
Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York

Don Mills, Ontario Wokingham, England Amsterdam Bonn

Sydney Singapore Tokyo Madrid San Juan

Paris Seoul Milan Mexico City Taipei

I N S I D E M A C I N T O S H

Imaging With QuickDraw

Apple Computer, Inc.

© 1994 Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.

Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
printing or clerical errors.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, AppleTalk, ImageWriter,
LaserWriter, Macintosh, MPW,
PowerBook, and StyleWriter are
trademarks of Apple Computer, Inc.,
registered in the United States and
other countries.

ColorSync, Finder, Geneva, QuickDraw,
QuickTime, ResEdit, System 7, and
TrueType are trademarks of Apple
Computer, Inc.

Adobe Illustrator, Adobe Photoshop,
and PostScript are trademarks of Adobe
Systems Incorporated, which may be
registered in certain jurisdictions.

America Online is a service mark of
Quantum Computer Services, Inc.

Classic is a registered trademark
licensed to Apple Computer, Inc.

CompuServe is a registered service
mark of CompuServe, Inc.

FrameMaker is a registered trademark
of Frame Technology Corporation.

Helvetica and Palatino are registered
trademarks of Linotype Company.

Internet is a trademark of Digital
Equipment Corporation.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

MacPaint is a registered trademark of
Claris Corporation.

NuBus is a trademark of Texas
Instruments.

Motorola is a registered trademark of
Motorola Corporation.

Optrotech is a trademark of Orbotech
Corporation.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

ISBN 0-201-63242-X
1 2 3 4 5 6 7 8 9-CRW-9897969594
First Printing, March 1994

The paper used in this book meets the
EPA standards for recycled fiber.

Library of Congress Cataloging-in-Publication Data

Inside Macintosh. Imaging with QuickDraw/Apple Computer, Inc.
p. cm.

Includes index.
ISBN 0-201-63242-X
1. Macintosh (Computer)—Programming. 2. Computer graphics.

3. QuickDraw. I. Title: Imaging with QuickDraw.
QA76.8.M3I46 1994
006.6’765—dc20 93-50183

CIP

iii

Contents

Figures, Tables, and Listings xiii

Preface About This Book xxi

Format of a Typical Chapter xxii

Conventions Used in This Book xxiii

Special Fonts xxiii

Types of Notes xxiii

Empty Strings xxiv

Assembly-Language Information xxiv

The Development Environment xxiv

Chapter 1 Introduction to QuickDraw 1-1

Drawing Environments 1-4

QuickDraw’s Coordinate Plane 1-6

Images 1-10

Colors 1-17

Indexed Colors 1-19

Direct Colors 1-20

Multiple Screens 1-21

From Memory Bits to Onscreen Pixels 1-24

From Memory Bits to Printers 1-26

Other Graphics Managers 1-28

Chapter 2 Basic QuickDraw 2-1

About Basic QuickDraw 2-3

The Mathematical Foundations of QuickDraw 2-4

The Coordinate Plane 2-4

Points 2-4

Rectangles 2-5

Regions 2-7

The Black-and-White Drawing Environment: Basic Graphics Ports 2-7

Bitmaps 2-9

The Graphics Port Drawing Area 2-11

Graphics Port Bit Patterns 2-13

The Graphics Pen 2-13

Text in a Graphics Port 2-13

iv

The Limited Colors of a Basic Graphics Port 2-14

Other Fields 2-14

Using Basic QuickDraw 2-14

Initializing Basic QuickDraw 2-16

Creating Basic Graphics Ports 2-16

Setting the Graphics Port 2-18

Switching Between Global and Local Coordinate Systems 2-19

Scrolling the Pixels in the Port Rectangle 2-20

Basic QuickDraw Reference 2-26

Data Structures 2-26

Routines 2-36

Initializing QuickDraw 2-36

Opening and Closing Basic Graphics Ports 2-37

Saving and Restoring Graphics Ports 2-41

Managing Bitmaps, Port Rectangles, and Clipping Regions 2-43

Manipulating Points in Graphics Ports 2-51

Summary of Basic QuickDraw 2-56

Pascal Summary 2-56

Data Types 2-56

Routines 2-57

C Summary 2-58

Data Types 2-58

Functions 2-60

Assembly-Language Summary 2-61

Data Structures 2-61

Global Variables 2-62

Result Codes 2-62

Chapter 3 QuickDraw Drawing 3-1

About QuickDraw Drawing 3-3

The Graphics Pen 3-4

Bit Patterns 3-5

Boolean Transfer Modes With 1-Bit Pixels 3-8

Lines and Shapes 3-11

Defining Lines and Shapes 3-11

Framing Shapes 3-12

Painting and Filling Shapes 3-12

Erasing Shapes 3-12

Inverting Shapes 3-13

Other Graphic Entities 3-13

The Eight Basic QuickDraw Colors 3-14

Drawing With QuickDraw 3-16

Drawing Lines 3-17

Drawing Rectangles 3-22

v

Drawing Ovals, Arcs, and Wedges 3-25

Drawing Regions and Polygons 3-27

Performing Calculations and Other Manipulations of Shapes 3-31

Copying Bits Between Graphics Ports 3-32

Customizing QuickDraw’s Low-Level Routines 3-35

QuickDraw Drawing Reference 3-36

Data Structures 3-36

Routines 3-41

Managing the Graphics Pen 3-41

Changing the Background Bit Pattern 3-48

Drawing Lines 3-49

Creating and Managing Rectangles 3-52

Drawing Rectangles 3-58

Drawing Rounded Rectangles 3-63

Drawing Ovals 3-68

Drawing Arcs and Wedges 3-71

Creating and Managing Polygons 3-78

Drawing Polygons 3-81

Creating and Managing Regions 3-85

Drawing Regions 3-100

Scaling and Mapping Points, Rectangles, Polygons, and Regions 3-104

Calculating Black-and-White Fills 3-108

Copying Images 3-112

Drawing With the Eight-Color System 3-122

Determining Whether QuickDraw Has Finished Drawing 3-125

Getting Pattern Resources 3-126

Customizing QuickDraw Operations 3-129

Resources 3-140

The Pattern Resource 3-140

The Pattern List Resource 3-141

Summary of QuickDraw Drawing 3-142

Pascal Summary 3-142

Constants 3-142

Data Types 3-144

Routines 3-145

C Summary 3-149

Constants 3-149

Data Types 3-151

Functions 3-152

Assembly-Language Summary 3-157

Data Structures 3-157

Global Variables 3-158

vi

Chapter 4 Color QuickDraw 4-1

About Color QuickDraw 4-4

RGB Colors 4-4

The Color Drawing Environment: Color Graphics Ports 4-5

Pixel Maps 4-9

Pixel Patterns 4-12

Color QuickDraw’s Translation of RGB Colors to Pixel Values 4-13

Colors on Grayscale Screens 4-17

Using Color QuickDraw 4-18

Initializing Color QuickDraw 4-19

Creating Color Graphics Ports 4-20

Drawing With Different Foreground Colors 4-21

Drawing With Pixel Patterns 4-23

Copying Pixels Between Color Graphics Ports 4-26

Boolean Transfer Modes With Color Pixels 4-32

Dithering 4-37

Arithmetic Transfer Modes 4-38

Highlighting 4-41

Color QuickDraw Reference 4-44

Data Structures 4-45

Color QuickDraw Routines 4-63

Opening and Closing Color Graphics Ports 4-63

Managing a Color Graphics Pen 4-67

Changing the Background Pixel Pattern 4-68

Drawing With Color QuickDraw Colors 4-70

Determining Current Colors and Best Intermediate Colors 4-79

Calculating Color Fills 4-82

Creating, Setting, and Disposing of Pixel Maps 4-85

Creating and Disposing of Pixel Patterns 4-87

Creating and Disposing of Color Tables 4-91

Retrieving Color QuickDraw Result Codes 4-94

Customizing Color QuickDraw Operations 4-96

Reporting Data Structure Changes to QuickDraw 4-97

Application-Defined Routine 4-101

Resources 4-102

The Pixel Pattern Resource 4-103

The Color Table Resource 4-104

The Color Icon Resource 4-105

Summary of Color QuickDraw 4-107

Pascal Summary 4-107

Constants 4-107

Data Types 4-109

Color QuickDraw Routines 4-113

Application-Defined Routine 4-115

vii

C Summary 4-115

Constants 4-115

Data Types 4-118

Color QuickDraw Functions 4-122

Application-Defined Function 4-124

Assembly-Language Summary 4-124

Data Structures 4-124

Result Codes 4-128

Chapter 5 Graphics Devices 5-1

About Graphics Devices 5-3

Using Graphics Devices 5-6

Optimizing Your Images for Different Graphics Devices 5-8

Zooming Windows on Multiscreen Systems 5-9

Setting a Device’s Pixel Depth 5-13

Exceptional Cases When Working With Color Devices 5-13

Graphics Devices Reference 5-14

Data Structures 5-15

Routines for Graphics Devices 5-19

Creating, Setting, and Disposing of GDevice Records 5-19

Getting the Available Graphics Devices 5-25

Determining the Characteristics of a Video Device 5-29

Changing the Pixel Depth for a Video Device 5-33

Application-Defined Routine 5-35

Resource 5-37

The Screen Resource 5-37

Summary of Graphics Devices 5-38

Pascal Summary 5-38

Constants 5-38

Data Types 5-39

Routines for Graphics Devices 5-40

Application-Defined Routine 5-40

C Summary 5-41

Constants 5-41

Data Types 5-41

Functions for Graphics Devices 5-43

Application-Defined Function 5-44

Assembly-Language Summary 5-44

Data Structure 5-44

Global Variables 5-44

viii

Chapter 6 Offscreen Graphics Worlds 6-1

About Offscreen Graphics Worlds 6-3

Using Offscreen Graphics Worlds 6-4

Creating an Offscreen Graphics World 6-5

Setting the Graphics Port for an Offscreen Graphics World 6-8

Drawing Into an Offscreen Graphics World 6-8

Copying an Offscreen Image Into a Window 6-9

Updating an Offscreen Graphics World 6-9

Creating a Mask and a Source Image in Offscreen Graphics Worlds 6-10

Offscreen Graphics Worlds Reference 6-12

Data Structures 6-12

Routines 6-16

Creating, Altering, and Disposing of Offscreen Graphics Worlds 6-16

Saving and Restoring Graphics Ports and Offscreen Graphics

Worlds 6-27

Managing an Offscreen Graphics World’s Pixel Image 6-30

Summary of Offscreen Graphics Worlds 6-40

Pascal Summary 6-40

Constants 6-40

Data Types 6-41

Routines 6-42

C Summary 6-43

Constants 6-43

Data Types 6-44

Functions 6-45

Assembly-Language Summary 6-46

Result Codes 6-46

Chapter 7 Pictures 7-1

About Pictures 7-4

Picture Formats 7-5

Opcodes: Drawing Commands and Picture Comments 7-6

Color Pictures in Basic Graphics Ports 7-6

'PICT' Files, 'PICT' Resources, and the 'PICT' Scrap Format 7-7

The Picture Utilities 7-8

Using Pictures 7-8

Creating and Drawing Pictures 7-10

Opening and Drawing Pictures 7-13

Drawing a Picture Stored in a 'PICT' File 7-13

Drawing a Picture Stored in the Scrap 7-17

Defining a Destination Rectangle 7-18

Drawing a Picture Stored in a 'PICT' Resource 7-20

Saving Pictures 7-21

Gathering Picture Information 7-24

ix

Pictures Reference 7-26

Data Structures 7-27

QuickDraw and Picture Utilities Routines 7-36

Creating and Disposing of Pictures 7-36

Drawing Pictures 7-43

Collecting Picture Information 7-46

Application-Defined Routines 7-61

Resources 7-67

The Picture Resource 7-67

The Color-Picking Method Resource 7-68

Summary of Pictures and the Picture Utilities 7-69

Pascal Summary 7-69

Constants 7-69

Data Types 7-69

Routines 7-72

Application-Defined Routines 7-73

C Summary 7-73

Constants 7-73

Data Types 7-74

Functions 7-76

Application-Defined Functions 7-77

Assembly-Language Summary 7-78

Data Structures 7-78

Trap Macros 7-80

Result Codes 7-80

Chapter 8 Cursor Utilities 8-1

About the Cursor 8-3

Using the Cursor Utilities 8-5

Initializing the Cursor 8-6

Changing the Appearance of the Cursor 8-7

Creating an Animated Cursor 8-13

Cursor Utilities Reference 8-16

Data Structures 8-16

Routines 8-21

Initializing Cursors 8-21

Changing Black-and-White Cursors 8-24

Changing Color Cursors 8-25

Hiding and Showing Cursors 8-28

Displaying Animated Cursors 8-31

Resources 8-33

The Cursor Resource 8-33

The Color Cursor Resource 8-34

The Animated Cursor Resource 8-36

x

Summary of Cursor Utilities 8-38

Pascal Summary 8-38

Constants 8-38

Data Types 8-38

Routines 8-39

C Summary 8-40

Constants 8-40

Data Types 8-41

Functions 8-42

Assembly-Language Summary 8-43

Data Structures 8-43

Global Variables 8-43

Chapter 9 Printing Manager 9-1

About the Printing Manager 9-3

The Printing Graphics Port 9-4

Getting Printing Preferences From the User 9-5

QuickDraw and PostScript Printer Drivers 9-8

Page and Paper Rectangles 9-10

Printer Resolution 9-11

The TPrint Record and the Printing Loop 9-11

Print Status Dialog Boxes 9-13

Using the Printing Manager 9-15

Creating and Using a TPrint Record 9-17

Printing a Document 9-18

Printing From the Finder 9-25

Providing Names of Documents Being Printed 9-27

Printing Hints 9-27

Getting and Setting Printer Information 9-28

Determining and Setting the Resolution of the Current Printer 9-30

Determining Page Orientation 9-32

Enhancing Draft-Quality Printing 9-33

Altering the Style or Job Dialog Box 9-35

Writing an Idle Procedure 9-38

Handling Printing Errors 9-41

Printing Manager Reference 9-43

Data Structures 9-44

Printing Manager Routines 9-57

Opening and Closing the Printing Manager 9-57

Initializing and Validating TPrint Records 9-58

Displaying and Customizing the Print Dialog Boxes 9-61

Printing a Document 9-66

Optimizing Printing 9-72

xi

Handling Printing Errors 9-75

Low-Level Routines 9-78

Application-Defined Routines 9-84

Summary of the Printing Manager 9-87

Pascal Summary 9-87

Constants 9-87

Data Types 9-88

Printing Manager Routines 9-92

Application-Defined Routines 9-93

C Summary 9-94

Constants 9-94

Data Types 9-95

Printing Manager Functions 9-99

Application-Defined Functions 9-101

Assembly-Language Summary 9-101

Data Structures 9-101

Trap Macros 9-103

Global Variable 9-103

Result Codes 9-104

Appendix A Picture Opcodes A-1

Version and Header Opcodes A-3

Picture Opcode Data Types A-4

Opcodes in Pictures A-5

A Sample Extended Version 2 Picture A-22

A Sample Version 2 Picture A-24

A Sample Version 1 Picture A-25

Appendix B Using Picture Comments for Printing B-1

About Picture Comments B-3

Maintaining Device Independence B-8

Synchronizing QuickDraw and PostScript Printer Drivers B-10

Using Text Picture Comments B-11

Disabling and Reenabling Line Layout B-11

Delimiting Strings B-16

Rotating Text B-17

Using Graphics Picture Comments B-22

Drawing Polygons B-23

Rotating Graphics B-29

Using Line-Drawing Picture Comments B-33

Drawing Dashed Lines B-33

Using Fractional Line Widths B-35

xii

Using PostScript Picture Comments B-38

Calling PostScript Routines Directly B-38

Optimizing PostScript Printing B-39

Picture Comments to Avoid B-40

Including Constants and Data Types for Picture Comments B-42

Glossary GL-1

Index IN-1

xiii

Figures, Tables, and Listings

Color Plates

Color plates are immediately preceding the title page.

Color Plate 1 The colors of the default color tables
Color Plate 2 Using CopyBits to colorize an image
Color Plate 3 Examples of the CopyMask procedure
Color Plate 4 Using a mask

Chapter 1 Introduction to QuickDraw 1-1

Figure 1-1 A grayscale image representing bits in memory 1-6
Figure 1-2 The QuickDraw global coordinate plane 1-7
Figure 1-3 A window’s local and global coordinate systems 1-8
Figure 1-4 The coordinate plane 1-8
Figure 1-5 Points and pixels 1-9
Figure 1-6 Drawing a line 1-10
Figure 1-7 Lines drawn with different bit patterns and pen sizes 1-12
Figure 1-8 A rectangle 1-12
Figure 1-9 An oval 1-13
Figure 1-10 An arc and a wedge 1-14
Figure 1-11 A rounded rectangle 1-15
Figure 1-12 A polygon 1-15
Figure 1-13 Two regions 1-16
Figure 1-14 A simple QuickDraw picture 1-16
Figure 1-15 Filling and framing various shapes 1-17
Figure 1-16 A two-screen system 1-21
Figure 1-17 The GDevice record and pixel map for a 4-bit video card 1-22
Figure 1-18 The indexed-pixel path 1-24
Figure 1-19 The direct-pixel path 1-25
Figure 1-20 The job dialog box for a StyleWriter printer 1-26
Figure 1-21 The job dialog box for a LaserWriter printer 1-27

Chapter 2 Basic QuickDraw 2-1

Figure 2-1 The GrafPort record and the BitMap record 2-8
Figure 2-2 A bit image 2-9
Figure 2-3 Relationship of the boundary rectangle and the port rectangle to

the global coordinate system 2-10
Figure 2-4 Comparing the boundary rectangle, port rectangle, visible region,

and clipping region 2-12
Figure 2-5 Moving a document relative to its window 2-21
Figure 2-6 Updating the contents of a scrolled window 2-24

xiv

Figure 2-7 Restoring the window origin of the port rectangle to a horizontal
coordinate of 0 and a vertical coordinate of 0 2-25

Figure 2-8 Scrolling the image in a rectangle by using the ScrollRect
procedure 2-44

Table 2-1 QuickDraw global variables 2-36
Table 2-2 Initial values of a basic graphics port 2-38

Listing 2-1 Initializing QuickDraw 2-16
Listing 2-2 Using the Window Manager to create a basic graphics port 2-17
Listing 2-3 Saving and restoring a graphics port 2-18
Listing 2-4 Changing global coordinates to local coordinates 2-19
Listing 2-5 Using ScrollRect to scroll the bits displayed in the

window 2-22

Chapter 3 QuickDraw Drawing 3-1

Figure 3-1 A graphics pen 3-4
Figure 3-2 A bit pattern 3-5
Figure 3-3 Windows filled with the predefined bit patterns 3-7
Figure 3-4 Examples of Boolean transfer modes 3-10
Figure 3-5 Using the LineTo procedure 3-17
Figure 3-6 Drawing lines 3-18
Figure 3-7 Using the LineTo and Line procedures 3-19
Figure 3-8 Resizing the pen 3-19
Figure 3-9 Changing the pen pattern 3-21
Figure 3-10 Two ways to specify a rectangle 3-22
Figure 3-11 Drawing rectangles 3-22
Figure 3-12 Painting and filling rectangles 3-23
Figure 3-13 Drawing ovals 3-25
Figure 3-14 Drawing an arc and a wedge 3-26
Figure 3-15 A shape created by a region 3-28
Figure 3-16 Filling a clipping region 3-30
Figure 3-17 Shrinking images between graphics ports 3-33
Figure 3-18 Forty-five degree angles as returned by the PtToAngle

procedure 3-57
Figure 3-19 Oval width and height in rounded rectangles 3-63
Figure 3-20 Using angles to define the radii for arcs and wedges 3-72
Figure 3-21 Using PaintArc to paint a 45° angle 3-74
Figure 3-22 Framing and painting polygons 3-82
Figure 3-23 Using ScalePt and MapPt 3-105
Figure 3-24 A source image and its resulting mask produced by the SeedFill

procedure 3-109
Figure 3-25 Parameters for the SeedFill and CalcMask procedures 3-110
Figure 3-26 A source image and the resulting mask produced by the CalcMask

procedure 3-111
Figure 3-27 Using CopyBits to stretch an image 3-113
Figure 3-28 Standard patterns 3-128
Figure 3-29 Format of a compiled pattern ('PAT ') resource 3-140
Figure 3-30 Format of a compiled pattern list ('PAT#') resource 3-141

xv

Table 3-1 Effect of Boolean transfer modes on 1-bit pixels 3-9
Table 3-2 The global variables for five predefined bit patterns 3-20
Table 3-3 QuickDraw routines for calculating and manipulating

rectangles 3-31
Table 3-4 QuickDraw routines for calculating and manipulating

regions 3-32

Listing 3-1 Drawing lines with the LineTo and Line procedures 3-18
Listing 3-2 Using the PenSize procedure 3-20
Listing 3-3 Using the PenPat procedure to change the pattern of the graphics

pen 3-21
Listing 3-4 Using the FrameRect procedure to draw rectangles 3-23
Listing 3-5 Using the PaintRect and FillRect procedures 3-24
Listing 3-6 Using the FrameOval procedure to draw ovals 3-25
Listing 3-7 Using the FrameArc and PaintArc procedures 3-26
Listing 3-8 Creating and drawing a region 3-28
Listing 3-9 Creating a clipping region and filling it with a pattern 3-29
Listing 3-10 Creating a triangular polygon 3-30
Listing 3-11 Using the CopyBits procedure to copy between two

windows 3-33

Chapter 4 Color QuickDraw 4-1

Figure 4-1 The color graphics port 4-7
Figure 4-2 The pixel map 4-10
Figure 4-3 Translating a 48-bit RGBColor record to an 8-bit pixel value on an

indexed device 4-14
Figure 4-4 Translating an 8-bit pixel value on an indexed device to a 48-bit

RGBColor record 4-15
Figure 4-5 Translating a 48-bit RGBColor record to a 32-bit pixel value on a

direct device 4-15
Figure 4-6 Translating a 48-bit RGBColor record to a 16-bit pixel value on a

direct device 4-16
Figure 4-7 Translating a 32-bit pixel value to a 48-bit RGBColor

record 4-16
Figure 4-8 Translating a 16-bit pixel value to a 48-bit RGBColor

record 4-17
Figure 4-9 Drawing with two different foreground colors (on a grayscale

screen) 4-23
Figure 4-10 Using ResEdit to create a pixel pattern resource 4-24
Figure 4-11 Painting and filling rectangles with pixel patterns 4-25
Figure 4-12 Copying pixel images with the CopyBits procedure 4-27
Figure 4-13 Copying pixel images with the CopyMask procedure 4-29
Figure 4-14 Copying pixel images with the CopyDeepMask procedure 4-31
Figure 4-15 Difference between highlighting and inverting 4-42
Figure 4-16 Format of a compiled pixel pattern ('ppat') resource 4-103
Figure 4-17 Format of a compiled color table ('clut') resource 4-104
Figure 4-18 Format of a compiled color icon ('cicn') resource 4-106

Table 4-1 Boolean source modes with colored pixels 4-33
Table 4-2 Arithmetic modes in a 1-bit environment 4-41
Table 4-3 Initial values in the CGrafPort record 4-64

xvi

Table 4-4 The colors defined by the global variable QDColors 4-71
Table 4-5 The default color tables for grayscale graphics devices 4-92
Table 4-6 The default color tables for color graphics devices 4-93

Listing 4-1 Using the Window Manager to create a color graphics port 4-20
Listing 4-2 Changing the foreground color 4-22
Listing 4-3 Rez input for a pixel pattern resource 4-24
Listing 4-4 Using pixel patterns to paint and fill 4-25
Listing 4-5 Using CopyBits to produce coloration effects 4-35
Listing 4-6 Setting the highlight bit 4-42
Listing 4-7 Using highlighting for text 4-43

Chapter 5 Graphics Devices 5-1

Figure 5-1 The GDevice record 5-5

Listing 5-1 Using the DeviceLoop procedure 5-8
Listing 5-2 Drawing into different screens 5-9
Listing 5-3 Zooming a window 5-10

Chapter 6 Offscreen Graphics Worlds 6-1

Listing 6-1 Using a single offscreen graphics world and the CopyBits
procedure 6-5

Listing 6-2 Using two offscreen graphics worlds and the CopyMask
procedure 6-10

Chapter 7 Pictures 7-1

Figure 7-1 A picture of a party hat 7-4
Figure 7-2 The Picture record 7-5
Figure 7-3 A simple picture 7-12
Figure 7-4 Structure of a compiled picture ('PICT') resource 7-68

Table 7-1 Routine selectors for an application-defined color-picking
method 7-61

Listing 7-1 Creating and drawing a picture 7-11
Listing 7-2 Opening and drawing a picture from disk 7-13
Listing 7-3 Replacing QuickDraw’s standard low-level picture-reading

routine 7-15
Listing 7-4 Determining whether a graphics port is color or basic 7-16
Listing 7-5 A custom low-level procedure for spooling a picture from

disk 7-16
Listing 7-6 Pasting in a picture from the scrap 7-17
Listing 7-7 Adjusting the destination rectangle for a picture 7-18
Listing 7-8 Drawing a picture stored in a resource file 7-20
Listing 7-9 Saving a picture as a 'PICT' file 7-21
Listing 7-10 Replacing QuickDraw’s standard low-level picture-writing

routine 7-22

xvii

Listing 7-11 A custom low-level routine for spooling a picture to disk 7-23
Listing 7-12 Looking for color profile comments in a picture 7-25

Chapter 8 Cursor Utilities 8-1

Figure 8-1 Hot spots in cursors 8-4
Figure 8-2 The standard arrow cursor 8-8
Figure 8-3 The I-beam, crosshairs, plus sign, and wristwatch cursors 8-8
Figure 8-4 A window and its arrow and I-beam regions 8-9
Figure 8-5 Changing the cursor from the I-beam cursor to the arrow

cursor 8-10
Figure 8-6 The 'CURS' resources for an animated globe cursor 8-13
Figure 8-7 An 'acur' resource for an animated cursor 8-14
Figure 8-8 Format of a compiled cursor ('CURS') resource 8-34
Figure 8-9 Format of a compiled color cursor ('crsr') resource 8-35
Figure 8-10 Format of a compiled animated cursor ('acur') resource 8-37

Table 8-1 Cursor appearance 8-17

Listing 8-1 Initializing the Cursor Utilities 8-6
Listing 8-2 Changing the cursor 8-10
Listing 8-3 Animating a cursor with the RotateCursor procedure 8-15
Listing 8-4 Animating a cursor with the SpinCursor procedure 8-15

Chapter 9 Printing Manager 9-1

Figure 9-1 A standard File menu for an application 9-5
Figure 9-2 The style dialog box for a StyleWriter printer 9-6
Figure 9-3 The style dialog box for a LaserWriter printer 9-7
Figure 9-4 The job dialog box for a StyleWriter printer 9-7
Figure 9-5 The job dialog box for a LaserWriter printer 9-8
Figure 9-6 Page and paper rectangles 9-10
Figure 9-7 A TPrint record 9-12
Figure 9-8 The print status dialog box for a LaserWriter printer driver printing

in the background 9-13
Figure 9-9 A status dialog box with the LaserWriter printer driver’s print status

dialog box 9-14
Figure 9-10 How the PrJobMerge procedure works 9-26
Figure 9-11 Sample resolutions for a PostScript printer and a QuickDraw

printer 9-30
Figure 9-12 A print job dialog box with additional checkboxes 9-35

Table 9-1 Values for the lParam1 parameter when using the iPrDevCtl
control constant 9-83

Listing 9-1 Reading a document’s TPrint record 9-17
Listing 9-2 A sample printing loop 9-20
Listing 9-3 Checking whether the current printer driver supports the

PrGeneral procedure 9-29

xviii

Listing 9-4 Using the getRslDataOp and setRslOp opcodes with the
PrGeneral procedure 9-31

Listing 9-5 Using the getRotnOp opcode with the PrGeneral procedure to
determine page orientation 9-33

Listing 9-6 Using the draftBitsOp opcode with the PrGeneral procedure for
enhanced draft-quality printing 9-34

Listing 9-7 Installing an initialization function to alter the print job dialog
box 9-37

Listing 9-8 Adding items to a print job dialog box 9-37
Listing 9-9 An idle procedure 9-40

Appendix A Picture Opcodes A-1

Figure A-1 A picture A-23

Table A-1 Data types for picture opcodes A-4
Table A-2 Opcodes for extended version 2 and version 2 pictures A-5
Table A-3 Opcodes for version 1 pictures A-18

Listing A-1 Data for the BkPixPat, PnPixPat, and FillPixPat
opcodes A-17

Listing A-2 Data for the BitsRect and PackBitsRect opcodes A-17
Listing A-3 Data for the BitsRgn and PackBitsRgn opcodes A-18
Listing A-4 Creating and drawing an extended version 2 picture A-22
Listing A-5 A decompiled extended version 2 picture A-23
Listing A-6 A decompiled version 2 picture A-24
Listing A-7 A decompiled version 1 picture A-25

Appendix B Using Picture Comments for Printing B-1

Figure B-1 The line layout error between a bitmapped font and a PostScript
font B-12

Figure B-2 Major and minor glyphs B-13
Figure B-3 Distributing layout error to the major glyphs B-13
Figure B-4 Distributing layout error among major and minor glyphs B-14
Figure B-5 Using the LineLayoutOff and LineLayoutOn picture

comments B-15
Figure B-6 Variations in text alignment B-18
Figure B-7 Types of polygons B-23
Figure B-8 QuickDraw and PostScript polygons B-29
Figure B-9 Changing the pen width using the SetLineWidth picture

comment B-36

Table B-1 Names, values, and data sizes for picture comments B-5
Table B-2 Low-level QuickDraw routines disabled by the PostScriptBegin

comment B-9

Listing B-1 Synchronizing QuickDraw and the PostScript driver B-10
Listing B-2 Flushing the buffer for a PostScript printer driver B-11
Listing B-3 Disabling line layout by using the LineLayoutOff and

StringBegin picture comments B-17

xix

Listing B-4 Displaying rotated text using picture comments B-21
Listing B-5 Creating polygons B-26
Listing B-6 Drawing polygons B-27
Listing B-7 Using picture comments to rotate graphics B-31
Listing B-8 Using the RotateCenter, RotateBegin, and RotateEnd picture

comments B-32
Listing B-9 Using the DashedLine picture comment B-34
Listing B-10 Using the SetLineWidth picture comment B-37
Listing B-11 Sending PostScript code directly to the printer B-39

xxi

P R E F A C E

About This Book

This book, Inside Macintosh: Imaging With QuickDraw, describes how to create

images, display them in black and white or color, and print them using

QuickDraw—the imaging engine available on all Macintosh computers. The

chapters in this book and the information they contain are summarized here.

■ “Introduction to QuickDraw” introduces you to the terms, concepts, and
capabilities of QuickDraw.

■ “Basic QuickDraw” describes how to create and manage the basic graphics
port—the drawing environment in which your application can create
graphics and text in either black and white or eight basic colors.

■ “QuickDraw Drawing” explains the routines and data structures—
common to both basic QuickDraw and Color QuickDraw—that your
application can use to draw lines, rectangles, rounded rectangles, ovals,
arcs, wedges, polygons, and regions, and to copy images from one graphics
port to another. This chapter also describes the routines that you can use to
perform calculations and other manipulations of these shapes—including
comparing them and finding their unions and intersections.

■ “Color QuickDraw” describes the version of QuickDraw that provides a
range of color and grayscale capabilities to your application. You should
read this chapter if your application needs to use shades of gray or more
colors than the eight predefined colors provided by basic QuickDraw.

■ “Graphics Devices” describes how Color QuickDraw manages video
devices so that your application can draw to a window’s graphics port
without regard to the capabilities of the screen—even if the window spans
more than one screen.

■ “Offscreen Graphics Worlds” describes how you can improve your
application’s appearance and performance by constructing images in
offscreen graphics worlds before drawing them onscreen.

■ “Pictures” describes how to create and draw QuickDraw pictures, which
are sequences of saved drawing commands that your application can share
among documents, even among documents created by other applications.

■ “Cursor Utilities” describes how to create and use cursors, including
color and animated cursors, for indicating the relative mouse location
onscreen and for indicating when your application is performing a lengthy
task.

■ “Printing Manager” describes how your application can print by creating a
printing graphics port and drawing into it using QuickDraw routines. This
chapter also explains how to implement the user interface that helps users
when they wish to print.

xxii

P R E F A C E

■ Appendix A, “Picture Opcodes,” describes opcodes used by the
DrawPicture procedure to determine what object to draw or what mode
to change for subsequent drawing. Your application generally should not
read or write picture opcodes directly but should instead use the
QuickDraw routines described in the chapter “Pictures” for generating and
processing the opcodes. Picture opcodes are listed in this appendix for
your application’s debugging purposes.

■ Appendix B, “Using Picture Comments for Printing,” describes how your
application can use picture comments to instruct printer drivers to perform
graphics operations that QuickDraw does not support.

Most applications draw in windows, which are rectangular areas that are

usually subsets of the screen. Each window represents its own QuickDraw

graphics port. When you create a window, the Window Manager uses

QuickDraw to create a graphics port in which the window’s contents are

displayed. This book describes how to draw inside a window. See the chapter

“Window Manager” in Inside Macintosh: Macintosh Toolbox Essentials for a

complete description of creating and managing the windows inside which

your application draws.

In addition to the features described in this book, QuickDraw also provides

extensive text support. However, most of that support is not described in this

book; for information on handling text in your application, see instead Inside
Macintosh: Text.

If you are new to programming for the Macintosh computer, you should also

read Inside Macintosh: Overview for an introduction to general concepts of

Macintosh programming.

Format of a Typical Chapter

The chapters in this book follow a standard structure. For example, the

chapter “Color QuickDraw” contains these sections:

■ “About Color QuickDraw.” This section introduces the drawing
environment provided by Color QuickDraw, the data structure with which
your application specifies colors to Color QuickDraw, and the manner in
which Color QuickDraw translates the colors that your application
specifies into colors on the user’s screen.

■ “Using Color QuickDraw.” Using code samples and step-by-step
instructions, this section describes how to use Color QuickDraw to
accomplish the basic tasks necessary for drawing in color.

xxiii

P R E F A C E

■ “Color QuickDraw Reference.” This section provides a complete reference
to the data structures, routines, and resources that your application can
use to draw with Color QuickDraw. Each routine description also follows a
standard format, which presents the routine declaration followed by a
description of every parameter of the routine. Some routine descriptions
also give additional descriptive information, such as assembly-language
information or result codes.

■ “Summary of Color QuickDraw.” This section provides the Pascal and C
interfaces for the constants, data structures, routines, and result codes
associated with Color QuickDraw drawing. It also includes relevant
assembly-language interface information.

Conventions Used in This Book

Inside Macintosh uses various conventions to present information. Words that

require special treatment appear in specific fonts or font styles. Certain

information uses special formats so that you can scan it quickly.

Special Fonts
All code listings, reserved words, and names of actual data structures,

fields, constants, parameters, and routines are shown in Courier (this
is Courier).

Words that appear in boldface are key terms or concepts and are defined in

the glossary.

Types of Notes
There are several types of notes used in this book.

Note

A note like this contains information that is interesting but possibly not
essential to an understanding of the main text. (An example appears on
page 2-3 in the chapter “Basic QuickDraw.”) ◆

IMPORTANT

A note like this contains information that is essential for an
understanding of the main text. (An example appears on page 2-4 in the
chapter “Basic QuickDraw.”) ▲

▲ W A R N I N G

Warnings like this indicate potential problems that you should be aware
of as you design your application. Failure to heed these warnings could
result in system crashes or loss of data. (An example appears on
page 2-31 in the chapter “Basic QuickDraw.”) ▲

xxiv

P R E F A C E

Empty Strings
This book occasionally instructs you to provide an empty string in routine

parameters and resources. How you specify an empty string depends on what

language and development environment you are using. In Rez input files and

in C code, for example, you specify an empty string by using two double

quotation marks (""), and in Pascal you specify an empty string by using two

single quotation marks ('').

Assembly-Language Information
Inside Macintosh provides information about the trap macro and routine

selector for specific routines like this:

In “Assembly-Language Summary” at the end of a chapter, Inside Macintosh

presents information about the fields of data structures in

this format:

The left column indicates the byte offset of the field from the beginning of the

data structure. The second column shows the field name as defined in the

MPW assembly-language interface files; the third column indicates the size of

that field. The fourth column provides a brief description of the use of the

field. For a complete description of each field, see “Data Structures” in the

main text of the chapter.

The Development Environment

The system software routines described in this book are available using

Pascal, C, or assembly-language interfaces. How you access these routines

depends on the development environment you are using. When showing

system software routines, this book uses the Pascal interface available with

the Macintosh Programmer’s Workshop (MPW).

All code listings in this book are shown in Pascal (except for listings that

describe resources, which are shown in Rez-input format). They show

methods of using various routines and illustrate techniques for accomplishing

particular tasks. All code listings have been compiled and, in many cases,

tested. However, Apple Computer, Inc., does not intend for you to use these

code samples in your application. You can find the location of code listings in

Trap macro Selector

_QDExtensions $00E0010

0 baseAddr long bitmap base address

4 rowBytes word row bytes (must be even)

6 bounds 8 bytes boundary rectangle

xxv

P R E F A C E

the list of figures, tables, and listings. If you know the name of a particular

routine (such as MyDrawLines) shown in a code listing, you can find the

page on which the routine occurs by looking under the entry “sample

routines” in the index of this book.

To make the code listings in this book more readable, they show only limited

error handling. You need to develop your own techniques for handling errors.

APDA is Apple’s worldwide source for over three hundred development

tools, technical resources, training products, and information for anyone

interested in developing applications on Apple platforms. Customers receive

the quarterly APDA Tools Catalog featuring all current versions of Apple

and the most popular third-party development tools. Ordering is easy; there

are no membership fees, and application forms are not required for most

products. APDA offers convenient payment and shipping options, including

site licensing.

To order products or to request a complimentary copy of the APDA Tools
Catalog, contact

APDA

Apple Computer, Inc.

P.O. Box 319

Buffalo, NY 14207-0319

If you provide commercial products and services, call 408-974-4897 for

information on the developer support programs available from Apple.

For any additional technical information, contact

Macintosh Developer Technical Support

Apple Computer, Inc.

20525 Mariani Avenue, M/S 75-3T

Cupertino, CA 95014-6299

Telephone 800-282-2732 (United States)
800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDA

CompuServe 76666,2405

Internet APDA@applelink.apple.com

Contents 1-1

C H A P T E R 1

Contents

Introduction to QuickDraw

Drawing Environments 1-4

QuickDraw’s Coordinate Plane 1-6

Images 1-10

Colors 1-17

Indexed Colors 1-19

Direct Colors 1-20

Multiple Screens 1-21

From Memory Bits to Onscreen Pixels 1-24

From Memory Bits to Printers 1-26

Other Graphics Managers 1-28

C H A P T E R 1

1-3

Introduction to QuickDraw

This chapter introduces you to the terms, concepts, and capabilities of QuickDraw, a

collection of system software routines that your application can use to perform most

image-manipulation operations on Macintosh computers. This chapter also introduces

you to the Printing Manager, which your application can use to print the images you

create with QuickDraw.

Imaging entails the construction and display of graphical information. Such graphical

information can consist of shapes, pictures, and text, and can be displayed on such

output devices as screens and printers. You should read this chapter if you are new to

Macintosh programming. The topics introduced in this chapter are explained in detail in

the rest of the chapters of this book. However, for information on QuickDraw’s

text-handling facilities, you should instead see Inside Macintosh: Text.

Macintosh system software not only provides enormous imaging flexibility, it also

handles much of the programming overhead that such flexibility requires. For example,

Color QuickDraw automatically handles multiple screens of differing sizes and

capabilities, so that most applications don’t need to determine where the user has placed

a window or what equipment the user has set up.

This rest of this chapter introduces

■ basic QuickDraw, the imaging engine for all Macintosh computers

■ Color QuickDraw, the color imaging system with which your application can display
hundreds, thousands, even millions of colors on grayscale and color screens

■ the Printing Manager, the collection of system software routines that allows your
application to communicate with printer drivers to print on any variety of printer

■ other imaging managers associated with QuickDraw

QuickDraw is the part of the Macintosh Toolbox that performs graphics operations on

the user’s screen. All Macintosh applications use QuickDraw indirectly whenever they

call other Toolbox managers to create and manage the basic user interface elements (such

as windows, controls, and menus, as described in Inside Macintosh: Macintosh Toolbox
Essentials).

As the Macintosh has evolved toward greater graphics capabilities, QuickDraw has

grown along with it. Each new generation of QuickDraw has maintained compatibility

with those that preceded it, while adding new capabilities and expanding the range of

possible display devices. This evolutionary approach has helped to ensure that existing

applications, written for earlier Macintosh models, continue to work as more powerful

computers are developed.

C H A P T E R 1

Introduction to QuickDraw

1-4 Drawing Environments

The development of QuickDraw has progressed along these three main evolutionary

stages:

■ Basic QuickDraw, which was designed for the earliest Macintosh models with their
built-in black-and-white screens. System 7 added new capabilities to basic
QuickDraw, including support for offscreen graphics worlds and the extended
version 2 picture format. Basic QuickDraw is still used in more recent black-and-white
Macintosh systems such as the Macintosh Classic® and PowerBook 100 computers.

■ The original version of Color QuickDraw, which was introduced with the first
Macintosh II systems. This first generation of Color QuickDraw could support up to
256 colors.

■ The current version of Color QuickDraw, which was originally introduced as 32-Bit
Color QuickDraw and is now part of System 7. This version has been expanded to
support up to millions of colors.

Applications that use only basic QuickDraw routines are compatible with all Macintosh

systems. However, applications that use routines specific to Color QuickDraw cannot

run on computers supporting only basic QuickDraw.

Drawing Environments

The Macintosh computer was the first to popularize the bitmapped screen, as opposed to

the character-oriented screen—common to terminals and early personal computers—on

which only a single, built-in character set could be displayed. On a bitmapped screen

every pixel can be manipulated. Pixels are the dots that make up a visible image on the

screen. Drawing on the Macintosh screen consists of manipulating memory bits that

QuickDraw translates into an analogous manipulation of pixels. This allows your

application to create shapes and characters in differing sizes and differing styles. Such

flexibility gives your application and its users many of the capabilities of a design studio

and a print shop.

Your application performs all graphics operations in graphics ports. A graphics port is a

drawing environment—defined by a GrafPort record for a basic graphics port or a

CGrafPort record for a color graphics port—that contains the information QuickDraw

needs to transmit drawing operations from bits in memory to onscreen pixels.

A basic graphics port is the drawing environment provided by basic QuickDraw; a basic

graphics port contains the information that basic QuickDraw uses to create and

manipulate onscreen either black-and-white images or color images that employ a basic

eight-color system.

C H A P T E R 1

Introduction to QuickDraw

Drawing Environments 1-5

A color graphics port is the sophisticated color drawing environment provided by Color

QuickDraw; a color graphics port contains the information that Color QuickDraw uses

to create and manipulate grayscale and color images onscreen.

While your application can draw directly into basic and color graphics ports, you can

improve your application’s appearance and performance by constructing images

in offscreen graphics worlds and then copying them to onscreen graphics ports. An

offscreen graphics world is a sophisticated environment for preparing complex color,

grayscale, or black-and-white images before displaying them on the screen. Defined in a

private data structure referred to by a pointer of type GWorldPtr, an offscreen graphics

world also contains a graphics port of its own.

Your application can print the images it prepares in graphics ports by drawing into a

printing graphics port using QuickDraw drawing routines. A printing graphics port is

the printing environment defined by a TPrPort record, which contains a graphics port

plus additional information used by the printer driver and system software.

The visible image for a graphics port is contained in either a bitmap or a pixel map.

A bitmap is defined by a data structure of type BitMap, and it represents the positions

and states of a corresponding set of pixels, which can be either black and white or the

eight predefined colors provided by basic QuickDraw. A bitmap is contained within a

basic graphics port. A pixel map is defined by a data structure of type PixMap, and it

represents the positions and states of a corresponding set of color pixels. A handle to a

pixel map is contained within a color graphics port.

Because your application can typically deal with graphics ports instead of hardware

devices, QuickDraw helps your application achieve device independence. A graphics

port does the following:

■ It specifies the bitmap or pixel map that points to the area of memory in which your
drawing operations take place. The bitmap or pixel map contains information about
how that memory should be arranged to map bits to the screen.

■ It contains a metaphorical graphics pen with which to perform drawing operations.
You can set this pen to different sizes, patterns, and colors.

■ It holds information about text: if your application or its user writes characters, they
will be styled and sized according to information in your application’s graphics port.

The fields of a graphics port are maintained by QuickDraw, and you should never write

directly into those fields. However, QuickDraw provides routines for changing the fields

of a graphics port: you can point to an image in a different area of memory, reshape and

resize the pen, change the pen’s pattern and color, and switch fonts. You can, and often

must, read the fields of a graphics port.

C H A P T E R 1

Introduction to QuickDraw

1-6 QuickDraw’s Coordinate Plane

Figure 1-1 illustrates how an onscreen image represents bits in memory. In this figure, an

application uses the Window Manager function GetNewCWindow to create a new

window on a grayscale screen; GetNewCWindow automatically uses Color QuickDraw to

create the graphics port for the empty window. The application uses Color QuickDraw

procedures to fill the graphics port’s pixel map with an image and to draw the image

onscreen.

Figure 1-1 A grayscale image representing bits in memory

QuickDraw’s Coordinate Plane

Your application typically uses Window Manager routines to create graphics ports in the

form of windows. Your application can draw into a window without regard to its

location on the screen—even if the window spans more than one screen. This is possible

because QuickDraw maintains a global coordinate system for a computer’s entire

potential drawing space and a different local coordinate system for every window

displayed in this space.

The Macintosh screen (or screens) on which QuickDraw displays your images represents

a small part of a large global coordinate plane. Coordinates in the global coordinate
system reflect the entire potential drawing space on this plane. The (0,0) origin point of

the global coordinate plane is assigned to the upper-left corner of the main screen—that

is, the one with the menu bar—while coordinate values increase to the right and (unlike

a Cartesian plane) down. Any pixel on the screen can be specified by a vertical

coordinate (ordinarily labeled v) and a horizontal coordinate (ordinarily labeled h).

Figure 1-2 illustrates the QuickDraw global coordinate plane.

C H A P T E R 1

Introduction to QuickDraw

QuickDraw’s Coordinate Plane 1-7

Figure 1-2 The QuickDraw global coordinate plane

Note
The orientation of the vertical axis, while convenient for computer
graphics, differs from mathematical convention. Also, the coordinate
plane is bounded by the limits of QuickDraw coordinates, which range
from –32768 to 32767. ◆

Windows are rectangular areas that are subsets of the global coordinate plane.

Each window represents its own QuickDraw graphics port. When you create a window,

the Window Manager uses QuickDraw to create a graphics port in which the window’s

contents are displayed. (See the chapter “Window Manager” in Inside Macintosh:
Macintosh Toolbox Essentials for a complete description of creating and managing

windows.)

When your application creates a new graphics port, QuickDraw defines a boundary
rectangle, which, by default, is the entire main screen; this rectangle links the local

coordinate system of a graphics port to QuickDraw’s global coordinate system and

defines the area of the pixel image or bit image into which QuickDraw can draw. A

boundary rectangle is stored in the pixel map for a color graphics port or in the bitmap

for a basic graphics port.

The graphics port includes a field called portRect, which defines a rectangle to be used

for drawing. In a graphics port that represents a window, the portRect rectangle—or

simply, the port rectangle—represents the window’s content region.

When you use the Window Manager to place a window on the screen, you specify the

location of its port rectangle in global coordinates. However, within the port rectangle,

the drawing area is described using a local coordinate system. You draw into a window

C H A P T E R 1

Introduction to QuickDraw

1-8 QuickDraw’s Coordinate Plane

in local coordinates, without regard to the window’s location on the screen. Figure 1-3

illustrates the local and global coordinate systems for a sample window that is 180 pixels

high by 300 pixels wide, placed with its window origin 90 pixels down and 60 pixels to

the right of the upper-left corner of the main screen.

Figure 1-3 A window’s local and global coordinate systems

It is helpful to conceptualize the global coordinate plane as a two-dimensional grid—one

with integer coordinates ranging from –32768 to 32767—as illustrated in Figure 1-4.

Figure 1-4 The coordinate plane

C H A P T E R 1

Introduction to QuickDraw

QuickDraw’s Coordinate Plane 1-9

The intersection of a horizontal and a vertical grid line marks a point on the

coordinate plane. Notice that, because all coordinates are limited to simple integers,

the QuickDraw plane is finite, although very large: there are over four billion points

on the grid, many more than there are dots on any screen. When using QuickDraw, you

associate small parts of the grid with areas on the screen.

Note also the distinction between points on the coordinate grid and pixels, the dots that

make up a visible image on the screen. Figure 1-5 illustrates the relationship between the

two: the pixel is down and to the right of the point by which it is addressed.

Figure 1-5 Points and pixels

As the grid lines are infinitely thin, so a point is infinitely small. Pixels, by contrast, lie

between the lines of the coordinate grid, not at their intersections. This gives them a

definite physical extent, so that they can be seen on the screen.

After your application creates a window, the user can move or resize it within the global

coordinate system. However, to draw images into the window, your application needs

only to specify pixels within the local coordinate system for that window.

Your application uses a cursor to allow the user to select all or part of the content of a

window. A cursor is a 16-by-16 pixel image that appears on the screen. Called the pointer

in Macintosh user manuals, the user controls the cursor with the mouse. Basic

QuickDraw supplies a predefined cursor for your application: the arrow cursor, which is

familiar to all Macintosh users. Your application can also use other cursors. For example,

when the user moves the cursor to any text in your application, your application should

change the arrow cursor to an I-beam cursor and, when performing a lengthy process

that precludes the user from interacting with your application, your application should

change the cursor to a wristwatch cursor or an animated cursor.

C H A P T E R 1

Introduction to QuickDraw

1-10 Images

One point in the cursor’s image is designated as the hot spot, which in turn points to a

location on the screen. The hot spot is the portion of the cursor that must be positioned

over a screen object before mouse clicks can have an effect on that object. For example,

when the user presses the mouse button, the Event Manager function WaitNextEvent

reports the location of the cursor’s hot spot in global coordinates. Your application can

use the basic QuickDraw procedure GlobalToLocal to convert the global coordinates

of that point to local coordinates for the window.

Images

QuickDraw provides a plethora of routines for drawing different kinds of images. These

routines typically require that you start at a particular location in a graphics port and

then move the graphics pen. The graphics pen is a metaphorical device for performing

drawing operations onscreen. Your application can set this pen to different sizes,

patterns, and colors.

You specify where to begin drawing by placing the pen at some location in the window’s

local coordinate system, and then specifying an act of drawing, usually from there to

another location. Take, for example, the following two lines of code:

MoveTo(20,10);

LineTo(50,30);

The MoveTo procedure places the graphics pen at a point with a horizontal coordinate

of 20 and a vertical coordinate of 10 in the local coordinate system of the graphics port,

and the LineTo procedure draws a line from there to a point with a horizontal

coordinate of 50 and a vertical coordinate of 30, as shown in Figure 1-6.

Figure 1-6 Drawing a line

C H A P T E R 1

Introduction to QuickDraw

Images 1-11

Whenever you draw into a graphics port, the characteristics of its graphics pen

determine how the drawing looks. These characteristics are

■ pen location, specified in a graphics port’s local coordinates

■ pen size, specified by a width and height in pixels

■ pen pattern, which defines, in effect, the ink that the pen draws with, ranging from
solid black to intricate, multicolor patterns

■ pattern mode, also called transfer mode, which specifies how the pen pattern interacts
with white or any existing drawing that the pattern overlays

■ pen visibility, specified by an integer indicating whether drawing operations
will actually appear—for example, for 0 or negative values, the pen draws with
“invisible” ink

The pen’s initial settings are a size of 1 pixel by 1 pixel, a solid black pattern, a pattern

mode in which the black writes over everything, and visible ink.

A pattern is an image that can be repeated indefinitely to form a repeating design, such

as stripes, when drawing lines and shapes or when filling areas on the screen. There are

two type of patterns: bit patterns and pixel patterns. A bit pattern is an 8-by-8 pixel

image drawn by default in black and white, although any two colors can be used on a

color screen. A pixel pattern can use additional colors and can be of any width and

height that’s a power of 2.

By starting at a particular position and moving the graphics pen, you can use

QuickDraw procedures to define and directly draw a number of graphic shapes using

the size and pattern of the graphics pen. Several procedures and the shapes they produce

are listed here.

Procedure Resulting shape

LineTo Line

DrawChar Character

FrameRect Rectangle

FrameOval Oval

FrameRoundRect Rounded rectangle

FrameArc Arc

C H A P T E R 1

Introduction to QuickDraw

1-12 Images

A line is defined by two points: the current location of the graphics pen and its

destination. The pen hangs below and to the right of the defining points, as shown

in Figure 1-7, where two lines are drawn with different bit patterns and pen sizes.

Figure 1-7 Lines drawn with different bit patterns and pen sizes

A rectangle can be defined by two points—its upper-left and its lower-right corners, as

shown in Figure 1-8, or by four boundaries—its upper, left, lower, and right sides.

Rectangles are used to define active areas on the screen, to assign coordinate systems to

graphical entities, and to specify the locations and sizes for various graphics operations.

Figure 1-8 A rectangle

C H A P T E R 1

Introduction to QuickDraw

Images 1-13

QuickDraw also provides routines that allow you to perform a variety of mathematical

calculations on rectangles—changing their sizes, shifting them around, and so on.

Note

Purely speaking, rectangles and points are mathematical entities that
have no direct representation on the screen. The borders of the rectangle
are infinitely thin, lying along the lines of the coordinate grid. To give a
rectangle a shape that can be drawn on the screen, you must use one of
QuickDraw’s drawing routines, such as FrameRect and PaintRect. ◆

You use rectangles known as bounding rectangles to define the outmost limits of

other shapes, such as ovals and rounded rectangles. The lines of bounding rectangles

completely enclose the shapes they bound; in other words, no pixels from these shapes

lie outside the infinitely thin lines of the bounding rectangles.

An oval is a circular or elliptical shape defined by the bounding rectangle that encloses

it. If the bounding rectangle is square (that is, has equal width and height), then the oval

is a circle, as shown in Figure 1-9.

Figure 1-9 An oval

C H A P T E R 1

Introduction to QuickDraw

1-14 Images

An arc is a portion of the circumference of an oval bounded by a pair of radii joining at

the oval’s center; an arc does not include the bounding radii or any part of the oval’s

interior. A wedge is a pie-shaped segment of an oval, bounded by a pair of radii joining

at the oval’s center; a wedge does include part of the oval’s interior. Arcs and wedges are

defined by the bounding rectangle that encloses the oval, along with a pair of angles

marking the positions of the bounding radii, as shown in Figure 1-10.

Figure 1-10 An arc and a wedge

A rounded rectangle is a rectangle with rounded corners. The figure is defined by the

rectangle itself, along with the width and height of the ovals forming the corners (called

the diameters of curvature), as shown in Figure 1-11. The corner width and corner height

are limited to the width and height of the rectangle itself; if they are larger, the rounded

rectangle becomes an oval.

C H A P T E R 1

Introduction to QuickDraw

Images 1-15

Figure 1-11 A rounded rectangle

Three types of graphic objects—polygons, regions, and pictures—require you to call

several routines to create and draw them. You begin by calling a routine that collects

drawing commands into a definition for the object. You use a series of drawing routines

to define the object. Then you use a routine that signals the end of the object definition.

Finally, you use a routine that draws your newly defined object.

A polygon is defined by any sequence of points representing the polygon’s vertices,

connected by straight lines from one point to the next. You define a polygon by drawing

the lines with QuickDraw line-drawing operations: you move to the first vertex point in

the sequence, draw a line from there to the second vertex, from there to the third, and so

on. When you finish, QuickDraw automatically completes the figure with a closing line

from the last vertex back to the first. Figure 1-12 shows an example of a polygon.

Figure 1-12 A polygon

C H A P T E R 1

Introduction to QuickDraw

1-16 Images

A region is an arbitrary area or set of areas, the outline of which is one or more closed

loops. One of QuickDraw’s most powerful capabilities is the ability to work with regions

of arbitrary size, shape, and complexity. You define a region by drawing its boundary

with QuickDraw operations. The boundary can be any set of lines and shapes (even

including other regions) forming one or more closed loops. A region can be concave or

convex, can consist of one connected area or many separate ones, and can even have

holes in the middle. In Figure 1-13 the region on the left has a hole and the one on the

right consists of two unconnected areas.

Figure 1-13 Two regions

Your application can record a sequence of QuickDraw drawing operations in a picture

and play its image back later. Pictures provide a form of graphic data exchange: one

program can draw something that was defined in another program, with great flexibility

and without having to know any details about what’s being drawn. Figure 1-14 shows

an example of a picture containing a rectangle, an oval, and a rectangle.

Figure 1-14 A simple QuickDraw picture

C H A P T E R 1

Introduction to QuickDraw

Colors 1-17

As you see in Figure 1-14, QuickDraw shapes may be drawn using various pen patterns.

Painting a shape fills both its outline and its interior with the current pen pattern. Filling

a shape fills both its outline and its interior with any specified pattern (not necessarily

the current pen pattern). The three figures in the top row of Figure 1-15 are filled.

Figure 1-15 Filling and framing various shapes

Framing a shape draws just its outline, using the current pen size, pen pattern, and

pattern mode. The interior of the shape is unaffected, allowing previously existing

pixels to “show through.” The three figures in the bottom row of Figure 1-15 are framed.

Erasing a shape fills both its outline and its interior with the current background pattern

(typically solid white on a black-and-white monitor or a solid background color on a

color monitor). Inverting a shape reverses the colors of all pixels within its boundary—

for example, all white pixels become black, and all black pixels become white. With color

pixels, the results of inverting are less predictable.

Colors

The earliest Macintosh models all used basic QuickDraw to draw to built-in screens with

known characteristics. The Macintosh II computer introduced Color QuickDraw, which

supports a variety of screens of differing sizes and color capabilities. With Color

QuickDraw, users can choose from a wide range of screen options, from simple 12-inch

C H A P T E R 1

Introduction to QuickDraw

1-18 Colors

black-and-white screens to full-page grayscale monitors to large two-page displays

capable of presenting millions of colors. Users can even connect two or more separate

screens to the same computer and simultaneously view different portions of the system’s

global coordinate plane.

A pixel, which is short for picture element, is the smallest dot that QuickDraw can draw.

On a black-and-white monitor, a pixel is a single-color phosphor dot that displays in two

states—black and white. On a color screen, three phosphor dots (red, green, and blue)

compose each color pixel.

A pair of fields in a graphics port, fgColor and bkColor, specify a foreground and

background color. The foreground color is the color used for bit patterns and for the

graphics pen when drawing. By default, the foreground color is black. The background
color is the color of the pixels in the bitmap or pixel map wherever no drawing has taken

place. By default, the background color is white. However, when there is a color screen

your application can draw with a color other than black by changing the foreground

color, and your application can draw into a background other than white by changing

the background color. For example, by changing the foreground color to red and the

background color to blue before drawing a rectangle, your application can draw a red

rectangle against a blue background.

On a color screen, you can draw in color even when you are using a basic graphics port.

Although basic QuickDraw graphics routines were designed for black-and-white

drawing, they also support an eight-color system that basic QuickDraw predefines for

display on color screens and color printers. Because Color QuickDraw also supports this

eight-color system, it is compatible across all Macintosh platforms.

The basic QuickDraw color values consist of 1 bit for normal black-and-white drawing

(black on white), 1 bit for inverted black-and-white drawing (white on black), 3 bits for

the additive primary colors (red, green, blue) used in video display, and 4 bits for the

subtractive primary colors (cyan, magenta, yellow, black) used in printing. Basic

QuickDraw defines a set of constants for those standard colors:

CONST

 blackColor = 33;

 whiteColor = 30;

 redColor = 205;

 greenColor = 341;

 blueColor = 409;

 cyanColor = 273;

 magentaColor = 137;

 yellowColor = 69;

C H A P T E R 1

Introduction to QuickDraw

Colors 1-19

These are the only colors available in basic QuickDraw (or with Color QuickDraw

drawing into a basic graphics port).

In Color QuickDraw, however, a color pixel represents up to 48 bits in memory. On a

grayscale screen, a white phosphor dot whose intensity can vary is a pixel that usually

represents 1, 2, 4, or 8 bits in memory.

To remove (for most applications) the burden of worrying about screen capabilities,

Color QuickDraw is device-independent. Your application can use an RGBColor record,
a data structure of type RGBColor, to specify a color by its red, green, and blue

components, with each component defined as a 16-bit integer. Color QuickDraw

compares the resulting 48-bit value with the colors actually available on a video device—

such as a plug-in video card or a built-in video interface—at execution time and then

chooses the closest match.

What the user finally sees depends on the characteristics of the actual video device and

screen. Screens may display color or black and white; the video devices that control them

may have indexed colors that support pixels of 1-bit, 2-bit, 4-bit, or 8-bit depths, or direct

colors that support pixels of 16-bit or 32-bit depths. Color QuickDraw automatically

determines which method is used by the video device and matches your requested color

with the closest available color.

Indexed Colors
Some video devices use indexed colors to support a maximum of 256 colors at any one

time. The indexed color system was created when the Macintosh II computer was

introduced, at a time when memory was scarce and moving megabyte images around

was impractical. With indexed color, the maximum value of a pixel in a PixMap record is

limited to a single byte. Each pixel’s byte can specify one of 256 (28) different values.

Video devices implementing indexed color contain a data structure called a color lookup
table (or, more commonly, a CLUT). The CLUT, in turn, contains entries for all possible

color values.

For example, an indexed video device supporting 2 bits per pixel provides indexes into a

table of four colors; if two colors are black and white, however, only two other hues can

be shown.

An indexed video device supporting 4 bits per pixel can provide indexes into a table of

16 colors, a number sufficient for many straightforward graphics, such as those used in

charts, presentations, or games.

An indexed video device supporting a byte (8 bits) for each pixel allows 256 colors to be

displayed, which for many images is enough to produce near-photographic quality. The

problem is that the colors needed for one near-photographic image may not be

appropriate for another. The prevailing shades of browns necessary for displaying

a painting by Rembrandt aren’t appropriate for the prevailing shades of blues in a Monet

painting. Because most indexed video devices use a variable CLUT (rather than a fixed

one), you can display a Rembrandt painting with one set of 256 colors, then use system

C H A P T E R 1

Introduction to QuickDraw

1-20 Colors

software to reload the CLUT with a different set of 256 colors for a Monet painting. If

your application needs this sort of control on indexed video devices, you can use the

Palette Manager (as described in the chapter “Palette Manager” in Inside Macintosh:
Advanced Color Imaging) to arrange palettes—that is, sets of colors—for particular images

and for video devices of differing color capabilities.

Note

Some Macintosh computers, such as grayscale PowerBook computers,
have a fixed CLUT, which your application cannot change. ◆

If your application uses a 48-bit RGBColor record to specify a color, the Color Manager

examines the colors available in the CLUT on the video device. If the video device

supports 8 bits per pixel, for example, it contains a CLUT with 256 entries. Comparing

these entries to the RGBColor record you specify, the Color Manager determines which

color in the CLUT is closest, and the Color Manager gives Color QuickDraw the index to

this color. Color QuickDraw then draws with this color.

Direct Colors
Video devices that implement direct color eliminate the competition for limited table

spaces and remove the need for color table matching. By using direct color, video devices

may support a maximum of thousands or millions of colors. When you specify a 48-bit

RGBColor record, Color QuickDraw truncates the least significant bits of its red, green,

and blue components to either 16 bits (5 bits each for red, green, and blue, with 1 bit

unused) or 32 bits (8 bits each for red, green, and blue, with 8 bits unused). Using 16 bits,

direct video devices can display over 32,000 colors; using 32 bits, direct video devices

can display as many as 16 million different colors.

Using direct color not only removes much of the complexity of the CLUT mechanism for

video device developers, but it also allows the display of thousands or millions of colors

simultaneously, resulting in near-photographic realism.

C H A P T E R 1

Introduction to QuickDraw

Multiple Screens 1-21

Multiple Screens

A video device is a piece of hardware, such as a plug-in video card or a built-in video

interface, that controls a screen. To use more than one screen, a user may have more than

one video device installed on his or her computer.

In a drawing environment with multiple screens, the one with the menu bar is the main
screen. Color QuickDraw maps the (0,0) origin point of the global coordinate plane to

the main screen’s upper-left corner, and other screens are positioned adjacent to it. In

Figure 1-16, a full-page screen sits next to the main screen. Remember that each

window—even a window that overlaps two screens—has its own local coordinate

system with a (0,0) point at its upper-left corner.

Figure 1-16 A two-screen system

C H A P T E R 1

Introduction to QuickDraw

1-22 Multiple Screens

Color QuickDraw stores state information for a video device in a GDevice record.
(Color QuickDraw creates GDevice records—basic QuickDraw does not, nor does basic

QuickDraw support multiple screens.) When a computer supporting Color QuickDraw

starts up, it allocates and initializes a handle to a GDevice record for each video device

it finds. The firmware in the ROM for each video device supplies information about

whether the device uses indexed or direct colors, how much video RAM is available, and

so on. Some of this information is stored in the GDevice record, where it is available to

the entire graphics system.

As illustrated in Figure 1-17, when your application opens a color window, the

CGrafPort record for the window contains a handle to a PixMap record contained in

the main screen’s GDevice record. The PixMap record for your window thereby

contains the correct pixel specifications for the main screen. Color QuickDraw internally

calculates the changes required for drawing to any other screens.

Figure 1-17 The GDevice record and pixel map for a 4-bit video card

C H A P T E R 1

Introduction to QuickDraw

Multiple Screens 1-23

When a multiscreen system starts up, one of the screens is the startup screen, the screen

on which the “happy Macintosh” appears. By default, the main screen is the startup

screen. However, by using the Monitors control panel, the user can specify a different

startup screen.

During the startup of a multiscreen environment, system software calls the Window

Manager procedure InitWindows to create a region that is the union of all the active

screens (minus the menu bar and the rounded corners on the outermost screens). The

Window Manager saves this region, called the gray region, as the global variable

GrayRgn. The gray region describes and defines the desktop: the area in which the user

can drag windows.

Users can drag windows from one screen to another and even across multiple screens.

Color QuickDraw calculates the global coordinates of the rectangle into which it must

draw and issues the drawing command to each video device that the rectangle intersects.

For many applications, Color QuickDraw provides a device-independent interface;

your application can draw images in a color graphics port for a window, and Color

QuickDraw automatically manages the screen display—even if the user has multiple

screens. Your application generally never needs to create GDevice records. However,

you may find it useful for your application to examine GDevice records to determine

the capabilities of the user’s screens. When zooming a window, for example, your

application can use GDevice records to determine which screen contains the largest area

of a window, and then determine the ideal window size for that screen.

You may also wish to use the DeviceLoop procedure to optimize your application’s

drawing for screens with different capabilities. The DeviceLoop procedure searches for

video devices that intersect your graphics port’s drawing region, and it informs your

application of each video device it finds. The DeviceLoop procedure provides

your application with information about the pixel depth and other attributes of the video

device on which drawing is currently taking place. Your application can then choose

what drawing technique to use for the current device. When highlighting, for example,

your application might invert black and white when drawing onto a 1-bit video device

but use magenta as the highlight color on a color screen.

C H A P T E R 1

Introduction to QuickDraw

1-24 From Memory Bits to Onscreen Pixels

From Memory Bits to Onscreen Pixels

Tracing the path from data in memory to a pixel on one of several connected screens

traverses the major elements of QuickDraw and recapitulates much of the discussion in

this chapter.

In Figure 1-18, the user of an indexed color system selects a color for some object from an

application (1). Using a 48-bit RGBColor record to specify the color, the application calls

a Color QuickDraw routine to draw the object in that color (2). Color QuickDraw

uses the Color Manager to determine what color in the video device’s CLUT comes

closest to the requested color (3).

Figure 1-18 The indexed-pixel path

At startup, the video device’s declaration ROM supplies information for the creation of

the GDevice record that describes the characteristics of the device. The resulting

GDevice record contains a ColorTable record that is kept synchronized with the

card’s CLUT. The Color Manager examines that GDevice record to find what colors are

currently available (4) and to decide which color comes closest to the one requested by

the application. The Color Manager gets the index value for the best match and returns

that value to Color QuickDraw (5), which puts the index value into those places in video

RAM that store the object (6).

C H A P T E R 1

Introduction to QuickDraw

From Memory Bits to Onscreen Pixels 1-25

The video device continuously displays video RAM by taking the index values,

converting them to colors according to CLUT entries at those indexes (7), and sending

them to digital-to-analog converters (8) that produce a signal for the screen (9).

For video devices that support direct color, the Color Manager’s selection algorithm isn’t

needed. When an application specifies a color in an RGBColor record, Color QuickDraw

uses the most significant 5 or 8 bits of each of the 16-bit red, green, and blue components

of the specified color.

Figure 1-19 illustrates a user choosing a color for some object (1). Using a 48-bit

RGBColor record to specify the color, the application uses a Color QuickDraw routine to

draw the object in that color (2). Color QuickDraw knows from the GDevice record (3)

that the screen is controlled by a direct device in which pixels are 32 bits deep, which

means that 8 bits are used for each of the red, green, and blue components of the

requested color. Color QuickDraw passes the high 8 bits from each 16-bit component of

the 48-bit RGBColor record to the video device (4), which stores the resulting 24-bit

value in video RAM for the object. The video device continuously displays video RAM

by sending the three 8-bit red, green, and blue values for the color to digital-to-analog

converters (5) that produce a signal for the screen (6).

Figure 1-19 The direct-pixel path

C H A P T E R 1

Introduction to QuickDraw

1-26 From Memory Bits to Printers

From Memory Bits to Printers

Available on all Macintosh computers, the Printing Manager is a collection of system

software routines that your application can use to print to any type of connected printer

by using the same QuickDraw routines for printing that your application uses for screen

display. You can use the Printing Manager to print documents, to display and alter

printing-related dialog boxes, and to handle printing errors. The Printing Manager takes

much of the work out of coming up with a single way to handle all possible printer

environments.

Your application uses the Printing Manager procedure PrOpen to open the current

printer. (The current printer is the printer that the user last selected from the Chooser.)

Before printing, your application should display the job dialog box, which solicits

printing information from the user, such as the number of copies to print, the print

quality, and the range of pages to print. Your application can use the PrJobDialog

procedure to display a job dialog box. The PrJobDialog procedure handles all user

interaction in the standard dialog items until the user clicks the Print or Cancel button.

Figure 1-20 shows an example of a job dialog box. Your application prints the document

in the active window if the user clicks the Print button.

Figure 1-20 The job dialog box for a StyleWriter printer

C H A P T E R 1

Introduction to QuickDraw

From Memory Bits to Printers 1-27

Each printer has its own job dialog box. Thus, a style dialog box for one printer may

differ slightly from that of another printer. Figure 1-21 shows a sample job dialog box for

a LaserWriter printer.

Figure 1-21 The job dialog box for a LaserWriter printer

A TPrint record stores information about the choices made by the user in the print job

dialog box. Your application can also customize the job dialog box to ask for additional

information.

When the user clicks the Print button in the job dialog box, your application then uses

the Printing Manager function PrOpenDoc to open a printing graphics port, which

consists of a graphics port (either a GrafPort or CGrafPort record) plus additional

information.

To set up the printing graphics port to print a page, your application should call the

PrOpenPage procedure. Your application then prints by using the QuickDraw routines

described in this book to draw into the printing graphics port. The Printing Manager

uses a printer driver to do the actual printing. A printer driver does any necessary

translating of QuickDraw drawing routines and sends the translated instructions and

data to the printer. Each type of printer has its own printer driver, which is stored in a

resource file in the Extensions folder inside the System Folder. Because your application

does not communicate with any of the multitude of available printer drivers but instead

uses the Printing Manager to handle this communication, the Printing Manager gives

your application device-independent control over the printing process.

When your application has finished drawing into the page set up for the printing

graphics port, your application closes the page by using the PrClosePage procedure.

For every page that the user selects to be printed in a document, your application uses

PrOpenPage and PrClosePage. When your application has finished printing, your

application closes the printing graphics port by using the PrCloseDoc procedure;

your application should then close the Printing Manager by using the PrClose

procedure.

C H A P T E R 1

Introduction to QuickDraw

1-28 Other Graphics Managers

There are two main types of printer drivers for Macintosh computers: QuickDraw

printer drivers and PostScript™ printer drivers. Using QuickDraw drawing operations,

QuickDraw printer drivers render images on the Macintosh computer and then send

the rendered images to the printer in the form of bitmaps or pixel maps. PostScript
printer drivers, on the other hand, convert QuickDraw drawing operations into

equivalent PostScript drawing operations, as necessary. PostScript printers have their

own rendering capabilities. PostScript printer drivers typically send drawing operations

to the printer, which itself renders images on the page.

For most applications, sending QuickDraw’s picture-drawing routines to the printer

driver is sufficient: the driver either uses QuickDraw or converts the drawing routines to

PostScript. For some applications, such as page-layout programs, this may not be

sufficient; such applications may rely on printer drivers to provide several features that

are not available, or are difficult to achieve, using QuickDraw.

Using picture comments, your application can instruct printer drivers to perform

operations that QuickDraw does not support. Created with the QuickDraw procedure

PicComment, picture comments are data or commands for special processing that can

be included in the code an application sends to a printer driver.

A number of picture comments have been given special definitions in printer drivers.

The drivers for PostScript printers and even some QuickDraw printers support features

unavailable with QuickDraw. When a printer driver encounters one of these comments,

it converts it to its own printing code. Other picture comments signal the driver that

PostScript code is enclosed, so your application can even include PostScript code directly

in the definition of a picture.

Other Graphics Managers

In addition to the QuickDraw routines described in this book, several other collections of

system software routines are available to assist you in drawing and printing images.

Your application can use QuickDraw’s text-handling routines to measure and draw text

ranging in complexity from a single glyph to a line of justified text containing multiple

languages and styles. In addition to measuring and drawing text, QuickDraw’s

text-handling routines also help you to determine which characters to highlight and

where to mark the insertion point. These routines are described in the chapter

“QuickDraw Text” in Inside Macintosh: Text.

To provide more sophisticated color support on indexed graphics devices, your

application can use the Palette Manager. The Palette Manager allows your application to

specify sets of colors that it needs on a window-by-window basis. An indexed device

supporting a byte for each pixel allows 256 colors to be displayed. On a video device that

uses a variable CLUT, your application can use the Palette Manager to display tens of

thousands of palettes—that is, sets of colors—consisting of 256 colors each, so that your

application has up to 16 million colors at its disposal (although only 256 different colors

C H A P T E R 1

Introduction to QuickDraw

Other Graphics Managers 1-29

can appear at once). For example, your application can use the Palette Manager to load

the CLUT with a set of prevailingly brown colors to display a Rembrandt painting, then

reload the CLUT with a set of prevailingly blue colors for a Monet painting. For

information about the Palette Manager, see Inside Macintosh: Advanced Color Imaging.

To solicit color choices from users, your application can use the Color Picker Utilities.

The Color Picker Utilities provide your application with a standard dialog box for

soliciting a color choice from users. The Color Picker Utilities also provide routines that

allow your application to convert between colors specified in RGBColor records and

colors specified for other color models, such as the CMYK model used by many color

printers. Most applications use the Color Picker Utilities only for soliciting color choices.

To learn how to use the Color Picker Utilities, see Inside Macintosh: Advanced Color
Imaging.

As color devices for input and output proliferate, so do the problems of moving images

between them with good results. Different device types use different color models,

which produce different gamuts, or ranges of colors. Screens, for example, typically

display colors as combinations of red, green, and blue—combinations that your

application specifies with RGBColor records when using Color QuickDraw. Screens by

different manufacturers may be capable of displaying different intensities of red, green

and blue, so that even though the screens work with RGB colors, their gamuts may be

different. Color printers typically use a CMYK color model to work with varying

intensities of cyan, magenta, yellow, and black. Print technologies vary drastically, and

the gamut that an ink jet color printer can display may be quite different from one based

on another technology. A single printer may be able to produce different gamuts

depending on the paper or ink in use at the time of printing.

Two devices with differing color gamuts cannot reproduce each other’s colors exactly,

but shifting the colors of one device may improve the visual match. To match colors

between screens and input and output devices such as scanners and printers, Macintosh

system software provides a set of routines and algorithms called the ColorSync Utilities.
Developers writing device drivers use the ColorSync Utilities to support color matching

between devices. You can use the ColorSync Utilities in your application to communicate

with a driver and present users with color-matching information—such as a device’s

color capabilities. For an image that your application prepares, for example, your

application can present a print preview dialog box that signifies those colors within the

image that the printer cannot accurately reproduce. Your application can also allow users

to choose whether and how to match colors in the image with those available on the

printer. The ColorSync Utilities are described in Inside Macintosh: Advanced Color Imaging.

The Color Manager assists Color QuickDraw in mapping your application’s color

requests to the actual colors available. Most applications never need to call the Color

Manager directly. However, for completeness, the routines and data structures of the

Color Manager are described in Inside Macintosh: Advanced Color Imaging.

Apple has also developed a new, object-based graphics architecture called QuickDraw
GX. This new architecture provides applications with sophisticated color publishing

capabilities. Your application can use QuickDraw GX instead of QuickDraw to create

C H A P T E R 1

Introduction to QuickDraw

1-30 Other Graphics Managers

and draw objects on the screen. Rather than provide a set of drawing commands, as

QuickDraw does, QuickDraw GX is built around graphics objects that your application

can use as needed.

Your application can also use QuickDraw GX for drawing text. QuickDraw GX provides

many sophisticated font and line layout capabilities, such as ligatures, style variations,

kerning, and resolution-independent type manipulation.

For printing, QuickDraw GX offers flexible new capabilities to users and an architecture

that streamlines development time for developers who write printing drivers. Even

if your application uses QuickDraw and the Font Manager instead of QuickDraw GX

to create images and text, your application can use the printing capabilities of

QuickDraw GX.

See the Inside Macintosh: QuickDraw GX suite of books for information about

programming with QuickDraw GX imaging technology.

Contents 2-1

C H A P T E R 2

Contents

Basic QuickDraw

About Basic QuickDraw 2-3

The Mathematical Foundations of QuickDraw 2-4

The Coordinate Plane 2-4

Points 2-4

Rectangles 2-5

Regions 2-7

The Black-and-White Drawing Environment: Basic Graphics Ports 2-7

Bitmaps 2-9

The Graphics Port Drawing Area 2-11

Graphics Port Bit Patterns 2-13

The Graphics Pen 2-13

Text in a Graphics Port 2-13

The Limited Colors of a Basic Graphics Port 2-14

Other Fields 2-14

Using Basic QuickDraw 2-14

Initializing Basic QuickDraw 2-16

Creating Basic Graphics Ports 2-16

Setting the Graphics Port 2-18

Switching Between Global and Local Coordinate Systems 2-19

Scrolling the Pixels in the Port Rectangle 2-20

Basic QuickDraw Reference 2-26

Data Structures 2-26

Routines 2-36

Initializing QuickDraw 2-36

Opening and Closing Basic Graphics Ports 2-37

Saving and Restoring Graphics Ports 2-41

Managing Bitmaps, Port Rectangles, and Clipping Regions 2-43

Manipulating Points in Graphics Ports 2-51

C H A P T E R 2

2-2 Contents

Summary of Basic QuickDraw 2-56

Pascal Summary 2-56

Data Types 2-56

Routines 2-57

C Summary 2-58

Data Types 2-58

Functions 2-60

Assembly-Language Summary 2-61

Data Structures 2-61

Global Variables 2-62

Result Codes 2-62

C H A P T E R 2

About Basic QuickDraw 2-3

Basic QuickDraw

This chapter describes how to initialize basic QuickDraw and how to create and manage

a basic graphics port—the drawing environment in which your application can create

graphics and text in either black and white or eight basic colors. Many of the routines

described in this chapter also operate in color graphics ports, and are noted as such. This

chapter also describes the mathematical foundation of both basic QuickDraw and Color

QuickDraw.

Read this chapter to learn how to set up a drawing environment for your application on

all models of Macintosh computers. The chapter “Color QuickDraw” in this book

describes additional data structures and routines necessary for preparing the more

sophisticated color drawing environments that are supported on the more powerful

Macintosh computers.

If your application ever draws to the screen, it uses basic QuickDraw—either directly, as

when it draws shapes or patterns into a window, or indirectly, as when it uses another

Macintosh Toolbox manager (such as the Window Manager or Menu Manager) to

implement elements of the standard Macintosh user interface. If your application does

not use color, or uses only a few colors, you may find that all the tools you need for

preparing a graphics environment are provided by basic QuickDraw. Once you prepare

a basic drawing environment as described in this chapter, you can begin drawing into it

as described in the next chapter, “QuickDraw Drawing.”

About Basic QuickDraw

Basic QuickDraw, designed for the earliest Macintosh models with their built-in

black-and-white screens, is a collection of system software routines that your application

can use to manipulate images on all Macintosh computers.

Note

All Macintosh computers support basic QuickDraw. Only those
computers based on the Motorola 68000 processor, such as the
Macintosh Classic and PowerBook 100 computers, provide no support
for Color QuickDraw. ◆

Basic QuickDraw performs its operations in a graphics port based on a data structure of

types GrafPort. (Color QuickDraw, described in the chapter “Color QuickDraw,” can

work with data structures of type GrafPort or CGrafPort, the latter offering extensive

color and grayscale facilities.)

As described in the chapter “Introduction to QuickDraw,” each graphics port has its

own local coordinate system. All fields in a graphics port are expressed in these

coordinates, and all calculations and actions that QuickDraw performs use the

local coordinate system of the current graphics port. The mathematical constructs of

this coordinate system are described next.

C H A P T E R 2

Basic QuickDraw

2-4 About Basic QuickDraw

The Mathematical Foundations of QuickDraw
QuickDraw defines some mathematical constructs that are widely used in its procedures,

functions, and data types: the coordinate plane, the point, the rectangle, and the region.

Points are defined in terms of the coordinate plane. Points in turn are used to define a

rectangle. Rectangles assign coordinates to boundaries and images, and rectangles frame

graphic objects such as regions and ovals. Regions define arbitrary areas on the

coordinate plane.

For example, each graphics port has its own local coordinate system on the coordinate

plane; the location of the graphics pen used for drawing into a graphics port is expressed

as a point; a commonly used rectangle is the port rectangle, which in a graphics port for

a window represents the window’s content area; and a commonly used region in

QuickDraw is the visible region, which in a graphics port for a window represents the

portion of the window that’s actually visible on the screen—that is, the part that’s not

covered by other windows.

The Coordinate Plane

As described in the chapter “Introduction to QuickDraw,” all information about location

or movement is specified to QuickDraw in terms of coordinates on a plane. The plane is

a two-dimensional grid whose coordinates range from –32768 to 32767. On a user’s

computer, there is one global coordinate system that represents all potential QuickDraw

drawing space. The origin of the global coordinate system—that is, the point with a

horizontal coordinate of 0 and a vertical coordinate of 0—is at the upper-left corner of

the user’s main screen. Each graphics port on that user’s computer has its own local
coordinate system, which is defined relative to the port rectangle of the graphics port.

Typically, the upper-left corner of a port rectangle is assigned a local horizontal

coordinate of 0 and a local vertical coordinate of 0, although you can use the SetOrigin

procedure to change the coordinates of this corner.

IMPORTANT

QuickDraw stores points and rectangles in its own data structures of
types Point and Rect. In these structures, the vertical coordinate (v)
appears first, followed by the horizontal coordinate (h). However, in
parameters to all QuickDraw routines, you specify the horizontal
coordinate first and the vertical coordinate second. ▲

So that the user can select onscreen objects across this coordinate plane, QuickDraw

predefines several cursors, described in the chapter “Cursor Utilities” in this book, that

the user manipulates with the mouse.

Points

A point is located by the combination of a vertical coordinate and a horizontal

coordinate. Points themselves are dimensionless; if a visible pixel is located at a point,

the pixel hangs down and to the right of the point. You can store the coordinates of a

point into a variable of type Point, which QuickDraw defines as a record of two

integers.

C H A P T E R 2

Basic QuickDraw

About Basic QuickDraw 2-5

TYPE VHSelect = (v,h);

Point =

RECORD

CASE Integer OF

0: (v: Integer: {vertical coordinate}

 h: Integer); {horizontal coordinate}

1: (vh: ARRAY[VHSelect] OF Integer);

END;

The third field of this record lets you access the vertical and horizontal coordinates of a

point either individually or as an array. For example, the following code fragment

illustrates how to assign values to the coordinates of points:

VAR

westPt, eastPt: Point;

westPt.v := 40; westPt.h := 60;

eastPt.vh[v] := 90; eastPt.vh[h] := 110;

“Manipulating Points in Graphics Ports” beginning on page 2-51 describes several

QuickDraw routines you can use to change and calculate points.

Rectangles

Any two points can define the upper-left and lower-right corners of a rectangle. Just as

points are infinitely small, the borders of the rectangle are infinitely thin.

The data type for rectangles is Rect, and the data structure consists of either four

integers or two points:

TYPE Rect =

RECORD

CASE Integer OF {cases: four sides or two points}

0: (top: Integer; {upper boundary of rectangle}

 left: Integer; {left boundary of rectangle}

 bottom: Integer; {lower boundary of rectangle}

 right: Integer); {right boundary of rectangle}

1: (topLeft: Point; {upper-left corner of rectangle}

 botRight: Point); {lower-right corner of rectangle}

END;

C H A P T E R 2

Basic QuickDraw

2-6 About Basic QuickDraw

You can access a variable of type Rect either as four boundary coordinates or as two

diagonally opposite corner points. All of the following coordinates to the rectangle

named shipRect are permissible:

VAR

shipRect: Rect;

{specify rectangle with boundary coordinates}

shipRect.top := 20; shipRect.left := 20; shipRect.bottom := 70;

shipRect.right := 70;

{specify rectangle with upper-left and bottom-right points}

shipRect.topLeft := (20,20); shipRect.botRight := (70,70);

{specify individual coordinates for rectangle's upper-left }

{ and bottom-right points}

shipRect.topLeft.v := 20; shipRect.topLeft.h :=20;

shipRect.botRight.v := 70; shipRect.botRight.h :70;

{specify individual coordinates for rectangle's upper-left }

{ and bottom-right points, where the points are arrays}

shipRect.topLeft.vh[v] := 20; shipRect.topLeft.vh[h] := 20;

shipRect.botRight.vh[v] := 70; shipRect.botRight.vh[h] := 70;

As described in the chapter “QuickDraw Drawing” in this book, many calculations and

graphics operations can be performed on rectangles.

Note

If the bottom coordinate of a rectangle is equal to or less than the top, or
the right coordinate is equal to or less than the left, the rectangle is an
empty rectangle, one that contains no data. ◆

C H A P T E R 2

Basic QuickDraw

About Basic QuickDraw 2-7

Regions

The data structure for a region consists of two fixed-length fields followed by a

variable-length field:

TYPE Region =

RECORD

rgnSize: Integer;{size in bytes}

rgnBBox: Rect; {enclosing rectangle}

{more data if region is not rectangular}

END;

The rgnSize field contains the size, in bytes, of the region. The maximum size is 32 KB

when using basic QuickDraw (and 64 KB when using Color QuickDraw). The rgnBBox

field is a rectangle that completely encloses the region.

The simplest region is a rectangle. In this case, the rgnBBox field defines the entire

region, and there’s no optional region data. For rectangular regions (or empty regions),

the rgnSize field contains 10. The data for more complex regions is stored in a

proprietary format.

As described in the chapter “QuickDraw Drawing” in this book, you can gather an

arbitrary set of spatially coherent points into a region and rapidly perform complex

manipulations and calculations on them.

The Black-and-White Drawing Environment: Basic Graphics
Ports
A graphics port is a complete drawing environment that defines where and how

graphics operations take place. You can have many graphics ports open at once; each one

has its own local coordinate system, drawing pattern, background pattern, pen size and

location, font and font style, and bitmap or pixel map (for a color graphics port). You can

quickly switch from one graphics port to another.

As described in the chapter “Window Manager” in Inside Macintosh: Macintosh Toolbox
Essentials, the Window Manager incorporates a graphics port in each window record it

creates. Similarly, the Printing Manager (described in the chapter “Printing Manager” in

this book) incorporates a graphics port in each print record it creates. You can also use

the NewGWorld function to create graphics ports that are not in a window, and hence not

visible on a screen. As described in the chapter “Offscreen Graphics Worlds” in this

book, such offscreen graphics worlds are useful for preparing images for display; when

the image is ready, you can quickly copy it to an onscreen graphics port.

There are two kinds of graphics ports: the black-and-white, basic graphics port based on

the data structure of type GrafPort, and the color graphics port based on the data

structure of type CGrafPort (used only with Color QuickDraw). The basic graphics

port is discussed here; the color graphics port is discussed in the chapter “Color

QuickDraw.” (Using the basic eight-color system described in the chapter “QuickDraw

Drawing,” you can also use a basic graphics port to display eight predefined colors.)

C H A P T E R 2

Basic QuickDraw

2-8 About Basic QuickDraw

The GrafPort record is diagrammed in Figure 2-1. Some aspects of its contents are

discussed after the figure; see page 2-30 for a complete description of the record fields.

Your application should not directly set any fields of a GrafPort record; instead you

should use QuickDraw routines to manipulate them.

Figure 2-1 The GrafPort record and the BitMap record

C H A P T E R 2

Basic QuickDraw

About Basic QuickDraw 2-9

Bitmaps

The portBits field of a GrafPort record contains the bitmap, a data structure of type

BitMap that defines a black-and-white physical bit image in terms of the QuickDraw

coordinate plane. The structure of a bitmap is illustrated in Figure 2-1.

The baseAddr field of the BitMap record contains a pointer to the beginning of the bit

image. (There can be several bitmaps pointing to the same bit image, each imposing its

own coordinate system on it.) A bit image is a collection of bits in memory that form a

grid. To visualize the relationship between the bits in memory and the bits in an image,

take a sequence of words in memory and lay them end to end so that bit 15 of the

lowest-numbered word is on the left and bit 0 of the highest-numbered word is on the

far right. Then take this line of bits and divide it, on word boundaries, into a number of

equal-size rows. Stack these rows vertically so that the first row is on the top and the last

row is on the bottom. The result is a matrix like the one shown in Figure 2-2—rows and

columns of bits, with each row containing the same number of bytes. A bit image can be

any length that’s a multiple of the row’s width in bytes.

Figure 2-2 A bit image

The screen itself is one large visible bit image. On a Macintosh Classic, for example, the

screen is a 342-by-512 bit image, with a row width of 64 bytes. These 21,888 bytes of

memory are displayed as a matrix of 175,104 pixels on the screen; each bit corresponds to

one screen pixel. If a bit’s value is 0, its screen pixel is white; if the bit’s value is 1, it is

black. (Color QuickDraw can work with images that store more than 1 bit for each screen

pixel. Such images are called pixel images; they are described in the chapter “Color

QuickDraw” in this book.)

C H A P T E R 2

Basic QuickDraw

2-10 About Basic QuickDraw

The rowBytes field of the bitmap contains the width of a row of the image in bytes. A

bitmap must always begin on a word boundary and contain an integral number of

words in each row. The value of the rowBytes field must be less than $4000.

The bounds field is the bitmap’s boundary rectangle, which serves two purposes. First,

it links the local coordinate system of a graphics port to QuickDraw’s global coordinate

system. Second, it defines the area of an image into which QuickDraw can draw.

The coordinates of the upper-left corner of the boundary rectangle define the distance

from the origin of the graphics port’s local coordinate system to the origin of

QuickDraw’s global coordinate system. In this way, the boundary rectangle links the

local coordinate system of a graphics port to QuickDraw’s global coordinate system. For

example, by subtracting the vertical and horizontal coordinates of the upper-left corner

of the boundary rectangle from any other point local to the graphics port, you convert

that point into global coordinates. By comparing the origin of a window to the origin of

the main screen, Figure 2-3 illustrates the relationship of the boundary rectangle’s local

coordinate system to QuickDraw’s global coordinate system.

Figure 2-3 Relationship of the boundary rectangle and the port rectangle to the global
coordinate system

The origin of the local coordinate system is defined by the upper-left corner of the port

rectangle for the graphics port. (The port rectangle, as described in “The Graphics Port

Drawing Area” on page 2-11, is specified in the portRect field of the GrafPort

record.) In a graphics port for a window, this point is called the window origin, and it

marks the upper-left corner of a window’s content region. As shown in Figure 2-3, this

point usually has horizontal and vertical coordinates of 0 in the local coordinate system.

The origin for the global coordinate system has horizontal and vertical coordinates of 0

in the global coordinate system, and, as shown in Figure 2-3, this point lies at the

upper-left corner of the main screen.

C H A P T E R 2

Basic QuickDraw

About Basic QuickDraw 2-11

By default, QuickDraw assigns the entire main screen as the boundary rectangle for a

bitmap. Therefore, the local coordinates of the upper-left corner of the boundary

rectangle reflect the distance from the window origin to the screen origin. In Figure 2-3,

for example, the upper-left corner of the boundary rectangle has a horizontal coordinate

of –60 and a vertical coordinate of –90 in the local coordinate system because the

window origin has a horizontal coordinate of 60 and a vertical coordinate of 90 in the

global coordinate system.

The boundary rectangle defines the area of an image into which QuickDraw can

draw. The upper-left corner of the boundary rectangle is aligned around the first bit in

the bit image. The width of the boundary rectangle determines how many bits of one

row are logically owned by the bitmap. This width must not exceed the number of bits in

each row of the bit image (although the width may be smaller than the number of bits

in each row).

The height of the boundary rectangle determines how many rows of the bit image are

logically owned by the bitmap. The number of rows enclosed by the boundary rectangle

must not exceed the number of rows in the bit image (although the number of rows

enclosed by the boundary rectangle may be fewer than those in the bit image).

Normally, the boundary rectangle exactly encloses the bit image. If the rectangle is

smaller than either dimension of the image, the rightmost bits in each row, or the last

rows in the image, or both, are not considered part of the bitmap. All drawing that

QuickDraw does in a bitmap is clipped to the edges of the boundary rectangle—bits

(and their corresponding pixels) that lie outside the rectangle are unaffected by drawing

operations.

The bitmap may be changed to point to a different bit image in memory. All graphics

routines work in exactly the same way regardless of whether their effects are visible on

the screen. Your application can, for example, prepare an image to be printed on a

printer without ever displaying the image on the screen (as described in the chapter

“Printing Manager” in this book), or it can prepare an image in an offscreen graphics

world before transferring it to the screen (as described in the chapter “Offscreen

Graphics Worlds” in this book).

The Graphics Port Drawing Area

Several fields in the GrafPort record define your application’s drawing area.

The portRect field denotes the port rectangle that defines a subset of the bitmap to be

used for drawing. All drawing done by your application occurs inside the port rectangle.

As explained in the previous section, the boundary rectangle defines the local coordinate

system used by the port rectangle. The port rectangle usually falls within the bitmap’s

boundary rectangle, but it’s not required to do so.

The visRgn field designates the visible region of the graphics port. The visible region is

the region of the graphics port that’s actually visible on the screen. The visible region is

manipulated by the Window Manager. For example, if the user moves one window in

front of another, the Window Manager logically removes the area of overlap from the

C H A P T E R 2

Basic QuickDraw

2-12 About Basic QuickDraw

visible region of the window in back. When you draw into the back window, whatever’s

being drawn is clipped to the visible region so that it doesn’t run over onto the front

window.

The clipRgn field specifies the graphics port’s clipping region, which you can use to

limit drawing to any region within the port rectangle. The initial clipping region of a

graphics port is an arbitrarily large rectangle: one that covers the entire QuickDraw

coordinate plane. You can set the clipping region to any arbitrary region, to aid you in

drawing inside the graphics port. If, for example, you want to draw a half-circle on the

screen, you can set the clipping region to half of the square that would enclose the whole

circle, and then draw the whole circle. Only the half within the clipping region is actually

drawn in the graphics port.

All drawing in a graphics port occurs in the intersection of the graphics port’s boundary

rectangle and its port rectangle, and, within that intersection, all drawing is cropped to

the graphics port’s visible region and its clipping region. No drawing occurs outside the

intersection of the port rectangle, the visible region, and the clipping region. Figure 2-4

illustrates several of the previously described fields of the GrafPort record.

Figure 2-4 Comparing the boundary rectangle, port rectangle, visible region, and clipping
region

C H A P T E R 2

Basic QuickDraw

About Basic QuickDraw 2-13

As shown in this figure, QuickDraw assigns the entire screen as the boundary rectangle

for window A. This boundary rectangle shares the same local coordinate system as

the port rectangle for window A. Although not shown in this figure, the upper-left

corner—that is, the window origin—of this port rectangle has a horizontal coordinate of

0 and a vertical coordinate of 0, whereas the upper-left corner for window A’s boundary

rectangle has a horizontal coordinate of –40 and a vertical coordinate of –40.

In this figure, to avoid drawing over scroll bars when drawing into window B, the

application that created that window has defined a clipping region that excludes the

scroll bars.

Graphics Port Bit Patterns

The bkPat and fillPat fields of a GrafPort record contain patterns used by certain

QuickDraw routines. The bkPat field contains the background pattern that’s used when

an area is erased or when bits are scrolled out of it. When asked to fill an area with a

specified pattern, QuickDraw stores the given pattern in the fillPat field and then

calls a low-level drawing routine that gets the pattern from that field.

Bit patterns—which are usually black and white, although any two colors can be used on

a color screen—are described in the chapter “QuickDraw Drawing” in this book;

patterns with colors at any pixel depth, called pixel patterns, are described in the chapter

“Color QuickDraw” in this book.

The Graphics Pen

The pnLoc, pnSize, pnMode, pnPat, and pnVis fields of a graphics port deal with the

graphics pen. Each graphics port has one and only one such pen, which is used for

drawing lines, shapes, and text. The pen has four characteristics: a location, a size (height

and width), a drawing mode, and a drawing pattern. The routines for determining and

changing these four characteristics are described in the chapter “QuickDraw Drawing.”

Text in a Graphics Port

The txFont, txFace, txMode, txSize, and spExtra fields of a graphics port

determine how text is drawn—the typeface, font style, and font size of characters and

how they are placed in the bit image. QuickDraw can draw characters as quickly and

easily as it draws lines and shapes, and in many prepared typefaces. The characters may

be drawn in any size and font style (that is, with stylistic variations such as bold, italic,

and underline). Text is drawn with the base line positioned at the pen location.

For information on using text in your application, including how to use the QuickDraw

routines that manipulate text characteristics stored in a graphics port, see Inside
Macintosh: Text.

C H A P T E R 2

Basic QuickDraw

2-14 Using Basic QuickDraw

The Limited Colors of a Basic Graphics Port

The fgColor, bkColor, and colrBit fields contain values for drawing in the

eight-color system available with basic QuickDraw. Although limited to eight

predefined colors, this system has the advantage of being compatible across all

Macintosh platforms. The fgColor field contains the graphics port’s foreground color,

and bkColor contains its background color. The colrBit field tells the color imaging

software which plane of the color picture to draw into.

These colors are recorded when drawing into a QuickDraw picture (described in the

chapter “Pictures” in this book)—for example, drawing a line with a red foreground

color stores a red line in the picture—but these colors cannot be stored in a bitmap. The

basic graphics port’s color drawing capabilities are discussed in the chapter “QuickDraw

Drawing.”

Other Fields

The patStretch field is used during printing to expand patterns if necessary. Your

application should not change the value of this field.

The picSave, rgnSave, and polySave fields reflect the states of picture, region, and

polygon definitions, respectively. To define a region, for example, you open it, call

routines that draw it, and then close it. The chapter “QuickDraw Drawing” describes in

detail how to use pictures, regions, and polygons to draw into a graphics port.

Finally, the grafProcs field may point to a special data structure that your application

can store into if you want to customize QuickDraw drawing routines or use QuickDraw

in other specialized ways, as described in the chapter “QuickDraw Drawing.”

Using Basic QuickDraw

To create a basic QuickDraw drawing environment, you generally

■ initialize QuickDraw

■ create one or more graphics ports—typically, by using the Window Manager or the
NewGWorld function

■ set a current graphics port whenever your application has multiple graphics ports
into which it can draw

■ use the coordinate system—local or global—appropriate for the QuickDraw or
Macintosh Toolbox routine you wish to use next

■ move the document’s bit image in relation to the port rectangle of the graphics port
when scrolling through a document in a window

C H A P T E R 2

Basic QuickDraw

Using Basic QuickDraw 2-15

These tasks are explained in greater detail in the rest of this chapter. After

performing these tasks, your application can draw into the current graphics port,

as described in the next chapter, “QuickDraw Drawing.”

System 7 added new features to basic QuickDraw that were not available in earlier

versions of system software. In particular, System 7 added

■ the capability to work with the offscreen graphics worlds described in the chapter
“Offscreen Graphics Worlds”

■ support for the OpenCPicture function to create—and the ability to display—the
extended version 2 pictures described in the chapter “Pictures”

■ additional capabilities to the CopyBits procedure as described in the chapter
“QuickDraw Drawing”

■ support for the Color QuickDraw routines RGBForeColor, RGBBackColor,
GetForeColor, and GetBackColor (which are described in the chapter “Color
QuickDraw”)

■ support for the DeviceLoop procedure (described in the chapter “Graphics Devices”
in this book), which provides your application with information about the current
device’s pixel depth and other attributes

■ support for the Picture Utilities, as described in the chapter “Pictures” in this book
(however, when collecting color information on a computer running only basic
QuickDraw, the Picture Utilities return NIL instead of handles to Palette and
ColorTable records)

Before using these capabilities, you should make sure they are available by using the

Gestalt function with the gestaltSystemVersion selector. Test the low-order word

in the response parameter; if the value is $0700 or greater, then the System 7 features of

basic QuickDraw are supported.

You can test whether a computer supports only basic QuickDraw with no

Color QuickDraw support by using the Gestalt function with the selector

gestaltQuickDrawVersion. The Gestalt function returns a 4-byte value in its

response parameter; the low-order word contains QuickDraw version data. If

Gestalt returns the value represented by the constant gestaltOriginalQD, then

Color QuickDraw is not supported.

The Gestalt function is described in the chapter “Gestalt Manager” of Inside Macintosh:
Operating System Utilities.

C H A P T E R 2

Basic QuickDraw

2-16 Using Basic QuickDraw

Initializing Basic QuickDraw
Call the InitGraf procedure to initialize QuickDraw at the beginning of your program,

before initializing any other parts of the Toolbox, as shown in the application-defined

procedure DoInit in Listing 2-1. The InitGraf procedure initializes both basic

QuickDraw and, on computers that suppport it, Color QuickDraw.

Listing 2-1 Initializing QuickDraw

PROCEDURE DoInit;

BEGIN

 DoSetUpHeap; {perform Memory Manager initialization here}

 InitGraf(@thePort); {initialize QuickDraw}

 InitFonts; {initialize Font Manager}

 InitWindows; {initialize Window Manager & other Toolbox }

{ managers here}

{perform all other initializations here}

 InitCursor; {set cursor to an arrow instead of a clock}

END; {of DoInit}

When your application starts up, the Finder sets the cursor to a wristwatch; this

indicates that a lengthy operation is in progress. See the chapter “Cursor Utilities” in this

book for information about changing the cursor when appropriate.

Creating Basic Graphics Ports
All graphics operations are performed in graphics ports. Before a basic graphics port can

be used, it must be allocated and initialized with the OpenPort procedure. Normally,

you don’t call OpenPort yourself. In most cases your application draws into a

window you’ve created with the GetNewWindow or NewWindow function (or, for

color windows, GetNewCWindow or NewCWindow), or it draws into an offscreen

graphics world created with the NewGWorld function. These Window Manager

functions (described in the chapter “Window Manager” in Inside Macintosh: Macintosh
Toolbox Essentials) and the NewGWorld function (described in the chapter “Offscreen

Graphics Worlds” in this book) call OpenPort to create a basic graphics port. See the

description of the OpenPort procedure on page 2-38 for a table of initial values for a

basic graphics port.

C H A P T E R 2

Basic QuickDraw

Using Basic QuickDraw 2-17

Listing 2-2 shows a simplified application-defined procedure called DoNew that uses the

Window Manager function GetNewWindow to create a basic graphics port for computers

that do not support color. The GetNewWindow function returns a window pointer, which

is defined to be a pointer to graphics port.

Listing 2-2 Using the Window Manager to create a basic graphics port

PROCEDURE DoNew (VAR window: WindowPtr);

VAR

windStorage: Ptr; {memory for window record}

BEGIN

window := NIL;

{allocate memory for window record from previously allocated block}

windStorage := MyPtrAllocationProc;

IF windStorage <> NIL THEN {memory allocation succeeded}

BEGIN

IF gColorQDAvailable THEN {use Gestalt to determine color availability}

window := GetNewCWindow(rDocWindow, windStorage, WindowPtr(-1))

ELSE {create a basic graphics port for a black-and-white screen}

window := GetNewWindow(rDocWindow, windStorage, WindowPtr(-1));

END;

IF (window <> NIL) and (myData <> NIL) THEN

 SetPort(window);

END;

You can allow GetNewWindow to allocate the memory for your window record and its

associated basic graphics port. You can maintain more control over memory use,

however, by allocating the memory yourself from a block allocated for such purposes

during your own initialization routine, and then passing the pointer to GetNewWindow,

as shown in Listing 2-2.

When you call the CloseWindow or DisposeWindow procedure to close or dispose of a

window, the Window Manager disposes of the graphics port’s regions by calling the

ClosePort procedure. If you use the CloseWindow procedure, you also dispose of the

window record containing the graphics port by calling the Memory Manager procedure

DisposePtr.

For detailed information about managing windows, see the chapter “Window Manager”

in Inside Macintosh: Macintosh Toolbox Essentials. For detailed information about

managing memory, see Inside Macintosh: Memory.

