongInt;

C H A P T E R 7

Translation Manager

7-70 Summary of Translation Extensions

Translation Extension Routines

Managing Translation Progress Dialog Boxes

FUNCTION SetTranslationAdvertisement
(refNum: TranslationRefNum;
advertisement: PicHandle): OSErr;

FUNCTION UpdateTranslationProgress
(refNum: TranslationRefNum;
percentDone: Integer;
VAR canceled: Boolean): OSErr;

Translation Extension-Defined Routines

File Translation Extension Routines

FUNCTION DoGetFileTranslationList
(self: ComponentInstance;
translationList: FileTranslationListHandle)
: ComponentResult;

FUNCTION DoIdentifyFile (self: ComponentInstance;
theDoc: FSSpec;
VAR docKind: FileType): ComponentResult;

FUNCTION DoTranslateFile (self: ComponentInstance;
refNum: TranslationRefNum;
srcDoc: FSSpec;
srcType: FileType;
srcTypeHint: LongInt;
dstDoc: FSSpec;
dstType: FileType;
dstTypeHint: LongInt): ComponentResult;

Scrap Translation Extension Routines

FUNCTION DoGetScrapTranslationList
(self: ComponentInstance;
list: ScrapTranslationListHandle)
: ComponentResult;

FUNCTION DoIdentifyScrap (self: ComponentInstance;
dataPtr: Ptr;
dataLength: Size;
VAR dataFormat: ScrapType): ComponentResult;

C H A P T E R 7

Translation Manager

Summary of Translation Extensions 7-71

FUNCTION DoTranslateScrap (self: ComponentInstance;
refNum: TranslationRefNum;
srcDataPtr: Ptr;
srcDataLength: Size;
srcType: ScrapType;
srcTypeHint: LongInt;
dstData: Handle;
dstType: ScrapType;
dstTypeHint: LongInt): ComponentResult;

C Summary

Constants

/*component flags*/

#define kSupportsFileTranslation 1 /*file translation extension*/

#define kSupportsScrapTranslation 2 /*scrap translation extension*/

/*translation attributes*/

#define taDstDocNeedsResourceFork 1 /*doc needs a resource fork*/

#define taDstIsAppTranslation 2 /*app will translate doc*/

/*request codes for translation extensions*/

enum {

kTranslateGetFileTranslationList = 0,

kTranslateIdentifyFile,

kTranslateTranslateFile,

kTranslateGetScrapTranslationList = 10,

kTranslateIdentifyScrap,

kTranslateTranslateScrap

};

Data Types

typedef OSType FileType; /*file types*/

typedef ResType ScrapType; /*scrap types*/

typedef unsigned long TranslationAttributes;

struct FileTypeSpec {

FileType format;

long hint;

C H A P T E R 7

Translation Manager

7-72 Summary of Translation Extensions

TranslationAttributes flags;

OSType catInfoType;

OSType catInfoCreator;

}

typedef struct FileTypeSpec FileTypeSpec;

struct FileTranslationList {

unsigned long modDate;

unsigned long groupCount;

/*unsigned long group1SrcCount;*/

/*unsigned long group1SrcEntrySize;*/

/*FileTypeSpec group1SrcTypes[group1SrcCount];*/

/*unsigned long group1DstCount;*/

/*unsigned long group1DstEntrySize;*/

/*FileTypeSpec group1DstTypes[group1DstCount];*/

/*repeat above six lines for a total of groupCount times*/

};

typedef struct FileTranslationList FileTranslationList;

typedef FileTranslationList *FileTranslationListPtr,

**FileTranslationListHandle;

struct ScrapTypeSpec {

ScrapType format;

long hint;

}

typedef struct ScrapTypeSpec ScrapTypeSpec;

struct ScrapTranslationList {

unsigned long modDate;

unsigned long groupCount;

/*unsigned long group1SrcCount;*/

/*unsigned long group1SrcEntrySize;*/

/*ScrapTypeSpec group1SrcTypes[group1SrcCount];*/

/*unsigned long group1DstCount;*/

/*unsigned long group1DstEntrySize;*/

/*ScrapTypeSpec group1DstTypes[group1DstCount];*/

/*repeat above six lines for a total of groupCount times*/

};

typedef struct ScrapTranslationList ScrapTranslationList;

typedef ScrapTranslationList *ScrapTranslationListPtr,

**ScrapTranslationListHandle;

typedef long TranslationRefNum;

C H A P T E R 7

Translation Manager

Summary of Translation Extensions 7-73

Translation Extension Routines

Managing Translation Progress Dialog Boxes

pascal OSErr SetTranslationAdvertisement
(TranslationRefNum refnum,
PicHandle advertisement);

pascal OSErr UpdateTranslationProgress
(TranslationRefNum refnum,
short percentDone,
Boolean* canceled);

Translation Extension-Defined Routines

File Translation Extension Routines

pascal ComponentResult DoGetFileTranslationList
(ComponentInstance self,
FileTranslationListHandle translationList);

pascal ComponentResult DoIdentifyFile
(ComponentInstance self,
const FSSpec* theDoc,
FileType* docKind);

pascal ComponentResult DoTranslateFile
(ComponentInstance self,
TranslationRefNum refNum,
const FSSpec* srcDoc,
FileType srcType,
long srcTypeHint,
const FSSpec* dstDoc,
FileType dstType,
long dstTypeHint);

Scrap Translation Extension Routines
pascal ComponentResult DoGetScrapTranslationList

(ComponentInstance self,
ScrapTranslationListHandle list);

pascal ComponentResult DoIdentifyScrap
(ComponentInstance self,
const void* dataPtr,
Size dataLength,
ScrapType* dataFormat);

C H A P T E R 7

Translation Manager

7-74 Summary of Translation Extensions

pascal ComponentResult DoTranslateScrap
(ComponentInstance self,
TranslationRefNum refNum,
const void* srcDataPtr,
Size srcDataLength,
ScrapType srcType,
long srcTypeHint,
Handle dstData,
ScrapType dstType,
long dstTypeHint);

Assembly-Language Summary

Data Structures

File Type Specification

File Translation List

Scrap Type Specification

Scrap Translation List

0 format 4 bytes the file type

4 hint 4 bytes reserved for use by your translation extension

8 flags 4 bytes flags for controlling translation

12 catInfoType 4 bytes the file’s catalog type

16 catInfoCreator 4 bytes the file’s catalog creator

0 modDate 4 bytes the creation date of the file translation list

4 groupCount 4 bytes the number of translation groups that follow

0 format 4 bytes the scrap type

4 hint 4 bytes reserved for use by your translation extension

0 modDate 4 bytes the creation date of the scrap translation list

4 groupCount 4 bytes the number of translation groups that follow

C H A P T E R 7

Translation Manager

Summary of Translation Extensions 7-75

Trap Macros

Trap Macros Requiring Routine Selectors

_TranslationDispatch

Result Codes

Selector Routine

$0001 UpdateTranslationProgress

$0002 SetTranslationAdvertisement

noErr 0 No error
dskFulErr –34 Not enough disk space to translate file
fnfErr –43 Document not found
paramErr –50 Parameter error
noTypeErr –102 Unrecognized file or scrap type
memFullErr –108 Not enough memory
dirNFErr –120 Source or destination directory does not exist
wrgVolTypErr –123 Volume does not support Desktop Manager
userCanceledErr –128 The user canceled the translation
invalidTranslationPathErr –3025 srcType to dstType is not a valid path
couldNotParseSourceFileErr –3026 Source document is not of type srcType
afpItemNotFound –5012 Could not determine kind string; or, application

information not found

Contents 8-1

C H A P T E R 8

Contents

Control Panels

About Control Panels 8-4

Control Panels 8-4

A Control Panel’s Resources 8-6

The Finder’s Interaction With Control Panels 8-7

Control Panels and System Extensions 8-8

About User Documentation for Control Panels 8-8

The Monitors Control Panel and Extensions to It 8-9

Creating Control Panel Files 8-12

Defining the User Interface for a Control Panel 8-12

Creating a Control Panel’s Resources 8-14

Resource IDs for Control Panels 8-14

Defining the Control Panel Rectangles 8-15

Creating the Item List Resource 8-17

Defining the Icon for a Control Panel 8-20

Specifying the Machine Resource 8-20

Creating the File Reference, Bundle, and Signature Resources 8-21

Providing Additional Resources for a Control Panel 8-22

Specifying the Font of Text in a Control Panel 8-23

Creating a Font Information Resource 8-23

Defining Text in a Control Panel as User Items 8-24

Writing a Control Panel Function 8-25

Determining If a Control Panel Can Run on the Current System 8-29

Initializing the Control Panel Items and Allocating Storage 8-29

Responding to Activate Events 8-33

Responding to Keyboard Events 8-37

Responding to Mouse Events 8-39

Responding to Update Events 8-43

Handling Text Defined as User Items 8-43

Responding to Null Events 8-45

Responding to the User Closing the Control Panel 8-45

C H A P T E R 8

8-2 Contents

Handling Edit Menu Commands 8-46

Handling Errors 8-47

Creating an Extension for the Monitors Control Panel 8-48

Designing the User Interface for a Monitors Extension 8-49

Creating the Required Resources for a Monitors Extension 8-51

Creating a Card Resource for a Monitors Extension 8-51

Defining a Rectangle for a Monitors Extension 8-52

Creating an Item List Resource for a Monitors Extension 8-54

Creating the Monitor Code Resource 8-56

Supplying Optional Resources for a Monitors Extension 8-56

Specifying an Icon for the Options Dialog Box 8-57

Specifying Version Information 8-58

Providing an Alternative Name for a Video Card 8-58

Supplying Gamma Table Resources 8-59

Creating File Reference, Bundle, and Signature Resources 8-59

Including a System Extension Resource 8-61

Writing a Monitors Extension Function 8-61

Handling the Startup Message 8-66

Performing Initialization 8-68

Responding to a Click in the OK Button 8-70

Responding to a Cancel Request 8-71

Handling Mouse Events for a Monitors Extension 8-71

Handling Keyboard Events 8-73

Including Another Control Panel Definition in a Monitors Extension
File 8-73

Control Panels Reference 8-74

Application-Defined Routines 8-74

Control Device Functions 8-74

Monitors Extension Functions 8-78

Resources 8-82

The Machine Resource 8-84

The Rectangle Positions Resource 8-85

The Font Information Resource 8-86

The Control Device Function Code Resource 8-87

The Card Resource 8-87

The Monitor Code Resource 8-88

The Rectangle Resource 8-88

Summary of Control Panels 8-89

Pascal Summary 8-89

Constants 8-89

Application-Defined Routines 8-90

C Summary 8-90

Constants 8-90

Application-Defined Routines 8-92

C H A P T E R 8

8-3

Control Panels

This chapter describes how to develop a control panel to control the settings of

systemwide features and how to create an extension for the standard Monitors control

panel.

Create a control panel if you want to provide users with the ability to set preferences for

global values or systemwide features. Some of the standard control panels allow users to

change the speaker volume, set the date and time, and select a different desktop pattern.

Although you must not develop control panels to replace the standard ones, you can

create additional control panels for any features that meet the stipulations for control

panels. If the feature that you want to implement as a control panel is complex or if its

interface requires menu items and multiple, layered dialog boxes, you should create a

small application instead of a control panel.

If you are a manufacturer of a video device, you can extend the standard Monitors

control panel to include items that give users a simple way to control the features of your

device. To do this, read the sections in this chapter that describe how to create an

extension to the Monitors control panel. The standard Monitors control panel lets the

user define the monitor’s display of colors and, if more than one monitor is connected to

the system, the relative position of each monitor. The Monitors control panel manages

any extensions to it that you create.

To use this chapter, you should be familiar with how to create 'BNDL', 'ICN#',

'FREF', signature, and 'DITL' resources as described in the chapters “Finder

Interface” and “Dialog Manager” of Inside Macintosh: Macintosh Toolbox Essentials. You

should also understand how to handle events and change settings of controls, as

explained in the chapters “Event Manager” and “Control Manager” of Inside Macintosh:
Macintosh Toolbox Essentials.

The Finder, which performs a number of services for your control panel, uses the Dialog

Manager to display your control panel’s dialog box. In turn, the Dialog Manager uses the

Control Manager to create and display buttons, radio buttons, checkboxes, and pop-up

menus. Your control panel needs to make these controls active and inactive in response

to messages from the Finder. If you include editable text items in your control panel, the

Dialog Manager uses TextEdit to handle associated editing tasks. (For general

information on TextEdit, see the chapter “TextEdit” in Inside Macintosh: Text.)

This chapter provides a general introduction to control panels and introduces the

Monitors control panel. It then describes how to

■ define the user interface for a control panel

■ create the resources for a control panel, including the rectangle and item list resources

■ specify the font for your control panel’s text

■ write a control panel function

■ write an extension for the Monitors control panel

C H A P T E R 8

Control Panels

8-4 About Control Panels

About Control Panels

This section provides an overview of control panels, the resources that a control panel

requires, and the Finder’s relationship to a control panel. It also distinguishes the

services the Finder performs for a control panel from those that your control panel code

must implement.

This section also provides an overview of the Monitors control panel and extensions to it,

including the resources that a monitors extension requires.

Control Panels
A control panel manages the settings of a systemwide feature, such as the amount of

memory allocated to a disk cache, the volume of the speaker, or the picture displayed by

a screen saver. A control panel can also allow the user to set a global value, such as the

highlight color. On the screen, a control panel appears as a modeless dialog box with

controls that let users specify basic settings and preferences for the feature. A control
panel file (a file of type 'cdev') contains the required resources that implement the

feature and define the look of the control panel’s user interface, including its icon. A

control panel file also contains any optional resources needed to implement the feature.

Among the required resources in a control panel file is a code resource that consists of a

control device function. A control device function, also referred to as a cdev function,

implements the features of the control panel and performs any services offered by the

control panel. Control device functions interact and communicate with the Finder. The

Finder provides a number of services for control device functions, including interfacing

with the Dialog Manager to create and manage each control panel’s dialog box.

A control panel allows the user to modify whatever settings the particular control panel

supports. A user opens a control panel from the Finder. Each control panel appears in its

own dialog box. Because each control panel is an independent executable file, more than

one control panel can remain open at a time, and the user can move among them or run

another application while one or more control panels are open. Figure 8-1 shows two

control panels open on the desktop. Like other windows, control panels can be dragged

on the desktop. The frontmost control panel is the active one.

C H A P T E R 8

Control Panels

About Control Panels 8-5

Figure 8-1 Two control panels, each with its own window

You cannot define your own menus for a control panel, but the user can use most of the

Finder’s Edit menu commands while working in the control panel. When your control

panel is active and the user chooses a command from the Edit menu, the Finder passes

the Undo, Cut, Copy, Paste, or Clear commands to your control device function for

processing. Your control device function can respond to these messages from the Finder

when it is appropriate to do so; for example, if your control panel has an editable text

item, your function should respond to editing commands.

Many standard control panels are provided with the system software. For example, the

Sound control panel lets the user specify the volume and type of alert sound. The Mouse

control panel lets the user define the speed of the onscreen cursor relative to movement

of the mouse; the user can also set the double-click speed. The Startup Disk control panel

lets the user specify the boot drive.

C H A P T E R 8

Control Panels

8-6 About Control Panels

Figure 8-2 shows the General Controls control panel, which lets the user set the Finder’s

desktop color and pattern, the blinking rate of the insertion point, the number of times a

menu item blinks once the user chooses it, and the time and date.

Figure 8-2 The General Controls control panel

A Control Panel’s Resources

A control panel file must contain certain required resources. In addition to these, your

control panel can include optional resources. You can also create any other types of

resources that your control device function needs and include them in the control panel

file. The resources you provide in your control panel file must adhere to conventions

governing the resource ID numbers; see “Resource IDs for Control Panels” on page 8-14

for information on these conventions. These are the required resources:

■ A rectangle positions ('nrct') resource. This resource specifies the number of
rectangles that make up the display area of your control panel and a list of the
coordinates defining the position for each rectangle. (Your control panel interface can
have one or more rectangles containing the controls that let the user set and change
values or otherwise manipulate the feature the control panel governs.)

■ An item list ('DITL') resource. This resource specifies the items in your control panel.
You can specify in this resource items such as static text, buttons, checkboxes, radio
buttons, editable text, user items, icons, QuickDraw pictures, and other types of
controls, such as pop-up menus.

■ A machine ('mach') resource. This resource specifies the types of systems on which
your control panel can run.

■ A black-and-white icon list ('ICN#') resource and other resources associated with an
icon family. These resources define the icon for your control panel file. The icon family
resources are 'ICN#', 'ics#', 'icl8', 'icl4', 'ics8', and 'ics4'. See the
chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox Essentials for
information on how to create an icon family.

C H A P T E R 8

Control Panels

About Control Panels 8-7

■ A bundle ('BNDL') resource. This resource groups together the control panel’s
signature, icon, and file reference resources.

■ A file reference ('FREF') resource. This resource associates icons with your control
panel file; the Finder uses this information to display the icon for your control panel
file.

■ A signature resource. This resource contains a unique four-character sequence that has
the same value as your control panel’s creator type.

■ A control device ('cdev') code resource. This resource contains the code that
implements the control panel.

Although it is not required, you can also include a font information ('finf') resource in

your control panel file. This resource type lets you specify the font of your control

panel’s static text items. If you don’t include a font information resource, the Finder uses

the default application font, which is 9-point Geneva for Roman scripts.

The control device code resource contains a control device function, which must be the

first section of code in the resource. The control device function handles messages from

the Finder and implements the work your control panel is designed to do. The Finder

handles such actions as displaying your control panel’s dialog box and tracking controls

in it.

The Finder’s Interaction With Control Panels

The Finder performs the following services on behalf of your control panel:

■ queries your control device function initially, to determine whether it can run on the
available software and hardware configuration

■ requests your control device function to perform any needed initialization when the
user first opens your control panel

■ displays dialog items defined by your control panel file

■ tracks user actions in controls defined by your control panel file

■ manages the modeless dialog box in which your control panel is displayed (For
instance, the Finder responds appropriately when the user drags the modeless dialog
box or clicks its close box.)

■ sends your control device function the information it needs to respond to specific
events or to handle Edit menu commands

■ displays messages to the user when the control panel cannot run on the current
system and when your control device function returns an error code

Your control panel should

■ provide both the required resources and any additional resources that the Finder
needs to run your control panel

■ initialize, open, and close your control panel appropriately as requested by the Finder

C H A P T E R 8

Control Panels

8-8 About Control Panels

■ respond to activate events as requested by the Finder

■ draw user items in response to update events as requested by the Finder

■ respond to user actions in controls as requested by the Finder

■ respond to user keystrokes as requested by the Finder

Control Panels and System Extensions

Many control panels rely on system extensions (files of type 'INIT') to implement their

features. For example, you might implement a screen saver as a system extension and

create a control panel that allows the user to set specific features of the screen saver, such

as the color of the picture displayed. Although the extension creates and manages the

screen saver, the user might control the look of the screen saver through settings in the

control panel. In this scenario, which is used as an example throughout this chapter,

the control device function and its system extension communicate and share values

related to settings that the user changes.

If you use a system extension with your control panel, include it in the control panel file

along with the required resources and any other optional resources you use. In System 7,

system extensions can be installed in the Control Panels folder or the Extensions folder

(both of which are stored in the System Folder) or directly in the System Folder.

However, if it contains a system extension, your control panel file must reside in the

Control Panels folder within the System Folder. At startup time, the system software

opens files of type 'cdev' that reside in the Control Panels folder and executes any

system extensions that it finds there. If the system extension portion of a control panel is

not loaded at startup, the control panel won’t function properly.

About User Documentation for Control Panels

Because control panels are like independent files, you or the user can install and store

them anywhere in the file system. Users might want to store frequently used control

panels in the Apple Menu Items folder or in a folder containing other utilities.

You should refer to a file of type 'cdev' as a control panel file in any user documentation

that you provide. Don’t refer by name to the file type of this file or any other file. If your

control panel file includes a system extension, you should direct the user to install it in

the Control Panels folder or provide an installation script for this purpose. System

software provides an alias (a file that points to another file) of the Control Panels folder

for quick access from the Apple menu. Figure 8-3 shows many control panel icons in the

Control Panels folder.

C H A P T E R 8

Control Panels

About Control Panels 8-9

Figure 8-3 Control panel icons in the Control Panels folder

The Monitors Control Panel and Extensions to It
The standard Monitors control panel lets the user define the monitor’s display of colors

or shades of gray. If more than one monitor is connected to the system, the Monitors

control panel also allows the user to define the relative position of each monitor and

choose which monitor is the startup screen. If you are a manufacturer of a video card,

you can create a monitors extension to give users a simple way to control the features of

your device through the Monitors control panel. A monitors extension controls the

features of your video card only, not systemwide features. For example, a monitors

extension might allow the user to set the virtual screen size for a single monitor but not

the size of the menu bar, which can appear on any monitor. If you require a more

complex interface, such as your own menu items or several levels of nested dialog boxes,

you should create a small application rather than an extension to the Monitors control

panel.

The Monitors control panel manages any extensions to it that you create, and the user

can open an extension only through the Monitors control panel. Like a control panel file,

a monitors extension file has a file type of 'cdev'. A monitors extension file contains

resources for the monitors extension, including a code resource of type 'mntr'. If you

want to create a separate control panel to let the user control the settings of another

feature of the same video card, you can include the control panel’s resources and code in

the same file as your monitors extension. In this case, you create the control panel just as

you do any other independent control panel. If a user opens your independent control

C H A P T E R 8

Control Panels

8-10 About Control Panels

panel, the Finder displays the control panel defined in your file and ignores the monitors

extension in that file, just as the Monitors control panel ignores the independent control

panel defined in your file when it opens the file to display the monitors extension.

The Monitors control panel allows a user to

■ select which one of the monitors connected to the computer to use as a startup screen
(that is, which monitor displays the menu bar)

■ inform system software about the relative locations of the monitors

■ control some features of the monitors, for instance, how many colors or shades of gray
are displayed

Figure 8-4 shows an example of the Monitors control panel.

Figure 8-4 The Monitors control panel

If more than one video card is installed in the computer, the Monitors control panel

shows all of the connected monitors. When the user selects one monitor, then clicks the

Options button, the Monitors control panel displays the Options dialog box for that

monitor. When you provide a monitors extension for the Monitors control panel, the

controls you add appear in this dialog box.

Figure 8-5 shows an example of an Options dialog box for the SurfBoard video card. The

OK and Cancel buttons are standard for all Options dialog boxes. In this example, the

developers of the SurfBoard video card have provided a monitors extension that adds

two items to the the Options dialog box: the Magnify Enabled checkbox and static text

listing the manufacturer’s name.

C H A P T E R 8

Control Panels

About Control Panels 8-11

Figure 8-5 An Options dialog box for the SurfBoard video card

A monitors extension file must contain these four resources:

■ A card ('card') resource. This resource contains a Pascal string identical to the name
stored in the declaration ROM of the video card. You can include as many card
resources as you like, so that one extension file can handle several types of video
cards.

■ A monitor ('mntr') code resource. This resource carries out the functions of your
monitors extension.

■ A rectangle ('RECT') resource. This resource describes the size and shape of the area
that your controls occupy.

■ An item list ('DITL') resource specifying the items in your monitors extension. You
can also add additional controls, separated from other controls by a horizontal line,
for the benefit of advanced users (superusers).

Your monitors extension file can also include any of the following resources:

■ One or more members of an icon family ('ICN#', 'ics#', 'icl8', 'icl4',
'ics8', and 'ics4'), each with resource ID –4064, that define an icon for your video
card. If you provide any of these resources, the Monitors control panel displays the
appropriate icon from the icon family in the upper-left corner of the Options dialog
box.

■ Additional icon family resources to provide a unique icon for your monitors extension
file.

■ A version ('vers') resource. This resource provides version information for your
monitors extension.

■ A string list ('STR#') resource defining one or more video card names. If you want
the Options dialog box to display a name that is different from the one in the
declaration ROM of the card, define the alternate name in an 'STR#' resource.

C H A P T E R 8

Control Panels

8-12 Creating Control Panel Files

■ One or more gamma table ('gama') resources. Here you can include gamma tables
that allow your video card to provide the most accurate colors possible.

■ A file reference ('FREF') resource. This resource associates icons with your monitors
extension file; the Finder uses this information to display the icon for your
monitors extension file.

■ A bundle ('BNDL') resource. This resource groups together the monitor extensions’
signature, icon, and file reference resources.

■ A system extension ('INIT') resource. Although this resource acts independently of
other resources in the file, it should be related to the monitors extension.

■ A signature resource (of type 'STR ').

Creating Control Panel Files

This section describes how to create your control panel’s resources, including the code

resource that implements the control panel. This section discusses how to

■ define the user interface for your control panel

■ create resources for your control panel, including those that define

■ control panel rectangles

■ the item list resource

■ icons

■ the machine resource

■ the file reference, bundle, and signature resources

■ specify the font of static text in your control panel

■ write a control panel function

Before you begin, consider whether the feature that you have in mind is best governed

by a control panel. It should be a systemwide feature amenable to manipulation by the

user, who would use the control panel only occasionally to set or change preferences. If

you find that you need special menus or nested dialog boxes to implement your control

panel, create a small application instead.

Defining the User Interface for a Control Panel
The user interface for a control panel consists of the display area defined by the dialog

box and its controls, including checkboxes, buttons, static text, editable text, and user

items. In addition, you need to provide an icon for your control panel file, for display by

the Finder. A control panel can open in a modeless dialog box of any size, limited only

by the screen display.

C H A P T E R 8

Control Panels

Creating Control Panel Files 8-13

Your control panel’s display area can consist of one or more rectangles; you determine

the display area by defining the rectangles and their positions. You specify these values

in your control panel’s rectangle positions ('nrct') resource. These rectangles

essentially determine the size of the dialog box. The Finder calculates the boundaries of

the dialog box from the coordinate values you specify in your rectangle positions

resource.

When deciding on the size and number of your rectangles, consider the number and

placement of the buttons, checkboxes, text, and other items in your control panel. Allow

enough space for the user to distinguish them easily. Because control panels are

generally used only occasionally, make the interface as simple as possible. If you choose

the default settings well, the user should seldom need to use your control panel.

Figure 8-6 shows the user interface for the River control panel used as an example

throughout this chapter. It governs certain features of River, a screen saver system

extension.

Figure 8-6 The River control panel interface

In System 7, you can include a font information resource that specifies the font in which

the Finder displays your control panel’s static text items. (For information on creating a

font information resource, see “Specifying the Font of Text in a Control Panel” on

page 8-23.) Choose a font that is easy to read. In System 7, the control panel interface

allows ample space for larger point sizes; Apple recommends 12-point Chicago.

If you don’t include a font information resource, the Finder uses the default application

font for static text items. For Roman scripts, this is 9-point Geneva. (The static text of the

River control panel illustrated in Figure 8-6 is 12-point Chicago because this control

panel provides a font information resource for this purpose.) Note that the Finder uses

the system font to draw text strings that you define as part of a control item in your item

list; for Roman scripts, this is 12-point Chicago.

C H A P T E R 8

Control Panels

8-14 Creating Control Panel Files

If your control panel runs in both System 7 and System 6 but you wish to display your

control panel’s static text in 12-point Chicago, you can define the text as user items. See

“Defining Text in a Control Panel as User Items” on page 8-24 for details.

If you wish, you can create an icon family to specify the icon that the Finder uses to

represent your control panel file. The icon family resources are 'ICN#', 'ics#',

'icl8', 'icl4', 'ics8', and 'ics4'.

The icons for a control panel file are square and include a horizontal or vertical slider

along with a graphic representing the feature governed by the control panel. Figure 8-7

shows an icon for the River control panel file.

Figure 8-7 An icon for the River control panel file

See Macintosh Human Interface Guidelines for more information on designing an icon. For

complete information on designing a dialog box, see the chapter “Dialog Manager” in

Inside Macintosh: Macintosh Toolbox Essentials.

Creating a Control Panel’s Resources
The following sections describe the required and optional resources that you supply for

your control panel. The first section contains general information that applies to all of the

individual resources. Later sections discuss each of the required resources and some

optional resources.

Resource IDs for Control Panels

Every resource has a resource ID. With one exception, all resource IDs for control panel

resources, including standard resources and resources you define yourself, must be in

the range of –4064 through –4033. The exception is the resource for the icon help balloon

('hfdr') resource, whose resource ID is –5696.

Of this range, resource IDs from –4064 through –4049 are reserved for standard resources

and some optional resources.

You can assign resource IDs in the range –4048 through –4033 to any private resources

that you define for your control panel.

Note
You can use a high-level tool such as the ResEdit application, which is
available through APDA, to create your resources. (See ResEdit Reference
for details on using ResEdit.) You can also use the Rez utility. ◆

C H A P T E R 8

Control Panels

Creating Control Panel Files 8-15

Defining the Control Panel Rectangles

Your control panel can consist of one rectangle, as in Figure 8-8, or several (see Figure 8-2

on page 8-6 and Figure 8-6 on page 8-13). You define these rectangles in a rectangle

positions ('nrct') resource. You specify in this resource the number of rectangles for

your control panel and a list of the coordinates for each rectangle. You must specify a

resource ID of –4064 for a rectangle positions resource.

Figure 8-8 The Color control panel

In the rectangle positions resource you specify a rectangle’ s coordinates in this order:

top, left, bottom, and right. Although you can define a control panel of any size (limited

only by the screen display), you must specify the coordinates (–1,87) as the origin

(upper-left point) of the upper-left rectangle. To provide for backward compatibility with

the Control Panel desk accessory, the Finder accepts only these coordinates as the origin

of a control panel. If you are designing for System 7 only, you can extend the bottom and

right edges of a control panel as far as you like. If you want your control panel to run in

System 7 and previous versions of system software, you must limit your control panel’s

size to the area bounded by (–1,87,255,322). These are the coordinates used by the

Control Panel desk accessory.

The Control Panel Desk Accessory

In System 6, the Control Panel desk accessory is a single interface shared
by all control panels. It has two parts: a scrollable list of icons
representing the control panels a user can open as part of the desk
accessory and a display area of fixed size. If you want to make your
control panel compatible with the Control Panel desk accessory, it must
fit in this area. The Control Panel desk accessory acts as a driver
interfacing with and managing the control panels whose icons it
displays. All of the control panels represented by icons in the scrollable
list share the same display area. For this reason, a user can open only
one control panel at a time. ◆

If you want to make your control panel backward compatible, remember that the

Control Panel desk accessory draws a frame that is 2 pixels wide around each rectangle.

To join two parts of a panel neatly, overlap their rectangles by 2 pixels on the side where

they meet.

C H A P T E R 8

Control Panels

8-16 Creating Control Panel Files

Figure 8-9 shows the coordinates of the two rectangles that make up the River control

panel. Because the River control panel has relatively few items, they fit well within the

space constraints imposed by the Control Panel desk accessory. Thus, this control panel

can run in both the Finder in System 7 and the Control Panel desk accessory in System 6.

Figure 8-9 Coordinates defining the rectangles of the River control panel display area

Listing 8-1 shows the Rez input for the rectangle positions resource that specifies the

rectangles for the River control panel.

Listing 8-1 Rez input for a rectangle positions list ('nrct') resource

resource 'nrct' (-4064, purgeable) {

 { /*array RectArray: 2 elements*/

/*[1]*/

{-1, 87, 42, 322},

/*[2]*/

{40, 87, 255, 322}

 }

};

If you define two or more rectangles that together do not form a complete square or

rectangle in relation to the bounding dialog box that the Finder creates, the Finder fills in

any blank space on the control panel with a gray pattern.

C H A P T E R 8

Control Panels

Creating Control Panel Files 8-17

Note
In System 6, the Control Panel desk accessory first fills in the area
defined by the coordinates (–1,87,255,322) with a gray background
pattern. It then creates white areas corresponding to the rectangles you
define. In these, it draws the items of your control panel. The Control
Panel desk accessory outlines the rectangles with a 2-pixel-wide
frame. ◆

Creating the Item List Resource

You define the items in your control panel and their positions within its rectangles using

an item list ('DITL') resource. These items can include static text, buttons, checkboxes,

radio buttons, editable text, the resource IDs of icons and QuickDraw pictures, and

the resource IDs of other types of controls, such as pop-up menus. You must specify a

resource ID of –4064 for your control panel’s item list resource.

An item list contains a display rectangle for each item. A display rectangle determines

the size and location of the item. You must specify the coordinates of an item’s display

rectangle relative to the origin of the control panel’s upper-left rectangle.

Recall that the origin (the point at the extreme upper left) of your control panel must

coincide with the coordinates (–1,87). In the Control Panel desk accessory, the origin is at

the upper left of the rectangle containing the scrollable list of icons, to the left of the

display area. A 2-pixel-wide frame borders the rectangle containing the scrollable list of

icons.

Listing 8-2 shows the item list resource for the River control panel. Notice that the item

list includes a static text item (item 2) giving the control panel’s name and copyright. The

upper-left point of the display rectangle for the static text lies at the coordinates (4,95).

In Listing 8-2, some items are defined as enabled and some as disabled. By specifying

each item in the item list as enabled or disabled, you inform the Dialog Manager

whether or not to report user clicks in the item.

Depending on the type of item, you usually provide a text string or a resource ID for the

item.

Note that text in a control panel is defined either as part of a control (such as labels for

buttons, checkboxes, radio buttons, and pop-up menus), or as separate items (static text,

editable text, or user items). For example, the text “River color” is defined as part of a

pop-up control in a separate menu resource and the text “mph” is defined as a static text

item.

The item list resource for the River control panel defines text that is not provided by a

control as static text items; in addition to the product name, these static text items

include “Flow Direction:” and “Velocity:” (see Figure 8-6 on page 8-13). The item list

resource defines one editable text item, setting the default text for this item to 55. It also

defines the editable text item as disabled. If you define an editable text item as disabled,

the Dialog Manager and TextEdit handle user input in the editable text item.

C H A P T E R 8

Control Panels

8-18 Creating Control Panel Files

IMPORTANT

If you want to use a font other than the default application font for
your control panel’s text and you want your control panel to run in the
Control Panel desk accessory of System 6, you must define the text as
user items instead of static text items. For more information on this, see
“Defining Text in a Control Panel as User Items” on page 8-24. ◆

In Listing 8-2, the first item in this resource is an enabled button labeled “Show Me.”

This is the River control panel’s default button. (The Control Manager positions the label

inside the button and draws it using the system font.) Notice that the outline around the

button, which identifies it as the default button, is defined as a separate item (a disabled

user item) toward the end of the listing.

All of the other controls with which the user interacts are defined as enabled—the On

and Off radio buttons, the radio buttons beside the label Flow Direction, the Play Babble

Sound checkbox, and the River color pop-up control. When these controls are active, the

user can click them, changing settings and making selections. The up and down arrows

are defined as enabled user items, and the item list resource includes a picture item that

refers to a resource containing a QuickDraw picture of the arrows. Finally, the item list

resource includes a help item referencing the resource ID that defines the help balloons

for the River control panel.

Listing 8-2 Rez input for an item list ('DITL') resource

resource 'DITL' (rControlPanelDialog, purgeable) {

{ /*array: 18 elements*/

/*[1]*/

{219, 237, 239, 308},

Button { enabled, "Show Me" },

/*[2]*/

{4, 95, 44, 247},

StaticText { disabled, "River Change Systems\n© 1993" },

/*[3]*/

{2, 254, 21, 302},

RadioButton { enabled, "On" },

/*[4]*/

{22, 254, 40, 302},

RadioButton { enabled, "Off" },

/*[5]*/

{51, 95, 70, 196},

StaticText { disabled, "Flow Direction:" },

/*[6]*/

{50, 197, 68, 303},

RadioButton { enabled, "Uphill" },

C H A P T E R 8

Control Panels

Creating Control Panel Files 8-19

/*[7]*/

{69, 197, 87, 303},

RadioButton { enabled, "Downhill" },

/*[8]*/

{88, 197, 106, 303},

RadioButton { enabled, "Circular" },

/*[9]*/

{157, 95, 178, 156},

StaticText { disabled, "Velocity:" },

/*[10]*/

{156, 162, 172, 180},

EditText { disabled, "55" },

/*[11] (up arrow)*/

{150, 184, 162, 201},

UserItem { enabled, },

/*[12] (down arrow)*/

{163, 184, 175, 201},

UserItem { enabled, },

/*[13] (picture of up/down arrows)*/

{150, 184, 175, 201},

Picture { disabled, –4048 },

/*[14]*/

{157, 202, 176, 242},

StaticText { disabled, "mph" },

/*[15] (outline around default button)*/

{212, 231, 247, 314},

UserItem { disabled, },

/*[16]*/

{188, 95, 208, 241},

Checkbox{ enabled, "Play Babble Sound" },

/*[17] (title & menu items defined by menu w/res ID mPopUp)*/

{122, 92, 142, 297},

Control { enabled, mPopUp },

/*[18] get help balloon information from 'hdlg' resource*/

{0,0,0,0},

HelpItem { disabled,

HMScanhdlg /*scan resource type—'hdlg' or 'hrct'*/

{–4064} }

}

};

For complete information on creating an item list resource, see the chapter “Dialog

Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

C H A P T E R 8

Control Panels

8-20 Creating Control Panel Files

Defining the Icon for a Control Panel

You create an icon family to specify the icon that the Finder uses to represent your

control panel file. The icon family resources are 'ICN#', 'ics#', 'icl8', 'icl4',

'ics8', and 'ics4'. You must specify a resource ID of –4064 for the icon family

resources of a control panel and mark these resources as purgeable. If you provide the

complete icon family, the Finder displays the appropriate icon family member according

to the bit depth of the monitor. For more information on these icons, see the chapter

“Finder Interface” in Inside Macintosh: Macintosh Toolbox Essentials.

Specifying the Machine Resource

When the user opens your control panel, the Finder reads your machine ('mach')

resource from your control panel file. Depending on the value you specify in the

machine resource, the Finder takes one of two actions: (1) calls your control device

function, directing your function to check the current hardware and software

configuration to determine whether your control panel can run on the current system;

or (2) performs the check itself. You must specify a resource ID of –4064 for a machine

resource.

The machine resource consists of a hard mask and a soft mask. The Finder handles the

check if you set these masks to values indicating that your control panel runs on all

systems or to values representing the requirements for your control panel; the Finder

checks the current configuration in the latter case. If the Finder handles the check, it

never calls your control device function with a macDev message; instead, the Finder calls

your function for the first time with an initialization message. If the Finder determines

that your control panel cannot run on the current system, the Finder displays an alert

box to the user and does not open the control panel. (In System 6, the Control Panel does

not display the icon for a control panel file if the machine resource indicates the control

panel cannot run on the current system.)

If you set the hard mask to $FFFF and the soft mask to $0000, indicating your control

device function performs its own requirements check, the Finder calls your function with

a macDev message once only, and this is the first call the Finder makes to your function.

(See“Determining If a Control Panel Can Run on the Current System” on page 8-29 for a

discussion of how to handle a macDev message.)

Table 8-1 shows the values you use to set the machine resource masks.

C H A P T E R 8

Control Panels

Creating Control Panel Files 8-21

Listing 8-3 shows the Rez input for a machine resource. The values in this machine

resource indicate to the Finder that the control panel performs its own hardware and

software requirements check.

Listing 8-3 Rez input for a machine ('mach') resource

resource 'mach' (-4064, purgeable) {

0xFFFF, /*hard mask*/

0 /*soft mask*/

};

Note

The machine resource allows the Finder to cache information about each
control panel. The user can force the Finder to rebuild the cache by
pressing Command-Option while opening the control panel. ◆

Creating the File Reference, Bundle, and Signature Resources

You must create a file reference resource, a signature resource, and a bundle resource to

enable the Finder to display the icon for your control panel. You must specify a resource

ID of –4064 for both a bundle resource and a file reference resource.

The file reference resource specifies a file type (for a control panel, 'cdev'), the local

resource ID of an icon list resource, and an empty string. The local ID maps the file type

('cdev') to your icon list resource that is assigned the same local ID in the bundle

resource. Listing 8-4 shows the file reference resource for the River control panel.

Listing 8-4 Rez input for a file reference ('FREF') resource

resource 'FREF' (-4064, purgeable) {

'cdev', 0, ""

};

Table 8-1 Possible settings for the machine resource masks

Soft mask Hard mask Action

$0000 $FFFF The Finder calls this control device function with a
macDev message, and the function must perform its own
hardware and software requirements check.

$3FFF $0000 This control panel runs on Macintosh II systems only.

$7FFF $0400 This control panel runs on all systems with an Apple
Desktop Bus (ADB).

$FFFF $0000 This control panel runs on all systems.

C H A P T E R 8

Control Panels

8-22 Creating Control Panel Files

 The Finder uses the signature resource with the bundle resource to establish your

control panel’s identity. You define a signature resource as a string resource (that is, a

resource of type 'STR ') and specify as its resource type a unique four-character

sequence that has the same value as your control panel’s creator type. A signature

resource has a resource ID of 0.

The signature resource contains a string that identifies your control panel; typically the

string specifies the name, version number, and release date of your control panel.

Listing 8-5 shows the River control panel’s signature resource, which has a signature of

'rivr', in Rez input format.

Listing 8-5 Rez input for a signature resource

type 'rivr' as 'STR ';

resource 'rivr' (0, purgeable) {

"River Control Panel 1.0"

};

 A bundle ('BNDL') resource associates all of the resources that the Finder uses for your

control panel. It associates your control panel file and your control panel’s signature

with its icon. The Finder requires the information in the bundle resource in order to

display icons for your control panel. In the bundle resource, you must assign a local ID

to your icon list resource that matches the local ID you assigned inside the

corresponding file reference resource. In the bundle resource shown in Listing 8-6, local

ID 0 is assigned to the icon list resource with a resource ID –4064, which maps the icon

defined for the River control panel to the control panel file.

Listing 8-6 Rez input for a bundle ('BNDL') resource

resource 'BNDL' (-4064, purgeable) {

'rivr', 0,

{ 'ICN#', {0, -4064},

'FREF', {0, -4064}

}

};

(See the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox Essentials for

complete information on how to create file reference, signature, and bundle resources.)

Providing Additional Resources for a Control Panel

In addition to providing required resources, you can supply optional resources for your

control panel. For example, you can supply resources to store the settings of controls,

text strings, or font information. The River control panel stores its controls’ settings in a

resource that it defines.

C H A P T E R 8

Control Panels

Creating Control Panel Files 8-23

If you wish, you can provide help balloon resources. For example, you can include a

resource to define a help balloon for your control panel’s icon in the Finder. The resource

type of an icon help balloon resource is 'hfdr', and its resource ID is –5696.

This is the only control panel resource whose resource ID is outside the range

of –4064 through –4033.

You can also include help balloon resources for specific items or areas of your control

panel. For example, you might include a help balloon resource to explain how to use a

control. For this purpose, you supply a resource of type 'hdlg' or 'hrct'with a

resource ID of –4064. For information on how to create help balloon resources, see the

chapter “Help Manager” in this book.

If you define any other types of resources for your control panel, you must assign them

resource IDs in the range –4048 through –4033.

Specifying the Font of Text in a Control Panel
A control panel typically contains uneditable text that is part of a control item or defined

as static text. See Listing 8-7 on page 8-24 for examples.

The Finder uses the default application font to draw control panel items that you define

as static text. However, you can specify that a different font be used for this purpose.

There are two ways to do so. The easiest way is to define a font information ('finf')

resource. This is the method you should use if you intend your control panel to run in

System 7 only.

If you want your control panel to be compatible with the Control Panel desk accessory,

you cannot use this method because the Control Panel desk accessory does not recognize

font information resources. In this case, you can use an alternative method, which entails

defining your control panel’s static text as user items, setting the font, and drawing the

text. This section explains both methods.

You can also specify the font to be used for each item by creating an item color table

('ictb') resource whose entries correspond to the items in your item list. However, you

cannot use this method in System 6, because the Control Panel desk accessory appends

your control panel’s item list to its own. For more information about the item color table

('ictb') resource, see the chapter “Dialog Manager” in Inside Macintosh: Macintosh
Toolbox Essentials.

Creating a Font Information Resource

You create a font information ('finf') resource to specify the font in which the Finder

displays your control panel’s static text. You include the font information resource in

your control panel file, and the Finder reads this resource when it opens your file. You

must use the resource ID –4049 for a font information resource.

In the font information resource, you specify the font ID number, the font style, and its

size. The Finder sets the graphics port’s txFont, txFace, and txSize fields to the

values you specify, and QuickDraw draws the text using these values.

C H A P T E R 8

Control Panels

8-24 Creating Control Panel Files

Defining Text in a Control Panel as User Items

If you want to specify the font for your control panel’s text and also want your control

panel to run in both System 6 and System 7, you can define your control panel’s text as

disabled user items rather than as disabled static text items. Your control device function

must call QuickDraw to set the graphics port fields for the font and its characteristics,

and then draw the text at initialization and in response to update events. See “Handling

Text Defined as User Items” on page 8-43 for more information.

For these user items, you can define a string list ('STR#') resource to store the text

strings that make up your text. Your control device function can read the text from

the string list resource and store the text in a data structure in your control device

function’s private storage. If you do this, then your control device function can read the

values from its private storage whenever it needs to update user items.

Listing 8-7 shows a part of the River control panel’s item list with the control panel’s text

defined as user items. Because the user does not need to read the product title and

copyright regularly to interact with the control panel, the control panel defines this

string as a static text item; the Finder draws this text string only in 9-point Geneva. The

control panel defines all other text strings as user items, and the control device function

sets the font and draws those user items containing text.

Listing 8-7 A control panel’s static text defined as user items

resource 'DITL' (rControlPanelDialog, purgeable) {

{ /* array DITLarray: 18 elements */ }

/* . . . */

/* [2] */

{4,95,44,247},

StaticText { disabled, "River Change Systems\n© 1993"

},

/* . . . */

/* [5] */

{51, 95, 70, 196},

UserItem { disabled, /*Flow Direction:*/ },

/* . . . */

/* [9] */

{157, 95, 178, 156},

UserItem { disabled, /*Velocity:*/ },

/* . . . */

C H A P T E R 8

Control Panels

Creating Control Panel Files 8-25

/* [14] */

{157, 202, 176, 242},

UserItem { disabled, /*mph*/ },

/* . . . */

}

};

Writing a Control Panel Function

 A control panel requires a control device ('cdev') code resource, which contains the

code that implements the feature your control panel provides. The first piece of code in

this resource must be a control device function that adheres to a defined interface. When

the user opens your control panel, the Finder loads your code resource (of type 'cdev')

into memory.

The Finder calls your control device function, requesting it to perform the action

indicated by the message parameter, in response to events and the user’s interaction

with your control panel. Your control device function should perform the requested

action and return a function result to the Finder. Your control device function should

return as its function result either a standard value indicating that it has not allocated

storage, a handle to any storage it has allocated, or an error code. Here is how you

declare a control device function:

FUNCTION MyCdev(message, item, numItems, CPrivateValue: Integer;

 VAR theEvent: EventRecord;

 cdevStorageValue: LongInt;

 CPDialog: DialogPtr): LongInt;

The message parameter can contain any of the values defined by these constants:

CONST

macDev = 8; {determine whether control panel can run}

initDev = 0; {perform initialization}

hitDev = 1; {handle click in enabled item}

updateDev = 4; {respond to update event}

activDev = 5; {respond to activate event}

deActivDev = 6; {respond to control panel becoming inactive}

keyEvtDev = 7; {respond to key-down or auto-key event}

undoDev = 9; {handle Undo command}

cutDev = 10; {handle Cut command}

copyDev = 11; {handle Copy command}

pasteDev = 12; {handle Paste command}

clearDev = 13; {handle Clear command}

nulDev = 3; {respond to null event}

closeDev = 2; {respond to user closing control panel}

C H A P T E R 8

Control Panels

8-26 Creating Control Panel Files

These constants (as specified in the message parameter) indicate that your control

device function should perform the following actions:

■ macDev. Determine whether the control panel can run on the current system, and
return a function result of 1 if it can and 0 if it cannot.

■ initDev. Perform initialization.

■ hitDev. Handle a click in an enabled item.

■ updateDev. Update any user items and redraw any controls that are not standard
dialog items handled by the Dialog Manager.

■ activDev. Respond to your control panel becoming active by making the default
button and any other controls in your control panel active.

■ deActivDev. Respond to your control panel becoming inactive by making the default
button and any other controls in your control panel inactive.

■ keyEvtDev. Handle a key-down or auto-key event.

■ undoDev. Handle an Undo command.

■ cutDev. Handle a Cut command.

■ copyDev. Handle a Copy command.

■ pasteDev. Handle a Paste command.

■ clearDev. Handle the Clear command.

■ nulDev. Handle a null event by performing any idle processing.

■ closeDev. Handle a click in the close box by terminating, after disposing of any
handles and pointers created by your function.

The control device function that implements the River control panel used as an example

in this chapter shows one way of handling messages from the Finder. In this scenario,

the user sets the screen saver’s characteristics using the River control panel. The River

control panel ('cdev') file includes a system extension that displays the screen saver

when the user signals it to do so. The River control panel uses the system extension to

display the screen saver using the current settings whenever the user clicks the panel’s

default button (Show Me). (See Figure 8-6 on page 8-13.)

The River control device function reads control settings from a resource stored in its

preferences file, which is stored in the Preferences folder, and writes new values to that

file at certain points after the user changes control settings. The control device function

alerts the system extension of changes in the preferences file, and the system extension

gets the new values to use from the preferences file.

In addition to the required resources, the River control device function uses a number of

private resources that are included in the control panel file.

Listing 8-8 shows the River control panel’s control device function, called main. To

respond to requests from the Finder, the function uses a CASE statement that handles

each type of message sent by the Finder.

The remainder of this section discusses each of these messages in detail and includes

code showing how the River control panel processes the messages.

C H A P T E R 8

Control Panels

Creating Control Panel Files 8-27

Listing 8-8 A control device function

UNIT RiverCP;

INTERFACE

{include a Uses statement if your programming environment requires it}

CONST

kShowMe = 1;

kOnRadButton = 3;

kOffRadButton = 4;

kUphillRadButton = 6;

kDownhillRadButton = 7;

kCircularRadButton = 8;

kVelocityEditText = 10;

kUserItemUpArrow = 11;

kUserItemDownArrow = 12;

kPict = 13;

kUserItemButtonOutline = 15;

kBabbleCheckBox = 16;

kRiverColorMenu = 17;

TYPE

MyRiverStorage =

RECORD

err: LongInt;

count: LongInt;

settingsChanged: Boolean;

END;

MyRiverStoragePtr = ^MyRiverStorage;

MyRiverStorageHndl = ^MyRiverStoragePtr;

FUNCTION main (message, item, numItems, CPrivateValue: Integer;

VAR theEvent: EventRecord; cdevStorageValue: LongInt;

CPDialog: DialogPtr): LongInt;

IMPLEMENTATION

FUNCTION main;

{any support routines used by your control panel function}

VAR

myRiverHndl: MyRiverStorageHndl;

initDevOrMacDevMsg: Boolean;

okToRun: LongInt;

cpMemError: Boolean;

BEGIN

cpMemError := MyRoomToRun(message, cdevStorageValue);

C H A P T E R 8

Control Panels

8-28 Creating Control Panel Files

IF cpMemError THEN {an error occurred or there isn't enough memory }

main := cdevMemErr { to run, return immediately}

ELSE {handle the message}

BEGIN

IF (message <> macDev) AND (message <> initDev) THEN

myRiverHndl := MyRiverStorageHndl(cdevStorageValue);

CASE message OF

macDev: {check machine characteristics}

BEGIN

 MyCheckMachineCharacteristics(okToRun);

main := okToRun;

END;

initDev:{perform initialization}

MyInitializeCP(cdevStorageValue, CPDialog, myRiverHndl);

hitDev: {user clicked dialog item}

BEGIN

item := item - numItems;

MyHandleHitInDialogItem(item, cdevStorageValue,

CPDialog, myRiverHndl);

END;

activDev: {control panel is becoming active}

 MyActivateControlPanel(cdevStorageValue, CPDialog,

myRiverHndl, TRUE);

deActivDev: {control panel is becoming inactive}

MyActivateControlPanel(cdevStorageValue, CPDialog,

myRiverHndl, FALSE);

updateDev: {update event -- draw any user items}

MyUpdateControlPanel(cdevStorageValue, CPDialog, myRiverHndl);

cutDev, copyDev, pasteDev, clearDev: {editing command}

MyHandleEditCommand(message, CPDialog);

keyEvtDev: {keyboard-related event}

MyHandleKeyEvent(theEvent, CPDialog, message);

nulDev: {null event -- perform idle processing}

MyHandleIdleProcessing(cdevStorageValue, CPDialog, myRiverHndl);

closeDev: {user closed control panel, release memory before exiting}

MyCloseControlPanel(myRiverHndl, cdevStorageValue);

END; {of CASE}

IF message <> macDev THEN

main := LongInt(cdevStorageValue);

END; {of handle message}

END; {of main program}

END.

C H A P T E R 8

Control Panels

Creating Control Panel Files 8-29

When the Finder first calls your control device function, the current resource file is set to

your control panel ('cdev') file, the current graphics port is set to your control panel’s

dialog box, and the default volume is set to the System Folder of the current startup disk.

Your control device function must preserve all of these settings.

Although the Finder intercedes with the system software and performs services on

behalf of your control device function, it is your control device function’s responsibility

to detect and, if possible, recover from any error conditions. To avoid a memory error

condition, your function should ensure that enough memory is available to handle the

message from the Finder. On entry, the main function calls its MyRoomToRun procedure

to perform this check.

The next sections describe how to handle each message passed in the message

parameter.

Determining If a Control Panel Can Run on the Current System

If you want your control device function to determine if your control panel can run on

the current system, specify the values in your machine resource accordingly (see

Table 8-1 on page 8-21). In this case, the Finder calls your function for the first time with

a macDev message. The Finder calls your control device function with a macDev

message only once.

In response to the macDev message, your control device function can check the

hardware configuration of the current system. As necessary, your control device function

should determine which computer it is being run on, what hardware is connected, and

what is installed in the slots, if there are slots. The application-defined

MyCheckMachineCharacteristics procedure, used in Listing 8-8 on page 8-27,

performs these checks for the River control panel. Your control device function should

return either a 0 or a 1 as its function result in response to the macDev message. These

values have specific meanings in response to a macDev message, and the Finder does not

interpret them as error codes. If your control panel file can run on the current system,

return a function result of 1; if your control panel file cannot run on it, return a function

result of 0. If your function returns a result of 0, the Finder does not open your control

panel; instead, it displays an alert box to the user.

Note

If your machine resource specifies that your control panel runs on all
systems, or if the machine resource identifes the restrictions that apply
to your control panel, the Finder does not call your control device
function with a macDev message. ◆

Initializing the Control Panel Items and Allocating Storage

If your control panel can run on the current system, the Finder calls your control device

function and specifies initDev in the message parameter. Except for a macDev

message, your control device function should not process any other messages before it

receives and successfully processes an initDev message. In response to an initDev

message, your function should allocate any private storage it needs to implement its

C H A P T E R 8

Control Panels

8-30 Creating Control Panel Files

features, initialize the settings of controls in the control panel, and perform any other

necessary initialization tasks.

Because control panels cannot use normal global variables to retain information once the

control device function returns, the interface between the Finder and the control device

function provides a way to preserve memory that your control device function might

allocate. If, for example, your control device function allocates memory to save data

between calls, you return a handle to the allocated memory as the function result in

response to the Finder’s initDev message. The next time it calls your function, the

Finder passes this handle back as the value of the cdevStorageValue parameter. After

sending an initDev message, the Finder always passes to your function the function

result previously returned as the value of the cdevStorageValue parameter. In this

way, the Finder makes the handle available to your function, until your function returns

an error code.

When the Finder calls your function with the initDev message, it passes the constant

cdevUnset in the cdevStorageValue parameter; this value indicates that your

function has not allocated any memory. If you do not create a handle and allocate

memory in response to the initDev message, you should return this value

(cdevUnset) as your function result. In this case, the Finder continues to pass this value

to your control device function, and your function should continue to return this value

until your control device function encounters an error.

Before the Finder calls your function with an initDev message, it has already drawn

the dialog box and any items defined in your item list resource, except for user items.

During initialization, you set the default value for any controls, and, if necessary, draw

any user items. You can store the default values for controls in a resource located in a

preferences file within the Preferences folder. To initially set the values for your panel’s

controls (such as radio buttons and checkboxes) and editable text, retrieve the default

values from the resource and then use the Dialog Manager’s GetDialogItem

procedure and the Control Manager’s SetControlValue procedure.

The Finder calls QuickDraw to draw the static text for your control panel. QuickDraw

uses the default application font for this purpose; for Roman scripts, this is 9-point

Geneva. For System 7, you can include a font information ('finf') resource in your

control panel file to specify a font to be used for static text.

For example, you can use a font information resource to specify 12-point Chicago, which

is the recommended font for Roman scripts. You can also use an 'finf' resource to

change the font of static text in control panels localized for other system scripts. If you

include an 'finf' resource, the Finder sets the font, font style, and font size for the

graphics port to the values you specify and uses these values to draw any static text. See

“Specifying the Font of Text in a Control Panel” on page 8-23 for more information.

Note

The Control Manager uses the system font for text strings that are part
of a control item. ◆

C H A P T E R 8

Control Panels

Creating Control Panel Files 8-31

Listing 8-9 shows the MyInitializeCP procedure, which the River control

device function calls to handle the initDev message. This procedure calls the

NewHandle function to create a handle to a record of type MyRiverStorage (see

Listing 8-8 on page 8-27). The procedure then initializes the fields of this record. It also

calls its own procedure, MyGetUserPreferenceSettings, which reads a resource file

containing the initial settings for the controls. This resource contains either the original

default values or new values set by the user from the control panel.

The MyInitializeCP procedure sets initial values for any controls in its control panel.

For each control, MyInitializeCP calls the Dialog Manager’s GetDialogItem

procedure to get a handle to the control and then calls the Control Manager’s

SetControlValue procedure to restore the last setting of the control. The first time a

user uses the control panel, the initial values are the default values; after that, the initial

values are those last set by the user. The MyInitializeCP procedure restores the last

settings of radio buttons and checkboxes, sets the menu item to the last item chosen by

the user in pop-up menus, and restores the text that the user last entered in editable text

items.

Finally, the MyInitializeCP procedure returns in the cdevStorageValue parameter

a handle to the memory it has allocated. The control device function then returns this

value as its function result. In all subsequent calls to the control device function, the

Finder passes this value back in the cdevStorageValue parameter.

The River control panel uses the memory it allocates to save values indicating that the

user has changed a setting. When the user clicks the Show Me button or closes the

control panel, the control device function notifies the River screen saver system

extension that the settings have changed. The River screen saver then uses the new

settings when it displays the river on the screen.

Listing 8-9 Initializing a control panel: Allocating memory and setting controls

PROCEDURE MyInitializeCP (VAR cdevStorageValue: LongInt; CPDialog: DialogPtr;

VAR myRiverHndl: MyRiverStorageHndl);

VAR

initOnSetting, initOffSetting, initUphillSetting, initDownhillSetting,

initCircularSetting, initBabbleSetting, initRiverColorSetting: Integer;

initVelocityText: Str255;

startSel, endSel: Integer;

itemType: Integer;

itemHandle: Handle;

itemRect: Rect;

C H A P T E R 8

Control Panels

8-32 Creating Control Panel Files

BEGIN

myRiverHndl := MyRiverStorageHndl(NewHandle(Sizeof(MyRiverStorage)));

IF myRiverHndl <> NIL THEN

BEGIN {initialize fields in myRiver record}

myRiverHndl^^.count := 0;

myRiverHndl^^.err := 0;

myRiverHndl^^.settingsChanged := FALSE;

END;

{set default or saved values for each setting in this control panel-- }

 { usually a control panel reads these values from a resource file}

MyGetUserPreferenceSettings(initOnSetting, initOffSetting,

 initUphillSetting, initDownhillSetting,

 initCircularSetting, initBabbleSetting,

 initRiverColorSetting, initVelocityText,

 startSel, endSel);

{set the initial values of buttons and other controls using the Dialog }

{ Manager's GetDialogItem & the Control Mgr's SetControlValue procedures}

GetDialogItem(CPDialog, kOnRadButton, itemType, itemHandle, itemRect);

SetControlValue(ControlHandle(itemHandle), initOnSetting);

GetDialogItem(CPDialog, kOffRadButton, itemType, itemHandle, itemRect);

 SetControlValue(ControlHandle(itemHandle), initOffSetting);

GetDialogItem(CPDialog, kUphillRadButton, itemType, itemHandle, itemRect);

SetControlValue(ControlHandle(itemHandle), initUphillSetting);

GetDialogItem(CPDialog, kDownhillRadButton, itemType,itemHandle,itemRect);

SetControlValue(ControlHandle(itemHandle), initDownhillSetting);

GetDialogItem(CPDialog, kCircularRadButton, itemType,itemHandle,itemRect);

SetControlValue(ControlHandle(itemHandle), initCircularSetting);

GetDialogItem(CPDialog, kBabbleCheckBox, itemType, itemHandle, itemRect);

SetControlValue(ControlHandle(itemHandle), initBabbleSetting);

GetDialogItem(CPDialog, kRiverColorMenu, itemType, itemHandle, itemRect);

SetControlValue(ControlHandle(itemHandle), initRiverColorSetting);

GetDialogItem(CPDialog, kVelocityEditText, itemType, itemHandle,itemRect);

SetDialogItemText(itemHandle, initVelocityText);

SelectDialogItemText(CPDialog, kVelocityEditText, startSel, endSel);

cdevStorageValue := Ord4(myRiverHndl);

 END;

C H A P T E R 8

Control Panels

Creating Control Panel Files 8-33

If you define your text items as user items, your control device function must draw the

text in response to an initDev message. See “Handling Text Defined as User Items” on

page 8-43 for details.

Responding to Activate Events

When a control panel is active, your control device function is responsible for making

each control active or inactive, as appropriate. For example, your function should draw a

bold outline around the control panel’s default button. By contrast, when your control

panel is inactive, your control device function should make all its controls inactive,

causing the Control Manager to draw them in gray or in grayscale, depending on the bit

depth of the monitor. This provides a visual indication to the user that a control panel is

inactive, and it distinguishes the active window from inactive ones.

Whenever the Event Manager generates an activate event for your control panel in

response to a user action, the Finder intercepts the activate event and calls your control

device function with either an activDev message or a deActivDev message. In either

case, the Finder passes to your function, in the parameter theEvent, the event record

for the activate event and, in the cdevStorageValue parameter, a handle to the

memory previously allocated by your function.

For example, the Finder calls your control device function with an activDev message

(after sending an initDev message) when the user opens your control panel or clicks

your inactive control panel after using another control panel or an application. Your

function should respond to an activDev message by drawing a bold outline around the

default button. It should also make the default button and any other controls in your

control panel active. You can use the Control Manager’s HiliteControl procedure to

make a control active or inactive. (See the chapter “Control Manager” in Inside Macintosh:
Macintosh Toolbox Essentials for information about HiliteControl.)

In general, your function does not need to update user items in response to an activate

event, apart from drawing a bold outline around the default button. If, however, your

control panel includes a user item that requires updating, such as a clock that shows the

current time, your control device function should update that user item.

C H A P T E R 8

Control Panels

8-34 Creating Control Panel Files

The Finder calls your control device function with a deActivDev message when the

user clicks another control panel, runs an application, or otherwise brings another

window to the front. In this case, your function should respond by drawing the outline

of the default button in gray and making inactive any other controls in your control

panel. While a control is inactive, the Control Manager does not respond to mouse

events in it. See the chapter “Dialog Manager” in Inside Macintosh: Macintosh Toolbox
Essentials for information on how to make buttons, radio buttons, checkboxes, and

pop-up menus inactive and active in response to activate events. Figure 8-10 shows the

River control panel when it is inactive. Note that all of its controls are dimmed.

Figure 8-10 Example of an inactive control panel

The River control device function calls its own procedure to handle both activDev and

deActivDev messages. Listing 8-10 shows the MyActivateControlPanel procedure,

which either makes the controls active in response to an activDev message or inactive

in response to a deActivDev message.

In response to activate events, this procedure calls the Dialog Manager’s

GetDialogItem procedure to get a handle to the default button and then calls the

Control Manager’s HiliteControl procedure to make the control active. To draw the

bold outline around the default button, the MyActivateControlPanel procedure

calls its own procedure, MyDrawDefaultButtonOutline. (See the chapter “Dialog

Manager” in Inside Macintosh: Macintosh Toolbox Essentials for detailed instructions on

drawing an outline around a default button.) The procedure then makes all other

controls active.

In response to a deActivDev message, the MyActivateControlPanel procedure

makes all its controls inactive. In addition, it uses its own procedure,

MyDrawDefaultButtonOutline, to draw a gray outline around the default button.

C H A P T E R 8

Control Panels

Creating Control Panel Files 8-35

Note
If the dialog box uses a color graphics port, you can use the Color
QuickDraw function GetGray to return a blended gray based on the
foreground and background colors. ◆

Listing 8-10 Responding to an activate event

PROCEDURE MyActivateControlPanel (VAR cdevStorageValue: LongInt;

 CPDialog: DialogPtr;

 myRiverHndl: MyRiverStorageHndl;

 activate: Boolean);

VAR

itemType: Integer;

itemHandle: Handle;

itemRect: Rect;

BEGIN

IF activate THEN

BEGIN {control panel becoming active}

{activate the default button (ShowMe) and draw bold outline around it}

GetDialogItem(CPDialog, kShowMe, itemType, itemHandle, itemRect);

HiliteControl(ControlHandle(itemHandle), 0);

MyDrawDefaultButtonOutline(CPDialog, kShowMe);

{make other controls active}

GetDialogItem(CPDialog, kOnRadButton, itemType, itemHandle, itemRect);

 HiliteControl(ControlHandle(itemHandle), 0);

GetDialogItem(CPDialog, kOffRadButton, itemType, itemHandle, itemRect);

HiliteControl(ControlHandle(itemHandle), 0);

GetDialogItem(CPDialog, kUphillRadButton,itemType,itemHandle,itemRect);

HiliteControl(ControlHandle(itemHandle), 0);

GetDialogItem(CPDialog, kDownhillRadButton, itemType, itemHandle,

 itemRect);

HiliteControl(ControlHandle(itemHandle), 0);

GetDialogItem(CPDialog, kCircularRadButton, itemType, itemHandle,

 itemRect);

HiliteControl(ControlHandle(itemHandle), 0);

C H A P T E R 8

Control Panels

8-36 Creating Control Panel Files

GetDialogItem(CPDialog, kBabbleCheckBox, itemType, itemHandle,

 itemRect);

HiliteControl(ControlHandle(itemHandle), 0);

GetDialogItem(CPDialog, kRiverColorMenu, itemType, itemHandle,

 itemRect);

HiliteControl(ControlHandle(itemHandle), 0);

END

ELSE

BEGIN {control panel becoming inactive}

{make the default button inactive and draw gray outline around it}

GetDialogItem(CPDialog, kShowMe, itemType, itemHandle, itemRect);

HiliteControl(ControlHandle(itemHandle), 255);

MyDrawDefaultButtonOutline(CPDialog, kShowMe);

{make other controls inactive}

GetDialogItem(CPDialog, kOnRadButton, itemType, itemHandle, itemRect);

HiliteControl(ControlHandle(itemHandle), 255);

GetDialogItem(CPDialog, kOffRadButton, itemType, itemHandle, itemRect);

HiliteControl(ControlHandle(itemHandle), 255);

GetDialogItem(CPDialog,kUphillRadButton,itemType,itemHandle,itemRect);

HiliteControl(ControlHandle(itemHandle), 255);

GetDialogItem(CPDialog, kDownhillRadButton, itemType, itemHandle,

 itemRect);

HiliteControl(ControlHandle(itemHandle), 255);

GetDialogItem(CPDialog, kCircularRadButton, itemType, itemHandle,

 itemRect);

HiliteControl(ControlHandle(itemHandle), 255);

GetDialogItem(CPDialog,kBabbleCheckBox,itemType,itemHandle,itemRect);

HiliteControl(ControlHandle(itemHandle), 255);

GetDialogItem(CPDialog,kRiverColorMenu,itemType,itemHandle,itemRect);

HiliteControl(ControlHandle(itemHandle), 255);

END;

END;

C H A P T E R 8

Control Panels

Creating Control Panel Files 8-37

Using Multiple Dialog Boxes

The use of nested dialog boxes is not recommended in control panels. If
you decide to use them nevertheless, keep in mind that the Finder may
send your control device function a deActivDev message before your
code that displays and initializes the second dialog box completes. This
is because when your control device function calls DialogSelect to
handle an event in a second dialog box, DialogSelect issues a call to
GetNextEvent. In turn, the system software sends to the Finder an
activate event instructing it to deactivate the main control panel’s dialog
box. However, this situation should not cause unusual problems, and
your code should handle the deActivDev message, then continue its
processing for the second dialog box. ◆

Responding to Keyboard Events

The Finder intercepts all key-down and auto-key events for your control panel. The

Finder sends your control device function a keyboard event through the keyEvtDev

message for all keystrokes except Command-key equivalents. The Finder processes all

Command-key equivalents on behalf of your control panel except those that it maps to

its own Edit menu commands. The Finder converts these Command-key equivalents to

messages and passes them on (as cutDev, copyDev, pasteDev, undoDev, and

clearDev messages) to your control panel for processing. (See “Handling Edit Menu

Commands” on page 8-46 for more information.)

Note

In System 6, the Control Panel desk accessory does not convert
Command-key equivalents for Edit menu commands to edit messages;
instead it passes the Command-key equivalent to your control device
function as a keyEvtDev message. For backward compatibility, when
your control device function receives a keyEvtDev message, it should
check for Command-key equivalents as follows: it should examine the
modifiers field and the message field of the event record to identify
the Command-key equivalent, process it, and set the event record’s
what field to nullEvent. In this way, you prevent the Control Panel
desk accessory from passing the keystroke to TextEdit for further
handling. Listing 8-11 illustrates this technique. ◆

In addition to handling Command-key equivalents, your control device function should

respond appropriately when the user presses the Enter key or the Return key. In either

case, your function should map the keypress to your control panel’s default button, if

any, and perform the action corresponding to that button. For instance, the

MyHandleKeyEvent procedure shown in Listing 8-11 calls its MyShowMe routine

whenever the user presses Enter or Return. This routine signals the River system

extension to display the river on the screen.

C H A P T E R 8

Control Panels

8-38 Creating Control Panel Files

Your control device function does not need to process most other keystrokes. The Finder

passes keyboard events on to DialogSelect, which calls TextEdit to handle text entry

in editable text items. However, in some cases you might want your function to process

the keypress and return the constant nullEvent in the what field of the event record.

For example, if your control panel includes an editable text item that accepts only

numeric characters, your function can detect an invalid value, signal the user by

beeping, then modify the what field to prevent the Finder from passing the event to the

Dialog Manager. Listing 8-11 illustrates this technique: the user can enter only numeric

values in the Velocity editable text item.