C H A P T E R 2

Basic QuickDraw

2-18 Using Basic QuickDraw

Setting the Graphics Port
Before drawing into the window, Listing 2-2 calls the SetPort procedure to make the

window the current graphics port. If your application draws into more than one

graphics port, you can call SetPort to set the graphics port into which you want to

draw. At times you may need to preserve the current graphics port. As shown in

Listing 2-3, you can do this by calling the GetPort procedure to save the current

graphics port, SetPort to set the graphics port you want to draw in, and then SetPort

again when you need to restore the previous graphics port. (The procedures also work

with color graphics ports.)

Listing 2-3 Saving and restoring a graphics port

PROCEDURE DrawInPort (thePort: GrafPtr);

VAR

origPort: GrafPtr;

BEGIN

GetPort(origPort); {save the original port}

SetPort(thePort); {set a new port}

DoDrawWindow(thePort); {draw into the new port}

SetPort(origPort); {restore the original port}

END;

In this example, the application calling DrawInPort may need to temporarily turn an

inactive window into the current graphics port for updating purposes. After drawing

into the inactive window, DrawInPort makes the user’s active window the current

graphics port again.

Note

When your application runs in Color QuickDraw or uses offscreen
graphics worlds, it should use the GetGWorld procedure instead of
GetPort, and it should use the SetGWorld procedure instead of
SetPort. These procedures save and restore the current graphics port
for basic and color graphics ports as well as offscreen graphics worlds.
See the chapter “Offscreen Graphics Worlds” in this book for more
information. ◆

C H A P T E R 2

Basic QuickDraw

Using Basic QuickDraw 2-19

Switching Between Global and Local Coordinate Systems
Each graphics port has its own local coordinate system. Some Toolbox routines return or

expect points that are expressed in the global coordinate system, while others use local

coordinates. Sometimes you need to use the GlobalToLocal procedure to convert

global coordinates to local coordinates, and sometimes you need the LocalToGlobal

procedure for the reverse operation. For example, when the Event Manager function

WaitNextEvent reports an event, it gives the cursor location (also called the mouse
location) in global coordinates; but when you call the Control Manager function

FindControl to find out whether the user clicked a control in one of your windows,

you pass the cursor location in local coordinates, as shown in Listing 2-4. (The Event

Manager and the Control Manager are described in Inside Macintosh: Macintosh Toolbox
Essentials.)

Listing 2-4 Changing global coordinates to local coordinates

PROCEDURE DoControlClick (window: WindowPtr; event: EventRecord);

VAR

mouse: Point;

control: ControlHandle;

part: Integer;

windowType: Integer;

BEGIN

SetPort(window);

mouse := event.where; {save the cursor location}

GlobalToLocal(mouse); {convert to local coordinates}

part := FindControl(mouse, window, control);

CASE part OF

inButton: {mouse-down in OK button}

DoOKButton(mouse, control);

inCheckBox: {mouse-down in checkbox}

DoCheckBox(mouse, control);

OTHERWISE

;

END; {of CASE for control part codes}

END; {of DoControlClick}

C H A P T E R 2

Basic QuickDraw

2-20 Using Basic QuickDraw

Scrolling the Pixels in the Port Rectangle
If your application scrolls a document in a window, your application can use the

ScrollRect procedure to shift the pixels currently displayed for that document, and

then it can use the SetOrigin procedure to adjust the window’s local coordinate

system for drawing a new portion of the document inside the update region of the

window.

Scrolling a document in response to the user’s manipulation of a scroll bar requires you

to use the Control Manager, the Window Manager, and the File Manager in addition to

QuickDraw. The chapter “Control Manager” in Inside Macintosh: Macintosh Toolbox
Essentials provides a thorough explanation of how to scroll through documents. An

overview of the necessary tasks is provided here.

A window record contains a graphics port in its first field, and the Window Manager

uses the port rectangle of the graphics port as the content area of the window. This

allows you to use the QuickDraw routines ScrollRect and SetOrigin—which

normally operate on the port rectangle of a graphics port—to manipulate the content

area of the window.

The left side of Figure 2-5 illustrates a case where the user has just opened an existing

document, and the application displays the top of the document. In this example,

the document consists of 35 lines of monospaced text, and the line height throughout is

10 pixels. Therefore, the document is 350 pixels long. The application stores the

document in a document record of its own creation. This document record assigns its

own coordinate system to the document. When the user first opens the document, the

upper-left point of the graphics port’s port rectangle (the window origin) is identical to

the upper-left point of the document record’s own coordinate system: both have a

horizontal coordinate of 0 and a vertical coordinate of 0.

In this example, the content area—that is, the port rectangle—of the window displays 15

lines of text, which amount to 150 pixels.

Imagine that the user drags the scroll box part way down the vertical scroll bar. Because

the user wishes to scroll down, the application must move the document up so that more

of the bottom of the document shows. Moving a document up in response to a user

request to scroll down requires a scrolling distance with a negative value. (Likewise,

moving a document down in response to a user request to scroll up requires a scrolling

distance with a positive value.)

Using the Control Manager functions FindControl, TrackControl, and

GetControlValue, the application in this example determines that it must move

the document up by 100 pixels—that is, by a scrolling distance of –100 pixels.

C H A P T E R 2

Basic QuickDraw

Using Basic QuickDraw 2-21

The application uses the QuickDraw procedure ScrollRect to shift the pixels currently

displayed in the port rectangle of the window by a distance of –100 pixels. This moves

the portion of the document displayed in the window upward by 100 pixels (that is, by

10 lines); 5 lines that were previously displayed at the bottom of the window now

appear at the top of the window, and the application adds the rest of the window to an

update region for later updating.

Figure 2-5 Moving a document relative to its window

The ScrollRect procedure doesn’t change the coordinate system of the graphics port

for the window; instead it moves the pixels in a specified rectangle (in this case, the port

rectangle) to new coordinates that are still in the graphics port’s local coordinate system.

For purposes of updating the window, you can think of this as changing the coordinates

used by the application’s document record, as illustrated in the right side of Figure 2-5.

C H A P T E R 2

Basic QuickDraw

2-22 Using Basic QuickDraw

The ScrollRect procedure takes four parameters: a rectangle to scroll, a horizontal

distance to scroll, a vertical distance to scroll, and a region handle. Typically, when

specifying the rectangle to scroll, your application passes a value representing the port

rectangle (that is, the window’s content region) minus the scroll bar regions, as shown in

Listing 2-5.

Listing 2-5 Using ScrollRect to scroll the bits displayed in the window

PROCEDURE DoGraphicsScroll (window: WindowPtr;

 hDistance,vDistance: Integer);

VAR

myScrollRect: Rect;

updateRegion: RgnHandle;

BEGIN

{initially, use the window's portRect as the rectangle to scroll:}

myScrollRect := window^.portRect;

{subtract vertical and horizontal scroll bars from rectangle}

myScrollRect.right := myScrollRect.right - 15;

myScrollRect.bottom := myScrollRect.bottom - 15;

updateRegion := NewRgn; {always initialize the update region}

ScrollRect(myScrollRect, hDistance, vDistance, updateRegion);

InvalRgn(updateRegion);

DisposeRgn(updateRegion);

END; {of DoGraphicsScroll}

The pixels that ScrollRect shifts outside of the rectangle specified by the

myScrollRect variable are not drawn on the screen, and the bits they represent

are not saved—it is your application’s responsibility to keep track of this data.

The ScrollRect procedure shifts the image displayed inside the port rectangle by a

distance of hDistance pixels horizontally and vDistance pixels vertically; when

the DoGraphicsScroll procedure passes positive values in these parameters,

ScrollRect shifts the pixels in myScrollRect to the right and down, respectively.

This is appropriate when the user intends to scroll left or up because, when the

application finishes updating the window, the user sees more of the left and top of the

document, respectively. (Remember: to scroll up or left, move the pixels down or right,

both of which are in the positive direction.)

When DoGraphicsScroll passes negative values in these parameters, ScrollRect

shifts the pixels in myScrollRect to the left or up. This is appropriate when the user

intends to scroll right or down because, when the application finishes updating the

window, the user sees more of the right and the bottom of the document. (Remember: to

scroll down or right, move the bit image up or left, both of which are in the negative

direction.)

C H A P T E R 2

Basic QuickDraw

Using Basic QuickDraw 2-23

In Figure 2-5, the application determines a vertical scrolling distance of –100, which it

passes in the vDistance parameter as shown here:

ScrollRect(myScrollRect, 0, –100, updateRegion);

If, however, the user were to move the scroll box back to the beginning of the document

at this point, the application would determine that it has a distance of 100 pixels to scroll

up, and it would therefore pass a positive value of 100 in the vDistance parameter.

By creating an update region for the window, ScrollRect forces an update event. After

using ScrollRect to move the bit image that already exists in the window, the

application must use its own window-updating code to draw pixels in the update region

of the window. (See the chapter “QuickDraw Drawing” in this book for information

about drawing into a window.)

As previously explained, ScrollRect in effect changes the coordinates of the

application’s document record relative to the local coordinates of the port rectangle. In

terms of the graphics port’s local coordinate system, the upper-left corner of the

document now has a vertical coordinate of –100, as shown on the right side of Figure 2-5

on page 2-21. To facilitate updating the window, the application uses the SetOrigin

procedure to change the window origin of the port rectangle so that the application can

treat the upper-left corner of the document as again having a local horizontal coordinate

of 0 and a local vertical coordinate of 0.

The SetOrigin procedure takes two parameters: the first is a new horizontal coordinate

for the upper-left corner of the port rectangle, and the second is a new vertical

coordinate for the upper-left corner of the port rectangle.

Any time you are ready to update a window (for example, after scrolling it), you can use

the Control Manager function GetControlValue to determine the current setting

of the horizontal scroll bar, and you can pass this value to SetOrigin as the new

horizontal coordinate for the window origin. Then use GetControlValue to determine

the current setting of the vertical scroll bar. Pass this value to SetOrigin as the new

vertical coordinate for the window origin. Using SetOrigin in this fashion lets you

treat the upper-left corner of the document as always having a horizontal coordinate of 0

and a vertical coordinate of 0 when you update (that is, redraw) the document within a

window.

For example, after the user manipulates the vertical scroll bar to move (either up or

down) to a location 100 pixels from the top of the document, the application makes the

following call:

SetOrigin(0, 100);

Although the scrolling distance in Figure 2-5 is –100, which is relative, the current setting

for the scroll bar on the right side of the figure is now at 100.

C H A P T E R 2

Basic QuickDraw

2-24 Using Basic QuickDraw

The left side of Figure 2-6 shows how the application uses the SetOrigin procedure to

move the window origin so that the upper-left corner of the document now has a

horizontal coordinate of 0 and a vertical coordinate of 0 in the graphics port’s local

coordinate system. This restores the coordinates that the application originally assigned

to the document in its document record and makes it easier for the application to draw

in the update region of the window.

Figure 2-6 Updating the contents of a scrolled window

After restoring the document’s original coordinates, the application updates the window,

as shown on the right side of Figure 2-6. The application draws lines 16 through 24,

which it stores in its own document record as beginning at a vertical coordinate of 160

and ending at a vertical coordinate of 250.

To review what has happened up to this point: the user has dragged the scroll box down

the vertical scroll bar; the application determines that this amounts to a scroll distance

of –100 pixels; the application passes this distance to ScrollRect, which shifts the

document displayed in the window upward by 100 pixels and creates an update region

for the rest of the window; the application passes the vertical scroll bar’s current setting

(100 pixels) in a parameter to SetOrigin so that the upper-left corner of the document

has a horizontal coordinate of 0 and a vertical coordinate of 0 in the local coordinate

system of the graphics port; and, finally, the application draws the text in the update

region of the window.

C H A P T E R 2

Basic QuickDraw

Using Basic QuickDraw 2-25

However, the window origin of the port rectangle cannot be left at the point with a

horizontal value of 0 and a vertical value of 100; instead, the application must use

SetOrigin to reset it to a horizontal coordinate of 0 and a vertical coordinate of 0 after

performing its own drawing, because the Window Manager and Control Manager

always assume the window’s upper-left point has a horizontal coordinate of 0 and a

vertical coordinate of 0 when they draw in a window. Figure 2-7 shows how the

application uses SetOrigin to set the upper-left corner of the port rectangle back to a

horizontal coordinate of 0 and a vertical coordinate of 0 at the conclusion of its

window-updating routine.

Figure 2-7 Restoring the window origin of the port rectangle to a horizontal coordinate of 0
and a vertical coordinate of 0

This example illustrates how to use SetOrigin to offset the port rectangle’s coordinate

system so that you can treat objects in a document as fixed in the document’s own

coordinate space. Alternatively, it’s possible to leave the coordinate system for the

graphics port fixed and instead offset the items in a document by the amount equal to

the scroll bar settings. The OffsetRect and OffsetRgn procedures (which are

described in the chapter “QuickDraw Drawing”), the SubPt procedure (described on

page 2-53), and the AddPt procedure (described on page 2-52) are useful if you pursue

this approach. However, it is recommended that you use SetOrigin instead.

C H A P T E R 2

Basic QuickDraw

2-26 Basic QuickDraw Reference

IMPORTANT

For optimal performance and future compatibility, you should use the
SetOrigin procedure when reconciling document coordinate space
with the local coordinate system of your graphics port. ▲

The SetOrigin procedure does not move the window’s clipping region. If you use

clipping regions in your windows, use the GetClip procedure (described on page 2-47)

to store your clipping region immediately after your first call to SetOrigin. Before

calling your own window-drawing routine, use the ClipRect procedure (described on

page 2-49) to define a new clipping region—to avoid drawing over your scroll bars, for

example. (Listing 3-9 on page 3-29 in the chapter “QuickDraw Drawing” illustrates how

to do this.) After calling your own window-drawing routine, use the SetClip

procedure (described on page 2-48) to restore the original clipping region. You can then

call SetOrigin again to restore the window origin to a horizontal coordinate of 0 and a

vertical coordinate of 0 with your original clipping region intact.

Basic QuickDraw Reference

This section describes the data structures and routines that are specific to basic

QuickDraw.

“Data Structures” shows the data structures for a point, rectangle, region, bitmap, and

basic graphics port. “Routines” describes basic QuickDraw routines for initializing

QuickDraw; opening and closing basic graphics ports; saving and restoring graphics

ports; managing bitmaps, port rectangles, and clipping regions; and manipulating points

in graphics ports.

Data Structures

This section describes the data structures that represent a point, rectangle, region,

bitmap, and basic graphics port.

You use the point (a data structure of type Point) to specify a location on the

QuickDraw coordinate plane; two points are sufficient to define a rectangle. The

rectangle (a data structure of type Rect) in turn assigns coordinates to boundaries and

images; rectangles also bound graphic objects such as regions and ovals.

The region (a data structure of type Region) defines an arbitrary area, such as the visible

and clipping regions of a window’s graphics port.

C H A P T E R 2

Basic QuickDraw

Basic QuickDraw Reference 2-27

The bitmap (a data structure of type BitMap) defines a physical bit image in terms of the

QuickDraw coordinate plane.

The basic graphics port is a data structure (of type GrafPort) upon which your

application builds windows.

Point

You use a point, which is a data structure of type Point, to specify a location on the

QuickDraw coordinate plane. For example, the window origin is specified by the point

in the upper-left corner of the port rectangle of a graphics port.

TYPE VHSelect = (v,h);

Point =

RECORD

CASE Integer OF

0: (v: Integer: {vertical coordinate}

 h: Integer); {horizontal coordinate}

1: (vh: ARRAY[VHSelect] OF Integer);

END;

Field descriptions

v The vertical coordinate of the point.

h The horizontal coordinate of the point.

vh A variant definition in which v and h are array elements.

Note that while the vertical coordinate (v) appears first in this data structure, followed

by the horizontal coordinate (h), the parameters to all QuickDraw routines expect the

horizontal coordinate first and the vertical coordinate second.

QuickDraw routines for calculating and changing points are described in “Manipulating

Points in Graphics Ports” beginning on page 2-51.

Rect

You can use a rectangle, which is a data structure of type Rect, to define areas on the

screen and to specify the locations and sizes for various graphics operations. For

example, a port rectangle represents the area of a graphics port (described on page 2-30)

available for drawing.

C H A P T E R 2

Basic QuickDraw

2-28 Basic QuickDraw Reference

The Rect data type can be defined by two points or four integers. The two points define

the upper-left and lower-right corners of a rectangle; the four integers define the vertical

and horizontal coordinates of the two points.

TYPE Rect =

RECORD

CASE Integer OF {cases: 4 boundaries or 2 corners}

0: (top: Integer; {upper boundary of rectangle}

 left: Integer; {left boundary of rectangle}

 bottom: Integer; {lower boundary of rectangle}

 right: Integer); {right boundary of rectangle}

1: (topLeft: Point; {upper-left corner of rectangle}

 botRight: Point); {lower-right corner of rectangle}

END;

Field descriptions

top The vertical coordinate of the upper-left point of the rectangle.

left The horizontal coordinate of the upper-left point of the rectangle.

bottom The vertical coordinate of the lower-right point of the rectangle.

right The horizontal coordinate of the lower-right point of the rectangle.

topLeft The upper-left corner of the rectangle.

botRight The lower-right corner of the rectangle.

Note that while the vertical coordinate appears first in this data structure, followed by

the horizontal coordinate, the parameters to all QuickDraw routines expect the

horizontal coordinate first and the vertical coordinate second.

See the chapter “QuickDraw Drawing” for descriptions of the QuickDraw routines you

can use for calculating and manipulating rectangles for drawing purposes.

Region

You can use a region, which is a data structure of type Region, to define an arbitrary

area or set of areas on the QuickDraw coordinate plane. For example, when scrolling

through a window, your application must initialize an update region and pass its handle

to the ScrollRect procedure (which is described on page 2-43).

C H A P T E R 2

Basic QuickDraw

Basic QuickDraw Reference 2-29

The data structure for a region consists of two fixed-length fields followed by a

variable-length field.

TYPE RgnHandle = ^RgnPtr;

RgnPtr = ^Region;

Region =

RECORD

rgnSize: Integer; {size in bytes}

rgnBBox: Rect; {enclosing rectangle}

{more data if region is not rectangular}

END;

Field descriptions

rgnSize The region’s size in bytes.

rgnBBox The rectangle that bounds the region.

The maximum size of a region is 32 KB when using basic QuickDraw, 64 KB when using

Color QuickDraw. The simplest region is a rectangle. In this case, the rgnBBox field

defines the entire region, and there’s no optional region data. For rectangular regions (or

empty regions), the rgnSize field contains 10.

Region data is stored in a proprietary format.

See the chapter “QuickDraw Drawing” for descriptions of the QuickDraw routines you

can use for calculating and manipulating regions for drawing purposes.

BitMap

A bitmap, which is a data structure of type BitMap, defines a bit image in terms of the

QuickDraw coordinate plane. (A bit image is a collection of bits in memory that form a

grid; Figure 2-2 on page 2-9 illustrates a bit image.)

A bitmap has three parts: a pointer to a bit image, the row width of that image, and

a boundary rectangle that links the local coordinate system of a graphics port to

QuickDraw’s global coordinate system and defines the area of the bit image into

which QuickDraw can draw.

TYPE BitMap =

RECORD

baseAddr: Ptr; {pointer to bit image}

rowBytes: Integer; {row width}

bounds: Rect; {boundary rectangle}

END;

C H A P T E R 2

Basic QuickDraw

2-30 Basic QuickDraw Reference

Field descriptions

baseAddr A pointer to the beginning of the bit image.

rowBytes The offset in bytes from one row of the image to the next. The value
of the rowBytes field must be less than $4000.

bounds The bitmap’s boundary rectangle; by default, the entire main screen.

The width of the boundary rectangle determines how many bits of one row are logically

owned by the bitmap. (Figure 2-3 on page 2-10 illustrates a boundary rectangle.) This

width must not exceed the number of bits in each row of the bit image. The height of the

boundary rectangle determines how many rows of the image are logically owned by the

bitmap. The number of rows enclosed by the boundary rectangle must not exceed the

number of rows in the bit image.

The boundary rectangle defines the local coordinate system used by the port rectangle

for a graphics port (described next). The upper-left corner (which for a window is called

the window origin) of the port rectangle usually has a vertical coordinate of 0 and a

horizontal coordinate of 0, although you can use the SetOrigin procedure (described

on page 2-45) to change the coordinates of the window origin.

GrafPort

A basic graphics port, which is a data structure of type GrafPort, defines a complete

drawing environment that determines where and how black-and-white graphics

operations take place. (Using the basic eight-color system described in the chapter

“QuickDraw Drawing,” you can also use a basic graphics port to display eight

predefined colors.)

All graphics operations are performed in graphics ports. Before a basic graphics port

can be used, it must be allocated and initialized with the OpenPort procedure.

Normally, you don’t call OpenPort yourself. In most cases your application draws into

a window you’ve created with the GetNewWindow or NewWindow function (or, for color

windows, GetNewCWindow or NewCWindow), or it draws into an offscreen graphics

world created with the NewGWorld function. These Window Manager functions

(described in the chapter “Window Manager” in Inside Macintosh: Macintosh Toolbox
Essentials) and the NewGWorld function (described in the chapter “Offscreen Graphics

Worlds” in this book) call OpenPort to create a basic graphics port. See the description

of the OpenPort procedure on page 2-38 for a table of initial graphics port values.

You can have many graphics ports open at once; each one has its own local coordinate

system, pen pattern, background pattern, pen size and location, font and font style, and

bitmap in which drawing takes place. Using the SetPort procedure (described on

page 2-42), you can instantly switch from one port to another.

C H A P T E R 2

Basic QuickDraw

Basic QuickDraw Reference 2-31

Several fields in the GrafPort record define your application’s drawing area: all

drawing in a graphics port occurs in the intersection of the graphics port’s boundary

rectangle and its port rectangle, and, within that intersection, all drawing is cropped to

the graphics port’s visible region and its clipping region.

TYPE GrafPtr = ^GrafPort;

GrafPort =

RECORD

device: Integer; {device-specific information}

portBits: BitMap; {bitmap}

portRect: Rect; {port rectangle}

visRgn: RgnHandle; {visible region}

clipRgn: RgnHandle; {clipping region}

bkPat: Pattern; {background pattern}

fillPat: Pattern; {fill pattern}

pnLoc: Point; {pen location}

pnSize: Point; {pen size}

pnMode: Integer; {pattern mode}

pnPat: Pattern; {pen pattern}

pnVis: Integer; {pen visibility}

txFont: Integer; {font number for text}

txFace: Style; {text's font style}

txMode: Integer; {source mode for text}

txSize: Integer; {font size for text}

spExtra: Fixed; {extra space}

fgColor: LongInt; {foreground color}

bkColor: LongInt; {background color}

colrBit: Integer; {color bit}

patStretch: Integer; {used internally}

picSave: Handle; {picture being saved, used internally}

rgnSave: Handle; {region being saved, used internally}

polySave: Handle; {polygon being saved, used internally}

grafProcs: QDProcsPtr; {low-level drawing routines}

END;

WindowPtr = GrafPtr;

▲ W A R N I N G

You can read the fields of a GrafPort record directly, but you should
not store values directly into them. Use the QuickDraw routines
described in this book to alter the fields of a graphics port. ▲

C H A P T E R 2

Basic QuickDraw

2-32 Basic QuickDraw Reference

Field descriptions

device Device-specific information that’s used by the Font Manager to
achieve the best possible results when drawing text in the graphics
port. There may be physical differences in the same logical font for
different output devices, to ensure the highest-quality printing on
the device being used. For best results on the screen, the default
value of the device field is 0.

portBits The bitmap (described on page 2-29) that describes the boundary
rectangle for the graphics port and contains a pointer to the bit
image used by the graphics port.

portRect The port rectangle that defines a subset of the bitmap to be used for
drawing. All drawing done by the application occurs inside the port
rectangle. (In a window’s graphics port, the port rectangle is also
called the content region.) The port rectangle uses the local
coordinate system defined by the boundary rectangle in the
portBits field of the BitMap record. The upper-left corner (which
for a window is called the window origin) of the port rectangle
usually has a vertical coordinate of 0 and a horizontal coordinate of
0, although you can use the SetOrigin procedure (described on
page 2-45) to change the coordinates of the window origin. The port
rectangle usually falls within the boundary rectangle, but it’s not
required to do so.

visRgn The region of the graphics port that’s actually visible on the
screen—that is, the part of the window that’s not covered by other
windows. By default, the visible region is equivalent to the port
rectangle. The visible region has no effect on offscreen images.

clipRgn The graphics port’s clipping region, an arbitrary region that you can
use to limit drawing to any region within the port rectangle. The
default clipping region is set arbitrarily large; using the ClipRect
procedure (described on page 2-49), you have full control over its
setting. Unlike the visible region, the clipping region affects the
image even if it isn’t displayed on the screen.

bkPat The background bit pattern that’s used by procedures such as
ScrollRect (described on page 2-43) and EraseRect (described
in the chapter “QuickDraw Drawing”) for filling scrolled or erased
areas. Your application can use the BackPat procedure (described
in the chapter “QuickDraw Drawing”) to change the background
bit pattern. This pattern, like all other patterns drawn in the
graphics port, is always aligned with the port’s coordinate
system. The upper-left corner of the pattern is aligned with the
upper-left corner of the port rectangle, so that adjacent areas of the
same pattern blend into a continuous, coordinated pattern. Bit
patterns are described in the chapter “QuickDraw Drawing.”

fillPat The bit pattern that’s used when you use a procedure such as
FillRect to fill an area. Bit patterns are described in the chapter
“QuickDraw Drawing.”

C H A P T E R 2

Basic QuickDraw

Basic QuickDraw Reference 2-33

pnLoc The point where QuickDraw will begin drawing the next line,
shape, or character. It can be anywhere on the coordinate plane;
there are no restrictions on the movement or placement of the pen.
The location of the graphics pen is a point in the graphics port’s
coordinate system, not a pixel in a bit image. The upper-left corner
of the pen is at the pen location; the graphics pen hangs below and
to the right of this point. You can use the Move, MoveTo, Line, and
LineTo procedures (described in the chapter “QuickDraw
Drawing”) to move the location of the graphics pen.

pnSize The vertical and horizontal dimensions of the graphics pen. By
default, the pen is 1 pixel high by 1 pixel wide; the height and width
can range from 0 by 0 to 32,767 by 32,767. If either the pen width or
the pen height is 0, the pen does not draw. Heights or widths of less
than 0 are undefined. You can use the PenSize procedure
(described in the chapter “QuickDraw Drawing”) to change the
value in this field.

pnMode The pattern mode—that is, a Boolean operation that determines the
how QuickDraw transfers the pen pattern to the bitmap during
drawing operations. When the graphics pen draws into a bitmap,
QuickDraw first determines what bits in the bit image are affected
and then finds their corresponding bits in the pen pattern.
QuickDraw then does a bit-by-bit comparison based on the pattern
mode, which specifies one of eight Boolean transfer operations to
perform. QuickDraw stores the resulting bit in its proper place in
the bit image. Pattern modes for a basic graphics port are described
in the chapter “QuickDraw Drawing.”

pnPat A bit pattern that’s used like the ink in the pen. As described in the
chapter “QuickDraw Drawing,” basic QuickDraw uses this pattern
when you use the Line and LineTo procedures to draw lines with
the pen, framing procedures such as FrameRect to draw shape
outlines with the pen, or painting procedures such as PaintRect
to paint shapes with the pen.

pnVis The graphics pen’s visibility—that is, whether it draws on the
screen. The graphics pen is described in detail in the chapter
“QuickDraw Drawing.”

txFont A font number that identifies the font to be used in the graphics
port. The font number 0 represents the system font. (A font is
defined as a collection of images that represent the individual
characters of the font. A font can consist of up to 255 distinct
characters, yet not all characters need to be defined in a single font.
In addition, each font contains a missing symbol to be drawn in
case of a request to draw a character that’s missing from the font.)
Fonts are described in detail in Inside Macintosh: Text.

txFace The font style of the text, with values from the set defined by the
Style data type, which includes such styles as bold, italic, and
shaded. You can apply stylistic variations either alone or in
combination. Font styles are described in detail in Inside Macintosh:
Text.

C H A P T E R 2

Basic QuickDraw

2-34 Basic QuickDraw Reference

txMode One of three Boolean source modes that determines the way
characters are placed in the bit image. This mode functions much
like a pattern mode specified in the pnMode field: when drawing a
character, QuickDraw determines which bits in the bit image are
affected, does a bit-by-bit comparison based on the mode, and
stores the resulting bits into the bit image. Only three source
modes—srcOr, srcXor, and srcBic—should be used for
drawing text. See the chapter “QuickDraw Text” in Inside Macintosh:
Text for more information about QuickDraw’s text-handling
capabilities.

txSize The text size in pixels. The Font Manager uses this information to
provide the bitmaps for text drawing. (The Font Manager is
described in detail in the chapter “Font Manager” in Inside
Macintosh: Text.) The value in this field can be represented by

point size × device resolution / 72 dpi

where point is a typographical term meaning approximately
1/72 inch.

spExtra A fixed-point number equal to the average number of pixels by
which each space character should be widened to fill out the line.
The spExtra field is useful when a line of characters is to be
aligned with both the left and the right margins (sometimes called
full justification).

fgColor The color of the “ink” that QuickDraw uses to draw with. By
default, this color is black. You can use the ForeColor procedure,
as described in the chapter “QuickDraw Drawing,” to specify any
color from the eight-color system to be the foreground color in a
basic graphics port. This color is recorded when drawing into a
QuickDraw picture (described in the chapter “Pictures” in this
book)—for example, drawing a line with a red foreground color
stores a red line in the picture—but this color cannot be stored in a
bitmap. When running in System 7, your application should use the
GetForeColor procedure (described in the chapter “Color
QuickDraw”) to determine the foreground color instead of checking
the value of this field.

bkColor The color of the pixels in the bitmap into which QuickDraw draws.
By default, this color is white. You can use the BackColor
procedure, as described in the chapter “QuickDraw Drawing,” to
specify any color from the eight-color system to be the background
color in a basic graphics port. This color is recorded when drawing
into a QuickDraw picture, but this color cannot be stored in a
bitmap. When running in System 7, your application should use the
GetBackColor procedure (described in the chapter “Color
QuickDraw”) to determine the background color instead of
checking the value of this field.

C H A P T E R 2

Basic QuickDraw

Basic QuickDraw Reference 2-35

colrBit The plane of the color picture to draw into when printing. As in the
preceding two fields, this color cannot be stored in a bitmap.

patStretch A value used during output to a printer to expand patterns if
necessary. Your application should not change this value.

picSave The state of the picture definition. If no picture is open, this field
contains NIL; otherwise it contains a handle to information related
to the picture definition. Your application shouldn’t be concerned
about exactly what information the handle leads to; you may,
however, save the current value of this field, set the field to NIL to
disable the picture definition, and later restore it to the saved value
to resume defining the picture. Pictures are described in the chapter
“Pictures” in this book.

rgnSave The state of the region definition. If no region is open, this field
contains NIL; otherwise it contains a handle to information related
to the region definition. Your application shouldn’t be concerned
about exactly what information the handle leads to; you may,
however, save the current value of this field, set the field to NIL to
disable the region definition, and later restore it to the saved value
to resume defining the region.

polySave The state of the polygon definition. If no polygon is open, this field
contains NIL; otherwise it contains a handle to information related
to the polygon definition. Your application shouldn’t be concerned
about exactly what information the handle leads to; you may,
however, save the current value of this field, set the field to NIL to
disable the polygon definition, and later restore it to the saved value
to resume defining the polygon.

grafProcs An optional pointer to a special data structure that your application
can store into if you want to customize QuickDraw drawing
routines or use QuickDraw in other advanced, highly specialized
ways. See the chapter “QuickDraw Drawing” for more information.

All QuickDraw operations refer to a graphics port by a pointer defined by the data type

GrafPtr. (For historical reasons, a graphics port is one of the few objects in the

Macintosh system software that’s referred to by a pointer rather than a handle.) All

Window Manager routines that accept a window pointer also accept a pointer to a

graphics port.

Your application should never need to directly change the fields of a GrafPort record.

If you find it absolutely necessary for your application to do so, immediately use the

PortChanged procedure to notify QuickDraw that your application has changed the

GrafPort record. The PortChanged procedure is described in the chapter “Color

QuickDraw” in this book.

C H A P T E R 2

Basic QuickDraw

2-36 Basic QuickDraw Reference

Routines

This section describes the routines for initializing basic (as well as Color) QuickDraw,

opening and closing graphics ports, saving and restoring graphics ports, managing port

rectangles and clipping regions, and manipulating points in graphics ports.

Initializing QuickDraw

Use the InitGraf procedure to initialize QuickDraw at the beginning of your program,

before initializing any other Toolbox managers, such as the Menu Manager and Window

Manager.

InitGraf

Use the InitGraf procedure to initialize QuickDraw.

PROCEDURE InitGraf (globalPtr: Ptr);

globalPtr A pointer to the global variable thePort, which from Pascal can be
passed as @thePort.

DESCRIPTION

Use the InitGraf procedure before initializing any other Toolbox managers, such

as the Menu Manager and Window Manager. The InitGraf procedure initializes

the global variables listed in Table 2-1 (as well as some private global variables

for QuickDraw’s own internal use). The InitGraf procedure also initializes Color

QuickDraw on computers with Color QuickDraw capabilities.

Table 2-1 QuickDraw global variables

Variable Type Initial setting

thePort GrafPtr NIL

white Pattern All-white pattern

black Pattern All-black pattern

gray Pattern 50% gray pattern

ltGray Pattern 25% gray pattern

dkGray Pattern 75% gray pattern

arrow Cursor Standard arrow cursor

screenBits BitMap Entire main screen

randSeed LongInt 1

C H A P T E R 2

Basic QuickDraw

Basic QuickDraw Reference 2-37

ASSEMBLY-LANGUAGE INFORMATION

The QuickDraw global variables are stored in reverse order, from high to low memory as

listed in Table 2-1, and require the number of bytes specified by the global constant

grafSize. Most development systems preallocate space for these global variables

immediately below the location pointed to by register A5. Since thePort is 4 bytes, you

would pass the globalPtr parameter as follows:

PEA -4(A5)

_InitGraf

The InitGraf procedure stores this pointer to thePort in the location pointed to

by A5.

This value is used as a base address when accessing the other QuickDraw global

variables, which are accessed using negative offsets (the offsets have the same names as

the Pascal global variables). For example:

MOVE.L (A5),A0 ;point to first QuickDraw global

MOVE.L randSeed(A0),A1 ;get global variable randSeed

SPECIAL CONSIDERATIONS

The InitGraf procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

SEE ALSO

Listing 2-1 on page 2-16 illustrates the use of InitGraf.

To initialize the cursor, call the InitCursor procedure, which is described in the

chapter “Cursor Utilities.”

Opening and Closing Basic Graphics Ports

All graphics operations are performed in graphics ports. Before a basic graphics port can

be used, it must be allocated and initialized with the OpenPort procedure. Normally,

your application does not call this procedure directly. Instead, your application creates a

basic graphics port by using the GetNewWindow or NewWindow function (described in

the chapter “Window Manager” in Inside Macintosh: Macintosh Toolbox Essentials) or the

NewGWorld function (described in the chapter “Offscreen Graphics Worlds” in this

book). These functions call OpenPort, which in turn calls the InitPort procedure.

To dispose of a graphics port when you are finished using a window, you normally

use the DisposeWindow procedure (if you let the Window Manager allocate memory

for the window) or the CloseWindow procedure (if you allocated memory for the

window). You use the DisposeGWorld procedure to dispose of a graphics port when

you are finished with an offscreen graphics world. These routines automatically call the

ClosePort procedure. If you use the CloseWindow procedure, you also dispose of the

C H A P T E R 2

Basic QuickDraw

2-38 Basic QuickDraw Reference

window record containing the graphics port by calling the Memory Manager procedure

DisposePtr.

OpenPort

The OpenPort procedure allocates space for and initializes a basic graphics port. The

Window Manager calls OpenPort for each black-and-white window it creates, and the

NewGWorld procedure calls OpenPort for every offscreen graphics world containing a

basic graphics port that it creates.

PROCEDURE OpenPort (port: GrafPtr);

port A pointer to a GrafPort record.

DESCRIPTION

The OpenPort procedure allocates space for visible and clipping regions for the

graphics port specified in the port parameter, initializes the fields of the port’s

GrafPort record as indicated in Table 2-2, and makes that graphics port the current

port (by calling SetPort). The Window Manager calls OpenPort when you create a

black-and-white window; you normally won’t call it yourself. You can create the

graphics port pointer with the Memory Manager’s NewPtr procedure.

Table 2-2 Initial values of a basic graphics port

Variable Type Initial setting

device Integer 0 (the screen)

portBits BitMap screenBits (global variable for main screen)

portRect Rect screenBits.bounds

visRgn RgnHandle Handle to a rectangular region coincident with
screenBits.bounds

clipRgn RgnHandle Handle to the rectangular region
(–32768,–32768,32767,32767)

bkPat Pattern White

fillPat Pattern Black

pnLoc Point (0,0)

pnSize Point (1,1)

pnMode Integer patCopy pattern mode

pnPat Pattern Black

pnVis Integer 0 (visible)

C H A P T E R 2

Basic QuickDraw

Basic QuickDraw Reference 2-39

SPECIAL CONSIDERATIONS

The OpenPort procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

SEE ALSO

The GrafPort record is described beginning on page 2-30. Listing 2-2 on page 2-17

illustrates how to use the Window Manager function GetNewWindow to create a basic

graphics port. The OpenCPort procedure (described in the chapter “Color QuickDraw”)

creates a color graphics port.

InitPort

You should never need to use the InitPort procedure. The OpenPort procedure calls

the InitPort procedure, which reinitializes the fields of a basic graphics port and

makes it the current port.

PROCEDURE InitPort (port: GrafPtr);

port A pointer to a GrafPort record.

txFont Integer 0 (system font)

txFace Style Plain

txMode Integer srcOr source mode

txSize Integer 0 (system font size)

spExtra Fixed 0

fgColor LongInt blackColor

bkColor LongInt whiteColor

colrBit Integer 0

patStretch Integer 0

picSave Handle NIL

rgnSave Handle NIL

polySave Handle NIL

grafProcs QDProcsPtr NIL

Table 2-2 Initial values of a basic graphics port (continued)

Variable Type Initial setting

C H A P T E R 2

Basic QuickDraw

2-40 Basic QuickDraw Reference

DESCRIPTION

The InitPort procedure reinitializes the fields of a GrafPort record that was opened

with the OpenPort procedure, and makes it the current graphics port. The InitPort

procedure sets the values of the port’s fields to those listed in the OpenPort procedure

description. The InitPort procedure does not allocate space for the visible or clipping

regions.

SEE ALSO

The InitCPort procedure (described in the chapter “Color QuickDraw”) initializes a

color graphics port.

ClosePort

The ClosePort procedure closes a basic graphics port. The Window Manager calls this

procedure when you close or dispose of a window, and the DisposeGWorld procedure

calls it when you dispose of an offscreen graphics world containing a basic graphics port.

PROCEDURE ClosePort (port: GrafPtr);

port A pointer to a GrafPort record.

DESCRIPTION

The ClosePort procedure releases the memory occupied by the given graphics port’s

visRgn and clipRgn fields. When you’re completely through with a basic graphics

port, you can use this procedure and then dispose of the graphics port with the Memory

Manager procedure DisposePtr (if it was allocated with NewPtr). When you call

the DisposeWindow procedure to close or dispose of a window, it calls ClosePort and

DisposePtr for you. When you use the CloseWindow procedure, it calls ClosePort,

but you must call DisposePtr.

SPECIAL CONSIDERATIONS

If ClosePort isn’t called before a basic graphics port is disposed of, the memory used

by the visible region and the clipping region will be unrecoverable.

The ClosePort procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

C H A P T E R 2

Basic QuickDraw

Basic QuickDraw Reference 2-41

SEE ALSO

The CloseCPort procedure (described in the chapter “Color QuickDraw”) closes a

color graphics port. The DisposeGWorld procedure is described in the chapter

“Offscreen Graphics Worlds” in this book. The DisposeWindow and CloseWindow

procedures are described in the chapter “Window Manager” in Inside Macintosh:
Macintosh Toolbox Essentials. The DisposePtr procedure is described in the chapter

“Memory Manager” in Inside Macintosh: Memory.

Saving and Restoring Graphics Ports

If your application draws into more than one graphics port (basic or color), you can use

the SetPort procedure to set the graphics port into which you want to draw. At times

you may need to preserve the current graphics port. You can do this by using the

GetPort procedure to save the current graphics port (basic or color), using SetPort to

set the graphics port you want to draw in, and then using SetPort again when you

need to restore the previous graphics port.

Note

When your application runs in Color QuickDraw or uses offscreen
graphics worlds, it should use the GetGWorld procedure instead
of GetPort, and it should use the SetGWorld procedure instead of
SetPort. These procedures save and restore the current graphics port
for basic and color graphics ports as well as offscreen graphics worlds.
See the chapter “Offscreen Graphics Worlds” for more information. ◆

GetPort

To save the current graphics port (basic or color), you can use the GetPort procedure.

PROCEDURE GetPort (VAR port: GrafPtr);

port A pointer to a GrafPort record. If the current graphics port is a color
graphics port, GetPort coerces its CGrafPort record into a GrafPort
record.

DESCRIPTION

The GetPort procedure returns a pointer to the current graphics port in the port

parameter. The current graphics port is also available through the global variable

thePort, but you may prefer to use GetPort for better readability of your code. For

example, your program could include GetPort(savePort) before setting a new

graphics port, followed by SetPort(savePort) to restore the previous port.

C H A P T E R 2

Basic QuickDraw

2-42 Basic QuickDraw Reference

SEE ALSO

Listing 2-3 on page 2-18 illustrates how to use GetPort to save the graphics port for the

active window and SetPort to make an inactive window the current graphics port;

then how to use SetPort again to restore the active window as the current graphics

port. The basic graphics port is described on page 2-30. The SetPort procedure is

described next.

When your application runs in Color QuickDraw or uses offscreen graphics worlds, it

should use the GetGWorld procedure instead of GetPort. The GetGWorld procedure

saves the current graphics port for basic and color graphics ports as well as offscreen

graphics worlds. See the chapter “Offscreen Graphics Worlds” for more information.

SetPort

To change the current graphics port (basic or color), you can use the SetPort procedure.

PROCEDURE SetPort (port: GrafPtr);

port A pointer to a GrafPort record. Typically, you pass a pointer to a
GrafPort record that you previously saved with the GetPort
procedure (described in the previous section).

DESCRIPTION

The SetPort procedure sets the current graphics port (pointed to by the global variable

thePort) to be that specified by the port parameter. All QuickDraw drawing routines

affect the bitmap of, and use the local coordinate system of, the current graphics port.

Each graphics port has its own graphics pen and text characteristics, which remain

unchanged when the graphics port isn’t selected as the current graphics port.

SEE ALSO

Listing 2-3 on page 2-18 illustrates how to use GetPort to save the graphics port for the

active window and SetPort to make an inactive window the current graphics port;

then how to use SetPort again to restore the active window as the current graphics

port. The basic graphics port is described on page 2-30. The GetPort procedure is

described on page 2-41.

When your application runs in Color QuickDraw or uses offscreen graphics worlds, it

should use the SetGWorld procedure instead of SetPort. The SetGWorld procedure

restores the current graphics port for basic and color graphics ports as well as offscreen

graphics worlds. See the chapter “Offscreen Graphics Worlds” for more information.

C H A P T E R 2

Basic QuickDraw

Basic QuickDraw Reference 2-43

Managing Bitmaps, Port Rectangles, and Clipping Regions

You can use the ScrollRect, SetOrigin, GetClip, SetClip, and ClipRect

procedures to assist you when scrolling and drawing into a window. The

ScrollRect procedure scrolls the pixels of a specified portion of a basic graphics port’s

bitmap (or a color graphics port’s pixel map). The SetOrigin procedure lets you shift

the coordinate plane of the current graphics port (basic or color). The ClipRect,

GetClip, and SetClip procedures let you create, save, and set clipping regions in a

graphics port (basic or color).

You can convert bitmaps (or, for color graphics ports, pixel maps) to regions using the

BitMapToRegion function.

The PortSize and MovePortTo procedures are normally called only by Window

Manager routines that manipulate the port rectangle of a window. These routines are

described here for completeness.

You can use the SetPortBits procedure to set the bitmap for the current graphics port.

This procedure was created for initial versions of QuickDraw to allow you to perform

drawing and calculations on a buffer other than the screen. However, instead of using

SetPortBits, you should use the offscreen graphics capabilities described in the

chapter “Offscreen Graphics Worlds” in this book.

ScrollRect

To scroll the pixels of a specified portion of a basic graphics port’s bitmap (or a color

graphics port’s pixel map), use the ScrollRect procedure.

PROCEDURE ScrollRect (r: Rect; dh,dv: Integer;

 updateRgn: RgnHandle);

r The rectangle defining the area to be scrolled.

dh The horizontal distance to be scrolled.

dv The vertical distance to be scrolled.

updateRgn A handle to the region of the window that needs to be updated.

DESCRIPTION

The ScrollRect procedure shifts pixels that are inside the specified rectangle of the

current graphics port. No other pixels or the bits they represent are affected. The pixels

are shifted a distance of dh horizontally and dv vertically. The positive directions are to

the right and down. The pixels that are shifted out of the specified rectangle are not

displayed, and the bits they represent are not saved. It is up to your application to save

this data.

C H A P T E R 2

Basic QuickDraw

2-44 Basic QuickDraw Reference

The empty area created by the scrolling is filled with the graphics port’s background

pattern, and the update region is changed to this filled area, as shown in Figure 2-8.

Figure 2-8 Scrolling the image in a rectangle by using the ScrollRect procedure

The ScrollRect procedure doesn’t change the local coordinate system of the graphics

port; it simply moves the rectangle specified in the r parameter to different coordinates.

Notice that ScrollRect doesn’t move the graphics pen or the clipping region.

However, because the document has moved, they’re in different positions relative to the

document.

By creating an update region for the window, ScrollRect forces an update event. After

using ScrollRect, your application should use its own window-updating code to

draw into the update region of the window.

SPECIAL CONSIDERATIONS

The ScrollRect procedure may move or purge memory blocks in the application

heap. Your application should not call this procedure at interrupt time.

SEE ALSO

“Scrolling the Pixels in the Port Rectangle” beginning on page 2-20 provides a general

discussion of the use of ScrollRect, and Listing 2-5 on page 2-22 illustrates how to use

ScrollRect to scroll through a document in a window.

C H A P T E R 2

Basic QuickDraw

Basic QuickDraw Reference 2-45

SetOrigin

To change the coordinates of the window origin of the port rectangle of the current

graphics port (basic or color), use the SetOrigin procedure.

PROCEDURE SetOrigin (h,v: Integer);

h The horizontal coordinate of the upper-left corner of the port rectangle.

v The vertical coordinate of the upper-left corner of the port rectangle.

DESCRIPTION

The SetOrigin procedure changes the coordinates of the upper-left corner of the

current graphics port’s port rectangle to the values supplied by the h and v parameters.

All other points in the current graphics port’s local coordinate system are calculated

from this point. All subsequent drawing and calculation routines use the new coordinate

system.

The SetOrigin procedure does not affect the screen; it does, however, affect where

subsequent drawing inside the graphics port appears. The SetOrigin procedure does

not offset the coordinates of the clipping region or the graphics pen, which therefore

change position on the screen (unlike the boundary rectangle, port rectangle, and visible

region, which don’t change position onscreen).

Because SetOrigin does not move the window’s clipping region, use the

GetClip procedure to store your clipping region immediately after your first call

to SetOrigin—if you use clipping regions in your windows. Before calling your own

window-drawing routine, use the ClipRect procedure to define a new clipping

region—to avoid drawing over your scroll bars, for example. After calling your own

window-drawing routine, use the SetClip procedure to restore the original clipping

region. You can then call SetOrigin again to restore the window origin to a horizontal

coordinate of 0 and a vertical coordinate of 0 with your original clipping region intact.

All other routines in the Macintosh Toolbox and Operating System preserve the local

coordinate system of the current graphics port. The SetOrigin procedure is useful for

readjusting the coordinate system after a scrolling operation.

Note
The Window Manager and Control Manager always assume the
window’s upper-left point has a horizontal coordinate of 0 and a vertical
coordinate of 0 when they draw in a window. Therefore, if you use
SetOrigin to change the window origin, be sure to use SetOrigin
again to return the window origin to a horizontal coordinate of 0 and a
vertical coordinate of 0 before using any Window Manager or Control
Manager routines. ◆

C H A P T E R 2

Basic QuickDraw

2-46 Basic QuickDraw Reference

SEE ALSO

“Scrolling the Pixels in the Port Rectangle” beginning on page 2-20 provides a general

discussion of the use of SetOrigin, and Listing 2-5 on page 2-22 illustrates how to use

SetOrigin when scrolling through a document in a window.

PortSize

The PortSize procedure is normally called only by the Window Manager; it

changes the size of the port rectangle of the current graphics port (basic or color).

PROCEDURE PortSize (width,height: Integer);

width The width of the reset port rectangle.

height The height of the reset port rectangle.

DESCRIPTION

The PortSize procedure changes the size of the current graphics port’s port

rectangle. The upper-left corner of the port rectangle remains at its same location; the

width and height of the port rectangle are set to the given width and height. In other

words, PortSize moves the lower-right corner of the port rectangle to a position

relative to the upper-left corner.

The PortSize procedure doesn’t change the clipping or visible region of the graphics

port, nor does it affect the local coordinate system of the graphics port; it changes only

the width and height of the port rectangle. Remember that all drawing occurs only in the

intersection of the boundary rectangle and the port rectangle, after being cropped to the

visible region and the clipping region.

MovePortTo

The MovePortTo procedure is normally called only by the Window Manager; it

changes the position of the port rectangle of the current graphics port (basic or color).

PROCEDURE MovePortTo (leftGlobal,topGlobal: Integer);

leftGlobal
The horizontal distance to move the port rectangle.

topGlobal The vertical distance to move the port rectangle.

C H A P T E R 2

Basic QuickDraw

Basic QuickDraw Reference 2-47

DESCRIPTION

The MovePortTo procedure changes the position of the current graphics port’s port

rectangle: the leftGlobal and topGlobal parameters set the distance between the

upper-left corner of the boundary rectangle and the upper-left corner of the new port

rectangle.

This does not affect the screen; it merely changes the location at which subsequent

drawing inside the graphics port appears. Like the PortSize procedure, MovePortTo

doesn’t change the clipping or visible region, nor does it affect the local coordinate

system of the graphics port.

GetClip

To save the clipping region of the current graphics port (basic or color), use the GetClip

procedure.

PROCEDURE GetClip (rgn: RgnHandle);

rgn A handle to the region to be clipped to match the clipping region of the
current graphics port.

DESCRIPTION

The GetClip procedure changes the region specified in the rgn parameter to one that’s

equivalent to the clipping region of the current graphics port. The GetClip procedure

doesn’t change the region handle.

You can use the GetClip and SetClip procedures to preserve the current clipping

region: use GetClip to save the current port’s clipping region, and use SetClip to

restore it. If, for example, you want to draw a half-circle on the screen, you can set the

clipping region to half of the square that would enclose the whole circle, and then draw

the whole circle. Only the half within the clipping region is actually drawn in the

graphics port.

SPECIAL CONSIDERATIONS

The GetClip procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

C H A P T E R 2

Basic QuickDraw

2-48 Basic QuickDraw Reference

SetClip

To change the clipping region of the current graphics port (basic or color) to a region you

specify, use the SetClip procedure.

PROCEDURE SetClip (rgn: RgnHandle);

rgn A handle to the region to be set as the current port’s clipping region.

DESCRIPTION

The SetClip procedure changes the clipping region of the current graphics port to

the region specified in the rgn parameter. The SetClip procedure doesn’t change the

region handle, but instead affects the clipping region itself. Since SetClip copies the

specified region into the current graphics port’s clipping region, any subsequent changes

you make to the region specified in the rgn parameter do not affect the clipping region

of the graphics port.

The initial clipping region of a graphics port is an arbitrarily large rectangle. You can

set the clipping region to any arbitrary region, to aid you in drawing inside the graphics

port—for example, to avoid drawing over scroll bars when drawing into a window, you

could define a clipping region that excludes the scroll bars.

You can use the GetClip and SetClip procedures to preserve the current clipping

region: use GetClip to save the current port’s clipping region, and use SetClip to

restore it.

All other system software routines preserve the current clipping region.

SPECIAL CONSIDERATIONS

The SetClip procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

SEE ALSO

Figure 2-4 on page 2-12 illustrates a clipping region that has been set to exclude the scroll

bars of a window.

C H A P T E R 2

Basic QuickDraw

Basic QuickDraw Reference 2-49

ClipRect

To change the clipping region of the current graphics port (basic or color), use the

ClipRect procedure.

PROCEDURE ClipRect (r: rect);

r A rectangle to define the boundary of the new clipping region for the
current graphics port.

DESCRIPTION

The ClipRect procedure changes the clipping region of the current graphics port to a

region that’s equivalent to the rectangle specified in the r parameter. ClipRect doesn’t

change the region handle, but it affects the clipping region itself. Since ClipRect makes

a copy of the given rectangle, any subsequent changes you make to that rectangle do not

affect the clipping region of the port.

SPECIAL CONSIDERATIONS

The ClipRect procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

SEE ALSO

Figure 2-4 on page 2-12 illustrates a clipping region that has been set to exclude the scroll

bars of a window.

BitMapToRegion

You can use the BitMapToRegion function to convert a bitmap or pixel map to a region.

FUNCTION BitMapToRegion (region: RgnHandle; bMap: BitMap): OSErr;

region A handle to a region to hold the converted BitMap or PixMap record.

bMap A BitMap or PixMap record.

C H A P T E R 2

Basic QuickDraw

2-50 Basic QuickDraw Reference

DESCRIPTION

The BitMapToRegion function converts a given BitMap or PixMap record to a region.

You would generally use this region later for drawing operations. The region

parameter must be a valid region handle created with the NewRgn function (described in

the chapter “QuickDraw Drawing”). The old region contents are lost.

The bMap parameter may be either a BitMap or PixMap record. If you pass a PixMap

record, its pixel depth must be 1.

RESULT CODES

SetPortBits

Although you should never need to do so, you can set the bitmap for the current basic

graphics port by using the SetPortBits procedure.

PROCEDURE SetPortBits (bm: BitMap);

bm A BitMap record.

DESCRIPTION

The SetPortBits procedure sets the portBits field of the current graphics port to

any previously defined bitmap. Be sure to prepare all fields of the BitMap record before

you call SetPortBits.

SPECIAL CONSIDERATIONS

The SetPortBits procedure, created in early versions of QuickDraw, allows you to

perform all normal drawing and calculations on a buffer other than the screen—for

example, copying a small offscreen image onto the screen with the CopyBits procedure.

However, instead of using SetPortBits, you should use the more powerful offscreen

graphics capabilities described in the chapter “Offscreen Graphics Worlds.”

pixmapTooDeepErr –148 Pixel map is deeper than 1 bit per pixel
rgnTooBigErr –500 Bitmap would convert to a region greater than 64 KB

C H A P T E R 2

Basic QuickDraw

Basic QuickDraw Reference 2-51

Manipulating Points in Graphics Ports

Each graphics port (basic or color) has its own local coordinate system. Some Toolbox

routines return or expect points that are expressed in the global coordinate system, while

others use local coordinates. For example, when the Event Manager function

WaitNextEvent reports an event, it gives the cursor location (also called the mouse
location) in global coordinates; but when you call the Control Manager function

FindControl to find out whether the user clicked a control in one of your windows,

you pass the cursor location in local coordinates. You can use the GlobalToLocal

procedure to convert global coordinates to local coordinates, and you can use the

LocalToGlobal procedure for the reverse.

You can also use the SetPt procedure to create a point, the EqualPt function to

compare two points, and the AddPt procedure, SubPt procedure, and DeltaPoint

function to shift points. To determine whether the pixel associated with a point is black

or white, use the GetPixel function.

GlobalToLocal

To convert the coordinates of a point from global coordinates to the local coordinates of

the current graphics port (basic or color), use the GlobalToLocal procedure.

PROCEDURE GlobalToLocal (VAR pt: Point);

pt The point whose global coordinates are to be converted to local
coordinates.

DESCRIPTION

The GlobalToLocal procedure takes a point expressed in global coordinates

(where the upper-left corner of the main screen has coordinates [0,0]) and converts it

into the local coordinates of the current graphics port.

SEE ALSO

Listing 2-4 on page 2-19 illustrates how to use GlobalToLocal to convert a point in an

event reported by the Event Manager function WaitNextEvent to local coordinates as

required by the Control Manager function FindControl.

C H A P T E R 2

Basic QuickDraw

2-52 Basic QuickDraw Reference

LocalToGlobal

To convert a point’s coordinates from the local coordinates of the current graphics port

(basic or color) to global coordinates, use the LocalToGlobal procedure.

PROCEDURE LocalToGlobal (VAR pt: Point);

pt The point whose local coordinates are to be converted to global
coordinates.

DESCRIPTION

The LocalToGlobal procedure converts the given point from the current graphics

port’s local coordinate system into the global coordinate system (where the upper-left

corner of the main screen has coordinates [0,0]). This global point can then be compared

to other global points, or it can be changed into the local coordinates of another graphics

port.

Because a rectangle is defined by two points, you can convert a rectangle into global

coordinates with two calls to LocalToGlobal. In conjunction with LocalToGlobal,

you can use the OffsetRect, OffsetRgn, or OffsetPoly procedures (which are

described in the chapter “QuickDraw Drawing”) to convert a rectangle, region, or

polygon into global coordinates.

AddPt

To add the coordinates of two points, use the AddPt procedure.

PROCEDURE AddPt (srcPt: Point; VAR dstPt: Point);

srcPt A point, the coordinates of which are to be added to the point in the
dstPt parameter.

dstPt On input: a point, the coordinates of which are to be added to the point in
the srcPt parameter. Upon completion: the result of adding the
coordinates of the points in the srcPt and dstPt parameters.

DESCRIPTION

The AddPt procedure adds the coordinates of the point specified in the srcPt

parameter to the coordinates of the point specified in the dstPt parameter, and returns

the result in the dstPt parameter.

C H A P T E R 2

Basic QuickDraw

Basic QuickDraw Reference 2-53

SubPt

To subtract the coordinates of one point from another, you can use the SubPt procedure.

PROCEDURE SubPt (srcPt: Point; VAR dstPt: Point);

srcPt A point, the coordinates of which are to be subtracted from those
specified in the dstPt parameter.

dstPt On input: a point, from whose coordinates are to be subtracted those
specified in the srcPt parameter. Upon completion: the result of
subtracting the coordinates of the points in the srcPt parameter from the
coordinates of the points in the dstPt parameter.

DESCRIPTION

The SubPt procedure subtracts the coordinates of the point specified in the srcPt

parameter from the coordinates of the point specified in the dstPt parameter, and

returns the result in the dstPt parameter.

To get the results of coordinate subtraction returned as a function result, you can instead

use the DeltaPoint function. Note, however, that the parameters in these two routines

are reversed.

DeltaPoint

To subtract the coordinates of one point from another, you can use the DeltaPoint

function.

FUNCTION DeltaPoint (ptA: Point; ptB: Point): LongInt;

ptA A point, from whose coordinates are to be subtracted those specified in
the ptB parameter.

ptB A point, the coordinates of which are to be subtracted from those
specified in the ptA parameter.

DESCRIPTION

The DeltaPoint function subtracts the coordinates of the point specified in the ptB

parameter from the coordinates of the point specified in the ptA parameter, and returns

the result as its function result.

To get the results of coordinate subtraction, you can instead use the SubPt procedure.

Note, however, that the parameters in these two routines are reversed.

C H A P T E R 2

Basic QuickDraw

2-54 Basic QuickDraw Reference

SetPt

To assign two coordinates to a point, use the SetPt procedure.

PROCEDURE SetPt (VAR pt: Point; h,v: Integer);

pt The point to be given new coordinates.

h The horizontal value of the new coordinates.

v The vertical value of the new coordinates.

DESCRIPTION

The SetPt procedure assigns the horizontal coordinate specified in the h parameter

and the vertical coordinate specified in the v parameter to the point returned in the pt

parameter.

EqualPt

To determine whether the coordinates of two given points are equal, use the EqualPt

function.

FUNCTION EqualPt (pt1,pt2: Point): Boolean;

pt1,pt2 The two points to be compared.

DESCRIPTION

The EqualPt function compares the points specified in the pt1 and pt2 parameters

and returns TRUE if their coordinates are equal or FALSE if they are not.

GetPixel

To determine whether the pixel associated with a point is black or white, use the

GetPixel function.

FUNCTION GetPixel (h,v: Integer): Boolean;

h The horizontal coordinate of the point for the pixel to be tested.

v The vertical coordinate of the point for the pixel to be tested.

C H A P T E R 2

Basic QuickDraw

Basic QuickDraw Reference 2-55

DESCRIPTION

The GetPixel function examines the pixel at the point specified by the h and v

parameters and returns TRUE if the pixel is black or FALSE if it is white.

The selected pixel is immediately below and to the right of the point whose coordinates

you supply in the h and v parameters, in the local coordinates of the current graphics

port. There’s no guarantee that the specified pixel actually belongs to the current

graphics port, however; it may have been drawn in a graphics port overlapping the

current one. To see if the point indeed belongs to the current graphics port, you could

use the PtInRgn function (described in the chapter “QuickDraw Drawing” in this book)

to test whether the point is in the current graphics port’s visible region, as shown here.

PtInRgn(pt, thePort^.visRgn);

C H A P T E R 2

Basic QuickDraw

2-56 Summary of Basic QuickDraw

Summary of Basic QuickDraw

Pascal Summary

Data Types

TYPE Point =

RECORD CASE Integer OF

0: (v: Integer; {vertical coordinate}

 h: Integer); {horizontal coordinate}

1: (vh: ARRAY[VHSelect] OF Integer);

END;

Rect =

RECORD CASE Integer OF {cases: 4 boundaries or 2 corners}

0: (top: Integer; {upper boundary of rectangle}

 left: Integer; {left boundary of rectangle}

 bottom: Integer; {lower boundary of rectangle}

 right: Integer); {right boundary of rectangle}

1: (topLeft: Point; {upper-left corner of rectangle}

 botRight: Point); {lower-right corner of rectangle}

END;

RgnHandle = ^RgnPtr;

RgnPtr = ^Region;

Region =

RECORD

rgnSize: Integer; {size in bytes}

rgnBBox: Rect; {enclosing rectangle}

{more data if not rectangular}

END;

BitMap =

RECORD

baseAddr: Ptr; {pointer to bit image}

rowBytes: Integer; {row width}

bounds: Rect; {boundary rectangle}

END;

C H A P T E R 2

Basic QuickDraw

Summary of Basic QuickDraw 2-57

GrafPtr = ^GrafPort;

WindowPtr = GrafPtr;

GrafPort = {basic graphics port}

RECORD

device: Integer; {device-specific information}

portBits: BitMap; {bitmap}

portRect: Rect; {port rectangle}

visRgn: RgnHandle; {visible region}

clipRgn: RgnHandle; {clipping region}

bkPat: Pattern; {background pattern}

fillPat: Pattern; {fill pattern}

pnLoc: Point; {pen location}

pnSize: Point; {pen size}

pnMode: Integer; {pattern mode}

pnPat: Pattern; {pen pattern}

pnVis: Integer; {pen visibility}

txFont: Integer; {font number for text}

txFace: Style; {text's font style}

txMode: Integer; {source mode for text}

txSize: Integer; {font size for text}

spExtra: Fixed; {extra space}

fgColor: LongInt; {foreground color}

bkColor: LongInt; {background color}

colrBit: Integer; {color bit}

patStretch: Integer; {used internally}

picSave: Handle; {picture being saved, used internally}

rgnSave: Handle; {region being saved, used internally}

polySave: Handle; {polygon being saved, used internally}

grafProcs: QDProcsPtr; {low-level drawing routines}

END;

Routines

Initializing QuickDraw

PROCEDURE InitGraf (globalPtr: Ptr);

Opening and Closing Basic Graphics Ports

PROCEDURE OpenPort (port: GrafPtr);

PROCEDURE InitPort (port: GrafPtr);

PROCEDURE ClosePort (port: GrafPtr);

C H A P T E R 2

Basic QuickDraw

2-58 Summary of Basic QuickDraw

Saving and Restoring Graphics Ports

PROCEDURE GetPort (VAR port: GrafPtr);

PROCEDURE SetPort (port: GrafPtr);

Managing Bitmaps, Port Rectangles, and Clipping Regions

PROCEDURE ScrollRect (r: Rect; dh,dv: Integer; updateRgn: RgnHandle);

PROCEDURE SetOrigin (h,v: Integer);

PROCEDURE PortSize (width,height: Integer);

PROCEDURE MovePortTo (leftGlobal,topGlobal: Integer);

PROCEDURE GetClip (rgn: RgnHandle);

PROCEDURE SetClip (rgn: RgnHandle);

PROCEDURE ClipRect (r: Rect);

FUNCTION BitMapToRegion (region: RgnHandle; bMap: BitMap): OSErr;

PROCEDURE SetPortBits (bm: BitMap);

Manipulating Points in Graphics Ports

PROCEDURE GlobalToLocal (VAR pt: Point);

PROCEDURE LocalToGlobal (VAR pt: Point);

PROCEDURE AddPt (srcPt: Point; VAR dstPt: Point);

PROCEDURE SubPt (srcPt: Point; VAR dstPt: Point);

FUNCTION DeltaPoint (ptA: Point; ptB: Point): LongInt;

PROCEDURE SetPt (VAR pt: Point; h,v: Integer);

FUNCTION EqualPt (pt1,pt2: Point): Boolean;

FUNCTION GetPixel (h,v: Integer): Boolean;

C Summary

Data Types

struct Point {

short v; /* vertical coordinate */

short h; /* horizontal coordinate */

};

C H A P T E R 2

Basic QuickDraw

Summary of Basic QuickDraw 2-59

struct Rect {

short top; /* upper boundary of rectangle */

short left; /* left boundary of rectangle */

short bottom; /* lower boundary of rectangle */

short right; /* right boundary of rectangle */

};

struct Region {

short rgnSize; /* size in bytes */

Rect rgnBBox; /* enclosing rectangle */

/* more data if not rectangular */

};

typedef struct Region Region;

typedef Region *RgnPtr, **RgnHandle;

struct BitMap {

Ptr baseAddr; /* pointer to bit image */

short rowBytes; /* row width */

Rect bounds; /* boundary rectangle */

};

struct GrafPort { /* basic graphics port */

short device; /* device-specific information */

BitMap portBits; /* bitmap */

Rect portRect; /* port rectangle */

RgnHandle visRgn; /* visible region */

RgnHandle clipRgn; /* clipping region */

Pattern bkPat; /* background pattern */

Pattern fillPat; /* fill pattern */

Point pnLoc; /* pen location */

Point pnSize; /* pen size */

short pnMode; /* pattern mode */

Pattern pnPat; /* pen pattern */

short pnVis; /* pen visibility */

short txFont; /* font number for text */

Style txFace; /* text's font style */

char filler;

short txMode; /* source mode for text */

short txSize; /* font size for text */

Fixed spExtra; /* extra space */

long fgColor; /* foreground color */

long bkColor; /* background color */

short colrBit; /* color bit */

C H A P T E R 2

Basic QuickDraw

2-60 Summary of Basic QuickDraw

short patStretch; /* used internally */

Handle picSave; /* picture being saved, used internally */

Handle rgnSave; /* region being saved, used internally */

Handle polySave; /* polygon being saved, used internally */

QDProcsPtr grafProcs; /* low-level drawing routines */

};

typedef struct GrafPort GrafPort;

typedef GrafPort *GrafPtr;

typedef GrafPtr WindowPtr;

Functions

Initializing QuickDraw

pascal void InitGraf (void *globalPtr);

Opening and Closing Basic Graphics Ports

pascal void OpenPort (GrafPtr port);

pascal void InitPort (GrafPtr port);

pascal void ClosePort (GrafPtr port);

Saving and Restoring Graphics Ports

pascal void GetPort (GrafPtr *port);

pascal void SetPort (GrafPtr port);

Managing Bitmaps, Port Rectangles, and Clipping Regions

pascal void ScrollRect (const Rect *r, short dh, short dv,
RgnHandle updateRgn);

pascal void SetOrigin (short h, short v);

pascal void PortSize (short width, short height);

pascal void MovePortTo (short leftGlobal, short topGlobal);

pascal void GetClip (RgnHandle rgn);

pascal void SetClip (RgnHandle rgn);

pascal void ClipRect (const Rect *r);

pascal OSErr BitMapToRegion (RgnHandle region, const BitMap *bMap);

pascal void SetPortBits (const BitMap *bm);

C H A P T E R 2

Basic QuickDraw

Summary of Basic QuickDraw 2-61

Manipulating Points in Graphics Ports

pascal void GlobalToLocal (Point *pt);

pascal void LocalToGlobal (Point *pt);

pascal void AddPt (Point src, Point *dst);

pascal void SubPt (Point src, Point *dst);

pascal long DeltaPoint (Point ptA, Point ptB);

pascal void SetPt (Point *pt, short h, short v);

pascal Boolean EqualPt (Point pt1, Point pt2);

pascal Boolean GetPixel (short h, short v);

Assembly-Language Summary

Data Structures

Point Data Structure

Rectangle Data Structure

Region Data Structure

Bitmap Data Structure

0 v word vertical coordinate
2 h word horizontal coordinate

0 topLeft long upper-left corner of rectangle
4 botRight long lower-right corner of rectangle
0 top word upper boundary of rectangle
2 left word left boundary of rectangle
4 bottom word lower boundary of rectangle
6 right word right boundary of rectangle

0 rgnSize word size in bytes
2 rgnBBox 8 bytes enclosing rectangle

10 rgnData array region data

0 baseAddr long pointer to bit image
4 rowBytes word row width
6 bounds 8 bytes boundary rectangle

C H A P T E R 2

Basic QuickDraw

2-62 Summary of Basic QuickDraw

GrafPort Data Structure

Global Variables

Result Codes

0 device word device-specific information
2 portBits 14 bytes bitmap

16 portBounds 8 bytes boundary rectangle
24 portRect 8 bytes port rectangle
32 visRgn long visible region
36 clipRgn long clipping region
40 bkPat 8 bytes background pattern
48 fillPat 8 bytes fill pattern
56 pnLoc long pen location
60 pnSize long pen size
64 pnMode word pattern mode
66 pnPat 8 bytes pen pattern
74 pnVis word pen visibility
76 txFont word font number for text
78 txFace word text’s font style
80 txMode word source mode for text
82 txSize word font size for text
84 spExtra long extra space
88 fgColor long foreground color
92 bkColor long background color
96 colrBit word color bit
98 patStretch word used internally

100 picSave long picture being saved, used internally
104 rgnSave long region being saved, used internally
108 polySave long polygon being saved, used internally
112 grafProcs long low-level drawing routines

arrow The standard arrow cursor.

black An all-black pattern.

dkGray A 75% gray pattern.

gray A 50% gray pattern.

ltGray A 25% gray pattern.

randSeed Where the random sequence begins.

screenBits The main screen.

thePort The current graphics port.

white An all-white pattern.

pixmapTooDeepErr –148 Pixel map is deeper than 1 bit per pixel
rgnTooBigErr –500 Bitmap would convert to a region greater than 64 KB

Contents 3-1

C H A P T E R 3

Contents

QuickDraw Drawing

About QuickDraw Drawing 3-3

The Graphics Pen 3-4

Bit Patterns 3-5

Boolean Transfer Modes With 1-Bit Pixels 3-8

Lines and Shapes 3-11

Defining Lines and Shapes 3-11

Framing Shapes 3-12

Painting and Filling Shapes 3-12

Erasing Shapes 3-12

Inverting Shapes 3-13

Other Graphic Entities 3-13

The Eight Basic QuickDraw Colors 3-14

Drawing With QuickDraw 3-16

Drawing Lines 3-17

Drawing Rectangles 3-22

Drawing Ovals, Arcs, and Wedges 3-25

Drawing Regions and Polygons 3-27

Performing Calculations and Other Manipulations of Shapes 3-31

Copying Bits Between Graphics Ports 3-32

Customizing QuickDraw’s Low-Level Routines 3-35

QuickDraw Drawing Reference 3-36

Data Structures 3-36

Routines 3-41

Managing the Graphics Pen 3-41

Changing the Background Bit Pattern 3-48

Drawing Lines 3-49

Creating and Managing Rectangles 3-52

Drawing Rectangles 3-58

Drawing Rounded Rectangles 3-63

Drawing Ovals 3-68

C H A P T E R 3

3-2 Contents

Drawing Arcs and Wedges 3-71

Creating and Managing Polygons 3-78

Drawing Polygons 3-81

Creating and Managing Regions 3-85

Drawing Regions 3-100

Scaling and Mapping Points, Rectangles, Polygons, and Regions 3-104

Calculating Black-and-White Fills 3-108

Copying Images 3-112

Drawing With the Eight-Color System 3-122

Determining Whether QuickDraw Has Finished Drawing 3-125

Getting Pattern Resources 3-126

Customizing QuickDraw Operations 3-129

Resources 3-140

The Pattern Resource 3-140

The Pattern List Resource 3-141

Summary of QuickDraw Drawing 3-142

Pascal Summary 3-142

Constants 3-142

Data Types 3-144

Routines 3-145

C Summary 3-149

Constants 3-149

Data Types 3-151

Functions 3-152

Assembly-Language Summary 3-157

Data Structures 3-157

Global Variables 3-158

C H A P T E R 3

About QuickDraw Drawing 3-3

QuickDraw Drawing

This chapter describes routines common to both basic QuickDraw and Color QuickDraw

that you can use to draw lines, rectangles, rounded rectangles, ovals, arcs, wedges,

polygons, and regions, and to copy images from one graphics port to another. This

chapter also describes the routines that you can use to perform calculations and other

manipulations of these shapes—including comparing them and finding their unions and

intersections, and moving, shrinking, and expanding them.

Read this chapter to learn how to draw on all models of Macintosh computers. All of the

routines described in this chapter depend on your application to create a graphics port

drawing environment as described in the previous chapter, “Basic QuickDraw.” As

noted in this chapter, many of these routines have additional capabilities when

performed in the more sophisticated color drawing environments described in the next

chapter in this book, “Color QuickDraw.” However, if your application does not

use color, or uses only a few colors, you may find it unnecessary to create the drawing

environment described in the chapter “Color QuickDraw.”

This chapter also describes how to copy a bit image from one onscreen graphics port to

another onscreen graphics port. To prevent the choppiness that can occur when you

build complex images onscreen, your application should use the drawing routines

described in this chapter to create complex images in offscreen graphics worlds. Your

application can then copy these images to onscreen graphics ports, as described in the

chapter “Offscreen Graphics Worlds” in this book.

QuickDraw also supports the creation and manipulation of pictures and text. The

chapter “Pictures” in this book describes the routines for drawing pictures. For

information about drawing text, see the chapter “QuickDraw Text” in Inside Macintosh:
Text.

This chapter describes how to

■ use the graphics pen

■ create, draw, and manipulate the shapes supported by QuickDraw

■ draw a copy of a bit image from one graphics port into another graphics port

■ use the eight-color system supported by basic QuickDraw

■ customize QuickDraw’s drawing operations

About QuickDraw Drawing

QuickDraw provides your application with routines for rapidly creating, manipulating,

and drawing graphic objects such as lines, arcs, rectangles, ovals, regions, and bitmaps.

These routines extract information from and affect the fields of the current graphics port,

without specifically naming it as a parameter. For example, the Move procedure moves

the graphics pen of the current graphics port, changing the value of its pnLoc field,

and the PaintOval procedure paints an oval using the pattern and pattern mode of the

graphics pen for the current graphics port.

C H A P T E R 3

QuickDraw Drawing

3-4 About QuickDraw Drawing

The previous chapter, “Basic QuickDraw,” describes the basic graphics port. The next

chapter, “Color QuickDraw,” describes the color graphics port. The routines described in

this chapter operate in both types of graphics ports.

Whenever you use QuickDraw, all drawing is performed with the graphics pen, which is

described next.

The Graphics Pen
Every graphics port contains one, and only one, graphics pen with which to perform

drawing operations. You use this metaphorical pen to draw lines, shapes, and text. Using

QuickDraw routines, you can set these five characteristics of the graphics pen for the

current graphics port:

■ visibility, as stored in the pnVis fields of the GrafPort and CGrafPort records

■ size, as stored in the pnSize fields of the GrafPort and CGrafPort records

■ location, as stored in the pnLoc fields of the GrafPort and CGrafPort records

■ pattern, as stored in the pnPat field of the GrafPort and CGrafPort records

■ pattern mode, as stored in the pnMode fields of GrafPort and CGrafPort records

The visibility of the graphics pen simply determines whether the pen draws on the

screen. You can use the HidePen and ShowPen procedures to change the pen’s visibility.

The graphics pen is rectangular in shape, and its size (that is, its height and width) are

measured in pixels. The default size is a 1-by-1 pixel square, but you can use the

PenSize procedure to change its shape from a 0-by-0 pixel square to a 32,767-by-32,767

pixel square. If you set either the width or the height to 0, however, the graphics pen

does not draw. (Heights or widths of less than 0 are undefined.) Figure 3-1 illustrates a

graphics pen of 8 pixels by 8 pixels.

Figure 3-1 A graphics pen

C H A P T E R 3

QuickDraw Drawing

About QuickDraw Drawing 3-5

The graphics pen can be located anywhere on the local coordinate plane of the graphics

port, and there are no restrictions on the movement or placement of the pen. You can use

the MoveTo and Move procedures to change the pen’s location, which is defined by the

point that positions the upper-left corner of the pen. You can use the GetPen procedure

to determine the pen’s current location. As shown in Figure 3-1, the pen draws below

and to the right of the point specifying its location.

The pattern and pattern mode determine how the bits under the pen are affected when

your application draws lines or shapes. A bit pattern is a repeating 8-by-8 bit image, such

as that shown in Figure 3-1. You can use the PenPat procedure to change the bit pattern

for the graphics pen. Bit patterns are described in more detail in the next section. The

pattern mode for the graphics pen determines how the bit pattern interacts with the

existing bit image according to one of eight Boolean operations, as described in detail in

“Boolean Transfer Modes With 1-Bit Pixels” beginning on page 3-8. You can use the

PenMode procedure to change the pattern mode of the graphics pen.

To determine the size, location, pattern, and pattern mode of the graphics pen, you can

use the GetPenState procedure, which returns a PenState record that contains fields

for each of these characteristics. If you need to temporarily change these characteristics,

you can use the SetPenState procedure to restore the graphics pen to the state saved

in the record returned by GetPenState.

Upon the creation of a graphics port, QuickDraw assigns these initial values to the

graphics pen: a size of (1,1), a pattern of all-black pixels, and a pattern mode of patCopy.

After changing any of these values, you can use the PenNormal procedure to return

these initial values to the graphics pen.

“Lines and Shapes” beginning on page 3-11 describes how to use the graphics pen to

draw lines and shapes.

Bit Patterns
A bit pattern is a 64-pixel image, organized as an 8-by-8 pixel square, that defines a

repeating design (such as stripes) or a tone (such as gray). The patterns defined in bit

patterns are usually black and white, although any two colors can be used on a color

screen. Pixel patterns (which are supported only in color graphics ports) define color

patterns at any pixel depth. (Pixel patterns are described in the chapter “Color

QuickDraw” in this book.) Figure 3-2 shows a typical bit pattern—the one used for the

standard gray desktop pattern on most Macintosh computers with black-and-white

screens.

Figure 3-2 A bit pattern

C H A P T E R 3

QuickDraw Drawing

3-6 About QuickDraw Drawing

You can use bit patterns to draw lines and shapes on the screen. In a basic graphics port,

the graphics pen has a pattern specified in the pnPat field of its GrafPort record. This

bit pattern acts like the ink in the pen; the bits in the pattern interact with the pixels in

the bitmap according to the pattern mode of the graphics pen. When you use the

FrameRect, FrameRoundRect, FrameArc, FramePoly, FrameRgn, PaintRect,

PaintRoundRect, PaintArc, PaintPoly, and PaintRgn procedures to draw shapes,

these procedures draw the shape with the bit pattern specified in the pnPat field.

You can use the FillRect, FillRoundRect, FillArc, FillPoly, and FillRgn

procedures to draw shapes with a bit pattern other than that specified in the pnPat field

of the graphics port. When your application uses one of these procedures, the procedure

stores the pattern your application specifies in the fillPat field of the GrafPort

record (or its handle in the fillPixPat field of a CGrafPort record) and then calls a

low-level drawing routine that gets the pattern from that field.

Each graphics port also has a background pattern that’s used when an area is erased

(such as by using the EraseRect, EraseRoundRect, EraseArc, ErasePoly, and

EraseRgn procedures) and when pixels are scrolled out of an area (such as by using the

ScrollRect procedure as described in the chapter “Basic QuickDraw”). Every basic

graphics port stores a background bit pattern in the bkPat field of its GrafPort record.

(Color graphics ports store a handle to the background pattern in their bkPixPat field.)

So that adjacent areas of the same pattern form a continuous, coordinated pattern, all

patterns are always drawn relative to the origin of the graphics port.

A basic graphics port supports only bit patterns. Bit patterns are defined in data

structures of type Pattern, in which each pixel is represented by a single bit. Five such

bit patterns are predefined as global variables for your use. These patterns are illustrated

in Figure 3-3.

C H A P T E R 3

QuickDraw Drawing

About QuickDraw Drawing 3-7

Figure 3-3 Windows filled with the predefined bit patterns

The upper-left window in this figure is filled with the predefined pattern white, in

which every pixel is white. By default, this is the background pattern for a graphics port;

that is, this is the pattern displayed when an area is erased or when bits are scrolled out

of it. The white pattern can also produce useful effects when transferred with an

appropriate pattern mode to an existing bit image. (Pattern modes are explained in

“Boolean Transfer Modes With 1-Bit Pixels” beginning on page 3-8.)

The middle window in the top row of Figure 3-3 is filled with the predefined bit pattern

black, in which every pixel is black. This is the initial pattern that QuickDraw assigns to

the graphics pen.

Figure 3-3 illustrates a window filled with the predefined pattern gray, which uses a

combination of black and white pixels. As illustrated in this figure, fewer black pixels

in the combination produce the predefined pattern ltGray, and more black pixels

produce the predefined pattern dkGray.

C H A P T E R 3

QuickDraw Drawing

3-8 About QuickDraw Drawing

These predefined patterns use colored pixels to produce similar effects in color graphics

ports, as described in the chapter “Color QuickDraw.”

You can create your own bit patterns in your program code, but it’s usually simpler and

more convenient to store them in resources of type 'PAT ' or 'PAT#' and to read them

in when you need them. The five predefined patterns are available not only through the

global variables provided by QuickDraw but also as system resources stored in the

system resource file. You can use the GetPattern function and the GetIndPattern

procedure to get patterns stored as resources.

The result of the transfer of a pattern to a bitmap depends on the pattern mode, which is

described next.

Boolean Transfer Modes With 1-Bit Pixels
A Boolean transfer mode describes an interaction between the pixels that your

application draws and the pixels that are already in the destination bitmap—for

example, when you draw a patterned line into a graphics port. Black-and-white drawing

uses two types of Boolean transfer modes:

■ source modes for copying bit images or drawing text

■ pattern modes for drawing lines and shapes

Color QuickDraw uses Boolean transfer mode differently than basic QuickDraw. Color

QuickDraw also has transfer modes that perform arithmetic operations on the red, green,

and blue values of color pixels. Using transfer modes with Color QuickDraw is

described in the chapter “Color QuickDraw” in this book.

Your application uses source modes when using CopyBits procedure (described in

“Copying Bits Between Graphics Ports” beginning on page 3-32) and the

CopyDeepMask procedure (described in the chapter “Color QuickDraw”).

Your application uses pattern modes to transfer patterns to lines and shapes. The

penMode field of a graphics port stores the pattern mode for the graphics pen. You use

the pattern mode to draw lines, rectangles, rounded rectangles, ovals, arcs, wedges,

polygons, and regions, as follows:

■ When you use a procedure like LineTo, FrameRect, or FrameOval, the procedure
draws the lines of your shape with the pattern specified in the pnPat field of the
graphics port, but the procedure transfers that pattern into the graphics port by using
the pattern mode specified in the pnMode field of the current graphics port.

■ When you use a procedure like PaintRect or PaintOval, the procedure draws
your shape with the pattern specified in the pnPat field by transferring the pattern
with the pattern mode specified in the pnMode field.

■ When you use a procedure like FillRect or FillOval, the procedure draws your
shape with the pattern you request and uses the patCopy pattern mode (which
copies your requested pattern directly into the shape).

C H A P T E R 3

QuickDraw Drawing

About QuickDraw Drawing 3-9

You use the source mode when using the CopyBits procedure to copy a bit image from

one graphics port to another and when drawing text using the QuickDraw routines

described in the chapter “QuickDraw Text” in Inside Macintosh: Text. (The source mode

for text is stored in the textMode field of a graphics port.)

For both pattern and source modes there are four Boolean operations: COPY, OR, XOR

(for exclusive-or), and BIC (for bit clear). Each of these operations has an inverse variant

in which the pattern or source is inverted before the transfer, so in fact there are eight

operations in all.

The eight operations in the pattern and source modes have names defined as constants.

Their effects on 1-bit destination pixels are summarized in Table 3-1. (See the chapter

“Color QuickDraw” for information about the effects of these operations on colored

pixels—that is, those with a pixel depth of more than 1 pixel.)

The COPY operations completely replace the pixels in the destination bitmap with either

the pixels in the pattern (for the patCopy mode) or the pixels in the source bitmap

(for the srcCopy mode). The inverse COPY operations completely replace the pixels in

the destination bitmap with a “photographic negative” of the pattern (for the

notPatCopy mode) or the source bitmap (for the notSrcCopy mode).

The OR operations add the black pixels from either the pattern (for the patOr mode) or

the source bitmap (for the srcOr mode) to the destination bitmap. The inverse OR

operations (notPatOr and notSrcOr modes) take a “photographic negative” of the

pattern or the source bitmap, and then add the black pixels from this negative to the

destination bitmap.

Table 3-1 Effect of Boolean transfer modes on 1-bit pixels

Pattern mode Source mode Action on destination pixel

If pattern or source
pixel is black

If pattern or source
pixel is white

patCopy srcCopy Force black Force white

notPatCopy notSrcCopy Force white Force black

patOr srcOr Force black Leave alone

notPatOr notSrcOr Leave alone Force black

patXor srcXor Invert Leave alone

notPatXor notSrcXor Leave alone Invert

patBic srcBic Force white Leave alone

notPatBic notSrcBic Leave alone Force white

C H A P T E R 3

QuickDraw Drawing

3-10 About QuickDraw Drawing

The XOR operations (patXor and srcXor modes) invert the pixels in the destination

bitmap that correspond to black pixels in the pattern or source bitmap. The inverse XOR

operations (notPatXor and notSrcXor modes) invert the pixels in the destination

bitmap that correspond to white pixels in the pattern or source bitmap.

The BIC operations (patBic and srcBic modes) turn pixels in the destination bitmap

white when they correspond to black pixels in the pattern or source bitmap. The inverse

BIC operations (notPatBic and notSrcBic modes) turn pixels in the destination

bitmap white when they correspond to white pixels in the pattern or source bitmap.

These actions are illustrated in Figure 3-4, where a black X is transferred to a destination

bitmap consisting of a black O.

Figure 3-4 Examples of Boolean transfer modes

On computers running System 7, you can add dithering to any source mode by adding

the following constant or the value it represents to the source mode:

CONST ditherCopy = 64;

C H A P T E R 3

QuickDraw Drawing

About QuickDraw Drawing 3-11

Dithering mixes existing colors to create the effect of additional colors on indexed

devices. It also improves images that you shrink or that you copy from a direct

pixel device to an indexed device. Using dithering even when shrinking 1-bit images

between basic graphics ports can produce much better representations of the original

images. The CopyBits procedure always dithers images when shrinking them between

pixel maps on direct devices. Dithering is explained in the chapter “Color QuickDraw.”

The next section describes how your application uses pattern modes to transfer patterns

to lines and shapes.

Lines and Shapes
As explained in the chapter “Basic QuickDraw,” rectangles and regions are mathematical

models that QuickDraw defines as data types. However, they also can be graphic

elements that appear on the screen. A rectangle, for example, can mathematically define

a visible area, but it can also be an object to draw.

Defining Lines and Shapes

You use two points to define a line. Using the LineTo and Line procedures, you can

draw lines onscreen using the size, pattern, and pattern mode of the graphics pen for the

current graphics port. You can also define a rectangle with two points (the upper-left and

lower-right corners of the rectangle) or with four boundary coordinates (one for each

side of the rectangle). Using the FrameRect procedure, you can draw rectangles that are

framed by lines rendered with the size, pattern, and pattern mode of the graphics pen.

You use rectangles to define ovals and rounded rectangles. Rectangles used to define

other shapes are called bounding rectangles. The lines of bounding rectangles

completely enclose the shapes they bound; in other words, no pixels from these shapes

lie outside the infinitely thin lines of the bounding rectangles.

Ovals are circular or elliptical shapes defined by the height and width of their bounding

rectangles, and rounded rectangles are rectangles with rounded corners defined by the

width and height of the ovals forming their corners. Using the FrameOval and

FrameRoundRect procedures, you can draw, respectively, framed ovals and framed

rounded rectangles.

You can use rectangles to define ovals that, in turn, you can use to define arcs and

wedges. An arc is a portion of an oval’s circumference bounded by a pair of radii.

A wedge is a pie-shaped segment of an oval. The wedge starts at the center of the oval, is

bounded by a pair of radii, and extends to the oval’s circumference. You use the

FrameArc procedure to draw a framed arc, and you use the PaintArc or FillArc

procedure to draw a wedge.

C H A P T E R 3

QuickDraw Drawing

3-12 About QuickDraw Drawing

You use lines to define a polygon. First, however, you must call the OpenPoly function

and then some number of LineTo procedures to create lines from the first vertex of the

polygon to the second, from the second to the third, and so on, until you’ve created a line

to the last vertex. You then use the ClosePoly procedure, which completes the figure

by drawing a connecting line from the last vertex back to the first. After defining a

polygon in this way, you can draw a framed outline of it using the FramePoly

procedure.

To define a region, you can use any set of lines or shapes, including other regions, so

long as the region’s outline consists of one or more closed loops. First, however, you

must call the NewRgn function and OpenRgn procedure. You then use line-, shape-, or

region-drawing commands to define the region, which can be concave or convex, can

consist of one connected area or many separate ones, and can even have holes in the

middle. When you are finished collecting commands to define the outline of the region,

you use the CloseRgn procedure. You can then draw a framed outline of the region

using the FrameRgn procedure.

Framing Shapes

Using the FrameRect, FrameOval, FrameRoundRect, FrameArc, FramePoly, or

FrameRgn procedure to frame a shape draws just its outline, using the size, pattern, and

pattern mode of the graphics pen for the current graphics port. The interior of the shape

is unaffected, allowing previously existing pixels in the bit image to show through.

Painting and Filling Shapes

Using the PaintRect, PaintOval, PaintRoundRect, PaintArc, PaintPoly, or

PaintRgn procedure to paint a shape draws both its outline and its interior with the

pattern of the graphics pen, using the pattern mode of the graphics pen.

Using the FillRect, FillOval, FillRoundRect, FillArc, FillPoly, or FillRgn

procedure to fill a shape draws both its outline and its interior with any pattern you

specify. The procedure transfers the pattern with the patCopy pattern mode, which

directly copies your requested pattern into the shape.

Erasing Shapes

Using the EraseRect, EraseOval, EraseRoundRect, EraseArc, ErasePoly, or

EraseRgn procedure to erase a shape draws both its outline and its interior with

the background pattern for the current graphics port. The background pattern is

typically solid white on a black-and-white monitor or a solid background color on a

color monitor. Making the shape blend into the background pattern of the graphics port

effectively erases the shape.

C H A P T E R 3

QuickDraw Drawing

About QuickDraw Drawing 3-13

Inverting Shapes

Using the InvertRect, InvertOval, InvertRoundRect, InvertArc, InvertPoly,

or InvertRgn procedure to invert a shape reverses the colors of all pixels within its

boundary. On a black-and-white monitor, this changes all the black pixels in the shape to

white and changes all the white pixels to black.

The inversion procedures were designed for 1-bit images in basic graphics ports. These

procedures operate on color pixels in color graphics ports, but the results are predictable

only with direct devices or 1-bit pixel maps.

For indexed pixels, Color QuickDraw performs the inversion on the pixel indexes. The

results depend entirely on the contents of the video device’s color lookup table (CLUT).

(The CLUT is described in the chapter “Color QuickDraw.”)

The eight colors used in basic QuickDraw are stored in a color table represented by the

global variable QDColors. To display those eight basic QuickDraw colors on an indexed

device, Color QuickDraw uses the Color Manager to obtain indexes to the colors in the

CLUT that best map to the colors in the QDColors color table. Because the index, not the

color value, is inverted, the results are again unpredictable. (The eight-color system is

described in “The Eight Basic QuickDraw Colors” beginning on page 3-14.)

Inversion works better for direct devices. Inverting a pure green, for example, that has

red, green, and blue component values of $0000, $FFFF, and $0000 results in magenta,

which has component values of $FFFF, $0000, and $FFFF.

Other Graphic Entities

“Drawing With QuickDraw” beginning on page 3-16 provides an introduction to

creating and drawing lines, rectangles, rounded rectangles, ovals, arcs, wedges,

polygons, and regions. You can also use QuickDraw routines to draw pictures, cursors,

icons, and text.

A QuickDraw picture is the recorded transcription of a sequence of drawing operations

that can be played back with the DrawPicture procedure. See the chapter “Pictures”

for information about creating and displaying QuickDraw pictures.

A cursor is a 16-by-16 pixel image that maps the user’s movement of the mouse to

relative locations on the screen. An icon is an image (usually 32 by 32 or 16 by 16 pixels)

that represents an object, a concept, or a message. For example, the Finder uses icons to

represent files and disks. Cursors and icons are stored as resources. See the chapter

“Cursor Utilities” for information about drawing cursors. See the chapter “Icon Utilities”

in Inside Macintosh: More Macintosh Toolbox for information about drawing icons.

See the chapter “QuickDraw Text” in Inside Macintosh: Text for information about using

QuickDraw routines to draw text.

C H A P T E R 3

QuickDraw Drawing

3-14 About QuickDraw Drawing

The Eight Basic QuickDraw Colors
On a color screen, you can draw with colors, even when you are using a basic graphics

port. Although basic QuickDraw graphics routines were designed for black-and-white

drawing, they also support the eight-color system that basic QuickDraw predefines for

display on color screens and color printers. Because Color QuickDraw also supports this

system, it is compatible across all Macintosh platforms. (This section describes the

rudimentary color capabilities included in basic QuickDraw. See the next chapter, “Color

QuickDraw,” for information about more sophisticated color use in your application.)

A pair of fields in a graphics port, fgColor and bkColor, specify a foreground and

background color. The foreground color is the color used for bit patterns and for the

graphics pen when drawing. By default, the foreground color is black. The background
color is the color of the pixels in the bitmap wherever no drawing has taken place. By

default, the background color is white. However, you can use the ForeColor and

BackColor procedures to change these fields. (When printing, however, use the

ColorBit procedure to set the foreground color.) For example, on a color screen the

following lines of code draw a red rectangle against a blue background.

BackColor(blueColor); {make a blue background}

ForeColor(redColor); {draw with red ink}

PenMode(patCopy); {when drawing, replace background color }

{ with ink's color}

PaintRect(20,20,80,80); {create and paint the red rectangle}

If you use the OpenCPicture or OpenPicture function to include this code in a

picture definition, these colors are stored in the picture. However, basic QuickDraw

cannot store these colors in a bitmap. See the chapter “Pictures” in this book for more

information about defining and drawing pictures.

The basic QuickDraw color values consist of 1 bit for normal black-and-white drawing

(black on white), 1 bit for inverted black-and-white drawing (white on black), 3 bits for

the additive primary colors (red, green, blue) used in video display, and 4 bits for the

subtractive primary colors (cyan, magenta, yellow, black) used in printing. QuickDraw

includes a set of predefined constants for those standard colors:

CONST

 whiteColor = 30;

 blackColor = 33

 yellowColor = 69;

 magentaColor = 137;

 redColor = 205;

 cyanColor = 273;

 greenColor = 341;

 blueColor = 409;

C H A P T E R 3

QuickDraw Drawing

About QuickDraw Drawing 3-15

These are the only colors available in basic QuickDraw (or with Color QuickDraw

drawing into a basic graphics port). When you specify these colors on a Macintosh

computer with Color QuickDraw, Color QuickDraw draws these colors if the user has

set the screen to a color mode.

These eight color values are based on a planar model: each bit position corresponds to a

different color plane, and the value of each bit indicates whether a particular color plane

should be activated. (The term color plane refers to a logical plane, rather than a physical

plane.) The individual color planes combine to produce the full-color image.

There are three advantages to using basic QuickDraw’s color system:

■ It is available across all platforms, so you don’t have to check for the presence of Color
QuickDraw.

■ It is much simpler to use than Color QuickDraw.

■ It works well on an ImageWriter printer with a color ribbon.

The main disadvantage is that basic QuickDraw is limited to eight predefined colors.

Another problem is that, if the graphics port in which you are working happens to be a

color graphics port, then the two color systems may clash. For example, saving the

current foreground color (from the fgColor field of the color graphics port) and then

later restoring it with the ForeColor procedure doesn’t work: the original content of

the fgColor field is an index value for a color graphics port using indexed colors. This

index value is not what basic QuickDraw’s ForeColor procedure expects as a

parameter.

In System 7, these Color QuickDraw routines are available to basic QuickDraw:

RGBForeColor, RGBBackColor, GetForeColor, and GetBackColor. Described

in the next chapter, “Color QuickDraw,” these routines can also assist you in

manipulating the eight-color system of basic QuickDraw. When running on a System 7

computer, your application should use GetForeColor and GetBackColor to

determine the foreground color and background color instead of checking the fgColor

and bkColor fields of the GrafPort record.

The next section provides an introduction to creating and drawing lines and shapes.

Without using a color graphics port, you can use the ForeColor or RGBForeColor

procedure on a color screen to draw these lines and shapes in color, against the

background color you set with the BackColor or RGBBackColor procedure.

C H A P T E R 3

QuickDraw Drawing

3-16 Drawing With QuickDraw

Drawing With QuickDraw

You can use QuickDraw’s basic drawing routines to

■ draw lines of various thicknesses and in various patterns

■ draw rectangles, rounded rectangles, ovals, arcs, wedges, polygons, and regions in
various patterns

■ draw lines and shapes in any of eight predefined colors, against a background of any
of these eight predefined colors

■ perform calculations on and manipulate rectangles and regions

■ copy bits from the bit image in the bitmap of one graphics port into the bitmap of
another graphics port

■ customize QuickDraw’s drawing behavior

System software uses QuickDraw’s drawing routines to implement the Macintosh user

interface. The next several sections provide an introduction to these routines, which your

application can use to create complex onscreen images.

To draw lines, your application

■ moves the graphics pen to a location within its graphics port

■ draws a line to a different coordinate

To draw rectangles, rounded rectangles, ovals, arcs, and wedges, your application

generally

■ defines the outline of the shape in the local coordinates of the graphics port

■ frames the shape’s outline to draw it

■ transfers patterns to the outline and interior of the shape to paint or fill it

To draw regions and polygons, your application

■ uses an open routine to start building the shape

■ calls drawing routines to build the shape

■ uses a close routine to stop collecting drawing routines for the shape

■ frames the shape’s outline to draw it

■ transfers patterns to the outline and interior of the shape to paint or fill it

These tasks are explained in greater detail in the rest of this chapter.

Before using QuickDraw’s drawing routines, you must initialize QuickDraw with the

InitGraf procedure, as explained in the chapter “Basic QuickDraw.”

C H A P T E R 3

QuickDraw Drawing

Drawing With QuickDraw 3-17

The routines described in this chapter are available on all models of Macintosh

computers. However, all nonwhite colors that you specify with the ForeColor and

BackColor procedures are displayed as black on a black-and-white screen. Before using

the ForeColor and BackColor procedures to display colors in a basic graphics port,

you can use the DeviceLoop procedure, which is described in the chapter “Graphics

Device,” to determine the color characteristics of the current screen.

Drawing Lines
A line is defined by two points: the current location of the graphics pen and its

destination. The graphics pen draws below and to the right of the defining points. As

described in “The Graphics Pen” on page 3-4, the pen draws the line between its

defining points with the size, pattern, and pattern mode stored in the current graphics

port.

You specify where to begin drawing a line by using the MoveTo or Move procedure to

place the graphics pen at some point in the window’s local coordinate system. Then you

call the LineTo or Line procedure to draw a line from there to another point. Take, for

example, the following lines of code:

MoveTo(20,20);

LineTo(70,20);

LineTo(70,70);

The MoveTo procedure moves the graphics pen to a point with a horizontal coordinate

of 20 and a vertical coordinate of 20 (in the local coordinate system of the graphics port).

The first call to the LineTo procedure draws a line from that position to the point with a

horizontal coordinate of 70 and a vertical coordinate of 20. The second call to the LineTo

procedure draws a line from the pen’s new position to the point with a horizontal

coordinate of 70 and a vertical coordinate of 70, as shown in Figure 3-5.

Figure 3-5 Using the LineTo procedure

C H A P T E R 3

QuickDraw Drawing

3-18 Drawing With QuickDraw

Listing 3-1 illustrates how to use the LineTo procedure to draw the four sides of a

square, which is shown on the left side of Figure 3-6. In Figure 3-6, the current graphics

port is the window “untitled.”

Listing 3-1 Drawing lines with the LineTo and Line procedures

PROCEDURE MyDrawLines;

BEGIN

MoveTo(20,20);

LineTo(70,20);

LineTo(70,70);

LineTo(20,70);

LineTo(20,20);

Move(70,0);

Line(50,0);

Line(0,50);

Line(-50,0);

Line(0,-50);

END;

Figure 3-6 Drawing lines

The MoveTo and LineTo procedures require you to specify a point in the local

coordinate system of the current graphics port. These procedures then transfer the

graphics pen to that specific location. As alternatives to using the MoveTo and LineTo

procedures, you can use the Move and Line procedures, which require you to pass

relative horizontal and vertical distances to move the pen from its current location. The

square on the right side of Figure 3-6 is drawn using the Move and Line procedures.

The final call to LineTo in Listing 3-1 moves the graphics pen to the point with a

horizontal coordinate of 20 and a vertical coordinate of 20. Listing 3-1 then uses the Move

procedure to move the graphics pen a horizontal distance of 70 points—that is, to the

point with a horizontal coordinate of 90. The first call to the Line procedure draws a

C H A P T E R 3

QuickDraw Drawing

Drawing With QuickDraw 3-19

horizontal line 50 pixels long—that is, to the point with a horizontal coordinate of 140

and a vertical coordinate of 20. Starting from there, the second call to Line draws a

vertical line 50 pixels long—that is, to the point with a horizontal coordinate of 140 and

a vertical coordinate of 70, as shown in Figure 3-7.

Figure 3-7 Using the LineTo and Line procedures

In Figure 3-6, the lines are drawn using the default pen size (1,1), giving the line a

vertical depth of one pixel and a horizontal width of one pixel. You can use the PenSize

procedure to change the width and height of the graphics pen so that it draws thicker

lines, as shown in Figure 3-8.

Figure 3-8 Resizing the pen

The square on the left side of Figure 3-8 is drawn with a pen that has a width of two

pixels and a height of eight pixels. The square on the right side of this figure is drawn

with a pen that has a width of eight pixels and a height of two pixels. Listing 3-2 shows

the code that draws these squares.

C H A P T E R 3

QuickDraw Drawing

3-20 Drawing With QuickDraw

Listing 3-2 Using the PenSize procedure

PROCEDURE MyResizePens;

BEGIN

PenSize(2,8);

MoveTo(20,20);

LineTo(70,20); LineTo(70,70); LineTo(20,70); LineTo(20,20);

PenSize(8,2);

Move(70,0);

Line(50,0); Line(0,50); Line(-50,0); Line(0,-50);

PenNormal;

END;

At the end of Listing 3-2, the PenNormal procedure is used to restore the graphics pen

to its default size, pattern, and pattern mode.

The default pattern for the graphics pen consists of all black pixels. However, you can

use the PenPat procedure to change the pen’s pattern. When you use the PenPat

procedure, you can pass it any one of the predefined global variables listed in Table 3-2

to specify the bit pattern for the graphics pen.

Table 3-2 The global variables for five predefined bit patterns

Global variable Result

black All-black pattern

dkGray 75% gray pattern

gray 50% gray pattern

ltGray 25% gray pattern

white All-white pattern

C H A P T E R 3

QuickDraw Drawing

Drawing With QuickDraw 3-21

In Figure 3-9, the pen pattern for the square on the left has changed to ltGray; the pen

pattern for the square on the right has changed to dkGray.

Figure 3-9 Changing the pen pattern

Listing 3-3 shows the code that produces these squares.

Listing 3-3 Using the PenPat procedure to change the pattern of the graphics pen

PROCEDURE MyRepatternPens;

BEGIN

PenSize(2,8);

PenPat(ltGray);

MoveTo(20,20);

LineTo(70,20); LineTo(70,70); LineTo(20,70); LineTo(20,20);

PenSize(8,2);

PenPat(dkGray);

Move(70,0);

Line(50,0); Line(0,50); Line(-50,0); Line(0,-50);

PenNormal;

END;

QuickDraw provides methods for drawing squares and rectangles that are easier than

drawing each side individually as a line. The next section describes how to draw

rectangles.

C H A P T E R 3

QuickDraw Drawing

3-22 Drawing With QuickDraw

Drawing Rectangles
As explained in the chapter “Basic QuickDraw,” rectangles are mathematical entities.

There are two ways to specify a rectangle: by its four boundary coordinates, as shown in

the left rectangle in Figure 3-10, or by its upper-left and lower-right points, as shown

in the right rectangle.

Figure 3-10 Two ways to specify a rectangle

However, specifying a rectangle does not draw one. Because the border of a rectangle is

infinitely thin, it can have no direct representation on the screen until you use the

FrameRect procedure to draw its outline, or you can use the PaintRect or FillRect

procedure to draw its outline and its interior with a pattern. Figure 3-11 illustrates two

rectangles that are drawn with the FrameRect procedure.

Figure 3-11 Drawing rectangles

Listing 3-4 shows the code that draws the rectangles in Figure 3-11. This listing uses the

PenSize procedure to assign a size of (2,2) to the graphics pen. Then the code assigns

four boundary coordinates to the rectangle on the left side of this figure, and it calls

FrameRect to use the graphics pen to draw the rectangle’s outline.

C H A P T E R 3

QuickDraw Drawing

Drawing With QuickDraw 3-23

Listing 3-4 Using the FrameRect procedure to draw rectangles

PROCEDURE MyDrawRects;

VAR

firstRect, secondRect: Rect;

BEGIN

PenSize(2,2);

firstRect.top := 20;

firstRect.left := 20;

firstRect.bottom := 70;

firstRect.right := 70;

FrameRect(firstRect);

SetRect(secondRect,90,20,140,70);

FrameRect(secondRect);

PenNormal;

END;

To shorten code text, Listing 3-4 uses the SetRect procedure to define the rectangle on

the right side of Figure 3-11. Again, FrameRect is used to draw an outline around the

rectangle. Notice that while a Rect record lists the fields for a rectangle’s boundaries

in the order top, left, bottom, and right, you pass these boundaries as parameters

to the SetRect procedure in the order left, top, right, and bottom.

Remember that the graphics pen hangs to the right of and below its location point;

therefore, the lower-right corner of the two-pixel outline around the rectangle on the

right side of Figure 3-11 lies at the point with a horizontal coordinate of 142 and a

vertical coordinate of 72.

Figure 3-12 illustrates painted and filled rectangles. Listing 3-5 shows the code that

creates these images.

Figure 3-12 Painting and filling rectangles

C H A P T E R 3

QuickDraw Drawing

3-24 Drawing With QuickDraw

Listing 3-5 uses the PaintRect procedure to draw the outline and the interior of the

rectangle on the left side of Figure 3-12 with the pattern of the graphics pen, according to

the pattern mode of the graphics pen. Because Listing 3-5 calls the PenNormal

procedure immediately before calling PaintRect, the graphics pen has its default

characteristics: a pattern of all-black pixels and the patCopy pattern mode, which

changes all of the pixels in the destination to the pen’s pattern.

Listing 3-5 Using the PaintRect and FillRect procedures

PROCEDURE MyPaintAndFillRects;

VAR

firstRect, secondRect: Rect;

BEGIN

PenNormal;

SetRect(firstRect,20,20,70,70);

PaintRect(firstRect);

SetRect(secondRect,20,90,70,140);

FillRect(secondRect,ltGray);

END;

The PaintRect procedure always uses the pattern and pattern mode of the graphics

pen when drawing a rectangle. If you want to use a pattern other than that of the

graphics pen, you can use the FillRect procedure. The FillRect procedure,

however, always uses the patCopy pattern mode. Listing 3-5 uses the FillRect

procedure to draw the outline and the interior of the rectangle on the right side of

Figure 3-12 with a light gray pattern.

Note

Neither the PaintRect nor FillRect procedure changes the location
of the graphics pen. ◆

If the application that draws the rectangles in Figure 3-12 uses the EraseRect

procedure to erase them both, then they would be filled with the background pattern

specified by the bkPat field of the current graphics port. If the application uses the

InvertRect procedure to invert the rectangles, then the black pixels in each would

become white and the white pixels would become black.

QuickDraw provides a similar set of routines for drawing rounded rectangles, which are

defined by their rectangles and the widths and heights of the ovals forming their corners.

See “Drawing Rounded Rectangles” beginning on page 3-63 for detailed information

about these routines.

C H A P T E R 3

QuickDraw Drawing

Drawing With QuickDraw 3-25

Drawing Ovals, Arcs, and Wedges
An oval is a circular or elliptical shape defined by the bounding rectangle that encloses

it. After specifying the bounding rectangle for an oval, you use the FrameOval

procedure to draw its outline, or the PaintOval or FillOval procedure to draw its

outline and its interior with a pattern. Figure 3-13 illustrates two ovals drawn with the

FrameOval procedure.

Figure 3-13 Drawing ovals

Listing 3-6 shows the code that produces the ovals in Figure 3-13. The

bounding rectangles for the ovals are created with the SetRect procedure. The

resulting rectangles are then passed to the FrameOval procedure.

Listing 3-6 Using the FrameOval procedure to draw ovals

PROCEDURE MyDrawOvals;

VAR

firstRect, secondRect: Rect;

BEGIN

PenSize(2,2);

SetRect(firstRect,20,20,70,70); {create a bounding rectangle}

FrameOval(firstRect); {draw the oval}

SetRect(secondRect,90,20,140,70); {create a bounding rectangle}

FrameOval(secondRect); {draw the oval}

PenNormal;

END;

C H A P T E R 3

QuickDraw Drawing

3-26 Drawing With QuickDraw

An arc is defined as a portion of an oval’s circumference bounded by a pair of radii. A

wedge is a pie-shaped segment bounded by a pair of radii, and it extends from the center

of the oval to its circumference. You use the FrameArc procedure to draw an arc (as

shown on the left side of Figure 3-14), and you use the PaintArc or FillArc

procedure to draw a wedge (as shown on the right side of Figure 3-14).

Figure 3-14 Drawing an arc and a wedge

Listing 3-7 shows the code that produces the images in Figure 3-14. The FrameArc,

PaintArc, and FillArc procedures take three parameters: a rectangle that defines an

oval’s boundaries, an angle indicating the start of the arc, and an angle indicating the

arc’s extent. For the angle parameters, 0° indicates a vertical line straight up from the

center of the oval. Positive values indicate angles in the clockwise direction from this

vertical line, and negative values indicate angles in the counterclockwise direction. The

arc and the wedge in Figure 3-14 both begin at 45° and extend to 135°.

Listing 3-7 Using the FrameArc and PaintArc procedures

PROCEDURE MyDrawArcAndPaintWedge;

VAR

firstRect, secondRect: Rect;

BEGIN

SetRect(firstRect,20,20,70,70); {create a bounding rectangle}

FrameArc(firstRect,45,135); {draw an arc}

SetRect(secondRect,90,20,140,70); {create a bounding rectangle}

PaintArc(secondRect,45,135); {draw a wedge}

END;

You can also fill, erase, and invert wedges by using, respectively, the FillArc,

EraseArc, and InvertArc procedures.

C H A P T E R 3

QuickDraw Drawing

Drawing With QuickDraw 3-27

Drawing Regions and Polygons
Before drawing regions and polygons, you must call several routines to create them. To

create a region or polygon, you first call an open routine, which tells QuickDraw to

collect subsequent routines to construct the shape. You use a close procedure when you

are finished constructing the region or polygon. You can then frame the shape, fill it,

paint it, erase it, and invert it.

To begin defining a region, you must use the NewRgn function to allocate space for it,

and then call the OpenRgn procedure. You can then use any QuickDraw routine to

construct the outline of the region. The outline can be any set of lines and shapes

(including other regions) forming one or more closed loops. When you are finished

constructing the region, use the CloseRgn procedure.

▲ W A R N I N G

Ensure that the memory for a region is valid before calling routines to
manipulate that region; if there isn’t sufficient memory, the system may
crash. Regions are limited to 32 KB in size in basic QuickDraw and 64
KB in Color QuickDraw. Before defining a region, you can use the
Memory Manager function MaxMem to determine whether the memory
for the region is valid. You can determine the current size of an existing
region by calling the Memory Manager function GetHandleSize.
(Both MaxMem and GetHandleSize are described in Inside Macintosh:
Memory.) When you record drawing operations in an open region, the
resulting region description may overflow the 32 KB or 64 KB limit.
Should this happen in Color QuickDraw, the QDError function
(described in the chapter “Color QuickDraw” in this book) returns the
result code regionTooBigError. ▲

To draw the region, use the FrameRgn, PaintRgn, or FillRgn procedure. To draw the

region with the background pattern of the graphics port, use the EraseRgn procedure;

to invert the pixels in the region, use the InvertRgn procedure. When you no longer

need the region, use the DisposeRgn procedure to release the memory used by the

region.

C H A P T E R 3

QuickDraw Drawing

3-28 Drawing With QuickDraw

Listing 3-8 illustrates how to create and open a region, define a shape, close the region,

fill it with the all-black pattern, and dispose of the region.

Listing 3-8 Creating and drawing a region

PROCEDURE MyDrawDumbbell;

VAR

grow: LongInt;

dumbbell: RgnHandle;

tempRect: Rect;

BEGIN

IF MaxMem(grow) > kMinReserve THEN

BEGIN

dumbbell := NewRgn; {create a new region}

OpenRgn; {begin drawing instructions}

SetRect(tempRect,20,20,30,50);

FrameOval(tempRect); {form the left "weight"}

SetRect(tempRect,25,30,85,40);

FrameRect(tempRect); {form the bar}

SetRect(tempRect,80,20,90,50);

FrameOval(tempRect); {form the right "weight"}

CloseRgn(dumbbell); {stop collecting}

FillRgn(dumbbell,black); {draw the shape onscreen}

IF QDError <> noErr THEN

; {likely error is that there is insufficient memory}

DisposeRgn(dumbbell) {dispose of the region}

END;

END;

Figure 3-15 shows the shape created by Listing 3-8.

Figure 3-15 A shape created by a region

C H A P T E R 3

QuickDraw Drawing

Drawing With QuickDraw 3-29

To assist you with scrolling, you can use QuickDraw routines to define a clipping region

that excludes the scroll bars of the content region of a window. You can then scroll that

area so that the region being updated does not draw into the scroll bars. Listing 3-9

illustrates how to create such a clipping region and, for illustrative purposes, how to fill

it with a pattern. (The chapter “Basic QuickDraw” illustrates how to scroll the pixels in a

rectangle such as the one created with the ClipRect procedure in Listing 3-9.)

Listing 3-9 Creating a clipping region and filling it with a pattern

FUNCTION MyFillClipRegion: RgnHandle;

VAR

grow: LongInt;

newClip: Rect;

oldClipRegion: RgnHandle;

newClipRegion: RgnHandle;

myWindow: WindowPtr;

BEGIN

IF MaxMem(grow) > kMinReserve THEN

BEGIN

oldClipRegion := NewRgn; {allocate old clipping region}

myWindow := FrontWindow; {get the front window}

SetPort(myWindow); {make the front window the current }

{ graphics port}

GetClip(oldClipRegion); {save the old clipping region}

newClip := myWindow^.portRect; {create a new rectangle}

newClip.right := newClip.right - 15; {exclude scroll bar}

newClip.bottom := newClip.bottom - 15; {exclude scroll bar}

ClipRect(newClip); {make the new rectangle the clipping region}

newClipRegion := NewRgn; {allocate new clipping region}

RectRgn(newClipRegion, newClip);

FillRgn(newClipRegion, ltGray); {paint clipping region gray}

SetClip(oldClipRegion); {restore previous clipping region}

IF QDError <> noErr THEN

; {likely error is that there is insufficient memory}

DisposeRgn(oldClipRegion); {dispose previous clipping region}

MyFillClipRect := (newClipRegion);

END;

END;

C H A P T E R 3

QuickDraw Drawing

3-30 Drawing With QuickDraw

Figure 3-16 shows the results of using the code in Listing 3-9.

Figure 3-16 Filling a clipping region

To create a polygon, you first call the OpenPoly function and then some number of

LineTo procedures to draw lines from the first vertex of the polygon to the second, from

the second to the third, and so on, until you’ve drawn a line to the last vertex. You then

use the ClosePoly procedure, which completes the figure by drawing a connecting line

from the last vertex back to the first. After defining a polygon in this way, you can

display it with the FramePoly, PaintPoly, FillPoly, ErasePoly, and InvertPoly

procedures. When you are finished using the polygon, use the KillPoly procedure to

release its memory.

▲ W A R N I N G

Do not create a height or width for the polygon greater than 32,767
pixels, or PaintPoly will crash. ▲

Listing 3-10 illustrates how to create a triangular polygon and fill it with a gray pattern.

Listing 3-10 Creating a triangular polygon

PROCEDURE MyDrawTriangle;

VAR

triPoly: PolyHandle;

BEGIN

triPoly := OpenPoly; {save handle and begin collecting lines}

MoveTo(300,100); {move to first point}

LineTo(400,200); {form the triangle's sides}

LineTo(200,200);

ClosePoly; {stop collecting lines}

FillPoly(triPoly,gray); {fill the polygon with gray}

IF QDError <> noErr THEN

; {likely error is that there is insufficient memory}

KillPoly(triPoly); {dispose of its memory}

END;

C H A P T E R 3

QuickDraw Drawing

Drawing With QuickDraw 3-31

Performing Calculations and Other Manipulations of Shapes
QuickDraw provides a multitude of routines for manipulating rectangles and regions.

You can use the routines that manipulate rectangles to manipulate any shape based on a

rectangle—namely, rounded rectangles, ovals, arcs, and wedges. For example, you could

define a rectangle to bound an oval and then frame the oval. You could then use the

OffsetRect procedure to move the oval’s bounding rectangle downward. Using the

offset bounding rectangle, you could frame a second, connected oval to form a figure

eight with the first oval. You could use that shape to help define a region. You could

create a second region, and then use the UnionRgn procedure to create a region from the

union of the two.

The routines for performing calculations and other manipulations of rectangles are

summarized in Table 3-3 and are described in detail in “Creating and Managing

Rectangles” beginning on page 3-52.

Table 3-3 QuickDraw routines for calculating and manipulating rectangles

Routine Description

EmptyRect Determines whether a rectangle is an empty rectangle

EqualRect Determines whether two rectangles are equal

InsetRect Shrinks or expands a rectangle

OffsetRect Moves a rectangle

PtInRect Determines whether a pixel is enclosed in a rectangle

PtToAngle Calculates the angle from the middle of a rectangle to a point

Pt2Rect Determines the smallest rectangle that encloses two points

SectRect Determines whether two rectangles intersect

UnionRect Calculates the smallest rectangle that encloses two rectangles

C H A P T E R 3

QuickDraw Drawing

3-32 Drawing With QuickDraw

The routines for performing calculations and other manipulations of regions are

summarized in Table 3-4 and are described in detail in “Creating and Managing

Regions” beginning on page 3-85.

Note that while you can use the OffSetPoly procedure to move a polygon, QuickDraw

provides no other routines for calculating or manipulating polygons.

Copying Bits Between Graphics Ports
You can use the CopyBits procedure to copy a bit image from one graphics port to

another. Along with the CopyMask procedure and the Color QuickDraw procedure

CopyDeepMask, CopyBits is integral to QuickDraw’s image-processing capabilities.

You can use CopyBits to move offscreen graphics images into an onscreen window, to

blend colors for the image in a pixel map, and to shrink and expand images. For

example, Figure 3-17 illustrates how CopyBits can be used to scale the image in one

window to a smaller image in another window.

Table 3-4 QuickDraw routines for calculating and manipulating regions

Routine Description

CopyRgn Makes a copy of a region

DiffRgn Subtracts one region from another

EmptyRgn Determines whether a region is empty

EqualRgn Determines whether two regions have identical sizes, shapes,
and locations

InsetRgn Shrinks or expands a region

OffsetRgn Moves a region

PtInRgn Determines whether a pixel is within a region

RectInRgn Determines whether a rectangle intersects a region

RectRgn Changes a region to a rectangle

SectRgn Calculates the intersection of two regions

SetEmptyRgn Sets a region to empty

SetRectRgn Changes a region to a rectangle

UnionRgn Calculates the union of two regions

XorRgn Calculates the difference between the union and the intersection
of two regions

C H A P T E R 3

QuickDraw Drawing

Drawing With QuickDraw 3-33

Figure 3-17 Shrinking images between graphics ports

Listing 3-11 shows the code that produces the scaled image in Figure 3-17.

Listing 3-11 Using the CopyBits procedure to copy between two windows

PROCEDURE MyShrinkImages;

VAR

myWindow: WindowPtr;

sourceRect, destRect: rect;

halfHeight, halfWidth: Integer;

BEGIN

myWindow := FrontWindow;

sourceRect.top := myWindow^.portRect.top; {create source rectangle}

sourceRect.left := myWindow^.portRect.left;

sourceRect.bottom := myWindow^.portRect.bottom - 15; {exclude scroll bar}

sourceRect.right := myWindow^.portRect.right - 15; {exclude scroll bar}

destRect.top := gShrinkWindow^.portRect.top; {create destination rect}

destRect.left := gShrinkWindow^.portRect.left;

halfHeight := {make destination half as tall as the source}

Integer((sourceRect.bottom - sourceRect.top)) DIV 2;

destRect.bottom := destRect.top + halfHeight;

halfWidth := {make destination half as wide as the source}

Integer((sourceRect.right - sourceRect.left)) DIV 2;

destRect.right := destRect.left + halfWidth;

GetPort(myWindow); {save the graphics port for the active window}

SetPort(gShrinkWindow); {make the target window the current }

{ graphics port for drawing purposes}

C H A P T E R 3

QuickDraw Drawing

3-34 Drawing With QuickDraw

CopyBits(myWindow^.portBits,

gShrinkWindow^.portBits,

sourceRect,

destRect,

srcCopy+ditherCopy, NIL);

IF QDError <> noErr THEN

; {likely error is that there is insufficient memory}

SetPort(myWindow); {restore active window as current graphics port}

END;

When copying between basic graphics ports, you specify a source bitmap and a

destination bitmap to CopyBits. Remember that the bitmap is stored in the portBits

field of a GrafPort record. By dereferencing the desired window record when it calls

CopyBits, Listing 3-11 uses the bitmap for the front window, “untitled” in Figure 3-17,

as the source bitmap. Listing 3-11 uses the bitmap for the window titled “50%” as the

destination bitmap.

When copying images between color graphics ports, as explained in the chapter “Color

QuickDraw,” you must coerce each CGrafPort record to a GrafPort record,

dereference the portBits fields of each, and then pass these “bitmaps” to CopyBits.

Note

If there is insufficient memory to complete a CopyBits operation
in Color QuickDraw, the QDError function (described in the chapter
“Color QuickDraw” in this book) returns the result code –143. ◆

You can specify differently sized source and destination rectangles, and CopyBits scales

the source image to fit the destination. Listing 3-11 uses the area of the port rectangle

excluding the scroll bars as the source rectangle. To scale the image in the front window,

Listing 3-11 creates a destination rectangle that is half as high and half as wide as the

source rectangle.

The manner by which CopyBits transfers the bits between bitmaps depends on the

source mode that you specify. In Listing 3-11, the srcCopy mode is used to copy bits

from the source directly into the destination. Source modes are described in “Boolean

Transfer Modes With 1-Bit Pixels” beginning on page 3-8.

Note

To scale shapes and regions within the same graphics port, you can use
the routines described in “Scaling and Mapping Points, Rectangles,
Polygons, and Regions” beginning on page 3-104. ◆

To gracefully display complex images that your application creates, your application

should use the drawing routines described in this chapter to construct such images in

offscreen graphics worlds. Your application can then use the CopyBits procedure to

transfer these images to onscreen graphics ports. This technique prevents the choppiness

that can occur when you build complex images onscreen, and is described in the chapter

“Offscreen Graphics Worlds,” which also offers an example of using a mask to copy

color pixels from an offscreen graphics world.

C H A P T E R 3

QuickDraw Drawing

Drawing With QuickDraw 3-35

To copy only certain bits from a bitmap, you can use the CopyMask procedure, which is

a specialized variant of CopyBits. The CopyMask procedure, which is described on

page 3-119, transfers bits only where the corresponding bits of another bit image, which

serves as a mask, are set to 1 (that is, black). The CopyMask procedure does not allow

scaling or resizing. However, the CopyDeepMask procedure, which is described on

page 3-120, does allow scaling and resizing; in effect it combines the capabilities of the

CopyBits and CopyMask procedures.

Customizing QuickDraw’s Low-Level Routines
For each shape that QuickDraw knows how to draw, there are procedures that perform

these basic graphics operations on the shape: frame, paint, erase, invert, and fill. Those

procedures in turn call a low-level drawing routine for the shape. For example, the

FrameOval, PaintOval, EraseOval, InvertOval, and FillOval procedures all call

the low-level procedure StdOval, which draws the oval. For each type of object

QuickDraw can draw, including text and lines, there’s a pointer to such a low-level

routine. By changing these pointers, you can install your own routines, and either

completely override the standard ones or call them after your routines have modified

their parameters as necessary.

Other low-level routines that you can install in this way include

■ The procedure (called by CopyBits) that performs bit and pixel transfer.

■ The function that measures the width of text and is called by the QuickDraw text
routines CharWidth, StringWidth, and TextWidth. (These QuickDraw text
routines are described in the chapter “QuickDraw Text” in Inside Macintosh: Text.)

■ The procedure that processes picture comments. The standard procedure ignores
picture comments. (Picture comments are described in Appendix B of this book.)

■ The procedure that saves drawing commands as the definition of a picture, and the
procedure that retrieves them. These enable your application to draw on remote
devices, print to the disk, get picture input from the disk, and support large pictures.

All of the low-level QuickDraw routines that your application can replace or call after

performing its own operations are described in “Customizing QuickDraw Operations”

beginning on page 3-129.

The grafProcs field of a graphics port determines which low-level routines are called.

If that field contains the value of NIL, the standard routines are called, so that all

operations in that graphics port are done in the standard ways described in this chapter.

You can set the grafProcs field to point to a record of pointers to your own routines.

This record of pointers is defined by a data structure of type QDProcs, which is

described on page 3-39.

C H A P T E R 3

QuickDraw Drawing

3-36 QuickDraw Drawing Reference

To assist you in setting up a record, QuickDraw provides the SetStdProcs procedure,

which is described on page 3-130. You can use the SetStdProcs procedure to get a

QDProcs record with fields that point to the standard routines. You can reset the ones

with which you are concerned. You can replace these low-level routines with your own,

and then point to your modified QDProcs record in the grafProcs field of a

GrafPort record to change basic QuickDraw’s standard low-level behavior.

IMPORTANT

When modifying the low-level routines for a color graphics port, you
must always use the SetStdCProcs procedure instead of
SetStdProcs. ▲

The chapter “Pictures” in this book provides sample code and explanations for changing

the standard low-level routines for reading and writing pictures.

QuickDraw Drawing Reference

This section describes the data structures, routines, and resources that QuickDraw

provides to assist you in drawing lines and shapes onscreen.

“Data Structures” shows the Pascal data structures for the Polygon, PenState,

QDProcs, and Pattern data types.

“Routines” describes QuickDraw routines for drawing lines, rectangles, rounded

rectangles, ovals, arcs, wedges, polygons, and regions. “Routines” also describes

routines for calculating, scaling, mapping, copying bits between, and otherwise

manipulating these graphic entities.

“Resources” describes the pattern and pattern list resources, which your application can

create to define its own bit patterns for drawing lines and shapes.

Data Structures

This section describes the Polygon record, the PenState record, the QDProcs record,

and the Pattern record. Although this chapter describes routines for creating and

manipulating rectangles and regions, the data structures you can use to define these

entities are described in the chapter “Basic QuickDraw.”

Your application typically does not create Polygon or Pattern records. Instead, you

use the OpenPoly function (described on page 3-78) to create a polygon, and

QuickDraw creates the necessary record. Although you can create a Pattern record in

your program code, it is usually easier to create patterns using the pattern or pattern list

resources, which are described beginning on page 3-140.

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-37

You need to use the QDProcs record only if you customize one or more of QuickDraw’s

low-level drawing routines. You can use the SetStdProcs procedure, described on

page 3-130, to create a QDProcs record.

You can use a PenState record to save the location, size, pattern, and pattern mode of a

graphics pen. The GetPenState procedure, described on page 3-43, automatically

creates a pen state record. You can use the SetPenState procedure, described on

page 3-43, to restore the values stored in a PenState record to the current graphics pen.

Polygon

After you use the OpenPoly function to create a polygon, QuickDraw begins collecting

the line-drawing information you provide into a Polygon record, which is a data

structure of type Polygon. The OpenPoly function returns a handle to the newly

allocated Polygon record. Thereafter, your application normally refers to your new

polygon by this handle, because QuickDraw routines such as FramePoly and

PaintPoly expect a handle to a Polygon record as their first parameter.

A polygon is defined by a sequence of connected lines. A Polygon record consists of

two fixed-length fields followed by a variable-length array of points: the starting point

followed by each successive point to which a line is drawn.

Polygon =

RECORD

polySize: Integer; {size in bytes}

polyBBox: Rect; {bounding rectangle}

polyPoints: ARRAY[0..0] OF Point; {vertices of polygon}

END;

Field descriptions

polySize The size in bytes of this record.

polyBBox The rectangle that bounds the polygon.

polyPoints An array of points: the starting point followed by each successive
point to which a line is drawn.

PenState

The GetPenState procedure (described on page 3-43) saves the location, size, pattern,

and pattern mode of the graphics pen for the current graphics port in a PenState

record, which is a data structure of type PenState. After changing the graphics pen as

necessary, you can later restore these pen states with the SetPenState procedure

(described on page 3-43).

C H A P T E R 3

QuickDraw Drawing

3-38 QuickDraw Drawing Reference

Here is how a PenState record is defined:

TYPE PenState =

RECORD

pnLoc: Point; {pen location}

pnSize: Point; {pen size}

pnMode: Integer; {pen's pattern mode}

pnPat: Pattern; {pen pattern}

END;

Field descriptions

pnLoc For the current graphics port at the time the GetPenState
procedure was called, the value of that graphics port’s pnLoc field.
This value is the point where QuickDraw begins drawing next. The
location of the graphics pen is a point in the graphics port’s
coordinate system, not a pixel in a bit image. The upper-left corner
of the pen is at the pen location; the graphics pen hangs below and
to the right of this point.

pnSize For the current graphics port at the time the GetPenState
procedure was called, the value of that graphics port’s pnSize
field. The graphics pen is rectangular in shape, and its width and
height are specified by the values in the pnSize field. The default
size is a 1-by-1 bit square; the width and height can range from 0 by
0 to 32,767 by 32,767. If either the pen width or the pen height is 0,
the pen does not draw. Heights or widths of less than 0 are
undefined.

pnMode The pattern mode—that is, for the current graphics port at the time
the GetPenState procedure was called, the value of that graphics
port’s pnMode field. This value determines how the pen pattern is
to affect what’s already in the bit image when lines or shapes are
drawn. When the graphics pen draws, QuickDraw first determines
what bits in the bit image are affected, finds their corresponding bits
in the pattern, and then transfers the bits from the pattern into the
image according to this mode, which specifies one of eight Boolean
transfer operations. The resulting bit is stored into its proper place
in the bit image. The various pattern modes are described in
“Boolean Transfer Modes With 1-Bit Pixels” beginning on page 3-8.

pnPat For the current graphics port at the time the GetPenState
procedure was called, the pen pattern for that graphics port. This
pattern determines how the bits under the graphics pen are affected
when lines or shapes are drawn.

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-39

QDProcs

You need to use the QDProcs record, which is a data structure of type QDProcs, only

if you customize one or more of QuickDraw’s low-level drawing routines. You can use

the SetStdProcs procedure, described on page 3-130, to create a QDProcs record.

The QDProcs record contains pointers to low-level drawing routines. QuickDraw’s

standard low-level drawing routines are described in “Customizing QuickDraw

Operations” beginning on page 3-129. You can change the fields of this record to point to

routines of your own devising.

TYPE QDProcsPtr = ^QDProcs;

QDProcs =

RECORD

textProc: Ptr; {text drawing}

lineProc: Ptr; {line drawing}

rectProc: Ptr; {rectangle drawing}

rRectProc: Ptr; {roundRect drawing}

ovalProc: Ptr; {oval drawing}

arcProc: Ptr; {arc/wedge drawing}

polyProc: Ptr; {polygon drawing}

rgnProc: Ptr; {region drawing}

bitsProc: Ptr; {bit transfer}

commentProc:Ptr; {picture comment processing}

txMeasProc: Ptr; {text width measurement}

getPicProc: Ptr; {picture retrieval}

putPicProc: Ptr; {picture saving}

 END;

Field descriptions

textProc A pointer to the low-level routine that draws text. The standard
QuickDraw routine is the StdText procedure.

lineProc A pointer to the low-level routine that draws lines. The standard
QuickDraw routine is the StdLine procedure.

rectProc A pointer to the low-level routine that draws rectangles. The
standard QuickDraw routine is the StdRect procedure.

rRectProc A pointer to the low-level routine that draws rounded rectangles.
The standard QuickDraw routine is the StdRRect procedure.

ovalProc A pointer to the low-level routine that draws ovals. The standard
QuickDraw routine is the StdOval procedure.

arcProc A pointer to the low-level routine that draws arcs. The standard
QuickDraw routine is the StdArc procedure.

polyProc A pointer to the low-level routine that draws polygons. The
standard QuickDraw routine is the StdPoly procedure.

C H A P T E R 3

QuickDraw Drawing

3-40 QuickDraw Drawing Reference

rgnProc A pointer to the low-level routine that draws regions. The standard
QuickDraw routine is the StdRgn procedure.

bitsProc A pointer to the low-level routine that copies bitmaps. The standard
QuickDraw routine is the StdBits procedure.

commentProc A pointer to the low-level routine for processing a picture comment.
The standard QuickDraw routine is the StdComment procedure.

txMeasProc A pointer to the low-level routine for measuring text width. The
standard QuickDraw routine is the StdTxtMeas function.

getPicProc A pointer to the low-level routine for retrieving information from
the definition of a picture. The standard QuickDraw routine is the
StdGetPic procedure.

putPicProc A pointer to the low-level routine for saving information as the
definition of a picture. The standard QuickDraw routine is the
StdPutPic procedure.

You can use the SetStdProcs procedure to set all the fields of the QDProcs record to

point to QuickDraw’s standard routines, and then reset the ones for which you have

your own routines.

Pattern

Your application typically does not create Pattern records, which are data structures of

type Pattern. Although you can create Pattern records in your program code, it is

usually easier to create bit patterns using the pattern or pattern list resource, described

beginning on page 3-140.

A bit pattern is a 64-bit image, organized as an 8-by-8 bit square, that defines a repeating

design or tone. When a pattern is drawn, it’s aligned so that adjacent areas of the same

pattern in the same graphics port form a continuous, coordinated pattern. QuickDraw

provides predefined patterns in global variables named white, black, gray, ltGray,

and dkGray. A Pattern record is defined as follows:

TYPE PatPtr = ^Pattern;

PatHandle = ^PatPtr;

Pattern = PACKED ARRAY[0..7] OF 0..255;

The row width of a pattern is 1 byte.

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-41

Routines

This section describes QuickDraw’s routines for drawing lines, rectangles, rounded

rectangles, ovals, arcs, wedges, polygons, and regions. This section also describes

routines for calculating, scaling, mapping, copying bits between, and otherwise

manipulating these graphic entities.

These routines use your current graphics port as their drawing environment. You can

use these routines to draw into basic graphics ports (described in the chapter “Basic

QuickDraw”) and color graphics ports (described in the chapter “Color QuickDraw”).

See the chapter “Pictures” for descriptions of routines that create and draw pictures. See

the chapter “Cursor Utilities” for information about drawing cursors. See the chapter

“QuickDraw Text” in Inside Macintosh: Text for descriptions of QuickDraw’s routines for

drawing and manipulating text.

Managing the Graphics Pen

Every graphics port contains one, and only one, graphics pen with which to perform

drawing operations. You use this metaphorical pen to draw lines, shapes, and text.

You can use the HidePen and ShowPen procedures to change the pen’s visibility, the

PenSize procedure to change its shape, the PenPat procedure to change its pattern,

and the PenMode procedure to change its pattern mode. To determine the size, location,

pattern, and pattern mode of the graphics pen, you can use the GetPenState

procedure. If you need to temporarily change these characteristics, you can use the

SetPenState procedure to restore the graphics pen to a state previously captured

by GetPenState.

Upon the creation of a graphics port, QuickDraw assigns these initial values to the

graphics pen: a size of (1,1), a pattern of all-black pixels, and the patCopy pattern mode.

After changing any of these values, you can use the PenNormal procedure to return

these initial values to the graphics pen.

These pen-manipulation routines use the local coordinate system of the current graphics

port. Remember that each graphics port has its own pen, the state of which is stored in

several fields of its GrafPort or CGrafPort record. If you draw in one graphics port,

change to another, and return to the first, the pen for the first graphics port has the same

state as when you left it. (The basic graphics port is described in the chapter “Basic

QuickDraw,” and the color graphics port is described in the chapter “Color QuickDraw.”)

C H A P T E R 3

QuickDraw Drawing

3-42 QuickDraw Drawing Reference

HidePen

To give the graphics pen invisible ink (which means that pen drawing doesn’t show on

the screen), use the HidePen procedure.

PROCEDURE HidePen;

DESCRIPTION

The HidePen procedure decrements the pnVis field of the current graphics port. The

pnVis field is initialized to 0 by the OpenPort procedure. Whenever pnVis is negative,

the pen doesn’t draw on the screen. The pnVis field keeps track of the number of

times the pen has been hidden to compensate for nested calls to the HidePen and

ShowPen routines.

Every call to HidePen should be balanced by a subsequent call to ShowPen, which is

described next.

The HidePen procedure is called by the OpenRgn, OpenPicture, and OpenPoly

routines so that you can create regions, pictures, and polygons without drawing on the

screen.

ShowPen

To change the ink of a graphics pen from invisible (which means that pen drawing

doesn’t show on the screen) to visible (so that pen drawing does appear on the screen),

you can use the ShowPen procedure.

PROCEDURE ShowPen;

DESCRIPTION

The ShowPen procedure increments the pnVis field of the current graphics port. For 0

or positive values, pen drawing shows on the screen.

For example, if you have used the HidePen procedure to decrement the pnVis field

from 0 to –1, you can use the ShowPen procedure to make its value 0 so that QuickDraw

resumes drawing on the screen. Subsequent calls to ShowPen increment pnVis beyond

0, so every call to ShowPen should be balanced by a call to HidePen.

ShowPen is called by the procedures CloseRgn (described on page 3-89), ClosePoly

(described on page 3-79), and ClosePicture (described in the chapter “Pictures” in

this book).

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-43

GetPen

To determine the location of the graphics pen, use the GetPen procedure.

PROCEDURE GetPen (VAR pt: Point);

pt The graphics pen’s current position in the current graphics port.

DESCRIPTION

In the pt parameter, the GetPen procedure returns the current pen position. The point

returned is in the local coordinates of the current graphics port.

GetPenState

To determine the graphics pen’s location, size, pattern, and pattern mode, you can use

the GetPenState procedure.

PROCEDURE GetPenState (VAR pnState: PenState);

pnState A PenState record for holding information about the graphics pen.

DESCRIPTION

The GetPenState procedure saves the location, size, pattern, and pattern mode of the

graphics pen for the current graphics port in a PenState record, which the

GetPenState procedure returns in the pnState parameter.

After changing the graphics pen as necessary, you can later restore these pen states with

the SetPenState procedure (described next).

SEE ALSO

The PenState record is described on page 3-37.

SetPenState

To restore the state of the graphics pen that was saved with the GetPenState

procedure, use the SetPenState procedure.

PROCEDURE SetPenState (pnState: PenState);

pnState A PenState record previously created with the GetPenState
procedure.

C H A P T E R 3

QuickDraw Drawing

3-44 QuickDraw Drawing Reference

DESCRIPTION

The SetPenState procedure sets the graphics pen’s location, size, pattern, and pattern

mode in the current graphics port to the values stored in the PenState record that you

specify in the pnState parameter.

SEE ALSO

The PenState record is described on page 3-37.

PenSize

To set the dimensions of the graphics pen in the current graphics port, use the PenSize

procedure.

PROCEDURE PenSize (width,height: Integer);

width The pen width, as an integer from 0 to 32,767. If you set the value to 0, the
pen does not draw. Values less than 0 are undefined.

height The pen height, as an integer from 0 to 32,767. If you set the value to 0, the
pen does not draw. Values less than 0 are undefined.

DESCRIPTION

The PenSize procedure sets the width that you specify in the width parameter and the

height that you specify in the height parameter for the graphics pen in the current

graphics port. All subsequent calls to the Line and LineTo procedures and to the

procedures that draw framed shapes in the current graphics port use the new pen

dimensions.

You can get the current pen dimensions from the pnSize field of the current graphics

port, where the width and height are stored as a Point record.

SEE ALSO

Listing 3-2 on page 3-20 illustrates how to use this procedure.

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-45

PenMode

To set the pattern mode of the graphics pen in the current graphics port, use the

PenMode procedure.

PROCEDURE PenMode (mode: Integer);

mode The pattern mode. The following list shows the constants you can
use—and the values they represent—for specifying the pattern mode.

CONST

patCopy = 8; {where pattern pixel is black, apply }

{ foreground color to destination pixel; }

{ where pattern pixel is white, apply }

{ background color to destination pixel}

patOr = 9; {where pattern pixel is black, invert }

{ destination pixel; where pattern }

{ pixel is white, leave }

{ destination pixel unaltered}

patXor = 10; {where pattern pixel is black, invert }

{ destination pixel; where pattern }

{ pixel is white, leave destination }

{ pixel unaltered}

patBic = 11; {where pattern pixel is black, apply }

{ background color to destination pixel; }

{ where pattern pixel is white, leave }

{ destination pixel unaltered}

notPatCopy = 12; {where pattern pixel is black, apply }

{ background color to destination pixel; }

{ where pattern pixel is white, apply }

{ foreground color to destination pixel}

notPatOr = 13; {where pattern pixel is black, leave }

{ destination pixel unaltered; where }

{ pattern pixel is white, apply }

{ foreground color to destination pixel}

notPatXor = 14; {where pattern pixel is black, }

{ leave destination pixel unaltered; }

{ where pattern pixel is white, }

{ invert destination pixel}

notPatBic = 15; {where pattern pixel is black, }

{ leave destination pixel unaltered; }

{ where pattern pixel is white, apply }

{ background color to destination pixel}

C H A P T E R 3

QuickDraw Drawing

3-46 QuickDraw Drawing Reference

DESCRIPTION

Using the pattern mode you specify in the mode parameter, the PenMode procedure sets

the manner in which the pattern of the graphics pen is transferred onto the bitmap (or

pixel map) when you draw lines or shapes in the current graphics port. These actions are

illustrated in Figure 3-4 on page 3-10.

If you specify a source mode (such as one used with the CopyBits procedure) instead of

a pattern mode, no drawing is performed.

The current pattern mode is stored in the pnMode field of the current graphics port. The

initial pattern mode value is patCopy, in which the pen pattern is copied directly to the

bitmap.

To use highlighting, you can add this constant or its value to the source or pattern mode:

CONST

 hilite = 50; {add to source or pattern mode for highlighting}

With highlighting, QuickDraw replaces the background color with the highlight color

when your application draws or copies images between graphics ports. This has the

visual effect of using a highlighting pen to select the object. (The global variable

HiliteRGB is read from parameter RAM when the machine starts. Basic graphics ports

use the color stored in the HiliteRGB global variable as the highlight color. Color

graphics ports default to the HiliteRGB global variable, but can be overridden by the

HiliteColor procedure, described in the chapter “Color QuickDraw.”)

SPECIAL CONSIDERATIONS

When your application draws with a pixel pattern, Color QuickDraw ignores the pattern

mode and simply transfers the pattern directly to the pixel map without regard to the

foreground and background colors.

The results of inverting a pixel are predictable only with direct pixels or 1-bit pixel maps.

For indexed pixels, Color QuickDraw performs the inversion on the pixel indexes, which

means the results depend entirely on the contents of the color table (which is described

in the chapter “Color QuickDraw”). The eight colors used in basic QuickDraw are

stored in a color table represented by the global variable QDColors. To display those

eight basic QuickDraw colors on an indexed device, Color QuickDraw uses the Color

Manager to obtain indexes to the colors in the CLUT that best map to the colors in the

QDColors color table. Because the index, not the color value, is inverted, the results are

unpredictable.

SEE ALSO

Pattern modes are discussed in detail in “Boolean Transfer Modes With 1-Bit Pixels”

beginning on page 3-8 of this chapter and in “Boolean Transfer Modes With Color

Pixels” beginning on page 4-32 in the chapter “Color QuickDraw.”

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-47

PenPat

To set the bit pattern to be used by the graphics pen in the current graphics port, use the

PenPat procedure.

PROCEDURE PenPat (pat: Pattern);

pat A bit pattern, as defined by a Pattern record.

DESCRIPTION

The PenPat procedure sets the graphics pen to use the bit pattern defined in the

Pattern record that you specify in the pat parameter. (The standard patterns white,

black, gray, ltGray, and dkGray are predefined; the initial bit pattern for the pen

is black.) This pattern is stored in the pnPat field of a GrafPort record. The

QuickDraw painting procedures (such as PaintRect) also use the pen’s pattern when

drawing a shape.

The PenPat procedure also sets a bit pattern for the graphics pen in a color graphics

port. The PenPat procedure creates a handle, of type PixPatHandle, for the bit pattern

and stores this handle in the pnPixPat field of the CGrafPort record. This pattern

always uses the graphics port’s current foreground and background colors.

SPECIAL CONSIDERATIONS

The PenPat procedure may move or purge memory blocks in the application heap. Your

application should not call this procedure at interrupt time.

SEE ALSO

The Pattern record is described on page 3-40. To define your own patterns, you

typically create pattern or pattern list resources, which are described beginning on

page 3-140.

The CGrafPort record is described in the chapter “Color QuickDraw.” To set the

graphics pen to use a multicolored pixel pattern in a color graphics port, use the

PenPixPat procedure, which is described in the chapter “Color QuickDraw.”

Listing 3-3 on page 3-21 illustrates how to use the PenPat procedure.

C H A P T E R 3

QuickDraw Drawing

3-48 QuickDraw Drawing Reference

PenNormal

To set the size, pattern, and pattern mode of the graphics pen in the current graphics port

to their initial values, use the PenNormal procedure.

PROCEDURE PenNormal;

DESCRIPTION

The PenNormal procedure restores the size, pattern, and pattern mode of the graphics

pen in the current graphics port to their initial values: a size of 1 pixel by 1 pixel, a

pattern mode of patCopy, and a pattern of black. The pen location does not change.

SPECIAL CONSIDERATIONS

The PenNormal procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

Changing the Background Bit Pattern

Each graphics port has a background pattern that’s used when an area is erased (such as

by using the EraseRect, EraseRoundRect, EraseArc, ErasePoly, and EraseRgn

procedures) and when pixels are scrolled out of an area (such as by using the

ScrollRect procedure described in the chapter “Basic QuickDraw”). The background

pattern is stored in the bkPat field of every basic graphics port. You can use the

BackPat procedure to change the bit pattern used as the background color by the

current graphics port (black and white or color).

BackPat

To change the bit pattern used as the background pattern by the current graphics port,

use the BackPat procedure.

PROCEDURE BackPat (pat: Pattern);

pat A bit pattern, as defined by a Pattern record.

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-49

DESCRIPTION

The BackPat procedure sets the bit pattern defined in the Pattern record, which you

specify in the pat parameter, to be the background pattern. (The standard bit patterns

white, black, gray, ltGray, and dkGray are predefined; the initial background

pattern for the graphics port is white.) This pattern is stored in the bkPat field of a

GrafPort record.

The BackPat procedure also sets a bit pattern for the background color in a color

graphics port. The BackPat procedure creates a handle, of type PixPatHandle, for the

bit pattern and stores this handle in the bkPixPat field of the CGrafPort record. As in

basic graphics ports, Color QuickDraw draws patterns in color graphics ports at the time

of drawing, not at the time you use PenPat to set the pattern.

SPECIAL CONSIDERATIONS

The BackPat procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

SEE ALSO

The Pattern record is described on page 3-40. To define your own patterns, you

typically create pattern or pattern list resources, which are described beginning on

page 3-140.

The CGrafPort record is described in the chapter “Color QuickDraw.” To use a

multicolored background pattern in a color graphics port, use the BackPixPat

procedure, which is described in the chapter “Color QuickDraw.”

Drawing Lines

A line is defined by two points: the current location of the graphics pen and its

destination. You specify where to begin drawing a line by using the MoveTo or Move

procedure to place the graphics pen at some point in the window’s local coordinate

system, and then using the LineTo or Line procedure to draw a line from there to

another point.

C H A P T E R 3

QuickDraw Drawing

3-50 QuickDraw Drawing Reference

MoveTo

To move the graphics pen to a particular location in the current graphics port, use the

MoveTo procedure.

PROCEDURE MoveTo (h,v: Integer);

h The horizontal coordinate of the graphics pen’s new position.

v The vertical coordinate of the graphics pen’s new position.

DESCRIPTION

The MoveTo procedure changes the graphics pen’s current location to the new horizontal

coordinate you specify in the h parameter and the new vertical coordinate you specify in

the v parameter. Specify the new location in the local coordinates of the current graphics

port. The MoveTo procedure performs no drawing.

SEE ALSO

Listing 3-1 on page 3-18 illustrates how to use this procedure.

Move

To move the graphics pen a particular distance, use the Move procedure.

PROCEDURE Move (dh,dv: Integer);

dh The horizontal distance of the graphics pen’s movement.

dv The vertical distance of the graphics pen’s movement.

DESCRIPTION

The Move procedure moves the graphics pen from its current location in the current

graphics port a horizontal distance that you specify in the dh parameter and a vertical

distance that you specify in the dv parameter. The Move procedure calls

MoveTo(h+dh,v+dv)

where (h,v) is the graphics pen’s current location in local coordinates. The Move

procedure performs no drawing.

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-51

SEE ALSO

Listing 3-1 on page 3-18 illustrates how to use this procedure.

LineTo

To draw a line from the graphics pen’s current location to a new location, use the

LineTo procedure.

PROCEDURE LineTo (h,v: Integer);

h The horizontal coordinate of the graphics pen’s new location.

v The vertical coordinate of the graphics pen’s new location.

DESCRIPTION

The LineTo procedure draws a line from the graphics pen’s current location in the

current graphics port to the new location (h,v), which you specify in the local

coordinates of the current graphics port. If you are using LineTo to draw a region or

polygon, its outline is infinitely thin and is not affected by the values of the pnSize,

pnMode, or pnPat field of the graphics port.

SPECIAL CONSIDERATIONS

The LineTo procedure may move or purge memory blocks in the application heap. Your

application should not call this procedure at interrupt time.

SEE ALSO

Listing 3-1 on page 3-18 illustrates how to use this procedure.

Line

To draw a line a specified distance from the graphics pen’s current location in the current

graphics port, use the Line procedure.

PROCEDURE Line (dh,dv: Integer);

dh The horizontal distance of the graphics pen’s movement.

dv The vertical distance of the graphics pen’s movement.

C H A P T E R 3

QuickDraw Drawing

3-52 QuickDraw Drawing Reference

DESCRIPTION

Starting at the current location of the graphics pen, the Line procedure draws a line the

horizontal distance that you specify in the dh parameter and the vertical distance that

you specify in the dv parameter. The Line procedure calls

LineTo(h+dh,v+dv)

where (h,v) is the current location in local coordinates. The pen location becomes the

coordinates of the end of the line after the line is drawn. If you are using Line to draw a

region or polygon, its outline is infinitely thin and is not affected by the values of the

pnSize, pnMode, and pnPat fields of the graphics port.

SPECIAL CONSIDERATIONS

The Line procedure may move or purge memory blocks in the application heap. Your

application should not call this procedure at interrupt time.

SEE ALSO

Listing 3-1 on page 3-18 illustrates how to use this procedure.

Creating and Managing Rectangles

You can use a rectangle, which is defined by a Rect record, to specify locations and sizes

for various graphics operations. (The Rect data type is described in the chapter “Basic

QuickDraw.”) You can use the SetRect procedure to create a rectangle, OffsetRect to

move one, and InsetRect to shrink or expand one. You can determine whether

two rectangles intersect with the SectRect procedure, whether a pixel is enclosed in a

rectangle with the PtInRect procedure, whether two rectangles are equal with the

EqualRect procedure, and whether a rectangle is an empty rectangle with the

EmptyRect procedure. You can use the UnionRect procedure to calculate the smallest

rectangle that encloses two other rectangles, PtToAngle to calculate the angle from the

middle of a rectangle to a point, and Pt2Rect to determine the smallest rectangle that

encloses two points.

If the points or rectangles supplied to these routines are defined in a graphics port other

than your current graphics port, you must convert them to the local coordinate system of

your current graphics port. You can accomplish this by using the SetPort procedure to

change to the graphics port containing the points or rectangles, using the LocalGlobal

procedure to convert their locations to global coordinates, using SetPort to return to

your starting graphics port, and then using the GlobalToLocal procedure to convert

the locations of points or rectangles to the local coordinates of your current graphics

port. These procedures are described in the chapter “Basic QuickDraw.”

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-53

SetRect

To assign coordinates to a rectangle, you can use the SetRect procedure.

PROCEDURE SetRect (VAR r: Rect; left,top,right,bottom: Integer);

r The rectangle to set.

left The horizontal coordinate of the new upper-left corner of the rectangle.

top The vertical coordinate of the new upper-left corner of the rectangle.

right The horizontal coordinate of the new lower-right corner of the rectangle.

bottom The vertical coordinate of the new lower-right corner of the rectangle.

DESCRIPTION

The SetRect procedure assigns the coordinates you specify in the left, top, right,

and bottom parameters to the rectangle that you specify in the r parameter. This

procedure is provided to help you shorten your program text. If you want a more

readable text, at the expense of source text length, you can instead assign integers (or

points) directly into the fields of a Rect record.

SEE ALSO

Listing 3-4 on page 3-23 illustrates how to use this procedure. The data structure of type

Rect is described in the chapter “Basic QuickDraw.”

OffsetRect

To move a rectangle, use the OffsetRect procedure.

PROCEDURE OffsetRect (VAR r: Rect; dh,dv: Integer);

r The rectangle to move.

dh The horizontal distance to move the rectangle.

dv The vertical distance to move the rectangle.

C H A P T E R 3

QuickDraw Drawing

3-54 QuickDraw Drawing Reference

DESCRIPTION

The OffsetRect procedure moves the rectangle that you specify in the r parameter by

adding the value you specify in the dh parameter to each of its horizontal coordinates

and the value you specify in the dv parameter to each of its vertical coordinates. If the

dh and dv parameters are positive, the movement is to the right and down; if either is

negative, the corresponding movement is in the opposite direction. The rectangle retains

its shape and size; it’s merely moved on the coordinate plane. The movement doesn’t

affect the screen unless you subsequently call a routine to draw within the rectangle.

InsetRect

To shrink or expand a rectangle, use the InsetRect procedure.

PROCEDURE InsetRect (VAR r: Rect; dh,dv: Integer);

r The rectangle to alter.

dh The horizontal distance to move the left and right sides in toward or
outward from the center of the rectangle.

dv The vertical distance to move the top and bottom sides in toward or
outward from the center of the rectangle.

DESCRIPTION

The InsetRect procedure shrinks or expands the rectangle that you specify in the

r parameter: the left and right sides are moved in by the amount you specify in the dh

parameter; the top and bottom are moved toward the center by the amount you specify

in the dv parameter. If the value you pass in dh or dv is negative, the appropriate pair of

sides is moved outward instead of inward. The effect is to alter the size by 2*dh

horizontally and 2*dv vertically, with the rectangle remaining centered in the same

place on the coordinate plane.

If the resulting width or height becomes less than 1, the rectangle is set to the empty

rectangle (0,0,0,0).

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-55

SectRect

To determine whether two rectangles intersect, you can use the SectRect function.

FUNCTION SectRect (src1,src2: Rect; VAR dstRect: Rect): Boolean;

src1 The first of two rectangles to test for intersection.

src2 The second of two rectangles to test for intersection.

dstRect The rectangle marking the intersection of the first two rectangles.

DESCRIPTION

The SectRect function calculates the rectangle that delineates the intersection of the

two rectangles you specify in the src1 and src2 parameters. The SectRect function

returns the area of intersection in the dstRect parameter and a function result of TRUE

if they intersect or FALSE if they don’t. Rectangles that touch at a line or a point are not

considered intersecting, because their intersection rectangle (actually, in this case, an

intersection line or point) doesn’t enclose any pixels in the bit image.

If the rectangles don’t intersect, the destination rectangle is set to (0,0,0,0). The

SectRect procedure works correctly even if one of the source rectangles is also the

destination.

UnionRect

To calculate the smallest rectangle that encloses two rectangles, use the UnionRect

procedure.

PROCEDURE UnionRect (src1,src2: Rect; VAR dstRect: Rect);

src1 The first of two rectangles to enclose.

src2 The second of two rectangles to enclose.

dstRect The rectangle that encloses them.

DESCRIPTION

The UnionRect procedure returns in the dstRect parameter the smallest rectangle that

encloses both of the rectangles you specify in the src1 and src2 parameters. One of the

source rectangles may also be the destination.

C H A P T E R 3

QuickDraw Drawing

3-56 QuickDraw Drawing Reference

PtInRect

To determine whether a pixel below is enclosed in a rectangle, use the PtInRect

function.

FUNCTION PtInRect (pt: Point; r: Rect): Boolean;

pt The point to test.

r The rectangle to test.

DESCRIPTION

The PtInRect function determines whether the pixel below and to the right of the point

you specify in the pt parameter is enclosed in the rectangle that you specify in the Rect

parameter. The PtInRect function returns TRUE if it is, FALSE if it is not.

Pt2Rect

To determine the smallest rectangle that encloses two given points, use the Pt2Rect

procedure.

PROCEDURE Pt2Rect (pt1,pt2: Point; VAR dstRect: Rect);

pt1 The first of two points to enclose.

pt2 The second of two points to enclose.

dstRect The smallest rectangle that can enclose them.

DESCRIPTION

The Pt2Rect procedure returns in the dstRect parameter the smallest rectangle that

encloses the two points you specify in the pt1 and pt2 parameters.

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-57

PtToAngle

To calculate an angle between a vertical line pointing straight up from the center of a

rectangle and a line from the center to a given point, use the PtToAngle procedure.

PROCEDURE PtToAngle (r: Rect; pt: Point; VAR angle: Integer);

r The rectangle to examine.

pt The point to which an angle is to be calculated.

angle The resulting angle.

DESCRIPTION

The PtToAngle procedure returns in the angle parameter the angle between a vertical

line (pointing straight up from the center of the rectangle that you specify in the r

parameter) and a line from the center of that rectangle to a point (which you specify in

the pt parameter).

The result returned in the angle parameter is specified in degrees from 0 to 359,

measured clockwise from 12 o’clock, with 90° at 3 o’clock, 180° at 6 o’clock, and 270° at

9 o’clock. Other angles are measured relative to the rectangle. If the line to the given

point goes through the upper-right corner of the rectangle, the angle returned is 45°,

even if the rectangle isn’t square; if it goes through the lower-right corner, the angle is

135°, and so on, as shown in Figure 3-18.

Figure 3-18 Forty-five-degree angles as returned by the PtToAngle procedure

The angle returned might be used as input to one of the procedures that manipulate arcs

and wedges, as described in “Drawing Arcs and Wedges” beginning on page 3-71.

C H A P T E R 3

QuickDraw Drawing

3-58 QuickDraw Drawing Reference

EqualRect

To determine whether two rectangles are equal, you can use the EqualRect function.

FUNCTION EqualRect (rect1,rect2: Rect): Boolean;

rect1 The first of two rectangles to compare.

rect2 The second of two rectangles to compare.

DESCRIPTION

The EqualRect function compares the rectangles you specify in the rect1 and rect2

parameters and returns TRUE if they’re equal, FALSE if they’re not.

EmptyRect

To determine whether a rectangle is an empty rectangle, use the EmptyRect function.

FUNCTION EmptyRect (r: Rect): Boolean;

r The rectangle to examine.

DESCRIPTION

The EmptyRect function returns TRUE if the rectangle that you specify in the r

parameter is an empty rectangle, FALSE if it is not. A rectangle is considered empty if the

bottom coordinate is less than or equal to the top coordinate or if the right coordinate is

less than or equal to the left.

Drawing Rectangles

A rectangle is defined by a data structure of type Rect, in which you specify two points

(for the upper-left and lower-right corners of the rectangle) or four boundary coordinates

(one for each side of the rectangle). After defining a rectangle (such as by using the

SetRect procedure), you can use the FrameRect procedure to outline it with the size,

pattern, and pattern mode of the graphics pen.

You can use the PaintRect procedure to draw a rectangle’s interior with the pattern of

the graphics pen, using the pattern mode of the graphics pen.

Using the FillRect procedure, you can draw a rectangle’s interior with any pattern

you specify. The procedure transfers the pattern with the patCopy pattern mode, which

directly copies your requested pattern into the shape.

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-59

You can use the EraseRect procedure to erase a rectangle; this procedure fills the

rectangle’s interior with the background pattern for the current graphics port. Making

the shape blend into the background pattern of the graphics port effectively erases the

shape. For example, you can use EraseRect to erase the port rectangle for a window

before redrawing into the window.

You can use the InvertRect procedure to invert a rectangle; this procedure reverses the

colors of all pixels within the rectangle’s boundary. On a black-and-white monitor, this

changes all black pixels in the shape to white, and changes all white pixels to black.

Although this procedure operates on color pixels in color graphics ports, the results are

predictable only with direct pixels or 1-bit pixel maps.

FrameRect

To draw an outline inside a rectangle, use the FrameRect procedure.

PROCEDURE FrameRect (r: Rect);

r The rectangle to frame.

DESCRIPTION

Using the pattern, pattern mode, and size of the graphics pen for the current graphics

port, the FrameRect procedure draws an outline just inside the rectangle that you

specify in the r parameter. The outline is as wide as the pen width and as tall as the pen

height. The pen location does not change.

If a region is open and being formed, the outside outline of the new rectangle is

mathematically added to the region’s boundary.

SPECIAL CONSIDERATIONS

The FrameRect procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

SEE ALSO

Listing 3-4 on page 3-23 illustrates how to use this procedure.

C H A P T E R 3

QuickDraw Drawing

3-60 QuickDraw Drawing Reference

PaintRect

To paint a rectangle with the graphics pen’s pattern and pattern mode, use the

PaintRect procedure.

PROCEDURE PaintRect (r: Rect);

r The rectangle to paint.

DESCRIPTION

The PaintRect procedure draws the interior of the rectangle that you specify in the r

parameter with the pen pattern for the current graphics port, according to the pattern

mode for the current graphics port. The pen location does not change.

SPECIAL CONSIDERATIONS

The PaintRect procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

SEE ALSO

Listing 3-5 on page 3-24 illustrates how to use this procedure.

You can use the FillRect procedure, described next, to draw the interior of a rectangle

with a pen pattern different from that for the current graphics port.

FillRect

To fill a rectangle with any available bit pattern, use the FillRect procedure.

PROCEDURE FillRect (r: Rect; pat: Pattern);

r The rectangle to fill.

pat The bit pattern to use for the fill. Figure 3-3 on page 3-7 illustrates the
default fill patterns and the constants you can use to represent them.

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-61

DESCRIPTION

Using the patCopy pattern mode, the FillRect procedure draws the interior of the

rectangle that you specify in the r parameter with the pattern defined in the Pattern

record that you specify in the pat parameter. This procedure leaves the pen location

unchanged.

SPECIAL CONSIDERATIONS

The FillRect procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

SEE ALSO

Listing 3-5 on page 3-24 illustrates how to use this procedure.

The patCopy pattern mode is described in “Boolean Transfer Modes With 1-Bit Pixels”

beginning on page 3-8. The Pattern record is described on page 3-40. You can use the

GetPattern and GetIndPattern routines, described on page 3-126 and page 3-127,

respectively, to get a pattern stored in a resource.

You can use the PaintRect procedure, described in the previous section, to draw the

interior of a rectangle with the pen pattern for the current graphics port. To fill a

rectangle with a pixel pattern, use the FillCRect procedure, which is described in the

chapter “Color QuickDraw.”

EraseRect

To erase a rectangle, use the EraseRect procedure.

PROCEDURE EraseRect (r: Rect);

r The rectangle to erase.

DESCRIPTION

Using the patCopy pattern mode, the EraseRect procedure draws the interior of the

rectangle that you specify in the r parameter with the background pattern for the current

graphics port. This effectively erases the rectangle specified in the r parameter. For

example, you can use EraseRect to erase the port rectangle for a window before

redrawing into the window.

This procedure leaves the location of the graphics pen unchanged.

C H A P T E R 3

QuickDraw Drawing

3-62 QuickDraw Drawing Reference

SPECIAL CONSIDERATIONS

The EraseRect procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

SEE ALSO

Listing 6-2 on page 6-10 in the chapter “Offscreen Graphics Worlds” in this book

illustrates how to use EraseRect to initialize an offscreen pixel map. The patCopy

pattern mode is described in “Boolean Transfer Modes With 1-Bit Pixels” beginning on

page 3-8.

InvertRect

To invert the pixels enclosed by a rectangle, use the InvertRect procedure.

PROCEDURE InvertRect (r: Rect);

r The rectangle whose enclosed pixels are to be inverted.

DESCRIPTION

The InvertRect procedure inverts the pixels enclosed by the rectangle that you specify

in the r parameter. Every white pixel becomes black and every black pixel becomes

white. The pen location does not change.

SPECIAL CONSIDERATIONS

The InvertRect procedure was designed for 1-bit images in basic graphics ports. This

procedure operates on color pixels in color graphics ports, but the results are predictable

only with direct pixels or 1-bit pixel maps. For indexed pixels, Color QuickDraw

performs the inversion on the pixel indexes, which means the results depend entirely on

the contents of the CLUT (which is described in the chapter “Color QuickDraw”). The

eight colors used in basic QuickDraw are stored in a color table represented by the global

variable QDColors. To display those eight basic QuickDraw colors on an indexed

device, Color QuickDraw uses the Color Manager to obtain indexes to the colors in the

CLUT that best map to the colors in the QDColors color table. Because the index, not the

color value, is inverted, the results are unpredictable.

Inversion works better for direct pixels. Inverting a pure green, for example, that has red,

green, and blue component values of $0000, $FFFF, and $0000 results in magenta, which

has component values of $FFFF, $0000, and $FFFF.

The InvertRect procedure may move or purge memory blocks in the application

heap. Your application should not call this procedure at interrupt time.

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-63

Drawing Rounded Rectangles

As with rectangles, QuickDraw provides routines with which you can frame, paint, fill,

erase, and invert rounded rectangles. Rounded rectangles are rectangles with rounded

corners defined by the width and height of the ovals forming their corners.

You can use the FrameRoundRect procedure to draw an outline of a rounded rectangle

with the size, pattern, and pattern mode of the graphics pen. You can use the

PaintRoundRect procedure to draw a rounded rectangle’s interior with the pattern of

the graphics pen, using the pattern mode of the graphics pen.

Using the FillRoundRect procedure, you can draw a rounded rectangle’s interior with

any pattern you specify. The procedure transfers the pattern with the patCopy pattern

mode, which directly copies your requested pattern into the shape.

You can use the EraseRoundRect procedure to erase a rounded rectangle; this

procedure fills the rectangle’s interior with the background pattern for the current

graphics port.

You can use the InvertRoundRect procedure to invert a rounded rectangle; this

procedure reverses the colors of all pixels within the rounded rectangle. Although

this procedure operates on color pixels in color graphics ports, the results are predictable

only with 1-bit and direct color pixels.

When using these procedures, you specify a rectangle, which is defined by a data

structure of type Rect. You must also specify the width and height of the ovals that

describe the curvature of the rounded corners, as shown in Figure 3-19.

Figure 3-19 Oval width and height in rounded rectangles

C H A P T E R 3

QuickDraw Drawing

3-64 QuickDraw Drawing Reference

FrameRoundRect

To draw an outline inside a rounded rectangle, use the FrameRoundRect procedure.

PROCEDURE FrameRoundRect (r: Rect; ovalWidth,ovalHeight: Integer);

r The rectangle that defines the rounded rectangle’s boundaries.

ovalWidth The width of the oval defining the rounded corner.

ovalHeight
The height of the oval defining the rounded corner.

DESCRIPTION

Using the pattern, pattern mode, and size of the graphics pen for the current graphics

port, the FrameRoundRect procedure draws an outline just inside the rounded

rectangle bounded by the rectangle that you specify in the r parameter. The outline is as

wide as the pen width and as tall as the pen height. The pen location does not change.

Use the ovalWidth and ovalHeight parameters to specify the diameters of curvature

for the corners of the rounded rectangle.

If a region is open and being formed, the outside outline of the new rounded rectangle is

mathematically added to the region’s boundary.

SPECIAL CONSIDERATIONS

The FrameRoundRect procedure may move or purge memory blocks in the application

heap. Your application should not call this procedure at interrupt time.

PaintRoundRect

To paint a rounded rectangle with the graphics pen’s pattern and pattern mode, use the

PaintRoundRect procedure.

PROCEDURE PaintRoundRect (r: Rect; ovalWidth,ovalHeight: Integer);

r The rectangle that defines the rounded rectangle’s boundaries.

ovalWidth The width of the oval defining the rounded corner.

ovalHeight
The height of the oval defining the rounded corner.

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-65

DESCRIPTION

Using the pattern and pattern mode of the graphics pen for the current graphics port, the

PaintRoundRect procedure draws the interior of the rounded rectangle bounded by

the rectangle that you specify in the r parameter. Use the ovalWidth and ovalHeight

parameters to specify the diameters of curvature for the corners of the rounded rectangle.

The pen location does not change.

SPECIAL CONSIDERATIONS

The PaintRoundRect procedure may move or purge memory blocks in the application

heap. Your application should not call this procedure at interrupt time.

SEE ALSO

You can use the FillRoundRect procedure, described next, to draw the interior of a

rounded rectangle with a pen pattern different from that for the current graphics port.

FillRoundRect

To fill a rounded rectangle with any available bit pattern, use the FillRoundRect

procedure.

PROCEDURE FillRoundRect (r: Rect; ovalWidth,ovalHeight: Integer;

pat: Pattern);

r The rectangle that defines the rounded rectangle’s boundaries.

ovalWidth The width of the oval defining the rounded corner.

ovalHeight
The height of the oval defining the rounded corner.

pat The bit pattern to use for the fill. Figure 3-3 on page 3-7 illustrates the
default fill patterns and the constants you can use to represent them.

DESCRIPTION

Using the patCopy pattern mode, the FillRoundRect procedure draws the interior

of the rounded rectangle bounded by the rectangle that you specify in the r parameter

with the bit pattern defined in the Pattern record that you specify in the pat

parameter. Use the ovalWidth and ovalHeight parameters to specify the diameters of

curvature for the corners. The pen location does not change.

C H A P T E R 3

QuickDraw Drawing

3-66 QuickDraw Drawing Reference

SPECIAL CONSIDERATIONS

The FillRoundRect procedure may move or purge memory blocks in the application

heap. Your application should not call this procedure at interrupt time.

SEE ALSO

You can use the GetPattern and GetIndPattern routines, described on page 3-126

and page 3-127, respectively, to get a pattern stored in a resource. The patCopy pattern

mode is described in “Boolean Transfer Modes With 1-Bit Pixels” beginning on page 3-8.

The Pattern record is described on page 3-40.

You can use the PaintRoundRect procedure, described in the previous section, to draw

the interior of a rounded rectangle with the pen pattern for the current graphics port. To

fill a rounded rectangle with a pixel pattern, use the FillCRoundRect procedure,

which is described in the chapter “Color QuickDraw.”

EraseRoundRect

To erase a rounded rectangle, use the EraseRoundRect procedure.

PROCEDURE EraseRoundRect (r: Rect; ovalWidth,ovalHeight: Integer);

r The rectangle that defines the rounded rectangle’s boundaries.

ovalWidth The width of the oval defining the rounded corner.

ovalHeight
The height of the oval defining the rounded corner.

DESCRIPTION

Using the patCopy pattern mode, the EraseRoundRect procedure draws the interior

of the rounded rectangle bounded by the rectangle that you specify in the r parameter

with the background pattern of the current graphics port. This effectively erases the

rounded rectangle. Use the ovalWidth and ovalHeight parameters to specify the

diameters of curvature for the corners of the rounded rectangle.

This procedure leaves the location of the graphics pen unchanged.

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-67

SPECIAL CONSIDERATIONS

The EraseRoundRect procedure may move or purge memory blocks in the application

heap. Your application should not call this procedure at interrupt time.

SEE ALSO

The patCopy pattern mode is described in “Boolean Transfer Modes With 1-Bit Pixels”

beginning on page 3-8.

InvertRoundRect

To invert the pixels enclosed by a rounded rectangle, use the InvertRoundRect

procedure.

PROCEDURE InvertRoundRect (r: Rect;

 ovalWidth,

 ovalHeight: Integer);

r The rectangle that defines the rounded rectangle’s boundaries.

ovalWidth The width of the oval defining the rounded corner.

ovalHeight
The height of the oval defining the rounded corner.

DESCRIPTION

The InvertRoundRect procedure inverts the pixels enclosed by the rounded rectangle

bounded by the rectangle that you specify in the r parameter. Every white pixel becomes

black and every black pixel becomes white. The ovalWidth and ovalHeight

parameters specify the diameters of curvature for the corners. The pen location does not

change.

SPECIAL CONSIDERATIONS

The InvertRoundRect procedure was designed for 1-bit images in basic graphics

ports. This procedure operates on color pixels in color graphics ports, but the results are

predictable only with direct devices or 1-bit pixel maps. For indexed pixels, Color

QuickDraw performs the inversion on the pixel indexes, which means the results

depend entirely on the contents of the CLUT (which is described in the chapter “Color

QuickDraw”). The eight colors used in basic QuickDraw are stored in a color table

represented by the global variable QDColors. To display those eight basic QuickDraw

colors on an indexed device, Color QuickDraw uses the Color Manager to obtain indexes

to the colors in the CLUT that best map to the colors in the QDColors color table.

Because the index, not the color value, is inverted, the results are unpredictable.

C H A P T E R 3

QuickDraw Drawing

3-68 QuickDraw Drawing Reference

Inversion works better for direct pixels. Inverting a pure green, for example, that has red,

green, and blue component values of $0000, $FFFF, and $0000 results in magenta, which

has component values of $FFFF, $0000, and $FFFF.

The InvertRoundRect procedure may move or purge memory blocks in the

application heap. Your application should not call this procedure at interrupt time.

Drawing Ovals

An oval is a circular or elliptical shape defined by the bounding rectangle that encloses

it. You can use the FrameOval procedure to draw its outline, or the PaintOval or

FillOval procedure to draw its interior with a pattern. You can use the EraseOval

procedure to erase an oval, and you can use the InvertOval procedure to reverse the

colors of all pixels within the oval. (Although this procedure operates on color pixels

in color graphics ports, the results of InvertOval are predictable only with 1-bit or

direct color pixels.)

FrameOval

To draw an outline inside an oval, use the FrameOval procedure.

PROCEDURE FrameOval (r: Rect);

r The rectangle that defines the oval’s boundary.

DESCRIPTION

Using the pattern, pattern mode, and size of the graphics pen for the current graphics

port, the FrameOval procedure draws an outline just inside the oval with the bounding

rectangle that you specify in the r parameter. The outline is as wide as the pen width

and as tall as the pen height. The pen location does not change.

If a region is open and being formed, the outside outline of the new oval is

mathematically added to the region’s boundary.

SPECIAL CONSIDERATIONS

The FrameOval procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

SEE ALSO

Listing 3-6 on page 3-25 illustrates how to use this procedure.

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-69

PaintOval

To paint an oval with the graphics pen’s pattern and pattern mode, use the PaintOval

procedure.

PROCEDURE PaintOval (r: Rect);

r The rectangle that defines the oval’s boundary.

DESCRIPTION

Using the pen pattern and pattern mode for the current graphics port, the PaintOval

procedure draws the interior of an oval just inside the bounding rectangle that you

specify in the r parameter. The pen location does not change.

SPECIAL CONSIDERATIONS

The PaintOval procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

SEE ALSO

You can use the FillOval procedure, described next, to draw the interior of an oval

with a pen pattern different from that for the current graphics port.

FillOval

To fill an oval with any available bit pattern, use the FillOval procedure.

PROCEDURE FillOval (r: Rect; pat: Pattern);

r The rectangle that defines the oval’s boundaries.

pat The bit pattern to use for the fill. Figure 3-3 on page 3-7 illustrates the
default fill patterns and the constants you can use to represent them.

DESCRIPTION

Using the patCopy pattern mode and the bit pattern defined in the Pattern record that

you specify in the pat parameter, the FillOval procedure draws the interior of an oval

just inside the bounding rectangle that you specify in the r parameter. The pen location

does not change.

C H A P T E R 3

QuickDraw Drawing

3-70 QuickDraw Drawing Reference

SPECIAL CONSIDERATIONS

The FillOval procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

SEE ALSO

You can use the GetPattern and GetIndPattern routines, described on page 3-126

and page 3-127, respecively, to get a pattern stored in a resource. The patCopy pattern

mode is described in “Boolean Transfer Modes With 1-Bit Pixels” beginning on page 3-8.

The Pattern record is described on page 3-40.

You can use the PaintOval procedure, described in the previous section, to draw the

interior of an oval with the pen pattern for the current graphics port. To fill an oval with

a pixel pattern, use the FillCOval procedure, which is described in the chapter “Color

QuickDraw.”

EraseOval

To erase an oval, use the EraseOval procedure.

PROCEDURE EraseOval (r: Rect);

r The rectangle that defines the oval’s boundary.

DESCRIPTION

Using the background pattern for the current graphics port and the patCopy pattern

mode, the EraseOval procedure draws the interior of an oval just inside the bounding

rectangle that you specify in the r parameter. This effectively erases the oval bounded by

the specified rectangle.

This procedure leaves the location of the graphics pen unchanged.

SPECIAL CONSIDERATIONS

The EraseOval procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

SEE ALSO

The patCopy pattern mode is described in “Boolean Transfer Modes With 1-Bit Pixels”

beginning on page 3-8.

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-71

InvertOval

To invert the pixels enclosed by an oval, use the InvertOval procedure.

PROCEDURE InvertOval (r: Rect);

r The rectangle that defines the oval’s boundary.

DESCRIPTION

The InvertOval procedure inverts the pixels enclosed by an oval just inside the

bounding rectangle that you specify in the r parameter. Every white pixel becomes

black and every black pixel becomes white. The pen location does not change.

SPECIAL CONSIDERATIONS

The InvertOval procedure was designed for 1-bit images in basic graphics ports. This

procedure operates on color pixels in color graphics ports, but the results are predictable

only with direct devices or 1-bit pixel maps. For indexed pixels, Color QuickDraw

performs the inversion on the pixel indexes, which means the results depend entirely

on the contents of the CLUT (which is described in the chapter “Color QuickDraw”). The

eight colors used in basic QuickDraw are stored in a color table represented by the global

variable QDColors. To display those eight basic QuickDraw colors on an indexed

device, Color QuickDraw uses the Color Manager to obtain indexes to the colors in the

CLUT that best map to the colors in the QDColors color table. Because the index, not the

color value, is inverted, the results are unpredictable.

Inversion works better for direct pixels. Inverting a pure green, for example, that has red,

green, and blue component values of $0000, $FFFF, and $0000 results in magenta, which

has component values of $FFFF, $0000, and $FFFF.

The InvertOval procedure may move or purge memory blocks in the application

heap. Your application should not call this procedure at interrupt time.

Drawing Arcs and Wedges

An arc is defined as a portion of an oval’s circumference bounded by a pair of radii. A

wedge is a pie-shaped segment bounded by a pair of radii, and it extends from the center

of the oval to the circumference. You use the FrameArc procedure to draw an arc, and

you use the PaintArc or FillArc procedure to draw a wedge. Using the EraseArc

procedure, you can erase a wedge, and, using InvertArc, you can reverse the colors of

all pixels within a wedge. (Although this procedure operates on color pixels in color

graphics ports, the results of InvertArc are predictable only with 1-bit and direct color

pixels.)

C H A P T E R 3

QuickDraw Drawing

3-72 QuickDraw Drawing Reference

These procedures take three parameters: a rectangle that defines an oval’s boundaries, an

angle indicating the start of the arc (the variable startAngle), and an angle indicating

the arc’s extent (the variable arcAngle). For the angle parameters, 0° indicates a

vertical line straight up from the center of the oval. Positive values indicate angles in the

clockwise direction from this vertical line, and negative values indicate angles in the

counterclockwise direction, as shown in Figure 3-20.

Figure 3-20 Using angles to define the radii for arcs and wedges

FrameArc

To draw an arc of the oval that fits inside a rectangle, use the FrameArc procedure.

PROCEDURE FrameArc (r: Rect; startAngle,arcAngle: Integer);

r The rectangle that defines an oval’s boundaries.

startAngle
The angle indicating the start of the arc.

arcAngle The angle indicating the arc’s extent.

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-73

DESCRIPTION

Using the pattern, pattern mode, and size of the graphics pen for the current graphics

port, the FrameArc procedure draws an arc of the oval bounded by the rectangle that

you specify in the r parameter. Use the startAngle parameter to specify where the arc

begins as modulo 360. Use the arcAngle parameter to specify how many degrees the

arc covers. Specify whether the angles are in positive or negative degrees; a positive

angle goes clockwise, while a negative angle goes counterclockwise. Zero degrees is at

12 o’clock high, 90° (or –270°) is at 3 o’clock, 180° (or –180°) is at 6 o’clock, and 270°

(or –90°) is at 9 o’clock. Measure other angles relative to the bounding rectangle.

A line from the center of the rectangle through its upper-right corner is at 45°, even if the

rectangle isn’t square; a line through the lower-right corner is at 135°, and so on, as

shown in Figure 3-20.

The arc is as wide as the pen width and as tall as the pen height. The pen location does

not change.

SPECIAL CONSIDERATIONS

The FrameArc procedure differs from other QuickDraw procedures that frame shapes

in that the arc is not mathematically added to the boundary of a region that’s open and

being formed.

The FrameArc procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

SEE ALSO

Listing 3-7 on page 3-26 illustrates how to use this procedure.

PaintArc

To paint a wedge of the oval that fits inside a rectangle with the graphics pen’s pattern

and pattern mode, use the PaintArc procedure.

PROCEDURE PaintArc (r: Rect; startAngle,arcAngle: Integer);

r The rectangle that defines an oval’s boundaries.

startAngle
The angle indicating the start of the arc.

arcAngle The angle indicating the arc’s extent.

C H A P T E R 3

QuickDraw Drawing

3-74 QuickDraw Drawing Reference

DESCRIPTION

Using the pen pattern and pattern mode of the current graphics port, the PaintArc

procedure draws a wedge of the oval bounded by the rectangle that you specify in the r

parameter. As in the FrameArc procedure described in the previous section and

illustrated in Figure 3-21, use the startAngle and arcAngle parameters to define the

arc of the wedge.

The pen location does not change.

Figure 3-21 Using PaintArc to paint a 45° angle

SPECIAL CONSIDERATIONS

The PaintArc procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

SEE ALSO

Listing 3-7 on page 3-26 illustrates how to use this procedure.

You can use the FillArc procedure, described next, to draw a wedge with a pattern

different from that specified in the pnPat field of the current graphics port.

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-75

FillArc

To fill a wedge with any available bit pattern, use the FillArc procedure.

PROCEDURE FillArc (r: Rect; startAngle,arcAngle: Integer;

 pat: Pattern);

r The rectangle that defines an oval’s boundaries.

startAngle
The angle indicating the start of the arc.

arcAngle The angle indicating the arc’s extent.

pat The bit pattern to use for the fill. Figure 3-3 on page 3-7 illustrates the
default fill patterns and the constants you can use to represent them.

DESCRIPTION

Using the patCopy pattern mode and the pattern defined in the Pattern record that

you specify in the pat parameter, the FillArc procedure draws a wedge of the oval

bounded by the rectangle that you specify in the r parameter. As in the FrameArc

procedure described on page 3-72 and as illustrated in Figure 3-21, use the startAngle

and arcAngle parameters to define the arc of the wedge.

This procedure leaves the location of the graphics pen unchanged.

SPECIAL CONSIDERATIONS

The FillArc procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

SEE ALSO

You can use the GetPattern and GetIndPattern routines, described on page 3-126

and page 3-127, respectively, to get a pattern stored in a resource. The patCopy pattern

mode is described in “Boolean Transfer Modes With 1-Bit Pixels” beginning on page 3-8.

The Pattern record is described on page 3-40.

You can use the PaintArc procedure, described in the previous section, to draw a

wedge with the pen pattern for the current graphics port. To fill a wedge with a pixel

pattern, use the FillCArc procedure, which is described in the chapter “Color

QuickDraw.”

C H A P T E R 3

QuickDraw Drawing

3-76 QuickDraw Drawing Reference

EraseArc

To erase a wedge, use the EraseArc procedure.

PROCEDURE EraseArc (r: Rect; startAngle,arcAngle: Integer);

r The rectangle that defines an oval’s boundaries.

startAngle
The angle indicating the start of the arc.

arcAngle The angle indicating the arc’s extent.

DESCRIPTION

Using the patCopy pattern mode, the EraseArc procedure draws a wedge of the oval

bounded by the rectangle that you specify in the r parameter with the background

pattern for the current graphics port. As in the FrameArc procedure described on

page 3-72 and as illustrated in Figure 3-21, use the startAngle and arcAngle

parameters to define the arc of the wedge.

This procedure leaves the location of the graphics pen unchanged.

SPECIAL CONSIDERATIONS

The EraseArc procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

SEE ALSO

The patCopy pattern mode is described in “Boolean Transfer Modes With 1-Bit Pixels”

beginning on page 3-8.

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-77

InvertArc

To invert the pixels of a wedge, use the InvertArc procedure.

PROCEDURE InvertArc (r: Rect; startAngle,arcAngle: Integer);

r The rectangle that defines an oval’s boundaries.

startAngle
The angle indicating the start of the arc.

arcAngle The angle indicating the arc’s extent.

DESCRIPTION

The InvertArc procedure inverts the pixels enclosed by a wedge of the oval bounded

by the rectangle that you specify in the r parameter. Every white pixel becomes black

and every black pixel becomes white. As in the FrameArc procedure described on

page 3-72 and as illustrated in Figure 3-21, use the startAngle and arcAngle

parameters to define the arc of the wedge.

This procedure leaves the location of the graphics pen unchanged.

SPECIAL CONSIDERATIONS

The InvertArc procedure was designed for 1-bit images in basic graphics ports. This

procedure operates on color pixels in color graphics ports, but the results are predictable

only with direct devices or 1-bit pixel maps. For indexed pixels, Color QuickDraw

performs the inversion on the pixel indexes, which means the results depend entirely on

the contents of the CLUT (which is described in the chapter “Color QuickDraw”). The

eight colors used in basic QuickDraw are stored in a color table represented by the global

variable QDColors. To display those eight basic QuickDraw colors on an indexed

device, Color QuickDraw uses the Color Manager to obtain indexes to the colors in the

CLUT that best map to the colors in the QDColors color table. Because the index, not the

color value, is inverted, the results are unpredictable.

Inversion works better for direct pixels. Inverting a pure green, for example, that has red,

green, and blue component values of $0000, $FFFF, and $0000 results in magenta, which

has component values of $FFFF, $0000, and $FFFF.

The InvertArc procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

C H A P T E R 3

QuickDraw Drawing

3-78 QuickDraw Drawing Reference

Creating and Managing Polygons

A polygon is defined by a sequence of connected lines. To create a polygon, you first call

the OpenPoly function and then some number of LineTo procedures to draw lines

from the first vertex of the polygon to the second, from the second to the third, and so

on, until you’ve drawn a line to the last vertex. You then use the ClosePoly procedure,

which completes the figure by drawing a connecting line from the last vertex back to the

first.

After you use the OpenPoly function to create a polygon, QuickDraw begins collecting

the line-drawing information you provide into a Polygon record. The OpenPoly

function returns a handle to the newly allocated Polygon record.

After defining a polygon in this way, you can draw it with the FramePoly, PaintPoly,

and FillPoly procedures. You can move it by using the OffSetPoly procedure.

When you are finished using the polygon, use the KillPoly procedure to release its

memory. When using the ClosePoly, OffsetPoly, and KillPoly procedures, you

refer to a polygon by the handle returned by OpenPoly when you first created the

polygon.

Note

If, while your application draws a polygon, it exceeds available stack
space in Color QuickDraw, the QDError function (described in the
chapter “Color QuickDraw” in this book) returns the result code –144. ◆

OpenPoly

To begin defining a polygon, use the OpenPoly function.

FUNCTION OpenPoly: PolyHandle;

DESCRIPTION

The OpenPoly function returns a handle to a new polygon and starts saving lines for

processing as a polygon definition. While a polygon is open, all calls to the Line and

LineTo procedures affect the outline of the polygon. Only the line endpoints affect the

polygon definition; the pattern mode, pattern, and size do not affect it. The OpenPoly

function calls the HidePen procedure, so no drawing occurs on the screen while the

polygon is open (unless you call the ShowPen procedure just after calling OpenPoly, or

you called ShowPen previously without balancing it by a call to HidePen).

A polygon should consist of a sequence of connected lines. The OpenPoly function

stores the definition for a polygon in a Polygon record.

When a polygon is open, the current graphics port’s polySave field contains a handle to

information related to the polygon definition. If you want to temporarily disable the

polygon definition, you can save the current value of this field, set the field to NIL, and

later restore the saved value to resume the polygon definition.

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-79

Even though the onscreen presentation of a polygon is clipped, the definition of a

polygon is not; you can define a polygon anywhere on the coordinate plane.

When you are finished calling the line-drawing routines that define your polygon, use

the ClosePoly procedure, described next.

SPECIAL CONSIDERATIONS

Do not call OpenPoly while a region or another polygon is already open.

Polygons are limited to 64 KB. You can determine the polygon size while it’s being

formed by calling the Memory Manager function GetHandleSize, which is described

in Inside Macintosh: Memory.

The OpenPoly function may move or purge memory blocks in the application heap.

Your application should not call this function at interrupt time.

SEE ALSO

Listing 3-10 on page 3-30 illustrates how to use this function to create a triangle. The

Polygon record is described on page 3-37.

ClosePoly

To complete the collection of lines that defines your polygon, use the ClosePoly

procedure.

PROCEDURE ClosePoly;

DESCRIPTION

The ClosePoly procedure stops collecting line-drawing commands for the currently

open polygon and computes the polyBBox field of the Polygon record. You should call

ClosePoly only once for every call to the OpenPoly function.

The ClosePoly procedure uses the ShowPen procedure, balancing the call to the

HidePen procedure made by the OpenPoly function.

SPECIAL CONSIDERATIONS

The ClosePoly procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

SEE ALSO

Listing 3-10 on page 3-30 illustrates how to use this procedure when creating a triangle.

C H A P T E R 3

QuickDraw Drawing

3-80 QuickDraw Drawing Reference

OffsetPoly

To move a polygon, use the OffsetPoly procedure.

PROCEDURE OffsetPoly (poly: PolyHandle; dh,dv: Integer);

poly A handle to a polygon to move.

dh The horizontal distance to move the polygon.

dv The vertical distance to move the polygon.

DESCRIPTION

The OffsetPoly procedure moves the polygon whose handle you pass in the poly

parameter by adding the value you specify in the dh parameter to the horizontal

coordinates of its points, and by adding the value you specify in the dv parameter to the

vertical coordinates of all points of its region boundary. If the values of dh and dv are

positive, the movement is to the right and down; if either is negative, the corresponding

movement is in the opposite direction. The region retains its size and shape. This doesn’t

affect the screen unless you subsequently call a routine to draw the region.

Note
OffsetPoly is an especially efficient operation, because the data
defining a polygon is stored relative to the first point of the polygon and
so isn’t actually changed by OffsetPoly. ◆

KillPoly

To release the memory occupied by a polygon, use the KillPoly procedure.

PROCEDURE KillPoly (poly: PolyHandle);

poly A handle to the polygon to dispose of.

DESCRIPTION

The KillPoly procedure releases the memory used by the polygon whose handle you

pass in the poly parameter. Use KillPoly only when you’re completely through with

a polygon.

SPECIAL CONSIDERATIONS

The KillPoly procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-81

SEE ALSO

Listing 3-10 on page 3-30 illustrates how to use this procedure.

Drawing Polygons

After defining a polygon by using the OpenPoly function, a number of line-drawing

procedures, and the ClosePoly procedure, you can draw the polygon’s outline with the

FramePoly procedure. You can draw its interior with the PaintPoly and FillPoly

procedures. You can erase its interior by using the ErasePoly procedure, and you can

use the InvertPoly procedure to reverse the colors of the pixels within it. In all of these

procedures, you refer to a polygon by the handle returned by OpenPoly when you first

created the polygon.

Four of these procedures—PaintPoly, ErasePoly, InvertPoly, and FillPoly—

temporarily convert the polygon into a region to perform their operations. The amount

of memory required for this temporary region may be far greater than the amount

required by the polygon alone.

You can estimate the size of this region by scaling down the polygon with the MapPoly

procedure (described on page 3-108), converting the polygon into a region, checking the

region’s size with the Memory Manager function GetHandleSize, and multiplying

that value by the factor by which you scaled the polygon.

▲ W A R N I N G

The results of these graphics operations are undefined whenever any
horizontal or vertical line drawn through the polygon would intersect
the polygon’s outline more than 50 times. ▲

FramePoly

To draw the outline of a polygon, use the FramePoly procedure.

PROCEDURE FramePoly (poly: PolyHandle);

poly A handle to the polygon to draw.

DESCRIPTION

Using the current graphics port’s pen pattern, pattern mode, and size, the FramePoly

procedure plays back the line-drawing commands that define the polygon whose handle

you pass in the poly parameter.

The graphics pen hangs below and to the right of each point on the boundary of the

polygon. Thus, the drawn polygon extends beyond the right and bottom edges of

the polygon’s bounding rectangle (which is stored in the polyBBox field of the

Polygon record) by the pen width and pen height, respectively. All other graphics

C H A P T E R 3

QuickDraw Drawing

3-82 QuickDraw Drawing Reference

operations, such as painting a polygon with the PaintPoly procedure, occur strictly

within the boundary of the polygon, as illustrated in Figure 3-22.

Figure 3-22 Framing and painting polygons

If a polygon is open and being formed, FramePoly affects the outline of the polygon

just as if the line-drawing routines themselves had been called. If a region is open and

being formed, the outside outline of the polygon being framed is mathematically added

to the region’s boundary.

SPECIAL CONSIDERATIONS

The FramePoly procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

PaintPoly

To paint a polygon with the graphics pen’s pattern and pattern mode, use the

PaintPoly procedure.

PROCEDURE PaintPoly (poly: PolyHandle);

poly A handle to the polygon to paint.

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-83

DESCRIPTION

Using the pen pattern and pattern mode for the current graphics port, the PaintPoly

procedure draws the interior of a polygon whose handle you pass in the poly

parameter. The pen location does not change.

SPECIAL CONSIDERATIONS

Do not create a height or width for the polygon greater than 32,767 pixels, or

PaintPoly will crash.

The PaintPoly procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

SEE ALSO

You can use the FillPoly procedure, described next, to draw the interior of a polygon

with a pattern different from that specified in the pnPat field of the current graphics

port.

FillPoly

To fill a polygon with any available bit pattern, use the FillPoly procedure.

PROCEDURE FillPoly (poly: PolyHandle; pat: Pattern);

poly A handle to the polygon to fill.

pat The bit pattern to use for the fill. Figure 3-3 on page 3-7 illustrates the
default fill patterns and the constants you can use to represent them.

DESCRIPTION

Using the patCopy pattern mode, the FillPoly procedure draws the interior of the

polygon whose handle you pass in the poly parameter with the pattern defined in the

Pattern record that you specify in the pat parameter.

This procedure leaves the location of the graphics pen unchanged.

C H A P T E R 3

QuickDraw Drawing

3-84 QuickDraw Drawing Reference

SPECIAL CONSIDERATIONS

The FillPoly procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

SEE ALSO

Listing 3-10 on page 3-30 illustrates how to use this procedure to fill a triangle.

You can use the GetPattern and GetIndPattern routines, described on page 3-126

and page 3-127, respectively, to get a pattern stored in a resource. The patCopy pattern

mode is described in “Boolean Transfer Modes With 1-Bit Pixels” beginning on page 3-8.

The Pattern record is described on page 3-40.

You can use the PaintPoly procedure, described in the previous section, to draw the

interior of a polygon with the pen pattern for the current graphics port. To fill a polygon

with a pixel pattern, use the FillCPoly procedure, which is described in the chapter

“Color QuickDraw.”

ErasePoly

To erase a polygon, use the ErasePoly procedure.

PROCEDURE ErasePoly (poly: PolyHandle);

poly A handle to the polygon to erase.

DESCRIPTION

Using the patCopy pattern mode, the ErasePoly procedure draws the interior of the

polygon whose handle you pass in the poly parameter with the background pattern for

the current graphics port.

This procedure leaves the location of the graphics pen unchanged.

SPECIAL CONSIDERATIONS

The ErasePoly procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

SEE ALSO

The patCopy pattern mode is described in “Boolean Transfer Modes With 1-Bit Pixels”

beginning on page 3-8.

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-85

InvertPoly

To invert the pixels enclosed by a polygon, use the InvertPoly procedure.

PROCEDURE InvertPoly (poly: PolyHandle);

poly A handle to a polygon, the pixels of which you want to invert.

DESCRIPTION

The InvertPoly procedure inverts the pixels enclosed by the polygon whose handle

you pass in the poly parameter. Every white pixel becomes black and every black pixel

becomes white.

This procedure leaves the location of the graphics pen unchanged.

SPECIAL CONSIDERATIONS

The InvertPoly procedure was designed for 1-bit images in basic graphics ports. This

procedure operates on color pixels in color graphics ports, but the results are predictable

only with 1-bit or direct pixels. For indexed pixels, Color QuickDraw performs the

inversion on the pixel indexes, which means the results depend entirely on the contents

of the CLUT (which is described in the chapter “Color QuickDraw”). The eight colors

used in basic QuickDraw are stored in a color table represented by the global variable

QDColors. To display those eight basic QuickDraw colors on an indexed device, Color

QuickDraw uses the Color Manager to obtain indexes to the colors in the CLUT that best

map to the colors in the QDColors color table. Because the index, not the color value, is

inverted, the results are unpredictable.

Inversion works better for direct pixels. Inverting a pure green, for example, that has red,

green, and blue component values of $0000, $FFFF, and $0000 results in magenta, which

has component values of $FFFF, $0000, and $FFFF.

The InvertPoly procedure may move or purge memory blocks in the application

heap. Your application should not call this procedure at interrupt time.

Creating and Managing Regions

To define a region, you can use any set of lines or shapes, including other regions, so

long as the region’s outline consists of one or more closed loops. To begin defining a

region, you must use the NewRgn function to allocate space for it, and then call the

OpenRgn procedure. You can then use any QuickDraw routines to construct the outline

of the region. When you are finished constructing the region, use the CloseRgn

procedure.

C H A P T E R 3

QuickDraw Drawing

3-86 QuickDraw Drawing Reference

The NewRgn function returns a handle to the newly allocated Region record. After you

use the OpenRgn procedure, QuickDraw begins collecting the drawing information you

provide into this Region record. (The Region record is described in the chapter “Basic

QuickDraw.”)

After defining a region in this way, you can display it with the FrameRgn, PaintRgn,

and FillRgn procedures. When you are finished using the region, use the DisposeRgn

procedure to release its memory.

You can use the SetEmptyRgn procedure to set a region to be empty, SetRectRgn to

change it into a rectangle, OffsetRgn to move it, InsetRgn to shrink or expand it,

PtInRgn to determine whether a pixel lies within it, RectInRgn to determine whether

a rectangle intersects it, EmptyRgn to determine whether it is an empty region, and

CopyRgn to make a copy of it. You can use the RectRgn procedure to make a region out

of a rectangle. You can use the SectRgn procedure to calculate the intersection of

two regions, UnionRgn to calculate the union of two regions, DiffRgn to subtract one

region from another, XorRgn to calculate the difference between the union and the

intersection of two regions, and EqualRgn to determine whether two regions have

identical sizes, shapes, and locations.

When using these procedures, you refer to a region by the handle returned by

NewRgn when you first allocated memory for the region.

▲ W A R N I N G

Ensure that the memory for a region is valid before calling these routines
to manipulate that region; if there isn’t sufficient memory, the system
may crash. Regions are limited to 32 KB in size in basic QuickDraw and
64 KB in Color QuickDraw. Before defining a region, you can use the
Memory Manager function MaxMem to determine whether the memory
for the region is valid. You can determine the current size of an existing
region by calling the Memory Manager function GetHandleSize.
(Both MaxMem and GetHandleSize are described in Inside Macintosh:
Memory.) When you record drawing operations in an open region, the
resulting region description may overflow the 32 KB or 64 KB limit.
Should this happen in Color QuickDraw, the QDError function
(described in the chapter “Color QuickDraw” in this book) returns the
result code regionTooBigError. ▲

If the points or rectangles supplied to these routines are defined in a graphics port other

than your current graphics port, you must convert them to the local coordinate system of

your current graphics port. You can accomplish this by using the SetPort procedure to

change to the graphics port containing the points or rectangles, using the LocalGlobal

procedure to convert their locations to global coordinates, using SetPort to return to

your starting graphics port, and then using the GlobalToLocal procedure to convert

the locations of points or rectangles to the local coordinates of your current graphics

port. These procedures are described in the chapter “Basic QuickDraw.”

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-87

NewRgn

To begin creating a new region, use the NewRgn function.

FUNCTION NewRgn: RgnHandle;

DESCRIPTION

The NewRgn function allocates space for a new, variable-size region; initializes it to the

empty region defined by the rectangle (0,0,0,0); and returns a handle to the new region.

This is the only function that creates a new region; other routines merely alter the size or

shape of existing regions.

To begin defining a region, use the OpenRgn procedure, described next.

SPECIAL CONSIDERATIONS

The NewRgn function may move or purge memory blocks in the application heap. Your

application should not call this function at interrupt time.

Use the Memory Manager function MaxMem (described in Inside Macintosh: Memory) to

determine whether the memory for the region is valid before using NewRgn.

SEE ALSO

Listing 3-8 on page 3-28 and Listing 3-9 on page 3-29 illustrate how to use this function.

OpenRgn

To begin defining a region, use the OpenRgn procedure.

PROCEDURE OpenRgn;

DESCRIPTION

The OpenRgn procedure allocates temporary memory to start saving lines and framed

shapes for processing as a region definition. Call OpenRgn only after initializing a region

with the NewRgn function.

The NewRgn function stores the definition for a region in a Region record.

While a region is open, all calls to Line, LineTo, and the procedures that draw framed

shapes (except arcs) affect the outline of the region. Only the line endpoints and shape

boundaries affect the region definition—the pattern mode, pattern, and size do not

affect it.

When you are finished defining the region, call the CloseRgn procedure.

C H A P T E R 3

QuickDraw Drawing

3-88 QuickDraw Drawing Reference

The OpenRgn procedure calls HidePen, so no drawing occurs on the screen while the

region is open (unless you call ShowPen just after OpenRgn, or you called ShowPen

previously without balancing it by a call to HidePen). Since the pen hangs below and

to the right of the pen location, drawing lines with even the smallest pen changes pixels

that lie outside the region you define.

The outline of a region is mathematically defined and infinitely thin, and it separates the

bit or pixel image into two groups of pixels: those within the region and those outside it.

A region should consist of one or more closed loops. Each framed shape itself constitutes

a loop. Any lines drawn with the Line or LineTo procedure should connect with each

other or with a framed shape. Even if the onscreen presentation of a region is clipped,

the definition of a region is not; you can define a region anywhere on the coordinate

plane with complete disregard for the location of various graphics port entities on

that plane.

When a region is open, the current graphics port’s rgnSave field contains a handle to

information related to the region definition. If you want to temporarily disable the

collection of lines and shapes, you can save the current value of this field, set the field to

NIL, and later restore the saved value to resume the region definition. Also, calling

SetPort while a region is being formed discontinues formation of the region until

another call to SetPort resets the region’s original graphics port.

SPECIAL CONSIDERATIONS

Regions are limited to 32 KB in size in basic QuickDraw and 64 KB in Color QuickDraw.

You can determine the current size of an existing region by calling the Memory Manager

function GetHandleSize (described in Inside Macintosh: Memory). When you record

drawing operations in an open region, the resulting region description may overflow the

32 KB or 64 KB limit. Should this happen in Color QuickDraw, the QDError function

(described in the chapter “Color QuickDraw” in this book) returns the result code

regionTooBigError.

Do not call OpenRgn while another region or a polygon is already open. When you are

finished constructing the region, use the CloseRgn procedure, which is described next.

The OpenRgn procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

SEE ALSO

Listing 3-8 on page 3-28 illustrates how to use this procedure. The Region record is

described in the chapter “Basic QuickDraw.”

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-89

CloseRgn

To organize a collection of lines and shapes into a region definition, use the CloseRgn

procedure.

PROCEDURE CloseRgn (dstRgn: rgnHandle);

dstRgn The handle to the region to close.

DESCRIPTION

The CloseRgn procedure stops the collection of lines and framed shapes, organizes

them into a region definition, and saves the result in the region whose handle you pass

in the dstRgn parameter. The handle you pass in the dstRgn parameter should be a

region handle returned by the NewRgn function.

The CloseRgn procedure does not create the destination region; you must have already

allocated space for it by using the OpenRgn procedure. The CloseRgn procedure calls

the ShowPen procedure, balancing the call to the HidePen procedure made by OpenRgn.

When you no longer need the memory occupied by the region, use the DisposeRgn

procedure, described next.

SPECIAL CONSIDERATIONS

Regions are limited to 32 KB in size in basic QuickDraw and 64 KB in Color QuickDraw.

When you record drawing operations in an open region, the resulting region description

may overflow this limit. Should this happen in Color QuickDraw, the QDError function

(described in the chapter “Color QuickDraw” in this book) returns the result code

regionTooBigError. Since the resulting region is potentially corrupt, the CloseRgn

procedure returns an empty region if it detects QDError has returned

regionTooBigError.

The CloseRgn procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

SEE ALSO

Listing 3-8 on page 3-28 illustrates how to use this procedure.

C H A P T E R 3

QuickDraw Drawing

3-90 QuickDraw Drawing Reference

DisposeRgn

To release the memory occupied by a region, use the DisposeRgn procedure.

PROCEDURE DisposeRgn (rgn: RgnHandle);

rgn A handle to the region to dispose.

DESCRIPTION

The DisposeRgn procedure releases the memory occupied by the region whose handle

you pass in the rgn parameter.

Use DisposeRgn only after you’re completely through with a region.

SPECIAL CONSIDERATIONS

The DisposeRgn procedure may move or purge memory blocks in the application

heap. Your application should not call this procedure at interrupt time.

SEE ALSO

Listing 3-8 on page 3-28 and Listing 3-9 on page 3-29 illustrate how to use this procedure.

CopyRgn

To make a copy of a region, use the CopyRgn procedure.

PROCEDURE CopyRgn (srcRgn,dstRgn: RgnHandle);

srcRgn A handle to the region to copy.

dstRgn A handle to the region to receive the copy.

DESCRIPTION

The CopyRgn procedure copies the mathematical structure of the region whose handle

you pass in the srcRgn parameter into the region whose handle you pass in the dstRgn

parameter; that is, CopyRgn makes a duplicate copy of srcRgn. When calling CopyRgn,

pass handles that have been returned by the NewRgn function in the srcRgn and

dstRgn parameters.

Once this is done, the region indicated by srcRgn may be altered (or even disposed of)

without affecting the region indicated by dstRgn. The CopyRgn procedure does not

create the destination region; space must already have been allocated for it by using the

NewRgn function.

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-91

SPECIAL CONSIDERATIONS

The CopyRgn procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

SetEmptyRgn

To set an existing region to be empty, use the SetEmptyRgn procedure.

PROCEDURE SetEmptyRgn (rgn: RgnHandle);

rgn A handle to the region to be made empty.

DESCRIPTION

The SetEmptyRgn procedure destroys the previous structure of the region whose

handle you pass in the rgn parameter; it then sets the new structure to the empty region

defined by the rectangle (0,0,0,0).

SPECIAL CONSIDERATIONS

The SetEmptyRgn procedure may move or purge memory blocks in the application

heap. Your application should not call this procedure at interrupt time.

SetRectRgn

To change the structure of an existing region to that of a rectangle, you can use the

SetRectRgn procedure.

PROCEDURE SetRectRgn (rgn: RgnHandle;

 left,top,right,bottom: Integer);

rgn A handle to the region to restructure as a rectangle.

left The horizontal coordinate of the upper-left corner of the rectangle to set
as the new region.

top The vertical coordinate of the upper-left corner of the rectangle to set
as the new region.

right The horizontal coordinate of the lower-right corner of the rectangle to set
as the new region.

bottom The vertical coordinate of the lower-right corner of the rectangle to set
as the new region.

C H A P T E R 3

QuickDraw Drawing

3-92 QuickDraw Drawing Reference

DESCRIPTION

The SetRectRgn procedure destroys the previous structure of the region whose handle

you pass in the rgn parameter, and it then sets the new structure to the rectangle

that you specify in the left, top, right, and bottom parameters. If you specify an

empty rectangle (that is, right<=left or bottom<=top), the SetRectRgn procedure

sets the region to the empty region defined by the rectangle (0,0,0,0).

As an alternative to the SetRectRgn procedure, you can change the structure of an

existing region to that of a rectangle by using the RectRgn procedure, which accepts as a

parameter a rectangle instead of four coordinates. The RectRgn procedure is described

next.