Listing 8-11 Responding to a keyboard event

PROCEDURE MyHandleKeyEvent (VAR theEvent: EventRecord; CPDialog: DialogPtr;

 message: Integer);

VAR

theChar: Char;

itemType: Integer;

itemHandle: Handle;

itemRect: Rect;

finalTicks: LongInt;

BEGIN

{in System 6, you need to check for Command-key equivalents}

{get the character from the message field of the event record}

theChar := CHR(BAnd(theEvent.message, charCodeMask));

IF BAnd(theEvent.modifiers, cmdKey) <> 0 THEN

BEGIN {Command key down}

theEvent.what := nullEvent; {change the event to a null event so that }

 { TextEdit will ignore it}

CASE theChar OF

'X', 'x':

 message := cutDev;

'C', 'c':

message := copyDev;

'V', 'v':

message := pasteDev;

OTHERWISE

message := nulDev; {ignore any other Command-key equivalents}

END; {of CASE}

MyHandleEditCommand(message, CPDialog);

END; {of command-key down}

CASE theChar Of

'0', '1', '2', '3', '4', '5', '6', '7', '8', '9':

; {valid input, let DialogSelect/TextEdit handle key input}

C H A P T E R 8

Control Panels

Creating Control Panel Files 8-39

OTHERWISE

BEGIN

IF (theChar = Char(kCRkey)) OR (theChar = Char(kEnterKey)) THEN

BEGIN {user pressed Return or Enter, map to default button}

GetDialogItem(CPDialog, kShowMe, itemType, itemHandle, itemRect);

HiliteControl(ControlHandle(itemHandle), inButton);

Delay(8, finalTicks);

HiliteControl(ControlHandle(itemHandle), 0);

MyShowMe(CPDialog); {perform action defined by default button}

theEvent.what := nullEvent;

END {of Return or Enter}

ELSE IF (theChar = Char(kDeleteKey)) THEN

{let DialogSelect/TextEdit handle it}

ELSE

BEGIN {invalid input, don't allow this character as input}

SysBeep(40);

theEvent.what := nullEvent;

END;

END; {of otherwise}

END; {of CASE}

END;

Responding to Mouse Events

When the user clicks any active, enabled controls in your control panel, system software

generates a mouse event. The Finder intercepts this event and passes it to your control

device function as a hitDev message. Your control device function typically changes the

setting of the control or performs the appropriate action in response to a hitDev

message.

Along with the hitDev message, the Finder passes three values that your control device

function uses to determine which item the user clicked.

■ In the CPDialog parameter, the Finder passes a pointer to your control panel’s dialog
box.

■ In the item parameter, the Finder passes the number of the item, as defined in your
item list, that the user clicked.

■ In the numItems parameter, a value provided for backward compatibility with the
Control Panel desk accessory, the value passed depends on the system currently in
effect. In System 6, this number is the number of items in the item list of the Control
Panel desk accessory. In System 7, the Finder always passes a value of 0 in numItems.

In System 6, the Control Panel desk accessory uses the numItems parameter to pass the

number of items in its own item list. The Control Panel desk accessory appends your

control panel’s item list to its own. To get the correct number of the clicked item, you

need to subtract the number of items in the desk accessory’s item list (numItems) from

C H A P T E R 8

Control Panels

8-40 Creating Control Panel Files

the number passed in the item parameter. Although the numItems parameter

contains 0 in System 7, to maintain backward compatibility, you should always

determine an item number by subtracting the value of numItems from the value of

item. If you do so, your control panel can operate correctly with both the Finder and the

Control Panel desk accessory. For more information about item lists, see “Creating the

Item List Resource” on page 8-17, and the chapter “Dialog Manager” in Inside Macintosh:
Macintosh Toolbox Essentials.

The River control device function determines the correct item number in its CASE

statement before it calls its MyHandleHitInDialogItem procedure to handle the

hitDev message. Here is the code segment, also shown in Listing 8-8 on page 8-27, that

determines the item number:

hitDev: {user clicked dialog item}

 BEGIN

item := item - numItems;

MyHandleHitInDialogItem(item, cdevStorageValue,

CPDialog, myRiverHndl);

END;

Listing 8-12 shows the River control panel’s MyHandleHitInDialogItem procedure,

which takes the appropriate action in response to the item the user clicked. For the Show

Me button, the procedure calls its MyShowMe procedure, which instructs its system

extension to display the River screen saver using any new values.

For the On and Off radio buttons, MyHandleHitInDialogItem first calls the Dialog

Manager’s GetDialogItem procedure to get a handle to each radio button and then the

Control Manager’s GetControlValue function to determine the current setting. If the

radio button clicked was previously off, MyHandleHitInDialogItem reverses its

setting and also reverses the setting of the radio button that was previously on. If the

user clicks any one of the group of radio buttons governing flow direction (Uphill,

Downhill, Circular), MyHandleHitInDialogItem calls another application-defined

routine, the MyHandleFlowRadioButton procedure. Although not shown in this

listing, this procedure handles each of the three radio buttons, checking whether a

button’s value has changed and, if so, resetting the control.

If the user clicked the Play Babble Sound checkbox, MyHandleHitInDialogItem

reverses its setting.

The River control panel defines two user items that enclose the up arrow and the down

arrow. If the user clicks either of these areas, MyHandleHitInDialogItem calls its own

MyHandleHitInArrows procedure to handle this event. The routine either increments

or decrements the number displayed in its editable text item accordingly.

The River control panel ignores clicks in any other item, because the Dialog Manager

automatically handles clicks in pop-up controls and editable text items.

After handling the hitDev message, MyHandleHitInDialogItem sets the

settingsChanged field of the MyRiverStorage record. Other routines use this value

C H A P T E R 8

Control Panels

Creating Control Panel Files 8-41

to determine if the preferences file needs updating or if its system extension needs to

read the preferences file and use the new values when displaying the screen saver.

Listing 8-12 Responding to the user’s interaction with controls

PROCEDURE MyHandleHitInDialogItem (item: Integer;

 VAR cdevStorageValue: LongInt;

 CPDialog: DialogPtr;

 myRiverHndl: MyRiverStorageHndl);

VAR

newOnSetting, newOffSetting: Integer;

newUphillSetting, newDownhillSetting, newCircularSetting: Integer;

newBabbleSetting: Integer;

newVelocityText: Str255;

newRiverColorSetting: Integer;

itemType: Integer;

itemHandle: Handle;

itemRect: Rect;

BEGIN

CASE item OF

 kShowMe:

MyShowMe(CPDialog);

 kOnRadButton:

BEGIN

{get handle to the On radio button, get its current value, }

{ and then if it was off, change it to on}

GetDialogItem(CPDialog,kOnRadButton,itemType,itemHandle,itemRect);

 newOnSetting := GetControlValue(ControlHandle(itemHandle));

 IF (newOnSetting = 0) THEN

 BEGIN

newOnSetting := 1 - newOnSetting;

SetControlValue(ControlHandle(itemHandle), newOnSetting);

{get handle to the Off radio button, get its current value, }

{ and then change it}

 GetDialogItem(CPDialog, kOffRadButton, itemType, itemHandle,

 itemRect);

 newOffSetting := 1 - newOnSetting;

 SetControlValue(ControlHandle(itemHandle), newOffSetting);

END;

END;

 kOffRadButton:

 BEGIN

 {get handle to the Off radio button, get its current value, }

C H A P T E R 8

Control Panels

8-42 Creating Control Panel Files

 { and then if it was off, change it to on}

 GetDialogItem(CPDialog,kOffRadButton,itemType,itemHandle,itemRect);

 newOffSetting := GetCtlValue(ControlHandle(itemHandle));

 IF (newOffSetting = 0) THEN

BEGIN

newOffSetting := 1 - newOffSetting;

SetControlValue(ControlHandle(itemHandle), newOffSetting);

newOffSetting := GetCtlValue(ControlHandle(itemHandle));

{get handle to the On radio button, get its current value, }

{ and then change it}

GetDialogItem(CPDialog, kOnRadButton, itemType, itemHandle,

 itemRect);

 newOnSetting := 1 - newOffSetting;

 SetControlValue(ControlHandle(itemHandle), newOnSetting);

END;

END;

 kUpHillRadButton, kDownHillRadButton, kCircularRadButton:

{this routine handles the Flow Direction radio buttons}

MyHandleFlowRadioButton(item, CPDialog);

 kBabbleCheckBox:

BEGIN

{get handle to Play Babble Sound checkbox, get its current value, }

{ and then change it}

 GetDialogItem(CPDialog, kBabbleCheckBox, itemType, itemHandle,

 itemRect);

newBabbleSetting := GetControlValue(ControlHandle(itemHandle));

 newBabbleSetting := 1 - newBabbleSetting;

 SetControlValue(ControlHandle(itemHandle), newBabbleSetting);

END;

 kUserItemUpArrow, kUserItemDownArrow:

MyHandleHitInArrows(item, CPDialog);

END; {of CASE}

myRiverHndl^^.settingsChanged := TRUE;

END;

C H A P T E R 8

Control Panels

Creating Control Panel Files 8-43

Responding to Update Events

Whenever the Event Manager generates an update event for your control panel, the

Finder intercepts the update event and calls your control device function with an

updateDev message. Your control device function should perform any updating

necessary, apart from the standard dialog item updating that the Dialog Manager

performs. An update event gives your control device function the opportunity to redraw

user items that might require updating, such as a clock. You should also redraw the

outline around your default button in response to an update event. Notice that the

MyUpdateControlPanel procedure in Listing 8-13 does this by calling its

MyDrawDefaultButtonOutline procedure, which the control device function also

calls in response to an activDev or deActivDev message. If your control panel has an

editable text item, you don’t need to include code to make the caret blink. The Dialog

Manager calls TEIdle for this purpose.

Listing 8-13 Responding to update events

PROCEDURE MyUpdateControlPanel (VAR cdevStorageValue: LongInt;

 CPDialog: DialogPtr;

 myRiverHndl: MyRiverStorageHndl);

BEGIN

{draw the outline around the default button on an update event}

MyDrawDefaultButtonOutline(CPDialog, kShowMe);

END;

Handling Text Defined as User Items

If you want to use a font other than the default application font for your control panel’s

text, you should either include an 'finf' resource in your control panel file and define

your text as static text items or define your text using user items. See “Creating a Font

Information Resource” on page 8-23 for details on changing the font using an 'finf'

resource. This section gives details on how to define text using user items. You might

want to use this approach so that your control panel can run in the Finder and the

Control Panel desk accessory.

If you define the text in your control panel using user items, you need to draw the text in

response to an updateDev message, just as you would any other user item that requires

updating. (You draw the text initially in response to an initDev message.)

C H A P T E R 8

Control Panels

8-44 Creating Control Panel Files

For each item, this process entails

■ Setting the text font, style, and size fields to be used. (You use the QuickDraw
procedures TextFont, TextFace, and TextSize for this purpose.)

■ Positioning the pen where you want to draw the text. You draw the text in the
rectangle defined for it in the item list resource. (You can use the QuickDraw
procedure MoveTo to set the initial location of the pen.)

■ Drawing the text string. (You can use the QuickDraw DrawString procedure for this
purpose.)

Listing 8-14 shows the MyDrawText procedure. The River control device function might

use this procedure to draw any text that it defined as user items. First the MyDrawText

procedure calls the QuickDraw TextFont, TextFace, and TextSize procedures to set

the graphics port font to 12-point Chicago.

Then, for each text item, MyDrawText calls it own MyGetUserText procedure to get

the text string and the coordinates of the text string as defined by the display rectangle

of the user item. (See“Defining Text in a Control Panel as User Items” on page 8-24 for

details about the item list.) Next, MyDrawText calls the QuickDraw MoveTo procedure

to position the pen and QuickDraw’s DrawString procedure to draw the text.

Listing 8-14 Drawing text defined as user items

PROCEDURE MyDrawText;

VAR

textForUserItem: Str255;

textH, textV: Integer;

BEGIN

TextFont(0); {set the font to the system font (Chicago)}

TextFace([]); {set the text face to normal}

TextSize(12); {set the font size to 12-point}

{get the text and location for the first text string}

MyGetUserText(kFlow, textForUserItem, textH, textV);

MoveTo(textH, textV);

DrawString(textForUserItem); {draw the text}

{get the text and location for the next text string}

MyGetUserText(kVelocity, textForUserItem, textH, textV);

MoveTo(textH, textV);

DrawString(textForUserItem); {draw the text}

{get the text and location for the next text string}

MoveTo(textH, textV);

MyGetUserText(kMph, textForUserItem, textH, textV);

DrawString(textForUserItem); {draw the text}

END;

C H A P T E R 8

Control Panels

Creating Control Panel Files 8-45

Responding to Null Events

Whenever the Event Manager generates a null event for your control panel, the Finder

intercepts the event and calls your control device function with a nulDev message. Your

control device function should respond to a nulDev message by performing any needed

idle processing. However, your control device function should do minimal processing in

response to a null event; for example, it should not refresh control settings.

Responding to the User Closing the Control Panel

When the user closes your control panel, the Finder calls your control device function

with a closeDev message, signaling it to terminate gracefully. In response to this

message, your control device function must dispose of any memory it has allocated,

including any pointers or handles it has allocated.

Before your function begins this process, however, it can perform other needed tasks. For

example, the River control device function checks whether the user changed the values

of any settings. If so, it updates its preferences file to reflect the changes.

Listing 8-15 shows the MyCloseControlPanel procedure, which the River control

device function calls to handle the closeDev message. The MyCloseControlPanel

procedure checks the settingsChanged field of its MyRiverStorage record to

determine if the user changed the settings (the control device function sets this field

whenever the user changes a setting). If necessary, MyCloseControlPanel calls a

procedure to update the preferences file with the new values stored in the

MyRiverStorage record. Next, MyCloseControlPanel disposes of the memory that

the control device function previously allocated by disposing of the handle in the

myRiverHndl parameter. It then sets the cdevStorageValue parameter to 0. The

control device function returns this value as its function result.

Listing 8-15 Terminating a control device function when the user closes the control panel

PROCEDURE MyCloseControlPanel (myRiverHndl: MyRiverStorageHndl;

 VAR cdevStorageValue: LongInt);

BEGIN

{if the user changed any of the settings, }

{ write the new settings to the River preferences file}

IF myRiverHndl^^.settingsChanged THEN

MyWriteUserPreferences(myRiverHndl);

{dispose of any allocated storage}

IF myRiverHndl <> NIL THEN

BEGIN

DisposeHandle(Handle(myRiverHndl));

cdevStorageValue := 0;

END;

END;

C H A P T E R 8

Control Panels

8-46 Creating Control Panel Files

Handling Edit Menu Commands

Although you cannot implement a menu bar in your control panel, the user can choose

the Finder’s Edit menu Undo, Cut, Copy, Paste, and Clear commands when working in

an editable text item. When the user chooses one of these commands from the Edit menu

or presses its Command-key equivalent, the Finder maps the command to a message and

calls your control device function with the message. The values in the message

parameter for these commands are undoDev for Undo, cutDev for Cut, copyDev for

Copy, pasteDev for Paste, and clearDev for Clear.

Note

In System 6, the Control Panel desk accessory does not convert
Command-key equivalents for Edit menu commands to edit messages;
instead it passes the Command-key equivalent to your control device
function as a keyEvtDev message. See “Responding to Keyboard
Events” beginning on page 8-37 for details on handling keyboard events,
including Command-key equivalents. ◆

Listing 8-16 show the MyHandleEditCommand procedure. The River control device

function calls this procedure from within its CASE statement to handle an edit message.

For the Cut, Copy, and Clear commands, MyHandleEditCommand calls Dialog Manager

routines to perform the desired operation. For the Paste command,

MyHandleEditCommand first uses its MyCheckLength function to ensure that the

length of any text to be pasted does not exceed the TextEdit text buffer limit of 32 KB;

only then does it call DialogPaste. The Dialog Manager calls TextEdit to perform the

operation.

Listing 8-16 Responding to Edit menu commands

PROCEDURE MyHandleEditCommand (message: Integer;

 CPDialog: DialogPtr);

BEGIN

CASE message OF

cutDev: {use Dialog Manager to cut the text}

DialogCut(CPDialog);

copyDev: {use Dialog Manager to copy the text}

DialogCopy(CPDialog);

clearDev: {use Dialog Manager to clear the text}

DialogDelete(CPDialog);

pasteDev:

 BEGIN {check length, then paste the text}

IF MyCheckLength(CPDialog) THEN

DialogPaste(CPDialog);

 END;

END; {of CASE}

END;

C H A P T E R 8

Control Panels

Creating Control Panel Files 8-47

Handling Errors

Your control device function is responsible for detecting and, if possible, recovering from

error conditions. If your function cannot recover from an error condition, it must dispose

of any memory that it previously allocated, restore the system stack, and return as its

function result one of three error codes.

If your control panel encounters an error due to missing resources or lack of memory,

your control device function should return cdevResErr or cdevMemErr. When the

Finder receives either of these error codes, it closes the control panel and displays an

alert box reporting the problem.

Your control device function should return a generic error code (cdevGenErr) for all

other errors. When the Finder receives this generic error code, it closes the control panel

but does not display an alert box; if it can do so, your function should display an alert

box to the user before completing. Your function can also return this error code to signal

a missing-resources or lack-of-memory error. Use this error code instead of cdevResErr

or cdevMemErr if you want your function, not the Finder, to display a meaningful error

message that directs the user in resolving the problem.

The Finder in System 7 and the Control Panel desk accessory in System 6 respond

differently to any error codes that your control panel returns. In System 6, after your

control device function terminates, the Control Panel desk accessory fills the area

previously occupied by your control panel with the background pattern, in effect

dimming it. The Control Panel desk accessory dialog box remains open because the user

can use other control panels represented in the icon list. Your control panel’s area

remains dimmed until the user selects another control panel.

Table 8-2 shows the constants defined for these error codes and the corresponding

responses by the Finder and the Control Panel desk accessory.

Table 8-2 Error codes and their meaning

Constant Value Meaning

cdevGenErr –1 Generic error

In System 7, the Finder closes your control panel but does not display an
alert box to the user.

In System 6, the Control Panel desk accessory dims your control panel’s
area in the Control Panel window and passes 0 in the
cdevStorageValue parameter the next time it calls your function.

cdevMemErr 0 Insufficient memory

In System 7, the Finder closes the control panel and displays an
out-of-memory alert box to the user.

In System 6, the Control Panel desk accessory dims your control panel’s
area in the Control Panel window, displays an out-of-memory alert box to
the user, and passes 0 in the cdevStorageValue parameter the next time
it calls your function.

continued

C H A P T E R 8

Control Panels

8-48 Creating an Extension for the Monitors Control Panel

Creating an Extension for the Monitors Control Panel

This section describes how to create an extension for the Monitors control panel. A

monitors extension typically adds controls to the Options dialog box so that the user can

set values for one or more features of a video card.

A monitors extension consists of a file of type 'cdev' that contains the resources for a

monitors extension, including a code resource of type 'mntr'. This code resource, called

a monitors extension function, communicates with the Monitors control panel,

responding to requests from the Monitors control panel to handle events or perform

actions. This section begins with a discussion of the interface components of a monitors

extension. Then it describes how to

■ create resources for your monitors extension, including how to define

■ a card resource to identify your monitors extension and display the name of your
video card at the top of the Options dialog box

■ a rectangle resource to define the area in which to display your video card’s controls

■ an item list resource to define additional items for display in the Options dialog box

■ create and supply optional resources for your monitors extension

■ write a monitors extension function

cdevResErr 1 Missing resource

In System 7, the Finder closes the control panel and displays a
missing-resources alert box to the user.

In System 6, the Control Panel desk accessory dims your control panel’s
area in the Control Panel window, displays a missing-resources alert box to
the user, and passes 0 in the cdevStorageValue parameter the next time
it calls your function.

Table 8-2 Error codes and their meaning (continued)

Constant Value Meaning

C H A P T E R 8

Control Panels

Creating an Extension for the Monitors Control Panel 8-49

Before you develop an extension for the Monitors control panel, consider these three

important points:

■ You should develop a monitors extension only if you are the manufacturer of the
video card for which you are providing the feature or features whose values the user
can control.

■ There can be only one extension to the Monitors control panel for each video card.
Apple Computer, Inc., reserves the right to supply monitors extensions for its own
video cards.

■ If the features that you want to implement require an extensive or complex set of
controls—for example, if you need to use nested dialog boxes—you should probably
write a small application rather than an extension to the Monitors control panel.

Designing the User Interface for a Monitors Extension
When the user clicks the Options button, the Monitors control panel displays the

Options dialog box for the selected monitor. The Options dialog box contains standard

controls that the Monitors control panel provides, such as the OK and Cancel buttons.

Beneath these two buttons is a scrollable list of monitor types if the selected monitor

belongs to a family of monitors. Beneath the icon is a scrollable list of gamma tables if

the user is a superuser (a very knowledgeable user; a user indicates superuser status by

pressing the Option key while clicking the Options button). These items are also defined

by the Monitors control panel.

If you provide a monitors extension for your video card, the Monitors control panel adds

any controls you define beneath the two scrollable lists, if one or both are displayed, or

beneath the Cancel button. Figure 8-11 shows the Options dialog box for the Macintosh

display card.

Figure 8-11 An Options dialog box with standard controls

C H A P T E R 8

Control Panels

8-50 Creating an Extension for the Monitors Control Panel

Figure 8-12 shows the Options dialog box for the Macintosh display card as it appears

when the user presses the Option key while clicking the Options button.

Figure 8-12 An Options dialog box with superuser controls

To provide the user interface for your video card’s feature, you define a rectangle

resource of type 'RECT' specifying the amount of space you need to display your

controls and an item list resource of type 'DITL' specifying the controls themselves.

At the upper-left corner of the Options dialog box, the Monitors control panel displays

the name of your video card and an icon representing it. The Monitors control panel

defines the coordinates of these items. You must supply your video card’s name in a

required card resource of type 'card' (see “Creating a Card Resource for a Monitors

Extension” on page 8-51). You can optionally provide one or more members of an icon

family (with resource ID –4064) that define an icon for your video card. If you do not

provide icon resources with this resource ID for this purpose, the Monitors control panel

displays the icon defined in the sResource data structure in the ROM on your video

card. If your video card does not supply a default icon in the ROM, the Monitors control

panel displays a generic monitors icon.

You can also supply an additional icon family to specify the icon that the Finder uses to

represent your monitors extension file. The icon family resources are 'ICN#', 'ics#',

'icl8', 'icl4', 'ics8', and 'ics4'. When creating an icon for a monitors

extension, design it so that it is square, except include at the bottom of the icon a tab-like

form, indicating that the file the icon represents is an extension. See the chapter “Finder

Interface” in Inside Macintosh: Macintosh Toolbox Essentials for information on how to

create an icon family. Figure 8-13 shows an icon of type 'icl8' for the monitors

extension file supplied with the SurfBoard video card.

C H A P T E R 8

Control Panels

Creating an Extension for the Monitors Control Panel 8-51

Figure 8-13 The SurfBoard monitors extension icon

If you wish, you can design two sets of controls for your monitors extension: one set for

ordinary users and one for superusers. When a user indicates superuser status by

holding down the Option key while clicking the Options button in the Monitors control

panel, the Monitors control panel notifies your monitors extension function to display

the superuser controls. For more information, see “Creating an Item List Resource for a

Monitors Extension” beginning on page 8-54.

Creating the Required Resources for a Monitors Extension
This section describes the four required resources that you supply for your monitors

extension.

To create these resources, either you can specify the resource description in an input file

and compile the resource using a resource compiler, such as Rez, or you can directly

create your resources in a resource file using a tool such as ResEdit.

The required resources and their resource IDs are

■ the card ('card') resource: resource ID from –4080 through –4065

■ the rectangle ('RECT') resource: resource ID –4096

■ the item list ('DITL') resource: resource ID –4096

■ the monitor ('mntr') resource: resource ID –4096

Creating a Card Resource for a Monitors Extension

You create a card resource of type 'card' to identify the monitors extension for your

video card and to specify the name of your video card. When the monitor to which your

card is connected is the selected one and the user clicks the Options button, the Monitors

control panel checks all monitors extension files for a card resource that contains the

name of your video card. If it finds a match, the Monitors control panel extends the

Options dialog box to display the monitors extension containing the matching card

resource. The Monitors control panel also displays, at the very top of the Options dialog

box, your video card’s name as defined in the card resource. This title indicates to the

user that the Options dialog box pertains to your card. For example, Figure 8-11 on

page 8-49 shows the Macintosh Display Card name at the top of the Options dialog box.

The card resource is required, and its resource ID must be in the range of –4080

through –4065.

C H A P T E R 8

Control Panels

8-52 Creating an Extension for the Monitors Control Panel

Your card resource must contain a Pascal string identical to the name of your video card

as specified in the sResource data structure in the ROM of the card. (For more

information on the sResource data structure, see Designing Cards and Drivers for the
Macintosh Family, third edition.)

If you do not want to use the video card name specified in the ROM of the card, you can

include in your monitors extension file a string list resource of type 'STR#'. In that

resource, specify an alternative name for the Monitors control panel to display. See

“Providing an Alternative Name for a Video Card” on page 8-58 for more information.

You use a card resource to ensure that your monitors extension is called when the user

selects the monitor to which your card is connected and clicks the Options button.

Because your monitors extension file can contain as many card resources as you wish,

one extension file can handle several types of video cards. For example, Listing 8-17

shows two card resources; thus, when the user selects the monitor connected to the

SurfBoard Display Card or the SurfBoard Super Display Card, the monitors extension

MyMonExtend is called. (See Listing 8-25 on page 8-64 for the MyMonExtend function.)

Listing 8-17 Rez input for a card ('card') resource

resource 'card' (-4080, purgeable)

{

"SurfBoard Display Card"

};

resource 'card' (-4079, purgeable)

{

"SurfBoard Super Display Card"

};

Defining a Rectangle for a Monitors Extension

You create a rectangle resource of type 'RECT' to define the display area for the controls

of your monitors extension. When the user clicks the Options button in the Monitors

control panel, the Monitors control panel uses your monitors extension to expand the

Options dialog box under these circumstances: if the monitor connected to your video

card is currently selected, and if you have provided a monitors extension

for your card. Before displaying it, the Monitors control panel expands the Options

dialog box to include the space defined by the rectangle resource. The rectangle resource

is required, and its resource ID must be –4096.

To specify the top coordinate of your rectangle, determine the height in pixels of the

space required to display your controls and specify that value as a negative number. For

example, if you need a display area that is 60 pixels high, specify –60 as the top

coordinate. Specify 0 as the left coordinate. This is the same value used to define the left

edge of the Options dialog box, and your rectangle should have the same left edge.

Specify 0 as the bottom coordinate. You can think of the distance from the bottom

coordinate to the top coordinate—60 pixels, in this example—as the height of your

C H A P T E R 8

Control Panels

Creating an Extension for the Monitors Control Panel 8-53

rectangle. Specify 320 as the right coordinate. This is the same value used to define the

right edge of the Options dialog box, and your rectangle should have the same right

edge.

Note

Although you specify other coordinate values for your rectangle’s
origin, when you assign coordinates to your controls, assume that
the origin of the local coordinate system for your dialog items is (0,0). ◆

Figure 8-14 shows the Options dialog box for the SurfBoard Display Card. The OK and

Cancel buttons and the scrollable list for the monitor type are standard controls. The

Magnify Enabled checkbox and three lines of text have been added by the SurfBoard

monitors extension. This figure shows the height and width, in pixels, defined in the

rectangle resource; this is the area required to display the additional controls.

Figure 8-14 Display area defined by a rectangle resource

Listing 8-18 shows, in Rez input, the rectangle resource used in this example. Notice that

the top coordinate is –60 and the bottom coordinate is 0. In other words, the space to be

added to the Options dialog box is 60 pixels high.

Listing 8-18 Rez input for a rectangle ('RECT') resource

resource 'RECT' (-4096, purgeable)

{

{-60,0,0,320}

};

C H A P T E R 8

Control Panels

8-54 Creating an Extension for the Monitors Control Panel

Creating an Item List Resource for a Monitors Extension

You provide an item list resource of type 'DITL' to specify which items you want to

appear in the rectangle display area (see the previous section for information about the

rectangle resource). In an item list, you specify static text, buttons, checkboxes, radio

buttons, editable text, user items, the resource IDs of icons and QuickDraw pictures, and

the resource IDs of other types of controls, such as pop-up menus. The item list is

required, and its resource ID must be –4096.

When you assign coordinates to your controls, assume that the origin (that is, the

upper-left corner) of the local coordinate system is (0,0). The Monitors control panel

transforms the coordinates of your controls to the coordinate system that it uses for the

Options dialog box. Thus, you must use the GetDialogItem procedure to get the true

locations of your dialog items. See the chapter “Dialog Manager” in Inside Macintosh:
Macintosh Toolbox Essentials for information on the GetDialogItem procedure.

If you add additional controls for superusers, you should place them below a horizontal

line separating them from other controls, as illustrated in Figure 8-15.

Figure 8-15 The SurfBoard Options dialog box with superuser controls

C H A P T E R 8

Control Panels

Creating an Extension for the Monitors Control Panel 8-55

To draw a dividing line, specify a separate dialog item of type userItem. Listing 8-19

shows the item list resource for the SurfBoard monitor extension. Notice that the

dividing line (item 2) is defined as a user item.

Listing 8-19 Rez input for the SurfBoard monitors extension item list resource

resource 'DITL' (-4096, purgeable) {

{

/* [1] */

{10, 151, 50, 314},

StaticText { disabled, "River Change Systems\nmonitors extension"

"\nCopyright © 1993" },

/* [2] dividing line for superuser controls*/

{60, 1, 61, 319},

UserItem { enabled },

/* [3] */

{70, 28, 80, 236},

StaticText { enabled, "Superuser Options" },

/* [4] */

{82, 7, 110, 200},

RadioButton { enabled, "Zirconian Filtration" },

/* [5] */

{112, 7, 132, 200},

RadioButton { enabled, "Anti-Aliasing" },

/* [6] */

{22, 7, 58, 160},

CheckBox { enabled, "Magnify Enabled" }

}

};

Listing 8-29 on page 8-70 shows the procedure that the SurfBoard monitors extension

function uses to draw a line separating the items for normal users from the items

displayed for superusers. It uses the QuickDraw FrameRect procedure to draw the

item as a 1-pixel-high rectangle. After calling the FrameRect procedure, a monitors

extension can also dither the line in the same manner used to dither menu divider lines.

(For information on the FrameRect procedure, see Inside Macintosh: Imaging With
QuickDraw.)

C H A P T E R 8

Control Panels

8-56 Creating an Extension for the Monitors Control Panel

If you use an item color table resource of type 'ictb' to draw your items in color or in a

different font, you must include placeholder entries for the standard Options dialog box

items before you define the item color table entries to be mapped to the items in your

monitors extension item list. This step is necessary because the Monitors control panel

appends your monitors extension item list to that of the Options dialog box. To maintain

the mapping between entries in the item color table ('ictb') and your item list, you

must account for the Options dialog box items.

Currently, the Options dialog box contains 10 items (although this number is subject to

change in future implementations of the Monitors control panel). An item color table

entry contains two words for each corresponding item. For this implementation of the

Monitors control panel, you can ensure that the first item in your item list is mapped to

the correct item color table entry as follows: create 10 entries in the item color table to

correspond to the 10 items in the Options dialog box, and specify a value of 0 for both

words of each entry.

Creating the Monitor Code Resource

A monitor code resource (of type 'mntr') contains the code that carries out the

functions of a monitors extension. In MPW, you can set the code resource type to

'mntr' when you link the program. When you create such a resource, the resource must

begin with a function that you provide, called the monitors extension function.

The Monitors control panel passes to your monitors extension function parameters that

specify actions to perform. You can use the function result to keep a handle to allocated

memory or to return an error code. For more information about the monitors extension

function, see “Writing a Monitors Extension Function” beginning on page 8-61.

Supplying Optional Resources for a Monitors Extension
Your monitors extension file can also include any of the optional resources described in

this section. To create these resources, either you can specify the resource description in

an input file and then use a resource compiler, such as Rez, to compile the resource, or

you can use a tool such as ResEdit to create your resources in a resource file.

The optional resources and their resource IDs are

■ The icon family resources ('ICN#', 'ics#', 'icl8', 'icl4', 'ics8', and
'ics4'), which specify an icon for display in the upper-left corner of the Options
dialog box: resource ID –4096.

■ The version ('vers') resources: resource ID 1 and 2.

■ The string list ('STR#') resource: resource ID –4096.

■ The gamma table ('gama') resource: resource ID from –4080 through –4065.

C H A P T E R 8

Control Panels

Creating an Extension for the Monitors Control Panel 8-57

■ The file reference ('FREF') resource. The resource ID follows the normal conventions
(typically, you assign a resource ID of 128).

■ The bundle ('BNDL') resource. The resource ID follows the normal conventions
(typically, you assign a resource ID of 128).

■ The icon family resources ('ICN#', 'ics#', 'icl8', 'icl4', 'ics8', and
'ics4'), which define the monitors extension file icon. The resource ID follows the
normal conventions (typically, you assign a resource ID of 128).

■ The system extension ('INIT') resource.

■ The signature resource: resource ID 0.

In addition to the optional resources that these sections describe, you can include

private optional resources whose resource ID numbers must fall within the

range –4080 through –4065.

Specifying an Icon for the Options Dialog Box

To specify an icon that the Monitors control panel displays in the upper-left corner of the

Options dialog box, you can define one or more members of an icon family. For each of

these resources, you must assign a resource ID of –4064. If you provide an icon family,

the Monitors control panel displays the appropriate icon according to the bit depth of the

monitor. (Note that in System 6 you provide 'ICON' or 'cicn' icons instead of an icon

family.) For more information on these icons, see the chapter “Finder Interface” in Inside
Macintosh: Macintosh Toolbox Essentials.

If you do not supply either of these icon resources, the Monitors control panel displays

the icon defined in the sRsrcIcon entry of the sResource data structure of your video

card’s ROM. If your do not supply either of these resources and your video card does not

include an icon, the Monitors control panel displays a generic icon that represents a

monitor.

Listing 8-20 shows a partial listing of the icon family resources that define the SurfBoard

video card icon shown in Figure 8-13 on page 8-51.

Listing 8-20 Rez input for icon family resources for a monitors extension

data 'ICN#' (-4064, purgeable) {

/*icon data goes here*/

};

data 'icl8' (-4064, purgeable) {

/*icon data goes here*/

};

data 'icl4' (-4064, purgeable) {

/*icon data goes here*/

};

C H A P T E R 8

Control Panels

8-58 Creating an Extension for the Monitors Control Panel

Specifying Version Information

You can include two kinds of version resources of type 'vers' to provide version

information for your monitors extension file. The version resource with a resource ID

of 1 specifies the version of your monitors extension file. The version resource with a

resource ID of 2 specifies the version of the group to which your file belongs—for

example, the version number of the video card that your extension file supports.

The Finder displays version information about your monitors extension for the user. For

complete information on how to specify the version resources and how the Finder

displays the information from these resources in its information window, see the chapter

“Finder Interface” in Inside Macintosh: Macintosh Toolbox Essentials.

Listing 8-21 shows a version resource with a resource ID of 1 that specifies the version

number of the SurfBoard’s monitor extension file. This version resource includes the

copyright of the River Change Systems company, which manufactures the card.

Listing 8-21 Rez input for a version ('vers') resource

resource 'vers' (1) {

0x01, 0x00, release, 0x00,

0, /*verUS*/

"1.00",

"1.00, Copyright © 1993 River Change Systems."

};

Providing an Alternative Name for a Video Card

The Monitors control panel displays the name of your video card in the upper-left corner

of the Options dialog box. By default, it displays the name defined in the declaration

ROM of the video card. To display a name for your video card that is different from the

name in the declaration ROM of the video card, you can include a string list ('STR#')

resource with resource ID –4096. This resource must contain pairs of Pascal strings. The

first string in each pair must be identical to the name of your video card as specified in

the sResource data structure in the ROM of the card. (For more information on the

sResource data structure, see Designing Cards and Drivers for the Macintosh Family, third

edition.) The second string in each pair is the name that you want to display in the

Options dialog box. You can have as many pairs of names in one string list resource as

you wish; the Monitors control panel uses the first match it finds.

C H A P T E R 8

Control Panels

Creating an Extension for the Monitors Control Panel 8-59

It is unlikely that you will need to override the name specified in the declaration ROM.

However, if you have misspelled the card name on the board, or if you want to display a

name that is more descriptive, you can include a string list resource. Listing 8-22 shows

the string list resource for the SurfBoard video card monitors extension. This monitors

extension includes two card resources (see Listing 8-17 on page 8-52), but the string list

resource includes only one entry to override the name SurfBoard Super Display Card. In

this example, when the Monitors control panel displays the Options dialog box for the

SurfBoard Super Display Card, it displays the name SurfBoard Super Fast Display Card

instead of the name in the card’s declaration ROM.