SPECIAL CONSIDERATIONS

The SetRectRgn procedure may move or purge memory blocks in the application

heap. Your application should not call this procedure at interrupt time.

RectRgn

To change the structure of an existing region to that of a rectangle, you can use the

RectRgn procedure.

PROCEDURE RectRgn (rgn: RgnHandle; r: Rect);

rgn A handle to the region to restructure as a rectangle.

r The rectangle structure to use.

DESCRIPTION

The RectRgn procedure destroys the previous structure of the SetRectRgn procedure,

and it then sets the new structure to a rectangle that you specify in the r parameter.

As an alternative to the RectRgn procedure, you can use the SetRectRgn procedure,

which accepts as parameters four coordinates instead of a rectangle.

SPECIAL CONSIDERATIONS

The RectRgn procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-93

OffsetRgn

To move a region, use the OffsetRgn procedure.

PROCEDURE OffsetRgn (rgn: RgnHandle; dh,dv: Integer);

rgn A handle to the region to move.

dh The horizontal distance to move the region.

dv The vertical distance to move the region.

DESCRIPTION

The OffsetRgn procedure moves the region whose handle you pass in the rgn

parameter by adding the value you specify in the dh parameter to the horizontal

coordinates of all points of its region boundary, and by adding the value you specify in

the dv parameter to the vertical coordinates of all points of its region boundary. If the

values of dh and dv are positive, the movement is to the right and down; if either is

negative, the corresponding movement is in the opposite direction. The region retains its

size and shape. This doesn’t affect the screen unless you subsequently call a routine to

draw the region.

The OffsetRgn procedure is an especially efficient operation, because most of the data

defining a region is stored relative to the rgnBBox field in its Region record and so isn’t

actually changed by OffsetRgn.

InsetRgn

To shrink or expand a region, use the InsetRgn procedure.

PROCEDURE InsetRgn (rgn: RgnHandle; dh,dv: Integer);

rgn A handle to the region to alter.

dh The horizontal distance to move points on the left and right boundaries in
toward or outward from the center.

dv The vertical distance to move points on the top and bottom boundaries in
toward or outward from the center.

DESCRIPTION

The InsetRgn procedure moves all points on the region boundary of the region whose

handle you pass in the rgn parameter inward by the vertical distance that you specify in

the dv parameter and by the horizontal distance that you specify in the dh parameter. If

you specify negative values for dh or dv, the InsetRgn procedure moves the points

outward in that direction.

C H A P T E R 3

QuickDraw Drawing

3-94 QuickDraw Drawing Reference

The InsetRgn procedure leaves the region’s center at the same position, but moves the

outline in (for positive values of dh and dv) or out (for negative values of dh and dv).

Using InsetRgn on a rectangular region has the same effect as using the InsetRect

procedure.

SPECIAL CONSIDERATIONS

The InsetRgn procedure temporarily uses heap space that’s twice the size of the

original region.

The InsetRgn procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

SectRgn

To calculate the intersection of two regions, use the SectRgn procedure.

PROCEDURE SectRgn (srcRgnA,srcRgnB,dstRgn: RgnHandle);

srcRgnA A handle to the first of two regions whose intersection is to be determined.

srcRgnB A handle to the second of two regions whose intersection is to be
determined.

dstRgn A handle to the region to receive the intersection area.

DESCRIPTION

The SectRgn procedure calculates the intersection of the two regions whose handles

you pass in the srcRgnA and srcRgnB parameters, and it places the intersection in the

region whose handle you pass in the dstRgn parameter. If the regions do not intersect,

or one of the regions is empty, SectRgn sets the destination to the empty region defined

by the rectangle (0,0,0,0).

The SectRgn procedure does not create a destination region; you must have already

allocated memory for it by using the NewRgn function.

The destination region may be one of the source regions, if desired.

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-95

SPECIAL CONSIDERATIONS

The SectRgn procedure may temporarily use heap space that’s twice the size of the two

input regions.

The SectRgn procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

UnionRgn

To calculate the union of two regions, use the UnionRgn procedure.

PROCEDURE UnionRgn (srcRgnA,srcRgnB,dstRgn: RgnHandle);

srcRgnA A handle to the first of two regions whose union is to be determined.

srcRgnB A handle to the second of two regions whose union is to be determined.

dstRgn A handle to the region to hold the resulting union area.

DESCRIPTION

The UnionRgn procedure calculates the union of the two regions whose handles you

pass in the srcRgnA and srcRgnB parameters, and it places the union in the region

whose handle you pass in the dstRgn parameter. If both regions are empty, UnionRgn

sets the destination to the empty region defined by the rectangle (0,0,0,0).

The UnionRgn procedure does not create the destination region; you must have already

allocated memory for it by using the NewRgn function.

The destination region may be one of the source regions, if desired.

SPECIAL CONSIDERATIONS

The UnionRgn procedure may temporarily use heap space that’s twice the size of the

two input regions.

The UnionRgn procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

C H A P T E R 3

QuickDraw Drawing

3-96 QuickDraw Drawing Reference

DiffRgn

To subtract one region from another, use the DiffRgn procedure.

PROCEDURE DiffRgn (srcRgnA,srcRgnB,dstRgn: RgnHandle);

srcRgnA A handle to the region to subtract from.

srcRgnB A handle to the region to subtract.

dstRgn A handle to the region to hold the resulting area.

DESCRIPTION

The DiffRgn procedure subtracts the region whose handle you pass in the srcRgnB

parameter from the region whose handle you pass in the srcRgnA parameter and places

the difference in the region whose handle you pass in the dstRgn parameter. If the first

source region is empty, DiffRgn sets the destination to the empty region defined by the

rectangle (0,0,0,0).

The DiffRgn procedure does not create the destination region; you must have already

allocated memory for it by using the NewRgn function. The destination region may be

one of the source regions, if desired.

SPECIAL CONSIDERATIONS

The DiffRgn procedure may temporarily use heap space that’s twice the size of the two

input regions.

XorRgn

To calculate the difference between the union and the intersection of two regions, use the

XorRgn procedure.

PROCEDURE XorRgn (srcRgnA,srcRgnB,dstRgn: RgnHandle);

srcRgnA A handle to the first of two regions to compare.

srcRgnB A handle to the second of two regions to compare.

dstRgn A handle to the region to hold the result.

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-97

DESCRIPTION

The XorRgn procedure calculates the difference between the union and the intersection

of the regions whose handles you pass in the srcRgnA and srcRgnB parameters and

places the result in the region whose handle you pass in the dstRgn parameter.

This does not create the destination region; you must have already allocated memory for

it by using the NewRgn function.

If the regions are coincident, XorRgn sets the destination region to the empty region

defined by the rectangle (0,0,0,0).

SPECIAL CONSIDERATIONS

The XorRgn procedure may temporarily use heap space that’s twice the size of the two

input regions.

The XorRgn procedure may move or purge memory blocks in the application heap. Your

application should not call this procedure at interrupt time.

PtInRgn

To determine whether a pixel is within a region, use the PtInRgn function.

FUNCTION PtInRgn (pt: Point; rgn: RgnHandle): Boolean;

pt The point whose pixel is to be checked.

rgn A handle to the region to test.

DESCRIPTION

The PtInRgn function checks whether the pixel below and to the right of the point you

specify in the pt parameter is within the region whose handle you pass in the rgn

parameter. The PtInRgn function returns TRUE if so or FALSE if not.

C H A P T E R 3

QuickDraw Drawing

3-98 QuickDraw Drawing Reference

RectInRgn

To determine whether a rectangle intersects a region, use the RectInRgn function.

FUNCTION RectInRgn (r: Rect; rgn: RgnHandle): Boolean;

r The rectangle to check for intersection.

rgn A handle to the region to check.

DESCRIPTION

The RectInRgn function checks whether the rectangle specified in the r parameter

intersects the region whose handle you pass in the rgn parameter. The RectInRgn

function returns TRUE if the intersection encloses at least 1 bit or FALSE if it does not.

SPECIAL CONSIDERATIONS

The RectInRgn function sometimes returns TRUE when the rectangle merely intersects

the region’s bounding rectangle. If you need to know exactly whether a given rectangle

intersects the actual region, you can use the RectRgn procedure (described on

page 3-92) to set the rectangle to a region, and call SectRgn (described on page 3-94) to

see whether the two regions intersect. If the result of SectRgn is an empty region, then

the rectangle doesn’t intersect the region.

EqualRgn

To determine whether two regions have identical sizes, shapes, and locations, use the

EqualRgn function.

FUNCTION EqualRgn (rgnA,rgnB: RgnHandle): Boolean;

srcRgnA A handle to the first of two regions to compare.

srcRgnB A handle to the second of two regions to compare.

DESCRIPTION

The EqualRgn function compares the two regions whose handles you pass in the rgnA

and rgnB parameters and returns TRUE if they’re equal or FALSE if they’re not.

The two regions must have identical sizes, shapes, and locations to be considered equal.

Any two empty regions are always equal.

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-99

EmptyRgn

To determine whether a region is empty, use the EmptyRgn function.

FUNCTION EmptyRgn (rgn: RgnHandle): Boolean;

rgn A handle to the region to test for emptiness.

DESCRIPTION

The EmptyRgn function returns TRUE if the region whose handle you pass in the rgn

parameter is an empty region or FALSE if it is not.

SEE ALSO

The EmptyRgn function does not create an empty region. To create an empty region, you

can perform any of the following operations:

■ use the NewRgn function (described on page 3-87)

■ pass the handle to an empty region to the CopyRgn procedure (described on
page 3-90)

■ pass an empty rectangle to either the SetRectRgn procedure (described on
page 3-91) or the RectRgn procedure (described on page 3-92)

■ call the CloseRgn procedure (described on page 3-89) without a previous call to the
OpenRgn procedure

■ call CloseRgn without performing any drawing after calling OpenRgn

■ pass an empty region to the OffsetRgn procedure (described on page 3-93)

■ pass an empty region or too large an inset to the InsetRgn procedure (described on
page 3-93)

■ pass two nonintersecting regions to the SectRgn procedure (described on page 3-94)

■ pass two empty regions to the UnionRgn procedure (described on page 3-95)

■ pass two identical or nonintersecting regions to the DiffRgn (described on page 3-96)
or XorRgn (described on page 3-96) procedure

C H A P T E R 3

QuickDraw Drawing

3-100 QuickDraw Drawing Reference

Drawing Regions

After defining a region by using the NewRgn function and OpenRgn procedure, a

number of drawing procedures, and the CloseRgn procedure, you can draw the

region’s outline with the FrameRgn procedure. You can draw its interior with the

PaintRgn and FillRgn procedures. You can erase it by using the EraseRgn

procedure, and you can use the InvertRgn procedure to reverse the colors of the pixels

within it. In all of these procedures, you refer to a region by the handle returned by the

NewRgn function when you first created the region.

These routines depend on the local coordinate system of the current graphics port. If you

draw a region in a graphics port different from the one in which you defined the region,

it may not appear in the proper position in the graphics port.

▲ W A R N I N G

If any horizontal or vertical line drawn through the region would
intersect the region’s outline more than 50 times, the results of these
graphics operations are undefined. The FrameRgn procedure in
particular requires that there would be no more than 25 such
intersections. ▲

FrameRgn

To draw an outline inside a region, use the FrameRgn procedure.

PROCEDURE FrameRgn (rgn: RgnHandle);

rgn A handle to the region to frame.

DESCRIPTION

Using the current graphics port’s pen pattern, pattern mode, and pen size, the

FrameRgn procedure draws an outline just inside the region whose handle you pass in

the rgn parameter. The outline never goes outside the region boundary. The pen location

does not change.

If a region is open and being formed, the outside outline of the region being framed is

mathematically added to that region’s boundary.

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-101

SPECIAL CONSIDERATIONS

The FrameRgn procedure calls the routines CopyRgn, InsetRgn, and DiffRgn, so

FrameRgn may temporarily use heap space that’s three times the size of the original

region.

The FrameRgn procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

PaintRgn

To paint a region with the graphics pen’s pattern and pattern mode, use the PaintRgn

procedure.

PROCEDURE PaintRgn (rgn: RgnHandle);

rgn A handle to the region to paint.

DESCRIPTION

Using the pen pattern and pattern mode for the current graphics port, the PaintRgn

procedure draws the interior of the region whose handle you pass in the rgn parameter.

The pen location does not change.

SPECIAL CONSIDERATIONS

The PaintRgn procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

SEE ALSO

You can use the FillRgn procedure, described next, to draw the interior of a region

with a pen pattern different from that for the current graphics port.

C H A P T E R 3

QuickDraw Drawing

3-102 QuickDraw Drawing Reference

FillRgn

To fill a region with any available bit pattern, use the FillRgn procedure.

PROCEDURE FillRgn (rgn: RgnHandle; pat: Pattern);

rgn A handle to the region to fill.

pat The bit pattern to use for the fill. Figure 3-3 on page 3-7 illustrates the
default fill patterns and the constants you can use to represent them.

DESCRIPTION

Using the patCopy pattern mode, the FillRgn procedure draws the interior of the

region (whose handle you pass in the rgn parameter) with the pattern defined in the

Pattern record that you specify in the pat parameter.

This procedure leaves the location of the graphics pen unchanged.

SPECIAL CONSIDERATIONS

The FillRgn procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

SEE ALSO

Listing 3-8 on page 3-28 and Listing 3-9 on page 3-29 illustrate how to use this procedure.

You can use the GetPattern and GetIndPattern routines, described on page 3-126

and page 3-127, respectively, to get a pattern stored in a resource. The patCopy pattern

mode is described in “Boolean Transfer Modes With 1-Bit Pixels” beginning on page 3-8.

The Pattern record is described on page 3-40.

You can use the PaintRgn procedure, described in the previous section, to draw the

interior of a region with the pen pattern for the current graphics port. To fill a region

with a pixel pattern, use the FillCRegion procedure, which is described in the chapter

“Color QuickDraw.”

EraseRgn

To erase a region, use the EraseRgn procedure.

PROCEDURE EraseRgn (rgn: RgnHandle);

rgn The region to erase.

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-103

DESCRIPTION

Using the patCopy pattern mode, the EraseRgn procedure draws the interior of the

region whose handle you pass in the rgn parameter with the background pattern for the

current graphics port.

This procedure leaves the location of the graphics pen unchanged.

SPECIAL CONSIDERATIONS

The EraseRgn procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

SEE ALSO

The patCopy pattern mode is described in “Boolean Transfer Modes With 1-Bit Pixels”

beginning on page 3-8.

InvertRgn

To invert the pixels enclosed by a region, use the InvertRgn procedure.

PROCEDURE InvertRgn (rgn: RgnHandle);

rgn A handle to the region whose pixels are to invert.

DESCRIPTION

The InvertRgn procedure inverts the pixels enclosed by the region whose handle you

pass in the rgn parameter. Every white pixel becomes black and every black pixel

becomes white.

This procedure leaves the location of the graphics pen unchanged.

SPECIAL CONSIDERATIONS

The InvertRgn procedure was designed for 1-bit images in basic graphics ports. This

procedure operates on color pixels in color graphics ports, but the results are predictable

only with 1-bit or direct pixels. For indexed pixels, Color QuickDraw performs the

inversion on the pixel indexes, which means the results depend entirely on the contents

of the CLUT (which is described in the chapter “Color QuickDraw”). The eight colors

used in basic QuickDraw are stored in a color table represented by the global variable

QDColors. To display those eight basic QuickDraw colors on an indexed device, Color

QuickDraw uses the Color Manager to obtain indexes to the colors in the CLUT that best

map to the colors in the QDColors color table. Because the index, not the color value, is

inverted, the results are unpredictable.

C H A P T E R 3

QuickDraw Drawing

3-104 QuickDraw Drawing Reference

Inversion works better for direct pixels. Inverting a pure green, for example, that has red,

green, and blue component values of $0000, $FFFF, and $0000 results in magenta, which

has component values of $FFFF, $0000, and $FFFF.

The InvertRgn procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

Scaling and Mapping Points, Rectangles, Polygons, and Regions

QuickDraw provides procedures to help you map points, rectangles, regions, and

polygons from one rectangle to another. You can scale rectangles, regions, and polygons

into other rectangles.

To derive vertical and horizontal scaling factors from the proportions of two rectangles,

use the ScalePt procedure. To map a point in one rectangle to an equivalent position in

another rectangle, use the MapPt procedure. To map and scale a rectangle within one

rectangle to another rectangle, use the MapRect procedure. To map and scale a region

within one rectangle to another rectangle, use the MapRgn procedure. To map and scale a

polygon within one rectangle to another rectangle, use the MapPoly procedure.

If the points or rectangles supplied to these routines are defined in a graphics port other

than your current graphics port, you must convert them to the local coordinate system of

your current graphics port. You can accomplish this by using the SetPort procedure to

change to the graphics port containing the points or rectangles, using the LocalGlobal

procedure to convert their locations to global coordinates, using SetPort to return to

your starting graphics port, and then using the GlobalToLocal procedure to convert

the locations of points or rectangles to the local coordinates of your current graphics

port. These procedures are described in the chapter “Basic QuickDraw.”

ScalePt

To scale a height and width according to the proportions of two rectangles, use the

ScalePt procedure.

PROCEDURE ScalePt (VAR pt: Point; srcRect,dstRect: Rect);

pt On input, an initial height and width (specified in the two fields of a
Point record) to scale; upon completion, vertical and horizontal scaling
factors derived by multiplying the height and width by ratios of the
height and width of the rectangle in the srcRect parameter to the height
and width of the rectangle in the dstRect parameter.

srcRect A rectangle. The ratio of this rectangle’s height to the height of the
rectangle in the dstRect parameter provides the vertical scaling factor,
and the ratio of this rectangle’s width to the width of the rectangle in the
dstRect parameter provides the horizontal scaling factor.

dstRect A rectangle compared to the rectangle in the srcRect parameter to
determine vertical and horizontal scaling factors.

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-105

DESCRIPTION

The ScalePt procedure produces horizontal and vertical scaling factors from the

proportions of two rectangles. You can use ScalePt, for example, to scale the

dimensions of the graphics pen.

You specify an initial height and width to scale in the pt parameter. This parameter is of

type Point, although you don’t pass coordinates in this parameter. Instead, you pass

an initial height to scale in the v (or vertical) field of the Point record, and you pass an

initial width to scale in the h (or horizontal) field.

The ScalePt procedure scales these measurements by multiplying the initial height you

specify in the pt parameter by the ratio of the height of the rectangle you specify in the

dstRect parameter to the height of the rectangle you specify in the srcRect

parameter, and by multiplying the initial width in the pt parameter by the ratio of the

width of the dstRect rectangle to the width of the srcRect rectangle. The ScalePt

procedure returns the result in the pt parameter.

In Figure 3-23, where the width of the dstRect rectangle is twice the width of the

srcRect rectangle, and its height is three times the height of srcRect, ScalePt scales

the width of the graphics pen from 3 to 6 and scales its height from 2 to 6.

SPECIAL CONSIDERATIONS

The minimum value ScalePt returns is (1,1).

Figure 3-23 Using ScalePt and MapPt

C H A P T E R 3

QuickDraw Drawing

3-106 QuickDraw Drawing Reference

MapPt

To map a point in one rectangle to an equivalent position in another rectangle, use the

MapPt procedure.

PROCEDURE MapPt (VAR pt: Point; srcRect,dstRect: Rect);

pt Upon input, the point in the source rectangle to map; upon completion,
its mapped position in the destination rectangle.

srcRect The source rectangle containing the original point.

dstRect The destination rectangle in which the point will be mapped.

DESCRIPTION

The MapPt procedure maps a point in one rectangle to an equivalent position in another

rectangle.

In the pt parameter, you specify a point that lies within the rectangle that you specify in

the srcRect parameter. The MapPt procedure maps this point to a similarly located

point within the rectangle that you specify in the dstRect parameter—that is, to where

it would fall if it were part of a drawing being expanded or shrunk to fit the destination

rectangle. The MapPt procedure returns the location of the mapped point in the pt

parameter. For example, a corner point of the source rectangle would be mapped to the

corresponding corner point of the destination rectangle in dstRect, and the center of

the source rectangle would be mapped to the center of destination rectangle.

The source and destination rectangles may overlap, and the point you specify need not

actually lie within the source rectangle.

In Figure 3-23 on page 3-105, the point (3,2) in the source rectangle is mapped to (18,7) in

the destination rectangle.

SEE ALSO

If you’re going to draw inside the destination rectangle, you’ll probably also want to

scale the graphics pen size accordingly with the ScalePt procedure, described in the

previous section.

MapRect

To map and scale a rectangle within one rectangle to another rectangle, use the MapRect

procedure.

PROCEDURE MapRect (VAR r: Rect; srcRect,dstRect: Rect);

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-107

r Upon input, the rectangle to map; upon completion, the mapped
rectangle.

srcRect The rectangle containing the rectangle to map.

dstRect The rectangle in which the new rectangle will be mapped.

DESCRIPTION

The MapRect procedure takes a rectangle within one rectangle and maps and scales it to

another rectangle. In the r parameter, you specify a rectangle that lies within the

rectangle that you specify in the srcRect parameter. By calling the MapPt procedure

to map the upper-left and lower-right corners of the rectangle in the r parameter,

MapRect maps and scales it to the rectangle that you specify in the dstRect parameter.

The MapRect procedure returns the newly mapped rectangle in the r parameter.

MapRgn

To map and scale a region within one rectangle to another rectangle, use the MapRgn

procedure.

PROCEDURE MapRgn (rgn: RgnHandle; srcRect,dstRect: Rect);

rgn A handle to a region. Upon input, this is the region to map. Upon
completion, this region is the one mapped to a new location.

srcRect The rectangle containing the region to map.

dstRect The rectangle in which the new region will be mapped.

DESCRIPTION

The MapRgn procedure takes a region within one rectangle and maps and scales it to

another rectangle. In the rgn parameter, you specify a handle to a region that lies within

the rectangle that you specify in the srcRect parameter. By calling the MapPt

procedure to map all the points of the region in the rgn parameter, MapRgn maps and

scales it to the rectangle that you specify in the dstRect parameter. The MapRgn

procedure returns the result in the region whose handle you initially passed in the rgn

parameter.

The MapRgn procedure is useful for determining whether a region operation will exceed

available memory. By mapping a large region into a smaller one and performing the

operation (without actually drawing), you can estimate how much memory will be

required by the anticipated operation.

SPECIAL CONSIDERATIONS

The MapRgn procedure may move or purge memory blocks in the application heap. Your

application should not call this procedure at interrupt time.

C H A P T E R 3

QuickDraw Drawing

3-108 QuickDraw Drawing Reference

MapPoly

To map and scale a polygon within one rectangle to another rectangle, use the MapPoly

procedure.

PROCEDURE MapPoly (poly: PolyHandle; srcRect,dstRect: Rect);

poly A handle to a polygon. Upon input, this is the polygon to map. Upon
completion, this polygon is the one mapped to a new location.

srcRect The rectangle containing the polygon.

dstRect The rectangle in which the new region will be mapped.

DESCRIPTION

The MapPoly procedure takes a polygon within one rectangle and maps and scales it to

another rectangle. In the poly parameter, you specify a handle to a polygon that lies

within the rectangle that you specify in the srcRect parameter. By calling the MapPt

procedure to map all the points that define the polygon specified in the poly parameter,

MapPoly maps and scales it to the rectangle that you specify in the dstRect parameter.

The MapPoly procedure returns the result in the polygon whose handle you initially

passed in the poly parameter.

Similar to the MapRgn procedure described in the previous section, the MapPoly

procedure is useful for determining whether a polygon operation will exceed available

memory.

Calculating Black-and-White Fills

QuickDraw provides the SeedFill and CalcMask procedures to help you determine

the results of filling operations on portions of bitmaps. (Procedures for determining

filling operations on pixel maps—namely, SeedCFill and CalcCMask—are described

in the chapter “Color QuickDraw.”)

The SeedFill procedure produces a mask showing where bits would be filled from a

starting point, like the paint pouring from the MacPaint® paint-bucket tool. The

CalcMask procedure produces a mask showing where paint could not flow from any of

the outer edges of a rectangle. You can use the resulting masks to transfer portions of bit

images from one graphics port to another with the CopyBits or CopyMask procedure,

both of which are described in “Copying Images” beginning on page 3-112.

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-109

SeedFill

To determine how far filling will extend from a seeding point, use the SeedFill

procedure.

PROCEDURE SeedFill (srcPtr,dstPtr: Ptr;

 srcRow,dstRow,height,words,

 seedH,seedV: Integer);

srcPtr A pointer to the source bit image.

dstPtr On input, a pointer to the destination bit image; upon return, a pointer to
the bitmap containing the resulting mask.

srcRow Row width of the source bitmap.

dstRow Row width of the destination bitmap.

height Height (in pixels) of the fill rectangle.

words Width (in words) of the fill rectangle.

seedH The horizontal offset (in pixels) at which to begin filling the destination
bit image.

seedV The vertical offset (in pixels) at which to begin filling the destination bit
image.

DESCRIPTION

The SeedFill procedure produces a mask showing where bits in an image can be filled

from a starting point, like the paint pouring from the MacPaint paint-bucket tool. The

SeedFill returns this mask in the dstPtr parameter. This mask is a bitmap filled with

1’s only where the pixels in the source image can be filled. This is illustrated in

Figure 3-24. You can then use this mask with the CopyBits, CopyMask, and

CopyDeepMask procedures.

Figure 3-24 A source image and its resulting mask produced by the SeedFill procedure

C H A P T E R 3

QuickDraw Drawing

3-110 QuickDraw Drawing Reference

Point to the bit image you want to fill with the srcPtr parameter, which can point to

the image’s base address or a word boundary within the image. Specify a pixel height

and word width with the height and words parameters to define a fill rectangle that

delimits the area you want to fill. The fill rectangle can be the entire bit image or a subset

of it. Point to a destination image with the dstPtr parameter. Specify the row widths of

the source and destination bitmaps (their rowBytes values) with the srcRow and

dstRow parameters. (The bitmaps can be different sizes, but they must be large enough

to contain the fill rectangle at the origins specified by the srcPtr and dstPtr

parameters.) Figure 3-25 illustrates these parameters for the source and destination bit

images.

You specify where to begin filling with the seedH and seedV parameters: they specify a

horizontal and vertical offset in pixels from the origin of the image pointed to by the

srcPtr parameter. The SeedFill procedure calculates contiguous pixels from that

point out to the boundaries of the fill rectangle, and it stores the result in the bit

image pointed to by the dstPtr parameter.

Calls to SeedFill are not clipped to the current port and are not stored into QuickDraw

pictures.

Figure 3-25 Parameters for the SeedFill and CalcMask procedures

SEE ALSO

For color graphics ports, use the SeedCFill procedure, which is described in the

chapter “Color QuickDraw.”

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-111

CalcMask

To determine where filling will not occur when filling from the outside of a rectangle,

use the CalcMask procedure.

PROCEDURE CalcMask (srcPtr,dstPtr: Ptr;

 srcRow,dstRow,height,words: Integer);

srcPtr A pointer to the source bit image.

dstPtr A pointer to the destination bit image.

srcRow Row width of the source bitmap.

dstRow Row width of the destination bitmap.

height Height (in pixels) of the fill rectangle.

words Width (in words) of the fill rectangle.

DESCRIPTION

The CalcMask procedure produces a bit image with 1’s in all pixels to which paint

could not flow from any of the outer edges of the rectangle. You can use this bit image as

a mask with the CopyBits or CopyMask procedure. As illustrated in Figure 3-26, a

hollow object produces a solid mask, but an open object produces a mask of itself.

Figure 3-26 A source image and the resulting mask produced by the CalcMask procedure

As with the SeedFill procedure, point to the bit image you want to fill with the

srcPtr parameter, which can point to the image’s base address or a word boundary

within the image. Specify a pixel height and word width with the height and words

parameters to define a fill rectangle that delimits the area you want to fill. The fill

rectangle can be the entire bit image or a subset of it. Point to a destination image with

the dstPtr parameter. Specify the row widths of the source and destination bitmaps

(their rowBytes values) with the srcRow and dstRow parameters. (The bitmaps can be

different sizes, but they must be large enough to contain the fill rectangle at the origins

specified by srcPtr and dstPtr.)

C H A P T E R 3

QuickDraw Drawing

3-112 QuickDraw Drawing Reference

Figure 3-25 on page 3-110 illustrates the parameters for the source and destination bit

images.

Calls to CalcMask are not clipped to the current port and are not stored into QuickDraw

pictures.

SEE ALSO

For color graphics ports, use the CalcCMask procedure, which is described in the

chapter “Color QuickDraw.”

Copying Images

QuickDraw provides three procedures for copying portions of bitmaps from one

graphics port or offscreen graphics world into another graphics port. The CopyBits

procedure allows you to copy using source modes and to clip and resize during the copy

operation. The CopyMask procedure allows you to mask areas where you want the

copy operation to occur. These procedures also allow you to use pixel maps instead of

bitmaps when your application runs on systems supporting Color QuickDraw.

The CopyDeepMask procedure, which is available to basic QuickDraw only in System 7,

combines the functionality of both CopyBits and CopyMask.

CopyBits

You can use the CopyBits procedure to copy a portion of a bitmap or a pixel map from

one graphics port (or offscreen graphics world) into another graphics port.

PROCEDURE CopyBits (srcBits,dstBits: BitMap;

 srcRect,dstRect: Rect; mode: Integer;

 maskRgn: RgnHandle);

srcBits The source BitMap record.

dstBits The destination BitMap record.

srcRect The source rectangle.

dstRect The destination rectangle.

mode One of the eight source modes in which the copy is to be performed.

maskRgn A region to use as a clipping mask.

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-113

DESCRIPTION

The CopyBits procedure transfers any portion of a bitmap between two basic graphics

ports, or any portion of a pixel map between two color graphics ports. You can use

CopyBits to move offscreen graphic images into an onscreen window, to blend colors

for the image in a pixel map, and to shrink and expand images.

Specify a source bitmap in the srcBits parameter and a destination bitmap in the

dstBits parameter. When copying images between color graphics ports, you must

coerce each CGrafPort record to a GrafPort record, dereference the portBits fields

of each, and then pass these “bitmaps” in the srcBits and dstBits parameters. If

your application copies a pixel image from a color graphics port called MyColorPort,

for example, you could specify GrafPtr(MyColorPort)^.portBits in the srcBits

parameter. In a CGrafPort record, the high 2 bits of the portVersion field are set.

This field, which shares the same position in a CGrafPort record as the

portBits.rowBytes field in a GrafPort record, indicates to CopyBits that you

have passed it a handle to a pixel map rather than a bitmap.

Using the srcRect and dstRect parameters, you can specify identically or differently

sized source and destination rectangles; for differently sized rectangles, CopyBits scales

the source image to fit the destination. As shown in Figure 3-27, for example, if the bit

image is a circle in a square source rectangle, and the destination rectangle is not square,

the bit image appears as an oval in the destination. When you specify rectangles in the

srcRect and dstRect parameters, use the local coordinate systems of, respectively, the

source and destination graphics ports.

Figure 3-27 Using CopyBits to stretch an image

C H A P T E R 3

QuickDraw Drawing

3-114 QuickDraw Drawing Reference

In the mode parameter, specify one of the following source modes for transferring the

bits from a source bitmap to a destination bitmap:

CONST {source modes for basic graphics ports}

srcCopy = 0; {where source pixel is black, force }

{ destination pixel black; where source pixel }

{ is white, force destination pixel white}

srcOr = 1; {where source pixel is black, force }

{ destination pixel black; where source pixel }

{ is white, leave destination pixel unaltered}

srcXor = 2; {where source pixel is black, invert }

{ destination pixel; where source pixel is }

{ white, leave destination pixel unaltered}

srcBic = 3; {where source pixel is black, force }

{ destination pixel white; where source pixel }

{ is white, leave destination pixel unaltered}

notSrcCopy

 = 4; {where source pixel is black, force }

{ destination pixel white; where source pixel }

{ is white, force destination pixel black}

notSrcOr = 5; {where source pixel is black, leave }

{ destination pixel unaltered; where source }

{ pixel is white, force destination pixel black}

notSrcXor = 6; {where source pixel is black, leave }

{ destination pixel unaltered; where source }

{ pixel is white, invert destination pixel}

notSrcBic = 7; {where source pixel is black, leave }

{ destination pixel unaltered; where source }

{ pixel is white, force destination pixel white}

On computers running System 7, you can add dithering to any source mode by adding

the following constant or the value it represents to the source mode:

CONST ditherCopy = 64; {add to source mode for dithering}

Dithering is a technique that mixes existing colors to create the effect of additional colors.

It also improves images that you shrink or that you copy from a direct pixel device to an

indexed device. The CopyBits procedure always dithers images when shrinking them

between pixel maps on direct devices.

To use highlighting, you can add this constant or its value to the source mode:

CONST hilite= 50; {add to source or pattern mode for highlighting}

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-115

With highlighting, QuickDraw replaces the background color with the highlight color

when your application copies images between graphics ports. This has the visual effect

of using a highlighting pen to select the object. (The global variable HiliteRGB is read

from parameter RAM when the machine starts. Basic graphics ports use the color stored

in the HiliteRGB global variable as the highlight color. Color graphics ports default to

the HiliteRGB global variable, but can be overridden by the HiliteColor procedure,

described in the chapter “Color QuickDraw.”)

When transferring pixels from a source pixel map to a destination pixel map, Color

QuickDraw interprets the source mode constants differently than basic QuickDraw does.

These constants have the following effects under Color QuickDraw:

CONST {source modes for color graphics ports}

srcCopy = 0;{determine how close the color of the source }

{ pixel is to black, and assign this relative }

{ amount of foreground color to the }

{ destination pixel; determine how close the }

{ color of the source pixel is to white, and }

{ assign this relative amount of background }

{ color to the destination pixel}

srcOr = 1;{determine how close the color of the source }

{ pixel is to black, and assign this relative }

{ amount of foreground color to the }

{ destination pixel}

srcXor = 2;{where source pixel is black, invert the }

{ destination pixel--for a colored destination }

{ pixel, use the complement of its color }

{ if the pixel is direct, invert its index if }

{ the pixel is indexed}

srcBic = 3;{determine how close the color of the source }

{ pixel is to black, and assign this relative }

{ amount of background color to the }

{ destination pixel}

notSrcCopy = 4;{determine how close the color of the source }

{ pixel is to black, and assign this relative }

{ amount of background color to the }

{ destination pixel; determine how close the }

{ color of the source pixel is to white, and }

{ assign this relative amount of foreground }

{ color to the destination pixel}

notSrcOr = 5; {determine how close the color of the source }

{ pixel is to white, and assign this relative }

{ amount of foreground color to the }

{ destination pixel}

C H A P T E R 3

QuickDraw Drawing

3-116 QuickDraw Drawing Reference

notSrcXor = 6; {where source pixel is white, invert the }

{ destination pixel--for a colored destination }

{ pixel, use the complement of its color }

{ if the pixel is direct, invert its index if }

{ the pixel is indexed}

notSrcBic = 7; {determine how close the color of the source }

{ pixel is to white, and assign this relative }

{ amount of background color to the }

{ destination pixel}

When you use CopyBits on a computer running Color QuickDraw, you can also specify

one of the following transfer modes in the mode parameter:

CONST {arithmetic transfer modes available in Color QuickDraw}

blend = 32; {replace destination pixel with a blend }

{ of the source and destination pixel }

{ colors; if the destination is a bitmap or }

{ 1-bit pixel map, revert to srcCopy mode}

addPin = 33; {replace destination pixel with the sum of }

{ the source and destination pixel colors-- }

{ up to a maximum allowable value; if }

{ the destination is a bitmap or }

{ 1-bit pixel map, revert to srcBic mode}

addOver = 34; {replace destination pixel with the sum of }

{ the source and destination pixel colors-- }

{ but if the value of the red, green, or }

{ blue component exceeds 65,536, then }

{ subtract 65,536 from that value; if the }

{ destination is a bitmap or 1-bit }

{ pixel map, revert to srcXor mode}

subPin = 35; {replace destination pixel with the }

{ difference of the source and destination }

{ pixel colors--but not less than a minimum }

{ allowable value; if the destination }

{ is a bitmap or 1-bit pixel map, revert to }

{ srcOr mode}

transparent = 36; {replace the destination pixel with the }

{ source pixel if the source pixel isn't }

{ equal to the background color}

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-117

addMax = 37; {compare the source and destination pixels, }

{ and replace the destination pixel with }

{ the color containing the greater }

{ saturation of each of the RGB components; }

{ if the destination is a bitmap or }

{ 1-bit pixel map, revert to srcBic mode}

subOver = 38; {replace destination pixel with the }

{ difference of the source and destination }

{ pixel colors--but if the value of the }

{ red, green, or blue component is }

{ less than 0, add the negative result to }

{ 65,536; if the destination is a bitmap or }

{ 1-bit pixel map, revert to srcXor mode}

adMin = 39; {compare the source and destination pixels, }

{ and replace the destination pixel with }

{ the color containing the lesser }

{ saturation of each of the RGB components; }

{ if the destination is a bitmap or }

{ 1-bit pixel map, revert to srcOr mode}

You can pass a region handle in the MaskRgn parameter to specify a mask region; the

resulting image is always clipped to this mask region and to the boundary rectangle of

the destination bitmap. If the destination bitmap is the current graphics port’s bitmap,

it’s also clipped to the intersection of the graphics port’s clipping region and visible

region. If you don’t want to clip to a masking region, just pass NIL for the maskRgn

parameter.

SPECIAL CONSIDERATIONS

When you use the CopyBits procedure to transfer an image between pixel maps, the

source and destination images may be of different pixel depths, of different sizes, and

they may have different color tables. However, CopyBits assumes that the destination

pixel map uses the same color table as the color table for the current GDevice record.

(This is because the Color Manager requires an inverse table for translating the color

table from the source pixel map to the destination pixel map.)

The CopyBits procedure applies the foreground and background colors of the current

graphics port to the image in the destination pixel map (or bitmap), even if the source

image is a bitmap. This causes the foreground color to replace all black pixels in the

destination and the background color to replace all white pixels. To avoid unwanted

coloring of the image, use the RGBForeColor procedure to set the foreground to black

and use the RGBBackColor procedure to set the background to white before calling

CopyBits.

C H A P T E R 3

QuickDraw Drawing

3-118 QuickDraw Drawing Reference

The source bitmap or pixel map must not occupy more memory than half the available

stack space. The stack space required by CopyBits is roughly five times the value of the

rowBytes field of the source pixel map: one rowBytes value for the pixel map (or

bitmap), an additional rowBytes value for dithering, another rowBytes value when

stretching or shrinking the source pixel map into the destination, another rowBytes

value for any color map changing, and a fifth additional rowBytes value for any color

aliasing. If there is insufficient memory to complete a CopyBits operation in Color

QuickDraw, the QDError function (described in the chapter “Color QuickDraw” in this

book) returns the result code –143.

If you use CopyBits to copy between two graphics ports that overlap, you must first

use the LocalToGlobal procedure to convert to global coordinates, and then specify

the global variable screenBits for both the srcBits and dstBits parameters.

The CopyBits procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

If you are reading directly from a NuBus™ video card with a base address of Fs00000

and there is not a card in the slot (s–1) below it, CopyBits reads addresses less than the

base address of the pixel map. This causes a bus error. To work around the problem,

remap the baseAddr field of the pixel map in your video card to at least 20 bytes above

the NuBus boundary; an address link of Fs000020 precludes the problem.

SEE ALSO

Listing 3-11 on page 3-33 illustrates how to use CopyBits to scale an image when

copying it from one window into another. Source modes are described in “Boolean

Transfer Modes With 1-Bit Pixels” beginning on page 3-8. Plate 2 at the front of this book

illustrates how to use CopyBits to colorize an image in a color graphics port; Listing 4-5

on page 4-35 in the chapter “Color QuickDraw” shows the sample code that produced

this plate. Listing 6-1 on page 6-5 in the chapter “Offscreen Graphics Worlds” illustrates

how to use CopyBits to copy an image from an offscreen graphics world to an onscreen

color graphics port.

Dithering, pixel maps, color graphics ports, the RGBForeColor and RGBBackColor

procedures, and color tables are explained in the chapter “Color QuickDraw.” The

LocalToGlobal procedure is described in the chapter “Basic QuickDraw.” The

GDevice record is described in the chapter “Graphics Devices.” Inverse tables and the

Color Manager are described in the chapter “Color Manager” in Inside Macintosh:
Advanced Color Imaging.

“Copying Pixels Between Color Graphics Ports” in the chapter “Color QuickDraw”

describes in greater detail how to use CopyBits to transfer colored images.

The CopyDeepMask procedure (described on page 3-120) combines the functions of the

CopyBits and CopyMask procedures. (The CopyMask procedure is described next.)

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-119

CopyMask

You can use the CopyMask procedure to copy a bit or pixel image from one graphics

port (or offscreen graphics world) into another graphics port only where the bits in a

mask are set to 1.

PROCEDURE CopyMask (srcBits,maskBits,dstBits: BitMap;

 srcRect,maskRect,dstRect: Rect);

srcBits The source BitMap record.

maskBits The mask BitMap record.

dstBits The destination BitMap record.

srcRect The source rectangle.

maskRect The mask rectangle. This must be the same size as the rectangle passed in
the srcRect parameter.

dstRect The destination rectangle.

DESCRIPTION

The CopyMask procedure copies the source bitmap or pixel map that you specify in

the srcBits parameter to a destination bitmap or pixel map that you specify in the

dstBits parameter—but only where the bits of the mask bitmap or pixel map that

you specify in the maskBits parameter are set to 1. When copying images between

color graphics ports, you must coerce each CGrafPort record to a GrafPort record,

dereference the portBits fields of each, and then pass these “bitmaps” in the srcBits

and dstBits parameters. If your application copies a pixel image from a color graphics

port called MyColorPort, for example, you could

specify GrafPtr(MyColorPort)^.portBits in the srcBits parameter.

Using the srcRect and dstRect parameters, you can specify identically or differently

sized source and destination rectangles; for differently sized rectangles, CopyMask scales

the source image to fit the destination. When you specify rectangles in the srcRect and

dstRect parameters, use the local coordinate systems of, respectively, the source and

destination graphics ports.

The rectangle you pass in the maskRect parameter selects the portion of the bitmap or

pixel map that you specify in the maskBits parameter to use as the mask.

If you specify pixel maps to CopyMask, they may range from 1 to 32 pixels in depth. The

pixel depth of the mask that you specify in the maskBits parameter is applied as a filter

between the source and destination pixel maps that you specify in the srcBits and

dstBits parameters. A black mask pixel value means that the copy operation is to take

the source pixel; a white value means that the copy operation is to take the destination

C H A P T E R 3

QuickDraw Drawing

3-120 QuickDraw Drawing Reference

pixel. Intermediate values specify a weighted average, which is calculated on a color

component basis. For each pixel’s color component value, the calculation is

(1 – mask) × source + (mask) × destination

Thus high mask values for a pixel’s color component reduce that component’s

contribution from the source PixMap record.

SPECIAL CONSIDERATIONS

Calls to CopyMask are not recorded in pictures and do not print.

See the list of special considerations for the CopyBits procedure beginning on

page 3-117; these considerations also apply to CopyMask.

The CopyMask procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

SEE ALSO

You can use the bitmap returned by the CalcMask procedure, described on page 3-111,

as the mask in order to implement a mask copy similar to that performed by the

MacPaint lasso tool. In the same way, you could use the pixel map returned by the

CalcCMask procedure, described in the chapter “Color QuickDraw.”

The chapter “Color QuickDraw” describes in more detail how to use CopyMask in a

Color QuickDraw environment. Plate 3 at the front of this book illustrates how to use

different colors in the mask to produce different effects in the destination pixel map;

Listing 6-2 on page 6-10 in the chapter “Offscreen Graphics Worlds” shows the code that

produced this plate. Plate 4 at the front of this book provides another illustration of the

effects of the source and mask pixel maps on the destination pixel map.

The CopyDeepMask procedure (described next) combines the functions of the

CopyMask and CopyBits procedures.

CopyDeepMask

To use a mask when copying bitmaps or pixel maps between graphics ports (or from an

offscreen graphics world into a graphics port), you can use the CopyDeepMask

procedure, which combines the effects of the CopyBits and CopyMask procedures.

PROCEDURE CopyDeepMask (srcBits: BitMap; maskBits: BitMap;

 dstBits: BitMap; srcRect: Rect;

 maskRect: Rect; dstRect: Rect;

 mode: Integer; maskRgn: RgnHandle);

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-121

srcBits The source BitMap record.

maskBits The masking BitMap record.

dstBits The destination BitMap record.

srcRect The source rectangle.

maskRect The mask rectangle. This must be the same size as the rectangle passed
in the srcRect parameter.

dstRect The destination rectangle.

mode The source mode.

maskRgn The mask clipping region.

DESCRIPTION

The CopyDeepMask procedure transfers a bitmap between two basic graphics ports or a

pixel map between two color graphics ports. You specify a mask to CopyDeepMask so

that it transfers the source image to the destination image only where the bits of the

mask are set to 1. You can use CopyDeepMask to move offscreen graphic images into an

onscreen window, to blend colors for the image in a pixel map, and to shrink and expand

images.

Specify a source bitmap in the srcBits parameter and a destination bitmap in the

dstBits parameter. Specify a mask in the maskBits parameter. When copying images

between color graphics ports, you must coerce each port’s CGrafPort record to a

GrafPort record, dereference the portBits fields of each, and then pass these

“bitmaps” in the srcBits and dstBits parameters. If your application copies a pixel

image from a color graphics port called MyColorPort, for example, you could specify

GrafPtr(MyColorPort)^.portBits in the srcBits parameter. The transfer can be

performed in any of the transfer modes—with or without adding the ditherCopy

constant—that are available to the CopyBits procedure, described beginning on

page 3-112.

Using the srcRect and dstRect parameters, you can specify identically or differently

sized source and destination rectangles; for differently sized rectangles, CopyDeepMask

scales the source image to fit the destination. When you specify rectangles in the

srcRect and dstRect parameters, use the local coordinate systems of, respectively, the

source and destination graphics ports.

The result (in the parameter dstBits) is clipped to the mask region that you specify

in the maskRgn parameter, and to the boundary rectangle that you specify in the

dstRect parameter. The rectangle you pass in the maskRect parameter selects the

portion of the bitmap or pixel map that you specify in the maskBits parameter to use as

the mask. If you don’t want to clip to the mask region, specify NIL in the maskRgn

parameter.

C H A P T E R 3

QuickDraw Drawing

3-122 QuickDraw Drawing Reference

If you specify pixel maps to CopyDeepMask, they may range from 1 to 32 pixels in

depth. The pixel depth of the mask that you specify in the maskBits parameter is

applied as a filter between the source and destination pixel maps that you specify in the

srcBits and dstBits parameters. A black mask pixel value means that the copy

operation is to take the source pixel; a white value means that the copy operation is to

take the destination pixel. Intermediate values specify a weighted average, which

is calculated on a color component basis. For each pixel’s color component value, the

calculation is

(1 – mask) × source + (mask) × destination

Thus high mask values for a pixel’s color component reduce that component’s

contribution from the source PixMap record.

SPECIAL CONSIDERATIONS

This procedure is available to basic QuickDraw only in System 7.

As with the CopyMask procedure, calls to CopyDeepMask are not recorded in pictures

and do not print.

See the list of special considerations for the CopyBits procedure beginning on

page 3-117; these considerations also apply to CopyDeepMask.

The CopyDeepMask procedure may move or purge memory blocks in the application

heap. Your application should not call this procedure at interrupt time.

SEE ALSO

The chapter “Color QuickDraw” describes in more detail how to use CopyDeepMask in

a Color QuickDraw environment.

Drawing With the Eight-Color System

On a color screen, you can draw using eight predefined colors, even when you are using

a basic graphics port. Although basic QuickDraw graphics routines were designed for

black-and-white drawing, they also include rudimentary color capabilities. Because

Color QuickDraw also supports this system, it is compatible across all Macintosh

platforms. (This section describes the rudimentary color routines included in basic

QuickDraw. See the next chapter, “Color QuickDraw,” for information about more

sophisticated color use in your application.)

A pair of fields in a GrafPort record, fgColor and bkColor, specify a foreground and

background color. The foreground color is the color of the “ink” used to frame, fill, and

paint. By default, the foreground color is black. The background color is the color of the

pixels in the bitmap wherever no drawing has taken place. By default, the background

color is white. However, you can use the ForeColor and BackColor procedures to

change these fields. When printing, however, use the ColorBit procedure to set the

foreground color.

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-123

In System 7, these Color QuickDraw routines are available to basic QuickDraw:

RGBForeColor, RGBBackColor, GetForeColor, and GetBackColor. Described

in the next chapter, “Color QuickDraw,” these routines can also assist you in

manipulating the eight-color system of basic QuickDraw.

ForeColor

To change the color of the “ink” used for framing, painting, and filling on computers that

support only basic QuickDraw, you can use the ForeColor procedure.

PROCEDURE ForeColor (color: LongInt);

color One of eight color values. You can use the following constants to
represent these values:

 CONST

 whiteColor = 30;

 blackColor = 33;

 yellowColor = 69;

 magentaColor = 137;

 redColor = 205;

 cyanColor = 273;

 greenColor = 341;

 blueColor = 409;

DESCRIPTION

The ForeColor procedure sets the foreground color for the current graphics port to the

color that you specify in the color parameter. When you draw with the patCopy and

srcCopy transfer modes, for example, black pixels are drawn in the color you specify

with ForeColor.

SPECIAL CONSIDERATIONS

The ForeColor procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

SEE ALSO

All nonwhite colors appear as black on black-and-white screens. Before you use

ForeColor, you can use the DeviceLoop procedure, which is described in the chapter

“Graphics Devices,” to determine the color characteristics of the current screen.

In System 7, you may instead use the Color QuickDraw procedure RGBForeColor,

which is described in the chapter “Color QuickDraw.”

C H A P T E R 3

QuickDraw Drawing

3-124 QuickDraw Drawing Reference

BackColor

To change a basic graphics port’s background color, use the BackColor procedure.

PROCEDURE BackColor (color: LongInt);

color One of eight color values. You can use the constants described for the
ForeColor procedure in the previous section.

DESCRIPTION

The BackColor procedure sets the background color for the current graphics port to the

color that you specify in the color parameter. When you draw with the patCopy and

srcCopy transfer modes, for example, white pixels are drawn in the color you specify

with BackColor.

SPECIAL CONSIDERATIONS

The BackColor procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

SEE ALSO

All nonwhite colors appear as black on black-and-white screens. Before you use

BackColor, you can use the DeviceLoop procedure, which is described in the chapter

“Graphics Devices,” to determine the color characteristics of the current screen.

In System 7, you may instead use the Color QuickDraw procedure RGBBackColor,

which is described in the chapter “Color QuickDraw.”

ColorBit

Use the ColorBit procedure to set the foreground color for all printing in the current

graphics port.

PROCEDURE ColorBit (whichBit: Integer);

whichBit An integer specifying the plane to draw into.

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-125

DESCRIPTION

The ColorBit procedure is called by printing software for a color printer (or other

color-imaging software) to set the GrafPort record’s colorBit field to the value in the

whichBit parameter. This value tells QuickDraw which plane of the color picture to

draw into. QuickDraw draws into the plane corresponding to the bit number specified

by the whichBit parameter. Since QuickDraw can support output devices that have up

to 32 bits of color information per pixel, the possible range of values for whichBit is 0

through 31. The initial value of the colorBit field is 0.

Determining Whether QuickDraw Has Finished Drawing

Your application can use the QDDone function to determine whether drawing is

completed in a given graphics port. You can also use it to determine whether drawing

has finished in all open graphics ports.

QDDone

Although you will probably never need to determine whether QuickDraw has

completed drawing, you can do so by using the QDDone function.

FUNCTION QDDone (port: GrafPtr): Boolean;

port The GrafPort record for a graphics port in which your application has
begun drawing; if you pass NIL, QDDone tests all open graphics ports.

DESCRIPTION

The QDDone function returns TRUE if all drawing operations have finished in the

graphics port specified in the port parameter, FALSE if any remain to be executed. If

you pass NIL in the port parameter, then QDDone returns TRUE only if drawing

operations have completed in all ports.

The QDDone function may be useful if a graphics accelerator is present and operating

asynchronously. You could use it to ensure that all drawing is done before issuing new

drawing commands, and to avoid the possibility that the new drawing operations might

be overlaid by previously issued but unexecuted operations.

C H A P T E R 3

QuickDraw Drawing

3-126 QuickDraw Drawing Reference

SPECIAL CONSIDERATIONS

The QDDone function has little or no usefulness.

If a graphics port draws a clock or some other continuously operating drawing process,

QDDone may never return TRUE.

To determine whether all drawing in a color graphics port has completed, you must

coerce its CGrafPort record to a GrafPort record, which you pass in the port

parameter.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the QDDone function are

Getting Pattern Resources

As described in “Bit Patterns” beginning on page 3-5, QuickDraw predefines five

patterns for your use in the global variables white, black, gray, ltGray, and dkGray.

However, you can create and store your own patterns in a resource file. To retrieve the

patterns stored in a pattern ('PAT ') resource, you can use the GetPattern function.

To retrieve the patterns stored in a pattern list ('PAT#') resource, you can use the

GetIndPattern procedure.

GetPattern

To get a pattern ('PAT ') resource stored in a resource file, you can use the

GetPattern function.

FUNCTION GetPattern (patID: Integer): PatHandle;

patID The resource ID for a resource of type 'PAT '.

DESCRIPTION

The GetPattern function returns a handle to the pattern having the resource ID that

you specify in the patID parameter. The GetPattern function calls the following

Resource Manager function with these parameters:

GetResource('PAT ', patID);

Trap macro Selector

_QDExtensions $00040013

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-127

If a pattern resource with the ID that you request does not exist, the GetPattern

function returns NIL.

The data structure of type PatHandle is defined as follows:

TYPE PatPrt = ^Pattern;

PatHandle = ^PatPtr;

Pattern = PACKED ARRAY[0..7] OF 0..255;

When you are finished using the pattern, dispose of its handle with the Memory

Manager function DisposeHandle.

SPECIAL CONSIDERATIONS

The GetPattern function may move or purge memory blocks in the application heap.

Your application should not call this function at interrupt time.

SEE ALSO

The pattern resource is described on page 3-140; the Pattern record is described on

page 3-40. See the chapter “Resource Manager” in Inside Macintosh: More Macintosh
Toolbox for more information about resources, the Resource Manager, and the

GetResource function. See Inside Macintosh: Memory for information about the

DisposeHandle procedure.

GetIndPattern

To get a pattern stored in a pattern list ('PAT#') resource, you can use the

GetIndPattern procedure.

PROCEDURE GetIndPattern (VAR thePattern: Pattern;

 patListID: Integer; index: Integer);

thePattern
A Pattern record.

patListID The resource ID for a resource of type 'PAT#'.

index The index number for the desired pattern within the pattern list ('PAT#')
resource.

C H A P T E R 3

QuickDraw Drawing

3-128 QuickDraw Drawing Reference

DESCRIPTION

In the parameter thePattern, the GetIndPattern procedure returns a Pattern

record for a pattern stored in a pattern list ('PAT#') resource. Specify the resource ID for

a pattern list ('PAT#') resource in the patListID parameter. In the index parameter,

specify the index number to a particular pattern stored in that resource. The index

number can range from 1 to the number of patterns in the pattern list resource. The

GetIndPattern procedure calls the following Resource Manager function with these

parameters:

GetResource('PAT ', patListID);

There is a pattern list resource in the System file that contains the standard Macintosh

patterns used by MacPaint. Figure 3-28 shows these standard patterns. The resource ID,

and the constant you can use to represent it, are

CONST sysPatListID = 0;

Figure 3-28 Standard patterns

SPECIAL CONSIDERATIONS

The GetIndPattern procedure may move or purge memory blocks in the application

heap. Your application should not call this procedure at interrupt time.

SEE ALSO

The pattern list resource is described on page 3-141; the Pattern record is described on

page 3-40. See the chapter “Resource Manager” in Inside Macintosh: More Macintosh
Toolbox for more information about resources, the Resource Manager, and the

GetResource function.

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-129

Customizing QuickDraw Operations

For each shape that QuickDraw can draw, there are procedures that perform these basic

graphics operations on the shape: frame, paint, erase, invert, and fill. Those procedures

in turn call a low-level drawing routine for the shape. For example, the FrameOval,

PaintOval, EraseOval, InvertOval, and FillOval procedures all call the low-level

procedure StdOval, which draws the oval.

Other low-level routines defined by QuickDraw are:

■ The procedure called by CopyBits that performs bit and pixel transfer.

■ The function that measures the width of text and is called by the QuickDraw text
routines CharWidth, StringWidth, and TextWidth. (These QuickDraw
text routines are described in the chapter “QuickDraw Text” in Inside Macintosh: Text.)

■ The procedure that processes picture comments. The standard procedure ignores
picture comments. (Picture comments are described in Appendix B.)

■ The procedure that saves drawing commands as the definition of a picture, and the
procedure that retrieves them. These two enable your application to draw on remote
devices, print to the disk, get picture input from the disk, and support large pictures.

For each type of object QuickDraw can draw, including text and lines, there’s a pointer to

one of these low-level routines.

The grafProcs field of a GrafPort or CGrafPort record determines which low-level

routines are called. If that field contains the value of NIL, the standard routines are

called. You can set the grafProcs field to point to a record of pointers to your own

routines. For a basic graphics port, this record of pointers is defined by a QDProcs

record. As described in the chapter “Color QuickDraw,” these pointers are contained

in a CQDProcs record for a color graphics port. By changing these pointers, you can

install your own routines, and either completely override the standard ones or call them

after your routines have modified their parameters as necessary.

To assist you in setting up a record, basic QuickDraw provides the SetStdProcs

procedure, which is described in the next section. You can use the

SetStdProcs procedure to get a QDProcs record with fields that point to basic

QuickDraw’s standard low-level routines. You can then reset the routines with which

you are concerned. By pointing to your modified QDProcs record in the grafProcs

field of a GrafPort record, you can replace some or all of basic QuickDraw’s standard

low-level routines.

The standard QuickDraw low-level routines are described in the rest of this section.

These low-level routines should be called only from your customized routines.

C H A P T E R 3

QuickDraw Drawing

3-130 QuickDraw Drawing Reference

SetStdProcs

You can use the SetStdProcs procedure to get a QDProcs record with fields that point

to basic QuickDraw’s standard low-level routines. You can replace these low-level

routines with your own, and then point to your modified QDProcs record in the

grafProcs field of a GrafPort record to change basic QuickDraw’s standard low-level

behavior.

PROCEDURE SetStdProcs (VAR procs: QDProcs);

procs Upon completion, a QDProcs record with fields that point to basic
QuickDraw’s standard low-level routines.

DESCRIPTION

In the procs parameter, the SetStdProcs procedure returns a QDProcs record with

fields that point to the standard low-level routines. You can change one or more fields of

this record to point to your own routines and then set the basic graphics port to use this

modified QDProcs record.

The routines you install in this QDProcs record must have the same calling sequences

as the standard routines, which are described in the rest of this section.

SPECIAL CONSIDERATIONS

The Color QuickDraw procedure SetStdCProcs is analogous to the SetStdProcs

procedure, which you should use with computers that support only basic QuickDraw.

When drawing in a color graphics port, your application must always use

SetStdCProcs instead of SetStdProcs.

SEE ALSO

The data structure of type QDProcs is described on page 3-39. The SetStdCProcs

procedure is described in the chapter “Color QuickDraw.”

The chapter “Pictures” in this book describes how to replace the low-level routines that

read and write pictures.

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-131

StdText

The StdText procedure is QuickDraw’s standard low-level routine for drawing text.

PROCEDURE StdText (byteCount: Integer; textBuf: Ptr;

 numer,denom: Point);

byteCount The number of bytes of text to draw.

textBuf A memory structure containing the text to draw.

numer Scaling numerator.

denom Scaling denominator.

DESCRIPTION

The StdText procedure draws text from the arbitrary structure in memory specified

by the textBuf parameter, starting from the first byte and continuing for the number

of bytes specified in the byteCount parameter. The numer and denom parameters

specify the scaling factor: numer.v over denom.v gives the vertical scaling, and

numer.h over denom.h gives the horizontal scaling factor.

SPECIAL CONSIDERATIONS

The StdText procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

SEE ALSO

QuickDraw’s text-drawing capabilities are described in the chapter “QuickDraw Text” in

Inside Macintosh: Text.

C H A P T E R 3

QuickDraw Drawing

3-132 QuickDraw Drawing Reference

StdLine

The StdLine procedure is QuickDraw’s standard low-level routine for drawing a line.

PROCEDURE StdLine (newPt: Point);

newPt The point to which to draw the line.

DESCRIPTION

The StdLine procedure draws a line from the current pen location to the location (in

local coordinates) specified in the newPt parameter.

SPECIAL CONSIDERATIONS

The StdLine procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

StdRect

The StdRect procedure is QuickDraw’s standard low-level routine for drawing a

rectangle.

PROCEDURE StdRect (verb: GrafVerb; r: Rect);

verb One of the following actions to perform, as defined for the GrafVerb
data type:

 GrafVerb = (frame, paint, erase, invert, fill);

r The rectangle to draw.

DESCRIPTION

The StdRect procedure draws the rectangle specified in the r parameter according

to the action specified in the verb parameter.

SPECIAL CONSIDERATIONS

The StdRect procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-133

StdRRect

The StdRRect procedure is QuickDraw’s standard low-level routine for drawing a

rounded rectangle.

PROCEDURE StdRRect (verb: GrafVerb; r: Rect;

 ovalwidth,ovalHeight: Integer)

verb One of the following actions to perform, as defined for the GrafVerb
data type:

 GrafVerb = (frame, paint, erase, invert, fill);

r The rectangle to draw.

ovalwidth The width diameter for the corner oval.

ovalHeight
The height diameter for the corner oval.

DESCRIPTION

The StdRRect procedure draws the rounded rectangle specified in the r parameter

according to the action specified in the verb parameter. The ovalWidth and

ovalHeight parameters specify the diameters of curvature for the corners.

SPECIAL CONSIDERATIONS

The StdRRect procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

StdOval

The StdOval procedure is QuickDraw’s standard low-level routine for drawing an oval.

PROCEDURE StdOval (verb: GrafVerb; r: Rect);

verb One of the following actions to perform, as defined for the GrafVerb
data type:

 GrafVerb = (frame, paint, erase, invert, fill);

r The rectangle to contain the oval.

C H A P T E R 3

QuickDraw Drawing

3-134 QuickDraw Drawing Reference

DESCRIPTION

The StdOval procedure draws an oval inside the given rectangle specified in the r

parameter according to the action specified in the verb parameter.

SPECIAL CONSIDERATIONS

The StdOval procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

StdArc

The StdArc procedure is QuickDraw’s standard low-level routine for drawing an arc or

a wedge.

PROCEDURE StdArc (verb: GrafVerb; r: Rect;

 startAngle,arcAngle: Integer);

verb One of the following actions to perform, as defined for the GrafVerb
data type:

 GrafVerb = (frame, paint, erase, invert, fill);

r The rectangle to contain the arc.

startAngle
The beginning angle.

arcAngle The ending angle.

DESCRIPTION

Using the action specified in the verb parameter, the StdArc procedure draws an arc or

wedge of the oval that fits inside the rectangle specified in the r parameter. The arc

or wedge is bounded by the radii specified in the startAngle and arcAngle

parameters. (The startAngle and arcAngle parameters are illustrated in Figure 3-20

on page 3-72.)

SPECIAL CONSIDERATIONS

The StdArc procedure may move or purge memory blocks in the application heap. Your

application should not call this procedure at interrupt time.

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-135

StdPoly

The StdPoly procedure is QuickDraw’s standard low-level routine for drawing a

polygon.

PROCEDURE StdPoly (verb: GrafVerb; poly: PolyHandle);

verb One of the following actions to perform, as defined for the GrafVerb
data type:

 GrafVerb = (frame, paint, erase, invert, fill);

poly A handle to the polygon data.

DESCRIPTION

The StdPoly procedure draws the polygon specified in the poly parameter according

to the action specified in the verb parameter.

SPECIAL CONSIDERATIONS

The StdPoly procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

StdRgn

The StdRgn procedure is QuickDraw’s standard low-level routine for drawing a region.

PROCEDURE StdRgn (verb: GrafVerb; rgn: RgnHandle);

verb One of the following actions to perform, as defined for the GrafVerb
data type:

 GrafVerb = (frame, paint, erase, invert, fill);

rgn A handle to the region data.

DESCRIPTION

The StdRgn procedure draws the region specified in the rgn parameter according to the

action specified in the verb parameter.

C H A P T E R 3

QuickDraw Drawing

3-136 QuickDraw Drawing Reference

SPECIAL CONSIDERATIONS

The StdRgn procedure may move or purge memory blocks in the application heap. Your

application should not call this procedure at interrupt time.

StdBits

The StdBits procedure is QuickDraw’s standard low-level routine for doing bit and

pixel transfer.

PROCEDURE StdBits (VAR srcBits: BitMap; VAR srcRect,dstRect: Rect;

 mode: Integer; maskRgn: RgnHandle);

srcBits A bitmap or pixel map containing the image to copy.

srcRect The source rectangle.

dstRect The destination rectangle.

mode The source mode for the copy.

maskRgn A handle to a region acting as a mask for the transfer.

DESCRIPTION

The StdBits procedure transfers a bit or pixel image between the bitmap or pixel map

specified in the srcBits parameter and bitmap of the current graphics port, just as if

the CopyBits procedure were called with the same parameters and with a destination

bitmap equal to thePort^.portBits.

SPECIAL CONSIDERATIONS

The StdBits procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

SEE ALSO

See the description of the CopyBits procedure beginning on page 3-112 for a discussion

of the destination bitmap and of the srcBits, srcRect, dstRect, mode, and maskRgn

parameters.

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-137

StdComment

The StdComment procedure is QuickDraw’s standard low-level routine for processing a

picture comment.

PROCEDURE StdComment (kind,dataSize: Integer;

 dataHandle: Handle);

kind The type of comment. See Appendix A in this book for a list of the
standard constants (and the values they represent) used to specify
common picture comment types.

dataSize The size of additional data.

dataHandle
A handle to additional data.

DESCRIPTION

The kind parameter identifies the type of comment. The dataHandle parameter takes a

handle to additional data, and the dataSize parameter specifies the size of that data in

bytes. If there’s no additional data for the comment, the value of the dataHandle

parameter is NIL and the value of the dataSize parameter is 0. The StdComment

procedure simply ignores the comment.

SPECIAL CONSIDERATIONS

The StdComment procedure may move or purge memory blocks in the application

heap. Your application should not call this procedure at interrupt time.

SEE ALSO

Picture comments are described in detail in Appendix B, “Using Picture Comments for

Printing.”

C H A P T E R 3

QuickDraw Drawing

3-138 QuickDraw Drawing Reference

StdTxtMeas

The StdTxtMeas function is QuickDraw’s standard low-level routine for measuring text

width.

FUNCTION StdTxtMeas (byteCount: Integer; textAddr: Ptr;

 VAR numer,denom: Point;

 VAR info: FontInfo): Integer;

byteCount The number of text bytes to measure.

textAddr A pointer to the memory structure containing the text.

numer Scaling numerator.

denom Scaling denominator.

info A FontInfo record.

DESCRIPTION

The StdTxtMeas function returns the width of the text stored in the arbitrary structure

in memory specified by textAddr, starting with the first byte and continuing for

byteCount bytes. The numer and denom parameters specify the scaling as in the

StdText procedure; note that StdTxtMeas may change them.

SPECIAL CONSIDERATIONS

The StdTxtMeas function may move or purge memory blocks in the application heap.

Your application should not call this function at interrupt time.

SEE ALSO

QuickDraw’s text-drawing capabilities are described in the chapter “QuickDraw Text” in

Inside Macintosh: Text.

StdGetPic

The StdGetPic procedure is QuickDraw’s standard low-level routine for retrieving

information from the definition of a picture.

PROCEDURE StdGetPic (dataPtr: Ptr; byteCount: Integer);

dataPtr A pointer to the collected picture data.

byteCount The size of the picture data.

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-139

DESCRIPTION

The StdGetPic procedure retrieves from the definition of the currently open picture the

next number of bytes as specified in the byteCount parameter. The StdGetPic

procedure stores them in the data structure pointed to by the dataPtr parameter.

SEE ALSO

Pictures are described in the chapter “Pictures,” which also provides a code sample

illustrating how you can supply your application with its own low-level procedure for

retrieving pictures.

StdPutPic

The StdPutPic procedure is QuickDraw’s standard low-level routine for saving

information as the definition of a picture.

PROCEDURE StdPutPic (dataPtr: Ptr; byteCount: Integer);

dataPtr A pointer to the collected picture data.

byteCount The size of the picture data.

DESCRIPTION

The StdPutPic procedure saves as the definition of the currently open picture the

drawing commands stored in the data structure pointed to by the dataPtr parameter,

starting with the first byte and continuing for the next number of bytes as specified in

the byteCount parameter.

SPECIAL CONSIDERATIONS

The StdPutPic procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

SEE ALSO

Pictures are described in the chapter “Pictures,” which also provides a code sample

illustrating how you can supply your application with its own low-level procedure for

saving pictures.

C H A P T E R 3

QuickDraw Drawing

3-140 QuickDraw Drawing Reference

Resources

This section describes the resources you can create to define bit patterns for use when

drawing, painting, or filling. The pattern ('PAT ') resource defines a single bit pattern.

The pattern list ('PAT#') resource defines an array of bit patterns.

A bit pattern is a 64-bit image, organized as an 8-by-8 pixel square, that defines a

repeating design or tone. (Resources for color pixel patterns are described in the chapter

“Color QuickDraw.”)

This section describes the structures of these resources after they are compiled by the Rez

resource compiler, available from APDA. To create pattern and pattern list resources, you

typically use a high-level tool such as the ResEdit application. You can then use the

DeRez decompiler to convert your resources into Rez input when necessary.

The Pattern Resource

You can use a pattern resource to define a single bit pattern. A pattern resource is a

resource of type 'PAT '. All pattern resources that you create must have resource ID

numbers greater than 128.

To retrieve the bit pattern stored in a pattern resource, you can use the GetPattern

function, which is described on page 3-126. You can then specify that bit pattern for a fill

pattern, background pattern, or pen pattern.

A pattern resource is defined to be of type hex String[8]; every bit represents a pixel

in the 8-by-8 pixel pattern. If you examine the compiled version of a pattern resource, as

represented in Figure 3-29, you find that it contains 8 bytes of information that define the

8-by-8 pixel square of the pattern.

Figure 3-29 Format of a compiled pattern ('PAT ') resource

C H A P T E R 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-141

The Pattern List Resource

You can use a pattern list resource to define an array of bit patterns. A pattern list

resource is a resource of type 'PAT#'. All pattern list resources that you create must

have resource ID numbers greater than 128.

To retrieve one of the bit patterns stored in a pattern list resource, you can use the

GetIndPattern procedure, which is described on page 3-127. You can then specify that

bit pattern for a fill pattern, background pattern, or pen pattern.

If you examine the compiled version of a pattern list resource, as represented in

Figure 3-30, you find that it contains the following information:

■ Pattern count. This is the number of bit patterns defined in this resource.

■ An array of bit patterns, each of which contains 8 bytes of information that define the
8-by-8 pixel square of the pattern.

Figure 3-30 Format of a compiled pattern list ('PAT#') resource

C H A P T E R 3

QuickDraw Drawing

3-142 Summary of QuickDraw Drawing

Summary of QuickDraw Drawing

Pascal Summary

Constants

CONST

{basic QuickDraw colors}

whiteColor = 30;

blackColor = 33;

yellowColor = 69;

magentaColor = 137;

redColor = 205;

cyanColor = 273;

greenColor = 341;

blueColor = 409;

{source modes for basic graphics ports}

srcCopy = 0; {where source pixel is black, force destination }

{ pixel black; where source pixel is white, force }

{ destination pixel white}

srcOr = 1; {where source pixel is black, force destination }

{ pixel black; where source pixel is white, leave }

{ destination pixel unaltered}

srcXor = 2; {where source pixel is black, invert destination }

{ pixel; where source pixel is white, leave }

{ destination pixel unaltered}

srcBic = 3; {where source pixel is black, force destination }

{ pixel white; where source pixel is white, leave }

{ destination pixel unaltered}

notSrcCopy = 4; {where source pixel is black, force destination }

{ pixel white; where source pixel is white, force }

{ destination pixel black}

notSrcOr = 5; {where source pixel is black, leave destination }

{ pixel unaltered; where source pixel is white, }

{ force destination pixel black}

C H A P T E R 3

QuickDraw Drawing

Summary of QuickDraw Drawing 3-143

notSrcXor = 6; {where source pixel is black, leave destination }

{ pixel unaltered; where source pixel is white, }

{ invert destination pixel}

notSrcBic = 7; {where source pixel is black, leave destination }

{ pixel unaltered; where source pixel is white, }

{ force destination pixel white}

{pattern modes}

patCopy = 8; {where pattern pixel is black, apply foreground }

{ color to destination pixel; where pattern pixel }

{ is white, apply background color to destination }

{ pixel}

patOr = 9; {where pattern pixel is black, invert destination }

{ pixel; where pattern pixel is white, leave }

{ destination pixel unaltered}

patXor = 10; {where pattern pixel is black, invert destination }

{ pixel; where pattern pixel is white, leave }

{ destination pixel unaltered}

patBic = 11; {where pattern pixel is black, apply background }

{ color to destination pixel; where pattern pixel }

{ is white, leave destination pixel unaltered}

notPatCopy = 12; {where pattern pixel is black, apply background }

{ color to destination pixel; where pattern pixel }

{ is white, apply foreground color to destination }

{ pixel}

notPatOr = 13; {where pattern pixel is black, leave destination }

{ pixel unaltered; where pattern pixel is white, }

{ apply foreground color to destination pixel}

notPatXor = 14; {where pattern pixel is black, leave destination }

{ pixel unaltered; where pattern pixel is white, }

{ invert destination pixel}

notPatBic = 15; {where pattern pixel is black, leave destination }

{ pixel unaltered; where pattern pixel is white, }

{ apply background color to destination pixel}

ditherCopy = 64; {add to source mode for dithering}

{pattern list resource ID for patterns in the System file}

sysPatListID = 0;

C H A P T E R 3

QuickDraw Drawing

3-144 Summary of QuickDraw Drawing

Data Types

TYPE PolyPtr = ^Polygon;

PolyHandle = ^PolyPtr;

Polygon =

RECORD

polySize: Integer; {size in bytes}

polyBBox: Rect; {bounding rectangle}

polyPoints: ARRAY[0..0] OF Point; {vertices for polygon}

END;

PenState =

RECORD

pnLoc: Point; {pen location}

pnSize: Point; {pen size}

pnMode: Integer; {pen's pattern mode}

pnPat: Pattern; {pen pattern}

END;

QDProcsPtr = ^QDProcs;

QDProcs =

RECORD

textProc: Ptr; {text drawing}

lineProc: Ptr; {line drawing}

rectProc: Ptr; {rectangle drawing}

rRectProc: Ptr; {roundRect drawing}

ovalProc: Ptr; {oval drawing}

arcProc: Ptr; {arc/wedge drawing}

rgnProc: Ptr; {region drawing}

bitsProc: Ptr; {bit transfer}

commentProc: Ptr; {picture comment processing}

txMeasProc: Ptr; {text width measurement}

getPicProc: Ptr; {picture retrieval}

putPicProc: Ptr; {picture saving}

END;

GrafVerb = (frame,paint,erase,invert,fill);

PatPtr = ^Pattern;

PatHandle = ^PatPtr;

Pattern = PACKED ARRAY[0..7] OF 0..255;

C H A P T E R 3

QuickDraw Drawing

Summary of QuickDraw Drawing 3-145

Routines

Managing the Graphics Pen

PROCEDURE HidePen;

PROCEDURE ShowPen;

PROCEDURE GetPen (VAR pt: Point);

PROCEDURE GetPenState (VAR pnState: PenState);

PROCEDURE SetPenState (pnState: PenState);

PROCEDURE PenSize (width,height: Integer);

PROCEDURE PenMode (mode: Integer);

PROCEDURE PenPat (pat: Pattern);

PROCEDURE PenNormal;

Changing the Background Bit Pattern

PROCEDURE BackPat (pat: Pattern);

Drawing Lines

PROCEDURE MoveTo (h,v: Integer);

PROCEDURE Move (dh,dv: Integer);

PROCEDURE LineTo (h,v: Integer);

PROCEDURE Line (dh,dv: Integer);

Creating and Managing Rectangles

PROCEDURE SetRect (VAR r: Rect; left,top,right,bottom: Integer);

PROCEDURE OffsetRect (VAR r: Rect; dh,dv: Integer);

PROCEDURE InsetRect (VAR r: Rect; dh,dv: Integer);

FUNCTION SectRect (src1,src2: Rect; VAR dstRect: Rect): Boolean;

PROCEDURE UnionRect (src1,src2: Rect; VAR dstRect: Rect);

FUNCTION PtInRect (pt: Point; r: Rect): Boolean;

PROCEDURE Pt2Rect (pt1,pt2: Point; VAR dstRect: Rect);

PROCEDURE PtToAngle (r: Rect; pt: Point; VAR angle: Integer);

FUNCTION EqualRect (rect1,rect2: Rect): Boolean;

FUNCTION EmptyRect (r: Rect): Boolean;

C H A P T E R 3

QuickDraw Drawing

3-146 Summary of QuickDraw Drawing

Drawing Rectangles

PROCEDURE FrameRect (r: Rect);

PROCEDURE PaintRect (r: Rect);

PROCEDURE FillRect (r: Rect; pat: Pattern);

PROCEDURE EraseRect (r: Rect);

PROCEDURE InvertRect (r: Rect);

Drawing Rounded Rectangles

PROCEDURE FrameRoundRect (r: Rect; ovalWidth,ovalHeight: Integer);

PROCEDURE PaintRoundRect (r: Rect; ovalWidth,ovalHeight: Integer);

PROCEDURE FillRoundRect (r: Rect; ovalWidth,ovalHeight: Integer;
pat: Pattern);

PROCEDURE EraseRoundRect (r: Rect; ovalWidth,ovalHeight: Integer);

PROCEDURE InvertRoundRect (r: Rect; ovalWidth,ovalHeight: Integer);

Drawing Ovals

PROCEDURE FrameOval (r: Rect);

PROCEDURE PaintOval (r: Rect);

PROCEDURE FillOval (r: Rect; pat: Pattern);

PROCEDURE EraseOval (r: Rect);

PROCEDURE InvertOval (r: Rect);

Drawing Arcs and Wedges

PROCEDURE FrameArc (r: Rect; startAngle,arcAngle: Integer);

PROCEDURE PaintArc (r: Rect; startAngle,arcAngle: Integer);

PROCEDURE FillArc (r: Rect; startAngle,arcAngle: Integer;
pat: Pattern);

PROCEDURE EraseArc (r: Rect; startAngle,arcAngle: Integer);

PROCEDURE InvertArc (r: Rect; startAngle,arcAngle: Integer);

Creating and Managing Polygons

FUNCTION OpenPoly : PolyHandle;

PROCEDURE ClosePoly;

PROCEDURE OffsetPoly (poly: PolyHandle; dh,dv: Integer);

PROCEDURE KillPoly (poly: PolyHandle);

C H A P T E R 3

QuickDraw Drawing

Summary of QuickDraw Drawing 3-147

Drawing Polygons

PROCEDURE FramePoly (poly: PolyHandle);

PROCEDURE PaintPoly (poly: PolyHandle);

PROCEDURE FillPoly (poly: PolyHandle; pat: Pattern);

PROCEDURE ErasePoly (poly: PolyHandle);

PROCEDURE InvertPoly (poly: PolyHandle);

Creating and Managing Regions

FUNCTION NewRgn : RgnHandle;

PROCEDURE OpenRgn;

PROCEDURE CloseRgn (dstRgn: rgnHandle);

PROCEDURE DisposeRgn (rgn: RgnHandle);

PROCEDURE CopyRgn (srcRgn,dstRgn: RgnHandle);

PROCEDURE SetEmptyRgn (rgn: RgnHandle);

PROCEDURE SetRectRgn (rgn: RgnHandle;
left,top,right,bottom: Integer);

PROCEDURE RectRgn (rgn: RgnHandle; r: Rect);

PROCEDURE OffsetRgn (rgn: RgnHandle; dh,dv: Integer);

PROCEDURE InsetRgn (rgn: RgnHandle; dh,dv: Integer);

PROCEDURE SectRgn (srcRgnA,srcRgnB,dstRgn: RgnHandle);

PROCEDURE UnionRgn (srcRgnA,srcRgnB,dstRgn: RgnHandle);

PROCEDURE DiffRgn (srcRgnA,srcRgnB,dstRgn: RgnHandle);

PROCEDURE XorRgn (srcRgnA,srcRgnB,dstRgn: RgnHandle);

FUNCTION PtInRgn (pt: Point; rgn: RgnHandle): Boolean;

FUNCTION RectInRgn (r: Rect; rgn: RgnHandle): Boolean;

FUNCTION EqualRgn (rgnA,rgnB: RgnHandle): Boolean;

FUNCTION EmptyRgn (rgn: RgnHandle): Boolean;

Drawing Regions

PROCEDURE FrameRgn (rgn: RgnHandle);

PROCEDURE PaintRgn (rgn: RgnHandle);

PROCEDURE FillRgn (rgn: RgnHandle; pat: Pattern);

PROCEDURE EraseRgn (rgn: RgnHandle);

PROCEDURE InvertRgn (rgn: RgnHandle);

C H A P T E R 3

QuickDraw Drawing

3-148 Summary of QuickDraw Drawing

Scaling and Mapping Points, Rectangles, Polygons, and Regions

PROCEDURE ScalePt (VAR pt: Point; srcRect,dstRect: Rect);

PROCEDURE MapPt (VAR pt: Point; srcRect,dstRect: Rect);

PROCEDURE MapRect (VAR r: Rect; srcRect,dstRect: Rect);

PROCEDURE MapRgn (rgn: RgnHandle; srcRect,dstRect: Rect);

PROCEDURE MapPoly (poly: PolyHandle; srcRect,dstRect: Rect);

Calculating Black-and-White Fills

PROCEDURE SeedFill (srcPtr,dstPtr: Ptr;
srcRow,dstRow,height,words,
seedH,seedV: Integer);

PROCEDURE CalcMask (srcPtr,dstPtr: Ptr;
srcRow,dstRow,height,words: Integer);

Copying Images

PROCEDURE CopyBits (srcBits,dstBits: BitMap;
srcRect,dstRect: Rect; mode: Integer;
maskRgn: RgnHandle);

PROCEDURE CopyMask (srcBits,maskBits,dstBits: BitMap;
srcRect,maskRect,dstRect: Rect);

PROCEDURE CopyDeepMask (srcBits: BitMap; maskBits: BitMap;
dstBits: BitMap; srcRect: Rect;
maskRect: Rect; dstRect: Rect;
mode: Integer; maskRgn: RgnHandle);

Drawing With the Eight-Color System

PROCEDURE ForeColor (color: LongInt);

PROCEDURE BackColor (color: LongInt);

PROCEDURE ColorBit (whichBit: Integer);

Determining Whether QuickDraw Has Finished Drawing

FUNCTION QDDone (port: GrafPtr): Boolean;

Getting Pattern Resources

FUNCTION GetPattern (patID: Integer): PatHandle;

PROCEDURE GetIndPattern (VAR thePattern: Pattern; patListID: Integer;
index: Integer);

C H A P T E R 3

QuickDraw Drawing

Summary of QuickDraw Drawing 3-149

Customizing QuickDraw Operations

PROCEDURE SetStdProcs (VAR procs: QDProcs);

PROCEDURE StdText (byteCount: Integer; textBuf: Ptr;
numer,denom: Point);

PROCEDURE StdLine (newPt: Point);

PROCEDURE StdRect (verb: GrafVerb; r: Rect);

PROCEDURE StdRRect (verb: GrafVerb; r: Rect;
ovalwidth,ovalHeight: Integer);

PROCEDURE StdOval (verb: GrafVerb; r: Rect);

PROCEDURE StdArc (verb: GrafVerb; r: Rect;
startAngle,arcAngle: Integer);

PROCEDURE StdPoly (verb: GrafVerb; poly: PolyHandle);

PROCEDURE StdRgn (verb: GrafVerb; rgn: RgnHandle);

PROCEDURE StdBits (VAR srcBits: BitMap;
VAR srcRect,dstRect: Rect; mode: Integer;
maskRgn: RgnHandle);

PROCEDURE StdComment (kind,dataSize: Integer; dataHandle: Handle);

FUNCTION StdTxtMeas (byteCount: Integer; textAddr: Ptr;
VAR numer, denom: Point;
VAR info: FontInfo): Integer;

PROCEDURE StdGetPic (dataPtr: Ptr; byteCount: Integer);

PROCEDURE StdPutPic (dataPtr: Ptr; byteCount: Integer);

C Summary

Constants

enum {

/* basic QuickDraw colors */

whiteColor = 30;

blackColor = 33;

yellowColor = 69;

magentaColor = 137;

redColor = 205;

cyanColor = 273;

greenColor = 341;

blueColor = 409;

C H A P T E R 3

QuickDraw Drawing

3-150 Summary of QuickDraw Drawing

/* source modes */

srcCopy = 0, /* where source pixel is black, force destination

pixel black; where source pixel is white, force

destination pixel white */

srcOr = 1, /* where source pixel is black, force destination

pixel black; where source pixel is white, leave

destination pixel unaltered */

srcXor = 2, /* where source pixel is black, invert destination

pixel; where source pixel is white, leave

destination pixel unaltered */

srcBic = 3, /* where source pixel is black, force destination

pixel white; where source pixel is white, leave

destination pixel unaltered */

notSrcCopy = 4, /* where source pixel is black, force destination

pixel white; where source pixel is white, force

destination pixel black */

notSrcOr = 5, /* where source pixel is black, leave destination

pixel unaltered; where source pixel is white,

force destination pixel black */

notSrcXor = 6, /* where source pixel is black, leave destination

pixel unaltered; where source pixel is white,

invert destination pixel*/

notSrcBic = 7, /* where source pixel is black, leave destination

pixel unaltered; where source pixel is white,

force destination pixel white */

/* pattern modes */

patCopy = 8, /* where pattern pixel is black, apply foreground

color to destination pixel; where pattern pixel

is white, apply background color to destination

pixel */

patOr = 9, /* where pattern pixel is black, invert destination

pixel; where pattern pixel is white, leave

destination pixel unaltered */

patXor = 10; /* where pattern pixel is black, invert destination

pixel; where pattern pixel is white, leave

destination pixel unaltered */

patBic = 11; /* where pattern pixel is black, apply background

color to destination pixel; where pattern pixel

is white, leave destination pixel unaltered */

C H A P T E R 3

QuickDraw Drawing

Summary of QuickDraw Drawing 3-151

notPatCopy = 12; /* where pattern pixel is black, apply background

color to destination pixel; where pattern pixel

is white, apply foreground color to destination

pixel */

notPatOr = 13; /* where pattern pixel is black, leave destination

pixel unaltered; where pattern pixel is white,

apply foreground color to destination pixel */

notPatXor = 14; /* where pattern pixel is black, leave destination

pixel unaltered; where pattern pixel is white,

invert destination pixel */

notPatBic = 15; /* where pattern pixel is black, leave destination

pixel unaltered; where pattern pixel is white,

apply background color to destination pixel */

ditherCopy = 64, /* add to source mode for dithering */

/* pattern list resource ID for patterns in the System file */

sysPatListID = 0

};

Data Types

struct Polygon {

short polySize; /* size in bytes */

Rect polyBBox; /* bounding rectangle */

Point polyPoints[1]; /* vertices for polygon */

};

typedef struct Polygon Polygon;

typedef Polygon *PolyPtr, **PolyHandle;

struct PenState {

Point pnLoc; /* pen location */

Point pnSize; /* pen size */

short pnMode; /* pen's pattern mode */

Pattern pnPat; /* pen pattern */

};

typedef struct PenState PenState;

struct QDProcs {

Ptr textProc; /* text drawing */

Ptr lineProc; /* line drawing */

Ptr rectProc; /* rectangle drawing */

Ptr rRectProc; /* roundRect drawing */

Ptr ovalProc; /* oval drawing */

C H A P T E R 3

QuickDraw Drawing

3-152 Summary of QuickDraw Drawing

Ptr arcProc; /* arc and wedge drawing */

Ptr polyProc; /* region drawing */

Ptr rgnProc; /* region drawing */

Ptr bitsProc; /* bit transfer */

Ptr commentProc; /* picture comment processing */

Ptr txMeasProc; /* text width measurement */

Ptr getPicProc; /* picture retrieval */

Ptr putPicProc; /* picture saving */

};

typedef struct QDProcs QDProcs;

typedef QDProcs *QDProcsPtr;

enum {frame,paint,erase,invert,fill};

typedef unsigned char GrafVerb;

struct Pattern{

unsigned char pat[8];

};

typedef struct Pattern Pattern;

typedef Pattern *PatPtr;

typedef const unsigned char *ConstPatternParam;

typedef PatPtr *PatHandle;

Functions

Managing the Graphics Pen

pascal void HidePen (void);

pascal void ShowPen (void);

pascal void GetPen (Point *pt);

pascal void GetPenState (PenState *pnState);

pascal void SetPenState (const PenState *pnState);

pascal void PenSize (short width, short height);

pascal void PenMode (short mode);

pascal void PenPat (ConstPatternParam pat);

pascal void PenNormal (void);

Changing the Background Bit Pattern

pascal void BackPat (ConstPatternParam pat);

C H A P T E R 3

QuickDraw Drawing

Summary of QuickDraw Drawing 3-153

Drawing Lines

pascal void MoveTo (short h, short v);

pascal void Move (short dh, short dv);

pascal void LineTo (short h, short v);

pascal void Line (short dh, short dv);

Creating and Managing Rectangles

pascal void SetRect (Rect *r, short left, short top, short right,
short bottom);

pascal void OffsetRect (Rect *r, short dh, short dv);

pascal void InsetRect (Rect *r, short dh, short dv);

pascal Boolean SectRect (const Rect *src1, const Rect *src2,
Rect *dstRect);

pascal void UnionRect (const Rect *src1, const Rect *src2,
Rect *dstRect);

pascal Boolean PtInRect (Point pt, const Rect *r);

pascal void Pt2Rect (Point pt1, Point pt2, Rect *dstRect);

pascal void PtToAngle (const Rect *r, Point pt, short *angle);

pascal Boolean EqualRect (const Rect *rect1, const Rect *rect2);

pascal Boolean EmptyRect (const Rect *r);

Drawing Rectangles

pascal void FrameRect (const Rect *r);

pascal void PaintRect (const Rect *r);

pascal void FillRect (const Rect *r, ConstPatternParam pat);

pascal void EraseRect (const Rect *r);

pascal void InvertRect (const Rect *r);

Drawing Rounded Rectangles

pascal void FrameRoundRect (const Rect *r, short ovalWidth,
short ovalHeight);

pascal void PaintRoundRect (const Rect *r, short ovalWidth,
short ovalHeight);

pascal void FillRoundRect (const Rect *r, short ovalWidth,
short ovalHeight, ConstPatternParam pat);

C H A P T E R 3

QuickDraw Drawing

3-154 Summary of QuickDraw Drawing

pascal void EraseRoundRect (const Rect *r, short ovalWidth,
short ovalHeight);

pascal void InvertRoundRect
(const Rect *r, short ovalWidth,
short ovalHeight);

Drawing Ovals

pascal void FrameOval (const Rect *r);

pascal void PaintOval (const Rect *r);

pascal void FillOval (const Rect *r, ConstPatternParam pat);

pascal void EraseOval (const Rect *r);

pascal void InvertOval (const Rect *r);

Drawing Arcs and Wedges

pascal void FrameArc (const Rect *r, short startAngle,
short arcAngle);

pascal void PaintArc (const Rect *r, short startAngle,
short arcAngle);

pascal void FillArc (const Rect *r, short startAngle,
short arcAngle, ConstPatternParam pat);

pascal void EraseArc (const Rect *r, short startAngle,
short arcAngle);

pascal void InvertArc (const Rect *r, short startAngle,
short arcAngle);

Creating and Managing Polygons

pascal PolyHandle OpenPoly (void);

pascal void ClosePoly (void);

pascal void OffsetPoly (PolyHandle poly, short dh, short dv);

pascal void KillPoly (PolyHandle poly);

Drawing and Painting Polygons

pascal void FramePoly (PolyHandle poly);

pascal void PaintPoly (PolyHandle poly);

pascal void FillPoly (PolyHandle poly, ConstPatternParam pat);

pascal void ErasePoly (PolyHandle poly);

pascal void InvertPoly (PolyHandle poly);

C H A P T E R 3

QuickDraw Drawing

Summary of QuickDraw Drawing 3-155

Creating and Managing Regions

pascal RgnHandle NewRgn (void);

pascal void OpenRgn (void);

pascal void CloseRgn (RgnHandle dstRgn);

pascal void DisposeRgn (RgnHandle rgn);

pascal void CopyRgn (RgnHandle srcRgn, RgnHandle dstRgn);

pascal void SetEmptyRgn (RgnHandle rgn);

pascal void SetRectRgn (RgnHandle rgn, short left, short top,
short right, short bottom);

pascal void RectRgn (RgnHandle rgn, const Rect *r);

pascal void OffsetRgn (RgnHandle rgn, short dh, short dv);

pascal void InsetRgn (RgnHandle rgn, short dh, short dv);

pascal void SectRgn (RgnHandle srcRgnA, RgnHandle srcRgnB,
RgnHandle dstRgn);

pascal void UnionRgn (RgnHandle srcRgnA, RgnHandle srcRgnB,
RgnHandle dstRgn);

pascal void DiffRgn (RgnHandle srcRgnA, RgnHandle srcRgnB,
RgnHandle dstRgn);

pascal void XorRgn (RgnHandle srcRgnA, RgnHandle srcRgnB,
RgnHandle dstRgn);

pascal Boolean PtInRgn (Point pt, RgnHandle rgn);

pascal Boolean RectInRgn (const Rect *r, RgnHandle rgn);

pascal Boolean EqualRgn (RgnHandle rgnA, RgnHandle rgnB);

pascal Boolean EmptyRgn (RgnHandle rgn);

Drawing Regions

pascal void FrameRgn (RgnHandle rgn);

pascal void PaintRgn (RgnHandle rgn);

pascal void FillRgn (RgnHandle rgn, ConstPatternParam pat);

pascal void EraseRgn (RgnHandle rgn);

pascal void InvertRgn (RgnHandle rgn);

Scaling and Mapping Points, Rectangles, Polygons, and Regions

pascal void ScalePt (Point *pt, const Rect *srcRect,
const Rect *dstRect);

pascal void MapPt (Point *pt, const Rect *srcRect,
const Rect *dstRect);

pascal void MapRect (Rect *r, const Rect *srcRect,
const Rect *dstRect);

C H A P T E R 3

QuickDraw Drawing

3-156 Summary of QuickDraw Drawing

pascal void MapRgn (RgnHandle rgn, const Rect *srcRect,
const Rect *dstRect);

pascal void MapPoly (PolyHandle poly, const Rect *srcRect,
const Rect *dstRect);

Calculating Black-and-White Fills

pascal void SeedFill (const void *srcPtr, void *dstPtr,
short srcRow, short dstRow, short height,
short words, short seedH, short seedV);

pascal void CalcMask (const void *srcPtr, void *dstPtr,
short srcRow, short dstRow, short height,
short words);

Copying Images

pascal void CopyBits (const BitMap *srcBits,
const BitMap *dstBits, const Rect *srcRect,
const Rect *dstRect, short mode,
RgnHandle maskRgn);

pascal void CopyMask (const BitMap *srcBits,
const BitMap *maskBits, const BitMap *dstBits,
const Rect *srcRect, const Rect *maskRect,
const Rect *dstRect);

pascal void CopyDeepMask (const BitMap *srcBits, const BitMap *maskBits,
const BitMap *dstBits, const Rect *srcRect,
const Rect *maskRect, const Rect *dstRect,
short mode, RgnHandle maskRgn);

Drawing With the Eight-Color System

pascal void ForeColor (long color);

pascal void BackColor (long color);

pascal void ColorBit (short whichBit);

Determining Whether QuickDraw Has Finished Drawing

pascal Boolean QDDone (GrafPtr port);

Getting Pattern Resources

pascal PatHandle GetPattern
(short patternID);

pascal void GetIndPattern (Pattern thePat, short patternListID,
short index);

C H A P T E R 3

QuickDraw Drawing

Summary of QuickDraw Drawing 3-157

Customizing QuickDraw Operations

pascal void SetStdProcs (QDProcs *procs);

pascal void StdText (short count, const void *textAddr,
Point numer, Point denom);

pascal void StdLine (Point newPt);

pascal void StdRect (GrafVerb verb, const Rect *r);

pascal void StdRRect (GrafVerb verb, const Rect *r,
short ovalWidth, short ovalHeight);

pascal void StdOval (GrafVerb verb, const Rect *r);

pascal void StdArc (GrafVerb verb, const Rect *r,
short startAngle, short arcAngle);

pascal void StdPoly (GrafVerb verb, PolyHandle poly);

pascal void StdRgn (GrafVerb verb, RgnHandle rgn);

pascal void StdBits (const BitMap *srcBits,
const Rect *srcRect, const Rect *dstRect,
short mode, RgnHandle maskRgn);

pascal void StdComment (short kind, short dataSize, Handle dataHandle);

pascal short StdTxtMeas (short byteCount, const void *textAddr,
Point *numer, Point *denom, FontInfo *info);

pascal void StdGetPic (void *dataPtr, short byteCount);

pascal void StdPutPic (const void *dataPtr, short byteCount);

Assembly-Language Summary

Data Structures

Polygon Data Structure

PenState Data Structure

0 polySize word total bytes in this structure
2 polyBBox 8 bytes bounding rectangle

10 polyPoints variable vertices, each consisting of a long (point)

0 psLoc long pen location
4 psSize long pen size
8 psMode word pattern mode

10 psPat 8 bytes pattern

C H A P T E R 3

QuickDraw Drawing

3-158 Summary of QuickDraw Drawing

QDProcs Data Structure

Trap Macro Requiring Routine Selector

_QDExtensions

Global Variables

0 textProc long pointer to text-drawing routine
4 lineProc long pointer to line-drawing routine
8 rectProc long pointer to rectangle-drawing routine

12 rRectProc long pointer to rounded rectangle–drawing routine
16 ovalProc long pointer to oval-drawing routine
20 arcProc long pointer to arc/wedge-drawing routine
24 polyProc long pointer to polygon-drawing routine
28 rgnProc long pointer to region-drawing routine
32 bitsProc long pointer to bit transfer routine
36 commentProc long pointer to picture comment–processing routine
40 txMeasProc long pointer to text-width measurement routine
44 getPicProc long pointer to picture retrieval routine
48 putPicProc long pointer to picture-saving routine

Selector Routine

$00040013 QDDone

black All-black pattern.

dkGray 75% gray pattern.

gray 50% gray pattern.

ltGray 25% gray pattern.

white All-white pattern.

Contents 4-1

C H A P T E R 4

Contents

Color QuickDraw

About Color QuickDraw 4-4

RGB Colors 4-4

The Color Drawing Environment: Color Graphics Ports 4-5

Pixel Maps 4-9

Pixel Patterns 4-12

Color QuickDraw’s Translation of RGB Colors to Pixel Values 4-13

Colors on Grayscale Screens 4-17

Using Color QuickDraw 4-18

Initializing Color QuickDraw 4-19

Creating Color Graphics Ports 4-20

Drawing With Different Foreground Colors 4-21

Drawing With Pixel Patterns 4-23

Copying Pixels Between Color Graphics Ports 4-26

Boolean Transfer Modes With Color Pixels 4-32

Dithering 4-37

Arithmetic Transfer Modes 4-38

Highlighting 4-41

Color QuickDraw Reference 4-44

Data Structures 4-45

Color QuickDraw Routines 4-63

Opening and Closing Color Graphics Ports 4-63

Managing a Color Graphics Pen 4-67

Changing the Background Pixel Pattern 4-68

Drawing With Color QuickDraw Colors 4-70

Determining Current Colors and Best Intermediate Colors 4-79

Calculating Color Fills 4-82

Creating, Setting, and Disposing of Pixel Maps 4-85

Creating and Disposing of Pixel Patterns 4-87

Creating and Disposing of Color Tables 4-91

Retrieving Color QuickDraw Result Codes 4-94

C H A P T E R 4

4-2 Contents

Customizing Color QuickDraw Operations 4-96

Reporting Data Structure Changes to QuickDraw 4-97

Application-Defined Routine 4-101

Resources 4-102

The Pixel Pattern Resource 4-103

The Color Table Resource 4-104

The Color Icon Resource 4-105

Summary of Color QuickDraw 4-107

Pascal Summary 4-107

Constants 4-107

Data Types 4-109

Color QuickDraw Routines 4-113

Application-Defined Routine 4-115

C Summary 4-115

Constants 4-115

Data Types 4-118

Color QuickDraw Functions 4-122

Application-Defined Function 4-124

Assembly-Language Summary 4-124

Data Structures 4-124

Result Codes 4-128

C H A P T E R 4

4-3

Color QuickDraw

This chapter describes Color QuickDraw, the version of QuickDraw that provides a

range of color and grayscale capabilities to your application. You should read this

chapter if your application needs to use shades of gray or more colors than the eight

predefined colors provided by basic QuickDraw.

Read this chapter to learn how to set up and manage a color graphics port—the

sophisticated drawing environment available on Macintosh computers that support

Color QuickDraw. You should also read this chapter to learn how to draw using many

more colors than are available with basic QuickDraw’s eight-color system.

Color QuickDraw supports all of the routines described in the previous chapters of this

book. For a color graphics port, for example, you can use the ScrollRect and

SetOrigin procedures, which are described in the chapter “Basic QuickDraw.”

Furthermore, you can use the drawing routines described in the chapter “QuickDraw

Drawing” to draw with the sophisticated color and grayscale capabilities available to

color graphics ports. For example, after creating an RGBColor record that describes a

medium shade of green, you can use the Color QuickDraw procedure RGBForeColor to

make that color the foreground color. Then, when you use the FrameRect procedure,

Color QuickDraw draws the outline for your rectangle with your specified shade of

green.

To prevent the choppiness that can occur when you build a complex color image

onscreen, your application typically should prepare the image in an offscreen graphics

world and then copy it to an onscreen color graphics port as described in the chapter

“Offscreen Graphics Worlds.” If you want to optimize your application’s drawing for

screens with different color capabilities, see the chapter “Graphics Devices.”

This chapter describes color graphics ports and Color QuickDraw’s routines for drawing

in color. For many applications, Color QuickDraw provides a device-independent

interface: draw colors in the color graphics port for a window, and Color QuickDraw

automatically manages the path to the screen. If your application needs more control

over its color environment, Macintosh system software provides additional graphics

managers to enhance your application’s color-handling abilities. These managers are

described in Inside Macintosh: Advanced Color Imaging, which shows you how to

■ manage color selection across a variety of indexed devices by using the
Palette Manager

■ solicit color choices from users by using the Color Picker

■ match colors between the screen and other devices—such as scanners and printers—
by using the ColorSync Utilities

■ directly manipulate the fields of the CLUT on an indexed device—although most
applications should never need to do so—by using the Color Manager

C H A P T E R 4

Color QuickDraw

4-4 About Color QuickDraw

About Color QuickDraw

Color QuickDraw is a collection of system software routines that your application can

use to display hundreds, thousands, even millions of colors on capable screens. Color

QuickDraw is available on all newer models of Macintosh computers; only those older

computers based on the Motorola 68000 processor provide no support for Color

QuickDraw.

Color QuickDraw performs its operations in a graphics port called a color graphics port,
which is based on a data structure of type CGrafPort. As with basic graphics ports

(which are based on a data structure of type GrafPort), each color graphics port has its

own local coordinate system. All fields in a CGrafPort record are expressed in these

coordinates, and all calculations and actions that Color QuickDraw performs use its

local coordinate system.

As described in the chapter “QuickDraw Drawing,” you can draw into a basic graphics

port using eight predefined colors. With a color graphics port, however, you can define

your own colors with which to draw. With Color QuickDraw, your application works in

an abstract color space defined by three axes of red, green, and blue (RGB). Although the

range of colors actually available to your application depends on the user’s computer

system, Color QuickDraw provides a consistent way for your application to deal with

color, regardless of the characteristics of your user’s screen and software configuration.

RGB Colors
When using Color QuickDraw, you specify colors as RGB colors. An RGB color is

defined by its red, green, and blue components. For example, when each of the red,

green, and blue components of a color is at maximum intensity ($FFFF), the result is the

color white. When each of the components has zero intensity ($0000), the result is the

color black.

You specify a color to Color QuickDraw by creating an RGBColor record in which you

use three 16-bit unsigned integers to assign intensity values for the three additive

primary colors. The RGBColor data type is defined as follows.

TYPE RGBColor =

RECORD

red: Integer; {red component}

green: Integer; {green component}

blue: Integer; {blue component}

END;

C H A P T E R 4

Color QuickDraw

About Color QuickDraw 4-5

When you specify an RGB color in an RGBColor record and then draw with that color,

Color QuickDraw translates that color to the various indexed or direct devices that your

user may be using.

For example, your application can use Color QuickDraw to display images containing

up to 256 different colors on indexed devices. An indexed device is a graphics device—

that is, a plug-in video card, a video interface built into a Macintosh computer, or an

offscreen graphics world—that supports up to 256 colors in a color lookup table. Indexed

devices support pixels of 1-bit, 2-bit, 4-bit, or 8-bit depths. On indexed devices, each

pixel is represented in memory by an index to the graphics device’s color lookup table

(also known as the CLUT), where the currently available colors are stored. Such images,

although limited in hue, take up relatively small amounts of memory. Color QuickDraw,

working with the Color Manager, automatically matches the color your application

specifies to the closest available color in the CLUT.

Your application can use the Palette Manager, described in the chapter “Palette

Manager” in Inside Macintosh: Advanced Color Imaging, to exercise greater control of the

colors in the CLUT. Note, however, that some Macintosh computers—such as

black-and-white and grayscale PowerBook computers—have a fixed CLUT, which your

application cannot change.

On direct devices, your application can use Color QuickDraw to display images

containing thousands or millions of different colors. A direct device is a graphics device

that supports up to 16 million colors having a direct correlation between a value placed

in the graphics device and the color displayed onscreen. On attached direct devices, each

pixel is represented in memory by the most significant bits of the actual red, green, and

blue component values specified in an RGBColor record by your application.

Other output devices may render colors that differ from RGB colors; for example, many

color printers work with CMYK (cyan, magenta, yellow, and black) colors. See Inside
Macintosh: Advanced Color Imaging for information about color matching between screens,

which use RGB colors, and devices—like printers—that use CMYK or other colors.

The Color Drawing Environment: Color Graphics Ports
A color graphics port defines a complete drawing environment that determines where

and how color graphics operations take place. As with basic graphics ports, you can

open many color graphics ports at once. Each color graphics port has its own local

coordinate system, drawing pattern, background pattern, pen size and location,

foreground color, background color, and pixel map. Using the SetPort procedure

(described in the chapter “Basic QuickDraw”), or the SetGWorld procedure (described

in the chapter “Offscreen Graphics Worlds”), you can instantly switch from one color or

basic graphics port to another.

C H A P T E R 4

Color QuickDraw

4-6 About Color QuickDraw

When you use Window Manager and Dialog Manager routines and resources to create

color windows, dialog boxes, and alert boxes, these managers automatically create color

graphics ports for you. As described in Inside Macintosh: Macintosh Toolbox Essentials, for

example, a color graphics port is automatically created when you use the Window

Manager function GetNewCWindow or NewCWindow. Color graphics ports are

automatically created when your application provides the color-aware resources 'dctb'

and 'actb' and then uses the Dialog Manager routines GetNewDialog and Alert.

A color graphics port is defined by a CGrafPort record, which is diagrammed in

Figure 4-1. Some aspects of its contents are discussed after the figure; see page 4-48 for a

complete description of the fields. Your application generally should not directly set any

fields of a CGrafPort record; instead you should use the QuickDraw routines described

in this book to manipulate them.

C H A P T E R 4

Color QuickDraw

About Color QuickDraw 4-7

Figure 4-1 The color graphics port

C H A P T E R 4

Color QuickDraw

4-8 About Color QuickDraw

Table 4-3 on page 4-64 shows initial values for a CGrafPort record. A CGrafPort

record is the same size as a GrafPort record (described in the chapter “Basic

QuickDraw”), and most of the fields are identical for these two records. The important

differences between these two data types are listed here:

■ In a GrafPort record, the portBits field contains a complete 14-byte
BitMap record. In a CGrafPort record, this field is partly replaced by the
4-byte portPixMap field; this field contains a handle to a PixMap record.

■ In what would be the rowBytes field of the BitMap record stored in the portBits
field of a GrafPort record, a CGrafPort record has a 2-byte portVersion field in
which the 2 high bits are always set. QuickDraw uses these bits to distinguish
CGrafPort records from GrafPort records, in which the 2 high bits of the
rowBytes field are always clear.

■ Following the portVersion field in the CGrafPort record is the grafVars field,
which contains a handle to a GrafVars record; this handle is not included in a
GrafPort record. The GrafVars record contains color information used by Color
QuickDraw and the Palette Manager.

■ In a GrafPort record, the bkPat, pnPat, and fillPat fields hold 8-byte bit
patterns. In a CGrafPort record, these fields are partly replaced by three 4-byte
handles to pixel patterns. The resulting 12 bytes of additional space are taken up by
the rgbFgColor and rgbBkColor fields, which contain 6-byte RGBColor records
specifying the optimal foreground and background colors for the color graphics port.
Note that the closest matching available colors, which Color QuickDraw actually uses
for the foreground and background, are stored in the fgColor and bkColor fields of
the CGrafPort record.

■ In a GrafPort record, you can supply the grafProcs field with a pointer to a
QDProcs record that your application can store into if you want to customize
QuickDraw drawing routines or use QuickDraw in other advanced, highly
specialized ways. If you supply custom QuickDraw drawing routines in a
CGrafPort record, you must provide this field with a pointer to a data structure of
type CQDProcs.

C H A P T E R 4

Color QuickDraw

About Color QuickDraw 4-9

Working with a CGrafPort record is much like using a GrafPort record. The routines

SetPort, GetPort, PortSize, SetOrigin, SetPortBits, and MovePortTo operate

on either port type, and the global variable ThePort points to the current graphics port

no matter which type it is. (Remember that drawing always takes place in the current

graphics port.) These routines are described in the chapter “Basic QuickDraw.”

If you find it necessary, you can use type coercion to convert between GrafPtr and

CGrafPtr records. For example:

VAR myPort: CGrafPtr;

SetPort (GrafPtr(myPort));

Note

You can use all QuickDraw drawing commands when drawing into a
graphics port created with a CGrafPort record, and you can use all
Color QuickDraw drawing commands (such as FillCRect) when
drawing into a graphics port created with a GrafPort record. However,
Color QuickDraw drawing commands used with a GrafPort record
don’t take advantage of Color QuickDraw’s color features. ◆

While the CGrafPort record contains information for a color window, there can be

many windows on a screen, and even more than one screen. The GDevice record,

described in the chapter “Graphics Devices,” is the data structure that holds state

information about a graphics device—such as the size of its boundary rectangle and

whether the device is indexed or direct. Like the graphics port, the GDevice record is

created automatically for you: QuickDraw uses information supplied by the Slot

Manager to create a GDevice record for each graphics device found during startup.

Many applications can let Color QuickDraw manage multiple screens of differing pixel

depths. If your application needs more control over graphics device management—if

your application needs certain screen depths to function effectively, for example—you

can use the routines described in the chapter “Graphics Devices.”

Pixel Maps

The portPixMap field of a CGrafPort record contains a handle to a pixel map, a data

structure of type PixMap. Just as basic QuickDraw does all of its drawing in a bitmap,

Color QuickDraw draws in a pixel map.

C H A P T E R 4

Color QuickDraw

4-10 About Color QuickDraw

The representation of a color image in memory is a pixel image, analogous to the bit

image used by basic QuickDraw. A PixMap record includes a pointer to a pixel image,

its dimensions, storage format, depth, resolution, and color usage. The pixel map is

diagrammed in Figure 4-2. Some aspects of its contents are discussed after the figure; see

page 4-46 for a complete description of its fields.

Figure 4-2 The pixel map

The baseAddr field of a PixMap record contains a pointer to the beginning of the

onscreen pixel image for a pixel map. The pixel image that appears on a screen is

normally stored on a graphics card rather than in main memory. (There can be several

pixel maps pointing to the same pixel image, each imposing its own coordinate system

on it.)

As with a bitmap, the pixel map’s boundary rectangle is initially set to the size of the

main screen. However, you should never use a pixel map’s boundary rectangle to

determine the size of the screen; instead use the value of the gdRect field of the

GDevice record for the screen, as described in the chapter “Graphics Devices” in

this book.

The number of bits per pixel in the pixel image is called the pixel depth. Pixels on

indexed devices can be 1, 2, 4, or 8 bits deep. (A pixel image that is 1 bit deep is

equivalent to a bit image.) Pixels on direct devices can be 16 or 32 bits deep. (Even if

your application creates a basic graphics port on a direct device, pixels are never less

C H A P T E R 4

Color QuickDraw

About Color QuickDraw 4-11

than one of these two depths.) When a user uses the Monitors control panel to set a

16-bit or 32-bit direct device to use 2, 4, 16, or 256 colors as a grayscale or color device,

the direct device creates a CLUT and operates like an indexed device.

When your application specifies an RGB color for some pixel in a pixel image, Color

QuickDraw translates that color into a value appropriate for display on the user’s screen;

Color QuickDraw stores this value in the pixel. The pixel value is a number used by

system software and a graphics device to represent a color. The translation from the color

you specify in an RGBColor record to a pixel value is performed at the time you draw

the color. The process differs for indexed and direct devices, as described here.

■ When drawing on indexed devices, Color QuickDraw calls the Color Manager to
supply the index to the color that most closely matches the requested color in the
current device’s CLUT. This index becomes the pixel value for that color.

■ When drawing on direct devices, Color QuickDraw truncates the least significant bits
from the red, green, and blue fields of the RGBColor record. This becomes the
pixel value that Color QuickDraw sends to the graphics device.

This process is described in greater detail in “Color QuickDraw’s Translation of RGB

Colors to Pixel Values” beginning on page 4-13.

The hRes and vRes fields of the PixMap record describe the horizontal and vertical

resolution of the image in pixels per inch, abbreviated as dpi (dots per inch). The values

for these fields are of type Fixed; by default, the value for each is $00480000 (for 72 dpi),

but Color QuickDraw supports PixMap records of other resolutions. For example,

PixMap records for scanners and frame grabbers can have dpi resolutions of 150, 200,

300, or greater.

The pixelType field of the PixMap record specifies the format—indexed or direct—

used to hold the pixels in the image. For indexed devices the value is 0; for direct devices

it is 16 (which can be represented by the constant RGBDirect).

The pixelSize field specifies the pixel depth. Indexed devices can be 1, 2, 4, or 8 bits

deep; direct devices can be 16 or 32 bits deep.

The cmpCount and cmpSize fields describe how the pixel values are organized. For

pixels on indexed devices, the color component count (stored in the cmpCount field)

is 1—for the index into the graphics device’s CLUT, where the colors are stored. For

pixels on direct devices, the color component count is 3—for the red, green, and blue

components of each pixel.

The cmpSize field specifies how large each color component is. For indexed devices it

is the same value as that in the pixelSize field: 1, 2, 4, or 8 bits. For direct pixels, each

of the three color components can be either 5 bits for a 16-bit pixel (1 of these 16 bits is

unused), or 8 bits for a 32-bit pixel (8 of these 32 bits are unused).

The planeBytes field specifies an offset in bytes from one plane to another. Since Color

QuickDraw doesn’t support multiple-plane images, the value of this field is always 0.

Finally, the pmTable field contains a handle to the ColorTable record. Color tables

define the colors available for pixel images on indexed devices. (The Color Manager

stores a color table for the currently available colors in the graphics device’s CLUT; you

can use the Palette Manager to assign different color tables to your different windows.)

C H A P T E R 4

Color QuickDraw

4-12 About Color QuickDraw

You can create color tables using either ColorTable records (described on page 4-56) or

color table ('clut') resources (described on page 4-104). Pixel images on direct devices

don’t need a color table because the colors are stored right in the pixel values; in such

cases the pmTable field points to a dummy color table.

Note

The pixel map for a window’s color graphics port always consists of the
pixel depth, color table, and boundary rectangle of the main screen, even
if the window is created on or moved to an entirely different screen. ◆

Pixel Patterns

Color QuickDraw supplements the black-and-white patterns of basic QuickDraw with

pixel patterns, which can use colors at any pixel depth and can be of any width and

height that’s a power of 2. A pixel pattern defines a repeating design (such as stripes of

different colors) or a color otherwise unavailable on indexed devices. For example, if

your application draws to an indexed device that supports 4 bits per pixel, your

application has 16 colors available if it simply sets the foreground color and draws.

However, if your application uses the MakeRGBPat procedure to create patterns that use

these 16 colors in various combinations, and then draws using that pattern, your

application can effectively have as many as 125 approximated colors at its disposal. For

example, you can specify a purple color to MakeRGBPat, which creates a pattern that

mixes blue and red pixels.

As with bit patterns (described in the chapter “QuickDraw Drawing”), your application

can use pixel patterns to draw lines and shapes on the screen. In a color graphics port,

the graphics pen has a pixel pattern specified in the pnPixPat field of the CGrafPort

record. This pixel pattern acts like the ink in the pen; the pixels in the pattern interact

with the pixels in the pixel map according to the pattern mode of the graphics pen.

When you use the FrameRect, FrameRoundRect, FrameArc, FramePoly, FrameRgn,

PaintRect, PaintRoundRect, PaintArc, PaintPoly, and PaintRgn procedures

(described in the chapter “QuickDraw Drawing”) to draw shapes, these procedures

draw the shape with the pattern specified in the pnPixPat field. Initially, every

graphics pen is assigned an all-black pattern, but you can use the PenPixPat

procedure to assign a different pixel pattern to the graphics pen.

You can use the FillCRect, FillCRoundRect, FillCArc, FillCPoly, and

FillCRgn procedures (described later in this chapter) to draw shapes with a pixel

pattern other than the one specified in the pnPixPat field. When your application uses

one of these procedures, the procedure stores the pattern your application specifies in

the fillPixPat field of the CGrafPort record and then calls a low-level drawing

routine that gets the pattern from that field.

C H A P T E R 4

Color QuickDraw

About Color QuickDraw 4-13

Each graphics port also has a background pattern that’s used when an area is erased

(for example, by the EraseRect, EraseRoundRect, EraseArc, ErasePoly, and

EraseRgn procedures, described in the chapter “QuickDraw Drawing”) and when

pixels are scrolled out of an area by the ScrollRect procedure, described in the chapter

“Basic QuickDraw.” Every color graphics port stores a background pixel pattern in the

bkPixPat field of its CGrafPort record. Initially, every graphics port is assigned an

all-white background pattern, but you can use the BackPixPat procedure to assign a

different pixel pattern.

You can create your own pixel patterns in your program code, but it’s usually simpler

and more convenient to store them in resources of type 'ppat'.

Each pixel map has its own color table; therefore, pixel patterns can consist of any

number of colors, and they don’t usually require the graphics port’s foreground and

background colors to have particular values.

Note

Color QuickDraw also supports bit patterns. When used in a
CGrafPort record, such patterns are limited to 8-by-8 bit dimensions
and are always drawn using the values in the fgColor and bkColor
fields of the CGrafPort record. ◆

Color QuickDraw’s Translation of RGB Colors to Pixel Values

When using Color QuickDraw, your application refers to a color only through the three

16-bit fields of a 48-bit RGBColor record; you use these fields to specify the red, green,

and blue components of your desired color. When your application draws into a pixel

map, Color QuickDraw and the Color Manager translate your RGBColor records into

pixel values; these pixel values are sent to your users’ graphics devices, which display

the pixels accordingly.

Your application never needs to handle pixel values. However, to clarify the relation

between your application’s 48-bit RGBColor records and the pixels that are actually

displayed, this section presents some examples of how Color QuickDraw derives pixel

values from your RGBColor records.

Indexed devices were introduced to support—with minimal memory requirements—

the color capabilities of the Macintosh II computer. The pixel value for any color on an

indexed device is represented by a single byte. Each byte contains an index number that

specifies one of 256 colors available on the device’s CLUT. This index number is the pixel

value for the pixel. (Some indexed devices support 1-bit, 2-bit, or 4-bit pixel values,

resulting in tables containing 2, 4, or 16 colors, respectively, as shown in Plate 1 in the

front of this book.)

To obtain an 8-bit pixel value from the 48-bit RGBColor record specified by your

application, Color QuickDraw calls on the Color Manager to determine the closest RGB

color stored in the CLUT on the current device. The index number to that color is then

stored in the 8-bit pixel.

C H A P T E R 4

Color QuickDraw

4-14 About Color QuickDraw

For example, the RGBColor record for a medium green pixel is represented on the

left side of Figure 4-3. An application might create such a record and pass it to the

RGBForeColor procedure, which sets the foreground color for drawing. In system

software’s standard 8-bit color lookup table (which is defined in a 'clut' resource with

the resource ID of 8), the closest color to that medium green is stored as table entry 161.

When the next pixel is drawn, this index number is stored in the pixel image as the pixel

value.

Figure 4-3 Translating a 48-bit RGBColor record to an 8-bit pixel value on an indexed device

The application might later use the GetCPixel procedure to determine the color of a

particular pixel. As shown in Figure 4-4, the Color Manager uses the index number

stored as the pixel value to find the 48-bit RGBColor record stored in the CLUT for that

pixel’s color—which, as with the medium green in this example, is not necessarily the

exact color first specified by the application. The difference, however, is imperceptible.

C H A P T E R 4

Color QuickDraw

About Color QuickDraw 4-15

Figure 4-4 Translating an 8-bit pixel value on an indexed device to a 48-bit RGBColor record

Direct devices support 32-bit and 16-bit pixel values. Direct devices do not use tables

to store and look up colors, nor do their pixel values consist of index numbers. For

each pixel on a direct device, Color QuickDraw instead derives the pixel value by

concatenating the values of the red, green, and blue fields of an RGBColor record.

As shown in Figure 4-5, Color QuickDraw converts a 48-bit RGBColor record into a

32-bit pixel value by storing the most significant 8 bits of each 16-bit field of the

RGBColor record into the lower 3 bytes of the pixel value, leaving 8 unused bits in the

high byte of the pixel value.

Figure 4-5 Translating a 48-bit RGBColor record to a 32-bit pixel value on a direct device

C H A P T E R 4

Color QuickDraw

4-16 About Color QuickDraw

Color QuickDraw converts a 48-bit RGBColor record into a 16-bit pixel value by storing

the most significant 5 bits of each 16-bit field of the RGBColor record into the lower 15

bits of the pixel value, leaving an unused high bit, as shown in Figure 4-6.

Figure 4-6 Translating a 48-bit RGBColor record to a 16-bit pixel value on a direct device

Figure 4-7 shows how Color QuickDraw expands a 32-bit pixel value to a 48-bit

RGBColor record by dropping the unused high byte of the pixel value and doubling

each of its 8-bit components. Note that the resulting 48-bit value differs in the least

significant 8 bits of each component from the original RGBColor record in Figure 4-5.

Figure 4-7 Translating a 32-bit pixel value to a 48-bit RGBColor record

C H A P T E R 4

Color QuickDraw

About Color QuickDraw 4-17

Figure 4-8 shows how Color QuickDraw expands a 16-bit pixel value to a 48-bit

RGBColor record by dropping the unused high bit of the pixel value and inserting three

copies of each 5-bit component and a copy of the most significant bit into each 16-bit

field of the RGBColor record. Note that the result differs (in the least significant 11 bits

of each component) from the original 48-bit value in Figure 4-5. The difference, however,

is imperceptible.

Figure 4-8 Translating a 16-bit pixel value to a 48-bit RGBColor record

Colors on Grayscale Screens

When Color QuickDraw displays a color on a grayscale screen, it computes the

luminance, or intensity of light, of the desired color and uses that value to determine the

appropriate gray value to draw. A grayscale graphics device can be a color graphics

device that the user sets to grayscale by using the Monitors control panel; for such a

graphics device, Color QuickDraw places an evenly spaced set of grays, forming a linear

ramp from white to black, in the graphics device’s CLUT. (When a user uses the

Monitors control panel to set a 16-bit or 32-bit direct device to use 2, 4, 16, or 256 colors

as a grayscale or color device, the direct device creates a CLUT and operates like an

indexed device.)

By using the GetCTable function, described on page 4-92, your application can obtain

the default color tables for various graphics devices, including grayscale devices.

C H A P T E R 4

Color QuickDraw

4-18 Using Color QuickDraw

Using Color QuickDraw

To use Color QuickDraw, you generally

■ initialize QuickDraw

■ create a color window into which your application can draw

■ create RGBColor records to define your own foreground and background colors

■ create pixel pattern ('ppat') resources to define your own colored patterns

■ use these colors and pixel patterns for drawing with the graphics pen, for filling as the
background pattern, and for filling into shapes

■ use the basic QuickDraw routines previously described in this book to perform all
other onscreen graphics port manipulations and calculations

This section gives an overview of routines that your application typically calls while

using Color QuickDraw. Before calling these routines, however, your application should

test for the existence of Color QuickDraw by using the Gestalt function with the

gestaltQuickDrawVersion selector. The Gestalt function returns a 4-byte value in

its response parameter; the low-order word contains QuickDraw version data. In that

low-order word, the high-order byte gives the major revision number and the low-order

byte gives the minor revision number. If the value returned in the response parameter

is equal to the value of the constant gestalt32BitQD13, then the system supports the

System 7 version of Color QuickDraw. Listed here are the various constants, and the

values they represent, that indicate earlier versions of Color QuickDraw.

CONST

gestalt8BitQD = $100; {8-bit Color QD}

gestalt32BitQD = $200; {32-bit Color QD}

gestalt32BitQD11 = $210; {32-bit Color QDv1.1}

gestalt32BitQD12 = $220; {32-bit Color QDv1.2}

gestalt32BitQD13 = $230; {System 7: 32-bit Color QDv1.3}

C H A P T E R 4

Color QuickDraw

Using Color QuickDraw 4-19

Your application can also use the Gestalt function with the selector

gestaltQuickDrawFeatures to determine whether the user’s system supports

various Color QuickDraw features. If the bits indicated by the following constants are set

in the response parameter, then the features are available:

CONST

gestaltHasColor = 0; {Color QuickDraw is present}

gestaltHasDeepGWorlds = 1; {GWorlds deeper than 1 bit}

gestaltHasDirectPixMaps = 2; {PixMaps can be direct--16 or }

{ 32 bit}

gestaltHasGrayishTextOr = 3; {supports text mode }

{ grayishTextOr}

When testing for the existence of Color QuickDraw, your application

should test the response to the gestaltQuickDrawVersion selector (rather

than test for the result gestaltHasColor, which is unreliable, from

the gestaltQuickDrawFeatures selector). The support for offscreen

graphics worlds indicated by the gestaltHasDeepGWorlds response to

the gestaltQuickDrawVersion selector is described in the chapter

“Offscreen Graphics Worlds.” The support for the text mode indicated by the

gestaltHasGrayishTextOr response is described in the chapter “QuickDraw

Text” in Inside Macintosh: Text. For more information about the Gestalt function,

see the chapter “Gestalt Manager” in Inside Macintosh: Operating System Utilities.

Initializing Color QuickDraw
To initialize Color QuickDraw, use the InitGraf procedure, described in the chapter

“Basic QuickDraw.” Besides initializing basic QuickDraw, this procedure initializes

Color QuickDraw on computers that support it.

In addition to InitGraf, all other basic QuickDraw routines work with Color

QuickDraw. For example, you can use the GetPort procedure to save the current color

graphics port, and you can use the CopyBits procedure to copy an image between two

different color graphics ports. See the chapters “Basic QuickDraw” and “QuickDraw

Drawing” for descriptions of additional routines that you can use with Color QuickDraw.

C H A P T E R 4

Color QuickDraw

4-20 Using Color QuickDraw

Creating Color Graphics Ports
All graphics operations are performed in graphics ports. Before a color graphics port can

be used, it must be allocated with the OpenCPort procedure and initialized with the

InitCPort procedure. Normally, your application does not call these procedures

directly. Instead, your application creates a color graphics port by using the

GetNewCWindow or NewCWindow function (described in the chapter “Window

Manager” in Inside Macintosh: Macintosh Toolbox Essentials) or the NewGWorld function

(described in the chapter “Offscreen Graphics Worlds” in this book). These functions

automatically call OpenCPort, which in turn calls InitCPort.

Listing 4-1 shows a simplified application-defined procedure called DoNew that uses the

Window Manager function GetNewCWindow to create a color graphics port.

Listing 4-1 Using the Window Manager to create a color graphics port

PROCEDURE DoNew (VAR window: WindowPtr);

VAR

windStorage: Ptr; {memory for window record}

BEGIN

window := NIL;

{allocate memory for window record from previously allocated block}

windStorage := MyPtrAllocationProc;

IF windStorage <> NIL THEN {memory allocation succeeded}

BEGIN

IF gColorQDAvailable THEN {use Gestalt to determine color availability}

window := GetNewCWindow(rDocWindow, windStorage, WindowPtr(-1))

ELSE {create a basic graphics port for a black-and-white screen}

window := GetNewWindow(rDocWindow, windStorage, WindowPtr(-1));

END;

IF (window <> NIL) THEN

 SetPort(window);

END;

You can use GetNewCWindow to create color graphics ports whether or not a color

monitor is currently installed. So that most of your window-handling code can handle

color windows and black-and-white windows identically, GetNewCWindow returns a

pointer of type WindowPtr (not of type CWindowPtr).

A window pointer points to a window record (WindowRecord), which contains a

GrafPort record. If you need to check the fields of the color graphics port associated

with a window, you can coerce the pointer to the GrafPort record into a pointer to a

CGrafPort record.

C H A P T E R 4

Color QuickDraw

Using Color QuickDraw 4-21

You can allow GetNewCWindow to allocate the memory for your window record and its

associated basic graphics port. You can maintain more control over memory use,

however, by allocating the memory yourself from a block allocated for such purposes

during your own initialization routine, and then passing the pointer to GetNewWindow,

as shown in Listing 4-1.

To dispose of a color graphics port when you are finished using a color window, you

normally use the DisposeWindow procedure (if you let the Window Manager allocate

memory for the window) or the CloseWindow procedure (if you allocated memory for

the window). If you use the CloseWindow procedure, you also dispose of the window

record containing the graphics port by calling the Memory Manager procedure

DisposePtr. You use the DisposeGWorld procedure when you are finished with a

color graphics port for an offscreen graphics world.

Drawing With Different Foreground Colors
You can set the foreground and background colors using either Color QuickDraw or

Palette Manager routines. If your application uses the Palette Manager, it should set the

foreground and background colors with the PmForeColor and PmBackColor routines,

as described in the chapter “Palette Manager” in Inside Macintosh: Advanced Color
Imaging. Otherwise, your application can use the RGBForeColor procedure to set the

foreground color, and it can use the RGBBackColor procedure to set the background

color. Both of these Color QuickDraw procedures also operate for basic graphics ports

created in System 7. (To set the foreground and background colors for basic graphics

ports on older versions of system software, use the ForeColor and BackColor

procedures described in the chapter “QuickDraw Drawing.”)

The RGBForeColor procedure lets you set the foreground color to the best color

available on the current graphics device. This changes the color of the “ink” used for

drawing. All of the line-drawing, framing, and painting routines described in the chapter

“QuickDraw Drawing” (such as LineTo, FrameRect, and PaintPoly) draw with the

foreground color that you specify with RGBForeColor.

Note

Because a pixel pattern already contains color, Color QuickDraw ignores
the foreground and background colors when your application draws
with a pixel pattern. As described in “Drawing With Pixel Patterns”
beginning on page 4-23, you can draw with a pixel pattern by using the
PenPixPat procedure to assign a pixel pattern to the graphics pen, by
using the BackPixPat procedure to assign a pixel pattern as the
background pattern for the current color graphics port, and by using the
FillCRect, FillCOval, FillCRoundRect, FillCArc, FillCRgn,
and FillCPoly procedures to fill shapes with a pixel pattern. ◆

C H A P T E R 4

Color QuickDraw

4-22 Using Color QuickDraw

To specify a foreground color, create an RGBColor record. Listing 4-2 defines two

RGBColor records. The first is declared as myDarkBlue, and it’s defined with a

medium-intensive blue component and with zero-intensity red and green components.

The second is declared as myMediumGreen, and it’s defined with an intensive green

component, a mildly intensive red component, and a very slight blue component.

Listing 4-2 Changing the foreground color

PROCEDURE MyPaintAndFillColorRects;

VAR

firstRect, secondRect: Rect;

myDarkBlue: RGBColor;

myMediumGreen: RGBColor;

BEGIN

{create dark blue color}

myDarkBlue.red := $0000;

myDarkBlue.green := $0000;

myDarkBlue.blue := $9999;

{create medium green color}

myMediumGreen.red := $3206;

myMediumGreen.green := $9038;

myMediumGreen.blue := $013D;

RGBForeColor(myDarkBlue); {draw with dark blue pen}

PenMode(patCopy);

SetRect(firstRect, 20, 20, 70, 70);

PaintRect(firstRect); {paint a dark blue rectangle}

RGBForeColor(myMediumGreen); {draw with a medium green pen}

SetRect(secondRect, 90, 20, 140, 70);

FillRect(secondRect, ltGray); {paint a medium green rectangle}

END;

In Listing 4-2, the RGBColor record myDarkBlue is supplied to the RGBForeColor

procedure. The RGBForeColor procedure supplies the rgbFgColor field of the

CGrafPort record with this RGBColor record, and it places the closest-matching

available color in the fgColor field; the color in the fgColor field is the color actually

used as the foreground color.

After using SetRect to create a rectangle, Listing 4-2 calls PaintRect to paint the

rectangle. By default, the foreground color is black; by changing the foreground color to

dark blue, every pixel that would normally be painted in black is instead painted in dark

blue.

Listing 4-2 then changes the foreground color again to the medium green specified in the

RGBColor record myMediumGreen. After creating another rectangle, this listing calls

FillRect to fill the rectangle with the bit pattern specified by the global variable

ltGray. As explained in the chapter “QuickDraw Drawing,” this bit pattern consists of

C H A P T E R 4

Color QuickDraw

Using Color QuickDraw 4-23

widely spaced black pixels that create the effect of gray on black-and-white screens.

However, by changing the foreground color, every pixel in the pattern that would

normally be painted black is instead drawn in medium green.

The effects of Listing 4-2 are illustrated in the grayscale screen capture shown in

Figure 4-9.

Figure 4-9 Drawing with two different foreground colors (on a grayscale screen)

If you wish to draw with a color other than the foreground color, you can use the

PenPixPat procedure to give the graphics pen a colored pixel pattern that you define,

and you can use the FillCRect, FillCRoundRect, FillCOval, FillCArc,

FillCPoly, and FillCRgn procedures to fill shapes with colored patterns. The use of

these procedures is illustrated in the next section.

Drawing With Pixel Patterns
Using pixel pattern resources, you can create multicolored patterns for the pen pattern,

for the background pattern, and for fill patterns.

To set the pixel pattern to be used by the graphics pen in the current color graphics

port, you use the PenPixPat procedure. To assign a pixel pattern as the background

pattern, you use the BackPixPat procedure; this causes the ScrollRect procedure

and the shape-erasing procedures (for example, EraseRect) to fill the background with

your pixel pattern. To fill shapes with a pixel pattern, you use the FillCRect,

FillCRoundRect, FillCOval, FillCArc, FillCPoly, and FillCRgn procedures.

Note

Because a pixel pattern already contains color, Color QuickDraw ignores
the foreground and background colors when your application uses these
routines to draw with a pixel pattern. Color QuickDraw also ignores the
pen mode by drawing the pixel pattern directly onto the pixel image. ◆

When you use the PenPat or BackPat procedure in a color graphics port, Color

QuickDraw constructs a pixel pattern equivalent to the bit pattern you specify to

PenPat or BackPat. The pen pattern or background pattern you thereby specify always

uses the graphics port’s current foreground and background colors. The PenPat and

BackPat procedures are described in the chapter “QuickDraw Drawing.”

C H A P T E R 4

Color QuickDraw

4-24 Using Color QuickDraw

A pixel pattern resource is a resource of type 'ppat'. You typically use a high-level tool

such as the ResEdit application, available through APDA, to create 'ppat' resources.

Figure 4-10 illustrates a ResEdit window displaying an application’s 'ppat' resource

with resource ID 128.

Figure 4-10 Using ResEdit to create a pixel pattern resource

As shown in this figure, you should also define an analogous, black-and-white bit

pattern (described in the chapter “QuickDraw Drawing”) to be used when this pattern is

drawn into a basic graphics port. This bit pattern is stored within the pixel pattern

resource.

After using ResEdit to define a pixel pattern, you can then use the DeRez decompiler to

convert your 'ppat' resources into Rez input when necessary. (The DeRez resource

decompiler and the Rez resource compiler are part of Macintosh Programmer’s

Workshop [MPW], which is available through APDA.) Listing 4-3 shows the Rez input

created from the 'ppat' resource created in Figure 4-10.

Listing 4-3 Rez input for a pixel pattern resource

resource 'ppat' (128) {

$"0001 0000 001C 0000 004E 0000 0000 FFFF"

$"0000 0000 8292 1082 9210 8292 0000 0000"

$"8002 0000 0000 0008 0008 0000 0000 0000"

$"0000 0048 0000 0048 0000 0000 0002 0001"

$"0002 0000 0000 0000 005E 0000 0000 1212"

$"4848 1212 4848 1212 4848 1212 4848 0000"

C H A P T E R 4

Color QuickDraw

Using Color QuickDraw 4-25

$"0000 0000 0002 0000 AAAA AAAA AAAA 0001"

$"2222 2222 2222 0002 7777 7777 7777"

};

To retrieve the pixel pattern stored in a 'ppat' resource, you can use the GetPixPat

function. Listing 4-4 uses GetPixPat to retrieve the 'ppat' resource created in

Listing 4-3. To assign this pixel pattern to the graphics pen, Listing 4-4 uses the

PenPixPat procedure.

Listing 4-4 Using pixel patterns to paint and fill

PROCEDURE MyPaintPixelPatternRects;

VAR

firstRect, secondRect: Rect;

myPenPattern, myFillPattern: PixPatHandle;

BEGIN

myPenPattern := GetPixPat(128); {get a pixel pattern}

PenPixPat(myPenPattern); {assign the pattern to the pen}

SetRect(firstRect, 20, 20, 70, 70);

PaintRect(firstRect); {paint with the pen's pixel pattern}

DisposePixPat(myPenPattern); {dispose of the pixel pattern}

myFillPattern := GetPixPat(129); {get another pixel pattern}

SetRect(secondRect, 90, 20, 140, 70);

FillCRect(secondRect, myFillPattern); {fill with this pattern}

DisposePixPat(myFillPattern); {dispose of the pixel pattern}

END;

Listing 4-4 uses the PaintRect procedure to draw a rectangle. The rectangle on the left

side of Figure 4-11 illustrates the effect of painting a rectangle with the previously

defined pen pattern.

Figure 4-11 Painting and filling rectangles with pixel patterns

C H A P T E R 4

Color QuickDraw

4-26 Using Color QuickDraw

The rectangle on the right side of Figure 4-11 illustrates the effect of using the

FillCRect procedure to fill a rectangle with another previously defined pen pattern.

The GetPixPat function is used to retrieve the pixel pattern defined in the 'ppat'

resource with resource ID 129. This pixel pattern is then specified to the FillCRect

procedure.

Copying Pixels Between Color Graphics Ports
As explained in the chapter “QuickDraw Drawing,” QuickDraw has three primary

image-processing routines.

■ The CopyBits procedure copies a pixel map or bitmap image to another graphics
port, with facilities for resizing the image, modifying the image with transfer modes,
and clipping the image to a region.

■ The CopyMask procedure copies a pixel map or bitmap image to another graphics
port, with facilities for resizing the image and for altering the image by passing it
through a mask—which for Color QuickDraw may be another pixel map whose pixels
indicate proportionate weights of the colors for the source and destination pixels.

■ The CopyDeepMask procedure combines the effects of CopyBits and CopyMask:
you can resize an image, clip it to a region, specify a transfer mode, and use another
pixel map as a mask when transferring it to another graphics port.

In basic QuickDraw, CopyBits, CopyMask, and CopyDeepMask copy bit images

between two basic graphics ports. In Color QuickDraw, you can also use these

procedures to copy pixel images between two color graphics ports. Detailed routine

descriptions for these procedures appear in the chapter “QuickDraw Drawing.” This

section provides an overview of how to use the extra capabilities that Color QuickDraw

provides for these procedures.

When using CopyBits, CopyMask, and CopyDeepMask to copy images between color

graphics ports, you must coerce each port’s CGrafPtr data type to a GrafPtr data

type, dereference the portBits fields of each, and then pass these “bitmaps” in the

srcBits and dstBits parameters. If your application copies a pixel image from a color

graphics port called MyColorPort, in the srcBits parameter you could specify

GrafPtr(MyColorPort)^.portBits. In a CGrafPort record, the high 2 bits of the

portVersion field are set. This field, which shares the same position in a CGrafPort

record as the portBits.rowBytes field in a GrafPort record, indicates to these

routines that you have passed it a handle to a pixel map rather than a bitmap.

Color QuickDraw’s processing sequence of the CopyBits procedure is illustrated in

Figure 4-12. Listing 6-1 in the chapter “Offscreen Graphics Worlds” illustrates how to use

CopyBits to transfer an image prepared in an offscreen graphics world to an onscreen

color graphics port.

C H A P T E R 4

Color QuickDraw

Using Color QuickDraw 4-27

Figure 4-12 Copying pixel images with the CopyBits procedure

C H A P T E R 4

Color QuickDraw

4-28 Using Color QuickDraw

With the CopyMask procedure, you can supply a pixel map to act as a copying mask.

The values of pixels in the mask act as weights that proportionally select between source

and destination pixel values. The process is shown in Figure 4-13, and an example of the

effect can be seen in Plate 3 at the front of this book. Listing 6-2 in the chapter “Offscreen

Graphics Worlds” illustrates how to use CopyMask to mask and copy an image prepared

in an offscreen graphics world to an onscreen color graphics port.

C H A P T E R 4

Color QuickDraw

Using Color QuickDraw 4-29

Figure 4-13 Copying pixel images with the CopyMask procedure

C H A P T E R 4

Color QuickDraw

4-30 Using Color QuickDraw

The CopyDeepMask procedure combines the capabilities of the CopyBits and

CopyMask procedures. With CopyDeepMask you can specify a pixel map mask, a

transfer mode, and a mask region, as shown in Figure 4-14.

C H A P T E R 4

Color QuickDraw

Using Color QuickDraw 4-31

Figure 4-14 Copying pixel images with the CopyDeepMask procedure

C H A P T E R 4

Color QuickDraw

4-32 Using Color QuickDraw

On indexed devices, pixel images are always copied using the color table of the source

PixMap record for source color information, and using the color table of the current
GDevice record for destination color information. The color table attached to the

destination PixMap record is ignored. As explained in the chapter “Offscreen Graphics

Worlds,” if you need to copy to an offscreen PixMap record with characteristics differing

from those of the current graphics device, you should create an appropriate offscreen

GDevice record and set it as the current graphics device before the copy operation.

When the PixMap record for the mask is 1 bit deep, it has the same effect as a bitmap

mask: a black bit in the mask means that the destination pixel is to take the color of the

source pixel; a white bit in the mask means that the destination pixel is to retain its

current color. When masks have PixMap records with greater pixel depths than 1, Color

QuickDraw takes a weighted average between the colors of the source and destination

PixMap records. Within each pixel, the calculation is done in RGB color, on a color

component basis. A gray PixMap record mask, for example, works like blend mode in a

CopyBits procedure. A red mask (that is, one with high values for the red components

of all pixels) filters out red values coming from the source pixel image.

Boolean Transfer Modes With Color Pixels

As described in the chapter “QuickDraw Drawing,” QuickDraw offers two types of

Boolean transfer modes: pattern modes for drawing lines and shapes, and source modes

for copying images or drawing text. In basic graphics ports and in color graphics ports

with 1-bit pixel maps, these modes describe the interaction between the bits your

application draws and the bits that are already in the destination bitmap or 1-bit pixel

map. These interactions involve turning the bits on or off—that is, making the pixels

black or white.

The Boolean operations on bitmaps and 1-bit pixel maps are described in the chapter

“QuickDraw Drawing.” When you draw or copy images to and from bitmaps or 1-bit

pixel maps, Color QuickDraw behaves in the manner described in that chapter.

When you use pattern modes in pixel maps with depths greater than 1 bit, Color

QuickDraw uses the foreground color and background color when transferring bit

patterns; for example, the patCopy mode applies the foreground color to every

destination pixel that corresponds to a black pixel in a bit pattern, and it applies the

background color to every destination pixel that corresponds to a white pixel in a bit

pattern. See the description of the PenMode procedure in the chapter “QuickDraw

Drawing” for a list that summarizes how the foreground and background colors are

applied with pattern modes.

When you use the CopyBits, CopyMask, and CopyDeepMask procedures to transfer

images between pixel maps with depths greater than 1 bit, Color QuickDraw performs

the Boolean transfer operations in the manner summarized in Table 4-1. In general, with

pixel images you will probably want to use the srcCopy mode or one of the arithmetic

transfer modes described in “Arithmetic Transfer Modes” beginning on page 4-38.

C H A P T E R 4

Color QuickDraw

Using Color QuickDraw 4-33

Note
When your application draws with a pixel pattern, Color QuickDraw
ignores the pattern mode and simply transfers the pattern directly to the
pixel map without regard to the foreground and background colors. ◆

When you use the srcCopy mode to transfer a pixel into a pixel map, Color QuickDraw

determines how close the color of that pixel is to black, and then assigns this relative

amount of foreground color to the destination pixel. Color QuickDraw also determines

how close the color of that pixel is to white, and assigns this relative amount of

background color to the destination pixel.

To accomplish this, Color QuickDraw first multiplies the relative intensity of each red,

green, and blue component of the source pixel by the corresponding value of the

red, green, or blue component of the foreground color. It then multiplies the relative

intensity of each red, green, and blue component of the source pixel by the

corresponding value of the red, green, or blue component of the background color. For

each component, Color QuickDraw adds the results and then assigns the new result as

the value for the destination pixel’s corresponding component.

Table 4-1 Boolean source modes with colored pixels

Source mode Action on destination pixel

If source pixel is black If source pixel is white If source pixel is any other color

srcCopy Apply foreground
color

Apply background color Apply weighted portions of
foreground and background
colors

notSrcCopy Apply background
color

Apply foreground color Apply weighted portions of
background and foreground
colors

srcOr Apply foreground
color

Leave alone Apply weighted portions of
foreground color

notSrcOr Leave alone Apply foreground color Apply weighted portions of
foreground color

srcXor Invert (undefined for
colored destination
pixel)

Leave alone Leave alone

notSrcXor Leave alone Invert (undefined for
colored destination
pixel)

Leave alone

srcBic Apply background
color

Leave alone Apply weighted portions of
background color

notSrcBic Leave alone Apply background color Apply weighted portions of
background color

C H A P T E R 4

Color QuickDraw

4-34 Using Color QuickDraw

For example, the pixel in an image might be all red: that is, its red component has a pixel

value of $FFFF, and its green and blue components each have pixel values of $0000. The

current foreground color might be black (that is, with pixel values of $0000, $0000, $0000

for its components) and its background color might be all white (that is, with pixel

values of $FFFF, $FFFF, $FFFF). When that image is copied using the CopyBits

procedure and the srcCopy source mode, CopyBits determines that the red

component of the source pixel has 100 percent intensity; multiplying this by the intensity

of the red component ($0000) of the foreground color produces a value of $0000, and

multiplying this by the intensity of the red component ($FFFF) of the background color

produces a value of $FFFF. Adding the results of these two operations produces a pixel

value of $FFFF for the red component of the destination pixel. Performing similar

operations on the green and blue components of the source pixel produces green and

blue pixel values of $0000 for the destination pixel. In this way, CopyBits renders the

source’s all-red pixel as an all-red pixel in the destination pixel map. A source pixel

with only 50 percent intensity for its red component and no intensity for its blue and

green components would similarly be drawn as a medium red pixel in the destination

pixel map.

Color QuickDraw produces similarly weighted destination colors when you use the

other Boolean source modes. When you use the srcBic mode to transfer a colored

source pixel into a pixel map, for example, CopyBits determines how close the color of

that pixel is to black, and then assigns a relative amount of background color to the

destination pixel. For this mode, CopyBits does not determine how close the color of

the source pixel is to white.

Because Color QuickDraw uses the foreground and background colors instead of black

and white when performing its Boolean source operations, the following effects are

produced:

■ The notSrcCopy mode reverses the foreground and background colors.

■ Drawing into a white background with a black foreground always reproduces the
source image, regardless of the pixel depth.

■ Drawing is faster if the foreground color is black when you use the srcOr and
notSrcOr modes.

■ If the background color is white when you use the srcBic mode, the black portions
of the source are erased, resulting in white in the destination pixel map.

As you can see, applying a foreground color other than black or a background color

other than white to the pixel can produce an unexpected result. For consistent results, set

the foreground color to black and the background color to white before using

CopyBits, CopyMask, or CopyDeepMask.

C H A P T E R 4

Color QuickDraw

Using Color QuickDraw 4-35

However, by using the RGBForeColor and RGBBackColor procedures to set the

foreground and background colors to something other than black and white before using

CopyBits, CopyMask, or CopyDeepMask, you can achieve some interesting coloration

effects. Plate 2 at the front of this book shows how setting the foreground color to red

and the background color to blue and then using the CopyBits procedure turns a

grayscale image into shades of red and blue. Listing 4-5 shows the code that produced

these two pixel maps.

Listing 4-5 Using CopyBits to produce coloration effects

PROCEDURE MyColorRamp;

VAR

origPort: CGrafPtr;

origDevice: GDHandle;

myErr: QDErr;

myOffScreenWorld: GWorldPtr;

TheColor: RGBColor;

i: Integer;

offPixMapHandle: PixMapHandle;

good: Boolean;

myRect: Rect;

BEGIN

GetGWorld(origPort, origDevice); {save onscreen graphics port}

{create offscreen graphics world}

myErr := NewGWorld(myOffScreenWorld,

 0, origPort^.portRect, NIL, NIL, []);

IF (myOffScreenWorld = NIL) OR (myErr <> noErr) THEN

; {handle errors here}

SetGWorld(myOffScreenWorld, NIL); {set current graphics port to offscreen}

offPixMapHandle := GetGWorldPixMap(myOffScreenWorld);

good := LockPixels(offPixMapHandle); {lock offscreen pixel map}

IF NOT good THEN

; {handle errors here}

EraseRect(myOffScreenWorld^.portRect); {initialize offscreen pixel map}

FOR i := 0 TO 9 DO

BEGIN {create gray ramp}

theColor.red := i * 7168;

theColor.green := i * 7168;

theColor.blue := i * 7168;

RGBForeColor(theColor);

SetRect(myRect, myOffScreenWorld^.portRect.left, i * 10,

 myOffScreenWorld^.portRect.right, i * 10 + 10);

PaintRect(myRect); {fill offscreen pixel map with gray ramp}

C H A P T E R 4

Color QuickDraw

4-36 Using Color QuickDraw

END;

SetGWorld(origPort, origDevice); {restore onscreen graphics port}

theColor.red := $0000;

theColor.green := $0000;

theColor.blue := $FFFF;

RGBForeColor(theColor); {make foreground color all blue}

theColor.red := $FFFF;

theColor.green := $0000;

theColor.blue := $0000;

RGBBackColor(theColor); {make background color all red}

{using blue foreground and red background colors, transfer "gray" }

{ ramp to onscreen graphics port}

CopyBits(GrafPtr(myOffScreenWorld)^.portBits, {gray ramp is source}

GrafPtr(origPort)^.portBits, {window is destination}

myOffScreenWorld^.portRect, origPort^.portRect, srcCopy, NIL);

UnlockPixels(offPixMapHandle);

DisposeGWorld(myOffScreenWorld);

END;

Listing 4-5 uses the NewGWorld function, described in the chapter “Offscreen Graphics

Worlds,” to create an offscreen pixel map. The sample code draws a gray ramp into the

offscreen pixel map, which is illustrated on the left side of Plate 2 at the front of this

book. Then Listing 4-5 creates an all-blue foreground color and an all-red background

color. This sample code then uses the CopyBits procedure to transfer the pixels in the

offscreen pixel map to the onscreen window, which is shown on the right side of Plate 2.

Here are some hints for using foreground and background colors and the srcCopy

source mode to color a pixel image:

■ You can copy a particular color component of a source pixel without change by setting
the foreground color to have a value of $0000 for that component and the background
color to have a value of $FFFF for that component. For example, if you want all the
pixels in a source image to retain their red values in the destination image, set the red
component of the foreground color to $0000, and set the red component of the
background color to $FFFF.

■ You can invert a particular color component of a source pixel by setting the
foreground color to have a value of $FFFF for that component and the background
color to have a value of $0000 for that component.

■ You can remove a particular color component from all the pixels in the source image
by setting the foreground color to have a value of $0000 for that component and the
background color to have a value of $0000 for that component.

■ You can force a particular color component in all the pixels in the source to be
transferred with full intensity by setting the foreground color to have a value of $FFFF
for that component and the background color to have a value of $FFFF for that
component.

C H A P T E R 4

Color QuickDraw

Using Color QuickDraw 4-37

To help make color work well on different screen depths, Color QuickDraw does some

validity checking of the foreground and background colors. If your application is

drawing to a color graphics port with a pixel depth equal to 1 or 2, and if the foreground

and background colors aren’t the same but both of them map to the same pixel value,

then the foreground color is inverted. This ensures that, for instance, a red image drawn

on a green background doesn’t map to black on black.

On indexed devices, these source modes produce unexpected colors, because Color

QuickDraw performs Boolean operations on the indexes rather than on actual color

values, and the resulting index may point to an entirely unrelated color. On direct

devices these transfer modes generally do not exhibit rigorous Boolean behavior except

when white is set as the background color.

Dithering

With the CopyBits and CopyDeepMask procedures you can use dithering, a technique

used by these procedures for mixing existing colors together to create the illusion of a

third color that may be unavailable on an indexed device. For example, if you specify

dithering when copying a purple image from a 32-bit direct device to an 8-bit indexed

device that does not have purple available, these procedures mix blue and red pixels to

give the illusion of purple on the 8-bit device.

Dithering is also useful for improving images that you shrink when copying them from a

direct device to an indexed device.

On computers running System 7, you can add dithering to any source mode by adding

the following constant or the value it represents to the source mode:

CONST ditherCopy = 64; {add to source mode for dithering}

For example, specifying srcCopy + ditherCopy in the mode parameter to CopyBits

causes CopyBits to dither the image when it copies the image into the destination

pixel map.

Dithering has drawbacks. First, dithering slows the drawing operation. Second, a

clipped dithering operation does not provide pixel-for-pixel equivalence to the same

unclipped dithering operation. When you don’t specify a clipping region, for example,

CopyDeepMask begins copying the upper-left pixel in your source image and, if

necessary, begins calculating how to dither the upper-left pixel and its adjoining pixels

in your destination in order to approximate the color of the source pixel. As

CopyDeepMask continues copying pixels in this manner, there is a cumulative dithering

effect based on the preceding pixels in the source image. If you specify a clipping region

to CopyDeepMask, dithering begins with the upper-left pixel in the clipped region; this

ignores the cumulative dithering effect that would otherwise occur by starting at the

upper-left corner of the source image. In particular, if you clip and dither a region using

the srcXor mode, you can’t use CopyDeepMask a second time to copy that region back

into the destination pixel map in order to erase that region.

C H A P T E R 4

Color QuickDraw

4-38 Using Color QuickDraw

If you replace the Color Manager’s color search function with your own search function

(as described in the chapter “Color Manager” in Inside Macintosh: Advanced Color
Imaging), CopyBits and CopyDeepMask cannot perform dithering. Without dithering,

your application does color mapping on a pixel-by-pixel basis. If your source pixel map

is composed of indexed pixels, and if you have installed a custom color search function,

Color QuickDraw calls your function once for each color in the color table for the source

PixMap record. If your source pixel map is composed of direct pixels, Color QuickDraw

calls your custom search function for each color in the pixel image for the source PixMap

record; with an image of many colors, this can take a long time.

If you specify a destination rectangle that is smaller than the source rectangle when

using CopyBits, CopyMask, or CopyDeepMask on a direct device, Color QuickDraw

automatically uses an averaging technique to produce the destination pixels,

maintaining high-quality images when shrinking them. On indexed devices, Color

QuickDraw averages these pixels only if you specify dithering. Using dithering even

when shrinking 1-bit images can produce much better representations of the original

images. (The chapter “QuickDraw Drawing” includes a code sample called

MyShrinkImages, shown in Listing 3-11 on page 3-33, that illustrates how to use

CopyBits to scale a bit image when copying it from one window into another.)

Arithmetic Transfer Modes

In addition to the Boolean source modes described previously, Color QuickDraw offers a

set of transfer modes that perform arithmetic operations on the values of the red, green,

and blue components of the source and destination pixels. Although rarely used by

applications, these arithmetic transfer modes produce predictable results on indexed

devices because they work with RGB colors rather than with color table indexes. These

arithmetic transfer modes are represented by the following constants:

CONST

blend = 32; {replace destination pixel with a blend }

{ of the source and destination pixel }

{ colors; if the destination is a bitmap or }

{ 1-bit pixel map, revert to srcCopy mode}

addPin = 33; {replace destination pixel with the sum of }

{ the source and destination pixel colors-- }

{ up to a maximum allowable value; if }

{ the destination is a bitmap or }

{ 1-bit pixel map, revert to srcBic mode}

addOver = 34; {replace destination pixel with the sum of }

{ the source and destination pixel colors-- }

{ but if the value of the red, green, or }

{ blue component exceeds 65,536, then }

{ subtract 65,536 from that value; if the }

{ destination is a bitmap or 1-bit }

{ pixel map, revert to srcXor mode}

C H A P T E R 4

Color QuickDraw

Using Color QuickDraw 4-39

subPin = 35; {replace destination pixel with the }

{ difference of the source and destination }

{ pixel colors--but not less than a minimum }

{ allowable value; if the destination }

{ is a bitmap or 1-bit pixel map, revert to }

{ srcOr mode}

transparent = 36; {replace the destination pixel with the }

{ source pixel if the source pixel isn't }

{ equal to the background color}

addMax = 37; {compare the source and destination pixels, }

{ and replace the destination pixel with }

{ the color containing the greater }

{ saturation of each of the RGB components; }

{ if the destination is a bitmap or }

{ 1-bit pixel map, revert to srcBic mode}

subOver = 38; {replace destination pixel with the }

{ difference of the source and destination }

{ pixel colors--but if the value of a red, }

{ green, or blue component is }

{ less than 0, add the negative result to }

{ 65,536; if the destination is a bitmap or }

{ 1-bit pixel map, revert to srcXor mode}

adMin = 39; {compare the source and destination pixels, }

{ and replace the destination pixel with }

{ the color containing the lesser }

{ saturation of each of the RGB components; }

{ if the destination is a bitmap or }

{ 1-bit pixel map, revert to srcOr mode}

Note

You can use the arithmetic modes for all drawing operations; that
is, your application can pass them in parameters to the PenMode,
CopyBits, CopyDeepMask, and TextMode routines. (The TextMode
procedure is described in Inside Macintosh: Text. ◆

When you use the arithmetic transfer modes, each drawing routine converts indexed

source and destination pixels to their RGB components; performs the arithmetic

operation on each pair of red, green, and blue components to provide a new RGB color

for the destination pixel; and then assigns the destination a pixel value close to the

calculated RGB color.

For indexed pixels, the arithmetic transfer modes obtain the full 48-bit RGB color from

the CLUT. For direct pixels, the arithmetic transfer modes use the 15 or 24 bits of the

truncated RGB color. Note, however, that because the colors for indexed pixels depend

on the set of colors currently loaded into a graphics device’s CLUT, arithmetic transfer

modes may produce effects that differ between indexed and direct devices.

C H A P T E R 4

Color QuickDraw

4-40 Using Color QuickDraw

Note
The arithmetic transfer modes have no coloration effects. ◆

When you use the addPin mode in a basic graphics port, the maximum allowable value

for the destination pixel is always white. In a color graphics port, you can assign the

maximum allowable value with the OpColor procedure, described on page 4-78. Note

that the addOver mode is slightly faster than the addPin mode.

When you use the subPin mode in a basic graphics port, the minimum allowable value

for the destination pixel is always black. In a color graphics port, you can assign the

minimum allowable value with the OpColor procedure. Note that the subOver mode

is slightly faster than the subPin mode.

When you use the addMax and adMin modes, Color QuickDraw compares each RGB

component of the source and destination pixels independently, so the resulting color

isn’t necessarily either the source or the destination color.

When you use the blend mode, Color QuickDraw uses this formula to calculate the

weighted average of the source and destination pixels, which Color QuickDraw assigns

to the destination pixel:

dest = source × weight/65,535 + destination × (1 – weight/65,535)

In this formula, weight is an unsigned value between 0 and 65,535, inclusive. In a basic

graphics port, the weight is set to 50 percent gray, so that equal weights of the source and

destination RGB components are combined to produce the destination color. In a color

graphics port, the weight is an RGBColor record that individually specifies the weights

of the red, green, and blue components. You can assign the weight value with the

OpColor procedure.

The transparent mode is most useful on indexed devices, which have 8-bit and 4-bit

pixel depths, and on black-and-white devices. You can specify the transparent mode

in the mode parameter to the TextMode, PenMode, and CopyBits routines. To specify a

transparent pattern, add the transparent constant to the patCopy constant:

transparent + patCopy

The transparent mode is optimized to handle source bitmaps with large transparent

holes, as an alternative to specifying an unusual clipping region or mask to the

CopyMask procedure. Patterns aren’t optimized, and may not draw as quickly.

The arithmetic transfer modes are most useful in direct and 8-bit indexed pixels, but

work on 4-bit and 2-bit pixels as well. If the destination pixel map is 1 bit deep, the

arithmetic transfer mode reverts to a comparable Boolean transfer mode, as shown in

Table 4-2. (The hilite mode is explained in the next section.)

C H A P T E R 4

Color QuickDraw

Using Color QuickDraw 4-41

Because drawing with the arithmetic modes uses the closest matching colors, and not

necessarily exact matches, these modes might not produce the results you expect. For

instance, suppose your application uses the srcCopy mode to paint a green pixel on a

screen with 4-bit pixel values. Of the 16 colors available, the closest green may contain a

small amount of red, as in RGB components of 300 red, 65,535 green, and 0 blue. Then,

your application uses addOver mode to paint a red pixel on top of the green pixel,

ideally resulting in a yellow pixel. But the red pixel’s RGB components are 65,535 red, 0

green, and 0 blue. Adding the red components of the red and green pixels wraps to 300,

since the largest representable value is 65,535. In this case, addOver causes no visible

change at all. You can prevent the maximum value from wrapping around by using the

OpColor procedure to set the maximum allowable color to white, in which the

maximum red value is 65,535. Then you can use the addPin mode to produce the

desired yellow result.

Note that the arithmetic transfer modes don’t call the Color Manager when mapping a

requested RGB color to an indexed pixel value. If your application replaces the Color

Manager’s color-matching routines (which are described in the chapter “Color Manager”

in Inside Macintosh: Advanced Color Imaging), you must not use these modes, or you must

maintain the inverse table yourself.

Highlighting
When highlighting, Color QuickDraw replaces the background color with the highlight

color when your application draws or copies images between graphics ports. This has

the visual effect of using a highlighting pen to select the object. For instance, TextEdit

(described in Inside Macintosh: Text) uses highlighting to indicated selected text; if the

highlight color is yellow, TextEdit draws the selected text, then uses InvertRgn to

produce a yellow background for the text.

With basic QuickDraw, you can use InvertRect, InvertRgn, InvertArc,

InvertRoundRect, or InvertPoly and any image-copying routine that uses the

srcXor source mode to invert objects on the screen.

In general, however, you should use highlighting with Color QuickDraw when selecting

and deselecting objects such as text or graphics. (Highlighting has no effect in basic

QuickDraw.) The line reading “hilited” in Figure 4-15 uses highlighting; the user selected

red as the highlight color, which the application uses as the background for the text.

(This figure shows the effect in grayscale.) The application simply inverts the

background for the line reading “inverted.” Inversion reverses the colors of all pixels

Table 4-2 Arithmetic modes in a 1-bit environment

Initial arithmetic mode Resulting source mode

blend srcCopy

addOver, subOver, hilite srcXor

addPin, addMax srcBic

subPin, adMin, transparent srcOr

C H A P T E R 4

Color QuickDraw

4-42 Using Color QuickDraw

within the rectangle’s boundary. On a black-and-white monitor, this changes all black

pixels in the shape to white, and changes all white pixels to black. Although this

procedure operates on color pixels in color graphics ports, the results are predictable

only with direct pixels or 1-bit pixel maps.

Figure 4-15 Difference between highlighting and inverting

The global variable HiliteRGB is read from parameter RAM when the machine starts.

Basic graphics ports use the color stored in the HiliteRGB global variable as the

highlight color. Color graphics ports default to the HiliteRGB global variable, but you

can override this by using the HiliteColor procedure, described on page 4-78.

To turn highlighting on when using Color QuickDraw, you can clear the highlight bit

just before calling InvertRect, InvertRgn, InvertArc, InvertRoundRect,

InvertPoly, or any drawing or image-copying routine that uses the patXor or

srcXor transfer mode. On a bitmap or a 1-bit pixel map, this works exactly like

inversion and is compatible with all versions of QuickDraw.

The following constant represents the highlight bit:

CONST pHiliteBit = 0; {flag bit in HiliteMode used with BitClr}

You can use the BitClr procedure as shown in Listing 4-6 to clear system software’s

highlight bit (BitClr is described in Inside Macintosh: Operating System Utilities).

Listing 4-6 Setting the highlight bit

PROCEDURE MySetHiliteMode;

BEGIN

BitClr(Ptr(HiliteMode), pHiliteBit);

END;

C H A P T E R 4

Color QuickDraw

Using Color QuickDraw 4-43

Listing 4-7 shows the code that produced the effects in Figure 4-15.

Listing 4-7 Using highlighting for text

PROCEDURE HiliteDemonstration (window: WindowPtr);

CONST

s1 = ' hilited ';

s2 = ' inverted ';

VAR

familyID: Integer;

r1, r2: Rect;

info: FontInfo;

bg: RGBColor;

BEGIN

TextSize(48);

GetFontInfo(info);

SetRect(r1, 0, 0, StringWidth(s1), info.ascent + info.descent);

SetRect(r2, 0, 0, StringWidth(s2), info.ascent + info.descent);

OffsetRect(r1, 30, 20);

OffsetRect(r2, 30, 100);

{fill the background with a light-blue color}

bg.red := $A000;

bg.green := $FFFF;

bg.blue := $E000;

RGBBackColor(bg);

EraseRect(window^.portRect);

{draw the string to highlight}

MoveTo(r1.left + 2, r1.bottom - info.descent);

DrawString(s1);

MySetHiliteMode; {clear the highlight bit}

{InvertRect replaces pixels in background color with the }

{ user-specified highlight color}

InvertRect(r1);

{the highlight bit is reset automatically}

{show inverted text, for comparison}

MoveTo(r2.left + 2, r2.bottom - info.descent);

DrawString(s2);

InvertRect(r2);

END;

C H A P T E R 4

Color QuickDraw

4-44 Color QuickDraw Reference

Color QuickDraw resets the highlight bit after performing each drawing operation, so

your application should always clear the highlight bit immediately before calling a

routine with which you want to use highlighting.

Another way to use highlighting is to add this constant or its value to the mode you

specify to the PenMode, CopyBits, CopyDeepMask, and TextMode routines:

CONST hilite = 50;{add to source or pattern mode for highlighting}

Highlighting uses the pattern or source image to decide which bits to exchange; only bits

that are on in the pattern or source image can be highlighted in the destination.

A very small selection should probably not use highlighting, because it might be too

hard to see the selection in the highlight color. TextEdit, for instance, uses highlighting to

select and deselect text, but not to highlight the insertion point.

Highlighting is optimized to look for consecutive pixels in either the highlight or

background colors. For example, if the source is an all-black pattern, the highlighting is

especially fast, operating internally on one long word at a time instead of one pixel at a

time. Highlighting a large area without such consecutive pixels (a gray pattern, for

instance) can be slow.

Color QuickDraw Reference

This section describes the data structures, routines, and resources that are specific to

Color QuickDraw.

“Data Structures” shows the Pascal data structures for the PixMap, CGrafPort,

RGBColor, ColorSpec, ColorTable, MatchRec, PixPat, CQDProcs, and GrafVars

records.

“Color QuickDraw Routines” describes routines for creating and closing color graphics

ports, managing a color graphics pen, changing the background pixel pattern, drawing

with Color QuickDraw colors, determining current colors and best intermediate colors,

calculating color fills, creating and disposing of pixel maps, creating and disposing of

pixel patterns, creating and disposing of color tables, customizing Color QuickDraw

operations, and reporting changes to QuickDraw data structures that applications

typically shouldn’t make. “Application-Defined Routine” describes how to write your

own color search function for customizing the SeedCFill and CalcCMask procedures.

“Resources” describes the pixel pattern resource, the color table resource, and the color

icon resource.

C H A P T E R 4

Color QuickDraw

Color QuickDraw Reference 4-45

Data Structures

This section shows the Pascal data structures for the PixMap, CGrafPort, RGBColor,

ColorSpec, ColorTable, MatchRec, PixPat, CQDProcs, and GrafVars records.

Analogous to the bitmap that basic QuickDraw uses to describe a bit image, a pixel map

is used by Color QuickDraw to describe a pixel image. A pixel map, which is a data

structure of type PixMap, contains information about the dimensions and contents of a

pixel image, as well as information about the image’s storage format, depth, resolution,

and color usage.

As a basic graphics port (described in the chapter “Basic QuickDraw”) defines the

black-and-white and basic eight-color drawing environment for basic QuickDraw, a

color graphics port defines the more sophisticated color drawing environment for Color

QuickDraw. A color graphics port is defined by a data structure of type CGrafPort.

You usually specify a color to Color QuickDraw by creating an RGBColor record in

which you assign the red, green, and blue values of the color. For example, when you

want to set the foreground color for drawing, you create an RGBColor record that

defines the foreground color you desire, then you pass that record as a parameter to the

RGBForeColor procedure.

When creating a PixMap record for an indexed device, Color QuickDraw creates a

ColorTable record that defines the best colors available for the pixel image on that

graphics device. The Color Manager also stores a ColorTable record for the currently

available colors in the graphics device’s CLUT.

One of the fields in a ColorTable record requires a value of type cSpecArray, which

is defined as an array of ColorSpec records. Typically, your application needs to create

ColorTable records and ColorSpec records only if it uses the Palette Manager, as

described in the chapter “Palette Manager” in Inside Macintosh: Advanced Color Imaging.

You can customize the SeedCFill and CalcCMask procedures by writing your own

color search functions and pointing to them in the matchProc parameters for these

procedures. When SeedCFill or CalcCMask calls your color search function, the

GDRefCon field of the current GDevice record (described in the chapter “Graphics

Devices”) contains a pointer to a MatchRec record. This record contains the RGB value

of the seed pixel or seed color for which your color search function should search.

Your application typically does not create PixPat records. Although you can create

PixPat records in your program code, it is usually easier to create pixel patterns using

the pixel pattern resource, which is described on page 4-103.

You need to use the CQDProcs record only if you customize one or more of

QuickDraw’s low-level drawing routines.

Finally, the GrafVars record contains color information that supplements the

information in the CGrafPort record, of which it is logically a part.

C H A P T E R 4

Color QuickDraw

4-46 Color QuickDraw Reference

PixMap

A pixel map, which is defined by a data structure of type PixMap, contains information

about the dimensions and contents of a pixel image, as well as information on the

image’s storage format, depth, resolution, and color usage.

TYPE PixMap =

RECORD

baseAddr: Ptr; {pixel image}

rowBytes: Integer; {flags, and row width}

bounds: Rect; {boundary rectangle}

pmVersion: Integer; {PixMap record version number}

packType: Integer; {packing format}

packSize: LongInt; {size of data in packed state}

hRes: Fixed; {horizontal resolution}

vRes: Fixed; {vertical resolution}

pixelType: Integer; {format of pixel image}

pixelSize: Integer; {physical bits per pixel}

cmpCount: Integer; {logical components per pixel}

cmpSize: Integer; {logical bits per component}

planeBytes: LongInt; {offset to next plane}

pmTable: CTabHandle; {handle to the ColorTable record }

{ for this image}

pmReserved: LongInt; {reserved for future expansion}

END;

Field descriptions

baseAddr For an onscreen pixel image, a pointer to the first byte of the
image. For optimal performance, this should be a multiple of 4.
The pixel image that appears on a screen is normally stored on a
graphics card rather than in main memory.

▲ W A R N I N G

The baseAddr field of the PixMap record for an offscreen graphics
world contains a handle instead of a pointer. You must use the
GetPixBaseAddr function (described in the chapter “Offscreen
Graphics Worlds” in this book) to obtain a pointer to the PixMap
record for an offscreen graphics world. Your application should
never directly access the baseAddr field of the PixMap record for
an offscreen graphics world; instead, your application should
always use GetPixBaseAddr. ▲

C H A P T E R 4

Color QuickDraw

Color QuickDraw Reference 4-47

rowBytes The offset in bytes from one row of the image to the next. The value
must be even, less than $4000, and for best performance it should be
a multiple of 4. The high 2 bits of rowBytes are used as flags. If bit
15 = 1, the data structure pointed to is a PixMap record; otherwise it
is a BitMap record.

bounds The boundary rectangle, which links the local coordinate system of
a graphics port to QuickDraw’s global coordinate system and
defines the area of the bit image into which QuickDraw can draw.
By default, the boundary rectangle is the entire main screen. Do
not use the value of this field to determine the size of the screen;
instead use the value of the gdRect field of the GDevice record for
the screen, as described in the chapter “Graphics Devices” in this
book.

pmVersion The version number of Color QuickDraw that created this PixMap
record. The value of pmVersion is normally 0. If pmVersion is 4,
Color QuickDraw treats the PixMap record’s baseAddr field as
32-bit clean. (All other flags are private.) Most applications never
need to set this field.

packType The packing algorithm used to compress image data. Color
QuickDraw currently supports a packType of 0, which means no
packing, and values of 1 to 4 for packing direct pixels.

packSize The size of the packed image in bytes. When the packType field
contains the value 0, this field is always set to 0.

hRes The horizontal resolution of the pixel image in pixels per inch. This
value is of type Fixed; by default, the value here is $00480000 (for
72 pixels per inch).

vRes The vertical resolution of the pixel image in pixels per inch. This
value is of type Fixed; by default, the value here is $00480000 (for
72 pixels per inch).

pixelType The storage format for a pixel image. Indexed pixels are indicated
by a value of 0. Direct pixels are specified by a value of RGBDirect,
or 16. In the PixMap record of the GDevice record (described in the
chapter “Graphics Devices”) for a direct device, this field is set to
the constant RGBDirect when the screen depth is set.

pixelSize Pixel depth; that is, the number of bits used to represent a pixel.
Indexed pixels can have sizes of 1, 2, 4, and 8 bits; direct pixel sizes
are 16 and 32 bits.

cmpCount The number of components used to represent a color for a pixel.
With indexed pixels, each pixel is a single value representing
an index in a color table, and therefore this field contains the
value 1—the index is the single component. With direct pixels,
each pixel contains three components—one integer each for the
intensities of red, green, and blue—so this field contains the value 3.

C H A P T E R 4

Color QuickDraw

4-48 Color QuickDraw Reference

cmpSize The size in bits of each component for a pixel. Color QuickDraw
expects that the sizes of all components are the same, and that the
value of the cmpCount field multiplied by the value of the
cmpSize field is less than or equal to the value in the pixelSize
field.

For an indexed pixel value, which has only one component, the
value of the cmpSize field is the same as the value of the
pixelSize field—that is, 1, 2, 4, or 8.

For direct pixels there are two additional possibilities:

A 16-bit pixel, which has three components, has a cmpSize value
of 5. This leaves an unused high-order bit, which Color QuickDraw
sets to 0.

A 32-bit pixel, which has three components (red, green, and blue),
has a cmpSize value of 8. This leaves an unused high-order byte,
which Color QuickDraw sets to 0.

If presented with a 32-bit image—for example, in the CopyBits
procedure—Color QuickDraw passes whatever bits are there, and it
does not set the high byte to 0. Generally, therefore, your
application should clear the memory for the image to 0 before
creating a 16-bit or 32-bit image. The Memory Manager functions
NewHandleClear and NewPtrClear, described in Inside
Macintosh: Memory, assist you in allocating prezeroed memory.

planeBytes The offset in bytes from one drawing plane to the next. This field is
set to 0.

pmTable A handle to a ColorTable record (described on page 4-56) for the
colors in this pixel map.

pmReserved Reserved for future expansion. This field must be set to 0 for future
compatibility.

Note that the pixel map for a window’s color graphics port always consists of the pixel

depth, color table, and boundary rectangle of the main screen, even if the window is

created on or moved to an entirely different screen.

CGrafPort

A color graphics port, which is defined by a data structure of type CGrafPort, defines a

complete drawing environment that determines where and how color graphics

operations take place.

All graphics operations are performed in graphics ports. Before a color graphics port can

be used, it must be allocated and initialized with the OpenCPort procedure, which is

described on page 4-64. Normally, you don’t call OpenCPort yourself. In most cases

your application draws into a color window you’ve created with the GetNewCWindow

or NewCWindow function or draws into an offscreen graphics world created with the

NewGWorld function. The two Window Manager functions (described in the chapter

“Window Manager” in Inside Macintosh: Macintosh Toolbox Essentials) and the

C H A P T E R 4

Color QuickDraw

Color QuickDraw Reference 4-49

NewGWorld function (described in the chapter “Offscreen Graphics Worlds” in this

book) call OpenCPort to create the window’s graphics port.

You can have many graphics ports open at once; each one has its own local coordinate

system, pen pattern, background pattern, pen size and location, font and font style, and

pixel map in which drawing takes place.

Several fields in this record define your application’s drawing area. All drawing in a

graphics port occurs in the intersection of the graphics port’s boundary rectangle and its

port rectangle. Within that intersection, all drawing is cropped to the graphics port’s

visible region and its clipping region.

The Window Manager and Dialog Manager routines GetNewWindow, GetNewDialog,

Alert, StopAlert, NoteAlert, and CautionAlert (described in Inside Macintosh:
Macintosh Toolbox Essentials) create a color graphics port if color-aware resources (such as

resource types 'wctb', 'dctb', or 'actb') are present.

The CGrafPort record is the same size as the GrafPort record, and most of its fields

are identical. The structure of the CGrafPort record, is as follows:

TYPE CGrafPtr = ^CGrafPort;

CGrafPort =

RECORD

device: Integer; {device ID for font selection}

portPixMap: PixMapHandle; {handle to PixMap record}

portVersion: Integer; {highest 2 bits always set}

grafVars: Handle; {handle to a GrafVars record}

chExtra: Integer; {added width for nonspace characters}

pnLocHFrac: Integer; {pen fraction}

portRect: Rect; {port rectangle}

visRgn: RgnHandle; {visible region}

clipRgn: RgnHandle; {clipping region}

bkPixPat: PixPatHandle; {background pattern}

rgbFgColor: RGBColor; {requested foreground color}

rgbBkColor: RGBColor; {requested background color}

pnLoc: Point; {pen location}

pnSize: Point; {pen size}

pnMode: Integer; {pattern mode}

pnPixPat: PixPatHandle; {pen pattern}

fillPixPat: PixPatHandle; {fill pattern}

pnVis: Integer; {pen visibility}

txFont: Integer; {font number for text}

txFace: Style; {text's font style}

txMode: Integer; {source mode for text}

txSize: Integer; {font size for text}

spExtra: Fixed; {added width for space characters}

fgColor: LongInt; {actual foreground color}

C H A P T E R 4

Color QuickDraw

4-50 Color QuickDraw Reference

bkColor: LongInt; {actual background color}

colrBit: Integer; {plane being drawn}

patStretch: Integer; {used internally}

picSave: Handle; {picture being saved, used internally}

rgnSave: Handle; {region being saved, used internally}

polySave: Handle; {polygon being saved, used internally}

grafProcs: CQDProcsPtr; {low-level drawing routines}

END;

▲ W A R N I N G

You can read the fields of a CGrafPort record directly, but you should
not store values directly into them. Use the QuickDraw routines
described in this book to alter the fields of a graphics port. ▲

Field descriptions

device Device-specific information that’s used by the Font Manager to
achieve the best possible results when drawing text in the graphics
port. There may be physical differences in the same logical font for
different output devices, to ensure the highest-quality printing on
the device being used. For best results on the screen, the default
value of the device field is 0.

portPixMap A handle to a PixMap record (described on page 4-46), which
describes the pixels in this color graphics port.

portVersion In the highest 2 bits, flags set to indicate that this is a CGrafPort
record and, in the remainder of the field, the version number of
Color QuickDraw that created this record.

grafVars A handle to the GrafVars record (described on page 4-62), which
contains additional graphics fields of color information.

chExtra A fixed-point number by which to widen every character, excluding
the space character, in a line of text. This value is used in
proportional spacing. The value in this field is in 4.12 fractional
notation: 4 bits of signed integer are followed by 12 bits of fraction.
This value is multiplied by the value in the txSize field before it is
used. By default, this field contains the value 0.

pnLocHFrac The fractional horizontal pen position used when drawing text. The
value in this field represents the low word of a Fixed number; in
decimal, its initial value is 0.5.

C H A P T E R 4

Color QuickDraw

Color QuickDraw Reference 4-51

portRect The port rectangle that defines a subset of the pixel map to be used
for drawing. All drawing done by the application occurs inside the
port rectangle. (In a window’s graphics port, the port rectangle is
also called the content region.) The port rectangle uses the local
coordinate system defined by the boundary rectangle in the
portPixMap field of the PixMap record. The upper-left corner
(which for a window is called the window origin) of the port
rectangle usually has a vertical coordinate of 0 and a horizontal
coordinate of 0, although you can use the SetOrigin procedure
(described in the chapter “Basic QuickDraw”) to change the
coordinates of the window origin. The port rectangle usually falls
within the boundary rectangle, but it’s not required to do so.

visRgn The region of the graphics port that’s actually visible on the
screen—that is, the part of the window that’s not covered by other
windows. By default, the visible region is equivalent to the port
rectangle. The visible region has no effect on images that aren’t
displayed on the screen.

clipRgn The graphics port’s clipping region, an arbitrary region that you can
use to limit drawing to any region within the port rectangle. The
default clipping region is set arbitrarily large; using the ClipRect
procedure (described in the chapter “Basic QuickDraw”), you have
full control over its setting. Unlike the visible region, the clipping
region affects the image even if it isn’t displayed on the screen.

bkPixPat A handle to a PixPat record (described on page 4-58) that
describes the background pixel pattern. Procedures such as
ScrollRect (described in the chapter “Basic QuickDraw”) and
EraseRect (described in the chapter “QuickDraw Drawing”) use
this pattern for filling scrolled or erased areas. Your application can
use the BackPixPat procedure (described on page 4-69) to change
the background pixel pattern.

rgbFgColor An RGBColor record (described on page 4-55) that contains the
requested foreground color. By default, the foreground color is
black, but you can use the RGBForeColor procedure (described on
page 4-70) to change the foreground color.

rgbBkColor An RGBColor record that contains the requested background color.
By default, the background color is white, but you can use the
RGBBackColor procedure (described on page 4-72) to change the
background color.

C H A P T E R 4

Color QuickDraw

4-52 Color QuickDraw Reference

pnLoc The point where QuickDraw will begin drawing the next line,
shape, or character. It can be anywhere on the coordinate plane;
there are no restrictions on the movement or placement of the pen.
The location of the graphics pen is a point in the graphics port’s
coordinate system, not a pixel in a pixel image. The upper-left
corner of the pen is at the pen location; the graphics pen hangs
below and to the right of this point. The graphics pen is described in
detail in the chapter “QuickDraw Drawing.”

pnSize The vertical height and horizontal width of the graphics pen. The
default size is a 1-by-1 pixel square; the vertical height and
horizontal width can range from 0 by 0 to 32,767 by 32,767. If either
the pen width or the pen height is 0, the pen does not draw. Heights
or widths of less than 0 are undefined. You can use the PenSize
procedure (described in the chapter “QuickDraw Drawing”) to
change the value in this field.

pnMode The pattern mode—that is, a Boolean operation that determines the
how Color QuickDraw transfers the pen pattern to the pixel map
during drawing operations. When the graphics pen draws into
a pixel map, Color QuickDraw first determines what pixels in the
pixel image are affected and finds their corresponding pixels in the
pen pattern. Color QuickDraw then does a pixel-by-pixel
comparison based on the pattern mode, which specifies one of eight
Boolean transfer operations to perform. Color QuickDraw stores the
resulting pixel in its proper place in the image. Pattern modes for a
color graphics port are described in “Boolean Transfer Modes With
Color Pixels” beginning on page 4-32.

pnPixPat A handle to a PixPat record (described on page 4-58) that
describes a pixel pattern used like the ink in the graphics pen. Color
QuickDraw uses the pixel pattern defined in the PixPat record
when you use the Line and LineTo procedures to draw lines with
the pen, framing procedures such as FrameRect to draw shape
outlines with the pen, and painting procedures such as PaintRect
to paint shapes with the pen.

fillPixPat A handle to a PixPat record (described on page 4-58) that
describes the pixel pattern that’s used when you call a procedure
such as FillRect to fill an area. Notice that this is not in the same
location as the fillPat field in a GrafPort record.

pnVis The graphics pen’s visibility—that is, whether it draws on the
screen. The graphics pen is described in detail in the chapter
“QuickDraw Drawing.”

C H A P T E R 4

Color QuickDraw

Color QuickDraw Reference 4-53

txFont A font number that identifies the font to be used in the graphics
port. The font number 0 represents the system font. (A font is
defined as a collection of images that represent the individual
characters of the font.) Fonts are described in detail in Inside
Macintosh: Text.

txFace The character style of the text, with values from the set defined
by the Style data type, which includes such styles as bold, italic,
and shaded. You can apply stylistic variations either alone or in
combination. Character styles are described in detail in Inside
Macintosh: Text.

txMode One of three Boolean source modes that determines the way
characters are placed in the bit image. This mode functions much
like a pattern mode specified in the pnMode field: when drawing a
character, Color QuickDraw determines which pixels in the image
are affected, does a pixel-by-pixel comparison based on the mode,
and stores the resulting pixels in the image. Only three source
modes—srcOr, srcXor, and srcBic—should be used for
drawing text. See the chapter “QuickDraw Text” in Inside Macintosh:
Text for more information about QuickDraw’s text-handling
capabilities.

txSize The text size in pixels. The Font Manager uses this information to
provide the bitmaps for text drawing. (The Font Manager is
described in detail in the chapter “Font Manager” in Inside
Macintosh: Text.) The value in this field can be represented by

point size × device resolution / 72 dpi

where point is a typographical term meaning approximately
1/72 inch.

spExtra A fixed-point number equal to the average number of pixels by
which each space character should be widened to fill out the line.
The spExtra field is useful when a line of characters is to be
aligned with both the left and the right margin (sometimes called
full justification).

fgColor The pixel value of the foreground color supplied by the Color
Manager. This is the best available approximation in the CLUT to
the color specified in the rgbFgColor field.

bkColor The pixel value of the background color supplied by the Color
Manager. This is the best available approximation in the CLUT to
the color specified in the rgbBkColor field.

colrBit Reserved.

patStretch A value used during output to a printer to expand patterns if
necessary. Your application should not change this value.

C H A P T E R 4

Color QuickDraw

4-54 Color QuickDraw Reference

picSave The state of the picture definition. If no picture is open, this field
contains NIL; otherwise it contains a handle to information related
to the picture definition. Your application shouldn’t be concerned
about exactly what information the handle leads to; you may,
however, save the current value of this field, set the field to NIL to
disable the picture definition, and later restore it to the saved value
to resume defining the picture. Pictures are described in the chapter
“Pictures” in this book.

rgnSave The state of the region definition. If no region is open, this field
contains NIL; otherwise it contains a handle to information related
to the region definition. Your application shouldn’t be concerned
about exactly what information the handle leads to; you may,
however, save the current value of this field, set the field to NIL to
disable the region definition, and later restore it to the saved value
to resume defining the region.

polySave The state of the polygon definition. If no polygon is open, this field
contains NIL; otherwise it contains a handle to information related
to the polygon definition. Your application shouldn’t be concerned
about exactly what information the handle leads to; you may,
however, save the current value of this field, set the field to NIL to
disable the polygon definition, and later restore it to the saved value
to resume defining the polygon.

grafProcs An optional pointer to a CQDProcs record (described on page 4-60)
that your application can store into if you want to customize Color
QuickDraw drawing routines or use Color QuickDraw in other
advanced, highly specialized ways.

All Color QuickDraw operations refer to a graphics port by a pointer defined by the data

type CGrafPtr. (For historical reasons, a graphics port is one of the few objects in the

Macintosh system software that’s referred to by a pointer rather than a handle.) All

Window Manager routines that accept a window pointer also accept a pointer to a color

graphics port.

Your application should never need to directly change the fields of a CGrafPort record.

If you find it absolutely necessary for your application to so, immediately use the

PortChanged procedure to notify Color QuickDraw that your application has changed

the CGrafPort record. The PortChanged procedure is described on page 4-99.

C H A P T E R 4

Color QuickDraw

Color QuickDraw Reference 4-55

RGBColor

You usually specify a color to Color QuickDraw by creating an RGBColor record in

which you assign the red, green, and blue values of the color. For example, when you

want to set the foreground color for drawing, you create an RGBColor record that

defines the foreground color you desire; then you pass that record as a parameter to the

RGBForeColor procedure.

In an RGBColor record, three 16-bit unsigned integers give the intensity values for the

three additive primary colors.

TYPE RGBColor =

RECORD

red: Integer; {red component}

green: Integer; {green component}

blue: Integer; {blue component}

END;

Field descriptions

red An unsigned integer specifying the red value of the color.

green An unsigned integer specifying the green value of the color.

blue An unsigned integer specifying the blue value of the color.

ColorSpec

When creating a PixMap record (described on page 4-46) for an indexed device, Color

QuickDraw creates a ColorTable record that defines the best colors available for the

pixel image on that graphics device. The Color Manager also stores a ColorTable

record for the currently available colors in the graphics device’s CLUT.

One of the fields in a ColorTable record requires a value of type cSpecArray, which

is defined as an array of ColorSpec records. Typically, your application never needs to

create ColorTable records or ColorSpec records. For completeness, the data structure

of type ColorSpec is shown here, and the data structure of type ColorTable is shown

next.

TYPE

cSpecArray: ARRAY[0..0] Of ColorSpec;

ColorSpec =

RECORD

value: Integer; {index or other value}

rgb: RGBColor; {true color}

END;

C H A P T E R 4

Color QuickDraw

4-56 Color QuickDraw Reference

Field descriptions

value The pixel value assigned by Color QuickDraw for the color
specified in the rgb field of this record. Color QuickDraw assigns a
pixel value based on the capabilities of the user’s screen. For
indexed devices, the pixel value is an index number assigned by the
Color Manager to the closest color available on the indexed device;
for direct devices, this value expresses the best available red, green,
and blue values for the color on the direct device.

rgb An RGBColor record (described in the previous section) that fully
specifies the color whose approximation Color QuickDraw specifies
in the value field.

ColorTable

When creating a PixMap record (described on page 4-46) for a particular graphics

device, Color QuickDraw creates a ColorTable record that defines the best colors

available for the pixel image on that particular graphics device. The Color Manager also

creates a ColorTable record of all available colors for use by the CLUT on indexed

devices.

Typically, your application needs to create ColorTable records only if it uses the

Palette Manager, as described in the chapter “Palette Manager” in Inside Macintosh:
Advanced Color Imaging. The data structure of type ColorTable is shown here.

TYPE CTabHandle = ^CTabPtr;

CTabPtr = ^ColorTable;

ColorTable =

RECORD

ctSeed: LongInt; {unique identifier from table}

ctFlags: Integer; {flags describing the value in the }

{ ctTable field; clear for a pixel map}

ctSize: Integer; {number of entries in the next field }

{ minus 1}

ctTable: cSpecArray; {an array of ColorSpec records}

END;

Field descriptions

ctSeed Identifies a particular instance of a color table. The Color Manager
uses the ctSeed value to compare an indexed device’s color table
with its associated inverse table (a table it uses for fast color
lookup). When the color table for a graphics device has been
changed, the Color Manager needs to rebuild the inverse table. See
the chapter “Color Manager” in Inside Macintosh: Advanced Color
Imaging for more information on inverse tables.

C H A P T E R 4

Color QuickDraw

Color QuickDraw Reference 4-57

ctFlags Flags that distinguish pixel map color tables from color tables in
GDevice records (which are described in the chapter “Graphics
Devices” in this book).

ctSize One less than the number of entries in the table.

ctTable An array of ColorSpec entries, each containing a pixel value and a
color specified by an RGBColor record, as described in the previous
section.

Your application should never need to directly change the fields of a ColorTable

record. If you find it absolutely necessary for your application to so, immediately use the

CTabChanged procedure to notify Color QuickDraw that your application has changed

the ColorTable record. The CTabChanged procedure is described on page 4-97.

MatchRec

As described in “Application-Defined Routine” on page 4-101, you can customize the

SeedCFill and CalcCMask procedures by writing your own color search functions

and pointing to them in the matchProc parameters for these procedures.

When SeedCFill or CalcCMask calls your color search function, the GDRefCon field

of the current GDevice record (described in the chapter “Graphics Devices”) contains a

pointer to a MatchRec record. This record contains the RGB value of the seed pixel or

seed color for which your color search function should search. This record has the

following structure:

MatchRec =

RECORD

red: Integer; {red component of seed}

green: Integer; {green component of seed}

blue: Integer; {blue component of seed}

matchData: LongInt; {value in matchData parameter of }

{ SeedCFill or CalcCMask}

END;

Field descriptions

red Red value of the seed.

green Green value of the seed.

blue Blue value of the seed.

matchData The value passed in the matchData parameter of the SeedCFill
or CalcCMask procedure.

C H A P T E R 4

Color QuickDraw

4-58 Color QuickDraw Reference

PixPat

Your application typically does not create PixPat records. Although you can create such

records in your program code, it is usually easier to create pixel patterns using the pixel

pattern resource, which is described on page 4-103.

A PixPat record is defined as follows:

TYPE PixPatHandle = ^PixPatPtr;

PixPatPtr = ^PixPat;

PixPat =

RECORD

patType: Integer; {pattern type}

patMap: PixMapHandle; {pattern characteristics}

patData: Handle; {pixel image defining pattern}

patXData: Handle; {expanded pixel image}

patXValid: Integer; {flags for expanded pattern data}

patXMap: Handle; {handle to expanded pattern data}

pat1Data: Pattern; {a bit pattern for a GrafPort }

{ record}

END;

Field descriptions

patType The pattern’s type. The value 0 specifies a basic QuickDraw bit
pattern, the value 1 specifies a full-color pixel pattern, and the value
2 specifies an RGB pattern. These pattern types are described in
greater detail in the rest of this section.

patMap A handle to a PixMap record (described on page 4-46) that
describes the pattern’s pixel image. The PixMap record can contain
indexed or direct pixels.

patData A handle to the pattern’s pixel image.

patXData A handle to an expanded pixel image used internally by Color
QuickDraw.

patXValid A flag that, when set to –1, invalidates the expanded data.

patXMap Reserved for use by Color QuickDraw.

pat1Data A bit pattern (described in the chapter “QuickDraw Drawing”) to
be used when this pattern is drawn into a GrafPort record
(described in the chapter “Basic QuickDraw”). The NewPixPat
function (described on page 4-88) sets this field to 50 percent gray.

C H A P T E R 4

Color QuickDraw

Color QuickDraw Reference 4-59

When used for a color graphics port, the basic QuickDraw procedures PenPat and

BackPat (described in the chapter “Basic QuickDraw”) store pixel patterns in,

respectively, the pnPixPat and bkPixPat fields of the CGrafPort record and set the

patType field of the PixPat field to 0 to indicate that the PixPat record contains a bit

pattern. Such patterns are limited to 8-by-8 pixel dimensions and, instead of being

drawn in black and white, are always drawn using the colors specified in the

CGrafPort record’s rgbFgColor and rgbBkColor fields, respectively.

In a full-color pixel pattern, the patType field contains the value 1, and the pattern’s

dimensions, depth, resolution, set of colors, and other characteristics are defined by a

PixMap record, referenced by the handle in the patMap field of the PixPat record.

Full-color pixel patterns contain color tables that describe the colors they use. Generally

such a color table contains one entry for each color used in the pattern. For instance, if

your pattern has five colors, you would probably create a 4 bits per pixel pattern that

uses pixel values 0–4, and a color table with five entries, numbered 0–4, that contain the

RGB specifications for those pixel values.

However, if you don’t specify a color table for a pixel value, Color QuickDraw assigns

a color to that pixel value. The largest unassigned pixel value becomes the foreground

color; the smallest unassigned pixel value is assigned the background color. Remaining

unassigned pixel values are given colors that are evenly distributed between the

foreground and background.

For instance, in the color table mentioned above, pixel values 5–15 are unused. Assume

that the foreground color is black and the background color is white. Pixel value 15 is

assigned the foreground color, black; pixel value 5 is assigned the background color,

white; the nine pixel values between them are assigned evenly distributed shades of

gray. If the PixMap record’s color table is set to NIL, all pixel values are determined by

blending the foreground and background colors.

Full-color pixel patterns are not limited to a fixed size: their height and width can be any

power of 2, as specified by the height and width of the boundary rectangle for the

PixMap record specified in the patMap field. A pattern 8 bits wide, which is the size of a

bit pattern, has a row width of just 1 byte, contrary to the usual rule that the rowBytes

field must be even. Read this pattern type into memory using the GetPixPat function

(described on page 4-88), and set it using the PenPixPat or BackPixPat

procedure (described on page 4-67 and page 4-69, respectively).

The pixel map specified in the patMap field of the PixPat record defines the pattern’s

characteristics. The baseAddr field of the PixMap record for that pixel map is ignored.

For a full-color pixel pattern, the actual pixel image defining the pattern is stored in the

handle in the patData field of the PixPat record. The pattern’s pixel depth need not

match that of the pixel map into which it’s transferred; the depth is adjusted

automatically when the pattern is drawn. Color QuickDraw maintains a private copy of

the pattern’s pixel image, expanded to the current screen depth and aligned to the

current graphics port, in the patXData field of the PixPat record.

C H A P T E R 4

Color QuickDraw

4-60 Color QuickDraw Reference

In an RGB pixel pattern, the patType field contains the value 2. Using the MakeRGBPat

procedure (described on page 4-90), your application can specify the exact color it wants

to use. Color QuickDraw selects a pattern to approximate that color. In this way, your

application can effectively increase the color resolution of the screen. RGB pixel patterns

are particularly useful for dithering: mixing existing colors together to create the illusion

of a third color that’s unavailable on an indexed device. The MakeRGBPat procedure

aids in this process by constructing a dithered pattern to approximate a given absolute

color. An RGB pixel pattern can display 125 different patterns on a 4-bit screen, or 2197

different patterns on an 8-bit screen.

An RGB pixel pattern has an 8-by-8 pixel pattern that is 2 bits deep. For an RGB pixel

pattern, the RGBColor record that you specify to the MakeRGBPat procedure defines

the image; there is no image data.

Your application should never need to directly change the fields of a PixPat record.

If you find it absolutely necessary for your application to so, immediately use the

PixPatChanged procedure to notify Color QuickDraw that your application has

changed the PixPat record. The PixPatChanged procedure is described on page 4-98.

CQDProcs

You need to use the CQDProcs record only if you customize one or more of

QuickDraw’s standard low-level drawing routines, which are described in the

chapter “QuickDraw Drawing.” You can use the SetStdCProcs procedure, described

on page 4-96, to create a CQDProcs record.

CQDProcsPtr = ^CQDProcs

CQDProcs =

RECORD

textProc: Ptr; {text drawing}

lineProc: Ptr; {line drawing}

rectProc: Ptr; {rectangle drawing}

rRectProc: Ptr; {roundRect drawing}

ovalProc: Ptr; {oval drawing}

arcProc: Ptr; {arc/wedge drawing}

polyProc: Ptr; {polygon drawing}

rgnProc: Ptr; {region drawing}

bitsProc: Ptr; {bit transfer}

commentProc: Ptr; {picture comment processing}

txMeasProc: Ptr; {text width measurement}

getPicProc: Ptr; {picture retrieval}

putPicProc: Ptr; {picture saving}

opcodeProc: Ptr; {reserved for future use}

newProc1: Ptr; {reserved for future use}

newProc2: Ptr; {reserved for future use}

C H A P T E R 4

Color QuickDraw

Color QuickDraw Reference 4-61

newProc3: Ptr; {reserved for future use}

newProc4: Ptr; {reserved for future use}

newProc5: Ptr; {reserved for future use}

newProc6: Ptr; {reserved for future use}

END;

Field descriptions

textProc A pointer to the low-level routine that draws text. The standard
QuickDraw routine is the StdText procedure.

lineProc A pointer to the low-level routine that draws lines. The standard
QuickDraw routine is the StdLine procedure.

rectProc A pointer to the low-level routine that draws rectangles. The
standard QuickDraw routine is the StdRect procedure.

rRectProc A pointer to the low-level routine that draws rounded rectangles.
The standard QuickDraw routine is the StdRRect procedure.

ovalProc A pointer to the low-level routine that draws ovals. The standard
QuickDraw routine is the StdOval procedure.

arcProc A pointer to the low-level routine that draws arcs. The standard
QuickDraw routine is the StdArc procedure.

polyProc A pointer to the low-level routine that draws polygons. The
standard QuickDraw routine is the StdPoly procedure.

rgnProc A pointer to the low-level routine that draws regions. The standard
QuickDraw routine is the StdRgn procedure.

bitsProc A pointer to the low-level routine that copies bitmaps. The standard
QuickDraw routine is the StdBits procedure.

commentProc A pointer to the low-level routine for processing a picture comment.
The standard QuickDraw routine is the StdComment procedure.

txMeasProc A pointer to the low-level routine for measuring text width. The
standard QuickDraw routine is the StdTxMeas function.

getPicProc A pointer to the low-level routine for retrieving information from
the definition of a picture. The standard QuickDraw routine is the
StdGetPic procedure.

putPicProc A pointer to the low-level routine for saving information as the
definition of a picture. The standard QuickDraw routine is the
StdPutPic procedure.

opcodeProc Reserved for future use.

newProc1 Reserved for future use.

newProc2 Reserved for future use.

newProc3 Reserved for future use.

newProc4 Reserved for future use.

newProc5 Reserved for future use.

newProc6 Reserved for future use.

C H A P T E R 4

Color QuickDraw

4-62 Color QuickDraw Reference

GrafVars

The GrafVars record contains color information in addition to that in the CGrafPort

record, of which it is logically a part; the information is used by Color QuickDraw and

the Palette Manager.

TYPE GrafVars =

RECORD

rgbOpColor: RGBColor; {color for addPin, subPin, and }

{ blend}

rgbHiliteColor: RGBColor; {color for highlighting}

pmFgColor: Handle; {palette handle for foreground }

{ color}

pmFgIndex: Integer; {index value for foreground}

pmBkColor: Handle; {palette handle for background }

{ color}

pmBkIndex: Integer; {index value for background}

pmFlags: Integer; {flags for Palette Manager}

END;

Field descriptions

rgbOpColor The color for the arithmetic transfer operations addPin, subPin,
and blend.

rgbHiliteColor
The highlight color for this graphics port.

pmFgColor A handle to the palette that contains the foreground color.

pmFgIndex The index value into the palette for the foreground color.

pmBkColor A handle to the palette that contains the background color.

pmBkIndex The index value into the palette for the background color.

pmFlags Flags private to the Palette Manager.

See the chapter “Palette Manager” in Inside Macintosh: Advanced Color Imaging for further

information on how the Palette Manager handles colors in a color graphics port.

C H A P T E R 4

Color QuickDraw

Color QuickDraw Reference 4-63

Color QuickDraw Routines

This section describes Color QuickDraw’s routines for creating and closing color

graphics ports, managing a color graphics pen, changing the background pixel pattern,

drawing with Color QuickDraw colors, determining current colors and best intermediate

colors, calculating color fills, creating and disposing of pixel maps, creating and

disposing of pixel patterns, creating and disposing of color tables, customizing Color

QuickDraw operations, and reporting to QuickDraw that your application has directly

changed those data structures that applications generally shouldn’t manipulate.

To initialize Color QuickDraw, use the InitGraf procedure, described in the chapter

“Basic QuickDraw.” Besides initializing basic QuickDraw, this procedure initializes

Color QuickDraw on computers that support it.

In addition to InitGraf, all other basic QuickDraw routines work with Color

QuickDraw. For example, you can use the GetPort procedure to save the current color

graphics port, and you can use the CopyBits procedure to copy an image between two

different color graphics ports. See the chapters “Basic QuickDraw” and “QuickDraw

Drawing” for descriptions of additional routines that you can use with Color QuickDraw.

Opening and Closing Color Graphics Ports

All graphics operations are performed in graphics ports. Before a color graphics port can

be used, it must be allocated with the OpenCPort procedure and initialized with the

InitCPort procedure. Normally, your application does not call these procedures

directly. Instead, your application creates a graphics port by using the GetNewCWindow

or NewCWindow function (described in the chapter “Window Manager” in Inside
Macintosh: Macintosh Toolbox Essentials) or the NewGWorld function (described in the

chapter “Offscreen Graphics Worlds” in this book). These functions automatically call

OpenCPort, which in turn calls InitCPort.

To dispose of a color graphics port when you are finished using a color window, you

normally use the DisposeWindow procedure (if you let the Window Manager allocate

memory for the window) or the CloseWindow procedure (if you allocated memory for

the window). You use the DisposeGWorld procedure when you are finished with a

color graphics port for an offscreen graphics world. These routines automatically call the

CloseCPort procedure. If you use the CloseWindow procedure, you also dispose of

the window record containing the graphics port by calling the Memory Manager

procedure DisposePtr.

C H A P T E R 4

Color QuickDraw

4-64 Color QuickDraw Reference

OpenCPort

The OpenCPort procedure allocates space for and initializes a color graphics port. The

Window Manager calls OpenCPort for every color window that it creates, and the

NewGWorld procedure calls OpenCPort for every offscreen graphics world that it

creates on a Color QuickDraw computer.

PROCEDURE OpenCPort (port: CGrafPtr);

port A pointer to a CGrafPort record.

DESCRIPTION

The OpenCPort procedure is analogous to OpenPort (described in the chapter “Basic

QuickDraw”), except that OpenCPort opens a CGrafPort record instead of a

GrafPort record. The OpenCPort procedure is called by the Window Manager’s

NewCWindow and GetNewCWindow procedures, as well as by the Dialog Manager when

the appropriate color resources are present. The OpenCPort procedure allocates storage

for all the structures in the CGrafPort record, and then calls InitCPort to initialize

them. The InitCPort procedure does not allocate a color table for the PixMap record

for the color graphics port; instead, InitCPort copies the handle to the current device’s

CLUT into the PixMap record. The initial values for the CGrafPort record are shown in

Table 4-3.

Table 4-3 Initial values in the CGrafPort record

Field Data type Initial setting

device Integer 0 (the screen)

portPixMap PixMapHandle Handle to the port’s PixMap record

portVersion Integer $C000

grafVars Handle Handle to a GrafVars record where black is assigned to the
rgbOpColor field, the default highlight color is assigned to
the rgbHiliteColor field, and all other fields are set to 0

chExtra Integer 0

pnLocHFrac Integer The value in this field represents the low word of a Fixed
number; in decimal, its initial value is 0.5.

portRect Rect screenBits.bounds (boundary for entire main screen)

visRgn RgnHandle Handle to a rectangular region coincident with
screenBits.bounds

C H A P T E R 4

Color QuickDraw

Color QuickDraw Reference 4-65

The additional structures allocated are the portPixMap, pnPixPat, fillPixPat,

bkPixPat, and grafVars handles, as well as the fields of the GrafVars record.

SPECIAL CONSIDERATIONS

The OpenCPort procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

clipRgn RgnHandle Handle to the rectangular region (–32768,–32768,32767,32767)

bkPixPat Pattern White

rgbFgColor RGBColor Black

rgbBkColor RGBColor White

pnLoc Point (0,0)

pnSize Point (1,1)

pnMode Integer patCopy

pnPixPat PixPatHandle Black

fillPixPat PixPatHandle Black

pnVis Integer 0 (visible)

txFont Integer 0 (system font)

txFace Style Plain

txMode Integer srcOr

txSize Integer 0 (system font size)

spExtra Fixed 0

fgColor LongInt blackColor

bkColor LongInt whiteColor

colrBit Integer 0

patStretch Integer 0

picSave Handle NIL

rgnSave Handle NIL

polySave Handle NIL

grafProcs CQDProcsPtr NIL

Table 4-3 Initial values in the CGrafPort record (continued)

Field Data type Initial setting

C H A P T E R 4

Color QuickDraw

4-66 Color QuickDraw Reference

InitCPort

The OpenCPort procedure uses the InitCPort procedure to initialize a color graphics

port.

PROCEDURE InitCPort (port: CGrafPtr);

port A pointer to a CGrafPort record.

DESCRIPTION

The InitCPort procedure is analogous to InitPort (described in the chapter “Basic

QuickDraw”), except InitCPort initializes a CGrafPort record instead of a

GrafPort record. The InitCPort procedure does not allocate any storage; it merely

initializes all the fields in the CGrafPort and GrafVars records to the default values

shown in Table 4-3 on page 4-64.

The PixMap record for the new color graphics port is set to be the same as the current

device’s PixMap record. This allows you to create an offscreen graphics world that is

identical to the screen’s port for drawing offscreen. If you want to use a different set of

colors for offscreen drawing, you should create a new GDevice record and set it as the

current GDevice record before opening the CGrafPort record.

Remember that InitCPort does not copy the data from the current device’s CLUT

to the color table for the graphics port’s PixMap record. It simply replaces whatever is in

the PixMap record’s pmTable field with a copy of the handle to the current device’s

CLUT.

If you try to initialize a GrafPort record using InitCPort, it simply returns without

doing anything.

SPECIAL CONSIDERATIONS

The InitCPort procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

SEE ALSO

The chapter “Graphics Devices” in this book describes GDevice records; the chapter

“Offscreen Graphics Worlds” in this book describes how to use offscreen graphics

worlds.

C H A P T E R 4

Color QuickDraw

Color QuickDraw Reference 4-67

CloseCPort

The CloseCPort procedure closes a color graphics port. The Window Manager calls

this procedure when you close or dispose of a window, and the DisposeGWorld

procedure calls it when you dispose of an offscreen graphics world containing a color

graphics port.