Listing 8-22 Rez input for the SurfBoard string list resource

resource 'STR#' (-4096, purgeable)

{

{ "SurfBoard Super Display Card";

"SurfBoard Super Fast Display Card"};

};

Supplying Gamma Table Resources

To indicate status as a superuser, the user presses the Option key while clicking the

Options button in the Monitors control panel. In response, the Monitors control panel

displays a list of gamma tables (see Figure 8-12 on page 8-50).

The software driver for a video card uses a gamma table to correct for the fact that the

intensity of each color on a video display is not linearly proportional to the intensity of

the electron beam; in other words, the gamma table helps the video driver to provide the

most accurate colors possible for a video display. Because the user might prefer a

nonstandard color correction, many developers of video cards provide more than one

gamma table for a given card.

To supply one or more gamma tables for a video card, include in the monitors extension

file a named resource of type 'gama' for each gamma table. To change the default

gamma table for a monitor, the user clicks the Use Special Gamma checkbox and then

selects a table by clicking its name in the list. The default gamma table for a monitor is

the one listed in the screen resource of type 'scrn'. For a complete discussion of

gamma tables, see Designing Cards and Drivers for the Macintosh Family, third edition. For

information on the screen ('scrn') resource, see Inside Macintosh: Devices.

Creating File Reference, Bundle, and Signature Resources

The file reference ('FREF'), bundle ('BNDL'), and signature resources work together to

give your file a distinctive appearance on the desktop. The Finder uses these resources to

display the icon for your monitors extension.

C H A P T E R 8

Control Panels

8-60 Creating an Extension for the Monitors Control Panel

The file reference resource specifies the file type for a monitors extension ('cdev'), the

local ID of your icon list resource, and an empty string. The local ID maps the monitors

extension file type to the icon list resource that is assigned the same local ID in the

bundle resource. Listing 8-23 shows the file reference resource for the SurfBoard

monitors extension.

Listing 8-23 Rez input for a file reference resource of a monitors extension

resource 'FREF' (128, purgeable) {

'cdev', 0, ""

};

Note

If you provide the complete icon family, the Finder displays the
appropriate member of the icon family according to the bit depth of the
monitor. ◆

The Finder uses the signature resource with the bundle resource to establish the identity

of your monitors extension. You define a signature resource as a string resource (that is, a

resource of type 'STR ') and specify as its resource type a unique four-character

sequence that has the same value as your monitors extension’s creator type. The

signature resource contains a string that identifies your monitors extension; typically the

string specifies the name, version number, and release date of the monitors extension.

A bundle ('BNDL') resource associates all of the resources that the Finder uses for your

monitors extension. It associates your monitors extension and its signature with its icon.

The Finder requires the information in the bundle resource to display icons for your

monitors extension. In the bundle resource, you must specify a local ID for your icon

list resource that matches the local ID you assigned inside the corresponding file

reference resource. In the bundle resource shown in Listing 8-24, local ID 0 is assigned to

the icon list resource with resource ID 128, mapping the icon defined for the SurfBoard

monitors extension to the monitors extension file.

Listing 8-24 Rez input for a bundle resource of a monitors extension

resource 'BNDL' (128, purgeable) {

'kcah',

0,

{

'ICN#', {0, 128},

'FREF', {0, 128}

}

};

C H A P T E R 8

Control Panels

Creating an Extension for the Monitors Control Panel 8-61

(See the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox Essentials for

complete information on how to create file reference, signature, and bundle resources.)

Including a System Extension Resource

A file that contains an extension to the Monitors control panel can contain a system

extension resource of type 'INIT'. If your monitors extension file is in the Control

Panels folder, the Extensions folder, or the base level of the System Folder, then the

system software executes the system extension resource when the user starts or restarts

the computer.

Although the system extension resource acts independently of other resources in the file,

it should be related to the monitors extension.

Writing a Monitors Extension Function
You create a monitors extension function to implement the feature for your video card

and manage the controls that allow the user to set values for that feature. The Monitors

control panel calls your monitors extension function, requesting it to perform an action

or handle an event in response to the user’s manipulation of the controls for your video

card. The message parameter identifies the action or event.

Your monitors extension function should perform the requested action and return a

function result to the Monitors control panel. This function result should be either a

standard value indicating that your monitors extension function has not allocated

memory, a handle to any memory you allocate, or an error code. Here is how you declare

a monitors extension function:

FUNCTION MyMntrExt (message, item, numItems: Integer; monitorValue: LongInt;

 mDialog: DialogPtr; theEvent: EventRecord;

 screenNum: Integer; VAR screens: ScrnRsrcHandle;

 VAR scrnChanged: Boolean): LongInt;

The message parameter can contain any of the values defined by these constants:

CONST

startupMsg = 12; {status of user (whether a superuser)}

initMsg = 1; {perform initialization}

okMsg = 2; {user clicked OK button}

cancelMsg = 3; {user clicked Cancel button}

hitMsg = 4; {user clicked enabled control}

nulMsg = 5; {null event}

keyEvtMsg = 9; {keyboard event}

updateMsg = 6; {update event}

C H A P T E R 8

Control Panels

8-62 Creating an Extension for the Monitors Control Panel

The value of the message parameter indicates the action your monitors extension

function should perform:

■ startupMsg. Informs your monitors extension function that it has been loaded into
memory. Your function can determine whether the user has superuser status by
examining the item parameter. The Monitors control panel sets the item parameter
to 1 if the user is a superuser. Your code should load any resources and modify them if
necessary for the capabilities of the computer system or selection of superuser status.
You can also allocate memory in response to this message, and store the value
identifying the user’s status.

■ initMsg. Requests your monitors extension function to perform initialization.

■ okMsg. Indicates that the user clicked the OK button. Your function should check for
any values the user changed, release any memory it allocated, and return control to
the Monitors control panel.

■ cancelMsg. Indicates that the user clicked the Cancel button. Your function should
restore the system to the state it was in before the user clicked the Options button,
release any memory it allocated, and return control to the Monitors control panel. If
the user modified any values before clicking the Cancel button, reinstate the original
values.

■ hitMsg. Indicates that the user clicked an enabled control in your monitors extension.
Your function should handle the click.

■ nulMsg. Requests your control device function to handle a null event by performing
any idle processing. Your monitors extension function should do minimal processing
in response to a null event; for example, it should not refresh control settings. The
Monitors control panel passes the event record for the null event in the parameter
theEvent.

■ keyEvtMsg. Requests your monitors extension function to handle a key-down or
auto-key event.

■ updateMsg. Requests your monitors extension function to update any user items and
redraw any controls that are not standard dialog items handled by the Dialog
Manager.

In addition, the message parameter can contain any of the values defined by these

constants:

CONST

activateMsg = 7; {becoming active (not currently used)}

deactivateMsg = 8; {becoming inactive (not currently used)}

superMsg = 10; {user is a superuser}

normalMsg = 11; {user is not a superuser}

C H A P T E R 8

Control Panels

Creating an Extension for the Monitors Control Panel 8-63

These messages either are provided for backward compatibility or are not currently used:

■ activateMsg. Requests your monitors extension function to respond to an activate
event by making your video card’s controls active. Currently, this message is not used
because the Options dialog box is modal. However, your monitors extension function
should handle this message as it would any activate event because in future
implementations the Options dialog box might be modeless.

■ deactivateMsg. Requests your monitors extension function to respond to an
activate event by making your video card’s controls inactive. Currently, this message
is not used because the Options dialog box is modal. However, your monitors
extension function should handle this message as it would any activate event because
in future implementations the Options dialog box might be modeless.

■ superMsg. Informs your monitors extension function that the user has selected
superuser status. This message is provided for backward compatibility with System 6.
However, your monitors extension function can respond to it by initializing any
controls that you have reserved for superusers, if your function has not already done
so in response to either the startupMsg or initMsg message. If your function does
not handle this message, it should return as its function result a handle to any
memory it previously allocated. The Monitors control panel sends the message
superMsg or normalMsg immediately following the initialization message.

■ normalMsg. Informs your monitors extension function that the user has not selected
superuser status. This message is provided for backward compatibility with System 6.
However, your monitors extension function can respond to it by initializing any
controls, if your code has not already done so in response to either the startupMsg
or initMsg message. If your function does not handle this message, it should return
as its function result a handle to any memory it previously allocated. The Monitors
control panel sends the message normalMsg or superMsg immediately following the
initialization message.

IMPORTANT

If your monitors extension function cannot handle a message, it should
return as its function result a handle to any memory it previously
allocated. Otherwise, it should return the value passed in the
monitorValue parameter. ▲

For a description of the remaining parameters of the monitors extension function, see

“Monitors Extension Functions” beginning on page 8-78.

Your monitors extension function can return either an error code or a handle to memory

it allocated. Each time the Monitors control panel calls your monitors extension function,

the monitorValue parameter contains the value that your function returned as its

function result the last time it was called.

If an error occurs, your monitors extension function should display an error dialog box

and then return a value between 1 and 255. If your function returns a value in this range,

the Monitors control panel closes the Options dialog box immediately and does not call

your monitors extension function again.

The monitors extension used as an example in this chapter adds controls to the Options

dialog box for a video card called SurfBoard. The Magnify Enabled checkbox allows the

user to magnify the display of text and graphics on the monitor connected to the

C H A P T E R 8

Control Panels

8-64 Creating an Extension for the Monitors Control Panel

SurfBoard video card. The SurfBoard monitors extension also includes controls for

superusers, which illustrate how to implement the rectangle extension in which

the superuser controls are displayed. The SurfBoard monitors extension shows one way

of handling messages from the Monitors control panel.

Listing 8-25 shows the SurfBoard monitors extension function, MyMonExtend. It

includes a CASE statement that handles messages that the Monitors control panel passes

to MyMonExtend. First the function sets up a handle for memory that it allocates in

response to the startup message. The function returns a handle to the storage it allocates

as its function result in response to the startup message, unless an error occurs (see

Listing 8-26 on page 8-66). For all subsequent messages, the Monitors control panel

passes, in the monitorValue parameter, the previous function result. The

MyMonExtend function returns the handle to the allocated memory as its function result

for any messages that it does not handle.

Listing 8-25 A monitors extension function

UNIT SurfBoardMonExt;

INTERFACE

{include a Uses statement if your programming environment requires it}

CONST

kTextItem = 1; {static text item}

kSuperUserDivLine = 2; {separation line}

kFilterControl = 4; {radio button filter}

kAntiAliasingCntl = 5; {radio button aliasing}

kMagnifyControl = 6; {checkbox for Magnify Enabled}

kMemErrAlert = 130; {resource ID of out-of-memory alert box}

kdeepAlert = 131; {resource ID of alert box}

kResID = 133; {all other errors}

TYPE

MonitorDataRec =

RECORD {local data for the extension}

isSuperUser: Boolean;

filteringSetting: Integer;

oldFiltering: Integer;

toggleMagnifyValue: Integer;

END;

MonitorDataPtr = ^MonitorDataRec;

MonitorDataHandle = ^MonitorDataPtr;

MyRectHandle = ^RectPtr;

MyIntPtr = ^Integer;

MyIntHandle = ^MyIntPtr;

C H A P T E R 8

Control Panels

Creating an Extension for the Monitors Control Panel 8-65

FUNCTION MyMonExtend (message, item, numItems: Integer;

 monitorValue: LongInt; mDialog: DialogPtr;

 theEvent: EventRecord; ScreenNum: Integer;

 VAR Screens: ScrnRsrcHandle;

 VAR ScrnChanged: Boolean): LongInt;

IMPLEMENTATION

{any support routines your monitors extension function uses}

PROCEDURE MyHandleStartupMsg(item: Integer; mDialog: DialogPtr;

 VAR monitorValue: LongInt); FORWARD;

PROCEDURE MyHandleInitMsg(numItems: Integer; mDialog: DialogPtr;

 dataRecHand: MonitorDataHandle); FORWARD;

PROCEDURE MyDrawRect(theWindow: WindowPtr; itemNo: Integer); FORWARD;

FUNCTION MySetUpData (superUser: Integer; storage: MonitorDataHandle): OSErr;

 FORWARD;

PROCEDURE MyHandleHits (mDialog: DialogPtr; whichItem, numItems: Integer;

dataRecHand: MonitorDataHandle); FORWARD;

PROCEDURE MySaveNewValues (dataRecHand: MonitorDataHandle); FORWARD;

PROCEDURE MyUndoChanges (item, numItems: Integer; mDialog: DialogPtr;

 dataRecHand: MonitorDataHandle); FORWARD;

FUNCTION MyMonExtend (message, item, numItems: Integer; monitorValue: LongInt;

 mDialog: DialogPtr; theEvent: EventRecord;

 ScreenNum: Integer; VAR Screens: ScrnRsrcHandle;

 VAR ScrnChanged: Boolean): LongInt;

VAR

dataRecHand: MonitorDataHandle;

BEGIN

IF message <> startupMsg THEN

dataRecHand := MonitorDataHandle(monitorValue); {set up handle}

CASE message OF

startupMsg:

MyHandleStartupMsg(item, mDialog, monitorValue);

initMsg:

MyHandleInitMsg(numItems, mDialog, dataRecHand);

hitMsg:

MyHandleHits(mDialog, item, numItems, dataRecHand);

okMsg:

MySaveNewValues(dataRecHand);

cancelMsg:

MyUndoChanges(item, numItems, mDialog, dataRecHand);

END; {of CASE}

MyMonExtend := monitorValue;{return value with handle}

END; {MyMonExtend}

C H A P T E R 8

Control Panels

8-66 Creating an Extension for the Monitors Control Panel

Handling the Startup Message

After the code in your monitors ('mntr') code resource is loaded and before the

Monitors control panel finds any resources to which your monitors extension function

refers, the Monitors control panel calls your function with a startup (startupMsg)

message. If the user is a superuser, the Monitors control panel sets the item parameter

to 1 for the startup message.

The startup message requests your monitors extension function to load and modify any

resources that must allow for the capabilities of the computer or for superusers. For

example, your monitors extension function should modify the rectangle resource if the

user is a superuser.

In response to a startup message, your function can also create a handle and allocate any

memory that it needs to store values between calls from the Monitors control panel. For

example, if your function initializes its controls in response to the initialization

(initMsg) message, it should store a value indicating whether or not the user is a

superuser. When the Monitors control panel calls your monitors extension function with

an initialization message, the item parameter no longer indicates the user’s status. If

your code allocates memory, your function should return as its function result a handle

to the memory it allocates in response to the startup message, unless an error occurs. If

an error occurs, your function can display an error dialog box and return a function

result of 255, indicating an error condition. Listing 8-26 shows how the MyMonExtend

function handles the startup message.

Listing 8-26 Handling the startup message

PROCEDURE MyHandleStartupMsg (item: Integer; mDialog: DialogPtr;

 VAR monitorValue: LongInt);

VAR

dataRecHand: MonitorDataHandle;

result: OSErr;

i: Integer;

BEGIN

{allocate memory to store data}

dataRecHand :=

MonitorDataHandle(NewHandle(sizeof(MonitorDataRec)));

IF dataRecHand <> NIL THEN

BEGIN

result := MySetUpData(item, dataRecHand);

IF result = noErr THEN

monitorValue := LongInt(dataRecHand)

ELSE {error function result stops any further action}

monitorValue := result;

END

C H A P T E R 8

Control Panels

Creating an Extension for the Monitors Control Panel 8-67

ELSE

BEGIN {dataRecHand not allocated}

 i := StopAlert(kMemErrAlert, NIL);

{error function result stops any further action}

monitorValue := 255;

END;

END;

Allocating Storage in Response to the Initialization Message

If your monitors extension function does not allocate memory in
response to a startup message, it can do so in response to an
initialization message, and then use the superuser (superMsg) or the
normal user (normalMsg) message to initialize control values and user
items, if any. The Monitors control panel does not display the Options
dialog box until after your monitors extension function returns from
either of these messages. ◆

If your function returns an error in response to the startup message, the Monitors control

panel does not display the Options dialog box. Your code can display an alert box

describing the error before returning control to the Monitors control panel.

After it allocates storage, the function shown in Listing 8-26 calls its own MySetUpData

function to check the value of the item parameter. This value indicates whether the user

has selected superuser status.

Listing 8-27 shows the MySetUpData function. If the user is not a superuser, the

SurfBoard monitors extension uses the default values for the rectangle resource. (This

rectangle ends just before the dividing line, so that the superuser controls are not

displayed.) If the user is a superuser, MySetUpData extends the rectangle in the

rectangle ('RECT') resource to include all of the controls in the item list resource

('DITL') resource. If an error occurs, the function notifies the user and returns an error

code value of 255 as its function result.

Listing 8-27 Using a normal user rectangle or extending it to display superuser controls

FUNCTION MySetUpData(superUser: Integer; storage: MonitorDataHandle): OSErr;

VAR

magnifyHdl: Handle;

intensityLevelHdl: Handle;

resHandle: Handle;

i: Integer;

result: OSErr;

BEGIN

result := noErr;

HLock(Handle(storage));

WITH storage^^ DO

BEGIN

C H A P T E R 8

Control Panels

8-68 Creating an Extension for the Monitors Control Panel

{open preferences file first if needed}

 magnifyHdl := GetResource('MAGN', kResID);

IF magnifyHdl <> NIL THEN

BEGIN

toggleMagnifyValue := MyIntHandle(magnifyHdl)^^;

ReleaseResource(magnifyHdl);

END;

IF superUser = 1 THEN

BEGIN

isSuperUser := TRUE;

intensityLevelHdl := GetResource('INTE', kResID);

IF intensityLevelHdl <> NIL THEN

BEGIN

oldFiltering := MyIntHandle(intensityLevelHdl)^^;

filteringSetting := oldFiltering;

ReleaseResource(intensityLevelHdl);

resHandle:= GetResource('RECT', -4096);

IF resHandle <> NIL THEN

RectHandle(resHandle)^^.top := -160

ELSE

result := 255

END

ELSE

result := 255;

END {of superuser = 1}

{close preferences file}

END; {of WITH}

IF result = 255 THEN

BEGIN

DisposeHandle(Handle(storage));

i := StopAlert(kdeepAlert, NIL);

END;

HUnlock(Handle(storage));

MySetUpData := result;

END;

Performing Initialization

Before it displays the Options dialog box and after it has located any resources that your

monitors extension includes, such as gamma table ('gama') resources, the Monitors

control panel calls your monitors extension function with an initMsg message. When

your monitors extension function receives this message, it should set default values for

controls. To handle this message, your function can initialize the settings of its controls. If

it hasn’t already allocated memory in response to the startup message, your function can

C H A P T E R 8

Control Panels

Creating an Extension for the Monitors Control Panel 8-69

allocate memory when it performs initialization. The Monitors control panel calls your

monitors extension with an initialization message after the startup message and before

either the superuser or normal message.

If your function returns an error in response to the initMsg message, the Monitors

control panel does not display the Options dialog box. Your function can display an alert

box describing the error before returning control to the Monitors control panel.

Listing 8-28 shows the MyHandleInitMsg procedure, which the MyMonExtend

function calls to handle the initialization message. First MyHandleInitMsg sets its

controls to their initial values; MyHandleInitMsg calls the Dialog Manager’s

GetDialogItem and the Control Manager’s SetControlValue procedures for this

purpose. Then, if the user is a superuser, the procedure installs the procedure that draws

the dividing line between the normal controls and superuser controls, then initializes the

settings of its superuser controls.

Listing 8-28 Initializing a monitors extension

PROCEDURE MyHandleInitMsg (numItems: Integer; mDialog: DialogPtr;

 dataRecHand: MonitorDataHandle);

VAR

itemType: Integer;

itemHandle: Handle;

itemRect: Rect;

BEGIN

GetDialogItem(mDialog, numItems+kMagnifyControl, itemType,

 itemHandle, itemRect);

SetControlValue(ControlHandle(itemHandle),

 (dataRecHand^^.toggleMagnifyValue));

IF dataRecHand^^.isSuperUser THEN

BEGIN

GetDialogItem(mDialog, numItems+kSuperUserDivLine, itemType,

 itemHandle, itemRect);

SetDialogItem(mDialog, numItems+kSuperUserDivLine, itemType,

 @MyDrawRect, itemRect);

IF dataRecHand^^.oldFiltering = 0 THEN

GetDialogItem(mDialog, numItems+kAntiAliasingCntl,

 itemType, itemHandle, itemRect)

ELSE

GetDialogItem(mDialog, numItems+kFilterControl,

 itemType, itemHandle, itemRect);

SetControlValue(ControlHandle(itemHandle), 1);

END;

END;

C H A P T E R 8

Control Panels

8-70 Creating an Extension for the Monitors Control Panel

Listing 8-29 shows the MyDrawRect procedure, which draws the line dividing superuser

controls from other controls. The MyDrawRect procedure uses the FrameRect

procedure to draw a 1-pixel-high rectangle. Note that MyDrawRect specifies the

coordinates for the dividing line in the coordinate system used by its rectangle ('RECT')

resource. If you wish, you can draw this line in a gray pattern so that it looks similar to

the dividers in menus. (For information on the FrameRect procedure, see Inside
Macintosh: Imaging With QuickDraw.)

Listing 8-29 Drawing a line to separate superuser controls

PROCEDURE MyDrawRect (theWindow: WindowPtr; itemNo: Integer);

VAR

itemType: Integer;

itemHdl: Handle;

itemRect: Rect;

BEGIN

GetDialogItem(theWindow, itemNo, itemType, itemHdl, itemRect);

FrameRect(itemRect);

END;

Responding to a Click in the OK Button

The Monitors control panel calls your monitors extension function with an OK (okMsg)

message when the user clicks the OK button. The OK button is a standard control

defined for the Options dialog box by the Monitors control panel. When the user clicks

the OK button, the Monitors control panel hides the Options dialog box.

This message is a signal to put user preferences into effect. You should not make any

changes requested by the user irreversible until you receive this message. This is your

last chance to check the values of any controls or editable text items that the user might

have changed. Your monitors extension function should update the resources in which it

saves values; it should also make any hardware changes necessary. Your function should

release any memory it has allocated before returning control to the Monitors control

panel.

C H A P T E R 8

Control Panels

Creating an Extension for the Monitors Control Panel 8-71

The MyMonExtend function (see Listing 8-25 on page 8-64) calls its own

MySaveNewValues procedure to handle an OK message from the Monitors control

panel. This procedure checks if the user has changed the setting of the Magnify Enabled

checkbox. If the user is a superuser, it also checks the values of the Anti-Aliasing and

Zirconian Filtration radio buttons. If the user changed values, MyMonExtend writes the

values to its preferences file, which is stored in the Preferences folder, and releases any

memory it has allocated before it returns to the Monitors control panel.

Responding to a Cancel Request

When the user clicks the Cancel button, the Monitors control panel calls your monitors

extension function with a cancel (cancelMsg) message. The Cancel button is a standard

control defined for the Options dialog box by the Monitors control panel. To handle the

cancel request, your monitors extension function should restore the system to its former

state, before the user clicked the Options button; release any memory it allocated; and

return control to the Monitors control panel. If your function modified any values the

user specified before clicking the Cancel button, reinstate the original values.

Handling Mouse Events for a Monitors Extension

When the user clicks any active enabled control that your monitors extension defined for

the Options dialog box, system software generates mouse events. The Monitors control

panel intercepts these events and passes them to your monitors extension function as a

hitMsg message. Your monitors extension function typically changes the setting of the

control or performs the appropriate action in response to a hitMsg message.

Along with the hitMsg message, the Monitors control panel passes three values that

your monitors extension function uses to determine which item the user clicked.

■ In the item parameter, the number of the item clicked. This is not the number you
assign in your item list, but the number after the Monitors control panel appends your
item list to the item list of the Options dialog box.

■ In the numItems parameter, the number of items in the item list of the standard
Options dialog box.

■ In the parameter theEvent, the event record for the mouse event that generated the
hitMsg message.

The Monitors control panel appends the items you define in your monitors extension

item list to the item list for the standard controls in the Options dialog box. Therefore, to

get the actual number of your item, subtract numItems from item.

C H A P T E R 8

Control Panels

8-72 Creating an Extension for the Monitors Control Panel

Listing 8-30 shows the MyHandleHits procedure, which MyMonExtend calls to handle

a hitMsg message. This procedure determines the item number of the clicked control, as

defined in the monitors extension’s item list resource. It does this by subtracting the

number of items in the item list of the Options dialog box (numItems) from the item the

user clicked (whichItem) to get the correct item number. Then MyHandleHits calls the

Dialog Manager’s GetDialogItem procedure and the Control Manager’s

SetControlValue procedure to set the control to the new value indicated by the user.

Listing 8-30 Responding when a user clicks a control

PROCEDURE MyHandleHits (mDialog: DialogPtr; whichItem, numItems: Integer;

dataRecHand: MonitorDataHandle);

VAR

itemType: Integer;

itemHandle: Handle;

itemRect: Rect;

BEGIN

HLock(Handle(dataRecHand));

WITH dataRecHand^^ DO

BEGIN

CASE whichItem - numItems OF

kFilterControl:

BEGIN

GetDialogItem(mDialog, whichItem, itemType, itemHandle,

 itemRect);

SetControlValue(ControlHandle(itemHandle),1);

GetDialogItem(mDialog, numItems+kAntiAliasingCntl, itemType,

 itemHandle, itemRect);

 SetControlValue(ControlHandle(itemHandle),0);

filteringSetting := 1;

END;

kAntiAliasingCntl:

BEGIN

GetDialogItem(mDialog, numItems+kFilterControl, itemType,

 itemHandle, itemRect);

SetControlValue(ControlHandle(itemHandle),0);

GetDialogItem(mDialog, whichItem, itemType, itemHandle,

 itemRect);

SetControlValue(ControlHandle(itemHandle),1);

filteringSetting := 0;

END;

C H A P T E R 8

Control Panels

Creating an Extension for the Monitors Control Panel 8-73

kMagnifyControl:

BEGIN

GetDialogItem(mDialog, whichItem, itemType, itemHandle,

 itemRect);

toggleMagnifyValue := 1 - toggleMagnifyValue;

SetControlValue(ControlHandle(itemHandle),

toggleMagnifyValue);

END;

END; {end of CASE}

END;

HUnlock(Handle(dataRecHand));

END;

Handling Keyboard Events

The Monitors control panel intercepts all key-down and auto-key events for your

monitors extension and sends your monitors extension function a keyboard event

through the keyEvtMsg message. The Monitors control panel passes, in the parameter

theEvent, the event record for the keyboard event. If your monitors extension includes

an editable text item and the user issues a Cut, Copy, or Paste command using the

Command-key equivalent, the Monitors control panel passes this event to your monitors

extension function in the event record.

Including Another Control Panel Definition in a Monitors
Extension File
A control panel file that contains an extension to the Monitors control panel can also

contain a definition for another, separate control panel. You might want to include both

an extension to the Monitors control panel and a new control panel definition in the

same file, for example, if each controls some features of the same video card. Any control

panel definition must include a resource of type 'cdev' and the other resources

described in “Creating a Control Panel’s Resources” beginning on page 8-14.

Because the control panel resources and the monitors extension resources in the file have

different resource ID numbers, the Finder handles them separately. If the user opens a

control panel file containing both a control panel definition and an extension to the

Monitors control panel, the control panel defined in that file appears on the screen, and

the Finder ignores the monitors extension in that file. If the user opens the Monitors

control panel file, then the Monitors control panel searches the other control panel files in

the same folder for extensions and ignores any control resources of type 'cdev' it finds

in those files. The user cannot open a control panel file that contains only an extension to

the Monitors control panel; only the Monitors control panel can open such a file.

C H A P T E R 8

Control Panels

8-74 Control Panels Reference

Control Panels Reference

This section describes the application-defined routines and the resources that are specific

to control panels and extensions to the Monitors control panel.

The section “Application-Defined Routines” describes the control device function that

you must provide for a control panel and the monitors extension function that you must

provide for an extension to the Monitors control panel. You create a control device

function to implement a control panel. A control device function should respond to

messages from the Finder, handling any events or performing any actions as requested

by the Finder. A monitors extension function extends the Monitors control panel to

provide support for a video device so that users can control its settings.

The “Resources” section lists the resources required for a control panel or an extension to

the Monitors control panel. It includes specific sections for the resources you must

supply for a control panel or a monitors extension if those resources are not fully

documented elsewhere in Inside Macintosh, and it indicates where to find information

about required resources that are not covered in that section.

Application-Defined Routines

This section describes the control device function and the monitors extension function.

Control Device Functions

A control device ('cdev') code resource contains a control device function that

implements the features of a control panel.

MyCdev

You provide a control device function to implement your control panel. In the message

parameter, the Finder passes a value indicating which action your control device

function should perform. Here’s how you declare a control device function called

MyCdev:

FUNCTION MyCdev(message, item, numItems, CPrivateValue: Integer;

 VAR theEvent: EventRecord;

 cdevStorageValue: LongInt; CPDialog: DialogPtr)

 : LongInt;

C H A P T E R 8

Control Panels

Control Panels Reference 8-75

message A value that identifies the event or action to which your control
device function should respond. See Table 8-3 on page 8-76 for the
constants your function can receive in this parameter.

item The number of the item that the user clicked. In System 7, this is always
the actual number of the item in your item list. In System 6, the Control
Panel desk accessory appends your item list to its own. Although you
begin numbering your item list with 1, the Control Panel adds the
number of items in its item list to your item. Therefore, to get the
actual number of the clicked item, and to provide for backward
compatibility, your control device function should always subtract
numItems from item.

numItems In System 7, the Finder passes a value of 0 for this parameter. This
parameter is provided for backward compatibility with the Control Panel
desk accessory. In System 6, this parameter contains the number of items
in the item list belonging to the Control Panel desk accessory. To get the
actual number of the item that the user clicked, subtract numItems from
item.

CPrivateValue
Reserved for use by the Finder or the Control Panel desk accessory.

theEvent The event record for the event that caused the Finder to send a hitDev,
nulDev, activDev, deActivDev, updateDev, or keyEvtDev message
to your control device function. See the chapter “Event Manager” in Inside
Macintosh: Macintosh Toolbox Essentials for a description of events and
event records.

cdevStorageValue
The first time the Finder calls your control device function, this parameter
is set to the constant cdevUnset. After the first call, this parameter
contains the function result last returned by your control device function.
Typically, in response to an initDev message, a control device function
allocates a handle to memory and returns this handle as its function
result. It does this so that it can store values between calls from the Finder.
On all subsequent calls, the Finder passes the handle back to your
function as the value of cdevStorageValue, and your function returns
this value as its function result until an error condition occurs or the user
closes the control panel.

If your function does not create a handle, your function and the Finder
pass cdevUnset back and forth, instead of the handle, until an error
condition occurs or the user closes the control panel.

CPDialog The dialog pointer for your control panel’s dialog box. The dialog can be
a color dialog on systems that support color windows. See the chapter
“Dialog Manager” in Inside Macintosh: Macintosh Toolbox Essentials for a
description of dialog pointers.

C H A P T E R 8

Control Panels

8-76 Control Panels Reference

DESCRIPTION

The Finder calls your control device function repeatedly with various messages in

response to user actions and events from the time the user opens your control panel until

the user closes the control panel or your function reports an error condition from which

it cannot recover. Before attempting to handle messages from the Finder, your control

device function should determine whether enough memory is available to perform the

requested action.

Depending on how you define your control panel’s machine resource, the Finder calls

your control device function for the first time with a macDev message or an initDev

message. Apart from a macDev message, your control device function should ignore

any messages that it receives before an initDev message. Your function should also

ignore any messages it receives after a closeDev message, which the Finder sends

under normal conditions free of error as a signal that your function should begin its

termination process: releasing any allocated memory, handles, pointers, and so on.

Between the initDev and the closeDev calls, the Finder calls your control device

function to direct it to handle activate, update, keyboard-related, mouse-related, and null

events. When the user chooses a command from the Finder’s Edit menu, the Finder

passes the command to your function as an edit message. Table 8-3 lists the constant

names for the values that the Finder passes in the message parameter and provides a

description of the action your function should perform.

Table 8-3 Messages from the Finder

Constant Value Description

initDev 0 Your control device function should perform any
initialization, set default values for controls, and create a
handle to any memory that it needs.

hitDev 1 The user clicked an enabled item, and your control device
function should handle the click.

closeDev 2 The user closed the control panel; your function should
terminate after disposing of any handles and pointers it
created. (In System 6 and earlier, the user could have also
selected another control panel.)

nulDev 3 A null event occurred. Your control device function should
perform idle processing. Do not assume any particular
timing for this message.

updateDev 4 An update event occurred. Your control device function
should update any user items and redraw any controls that
are not standard dialog items handled by the Dialog
Manager.

activDev 5 Your control panel is becoming active as the result of an
activate event. Your control device function should make
the default button and any other controls in your control
panel active.

C H A P T E R 8

Control Panels

Control Panels Reference 8-77

In System 7, the Finder processes all Command-key equivalents on behalf of your

control panel, except those that it maps to its own Edit menu commands. The Finder

converts these Command-key equivalents to edit messages, which it then passes to your

control panel for processing. In System 6, the Control Panel passes both commands from

the Edit menu and their Command-key equivalents to your control device function for

processing. See the sections “Responding to Keyboard Events” on page 8-37 and

“Handling Edit Menu Commands” on page 8-46 for more information on how to handle

Command-key equivalents.

If your function cannot recover from an error condition, it must return one of three error

codes to the Finder after disposing of any memory, handles, and pointers that it created

and restoring the system stack to the state it would be in after successful execution. See

Table 8-2 on page 8-47 for the error codes that your control device function can return.

deActivDev 6 Your control panel is becoming inactive as the result of an
activate event. Your control device function should make
the default button and any other controls in your control
panel inactive.

keyEvtDev 7 A key-down or an auto-key event occurred. Your control
device function should process the keyboard event.

macDev 8 Your control device function should check the hardware
and software configuration to determine whether the
control panel can run on it. Your function should return a
function result of 1 if it can run and 0 if it cannot.

undoDev 9 The user chose the Undo command from the Finder’s Edit
menu. Your control device function should handle the
command.

cutDev 10 The user chose the Cut command from the Finder’s Edit
menu. Your control device function should handle the
command.

copyDev 11 The user chose the Copy command from the Finder’s Edit
menu. Your control device function should handle the
command.

pasteDev 12 The user chose the Paste command from the Finder’s Edit
menu. Your control device function should handle the
command.

clearDev 13 The user chose the Clear command from the Finder’s Edit
menu. Your control device function should handle the
command.

Table 8-3 Messages from the Finder (continued)

Constant Value Description

C H A P T E R 8

Control Panels

8-78 Control Panels Reference

SEE ALSO

For information on how to write a control device function, see “Writing a Control Panel

Function” beginning on page 8-25. For information on the required and optional

resources for your control panel, see “Creating a Control Panel’s Resources” beginning

on page 8-14.

Monitors Extension Functions

A monitor ('mntr') code resource contains a monitors extension function, which adds

controls to the Options dialog box of the Monitors control panel. This function

implements the features that allow users to set values for the added controls.

MyMntrExt

You provide a monitors extension function to implement the features that allow users to

set the controls for your video card. Your function should respond appropriately to any

messages sent to it by the Monitors control panel. In the message parameter, the

Monitors control panel passes a value indicating which action your function should

perform. Here’s how you declare a monitors extension function called MyMntrExt:

FUNCTION MyMntrExt (message, item, numItems: Integer;

monitorValue: LongInt; mDialog: DialogPtr;

theEvent: EventRecord;

 screenNum: Integer; VAR screens: ScrnRsrcHandle;

VAR scrnChanged: Boolean): LongInt;

message A value that identifies the event or action to which your monitors
extension function should respond. See Table 8-4 on page 8-80 for the
values your function can receive in this parameter.

item For hitDev messages, the number of the item that the user clicked. The
Monitors control panel appends your item list to its own. So, although
you begin numbering your item list with 1 in your item list resource, the
Monitors control panel adds the number of standard items in the Options
dialog box’s item list to your item. Therefore, to get the actual number of
the clicked item, your monitors extension function should always subtract
numItems from item.

For the startupMsg message, the item parameter indicates whether the
user has selected superuser status. If so, the item parameter is 1; if not, it
is 0.

numItems The item list number of the last standard item in the Options dialog box.

monitorValue
The first time the Monitors control panel calls your monitors extension
function, that is, when the message parameter equals startupMsg, the
value of the monitorValue parameter is 0. After the first call, this

C H A P T E R 8

Control Panels

Control Panels Reference 8-79

parameter contains the result your monitors extension function returned
the last time the Monitors control panel called it. Because control panel
routines, including a monitors extension function, cannot use global
variables to store data between calls, your function can use its function
result to return a handle to any memory it allocates. The next time the
Monitors control panel calls your monitors extension function, it passes
the handle back to your function in the monitorValue parameter.

If your monitors extension function returns a function result in the range
1 through 255, the Monitors control panel interprets this result as an error
and closes your Options dialog box. Therefore, your monitors extension
function will not receive a value in this range in the monitorValue
parameter.

mDialog The dialog pointer for the Options dialog box. See the chapter “Dialog
Manager” in Inside Macintosh: Macintosh Toolbox Essentials for a
description of dialog pointers.

theEvent The event record for an event that caused the Monitors control panel to
pass a hitMsg, nulMsg, or keyEvtMsg message to your monitors
extension function. See the chapter “Event Manager” in Inside Macintosh:
Macintosh Toolbox Essentials for a description of events and event records.

screenNum The number of the screen device (that is, the monitor) that the user
selected. The Monitors control panel numbers monitors consecutively, in
the same order as the slots in which the cards are installed, starting with 1.

screens A handle to a screen ('scrn') resource. See Inside Macintosh: Devices for
information on the screen resource.

scrnChanged
A Boolean value that you can use to indicate whether you have modified
the screen ('scrn') resource. Set this parameter to TRUE if you have
modified the screen resource. When you set the scrnChanged parameter
to TRUE, the Monitors control panel checks whether the values in the
screen resource are still valid; if there is a problem, the Monitors control
panel tries to correct it.

This parameter makes it easier to implement a control that changes the
apparent area displayed on the screen. For example, your monitor might
be able to display either two pages of a document or a magnified view of
a single page. If the user changes the area displayed on one screen in a
system with multiple screens, the displays on adjacent screens could
overlap or show gaps. When you change the screen resource to
implement this change, the coordinates of the global rectangles for
adjacent screens are no longer contiguous. In this case, if you have set the
scrnChanged parameter to TRUE, the Monitors control panel shifts the
virtual locations of the screens to eliminate the gaps or overlaps.

DESCRIPTION

The Monitors control panel calls your monitors extension function repeatedly with

messages requesting your function to perform an action or handle an event that occurs

while the Options dialog box is displayed. Table 8-4 lists the constant names for the

C H A P T E R 8

Control Panels

8-80 Control Panels Reference

values that the Monitors control panel passes in the message parameter and provides a

description of the action your function should perform.

Table 8-4 Messages from the Monitors control panel

Constant Value Description

initMsg 1 Your monitor extension function should perform initialization; it
should allocate any memory it needs and set default values for its
controls.

The Monitors control panel sends this message to your function before
it displays the Options dialog box but after it locates any resources,
such as gamma tables, that your extension includes.

okMsg 2 When the user clicks the OK button, the Monitors control panel hides
the Options dialog box and calls your monitors extension function
with this message. This is your function’s last chance to check the
values of dialog items that the user might have changed. Your function
should release any memory that it previously allocated before
returning control to the Monitors control panel.

The OK button is a standard control put in the Options dialog box by
the Monitors control panel.

cancelMsg 3 The user clicked the Cancel button. Your monitors extension function
should return the device that your monitors extension controls to the
condition it was in before the user clicked the Options button, release
any memory that your function previously allocated, and return
control to the Monitors control panel.

The Cancel button is a standard control put in the Options dialog box
by the Monitors control panel.

hitMsg 4 The user clicked an enabled control in the Options dialog box, and
your extension function should handle the click.

The Monitors control panel appends your item list to the standard list
of items in the Options dialog box and passes, in the item parameter,
the item’s item number in the combined list. To get the actual number
of the clicked item as defined in your item list, subtract numItems
from item.

nulMsg 5 A null event occurred. Your monitors extension function should
perform tasks that have to be done repeatedly, if any. Do not assume
any particular timing for this message.

updateMsg 6 An update event occurred. Your monitors extension function should
update any user items and redraw any controls that are not standard
items handled by the Dialog Manager.

activateMsg 7 An activate event occurred, indicating that the Options dialog box is
becoming active. Currently, the Monitors control panel does not call
your monitors extension function with this message, because the
Options dialog box is modal. However, your function should handle
this message as it would any activate event, because in future versions
of the Operating System the Options dialog box might be modeless.

C H A P T E R 8

Control Panels

Control Panels Reference 8-81

deactivateMsg 8 An activate event occurred, indicating that the Options dialog box is
becoming inactive. Currently, the Monitors control panel does not call
your extension function with this message, because the Options dialog
box is modal. However, your function should handle this message as
you would any activate event, because in future versions of the
Operating System the Options dialog box might be modeless.

keyEvtMsg 9 A keyboard event occurred. Your monitors extension function should
process the keyboard event.

superMsg 10 The user has selected superuser status. Your monitors extension
function should display any controls that are reserved for superusers.

The Monitors control panel sends this message when the user holds
down the Option key while clicking the Options button.

This message is provided for backward compatibility with System 6.
However, your monitors extension function can respond to it by
initializing any controls that you have reserved for superusers, if your
function has not already done this in response to either the
startupMsg or initMsg message. If your code does not handle this
message, it should return as its function result a handle to any
previously allocated memory.

The Monitors control panel sends this message or the normal message
immediately following the initialization message.

normalMsg 11 The user is not a superuser. This message is provided for backward
compatibility with System 6. However, your monitors extension
function can respond to it by initializing any controls, if your function
has not already done this in response to either the startupMsg or
initMsg message. If your function does not handle this message, it
should return as its function result a handle to any previously
allocated memory.

The Monitors control panel sends this message or the superuser
message immediately following the initialization message.

startupMsg 12 The Monitors control panel sends this message as soon as the code in
your monitors code ('mntr') resource has been loaded, and before
the Monitors control panel finds any resources that your monitors
extension function refers to. If the user is a superuser, the Monitors
control panel sets the item parameter to 1 when it sends the startup
message.

When your monitors extension function receives this message, it can
load and modify any resources that must allow for the capabilities of
the system or for superusers. For example, your function can modify
the item list resource to display special controls for superusers.

Table 8-4 Messages from the Monitors control panel (continued)

Constant Value Description

C H A P T E R 8

Control Panels

8-82 Control Panels Reference

Your monitors extension function can return either an error code or a value that you

want to have available the next time the Monitors control panel calls your function. For

example, if your monitors extension function allocates memory, it can return a handle to

the memory as its function result. Each time the Monitors control panel calls your

monitors extension function, the monitorValue parameter contains the value that your

function returned the last time it was called.

Your monitors extension function must also detect and recover from any error conditions

or report them to the user. If it cannot recover from an error, your monitors extension

function should display an error dialog box and then return a value between 1 and 255.

If your function returns a value in this range, the Monitors control panel closes the

Options dialog box immediately and does not call your function again. If your function

returns an error in response to the initMsg or startupMsg message, the Monitors

control panel does not display the Options dialog box. Your function can display an alert

box describing the error before returning control to the Monitors control panel.

SEE ALSO

For more information about the messages the Monitors control panel sends to your

monitors extension function and how to handle them, see “Writing a Monitors Extension

Function” beginning on page 8-61.

Resources

This section identifies the resources you supply for a control panel and monitors

extension. The required resources for a control panel are

■ A machine ('mach') resource that describes the systems on which your control panel
can run or signals the Finder to call your control device function to perform this check.

■ A rectangle positions ('nrct') resource to define the number of rectangles that make
up the control panel and their positions.

■ An item list ('DITL') resource to specify all of the items that are to appear in the
control panel. These items can include static text, buttons, checkboxes, radio buttons,
editable text, the resource IDs of icons and QuickDraw pictures, and the resource IDs
of other types of controls, such as pop-up menus.

■ An icon list ('ICN#') resource and other icon family resources ('ics#', 'icl8',
'icl4', 'ics8', 'ics4') to define the icons for the control panel file.

■ A control device function ('cdev') code resource that contains the code to implement
the control panel.

■ A file reference ('FREF') resource to associate your control panels’s icons with your
control panel file so that the Finder can display the icons with the file type they
represent.

C H A P T E R 8

Control Panels

Control Panels Reference 8-83

■ A bundle ('BNDL') resource to associate your control panel’s signature, icon list, and
file reference resources.

■ A signature resource—defined using a string ('STR ') resource—to identify your
control panel.

The following required resources are described completely in chapters of Inside
Macintosh: Macintosh Toolbox Essentials and are not included in this reference section:

■ For the item list ('DITL') resource, see the chapter “Dialog Manager” in Inside
Macintosh: Macintosh Toolbox Essentials.

■ For the icon family, file reference ('FREF'), bundle ('BNDL'), and signature
resources, see the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox
Essentials.

The two remaining required resources—machine ('mach') and rectangle positions

('nrct') resources—are described in this section. The font information ('finf')

resource is also covered in this section; it is an optional resource that you can supply to

specify the font to be used for static text items.

Note

You can include additional resources in your control panel file that are
not required. See “Providing Additional Resources for a Control Panel”
on page 8-22 for more information. ◆

The resources required for an extension to the Monitors control panel are

■ A card ('card') resource that contains a Pascal string identical to the name of the
video card. (This is the name in the declaration ROM of the card.) Because a monitors
extension can include as many card resources as you like, one extension file can
handle several types of video cards.

■ A monitor ('mntr') code resource that contains the code to implement and handle
the controls and features of your monitors extension.

■ A rectangle ('RECT') resource to describe the size and shape of the area used to
display your controls.

■ An item list ('DITL') resource to specify which items you want to appear in your
monitors extension. You can add additional controls for superusers, separating them
from the other controls with a horizontal dividing line.

Of these required resources, the card ('card'), monitor ('mntr'), and rectangle

('RECT') resources are described in this reference section. See the chapter “Dialog

Manager” in Inside Macintosh: Macintosh Toolbox Essentials for information about the item

list ('DITL') resource.

For information about the optional resources you can provide for a monitors extension,

see “Supplying Optional Resources for a Monitors Extension” beginning on page 8-56.

C H A P T E R 8

Control Panels

8-84 Control Panels Reference

The Machine Resource

You can identify to the Finder the hardware and software components on which your

control panel runs, or you can signal the Finder to call your control device function to

perform this check. In either case, create a machine resource of type 'mach'. A machine

resource must have a resource ID of –4064.

The machine resource consists of two word-sized masks: a hard and a soft mask.

Figure 8-16 shows the structure of a compiled machine resource.

Figure 8-16 Structure of a compiled machine ('mach') resource

A compiled version of a machine resource contains these elements:

■ Soft mask. See Table 8-5 for a description of this mask.

■ Hard mask. See Table 8-5 for a description of this mask.

The Finder performs the check if you set these masks to values representing the

requirements for your control panel.

Note

In System 6, the Control Panel does not display the icon for a control
panel file if the machine resource indicates that the control panel cannot
run on the current system. ◆

If you set these masks to values indicating that the Finder is to call your control device

function to perform the check, the Finder calls your function for the first time with a

macDev message. (See “Determining If a Control Panel Can Run on the Current System”

on page 8-29 for a discussion of how to handle a macDev message.)

Table 8-5 shows the values you use to set the machine resource masks.

C H A P T E R 8

Control Panels

Control Panels Reference 8-85

For more information about the machine resource, see “Specifying the Machine

Resource” on page 8-20.

The Rectangle Positions Resource

Your control panel can consist of one or more rectangles. To define a list of rectangles

that determine the display area for your control panel, create a rectangle positions

resource of type 'nrct'. A rectangle positions resource must have a resource ID

of –4064. Figure 8-17 shows the structure of a compiled rectangle positions resource.

Figure 8-17 Structure of a compiled rectangle positions ('nrct') resource

Table 8-5 Possible settings for the machine resource masks

Soft mask Hard mask Action

$0000 $FFFF The Finder calls this control device function with a
macDev message, and the function must perform its own
hardware and software requirements check.

$3FFF $0000 This control panel runs on Macintosh II systems only.

$7FFF $0400 This control panel runs on all systems with an Apple
Desktop Bus (ADB).

$FFFF $0000 This control panel runs on all systems.

C H A P T E R 8

Control Panels

8-86 Control Panels Reference

A compiled version of a rectangle positions resource contains these elements:

■ Number of rectangles in the list.

■ Coordinates for each rectangle. You specify the coordinates as top, left, bottom, and
right.

To provide for backward compatibility with the Control Panel desk accessory, the Finder

accepts only the coordinates (–1,87) as the origin of a control panel. If you are designing

for System 7 only, you can extend the bottom and right edges of a control panel as far as

you like. If you want your control panel to run in System 7 and previous versions of

system software, you must limit your control panel’s size to the area bounded by

(–1,87,255,322). These are the coordinates used by the Control Panel desk accessory.

In System 6, the Control Panel desk accessory draws a frame that is 2 pixels wide around

each rectangle. To join two parts of a panel neatly, overlap their rectangles by 2 pixels on

the side where they meet.

For more information about the rectangle positions resource, see “Defining the Control

Panel Rectangles” beginning on page 8-15.

The Font Information Resource

The Dialog Manager uses the default application font when it displays the static text

items in your control panel. To specify a different font, create a font information resource

of type 'finf'. A font information resource must have a resource ID of –4049. This is an

optional resource for control panels. Figure 8-18 shows the structure of a compiled font

information resource.

Figure 8-18 Structure of a compiled font information ('finf') resource

A font information resource contains three 2-byte words. A compiled version of a

rectangle positions resource contains these elements:

■ Font ID number. The Finder sets the graphics port’s txFont field to this value.

■ Font style. The Finder sets the graphics port’s txFace field to this style.

■ Font size. The Finder sets the graphics port’s txSize field to this size.

C H A P T E R 8

Control Panels

Control Panels Reference 8-87

For more information about the font information resource, see“Specifying the Font of

Text in a Control Panel” on page 8-23.

Note

The Control Panel desk accessory in System 6 does not support font
information resources. If your control panel can run in System 6 and you
want to specify a different font, see “Defining Text in a Control Panel as
User Items” on page 8-24. ◆

The Control Device Function Code Resource

A control device function code resource contains the code to implement a control panel

and respond to messages from the Finder. A control device function code resource is a

resource of type 'cdev' and must have a resource ID of –4064. This resource must begin

with a control device function (see “Control Device Functions” beginning on page 8-74

for more information).

The Card Resource

A card resource specifies a video card’s name. A card resource is a resource of type

'card' and must have a resource ID within the range –4080 through –4065. A card

resource contains a Pascal string—that is, a length byte followed by an ASCII string—

identical to the name of a video card. The name of a video card is located in the ROM of

the card, as described in Designing Cards and Drivers for the Macintosh Family, third

edition. Figure 8-19 shows the structure of a compiled card resource.

Figure 8-19 Structure of a compiled card ('card') resource

Because a monitors extension file can contain as many card resources as you wish, one

extension file can handle several types of video cards. The Options dialog box displays

the name in the card resource unless you also include a string ('STR#') resource in the

extension file. For more information about the string resource, see “Providing an

Alternative Name for a Video Card” on page 8-58.

C H A P T E R 8

Control Panels

8-88 Control Panels Reference

The Monitor Code Resource

A monitor code resource contains the code that carries out the functions of a monitors

extension. A monitor code resource is a resource of type 'mntr' and must have a

resource ID of –4096. This resource must begin with a monitors extension function that

you provide. The Monitors control panel calls your monitors extension function with

requests to perform an action or handle an event. A monitors extension should return as

a function result a handle to memory that the function allocated or an error code. In

MPW, you can set the code resource type to 'mntr' when you link the program.

The Rectangle Resource

A rectangle resource describes the display area for the controls of a monitors

extension. A rectangle resource is a resource of type 'RECT' and must have a resource

ID of –4096. You specify the rectangle coordinates as top, left, bottom, and right.

Figure 8-20 shows the compiled version of a rectangle positions resource.

Figure 8-20 Structure of a compiled rectangle ('RECT') resource

When enlarging the Options dialog box, the Monitors control panel places the upper

edge of the new display area immediately below the lower edge of the area containing

the standard controls.

When you assign coordinates to your controls, assume that the origin (that is, the

upper-left corner) of the display area for your items is at (0,0). In this coordinate system,

the area bounding the standard controls (such as the OK and Cancel buttons) has a right

coordinate of 319 and a negative top coordinate. See “Defining a Rectangle for a

Monitors Extension” on page 8-52 for an example.

Before displaying the controls defined by your monitors extension, the Monitors control

panel changes the coordinates of your controls, using the coordinate system of the

Options dialog box. To get the true locations of your dialog items, use the Dialog

Manager’s GetDialogItem procedure; see the chapter “Dialog Manager” in Inside
Macintosh: Macintosh Toolbox Essentials for information on this procedure.

C H A P T E R 8

Control Panels

Summary of Control Panels 8-89

Summary of Control Panels

Pascal Summary

Constants

CONST

{values for the message parameter for control device functions}

initDev = 0; {perform initialization}

hitDev = 1; {handle click in enabled item}

closeDev = 2; {respond to user closing the control panel}

nulDev = 3; {handle null event}

updateDev = 4; {handle update event}

activDev = 5; {handle activate event}

deActivDev = 6; {respond to control panel becoming inactive}

keyEvtDev = 7; {handle key-down or auto-key event}

macDev = 8; {check whether control panel can run }

{ on current system}

undoDev = 9; {handle Undo command}

cutDev = 10; {handle Cut command}

copyDev = 11; {handle Copy command}

pasteDev = 12; {handle Paste command}

clearDev = 13; {handle Clear command}

{initial value of cdevStorageValue}

cdevUnset = 3; {the control device function has not }

 { returned a handle}

{error codes}

cdevGenErr = -1; {general error; no error dialog box is displayed }

{ to the user}

cdevMemErr = 0; {not enough memory available to continue; an }

{ out-of-memory error dialog box is displayed to }

{ the user}

cdevResErr = 1; {needed resource is not available or is missing; }

{ error dialog box is displayed to the user}

{values for the message parameter for a monitors extension function}

initMsg = 1; {perform initialization}

okMsg = 2; {user clicked OK button}

C H A P T E R 8

Control Panels

8-90 Summary of Control Panels

cancelMsg = 3; {user clicked Cancel button}

hitMsg = 4; {user clicked enabled control}

nulMsg = 5; {handle null event}

updateMsg = 6; {handle update event}

activateMsg = 7; {not used}

deactivateMsg = 8; {not used}

keyEvtMsg = 9; {handle keyboard event}

superMsg = 10; {show superuser controls}

normalMsg = 11; {show only normal controls}

startupMsg = 12; {gives user status (whether a superuser)}

Application-Defined Routines

Control Device Functions

FUNCTION MyCdev (message, item, numItems, CPrivateValue:
Integer;VAR theEvent: EventRecord;
cdevStorageValue: LongInt;
CPDialog: DialogPtr): LongInt;

Monitors Extension Functions

FUCNTION MyMntrExt (message, item, numItems: Integer;
monitorValue: LongInt; mDialog: DialogPtr;
theEvent: EventRecord; screenNum: Integer;
VAR screens: ScrnRsrcHandle;
VAR scrnChanged: Boolean): LongInt;

C Summary

Constants

enum {

/*values for the message parameter for control device functions*/

initDev = 0, /*perform initialization*/

hitDev = 1, /*handle click in enabled item*/

closeDev = 2, /*respond to user closing control panel*/

nulDev = 3, /*handle null event*/

updateDev = 4, /*handle update event*/

activDev = 5, /*handle activate event*/

deActivDev = 6, /*respond to control panel becoming inactive*/

keyEvtDev = 7, /*handle key-down or auto-key event*/

C H A P T E R 8

Control Panels

Summary of Control Panels 8-91

macDev = 8, /*determine whether control panel can run */

/* on current system*/

undoDev = 9, /*handle Undo command*/

cutDev = 10, /*handle Cut command*/

copyDev = 11, /*handle Copy command*/

pasteDev = 12, /*handle Paste command*/

clearDev = 13, /*handle Clear command*/

/*initial value of cdevStorageValue*/

cdevUnset = 3, /*the control device function has not */

 /* returned a handle*/

/*error codes*/

cdevGenErr = -1, /*general error; no error dialog box is displayed */

/* to the user*/

cdevMemErr = 0, /*not enough memory available to continue; an */

/* out-of-memory error dialog box is displayed to */

/* the user*/

cdevResErr = 1 /*needed resource is not available or is missing; */

/* error dialog box is displayed */

/* to the user*/

};

enum {

/*values for the message parameter for a monitors extension*/

initMsg = 1, /*perform initialization*/

okMsg = 2, /*user clicked OK button*/

cancelMsg = 3, /*user clicked Cancel button*/

hitMsg = 4, /*user clicked enabled control*/

nulMsg = 5, /*handle null event*/

updateMsg = 6, /*update event*/

activateMsg = 7, /*not used*/

deactivateMsg = 8, /*not used*/

keyEvtMsg = 9, /*handle keyboard event*/

superMsg = 10, /*show superuser controls*/

normalMsg = 11, /*show only normal controls*/

startupMsg = 12 /*gives user status (whether a superuser)*/

};

C H A P T E R 8

Control Panels

8-92 Summary of Control Panels

Application-Defined Routines

Control Device Functions

pascal unsigned long MyCdev
(short message, short item, short numItems,
short CPrivateVal, const EventRecord *theEvent,
unsigned long cdevStorageValue,
DialogPtr CPDialog);

Monitors Extension Functions

pascal unsigned long MyMntrExt
(short message, short item, short numItems,
 unsigned long monitorValue,
 DialogPtr mDialog,
 const EventRecord *theEvent, short screenNum,
 ScrnRsrcHandle screens, Boolean scrnChanged);

Contents 9-1

C H A P T E R 9

Contents

Desktop Manager

About the Desktop Database 9-4

Using the Desktop Manager 9-4

Desktop Manager Reference 9-6

Data Structure 9-6

The Desktop Parameter Block 9-7

Routines 9-8

Locating, Opening, and Closing the Desktop Database 9-9

Reading the Desktop Database 9-12

Adding to the Desktop Database 9-17

Deleting Entries From the Desktop Database 9-20

Manipulating the Desktop Database Itself 9-23

Summary of the Desktop Manager 9-27

Pascal Summary 9-27

Constants 9-27

Data Types 9-27

Routines 9-28

C Summary 9-30

Constants 9-30

Data Types 9-31

Routines 9-31

Assembly-Language Summary 9-34

Data Structures 9-34

Trap Macros 9-35

Result Codes 9-35

C H A P T E R 9

9-3

Desktop Manager

For quick access to the resources it needs, the Finder maintains a central desktop
database of information about the files and directories on a volume. The Finder updates

the database when applications are added, moved, renamed, or deleted.

Normally, your application won’t need to use the information in the desktop database or

to use Desktop Manager routines to manipulate it. Instead, your application should let

the Finder manipulate the desktop database and handle such Desktop Manager tasks as

maintaining user comments associated with files and managing the icons used by

applications.

▲ W A R N I N G

Although there may be instances where you would like to gain access to
the desktop database by using Desktop Manager routines, you should
never change, add to, or remove any of this information. Manipulating
the desktop database is likely to wreak havoc on your users’ systems. ▲

In case you should discover some important need to retrieve information from the

desktop database or even to change the desktop database from within your application,

Desktop Manager routines are provided for you to do so. While your application

probably won’t ever need to use them, for the sake of completeness they are described in

this chapter.

Much of the information in the desktop database comes from the bundle resources for

applications and other files on the volume. (See the chapter “Finder Interface” in Inside
Macintosh: Macintosh Toolbox Essentials for a discussion on setting the bundle bit of an

application so that its bundled resources get stored in the desktop database.) The

desktop database contains all icon definitions and their associated file types. It lists all

the file types that each application can open and all copies or versions of the application

that’s listed as the creator of a file. The desktop database also lists the location of each

application on the disk and any comments that the user has added to the information

windows for desktop objects. The Desktop Manager provides routines that let your

application retrieve this information from the desktop database.

The Finder maintains a desktop database for each volume with a capacity greater than

2 MB. For most volumes, such as hard disks, the database is stored on the volume itself.

For read-only volumes—such as some compact discs—that don’t contain their own

desktop database, the Desktop Manager creates one for it and stores it in the System

Folder of the boot drive.

Note

If you distribute read-only media, it is generally a good idea to store on
each volume both a desktop database (for users running System 7 or
later) and a Desktop file (for users running older versions of system
software). Create a desktop database on your master volume by pressing
Command-Option when booting your system with System 7. Then
create a Desktop file by pressing Command-Option and restarting your
system with version 6.0. ◆

For compatibility with older versions of system software, the Finder keeps the

information for ejectable volumes with a capacity smaller than 2 MB in a resource file

instead of in a database.

C H A P T E R 9

Desktop Manager

9-4 About the Desktop Database

Although the Desktop Manager provides tools for both reading and changing the

desktop database, your application should not ordinarily change anything in the

database. You can read the database to retrieve information, such as the icons defined by

other applications.

Note

The desktop database doesn’t store customized icons (that is, those with
resource IDs of –16455 described in the chapter “Finder Interface” in
Inside Macintosh: Macintosh Toolbox Essentials), so your application can’t
retrieve them by using Desktop Manager routines. ◆

If the Translation Manager is available, the desktop database also includes information

retrieved from each application’s 'open' and 'kind' resources. For information about

the information stored in these resources, see the chapter “Translation Manager” in this

book.

About the Desktop Database

In earlier versions of system software, Finder information for each volume was stored

in the volume’s Desktop file, a resource file created and used by the Finder and invisible

to the user. This strategy meets the needs of a single-user system with reasonably small

volumes. The Desktop file is still used on ejectable volumes with a capacity less than

2 MB so that these floppy disks can be shared with Macintosh computers running earlier

versions of system software. (Note, however, that resources can’t be shared. Since the

Finder is always running in System 7, it keeps each floppy disk’s Desktop file open, so

your application can’t read or write to it.)

Because resources can’t be shared, a different strategy has been used for AppleShare

volumes, which are available to multiple users over a network. The Desktop Manager in

System 7 uses the strategy for large local volumes that AppleShare file servers have

previously used for shared volumes. When a volume is first mounted, the Finder collects

the bundle information from all applications on the disk and builds the desktop

database. Whenever an application is added to or removed from the disk, the Finder

updates the desktop database. Through Desktop Manager routines, the database is also

accessible to any other application running on the system.

Using the Desktop Manager

You can manipulate the desktop database with a set of low-level routines that follow the

parameter-block conventions used by the File Manager. The desktop database functions

use a desktop parameter block (see page 9-7 for the structure of the desktop parameter

block).

C H A P T E R 9

Desktop Manager

Using the Desktop Manager 9-5

Because you cannot use the Desktop Manager functions on a disk that does not have a

desktop database, call PBHGetVolParms to verify that the target disk has a desktop

database before calling any of the Desktop Manager functions. (For a description of the

PBHGetVolParms function and the bHasDesktopMgr bit that you should check, see

the chapter “File Manager” in Inside Macintosh: Files.)

Because the Finder uses the desktop database, the database is almost always open. When

the Desktop Manager opens the database, it assigns the database a reference number that

represents the access path. You use the PBDTGetPath function to get the reference

number, which you must specify when calling most other Desktop Manager functions. If

the desktop database is not open, PBDTGetPath opens it.

If you are manipulating the database in the absence of the Finder, you can open the

database with PBDTOpenInform, which performs the same functions as PBDTGetPath

and also sets a flag to tell your application whether the desktop database was empty

when it was opened. Your application should never close the database.

The Desktop Manager provides different functions for manipulating different kinds of

information in the database. Not all manipulations are possible with all kinds of data.

You can retrieve five kinds of information from the database:

■ icon definitions

■ file types and icon types supported by a known creator

■ name and location of applications with a known creator

■ user comments for a file or a directory

■ size and parent directory of the desktop database

To retrieve an icon definition, call PBDTGetIcon. You must specify a file creator, file

type, and icon type. The database recognizes both large and small icons, with 1, 4, or 8

bits of color encoding. (For a description of these icons, see the chapter “Finder

Interface” in Inside Macintosh: Macintosh Toolbox Essentials.)

To step through a list of all the icon types supported by an application, make repeated

calls to PBDTGetIconInfo. Each time you call PBDTGetIconInfo, you specify a

creator and an index value. Set the index to 1 on the first call, and increment it on each

subsequent call until PBDTGetIconInfo returns the result code afpItemNotFound.

For each entry in the icon list, PBDTGetIconInfo reports the icon type, the file type it is

associated with, and the size of its icon data.

To identify the application that can open a file with a given creator, call PBDTGetAPPL.

In each call to PBDTGetAPPL, you specify a creator (which is the application’s signature)

and an index value. An index value of 0 retrieves the “first choice” application—that is,

the one with the most recent creation date. By setting the index to 1 on the first call and

incrementing it on each subsequent call until PBDTGetAPPL returns the result code

afpItemNotFound, you can make multiple calls to PBDTGetAPPL to find information

about all copies or versions of the application with this signature on the disk.

PBDTGetAPPL returns them all in arbitrary order. PBDTGetAPPL returns the name,

parent directory ID, and creation date of each application in the desktop database.

C H A P T E R 9

Desktop Manager

9-6 Desktop Manager Reference

To retrieve the user comments for a file or directory, call PBDTGetComment. The user can

change comments at any time by typing in the comment box of the information window

for any desktop object.

Your application should not ordinarily call the functions for adding and removing data

to and from the database. If your application does need to write to or delete information

from the desktop database, it must call PBDTFlush to update the copy stored on the

volume.

The following list summarizes the data manipulation functions:

Desktop Manager Reference

This section describes the data structure and routines that are specific to the Desktop

Manager. The “Data Structure” section describes the desktop parameter block, and the

“Routines” section describes the routines your application can use to retrieve

information from the desktop database.

Data Structure

You can manipulate the desktop database with a set of low-level routines that follow

the parameter-block conventions used by the File Manager. (For more information on

parameter blocks, see the chapter “File Manager” in Inside Macintosh: Files.) This section

describes the parameter block you pass to Desktop Manager routines.

Kind of data Read Write Remove

Icon definitions (for a
given file type and
creator)

PBDTGetIcon PBDTAddIcon —

Icon types (associated
with each file type that
an application
supports)

PBDTGetIconInfo — —

Applications with a
given creator

PBDTGetAPPL PBDTAddAPPL PBDTRemoveAPPL

User comments PBDTGetComment PBDTSetComment PBDTRemoveComment

Entire desktop
database

PBDTGetInfo
(returns the size and
parent directory of
the database)

PBDTFlush
(updates the copy
stored on the
volume)

PBDTDelete and
PBDTReset (neither
should be called by your
application)

C H A P T E R 9

Desktop Manager

Desktop Manager Reference 9-7

The Desktop Parameter Block

The desktop database functions use the desktop parameter block, a data structure of

type DTPBRec:

TYPE DTPBRec =

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {queue type}

ioTrap: Integer; {routine trap}

ioCmdAddr: Ptr; {routine address}

ioCompletion: ProcPtr; {completion routine}

ioResult: OSErr; {result code}

ioNamePtr: StringPtr; {file, directory, or }

{ volume name}

ioVRefNum: Integer; {volume reference number}

ioDTRefNum: Integer; {desktop database reference }

{ number}

ioIndex: Integer; {index into icon list}

ioTagInfo: LongInt; {tag information}

ioDTBuffer: Ptr; {data buffer}

ioDTReqCount: LongInt; {requested length of data}

ioDTActCount: LongInt; {actual length of data}

filler1: SignedByte; {unused}

ioIconType: SignedByte; {icon type}

filler2: Integer; {unused}

ioDirID: LongInt; {parent directory ID}

ioFileCreator: OSType; {file creator}

ioFileType: OSType; {file type}

ioFiller3: LongInt; {unused}

ioDTLgLen: LongInt; {logical length of desktop }

{ database}

ioDTPyLen: LongInt; {physical length of desktop }

{ database}

ioFiller4: {unused}

ARRAY[1..14] OF Integer;

ioAPPLParID: LongInt {parent directory ID of }

{ application}

END;

DTPBPtr = ^DTPBRec; {pointer to desktop }

{ parameter block}

C H A P T E R 9

Desktop Manager

9-8 Desktop Manager Reference

For a description of the standard fields of a parameter block (qLink, qType, ioTrap,

ioCmdAddr, ioCompletion, and ioResult), see the chapter “File Manager” in Inside
Macintosh: Files. For other fields of the desktop parameter block, see the relevant routine

description provided in the next section.

Routines

This section describes the low-level routines for using the desktop database.

All low-level routines exchange parameters with your application through a parameter

block. When calling a low-level routine, you pass a pointer to the parameter block. See

the chapter “File Manager” in Inside Macintosh: Files for a description of the standard

fields in a parameter block.

IMPORTANT

Clear all fields (other than input fields) in the parameter block that you
pass to Desktop Manager routines. ▲

Three Desktop Manager functions—namely, PBDTGetPath, PBDTOpenInform, and

PBDTCloseDown—run synchronously only. All other Desktop Manager routines can run

either asynchronously or synchronously. There are three versions of each of these

routines. The first version takes two parameters: a pointer to the parameter block, and a

Boolean value that determines whether the routine is run asynchronously (TRUE) or

synchronously (FALSE). Here, for example, is the first version of a routine that retrieves

the user’s comment stored for a file or a directory:

FUNCTION PBDTGetComment (paramBlock: DTPBPtr;

 async: Boolean): OSErr;

The second version does not take a second parameter; instead, it adds the suffix “Async”

to the name of the routine.

FUNCTION PBDTGetCommentAsync (paramBlock: DTPBPtr): OSErr;

Similarly, the third version of the routine does not take a second parameter; instead, it

adds the suffix “Sync” to the name of the routine.

FUNCTION PBDTGetCommentSync (paramBlock: DTPBPtr): OSErr;

All routines in this section are documented using the first version only. Note, however,

that the second and third versions of these routines do not use the glue code that the first

versions use and are therefore more efficient.

IMPORTANT

All of the Desktop Manager routines may move or purge memory
blocks in the application heap or for some other reason should not be
called from within an interrupt. Your application should not call
Desktop Manager routines at interrupt time. ▲

C H A P T E R 9

Desktop Manager

Desktop Manager Reference 9-9

Because you cannot use the Desktop Manager functions on a disk that does not have a

desktop database, call PBHGetVolParms to verify that the target disk has a desktop

database before calling any of the Desktop Manager functions. (For a description of the

PBHGetVolParms function and the bHasDesktopMgr bit that you should check, see

the chapter “File Manager” in Inside Macintosh: Files.)

▲ W A R N I N G

Although routines that set information in and get information from the
desktop database are described in this section, you should never use
these routines to change, add to, or remove any information from the
desktop database. Manipulating the desktop database is likely to wreak
havoc on your users’ systems. ▲

Assembly-Language Note

You can invoke each of the Desktop Manager routines with a macro that
has the same name as the routine, preceded by an underscore. These
macros, however, aren’t really trap macros. Instead, they expand to
invoke the trap macro _HFSDispatch. The File Manager determines
which routine to execute from the routine selector, an integer placed in
register D0. The routine selectors appear in “Assembly-Language
Summary” beginning on page 9-34. ◆

Locating, Opening, and Closing the Desktop Database

To get the access path to a database or to create a database if one doesn’t exist, use the

PBDTGetPath or PBDTOpenInform function. These routines run synchronously only.

System software uses the PBDTCloseDown function to close the desktop database; your

application should never use this function, which is described in this section only for

completeness.