PROCEDURE CloseCPort (port: CGrafPtr);

port A pointer to a CGrafPort record.

DESCRIPTION

The CloseCPort procedure releases the memory allocated to the CGrafPort record. It

disposes of the visRgn, clipRgn, bkPixPat, pnPixPat, fillPixPat, and

grafVars handles. It also disposes of the graphics port’s pixel map, but it doesn’t

dispose of the pixel map’s color table (which is really owned by the GDevice record). If

you have placed your own color table into the pixel map, either dispose of it before

calling CloseCPort or store another reference.

SPECIAL CONSIDERATIONS

The CloseCPort procedure may move or purge memory blocks in the application

heap. Your application should not call this procedure at interrupt time.

Managing a Color Graphics Pen

You can use the PenPixPat procedure to give the graphics pen a pixel pattern so that it

draws with a colored, patterned “ink.” The QuickDraw painting procedures (such as

PaintRect) also use this pixel pattern when drawing a shape.

PenPixPat

To set the pixel pattern to be used by the graphics pen in the current color graphics port,

use the PenPixPat procedure. To assign a pixel pattern as the background pattern, you

can use the BackPixPat procedure; this allows the ScrollRect procedure and the

shape-erasing procedures (for example, EraseRect) to fill the background with a

colored, patterned “ink.”

PROCEDURE PenPixPat (ppat: PixPatHandle);

ppat A handle to the pixel pattern to use as the pen pattern.

C H A P T E R 4

Color QuickDraw

4-68 Color QuickDraw Reference

DESCRIPTION

The PenPixPat procedure sets the graphics pen to use the pixel pattern that you specify

in the ppat parameter. The PenPixPat procedure is similar to the basic QuickDraw

procedure PenPat, except that you pass PenPixPat a handle to a multicolored pixel

pattern rather than a bit pattern.

The PenPixPat procedure stores the handle to the pixel pattern in the pnPixPat field

of the CGrafPort record. Because the handle to the pixel pattern is stored in the

CGrafPort record, you should not dispose of this handle. QuickDraw removes all

references to your pattern from an existing graphics port when you dispose of it.

If you use PenPixPat to set a pixel pattern in a basic graphics port, the data in the

pat1Data field of the PixPat record is placed into the pnPat field of the GrafPort

record.

SPECIAL CONSIDERATIONS

The PenPixPat procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

SEE ALSO

The PixPat record is described on page 4-58. To define your own pixel pattern, you can

create a pixel pattern resource, which is described on page 4-103, or you can use the

NewPixPat function, which is described on page 4-88.

The GrafPort record is described in the chapter “Basic QuickDraw.” To set the graphics

pen to use a bit pattern, you can also use the PenPat procedure, which is described in

the chapter “QuickDraw Drawing” in this book. The PenPat procedure creates a

handle, of type PixPatHandle, for the bit pattern and stores this handle in the

pnPixPat field of the CGrafPort record.

Changing the Background Pixel Pattern

Each graphics port has a background pattern that’s used when an area is erased (such as

by using the EraseRect procedure, described in the chapter “QuickDraw Drawing”)

and when pixels are scrolled out of an area (such as by using the ScrollRect

procedure, described in the chapter “Basic QuickDraw”). The background pattern is

stored in the bkPixPat field of every CGrafPort record. You can use the BackPixPat

procedure to change the pixel pattern used as the background color by the current color

graphics port.

C H A P T E R 4

Color QuickDraw

Color QuickDraw Reference 4-69

BackPixPat

To assign a pixel pattern as the background pattern, you can use the BackPixPat

procedure; this allows the ScrollRect procedure and the shape-erasing procedures

(for example, EraseRect) to fill the background with a colored, patterned “ink.”

PROCEDURE BackPixPat (ppat: PixPatHandle);

ppat A handle to the pixel pattern to use as the background pattern.

DESCRIPTION

The BackPixPat procedure sets the background pattern for the current graphics device

to a pixel pattern. The BackPixPat procedure is similar to the basic QuickDraw

procedure BackPat, except that you pass BackPixPat a handle to a multicolored pixel

pattern instead of a bit pattern.

The BackPixPat procedure stores the handle to the pixel pattern in the bkPixPat field

of the CGrafPort record. Because the handle to the pixel pattern is stored in the

CGrafPort record, you should not dispose of this handle. QuickDraw removes all

references to your pattern from an existing graphics port when you dispose of it.

If you use BackPixPat to set a background pixel pattern in a basic graphics port, the

data in the pat1Data field of the PixPat record is placed into the bkPat field of the

GrafPort record.

SPECIAL CONSIDERATIONS

The BackPixPat procedure may move or purge memory blocks in the application

heap. Your application should not call this procedure at interrupt time.

SEE ALSO

The PixPat record is described on page 4-58. To define your own pixel pattern, you can

create a pixel pattern resource, which is described on page 4-103, or you can use the

NewPixPat function, which is described on page 4-88.

The GrafPort record is described in the chapter “Basic QuickDraw.” To set the

background pattern to a bit pattern, you can also use the BackPat procedure, which is

described in the chapter “QuickDraw Drawing” in this book. The BackPat procedure

creates a handle, of type PixPatHandle, for the bit pattern and stores this handle in the

bkPixPat field of the CGrafPort record. As in basic graphics ports, Color QuickDraw

draws patterns in color graphics ports at the time of drawing, not at the time you use

BackPat to set the pattern.

C H A P T E R 4

Color QuickDraw

4-70 Color QuickDraw Reference

Drawing With Color QuickDraw Colors

You can set the foreground and background colors using either Color QuickDraw or

Palette Manager routines. If your application uses the Palette Manager, it should set the

foreground and background colors with the PmForeColor and PmBackColor routines,

as described in the chapter “Palette Manager” in Inside Macintosh: Advanced Color
Imaging. Otherwise, it can use the RGBForeColor procedure to set the foreground color,

and it can use the RGBBackColor procedure to set the background color. Both of these

Color QuickDraw procedures also operate for basic graphics ports created in System 7.

(To set the foreground and background colors for basic graphics ports on older versions

of system software, use the ForeColor and BackColor procedures, described in the

chapter “QuickDraw Drawing” in this book.)

To give the graphics pen a pixel pattern so that it draws with a colored, patterned “ink,”

use the PenPixPat procedure. To assign a pixel pattern as the background pattern, you

can use the BackPixPat procedure; this allows the ScrollRect procedure and the

shape-erasing procedures (for example, EraseRect) to fill the background with the

pixel pattern.

To set the color of an individual pixel, use the SetCPixel procedure.

The FillCRect, FillCRoundRect, FillCOval, FillCArc, FillCPoly, and

FillCRgn procedures allow you to fill shapes with multicolored patterns.

To change the highlight color for the current color graphics port, use the HiliteColor

procedure. To set values used by arithmetic transfer modes, use the OpColor procedure.

As described in “Copying Pixels Between Color Graphics Ports” beginning on page 4-26,

you can also use the basic QuickDraw procedures CopyBits, CopyMask, and

CopyDeepMask to transfer images between color graphics ports. See the chapter

“QuickDraw Drawing” in this book for complete descriptions of these procedures.

RGBForeColor

To change the color of the “ink” used for framing and painting, you can use the

RGBForeColor procedure.

PROCEDURE RGBForeColor (color: RGBColor);

color An RGBColor record.

DESCRIPTION

The RGBForeColor procedure lets you set the foreground color to any color available

on the current graphics device.

If the current port is defined by a CGrafPort record, Color QuickDraw supplies its

rgbFgColor field with the RGB value that you specify in the color parameter, and

places the pixel value most closely matching that color in the fgColor field. For

C H A P T E R 4

Color QuickDraw

Color QuickDraw Reference 4-71

indexed devices, the pixel value is an index to the current device’s CLUT; for direct

devices, the value is the 16-bit or 32-bit equivalent to the RGB value.

If the current port is defined by a GrafPort record, basic QuickDraw supplies its

fgColor field with a color value determined by taking the high bit of each of the red,

green, and blue components of the color that you supply in the color parameter. Basic

QuickDraw uses that 3-bit number to select a color from its eight-color system. Table 4-4

lists the default set of eight colors represented by the global variable QDColors

(adjusted to match the colors produced on the ImageWriter II printer.)

SPECIAL CONSIDERATIONS

Color QuickDraw ignores the foreground color (and the background color) when your

application draws with a pixel pattern. You can draw with a pixel pattern by using the

PenPixPat procedure to assign a pixel pattern to the foreground pattern used by the

graphics pen; by using the BackPixPat procedure to assign a pixel pattern as the

background pattern for the current color graphics port; and by using the FillCRect,

FillCOval, FillCRoundRect, FillCArc, FillCRgn, and FillCPoly procedures to

fill shapes with a pixel pattern.

The RGBForeColor procedure is available for basic QuickDraw only in System 7.

The RGBForeColor procedure may move or purge memory blocks in the application

heap. Your application should not call this procedure at interrupt time.

SEE ALSO

If you want to use one of the eight predefined colors of basic QuickDraw, you can also

use the ForeColor procedure. The ForeColor procedure and the eight-color system of

basic QuickDraw are described in the chapter “QuickDraw Drawing” in this book.

To determine the current foreground color, use the GetForeColor procedure, which is

described on page 4-79.

Table 4-4 The colors defined by the global variable QDColors

Value Color Red Green Blue

0 Black $0000 $0000 $0000

1 Yellow $FC00 $F37D $052F

2 Magenta $F2D7 $0856 $84EC

3 Red $DD6B $08C2 $06A2

4 Cyan $0241 $AB54 $EAFF

5 Green $0000 $64AF $11B0

6 Blue $0000 $0000 $D400

7 White $FFFF $FFFF $FFFF

C H A P T E R 4

Color QuickDraw

4-72 Color QuickDraw Reference

RGBBackColor

For the current graphics port, you can use the RGBBackColor procedure to change the

background color (that is, the color of the pixels in the pixel map or bitmap where no

drawing has taken place).

PROCEDURE RGBBackColor (color: RGBColor);

color An RGBColor record.

DESCRIPTION

The RGBBackColor procedure lets you set the background color to any color available

on the current graphics device.

If the current port is defined by a CGrafPort record, Color QuickDraw supplies its

rgbBkColor field with the RGB value that you specify in the color parameter, and

places the pixel value most closely matching that color in the bkColor field. For

indexed devices, the pixel value is an index to the current device’s CLUT; for direct

devices, the value is the 16-bit or 32-bit equivalent to the RGB value.

If the current port is defined by a GrafPort record, basic QuickDraw supplies its

fgColor field with a color value determined by taking the high bit of each of the red,

green, and blue components of the color that you supply in the color parameter. Basic

QuickDraw uses that 3-bit number to select a color from its eight-color system. Table 4-4

on page 4-71 lists the default colors.

SPECIAL CONSIDERATIONS

Because a pixel pattern already contains color, Color QuickDraw ignores the background

color (and the foreground color) when your application draws with a pixel pattern. You

can draw with a pixel pattern by using the PenPixPat procedure to assign a pixel

pattern to the foreground pattern used by the graphics pen; by using the BackPixPat

procedure to assign a pixel pattern as the background pattern for the current color

graphics port; and by using the FillCRect, FillCOval, FillCRoundRect,

FillCArc, FillCRgn, and FillCPoly procedures to fill shapes with a pixel pattern.

This procedure is available for basic QuickDraw only in System 7.

The RGBBackColor procedure may move or purge memory blocks in the application

heap. Your application should not call this procedure at interrupt time.

C H A P T E R 4

Color QuickDraw

Color QuickDraw Reference 4-73

SEE ALSO

If you want to use one of the eight predefined colors of basic QuickDraw, you can also

use the BackColor procedure. The BackColor procedure and the eight-color system of

basic QuickDraw are described in the chapter “QuickDraw Drawing” in this book.

To determine the current background color, use the GetBackColor procedure, which is

described on page 4-80.

SetCPixel

To set the color of an individual pixel, use the SetCPixel procedure.

PROCEDURE SetCPixel (h,v: Integer; cPix: RGBColor);

h The horizontal coordinate of the point at the upper-left corner of the pixel.

v The vertical coordinate of the point at the upper-left corner of the pixel.

cPix An RGBColor record.

DESCRIPTION

For the pixel at the location you specify in the h and v parameters, the SetCPixel

procedure sets a pixel value that most closely matches the RGB color that you specify in

the cPix parameter. On an indexed color system, the SetCPixel procedure sets the

pixel value to the index of the best-matching color in the current device’s CLUT. In

a direct environment, the SetCPixel procedure sets the pixel value to a 16-bit or 32-bit

direct pixel value.

SPECIAL CONSIDERATIONS

The SetCPixel procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

SEE ALSO

To determine the color of an individual pixel, use the GetCPixel procedure, which is

described on page 4-80.

C H A P T E R 4

Color QuickDraw

4-74 Color QuickDraw Reference

FillCRect

Use the FillCRect procedure to fill a rectangle with a pixel pattern.

PROCEDURE FillCRect (r: Rect; ppat: PixPatHandle);

r The rectangle to be filled.

ppat A handle to the PixPat record for the pixel pattern to be used for the fill.

DESCRIPTION

Using the patCopy pattern mode, the FillCRect procedure fills the rectangle you

specify in the r parameter with the pixel pattern defined by a PixPat record, the handle

for which you pass in the ppat parameter. This procedure ignores the pnPat, pnMode,

and bkPat fields of the current graphics port and leaves the pen location unchanged.

SPECIAL CONSIDERATIONS

The FillCRect procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

FillCRoundRect

Use the FillCRoundRect procedure to fill a rounded rectangle with a pixel pattern.

PROCEDURE FillCRoundRect (r: Rect; ovalWidth,ovalHeight: Integer;

 ppat: PixPatHandle);

r The rectangle that defines the rounded rectangle’s boundaries.

ovalWidth The width of the oval defining the rounded corner.

ovalHeight
The height of the oval defining the rounded corner.

ppat A handle to the PixPat record for the pixel pattern to be used for the fill.

C H A P T E R 4

Color QuickDraw

Color QuickDraw Reference 4-75

DESCRIPTION

Using the patCopy pattern mode, the FillCRoundRect procedure fills the rectangle

you specify in the r parameter with the pixel pattern defined in a PixPat record, the

handle for which you pass in the ppat parameter. Use the ovalWidth and

ovalHeight parameters to specify the diameters of curvature for the corners. This

procedure ignores the pnPat, pnMode, and bkPat fields of the current graphics port

and leaves the pen location unchanged.

SPECIAL CONSIDERATIONS

The FillCRoundRect procedure may move or purge memory blocks in the application

heap. Your application should not call this procedure at interrupt time.

FillCOval

Use the FillCOval procedure to fill an oval with a pixel pattern.

PROCEDURE FillCOval (r: Rect; ppat: PixPatHandle);

r The rectangle containing the oval to be filled.

ppat A handle to the PixPat record for the pixel pattern to be used for the fill.

DESCRIPTION

Using the patCopy pattern mode and the pixel pattern defined in the PixPat record

(the handle for which you pass in the ppat parameter), the FillCOval procedure fills

an oval just inside the bounding rectangle that you specify in the r parameter. This

procedure ignores the pnPat, pnMode, and bkPat fields of the current graphics port

and leaves the pen location unchanged.

SPECIAL CONSIDERATIONS

The FillCOval procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

C H A P T E R 4

Color QuickDraw

4-76 Color QuickDraw Reference

FillCArc

Use the FillCArc procedure to fill a wedge with a pixel pattern.

PROCEDURE FillCArc (r: Rect; startAngle,arcAngle: Integer;

 ppat: PixPatHandle);

r The rectangle that defines the oval’s boundaries.

startAngle
The angle indicating the start of the arc.

arcAngle The angle indicating the arc’s extent.

ppat A handle to the PixPat record for the pixel pattern to be used for the fill.

DESCRIPTION

Using the patCopy pattern mode and the pixel pattern defined in a PixPat record (the

handle for which you pass in the ppat parameter), the FillCArc procedure fills a

wedge of the oval bounded by the rectangle that you specify in the r parameter. As in

the FrameArc procedure, described in the chapter “QuickDraw Drawing” in this book,

use the startAngle and arcAngle parameters to define the arc of the wedge. This

procedure ignores the pnPat, pnMode, and bkPat fields of the current graphics port

and leaves the pen location unchanged.

SPECIAL CONSIDERATIONS

The FillCArc procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

FillCPoly

Use the FillCPoly procedure to fill a polygon with a pixel pattern.

PROCEDURE FillCPoly (poly: PolyHandle; ppat: PixPatHandle);

poly A handle to the polygon to be filled.

ppat A handle to the PixPat record for the pixel pattern to be used for the fill.

C H A P T E R 4

Color QuickDraw

Color QuickDraw Reference 4-77

DESCRIPTION

Using the patCopy pattern mode and the pixel pattern defined in a PixPat record (the

handle for which you pass in the ppat parameter), the FillCPoly procedure fills the

polygon whose handle you pass in the poly parameter. This procedure ignores the

pnPat, pnMode, and bkPat fields of the current graphics port and leaves the pen

location unchanged.

SPECIAL CONSIDERATIONS

The FillCPoly procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

FillCRgn

Use the FillCRgn procedure to fill a region with a pixel pattern.

PROCEDURE FillCRgn (rgn: RgnHandle; ppat: PixPatHandle);

rgn A handle to the region to be filled.

ppat A handle to the PixPat record for the pixel pattern to be used for the fill.

DESCRIPTION

Using the patCopy pattern mode and the pixel pattern defined in a PixPat record (the

handle for which you pass in the ppat parameter), the FillCRgn procedure fills the

region whose handle you pass in the rgn parameter. This procedure ignores the pnPat,

pnMode, and bkPat fields of the current graphics port and leaves the pen location

unchanged.

SPECIAL CONSIDERATIONS

The FillCRgn procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

C H A P T E R 4

Color QuickDraw

4-78 Color QuickDraw Reference

OpColor

Use the OpColor procedure to set the maximum color values for the addPin and

subPin arithmetic transfer modes, and the weight color for the blend arithmetic

transfer mode.

PROCEDURE OpColor (color: RGBColor);

color An RGBColor record that defines a color.

DESCRIPTION

If the current port is defined by a CGrafPort record, the OpColor procedure sets the

red, green, and blue values used by the addPin, subPin, and blend arithmetic transfer

modes. You specify these red, green, and blue values in the RGBColor record, and you

specify this record in the color parameter. This information is actually stored in the

rgbOpColor field of the GrafVars record, but you should never need to refer to it

directly.

If the current graphics port is defined by a GrafPort record, OpColor has no effect.

SEE ALSO

Arithmetic transfer modes are described in “Arithmetic Transfer Modes” beginning on

page 4-38.

HiliteColor

Use the HiliteColor procedure to change the highlight color for the current color

graphics port.

PROCEDURE HiliteColor (color: RGBColor);

color An RGBColor record that defines the highlight color.

DESCRIPTION

The HiliteColor procedure changes the highlight color for the current color graphics

port. All drawing operations that use the hilite transfer mode use the highlight color.

When a color graphics port is created, its highlight color is initialized from the global

variable HiliteRGB. (This information is stored in the rgbHiliteColor field of the

GrafVars record, but you should never need to refer to it directly.)

If the current graphics port is a basic graphics port, HiliteColor has no effect.

C H A P T E R 4

Color QuickDraw

Color QuickDraw Reference 4-79

SEE ALSO

The hilite mode is described in “Highlighting” beginning on page 4-41.

Determining Current Colors and Best Intermediate Colors

The GetForeColor and GetBackColor procedures allow you to obtain the

foreground and background colors for the current graphics port, both basic and color.

You can use the GetCPixel procedure to determine the color of an individual pixel. The

GetGray function can do more than its name implies: it can return the best gray for a

given graphics device, but it can also return the best available intermediate color

between any two colors.

GetForeColor

Use the GetForeColor procedure to obtain the color of the foreground color for the

current graphics port.

PROCEDURE GetForeColor (VAR color: RGBColor);

color An RGBColor record.

DESCRIPTION

In the color parameter, the GetForeColor procedure returns the RGBColor record

for the foreground color of the current graphics port. This procedure operates for

graphics ports defined by both the GrafPort and CGrafPort records. If the

current graphics port is defined by a CGrafPort record, the returned value is taken

directly from the rgbFgColor field.

If the current graphics port is defined by a GrafPort record, then only eight possible

RGB values can be returned. These eight values are determined by the values in a global

variable named QDColors, which is a handle to a color table containing the current

QuickDraw colors. These colors are listed in Table 4-4 on page 4-71. This default set of

colors has been adjusted to match the colors produced on the ImageWriter II printer.

SPECIAL CONSIDERATIONS

This procedure is available for basic QuickDraw only in System 7.

SEE ALSO

You can use the RGBForeColor procedure, described on page 4-70, to change the

foreground color.

C H A P T E R 4

Color QuickDraw

4-80 Color QuickDraw Reference

GetBackColor

Use the GetBackColor procedure to obtain the background color of the current

graphics port.

PROCEDURE GetBackColor (VAR color: RGBColor);

color An RGBColor record.

DESCRIPTION

In the color parameter, the GetBackColor procedure returns the RGBColor record

for the background color of the current graphics port. This procedure operates for

graphics ports defined by both the GrafPort and CGrafPort records. If the

current graphics port is defined by a CGrafPort record, the returned value is taken

directly from the rgbBkColor field.

If the current graphics port is defined by a GrafPort record, then only eight possible

colors can be returned. These eight colors are determined by the values in a global

variable named QDColors, which is a handle to a color table containing the current

QuickDraw colors. These colors are listed in Table 4-4 on page 4-71.

SPECIAL CONSIDERATIONS

This procedure is available for basic QuickDraw only in System 7.

SEE ALSO

You can use the RGBBackColor procedure, described on page 4-72, to change the

background color.

GetCPixel

To determine the color of an individual pixel, use the GetCPixel procedure.

PROCEDURE GetCPixel (h,v: Integer; VAR cPix: RGBColor);

h The horizontal coordinate of the point at the upper-left corner of the pixel.

v The vertical coordinate of the point at the upper-left corner of the pixel.

cPix The RGBColor record for the pixel.

C H A P T E R 4

Color QuickDraw

Color QuickDraw Reference 4-81

DESCRIPTION

In the cPix parameter, the GetCPixel procedure returns the RGB color for the pixel at

the location you specify in the h and v parameters.

SEE ALSO

You can use the SetCPixel procedure, described on page 4-73, to change the color of

this pixel.

GetGray

To determine the best intermediate color between two colors on a given graphics device,

use the GetGray function.

FUNCTION GetGray (device: GDHandle; backGround: RGBColor;

VAR foreGround: RGBColor): Boolean;

device A handle to the graphics device for which an intermediate color or gray is
needed.

backGround
The RGBColor record for one of the two colors for which you want an
intermediate color.

foreGround
On input, the RGBColor record for the other of the two colors; upon
completion, the best intermediate color between these two.

DESCRIPTION

The GetGray function determines the midpoint values for the red, green, and blue

values of the two colors you specify in the backGround and foreGround parameters.

In the device parameter, supply a handle to the graphics device; in the backGround

and foreGround parameters, supply RGBColor records for the two colors for which

you want the best intermediate RGB color. When GetGray completes, it returns the best

intermediate color in the foreGround parameter.

One use for GetGray is to return the best gray. For example, when dimming an object,

supply black and white as the two colors, and GetGray returns the best available gray

that lies between them. (The Menu Manager does this when dimming unavailable menu

items.)

If no gray is available (or if no distinguishable third color is available), the foreGround

parameter is unchanged, and the function returns FALSE. If at least one gray or

intermediate color is available, it is returned in the foreGround parameter, and the

function returns TRUE.

C H A P T E R 4

Color QuickDraw

4-82 Color QuickDraw Reference

Calculating Color Fills

Just as basic QuickDraw provides a pair of procedures (SeedFill and CalcMask) to

help you determine the results of filling operations on portions of bitmaps, Color

QuickDraw provides the SeedCFill and CalcCMask procedures to help you

determine the results of filling operations on portions of pixel maps.

SeedCFill

To determine how far filling will extend to pixels matching the color of a particular pixel,

use the SeedCFill procedure.

PROCEDURE SeedCFill (srcBits,dstBits: BitMap;

srcRect,dstRect: Rect; seedH,seedV: Integer;

matchProc: ProcPtr; matchData: LongInt);

srcBits The source image. If the image is in a pixel map, you must coerce its
PixMap record to a BitMap record.

dstBits The destination mask.

srcRect The rectangle of the source image.

dstRect The rectangle of the destination image.

seedH The horizontal position of the seed point.

seedV The vertical position of the seed point.

matchProc An optional color search function.

matchData Data for the optional color search function.

DESCRIPTION

The SeedCFill procedure generates a mask showing where the pixels in an image can

be filled from a starting point, like the paint pouring from the MacPaint paint-bucket

tool. The SeedCFill procedure returns this mask in the dstBits parameter. This mask

is a bitmap filled with 1’s to indicate all pixels adjacent to a seed point whose colors do

not exactly match the RGBColor record for the pixel at the seed point. You can then use

this mask with the CopyBits, CopyMask, and CopyDeepMask procedures.

You specify a source image in the srcBits parameter, and in the srcRect

parameter you specify a rectangle within that source image. You specify where to begin

seeding in the seedH and seedV parameters, which must be the horizontal and vertical

coordinates of a point in the local coordinate system of the source bitmap. By default,

the 1’s returned in the mask indicate all pixels adjacent to the seed point whose pixel

values do not exactly match the pixel value of the pixel at the seed point. To use this

default, set the matchProc and matchData parameters to 0.

C H A P T E R 4

Color QuickDraw

Color QuickDraw Reference 4-83

In generating the mask, SeedCFill uses the CopyBits procedure to convert the source

image to a 1-bit mask. The SeedCFill procedure installs a default color search function

that returns 0 if the pixel value matches that of the seed point; all other pixel values

return 1’s.

The SeedCFill procedure does not scale: the source and destination rectangles must be

the same size. Calls to SeedCFill are not clipped to the current port and are not stored

into QuickDraw pictures.

You can customize SeedCFill by writing your own color search function and pointing

to it in the matchProc procedure; SeedCFill will then use your procedure instead of

the default. You can use the matchData parameter for whatever you’d like. In the

matchData parameter, for instance, your application could pass the handle to a color

table. Your color search function could then check whether the pixel value for the pixel

currently under analysis matches any of the colors in the table.

SEE ALSO

See “Application-Defined Routine” on page 4-101 for a description of how to customize

the SeedCFill procedure.

CalcCMask

To determine where filling will not occur when filling from the outside of a rectangle,

you can use the CalcCMask procedure, which indicates pixels that match, or are

surrounded by pixels that match, a particular color.

PROCEDURE CalcCMask (srcBits,dstBits: BitMap;

srcRect,dstRect: Rect;

seedRGB: RGBColor; matchProc: ProcPtr;

matchData: LongInt);

srcBits The source image. If the image is in a pixel map, you must coerce its
PixMap record to a BitMap record.

dstBits The destination image, a BitMap record.

srcRect The rectangle of the source image.

dstRect The rectangle of the destination image.

seedRGB An RGBColor record specifying the color for pixels that should not be
filled.

matchProc An optional matching procedure.

matchData Data for the optional matching procedure.

C H A P T E R 4

Color QuickDraw

4-84 Color QuickDraw Reference

DESCRIPTION

The CalcCMask procedure generates a mask showing where pixels in an image cannot

be filled from any of the outer edges of the rectangle you specify. The CalcCMask

procedure returns this mask in the dstBits parameter. This mask is a bitmap filled

with 1’s only where the pixels in the source image cannot be filled. You can then use this

mask with the CopyBits, CopyMask, and CopyDeepMask procedures.

You specify a source image in the srcBits parameter, and in the srcRect

parameter you specify a rectangle within that source image. Starting from the edges of

this rectangle, CalcCMask calculates which pixels cannot be filled. By default,

CalcCMask returns 1’s in the mask to indicate which pixels have the exact color that you

specify in the seedRGB parameter, as well as which pixels are enclosed by shapes whose

outlines consist entirely of pixels with this color.

For instance, if the source image in srcBits contains a dark blue rectangle on a red

background, and your application sets seedRGB equal to dark blue, then CalcCMask

returns a mask with 1’s in the positions corresponding to the edges and interior of the

rectangle, and 0’s outside of the rectangle.

If you set the matchProc and matchData parameters to 0, CalcCMask uses the exact

color specified in the RGBColor record that you supply in the seedRGB parameter. You

can customize CalcCMask by writing your own color search function and pointing to it

in the matchProc procedure; your color search function might, for example, search for

colors that approximate the color specified in the RGBColor record. As with

SeedCFill, you can then use the matchData parameter in any manner useful for your

application.

The CalcCMask procedure does not scale—the source and destination rectangles must

be the same size. Calls to CalcCMask are not clipped to the current port and are not

stored into QuickDraw pictures.

SEE ALSO

See “Application-Defined Routine” on page 4-101 for a description of how to customize

the CalcCMask procedure.

C H A P T E R 4

Color QuickDraw

Color QuickDraw Reference 4-85

Creating, Setting, and Disposing of Pixel Maps

QuickDraw automatically creates pixel maps when you create a color window with the

GetNewCWindow or NewCWindow function (described in the chapter “Window

Manager” in Inside Macintosh: Macintosh Toolbox Essentials), when you create offscreen

graphics worlds with the NewGWorld function (described in the chapter

“Offscreen Graphics Worlds” in this book), and when you use the OpenCPort function.

QuickDraw also disposes of a pixel map when it disposes of a color graphics port.

Although your application typically won’t need to create or dispose of pixel maps, you

can use the NewPixMap function and the CopyPixMap procedure to create them, and

you can use the DisposePixMap procedure to dispose of them. Although you should

never need to do so, you can also set the pixel map for the current color graphics port by

using the SetPortPix procedure.

NewPixMap

Although you typically don’t need to call this routine in your application code, you can

use the NewPixMap function to create a new, initialized PixMap record.

FUNCTION NewPixMap: PixMapHandle;

DESCRIPTION

The NewPixMap function creates a new, initialized PixMap record and returns a handle

to it. All fields of the PixMap record are copied from the current device’s PixMap record

except the color table. In System 7, the hRes and vRes fields are set to 72 dpi, no matter

what values the current device’s PixMap record contains. A handle to the color table is

allocated but not initialized.

You typically don’t need to call this routine. PixMap records are created for you

when you create a window using the Window Manager functions NewCWindow and

GetNewCWindow and when you create an offscreen graphics world with the

NewGWorld function.

If your application creates a pixel map, your application must initialize the PixMap

record’s color table to describe the pixels. You can use the GetCTable function

(described on page 4-92) to read such a table from a resource file; you can then use the

DisposeCTable procedure (described on page 4-93) to dispose of the PixMap record’s

color table and replace it with the one returned by GetCTable.

C H A P T E R 4

Color QuickDraw

4-86 Color QuickDraw Reference

SPECIAL CONSIDERATIONS

The NewPixMap function may move or purge memory blocks in the application heap.

Your application should not call this function at interrupt time.

CopyPixMap

Although you typically don’t need to call this routine in your application code, you can

use the CopyPixMap procedure to duplicate a PixMap record.

PROCEDURE CopyPixMap (srcPM,dstPM: PixMapHandle);

srcPM A handle to the PixMap record to be copied.

dstPM A handle to the duplicated PixMap record.

DESCRIPTION

The CopyPixMap procedure copies the contents of the source PixMap record to the

destination PixMap record. The contents of the color table are copied, so the destination

PixMap has its own copy of the color table. Because the baseAddr field of the PixMap

record is a pointer, the pointer, but not the image itself, is copied.

SetPortPix

Although you should never need to do so, you can set the pixel map for the current color

graphics port by using the SetPortPix procedure.

PROCEDURE SetPortPix (pm: PixMapHandle);

pm A handle to the PixMap record.

DESCRIPTION

The SetPortPix procedure replaces the portPixMap field of the current CGrafPort

record with the handle you specify in the pm parameter.

C H A P T E R 4

Color QuickDraw

Color QuickDraw Reference 4-87

SPECIAL CONSIDERATIONS

The SetPortPix procedure is analogous to the basic QuickDraw procedure

SetPortBits, which sets the bitmap for the current basic graphics port.

The SetPortPix procedure has no effect when used with a basic graphics port.

Similarly, SetPortBits has no effect when used with a color graphics port.

Both SetPortPix and SetPortBits allow you to perform drawing and calculations

on a buffer other than the screen. However, instead of using these procedures, you

should use the offscreen graphics capabilities described in the chapter “Offscreen

Graphics Worlds.”

DisposePixMap

Although you typically don’t need to call this routine in your application code, you can

use the DisposePixMap procedure to dispose of a PixMap record. The

DisposePixMap procedure is also available as the DisposPixMap procedure.

PROCEDURE DisposePixMap (pm: PixMapHandle);

pm A handle to the PixMap record to be disposed of.

DESCRIPTION

The DisposePixMap procedure disposes of the PixMap record and its color table. The

CloseCPort procedure calls DisposePixMap.

SPECIAL CONSIDERATIONS

If your application uses DisposePixMap, take care that it does not dispose of a PixMap

record whose color table is the same as the current device’s CLUT.

Creating and Disposing of Pixel Patterns

Pixel patterns can use colors at any pixel depth and can be of any width and height that’s

a power of 2. To create a pixel pattern, you typically define it in a 'ppat' resource,

which you store in a resource file. To retrieve the pixel pattern stored in a 'ppat'

resource, you can use the GetPixPat function.

Color QuickDraw also allows you to create and dispose of pixel patterns by using the

NewPixPat, CopyPixPat, MakeRGBPat, and DisposePixPat routines, although

generally you should create them in 'ppat' resources (described on page 4-103).

When your application is finished using a pixel pattern, it should dispose of it with the

DisposePixPat procedure.

C H A P T E R 4

Color QuickDraw

4-88 Color QuickDraw Reference

GetPixPat

To get a pixel pattern ('ppat') resource stored in a resource file, you can use the

GetPixPat function.

FUNCTION GetPixPat (patID: Integer): PixPatHandle;

patID The resource ID for a resource of type 'ppat'.

DESCRIPTION

The GetPixPat function returns a handle to the pixel pattern having the resource ID

you specify in the patID parameter. The GetPixPat function calls the following

Resource Manager function with these parameters:

GetResource('ppat', patID);

If a 'ppat' resource with the ID that you request does not exist, the GetPixPat

function returns NIL.

When you are finished with the pixel pattern, use the DisposePixPat procedure

(described on page 4-91).

SPECIAL CONSIDERATIONS

The GetPixPat function may move or purge memory blocks in the application heap.

Your application should not call this function at interrupt time.

SEE ALSO

The 'ppat' resource format is described on page 4-103. See the chapter “Resource

Manager” in Inside Macintosh: More Macintosh Toolbox for more information about

resources, the Resource Manager, and the GetResource function.

NewPixPat

Although you should generally create a pixel pattern in a 'ppat' resource and retrieve

it with the GetPixPat function, you can use the NewPixPat function to create a new

pixel pattern.

FUNCTION NewPixPat: PixPatHandle;

C H A P T E R 4

Color QuickDraw

Color QuickDraw Reference 4-89

DESCRIPTION

The NewPixPat function creates a new PixPat record (described on page 4-58) and

returns a handle to it. This function calls the NewPixMap function to allocate the

pattern’s PixMap record (described on page 4-46) and initialize it to the same settings

as the pixel map of the current GDevice record—that is, as stored in the gdPMap field of

the global variable TheGDevice. This function also sets the pat1Data field of the

new PixPat record to a 50 percent gray pattern. NewPixPat allocates new handles for

the PixPat record’s data, expanded data, expanded map, and color table but does not

initialize them; instead, your application must initialize them.

Set the rowBytes, bounds, and pixelSize fields of the pattern’s PixMap record to the

dimensions of the desired pattern. The rowBytes value should be equal to

(width of bounds) × pixelSize/8

The rowBytes value need not be even. The width and height of the bounds must be a

power of 2. Each scan line of the pattern must be at least 1 byte in length—that is,

([width of bounds] × pixelSize) must be at least 8.

Your application can explicitly specify the color corresponding to each pixel value with a

color table. The color table for the pattern must be placed in the pmTable field in the

pattern’s PixMap record.

Including the PixPat record itself, NewPixPat allocates a total of five handles. The

sizes of the handles to the PixPat and PixMap records are the sizes of their respective

data structures. The other three handles are initially small in size. Once the pattern is

drawn, the size of the expanded data is proportional to the size of the pattern data, but

adjusted to the depth of the screen. The color table size is the size of the record plus 8

bytes times the number of colors in the table.

When you are finished using the pixel pattern, use the DisposePixPat procedure,

which is described on page 4-91, to make the memory used by the pixel pattern available

again.

SPECIAL CONSIDERATIONS

The NewPixPat function may move or purge memory blocks in the application heap.

Your application should not call this function at interrupt time.

C H A P T E R 4

Color QuickDraw

4-90 Color QuickDraw Reference

CopyPixPat

Use the CopyPixPat procedure to copy the contents of one pixel pattern to another.

PROCEDURE CopyPixPat (srcPP,dstPP: PixPatHandle);

srcPP A handle to a source pixel pattern, the contents of which you want to
copy.

dstPP A handle to a destination pixel pattern, into which you want to copy the
contents of the pixel pattern in the srcPP parameter.

DESCRIPTION

The CopyPixPat procedure copies the contents of one PixPat record (the handle to

which you pass in the srcPP parameter) into another PixPat record (the handle

to which you pass in the dstPP parameter). The CopyPixPat procedure copies all of

the fields in the source PixPat record, including the contents of the data handle,

expanded data handle, expanded map, pixel map handle, and color table.

SEE ALSO

The PixPat record is described on page 4-58.

MakeRGBPat

To create the appearance of otherwise unavailable colors on indexed devices, you can

use the MakeRGBPat procedure.

PROCEDURE MakeRGBPat (ppat: PixPatHandle; myColor: RGBColor);

ppat A handle to hold the generated pixel pattern.

myColor An RGBColor record that defines the color you want to approximate.

DESCRIPTION

The MakeRGBPat procedure generates a PixPat record that, when used to draw a pixel

pattern, approximates the color you specify in the myColor parameter. For example, if

your application draws to an indexed device that supports 4 bits per pixel, you only

have 16 colors available if you simply set the foreground color and draw. If you use

MakeRGBPat to create a pattern, and then draw using that pattern, you effectively

get 125 different colors. If the graphics device has 8 bits per pixel, you effectively get

2197 colors. (More colors are theoretically possible; this implementation opted for a fast

pattern selection rather than the best possible pattern selection.)

C H A P T E R 4

Color QuickDraw

Color QuickDraw Reference 4-91

For a pixel pattern, the patMap^^.bounds field of the PixPat record always contains

the values (0,0,8,8), and the patMap^^.rowbytes field equals 2.

SPECIAL CONSIDERATIONS

Because patterns produced with MakeRGBPat aren’t usually solid—they provide a

selection of colors by alternating between colors, with up to four colors in a pattern—

lines that are only one pixel wide may not look good.

When MakeRGBPat creates a ColorTable record, it fills in only the rgb fields of its

ColorSpec records; the value fields are computed at the time the drawing actually

takes place, using the current pixel depth for the system.

DisposePixPat

Use the DisposePixPat procedure to release the storage allocated to a pixel pattern.

The DisposePixPat procedure is also available as the DisposPixPat procedure.

PROCEDURE DisposePixPat (ppat: PixPatHandle);

ppat A handle to the pixel pattern to be disposed of.

DESCRIPTION

The DisposePixPat procedure disposes of the data handle, expanded data handle, and

pixel map handle allocated to the pixel pattern that you specify in the ppat parameter.

Creating and Disposing of Color Tables

You use a color table, which is defined by a data structure of type ColorTable, to

specify colors in the form of RGBColor records. You can create and store color tables in

'clut' resources. To retrieve a color table stored in a 'clut' resource, you can use the

GetCTable function. To dispose of the handle allocated for a color table, you use the

DisposeCTable procedure.

The Palette Manager, described in the chapter “Palette Manager” in Inside Macintosh:
Advanced Color Imaging, has additional routines that enable you to copy colors between

palettes and color tables and to restore the default colors to a CLUT belonging to a

graphics device.

The Color Manager, described in the chapter “Color Manager” in Inside Macintosh:
Advanced Color Imaging, contains low-level routines for directly manipulating the fields

of the CLUT on a graphics device; most applications do not need to use those routines.

C H A P T E R 4

Color QuickDraw

4-92 Color QuickDraw Reference

GetCTable

To get a color table stored in a 'clut' resource, use the GetCTable function.

FUNCTION GetCTable (ctID: Integer): CTabHandle;

ctID The resource ID of a 'clut' resource.

DESCRIPTION

For the color table defined in the 'clut' resource that you specify in the ctID

parameter, the GetCTable function returns a handle to a ColorTable record. If the

'clut' resource with that ID is not found, GetCTable returns NIL.

If you place this handle in the pmTable field of a PixMap record, you should first use

the DisposeCTable procedure to dispose of the handle already there.

If you modify a ColorTable record, you should invalidate it by changing its ctSeed

field. An easy way to do this is with the CTabChanged procedure, described on

page 4-97.

The GetCTable function recognizes a number of standard 'clut' resource IDs. You

can obtain the default grayscale color table for a given pixel depth by calling

GetCTable, adding 32 (decimal) to the pixel depth, and passing this value in the ctID

parameter, as shown in Table 4-5.

Table 4-5 The default color tables for grayscale graphics devices

Pixel depth Resource ID Color table composition

1 33 Black, white

2 34 Black, 33% gray, 66% gray, white

4 36 Black, 14 shades of gray, white

8 40 Black, 254 shades of gray, white

C H A P T E R 4

Color QuickDraw

Color QuickDraw Reference 4-93

For full color, you can obtain the default color tables by adding 64 to the pixel depth and

passing this in the ctID parameter, as shown in Table 4-6. These default color tables are

illustrated in Plate 1 at the front of this book.

SPECIAL CONSIDERATIONS

The GetCTable function may move or purge memory blocks in the application heap.

Your application should not call this function at interrupt time.

SEE ALSO

The 'clut' resource is described on page 4-104.

DisposeCTable

Use the DisposeCTable procedure to dispose of a ColorTable record. The

DisposeCTable procedure is also available as the DisposCTable procedure.

PROCEDURE DisposeCTable (cTable: CTabHandle);

cTable A handle to a ColorTable record.

DESCRIPTION

The DisposeCTable procedure disposes of the ColorTable record whose handle you

pass in the cTable parameter.

Table 4-6 The default color tables for color graphics devices

Pixel depth Resource ID Color table composition

2 66 Black, 50% gray, highlight color, white

4 68 Black, 14 colors including the highlight color, white

8 72 Black, 254 colors including the highlight color, white

C H A P T E R 4

Color QuickDraw

4-94 Color QuickDraw Reference

Retrieving Color QuickDraw Result Codes

Most QuickDraw routines do not return result codes. However, you can use the

QDError function to get a result code from the last applicable Color QuickDraw or

Color Manager routine that you called.

QDError

To get a result code from the last applicable Color QuickDraw or Color Manager routine

that you called, use the QDError function.

FUNCTION QDError: Integer;

DESCRIPTION

The QDError function returns the error result from the last applicable Color QuickDraw

or Color Manager routine. On a system with only basic QuickDraw, QDError always

returns noErr.

The QDError function is helpful in determining whether insufficient memory caused a

drawing operation—particularly those involving regions, polygons, pictures, and images

copied with CopyBits—to fail in Color QuickDraw.

Basic QuickDraw uses stack space for work buffers. For complex operations such as

depth conversion, dithering, and image resizing, stack space may not be sufficient. Color

QuickDraw attempts to get temporary memory from other parts of the system. If that is

still not enough, QDError returns the nsStackErr error. If your application receives

this result, reduce the memory required by the operation—for example, divide the image

into left and right halves—and try again.

When you record drawing operations in an open region, the resulting region description

may overflow the 64 KB limit. Should this happen, QDError returns

regionTooBigError. Since the resulting region is potentially corrupt, the CloseRgn

procedure (described in the chapter “QuickDraw Drawing” in this book) returns an

empty region if it detects QDError has returned regionTooBigError. A similar error,

rgnTooBigErr, can occur when using the BitMapToRegion function (described in the

chapter “Basic QuickDraw” in this book) to convert a bitmap to a region.

The BitMapToRegion function can also generate the pixmapTooDeepErr error if a

PixMap record is supplied that is greater than 1 bit per pixel. You may be able to recover

from this problem by coercing your PixMap record into a 1-bit PixMap record and

calling the BitMapToRegion function again.

C H A P T E R 4

Color QuickDraw

Color QuickDraw Reference 4-95

RESULT CODES

In addition to these result codes, QDErr also returns result codes from the Memory

Manager.

SECIAL CONSIDERATIONS

The QDError function does not report errors returned by basic QuickDraw.

SEE ALSO

Listing 3-8 on page 3-28, Listing 3-10 on page 3-30, and Listing 3-11 on page 3-33 in the

chapter “QuickDraw Drawing” in this book—and Listing 7-8 on page 7-20 in the chapter

“Pictures” in this book—illustrate how to use QDError to report insufficient memory

conditions for various drawing operations.

The NewGWorld function is described in the chapter “Offscreen Graphics Worlds” in this

book. The Color2Index function and the MakeITable procedure are described in the

chapter “Color Manager” in Inside Macintosh: Advanced Color Imaging. Graphics devices

are described in the chapter “Graphics Devices” in this book. Memory Manager result

codes are listed in Inside Macintosh: Memory.

noErr 0 No error
paramErr –50 Illegal parameter to NewGWorld

–143 CopyBits couldn’t allocate required
temporary memory

–144 Ran out of stack space while drawing
polygon

noMemForPictPlaybackErr –145 Insufficient memory for drawing the
picture

regionTooBigError –147 Region too big or complex
pixmapTooDeepErr –148 Pixel map is deeper than 1 bit per pixel
nsStackErr –149 Insufficient stack
cMatchErr –150 Color2Index failed to find an index
cTempMemErr –151 Failed to allocate memory for temporary

structures
cNoMemErr –152 Failed to allocate memory for structure
cRangeErr –153 Range error on color table request
cProtectErr –154 ColorTable record entry protection

violation
cDevErr –155 Invalid type of graphics device
cResErr –156 Invalid resolution for MakeITable
cDepthErr –157 Invalid pixel depth specified to

NewGWorld
rgnTooBigErr –500 Bitmap would convert to a region greater

than 64 KB

C H A P T E R 4

Color QuickDraw

4-96 Color QuickDraw Reference

Customizing Color QuickDraw Operations

For each shape that QuickDraw can draw, there are procedures that perform these basic

graphics operations on the shape: framing, painting, erasing, inverting, and filling. As

described in the chapter “QuickDraw Drawing” in this book, those procedures in turn

call a low-level drawing routine for the shape. For example, the FrameOval,

PaintOval, EraseOval, InvertOval, and FillOval procedures all call the low-level

procedure StdOval, which draws the oval.

The grafProcs field of a CGrafPort record determines which low-level routines are

called. If that field contains the value of NIL, the standard routines are called. You can set

the grafProcs field to point to a record of pointers to your own routines. This record of

pointers is defined by a data structure of type CQDProcs. By changing these pointers,

you can install your own routines, and either completely override the standard ones or

call them after your routines have modified their parameters as necessary.

To assist you in setting up a record, QuickDraw provides the SetStdCProcs procedure.

You can use the SetStdCProcs procedure to set all the fields of the CQDProcs record

to point to the standard routines. You can then reset the ones with which you are

concerned.

SetStdCProcs

You can use the SetStdCProcs procedure to get a CQDProcs record with fields that

point to Color QuickDraw’s standard low-level routines. You can replace these low-level

routines with your own, and then point to your modified CQDProcs record in the

grafProcs field of a CGrafPort record to change Color QuickDraw’s standard

low-level behavior.

PROCEDURE SetStdCProcs (VAR cProcs: CQDProcs);

cProcs Upon completion, a CQDProcs record with fields that point to Color
QuickDraw’s standard low-level routines.

DESCRIPTION

In the cProcs parameter, the SetStdCProcs procedure returns a CQDProcs record

with fields that point to the standard low-level routines. You can change one or more

fields to point to your own routines and then set the color graphics port to use this

modified CQDProcs record.

SPECIAL CONSIDERATIONS

When drawing in a color graphics port, your application must always use

SetStdCProcs instead of SetStdProcs.

C H A P T E R 4

Color QuickDraw

Color QuickDraw Reference 4-97

SEE ALSO

The routines you install in the CQDProcs record must have the same calling sequences

as the standard basic QuickDraw routines, which are described in the chapter

“QuickDraw Drawing” in this book. The SetStdProcs procedure is also described in

the chapter “QuickDraw Drawing.”

The chapter “Pictures” in this book describes how to replace the low-level routines that

read and write pictures.

The data structure of type CQDProcs is described on page 4-60.

Reporting Data Structure Changes to QuickDraw

In quest of faster execution time, some applications directly modify ColorTable,

PixPat, GrafPort, CGrafPort, or GDevice records rather than using the routines

provided for that purpose. Direct manipulation of the fields of these records can cause

problems now, and may cause additional problems as QuickDraw continues to evolve.

For example, the Color Manager (described in the chapter “Color Manager” in Inside
Macintosh: Advanced Color Imaging) maintains an inverse table for every color table with

which it works in order to speed up the process of searching the color table. If your

application directly changes an entry in the color table, the Color Manager doesn’t know

that its inverse table no longer works correctly.

However, by using the routines CTabChanged, PixPatChanged, PortChanged, and

GDeviceChanged, you can lessen the adverse effects of directly modifying the fields of

ColorTable, PixPat, GrafPort, CGrafPort, and GDevice records. For example,

should you directly change the field of a ColorTable record and then call the

CTabChanged procedure, it invalidates the ctSeed field of the ColorTable record,

which signals the Color Manager that the table has been changed and its inverse table

needs to be rebuilt.

CTabChanged

If you modify the content of a ColorTable record (described on page 4-56), use the

CTabChanged procedure.

PROCEDURE CTabChanged (ctab: CTabHandle);

ctab A handle to the ColorTable record changed by your application.

DESCRIPTION

For the ColorTable record you specify in the ctab parameter, the CTabChanged

procedure calls the Color Manager function GetCTSeed to get a new seed (that is, a

new, unique identifier in the ctSeed field of the ColorTable record) and notifies Color

QuickDraw of the change.

C H A P T E R 4

Color QuickDraw

4-98 Color QuickDraw Reference

SPECIAL CONSIDERATIONS

The CTabChanged procedure may move or purge memory in the application heap. Your

application should not call the CTabChanged procedure at interrupt time.

Your application should never need to directly modify a ColorTable record and use

the CTabChanged procedure; instead, your application should use the QuickDraw

routines described in this book for manipulating the values in a ColorTable record.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the CTabChanged procedure are

SEE ALSO

The GetCTSeed function is described in the chapter “Color Manager” in Inside
Macintosh: Advanced Color Imaging.

PixPatChanged

If you modify the content of a PixPat record (described on page 4-58), including its

PixMap record or the image in its patData field, use the PixPatChanged procedure.

PROCEDURE PixPatChanged (ppat: PixPatHandle);

ppat A handle to the changed pixel pattern.

DESCRIPTION

The PixPatChanged procedure sets the patXValid field of the PixPat record

specified in the ppat parameter to –1 and notifies QuickDraw of the change.

If your application changes the pmTable field of a pixel pattern’s PixMap record, it

should call PixPatChanged. However, if your application changes the content of the

color table referenced by the PixMap record’s pmTable field, it should call

PixPatChanged and the CTabChanged procedure as well. (The CTabChanged

procedure is described in the preceding section.)

Trap macro Selector

_QDExtensions $00040007

C H A P T E R 4

Color QuickDraw

Color QuickDraw Reference 4-99

SPECIAL CONSIDERATIONS

The PixPatChanged procedure may move or purge memory in the application heap.

Your application should not call the PixPatChanged procedure at interrupt time.

Your application should never need to directly modify a PixPat record and use the

PixPatChanged procedure; instead, your application should use the QuickDraw

routines described in this book for manipulating the values in a PixPat record.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PixPatChanged procedure are

PortChanged

If you modify the content of a GrafPort record (described in the chapter “Basic

QuickDraw” in this book) or CGrafPort record (described on page 4-48), including any

of the data structures specified by handles within the record, use the PortChanged

procedure.

PROCEDURE PortChanged (port: GrafPtr);

port A pointer to the GrafPort record that you have changed.

DESCRIPTION

The PortChanged procedure notifies QuickDraw that your application has changed the

graphics port specified in the port parameter. If your application has changed a

CGrafPort record, it must coerce its pointer (that is, its CGrafPtr) to a pointer to

a GrafPort record (that is, to a GrafPtr) before passing the pointer in the port

parameter.

You generally should not directly change any of the PixPat records specified in a

CGrafPort record, but instead use the PenPixPat and BackPixPat procedures.

However, if your application does change the content of a PixPat record, it should call

the PixPatChanged procedure (described in the preceding section) as well as the

PortChanged procedure.

If your application changes the pmTable field of the PixMap record specified in the

graphics port, your application should call PortChanged. If your application changes

the content of the ColorTable record referenced by the pmTable field, it should call

CTabChanged as well.

Trap macro Selector

_QDExtensions $00040008

C H A P T E R 4

Color QuickDraw

4-100 Color QuickDraw Reference

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PortChanged procedure are

GDeviceChanged

If you modify the content of a GDevice record (described in the chapter “Graphics

Devices” in this book), use the GDeviceChanged procedure.

PROCEDURE GDeviceChanged (gdh: GDHandle);

DESCRIPTION

The GDeviceChanged procedure notifies Color QuickDraw that your application has

changed the GDevice record specified in the gdh parameter.

If your application changes the pmTable field of the PixMap record specified in a

GDevice record, your application should call GDeviceChanged. If your application

changes the content of the ColorTable record referenced by the PixMap record, it

should call GDeviceChanged and CTabChanged as well.

SPECIAL CONSIDERATIONS

The GDeviceChanged procedure may move or purge memory in the application heap.

Your application should not call the GDeviceChanged procedure at interrupt time.

Your application should never need to directly modify a GDevice record and use the

GDeviceChanged procedure; instead, your application should use the QuickDraw

routines described in this book for manipulating the values in a GDevice record.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the GDeviceChanged procedure are

Trap macro Selector

_QDExtensions $00040009

Trap macro Selector

_QDExtensions $0004000A

C H A P T E R 4

Color QuickDraw

Color QuickDraw Reference 4-101

Application-Defined Routine

You can customize the SeedCFill and CalcCMask procedures by writing your own

color search function. For example, you might wish to use your own color search

function to make SeedCFill generate a mask that allows filling around pixels that

approximate the color of your seed point, rather than match it exactly.

The SeedCFill procedure generates a mask showing where the pixels in an image can

be filled from a starting point, like the paint pouring from the MacPaint paint-bucket

tool. The CalcCMask procedure generates a mask showing where pixels in an image

cannot be filled from any of the outer edges of a rectangle you specify. You can then use

these masks with the CopyBits, CopyMask, and CopyDeepMask procedures.

By default, SeedCFill returns 1’s in the mask to indicate all pixels adjacent to a seed

point whose colors do not exactly match the RGBColor record for the pixel at the

seed point. By default, CalcCMask returns 1’s in the mask to indicate what pixels have

the exact RGB value that you specify in the seedRGB parameter, as well as which pixels

are enclosed by shapes whose outlines consist entirely of pixels with this exact color.

These procedures use a default color search function that matches exact colors.

You can customize these procedures by writing your own color search function and

pointing to it in the matchProc parameters to these procedures, which then use your

procedure instead of the default.

MyColorSearch

Here’s how to declare a color search function to supply to the SeedCFill or

CalcCMask procedure if you were to name the function MyColorSearch:

FUNCTION MyColorSearch (rgb: RGBColor;

 position: LongInt): Boolean;

rgb The RGBColor record for a pixel.

position The position of the pixel within an image.

DESCRIPTION

Your color search function should analyze the RGBColor record passed to it in the rgb

parameter. To mask a pixel approximating that color, your color search function should

return TRUE; otherwise, it should return FALSE.

Your application should compare the RGBColor records that SeedCFill passes to your

color search function against the RGBColor record for the pixel at the seed point you

specify in that procedure’s seedH and seedV parameters.

C H A P T E R 4

Color QuickDraw

4-102 Color QuickDraw Reference

You can use a MatchRec record to determine the color of the seed pixel. When

SeedCFill calls your color search function, the GDRefCon field of the current

GDevice record (described in the chapter “Graphics Devices”) contains a pointer to a

MatchRec record that describes the seed point. This record has the following structure:

MatchRec =

RECORD

red: Integer; {red component of seed pixel}

green: Integer; {green component of seed pixel}

blue: Integer; {blue component of seed pixel}

matchData: LongInt; {value in matchData parameter of }

{ SeedCFill procedure}

END;

The matchData field contains whatever value you pass to SeedCFill in the

matchData parameter. In the matchData parameter, for instance, your application

could pass the handle to a color table. Your color search function could then check

whether the color for the pixel currently under analysis matches any of the colors in the

table.

Similarly, your application should compare the colors that CalcCMask passes to your

color search function against the color that you specify in that procedure’s seedRGB

parameter. When CalcCMask calls your color search function, the GDRefCon field of the

current GDevice record (described in the chapter “Graphics Devices”) contains a

pointer to a MatchRec record for your seed color. The matchData field of this record

contains whatever value you pass to CalcCMask in the matchData parameter.

Resources

This section describes the pixel pattern ('ppat') resource, the color table ('clut')

resource, and the color icon ('cicn') resource. Your application can use a

'ppat' resource to create multicolored patterns for drawing. Your application can use a

'clut' resource to define available colors for a pixel map or an indexed device. When

you want to display a color icon within some element of your application (such as within

a menu, an alert box, or a dialog box), you can create a 'cicn' resource. These resource

types should be marked as purgeable.

Note

These Color QuickDraw resources are compound structures and are
more complex than a simple resource handle. When your application
requests one of these resources, Color QuickDraw reads the requested
resource, copies it, and then alters the copy before passing it to your
application. Each time your application calls GetPixPat, for
example, your application gets a new copy of a pixel pattern resource;
therefore, your application should call GetPixPat only once for a
particular pixel pattern resource. ◆

C H A P T E R 4

Color QuickDraw

Color QuickDraw Reference 4-103

The Pixel Pattern Resource

You can use a pixel pattern resource to define a multicolored pattern to display with

Color QuickDraw routines. A pixel pattern resource is a resource of type 'ppat'. All

'ppat' resources should be marked purgeable, and they must have resource IDs greater

than 128. Use the GetPixPat function (described on page 4-88) to create a pixel pattern

defined in a 'ppat' resource. Color QuickDraw uses the information you specify to

create a PixPat record in memory. (The PixPat record is described on page 4-58.)

This section describes the structure of this resource after it has been compiled by the Rez

resource compiler, available from APDA. However, you typically use a high-level tool

such as the ResEdit application, also available through APDA, to create 'ppat'

resources. You can then use the DeRez decompiler to convert your 'ppat' resources

into Rez input when necessary.

The compiled output format for a 'ppat' resource is illustrated in Figure 4-16.

Figure 4-16 Format of a compiled pixel pattern ('ppat') resource

The compiled version of a 'ppat' resource contains the following elements:

■ A pattern record. This is similar to the PixPat record (described on page 4-58), except
that the resource contains an offset (rather than a handle) to a PixMap record (which
is included in the resource), and it contains an offset (rather than a handle) to the
pattern image data (which is also included in the resource).

■ A pixel map. This is similar to the PixMap record (described on page 4-46), except
that the resource contains an offset (rather than a handle) to a color table (which is
included in the resource).

■ Pattern image data. The size of the image data is calculated by subtracting the offset to
the image data from the offset to the color table data.

■ A color table. This follows the same format as the color table ('clut') resource
described next.

C H A P T E R 4

Color QuickDraw

4-104 Color QuickDraw Reference

The Color Table Resource

You can use a color table resource to define a color table for a pixel pattern or an indexed

device. To retrieve a color table stored in a color table resource, use the GetCTable

function described on page 4-92. A color table resource is a resource of type 'clut'. All

'clut' resources should be marked purgeable, and they must have resource IDs greater

than 128.

This section describes the structure of this resource after it has been compiled by the Rez

resource compiler, available from APDA. However, you typically use a high-level tool

such as the ResEdit application, also available through APDA, to create 'clut'

resources. You can then use the DeRez decompiler to convert your 'clut' resources

into Rez input when necessary.

The compiled output format for a 'clut' resource is illustrated in Figure 4-17.

Figure 4-17 Format of a compiled color table ('clut') resource

The compiled version of a 'clut' resource contains the following elements:

■ Seed. This contains the resource ID for this resource.

■ Flags. A value of $0000 identifies this as a color table for a pixel map. A value of $8000
identifies this as a color table for an indexed device.

■ Size. One less than the number of color specification entries in the rest of this resource.

■ An array of color specification entries. Each entry contains a pixel value and a color
specified by the values for the red, green, and blue components of the entry.

C H A P T E R 4

Color QuickDraw

Color QuickDraw Reference 4-105

There are several default 'clut' resources for Macintosh computers containing 68020

and later processors. There is a default 'clut' resource for each of the standard pixel

depths. The resource ID for each is the same as the pixel depth. For example, the default

'clut' resource for screens supporting 8 bits per pixel has a resource ID of 8.

Another default 'clut' resource defines the eight colors available for basic

QuickDraw’s eight-color system. This 'clut' resource has a resource ID of 127.

The Color Icon Resource

When you want to display a color icon within some element of your application (such as

within a menu, an alert box, or a dialog box), you can create a color icon resource. A

color icon resource is a resource of type 'cicn'. All color icon resources must be

marked purgeable, and they must have resource IDs greater than 128. The 'cicn'

resource was introduced with early versions of Color QuickDraw and is described here

for completeness.

Using color icon resources, you can create icons similar to the ones that the Finder uses

to display your application’s files on the desktop; however, the Finder does not use or

display any resources that you create of type 'cicn'. Instead, your application uses

icon resources of type 'cicn' to display icons from within your application. (For

information about the small and large 4-bit and 8-bit color icon resources—types

'ics4', 'icl4', 'ics8', and 'icl8'—necessary to define an icon family for the

Finder’s use, see Inside Macintosh: Macintosh Toolbox Essentials.)

Generally, you use color icon resources in menus, alert boxes, and dialog boxes, as

described in the chapters “Menu Manager” and “Dialog Manager” in Inside Macintosh:
Macintosh Toolbox Essentials. If you provide a color icon ('cicn') resource with the same

resource ID as an icon ('ICON') resource, the Menu Manager and the Dialog Manager

display the color icon instead of the black-and-white icon for users with color monitors.

For information about drawing color icons without the aid of the Menu Manager or

Dialog Manager (for example, to draw an icon in a window), see the chapter “Icon

Utilities” in Inside Macintosh: More Macintosh Toolbox.

You can use a high-level tool such as the ResEdit application to create color icon

resources. You can then use the DeRez decompiler to convert your color icon resources

into Rez input when necessary.

C H A P T E R 4

Color QuickDraw

4-106 Color QuickDraw Reference

The compiled output format for a 'cicn' resource is illustrated in Figure 4-18.

Figure 4-18 Format of a compiled color icon ('cicn') resource

The compiled version of a 'cicn' resource contains the following elements:

■ A pixel map. This pixel map describes the image when drawing the icon on a color
screen.

■ A bitmap for the icon’s mask.

■ A bitmap for the icon. This contains the image to use when drawing the icon to a 1-bit
screen.

■ Icon data.

■ The bitmap image data for the icon’s mask.

■ The bitmap image data for the bitmap to be used on 1-bit screens. It may be NIL.

■ A color table containing the color information for the icon’s pixel map.

■ The image data for the pixel map.

See the chapter “Icon Utilities” in Inside Macintosh: More Macintosh Toolbox for

information about Macintosh Toolbox routines available to help you display icons.

C H A P T E R 4

Color QuickDraw

Summary of Color QuickDraw 4-107

Summary of Color QuickDraw

Pascal Summary

Constants

CONST

{checking for Color QuickDraw and its features}

gestaltQuickdrawVersion = 'qd '; {Gestalt selector for Color QuickDraw}

gestalt8BitQD = $100; {8-bit Color QD}

gestalt32BitQD = $200; {32-bit Color QD}

gestalt32BitQD11 = $210; {32-bit Color QDv1.1}

gestalt32BitQD12 = $220; {32-bit Color QDv1.2}

gestalt32BitQD13 = $230; {System 7: 32-bit Color QDv1.3}

gestaltQuickdrawFeatures = 'qdrw'; {Gestalt selector for Color }

{ QuickDraw features}

gestaltHasColor = 0; {Color QuickDraw is present}

gestaltHasDeepGWorlds = 1; {GWorlds deeper than 1 bit}

gestaltHasDirectPixMaps = 2; {PixMaps can be direct--16 or 32 bit}

gestaltHasGrayishTextOr = 3; {supports text mode grayishTextOr}

{source modes for color graphics ports}

srcCopy = 0; {determine how close the color of the source pixel is }

{ to black, and assign this relative amount of }

{ foreground color to the destination pixel; determine }

{ how close the color of the source pixel is to white, }

{ and assign this relative amount of background }

{ color to the destination pixel}

srcOr = 1; {determine how close the color of the source pixel is }

{ to black, and assign this relative amount of }

{ foreground color to the destination pixel}

srcXor = 2; {where source pixel is black, invert the destination }

{ pixel--for a colored destination pixel, use the }

{ complement of its color if the pixel is direct, }

{ invert its index if the pixel is indexed}

srcBic = 3; {determine how close the color of the source pixel is }

{ to black, and assign this relative amount of }

{ background color to the destination pixel}

C H A P T E R 4

Color QuickDraw

4-108 Summary of Color QuickDraw

notSrcCopy = 4; {determine how close the color of the source pixel is }

{ to black, and assign this relative amount of }

{ background color to the destination pixel; determine }

{ how close the color of the source pixel is to white, }

{ and assign this relative amount of foreground color }

{ to the destination pixel}

notSrcOr = 5; {determine how close the color of the source pixel is }

{ to white, and assign this relative amount of }

{ foreground color to the destination pixel}

notSrcXor = 6; {where source pixel is white, invert the destination }

{ pixel--for a colored destination pixel, use the }

{ complement of its color if the pixel is direct, }

{ invert its index if the pixel is indexed}

notSrcBic = 7; {determine how close the color of the source pixel is }

{ to white, and assign this relative amount of }

{ background color to the destination pixel}

{special text transfer mode}

grayishTextOr = 49;

{arithmetic transfer modes available in Color QuickDraw}

blend = 32; {replace destination pixel with a blend of the source }

{ and destination pixel colors; if the destination is }

{ a bitmap or 1-bit pixel map, revert to srcCopy mode}

addPin = 33; {replace destination pixel with the sum of the source }

{ and destination pixel colors--up to a maximum }

{ allowable value; if the destination is a bitmap or }

{ 1-bit pixel map, revert to srcBic mode}

addOver = 34; {replace destination pixel with the sum of the source }

{ and destination pixel colors--but if the value of }

{ the red, green, or blue component exceeds 65,536, }

{ then subtract 65,536 from that value; if the }

{ destination is a bitmap or 1-bit pixel map, revert }

{ to srcXor mode}

subPin = 35; {replace destination pixel with the difference of the }

{ source and destination pixel colors--but not less }

{ than a minimum allowable value; if the destination }

{ is a bitmap or 1-bit pixel map, revert to srcOr mode}

addMax = 37; {compare the source and destination pixels, and }

{ replace the destination pixel with the color }

{ containing the greater saturation of each of the RGB }

{ components; if the destination is a bitmap or }

{ 1-bit pixel map, revert to srcBic mode}

C H A P T E R 4

Color QuickDraw

Summary of Color QuickDraw 4-109

subOver = 38; {replace destination pixel with the difference of the }

{ source and destination pixel colors--but if the }

{ value of the red, green, or blue component is less }

{ than 0, add the negative result to 65,536; if the }

{ destination is a bitmap or 1-bit pixel map, revert }

{ to srcXor mode}

adMin = 39; {compare the source and destination pixels, and }

{ replace the destination pixel with the color }

{ containing the lesser saturation of each of the RGB }

{ components; if the destination is a bitmap or }

{ 1-bit pixel map, revert to srcOr mode}

{transparent mode constant}

transparent = 36; {replace the destination pixel with the source pixel }

{ if the source pixel isn't equal to the background }

{ color}

hilite = 50; {add to source or pattern mode for highlighting}

hiliteBit = 7; {flag bit in HiliteMode (lowMem flag)}

pHiliteBit = 0; {flag bit in HiliteMode used with BitClr procedure}

defQDColors = 127; {resource ID of 'clut' for default QDColors}

{pixel type}

RGBDirect = 16; {16 & 32 bits per pixel pixelType value}

{pmVersion values}

baseAddr32 = 4; {pixmap base address is 32-bit address}

Data Types

TYPE PixMap =

RECORD

baseAddr: Ptr; {pixel image}

rowBytes: Integer; {flags, and row width}

bounds: Rect; {boundary rectangle}

pmVersion: Integer; {PixMap record version number}

packType: Integer; {packing format}

packSize: LongInt; {size of data in packed state}

hRes: Fixed; {horizontal resolution (dpi)}

vRes: Fixed; {vertical resolution (dpi)}

pixelType: Integer; {format of pixel image}

pixelSize: Integer; {physical bits per pixel}

C H A P T E R 4

Color QuickDraw

4-110 Summary of Color QuickDraw

cmpCount: Integer; {logical components per pixel}

cmpSize: Integer; {logical bits per component}

planeBytes: LongInt; {offset to next plane}

pmTable: CTabHandle; {handle to color table for this image}

pmReserved: LongInt; {reserved for future expansion}

END;

CGrafPtr = ^CGrafPort;

CGrafPort =

RECORD

device: Integer; {device ID for font selection}

portPixMap: PixMapHandle; {handle to PixMap record}

portVersion: Integer; {highest 2 bits always set}

grafVars: Handle; {handle to GrafVars record}

chExtra: Integer; {added width for nonspace characters}

pnLocHFrac: Integer; {pen fraction}

portRect: Rect; {port rectangle}

visRgn: RgnHandle; {visible region}

clipRgn: RgnHandle; {clipping region}

bkPixPat: PixPatHandle; {background pattern}

rgbFgColor: RGBColor; {requested foreground color}

rgbBkColor: RGBColor; {requested background color}

pnLoc: Point; {pen location}

pnSize: Point; {pen size}

pnMode: Integer; {pattern mode}

pnPixPat: PixPatHandle; {pen pattern}

fillPixPat: PixPatHandle; {fill pattern}

pnVis: Integer; {pen visibility}

txFont: Integer; {font number for text}

txFace: Style; {text's font style}

txMode: Integer; {source mode for text}

txSize: Integer; {font size for text}

spExtra: Fixed; {added width for space characters}

fgColor: LongInt; {actual foreground color}

bkColor: LongInt; {actual background color}

colrBit: Integer; {plane being drawn}

patStretch: Integer; {used internally}

picSave: Handle; {picture being saved, used internally}

rgnSave: Handle; {region being saved, used internally}

polySave: Handle; {polygon being saved, used internally}

grafProcs: CQDProcsPtr; {low-level drawing routines}

END;

C H A P T E R 4

Color QuickDraw

Summary of Color QuickDraw 4-111

RGBColor =

RECORD

red: Integer; {red component}

green: Integer; {green component}

blue: Integer; {blue component}

END;

ColorSpec =

RECORD

value: Integer; {index or other value}

rgb: RGBColor; {true color}

END;

cSpecArray : ARRAY[0..0] OF ColorSpec;

CTabHandle = ^CTabPtr;

CTabPtr = ^ColorTable;

ColorTable =

RECORD

ctSeed: LongInt; {unique identifier from table}

ctFlags: Integer; {contains flags describing the ctTable field; }

{ clear for a PixMap record}

ctSize: Integer; {number of entries in the next field minus 1}

ctTable: cSpecArray; {an array of ColorSpec records}

END;

MatchRec =

RECORD

red: Integer; {red component of seed}

green: Integer; {green component of seed}

blue: Integer; {blue component of seed}

matchData: LongInt; {value in matchData parameter of }

{ SeedCFill or CalcCMask}

END;

C H A P T E R 4

Color QuickDraw

4-112 Summary of Color QuickDraw

PixPatHandle = ^PixPatPtr;

PixPatPtr = ^PixPat;

PixPat =

RECORD

patType: Integer; {pattern type}

patMap: PixMapHandle; {PixMap record for pattern}

patData: Handle; {pixel image defining pattern}

patXData: Handle; {expanded pixel image}

patXValid: Integer; {flags for expanded pattern data}

patXMap: Handle; {handle to expanded pattern data}

pat1Data: Pattern; {bit pattern for a GrafPort record}

END;

CQDProcsPtr = ^CQDProcs

CQDProcs =

RECORD

textProc: Ptr; {text drawing}

lineProc: Ptr; {line drawing}

rectProc: Ptr; {rectangle drawing}

rRectProc: Ptr; {rounded rectangle drawing}

ovalProc: Ptr; {oval drawing}

arcProc: Ptr; {arc and wedge drawing}

polyProc: Ptr; {polygon drawing}

rgnProc: Ptr; {region drawing}

bitsProc: Ptr; {bit transfer}

commentProc: Ptr; {picture comment processing}

txMeasProc: Ptr; {text width measurement}

getPicProc: Ptr; {picture retrieval}

putPicProc: Ptr; {picture saving}

opcodeProc: Ptr; {reserved for future use}

newProc1: Ptr; {reserved for future use}

newProc2: Ptr; {reserved for future use}

newProc3: Ptr; {reserved for future use}

newProc4: Ptr; {reserved for future use}

newProc5: Ptr; {reserved for future use}

newProc6: Ptr; {reserved for future use}

END;

C H A P T E R 4

Color QuickDraw

Summary of Color QuickDraw 4-113

GrafVars =

RECORD

rgbOpColor: RGBColor; {color for addPin, subPin, and blend}

rgbHiliteColor: RGBColor; {color for highlighting}

pmFgColor: Handle; {palette handle for foreground color}

pmFgIndex: Integer; {index value for foreground}

pmBkColor: Handle; {palette handle for background color}

pmBkIndex: Integer; {index value for background}

pmFlags: Integer; {flags for Palette Manager}

END;

Color QuickDraw Routines

Opening and Closing Color Graphics Ports

PROCEDURE OpenCPort (port: CGrafPtr);

PROCEDURE InitCPort (port: CGrafPtr);

PROCEDURE CloseCPort (port: CGrafPtr);

Managing a Color Graphics Pen

PROCEDURE PenPixPat (ppat: PixPatHandle);

Changing the Background Pixel Pattern

PROCEDURE BackPixPat (ppat: PixPatHandle);

Drawing With Color QuickDraw Colors

PROCEDURE RGBForeColor (color: RGBColor);

PROCEDURE RGBBackColor (color: RGBColor);

PROCEDURE SetCPixel (h,v: Integer; cPix: RGBColor);

PROCEDURE FillCRect (r: Rect; ppat: PixPatHandle);

PROCEDURE FillCRoundRect (r: Rect; ovalWidth,ovalHeight: Integer;
ppat: PixPatHandle);

PROCEDURE FillCOval (r: Rect; ppat: PixPatHandle);

PROCEDURE FillCArc (r: Rect; startAngle,arcAngle: Integer;
ppat: PixPatHandle);

C H A P T E R 4

Color QuickDraw

4-114 Summary of Color QuickDraw

PROCEDURE FillCPoly (poly: PolyHandle; ppat: PixPatHandle);

PROCEDURE FillCRgn (rgn: RgnHandle; ppat: PixPatHandle);

PROCEDURE OpColor (color: RGBColor);

PROCEDURE HiliteColor (color: RGBColor);

Determining Current Colors and Best Intermediate Colors

PROCEDURE GetForeColor (VAR color: RGBColor);

PROCEDURE GetBackColor (VAR color: RGBColor);

PROCEDURE GetCPixel (h,v: Integer; VAR cPix: RGBColor);

FUNCTION GetGray (device: GDHandle; backGround: RGBColor;
VAR foreGround: RGBColor): Boolean;

Calculating Color Fills

PROCEDURE SeedCFill (srcBits,dstBits: BitMap;
srcRect,dstRect: Rect; seedH,seedV: Integer;
matchProc: ProcPtr; matchData: LongInt);

PROCEDURE CalcCMask (srcBits,dstBits: BitMap;
srcRect,dstRect: Rect; seedRGB: RGBColor;
matchProc: ProcPtr; matchData: LongInt);

Creating, Setting, and Disposing of Pixel Maps

{DisposePixMap is also spelled as DisposPixMap}

FUNCTION NewPixMap : PixMapHandle;

PROCEDURE CopyPixMap (srcPM,dstPM: PixMapHandle);

PROCEDURE SetPortPix (pm: PixMapHandle);

PROCEDURE DisposePixMap (pm: PixMapHandle);

Creating and Disposing of Pixel Patterns

{DisposePixPat is also spelled as DisposPixPat}

FUNCTION GetPixPat (patID: Integer): PixPatHandle;

FUNCTION NewPixPat : PixPatHandle;

PROCEDURE CopyPixPat (srcPP,dstPP: PixPatHandle);

PROCEDURE MakeRGBPat (ppat: PixPatHandle; myColor: RGBColor);

PROCEDURE DisposePixPat (ppat: PixPatHandle);

C H A P T E R 4

Color QuickDraw

Summary of Color QuickDraw 4-115

Creating and Disposing of Color Tables

{DisposeCTable is also spelled as DisposCTable}

FUNCTION GetCTable (ctID: Integer): CTabHandle;

PROCEDURE DisposeCTable (cTable: CTabHandle);

Retrieving Color QuickDraw Result Codes

FUNCTION QDError: Integer;

Customizing Color QuickDraw Operations

PROCEDURE SetStdCProcs (VAR cProcs: CQDProcs);

Reporting Data Structure Changes to QuickDraw

PROCEDURE CTabChanged (ctab: CTabHandle);

PROCEDURE PixPatChanged (ppat: PixPatHandle);

PROCEDURE PortChanged (port: GrafPtr);

PROCEDURE GDeviceChanged (gdh: GDHandle);

Application-Defined Routine

FUNCTION MyColorSearch (rgb: RGBColor; position: LongInt): Boolean;

C Summary

Constants

enum {

/* checking for Color QuickDraw and its features */

gestaltQuickdrawVersion = 'qd ', /* Gestalt selector for Color

QuickDraw */

gestalt8BitQD = 0x100, /* 8-bit Color QD */

gestalt32BitQD = 0x200, /* 32-bit Color QD */

gestalt32BitQD11 = 0x210, /* 32-bit Color QDv1.1 */

gestalt32BitQD12 = 0x220, /* 32-bit Color QDv1.2 */

gestalt32BitQD13 = 0x230, /* System 7: 32-bit Color QDv1.3 */

gestaltQuickdrawFeatures

= 'qdrw', /* Gestalt selector for Color QuickDraw

features */

gestaltHasColor = 0, /* Color QuickDraw is present */

C H A P T E R 4

Color QuickDraw

4-116 Summary of Color QuickDraw

gestaltHasDeepGWorlds = 1, /* GWorlds deeper than 1 bit */

gestaltHasDirectPixMaps = 2, /* PixMaps can be direct--16 or 32 bit */

gestaltHasGrayishTextOr = 3, /* supports text mode grayishTextOr */

/* source modes for color graphics ports */

srcCopy = 0, /* determine how close the color of the source pixel is

to black, and assign this relative amount of

foreground color to the destination pixel; determine

how close the color of the source pixel is to white,

and assign this relative amount of background color

to the destination pixel */

srcOr = 1, /* determine how close the color of the source pixel is

to black, and assign this relative amount of

foreground color to the destination pixel */

srcXor = 2, /* where source pixel is black, invert the destination

pixel--for a colored destination pixel, use the

complement of its color if the pixel is direct,

invert its index if the pixel is indexed */

srcBic = 3, /* determine how close the color of the source pixel is

 to black, and assign this relative amount of

 background color to the destination pixel */

notSrcCopy = 4, /* determine how close the color of the source pixel is

to black, and assign this relative amount of

background color to the destination pixel; determine

how close the color of the source pixel is to white,

and assign this relative amount of foreground color

to the destination pixel */

notSrcOr = 5, /* determine how close the color of the source pixel is

to white, and assign this relative amount of

foreground color to the destination pixel */

notSrcXor = 6, /* where source pixel is white, invert destination

pixel--for a colored destination pixel, use the

complement of its color if the pixel is direct,

invert its index if the pixel is indexed */

notSrcBic = 7, /* determine how close the color of the source pixel is

to white, and assign this relative amount of

background color to the destination pixel */

/* special text transfer mode */

grayishTextOr = 49,

C H A P T E R 4

Color QuickDraw

Summary of Color QuickDraw 4-117

/* arithmetic transfer modes available in Color QuickDraw */

blend = 32, /* replace destination pixel with a blend of the source

and destination pixel colors; if the destination is a

bitmap or 1-bit pixel map, revert to srcCopy mode */

addPin = 33, /* replace destination pixel with the sum of the source

and destination pixel colors--up to a maximum

allowable value; if the destination is a bitmap or

1-bit pixel map, revert to srcBic mode */

addOver = 34, /* replace destination pixel with the sum of the source

and destination pixel colors--but if the value of

the red, green, or blue component exceeds 65,536,

subtract 65,536 from that value; if the destination

is a bitmap or 1-bit pixel map, revert to srcXor

mode */

subPin = 35, /* replace destination pixel with the difference of the

source and destination pixel colors--but not less

than a minimum allowable value; if the destination is

a bitmap or 1-bit pixel map, revert to srcOr mode */

addMax = 37, /* compare the source and destination pixels, and

replace the destination pixel with the color

containing the greater saturation of each of the RGB

components; if the destination is a bitmap or 1-bit

pixel map, revert to srcBic mode */

subOver = 38, /* replace destination pixel with the difference of the

source and destination pixel colors--but if the value

of the red, green, or blue component is less than 0,

add the negative result to 65,536; if the destination

is a bitmap or 1-bit pixel map, revert to

srcXor mode */

adMin = 39, /* compare the source and destination pixels, and

replace the destination pixel with the color

containing the lesser saturation of each of the RGB

components; if the destination is a bitmap or 1-bit

pixel map, revert to srcOr mode */

/* transparent mode constant */

transparent = 36, /* replace the destination pixel with the source pixel

if the source pixel isn't equal to the background

color */

C H A P T E R 4

Color QuickDraw

4-118 Summary of Color QuickDraw

hilite = 50, /* add to source or pattern mode for highlighting */

hiliteBit = 7, /* flag bit in highlight mode (lowMem flag) */

pHiliteBit = 0, /* flag bit in highlight mode used with BitClr

procedure */

defQDColors = 127, /* resource ID of 'clut' for default QDColors */

/* pixel type */

RGBDirect = 16, /* 16 & 32 bits/pixel pixelType value */

/* pmVersion values */

baseAddr32 = 4, /* pixel map base address is 32-bit address */

};

Data Types

struct PixMap {

Ptr baseAddr; /* pixel image */

short rowBytes; /* flags, and row width */

Rect bounds; /* boundary rectangle */

short pmVersion; /* PixMap version number */

short packType; /* packing format */

long packSize; /* size of data in packed state */

Fixed hRes; /* horizontal resolution (dpi) */

Fixed vRes; /* vertical resolution (dpi) */

short pixelType; /* format of pixel image */

short pixelSize; /* physical bits per pixel */

short cmpCount; /* logical components per pixel */

short cmpSize; /* logical bits per component */

long planeBytes; /* offset to next plane */

CTabHandle pmTable; /* handle to the ColorTable struct */

long pmReserved; /* reserved for future expansion; must be 0 */

};

typedef struct PixMap PixMap;

typedef PixMap *PixMapPtr, **PixMapHandle;

typedef unsigned char PixelType;

C H A P T E R 4

Color QuickDraw

Summary of Color QuickDraw 4-119

struct CGrafPort {

short device; /* device ID for font selection */

PixMapHandle portPixMap; /* handle to PixMap struct */

short portVersion;/* highest 2 bits always set */

Handle grafVars; /* handle to a GrafVars struct */

short chExtra; /* added width for nonspace characters */

short pnLocHFrac; /* pen fraction */

Rect portRect; /* port rectangle */

RgnHandle visRgn; /* visible region */

RgnHandle clipRgn; /* clipping region */

PixPatHandle bkPixPat; /* background pattern */

RGBColor rgbFgColor; /* requested foreground color */

RGBColor rgbBkColor; /* requested background color */

Point pnLoc; /* pen location */

Point pnSize; /* pen size */

short pnMode; /* pattern mode */

PixPatHandle pnPixPat; /* pen pattern */

PixPatHandle fillPixPat; /* fill pattern */

short pnVis; /* pen visibility */

short txFont; /* font number for text */

Style txFace; /* text's font style */

char filler;

short txMode; /* source mode for text */

short txSize; /* font size for text */

Fixed spExtra; /* added width for space characters */

long fgColor; /* actual foreground color */

long bkColor; /* actual background color */

short colrBit; /* plane being drawn */

short patStretch; /* used internally */

Handle picSave; /* picture being saved, used internally */

Handle rgnSave; /* region being saved, used internally */

Handle polySave; /* polygon being saved, used internally */

CQDProcsPtr grafProcs; /* low-level drawing routines */

};

typedef struct CGrafPort CGrafPort;

typedef CGrafPort *CGrafPtr;

typedef CGrafPtr CWindowPtr;

C H A P T E R 4

Color QuickDraw

4-120 Summary of Color QuickDraw

struct RGBColor {

unsigned short red; /* magnitude of red component */

unsigned short green; /* magnitude of green component */

unsigned short blue; /* magnitude of blue component */

};

typedef struct RGBColor RGBColor;

struct ColorSpec {

short value; /* index or other value */

RGBColor rgb; /* true color */

};

typedef struct ColorSpec ColorSpec;

typedef ColorSpec *ColorSpecPtr;

typedef ColorSpec CSpecArray[1];

struct ColorTable {

long ctSeed; /* unique identifier for table */

short ctFlags; /* high bit: 0 = PixMap; 1 = device */

short ctSize; /* number of entries in next field */

CSpecArray ctTable; /* array[0..0] of ColorSpec records */

};

typedef struct ColorTable ColorTable;

typedef ColorTable *CTabPtr, **CTabHandle;

struct MatchRec {

unsigned short red; /* red component of seed */

unsigned short green; /* green component of seed */

unsigned short blue; /* blue component of seed */

long matchData; /* value in matchData parameter of

SeedCFill or CalcCMask */

};

typedef struct MatchRec MatchRec;

struct PixPat {

short patType; /* pattern type */

PixMapHandle patMap; /* PixMap structure for pattern */

Handle patData; /* pixel-image defining pattern */

Handle patXData; /* expanded pattern image */

short patXValid; /* for expanded pattern data */

Handle patXMap; /* handle to expanded pattern data */

Pattern pat1Data; /* a bit pattern for a GrafPort structure */

};

C H A P T E R 4

Color QuickDraw

Summary of Color QuickDraw 4-121

typedef struct PixPat PixPat;

typedef PixPat *PixPatPtr, **PixPatHandle;

struct CQDProcs {

Ptr textProc; /* text drawing */

Ptr lineProc; /* line drawing */

Ptr rectProc; /* rectangle drawing */

Ptr rRectProc; /* rounded rectangle drawing */

Ptr ovalProc; /* oval drawing */

Ptr arcProc; /* arc/wedge drawing */

Ptr polyProc; /* polygon drawing */

Ptr rgnProc; /* region drawing */

Ptr bitsProc; /* bit transfer */

Ptr commentProc; /* picture comment processing */

Ptr txMeasProc; /* text width measurement */

Ptr getPicProc; /* picture retrieval */

Ptr putPicProc; /* picture saving */

Ptr opcodeProc; /* reserved for future use */

Ptr newProc1; /* reserved for future use */

Ptr newProc2; /* reserved for future use */

Ptr newProc3; /* reserved for future use */

Ptr newProc4; /* reserved for future use */

Ptr newProc5; /* reserved for future use */

Ptr newProc6; /* reserved for future use */

};

typedef struct CQDProcs CQDProcs;

typedef CQDProcs *CQDProcsPtr;

struct GrafVars {

RGBColor rgbOpColor; /* color for addPin,subPin,and blend */

RGBColor rgbHiliteColor; /* color for highlighting */

Handle pmFgColor; /* palette handle for foreground color */

short pmFgIndex; /* index value for foreground */

Handle pmBkColor; /* palette handle for background color */

short pmBkIndex; /* index value for background */

short pmFlags; /* flags for Palette Manager */

};

typedef struct GrafVars GrafVars;

typedef GrafVars *GVarPtr, **GVarHandle;

C H A P T E R 4

Color QuickDraw

4-122 Summary of Color QuickDraw

Color QuickDraw Functions

Opening and Closing Color Graphics Ports

pascal void OpenCPort (CGrafPtr port);

pascal void InitCPort (CGrafPtr port);

pascal void CloseCPort (CGrafPtr port);

Managing a Color Graphics Pen

pascal void PenPixPat (PixPatHandle pp);

Changing the Background Pixel Pattern

pascal void BackPixPat (PixPatHandle pp);

Drawing With Color QuickDraw Colors

pascal void RGBForeColor (const RGBColor *color);

pascal void RGBBackColor (const RGBColor *color);

pascal void SetCPixel (short h, short v, const RGBColor *cPix);

pascal void FillCRect (const Rect *r, PixPatHandle pp);

pascal void FillCRoundRect (const Rect *r, short ovalWidth,
short ovalHeight, PixPatHandle pp);

pascal void FillCOval (const Rect *r, PixPatHandle pp);

pascal void FillCArc (const Rect *r, short startAngle,
short arcAngle, PixPatHandle pp);

pascal void FillCPoly (PolyHandle poly, PixPatHandle pp);

pascal void FillCRgn (RgnHandle rgn, PixPatHandle pp);

pascal void OpColor (const RGBColor *color);

pascal void HiliteColor (const RGBColor *color);

Determining Current Colors and Best Intermediate Colors

pascal void GetForeColor (RGBColor *color);

pascal void GetBackColor (RGBColor *color);

pascal void GetCPixel (short h, short v, RGBColor *cPix);

pascal Boolean GetGray (GDHandle device, const RGBColor *backGround,
RGBColor *foreGround);

C H A P T E R 4

Color QuickDraw

Summary of Color QuickDraw 4-123

Calculating Color Fills

pascal void SeedCFill (const BitMap *srcBits, const BitMap *dstBits,
const Rect *srcRect, const Rect *dstRect,
short seedH, short seedV,
ColorSearchProcPtr matchProc, long matchData);

pascal void CalcCMask (const BitMap *srcBits, const BitMap *dstBits,
const Rect *srcRect, const Rect *dstRect,
const RGBColor *seedRGB,
ColorSearchProcPtr matchProc, long matchData);

Creating, Setting, and Disposing of Pixel Maps

/* DisposePixMap is also spelled as DisposPixMap */

pascal PixMapHandle NewPixMap

(void);

pascal void CopyPixMap (PixMapHandle srcPM, PixMapHandle dstPM);

pascal void SetPortPix (PixMapHandle pm);

pascal void DisposePixMap (PixMapHandle pm);

Creating and Disposing of Pixel Patterns

/* DisposePixPat is also spelled as DisposPixPat */

pascal PixPatHandle GetPixPat
(short patID);

pascal PixPatHandle NewPixPat
(void);

pascal void CopyPixPat (PixPatHandle srcPP, PixPatHandle dstPP);

pascal void MakeRGBPat (PixPatHandle pp, const RGBColor *myColor);

pascal void DisposePixPat (PixPatHandle pp);

Creating and Disposing of Color Tables

/* DisposeCTable is also spelled as DisposCTable */

pascal CTabHandle GetCTable
(short ctID);

pascal void DisposeCTable (CTabHandle cTable);

Retrieving Color QuickDraw Result Codes

pascal short QDError (void);

C H A P T E R 4

Color QuickDraw

4-124 Summary of Color QuickDraw

Customizing Color QuickDraw Operations

pascal void SetStdCProcs (CQDProcs *procs);

Reporting Data Structure Changes to QuickDraw

pascal void CTabChanged (CTabHandle ctab);

pascal void PixPatChanged (PixPatHandle ppat);

pascal void PortChanged (GrafPtr port);

pascal void GDeviceChanged (GDHandle gdh);

Application-Defined Function

pascal Boolean MyColorSearch(rgb RGBColor, position LongInt);

Assembly-Language Summary

Data Structures

PixMap Data Structure

0 pmBaseAddr long pixel image
4 pmRowBytes word flags, and row width
6 pmBounds 8 bytes boundary rectangle

14 pmVersion word PixMap version number
16 pmPackType word packing format
18 pmPackSize long size of data in packed state
22 pmHRes long horizontal resolution (dpi)
26 pmVRes long vertical resolution (dpi)
30 pmPixelType word format of pixel image
32 pmPixelSize word physical bits per pixel
34 pmCmpCount word logical components per pixel
36 pmCmpSize word logical bits per component
38 pmPlaneBytes long offset to next plane
42 pmTable long handle to next ColorTable record
46 pmReserved long reserved; must be 0

C H A P T E R 4

Color QuickDraw

Summary of Color QuickDraw 4-125

CGrafPort Data Structure

Relative Offsets of Additional Fields in a CGrafPort Record

0 device short device ID for font selection
2 portPixMap long handle to PixMap record
6 portVersion short highest 2 bits always set
8 grafVars long handle to GrafVars record

12 chExtra short added width for nonspace characters
14 pnLocHFrac short pen fraction
16 portRect 8 bytes port rectangle
24 visRgn long visible region
28 clipRgn long clipping region
32 bkPixPat long background pattern
36 rgbForeColor 6 bytes requested foreground color
42 rgbBackColor 6 bytes requested background color
48 pnLoc long pen location
52 pnSize long pen size
56 pnMode word pattern mode
58 pnPixPat long pen pattern
62 fillPixPat long fill pattern
66 pnVis word pen visibility
68 txFont word font number for text
70 txFace word text’s font style
72 txMode word source mode for text
74 txSize word font size for text
76 spExtra long added width for space characters
80 fgColor long actual foreground color
84 bkColor long actual background color
88 colrBit word plane being drawn
90 patStretch word used internally
92 picSave long picture being saved, used internally
96 rgnSave long region being saved, used internally

100 polySave long polygon being saved, used internally
104 grafProcs long low-level drawing routines

portBits portPixMap long handle to PixMap record
portPixMap+4 portVersion word highest 2 bits always set
portVersion+2 grafVars long handle to a GrafVars record
grafVars+4 chExtra word added width for nonspace characters
chExtra+2 pnLocHFrac word pen fraction
bkPat bkPixPat long background pattern
bkPixPat+4 rgbFgColor 6 bytes requested foreground color
rgbFgColor+6 rgbBkColor 6 bytes requested background color
pnPat pnPixPat long pen pattern
pnPixPat+4 fillPixPat long fill pattern

C H A P T E R 4

Color QuickDraw

4-126 Summary of Color QuickDraw

RGBColor Data Structure

ColorSpec Data Structure

ColorTable Data Structure

MatchRec Data Structure

PixPat Data Structure

0 red short magnitude of red component
2 green short magnitude of green component
4 blue short magnitude of blue component

0 value short index or other value
2 rgb 6 bytes true color

0 ctSeed long unique identifier for table
4 transIndex word index of transparent pixel (obsolete)
8 ctFlags word high bit: 0 = pixel map; 1 = device

10 ctSize word number of entries in next field
12 ctTable variable array of ColorSpec records

0 red word red component of seed
2 green word green component of seed
4 blue word blue component of seed
6 matchData long value in matchData parameter of SeedCFill or CalcCMask

0 patType word pattern type
2 patMap long handle to PixMap record for pattern
6 patData long pixel-image defining pattern

10 patXData long expanded pattern data
14 patXValid word for expanded pattern data
16 patXMap long handle to expanded pattern data
20 pat1Data 8 bytes a bit pattern for a GrafPort record

C H A P T E R 4

Color QuickDraw

Summary of Color QuickDraw 4-127

CQDProcs Data Structure

GrafVars Data Structure

Trap Macros Requiring Routine Selectors

_QDExtensions

0 textProc long pointer to text-drawing routine
4 lineProc long pointer to line-drawing routine
8 rectProc long pointer to rectangle-drawing routine

12 rRectProc long pointer to rounded rectangle–drawing routine
16 ovalProc long pointer to oval-drawing routine
20 arcProc long pointer to arc/wedge-drawing routine
24 polyProc long pointer to polygon-drawing routine
28 rgnProc long pointer to region-drawing routine
32 bitsProc long pointer to bit transfer routine
36 commentProc long pointer to picture comment–processing routine
40 txMeasProc long pointer to text-width measurement routine
44 getPicProc long pointer to picture retrieval routine
48 putPicProc long pointer to picture-saving routine
52 opcodeProc long reserved for future use
56 newProc1 long reserved for future use
60 newProc2 long reserved for future use
64 newProc3 long reserved for future use
68 newProc4 long reserved for future use
72 newProc5 long reserved for future use
76 newProc6 long reserved for future use

0 rgbOpColor 6 bytes color for addPin, subPin, and blend
6 rgbHiliteColor 6 bytes color for highlighting

12 pmFgColor long palette handle for foreground color
16 pmFgIndex short index value for foreground color
18 pmBkColor long palette handle for background color
22 pmBkIndex short index value for background color
24 pmFlags short flags for Palette Manager

Selector Routine

$00040007 CTabChanged

$00040008 PixPatChanged

$00040009 PortChanged

$0004000A GDeviceChanged

C H A P T E R 4

Color QuickDraw

4-128 Summary of Color QuickDraw

Result Codes
noErr 0 No error
paramErr –50 Illegal parameter to NewGWorld

–143 CopyBits couldn’t allocate required temporary memory
–144 Ran out of stack space while drawing polygon

noMemForPictPlaybackErr –145 Insufficient memory for drawing the picture
regionTooBigError –147 Region too big or complex
pixmapTooDeepErr –148 Pixel map is deeper than 1 bit per pixel
nsStackErr –149 Insufficient stack
cMatchErr –150 Color2Index failed to find an index
cTempMemErr –151 Failed to allocate memory for temporary structures
cNoMemErr –152 Failed to allocate memory for structure
cRangeErr –153 Range error on color table request
cProtectErr –154 ColorTable record entry protection violation
cDevErr –155 Invalid type of graphics device
cResErr –156 Invalid resolution for MakeITable
cDepthErr –157 Invalid pixel depth specified to NewGWorld
rgnTooBigErr –500 Bitmap would convert to a region greater than 64 KB

Contents 5-1

C H A P T E R 5

Contents

Graphics Devices

About Graphics Devices 5-3

Using Graphics Devices 5-6

Optimizing Your Images for Different Graphics Devices 5-8

Zooming Windows on Multiscreen Systems 5-9

Setting a Device’s Pixel Depth 5-13

Exceptional Cases When Working With Color Devices 5-13

Graphics Devices Reference 5-14

Data Structures 5-15

Routines for Graphics Devices 5-19

Creating, Setting, and Disposing of GDevice Records 5-19

Getting the Available Graphics Devices 5-25

Determining the Characteristics of a Video Device 5-29

Changing the Pixel Depth for a Video Device 5-33

Application-Defined Routine 5-35

Resource 5-37

The Screen Resource 5-37

Summary of Graphics Devices 5-38

Pascal Summary 5-38

Constants 5-38

Data Types 5-39

Routines for Graphics Devices 5-40

Application-Defined Routine 5-40

C Summary 5-41

Constants 5-41

Data Types 5-41

Functions for Graphics Devices 5-43

Application-Defined Function 5-44

Assembly-Language Summary 5-44

Data Structure 5-44

Global Variables 5-44

C H A P T E R 5

About Graphics Devices 5-3

Graphics Devices

This chapter describes how Color QuickDraw manages video devices so that your

application can draw to a window’s graphics port without regard to the capabilities of

the screen—even if the window spans more than one screen.

Read this chapter to learn how Color QuickDraw communicates with a video

device—such as a plug-in video card or a built-in video interface—by automatically

creating and managing a record of data type GDevice. Your application generally never

needs to create GDevice records. However, your application may find it useful to

examine GDevice records to determine the capabilities of the user’s screens. When

zooming a window, for example, your application can use GDevice records to

determine which screen contains the largest area of a window, and then determine the

ideal window size for that screen. You may also wish to use the DeviceLoop procedure,

described in this chapter, if you want to optimize your application’s drawing for screens

with different capabilities.

This chapter describes the GDevice record and the routines that Color QuickDraw

uses to create and manage such records. This chapter also describes routines that

your application might find helpful for determining screen characteristics. For many

applications, QuickDraw provides a device-independent interface; as described in other

chapters of this book, your application can draw images in a graphics port for a window,

and Color QuickDraw automatically manages the path to the screen—even if the user

has multiple screens. However, if your application needs more control over how it draws

images on screens of various sizes and with different capabilities, your application can

use the routines described in this chapter.

About Graphics Devices

A graphics device is anything into which QuickDraw can draw. There are three types of

graphics devices: video devices (such as plug-in video cards and built-in video

interfaces) that control screens, offscreen graphics worlds (which allow your application

to build complex images off the screen before displaying them), and printing graphics

ports for printers. The chapter “Offscreen Graphics Worlds” in this book describes how

to use QuickDraw to draw into an offscreen graphics world; the chapter “Printing

Manager” in this book describes how to use QuickDraw to draw into a printing

graphics port.

For a video device or an offscreen graphics world, Color QuickDraw stores state

information in a GDevice record. Note that printers do not have GDevice records.

Color QuickDraw automatically creates GDevice records. (Basic QuickDraw does not

create GDevice records, nor does basic QuickDraw support multiple screens.)

When the system starts up, it allocates and initializes a handle to a GDevice record for

each video device it finds. When you use the NewGWorld function (described in the

chapter “Offscreen Graphics Worlds” in this book), Color QuickDraw automatically

creates a GDevice record for the new offscreen graphics world.

C H A P T E R 5

Graphics Devices

5-4 About Graphics Devices

All existing GDevice records are linked together in a list, called the device list; the

global variable DeviceList holds a handle to the first record in the list. At any given

time, exactly one graphics device is the current device (also called the active device)—the

one on which drawing is actually taking place. A handle to its GDevice record is stored

in the global variable TheGDevice. By default, the GDevice record corresponding to

the first video device found is marked as the current device; all other graphics devices

in the list are initially marked as inactive.

When the user moves a window or creates a window on another screen, and your

application draws into that window, QuickDraw automatically makes the video device

for that screen the current device. Color QuickDraw stores that information in the global

variable TheGDevice. As Color QuickDraw draws across a user’s video devices, it

keeps switching to the GDevice record for the video device on which Color QuickDraw

is actively drawing.

The user can use the Monitors control panel to set the desired pixel depth of each video

device; to set the display to color, grayscale, or black and white; and to set the position of

each screen relative to the main screen (that is, the one that contains the menu bar). The

Monitors control panel stores all configuration information for a multiscreen system in

the System file in a resource of type 'scrn' that has a resource ID of 0. Your application

should never create this resource, and should never alter or examine it. The 'scrn'

resource consists of an array of data structures that are analogous to GDevice records.

Each element of this array contains information about a different video device.

When the InitGraf procedure (described in the chapter “Basic QuickDraw” in this

book) initializes QuickDraw, it checks the System file for the 'scrn' resource. If the

'scrn' resource is found and it matches the hardware, InitGraf organizes the video

devices according to the contents of this resource; if not, then QuickDraw uses only the

video device for the startup screen.

C H A P T E R 5

Graphics Devices

About Graphics Devices 5-5

The GDevice record is diagrammed in Figure 5-1. Some aspects of its contents are

discussed after the figure; see page 5-15 for a complete description of the fields. Your

application can use the routines described in this chapter to manipulate values for the

fields in this record.

Figure 5-1 The GDevice record

The gdITable field points to an inverse table, which the Color Manager creates and

maintains. An inverse table is a special Color Manager data structure arranged in such a

manner that, given an arbitrary RGB color, its pixel value (that is, its index number in the

CLUT) can be found quickly. The process is very fast once the table is built, but, if a color

is changed in the video device’s CLUT, the Color Manager must rebuild the inverse table

the next time it has to find a color. The Color Manager is described in the chapter “Color

Manager” in Inside Macintosh: Advanced Color Imaging.

C H A P T E R 5

Graphics Devices

5-6 Using Graphics Devices

The gdPMap field contains a handle to the pixel map that reflects the imaging capabilities

of the graphics device. The pixel map’s PixelType and PixelSize fields indicate

whether the graphics device is direct or indexed and what pixel depth it displays. Color

QuickDraw automatically synchronizes this pixel map’s color table with the CLUT on

the video device.

The gdRect field describes the graphics device’s boundary rectangle in global

coordinates. Color QuickDraw maps the (0,0) origin point of the global coordinate plane

to the main screen’s upper-left corner, and other screens are positioned adjacent to the

main screen according to the settings made by the user with the Monitors control panel.

Using Graphics Devices

To use graphics devices, your application generally uses the QuickDraw routines

described elsewhere in this book to draw images into a window; Color QuickDraw

automatically displays your images in a manner appropriate for each graphics device

that contains a portion of that window.

Note

The pixel map for a window’s color graphics port always consists of the
pixel depth, color table, and boundary rectangle of the main screen, even
if the window is created on or moved to an entirely different screen. ◆

Instead of drawing directly into an onscreen graphics port, your application can use an

offscreen graphics world (described in the chapter “Offscreen Graphics Worlds”) to

create images with the ideal pixel depth and color table required by your application.

Then your application can use the CopyBits procedure to copy the images to the

screen. Color QuickDraw converts the colors of the images for appropriate display on

grayscale graphics devices and on direct and indirect color graphics devices. The manner

in which Color QuickDraw translates the colors specified by your application to different

graphics devices is described in the chapter “Color QuickDraw.” However, if Color

QuickDraw were to translate the colors of a color wheel (such as that used by the Color

Picker, described in Inside Macintosh: Advanced Color Imaging), the image would appear as

solid black on a black-and-white screen.