PBDTGetPath

You can get the reference number of the desktop database using the PBDTGetPath

function.

FUNCTION PBDTGetPath (paramBlock: DTPBPtr): OSErr;

paramBlock A pointer to a desktop parameter block.

Parameter block

← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to the volume name or full

pathname of the desktop database.
→ ioVRefNum Integer The volume reference number of the desktop

database.
← ioDTRefNum Integer The desktop database reference number.

C H A P T E R 9

Desktop Manager

9-10 Desktop Manager Reference

DESCRIPTION

The PBDTGetPath function returns the desktop database reference number in the

ioDTRefNum field, which represents the access path to the database. You specify the

volume by passing a pointer to its name in the ioNamePtr field or a volume reference

number in the ioVRefNum field. If the desktop database is not already open,

PBDTGetPath opens it and then returns the reference number. If the desktop database

doesn’t exist, PBDTGetPath creates it. If PBDTGetPath fails, it sets the ioDTRefNum

field to 0.

Note

You cannot use the desktop reference number as a file reference number
in any File Manager routines. ◆

▲ W A R N I N G

Do not call PBDTGetPath at interrupt time—it allocates memory in the
system heap. ▲

RESULT CODES

PBDTOpenInform

The PBDTOpenInform function performs the same function as PBDTGetPath, but it

also reports whether the desktop database was empty when it was opened.

FUNCTION PBDTOpenInform (paramBlock: DTPBPtr): OSErr;

paramBlock
A pointer to a desktop parameter block.

Parameter block

noErr 0 No error
ioErr –36 I/O error
extFSErr –58 External file system—file system identifier is

nonzero
desktopDamagedErr –1305 The desktop database has become corrupted—the

Finder will fix this, but if your application is not
running with the Finder, use PBDTReset or
PBDTDelete

← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to the volume name or full

pathname of the desktop database.
→ ioVRefNum Integer The volume reference number of the desktop

database.
← ioDTRefNum Integer The desktop database reference number.
← ioTagInfo LongInt The return flag (in low bit).

C H A P T E R 9

Desktop Manager

Desktop Manager Reference 9-11

DESCRIPTION

If the desktop database was just created in response to PBDTOpenInform (and is

therefore empty), PBDTOpenInform sets the low bit in the ioTagInfo field to 0. If the

desktop database had been created before you called PBDTOpenInform,

PBDTOpenInform sets the low bit in the ioTagInfo field to 1.

RESULT CODES

PBDTCloseDown

The PBDTCloseDown function is used by system software to close the desktop database,

though your application should never do this itself. PBDTCloseDown runs

synchronously only, and though it will not close down the desktop databases of remote

volumes, it will invalidate all local DTRefNum values for remote desktop databases.

FUNCTION PBDTCloseDown (paramBlock: DTPBPtr): OSErr;

paramBlock
A pointer to a desktop parameter block.

Parameter block

DESCRIPTION

The PBDTCloseDown function closes the database specified in ioDTRefNum and frees

all resources allocated by PBDTOpenInform or PBDTGetPath.

▲ W A R N I N G

Applications should not call PBDTCloseDown. The system software
closes the database when the volume is unmounted. ▲

noErr 0 No error
ioErr –36 I/O error
paramErr –50 Parameter error; use PBDTGetPath
extFSErr –58 External file system—file system identifier is

nonzero
desktopDamagedErr –1305 The desktop database has become corrupted—the

Finder will fix this, but if your application is not
running with the Finder, use PBDTReset or
PBDTDelete

← ioResult OSErr The result code of the function.
→ ioDTRefNum Integer The desktop database reference number.

C H A P T E R 9

Desktop Manager

9-12 Desktop Manager Reference

RESULT CODES

Reading the Desktop Database

You can get information from the desktop database, such as a specific icon that

represents a file of a given type and creator or the user comments associated with a file,

by using the routines described in this section.

PBDTGetIcon

To retrieve an icon definition, use the PBDTGetIcon function.

FUNCTION PBDTGetIcon (paramBlock: DTPBPtr; async: Boolean): OSErr;

paramBlock
A pointer to a desktop parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBDTGetIcon function returns the bitmap for an icon that represents a file of a

given type and creator. (For example, to get the icon for a file of file type 'SFWR' created

by the application with a signature of 'WAVE', specify these two values in ioFileType

and ioFileCreator.) You pass a pointer to a buffer for the icon bitmap in the

ioDTBuffer field. The bitmap is returned in this buffer. You specify the desktop

noErr 0 No error
ioErr –36 I/O error
rfNumErr –51 Reference number invalid
extFSErr –58 External file system—file system identifier is nonzero

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioDTRefNum Integer The desktop database reference number.
→ ioTagInfo LongInt Reserved; must be set to 0.
→ ioDTBuffer Ptr A pointer to a buffer to hold the icon’s

data.
→ ioDTReqCount LongInt The requested size of the icon’s bitmap.
← ioDTActCount LongInt The actual size of the icon’s bitmap.
→ ioIconType SignedByte The icon type.
→ ioFileCreator OSType The icon’s file creator.
→ ioFileType OSType The icon’s file type.

C H A P T E R 9

Desktop Manager

Desktop Manager Reference 9-13

database in ioDTRefNum, the file creator in ioFileCreator, and the file type in

ioFileType. For the icon type in ioIconType, specify a constant from the

following list:

The value you supply in ioDTReqCount is the size in bytes of the buffer that you’ve

allocated for the icon’s bitmap pointed to by ioDTBuffer; this value depends on the

icon type. Be sure to allocate enough storage for the icon data; 1024 bytes is the largest

amount required for any icon in System 7. You can use constants to indicate the amount

of memory you have provided for the icon’s data. The following list shows these

constants and, for each icon type, shows the amount of bytes you should allocate.

The value in ioDTActCount reflects the size of the bitmap actually retrieved. If

ioDTActCount is larger than ioDTReqCount, only the amount of data allowed

by ioDTReqCount is valid.

RESULT CODES

Constant Value
Corresponding
resource type Description

kLargeIcon 1 'ICN#' Large black-and-white icon
with mask

kLarge4BitIcon 2 'icl4' Large 4-bit color icon

kLarge8BitIcon 3 'icl8' Large 8-bit color icon

kSmallIcon 4 'ics#' Small black-and-white icon
with mask

kSmall4BitIcon 5 'ics4' Small 4-bit color icon

kSmall8BitIcon 6 'ics8' Small 8-bit color icon

Constant
Value
(bytes)

Corresponding
resource type Description

kLargeIconSize 256 'ICN#' Large black-and-white icon
with mask

kLarge4BitIconSize 512 'icl4' Large 4-bit color icon

kLarge8BitIconSize 1024 'icl8' Large 8-bit color icon

kSmallIconSize 64 'ics#' Small black-and-white icon
with mask

kSmall4BitIconSize 128 'ics4' Small 4-bit color icon

kSmall8BitIconSize 256 'ics8' Small 8-bit color icon

noErr 0 No error
ioErr –36 I/O error
rfNumErr –51 Reference number invalid
extFSErr –58 External file system—file system identifier is nonzero
afpItemNotFound –5012 Information not found

C H A P T E R 9

Desktop Manager

9-14 Desktop Manager Reference

PBDTGetIconInfo

You can iteratively generate a list of icon types associated with each file type supported

by an application by repeatedly calling the PBDTGetIconInfo function.

FUNCTION PBDTGetIconInfo (paramBlock: DTPBPtr;

 async: Boolean): OSErr;

paramBlock
A pointer to a desktop parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBDTGetIconInfo function retrieves an icon type and the associated file type

supported by a given creator in the database. You use it to identify the set of icons

associated with each file type that is supported by a given creator. You specify the creator

by placing its signature in ioFileCreator, and you specify the database by placing the

desktop database reference number in the ioDTRefNum field. The PBDTGetIconInfo

function returns the size of the bitmap in ioDTActCount, the file type in ioFileType,

and the icon size and color depth in ioIconType.

The PBDTGetIconInfo function can return in the ioIconType field any of the values

listed in the description of the PBDTGetIcon function on page 9-12. Ignore any values

returned in ioIconType that are not listed there; they represent special icons and

information used only by the Finder.

To step through a list of the icon types and file types supported by an application, make

repeated calls to PBDTGetIconInfo, specifying a creator and an index value for

ioIndex each call. Set the index to 1 on the first call, and increment it on each

subsequent call until ioResult returns afpItemNotFound.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioDTRefNum Integer The desktop database reference number.
→ ioIndex Integer An index into the icon list.
→ ioTagInfo LongInt Reserved; must be set to 0.
← ioDTActCount LongInt The size of the icon’s bitmap.
← ioIconType SignedByte The icon type.
→ ioFileCreator OSType The icon’s file creator.
← ioFileType OSType The icon’s file type.

C H A P T E R 9

Desktop Manager

Desktop Manager Reference 9-15

RESULT CODES

SEE ALSO

To get a list of file types that an application can natively open, you can use the

GetFileTypesThatAppCanNativelyOpen function, as described in the chapter

“Translation Manager” of this book.

PBDTGetAPPL

To identify the application that can open a file with a given creator, use the

PBDTGetAPPL function.

FUNCTION PBDTGetAPPL (paramBlock: DTPBPtr; async: Boolean): OSErr;

paramBlock
A pointer to a desktop parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

For an application in the database specified in ioDTRefNum with the signature specified

in ioFileCreator, PBDTGetAPPL returns the filename in ioNamePtr, the parent

directory ID in ioAPPLParID, and the creation date in ioTagInfo. A single call, with

ioIndex set to 0, finds the application file with the most recent creation date. If you

want to retrieve information about all copies of the application with the given signature,

start with ioIndex set to 1 and increment until ioResult returns afpItemNotFound;

when called multiple times in this fashion, PBDTGetAPPL returns information about all

the application’s copies, including the file with the most recent creation date, in arbitrary

order.

noErr 0 No error
ioErr –36 I/O error
rfNumErr –51 Reference number invalid
extFSErr –58 External file system—file system identifier is nonzero
afpItemNotFound –5012 Information not found

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code.
→ ioNamePtr StringPtr A pointer to the application’s name.
→ ioDTRefNum Integer The desktop database reference number.
→ ioIndex Integer An index into the application list.
← ioTagInfo LongInt The application’s creation date.
→ ioFileCreator OSType The application’s signature.
← ioAPPLParID LongInt The application’s parent directory.

C H A P T E R 9

Desktop Manager

9-16 Desktop Manager Reference

RESULT CODES

PBDTGetComment

To retrieve the user comments for a file or directory, use the PBDTGetComment function.

FUNCTION PBDTGetComment (paramBlock: DTPBPtr;

 async: Boolean): OSErr;

paramBlock
A pointer to a desktop parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBDTGetComment function retrieves the comment stored for a file or directory in

the database specified in ioDTRefNum. You specify the filename or directory name and

its parent directory ID through ioNamePtr and ioDirID. You allocate a buffer big

enough to hold the largest comment, 200 bytes, and put a pointer to it in the

ioDTBuffer field. The PBDTGetComment function places the comment in the buffer as

a plain text string and places the length of the comment in ioDTActCount.

RESULT CODES

noErr 0 No error
ioErr –36 I/O error
rfNumErr –51 Reference number invalid
extFSErr –58 External file system—file system identifier is nonzero
afpItemNotFound –5012 Information not found

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a file or directory name.
→ ioDTRefNum Integer The desktop database reference number.
→ ioDTBuffer Ptr A pointer to comment text (200 bytes).
← ioDTActCount LongInt The comment size.
→ ioDirID LongInt The parent directory of the file or

directory.

noErr 0 No error
ioErr –36 I/O error
fnfErr –43 File or directory doesn’t exist
rfNumErr –51 Reference number invalid
extFSErr –58 External file system—file system identifier is nonzero
afpItemNotFound –5012 Information not found

C H A P T E R 9

Desktop Manager

Desktop Manager Reference 9-17

Adding to the Desktop Database

Your application should not ordinarily call the functions for adding data to the database.

If your application does need to write to or delete information from the desktop

database, it must call PBDTFlush to update the copy stored on the volume.

PBDTAddIcon

To add an icon definition to the desktop database, use the PBDTAddIcon function.

FUNCTION PBDTAddIcon (paramBlock: DTPBPtr; async: Boolean): OSErr;

paramBlock
A pointer to a desktop parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBDTAddIcon function adds an icon definition to the desktop database specified in

ioDTRefNum. You specify the creator and file type that the icon is associated with in the

ioFileCreator and ioFileType fields. For the icon type in ioIconType, specify

either a constant or a value from the following list.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioDTRefNum Integer The desktop database reference number.
→ ioTagInfo LongInt Reserved; must be set to 0.
→ ioDTBuffer Ptr A pointer to the icon’s data.
→ ioDTReqCount LongInt The size of the icon’s bitmap.
→ ioIconType SignedByte The icon type.
→ ioFileCreator OSType The icon’s file creator.
→ ioFileType OSType The icon’s file type.

Constant Value
Corresponding
resource type Description

kLargeIcon 1 'ICN#' Large black-and-white icon
with mask

kLarge4BitIcon 2 'icl4' Large 4-bit color icon

kLarge8BitIcon 3 'icl8' Large 8-bit color icon

kSmallIcon 4 'ics#' Small black-and-white icon
with mask

kSmall4BitIcon 5 'ics4' Small 4-bit color icon

kSmall8BitIcon 6 'ics8' Small 8-bit color icon

C H A P T E R 9

Desktop Manager

9-18 Desktop Manager Reference

The value you supply in ioDTReqCount is the size in bytes of the buffer that you’ve

allocated for the icon’s bitmap pointed to by ioDTBuffer; this value depends on the

icon type. Be sure to allocate enough storage for the icon data; 1024 bytes is the largest

amount required for any icon in System 7. For the number of bytes in ioDTReqCount,

you specify either a constant or a value from the following list.

You pass a pointer to the icon bitmap in the ioDTBuffer field. You must initialize the

ioTagInfo field to 0.

If the database already contains an icon definition for an icon of that type, file type, and

file creator, the new definition replaces the old.

RESULT CODES

PBDTAddAPPL

To add an application to the desktop database, use the PBDTAddAPPL function.

FUNCTION PBDTAddAPPL (paramBlock: DTPBPtr; async: Boolean): OSErr;

paramBlock
A pointer to a desktop parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Constant

Value
(bytes in
bitmap)

Corresponding
resource type Description

kLargeIconSize 256 'ICN#' Large black-and-white icon
with mask

kLarge4BitIconSize 512 'icl4' Large 4-bit color icon

kLarge8BitIconSize 1024 'icl8' Large 8-bit color icon

kSmallIconSize 64 'ics#' Small black-and-white icon
with mask

kSmall4BitIconSize 128 'ics4' Small 4-bit color icon

kSmall8BitIconSize 256 'ics8' Small 8-bit color icon

noErr 0 No error
ioErr –36 I/O error
wPrErr –44 Volume is locked through hardware
vLckdErr –46 Volume is locked through software
rfNumErr –51 Reference number invalid
extFSErr –58 External file system—file system identifier is

nonzero
afpIconTypeError –5030 Sizes of new icon and one it replaces don’t match

C H A P T E R 9

Desktop Manager

Desktop Manager Reference 9-19

Parameter block

DESCRIPTION

The PBDTAddAPPL function adds an entry in the desktop database specified in

ioDTRefNum for an application with the specified signature. You pass the application’s

signature in ioFileCreator, a pointer to the application’s filename in ioNamePtr, and

the application’s parent directory ID in ioDirID. Initialize ioTagInfo to 0.

RESULT CODES

PBDTSetComment

To add a user comment for a file or a directory to the desktop database, use the

PBDTSetComment function.

FUNCTION PBDTSetComment (paramBlock: DTPBPtr;

 async: Boolean): OSErr;

paramBlock
A pointer to a desktop parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to the application’s name.
→ ioDTRefNum Integer The desktop database reference number.
→ ioTagInfo LongInt Reserved; must be set to 0.
→ ioDirID LongInt The application’s parent directory.
→ ioFileCreator OSType The application’s signature.

noErr 0 No error
ioErr –36 I/O error
fnfErr –43 Application not present on volume
wPrErr –44 Volume is locked through hardware
vLckdErr –46 Volume is locked through software
rfNumErr –51 Reference number invalid
extFSErr –58 External file system—file system identifier is nonzero

C H A P T E R 9

Desktop Manager

9-20 Desktop Manager Reference

Parameter block

DESCRIPTION

The PBDTSetComment function establishes the user comment associated with a file or

directory in the database specified in ioDTRefNum. You specify the object name through

ioNamePtr and the parent directory ID in ioDirID. You put the comment as a plain

text string in a buffer pointed to by ioDTBuffer, and you specify the length of the

buffer (in bytes) in ioDTReqCount. The maximum length of a comment is 200 bytes;

longer comments are truncated. Since the comment is a plain text string and not a Pascal

string, the Desktop Manager relies on the value in ioDTReqCount for determining the

length of the buffer.

If the specified object already has a comment in the database, the new comment replaces

the old.

RESULT CODES

Deleting Entries From the Desktop Database

Your application should not ordinarily call the functions for adding and removing data

to and from the database. If your application does need to write to or delete information

from the desktop database, it must call PBDTFlush to update the copy stored on the

volume.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a file or directory name.
→ ioDTRefNum Integer The desktop database reference number.
→ ioDTBuffer Ptr A pointer to the comment text.
→ ioDTReqCount LongInt The comment length.
→ ioDirID LongInt The parent directory of the file or directory.

noErr 0 No error
ioErr –36 I/O error
fnfErr –43 File or directory doesn’t exist
wPrErr –44 Volume is locked through hardware
vLckdErr –46 Volume is locked through software
rfNumErr –51 Reference number invalid
extFSErr –58 External file system—file system identifier is nonzero

C H A P T E R 9

Desktop Manager

Desktop Manager Reference 9-21

PBDTRemoveAPPL

To remove an application from the desktop database, call the PBDTRemoveAPPL

function.

FUNCTION PBDTRemoveAPPL (paramBlock: DTPBPtr;

 async: Boolean): OSErr;

paramBlock
A pointer to a desktop parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBDTRemoveAPPL function removes the mapping information for an application

from the database specified in ioDTRefNum. You specify the application’s name through

ioNamePtr, its parent directory ID in ioDirID, and its signature in ioFileCreator.

You can call PBDTRemoveAPPL even if the application is not present on the volume.

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to the application’s name.
→ ioDTRefNum Integer The desktop database reference number.
→ ioDirID LongInt The application’s parent directory.
→ ioFileCreator OSType The application’s signature.

noErr 0 No error
ioErr –36 I/O error
wPrErr –44 Volume is locked through hardware
vLckdErr –46 Volume is locked through software
rfNumErr –51 Reference number invalid
extFSErr –58 External file system—file system identifier is nonzero
afpItemNotFound –5012 Application not found

C H A P T E R 9

Desktop Manager

9-22 Desktop Manager Reference

PBDTRemoveComment

To remove a user comment from the desktop database, call the PBDTRemoveComment

function.

FUNCTION PBDTRemoveComment (paramBlock: DTPBPtr;

 async: Boolean): OSErr;

paramBlock
A pointer to a desktop parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBDTRemoveComment function removes the comment associated with a file or

directory from the database specified in ioDTRefNum. You specify the file or directory

name through ioNamePtr and the parent directory ID in ioDirID. You cannot remove

a comment if the file or directory is not present on the volume. If no comment was stored

for the file, PBDTRemoveComment returns an error.

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to the filename or directory name.
→ ioDTRefNum Integer The desktop database reference number.
→ ioDirID LongInt The parent directory of the file or directory.

noErr 0 No error
ioErr –36 I/O error
fnfErr –43 File or directory doesn’t exist
wPrErr –44 Volume is locked through hardware
vLckdErr –46 Volume is locked through software
rfNumErr –51 Reference number invalid
extFSErr –58 External file system—file system identifier is nonzero
afpItemNotFound –5012 Comment not found

C H A P T E R 9

Desktop Manager

Desktop Manager Reference 9-23

Manipulating the Desktop Database Itself

If your application adds information to or removes information from the desktop

database, use the PBDTFlush function to save your changes. To get information

about the desktop database itself, use the PBDTGetInfo function. The

PBDTReset function removes all information from the desktop database, and the

PBDTDelete function removes the desktop database; you should not use these two

functions unless absolutely necessary.

PBDTFlush

To save your changes to the desktop database, use the PBDTFlush function.

FUNCTION PBDTFlush (paramBlock: DTPBPtr; async: Boolean): OSErr;

paramBlock
A pointer to a desktop parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBDTFlush function writes the contents of the desktop database specified in

ioDTRefNum to the volume.

Note
If your application has manipulated information in the database using
any of the routines described in “Adding to the Desktop Database” or
“Deleting Entries From the Desktop Database” beginning on page 9-17
and page 9-20, respectively, you must call PBDTFlush to update the
copy stored on the volume. ◆

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioDTRefNum Integer The desktop database reference number.

noErr 0 No error
ioErr –36 I/O error
wPrErr –44 Volume is locked through hardware
vLckdErr –46 Volume is locked through software
rfNumErr –51 Reference number invalid
extFSErr –58 External file system—file system identifier is nonzero

C H A P T E R 9

Desktop Manager

9-24 Desktop Manager Reference

PBDTGetInfo

To determine the parent directory and the amount of space used by the desktop database

on a particular volume, use the PBDTGetInfo function.

FUNCTION PBDTGetInfo (paramBlock: DTPBPtr; async: Boolean): OSErr;

paramBlock
A pointer to a desktop parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBDTGetInfo function returns information about the desktop database. You

specify the volume of the desktop database in ioDTRefNum. The parent directory of the

desktop database for the volume is returned in ioDirID. The sum of the logical lengths

of the files that constitute the desktop database for a given volume is returned in

ioDTLgLen; the sum of the physical lengths of the files that constitute the desktop

database for a given volume is returned in ioDTPyLen. The number of files comprising

the desktop database is returned in ioIndex.

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
← ioVRefNum Integer The volume reference number where the

database files are actually stored.
→ ioDTRefNum Integer The desktop database reference number.
← ioIndex Integer The number of files comprising the desktop

database on the volume.
← ioDirID LongInt The parent directory of the desktop database.
← ioDTLgLen LongInt The logical length of the database files.
← ioDTPyLen LongInt The physical length of the database files.

noErr 0 No err
nsvErr –35 No such volume
ioErr –36 I/O error
rfNumErr –51 Reference number invalid
extFSErr –58 External file system—file system identifier is nonzero

C H A P T E R 9

Desktop Manager

Desktop Manager Reference 9-25

PBDTReset

The PBDTReset function removes information from the desktop database. Unless you

are manipulating the desktop database in the absence of the Finder, you should never

use this function.

FUNCTION PBDTReset (paramBlock: DTPBPtr; async: Boolean): OSErr;

paramBlock
A pointer to a desktop parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBDTReset function removes all icons, application mappings, and comments from

the desktop database specified in ioDTRefNum. You can call PBDTReset only when the

database is open. It remains open after the data is cleared.

IMPORTANT

Your application should never call PBDTReset. ▲

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioDTRefNum Integer The desktop database reference number.
→ ioIndex Integer Reserved; must be set to 0.

noErr 0 No error
ioErr –36 I/O error
wPrErr –44 Volume is locked through hardware
vLckdErr –46 Volume is locked through software
rfNumErr –51 Reference number invalid
extFSErr –58 External file system—file system identifier is nonzero

C H A P T E R 9

Desktop Manager

9-26 Desktop Manager Reference

PBDTDelete

The PBDTDelete function removes the desktop database. Unless you are manipulating

the desktop database in the absence of the Finder, you should never use this function.

FUNCTION PBDTDelete (paramBlock: DTPBPtr; async: Boolean): OSErr;

paramBlock
A pointer to a desktop parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBDTDelete function removes the desktop database from a local volume. You

specify the volume by passing a volume reference number in ioVRefNum. You can call

PBDTDelete only when the database is closed.

IMPORTANT

Your application should never call PBDTDelete. ▲

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioVRefNum Integer The volume reference number of the desktop

database.
→ ioIndex Integer Reserved; must be set to 0.

noErr 0 No error
ioErr –36 I/O error
wPrErr –44 Volume is locked through hardware
vLckdErr –46 Volume is locked through software
rfNumErr –51 Reference number invalid
extFSErr –58 External file system—file system identifier is nonzero

C H A P T E R 9

Desktop Manager

Summary of the Desktop Manager 9-27

Summary of the Desktop Manager

Pascal Summary

Constants

CONST

{for mapping icons to ioIconType in the desktop database}

kLargeIcon = 1; {'ICN#'}

kLarge4BitIcon = 2; {'icl4'}

kLarge8BitIcon = 3; {'icl8'}

kSmallIcon = 4; {'ics#'}

kSmall4BitIcon = 5; {'ics4'}

kSmall8BitIcon = 6; {'ics8'}

{for allocating storage for icon data in the desktop database}

kLargeIconSize = 256; {'ICN#'}

kLarge4BitIconSize = 512; {'icl4'}

kLarge8BitIconSize = 1024; {'icl8'}

kSmallIconSize = 64; {'ics#'}

kSmall4BitIconSize = 128; {'ics4'}

kSmall8BitIconSize = 256; {'ics8'}

Data Types

TYPE DTPBPtr = ^DTPBRec;

DTPBRec = {parameter block for desktop database}

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {queue type}

ioTrap: Integer; {routine trap}

ioCmdAddr: Ptr; {routine address}

ioCompletion: ProcPtr; {completion routine}

ioResult: OSErr; {result code}

ioNamePtr: StringPtr; {file, directory, or volume name}

ioVRefNum: Integer; {volume reference number}

ioDTRefNum: Integer; {desktop database reference number}

ioIndex: Integer; {index into icon list}

C H A P T E R 9

Desktop Manager

9-28 Summary of the Desktop Manager

ioTagInfo: LongInt; {tag information}

ioDTBuffer: Ptr; {data buffer}

ioDTReqCount: LongInt; {requested length of data}

ioDTActCount: LongInt; {actual length of data}

filler1: SignedByte; {unused}

ioIconType: SignedByte; {icon type}

filler2: Integer; {unused}

ioDirID: LongInt; {parent directory ID}

ioFileCreator: OSType; {file creator}

ioFileType: OSType; {file type}

ioFiller3: LongInt; {unused}

ioDTLgLen: LongInt; {logical length of desktop }

{ database}

ioDTPyLen: LongInt; {physical length of desktop }

{ database}

ioFiller4: {unused}

ARRAY[1..14] OF Integer;

ioAPPLParID: LongInt {parent directory ID of }

{ application}

END;

DTPBPtr = ^DTPBRec; {pointer to desktop }

{ parameter block}

Routines

Locating, Opening, and Closing the Desktop Database

FUNCTION PBDTGetPath (paramBlock: DTPBPtr): OSErr;

FUNCTION PBDTOpenInform (paramBlock: DTPBPtr): OSErr;

FUNCTION PBDTCloseDown (paramBlock: DTPBPtr): OSErr;

Reading the Desktop Database

FUNCTION PBDTGetIcon (paramBlock: DTPBPtr; async: Boolean): OSErr;

FUNCTION PBDTGetIconAsync (paramBlock: DTPBPtr): OSErr;

FUNCTION PBDTGetIconSync (paramBlock: DTPBPtr): OSErr;

FUNCTION PBDTGetIconInfo (paramBlock: DTPBPtr; async: Boolean): OSErr;

FUNCTION PBDTGetIconInfoAsync
(paramBlock: DTPBPtr): OSErr;

C H A P T E R 9

Desktop Manager

Summary of the Desktop Manager 9-29

FUNCTION PBDTGetIconInfoSync
(paramBlock: DTPBPtr): OSErr;

FUNCTION PBDTGetAPPL (paramBlock: DTPBPtr; async: Boolean): OSErr;

FUNCTION PBDTGetAPPLAsync (paramBlock: DTPBPtr): OSErr;

FUNCTION PBDTGetAPPLSync (paramBlock: DTPBPtr): OSErr;

FUNCTION PBDTGetComment (paramBlock: DTPBPtr; async: Boolean): OSErr;

FUNCTION PBDTGetCommentAsync
(paramBlock: DTPBPtr): OSErr;

FUNCTION PBDTGetCommentSync
(paramBlock: DTPBPtr): OSErr;

Adding to the Desktop Database

FUNCTION PBDTAddIcon (paramBlock: DTPBPtr; async: Boolean): OSErr;

FUNCTION PBDTAddIconAsync (paramBlock: DTPBPtr): OSErr;

FUNCTION PBDTAddIconSync (paramBlock: DTPBPtr): OSErr;

FUNCTION PBDTAddAPPL (paramBlock: DTPBPtr; async: Boolean): OSErr;

FUNCTION PBDTAddAPPLAsync (paramBlock: DTPBPtr): OSErr;

FUNCTION PBDTAddAPPLSync (paramBlock: DTPBPtr): OSErr;

FUNCTION PBDTSetComment (paramBlock: DTPBPtr; async: Boolean): OSErr;

FUNCTION PBDTSetCommentAsync
(paramBlock: DTPBPtr): OSErr;

FUNCTION PBDTSetCommentSync
(paramBlock: DTPBPtr): OSErr;

Deleting Entries From the Desktop Database

FUNCTION PBDTRemoveAPPL (paramBlock: DTPBPtr; async: Boolean): OSErr;

FUNCTION PBDTRemoveAPPLAsync
(paramBlock: DTPBPtr): OSErr;

FUNCTION PBDTRemoveAPPLSync
(paramBlock: DTPBPtr): OSErr;

FUNCTION PBDTRemoveComment (paramBlock: DTPBPtr; async: Boolean): OSErr;

FUNCTION PBDTRemoveCommentAsync
(paramBlock: DTPBPtr): OSErr;

FUNCTION PBDTRemoveCommentSync
(paramBlock: DTPBPtr): OSErr;

C H A P T E R 9

Desktop Manager

9-30 Summary of the Desktop Manager

Manipulating the Desktop Database Itself

FUNCTION PBDTFlush (paramBlock: DTPBPtr; async: Boolean): OSErr;

FUNCTION PBDTFlushAsync (paramBlock: DTPBPtr): OSErr;

FUNCTION PBDTFlushSync (paramBlock: DTPBPtr): OSErr;

FUNCTION PBDTGetInfo (paramBlock: DTPBPtr; async: Boolean): OSErr;

FUNCTION PBDTGetInfoAsync (paramBlock: DTPBPtr): OSErr;

FUNCTION PBDTGetInfoSync (paramBlock: DTPBPtr): OSErr;

FUNCTION PBDTReset (paramBlock: DTPBPtr; async: Boolean): OSErr;

FUNCTION PBDTResetAsync (paramBlock: DTPBPtr): OSErr;

FUNCTION PBDTResetSync (paramBlock: DTPBPtr): OSErr;

FUNCTION PBDTDelete (paramBlock: DTPBPtr; async: Boolean): OSErr;

FUNCTION PBDTDeleteAsync (paramBlock: DTPBPtr): OSErr;

FUNCTION PBDTDeleteSync (paramBlock: DTPBPtr): OSErr;

C Summary

Constants

enum {

/*for mapping icons to ioIconType in the desktop database*/

kLargeIcon = 1, /*'ICN#'*/

kLarge4BitIcon = 2, /*'icl4'*/

kLarge8BitIcon = 3, /*'icl8'*/

kSmallIcon = 4, /*'ics#'*/

kSmall4BitIcon = 5, /*'ics4'*/

kSmall8BitIcon = 6, /*'ics8'*/

/*for allocating storage for icon data in the desktop database*/

kLargeIconSize = 256, /*'ICN#'*/

kLarge4BitIconSize = 512, /*'icl4'*/

kLarge8BitIconSize = 1024, /*'icl8'*/

kSmallIconSize = 64, /*'ics#'*/

kSmall4BitIconSize = 128, /*'ics4'*/

kSmall8BitIconSize = 256 /*'ics8'*/

};

C H A P T E R 9

Desktop Manager

Summary of the Desktop Manager 9-31

Data Types

struct DTPBRec { /*parameter block for desktop database*/

 ParamBlockHeader

 short ioDTRefNum; /*desktop refnum*/

 short ioIndex; /*index into icon list*/

 long ioTagInfo; /*tag information*/

 Ptr ioDTBuffer; /*data buffer*/

 long ioDTReqCount; /*requested length of data*/

 long ioDTActCount; /*actual length of data*/

 char ioFiller1; /*unused*/

 char ioIconType; /*icon type*/

 short ioFiller2; /*unused*/

 long ioDirID; /*parent directory ID*/

 OSType ioFileCreator; /*file creator*/

 OSType ioFileType; /*file type*/

 long ioFiller3; /*unused*/

 long ioDTLgLen; /*logical length of */

/* desktop database*/

 long ioDTPyLen; /*physical length of desktop */

/* database*/

 short ioFiller4[14]; /*unused*/

 long ioAPPLParID; /*parent directory ID of */

/* application*/

};

typedef struct DTPBRec DTPBRec;

typedef DTPBRec *DTPBPtr;

Routines

Locating, Opening, and Closing the Desktop Database

pascal OSErr PBDTGetPath (DTPBPtr paramBlock);

pascal OSErr PBDTOpenInform
(DTPBPtr paramBlock);

pascal OSErr PBDTCloseDown (DTPBPtr paramBlock);

C H A P T E R 9

Desktop Manager

9-32 Summary of the Desktop Manager

Reading the Desktop Database

pascal OSErr PBDTGetIcon (DTPBPtr paramBlock, Boolean async);

pascal OSErr PBDTGetIconAsync
(DTPBPtr paramBlock);

pascal OSErr PBDTGetIconSync
(DTPBPtr paramBlock);

pascal OSErr PBDTGetIconInfo
(DTPBPtr paramBlock, Boolean async);

pascal OSErr PBDTGetIconInfoAsync
(DTPBPtr paramBlock);

pascal OSErr PBDTGetIconInfoSync
(DTPBPtr paramBlock);

pascal OSErr PBDTGetAPPL (DTPBPtr paramBlock, Boolean async);

pascal OSErr PBDTGetAPPLAsync
(DTPBPtr paramBlock);

pascal OSErr PBDTGetAPPLSync
(DTPBPtr paramBlock);

pascal OSErr PBDTGetComment
(DTPBPtr paramBlock, Boolean async);

pascal OSErr PBDTGetCommentAsync
(DTPBPtr paramBlock);

pascal OSErr PBDTGetCommentSync
(DTPBPtr paramBlock);

Adding to the Desktop Database

pascal OSErr PBDTAddIcon (DTPBPtr paramBlock, Boolean async);

pascal OSErr PBDTAddIconAsync
(DTPBPtr paramBlock);

pascal OSErr PBDTAddIconSync
(DTPBPtr paramBlock);

pascal OSErr PBDTAddAPPL (DTPBPtr paramBlock, Boolean async);

pascal OSErr PBDTAddAPPLAsync
(DTPBPtr paramBlock);

pascal OSErr PBDTAddAPPLSync
(DTPBPtr paramBlock);

pascal OSErr PBDTSetComment
(DTPBPtr paramBlock, Boolean async);

C H A P T E R 9

Desktop Manager

Summary of the Desktop Manager 9-33

pascal OSErr PBDTSetCommentAsync
(DTPBPtr paramBlock);

pascal OSErr PBDTSetCommentSync
(DTPBPtr paramBlock);

Deleting Entries From the Desktop Database

pascal OSErr PBDTRemoveAPPL
(DTPBPtr paramBlock, Boolean async);

pascal OSErr PBDTRemoveAPPLAsync
(DTPBPtr paramBlock);

pascal OSErr PBDTRemoveAPPLSync
(DTPBPtr paramBlock);

pascal OSErr PBDTRemoveComment
(DTPBPtr paramBlock, Boolean async);

pascal OSErr PBDTRemoveCommentAsync
(DTPBPtr paramBlock);

pascal OSErr PBDTRemoveCommentSync
(DTPBPtr paramBlock);

Manipulating the Desktop Database Itself

pascal OSErr PBDTFlush (DTPBPtr paramBlock, Boolean async);

pascal OSErr PBDTFlushAsync
(DTPBPtr paramBlock);

pascal OSErr PBDTFlushSync (DTPBPtr paramBlock);

pascal OSErr PBDTGetInfo (DTPBPtr paramBlock, Boolean async);

pascal OSErr PBDTGetInfoAsync
(DTPBPtr paramBlock);

pascal OSErr PBDTGetInfoSync
(DTPBPtr paramBlock);

pascal OSErr PBDTReset (DTPBPtr paramBlock, Boolean async);

pascal OSErr PBDTResetAsync
(DTPBPtr paramBlock);

pascal OSErr PBDTResetSync (DTPBPtr paramBlock);

pascal OSErr PBDTDelete (DTPBPtr paramBlock, Boolean async);

pascal OSErr PBDTDeleteAsync
(DTPBPtr paramBlock);

pascal OSErr PBDTDeleteSync
(DTPBPtr paramBlock);

C H A P T E R 9

Desktop Manager

9-34 Summary of the Desktop Manager

Assembly-Language Summary

Data Structures

Desktop Parameter Block

→ 12 ioCompletion long completion routine
← 16 ioResult word result code
→ 18 ioNamePtr long pointer to file, directory, or volume name
→ 22 ioVRefNum word volume reference number
↔ 24 ioDTRefNum word desktop database reference number
→ 26 ioIndex word index into icon list; or number of files in database
↔ 28 ioTagInfo long tag information
→ 32 ioDTBuffer long pointer to icon data
→ 36 ioDTReqCount long requested size of icon data buffer
← 40 ioDTActCount long actual size of icon definition
↔ 44 ioIconType byte icon’s type
↔ 48 ioDirID long parent directory
→ 52 ioFileCreator long file creator
↔ 56 ioFileType long file type
← 64 ioDTLgLen long logical length of database files
← 68 ioDTPyLen long physical length of database files
← 100 ioAPPLParID long application’s parent directory

C H A P T E R 9

Desktop Manager

Summary of the Desktop Manager 9-35

Trap Macros

Trap Macros Requiring Routine Selectors

_HFSDispatch

Result Codes

Selector Routine

$0020 PBDTGetPath

$0021 PBDTCloseDown

$0022 PBDTAddIcon

$0023 PBDTGetIcon

$0024 PBDTGetIconInfo

$0025 PBDTAddAPPL

$0026 PBDTRemoveAPPL

$0027 PBDTGetAPPL

$0028 PBDTSetComment

$0029 PBDTRemoveComment

$002A PBDTGetComment

$002B PBDTFlush

$002C PBDTReset

$002D PBDTGetInfo

$002E PBDTOpenInform

$002F PBDTDelete

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
fnfErr –43 File or directory doesn’t exist
wPrErr –44 Volume is locked through hardware
vLckdErr –46 Volume is locked through software
paramErr –50 Parameter error; use PBDTGetPath
rfNumErr –51 Reference number invalid
extFSErr –58 External file system—file system identifier is nonzero
desktopDamagedErr –1305 The desktop database has become corrupted—the Finder will fix

this, but if your application is not running with the Finder, use
PBDTReset or PBDTDelete

afpItemNotFound –5012 Information not found
afpIconTypeError –5030 Sizes of new icon and one it replaces don’t match

GL-1

alternate rectangle A rectangle used by the
Help Manager (under some circumstances) for
transposing a help balloon’s tip when trying to fit
the balloon onscreen. For all help resources
except the 'hdlg' resource, the Help Manager
moves the tip to different sides of the hot
rectangle. For 'hdlg' resources, however, the
Help Manager allows you to specify alternate
rectangles for transposing balloon tips. You can
also specify alternate rectangles when you use
the HMShowBalloon and HMShowMenuBalloon
functions. Compare hot rectangle. See also tip.

application translation extension A translation
extension that can create a list of file types and
identify files but that performs no actual file
translation.

balloon definition function An
implementation of a window definition function
that defines the general appearance of a help
balloon. See also help balloon.

catalog type The type of a file as maintained in
a volume’s hierarchical file system catalog file.
See also translation file type.

cell A rectangular part of a list displaying
information about one item from the list.

color icon record A data structure of type
CIcon used for information obtained from a
color icon ('cicn') resource.

color icon resource A resource of type 'cicn'
used for color icon resource data. A color icon
resource can define a color icon of any size
without a mask or a 32-by-32 pixel color icon
with a mask. You can define the bit depth for a
color icon resource and you can use resources of
type 'cicn' in menus and dialog boxes. Note
that the Finder does not use or display any
resources that you create of type 'cicn'. To
create an icon for display by the Finder, create
one or more of the icons in an icon family. See
also icon family, icon resource, small icon
resource.

component A piece of code that provides a
defined set of services to one or more clients.
Applications, system extensions, as well as other
components can use the services of a component.

component connection An access path to a
component. A single component can serve
multiple client applications at the same time by
supporting multiple connections.

component identifier A value that identifies a
particular component.

component instance A value that identifies
a component connection. Each instance of a
component can maintain separate storage and
error information, and manage its A5 world.

Component Manager A collection of routines
that allows your application or other clients to
access components. The Component Manager
manages components and also provides services
to components.

component subtype A value that identifies
variations on the basic interface that a component
supports. As with component types, a
component subtype is a sequence of four
characters. The value of the component subtype
is meaningful only in the context of a given
component type.

component type A value that identifies the
type of service provided by a component. As
with resource types, a component type is a
sequence of four characters.

control device function A function that
interacts and communicates with the Finder,
responding to requests from the Finder to handle
events and perform actions. Every
implementation of a control panel must contain a
control device function in the control device code
('cdev') resource.

Glossary

G L O S S A R Y

GL-2

control panel A modeless dialog box that
contains controls that let users specify basic
settings and preferences for a systemwide
feature, such as the speaker volume, desktop
pattern, or picture displayed by a screen saver.

control panel file A file of type 'cdev' that
contains the required and optional resources to
implement a control panel. These resources also
define the look of a control panel, including its
icon. One of the required resources is a code
resource containing a control device function.

convertor See translator.

current resource file The file whose resource
fork the Resource Manager searches first when
searching for a resource; usually the file whose
resource fork was opened most recently.

data fork The fork of a file that contains the
file’s data.

desktop database A database of icons, file
types, applications, and comments maintained by
the Finder for all volumes over 2 MB.

Desktop Manager A collection of routines that
manages the desktop database.

dialog-item component The portion of an
'hdlg' resource in which you specify the help
messages for a particular item in a dialog or alert
box.

drop-launch To drag a document’s icon onto an
application’s icon, thereby opening the document.

dynamic window A window that can change
its title or reposition any of the objects within its
content area.

explicit translation The conversion of a file or
scrap requiring direct intervention from an
application. See also implicit translation.

file A named, ordered sequence of bytes stored
on a Macintosh volume and divided into two
forks, the data fork and the resource fork.

file reference number A number (greater
than 0) returned to your application when it
opens a fork of a file. Each file reference number
corresponds to a unique access path.

file translation list A list of source and
destination file types among which a file
translation system can translate. Defined by the
FileTranslationList data type.

file translation system A translation system
that can recognize and translate files from one
format to another.

file type specification A way of specifying the
catalog type and translation file type of a file, as
well as other information about translating the
file. Defined by the FileTypeSpec data type.

filter See translator.

header component The portion of a help
resource in which you supply information that
applies to all help balloons specified in the
resource—information such as the version
number of the Help Manager, the balloon
definition function, and the variation code.

help balloon A rounded-rectangle window that
contains explanatory information for the user.
With tips pointing at the objects they annotate,
help balloons look like the bubbles used for
dialog in comic strips. Help balloons are turned
on by the user from the Help menu; when
Balloon Help assistance is on, a help balloon
appears whenever the user moves the cursor
over the balloon’s hot rectangle. See also
alternate rectangle, hot rectangle.

Help Manager A collection of routines that
your application can use to provide Balloon Help
assistance to your application’s users.

help messages Descriptive text or pictures that
appear inside help balloons.

help resources Application-supplied resources
that describe help messages, balloon definition
functions, variation codes, and, when necessary,
the tips and the hot rectangles or alternate
rectangles for the Help Manager to use in
drawing help balloons. These help resources are
the menu help ('hmnu') resource, the dialog
item help ('hdlg') resource, the rectangle help
('hrct') resource, the window help ('hwin')
resource, the Finder icon help ('hfdr') resource,
and the default help override ('hovr') resource.

G L O S S A R Y

GL-3

hot rectangle An area defined to display a help
balloon. When the user moves the cursor over
this area, the Help Manager displays the help
balloon associated with the hot rectangle.
Compare alternate rectangle.

hot-rectangle component The portion of an
'hrct' resource in which you specify hot
rectangles and the help messages associated with
each hot rectangle.

icon An image on a Macintosh screen that
graphically represents some object, such as a file,
a folder, or the Trash. See also icon family.

icon cache An icon suite that includes a pointer
to an icon getter function and a pointer to data
that can be used as a reference constant. See also
icon getter function, icon suite.

icon component The portion of an 'hfdr'
resource in which you specify a help message for
your application’s Finder icon.

icon family A set of icons that represent a
single object and share the same resource ID. The
resource types and names of each member of an
icon family are 'ICN#'—a large (32-by-32 pixel)
black-and-white icon and mask; 'ics#'—a
small (16-by-16 pixel) black-and-white icon and
mask; 'icl4'—a large (32-by-32 pixel) color
icon with 4 bits of color data per pixel;
'ics4'—a small (16-by-16 pixel) color icon with
4 bits of color data per pixel; 'icl8'—a large
(32-by-32 pixel) color icon with 8 bits of color
data per pixel; and 'ics8'—a small (16-by-16
pixel) color icon with 8 bits of color data per pixel.

icon getter function An application-defined
function that returns a handle to icon data for a
specified icon type. You can associate an icon
getter function with an icon cache. Subsequent
calls to Icon Utilities routines that use icons not
present in the icon cache use the icon getter
function to read the icon data into memory.

icon resource A resource of type 'ICON' that
contains a bitmap for a 32-by-32 pixel
black-and-white icon. You can use resources of
type 'ICON' in menus and dialog boxes. Note
that the Finder does not use or display any
resources of type 'ICON' that you create. To
create an icon for display by the Finder, create

one or more of the icons in an icon family. See
also color icon resource, icon family, small icon
resource.

icon suite One or more handles to icon data
that represents icons from a single icon family.
Some Icon Utilities routines accept a handle to an
icon suite and draw the appropriate icon from
that suite for the destination rectangle and the bit
depth of the display device.

Icon Utilities A collection of routines that your
application can use to display icons in graphics
ports (such as windows or dialog boxes) created
by your application.

implicit translation The automatic conversion
of a file or scrap without direct intervention from
an application. See also explicit translation.

kind resource A resource that contains kind
strings for document types. Defined by the
'kind' resource type.

kind string The string displayed in the “Kind”
column in a Finder window when a folder’s
contents are viewed by name, size, kind, label, or
date (that is, by any method other than by icon or
small icon).

list A series of items displayed within a
rectangle. Lists may have zero, one, or two scroll
bars.

list definition procedure A code resource of
type 'LDEF' that defines the appearance of a list.

List Manager A collection of routines that your
application can use to create and display lists in
your application’s windows or dialog boxes.

Macintosh Easy Open The part of the
Macintosh system software that provides
translation services for users of Macintosh
computers. Macintosh Easy Open uses the
Translation Manager to provide these services.

menu-item component The portion of an
'hmnu' resource in which you specify the help
messages for a particular menu item.

menu-title component The portion of an
'hmnu' resource in which you specify help
messages for the menu title.

G L O S S A R Y

GL-4

mini icons Icons of resource types 'icm#',
'icm4', and 'icm8' that measure 12 by 16
pixels. Like the icons in an icon family, the three
resource types for mini icons identify the icon
list, 4-bit color icons, and 8-bit color icons,
respectively. Compare small icon resource.

missing-items component The portion of a
help resource in which you specify help
messages for any items missing from or
unspecified in the rest of the resource.

monitors extension An extension to the
Monitors control panel that a video card
manufacturer can develop and provide to give
users a simple way to control features of the
video card. A monitors extension is limited to
the video card; it cannot be used to control the
settings of systemwide features. A user can open
an extension only through the Monitors control
panel.

monitors extension file A file of type 'cdev'
that contains required and optional
resources that implement an extension to the
Monitors control panel for a specific video card.
One of the required resources is a code resource
containing a monitors extension function.

monitors extension function A function that
interacts and communicates with the Monitors
control panel, responding to requests from the
Monitors control panel to handle events and
perform actions. Every implementation of an
extension to the Monitors control panel must
contain a monitors extension function in the
monitors code ('mntr') resource.

mouse location The location of the cursor at the
time an event occurs.

open resource A resource of type 'open' that
declares which file types your application can
open as documents.

point-to-point translation A translation group
with one source type and one destination type.

resource Data of any kind stored in a defined
format in a file’s resource fork and managed by
the Resource Manager.

resource attributes Flags in the resource map
that tell the Resource Manager how to handle the
corresponding resource.

resource file Synonym for resource fork.

resource fork The fork of a file that contains the
file’s resources.

resource ID An integer that identifies a specific
resource of a given type.

resource map Data read into memory when the
Resource Manager opens a resource fork.
A resource map contains information about the
resources in the resource fork.

resource type The type of a resource in a
resource fork, designated by a sequence of four
characters (such as 'MENU' for a menu).

scrap A storage area (either in memory or on
disk) that is available to applications to hold the
last data cut or copied by the user.

Scrap Manager A collection of routines that
your application can use to support
copy-and-paste operations.

scrap translation list A list of source and
destination scrap types among which a scrap
translation system can translate. Defined by the
ScrapTranslationList data type.

scrap translation system A translation system
that can recognize and translate scraps from one
format to another.

scrap type specification A way of specifying
information about translating a scrap. Defined by
the ScrapTypeSpec data type.

small icon resource A resource of type 'SICN'
that describes 12-by-16 pixel icons, even though
the icons are stored in the resource as 16-by-16
pixel bitmaps. An 'SICN' resource consists of a
list of 16-by-16 pixel bitmaps for black-and-white
icons; by convention, the list includes only two
bitmaps, and the second bitmap is considered a
mask. You can use resources of type 'SICN' in
menus. Note that the Finder does not use or
display any resources that you create of type
'SICN'. To create an icon for display by the
Finder, create one or more of the icons in an icon
family. See also color icon resource, icon family,
icon resource. Compare mini icons.

static window A window that doesn’t change
its title or reposition any of the objects within its
content area.

G L O S S A R Y

GL-5

superuser A user who is considered to be very
knowledgeable. A monitors extension can define
controls that it displays for superusers only.

tip At the side of a help balloon, the point that
indicates what object or area is explained in the
help balloon. See also help balloon, variation
code.

transform A mode you can specify with some
Icon Utilities routines that draw icons. Specifying
transforms with these routines alters the
appearance of the icons in standard ways that are
analogous to Finder states for icons. For example,
you can specify the transform ttSelected to
draw an icon so that it is highlighted as if it were
selected in the Finder.

translation extension A component called by
Macintosh Easy Open to identify and translate
files or scraps. See also application translation
extension.

translation file type The type of a file relevant
for translation purposes. See also catalog type.

translation group A collection of source and
destination file types; within each translation
group, each source file type can be translated into
any destination file type.

Translation Manager A collection of routines
that provide data conversion services (such as
implicit translation) for applications on
Macintosh computers. You can use the
Translation Manager to implement explicit
translation.

translation system A translation extension,
with or without external translators, that is able
to recognize and translate files or scraps.

translator A piece of software called by
translation extensions or by applications to
convert documents or scraps from one format to
another.

type selection A feature that allows a user to
type the name of an item in a list to select it.

variation code In the header component of a
help resource, an integer that specifies the
preferred position of a help balloon relative to its
hot rectangle. The balloon definition function

draws the frame of the help balloon based on its
variation code. See also balloon definition
function.

window component The portion of an 'hwin'
resource in which you associate an 'hrct' or
'hdlg' resource to a particular window.

IN-1

Index

Numerals

4-bit color icons 5-4
8-bit color icons 5-4, 5-5
12-by-16 pixel icons (mini) 5-7
16-by-16 pixel icons (small) 5-4, 5-6
32-by-32 pixel icons (large) 5-4

A

About This Macintosh dialog box 4-8
action functions 5-57 to 5-58
activate events, in lists 4-34
AddIconToSuite function 5-33
AddResource procedure 1-90 to 1-91
A5 register, and code resources 4-98
A5 world, and component connections 6-68 to 6-69
alert boxes

help balloons for 3-51 to 3-74
help balloons for areas outside 3-87 to 3-89
and Help menu 3-92
and help messages for menus 3-38

aligning icons 5-36
alternate rectangles. See also hot rectangles

specifying in 'hdlg' resources 3-55 to 3-57
specifying in HMShowBalloon function 3-79 to 3-81

anchor algorithm for extending list selections 4-18 to
4-20

Apple menu, help balloons for 3-13 to 3-18
Apple Menu Items folder, icon for 1-132
application-defined routines. See also sample routines
DoGetFileTranslationList 7-54
DoGetScrapTranslationList 7-59
DoIdentifyFile 7-56
DoIdentifyScrap 7-60
DoTranslateFile 7-57
DoTranslateScrap 7-61
MyBalloonDef 3-129 to 3-130
MyCdev 8-74 to 8-78
MyClickLoop 4-101
MyComponent 6-79
MyIconAction 5-58
MyIconGetter 5-59
MyLDEF 4-97 to 4-99
MyMatchFunction 4-99 to 4-100
MyMntrExt 8-78 to 8-82
MyTip 3-130 to 3-131

application icons, help balloons for 3-84 to 3-86
Application menu, help balloons for 3-13 to 3-16
applications

adding to the desktop database 9-18
default icon for 1-130
removing from desktop database 9-21

application startup 1-50
application translation extensions 7-14, 7-35
arrow keys

extending list selections with 4-16 to 4-20
moving list selections with 4-15 to 4-16
processing for the current list 4-52
supporting navigation of lists with 4-48 to 4-53

B

balloon definition functions
creating 3-93 to 3-94
standard 3-8

Balloon Help assistance. See also help balloons
defined 3-5
determining whether enabled 3-98
enabling and disabling 3-5, 3-7, 3-107 to 3-108
user interface guidelines 3-18 to 3-23, 3-37 to 3-38,

3-39 to 3-40, 3-57 to 3-58, 3-70 to 3-71
BalloonWriter tool 3-17
batch translation 7-9
BeginUpdate procedure, and updating lists 4-34
'BNDL' resource type

and control panel files 8-7, 8-22, 8-83
and monitors extensions files 8-12, 8-57, 8-59, 8-60
used in desktop database 9-3

bundle bit 7-23
bundles resources. See 'BNDL' resource type

C

CallComponentFunction function 6-63 to 6-64
CallComponentFunctionWithStorage function 6-64

to 6-65
CanDocBeOpened function 7-17, 7-40 to 7-42
can do request 6-22
CaptureComponent function 6-25, 6-75 to 6-76
'card' resource type 8-11, 8-50 to 8-51, 8-87
catalog types 7-19

I N D E X

IN-2

'cdev' file type 8-4, 8-48
'cdev'resource type 8-7, 8-25 to 8-48, 8-76 to 8-77
cdev functions. See control device functions
Cell data type 4-22, 4-65
cell record 4-65
cells. See list cells
ChangedResource procedure 1-21, 1-88 to 1-90
'cicn' resource type. See also icon resources

and color icon record 5-17
and Dialog Manager 5-6
drawing 5-13 to 5-17
and Menu Manager 5-6

CIcon data type 5-17
Clear command (Edit menu) 2-6
click-loop procedures 4-25, 4-100 to 4-101
Clipboard file 2-33
Clipboard window 2-10

hiding 2-20
showing 2-25

cloning, components 6-35
close boxes, help balloon for 3-14 to 3-16, 3-87 to 3-89
CloseComponent function 6-47
CloseComponentResFile function 6-73
close request 6-21
CloseResFile procedure 1-110 to 1-111
color icon record 5-17
color icon resources. See 'cicn' resource type
color icons 5-4 to 5-6
Command key, using to create discontiguous selections

in lists 4-11
Command-key equivalents. See keyboard equivalents
component connections 6-6, 6-65 to 6-69
Component data type 6-41
ComponentDescription data type 6-37 to 6-40, 6-52

to 6-54
component description record 6-37 to 6-40, 6-52 to 6-54
component file 6-32 to 6-33, 6-71 to 6-73, 6-84
ComponentFunctionImplemented function 6-50 to

6-51
component identifiers 6-9, 6-40 to 6-41, 6-42 to 6-43,

6-46
ComponentInstance data type 6-41
component instances 6-6, 6-40 to 6-41, 6-45 to 6-46
Component Manager 6-3 to 6-99

data structures in
for applications 6-37 to 6-40
for components 6-52 to 6-55

requests to components 6-18 to 6-28
resources in 6-80 to 6-85
routines in

for applications 6-41 to 6-52
for components 6-56 to 6-76

testing for availability 6-6
ComponentParameters data type 6-55
component parameters record 6-54 to 6-55

component requests 6-18 to 6-28
can do 6-22
close 6-21
open 6-19 to 6-20
register 6-23 to 6-24
target 6-25 to 6-26
unregister 6-24 to 6-25
version 6-22 to 6-23

ComponentResource data type 6-81 to 6-85
component resources 6-32 to 6-33, 6-80 to 6-85
components

calling 6-73 to 6-74
capturing 6-25 to 6-26, 6-75 to 6-76
cloning 6-35
closing connections to 6-12, 6-47
defined 6-3
finding 6-8 to 6-9, 6-42 to 6-44
getting information about 6-10 to 6-11, 6-47 to 6-51
hiding 6-75 to 6-76
interfaces of, defining 6-28 to 6-30
levels of service 6-3, 6-35, 6-73
manufacturer code for 6-4, 6-39, 6-53
opening connections to 6-7 to 6-10, 6-44 to 6-46
registering 6-30 to 6-32, 6-57 to 6-62, 6-80 to 6-81
requesting services from 6-18 to 6-27
structure of 6-13 to 6-18
targeting 6-25 to 6-26
unregistering 6-24 to 6-25
using services of 6-11 to 6-12

ComponentSetTarget function 6-25, 6-77
component subtypes 6-4, 6-38, 6-53
component types 6-4, 6-38, 6-53
content region of help balloons 3-8, 3-93
control device code resources 8-7, 8-25, 8-74
control device functions 8-4, 8-25 to 8-47, 8-74 to 8-78

and activate events 8-33
and keyboard-related events 8-37
and mouse-related events 8-39
performing initialization 8-29
preserving a handle to private storage 8-30
and update events 8-43

Control Panel desk accessory 8-15, 8-23, 8-37, 8-39
control panel files

creating 8-12 to 8-48
defined 8-4
and monitors extensions 8-73
and system extensions 8-8
user documentation for 8-8

control panels 8-3 to 8-92
and Command-key equivalents 8-37
compatibility with the Control Panel desk

accessory 8-15, 8-23, 8-37, 8-39
creating 8-12 to 8-48
creating resources for 8-14 to 8-24
and error reporting 8-47

I N D E X

IN-3

initializing 8-30
required resources 8-6, 8-82 to 8-87
shutting down 8-45
specifying a font for 8-23
and text defined as user items 8-43
user interface guidelines for 8-12
valid resource IDs for 8-14
where to store 8-8

Control Panels folder, icon for 1-132
controls, help balloons for 3-55
conversion of file formats. See translation of file formats
copy and paste, user interface guidelines for 2-10 to

2-11
Copy command (Edit menu) 2-6, 2-19
CountComponentInstances function 6-67 to 6-68
CountComponents function 6-43 to 6-44
Count1Resources function 1-98 to 1-99
Count1Types function 1-102
CountResources function 1-98
CountTypes function 1-102
CreateResFile procedure 1-57 to 1-58
current resource file

defined 1-10
getting and setting 1-28 to 1-30, 1-68 to 1-71

CurResFile function 1-68 to 1-69
cursors, tracking location by Help Manager 3-25
cut and paste, intelligent 2-10 to 2-11
Cut command (Edit menu) 2-6, 2-15 to 2-19

D

DataArray data type 4-25
data forks 1-4 to 1-6
DataHandle data type 4-25, 4-66
'dctb' resource type, and Standard File Package

dialog boxes 7-11
default help override resources. See 'hovr' resource

type
DelegateComponentCall function 6-35, 6-36, 6-74
desk accessories, default icon for 1-130
desktop, default icons used on 1-133
desktop database 9-3 to 9-26

adding data to 9-17 to 9-20
closing 9-11
contents of 9-5
deleting data from 9-20 to 9-22
determining parent directory of 9-24
determining reference number of 9-5, 9-9 to 9-11
determining space used by 9-24
locating 9-9 to 9-11
opening 9-11 to 9-12
removing data from 9-25 to 9-26

retrieving data from 9-12 to 9-16
saving to disk 9-23

Desktop file 9-3, 9-4
Desktop Manager 9-3 to 9-26

data structures in 9-6 to 9-8
routines in 9-8 to 9-26

desktop parameter block 9-7 to 9-8
DetachResource procedure 1-22 to 1-24, 1-108
dialog boxes

creating lists in 4-29
handling editing operations in 2-31
help balloons for 3-51 to 3-74
help balloons for areas outside 3-87 to 3-89
and Help menu 3-92
and help messages for menus 3-38, 3-47 to 3-51

DialogCopy procedure 2-31
DialogCut procedure 2-31
dialog-item help resources. See 'hdlg' resource type
Dialog Manager

and Scrap Manager 2-31
and TextEdit 2-31

DialogPaste procedure 2-31
discontiguous selections, in lists 4-11
DisposeCIcon procedure 5-30
DisposeIconSuite function 5-42 to 5-43
'DITL' resource type

for a control panel 8-6, 8-17 to 8-19
help items in 3-51 to 3-52, 3-59 to 3-63
for a monitors extension 8-11, 8-50, 8-54 to 8-55

DocOpenMethod data type 7-41
Document Converter 7-9 to 7-10, 7-47
document opening methods 7-17, 7-41
documents

batch translation of 7-9
default icon for 1-130
drop launching 7-7
help balloons for icons 3-84 to 3-86
identifying the type of 7-32 to 7-33
opening from the Finder 7-5 to 7-7
opening in an application 7-8 to 7-9
opening with explicit translation 7-17 to 7-18
translating. See translation of file formats 7-33 to 7-35
translating on the desktop 7-9 to 7-10
of type 'TEXT' 7-11

Down Arrow key 4-48
DrawGrowIcon procedure, using to create resizable

lists 4-28
DrawText procedure, using to draw text in a cell of a

list 4-24
drop launching 7-7, 7-13
DTPBRec data type 9-7 to 9-8
dynamic file-type lists. See application translation

extensions
dynamic windows, help balloons for 3-74 to 3-84

I N D E X

IN-4

E

Edition Manager, and Macintosh Easy Open 7-4, 7-10
editions, translating format of 7-10
Edit menu

Clear command 2-6
and control panels 8-5, 8-46
Copy command 2-6
Cut command 2-6
Paste command 2-6
Show Clipboard/Hide Clipboard command 2-10

8-bit color icons 5-4, 5-5
EndUpdate procedure, and updating lists 4-34
events

in control panels 8-25 to 8-26
handling resume events 2-25 to 2-26
handling suspend events 2-19 to 2-20
in lists 4-32 to 4-34

explicit translation 7-17
extend algorithm for extending list selections 4-16 to

4-17
ExtendFileTypeList function 7-17, 7-38 to 7-39
extensions, default icon for 1-130
Extensions folder, icon for 1-132

F

file filter functions. See Standard File Package, file filter
functions

file reference numbers
defined 1-10
for System file’s resource fork 1-50
used with Resource Manager routines 1-24

file reference resources. See 'FREF' resource type
files

data fork of 1-4 to 1-6
resource fork of 1-4 to 1-6. See also applications;

documents
user comments associated with 9-3

file system specification (FSSpec) records, and
Resource Manager routines 1-13

FileTranslationList data type 7-28, 7-48 to 7-49
file translation lists

creating 7-28 to 7-32
defined 7-27
structure of 7-48 to 7-49

FileTranslationSpec data type 7-41
file translation systems 7-5
FileType data type 7-18
FileTypePtr data type 7-39
file types

declaring those an application can open 7-13 to 7-14,
7-44

finding those supported by applications 9-14
identifying 7-32 to 7-33
and Macintosh Easy Open 7-19

FileTypeSpec data type 7-30, 7-46 to 7-47
file type specifications 7-30, 7-46 to 7-47
filters for translating file formats. See translation

systems
Finder

and control panels 8-7
database for a volume 9-3 to 9-26
and Macintosh Easy Open 7-4, 7-5 to 7-7

Finder icon help resources. See 'hfdr' resource type
Finder icons. See standard icons
FindNextComponent function 6-8, 6-42 to 6-43
'finf' resource type 8-7, 8-23, 8-86
'FKEY' resource type 1-129
folders

default icons for 1-131
icons for those in the System Folder 1-132

font information resource 8-7, 8-23, 8-86
fonts

in control panels 8-7, 8-23, 8-86
in help balloons 3-110 to 3-113

Fonts folder, icon for 1-132
ForEachIconDo function 5-38 to 5-39
4-bit color icons 5-4
'FREF' resource type

and control panel files 8-7, 8-22, 8-82
and monitors extensions files 8-12, 8-57, 8-59

FSpCreateResFile procedure 1-25 to 1-26, 1-53 to
1-55

FSpOpenResFile function 1-26 to 1-28, 1-58 to 1-62
FSSpec data type 1-13, 1-25, 1-54, 1-59
function key resource IDs 1-129

G

'gama' resource type, and monitor extensions 8-12,
8-59

gamma tables, and monitor extensions 8-59
Gestalt function

and Help Manager 3-18
and Icon Utilities 5-8
and Resource Manager 1-13 to 1-14
and Scrap Manager 2-14
and Translation Manager 7-12

GetCIcon function 5-29
GetComponentIconSuite function 6-49 to 6-50
GetComponentInfo function 6-10 to 6-11, 6-48 to 6-49
GetComponentInstanceA5 function 6-68 to 6-69
GetComponentInstanceError function 6-51 to 6-52
GetComponentInstanceStorage function 6-67
GetComponentListModSeed function 6-44

I N D E X

IN-5

GetComponentRefcon function 6-35, 6-71
GetComponentVersion function 6-50
GetControlValue function 8-40
GetDialogItem procedure 8-30, 8-72
GetFileTypesThatAppCanNativelyOpen

function 7-17, 7-37 to 7-38
GetIconCacheData function 5-55
GetIconCacheProc function 5-56
GetIconFromSuite function 5-13, 5-34 to 5-35
GetIcon function 5-14, 5-28 to 5-29
GetIconSuite function 5-11, 5-13, 5-31 to 5-32
GetIndResource function 1-99 to 1-100
GetIndType procedure 1-103
GetLabel function 5-41 to 5-42
GetMaxResourceSize function 1-105 to 1-106
GetNamedResource function 1-75 to 1-76
Get1IndResource function 1-100 to 1-101
Get1IndType procedure 1-104
Get1NamedResource function 1-77 to 1-78
Get1Resource function 1-74 to 1-75
GetResAttrs function 1-84 to 1-85
GetResFileAttrs function 1-116 to 1-118
GetResInfo procedure 1-81 to 1-82
GetResource function 1-18, 1-73 to 1-74
GetResourceSizeOnDisk function 1-105
GetScrap function 2-38 to 2-40, 7-11
GetSuiteLabel function 5-40

H

handles
NIL, returned by Resource Manager routines 1-14,

1-51
type-casting, for use by Resource Manager 1-33, 1-39

HCreateResFile procedure 1-56 to 1-57
'hdlg' resource type

compared with 'hrct' resource type 3-57, 3-65, 3-70
example of 3-59 to 3-61, 3-72 to 3-74
options for 3-54
Rez input format for 3-53
Rez output format for 3-140 to 3-148
used with 'hwin' resources 3-68, 3-69 to 3-70

help balloons
for alert boxes 3-51 to 3-74
for close boxes 3-14 to 3-16, 3-87 to 3-89
content region of 3-93
for controls 3-55
default 3-13 to 3-17, 3-84 to 3-89
defined 3-5
determining whether enabled 3-98
determining whether showing 3-99
for dialog boxes 3-51 to 3-74
displaying 3-8 to 3-13, 3-100 to 3-103

enabling and disabling 3-5, 3-7, 3-107 to 3-108
help messages in

extracting 3-122 to 3-128
font name and size for 3-110 to 3-113
formats 3-23 to 3-24
specifying in a help message record 3-75 to 3-80
user interface guidelines 3-18 to 3-23, 3-37 to 3-38,

3-39 to 3-40, 3-57 to 3-58, 3-70 to 3-71
for icons 3-14, 3-17, 3-84 to 3-86
for menus 3-14 to 3-17, 3-27 to 3-51, 3-103 to 3-105
methods for displaying help balloons 3-8 to 3-13,

3-99 to 3-105
overriding default

for application icons 3-84 to 3-86
for inactive windows 3-87 to 3-89
for window frames 3-87

positioning 3-9 to 3-11, 3-23
removing 3-75, 3-81, 3-105, 3-106
routines for 3-97 to 3-128
sizes of, getting 3-119 to 3-122
structure region of 3-93
tips of. See tips of help balloons
user interface guidelines 3-18 to 3-23, 3-37 to 3-38,

3-39 to 3-40, 3-57 to 3-58, 3-70 to 3-71
variation codes for 3-9 to 3-11
for windows 3-14 to 3-16, 3-63 to 3-84, 3-87 to 3-89
for zoom boxes 3-14 to 3-16, 3-87 to 3-89

HelpItem item type 3-62 to 3-63
Help Manager. See also help balloons 3-5 to 3-177

application-defined routines for 3-128 to 3-131
data structures in 3-95 to 3-97
resources in 3-132 to 3-165
routines in 3-97 to 3-128
testing for availability 3-18

Help Manager string list record 3-78 to 3-79, 3-97
Help menu

adding items to 3-90 to 3-93
help balloons for 3-13 to 3-16
place in menu bar 3-18
Show/Hide Balloons command 3-7

help message record 3-76 to 3-80, 3-95 to 3-97
help messages. See help balloons
help resources

getting and setting 3-114 to 3-119
options for 3-25 to 3-27. See also 'hdlg' resource

type; 'hfdr' resource type; 'hmnu' resource
type; 'hovr' resource type; 'hrct' resource
type; 'hwin' resource type

'hfdr' resource type
and control panel files 8-23
example of 3-86
options for 3-85
Rez input format for 3-84
Rez output format for 3-156 to 3-160

Hide/Show Balloons command (Help menu) 3-7

I N D E X

IN-6

Hide/Show Clipboard command (Edit menu) 2-10
HMBalloonPict function 3-120 to 3-121
HMBalloonRect function 3-119 to 3-120
HMCompareItem identifier 3-124, 3-127
HMExtractHelpMsg function 3-122 to 3-125
HMGetBalloons function 3-75, 3-98
HMGetBalloonWindow function 3-121 to 3-122
HMGetDialogResID function 3-118 to 3-119
HMGetFont function 3-110
HMGetFontSize function 3-111
HMGetHelpMenuHandle function 3-90 to 3-91, 3-108 to

3-109
HMGetIndHelpMsg function 3-125 to 3-128
HMGetMenuResID function 3-115 to 3-116
HMIsBalloon function 3-99
HMMessageRecord data type 3-76 to 3-80, 3-95 to 3-97
'hmnu' resource type

example of 3-30 to 3-32, 3-41 to 3-42, 3-44 to 3-45,
3-46, 3-49 to 3-50

options for 3-32
Rez input format for 3-30, 3-43 to 3-44, 3-45 to 3-46
Rez output format for 3-132 to 3-140