C H A P T E R 5

Graphics Devices

Using Graphics Devices 5-7

Many applications can let Color QuickDraw manage multiple video devices of differing

dimensions and pixel depths. If your application needs more control over video device

management—if it needs certain pixel depths or sets of colors to function effectively, for

example—you can take several steps.

■ If you need to know about the characteristics of available video devices, your
application can use the GetDeviceList function to obtain a handle to the first
GDevice record in the device list, the GetGDevice function to obtain a handle to
the GDevice record for the current device, the GetMainDevice function to obtain a
handle to the GDevice record for the main screen, or the GetMaxDevice function to
obtain a handle to the GDevice record for the graphics device with the greatest pixel
depth. Your application can then pass this handle to a routine like the
TestDeviceAttribute function or the HasDepth function to determine various
characteristics of a video device, or your application can examine the gdRect field of
the GDevice record to determine the dimensions of the screen it represents.

■ If you want to optimize your application’s drawing for the best possible display on
whatever type of screen is the current device, your application can use the
DeviceLoop procedure, described on page 5-29, to determine the capabilities of the
current device before drawing into a window on that device.

■ If the current device is not suitable for the proper display of an image—for example, if
the user has moved the window for your multicolored display of national flags to a
black-and-white screen—your application can display the best image possible and
display a message explaining that a more capable screen is required for better
presentation of the image. Your application can use the DeviceLoop procedure to
determine the capabilities of the current device.

■ If your application uses the HasDepth function to determine that the current device
can support the pixel depth required for the proper display of your image, but the
DeviceLoop procedure indicates that the user has changed the screen’s display, your
application can use the SetDepth function to change the pixel depth of the screen.
Note that the SetDepth function is provided for applications that are able to run
only on graphics devices of a particular depth. Your application should use it only
after soliciting the user’s permission with a dialog box.

■ If your application needs more control over colors on different indexed devices, your
application can use the Palette Manager to arrange different sets of colors for
particular images. Because the CLUT is variable on most video devices, your
application can display up to 16 million colors, although on an 8-bit indexed device,
for example, only 256 different colors can appear at once. See the chapter “Palette
Manager” in Inside Macintosh: Advanced Color Imaging for more information.

■ If your application needs to work with offscreen images that have characteristics
different from those on the available graphics devices, your application can create
offscreen graphics worlds, which contain their own GDevice records. See the chapter
“Offscreen Graphics Worlds” in this book for more information.

C H A P T E R 5

Graphics Devices

5-8 Using Graphics Devices

To use the routines described in this chapter, your application must check for the

existence of Color QuickDraw by using the Gestalt function with the

gestaltQuickDrawVersion selector. The Gestalt function returns a 4-byte value in

its response parameter; the low-order word contains QuickDraw version data. In that

low-order word, the high-order byte gives the major revision number and the low-order

byte gives the minor revision number. If the value returned in the response parameter

is greater than or equal to the value of the constant gestalt32BitQD, then the system

supports Color QuickDraw and all of the routines described in this chapter.

Optimizing Your Images for Different Graphics Devices
The DeviceLoop procedure searches for graphics devices that intersect your window’s

drawing region, and it informs your application of each different graphics device it

finds. The DeviceLoop procedure provides your application with information about the

current device’s pixel depth and other attributes. Your application can then choose what

drawing technique to use for the current device. For example, your application might

use inversion to achieve a highlighting effect on a 1-bit graphics device, and, by using

the HiliteColor procedure described in the chapter “Color QuickDraw,” it might

specify a color like magenta as the highlight color on a color graphics device.

For example, you can call DeviceLoop after calling the Event Manager procedure

BeginUpdate whenever your application needs to draw into a window, as shown in

Listing 5-1.

Listing 5-1 Using the DeviceLoop procedure

PROCEDURE DoUpdate (window: WindowPtr);

VAR

windowType := Integer;

myWindow: LongInt;

BEGIN

windowType := MyGetWindowType(window);

CASE windowType OF

kSimpleRectanglesWindow: {simple case: window with 2 color rectangles}

BEGIN

BeginUpdate(window);

myWindow := LongInt(window); {coerce window ptr for MyDrawingProc}

DeviceLoop(window^.visRgn, @MyTrivialDrawingProc,

 myWindow, []);

EndUpdate;

END;

{handle other window types--documents, dialog boxes, etc.--here}

END;

C H A P T E R 5

Graphics Devices

Using Graphics Devices 5-9

When you use the DeviceLoop procedure, you must supply a handle to a drawing

region and a pointer to your own application-defined drawing procedure. In Listing 5-1,

a handle to the window’s visible region and a pointer to an application-defined drawing

procedure called MyTrivialDrawingProc are passed to DeviceLoop. For each

graphics device it finds as the application updates its window, DeviceLoop calls

MyTrivialDrawingProc.

Because DeviceLoop provides your drawing procedure with the pixel depth of the

current device (along with other attributes passed to your drawing procedure in the

deviceFlags parameter), your drawing procedure can optimize its drawing for

whatever type of video device is the current device, as illustrated in Listing 5-2.

Listing 5-2 Drawing into different screens

PROCEDURE MyTrivialDrawingProc (depth: Integer;

 deviceFlags: Integer;

 targetDevice: GDHandle;

 userData: LongInt);

VAR

window: WindowPtr;

BEGIN

window:= WindowPtr(userData);

EraseRect(window^.portRect);

CASE depth OF

1: {black-and-white screen}

MyDraw1BitRects(window); {draw with ltGray, dkGray pats}

2:

MyDraw2BitRects(window); {draw with 2 of 4 available colors}

{handle other screen depths here}

END;

Zooming Windows on Multiscreen Systems
The zoom box in the upper-right corner of the standard document window allows the

user to alternate quickly between two window positions and sizes: the user state and the

standard state.

The user state is the window size and location established by the user. If your

application does not supply an initial user state, the user state is simply the size and

location of the window when it was created, until the user resizes it.

The standard state is the window size and location that your application considers most

convenient, considering the function of the document and the screen space available. In

a word-processing application, for example, a standard-state window might show a

full page, if possible, or a page of full width and as much length as fits on the screen.

If the user changes the page size with the Page Setup command, the application might

C H A P T E R 5

Graphics Devices

5-10 Using Graphics Devices

adjust the standard state to reflect the new page size. If your application does not define

a standard state, the Window Manager automatically sets the standard state to the entire

gray region on the main screen, minus a three-pixel border on all sides. (See Macintosh
Human Interface Guidelines for a detailed description of how your application determines

where to open and zoom windows.) The user cannot change a window’s standard state.

(The user and standard states are stored in a data structure of type WStateData whose

handle appears in the dataHandle field of the window record.)

Listing 5-3 illustrates an application-defined procedure, DoZoomWindow, which an

application might call when the user clicks the zoom box. Because the user might have

moved the window to a different screen since it was last zoomed, the procedure first

determines which screen contains the largest area of the window and then calculates the

ideal window size for that screen before zooming the window.

The screen calculations in the DoZoomWindow procedure compare GDevice records

stored in the device list. (If Color QuickDraw is not available, DoZoomWindow assumes

that it’s running on a computer with a single screen.)

Listing 5-3 Zooming a window

PROCEDURE DoZoomWindow (thisWindow: windowPtr; zoomInOrOut: Integer);

VAR

gdNthDevice, gdZoomOnThisDevice: GDHandle;

savePort: GrafPtr;

windRect, zoomRect, theSect: Rect;

sectArea, greatestArea: LongInt;

wTitleHeight: Integer;

sectFlag: Boolean;

BEGIN

GetPort(savePort);

SetPort(thisWindow);

EraseRect(thisWindow^.portRect); {erase to avoid flicker}

IF zoomInOrOut = inZoomOut THEN {zooming to standard state}

BEGIN

IF NOT gColorQDAvailable THEN {assume a single screen and }

BEGIN { set standard state to full screen}

zoomRect := screenBits.bounds;

InsetRect(zoomRect, 4, 4);

WStateDataHandle(WindowPeek(thisWindow)^.dataHandle)^^.stdState

:= zoomRect;

END

ELSE {locate window on available screens}

BEGIN

windRect := thisWindow^.portRect;

LocalToGlobal(windRect.topLeft); {convert to global coordinates}

C H A P T E R 5

Graphics Devices

Using Graphics Devices 5-11

LocalToGlobal(windRect.botRight);

{calculate height of window's title bar}

wTitleHeight := windRect.top - 1 -

 WindowPeek(thisWindow)^.strucRgn^^.rgnBBox.top;

windRect.top := windRect.top - wTitleHeight;

gdNthDevice := GetDeviceList; {get the first screen}

greatestArea := 0; {initialize area to 0}

{check window against all gdRects in gDevice list and remember }

{ which gdRect contains largest area of window}

WHILE gdNthDevice <> NIL DO

IF TestDeviceAttribute(gdNthDevice, screenDevice) THEN

IF TestDeviceAttribute(gdNthDevice, screenActive) THEN

BEGIN

{The SectRect function calculates the intersection }

{ of the window rectangle and this GDevice's boundary }

{ rectangle and returns TRUE if the rectangles intersect, }

{ FALSE if they don't.}

sectFlag := SectRect(windRect, gdNthDevice^^.gdRect,

 theSect);

{determine which screen holds greatest window area}

{first, calculate area of rectangle on current screen}

WITH theSect DO

sectArea := LongInt(right - left) * (bottom - top);

IF sectArea > greatestArea THEN

BEGIN

greatestArea := sectArea; {set greatest area so far}

gdZoomOnThisDevice := gdNthDevice; {set zoom device}

END;

gdNthDevice := GetNextDevice(gdNthDevice); {get next }

END; {of WHILE} { GDevice record}

{if gdZoomOnThisDevice is on main device, allow for menu bar height}

IF gdZoomOnThisDevice = GetMainDevice THEN

wTitleHeight := wTitleHeight + GetMBarHeight;

WITH gdZoomOnThisDevice^^.gdRect DO {create the zoom rectangle}

BEGIN

{set the zoom rectangle to the full screen, minus window title }

{ height (and menu bar height if necessary), inset by 3 pixels}

SetRect(zoomRect, left + 3, top + wTitleHeight + 3,

 right - 3, bottom - 3);

{If your application has a different "most useful" standard }

{ state, then size the zoom window accordingly.}

C H A P T E R 5

Graphics Devices

5-12 Using Graphics Devices

{set up the WStateData record for this window}

WStateDataHandle(WindowPeek(thisWindow)^.dataHandle)^^.stdState

 := zoomRect;

END;

END;

END; {of inZoomOut}

{if zoomInOrOut = inZoomIn, just let ZoomWindow zoom to user state}

{zoom the window frame}

ZoomWindow(thisWindow, zoomInOrOut, (thisWindow = FrontWindow));

MyResizeWindow(thisWindow); {application-defined window-sizing routine}

SetPort(savePort);

END; (of DoZoomWindow)

If the user is zooming the window to the standard state, DoZoomWindow calculates a

new standard size and location based on the application’s own considerations, the

current location of the window, and the available screens. The DoZoomWindow

procedure always places the standard state on the screen where the window is currently

displayed or, if the window spans screens, on the screen containing the largest area

of the window.

Listing 5-3 uses the QuickDraw routines GetDeviceList, TestDeviceAttribute,

GetNextDevice, SectRect, and GetMainDevice to examine characteristics of the

available screens as stored in GDevice records. Most of the code in Listing 5-3 is

devoted to determining which screen should display the window in the standard state.

IMPORTANT

Never use the bounds field of a PixMap record to determine the size of
the screen; instead use the value of the gdRect field of the GDevice
record for the screen, as shown in Listing 5-3. ▲

After calculating the standard state, if necessary, DoZoomWindow calls the ZoomWindow

procedure to redraw the window frame in the new size and location and then calls the

application-defined procedure MyResizeWindow to redraw the window’s content

region. For more information on zooming and resizing windows, see the chapter

“Window Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

C H A P T E R 5

Graphics Devices

Using Graphics Devices 5-13

Setting a Device’s Pixel Depth
The Monitors control panel is the user interface for changing the pixel depth, color

capabilities, and positions of video devices. Since the user can control the capabilities of

the video device, your application should be flexible: although it may have a preferred

pixel depth, your application should do its best to accommodate less than ideal

conditions.

Your application can use the SetDepth function to change the pixel depth of a video

device, but your application should do so only with the consent of the user. If your

application must have a specific pixel depth, it can display a dialog box that offers the

user a choice between changing to that depth or canceling display of the image. This

dialog box saves the user the trouble of going to the Monitors control panel before

returning to your application. (See the chapter “Dialog Manager” in Inside Macintosh:
Macintosh Toolbox Essentials for more information about creating and using dialog boxes.)

Before calling SetDepth, use the HasDepth function to determine whether the

available hardware can support the pixel depth you require. The SetDepth function is

described on page 5-34, and the HasDepth function is described on page 5-33.

Exceptional Cases When Working With Color Devices
If your application always specifies colors in RGBColor records, Color QuickDraw

automatically handles the colors on both indexed and direct devices. However, if your

application does not specify colors in RGBColor records, your application may need to

create and use special-purpose CGrafPort, PixMap, and GDevice records with the

routines described in the chapter “Offscreen Graphics Worlds.”

If your application must work with CGrafPort, PixMap, and GDevice records in ways

beyond the scope of the routines described elsewhere in this book, the following

guidelines may aid you in adapting Color QuickDraw to color graphics devices.

■ Don’t draw directly to the screen. Create your own offscreen graphics world (as
described in the chapter “Offscreen Graphics Worlds”) and use the CopyBits,
CopyMask, or CopyDeepMask routine (described in the chapter “Color QuickDraw”)
to transfer the image to the screen.

■ Don’t directly change the fgColor or bkColor fields of a GrafPort record and
expect them to be used as the pixel values. Color QuickDraw recalculates these values
for each graphics device. If you want to draw with a color with a particular index
value, use a palette with explicit colors, as described in Inside Macintosh: Advanced Color
Imaging. For device-independent colors, use the RGBForeColor and RGBBackColor
procedures, described in the chapter “Color QuickDraw” in this book.

C H A P T E R 5

Graphics Devices

5-14 Graphics Devices Reference

■ Don’t copy a GDevice record’s PixMap record. Instead, use the NewPixMap function
or the CopyPixMap procedure, and fill all the fields. (These routines are described in
the chapter “Color QuickDraw.”) The NewPixMap function returns a PixMap record
that is cloned from the PixMap record pointed to by the global variable TheGDevice.
If you don’t want a copy of the main screen’s PixMap record—for example, you want
one that is a different pixel depth—then you must fill out more fields than just
pixelSize: you must fill out the pixelType, cmpCount, and cmpSize fields. Set
the pmVersion field to 0 when initializing your own PixMap record. For future
compatibility you should also set the packType, packSize, planeBytes, and
pmReserved fields to 0. Don’t assume a PixMap record has a color table—a pixel
map for a direct device doesn’t need one. For compatibility, a PixMap record for a
direct device should have a dummy handle in the pmTable field that points to a
ColorTable record with a seed value equal to cmpSize × cmpCount and a ctSize
field set to 0.

■ Fill out all the fields of a new GDevice record. When creating an offscreen GDevice
record by calling NewGDevice with the mode parameter set to –1, you must fill out
the fields of the GDevice record (for instance, the gdType field) yourself. If you want
a copy of an existing GDevice record, copy the gdType field from it. If you explicitly
want an indexed device, assign the clutType constant to the gdType field.

Graphics Devices Reference

This section describes the GDevice record, the routines that manipulate GDevice

records, and the 'scrn' resource.

“Data Structures” shows the Pascal data structure for the GDevice record, which

contains information about a video device or offscreen graphics world. “Data Structures”

also shows the data structure for the DeviceLoopFlags data type, which defines a set

of options you can specify to the DeviceLoop procedure.

“Routines for Graphics Devices” describes routines for creating, setting, and disposing of

GDevice records; getting the available graphics devices; and determining device

characteristics. Your application generally never needs to create, set, or dispose of

GDevice records. However, you may find it useful for your application to get GDevice

records to determine the capabilities of the user’s screens. When zooming a window, for

example, your application can use GDevice records to determine which screen contains

the largest area of a window, and then determine the ideal window size for that screen.

You may also wish to use the DeviceLoop procedure, described in this chapter, if you

want to optimize your application’s drawing for graphics devices with different

capabilities. “Application-Defined Routine” describes how you can define your own

drawing procedure when optimizing your application’s drawing for different graphics

devices.

“Resource” describes the screen ('scrn') resource. System software automatically

creates and uses this resource; your application never needs it. The screen resource is

documented here for your general information.

C H A P T E R 5

Graphics Devices

Graphics Devices Reference 5-15

Data Structures

This section shows the Pascal data structure for the GDevice record, which can contain

information about a video device or an offscreen graphics world. This section also shows

the data structure for the DeviceLoopFlags data type, which defines a set of options

you can specify to the DeviceLoop procedure.

GDevice

Color QuickDraw stores state information for video devices and offscreen graphics

worlds in GDevice records. When the system starts up, it allocates and initializes one

handle to a GDevice record for each video device it finds. When you use the

NewGWorld function (described in the chapter “Offscreen Graphics Worlds” in this

book), Color QuickDraw automatically creates a GDevice record for the new offscreen

graphics world. The system links these GDevice records in a list, called the device list.
(You can find a handle to the first element in the device list in the global variable

DeviceList.) By default, the GDevice record corresponding to the first video device

found is marked as the current device; all other graphics devices in the list are initially

marked as inactive.

Note
Printing graphics ports, described in the chapter “Printing Manager” in
this book, do not have GDevice records. ◆

When the user moves a window or creates a window on another screen, and your

application draws into that window, Color QuickDraw automatically makes the video

device for that screen the current device. Color QuickDraw stores that information in the

global variable TheGDevice.

GDevice records that correspond to video devices have drivers associated with them.

These drivers can be used to change the mode of the video device from black and white

to color and to change the pixel depth. The set of routines supported by a video driver is

defined and described in Designing Cards and Drivers for the Macintosh Family, third

edition. Application-created GDevice records usually don’t require drivers.

A GDevice record is defined as follows:

TYPE GDevice =

RECORD

gdRefNum: Integer; {reference number of screen }

{ driver}

gdID: Integer; {reserved; set to 0}

gdType: Integer; {device type--indexed or direct}

gdITable: ITabHandle; {handle to inverse table for }

{ Color Manager}

gdResPref: Integer; {preferred resolution}

C H A P T E R 5

Graphics Devices

5-16 Graphics Devices Reference

gdSearchProc: SProcHndl; {handle to list of search }

{ functions}

gdCompProc: CProcHndl; {handle to list of complement }

{ functions}

gdFlags: Integer; {graphics device flags}

gdPMap: PixMapHandle; {handle to PixMap record for }

{ displayed image}

gdRefCon: LongInt; {reference value}

gdNextGD: GDHandle; {handle to next graphics device}

gdRect: Rect; {graphics device's global bounds}

gdMode: LongInt; {graphics device's current mode}

gdCCBytes: Integer; {width of expanded cursor data}

gdCCDepth: Integer; {depth of expanded cursor data}

gdCCXData: Handle; {handle to cursor's expanded }

{ data}

gdCCXMask: Handle; {handle to cursor's expanded }

{ mask}

gdReserved: LongInt; {reserved for future use--must }

{ be 0}

END;

Field descriptions

gdRefNum The reference number of the driver for the screen associated with
the video device. For most video devices, this information is set at
system startup time.

gdID Reserved. If you create your own GDevice record, set this field to 0.

gdType The general type of graphics device. Values include

CONST

clutType = 0; {CLUT device--that is, one with }

{ colors mapped with a color }

{ lookup table}

fixedType = 1; {fixed colors--that is, the }

{ color lookup table can't }

{ be changed}

directType = 2; {direct RGB colors}

These types are described in more detail in the chapter “Color
Manager” in Inside Macintosh: Advanced Color Imaging.

gdITable A handle to the inverse table for color mapping; the inverse table is
described in the chapter “Color Manager” in Inside Macintosh:
Advanced Color Imaging.

C H A P T E R 5

Graphics Devices

Graphics Devices Reference 5-17

gdResPref The preferred resolution for inverse tables.

gdSearchProc A handle to the list of search functions, as described in the chapter
“Color Manager” in Inside Macintosh: Advanced Color Imaging; its
value is NIL for the default function.

gdCompProc A handle to a list of complement functions, as described in the
chapter “Color Manager” in Inside Macintosh: Advanced Color
Imaging; its value is NIL for the default function.

gdFlags The GDevice record’s attributes. To set the attribute bits in the
gdFlags field, use the SetDeviceAttribute procedure
(described on page 5-22)—do not set these flags directly in the
GDevice record. The constants representing each bit are listed here.

CONST {flag bits for gdFlags field of GDevice record}

gdDevType = 0; {if bit is set to 0, graphics device is }

{ black and white; if set to 1, }

{ graphics device supports color}

burstDevice = 7; {if bit is set to 1, graphics device }

{ supports block transfer}

ext32Device = 8; {if bit is set to 1, graphics device }

{ must be used in 32-bit mode}

ramInit = 10; {if bit is set to 1, graphics device has }

{ been initialized from RAM}

mainScreen = 11; {if bit is set to 1, graphics device is }

{ the main screen}

allInit = 12; {if bit is set to 1, all graphics devices }

{ were initialized from 'scrn' resource}

screenDevice = 13; {if bit is set to 1, graphics device is }

{ a screen}

noDriver = 14; {if bit is set to 1, GDevice }

{ record has no driver}

screenActive = 15; {if bit is set to 1, graphics device is }

{ active}

gdPMap A handle to a PixMap record giving the dimension of the image
buffer, along with the characteristics of the graphics device
(resolution, storage format, color depth, and color table). PixMap
records are described in the chapter “Color QuickDraw” in this
book. For GDevice records, the high bit of the global variable
TheGDevice^^.gdPMap^^.pmTable^^.ctFlags
is always set.

gdRefCon A value used by system software to pass device-related parameters.
Since a graphics device is shared, you shouldn’t store data here.

gdNextGD A handle to the next graphics device in the device list. If this is the
last graphics device in the device list, the field contains 0.

C H A P T E R 5

Graphics Devices

5-18 Graphics Devices Reference

gdRect The boundary rectangle of the graphics device represented by the
GDevice record. The main screen has the upper-left corner of the
rectangle set to (0,0). All other graphics devices are relative to this
point.

gdMode The current setting for the graphics device mode. This value is
passed to the video driver to set its pixel depth and to specify color
or black and white; applications don’t need this information. See
Designing Cards and Drivers for the Macintosh Family, third edition,
for more information about the modes specified in this field.

gdCCBytes The rowBytes value of the expanded cursor. Your application
should not change this field. Cursors are described in the chapter
“Cursor Utilities.”

gdCCDepth The depth of the expanded cursor. Your application should not
change this field.

gdCCXData A handle to the cursor’s expanded data. Your application should
not change this field.

gdCCXMask A handle to the cursor’s expanded mask. Your application should
not change this field.

gdReserved Reserved for future expansion; it must be set to 0 for future
compatibility.

Your application should never need to directly change the fields of a GDevice record. If

you find it absolutely necessary for your application to so, immediately use the

GDeviceChanged procedure to notify Color QuickDraw that your application has

changed the GDevice record. The GDeviceChanged procedure is described in the

chapter “Color QuickDraw” in this book.

DeviceLoopFlags

When you use the DeviceLoop procedure (described on page 5-29), you can change its

default behavior by using the flags parameter to specify one or more members of the

set of flags defined by the DeviceLoopFlags data type. These flags are described here;

if you want to use the default behavior of DeviceLoop, pass in the flags parameter 0

in your C code or an empty set ([]) in your Pascal code.

TYPE DeviceLoopFlags =

SET OF {for flags parameter of DeviceLoop}

(singleDevices, {DeviceLoop doesn't group similar graphics }

{ devices when calling drawing procedure}

dontMatchSeeds, {DeviceLoop doesn't consider ctSeed fields }

{ of ColorTable records for graphics }

{ devices when comparing them}

allDevices); {DeviceLoop ignores value of drawingRgn }

 { parameter--instead, it calls drawing }

{ procedure for every screen}

C H A P T E R 5

Graphics Devices

Graphics Devices Reference 5-19

Field descriptions

singleDevices If this flag is not set, DeviceLoop calls your drawing procedure
only once for each set of similar graphics devices, and the first one
found is passed as the target device. (It is assumed to be
representative of all the similar graphics devices.) If you set the
singleDevices flag, then DeviceLoop does not group similar
graphics devices—that is, those having identical pixel depths,
black-and-white or color settings, and matching color table
seeds—when it calls your drawing procedure.

dontMatchSeeds
If you set the dontMatchSeeds flag, then DeviceLoop doesn’t
consider color table seeds when comparing graphics devices for
similarity; DeviceLoop ignores this flag if you set the
singleDevices flag. Used primarily by the Palette Manager, the
ctSeed field of a ColorTable record is described in the chapter
“Color QuickDraw” in this book.

allDevices If you set the allDevices flag, DeviceLoop ignores the
drawingRgn parameter and calls your drawing procedure for
every graphics device. The value of current graphics port’s visRgn
field is not affected when you set this flag.

Routines for Graphics Devices

This section describes routines for creating, setting, and disposing of GDevice records;

for getting the available video devices and offscreen graphics worlds; and for

determining the characteristics of video devices and offscreen graphics worlds.

Generally, your application won’t need to use the routines for creating, setting, and

disposing of GDevice records, because Color QuickDraw calls them automatically as

appropriate. However, you may wish to use the other routines described in this section,

particularly if you want to optimize your application’s drawing for screens with

different capabilities.

Creating, Setting, and Disposing of GDevice Records

Color QuickDraw uses GDevice records to maintain information about video devices

and offscreen graphics worlds. A GDevice record must be allocated with the

NewGDevice function and initialized with the InitGDevice procedure. Normally,

your application does not call these routines directly. When the system starts up, it

allocates and initializes one handle to a GDevice record for each video device it finds.

When you use the NewGWorld function (described in the chapter “Offscreen Graphics

Worlds” in this book), Color QuickDraw automatically creates a GDevice record for the

new offscreen graphics world.

C H A P T E R 5

Graphics Devices

5-20 Graphics Devices Reference

Whenever QuickDraw routines are used to draw into a graphics port on a video device,

Color QuickDraw uses the SetGDevice procedure to make the video device for that

screen the current device. Your application won’t generally need to use this procedure,

because when your application draws into a window on one or more screens, Color

QuickDraw automatically switches GDevice records as appropriate; and when your

application needs to draw into an offscreen graphics world, it can use the SetGWorld

procedure to set the graphics port as well as the GDevice record for the offscreen

environment. However, if your application uses the SetPort procedure (described

in the chapter “Basic QuickDraw” in this book) instead of the SetGWorld procedure to

set the graphics port to or from an offscreen graphics world, then your application must

use SetGDevice in conjunction with SetPort.

You use the SetDeviceAttribute procedure to set attribute bits in a GDevice record.

When Color QuickDraw no longer needs a GDevice record, it uses the

DisposeGDevice procedure to dispose of it. As with the other routines described in

this section, your application typically does not need to use DisposeGDevice.

NewGDevice

You can use the NewGDevice function to create a new GDevice record, although you

generally don’t need to, because Color QuickDraw uses this function to create GDevice

records for your application automatically.

FUNCTION NewGDevice (refNum: Integer; mode: LongInt): GDHandle;

refNum Reference number of the graphics device for which you are creating a
GDevice record. For most video devices, this information is set at system
startup.

mode The device configuration mode. Used by the screen driver, this value sets
the pixel depth and specifies color or black and white.

DESCRIPTION

For the graphics device whose driver is specified in the refNum parameter and whose

mode is specified in the mode parameter, the NewGDevice function allocates a new

GDevice record and all of its handles, and then calls the InitGDevice procedure to

initialize the record. As its function result, NewGDevice returns a handle to the new

GDevice record. If the request is unsuccessful, NewGDevice returns NIL.

The NewGDevice function allocates the new GDevice record and all of its handles

in the system heap, and the NewGDevice function sets all attributes in the gdFlags

field of the GDevice record to FALSE. If your application creates a GDevice record, it

can use the SetDeviceAttribute procedure, described on page 5-22, to change the

flag bits in the gdFlags field of the GDevice record to TRUE. Your application should

never directly change the gdFlags field of the GDevice record; instead, your

application should use only the SetDeviceAttribute procedure.

C H A P T E R 5

Graphics Devices

Graphics Devices Reference 5-21

If your application creates a GDevice record without a driver, it should set the mode

parameter to –1. In this case, InitGDevice cannot initialize the GDevice record, so

your application must perform all initialization of the record. A GDevice record’s

default mode is defined as 128; this is assumed to be a black-and-white mode. If you

specify a value other than 128 in the mode parameter, the record’s gdDevType bit in the

gdFlags field of the GDevice record is set to TRUE to indicate that the graphics device

is capable of displaying color.

The NewGDevice function doesn’t automatically insert the GDevice record into the

device list. In general, your application shouldn’t create GDevice records, and if it ever

does, it should never add them to the device list.

SPECIAL CONSIDERATIONS

If your program uses NewGDevice to create a graphics device without a driver,

InitGDevice does nothing; instead, your application must initialize all fields of the

GDevice record. After your application initializes the color table for the GDevice

record, your application should call the Color Manager procedure MakeITable to build

the inverse table for the graphics device.

The NewGDevice function may move or purge memory blocks in the application heap.

Your application should not call this function at interrupt time.

SEE ALSO

The GDevice record is described on page 5-15. See Designing Cards and Drivers for the
Macintosh Family, third edition, for more information about the device modes that you

can specify in the mode parameter. The Color Manager is described in Inside Macintosh:
Advanced Color Imaging.

InitGDevice

The NewGDevice function uses the InitGDevice procedure to initialize a GDevice

record.

PROCEDURE InitGDevice (gdRefNum: Integer; mode: LongInt;

 gdh: GDHandle);

gdRefNum Reference number of the graphics device. System software sets this
number at system startup time for most graphics devices.

mode The device configuration mode. Used by the screen driver, this value sets
the pixel depth and specifies color or black and white.

gdh The handle, returned by the NewGDevice function, to the GDevice
record to be initialized.

C H A P T E R 5

Graphics Devices

5-22 Graphics Devices Reference

DESCRIPTION

The InitGDevice procedure initializes the GDevice record specified in the gdh

parameter. The InitGDevice procedure sets the graphics device whose driver has the

reference number specified in the gdRefNum parameter to the mode specified in the

mode parameter. The InitGDevice procedure then fills out the GDevice record,

previously created with the NewGDevice function, to contain all information describing

that mode.

The mode parameter determines the configuration of the device; possible modes for a

device can be determined by interrogating the video device’s ROM through Slot

Manager routines. The information describing the device’s mode is primarily contained

in the video device’s ROM. If the video device has a fixed color table, then that table is

read directly from the ROM. If the video device has a variable color table, then

InitGDevice uses the default color table defined in a 'clut' resource, contained in

the System file, that has a resource ID equal to the video device’s pixel depth.

In general, your application should never need to call InitGDevice. All video devices

are initialized at start time, and users change modes through the Monitors control panel.

SPECIAL CONSIDERATIONS

If your program uses NewGDevice to create a graphics device without a driver,

InitGDevice does nothing; instead, your application must initialize all fields of the

GDevice record. After your application initializes the color table for the GDevice

record, your application should call the Color Manager procedure MakeITable to build

the inverse table for the graphics device.

The InitGDevice procedure may move or purge memory blocks in the application

heap. Your application should not call this procedure at interrupt time.

SEE ALSO

The GDevice record is described on page 5-15. See Designing Cards and Drivers for the
Macintosh Family, third edition, for more information about the device modes that you

can specify in the mode parameter. The MakeITable procedure is described in the

chapter “Color Manager” in Inside Macintosh: Advanced Color Imaging.

SetDeviceAttribute

To set the attribute bits of a GDevice record, use the SetDeviceAttribute procedure.

PROCEDURE SetDeviceAttribute (gdh: GDHandle; attribute: Integer;

value: Boolean);

C H A P T E R 5

Graphics Devices

Graphics Devices Reference 5-23

gdh A handle to a GDevice record.

attribute One of the following constants, which represent bits in the gdFlags field
of a GDevice record:

 CONST {flag bits for gdFlags field of GDevice record}

gdDevType = 0; {if bit is set to 0, graphics }

{ device is black and white; }

{ if set to 1, device supports }

{ color}

burstDevice = 7; {if bit is set to 1, device }

{ supports block transfer}

ext32Device = 8; {if bit is set to 1, device }

{ must be used in 32-bit mode}

ramInit = 10; {if bit is set to 1, device has }

{ been initialized from RAM}

mainScreen = 11; {if bit is set to 1, device is }

{ the main screen}

allInit = 12; {if bit is set to 1, all }

{ devices were initialized from }

{ 'scrn' resource}

screenDevice = 13; {if bit is set to 1, device is }

{ a screen}

noDriver = 14; {if bit is set to 1, GDevice }

{ record has no driver}

screenActive = 15; {if bit is set to 1, device is }

{ active}

value A value of either 0 or 1 for the flag bit specified in the attribute
parameter.

DESCRIPTION

For the graphics device specified in the gdh parameter, the SetDeviceAttribute

procedure sets the flag bit specified in the attribute parameter to the value specified

in the value parameter.

SPECIAL CONSIDERATIONS

Your application should never directly change the gdFlags field of the GDevice record;

instead, your application should use only the SetDeviceAttribute procedure.

The SetDeviceAttribute procedure may move or purge memory blocks in the

application heap. Your application should not call this procedure at interrupt time.

C H A P T E R 5

Graphics Devices

5-24 Graphics Devices Reference

SetGDevice

Your application can use the SetGDevice procedure to set a GDevice record as the

current device.

PROCEDURE SetGDevice (gdh: GDHandle);

gdh A handle to a GDevice record.

DESCRIPTION

The SetGDevice procedure sets the specified GDevice record as the current device.

Your application won’t generally need to use this procedure, because when your

application draws into a window on one or more screens, Color QuickDraw

automatically switches GDevice records as appropriate; and when your application

needs to draw into an offscreen graphics world, it can use the SetGWorld procedure to

set the graphics port as well as the GDevice record for the offscreen environment.

However, if your application uses the SetPort procedure (described in the chapter

“Basic QuickDraw” in this book) instead of the SetGWorld procedure to set the

graphics port to or from an offscreen graphics world, then your application must use

SetGDevice in conjunction with SetPort.

A handle to the currently active device is kept in the global variable TheGDevice.

SPECIAL CONSIDERATIONS

The SetGDevice procedure may move or purge memory blocks in the application

heap. Your application should not call this procedure at interrupt time.

SEE ALSO

See the chapter “Offscreen Graphics Worlds” in this book for information about the

SetGWorld procedure and about drawing into offscreen graphics worlds.

C H A P T E R 5

Graphics Devices

Graphics Devices Reference 5-25

DisposeGDevice

Although your application generally should never need to use this routine, the

DisposeGDevice procedure disposes of a GDevice record, releases the space allocated

for it, and disposes of all the data structures allocated for it. The DisposeGDevice

procedure is also available as the DisposGDevice procedure.

PROCEDURE DisposeGDevice (gdh: GDHandle);

gdh A handle to the GDevice record.

DESCRIPTION

The DisposeGDevice procedure disposes of a GDevice record, releases the space

allocated for it, and disposes of all the data structures allocated for it. Color QuickDraw

calls this procedure when appropriate.

SEE ALSO

When your application uses the DisposeGWorld procedure to dispose of an offscreen

graphics world, DisposeGDevice disposes of its GDevice record. See the chapter

“Offscreen Graphics Worlds” in this book for a description of DisposeGWorld.

Getting the Available Graphics Devices

To gain access to the GDevice record for a video device—for example, to determine the

size and pixel depth of its attached screen—your application needs to get a handle to

that record.

Your application can use the GetDeviceList function to obtain a handle to the

first GDevice record in the device list, the GetGDevice function to obtain a handle to

the GDevice record for the current device, the GetMainDevice function to obtain a

handle to the GDevice record for the main screen, and the GetMaxDevice function to

obtain a handle to the GDevice record for the video device with the greatest pixel depth.

All existing GDevice records are linked together in the device list. After using one of

these functions to obtain a handle to one of the GDevice records in the device list, your

application can use the GetNextDevice function to obtain a handle to the next

GDevice record in the list.

C H A P T E R 5

Graphics Devices

5-26 Graphics Devices Reference

Two related functions, GetGWorld and GetGWorldDevice, also allow you to obtain

handles to GDevice records. To get the GDevice record for the current device, you can

use the GetGWorld function. To get a handle to the GDevice record for a particular

offscreen graphics world, you can use the GetGWorldDevice function. These two

functions are described in the next chapter, “Offscreen Graphics Worlds.”

GetGDevice

To obtain a handle to the GDevice record for the current device, use the GetGDevice

function.

FUNCTION GetGDevice: GDHandle;

DESCRIPTION

The GetGDevice function returns a handle to the GDevice record for the current

device. (At any given time, exactly one video device is the current device—that is, the

one on which drawing is actually taking place.)

Color QuickDraw stores a handle to the current device in the global variable

TheGDevice.

SPECIAL CONSIDERATIONS

The GetGDevice function may move or purge memory blocks in the application heap.

Your application should not call this function at interrupt time.

GetDeviceList

To obtain a handle to the first GDevice record in the device list, use the

GetDeviceList function.

FUNCTION GetDeviceList: GDHandle;

DESCRIPTION

The GetDeviceList function returns a handle to the first GDevice record in the global

variable DeviceList.

C H A P T E R 5

Graphics Devices

Graphics Devices Reference 5-27

SPECIAL CONSIDERATIONS

The GetDeviceList function may move or purge memory blocks in the application

heap. Your application should not call this function at interrupt time.

SEE ALSO

Listing 5-3 on page 5-10 illustrates the use of this function.

GetMainDevice

To obtain a handle to the GDevice record for the main screen, use the GetMainDevice

function.

FUNCTION GetMainDevice: GDHandle;

DESCRIPTION

The GetMainDevice function returns a handle to the GDevice record that corresponds

to the main screen—that is, the one containing the menu bar.

A handle to the main device is kept in the global variable MainDevice.

SPECIAL CONSIDERATIONS

The GetMainDevice function may move or purge memory blocks in the application

heap. Your application should not call this function at interrupt time.

SEE ALSO

Listing 5-3 on page 5-10 illustrates the use of this function.

GetMaxDevice

To obtain a handle to the GDevice record for the video device with the greatest pixel

depth, use the GetMaxDevice function.

FUNCTION GetMaxDevice (globalRect: Rect): GDHandle;

globalRect
A rectangle, in global coordinates, that intersects the graphics devices that
you are searching to find the one with the greatest pixel depth.

C H A P T E R 5

Graphics Devices

5-28 Graphics Devices Reference

DESCRIPTION

As its function result, GetMaxDevice returns a handle to the GDevice record for the

video device that has the greatest pixel depth among all graphics devices that intersect

the rectangle you specify in the globalRect parameter.

SPECIAL CONSIDERATIONS

The GetMaxDevice function may move or purge memory blocks in the application

heap. Your application should not call this function at interrupt time.

GetNextDevice

After using the GetDeviceList function to obtain a handle to the first GDevice record

in the device list, GetGDevice to obtain a handle to the GDevice record for the current

device, GetMainDevice to obtain a handle to the GDevice record for the main screen,

or GetMaxDevice to obtain a handle to the GDevice record for the video device with

the greatest pixel depth, you can use the GetNextDevice function to obtain a handle

to the next GDevice record in the list.

FUNCTION GetNextDevice (curDevice: GDHandle): GDHandle;

curDevice A handle to the GDevice record at which you want the search to begin.

DESCRIPTION

The GetNextDevice function returns a handle to the next GDevice record in the

device list. If there are no more GDevice records in the list, it returns NIL.

SPECIAL CONSIDERATIONS

The GetNextDevice function may move or purge memory blocks in the application

heap. Your application should not call this function at interrupt time.

SEE ALSO

Listing 5-3 on page 5-10 illustrates the use of this function.

C H A P T E R 5

Graphics Devices

Graphics Devices Reference 5-29

Determining the Characteristics of a Video Device

For drawing images that are optimized for every screen they cross, your application can

use the DeviceLoop procedure. The DeviceLoop procedure searches for graphics

devices that intersect your window’s drawing region, and it calls your drawing

procedure for each different video device it finds. The DeviceLoop procedure provides

your drawing procedure with information about the current device’s pixel depth and

other attributes.

To determine whether the flag bit for an attribute has been set in the gdFlags field of a

GDevice record, your application can use the TestDeviceAttribute function.

To determine whether a video device supports a specific pixel depth, your application

can also use the HasDepth function, described on page 5-33. To change the pixel depth

of a video device, your application can use the SetDepth function, described on

page 5-34.

If you need to determine the resolution of the main device, you can use the ScreenRes

procedure.

DeviceLoop

For drawing images that are optimized for every screen they cross, use the DeviceLoop

procedure.

PROCEDURE DeviceLoop (drawingRgn: RgnHandle;

drawingProc: DeviceLoopDrawingProcPtr;

userData: LongInt; flags: DeviceLoopFlags);

drawingRgn
A handle to the region in which you will draw; this drawing region uses
coordinates that are local to its graphics port.

drawingProc
A pointer to your own drawing procedure.

userData Any additional data that you wish to supply to your drawing procedure.

flags One or more members of the set of flags defined by the
DeviceLoopFlags data type:

 TYPE

 DeviceLoopFlags = SET OF

 (singleDevices,dontMatchSeeds,allDevices);

These flags are described in the following text; if you want to use the
default behavior of DeviceLoop, specify an empty set ([]) in this
parameter.

C H A P T E R 5

Graphics Devices

5-30 Graphics Devices Reference

DESCRIPTION

The DeviceLoop procedure searches for graphics devices that intersect your window’s

drawing region, and it calls your drawing procedure for each video device it finds. In

the drawingRgn parameter, supply a handle to the region in which you wish to draw;

in the drawingProc parameter, supply a pointer to your drawing procedure. In the

flags parameter, you can specify members of the set of these flags defined by the

DeviceLoopFlags data type:

For each dissimilar video device that intersects this region, DeviceLoop calls your

drawing procedure. For example, after a call to the Event Manager procedure

BeginUpdate, the region you specify in the drawingRgn parameter can be the same

as the visible region for the active window. Because DeviceLoop provides your

drawing procedure with the pixel depth and other attributes of each video device,

your drawing procedure can optimize its drawing for each video device—for example,

by using the HiliteColor procedure to set magenta as the highlight color on a color

video device.

SPECIAL CONSIDERATIONS

The DeviceLoop procedure may move or purge memory blocks in the application

heap. Your application should not call this procedure at interrupt time.

SEE ALSO

Listing 5-1 on page 5-8 illustrates the use of DeviceLoop. See page 5-35 for a description

of the drawing procedure you must provide for the drawingProc parameter. Offscreen

graphics worlds are described in the next chapter. The HiliteColor procedure is

described in the chapter “Color QuickDraw” in this book.

singleDevices If this flag is not set, DeviceLoop calls your drawing procedure
only once for each set of similar graphics devices, and the first
one found is passed as the target device. (It is assumed to be
representative of all the similar graphics devices.) If you set the
singleDevices flag, then DeviceLoop does not group
similar graphics devices—that is, those having identical pixel
depths, black-and-white or color settings, and matching color
table seeds—when it calls your drawing procedure.

dontMatchSeeds If you set the dontMatchSeeds flag, then DeviceLoop doesn’t
consider the ctSeed field of ColorTable records for graphics
devices when comparing them; DeviceLoop ignores this flag if
you set the singleDevices flag.

allDevices If you set the allDevices flag, DeviceLoop ignores the
drawingRgn parameter and calls your drawing procedure for
every device. The value of current graphics port’s visRgn field
is not affected when you set this flag.

C H A P T E R 5

Graphics Devices

Graphics Devices Reference 5-31

TestDeviceAttribute

To determine whether the flag bit for an attribute has been set in the gdFlags field of a

GDevice record, use the TestDeviceAttribute function.

FUNCTION TestDeviceAttribute (gdh: GDHandle;

attribute: Integer): Boolean;

gdh A handle to a GDevice record.

attribute One of the following constants, which represent bits in the gdFlags field
of a GDevice record:

 CONST {flag bits for gdFlags field of GDevice record}

gdDevType = 0; {if bit is set to 0, graphics }

{ device is black and white; }

{ if set to 1, device supports }

{ color}

burstDevice = 7; {if bit is set to 1, device }

{ supports block transfer}

ext32Device = 8; {if bit is set to 1, device }

{ must be used in 32-bit mode}

ramInit = 10; {if bit is set to 1, device has }

{ been initialized from RAM}

mainScreen = 11; {if bit is set to 1, device is }

{ the main screen}

allInit = 12; {if bit is set to 1, all }

{ devices were initialized from }

{ 'scrn' resource}

screenDevice = 13; {if bit is set to 1, device is }

{ a screen}

noDriver = 14; {if bit is set to 1, GDevice }

{ record has no driver}

screenActive = 15; {if bit is set to 1, device is }

{ active}

DESCRIPTION

The TestDeviceAttribute function tests a single graphics device attribute to see if its

bit is set to 1 and, if so, returns TRUE. Otherwise, TestDeviceAttribute returns

FALSE.

C H A P T E R 5

Graphics Devices

5-32 Graphics Devices Reference

SPECIAL CONSIDERATIONS

The TestDeviceAttribute function may move or purge memory blocks in the

application heap. Your application should not call this function at interrupt time.

SEE ALSO

Listing 5-3 on page 5-10 illustrates the use of TestDeviceAttribute. Your application

can use the SetDeviceAttribute procedure, described on page 5-22, to change any of

the flags tested by the TestDeviceAttribute function.

ScreenRes

If you need to determine the resolution of the main device, you can use the ScreenRes

procedure.

PROCEDURE ScreenRes (VAR scrnHRes,scrnVRes: Integer);

DESCRIPTION

In the scrnHRes parameter, the ScreenRes procedure returns the number of

horizontal pixels per inch displayed by the current device. In the scrnVRes parameter,

it returns the number of vertical pixels per inch.

To determine the resolutions of all available graphics devices, you should examine their

GDevice records (described on page 5-15). The horizontal and vertical resolutions for a

graphics device are stored in the hRes and vRes fields, respectively, of the PixMap

record for the device’s GDevice record.

SPECIAL CONSIDERATIONS

Currently, QuickDraw and the Printing Manager always assume a screen resolution of

72 dpi.

Do not use the actual screen resolution as a scaling factor when drawing into a printing

graphics port; instead, always use 72 dpi as the scaling factor. See the chapter “Printing

Manager” in this book for more information about the Printing Manager and drawing

into a printing graphics port.

ASSEMBLY-LANGUAGE INFORMATION

The horizontal resolution, in pixels per inch, is stored in the global variable ScrHRes,

and the vertical resolution is stored in the global variable ScrVRes.

C H A P T E R 5

Graphics Devices

Graphics Devices Reference 5-33

Changing the Pixel Depth for a Video Device

The Monitors control panel is the user interface for changing the pixel depth, color

capabilities, and positions of video devices. Since the user can control the capabilities of

the video device, your application should be flexible: although it may have a preferred

pixel depth, your application should do its best to accommodate less than ideal

conditions.

If it is absolutely necessary for your application to draw on a video device of a specific

pixel depth, your application can use the SetDepth function to change its pixel depth.

Before calling SetDepth, use the HasDepth function to determine whether the

available hardware can support the pixel depth you require.

HasDepth

To determine whether a video device supports a specific pixel depth, you can use the

HasDepth function.

FUNCTION HasDepth (aDevice: GDHandle; depth: Integer;

whichFlags: Integer; flags: Integer): Integer;

aDevice A handle to the GDevice record of the video device.

depth The pixel depth for which you’re testing.

whichFlags
The gdDevType constant, which represents a bit in the gdFlags field
of the GDevice record. (If this bit is set to 0 in the GDevice record, the
video device is black and white; if the bit is set to 1, the device supports
color.)

flags The value 0 or 1. If you pass 0 in this parameter, the HasDepth function
tests whether the video device is black and white; if you pass 1 in this
parameter, HasDepth tests whether the video device supports color.

DESCRIPTION

The HasDepth function checks whether the video device you specify in the aDevice

parameter supports the pixel depth you specify in the depth parameter, and whether

the device is black and white or color, whichever you specify in the flags parameter.

The HasDepth function returns 0 if the device does not support the depth you specify

in the depth parameter or the display mode you specify in the flags parameter.

Any other value indicates that the device supports the specified depth and display

mode. The function result contains the mode ID that QuickDraw passes to the video

driver to set its pixel depth and to specify color or black and white. You can pass this

mode ID in the depth parameter for the SetDepth function (described next) to set the

graphics device to the pixel depth and display mode for which you tested.

C H A P T E R 5

Graphics Devices

5-34 Graphics Devices Reference

SPECIAL CONSIDERATIONS

The HasDepth function may move or purge blocks of memory in the application heap.

Your application should not call this function at interrupt time.

SEE ALSO

See Designing Cards and Drivers for the Macintosh Family, third edition, for more

information about the device modes returned as a function result for HasDepth.

SetDepth

To change the pixel depth of a video device, use the SetDepth function.

FUNCTION SetDepth (aDevice: GDHandle; depth: Integer;

whichFlags: Integer; flags: Integer): OSErr;

aDevice A handle to the GDevice record of the video device whose pixel depth
you wish to change.

depth The mode ID returned by the HasDepth function (described in the
previous section) indicating that the video device supports the desired
pixel depth. Alternatively, you can pass the desired pixel depth directly in
this parameter, although you should use the HasDepth function to
ensure that the device supports this depth.

whichFlags
The gdDevType constant, which represents a bit in the gdFlags field
of the GDevice record. (If this bit is set to 0 in the GDevice record, the
video device is black and white; if the bit is set to 1, the device supports
color.)

flags The value 0 or 1. If you pass 0 in this parameter, the SetDepth function
changes the video device to black and white; if you pass 1 in this
parameter, SetDepth changes the video device to color.

DESCRIPTION

The SetDepth function sets the video device you specify in the aDevice parameter

to the pixel depth you specify in the depth parameter, and it sets the device to either

black and white or color as you specify in the flags parameter. You should use the

HasDepth function to ensure that the video device supports the values you specify to

SetDepth. The SetDepth returns zero if successful, or it returns a nonzero value if it

cannot impose the desired depth and display mode on the requested device.

The SetDepth function does not change the 'scrn' resource; when the system is

restarted, the original depth for this device is restored.

C H A P T E R 5

Graphics Devices

Graphics Devices Reference 5-35

SPECIAL CONSIDERATIONS

Your application should use SetDepth only if your application can run on devices of a

particular pixel depth and is unable to adapt to any other depth. Your application should

display a dialog box that offers the user a choice between changing to that depth or

canceling display of the image before your application uses SetDepth. Such a dialog

box saves the user the trouble of going to the Monitors control panel before returning to

your application.

The SetDepth function may move or purge blocks of memory in the application heap.

Your application should not call this function at interrupt time.

SEE ALSO

See the chapter “Dialog Manager” in Inside Macintosh: Macintosh Toolbox Essentials for

information about creating and using dialog boxes.

Application-Defined Routine

Your application can use the DeviceLoop procedure (described on page 5-29) before

drawing images that are optimized for every screen they cross. The DeviceLoop

procedure searches for video devices that intersect your drawing region, and it calls a

drawing procedure that you define for every different video device it finds.

For each video device that intersects a drawing region that you define (generally, the

update region of a window), DeviceLoop calls your drawing procedure. Because

DeviceLoop provides your drawing procedure with the pixel depth and other

attributes of the current device, your drawing procedure can optimize its drawing for

whatever type of graphics device is the current device. When highlighting, for example,

your application might invert black and white when drawing onto a 1-bit video device

but use magenta as the highlight color when drawing onto a color video device. In this

case, even were your window to span both a black-and-white and a color screen, the user

sees the selection inverted on the black-and-white screen, while magenta would be used

to highlight the selection on the color screen.

You must provide a pointer to your drawing procedure in the drawingProc parameter

for DeviceLoop.

C H A P T E R 5

Graphics Devices

5-36 Graphics Devices Reference

MyDrawingProc

Here’s how to declare a drawing procedure to supply to the DeviceLoop procedure if

you were to name the procedure MyDrawingProc:

PROCEDURE MyDrawingProc (depth: Integer; deviceFlags: Integer;

 targetDevice: GDHandle;

 userData: LongInt);

depth The pixel depth of the graphics device.

deviceFlags
Any of the following constants, which represent bits that are set to 1 in the
gdFlags field of the GDevice record (described on page 5-15) for the
current device:

 CONST {flag bits for gdFlags field of GDevice record}

gdDevType = 0; {if bit is set to 1, graphics }

{ device supports color}

burstDevice = 7; {if bit is set to 1, device }

{ supports block transfer}

ext32Device = 8; {if bit is set to 1, device }

{ must be used in 32-bit mode}

ramInit = 10; {if bit is set to 1, device has }

{ been initialized from RAM}

mainScreen = 11; {if bit is set to 1, device is }

{ the main screen}

allInit = 12; {if bit is set to 1, all }

{ devices were initialized from }

{ 'scrn' resource}

screenDevice = 13; {if bit is set to 1, device is }

{ a screen}

noDriver = 14; {if bit is set to 1, GDevice }

{ record has no driver}

screenActive = 15; {if bit is set to 1, device is }

{ active}

targetDevice
A handle to the GDevice record (described on page 5-15) for the current
device.

C H A P T E R 5

Graphics Devices

Graphics Devices Reference 5-37

userData A value that your application supplies to the DeviceLoop procedure,
which in turn passes the value to your drawing procedure for whatever
purpose you deem useful.

DESCRIPTION

Your drawing procedure should analyze the pixel depth passed in the depth parameter

and the values passed in the deviceFlags parameter, and then draw in a manner that

is optimized for the current device.

SEE ALSO

Listing 5-2 on page 5-9 illustrates a simple drawing procedure called by DeviceLoop.

Resource

The user can use the Monitors control panel to set the desired pixel depth of each screen;

whether it displays color, grayscale, or black and white; and the position of each screen

relative to the main screen. The Monitors control panel stores all configuration

information for a multiscreen system in the System file in a resource of type 'scrn' that

has a resource ID of 0. Your application should never create this resource, and should

never alter or examine it.

When the InitGraf procedure (described in the chapter “Basic QuickDraw” in this

book) initializes Color QuickDraw, it checks the System file for the 'scrn' resource. If

the 'scrn' resource is found and it matches the hardware, InitGraf organizes the

video devices according to the contents of this resource; if not, then Color QuickDraw

uses only the video device for the startup screen.

The Screen Resource

The 'scrn' resource consists of an array of data structures that are analogous to

GDevice records. Each data structure in this array contains information about a

different video device. Because your application shouldn’t create or alter the 'scrn'

resource, its structure is not described here.

C H A P T E R 5

Graphics Devices

5-38 Summary of Graphics Devices

Summary of Graphics Devices

Pascal Summary

Constants

CONST

{flag bits for gdType field of GDevice record}

clutType = 0; {CLUT device--that is, one with colors mapped with a }

{ color lookup table}

fixedType = 1; {fixed colors--that is, the color lookup table }

{ can't be changed}

directType = 2; {direct RGB colors}

{flag bits for gdFlags field of GDevice record}

gdDevType = 0; {if bit is set to 0, graphics device is black }

{ and white; if bit is set to 1, graphics device }

{ supports color}

burstDevice = 7; {if bit is set to 1, graphics device supports block }

{ transfer}

ext32Device = 8; {if bit is set to 1, graphics device must be used }

{ in 32-bit mode}

ramInit = 10; {if bit is set to 1, graphics device has been }

{ initialized from RAM}

mainScreen = 11; {if bit is set to 1, graphics device is the main }

{ screen}

allInit = 12; {if bit is set to 1, all graphics devices were }

{ initialized from 'scrn' resource}

screenDevice = 13; {if bit is set to 1, graphics device is a screen}

noDriver = 14; {if bit is set to 1, GDevice record has no driver}

screenActive = 15; {if bit is set to 1, graphics device is current }

{ device}

C H A P T E R 5

Graphics Devices

Summary of Graphics Devices 5-39

Data Types

TYPE

GDHandle = ^GDPtr;

GDPtr = ^GDevice;

GDevice =

RECORD

gdRefNum: Integer; {reference number of screen driver}

gdID: Integer; {reserved; set to 0}

gdType: Integer; {type of device--indexed or direct}

gdITable: ITabHandle; {handle to inverse table for Color Manager}

gdResPref: Integer; {preferred resolution}

gdSearchProc: SProcHndl; {handle to list of search functions}

gdCompProc: CProcHndl; {handle to list of complement functions}

gdFlags: Integer; {graphics device flags}

gdPMap: PixMapHandle; {handle to PixMap record for displayed }

{ image}

gdRefCon: LongInt; {reference value}

gdNextGD: GDHandle; {handle to next graphics device}

gdRect: Rect; {graphics device's boundary in global }

{ coordinates}

gdMode: LongInt; {graphics device's current mode}

gdCCBytes: Integer; {width of expanded cursor data}

gdCCDepth: Integer; {depth of expanded cursor data}

gdCCXData: Handle; {handle to cursor's expanded data}

gdCCXMask: Handle; {handle to cursor's expanded mask}

gdReserved: LongInt; {reserved for future use; must be 0}

END;

QDErr = Integer;

DeviceLoopDrawingProcPtr = ProcPtr;

DeviceLoopFlags = SET OF {for flags parameter of DeviceLoop}

(singleDevices, {DeviceLoop doesn't group similar graphics }

{ devices when calling drawing procedure}

dontMatchSeeds, {DeviceLoop doesn't consider ctSeed fields }

{ of ColorTable records for graphics devices }

{ when comparing them}

allDevices); {DeviceLoop ignores value of drawingRgn }

 { parameter--instead, it calls drawing procedure }

{ for every screen}

C H A P T E R 5

Graphics Devices

5-40 Summary of Graphics Devices

Routines for Graphics Devices

Creating, Setting, and Disposing of GDevice Records

{ DisposeGDevice is also spelled as DisposGDevice }

FUNCTION NewGDevice (refNum: Integer; mode: LongInt): GDHandle;

PROCEDURE InitGDevice (gdRefNum: Integer; mode: LongInt;
gdh: GDHandle);

PROCEDURE SetDeviceAttribute
(gdh: GDHandle; attribute: Integer;
value: Boolean);

PROCEDURE SetGDevice (gdh: GDHandle);

PROCEDURE DisposeGDevice (gdh: GDHandle);

Getting the Available Graphics Devices

FUNCTION GetGDevice : GDHandle;

FUNCTION GetDeviceList : GDHandle;

FUNCTION GetMainDevice : GDHandle;

FUNCTION GetMaxDevice (globalRect: Rect): GDHandle;

FUNCTION GetNextDevice (curDevice: GDHandle): GDHandle;

Determining the Characteristics of a Video Device

PROCEDURE DeviceLoop (drawingRgn: RgnHandle;
drawingProc: DeviceLoopDrawingProcPtr;
userData: LongInt; flags: DeviceLoopFlags);

FUNCTION TestDeviceAttribute
(gdh: GDHandle;
attribute: Integer): Boolean;

PROCEDURE ScreenRes (VAR scrnHRes,scrnVRes: Integer);

Changing the Pixel Depth for a Video Device

FUNCTION HasDepth (aDevice: GDHandle; depth: Integer;
whichFlags: Integer; flags: Integer): Integer;

FUNCTION SetDepth (aDevice: GDHandle; depth: Integer;
whichFlags: Integer; flags: Integer): OSErr;

Application-Defined Routine

PROCEDURE MyDrawingProc (depth: Integer; deviceFlags: Integer;
targetDevice: GDHandle; userData: LongInt);

C H A P T E R 5

Graphics Devices

Summary of Graphics Devices 5-41

C Summary

Constants

enum {

/* flag bits for gdType field of GDevice record */

clutType = 0; /* CLUT device--that is, one with colors mapped with

a color lookup table */

fixedType = 1; /* fixed colors--that is, the color lookup table

can't be changed */

directType = 2; /* direct RGB colors */

/* flag bits for gdFlags field of GDevice record */

gdDevType = 0, /* if bit is set to 0, graphics device is black and

white; if set to 1, device is color */

burstDevice = 7, /* if bit is set to 1, graphics device supports block

transfer */

ext32Device = 8, /* if bit is set to 1, graphics device must be used

 in 32-bit mode */

ramInit = 10, /* if bit is set to 1, graphics device was

initialized from RAM */

mainScreen = 11, /* if bit is set to 1, graphics device is the main

screen */

allInit = 12, /* if bit is set to 1, all graphics devices were

initialized from 'scrn' resource */

screenDevice = 13, /* if bit is set to 1, graphics device is a screen

device */

noDriver = 14, /* if bit is set to 1, GDevice record has

no driver */

screenActive = 15, /* if bit is set to 1, graphics device is current

device */

};

Data Types

struct GDevice {

short gdRefNum; /* reference number of screen driver */

short gdID; /* reserved; set to 0 */

short gdType; /* type of device--indexed or direct */

ITabHandle gdITable; /* handle to inverse table for Color

 Manager */

short gdResPref; /* preferred resolution */

C H A P T E R 5

Graphics Devices

5-42 Summary of Graphics Devices

SProcHndl gdSearchProc; /* handle to list of search functions */

CProcHndl gdCompProc; /* handle to list of complement functions */

short gdFlags; /* graphics device flags */

PixMapHandle gdPMap; /* handle to PixMap record for displayed

 image */

long gdRefCon; /* reference value */

GDHandle gdNextGD; /* handle to next graphics device */

Rect gdRect; /* graphics device's boundary in global

coordinates */

long gdMode; /* graphics device's current mode */

short gdCCBytes; /* width of expanded cursor data */

short gdCCDepth; /* depth of expanded cursor data */

Handle gdCCXData; /* handle to cursor's expanded data */

Handle gdCCXMask; /* handle to cursor's expanded mask */

long gdReserved; /* reserved for future use; must be 0 */

};

typedef struct GDevice GDevice;

typedef GDevice *GDPtr, **GDHandle;

typedef short QDErr;

typedef pascal void (*DeviceLoopDrawingProcPtr)

(short depth, short deviceFlags,

 GDHandle targetDevice, long userData);

/* for flags parameter of DeviceLoop */

enum {singleDevicesBit = 0,dontMatchSeedsBit = 1,allDevicesBit = 2};

enum {singleDevices = 1 << singleDevicesBit, /* DeviceLoop doesn't group

 similar graphics devices

 when calling drawing

 procedure */

dontMatchSeeds = 1 << dontMatchSeedsBit, /* DeviceLoop doesn't

 consider ctSeed fields of

 ColorTable records for

 graphics devices when

 comparing them */

allDevices = 1 << allDevicesBit}; /* DeviceLoop ignores value

 of drawingRgn parameter--

 instead it calls drawing

 procedure for every

 screen */

typedef unsigned long DeviceLoopFlags;

C H A P T E R 5

Graphics Devices

Summary of Graphics Devices 5-43

Functions for Graphics Devices

Creating, Setting, and Disposing of GDevice Records

/* DisposeGDevice is also spelled as DisposGDevice */

pascal GDHandle NewGDevice (short refNum, long mode);

pascal void InitGDevice (short gdRefNum, long mode, GDHandle gdh);

pascal void SetDeviceAttribute
(GDHandle gdh, short attribute, Boolean value);

pascal void SetGDevice (GDHandle gdh);

pascal void DisposeGDevice (GDHandle gdh);

Getting the Available Graphics Devices

pascal GDHandle GetGDevice (void);

pascal GDHandle GetDeviceList
(void);

pascal GDHandle GetMainDevice
(void);

pascal GDHandle GetMaxDevice
(const Rect *globalRect);

pascal GDHandle GetNextDevice
(GDHandle curDevice);

Determining the Characteristics of a Video Device

pascal void DeviceLoop (RgnHandle drawingRgn,
DeviceLoopDrawingProcPtr drawingProc,
long userData, DeviceLoopFlags flags);

pascal Boolean TestDeviceAttribute
(GDHandle gdh, short attribute);

pascal void ScreenRes (short *scrnHRes, short *scrnVRes);

Changing the Pixel Depth for a Video Device

pascal Integer HasDepth (GDHandle aDevice, Integer depth,
Integer whichFlags, Integer flags);

pascal OSErr SetDepth (GDHandle aDevice, Integer depth,
Integer whichFlags, Integer flags);

C H A P T E R 5

Graphics Devices

5-44 Summary of Graphics Devices

Application-Defined Function

pascal void MyDrawingProc (Integer depth, Integer deviceFlags,
GDHandle targetDevice, LongInt userData);

Assembly-Language Summary

Data Structure

GDevice Data Structure

Global Variables

0 gdRefNum word refNum of screen driver
2 gdID word reserved; set to 0
4 gdType word general type of graphics device
6 gdITable long handle to inverse table

10 gdResPref word preferred resolution for inverse tables
12 gdSearchProc long search function pointer
16 gdCompProc long complement function pointer
20 gdFlags word graphics device flags word
22 gdPMap long handle to pixel map describing graphics device
26 gdRefCon long reference value
30 gdNextGD long handle to next GDevice record
34 gdRect 8 bytes graphics device’s bounds in global coordinates
42 gdMode long device’s current mode
46 gdCCBytes word width of expanded cursor data
48 gdCCDepth word depth of expanded cursor data
50 gdCCXData long handle to cursor’s expanded data
54 gdCCXMask long handle to cursor’s expanded mask
58 gdReserved long reserved; must be 0

DeviceList Handle to the first GDevice record in the device list.

MainDevice Handle to the GDevice record for the main screen.

ScrHRes The horizontal resolution, in pixels per inch, for the current device.

ScrVRes The vertical resolution, in pixels per inch, for the current device.

TheGDevice Handle to the GDevice record for the current device.

Contents 6-1

C H A P T E R 6

Contents

Offscreen Graphics Worlds

About Offscreen Graphics Worlds 6-3

Using Offscreen Graphics Worlds 6-4

Creating an Offscreen Graphics World 6-5

Setting the Graphics Port for an Offscreen Graphics World 6-8

Drawing Into an Offscreen Graphics World 6-8

Copying an Offscreen Image Into a Window 6-9

Updating an Offscreen Graphics World 6-9

Creating a Mask and a Source Image in Offscreen Graphics Worlds 6-10

Offscreen Graphics Worlds Reference 6-12

Data Structures 6-12

Routines 6-16

Creating, Altering, and Disposing of Offscreen Graphics Worlds 6-16

Saving and Restoring Graphics Ports and Offscreen Graphics
Worlds 6-27

Managing an Offscreen Graphics World’s Pixel Image 6-30

Summary of Offscreen Graphics Worlds 6-40

Pascal Summary 6-40

Constants 6-40

Data Types 6-41

Routines 6-42

C Summary 6-43

Constants 6-43

Data Types 6-44

Functions 6-45

Assembly-Language Summary 6-46

Result Codes 6-46

C H A P T E R 6

About Offscreen Graphics Worlds 6-3

Offscreen Graphics Worlds

This chapter describes QuickDraw routines and data structures that your application

can use to create offscreen graphics worlds. Whether your application uses Color

QuickDraw or basic QuickDraw, you should read this chapter to improve your

application’s appearance and performance when it draws onscreen images.

Read this chapter to learn how to set up and use an offscreen graphics world—a

sophisticated environment for preparing complex color or black-and-white images

before displaying them on the screen. Offscreen graphics worlds are available on all

Macintosh computers that support System 7.

You can use all of the drawing operations described in the chapters “QuickDraw

Drawing” and “Color QuickDraw” in this book to create images in an offscreen graphics

world. After preparing an image in an offscreen graphics world, you can use the

CopyBits, CopyMask, or CopyDeepMask procedure to move the image to an onscreen

color graphics port or basic graphics port. Color graphics ports are described in the

chapter “Color QuickDraw,” and basic graphics ports are described in the chapter “Basic

QuickDraw” in this book.

To support your application in preparing an offscreen image for display on a screen,

Color QuickDraw by default uses the screen’s GDevice record to define the pixel depth

and color table for the offscreen graphics world. The GDevice record is described in the

chapter “Graphics Devices” in this book.

Your application can treat an offscreen graphics world as a virtual screen where your

application has complete control over its drawing environment, and on which

your application can draw a complex image where the user can’t see the various

steps your application must take before completing it. For example, your application can

use QuickDraw drawing routines to build a complex color image in an offscreen

graphics world; then, after building the image, your application can use CopyBits to

copy it quickly to the screen. This prevents the choppiness that could occur if your

application were to construct the image directly in a color graphics port on the screen.

About Offscreen Graphics Worlds

An offscreen graphics world is defined by a private data structure that, in Color

QuickDraw, contains a CGrafPort record and its handles to associated PixMap and

ColorTable records. The offscreen graphics world also contains a reference to a

GDevice record and other state information. On computers lacking Color QuickDraw,

GWorldPtr points to an extension of the GrafPort record. An offscreen graphics world

for a basic QuickDraw system does not contain a reference to a GDevice record, but it

does support a special type of 1-bit pixel map. When your application uses the

NewGWorld function to create an offscreen world, NewGWorld returns a pointer of type

GWorldPtr, which your application uses to refer to the offscreen graphics world. This

pointer is defined as follows:

TYPE GWorldPtr = CGrafPtr;

C H A P T E R 6

Offscreen Graphics Worlds

6-4 Using Offscreen Graphics Worlds

Offscreen graphics worlds have two primary purposes.

■ They prevent any other application or desk accessory from changing your drawing
environment while your application is creating an image. An offscreen graphics world
that you create cannot be modified by any other application.

■ They increase onscreen drawing speed and visual smoothness. For example, suppose
your application draws multiple graphics objects in a window, and then needs to
update part of that window. If your image is very complex, your application can copy
it from an offscreen graphics world onto the screen faster than it can repeat all of the
steps necessary to redraw the image onscreen. At the same time, your application
avoids the choppy visual effect that arises from drawing a large number of separate
objects.

The term offscreen graphics world implies that you prepare an image on the global

coordinate plane somewhere outside the boundary rectangles for the user’s screens.

While this is possible, you more typically use the coordinates of the port rectangle for an

onscreen window when preparing your “offscreen” image; until you copy the image to

the onscreen window, the image in the offscreen graphics world is drawn into a part of

memory not used by the video device and therefore remains hidden from the user.

Using Offscreen Graphics Worlds

To use an offscreen graphics world, you generally

■ use the NewGWorld function to create an offscreen graphics world

■ use the GetGWorld procedure to save the onscreen graphics port for the active
window

■ use the SetGWorld procedure to make the offscreen graphics world the current
graphics port

■ use the LockPixels function to prevent the base address for the offscreen pixel
image from moving while you draw into it or copy from it

■ use the EraseRect procedure to initialize the offscreen pixel image

■ use the basic QuickDraw and Color QuickDraw routines described elsewhere in this
book to draw into the offscreen graphics world

■ use the SetGWorld procedure to restore the active window as the current graphics
port

■ use the CopyBits procedure to copy the image from the offscreen graphics world
into the active window

■ use the UnlockPixels procedure to allow the Memory Manager to move the base
address for the offscreen pixel image

■ use the DisposeGWorld procedure to dispose of all the memory allocated for an
offscreen graphics world when you no longer need its offscreen pixel image

C H A P T E R 6

Offscreen Graphics Worlds

Using Offscreen Graphics Worlds 6-5

If you want to use the CopyMask or CopyDeepMask procedure, you can create another

offscreen graphics world and draw your mask into that offscreen world.

These tasks are explained in greater detail in the rest of this chapter.

Before using the routines described in this chapter, you must use the InitGraf

procedure, described in the chapter “Basic QuickDraw,” to initialize QuickDraw. You

should also ensure the availability of these routines by checking for the existence of

System 7 or Color QuickDraw.

You can make sure that offscreen graphics world routines are available on any

computer—including one supporting only basic QuickDraw—by using the Gestalt

function with the gestaltSystemVersion selector. Test the low-order word in the

response parameter; if the value is $0700 or greater, then offscreen graphics worlds are

supported.

You can also test for offscreen graphics world support by using the Gestalt function

with the gestaltQuickDrawVersion selector. If the value returned in the response

parameter is equal to or greater than the value of the constant gestalt32BitQD, then

the system supports both Color QuickDraw and offscreen graphics worlds.

You can use the Gestalt function with the gestaltQuickDrawVersion selector to

determine whether the user’s system supports offscreen color pixel maps. If the bit

indicated by the gestaltHasDeepGWorlds constant is set in the response parameter,

then offscreen color pixel maps are available.

For more information about the Gestalt function, see the chapter “Gestalt Manager” in

Inside Macintosh: Operating System Utilities.

Creating an Offscreen Graphics World
You create an offscreen graphics world with the NewGWorld function. It creates a new

offscreen graphics port, a new offscreen pixel map, and (on computers that support

Color QuickDraw) either a new offscreen GDevice record or a link to an existing one. It

returns a data structure of type GWorldPtr by which your application refers to your

new offscreen graphics world. Listing 6-1 illustrates how to create an offscreen graphics

world.

Listing 6-1 Using a single offscreen graphics world and the CopyBits procedure

PROCEDURE MyPaintRectsThruGWorld (wp: WindowPtr);

VAR

origPort: GrafPtr;

origDev: GDHandle;

myErr: QDErr;

myOffGWorld: GWorldPtr;

offPixMapHandle: PixMapHandle;

good: Boolean;

sourceRect, destRect: Rect;

C H A P T E R 6

Offscreen Graphics Worlds

6-6 Using Offscreen Graphics Worlds

BEGIN

GetGWorld(origPort, origDev); {save window's graphics port}

myErr := NewGWorld(myOffGWorld, 0, {create offscreen graphics world, }

wp^.portRect, { using window's port rectangle}

NIL, NIL, []);

IF (myOffGWorld = NIL) OR (myErr <> noErr) THEN

; {handle error here}

SetGWorld(myOffGWorld, NIL); {make offscreen world the current port}

offPixMapHandle := GetGWorldPixMap(myOffGWorld); {get handle to }

good := LockPixels(offPixMapHandle); { offscreen pixel image and lock it}

IF NOT good THEN

; {handle error here}

EraseRect(myOffGWorld^.portRect); {initialize its pixel image}

MyPaintAndFillColorRects; {paint a blue rectangle, fill a green rectangle}

SetGWorld(origPort, origDev); {make window the current port}

{next, for CopyBits, create source and destination rectangles that }

{ exclude scroll bar areas}

sourceRect := myOffGWorld^.portRect; {use offscreen portRect for source}

sourceRect.bottom := myOffGWorld^.portRect.bottom - 15;

sourceRect.right := myOffGWorld^.portRect.right - 15;

destRect := wp^.portRect; {use window portRect for destination}

destRect.bottom := wp^.portRect.bottom - 15;

destRect.right := wp^.portRect.right - 15;

{next, use CopyBits to transfer the offscreen image to the window}

CopyBits(GrafPtr(myOffGWorld)^.portBits, {coerce graphics world's }

{ PixMap to a BitMap}

GrafPtr(wp)^.portBits, {coerce window's PixMap to a BitMap}

sourceRect, destRect, srcCopy, NIL);

IF QDError <> noErr THEN

; {likely error is that there is insufficient memory}

UnlockPixels(offPixMapHandle); {unlock the pixel image}

DisposeGWorld(myOffGWorld); {dispose of offscreen world}

END;

C H A P T E R 6

Offscreen Graphics Worlds

Using Offscreen Graphics Worlds 6-7

When you use NewGWorld, you can specify a pixel depth, a boundary rectangle (which

also becomes the port rectangle), a color table, a GDevice record, and option flags for

memory allocation for the offscreen graphics world. Typically, however, you pass 0 as

the pixel depth, a window’s port rectangle as the offscreen world’s boundary rectangle,

NIL for both the color table and GDevice record, and an empty set ([]) in your Pascal

code or 0 in your C code for the option flags. This provides your application with the

default behavior of NewGWorld, and it supports computers running only basic

QuickDraw. This also allows QuickDraw to optimize the CopyBits, CopyMask, and

CopyDeepMask procedures when your application copies the image you create in an

offscreen graphics world into the window’s port rectangle.

When creating an offscreen graphics world, if you specify 0 as the pixel depth, the port

rectangle for a window as the boundary rectangle, and no option flags, the NewGWorld

function

■ uses the pixel depth of the screen with the greatest pixel depth from among all screens
intersected by the window

■ aligns the pixel image to the screen for optimum performance for the CopyBits
procedure

■ uses the color table and GDevice record for the screen with the greatest pixel depth
from among all screens intersected by the window

■ allocates an unpurgeable base address for the offscreen pixel image in your
application heap

■ allows graphics accelerators to cache the offscreen pixel image

The application-defined routine MyPaintRectsThruGWorld in Listing 6-1, for

example, specifies the default behavior for NewGWorld. The

MyPaintRectsThruGWorld routine dereferences the window pointer passed in the wp

parameter to obtain a window’s port rectangle, which MyPaintRectsThruGWorld

passes to NewGWorld as the boundary and port rectangle for the offscreen graphics

world.

C H A P T E R 6

Offscreen Graphics Worlds

6-8 Using Offscreen Graphics Worlds

Setting the Graphics Port for an Offscreen Graphics World
Before drawing into the offscreen graphics port created in Listing 6-1 on page 6-5,

MyPaintRectsThruGWorld saves the graphics port for the front window by calling

the GetGWorld procedure, which saves the current graphics port and its GDevice

record. Then MyPaintRectsThruGWorld makes the offscreen graphics world the

current port by calling the SetGWorld procedure. After drawing into the offscreen

graphics world, MyPaintRectsThruGWorld also uses SetGWorld to restore the active

window as the current graphics port.

Instead of using the GetPort and SetPort procedures for saving and restoring

offscreen graphics worlds, you must use GetGWorld and SetGWorld; you can also use

GetGWorld and SetGWorld for saving and restoring color and basic graphics ports.

Drawing Into an Offscreen Graphics World
You must call the LockPixels function before drawing to or copying from an offscreen

graphics world. The LockPixels function prevents the base address for an offscreen

pixel image from being moved while you draw into it or copy from it.

If the base address for an offscreen pixel image hasn’t been purged by the Memory

Manager or if its base address is not purgeable, LockPixels returns TRUE as its

function result, and your application can draw into or copy from the offscreen pixel

image. However, if the base address for an offscreen pixel image has been purged,

LockPixels returns FALSE to indicate that you cannot draw into it or copy from it. (At

that point, your application should either call the UpdateGWorld function to reallocate

the offscreen pixel image and then reconstruct it, or draw directly into an onscreen

graphics port.)

After setting the offscreen graphics world to the current graphics port,

MyPaintRectsThruGWorld in Listing 6-1 on page 6-5 uses the GetGWorldPixMap

function to get a handle to an offscreen pixel map. Passing this handle to the

LockPixels function, MyPaintRectsThruGWorld locks the memory for the

offscreen pixel image in preparation for drawing into its pixel map.

IMPORTANT

On a system running only basic QuickDraw, the GetGWorldPixMap
function returns the handle to a 1-bit pixel map that your application
can supply as a parameter to LockPixels and the other routines
related to offscreen graphics worlds that are described in this chapter.
On a basic QuickDraw system, however, your application should not
supply this handle to Color QuickDraw routines. ▲

The MyPaintRectsThruGWorld routine initializes the offscreen pixel image to

all white by calling the EraseRect procedure, which is described in the chapter

“Basic QuickDraw.” The MyPaintRectsThruGWorld routine then calls another

application-defined routine, MyPaintAndFillColorRects, to draw color rectangles

into the pixel map for the offscreen graphics world.

C H A P T E R 6

Offscreen Graphics Worlds

Using Offscreen Graphics Worlds 6-9

IMPORTANT

You cannot dereference the GWorldPtr data structure to get to the pixel
map. The baseAddr field of the PixMap record for an offscreen
graphics world contains a handle instead of a pointer, which is what the
baseAddr field for an onscreen pixel map contains. You must use the
GetPixBaseAddr function (described on page 6-38) to obtain a pointer
to the PixMap record for an offscreen graphics world. ▲

Copying an Offscreen Image Into a Window
After preparing an image in the offscreen graphics world, your application must use

SetGWorld to restore the active window as the current graphics port, as illustrated in

Listing 6-1 on page 6-5.

To copy the image from an offscreen graphics world into a window, use the CopyBits

procedure. Specify the offscreen graphics world as the source image for CopyBits, and

specify the window as its destination. When using CopyBits, you must coerce the

offscreen graphics world’s GWorldPtr data type to a data structure of type GrafPtr.

Similarly, whenever a color graphics port is your destination, you must coerce the

window’s CGrafPtr data type to a data structure of type GrafPtr. (The CopyBits

procedure is described in the chapter “QuickDraw Drawing.”)

As long as you’re drawing into an offscreen graphics world or copying the image out of

it, you must leave its pixel image locked. When you are finished drawing into and

copying from an offscreen graphics world, use the UnlockPixels procedure. To help

prevent heap fragmentation, the UnlockPixels procedure allows the Memory

Manager to move the base address for the offscreen pixel image. (For more information

about Macintosh memory management, see Inside Macintosh: Memory.)

Finally, call the DisposeGWorld procedure when your application no longer needs the

pixel image associated with this offscreen graphics world, as illustrated in Listing 6-1.

Updating an Offscreen Graphics World
When the user resizes or moves a window, changes the pixel depth of a screen that a

window intersects, or modifies a color table, you can use the UpdateGWorld function to

reflect the user’s choices in the offscreen graphics world. The UpdateGWorld function,

described on page 6-23, allows you to change the pixel depth, boundary rectangle, or

color table for an existing offscreen graphics world without recreating it and redrawing

its contents. You should also call UpdateGWorld after every update event.

Calling UpdateGWorld and then CopyBits when the user makes these changes helps

your application get the maximum refresh speed when updating the window. See the

chapters “Event Manager” and “Window Manager” in Inside Macintosh: Macintosh
Toolbox Essentials for more information about handling update events in windows and

about resizing windows.

C H A P T E R 6

Offscreen Graphics Worlds

6-10 Using Offscreen Graphics Worlds

Creating a Mask and a Source Image in Offscreen
Graphics Worlds
When you use the CopyMask or CopyDeepMask procedure (described in the chapter

“QuickDraw Drawing”), you can create the source image and its mask in separate

offscreen graphics worlds. Plates 3 and 4 at the front of this book illustrate how to use

CopyMask in this way. The source image in Plate 3 consists of graduated gray stripes;

this image is created in an offscreen graphics world. The mask in Plate 3 consists of a

black rectangle alongside a red rectangle; this mask is created in a separate graphics

world that shares the same coordinates as the source image.

When the CopyMask procedure copies the grayscale image through this mask, the result

is the untitled window illustrated in the bottom half of Plate 3. The black pixels in the

mask cause CopyMask to copy directly into the window those pixels from the source

image that are masked by the black rectangle. The red pixels in the mask cause

CopyMask to alter most of the source pixels masked by the red rectangle when copying

them. That is, the source pixels that are completely black are changed to the mask’s red

when copied into the window. The source pixels that are completely white are left

unaltered when copied into the window. The source pixels that are between black and

white are given a graduated amount of the mask’s red.

Listing 6-2 shows the code that produces the window shown in Plate 3.

Listing 6-2 Using two offscreen graphics worlds and the CopyMask procedure

PROCEDURE MyCopyBlackAndRedMasks (wp: WindowPtr);

VAR

origPort: GrafPtr;

origDevice: GDHandle;

myErr: QDErr;

myOffScreen1, myOffScreen2: GWorldPtr;

theColor: RGBColor;

i: Integer;

offPixMapHandle1, offPixMapHandle2: PixMapHandle;

good: Boolean;

myRect: Rect;

BEGIN

GetGWorld(origPort, origDevice); {save window's graphics port}

{create an offscreen world for building an image}

myErr := NewGWorld(myOffScreen1, 0, wp^.portRect, NIL, NIL, []);

IF (myOffScreen1 = NIL) OR (myErr <> noErr) THEN

; {handle error here}

{create another offscreen world for building a mask}

myErr := NewGWorld(myOffScreen2, 0, wp^.portRect, NIL, NIL, []);

IF (myOffScreen2 = NIL) OR (myErr <> noErr) THEN

; {handle error here}

C H A P T E R 6

Offscreen Graphics Worlds

Using Offscreen Graphics Worlds 6-11

SetGWorld(myOffScreen1, NIL); {make first offscreen world the }

{ current port}

offPixMapHandle1 := GetGWorldPixMap(myOffScreen1);

good := LockPixels(offPixMapHandle1); {lock its pixel image}

IF NOT good THEN

; {handle error here}

EraseRect(myOffScreen1^.portRect); {initialize its pixel image}

FOR i := 0 TO 9 DO {draw graduated grayscale stripes for the image}

BEGIN

theColor.red := i * 7168;

theColor.green := i * 7168;

theColor.blue := i * 7168;

RGBForeColor(theColor);

SetRect(myRect, myOffScreen1^.portRect.left, i * 10,

 myOffScreen1^.portRect.right, i * 10 + 10);

PaintRect(myRect);

END;

SetGWorld(myOffScreen2, NIL); {make second offscreen world the }

{ current port}

offPixMapHandle2 := GetGWorldPixMap(myOffScreen2);

good := LockPixels(offPixMapHandle2); {lock its pixel image}

IF NOT good THEN

; {handle error here}

EraseRect(myOffScreen2^.portRect); {initialize its pixel image}

SetRect(myRect, 20, 20, 80, 80);

PaintRect(myRect); {paint a black rectangle in the mask}

SetRect(myRect, 100, 20, 160, 80);

theColor.red := $FFFF; theColor.green := $0000; theColor.blue := $0000;

RGBForeColor(theColor);

PaintRect(myRect); {paint a red rectangle in the mask}

SetGWorld(wp, GetMainDevice); {make window the current port}

EraseRect(wp^.portRect); {erase the window before using CopyMask}

CopyMask(GrafPtr(myOffScreen1)^.portBits, {use gray image as source}

GrafPtr(myOffScreen2)^.portBits, {use 2-rectangle image as mask}

GrafPtr(wp)^.portBits, {use window as destination}

myOffScreen1^.portRect,

myOffScreen2^.portRect,

wp^.portRect);

UnlockPixels(offPixMapHandle1); UnlockPixels(offPixMapHandle2);

DisposeGWorld(myOffScreen1); DisposeGWorld(myOffScreen2);

SetGWorld(origPort, origDevice); {restore original graphics port}

END;

C H A P T E R 6

Offscreen Graphics Worlds

6-12 Offscreen Graphics Worlds Reference

Offscreen Graphics Worlds Reference

This section describes the data structures and routines that your application can use to

create and manage offscreen graphics worlds. “Data Structures” shows the Pascal data

structures for the GWorldPtr and GWorldFlags data types. “Routines” describes

routines for creating, altering, and disposing of offscreen graphics worlds; for saving and

restoring offscreen graphics worlds; and for managing an offscreen graphics world’s

pixel map.

Data Structures

This section shows the Pascal data structures for the GWorldPtr and GWorldFlags

data types. Your application uses pointers of type GWorldPtr to refer to the offscreen

graphics worlds it creates. Several routines in this chapter expect or return values

defined by the GWorldFlags data type.

GWorldPtr

An offscreen graphics world in Color QuickDraw contains a CGrafPort record—and its

handles to associated PixMap and ColorTable records—that describes an offscreen

graphics port and contains references to a GDevice record and other state information.

The actual data structure for an offscreen graphics world is kept private to allow for

future extensions. However, when your application uses the NewGWorld function to

create an offscreen world, NewGWorld returns a pointer of type GWorldPtr by which

your application refers to the offscreen graphics world. This pointer is defined as follows:

TYPE GWorldPtr = CGrafPtr;

On computers lacking Color QuickDraw, GWorldPtr points to an extension of the

GrafPort record.

C H A P T E R 6

Offscreen Graphics Worlds

Offscreen Graphics Worlds Reference 6-13

GWorldFlags

Several routines in this chapter expect or return values defined by the GWorldFlags

data type, which is defined as follows:

TYPE GWorldFlags =

SET OF (

pixPurge, {specify to NewGWorld to make base address }

{ for offscreen pixel image purgeable}

noNewDevice, {specify to NewGWorld to not create a new }

{ GDevice record for offscreen world}

useTempMem, {specify to NewGWorld to create base }

{ address for offscreen pixel image in }

{ temporary memory}

keepLocal, {specify to NewGWorld to keep offscreen }

{ pixel image in main memory}

gWorldFlag4, {reserved}

gWorldFlag5, {reserved}

pixelsPurgeable, {returned by GetPixelsState to indicate }

{ that base address for offscreen pixel }

{ image is purgeable; specify to }

{ SetPixelsState to make base address for }

{ pixel image purgeable}

pixelsLocked, {returned by GetPixelsState to indicate }

{ that base address for offscreen pixel }

{ image is locked; specify to }

{ SetPixelsState to lock base address for }

{ offscreen pixel image}

gWorldFlag8, {reserved}

gWorldFlag9, {reserved}

gWorldFlag10, {reserved}

gWorldFlag11, {reserved}

gWorldFlag12, {reserved}

gWorldFlag13, {reserved}

gWorldFlag14, {reserved}

gWorldFlag15, {reserved}

mapPix, {returned by UpdateGWorld if it remapped }

{ colors to a new color table}

newDepth, {returned by UpdateGWorld if it translated }

{ pixel map to a different pixel depth}

alignPix, {returned by UpdateGWorld if it realigned }

{ pixel image to onscreen window}

newRowBytes, {returned by UpdateGWorld if it changed }

{ rowBytes field of PixMap record}

C H A P T E R 6

Offscreen Graphics Worlds

6-14 Offscreen Graphics Worlds Reference

reallocPix, {returned by UpdateGWorld if it reallocated }

{ base address for offscreen pixel image}

gWorldFlag21, {reserved}

gWorldFlag22, {reserved}

gWorldFlag23, {reserved}

gWorldFlag24, {reserved}

gWorldFlag25, {reserved}

gWorldFlag26, {reserved}

gWorldFlag27, {reserved}

clipPix, {specify to UpdateGWorld to update and clip }

{ pixel image}

stretchPix, {specify to UpdateGWorld to update and }

{ stretch or shrink pixel image}

ditherPix, {specify to UpdateGWorld to dither pixel }

{ image}

gwFlagErr, {returned by UpdateGWorld if it failed}

);

Field descriptions

pixPurge If you specify this flag for the flags parameter of the NewGWorld
function, NewGWorld (described on page 6-16) makes the base
address for the offscreen pixel image purgeable.

noNewDevice If you specify this flag for the flags parameter of the NewGWorld
function, NewGWorld does not create a new offscreen GDevice
record; instead, NewGWorld uses either the GDevice record you
specify or the GDevice record for a video card on the user’s system.

useTempMem If you specify this in the flags parameter of the NewGWorld
function, NewGWorld creates the base address for an offscreen pixel
image in temporary memory. You generally should not use this flag.
You should use temporary memory only for fleeting purposes and
only with the AllowPurgePixels procedure (described on
page 6-34) so that other applications can launch.

keepLocal If you specify this in the flags parameter of the NewGWorld
function, NewGWorld creates a pixel image in Macintosh main
memory where it cannot be cached to a graphics accelerator card.

gWorldFlag4 Reserved.

gWorldFlag5 Reserved.

pixelsPurgeable
If you specify this in the state parameter of the SetPixelsState
procedure (described on page 6-37), SetPixelsState makes the
base address for an offscreen pixel map purgeable. If you use
the SetPixelsState procedure without passing it this flag, then
SetPixelsState makes the base address for an offscreen pixel
map unpurgeable. If the GetPixelsState function (described on
page 6-36) returns this flag, then the base address for an offscreen
pixel is purgeable.

C H A P T E R 6

Offscreen Graphics Worlds

Offscreen Graphics Worlds Reference 6-15

pixelsLocked If you specify this flag for the state parameter of the
SetPixelsState procedure, SetPixelsState locks the
base address for an offscreen pixel image. If you use the
SetPixelsState procedure without passing it this flag,
then SetPixelsState unlocks the offscreen pixel image. If the
GetPixelsState function returns this flag, then the base address
for an offscreen pixel is locked.

gWorldFlag8 Reserved.

gWorldFlag9 Reserved.

gWorldFlag10 Reserved.

gWorldFlag11 Reserved.

gWorldFlag12 Reserved.

gWorldFlag13 Reserved.

gWorldFlag14 Reserved.

gWorldFlag15 Reserved.

mapPix If the UpdateGWorld function (described on page 6-23) returns this
flag, then it remapped the colors in the offscreen pixel map to a new
color table.

newDepth If the UpdateGWorld function returns this flag, then it translated
the offscreen pixel map to a different pixel depth.

alignPix If the UpdateGWorld function returns this flag, then it realigned
the offscreen pixel image to an onscreen window.

newRowBytes If the UpdateGWorld function returns this flag, then it changed the
rowBytes field of the PixMap record for the offscreen graphics
world.

reallocPix If the UpdateGWorld function returns this flag, then it reallocated
the base address for the offscreen pixel image. Your application
should then reconstruct the pixel image or draw directly in a
window instead of preparing the image in an offscreen graphics
world.

gWorldFlag21 Reserved.

gWorldFlag22 Reserved.

gWorldFlag23 Reserved.

gWorldFlag24 Reserved.

gWorldFlag25 Reserved.

gWorldFlag26 Reserved.

gWorldFlag27 Reserved.

clipPix If the UpdateGWorld function returns this flag, then it clipped the
pixel image.

stretchPix If the UpdateGWorld function returns this flag, then it stretched or
shrank the offscreen image.

ditherPix If the UpdateGWorld function returns this flag, then it dithered the
offscreen image.

gwFlagErr If the UpdateGWorld function returns this flag, then it was
unsuccessful and the offscreen graphics world was left unchanged.

C H A P T E R 6

Offscreen Graphics Worlds

6-16 Offscreen Graphics Worlds Reference

Routines

This section describes routines for creating, altering, and disposing of offscreen graphics

worlds; for saving and restoring offscreen graphics worlds; and for managing an

offscreen graphics world’s pixel map.

Creating, Altering, and Disposing of Offscreen Graphics Worlds

To create an offscreen graphics world, use the NewGWorld function. The NewGWorld

function uses the NewScreenBuffer function to create and allocate memory for an

offscreen pixel image; your application generally won’t need to use NewScreenBuffer,

but it is described here for completeness. The NewGWorld function similarly uses the

NewTempScreenBuffer function to create and allocate temporary memory for an

offscreen pixel image.

To change the pixel depth, boundary rectangle, or color table for an existing offscreen

graphics world, use the UpdateGWorld function.

When you no longer need the pixel image associated with this offscreen graphics world,

use the DisposeGWorld procedure to dispose of all the memory allocated for the

offscreen graphics world. The DisposeGWorld procedure uses the

DisposeScreenBuffer procedure when disposing of an offscreen graphics world;

generally, your application won’t need to use DisposeScreenBuffer.

Note

Before drawing into an offscreen graphics world, be sure to use the
SetGWorld procedure (described on page 6-29) to make that offscreen
world the current graphics port. In addition, before drawing into—or
copying from—an offscreen pixel map, be sure to use the LockPixels
function, which is described on page 6-32. ◆

NewGWorld

Use the NewGWorld function to create an offscreen graphics world.

FUNCTION NewGWorld (VAR offscreenGWorld: GWorldPtr;

 pixelDepth: Integer; boundsRect: Rect;

 cTable: CTabHandle; aGDevice: GDHandle;

 flags: GWorldFlags): QDErr;

C H A P T E R 6

Offscreen Graphics Worlds

Offscreen Graphics Worlds Reference 6-17

offscreenGWorld
A pointer to the offscreen graphics world created by this routine.

pixelDepth
The pixel depth of the offscreen world; possible depths are 1, 2, 4, 8, 16,
and 32 bits per pixel. If you specify 0 in this parameter, you get the
default behavior for the NewGWorld function—that is, it uses the pixel
depth of the screen with the greatest pixel depth from among all screens
whose boundary rectangles intersect the rectangle that you specify in the
boundsRect parameter. If you specify 0 in this parameter, NewGWorld
also uses the GDevice record from this device instead of creating a new
GDevice record for the offscreen world. If you use NewGWorld on a
computer that supports only basic QuickDraw, you may specify only 0 or
1 in this parameter.

boundsRect
The boundary rectangle and port rectangle for the offscreen pixel
map. This becomes the boundary rectangle for the GDevice record,
if NewGWorld creates one. If you specify 0 in the pixelDepth parameter,
NewGWorld interprets the boundaries in global coordinates that it uses to
determine which screens intersect the rectangle. (NewGWorld then uses
the pixel depth, color table, and GDevice record from the screen with the
greatest pixel depth from among all screens whose boundary rectangles
intersect this rectangle.) Typically, your application supplies this
parameter with the port rectangle for the onscreen window into which
your application will copy the pixel image from this offscreen world.

cTable A handle to a ColorTable record. If you pass NIL in this parameter,
NewGWorld uses the default color table for the pixel depth that you
specify in the pixelDepth parameter. If you set the pixelDepth
parameter to 0, NewGWorld ignores the cTable parameter and instead
copies and uses the color table of the graphics device with the greatest
pixel depth among all graphics devices whose boundary rectangles
intersect the rectangle that you specify in the boundsRect parameter.
If you use NewGWorld on a computer that supports only basic
QuickDraw, you may specify only NIL in this parameter.

aGDevice A handle to a GDevice record that is used only when you specify the
noNewDevice flag in the flags parameter, in which case NewGWorld
attaches this GDevice record to the new offscreen graphics world. If you
set the pixelDepth parameter to 0, or if you do not set the
noNewDevice flag, NewGWorld ignores the aGDevice parameter, so
you should set it to NIL. If you set the pixelDepth parameter to 0,
NewGWorld uses the GDevice record for the graphics device with the
greatest pixel depth among all graphics devices whose boundary
rectangles intersect the rectangle that you specify in the boundsRect
parameter. You should pass NIL in this parameter if the computer
supports only basic QuickDraw. Generally, your application should never
create GDevice records for offscreen graphics worlds.

C H A P T E R 6

Offscreen Graphics Worlds

6-18 Offscreen Graphics Worlds Reference

flags Options available to your application. You can set a combination of the
flags pixPurge, noNewDevice, useTempMem, and keepLocal. If you
don’t wish to use any of these flags, pass the empty set ([]) in your Pascal
code or 0 in your C code in this parameter, in which case you get the
default behavior for NewGWorld—that is, it creates an offscreen graphics
world where the base address for the offscreen pixel image is
unpurgeable, it uses an existing GDevice record (if you pass 0 in the
depth parameter) or creates a new GDevice record, it uses memory in
your application heap, and it allows graphics accelerators to cache the
offscreen pixel image. The available flags are described here:

TYPE GWorldFlags =

SET OF ({flags for only NewGWorld are listed here}

 pixPurge, {make base address for offscreen pixel }

{ image purgeable}

 noNewDevice, {do not create an offscreen GDevice }

{ record}

 useTempMem, {create base address for offscreen pixel }

{ image in temporary memory}

 keepLocal, {keep offscreen pixel image in main }

{ memory where it cannot be cached to }

{ a graphics accelerator card}

);

DESCRIPTION

The NewGWorld function creates an offscreen graphics world with the pixel depth you

specify in the pixelDepth parameter, the boundary rectangle you specify in the

boundsRect parameter, the color table you specify in the cTable parameter, and the

options you specify in the flags parameter. The NewGWorld function returns a pointer

to the new offscreen graphics world in the offscreenGWorld parameter. You use this

pointer when referring to this new offscreen world in other routines described in this

chapter.

Typically, you pass 0 in the pixelDepth parameter, a window’s port rectangle in the

boundsRect parameter, NIL in the cTable and aGDevice parameters, and—in the

flags parameter—an empty set ([]) for Pascal code or 0 for C code. This provides your

application with the default behavior of NewGWorld, and it supports computers running

basic QuickDraw. This also allows QuickDraw to optimize the CopyBits, CopyMask,

and CopyDeepMask procedures when your application copies the image in an offscreen

graphics world into an onscreen graphics port.

The NewGWorld function allocates memory for an offscreen graphics port and its pixel

map. On computers that support only basic QuickDraw, NewGWorld creates a 1-bit

pixel map that your application can manipulate using other relevant routines described

in this chapter. Your application can copy this 1-bit pixel map into basic graphics ports.

C H A P T E R 6

Offscreen Graphics Worlds

Offscreen Graphics Worlds Reference 6-19

Unless you specify 0 in the pixelDepth parameter—or pass the noNewDevice flag in

the flags parameter and supply a GDevice record in the aGDevice parameter—

NewGWorld also allocates a new offscreen GDevice record.

When creating an image, your application can use the NewGWorld function to create an

offscreen graphics world that is optimized for an image’s characteristics—for example,

its best pixel depth. After creating the image, your application can then use the

CopyBits, CopyMask, or CopyDeepMask procedure to copy that image to an onscreen

graphics port. Color QuickDraw automatically renders the image at the best available

pixel depth for the screen. Creating an image in an offscreen graphics port and then

copying it to the screen in this way prevents the visual choppiness that would otherwise

occur if your application were to build a complex image directly onscreen.

The NewGWorld function initializes the offscreen graphics port by calling the

OpenCPort function. The NewGWorld function sets the offscreen graphics port’s visible

region to a rectangular region coincident with its boundary rectangle. The NewGWorld

function generates an inverse table with the Color Manager procedure MakeITable,

unless one of the GDevice records for the screens has the same color table as the

GDevice record for the offscreen world, in which case NewGWorld uses the inverse

table from that GDevice record.

The address of the offscreen pixel image is not directly accessible from the PixMap

record for the offscreen graphics world. However, you can use the GetPixBaseAddr

function (described on page 6-38) to get a pointer to the beginning of the offscreen pixel

image.

For purposes of estimating memory use, you can compute the size of the offscreen pixel

image by using this formula:

rowBytes * (boundsRect.bottom – boundsRect.top)

In the flags parameter, you can specify several options that are defined by the

GWorldFlags data type. If you don’t wish to use any of these options, pass an empty

set ([]) in the flags parameter for Pascal code or pass 0 here for C code.

■ If you specify the pixPurge flag, NewGWorld stores the offscreen pixel image in a
purgeable block of memory. In this case, before drawing to or from the offscreen pixel
image, your application should call the LockPixels function (described on
page 6-32) and ensure that it returns TRUE. If LockPixels returns FALSE, the
memory for the pixel image has been purged, and your application should either call
UpdateGWorld to reallocate it and then reconstruct the pixel image, or draw directly
in a window instead of preparing the image in an offscreen graphics world. Never
draw to or copy from an offscreen pixel image that has been purged without
reallocating its memory and then reconstructing it.

■ If you specify the noNewDevice flag, NewGWorld does not create a new offscreen
GDevice record. Instead, it uses the GDevice record that you specify in the
aGDevice parameter—and its associated pixel depth and color table—to create the
offscreen graphics world. (If you set the pixelDepth parameter to 0, NewGWorld
uses the GDevice record for the screen with the greatest pixel depth among all
screens whose boundary rectangles intersect the rectangle that you specify in the
boundsRect parameter—even if you specify the noNewDevice flag.) The

C H A P T E R 6

Offscreen Graphics Worlds

6-20 Offscreen Graphics Worlds Reference

NewGWorld function keeps a reference to the GDevice record for the offscreen
graphics world, and the SetGWorld procedure (described on page 6-29) uses that
record to set the current graphics device.

■ If you set the useTempMem flag, NewGWorld creates the base address for an offscreen
pixel image in temporary memory. You generally would not use this flag, because you
should use temporary memory only for fleeting purposes and only with the
AllowPurgePixels procedure (described on page 6-34).

■ If you specify the keepLocal flag, your offscreen pixel image is kept in Macintosh
main memory and is not cached to a graphics accelerator card. Use this flag carefully,
as it negates the advantages provided by any graphics acceleration card that might be
present.

As its function result, NewGWorld returns one of three result codes.

SPECIAL CONSIDERATIONS

If you supply a handle to a ColorTable record in the cTable parameter, NewGWorld

makes a copy of the record and stores its handle in the offscreen PixMap record. It is

your application’s responsibility to make sure that the ColorTable record you specify

in the cTable parameter is valid for the offscreen graphics port’s pixel depth.

If when using NewGWorld you specify a pixel depth, color table, or GDevice record that

differs from those used by the window into which you copy your offscreen image, the

CopyBits, CopyMask, and CopyDeepMask procedures require extra time to complete.

To use a custom color table in an offscreen graphics world, you need to create the

associated offscreen GDevice record, because Color QuickDraw needs its inverse table.

The NewGWorld function may move or purge memory blocks in the application heap.

Your application should not call this function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the NewGWorld function are

RESULT CODES

Trap macro Selector

_QDExtensions $00160000

noErr 0 No error
paramErr –50 Illegal parameter
cDepthErr –157 Invalid pixel depth

C H A P T E R 6

Offscreen Graphics Worlds

Offscreen Graphics Worlds Reference 6-21

SEE ALSO

Listing 6-1 on page 6-5 and Listing 6-2 on page 6-10 illustrate how to use NewGWorld to

create offscreen graphics worlds.

If your application needs to change the pixel depth, boundary rectangle, or color table

for an offscreen graphics world, use the UpdateGWorld function, described on

page 6-23.

NewScreenBuffer

The NewGWorld function uses the NewScreenBuffer function to create an offscreen

PixMap record and allocate memory for the base address of its pixel image; applications

generally don’t need to use NewScreenBuffer.

FUNCTION NewScreenBuffer (globalRect: Rect;

 purgeable: Boolean; VAR gdh: GDHandle;

 VAR offscreenPixMap: PixMapHandle):

 QDErr;

globalRect
The boundary rectangle, in global coordinates, for the offscreen pixel map.

purgeable A value of TRUE to make the memory block for the offscreen pixel map
purgeable, or a value of FALSE to make it unpurgeable.

gdh The handle to the GDevice record for the graphics device with the
greatest pixel depth among all graphics devices whose boundary
rectangles intersect the rectangle specified in the globalRect parameter.

offscreenPixMap
A handle to the new offscreen PixMap record.