HMRemoveBalloon function 3-75, 3-81, 3-106
HMScanTemplateItems function 3-116 to 3-117
HMSetBalloons function 3-107 to 3-108
HMSetDialogResID function 3-117 to 3-118
HMSetFont function 3-112
HMSetFontSize function 3-113
HMSetMenuResID function 3-50, 3-114 to 3-115
HMShowBalloon function 3-74 to 3-84, 3-100 to 3-103
HMShowMenuBalloon function 3-103 to 3-105
HMStringResType data type 3-78 to 3-79, 3-97
HomeResFile function 1-71
HOpenResFile function 1-62 to 1-64
hot rectangles. See also alternate rectangles

defined 3-9
in dialog and alert boxes 3-56 to 3-57
in menus 3-29
specifying in dynamic windows 3-74, 3-80
specifying in static windows 3-66

'hovr' resource type 3-160 to 3-165
example of 3-89
options for 3-88
Rez input format for 3-87
Rez output format for 3-160 to 3-165

'hrct' resource type
compared with 'hdlg' resource type 3-57, 3-65, 3-70
example of 3-71 to 3-72
options for 3-67
Rez input format for 3-66
Rez output format for 3-148 to 3-153
used with 'hwin' resources 3-68, 3-69 to 3-70

'hwin' resource type
compared with using HelpItem item 3-63
example of 3-71 to 3-72, 3-72 to 3-74

options for 3-69
Rez input format for 3-68
Rez output format for 3-154 to 3-156
used with 'hdlg' and 'hrct' resources 3-68, 3-69

to 3-74

I, J

'icl4' resource type, as part of an icon family 5-4
'icl8' resource type

as part of an icon family 5-5
'icm#' resource type 5-7
'icm4' resource type 5-7
'icm8' resource type 5-7
'ICN#' resource type, as part of an icon family 5-4
icon caches

defined 5-9
working with 5-53 to 5-57

icon families
defined 5-4 to 5-5
drawing an icon from a resource 5-10
drawing icons in 5-8 to 5-13
drawing specific icons from 5-12 to 5-13

icon getter function 5-9, 5-58 to 5-59
IconIDToRgn function 5-44 to 5-45
icon list resources, as part of an icon family 5-4
icon masks 5-4

converting to a region 5-43 to 5-46
IconMethodToRgn function 5-45 to 5-46
icon resources
'cicn' 5-6
'icl4' 5-4
'icl8' 5-4
'icm#' 5-7
'icm4' 5-7
'icm8' 5-7
'ICN#' 5-4
'ICON' 5-6
'ics#' 5-4
'ics4' 5-4
'ics8' 5-4
'SICN' 5-6

'ICON' resource type
and Dialog Manager 5-6
drawing 5-13 to 5-17
and Menu Manager 5-6

icons
alignment of 5-8, 5-36
black and white 5-4
color 5-4
for components 6-48, 6-59, 6-81
for control panel files 8-14
default 1-129 to 1-134

I N D E X

IN-7

defined 5-3
designing and creating 5-4
in desktop database 9-26

adding to 9-17 to 9-18
getting icon definitions from 9-12 to 9-13
removing from 9-25

in dialog boxes 5-3
disposing of 5-30
drawing

members of an icon family 5-10
from an icon suite 5-11
from resources 5-19 to 5-28
those that are not part of an icon family 5-13 to

5-17, 5-28 to 5-29
8-bit color 5-4, 5-5
4-bit color 5-4
help balloons for 3-13, 3-18, 3-84 to 3-86
hit testing 5-46 to 5-53
in icon suite, constants for specifying 5-31
label information, getting 5-40, 5-41
large (32-by-32 pixel) 5-4
manipulating icon data 5-13
in menus 5-3
mini 5-7. See also icon families; icon resources
for monitors extension files 8-50
small (16-by-16 pixel) 5-4, 5-6
in the System file 1-129 to 1-134
transform constants 5-37

icon suites
creating 5-30 to 5-33
defined 5-9
disposing of 5-42 to 5-43
drawing icons from 5-11, 5-35 to 5-38
getting icons from 5-34 to 5-35
specifying icons in, constants for 5-31

IconSuiteToRgn function 5-43 to 5-44
Icon Utilities 5-3 to 5-73

application-defined routines for 5-57 to 5-59
data structure in 5-17 to 5-18
routines in 5-18 to 5-57
testing for availability 5-7

'ics#' resource type, as part of an icon family 5-4
'ics4' resource type, as part of an icon family 5-5
'ics8' resource type, as part of an icon family 5-5
'ictb' resource type

and control panels 8-23
and monitors extensions 8-56

implicit translation
defined 7-4
of editions 7-10
while opening documents 7-6, 7-8
while pasting data 2-21, 2-39, 7-10

inactive windows, help balloons for 3-87 to 3-89
InfoScrap function 2-34 to 2-35
InitResources function 1-50

'INIT' resource type, and monitors extensions 8-12,
8-61

InvalRect procedure, using to stimulate redrawing of
a list 4-32

item color table resources
and control panels 8-23
and monitors extensions 8-56

item list resources. See 'DITL' resource type 8-50
IUMagIDString function, used by LSearch

function 4-43
IUMagString function, using to customize a search of

a list 4-43

K

Keyboard control panel, and type selection 4-45
keyboard equivalents, and control panels 8-37
keyboard events, handling in control panels 8-37 to

8-39
keyboards, using to navigate lists 4-15 to 4-20, 4-45 to

4-53
key-down events, scrolling lists in response to 4-45 to

4-53
'kind' resource type 7-11, 7-14 to 7-15, 7-45 to 7-46
kind strings 7-14 to 7-15

L

labels, icon 5-22, 5-37, 5-41
LActivate procedure 4-85 to 4-86
LAddColumn function 4-73 to 4-74
LAddRow function 4-74 to 4-75
LAddToCell procedure 4-80 to 4-81
large 4-bit color icon resources, as part of an icon

family 5-4
large 8-bit color icon resources, as part of an icon

family 5-5
large (32-by-32 pixel) icons 5-4
LAutoScroll procedure 4-88 to 4-89
LCellSize procedure 4-92 to 4-93
LClick function 4-25, 4-33, 4-84 to 4-85
lCloseMsg message 4-62 to 4-63
LClrCell procedure 4-40, 4-81
'LDEF' resource type 4-7, 4-58, 4-98
LDelColumn procedure 4-75 to 4-76
LDelRow procedure 4-76 to 4-77
LDispose procedure 4-72 to 4-73
lDrawMsg message 4-60 to 4-62
LDraw procedure 4-88
Left Arrow key 4-48
LGetCellDataLocation procedure 4-82 to 4-83

I N D E X

IN-8

LGetCell procedure 4-41, 4-83
LGetSelect function 4-35, 4-77 to 4-78
lHiliteMsg message 4-62
lInitMsg message 4-60
list cells

condensed text in 4-5
containing several types of information 4-8
customizing selection algorithm 4-38 to 4-39
defined 4-4
selection of 4-9 to 4-15, 4-34 to 4-39
size of 4-4, 4-23, 4-28

list definition procedure resources 4-7, 4-58, 4-98
list definition procedures 4-58 to 4-64, 4-96 to 4-99

changing fields of the list record 4-98
compiling 4-98
entry point of 4-99
processing messages in 4-59
responding to lCloseMsg message 4-62 to 4-63
responding to lDrawMsg message 4-60 to 4-62
responding to lHiliteMsg message 4-62
responding to lInitMsg message 4-60
using global variables in 4-98
using to create graphical lists 4-7

ListHandle data type 4-23
List Manager 4-3 to 4-111

application-defined routines for 4-96 to 4-101
data structures in 4-65 to 4-69
routines in 4-70 to 4-96

ListRec data type 4-22 to 4-25, 4-66 to 4-69
list record 4-22 to 4-25, 4-66 to 4-69

setting selFlags field 4-39
lists 4-4. See also list cells

activating 4-34, 4-85 to 4-86
adding items alphabetically 4-41 to 4-42
appearance of 4-4 to 4-8
arrow-key navigation in 4-48 to 4-53
automatic drawing mode 4-32, 4-87 to 4-88
borders around, drawing 4-30
cell data, accessing 4-25, 4-79 to 4-83
creating 4-27 to 4-30, 4-70 to 4-72
creating a list of pictures 4-63 to 4-64
data bounds of 4-28
discontiguous selections in 4-11
disposing of 4-30, 4-72 to 4-73
double click in 4-33
events in, responding to 4-32 to 4-34, 4-84 to 4-86
graphical items in 4-7, 4-63 to 4-64
introduced 4-4 to 4-8
keyboard navigation of 4-15 to 4-20, 4-45 to 4-53
location of last click, determining 4-24
multiple in a window 4-20 to 4-21
outline around current 4-20 to 4-21, 4-53 to 4-57
outline of 4-20
redrawing 4-33 to 4-34, 4-86
scroll bars in 4-5 to 4-6, 4-8

scrolling 4-24, 4-25, 4-36 to 4-37, 4-88 to 4-90
searching in 4-43 to 4-44, 4-90 to 4-91
selection algorithm, customizing 4-14 to 4-15, 4-38

to 4-39
selection of items in 4-9 to 4-15, 4-34 to 4-39
size box in 4-8
type selection in 4-20, 4-45 to 4-48
visible cells of 4-23

LLastClick function 4-24, 4-96
LNew function 4-70 to 4-72
LNextCell function 4-35, 4-93 to 4-94
LoadIconCache function 5-54 to 5-55
LoadResource procedure 1-80 to 1-81
LoadScrap function 2-41
localization guidelines, for Help Manager 3-20
LRect procedure 4-95
LScroll procedure 4-89 to 4-90
LSearch function 4-90 to 4-91
LSetCell procedure 4-79 to 4-80
LSetDrawingMode procedure 4-32, 4-87
LSetSelect procedure 4-36, 4-78 to 4-79
LSize procedure 4-91 to 4-92
LUpdate procedure 4-86

M

'mach' resource type 8-6, 8-20 to 8-21, 8-29, 8-84 to
8-85

machine resources 8-6, 8-20 to 8-21, 8-29, 8-84 to 8-85
Macintosh Easy Open 7-3 to 7-75

application guidelines 7-10 to 7-11
capabilities 7-4 to 7-10
defined 7-4
and Edition Manager 7-4, 7-10
and Finder 7-4, 7-5 to 7-7
and Scrap Manager 7-4, 7-10
and Standard File Package 7-4, 7-8 to 7-9

MakeIconCache function 5-53 to 5-54
manufacturer code for components 6-4, 6-39, 6-53
match functions 4-99 to 4-100
MaxSizeRsrc function. See GetMaxResourceSize

function
menu commands

Clear (Edit menu) 2-6
Copy (Edit menu) 2-6

handling 2-19
Cut (Edit menu) 2-6, 2-10 to 2-11

handling 2-15 to 2-19
Paste (Edit menu) 2-6, 2-10 to 2-11

handling 2-20 to 2-25, 2-28 to 2-31
Show/Hide Balloons (Help menu) 3-7
Show/Hide Clipboard (Edit menu) 2-10, 2-25

menu help resources. See 'hmnu' resource type

I N D E X

IN-9

menu items. See also menu commands
adding to Help menu 3-90 to 3-93
help balloons for 3-39 to 3-51

menus. See also menu commands
help balloons for 3-14 to 3-16, 3-27 to 3-51, 3-103 to

3-105
menu titles, help balloons for 3-36 to 3-38
mini 4-bit color icon resources 5-7
mini 8-bit color icon resources 5-7
mini icon list resources 5-7
mini icons, defined 5-7
missing items, help balloons for

in 'hdlg' resources 3-54 to 3-56
in 'hmnu' resources 3-33 to 3-36
in 'hovr' resources 3-88

'mntr' resource type 8-11, 8-56, 8-88
monitor code resources 8-11, 8-56
Monitors control panel 8-3, 8-9

features 8-10
and the Options dialog box 8-10, 8-52

monitors extension functions 8-61 to 8-73, 8-78 to 8-82
allocating memory for 8-66
error handling 8-63, 8-82
and keyboard-related events 8-73
modifying the rectangle resource for 8-66
and mouse-related events 8-71
performing initialization 8-68

monitors extensions 8-9 to 8-12
optional resources 8-11, 8-56
required resources 8-11, 8-51 to 8-56, 8-83
user interface guidelines for 8-49 to 8-51, 8-52 to 8-56

mouse-down events, in lists 4-33
'movv' scrap format type 2-33
multicolumn lists, containing fewer items than

columns 4-7

N

Network control panel 4-7
NewIconSuite function 5-32 to 5-33
NIL handle

in a resource map 1-18
returned by Resource Manager routines 1-14, 1-51

'nrct' resource type 8-6, 8-13, 8-15 to 8-17, 8-82, 8-85
to 8-86

O

OpenComponent function 6-46
OpenComponentResFile function 6-72

OpenDefaultComponent function 6-7 to 6-8, 6-45 to
6-46

open request 6-19 to 6-20
OpenResFile function 1-66 to 1-68
'open' resource type 7-10, 7-13 to 7-14, 7-44
OpenRFPerm function 1-64 to 1-66
Options dialog box 8-10

and controls for superusers 8-51
defining the display area for controls 8-50
and monitors extension controls 8-54
standard controls 8-10
supplying the icon for 8-57

outlining the current list 4-53 to 4-57

P

package resource IDs 1-128
package resources 1-128
packages 1-128
'PACK' resource type 1-128
partial resources 1-40 to 1-41
Paste command (Edit menu) 2-6, 2-10 to 2-11
PBDTAddAPPL function 9-18 to 9-19
PBDTAddIcon function 9-17 to 9-18
PBDTCloseDown function 9-11
PBDTDelete function 9-26
PBDTFlush function 9-23
PBDTGetAPPL function 9-15 to 9-16
PBDTGetComment function 9-16
PBDTGetIcon function 9-12 to 9-14
PBDTGetIconInfo function 9-14 to 9-15
PBDTGetInfo function 9-24
PBDTGetPath function 9-9 to 9-10
PBDTOpenInform function 9-10 to 9-11
PBDTRemoveAPPL function 9-21
PBDTRemoveComment function 9-22
PBDTReset function 9-25
PBDTSetComment function 9-19 to 9-20
'PICT' resource type, and help messages 3-24
'PICT' scrap format type 2-33
picture resources, and help messages 3-24
PlotCIconHandle function 5-16, 5-26 to 5-27
PlotCIcon procedure 5-15, 5-25 to 5-26
PlotIconHandle function 5-15, 5-24 to 5-25
PlotIconID function 5-10, 5-20 to 5-22
PlotIconMethod function 5-22 to 5-23
PlotIcon procedure 5-14, 5-23 to 5-24
PlotIconSuite function 5-11, 5-13, 5-35 to 5-38
PlotSICNHandle function 5-16, 5-27 to 5-28
point-to-point translation 7-30
preferences files

and control panels 8-30
default icon for 1-130

I N D E X

IN-10

and monitors extensions 8-71
resources in 1-13

Preferences folder, icon for 1-132
printer, determining type in use 1-127
PrintMonitor Documents folder, icon for 1-132
private scrap

reading data from 2-24 to 2-25, 2-25 to 2-26
writing data to 2-18 to 2-19

progress dialog box. See translation progress dialog box
PScrapStuff data type 2-32
PtInIconID function 5-48
PtInIconMethod function 5-49 to 5-50
PtInIconSuite function 5-47
PtInRect function

using to determine if a cell is in a list 4-24
using to determine if a list cell is visible 4-23

PutScrap function 2-36 to 2-37

Q

query documents, default icon for 1-130

R

ReadPartialResource procedure 1-111 to 1-113
'RECT' resource type 8-11, 8-52
rectangle help resources. See 'hrct' resource type
rectangle positions resource 8-6, 8-15, 8-85 to 8-86
rectangle resources 8-11, 8-52 to 8-53
RectInIconID function 5-51
RectInIconMethod function 5-52 to 5-53
RectInIconSuite function 5-50 to 5-51
reference number 9-5. See also file reference numbers

determining for desktop database 9-9 to 9-11
of desktop database 9-5

RegisterComponent function 6-31, 6-57 to 6-59
RegisterComponentResourceFile function 6-61 to

6-62
RegisterComponentResource function 6-31, 6-59 to

6-61
register request 6-23 to 6-24
ReleaseResource procedure 1-22, 1-107
RemoveResource procedure 1-109 to 1-110
request codes, for components 6-19, 6-29
ResEdit resource editor 1-15 to 1-17
ResErr global variable 1-51
ResError function 1-51 to 1-52
resource attributes

defined 1-8
getting and setting 1-81 to 1-87

resource files. See resource forks

resource forks 1-4 to 1-6. See also current resource file
closing 1-110 to 1-111
creating 1-25 to 1-28, 1-53 to 1-58
file format for 1-121 to 1-125
getting and setting attributes of 1-116 to 1-119
opening 1-24 to 1-30, 1-58 to 1-68
reading resources from 1-30 to 1-35, 1-71 to 1-81
resource data, format of 1-122
resource header, format of 1-122
resource name list, format of 1-124
resource type list, format of 1-123
writing resources to 1-36 to 1-40, 1-92 to 1-95

resource IDs 1-46 to 1-49
defined 1-6
for function key resources 1-129
getting unique 1-95 to 1-97
for owned resources 1-47
for packages 1-128 to 1-129
restrictions on 1-46 to 1-47

Resource Manager 1-3 to 1-148
data structure, types, and IDs 1-42 to 1-49
initializing 1-50
routines in 1-49 to 1-120
testing for features of 1-13 to 1-14

resource maps
accessing entries in 1-119 to 1-120
defined 1-9
format of 1-123
ROM, inserting in resource search path 1-134 to

1-135
resources. See also resource types

bundle. See 'BNDL' resource type
card 8-11, 8-52, 8-87
changing 1-87 to 1-91
color icon 5-6
component 6-33, 6-61 to 6-62, 6-80 to 6-85, 7-18, 7-20

to 7-21
control device code 8-7, 8-25 to 8-48, 8-74 to 8-77
copying 1-24
counting and indexing 1-34
counting and listing resource types 1-97 to 1-101
creating 1-15 to 1-18
default help override. See 'hovr' resource type
defined 1-3
dialog color table. See 'dctb' resource type
dialog-item help. See 'hdlg' resource type
disposing of 1-106 to 1-110
file reference. See 'FREF' resource type
Finder icon help. See 'hfdr' resource type
font information 8-7, 8-23, 8-86
function keys 1-129
gamma tables 8-59. See 'gama' resource type
getting and setting information about 1-81 to 1-87
getting a unique ID 1-95 to 1-97
getting handles to 1-18 to 1-21

I N D E X

IN-11

icon. See icon resources
icon family. See icon families
item color table 8-23. See 'ictb' resource type
item list. See 'DITL' resource type
kind 7-11, 7-14 to 7-15, 7-45 to 7-46
list definition procedure 4-58, 4-98
locations of, typical 1-12
machine 8-6, 8-20 to 8-21, 8-29, 8-84 to 8-85
menu help. See 'hmnu' resource type
modifying 1-87 to 1-91
monitor code 8-11, 8-56, 8-88
open 7-10, 7-13 to 7-14, 7-44
owned 1-47
partial 1-40 to 1-41, 1-111 to 1-116
in preferences files 1-13
reading 1-30 to 1-35, 1-40 to 1-41, 1-71 to 1-81
rectangle 8-11, 8-52 to 8-53
rectangle help. See 'hrct' resource type
rectangle positions 8-6, 8-15, 8-85 to 8-86
releasing and detaching 1-22 to 1-24
and ResEdit 1-15 to 1-17
and Rez resource compiler 1-15 to 1-17
ROM 1-134 to 1-136
ROM override 1-135 to 1-136
search path for 1-10 to 1-12
size of, getting 1-104 to 1-106
small icon 5-6, 5-13, 5-16 to 5-17
for standard icons 1-129 to 1-134
standard types 1-43 to 1-45
system extension. See 'INIT' resource type
in System file 1-7, 1-126 to 1-134
user information 1-127 to 1-129
window help. See 'hwin' resource type
writing 1-36 to 1-40, 1-40 to 1-41, 1-92 to 1-95

ResourceSpec data type 6-82, 7-20
resource types. See also resources

available for application’s use 1-43 to 1-45
'BNDL' 8-7, 8-22, 8-57
'card' 8-11, 8-51 to 8-52, 8-87
'cdev' 8-7, 8-25 to 8-47, 8-74 to 8-77
'cicn' 5-6
'dctb'. See 'dctb' resource type
defined 1-6
'DITL'. See 'DITL' resource type 8-6
'finf' 8-7, 8-23, 8-86
'FKEY' 1-129
'gama' 8-12, 8-59
'hdlg'. See 'hdlg' resource type
'hfdr'. See 'hfdr' resource type
'hmnu'. See 'hmnu' resource type
'hovr'. See 'hovr' resource type
'hrct'. See 'hrct' resource type
'hwin'. See 'hwin' resource type
'icl4' 5-4
'icl8' 5-5

'icm#' 5-7
'icm4' 5-7
'icm8' 5-7
'ICN#' 5-4
'ICON' 5-6, 5-13 to 5-15
'ics#' 5-4
'ics4' 5-5
'ics8' 5-5
'ictb'. See 'ictb' resource type
'INIT'. See 'INIT' resource type
'kind' 7-11, 7-14 to 7-15, 7-45 to 7-46
'LDEF' 4-7, 4-58, 4-98
list of standard 1-43 to 1-45
'mach' 8-6, 8-20 to 8-21, 8-29, 8-84 to 8-85
'mntr' 8-11, 8-56, 8-88
'nrct' 8-6, 8-13, 8-15 to 8-17, 8-82, 8-85 to 8-86
'open' 7-10, 7-13 to 7-14, 7-44
'PACK' 1-128
'RECT' 8-11, 8-50, 8-52
reserved for Operating System’s use 1-46
ResType data type 1-42
'ROv#' 1-135 to 1-136
'SICN' 5-6
'STR#'. See 'STR#' resource type
'STR '. See 'STR ' resource type
'thng'. See 'thng' resource type

ResType data type 1-42
resume events

handling 2-25 to 2-26
updating type-selection threshold after 4-46

Rez resource compiler 1-15 to 1-17
RGetResource function 1-78 to 1-79
Right Arrow key 4-48
RmveResource procedure. See RemoveResource

procedure
ROM override resource 1-135 to 1-136
ROM-resident resources 1-70, 1-134 to 1-136

overriding 1-135 to 1-136
ROM resource map 1-70, 1-134
'ROv#' resource type 1-135 to 1-136
RsrcMapEntry function 1-120
RsrcZoneInit procedure 1-50 to 1-51

S

sample routines
DoCutOrCopyCommand 2-16, 2-18, 2-29
DoGetFileTranslationList 7-30
DoIdentifyFile 7-33

sample routines (continued)
DoMenuCommand 3-92
DoPasteCommand 2-21, 2-24, 2-30
DoPictBalloon 3-77

I N D E X

IN-12

DoPictBalloon2 3-78
DoStringListBalloon 3-79
DoStyledTextBalloon 3-80
DoSuspendResumeEvent 2-19, 2-25
DoTextStringBalloon 3-77
DoTranslateFile 7-34
DrawerSetup 6-28
FindAndShowBalloon 3-82
MyActivateControlPanel 8-35
MyAddIconToList 4-64
MyAddItemAlphabetically 4-42
MyAddItemsFromStringList 4-31
MyAdjustMenusForDialogs 3-50
MyArrowKeyExtendSelection 4-51
MyArrowKeyInList 4-52
MyArrowKeyMoveSelection 4-50
MyClearAllCellData 4-40
MyCloseControlPanel 8-45
MyConvertScrap 2-27
MyCopyAResource 1-24
MyCreateAndOpenResourceFork 1-27
MyCreateResourceFork 1-26
MyCreateTextListInDialog 4-29
MyCreateVerticallyScrollingList 4-27
MyDoOpenSoundResources 1-34
MyDrawIconFromFamily 5-10
MyDrawIconInSuite 5-11
MyDrawListBorder 4-30
MyDrawOutline 4-54
MyDrawRect 8-70
MyDrawThisIcon 5-12
MyFindNewCellLoc 4-49
MyFindVideoComponent 6-9
MyGetAndPlayRewardSoundResource 1-29
MyGetAndPlaySoundResource 1-22
MyGetCellData 4-41
MyGetCompInfo 6-10
MyGetComponent 6-10
MyGetDirectAccessToCellData 4-41
MyGetFirstSelectedCell 4-34
MyGetIconData 5-13
MyGetLastSelectedCell 4-35
MyHandleEditCommand 8-46
MyHandleHitInDialogItem 8-41
MyHandleHits 8-72
MyHandleInitMsg 8-69
MyHandleKeyEvent 8-38
MyHandleMouseDownInList 4-33
MyInitialize 1-25
MyInitializeCP 8-31
MyKeySearchInList 4-47
MyLDEF 4-59
MyLDEFClose 4-63
MyLDEFDraw 4-61
MyLDEFHighlight 4-62

MyLDEFInit 4-60
MyMakeCellVisible 4-37
MyMatchNextAlphabetically 4-44
MyMonExtend 8-64
MyOutlineNextList 4-57
MyOutlinePreviousList 4-57
MyPlotAcicn 5-15
MyPlotAcicnWithAlignAndTransform 5-16
MyPlotAnICON 5-14
MyPlotAnICONWithAlignAndTranform 5-15
MyPlotAnSICNWithAlignAndTranform 5-16
MyReadAPartial 1-41
MyResetTypeSelection 4-46
MySaveWindowPosition 1-38 to 1-39
MySearchPartialMatch 4-43
MySelectOneCell 4-36
MySetCellSizeForIconList 4-63
MySetUpData 8-67
MySetWindowPosition 1-32
MyShowBalloonForDimMenuTitle 3-124
MyTrackList 4-55
MyUpdateControlPanel 8-43
MyUpdateList 4-33
MyUpdateListOutlines 4-56
OvalCanDo 6-22
OvalClick 6-27
OvalClose 6-21
OvalDraw 6-27
OvalDrawer 6-16 to 6-18
OvalErase 6-27
OvalMoveTo 6-28
OvalOpen 6-20
OvalSetUp 6-26
RectangleDrawer 6-36
RiverCP 8-27
TranslateEntry 7-25

scrap
converting data between a private scrap and 2-9 to

2-10, 2-26 to 2-28
converting data between the TextEdit scrap and 2-28

to 2-30
defined 2-4
location of 2-12 to 2-14
reading data from 2-20 to 2-24, 2-25 to 2-26
translating format of 7-10, 7-19, 7-21
using a private 2-4, 2-9
writing data to 2-8 to 2-10, 2-15 to 2-17, 2-19 to 2-20

scrap file 2-33, 2-40
scrap format types 2-33
'movv' 2-33
'PICT' 2-33
'snd ' 2-33
standard 2-7, 2-33
'styl' 2-33
'TEXT' 2-33

I N D E X

IN-13

scrap information record 2-32 to 2-33
Scrap Manager

data types in 2-32 to 2-33
routines in 2-34 to 2-41
and Standard File Package 2-31
testing for features 2-14
and TextEdit 2-28 to 2-30
and Translation Manager 2-7, 2-10, 7-4, 7-10, 7-11

ScrapStuff data type 2-32 to 2-33
ScrapTranslationList data type 7-49 to 7-50
scrap translation lists 7-49 to 7-50
scrap translation systems 7-5
ScrapType data type 7-18
scrap types. See also scrap format types
'stxt' 7-19
'styl' 7-19
'TEXT' 7-19

ScrapTypeSpec data type 7-49
scrap type specifications 7-49
screen shots 1-129
scroll bars

help balloon for 3-16
in lists 4-5 to 4-6, 4-8
width of 4-23

search path, for resources 1-10 to 1-12
SetComponentInstanceA5 procedure 6-68
SetComponentInstanceError procedure 6-28, 6-69

to 6-70
SetComponentInstanceStorage procedure 6-19,

6-66 to 6-67
SetComponentRefcon procedure 6-35, 6-70 to 6-71
SetControlValue procedure 8-30, 8-72
SetDefaultComponent function 6-78 to 6-79
SetIconCacheData function 5-56
SetIconCacheProc function 5-57
SetResAttrs procedure 1-85 to 1-87
SetResFileAttrs procedure 1-118 to 1-119
SetResInfo procedure 1-82 to 1-83
SetResLoad procedure 1-79 to 1-80
SetResourceSize procedure 1-115 to 1-116
SetResPurge procedure 1-94 to 1-95
SetSuiteLabel function 5-40 to 5-41
SetTranslationAdvertisement function 7-35, 7-51

to 7-52
Shift key, use of in lists 4-10 to 4-11
Show/Hide Balloons command (Help menu) 3-7
Show/Hide Clipboard command (Edit menu) 2-10,

2-25
'SICN' resource type 5-6

drawing 5-13 to 5-17
signatures, finding applications with specific 9-15 to

9-16
16-by-16 pixel (small) icons 5-4, 5-6
size boxes

help balloon for 3-16

using in lists 4-8
SizeResource function. See GetResourceSizeOnDisk

function
small 4-bit color icon resources, as part of an icon

family 5-5
small 8-bit color icon resources, as part of an icon

family 5-5
small icon list resources, as part of an icon family 5-4
small icons 5-6. See also icon resources
'snd ' scrap format type 2-33
standard file dialog boxes

help balloons for 3-15
icons in 1-133 to 1-134

Standard File Package
default icons used by 1-133
file filter functions 7-11, 7-16
icons used by 1-133 to 1-134
and Macintosh Easy Open 7-4, 7-8 to 7-9
small color icons in dialog boxes 7-8
and Scrap Manager 2-31

standard icons 1-129 to 1-134
desktop 1-133 to 1-134
documents and applications 1-130
folders 1-131 to 1-133

StandardOpenDialog function 7-14, 7-16
Startup Items folder, icon for 1-132
startup process, and Resource Manager 1-50 to 1-51
static type lists. See 'open' resource type
static windows, help balloons for 3-63 to 3-74
stationery documents

default icon for 1-130
and Macintosh Easy Open 7-10

'STR#' resource type, and help messages 3-24
string list resources, and help messages 3-24
string resources, and help messages 3-24
strings, putting into list cells 4-31
'STR ' resource type, and help messages 3-24
structure regions of help balloons 3-93
style resources, and help messages 3-24
styles, of text in lists 4-7
'styl' resource type, and help messages 3-24
'styl' scrap format type 2-33
suspend events, handling 2-19 to 2-20
system extensions

and control panels 8-8
default icon for 1-130
and monitors extension files 8-61
where to install 8-8

System file
file reference number for resource fork 1-50
icon resources in 1-129 to 1-134
resources in 1-126 to 1-134

application icons 1-129 to 1-130
desktop icons 1-133
document icons 1-129 to 1-130

I N D E X

IN-14

folder icons 1-131
Standard File Package icons 1-133 to 1-134
System Folder icons 1-132
user information 1-127 to 1-128

System Folder, icon for 1-132
system resource map 1-70, 1-134
system startup 1-50

T

Tab key, using to change active list 4-21
target request 6-25 to 6-26
TECopy procedure 2-28, 2-31
TECut procedure 2-28, 2-31
TEFromScrap procedure 2-28, 2-30
TEPaste procedure 2-28, 2-31
TEToScrap procedure 2-28, 2-30
TextEdit, and Scrap Manager 2-28 to 2-30
'TEXT' file type, proper use of 7-11
text resources, and help messages 3-24
'TEXT' resource type, and help messages 3-24
'TEXT' scrap format type 2-33
32-by-32 pixel (large) icons 5-4
'thng' resource type

format of 6-80 to 6-85
Rez input for 6-33
and translation extensions 7-19 to 7-21

tip function, creating 3-128, 3-130 to 3-131
tips of help balloons

defined 3-9
for help balloons in menus 3-29
specifying in dynamic windows 3-80
specifying in 'hdlg' resources 3-56
specifying in 'hrct' resources 3-67

transforms, for Icon Utilities routines
constants for 5-37
defined 5-8

TranslateEntry function 7-24 to 7-26
TranslateFile function 7-18, 7-42 to 7-43
translation extensions 7-18 to 7-35, 7-46 to 7-62

data types used in 7-46 to 7-50
defined 7-4
opening resource files 7-27
resources in 7-22 to 7-23
routines defined in 7-27 to 7-35, 7-54 to 7-62
routines used in 7-50 to 7-54
runtime environment 7-26

translation file types 7-19
translation groups 7-28
Translation Manager 7-3 to 7-18, 7-36 to 7-46

and Edition Manager 7-12
relation to Macintosh Easy Open 7-4
resources in 7-43 to 7-46

routines in 7-36 to 7-43
and Scrap Manager 2-7, 2-10, 7-11
and Standard File Package 7-11, 7-12
testing for availability 7-12, 7-36

translation of file formats 7-3 to 7-58
explicit 7-17 to 7-19, 7-36 to 7-43
implicit 7-6 to 7-8

translation progress dialog box
advertisement in 7-22
displaying 7-35
and implicit translation 7-10
routines for displaying 7-51 to 7-54
shown 7-7
source of types 7-47
updating 7-35

translation systems 7-4
12-by-16 pixel (mini) icons 5-7
TypesBlock data type 7-37
type selection

introduced 4-20
supporting 4-45 to 4-48

type-selection threshold 4-45
formula for computing 4-46

U

UncaptureComponent function 6-76
UniqueID function 1-96
Unique1ID function 1-96 to 1-97
UnloadScrap function 2-40
UnregisterComponent function 6-62
unregister request 6-24 to 6-25
Up Arrow key 4-48
update events

handled by the Help Manager 3-26, 3-81 to 3-82
in lists 4-33 to 4-34

UpdateResFile procedure 1-92 to 1-93
UpdateTranslationProgress function 7-35, 7-52 to

7-54
user comments

removing 9-22
retrieving from desktop database 9-16
setting 9-19 to 9-20

UseResFile procedure 1-69 to 1-71
user information resources 1-127
user interface guidelines

for control panels 8-12 to 8-14
for handling copy and paste 2-6 to 2-8, 2-10 to 2-11
for Help Manager 3-18 to 3-23, 3-37 to 3-38, 3-39 to

3-40, 3-57 to 3-58, 3-70 to 3-71
for lists 4-4 to 4-21
for monitors extensions 8-49 to 8-51

user name 1-127

I N D E X

IN-15

V

variation codes for help balloons 3-9 to 3-11
version request 6-22 to 6-23
video cards

icons for 8-57
and Monitors control panel 8-10
and sResource data structure 8-57

volumes, Finder’s desktop database for 9-3 to 9-26

W, X, Y

window frames, help balloons for 3-13 to 3-16, 3-87 to
3-89

window help resources. See 'hwin' resource type
windows

containing multiple lists 4-20 to 4-21
help balloons for 3-13 to 3-16, 3-63 to 3-84, 3-87 to

3-89
position of lists in 4-8

WritePartialResource procedure 1-113 to 1-115
WriteResource procedure 1-93 to 1-94

Z

ZeroScrap function 2-35
using TextEdit with 2-28, 2-35

zoom boxes, help balloons for 3-14 to 3-16, 3-87 to 3-89

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages were created on an Apple
LaserWriter Pro printer. Final page
negatives were output directly from text
files on an Optrotech SPrint 220
imagesetter. Line art was created
using Adobe™ Illustrator and
Adobe Photoshop. PostScript™, the
page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Apple Courier.

LEAD WRITER

Sharon Everson

WRITERS

Michael Abramowicz, Patria Brown,
Sean Cotter, Sharon Everson,
Tony Francis, Judy Melanson,
Tim Monroe

DEVELOPMENTAL EDITORS

Antonio Padial, Jeanne Woodward,
Beverly Zegarski

INDEX SPECIALIST

Laurel Rezeau

ILLUSTRATORS

Barbara Carey, Bruce Lee

COVER DESIGNER

Barbara Smyth

PRODUCTION EDITORS

Patricia Christenson, Alan Morgenegg

PROJECT MANAGER

Patricia Eastman

Special thanks to Elizabeth Moller,
Dean Yu, Beverly Zegarski.

Acknowledgments to Dave Collins,
Chris DeRossi, Bill Guschwan,
Peter Hoddie, Nick Kledzik,
Wendy Krafft, Guillermo Ortiz,
Frank Stanbach, John Wang, and the
entire Inside Macintosh team.