DESCRIPTION

The NewScreenBuffer function creates a new offscreen PixMap record, using the pixel

depth and color table of the device whose GDevice record is returned in the gdh

parameter. The NewScreenBuffer function returns a handle to the new offscreen pixel

map in the offscreenPixMap parameter.

As its function result, NewScreenBuffer returns one of three result codes.

SPECIAL CONSIDERATIONS

The NewScreenBuffer function may move or purge memory blocks in the application

heap. Your application should not call this function at interrupt time.

C H A P T E R 6

Offscreen Graphics Worlds

6-22 Offscreen Graphics Worlds Reference

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the NewScreenBuffer function are

RESULT CODES

NewTempScreenBuffer

The NewGWorld function uses the NewTempScreenBuffer function to create an

offscreen PixMap record and allocate temporary memory for the base address of its pixel

image; applications generally don’t need to use NewTempScreenBuffer.

FUNCTION NewTempScreenBuffer (globalRect: Rect;

 purgeable: Boolean;

 VAR gdh: GDHandle;

 VAR offscreenPixMap: PixMapHandle):

 QDErr;

globalRect
The boundary rectangle, in global coordinates, for the offscreen pixel map.

purgeable A value of TRUE to make the memory block for the offscreen pixel map
purgeable, or a value of FALSE to make it unpurgeable.

gdh The handle to the GDevice record for the graphics device with the
greatest pixel depth among all graphics devices whose boundary
rectangles intersect the rectangle specified in the globalRect parameter.

offscreenPixMap
A handle to the new offscreen PixMap record.

DESCRIPTION

The NewTempScreenBuffer function performs the same functions as

NewScreenBuffer except that it creates the base address for the offscreen pixel

image in temporary memory. When an application passes it the useTempMem flag,

the NewGWorld function uses NewTempScreenBuffer instead of NewScreenBuffer.

Trap macro Selector

_QDExtensions $000E0010

noErr 0 No error
paramErr –50 Illegal parameter
cNoMemErr –152 Failed to allocate memory for structures

C H A P T E R 6

Offscreen Graphics Worlds

Offscreen Graphics Worlds Reference 6-23

SPECIAL CONSIDERATIONS

The NewTempScreenBuffer function may move or purge memory blocks in the

application heap. Your application should not call this function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the NewTempScreenBuffer function are

UpdateGWorld

To change the pixel depth, boundary rectangle, or color table for an existing offscreen

graphics world, use the UpdateGWorld function. You should call UpdateGWorld after

every update event and whenever your windows move or change size.

FUNCTION UpdateGWorld (VAR offscreenGWorld: GWorldPtr;

 pixelDepth: Integer; boundsRect: Rect;

 cTable: CTabHandle; aGDevice: GDHandle;

 flags: GWorldFlags): GWorldFlags;

offscreenGWorld
On input, a pointer to an existing offscreen graphics world; upon
completion, the pointer to the updated offscreen graphics world.

pixelDepth
The pixel depth of the offscreen world; possible depths are 1, 2, 4, 8, 16,
and 32 bits per pixel. If you specify 0 in this parameter, UpdateGWorld
rescans the device list and uses the depth of the screen with the greatest
pixel depth among all screens whose boundary rectangles intersect the
rectangle that you specify in the boundsRect parameter. If you specify 0
in this parameter, UpdateGWorld also copies the GDevice record from
this device to create an offscreen GDevice record. The UpdateGWorld
function ignores the value you supply for this parameter if you specify a
GDevice record in the aGDevice parameter.

boundsRect
The boundary rectangle and port rectangle for the offscreen pixel map.
This also becomes the boundary rectangle for the GDevice record,
if NewGWorld creates one. If you specify 0 in the pixelDepth parameter,
NewGWorld interprets the boundaries in global coordinates, with which it
determines which screens intersect the rectangle. (NewGWorld then uses
the pixel depth, color table, and GDevice record from the screen with the
greatest pixel depth from among all screens whose boundary rectangles
intersect this rectangle.) Typically, your application supplies this
parameter with the port rectangle for the onscreen window into which
your application will copy the pixel image from this offscreen world.

Trap macro Selector

_QDExtensions $000E0015

C H A P T E R 6

Offscreen Graphics Worlds

6-24 Offscreen Graphics Worlds Reference

cTable A handle to a ColorTable record. If you pass NIL in this parameter,
UpdateGWorld uses the default color table for the pixel depth that you
specify in the pixelDepth parameter; if you set the pixelDepth
parameter to 0, UpdateGWorld copies and uses the color table of the
graphics device with the greatest pixel depth among all graphics devices
whose boundary rectangles intersect the rectangle that you specify in the
boundsRect parameter. The UpdateGWorld function ignores the value
you supply for this parameter if you specify a GDevice record in the
aGDevice parameter.

aGDevice As an option, a handle to a GDevice record whose pixel depth and color
table you want to use for the offscreen graphics world. To use the pixel
depth and color table that you specify in the pixelDepth and cTable
parameters, set this parameter to NIL.

flags Options available to your application. You can set a combination of the
flags keepLocal, clipPix, stretchPix, and ditherPix. If you don’t
wish to use any of these flags, pass the empty set ([]) in this parameter for
Pascal code or pass 0 here for C code. However, you should pass either
clipPix or stretchPix to ensure that the pixel map is updated to
reflect the new color table. The available flags are described here:

 TYPE GWorldFlags =

 SET OF ({flags for UpdateGWorld are listed here}

 keepLocal, {keep data structures in main memory}

 clipPix, {update and clip pixel image to new }

 { boundary rectangle}

 stretchPix, {update and stretch or shrink pixel }

 { image to the new boundary rectangle}

 ditherPix, {include with clipPix or stretchPix }

 { flag to dither the pixel image}

);

DESCRIPTION

The UpdateGWorld function changes an offscreen graphics world to the specified pixel

depth, rectangle, color table, and options that you supply in the pixelDepth,

boundsRect, cTable, and flags parameters, respectively. In the offscreenGWorld

parameter, pass the pointer returned to your application by the NewGWorld function

when you created the offscreen graphics world.

If the LockPixels function (described on page 6-32) reports that the Memory Manager

has purged the base address for the offscreen pixel image, you can use UpdateGWorld

to reallocate its memory. Your application should then reconstruct the pixel image or

draw directly in a window instead of preparing the image in an offscreen graphics world.

C H A P T E R 6

Offscreen Graphics Worlds

Offscreen Graphics Worlds Reference 6-25

In the flags parameter, you can specify the keepLocal flag, which keeps the offscreen

pixel image in Macintosh main memory or returns the image to main memory if it had

been previously cached. If you use UpdateGWorld without passing it the keepLocal

flag, you allow the offscreen pixel image to be cached on a graphics accelerator card if

one is present.

As its function result, UpdateGWorld returns the gwFlagErr flag if UpdateGWorld

was unsuccessful; in this case, the offscreen graphics world is left unchanged. You can

use the QDError function, described in the chapter “Color QuickDraw,” to help you

determine why UpdateGWorld failed.

If UpdateGWorld is successful, it returns a combination of the following flags, which

are defined by the GWorldFlags data type:

The UpdateGWorld function uses the following algorithm when updating the offscreen

pixel image:

1. If the color table that you specify in the cTable parameter is different from the
previous color table, or if the color table associated with the GDevice record that you
specify in the aGDevice parameter is different, Color QuickDraw maps the pixel
values in the offscreen pixel map to the new color table.

2. If the value you specify in the pixelDepth parameter differs from the previous pixel
depth, Color QuickDraw translates the pixel values in the offscreen pixel image to
those for the new pixel depth.

3. If the rectangle you specify in the boundsRect parameter differs from, but has the
same size as, the previous boundary rectangle, QuickDraw realigns the pixel image to
the screen for optimum performance for the CopyBits procedure.

4. If the rectangle you specify in the boundsRect parameter is smaller than the
previous boundary rectangle and you specify the clipPix flag, the pixel image is
clipped along the bottom and right edges.

Flag Meaning

mapPix Color QuickDraw remapped the colors to a new color table.

newDepth Color QuickDraw translated the pixel values in the offscreen pixel
image to those for a different pixel depth.

alignPix QuickDraw realigned the offscreen image to the window.

newRowBytes QuickDraw changed the value of the rowBytes field in the PixMap
record for the offscreen graphics world.

reallocPix QuickDraw had to reallocate memory for the offscreen pixel image;
your application should then reconstruct the pixel image, or draw
directly in a window instead of preparing the image in an offscreen
graphics world.

clipPix QuickDraw clipped the pixel image.

stretchPix QuickDraw stretched or shrank the offscreen image.

ditherPix Color QuickDraw dithered the offscreen pixel image.

C H A P T E R 6

Offscreen Graphics Worlds

6-26 Offscreen Graphics Worlds Reference

5. If the rectangle you specify in the boundsRect parameter is bigger than the previous
boundary rectangle and you specify the clipPix flag, the bottom and right edges of
the pixel image are undefined.

6. If the rectangle you specify in the boundsRect parameter is smaller than the
previous boundary rectangle and you specify the stretchPix flag, the pixel image is
reduced to the new size.

7. If the rectangle you specify in the boundsRect parameter is bigger than the previous
boundary rectangle and you specify the stretchPix flag, the pixel image is
stretched to the new size.

8. If the Memory Manager purged the base address for the offscreen pixel image,
UpdateGWorld reallocates the memory, but the pixel image is lost. You must
reconstruct it.

SPECIAL CONSIDERATIONS

The UpdateGWorld function may move or purge memory blocks in the application

heap. Your application should not call this function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the UpdateGWorld function are

DisposeGWorld

Use the DisposeGWorld procedure to dispose of all the memory allocated for an

offscreen graphics world.

PROCEDURE DisposeGWorld (offscreenGWorld: GWorldPtr);

offscreenGWorld
A pointer to an offscreen graphics world.

DESCRIPTION

The DisposeGWorld procedure disposes of all the memory allocated for the

offscreen graphics world pointed to in the offscreenGWorld parameter, including its

pixel map, color table, pixel image, and GDevice record (if one was created). In the

offscreenGWorld parameter, pass the pointer returned to your application by the

NewGWorld function when you created the offscreen graphics world.

Trap macro Selector

_QDExtensions $00160003

C H A P T E R 6

Offscreen Graphics Worlds

Offscreen Graphics Worlds Reference 6-27

Call DisposeGWorld only when your application no longer needs the pixel image

associated with this offscreen graphics world. If this offscreen graphics world was the

current device, the current device is reset to the device stored in the global variable

MainDevice.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DisposeGWorld procedure are

DisposeScreenBuffer

The DisposeGWorld procedure uses the DisposeScreenBuffer procedure when

disposing of an offscreen graphics world; generally, applications do not need to use

DisposeScreenBuffer.

PROCEDURE DisposeScreenBuffer (offscreenPixMap: PixMapHandle);

offscreenPixMap
A handle to an existing offscreen PixMap record.

DESCRIPTION

The DisposeScreenBuffer procedure disposes of the memory allocated for the base

address of an offscreen pixel image.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DisposeScreenBuffer procedure are

Saving and Restoring Graphics Ports and Offscreen Graphics Worlds

To save the current graphics port (basic, color, or offscreen) and the current GDevice

record, use the GetGWorld procedure. To change the current graphics port (basic, color,

or offscreen), use the SetGWorld procedure; any drawing your application performs

then occurs in this graphics port.

You can use the GetGWorldDevice function to obtain a handle to the GDevice record

associated with an offscreen graphics world.

Trap macro Selector

_QDExtensions $00040004

Trap macro Selector

_QDExtensions $00040011

C H A P T E R 6

Offscreen Graphics Worlds

6-28 Offscreen Graphics Worlds Reference

GetGWorld

To save the current graphics port (basic, color, or offscreen) and the current GDevice

record, use the GetGWorld procedure.

PROCEDURE GetGWorld (VAR port: CGrafPtr; VAR gdh: GDHandle);

port A pointer to an offscreen graphics world, color graphics port, or basic
graphics port, depending on which is the current port.

gdh A handle to the GDevice record for the current device.

DESCRIPTION

The GetGWorld procedure returns a pointer to the current graphics port in the port

parameter. This parameter can return values of type GrafPtr, CGrafPtr, or

GWorldPtr, depending on whether the current graphics port is a basic graphics port,

color graphics port, or offscreen graphics world. The GetGWorld procedure returns a

handle to the GDevice record for the current device in the gdh parameter.

After using GetGWorld to save a graphics port and a GDevice record, your application

can later use the SetGWorld procedure, described next, to restore them.

SPECIAL CONSIDERATIONS

The GetGWorld procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the GetGWorld procedure are

SEE ALSO

Listing 6-1 on page 6-5 and Listing 6-2 on page 6-10 illustrate how to use the

GetGWorld procedure to save the current graphics port for an active window,

the SetGWorld procedure to change the current graphics port to an offscreen graphics

world, and then SetGWorld again to restore the active window as the current

graphics port.

Trap macro Selector

_QDExtensions $00080005

C H A P T E R 6

Offscreen Graphics Worlds

Offscreen Graphics Worlds Reference 6-29

SetGWorld

To change the current graphics port (basic, color, or offscreen), use the SetGWorld

procedure.

PROCEDURE SetGWorld (port: CGrafPtr; gdh: GDHandle);

port A pointer to an offscreen graphics world, color graphics port, or basic
graphics port.

gdh A handle to a GDevice record. If you pass a pointer to an offscreen
graphics world in the port parameter, set this parameter to NIL, because
SetGWorld ignores this parameter and sets the current device to the
device attached to the offscreen graphics world.

DESCRIPTION

The SetGWorld procedure sets the current graphics port to the one specified by the

port parameter and—unless you set the current graphics port to be an offscreen

graphics world—sets the current device to that specified by the gdh parameter.

In the port parameter, you can specify values of type GrafPtr, CGrafPtr, or

GWorldPtr, depending on whether you want to set the current graphics port to be a

basic graphics port, color graphics port, or offscreen graphics world. Any drawing your

application performs then occurs in this graphics port.

SPECIAL CONSIDERATIONS

The SetGWorld procedure may move or purge memory blocks in the application heap.

Your application should not call this procedure at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SetGWorld procedure are

SEE ALSO

Listing 6-1 on page 6-5 and Listing 6-2 on page 6-10 illustrate how to use the

GetGWorld procedure to save the current graphics port for an active window,

the SetGWorld procedure to change the current graphics port to an offscreen graphics

world, and then SetGWorld again to restore the active window as the current

graphics port.

Trap macro Selector

_QDExtensions $00080006

C H A P T E R 6

Offscreen Graphics Worlds

6-30 Offscreen Graphics Worlds Reference

GetGWorldDevice

Use the GetGWorldDevice function to obtain a handle to the GDevice record

associated with an offscreen graphics world.

FUNCTION GetGWorldDevice (offscreenGWorld: GWorldPtr): GDHandle;

offscreenGWorld
A pointer to an offscreen graphics world. The pointer returned to your
application by the NewGWorld function.

DESCRIPTION

The GetGWorldDevice function returns a handle to the GDevice record associated

with the offscreen graphics world specified by the offscreenGWorld parameter. In this

parameter, supply the pointer returned to your application by the NewGWorld function

when you created the offscreen graphics world. If you created the offscreen world by

specifying the noNewDevice flag, the GDevice record is for one of the screen devices or

is the GDevice record that you specified to NewGWorld or UpdateGWorld.

If you point to a GrafPort or CGrafPort record in the offscreenGWorld parameter,

GetGWorldDevice returns the current device.

SPECIAL CONSIDERATIONS

The GetGWorldDevice function may move or purge memory blocks in the application

heap. Your application should not call this function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the GetGWorldDevice function are

Managing an Offscreen Graphics World’s Pixel Image

Use the GetGWorldPixMap function to obtain a handle to the PixMap record for an

offscreen graphics world. You can then pass this handle, which is of data type

PixMapHandle, in parameters to several routines that allow you to manage an offscreen

graphics world’s pixel image.

To prevent the base address for an offscreen pixel image from being moved (while you

draw into or copy from its pixel map, for example), pass its handle to the LockPixels

function. When you are finished drawing into or copying from an offscreen pixel map,

pass its handle to the UnlockPixels procedure.

Trap macro Selector

_QDExtensions $00040012

C H A P T E R 6

Offscreen Graphics Worlds

Offscreen Graphics Worlds Reference 6-31

You can use the AllowPurgePixels procedure to make the base address for an

offscreen pixel image purgeable. To prevent the Memory Manager from purging the base

address for an offscreen pixel map, use the NoPurgePixels procedure.

To save the current information about the memory allocated for an offscreen pixel image,

you can use the GetPixelsState function. To restore this state, you can use the

SetPixelsState procedure.

You can use the GetPixBaseAddr function to obtain a pointer to the beginning of a

pixel image in memory. You can use the PixMap32Bit function to determine whether

a pixel map requires 32-bit addressing mode for access to its pixel image.

GetGWorldPixMap

Use the GetGWorldPixMap function to obtain the pixel map created for an offscreen

graphics world.

FUNCTION GetGWorldPixMap (offscreenGWorld: GWorldPtr):

 PixMapHandle;

offscreenGWorld
A pointer to an offscreen graphics world.

DESCRIPTION

The GetGWorldPixMap function returns a handle to the pixel map created for an

offscreen graphics world. In the offscreenGWorld parameter, pass the pointer

returned to your application by the NewGWorld function when you created the offscreen

graphics world. Your application can, in turn, pass the handle returned by

GetGWorldPixMap as a parameter to other QuickDraw routines that accept a handle to

a pixel map.

On a system running only basic QuickDraw, the GetGWorldPixMap function returns

the handle to a 1-bit pixel map that your application can supply as a parameter to the

other routines related to offscreen graphics worlds. However, your application should

not supply this handle to Color QuickDraw routines.

SPECIAL CONSIDERATIONS

To ensure compatibility on systems running basic QuickDraw instead of Color

QuickDraw, use GetGWorldPixMap whenever you need to gain access to the bitmap

created for a graphics world—that is, do not dereference the GWorldPtr record for that

graphics world.

C H A P T E R 6

Offscreen Graphics Worlds

6-32 Offscreen Graphics Worlds Reference

The GetGWorldPixMap function is not available in systems preceding System 7. You

can make sure that the GetGWorldPixMap function is available by using the Gestalt

function with the gestaltSystemVersion selector. Test the low-order word in the

response parameter; if the value is $0700 or greater, then GetGWorldPixMap is

available.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the GetGWorldPixMap function are

SEE ALSO

The Gestalt function is described in the chapter “Gestalt Manager” of Inside Macintosh:
Operating System Utilities.

LockPixels

To prevent the base address for an offscreen pixel image from being moved while you

draw into or copy from its pixel map, use the LockPixels function.

FUNCTION LockPixels (pm: PixMapHandle): Boolean;

pm A handle to an offscreen pixel map. To get a handle to an offscreen pixel
map, use the GetGWorldPixMap function, described on page 6-31.

DESCRIPTION

The LockPixels function prevents the base address for an offscreen pixel image from

being moved. You must call LockPixels before drawing to or copying from an

offscreen graphics world.

The baseAddr field of the PixMap record for an offscreen graphics world contains a

handle instead of a pointer (which is what the baseAddr field for an onscreen pixel map

contains). The LockPixels function dereferences the PixMap handle into a pointer.

When you use the UnlockPixels procedure, which is described next, the handle is

recovered.

If the base address for an offscreen pixel image hasn’t been purged by the Memory

Manager or is not purgeable, LockPixels returns TRUE as its function result, and your

application can draw into or copy from the offscreen pixel map. However, if the base

address for an offscreen pixel image has been purged, LockPixels returns FALSE to

indicate that you can perform no drawing to or copying from the pixel map. At that

point, your application should either call the UpdateGWorld function (described on

Trap macro Selector

_QDExtensions $00040017

C H A P T E R 6

Offscreen Graphics Worlds

Offscreen Graphics Worlds Reference 6-33

page 6-23) to reallocate the offscreen pixel image and then reconstruct it, or draw directly

in a window instead of preparing the image in an offscreen graphics world.

As soon as you are finished drawing into and copying from the offscreen pixel image,

you should call the UnlockPixels procedure.

SPECIAL CONSIDERATIONS

The LockPixels function may move or purge memory blocks in the application heap.

Your application should not call this function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LockPixels function are

SEE ALSO

Listing 6-1 on page 6-5 and Listing 6-2 on page 6-10 illustrate the use of this function. See

Inside Macintosh: Memory for more information about memory management.

UnlockPixels

When you are finished drawing into and copying from an offscreen graphics world, use

the UnlockPixels procedure.

PROCEDURE UnlockPixels (pm: PixMapHandle);

pm A handle to an offscreen pixel map. Pass the same handle that you passed
previously to the LockPixels function.

DESCRIPTION

The UnlockPixels procedure allows the Memory Manager to move the base address

for the offscreen pixel map that you specify in the pm parameter. To ensure the integrity

of the data in a pixel image, call LockPixels (explained in the preceding section) before

drawing into or copying from a pixel map; then, to prevent heap fragmentation, call

UnlockPixels as soon as your application finishes drawing to and copying from the

offscreen pixel map.

The baseAddr field of the PixMap record for an offscreen graphics world contains a

handle instead of a pointer (which is what the baseAddr field for an onscreen pixel map

contains). The LockPixels function dereferences the PixMap handle into a pointer.

When you use the UnlockPixels procedure, the handle is recovered.

Trap macro Selector

_QDExtensions $00040001

C H A P T E R 6

Offscreen Graphics Worlds

6-34 Offscreen Graphics Worlds Reference

You don’t need to call UnlockPixels if LockPixels returns FALSE, because

LockPixels doesn’t lock the memory for a pixel image if that memory has been

purged. However, calling UnlockPixels on purged memory does no harm.

SPECIAL CONSIDERATIONS

The UnlockPixels procedure may move or purge memory blocks in the application

heap. Your application should not call this procedure at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the UnlockPixels procedure are

AllowPurgePixels

You can use the AllowPurgePixels procedure to make the base address for an

offscreen pixel image purgeable.

PROCEDURE AllowPurgePixels (pm: PixMapHandle);

pm A handle to an offscreen pixel map.

DESCRIPTION

The AllowPurgePixels procedure marks the base address for an offscreen pixel image

as purgeable; this allows the Memory Manager to free the memory it occupies if

available memory space becomes low. By default, NewGWorld creates an unpurgeable

base address for an offscreen pixel image.

To get a handle to an offscreen pixel map, first use the GetGWorldPixMap function,

described on page 6-31. Then supply this handle for the pm parameter of

AllowPurgePixels.

Your application should call the LockPixels function (described on page 6-32) before

drawing into or copying from an offscreen pixel map. If the Memory Manager has

purged the base address for its pixel image, LockPixels returns FALSE. In that case

either your application should use the UpdateGWorld function (described on page 6-23)

to begin reconstructing the offscreen pixel image, or it should draw directly to an

onscreen graphics port.

Only unlocked memory blocks can be made purgeable. If you use LockPixels, you

must use the UnlockPixels procedure (explained in the preceding section) before

calling AllowPurgePixels.

Trap macro Selector

_QDExtensions $00040002

C H A P T E R 6

Offscreen Graphics Worlds

Offscreen Graphics Worlds Reference 6-35

SPECIAL CONSIDERATIONS

The AllowPurgePixels procedure may move or purge memory blocks in the

application heap. Your application should not call this procedure at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the AllowPurgePixels procedure are

SEE ALSO

See Inside Macintosh: Memory for more information about memory management.

NoPurgePixels

To prevent the Memory Manager from purging the base address for an offscreen pixel

image, use the NoPurgePixels procedure.

PROCEDURE NoPurgePixels (pm: PixMapHandle);

pm A handle to an offscreen pixel map.

DESCRIPTION

The NoPurgePixels procedure marks the base address for an offscreen pixel image as

unpurgeable. To get a handle to an offscreen pixel map, use the GetGWorldPixMap

function, described on page 6-31. Then supply this handle for the pm parameter of

NoPurgePixels.

SPECIAL CONSIDERATIONS

The NoPurgePixels procedure may move or purge memory blocks in the application

heap. Your application should not call this procedure at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the NoPurgePixels procedure are

Trap macro Selector

_QDExtensions $0004000B

Trap macro Selector

_QDExtensions $0004000C

C H A P T E R 6

Offscreen Graphics Worlds

6-36 Offscreen Graphics Worlds Reference

GetPixelsState

To save the current information about the memory allocated for an offscreen pixel image,

you can use the GetPixelsState function.

FUNCTION GetPixelsState (pm: PixMapHandle): GWorldFlags;

pm A handle to an offscreen pixel map.

DESCRIPTION

The GetPixelsState function returns information about the memory allocated for the

base address for an offscreen pixel image. This information can be either of the following

flags defined by the GWorldFlags data type:

TYPE GWorldFlags =

SET OF ({flags for GetPixelsState only are listed here}

pixelsPurgeable, {the base address for an offscreen pixel }

{ image is purgeable}

pixelsLocked, {the offscreen pixel image is locked and }

{ not purgeable}

);

If the pixelsPurgeable flag is not returned, then the base address for the offscreen

pixel image is unpurgeable. If the pixelsLocked flag is not returned, then the base

address for the offscreen pixel image is unlocked.

After using GetPixelsState to save this state information, your application can later

use the SetPixelsState procedure, described next, to restore this state to the offscreen

graphics world.

Specify a handle to a pixel map in the pm parameter. To get a handle to an offscreen pixel

map, use the GetGWorldPixMap function, described on page 6-31.

SPECIAL CONSIDERATIONS

The GetPixelsState function may move or purge memory blocks in the application

heap. Your application should not call this function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the GetPixelsState function are

Trap macro Selector

_QDExtensions $0004000D

C H A P T E R 6

Offscreen Graphics Worlds

Offscreen Graphics Worlds Reference 6-37

SEE ALSO

After using GetPixelsState and before using SetPixelsState, your application

can temporarily use the AllowPurgePixels procedure (described on page 6-34) to

make the base address for an offscreen pixel image purgeable, the NoPurgePixels

procedure (described on page 6-35) to make it unpurgeable, the LockPixels function

(described on page 6-32) to prevent it from being moved, and the UnlockPixels

procedure (described on page 6-33) to allow it to be moved.

SetPixelsState

To restore an offscreen pixel image to the state that you saved with the

GetPixelsState function (explained in the preceding section), you can use

the SetPixelsState procedure.

PROCEDURE SetPixelsState (pm: PixMapHandle; state: GWorldFlags);

pm A handle to an offscreen pixel map.

state Flags, which you usually save with the GetPixelsState function,
defined by the GWorldFlags data type:

 TYPE GWorldFlags =

 SET OF ({flags for SetPixelsState are listed here}

 pixelsPurgeable, {make the base address for an }

 { offscreen pixel image purgeable}

 pixelsLocked {prevent the base address for an }

 { offscreen pixel image from }

 { being moved}

);

DESCRIPTION

The SetPixelsState procedure changes the state of the memory allocated for an

offscreen pixel image to the state indicated by the flags specified in the state parameter,

which you typically save using the GetPixelsState function.

Because only an unlocked memory block can be purged, SetPixelsState calls the

UnlockPixels and AllowPurgePixels procedures (described on page 6-33 and

page 6-34, respectively) if the state parameter specifies the pixelsPurgeable flag. If

the state parameter does not specify the pixelsPurgeable flag, SetPixelsState

makes the base address for the offscreen pixel image unpurgeable.

If the state parameter does not specify the pixelsLocked flag, SetPixelsState

allows the base address for the offscreen pixel image to be moved.

C H A P T E R 6

Offscreen Graphics Worlds

6-38 Offscreen Graphics Worlds Reference

SPECIAL CONSIDERATIONS

The SetPixelsState procedure may move or purge memory blocks in the application

heap. Your application should not call this procedure at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SetPixelsState procedure are

SEE ALSO

After using GetPixelsState and before using SetPixelsState, your application

can temporarily alter the offscreen graphics world by using the AllowPurgePixels

procedure (described on page 6-34) to temporarily mark the memory block for its

offscreen pixel map as purgeable, the NoPurgePixels procedure (described on

page 6-35) to make it unpurgeable, the LockPixels function (described on page 6-32) to

prevent it from being moved, and the UnlockPixels procedure (described on

page 6-33) to unlock it.

GetPixBaseAddr

You can use the GetPixBaseAddr function to obtain a pointer to an offscreen pixel map.

FUNCTION GetPixBaseAddr (pm: PixMapHandle): Ptr;

pm A handle to an offscreen pixel map. To get a handle to an offscreen pixel
map, use the GetGWorldPixMap function, described on page 6-31.

DESCRIPTION

The GetPixBaseAddr function returns a 32-bit pointer to the beginning of a pixel

image. The baseAddr field of the PixMap record for an offscreen graphics world

contains a handle instead of a pointer, which is what the baseAddr field for an onscreen

pixel map contains. You must use the GetPixBaseAddr function to obtain a pointer to

the PixMap record for an offscreen graphics world.

Your application should never directly access the baseAddr field of the PixMap record

for an offscreen graphics world; instead, your application should always use

GetPixBaseAddr. If your application is using 24-bit mode, your application should

then use the PixMap32Bit function (described next) to determine whether a pixel map

requires 32-bit addressing mode for access to its pixel image.

If the offscreen buffer has been purged, GetPixBaseAddr returns NIL.

Trap macro Selector

_QDExtensions $0008000E

C H A P T E R 6

Offscreen Graphics Worlds

Offscreen Graphics Worlds Reference 6-39

SPECIAL CONSIDERATIONS

Any QuickDraw routines that your application uses after calling GetPixBaseAddr may

change the base address for the offscreen pixel image.

The GetPixBaseAddr function may move or purge memory blocks in the application

heap. Your application should not call this function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the GetPixBaseAddr function are

SEE ALSO

See Inside Macintosh: Memory for information about determining addressing modes.

PixMap32Bit

You can use the PixMap32Bit function to determine whether a pixel map requires

32-bit addressing mode for access to its pixel image.

FUNCTION PixMap32Bit (pmHandle: PixMapHandle): Boolean;

pmHandle A handle to an offscreen pixel map.

DESCRIPTION

The PixMap32Bit function returns TRUE if a pixel map requires 32-bit addressing mode

for access to its pixel image. If your application is in 24-bit mode, you must change to

32-bit mode.

To get a handle to an offscreen pixel map, first use the GetGWorldPixMap function,

described on page 6-31. Then supply this handle for the pm parameter of PixMap32Bit.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PixMap32Bit function are

SEE ALSO

See Inside Macintosh: Memory for information about determining and setting addressing

modes.

Trap macro Selector

_QDExtensions $0004000F

Trap macro Selector

_QDExtensions $00040016

C H A P T E R 6

Offscreen Graphics Worlds

6-40 Summary of Offscreen Graphics Worlds

Summary of Offscreen Graphics Worlds

Pascal Summary

Constants

CONST

cDepthErr = -157; {invalid pixel depth}

pixPurgeBit = 0; {set to to make base address for }

{ offscreen pixel image purgeable}

noNewDeviceBit = 1; {set to not create a new GDevice }

{ record for offscreen world}

useTempMemBit = 2; {set to create base address for offscreen }

{ pixel image in temporary memory}

keepLocalBit = 3; {set to keep offscreen pixel image in }

{ main memory}

pixelsPurgeableBit = 6; {set to make base address for pixel image }

{ purgeable}

pixelsLockedBit = 7; {set to lock base address for offscreen }

{ pixel image}

mapPixBit = 16; {set by UpdateGWorld if it remapped }

{ colors to a new color table}

newDepthBit = 17; {set by UpdateGWorld if it translated }

{ pixel map to a different pixel depth}

alignPixBit = 18; {set by UpdateGWorld if it realigned }

{ pixel image to onscreen window}

newRowBytesBit = 19; {set by UpdateGWorld if it changed }

{ rowBytes field of PixMap record}

reallocPixBit = 20; {set by UpdateGWorld if it reallocated }

{ base address for offscreen pixel image}

clipPixBit = 28; {set to clip pixel image}

stretchPixBit = 29; {set to stretch or shrink pixel image}

ditherPixBit = 30; {set to dither pixel image}

gwFlagErrBit = 31; {set by UpdateGWorld if it failed}

C H A P T E R 6

Offscreen Graphics Worlds

Summary of Offscreen Graphics Worlds 6-41

Data Types

TYPE GWorldPtr = CGrafPtr;

TYPE GWorldFlags =

SET OF (

pixPurge, {specify to NewGWorld to make base address for }

{ offscreen pixel image purgeable}

noNewDevice, {specify to NewGWorld to not create a new GDevice }

{ record for offscreen world}

useTempMem, {specify to NewGWorld to create base address for }

{ offscreen pixel image in temporary memory}

keepLocal, {specify to NewGWorld to keep offscreen pixel image }

{ in main memory}

gWorldFlag4, {reserved}

gWorldFlag5, {reserved}

pixelsPurgeable, {returned by GetPixelsState to indicate that base }

{ address for offscreen pixel image is purgeable; }

{ specify to SetPixelsState to make base address }

{ for pixel image purgeable}

pixelsLocked, {returned by GetPixelsState to indicate that base }

{ address for offscreen pixel image is locked; }

{ specify to SetPixelsState to lock base address }

{ for offscreen pixel image}

gWorldFlag8, {reserved}

gWorldFlag9, {reserved}

gWorldFlag10, {reserved}

gWorldFlag11, {reserved}

gWorldFlag12, {reserved}

gWorldFlag13, {reserved}

gWorldFlag14, {reserved}

gWorldFlag15, {reserved}

mapPix, {returned by UpdateGWorld if it remapped colors to }

{ a new color table}

newDepth, {returned by UpdateGWorld if it translated pixel }

{ map to a different pixel depth}

alignPix, {returned by UpdateGWorld if it realigned pixel }

{ image to onscreen window}

newRowBytes, {returned by UpdateGWorld if it changed rowBytes }

{ field of PixMap record}

reallocPix, {returned by UpdateGWorld if it reallocated }

{ base address for offscreen pixel image}

gWorldFlag21, {reserved}

gWorldFlag22, {reserved}

C H A P T E R 6

Offscreen Graphics Worlds

6-42 Summary of Offscreen Graphics Worlds

gWorldFlag23, {reserved}

gWorldFlag24, {reserved}

gWorldFlag25, {reserved}

gWorldFlag26, {reserved}

gWorldFlag27, {reserved}

clipPix, {specify to UpdateGWorld to update and clip pixel }

{ image}

stretchPix, {specify to UpdateGWorld to update and stretch or }

{ shrink pixel image}

ditherPix, {specify to UpdateGWorld to dither pixel image}

gwFlagErr, {returned by UpdateGWorld if it failed}

);

Routines

Creating, Altering, and Disposing of Offscreen Graphics Worlds

FUNCTION NewGWorld (VAR offscreenGWorld: GWorldPtr;
pixelDepth: Integer; boundsRect: Rect;
cTable: CTabHandle; aGDevice: GDHandle;
flags: GWorldFlags): QDErr;

FUNCTION NewScreenBuffer (globalRect: Rect;
purgeable: Boolean; VAR gdh: GDHandle;
VAR offscreenPixMap: PixMapHandle): QDErr;

FUNCTION NewTempScreenBuffer
(globalRect: Rect;
purgeable: Boolean;
VAR gdh: GDHandle;
VAR offscreenPixMap: PixMapHandle): QDErr;

FUNCTION UpdateGWorld (VAR offscreenGWorld: GWorldPtr;
pixelDepth: Integer; boundsRect: Rect;
cTable: CTabHandle; aGDevice: GDHandle;
flags: GWorldFlags): GWorldFlags;

PROCEDURE DisposeGWorld (offscreenGWorld: GWorldPtr);

PROCEDURE DisposeScreenBuffer
(offscreenPixMap: PixMapHandle);

Saving and Restoring Graphics Ports and Offscreen Graphics Worlds

PROCEDURE GetGWorld (VAR port: CGrafPtr; VAR gdh: GDHandle);

PROCEDURE SetGWorld (port: CGrafPtr; gdh: GDHandle);

FUNCTION GetGWorldDevice (offscreenGWorld: GWorldPtr): GDHandle;

C H A P T E R 6

Offscreen Graphics Worlds

Summary of Offscreen Graphics Worlds 6-43

Managing an Offscreen Graphics World’s Pixel Image

FUNCTION GetGWorldPixMap (offscreenGWorld: GWorldPtr): PixMapHandle;

FUNCTION LockPixels (pm: PixMapHandle): Boolean;

PROCEDURE UnlockPixels (pm: PixMapHandle);

PROCEDURE AllowPurgePixels (pm: PixMapHandle);

PROCEDURE NoPurgePixels (pm: PixMapHandle);

FUNCTION GetPixelsState (pm: PixMapHandle): GWorldFlags;

PROCEDURE SetPixelsState (pm: PixMapHandle; state: GWorldFlags);

FUNCTION GetPixBaseAddr (pm: PixMapHandle): Ptr;

FUNCTION PixMap32Bit (pmHandle: PixMapHandle): Boolean;

C Summary

Constants

enum { /* bit assignments for GWorldFlags data type */

pixPurgeBit = 0, /* set to to make base address for

offscreen pixel image purgeable */

noNewDeviceBit = 1, /* set to not create a new GDevice

record for offscreen world */

useTempMemBit = 2, /* set to create base address for offscreen

pixel image in temporary memory */

keepLocalBit = 3, /* set to keep offscreen pixel image in

main memory */

pixelsPurgeableBit = 6, /* set to make base address for pixel image

purgeable */

pixelsLockedBit = 7, /* set to lock base address for offscreen

pixel image */

mapPixBit = 16, /* set by UpdateGWorld if it remapped

colors to a new color table */

newDepthBit = 17, /* set by UpdateGWorld if it translated

pixel map to a different pixel depth */

alignPixBit = 18, /* set by UpdateGWorld if it realigned

pixel image to onscreen window */

newRowBytesBit = 19, /* set by UpdateGWorld if it changed

rowBytes field of PixMap record */

reallocPixBit = 20, /* set by UpdateGWorld if it reallocated

base address for offscreen pixel image */

clipPixBit = 28, /* set to update and clip pixel image */

C H A P T E R 6

Offscreen Graphics Worlds

6-44 Summary of Offscreen Graphics Worlds

stretchPixBit = 29, /* set to update and stretch or shrink pixel

image */

ditherPixBit = 30, /* set to dither pixel image */

gwFlagErrBit = 31 /* set by UpdateGWorld if it failed */

};

enum { /* constants for GWorldFlags data type */

pixPurge = 1 << pixPurgeBit,

noNewDevice = 1 << noNewDeviceBit,

useTempMem = 1 << useTempMemBit,

keepLocal = 1 << keepLocalBit,

pixelsPurgeable = 1 << pixelsPurgeableBit,

pixelsLocked = 1 << pixelsLockedBit,

mapPix = 1 << mapPixBit,

newDepth = 1 << newDepthBit,

alignPix = 1 << alignPixBit,

newRowBytes = 1 << newRowBytesBit,

reallocPix = 1 << reallocPixBit,

clipPix = 1 << clipPixBit,

stretchPix = 1 << stretchPixBit,

ditherPix = 1 << ditherPixBit,

gwFlagErr = 1 << gwFlagErrBit

};

enum {

cDepthErr = -157 /* invalid pixel depth */

};

Data Types

typedef CGrafPtr GWorldPtr;

typedef unsigned long GWorldFlags;

C H A P T E R 6

Offscreen Graphics Worlds

Summary of Offscreen Graphics Worlds 6-45

Functions

Creating, Altering, and Disposing of Offscreen Graphics Worlds

pascal QDErr NewGWorld (GWorldPtr *offscreenGWorld, short PixelDepth,
const Rect *boundsRect, CTabHandle cTable,
GDHandle aGDevice, GWorldFlags flags);

pascal QDErr NewScreenBuffer
(const Rect *globalRect, Boolean purgeable,
GDHandle *gdh, PixMapHandle *offscreenPixMap);

pascal QDErr NewTempScreenBuffer
(const Rect *globalRect, Boolean purgeable,
GDHandle *gdh, PixMapHandle *offscreenPixMap);

pascal GWorldFlags UpdateGWorld
(GWorldPtr *offscreenGWorld, short pixelDepth,
const Rect *boundsRect, CTabHandle cTable,
GDHandle aGDevice, GWorldFlags flags);

pascal void DisposeGWorld (GWorldPtr offscreenGWorld);

pascal void DisposeScreenBuffer
(PixMapHandle offscreenPixMap);

Saving and Restoring Graphics Ports and Offscreen Graphics Worlds

pascal void GetGWorld (CGrafPtr *port, GDHandle *gdh);

pascal void SetGWorld (CGrafPtr port, GDHandle gdh);

pascal GDHandle GetGWorldDevice
(GWorldPtr offscreenGWorld);

Managing an Offscreen Graphics World’s Pixel Image

pascal PixMapHandle GetGWorldPixMap
(GWorldPtr offscreenGWorld);

pascal Boolean LockPixels (PixMapHandle pm);

pascal void UnlockPixels (PixMapHandle pm);

pascal void AllowPurgePixels
(PixMapHandle pm);

pascal void NoPurgePixels (PixMapHandle pm);

pascal GWorldFlags GetPixelsState
(PixMapHandle pm);

pascal void SetPixelsState (PixMapHandle pm, GWorldFlags state);

pascal Ptr GetPixBaseAddr (PixMapHandle pm);

pascal Boolean PixMap32Bit (PixMapHandle pmHandle);

C H A P T E R 6

Offscreen Graphics Worlds

6-46 Summary of Offscreen Graphics Worlds

Assembly-Language Summary

Trap Macros Requiring Routine Selectors

_QDExtensions

Result Codes

Selector Routine

$00160000 NewGWorld

$00040001 LockPixels

$00040002 UnlockPixels

$00160003 UpdateGWorld

$00040004 DisposeGWorld

$00080005 GetGWorld

$00080006 SetGWorld

$0004000B AllowPurgePixels

$0004000C NoPurgePixels

$0004000D GetPixelsState

$0008000E SetPixelsState

$0004000F GetPixBaseAddr

$000E0010 NewScreenBuffer

$00040011 DisposeScreenBuffer

$00040012 GetGWorldDevice

$000E0015 NewTempScreenBuffer

$00040016 PixMap32Bit

$00040017 GetGWorldPixMap

noErr 0 No error
paramErr –50 Illegal parameter
cNoMemErr –152 Failed to allocate memory for structures
cDepthErr –157 Invalid pixel depth

Contents 7-1

C H A P T E R 7

Contents

Pictures

About Pictures 7-4

Picture Formats 7-5

Opcodes: Drawing Commands and Picture Comments 7-6

Color Pictures in Basic Graphics Ports 7-6

'PICT' Files, 'PICT' Resources, and the 'PICT' Scrap Format 7-7

The Picture Utilities 7-8

Using Pictures 7-8

Creating and Drawing Pictures 7-10

Opening and Drawing Pictures 7-13

Drawing a Picture Stored in a 'PICT' File 7-13

Drawing a Picture Stored in the Scrap 7-17

Defining a Destination Rectangle 7-18

Drawing a Picture Stored in a 'PICT' Resource 7-20

Saving Pictures 7-21

Gathering Picture Information 7-24

Pictures Reference 7-26

Data Structures 7-27

QuickDraw and Picture Utilities Routines 7-36

Creating and Disposing of Pictures 7-36

Drawing Pictures 7-43

Collecting Picture Information 7-46

Application-Defined Routines 7-61

Resources 7-67

The Picture Resource 7-67

The Color-Picking Method Resource 7-68

Summary of Pictures and the Picture Utilities 7-69

Pascal Summary 7-69

Constants 7-69

Data Types 7-69

C H A P T E R 7

7-2 Contents

Routines 7-72

Application-Defined Routines 7-73

C Summary 7-73

Constants 7-73

Data Types 7-74

Functions 7-76

Application-Defined Functions 7-77

Assembly-Language Summary 7-78

Data Structures 7-78

Trap Macros 7-80

Result Codes 7-80

C H A P T E R 7

7-3

Pictures

This chapter describes QuickDraw pictures, which are sequences of saved drawing

commands. Pictures provide a common medium for the sharing of image data. Pictures

make it easier for your application to draw complex images defined in other

applications; pictures also make it easier for other applications to display images created

with your application. Virtually all applications should support the creation and

drawing of pictures. All applications that support cut and paste, for example, should be

able to draw pictures copied by the user from the Clipboard.

Read this chapter to learn how to record QuickDraw drawing commands into a picture

and how to draw the picture later by playing back these commands. You should also

read this chapter to learn about the Picture Utilities, which allow your application to

gather information about pictures—such as their colors, fonts, picture comments, and

resolution. You can also use the Picture Utilities to gather information about the colors in

pixel maps. Your application can use this information in conjunction with the Palette

Manager, for example, to provide the best selection of colors for displaying a picture or

other pixel image on an indexed device.

The OpenCPicture function, available on all Macintosh computers running System 7,

allows your application to create pictures in the extended version 2 picture format. This

format allows your application to specify resolutions when creating pictures.

Pictures can be created in color or black and white. Computers supporting only basic

QuickDraw use black and white to display pictures created in color.

As described in this chapter, your application can use File Manager or Resource Manager

routines to save or open pictures stored in files. See the chapter “File Manager” in Inside
Macintosh: Files for more information about the File Manager; see the chapter “Resource

Manager” in Inside Macintosh: More Macintosh Toolbox for more information about the

Resource Manager. To store or retrieve pictures in the scrap—for example, when the user

copies from or pastes to the Clipboard—you must use Scrap Manager routines. See the

chapter “Scrap Manager” in Inside Macintosh: More Macintosh Toolbox for more

information about the Scrap Manager.

You typically use the information gathered with the Picture Utilities in conjunction with

other system software managers. You might use the Picture Utilities to determine what

fonts are used in a picture, for example, and then use Font Manager routines to help you

determine whether those fonts are available on the user’s system. Or, you might use the

Picture Utilities to determine the most-used colors in a picture, and then use the Palette

Manager or ColorSync Utilities to provide sophisticated support for these colors. For

more information about fonts, see the chapter “Font Manager” in Inside Macintosh: Text.
The Palette Manager and the ColorSync Utilities are described in Inside Macintosh:
Advanced Color Imaging.

You can also save and collect picture comments within your picture, as described in this

chapter. Typically, however, your application uses picture comments to include special

drawing commands for printers. Therefore, picture comments are described in greater

detail in Appendix B, “Using Picture Comments for Printing,” in this book.

C H A P T E R 7

Pictures

7-4 About Pictures

About Pictures

QuickDraw provides a simple set of routines for recording a collection of its drawing

commands and then playing the collection back later. Such a collection of

drawing commands (as well as its resulting image) is called a picture. A replayed

collection of drawing commands results in the picture shown in Figure 7-1.

Figure 7-1 A picture of a party hat

When you use the OpenCPicture function (or the OpenPicture function) to begin

defining a picture, QuickDraw collects your subsequent drawing commands in a data

structure of type Picture. You can define a picture by using any of the drawing

routines described in this book—with the exception of the CopyMask, CopyDeepMask,

SeedFill, SeedCFill, CalcMask, and CalcCMask routines.

By using the DrawPicture procedure, you can draw onscreen the picture defined by

the instructions stored in the Picture record. Your application typically does not

directly manipulate the information in this record. Instead, using a handle to a Picture

record, your application passes this information to QuickDraw routines and Picture

Utilities routines.

Note

The OpenPicture function, which is similar to the OpenCPicture
function, was created for earlier versions of system software. Because of
the support for higher resolutions provided by the OpenCPicture
function, you should use OpenCPicture instead of OpenPicture to
create a picture. ◆

C H A P T E R 7

Pictures

About Pictures 7-5

Picture Formats
Through QuickDraw’s development, three different formats have evolved for the data

contained in a Picture record. These formats are

■ The extended version 2 format, which is created by the OpenCPicture function on
all Macintosh computers running System 7, including those supporting only basic
QuickDraw. This format permits your application to specify resolutions for pictures in
color or black and white. Generally, your application should use the OpenCPicture
function and create pictures in the extended version 2 format.

■ The version 2 picture format, which is created by the OpenPicture function on
machines with Color QuickDraw when the current graphics port is a color graphics
port. Pictures created in this format support color drawing operations at 72 dpi.

■ The original format, the version 1 picture format, which is created by the
OpenPicture function on machines without Color QuickDraw or whenever the
current graphics port is a basic graphics port. Pictures created in this format support
only black-and-white drawing operations at 72 dpi.

The Pascal data structure for all picture formats is exactly the same. As shown in

Figure 7-2, the Picture record begins with a picSize field and a picFrame field,

followed by a variable amount of picture definition data.

Figure 7-2 The Picture record

To maintain compatibility with the version 1 picture format, the picSize field was not

changed for the version 2 or extended version 2 picture formats. The information in this

field is useful only for version 1 pictures, which cannot exceed 32 KB in size. Version 2

and extended version 2 pictures can be much larger than the 32 KB limit imposed by the

2-byte picSize field. You should use the Memory Manager function GetHandleSize

to determine the size of a picture in memory, the File Manager function PBGetFInfo to

determine the size of a picture in a file of type 'PICT', and the Resource Manager

function MaxSizeResource to determine the size of a picture in a resource of type

'PICT'. (See Inside Macintosh: Memory, Inside Macintosh: Files, and Inside Macintosh:
More Macintosh Toolbox for more information about these functions.)

C H A P T E R 7

Pictures

7-6 About Pictures

The picFrame field contains the bounding rectangle for the picture. The DrawPicture

procedure uses this rectangle to scale the picture when you draw it into a differently

sized rectangle.

Compact drawing instructions and picture comments constitute the rest of this record.

Opcodes: Drawing Commands and Picture Comments
Following the picSize and picFrame fields, a Picture record contains data in the

form of opcodes, which are values that the DrawPicture procedure uses to determine

what object to draw or what mode to change for subsequent drawing. Your application

generally should not read or write these opcodes directly but should instead use the

QuickDraw routines described in this chapter for generating and processing the

opcodes. (For your application’s debugging purposes, these opcodes are listed in

Appendix A at the back of this book.)

In addition to compact QuickDraw drawing commands, opcodes can also specify picture

comments. Created with the PicComment procedure, a picture comment contains data

or commands for special processing by output devices, such as PostScript printers. If

your application requires capability beyond that provided by QuickDraw drawing

routines, the PicComment procedure allows your application to pass data or commands

directly to the output device. For example, picture comments enable highly sophisticated

drawing applications that process opcodes directly to reconstruct drawing instructions—

such as rotating text—not found in QuickDraw. Picture comments are usually stored in

the definition of a picture or are included in the code an application sends to a printer

driver.

Unless your application creates highly sophisticated graphics, you typically use

QuickDraw commands when drawing to the screen and use picture comments to

include special drawing commands for printers only. For example, your application can

use picture comments to specify commands—for rotating text and graphics and for

drawing dashed lines, fractional line widths, and smoothed polygons—that are

supported by some printers but are not accessible through standard QuickDraw calls.

These picture comments are described in detail in Appendix B, “Using Picture

Comments for Printing,” in this book.

Color Pictures in Basic Graphics Ports
You can use Color QuickDraw drawing commands to create a color picture on a

computer supporting Color QuickDraw. If the user were to cut the picture and paste it

into an application that draws into a basic graphics port, the picture would lose some

detail, but should be sufficient for most purposes. This is how basic QuickDraw in

System 7 draws an extended version 2 or version 2 picture into a basic graphics port:

■ QuickDraw maps foreground and background colors to those most closely
approximated in basic QuickDraw’s eight-color system.

■ QuickDraw draws pixel patterns created with the MakeRGBPat procedure as bit
patterns having approximately the same luminance as the pixel patterns.

C H A P T E R 7

Pictures

About Pictures 7-7

■ QuickDraw replaces other color patterns with the bit pattern contained in the
pat1Data field of the PixPat record. (The pat1Data field is initialized to 50 percent
gray if the pattern is created with the NewPixPat function; this field is initialized
from a 'ppat' resource if the pattern is retrieved with the GetPixPat function.)

■ QuickDraw converts the pixel image to a bit image.

■ QuickDraw ignores the values set by the HiliteColor and OpColor procedures, as
well as any changes made to the chExtra and pnLocHFrac fields of the original
CGrafPort record.

'PICT' Files, 'PICT' Resources, and the 'PICT' Scrap Format
QuickDraw provides routines for creating and drawing pictures; to read pictures from

and to write pictures to disk, you use File Manager and Resource Manager routines. To

read pictures from and write pictures to the scrap, you use Scrap Manager routines.

Files consist of two forks: a data fork and a resource fork. A data fork is the part of a file

that contains data accessed using the File Manager. This data usually corresponds to

data entered by the user. A resource fork is the part of a file that contains the file’s

resources, which contain data accessed using the Resource Manager. This data usually

corresponds to data—such as menu, icon, and control definitions—created by

the application developer, but it may also include data created by the user while the

application is running.

A picture can be stored in the data fork of a file of type 'PICT'. A picture can also be

stored as a resource of type 'PICT' in the resource fork of any file type.

Normally, an application sets the file type in the file’s FInfo record when the

application creates a new file; for example, the File Manager function FSpCreate takes

a four-character file type—such as 'PICT'—as a parameter. The data fork of a 'PICT'

file begins with a 512-byte header that applications can use for their own purposes. A

Picture record follows this header. To read and write 'PICT' files, your application

should use File Manager routines.

You may find it useful to store pictures in the resource fork of your application or

document file. For example, in response to the user choosing the About command in the

Apple menu for your application, you might wish to display a window containing your

company’s logo. Or, if yours is a page-layout application, you might want to store all the

images created by the user for a document as resources in the document file.

You can use high-level tools like the ResEdit resource editor, available from APDA, to

create and store pictures as 'PICT' resources for distribution with your files. To create

'PICT' resources while your application is running, you should use Resource Manager

routines. To retrieve a picture stored in a 'PICT' resource, you can use the GetPicture

function.

For each application, the Scrap Manager maintains a storage area to hold the last data

cut or copied by the user. The area that is available to your application for this purpose is

called the scrap. The scrap can reside either in memory or on disk. All applications that

support copy-and-paste operations read data from and write data to the scrap. The

C H A P T E R 7

Pictures

7-8 Using Pictures

'PICT' scrap format is one of two standard scrap formats. (The other is 'TEXT'.) To

support copy-and-paste operations, your application should use Scrap Manager routines

to read and write data in 'PICT' scrap format.

The Picture Utilities
In addition to the QuickDraw routines for creating and drawing pictures, system

software provides a group of routines called the Picture Utilities for examining the

contents of pictures. You typically use the Picture Utilities before displaying a picture.

The Picture Utilities allow you to gather color, comment, font, resolution, and additional

information about pictures. You might use the Picture Utilities, for example, to

determine the 256 most-used colors in a picture, and then use the Palette Manager to

make these colors available for the window in which your application needs to draw the

picture.

You can also use the Picture Utilities to collect colors from pixel maps. You typically use

this information in conjunction with the Palette Manager and the ColorSync Utilities to

provide advanced color imaging features for your users. These features are described in

Inside Macintosh: Advanced Color Imaging.

The Picture Utilities also collect information from black-and-white pictures and

bitmaps. The Picture Utilities are supported in System 7 even by computers running only

basic QuickDraw. However, when collecting color information on a computer running

only basic QuickDraw, the Picture Utilities return NIL instead of handles to Palette

and ColorTable records.

Using Pictures

To create a picture, you should

■ use the OpenCPicture function to create a Picture record and begin defining the
picture

■ issue QuickDraw drawing commands, which are collected in the Picture record

■ use the PicComment procedure to include picture comments in the picture definition
(optional)

■ use the ClosePicture procedure to conclude the picture definition

To open an existing picture, you should

■ use File Manager routines to get a picture stored in a 'PICT' file

■ use the GetPicture function to get a picture stored in a 'PICT' resource

■ use the Scrap Manager function GetScrap to get a picture stored in the scrap

To draw a picture, you should use the DrawPicture procedure.

C H A P T E R 7

Pictures

Using Pictures 7-9

To save a picture, you should

■ use File Manager routines to save the picture in a 'PICT' file

■ use Resource Manager routines to save the picture in a 'PICT' resource

■ use the Scrap Manager function PutScrap to place the picture in the scrap

To conserve memory, you can spool large pictures to and from disk storage; you should

■ write your own low-level procedures—using File Manager routines—that read
and write temporary 'PICT' files to disk

■ use the SetStdCProcs procedure for a color graphics port (or the SetStdProcs
procedure for a basic graphics port) and replace QuickDraw’s standard
low-level procedures StdGetPic and StdPutPic with your own procedures for
reading and writing temporary 'PICT' files to disk

To gather information about a single picture, pixel map, or bitmap, you should

■ use the GetPictInfo function to get information about a picture, or use the
GetPixMapInfo function to get information about a pixel map or bitmap

■ use the Palette record or the ColorTable record, the handles of which are
returned by these functions in a PictInfo record, to examine the colors collected
from the picture, pixel map, or bitmap

■ use the FontSpec record, the handle of which is returned by GetPictInfo in a
PictInfo record, to examine the fonts contained in the picture

■ use the CommentSpec record, the handle of which is returned by GetPictInfo in a
PictInfo record, to examine the picture comments contained in the picture

■ examine the rest of the fields of the PictInfo record for additional information—
such as pixel depth or optimal resolution—about the picture, pixel map, or bitmap

■ use the Memory Manager procedure DisposeHandle to release the memory
occupied by the PictInfo, FontSpec, and CommentSpec records; use the Palette
Manager procedure DisposePalette to release the memory occupied by a
Palette record; and use the Color QuickDraw procedure DisposeCTable to
release the memory occupied by a ColorTable record when you are finished with
the information collected by the GetPictInfo function

To gather information about multiple pictures, pixel maps, and bitmaps, you should

■ use the NewPictInfo function to begin collecting pictures, pixel maps, and bitmaps
for your survey

■ use the RecordPictInfo function to add the information for a picture to your survey

■ use the RecordPixMapInfo function to add the information for a pixel map or
bitmap to your survey

■ use the RetrievePictInfo function to return the collected information in a
PictInfo record

■ use the Palette record or the ColorTable record, the handles of which are
returned in the PictInfo record, to examine the colors collected from the pictures,
pixel maps, and bitmaps

C H A P T E R 7

Pictures

7-10 Using Pictures

■ use the FontSpec record, the handle of which is returned in the PictInfo record, to
examine the fonts contained in the collected pictures

■ use the CommentSpec record, the handle of which is returned in the PictInfo
record, to examine the picture comments contained in the collected pictures

■ examine the rest of the fields of the PictInfo record for additional information
about the pictures, pixel maps, and bitmaps in your survey

■ use the DisposePictInfo function to dispose of the private data structures
allocated by the NewPictInfo function; use the Memory Manager procedure
DisposeHandle to release the memory occupied by PictInfo, FontSpec, and
CommentSpec records; use the Palette Manager procedure DisposePalette to
release the memory occupied by a Palette record; and use the Color QuickDraw
procedure DisposeCTable to release the memory occupied by a ColorTable
record when you are finished with the information collected by NewPictInfo

When you are finished using a picture (such as when you close the window containing

it), you should

■ release the memory it occupies by calling the KillPicture procedure if the picture
is not stored in a 'PICT' resource

■ release the memory it occupies by calling the Resource Manager procedure
ReleaseResource if the picture is stored in a 'PICT' resource

Before using the routines described in this chapter, you must use the InitGraf

procedure, described in the chapter “Basic QuickDraw” in this book, to initialize

QuickDraw. The routines in this chapter are available on all computers running

System 7—including those supporting only basic QuickDraw. To test for the existence

of System 7, use the Gestalt function with the gestaltSystemVersion selector. Test

the low-order word in the response parameter; if the value is $0700 or greater, all of the

routines in this chapter are supported.

Note

On computers running only basic QuickDraw, the Picture Utilities
return NIL in place of handles to Palette and ColorTable records. ◆

Creating and Drawing Pictures
Use the OpenCPicture function to begin defining a picture. OpenCPicture collects

your subsequent QuickDraw drawing commands in a new Picture record. To

complete the collection of drawing and picture comment commands that define your

picture, use the ClosePicture procedure.

Note

Operations with the following routines are not recorded in pictures:
CopyMask, CopyDeepMask, SeedFill, SeedCFill, CalcMask,
CalcCMask, and PlotCIcon. ◆

C H A P T E R 7

Pictures

Using Pictures 7-11

You pass information to OpenCPicture in the form of an OpenCPicParams record.

This record provides a simple mechanism for specifying resolutions when creating

images. For example, applications that create pictures from scanned images can specify

resolutions higher than 72 dpi for these pictures in OpenCPicParams records.

Listing 7-1 shows an application-defined routine, MyCreateAndDrawPict, that begins

creating a picture by assigning values to the fields of an OpenCPicParams record. In

this example, the normal screen resolution of 72 dpi is specified as the picture’s

resolution. You also specify a rectangle for best displaying the picture at this resolution.

Listing 7-1 Creating and drawing a picture

FUNCTION MyCreateAndDrawPict(pFrame: Rect): PicHandle;

CONST

cHRes = $00480000; {for 72 dpi}

cVRes = $00480000; {for 72 dpi}

VAR

myOpenCPicParams: OpenCPicParams;

myPic: PicHandle;

trianglePoly: PolyHandle;

BEGIN

WITH myOpenCPicParams DO BEGIN

srcRect := pFrame; {best rectangle for displaying this picture}

hRes := cHRes; {horizontal resolution}

vRes := cVRes; {vertical resolution}

version := - 2; {always set this field to -2}

reserved1 := 0; {this field is unused}

reserved2 := 0; {this field is unused}

END;

myPic := OpenCPicture(myOpenCPicParams); {start creating the picture}

ClipRect(pFrame); {always set a valid clip region}

FillRect(pFrame,dkGray); {create a dark gray rectangle for background}

FillOval(pFrame,ltGray); {overlay the rectangle with a light gray oval}

trianglePoly := OpenPoly; {start creating a triangle}

WITH pFrame DO BEGIN

MoveTo(left,bottom);

LineTo((right - left) DIV 2,top);

LineTo(right,bottom);

LineTo(left,bottom);

END;

ClosePoly; {finish the triangle}

PaintPoly(trianglePoly); {paint the triangle}

KillPoly(trianglePoly); {dispose of the memory for the triangle}

ClosePicture; {finish the picture}

C H A P T E R 7

Pictures

7-12 Using Pictures

DrawPicture(myPic,pFrame); {draw the picture}

IF QDError <> noErr THEN

; {likely error is that there is insufficient memory}

MyCreateAndDrawPict := myPic;

END;

After assigning values to the fields of an OpenCPicParams record, the

MyCreateAndDrawPict routine passes this record to the OpenCPicture function.

IMPORTANT

Always use the ClipRect procedure to specify a clipping region
appropriate for your picture before you call OpenCPicture. If you do
not use ClipRect to specify a clipping region, OpenCPicture uses the
clipping region specified in the current graphics port. If the clipping
region is very large (as it is when a graphics port is initialized) and you
scale the picture when drawing it, the clipping region can become
invalid when DrawPicture scales the clipping region—in which case,
your picture will not be drawn. On the other hand, if the graphics port
specifies a small clipping region, part of your drawing may be clipped
when you draw it. Setting a clipping region equal to the port rectangle
of the current graphics port, as shown in Listing 7-1, always sets a valid
clipping region. ▲

The MyCreateAndDrawPict routine uses QuickDraw commands to draw a filled

rectangle, a filled oval, and a black triangle. These commands are stored in the Picture

record.

Note

If there is insufficient memory to draw a picture in Color QuickDraw,
the QDError function (described in the chapter “Color QuickDraw” in
this book) returns the result code noMemForPictPlaybackErr. ◆

The MyCreateAndDrawPict routine concludes the picture definition by using the

ClosePicture procedure. By passing to the DrawPicture procedure the handle to the

newly defined picture, MyCreateAndDrawPict replays in the current graphics port the

drawing commands stored in the Picture record. Figure 7-3 shows the resulting figure.

Figure 7-3 A simple picture

C H A P T E R 7

Pictures

Using Pictures 7-13

Note
After using DrawPicture to draw a picture, your application can use
the Window Manager procedure SetWindowPic to save a handle to the
picture in the window record. When the window’s content region must
be updated, the Window Manager draws this picture, or only a part of it
as necessary, instead of generating an update event. Another Window
Manager routine, the GetWindowPic function, allows your application
to retrieve the picture handle that you store using SetWindowPic.
When you use the Window Manager procedure DisposeWindow to
close a window, DisposeWindow automatically calls the KillPicture
procedure to release the memory allocated to a picture referenced in the
window record. These routines and the window record are described in
the chapter “Window Manager” in Inside Macintosh: Macintosh Toolbox
Essentials. ◆

Opening and Drawing Pictures
Using File Manager routines, your application can retrieve pictures saved in 'PICT'

files; using the GetPicture function, your application can retrieve pictures saved in the

resource forks of other file types; and using the Scrap Manager function GetScrap, your

application can retrieve pictures stored in the scrap.

Drawing a Picture Stored in a 'PICT' File

Listing 7-2 illustrates an application-defined routine, called MyDrawFilePicture, that

uses File Manager routines to retrieve a picture saved in a 'PICT' file. The

MyDrawFilePicture routine takes a file reference number as a parameter.

Listing 7-2 Opening and drawing a picture from disk

FUNCTION MyDrawFilePicture(pictFileRefNum: Integer; destRect: Rect): OSErr;

CONST

cPicFileHeaderSize = 512;

VAR

myPic: PicHandle;

dataLength: LongInt;

err: OSErr;

BEGIN {This listing assumes the current graphics port is set.}

err := GetEOF(pictFileRefNum,dataLength); {get file length}

IF err = noErr THEN BEGIN

err := SetFPos(pictFileRefNum,fsFromStart,

cPicFileHeaderSize); {move past the 512-byte 'PICT' }

{ file header}

dataLength := dataLength - cPicFileHeaderSize; {remove 512-byte }

{ 'PICT' file header from file length}

myPic := PicHandle(NewHandle(dataLength)); {allocate picture handle}

C H A P T E R 7

Pictures

7-14 Using Pictures

IF (err = noErr) & (myPic <> NIL) THEN BEGIN

HLock(Handle(myPic)); {lock picture handle before using FSRead}

err := FSRead(pictFileRefNum,dataLength,Ptr(myPic^)); {read file}

HUnlock(Handle(myPic)); {unlock picture handle after using FSRead}

MyAdjustDestRect(myPic,destRect); {see Listing 7-7 on page 7-18}

DrawPicture(myPic,destRect);

IF QDError <> noErr THEN

; {likely error is that there is insufficient memory}

KillPicture(myPic);

END;

END;

MyDrawFilePicture := err;

END;

In code not shown in Listing 7-2, this application uses the File Manager procedure

StandardGetFile to display a dialog box that asks the user for the name of a 'PICT'

file; using the file system specification record returned by StandardGetFile, the

application calls the File Manager function FSpOpenDF to return a file reference number

for the file. The application then passes this file reference number to

MyDrawFilePicture.

Because every 'PICT' file contains a 512-byte header for application-specific use,

MyDrawFilePicture uses the File Manager function SetFPos to skip past this header

information. The MyDrawFilePicture function then uses the File Manager function

FSRead to read the file’s remaining bytes—those of the Picture record—into memory.

The MyDrawFilePicture function creates a handle for the buffer into which the

Picture record is read. Passing this handle to the DrawPicture procedure,

MyDrawFilePicture is able to replay onscreen the commands stored in the Picture

record.

For large 'PICT' files, it is useful to spool the picture data from disk as necessary

instead of reading all of it directly into memory. In low-memory conditions, for example,

your application might find it useful to create a temporary file on disk for storing

drawing instructions; your application can read this information as necessary. The

application-defined routine MyReplaceGetPic shown in Listing 7-3 replaces the

getPicProc field of the current graphics port’s CQDProcs record with an

application-defined low-level routine, called MyFileGetPic. While QuickDraw’s

standard StdGetPic procedure reads picture data from memory, MyFileGetPic reads

the picture data from disk. (Listing 7-10 on page 7-22 shows how to replace QuickDraw’s

standard StdPutPic procedure with one that writes data to a file so that your

application can spool a large picture to disk.)

C H A P T E R 7

Pictures

Using Pictures 7-15

Listing 7-3 Replacing QuickDraw’s standard low-level picture-reading routine

FUNCTION MyReplaceGetPic: QDProcsPtr;

VAR

currPort: GrafPtr;

customProcs: QDProcs;

customCProcs: CQDProcs;

savedProcs: QDProcsPtr;

BEGIN

GetPort(currPort);

savedProcs := currPort^.grafProcs; {save current CQDProcs }

{ or QDProcs record}

IF MyIsColorPort(currPort) THEN {this is a color graphics port}

BEGIN

SetStdCProcs(customCProcs); {create new CQDProcs record containing }

{ standard Color QuickDraw low-level }

{ routines}

customCProcs.getPicProc := @MyFileGetPic; {replace StdGetPic with }

{ address of custom }

{ low-level routine }

{ shown in Listing 7-5}

currPort^.grafProcs := @customCProcs; {replace current CQDProcs }

{ record}

END

ELSE

BEGIN {this is a basic graphics port}

SetStdProcs(customProcs); {create new QDProcs record containing }

{ standard basic QuickDraw low-level }

{ routines}

customProcs.getPicProc := @MyFileGetPic; {replace StdGetPic with }

{ address of custom }

{ low-level routine }

{ shown in Listing 7-5}

currPort^.grafProcs := @customProcs; {replace current QDProcs record}

END;

MyReplaceGetPic := savedProcs;

END;

C H A P T E R 7

Pictures

7-16 Using Pictures

Listing 7-4 shows the application-defined procedure MyIsColorPort, which

MyReplaceGetPic calls to determine whether to replace the low-level picture-reading

routine for a color graphics port or a basic graphics port.

Listing 7-4 Determining whether a graphics port is color or basic

FUNCTION MyIsColorPort(aPort: GrafPtr): Boolean;

BEGIN

MyIsColorPort := (aPort^.portBits.rowBytes < 0)

END;

Listing 7-5 shows the application-defined procedure MyFileGetPic, which uses the

File Manager function FSRead to read the file with the file reference number assigned to

the application-defined global variable gPictFileRefNum.

Listing 7-5 A custom low-level procedure for spooling a picture from disk

PROCEDURE MyFileGetPic (dataPtr: Ptr; byteCount: Integer);

VAR

longCount: LongInt;

myErr: OSErr;

BEGIN

longCount := byteCount;

myErr := FSRead(gPictFileRefNum, longCount, dataPtr);

END;

Your application does not keep track of where FSRead stops or resumes reading a file.

After reading a portion of a file, FSRead automatically handles where to begin reading

next. See Inside Macintosh: Files for more information about using FSRead and other File

Manager routines to retrieve data stored in files.

C H A P T E R 7

Pictures

Using Pictures 7-17

Drawing a Picture Stored in the Scrap

As described in the chapter “Scrap Manager” in Inside Macintosh: More Macintosh Toolbox,

your application can use the Scrap Manager to copy and paste data within a document

created by your application, among different documents created by your application,

and among documents created by your application and documents created by other

applications. The two standard scrap formats that all Macintosh applications should

support are 'PICT' and 'TEXT'.

Listing 7-6 illustrates the application-defined routine MyPastePict, which retrieves

a picture stored on the scrap. For example, a user may have copied to the Clipboard a

picture created in another application and then pasted the picture into the application

that defines MyPastePict. The MyPastePict procedure uses the Scrap Manager

procedure GetScrap to get a handle to the data stored on the scrap; MyPastePict then

coerces this handle to one of type PicHandle, which it can pass to the DrawPicture

procedure in order to replay the drawing commands stored in the scrap.

Listing 7-6 Pasting in a picture from the scrap

PROCEDURE MyPastePict(destRect: Rect);

VAR

myPic: PicHandle;

dataLength: LongInt;

dontCare: LongInt;

BEGIN

myPic := PicHandle(NewHandle(0)); {allocate a handle for the picture}

dataLength :=

GetScrap(Handle(myPic),'PICT',dontCare); {get picture in scrap}

IF dataLength > 0 THEN {ensure there is PICT data}

BEGIN

MyAdjustDestRect(myPic,destRect); {shown in Listing 7-7}

DrawPicture(myPic,destRect);

IF QDError <> noErr THEN

; {likely error is that there is insufficient memory}

END

ELSE

; {handle error for len < or = 0 here}

END;

C H A P T E R 7

Pictures

7-18 Using Pictures

Defining a Destination Rectangle

In addition to taking a handle to a picture as one parameter, DrawPicture also expects

a destination rectangle as another parameter. You should specify this destination

rectangle in coordinates local to the current graphics port. The DrawPicture procedure

shrinks or stretches the picture as necessary to make it fit into this rectangle.

Listing 7-7 shows an application-defined routine called MyAdjustDestRect that

centers the picture inside a destination rectangle, which is passed to DrawPicture

when it’s time to draw the picture. (MyAdjustDestRect first ensures that the picture

fits inside the destination rectangle by scaling the picture if necessary.)

Listing 7-7 Adjusting the destination rectangle for a picture

PROCEDURE MyAdjustDestRect(aPict: PicHandle; VAR destRect: Rect);

VAR

r: Rect;

width, height: Integer;

scale, scaleH, scaleV: Fixed;

BEGIN

WITH destRect DO BEGIN {determine width and height of destination rect}

width := right - left;

height := bottom - top;

END;

r := aPict^^.picFrame; {get the bounding rectangle of the picture}

OffsetRect(r, - r.left, - r.top); {ensure upper-left corner is (0,0)}

scale := Long2Fix(1);

scaleH := FixRatio(width,r.right); {get horizontal and vertical }

scaleV := FixRatio(height,r.bottom); { ratios of destination rectangle }

{ to bounding rectangle of picture}

IF scaleH < scale THEN scale := scaleH; {if bounding rect of picture }

IF scaleV < scale THEN scale := scaleV; { is greater than destination }

IF scale <> Long2Fix(1) THEN { rect, get scaling factors}

BEGIN {scale picture to fit inside destination rectangle}

r.right := Fix2Long(FixMul(scale,Long2Fix(r.right)));

r.bottom := Fix2Long(FixMul(scale,Long2Fix(r.bottom)));

 END;

{next line centers the picture within the destination rectangle}

OffsetRect(r,(width - r.right) DIV 2,(height - r.bottom) DIV 2);

destRect := r;

END;

C H A P T E R 7

Pictures

Using Pictures 7-19

The application calling MyAdjustDestRect begins defining a destination rectangle by

determining a target area within a window—perhaps the entire content area of a

window, or perhaps an area selected by the user within a window. The application

passes this rectangle to MyAdjustDestRect.

A bounding rectangle is stored in the picFrame field of the Picture record for every

picture. The MyAdjustDestRect routine uses the boundaries for the picture to

determine whether the picture fits within the destination rectangle. If the picture is larger

than the destination rectangle, MyAdjustDestRect scales the picture to make it fit the

destination rectangle.

The MyAdjustDestRect routine then centers the picture within the destination

rectangle. Finally, MyAdjustDestRect assigns the boundary rectangle of the centered

picture to be the new destination rectangle. By returning a destination rectangle whose

dimensions are identical to those of the bounding rectangle for the picture,

MyAdjustDestRect assures that the picture is not stretched when drawn into its

window.

To display a picture at a resolution other than the one at which it was created, your

application should compute an appropriate destination rectangle by scaling its width

and height by the following factor:

scale factor = destination resolution / source resolution

For example, if a picture was created at 300 dpi and you want to display it at 75 dpi, then

your application should compute the destination rectangle width and height as 1/4 of

those of the picture’s bounding rectangle. Your application can use the GetPictInfo

function (described on page 7-47) to gather information about a picture. The PictInfo

record (described on page 7-32) returned by GetPictInfo returns the picture’s

resolution in its hRes and vRes fields. The sourceRect field contains the bounding

rectangle for displaying the image at its optimal resolution.

C H A P T E R 7

Pictures

7-20 Using Pictures

Drawing a Picture Stored in a 'PICT' Resource

To retrieve a picture stored in a 'PICT' resource, specify its resource ID to the

GetPicture function, which returns a handle to the picture. Listing 7-8 illustrates an

application-defined routine, called MyDrawResPICT, that retrieves and draws a picture

stored as a resource.

Listing 7-8 Drawing a picture stored in a resource file

PROCEDURE MyDrawResPICT(destRect: Rect; resID: Integer);

VAR

myPic: PicHandle;

BEGIN

myPic := GetPicture(resID); {get the picture from the resource fork}

IF myPic <> NIL THEN BEGIN

MyAdjustDestRect(myPic,destRect);{see Listing 7-7 on page 7-18}

DrawPicture(myPic,destRect);

IF QDError <> noErr THEN

; {likely error is that there is insufficient memory}

END

ELSE

; {handle the error here}

END;

When you are finished using a picture stored as a 'PICT' resource, you should use the

Resource Manager procedure ReleaseResource instead of the QuickDraw procedure

KillResource to release its memory.

IMPORTANT

If you retrieve a picture stored in a 'PICT' resource and pass its handle
to the Window Manager procedure SetWindowPic, the Window
Manager procedures DisposeWindow and CloseWindow do not delete
it; instead, you must call ReleaseResource before calling
DisposeWindow or CloseWindow. ▲

C H A P T E R 7

Pictures

Using Pictures 7-21

Saving Pictures
After creating or changing pictures, your application should allow the user to save them.

To save a picture in a 'PICT' file, you should use File Manager routines, such as

FSpCreate, FSpOpenDF, FSWrite, and FSClose. The use of these routines is

illustrated in Listing 7-9, and they are described in detail in the chapter “File Manager”

in Inside Macintosh: Files. Remember that the first 512 bytes of a 'PICT' file are reserved

for your application’s own purposes. As shown in Listing 7-9, your application should

store the data (that is, the Picture record) after this 512-byte header.

Listing 7-9 Saving a picture as a 'PICT' file

FUNCTION DoSavePICTAsCmd(picH: PicHandle): OSErr;

LABEL 8,9;

VAR

myReply: StandardFileReply;

err, ignore: OSErr;

pictFileRefNum: Integer;

dataLength, zeroData, count: LongInt;

BEGIN {display the default Save dialog box}

StandardPutFile('Save picture as:','untitled',myReply);

err := noErr; {return noErr if the user cancels}

IF myReply.sfGood THEN

BEGIN

IF NOT myReply.sfReplacing THEN {create the file if it doesn't exist}

err := FSpCreate(myReply.sfFile,'WAVE','PICT',smSystemScript);

IF err <> noErr THEN GOTO 9;

err := FSpOpenDF(myReply.sfFile,fsRdWrPerm,pictFileRefNum); {open file}

IF err <> noErr THEN GOTO 8;

zeroData := 0;

dataLength := 4;

FOR count := 1 TO 512 DIV dataLength DO {write the PICT file header}

err := FSWrite(pictFileRefNum,dataLength,

@zeroData); {for this app, put 0's in header}

IF err <> noErr THEN GOTO 8;

dataLength := GetHandleSize(Handle(picH));

HLock(Handle(picH)); {lock picture handle before writing data}

C H A P T E R 7

Pictures

7-22 Using Pictures

err := FSWrite(pictFileRefNum,dataLength,Ptr(picH^)); {write picture }

{ data to file}

 HUnlock(Handle(picH)); {unlock picture handle after writing data}

END;

8:

ignore := FSClose(pictFileRefNum); {close the file}

9:

DoSavePICTAsCmd := err;

END;

To save a picture in a 'PICT' resource, you should use Resource Manager routines, such

as FSpOpenResFile (to open your application’s resource fork), ChangedResource (to

change an existing 'PICT' resource), AddResource (to add a new 'PICT' resource),

WriteResource (to write the data to the resource), and CloseResFile and

ReleaseResource (to conclude saving the resource). These routines are described in

the chapter “Resource Manager” in Inside Macintosh: More Macintosh Toolbox.

To place a picture in the scrap—for example, in response to the user choosing the Copy

command to copy a picture to the Clipboard—use the Scrap Manager function

PutScrap, which is described in the chapter “Scrap Manager” in Inside Macintosh: More
Macintosh Toolbox.

For large 'PICT' files, it is useful to spool the picture data to disk instead of writing it

all directly into memory. In low-memory conditions, for example, your application

might find it useful to create a temporary file on disk for storing drawing instructions;

your application can read this information as necessary. The application-defined routine

MyReplacePutPic shown in Listing 7-10 replaces the putPicProc field of the current

graphics port’s CQDProcs record with an application-defined low-level routine, called

MyFilePutPic. While QuickDraw’s standard StdPutPic procedure writes picture

data to memory, MyFilePutPic writes the picture data to disk. (Listing 7-3 on

page 7-15 shows how to replace QuickDraw’s standard StdGetPic procedure with one

that reads data from a spool file.)

Listing 7-10 Replacing QuickDraw’s standard low-level picture-writing routine

FUNCTION MyReplacePutPic: QDProcsPtr;

VAR

currPort: GrafPtr;

customProcs: QDProcs;

customCProcs: CQDProcs;

savedProcs: QDProcsPtr;

BEGIN

GetPort(currPort);

savedProcs := currPort^.grafProcs; {save QDProcs or CQDProcs record }

{ for current graphics port}

IF MyIsColorPort(currPort) THEN {see Listing 7-4 on page 7-16}

C H A P T E R 7

Pictures

Using Pictures 7-23

BEGIN

SetStdCProcs(customCProcs); {create new CQDProcs record containing }

{ standard Color QuickDraw low-level }

{ routines}

customCProcs.putPicProc := @MyFilePutPic; {replace StdPutPic with }

{ address of custom }

{ low-level routine }

{ shown in Listing 7-11}

currPort^.grafProcs := @customCProcs; {replace current CQDProcs}

END

ELSE

BEGIN {perform similar work for a basic graphics port}

SetStdProcs(customProcs);

customProcs.putPicProc := @MyFilePutPic;

currPort^.grafProcs := @customProcs;

END;

gPictureSize := 0; {track the picture size}

gSpoolPicture := PicHandle(NewHandle(0));

MyReplacePutPic := savedProcs; {return saved CQDProcs or QDProcs }

{ record for restoring at a later time}

END;

Listing 7-11 shows MyFilePutPic, which uses the File Manager function FSWrite to

write picture data to the file with the file reference number assigned to the

application-defined global variable gPictFileRefNum. Your application does not keep

track of where FSWrite stops or resumes writing a file. After writing a portion of a file,

FSWrite automatically handles where to begin writing next.

Listing 7-11 A custom low-level routine for spooling a picture to disk

PROCEDURE MyFilePutPic (dataPtr: Ptr; byteCount: Integer);

VAR

dataLength: LongInt;

myErr: OSErr;

BEGIN

dataLength := byteCount;

gPictureSize := gPictureSize + byteCount;

myErr := FSWrite(gPictFileRefNum, dataLength, dataPtr);

IF gSpoolPicture <> NIL THEN

gSpoolPicture^^.picSize := gPictureSize;

END;

C H A P T E R 7

Pictures

7-24 Using Pictures

Gathering Picture Information
You can use the Picture Utilities routines to gather extensive information about pictures

and to gather color information about pixel maps. You use the GetPictInfo function to

gather information about a single picture, and you use the GetPixMapInfo function

to gather color information about a single pixel map or bitmap. Each of these functions

returns color and resolution information in a PictInfo record (described on page 7-32).

A PictInfo record can also contain information about the drawing objects, fonts, and

comments in a picture.

You can also survey multiple pictures, pixel maps, and bitmaps for this information. Use

the NewPictInfo function to begin collecting pictures, pixel maps, and bitmaps for

your survey. You also use NewPictInfo to specify how you would like the color,

comment, and font information for the survey returned to you.

To add the information for a picture to your survey, use the RecordPictInfo

function. To add the information for a pixel map or a bitmap to your survey, use the

RecordPixMapInfo function. The RetrievePictInfo function collects the

information about the pictures, pixel maps, and bitmaps that you have added to your

survey. The RetrievePictInfo function returns this information in a PictInfo

record.

For example, to use the ColorSync Utilities to match the colors in a single picture to an

output device such as a color printer, an application might find it useful to find the

CMBeginProfile picture comment, which marks the beginning of a color profile in a

Picture record. (Color profiles and the ColorSync Utilities are described in Inside
Macintosh: Advanced Color Imaging.) Listing 7-12 shows an application-defined routine,

called MyGetPICTProfileCount, that uses GetPictInfo to record comments in a

CommentSpec record (which is described on page 7-30). The

MyGetPICTProfileCount routine uses the CommentSpec record to determine

whether any color profiles are included in the picture as picture comments.

C H A P T E R 7

Pictures

Using Pictures 7-25

Listing 7-12 Looking for color profile comments in a picture

FUNCTION MyGetPICTProfileCount (hPICT: PicHandle; VAR count: Integer): OSErr;

VAR

err: OSErr;

thePICTInfo: PictInfo;

verb: Integer;

colorsRequested: Integer;

colorPickMethod: Integer;

version: Integer;

pCommentSpec: CommentSpecPtr;

i: Integer;

BEGIN

count := 0;

verb := recordComments;

colorsRequested := 0;

colorPickMethod := systemMethod;

version := 0;

err := GetPictInfo(hPICT, thePICTInfo, verb, colorsRequested,

 colorPickMethod, version);

IF ((err = noErr) AND (thePICTInfo.commentHandle <> NIL)) THEN

BEGIN

pCommentSpec := thePICTInfo.commentHandle^;

FOR i := 1 TO thePICTInfo.uniqueComments DO

BEGIN

IF (pCommentSpec^.ID = CMBeginProfile) THEN

BEGIN

count := pCommentSpec^.count;

LEAVE;

END;

pCommentSpec :=

CommentSpecPtr(ORD4(pCommentSpec)+Sizeof(CommentSpec));

END;

{clean up allocations made by GetPictInfo}

DisposeHandle(Handle(thePICTInfo.commentHandle));

END;

MyGetPICTProfileCount := err;

END;

C H A P T E R 7

Pictures

7-26 Pictures Reference

If you want information about the colors of a picture or pixel map, you indicate to the

Picture Utilities how many colors (up to 256) you want to know about, what method to

use for selecting the colors, and whether you want the selected colors returned in a

Palette record or ColorTable record.

The Picture Utilities provide two color-picking methods: one that gives you the most

frequently used colors and one that gives you the widest range of colors. Each has

advantages in different situations. For example, suppose the picture of a forest image

contains 400 colors, of which 300 are greens, 80 are browns, and the rest are a scattering

of golden sunlight effects. If you ask for the 250 most used colors, you will probably

receive all greens. If you ask for a range of 250 colors, you will receive an assortment

stretching from the greens and golds to the browns, including colors in between that

might not actually appear in the image. You can also supply a color-picking method of

your own, as described in “Application-Defined Routines” beginning on page 7-61.

Your application can then use the color information returned by the Picture Utilities in

conjunction with the Palette Manager to provide the best selection of colors for

displaying the picture on an 8-bit indexed device.

IMPORTANT

When you ask for color information about a picture, the Picture Utilities
take into account only the version 2 and extended version 2 picture
opcodes RGBFgCol, RGBBkCol, BkPixPat, PnPixPat, FillPixPat,
and HiliteColor (as well as pixel map or bitmap data). Each
occurrence of these opcodes is treated as one pixel, regardless of the
number and sizes of the objects drawn with that color. If you need an
accurate set of colors from a complex picture, create an image of the
picture in an offscreen graphics world and call the GetPixMapInfo
function to obtain color information about that pixel map for that
graphics world. ▲

Pictures Reference

This section describes the data structures, routines, and resources provided by

QuickDraw for creating and drawing pictures and by the Picture Utilities for gathering

information about pictures and pixel maps.

“Data Structures” shows the Pascal data structures for the Picture, OpenCPicParams,

CommentSpec, FontSpec, and PictInfo records.

“QuickDraw and Picture Utilities Routines” describes QuickDraw routines for creating,

drawing, and disposing of pictures, and it describes Picture Utilities routines for

collecting information about pictures, pixel maps, and bitmaps. “Application-Defined

Routines” describes how you can define your own method for selecting colors from

pictures and pixel maps.

C H A P T E R 7

Pictures

Pictures Reference 7-27

“Resources” describes the picture ('PICT') resource and the color-picking method

('cpmt') resource.

See Appendix A at the back of this book for a list of picture opcodes.

Data Structures

This section shows the Pascal data structures for the Picture, OpenCPicParams,

CommentSpec, FontSpec, and PictInfo records.

When you use the OpenCPicture or OpenPicture function, QuickDraw begins

collecting your subsequent drawing commands in a Picture record. When you use the

GetPicture function to retrieve a picture stored in a resource, GetPicture reads the

resource into memory as a Picture record.

When you use the OpenCPicture function to begin creating a picture, you must pass it

information in an OpenCPicParams record. This record provides a simple mechanism

for specifying resolutions when creating images.

When you use the GetPictInfo function, it returns information in a PictInfo

record. When you gather this information for multiple pictures, pixel maps, or bitmaps,

the RetrievePictInfo function also returns a PictInfo record containing this

information.

If you specify the recordComments constant in the verb parameter to the

GetPictInfo function or NewPictInfo function, your application receives a

PictInfo record that includes a handle to a CommentSpec record. A CommentSpec

record contains information about the comments in a picture.

If you specify the recordFontInfo constant in the verb parameter to the

GetPictInfo function or NewPictInfo function, the function returns a PictInfo

record that includes a handle to a FontSpec record. A FontSpec record contains

information about the fonts in a picture.

Picture

When you use the OpenCPicture or OpenPicture function (described on page 7-37

and page 7-39, respectively), QuickDraw begins collecting your subsequent drawing

commands in a Picture record. (You use the ClosePicture procedure, described on

page 7-42, to complete a picture definition.) When you use the GetPicture function

(described on page 7-46) to retrieve a picture stored in a resource, GetPicture reads the

resource into memory as a Picture record. ('PICT' resources are described on

page 7-67.) By using the DrawPicture procedure (described on page 7-44), you can

draw onscreen the picture defined by the commands stored in the Picture record.

C H A P T E R 7

Pictures

7-28 Pictures Reference

A Picture record is defined as follows:

TYPE Picture =

RECORD

picSize: Integer; {for a version 1 picture: its size}

picFrame: Rect; {bounding rectangle for the picture}

{variable amount of picture data in the form of opcodes}

END;

Field descriptions

picSize The size of the rest of this record for a version 1 picture. To maintain
compatibility with the version 1 picture format, the picSize field
was not changed for the version 2 picture or extended version 2
formats. The information in this field is useful only for version 1
pictures, which cannot exceed 32 KB in size. Because version 2 and
extended version 2 pictures can be much larger than the 32 KB limit
imposed by the 2-byte picSize field, you should use the Memory
Manager function GetHandleSize to determine the size of a
picture in memory, the File Manager function PBGetFInfo to
determine the size of a picture in a 'PICT' file, and the Resource
Manager function MaxSizeResource to determine the size of a
'PICT' resource. (See Inside Macintosh: Memory, Inside Macintosh:
Files, and Inside Macintosh: More Macintosh Toolbox for more
information about these functions.)

picFrame The bounding rectangle for the picture defined in the rest of this
record. The DrawPicture procedure uses this rectangle to scale the
picture if you draw it into a destination rectangle of a different size.

Picture comments and compact drawing instructions in the form of picture opcodes

compose the rest of this record.

A picture opcode is a number that the DrawPicture procedure uses to determine what

object to draw or what mode to change for subsequent drawing. For debugging

purposes, picture opcodes are listed in Appendix A at the back of this book. Your

application generally should not read or write this picture data directly. Instead,

your application should use the OpenCPicture (or OpenPicture), ClosePicture,

and DrawPicture routines to process these opcodes.

The Picture record can also contain picture comments. Created by applications

using the PicComment procedure, picture comments contain data or commands for

special processing by output devices, such as PostScript printers. The PicComment

procedure is described on page 7-40, and picture comments are described in greater

detail in Appendix B in this book.

You can use File Manager routines to save the picture in a file of type 'PICT', you can

use Resource Manager routines to save the picture in a resource of type 'PICT', and

you can use the Scrap Manager procedure PutScrap to store the picture in 'PICT'

scrap format. See the chapter “File Manager” in Inside Macintosh: Files and the chapters

“Resource Manager” and “Scrap Manager” in Inside Macintosh: More Macintosh Toolbox

for more information about saving files, resources, and scrap data.

C H A P T E R 7

Pictures

Pictures Reference 7-29

OpenCPicParams

When you use the OpenCPicture function (described on page 7-37) to begin creating a

picture, you must pass it information in an OpenCPicParams record. This record

provides a simple mechanism for specifying resolutions when creating images. For

example, applications that create pictures from scanned images can specify resolutions

higher than 72 dpi for these pictures in OpenCPicParams records.

An OpenCPicParams record is defined as follows:

TYPE OpenCPicParams =

RECORD

srcRect: Rect; {optimal bounding rectangle for }

{ displaying picture at resolution }

{ indicated in hRes, vRes fields}

hRes: Fixed; {best horizontal resolution; }

{ $00480000 specifies 72 dpi}

vRes: Fixed; {best vertical resolution; }

{ $00480000 specifies 72 dpi}

version: Integer; {set to -2}

reserved1: Integer; {reserved; set to 0}

reserved2: LongInt; {reserved; set to 0}

END;

Field descriptions

srcRect The optimal bounding rectangle for the resolution indicated by the
next two fields. When you later call the DrawPicture procedure
(described on page 7-44) to play back the saved picture, you supply
a destination rectangle, and DrawPicture scales the picture so that
it is completely aligned with the destination rectangle. To display a
picture at a resolution other than that specified in the next two
fields, your application should compute an appropriate destination
rectangle by scaling its width and height by the following factor:

scale factor = destination resolution / source resolution

hRes The best horizontal resolution for the picture. Notice that this value
is of type Fixed—a value of $0048000 specifies a horizontal
resolution of 72 dpi.

vRes The best vertical resolution for the picture. Notice that this value is
of type Fixed—a value of $00480000 specifies a horizontal
resolution of 72 dpi.

version Always set this field to –2.

reserved1 Reserved; set to 0.

reserved2 Reserved; set to 0.

C H A P T E R 7

Pictures

7-30 Pictures Reference

CommentSpec

If you specify the recordComments constant in the verb parameter to the

GetPictInfo function (described on page 7-47) or the NewPictInfo function

(described on page 7-53), you receive a PictInfo record (described beginning on

page 7-32) that includes in its commentHandle field a handle to an array of

CommentSpec records. The uniqueComments field of the PictInfo record indicates

the number of CommentSpec records in this array.

The CommentSpec record is defined as follows:

TYPE CommentSpec = {comment specification record}

RECORD

count: Integer; {number of times this type of comment }

{ occurs in the picture or survey}

ID: Integer; {value identifying this type of comment}

END;

Field descriptions

count The number of times this kind of picture comment occurs in the
picture specified to the GetPictInfo function or in all the pictures
examined with the NewPictInfo function.

ID The value set in the kind parameter when the picture comment
was created with the PicComment procedure. The PicComment
procedure is described on page 7-40. The values of many common
IDs are listed in Appendix B in this book.

When you are finished using the information returned in a CommentSpec record, you

should use the DisposeHandle procedure (described in Inside Macintosh: Memory) to

dispose of the memory allocated to it.

Listing 7-12 on page 7-25 illustrates how to count the number of picture comments by

examining a CommentSpec record.

FontSpec

If you specify the recordFontInfo constant in the verb parameter to the

GetPictInfo function (described on page 7-47) or the NewPictInfo function

(described on page 7-53), your application receives a PictInfo record (described

beginning on page 7-32) that includes in its fontHandle field a handle to an array of

FontSpec records. The uniqueFonts field of the PictInfo record indicates the

number of FontSpec records in this array. (For bitmap fonts, a font is a complete set of

glyphs in one size, typeface, and style—for example, 12-point Geneva italic. For outline

fonts, a font is a complete set of glyphs in one typeface and style—for example, Geneva

italic.)

C H A P T E R 7

Pictures

Pictures Reference 7-31

The FontSpec record is defined as follows:

TYPE FontSpec = {font specification record}

RECORD

pictFontID: Integer; {font ID as stored in the picture}

sysFontID: Integer; {font family ID}

size: ARRAY[0..3] OF LongInt;

{each bit set from 1 to 127 indicates a }

{ point size at that value; if bit 0 is }

{ set, then a size larger than 127 }

{ points is found}

style: Integer; {styles used for this font family}

nameOffset: LongInt; {offset to font name stored in the }

{ data structure indicated by the }

{ fontNamesHandle field of the PictInfo }

{ record}

END;

Field descriptions

pictFontID The ID number of the font as it is stored in the picture.

sysFontID The number that identifies the resource file (of type 'FOND') that
specifies the font family. Every font family—which consists of a
complete set of fonts for one typeface including all available styles
and sizes of the glyphs in that typeface—has a unique font family
ID, in a range of values that determines the script system to which
the font family belongs.

size The point sizes of the fonts in the picture. The field contains 128
bits, in which a bit is set for each point size encountered, from 1 to
127 points. Bit 0 is set if a size larger than 127 is found.

style The styles for this font family at any of its sizes. The values in this
field can also be represented with the Style data type:

TYPE

StyleItem = (bold, italic, underline, outline,

 shadow, condense, extend);

Style = SET OF StyleItem;

nameOffset The offset into the list of font names (indicated by the
fontNamesHandle field of the PictInfo record) at which the
name for this font family is stored. A font name, such as Geneva, is
given to a font family to distinguish it from other font families.

C H A P T E R 7

Pictures

7-32 Pictures Reference

When you are finished using the information returned in a FontSpec record, you

should use the DisposeHandle procedure (described in Inside Macintosh: Memory) to

dispose of the memory allocated to it.

See the chapter “Font Manager” in Inside Macintosh: Text for more information about

fonts.

PictInfo

When you use the GetPictInfo function (described on page 7-47) to collect

information about a picture, or when you use the GetPixMapInfo function (described

on page 7-50) to collect color information about a pixel map or bitmap, the function

returns the information in a PictInfo record. When you gather this information for

multiple pictures, pixel maps, or bitmaps, the RetrievePictInfo function (described

on page 7-58) also returns a PictInfo record containing this information.

Initially, all of the fields in a new PictInfo record are set to NIL. Relevant fields are set

to appropriate values depending on the information you request using the Picture

Utilities functions as described in this chapter.

The PictInfo record is defined as follows:

TYPE PictInfo =

RECORD

version: Integer; {Picture Utilities version number}

uniqueColors: LongInt; {total colors in survey}

thePalette: PaletteHandle; {handle to a Palette record--NIL for }

{ a bitmap in a basic graphics port}

theColorTable: CTabHandle; {handle to a ColorTable record--NIL }

{ for a bitmap in a basic graphics }

{ port}

hRes: Fixed; {best horizontal resolution (dpi)}

vRes: Fixed; {best vertical resolution (dpi)}

depth: Integer; {greatest pixel depth}

sourceRect: Rect; {optimal bounding rectangle for }

{ picture for display at resolution }

{ specified in hRes and vRes fields}

textCount: LongInt; {number of text strings in picture(s)}

lineCount: LongInt; {number of lines in picture(s)}

rectCount: LongInt; {number of rectangles in picture(s)}

rRectCount: LongInt; {number of rounded rectangles in }

{ picture(s)}

ovalCount: LongInt; {number of ovals in picture(s)}

arcCount: LongInt; {number of arcs and wedges in }

{ picture(s)}

C H A P T E R 7

Pictures

Pictures Reference 7-33

polyCount: LongInt; {number of polygons in picture(s)}

regionCount: LongInt; {number of regions in picture(s)}

bitMapCount: LongInt; {number of bitmaps}

pixMapCount: LongInt; {number of pixel maps}

commentCount: LongInt; {number of comments in picture(s)}

uniqueComments: LongInt; {number of different comments }

{ (by ID) in picture(s)}

commentHandle: CommentSpecHandle;{handle to an array of CommentSpec }

{ records for picture(s)}

uniqueFonts: LongInt; {number of fonts in picture(s)}

fontHandle: FontSpecHandle; {handle to an array of FontSpec }

{ records for picture(s)}

fontNamesHandle: Handle; {handle to list of font names for }

{ picture(s)}

reserved1: LongInt;

reserved2: LongInt;

END;

Field descriptions

version The version number of the Picture Utilities, currently set to 0.

uniqueColors The number of colors in the picture specified to the GetPictInfo
function, or the number of colors in the pixel map or bitmap
specified to the GetPixMapInfo function, or the total number of
colors for all the pictures, pixel maps, and bitmaps returned by the
RetrievePictInfo function. The number of colors returned in
this field is limited by the accuracy of the Picture Utilities’ color
bank for color storage. See “Application-Defined Routines”
beginning on page 7-61 for information about the Picture
Utility’s color bank and about how you can create your own for
selecting colors.

thePalette A handle to the resulting Palette record if you specified to the
GetPictInfo, GetPixMapInfo, or NewPictInfo function that
colors be returned in a Palette record. That Palette record
contains either the number of colors you specified to the function
or—if there aren’t that many colors in the pictures, pixel maps, or
bitmaps—the number of colors found. Depending on the constant
you pass in the verb parameter to the function, the Palette
record contains either the most used or the widest range of colors in
the pictures, pixel maps, and bitmaps. On Macintosh computers
running basic QuickDraw only, this field is always returned as NIL.
See the chapter “Palette Manager” in Inside Macintosh: Advanced
Color Imaging for more information about Palette records.

C H A P T E R 7

Pictures

7-34 Pictures Reference

theColorTable A handle to the resulting ColorTable record if you specified to the
GetPictInfo, GetPixMapInfo, or NewPictInfo function that
colors be returned in a ColorTable record. If the pictures, pixel
maps, or bitmaps contain fewer colors found than you specified to
the function, the unused entries in the ColorTable record are
filled with black. Depending on the constant you pass in the verb
parameter to the function, the ColorTable record contains either
the most used or the widest range of colors in the pictures, pixel
maps, and bitmaps. The chapter “Color QuickDraw” in this book
describes ColorTable records. On Macintosh computers running
basic QuickDraw only, this field is always returned as NIL.

If a picture has more than 256 colors or has pixel depths of 32 bits,
then Color QuickDraw translates the colors in the ColorTable
record to 16-bit depths. In such a case, the returned colors might
have a slight loss of resolution, and the uniqueColors field
reflects the number of colors distinguishable at that pixel depth.

hRes The horizontal resolution of the current picture, pixel map, or
bitmap retrieved by the GetPictInfo or GetPixMapInfo
function; the greatest horizontal resolution from all pictures, pixel
maps, and bitmaps retrieved by the RetrievePictInfo function.

vRes The vertical resolution of the current picture, pixel map, or bitmap
retrieved by the GetPictInfo or GetPixMapInfo function; the
greatest vertical resolution of all pictures, pixel maps, and bitmaps
retrieved by the RetrievePictInfo function. Note that although
the values of the hRes and vRes fields are usually the same, they
don’t have to be.

depth The pixel depth of the picture specified to the
GetPictInfo function or the pixel map specified to the
GetPixMapInfo function. When you use the RetrievePictInfo
function, this field contains the deepest pixel depth of all pictures or
pixel maps retrieved by the function.

sourceRect The optimal bounding rectangle for displaying the picture at the
resolution indicated by the hRes and vRes fields. The upper-left
corner of the rectangle is always (0,0). Pictures created with the
OpenCPicture function have the hRes, vRes, and sourceRect
fields built into their Picture records. For pictures created by
OpenPicture, the hRes and vRes fields are set to 72 dpi, and the
source rectangle is calculated using the picFrame field of the
Picture record for the picture.

textCount The number of text strings in the picture specified to the
GetPictInfo function, or the total number of text objects in all the
pictures retrieved by the RetrievePictInfo function. For pixel
maps and bitmaps specified to GetPixMapInfo or
RetrievePictInfo, this field is set to 0.

lineCount The number of lines in the picture specified to the GetPictInfo
function, or the total number of lines in all the pictures retrieved by
the RetrievePictInfo function. For pixel maps and bitmaps,
this field is set to 0.

C H A P T E R 7

Pictures

Pictures Reference 7-35

rectCount The number of rectangles in the picture specified to the
GetPictInfo function, or the total number of rectangles in all the
pictures retrieved by the RetrievePictInfo function. For pixel
maps and bitmaps, this field is set to 0.

rRectCount The number of rounded rectangles in the picture specified to the
GetPictInfo function, or the total number of rounded rectangles
in all the pictures retrieved by the RetrievePictInfo function.
For pixel maps and bitmaps, this field is set to 0.

ovalCount The number of ovals in the picture specified to the GetPictInfo
function, or the total number of ovals in all the pictures retrieved by
the RetrievePictInfo function. For pixel maps and bitmaps,
this field is set to 0.

arcCount The number of arcs and wedges in the picture specified to the
GetPictInfo function, or the total number of arcs and wedges in
all the pictures retrieved by the RetrievePictInfo function. For
pixel maps and bitmaps, this field is set to 0.

polyCount The number of polygons in the picture specified to the
GetPictInfo function, or the total number of polygons in all the
pictures retrieved by the RetrievePictInfo function. For pixel
maps and bitmaps, this field is set to 0.

regionCount The number of regions in the picture specified to the GetPictInfo
function, or the total number of regions in all the pictures retrieved
by the RetrievePictInfo function. For pixel maps and bitmaps,
this field is set to 0.

bitMapCount The total number of bitmaps in the survey.

pixMapCount The total number of pixel maps in the survey.

commentCount The number of comments in the picture specified to the
GetPictInfo function, or the total number of comments in all the
pictures retrieved by the RetrievePictInfo function. This field
is valid only if you specified to the GetPictInfo or NewPictInfo
function that comments be returned in a CommentSpec record,
described on page 7-30. For pixel maps and bitmaps, this field is set
to 0.

uniqueComments The number of picture comments that have different IDs in the
picture specified to the GetPictInfo function, or the total number
of picture comments with different IDs in all the pictures retrieved
by the RetrievePictInfo function. (The values for many
common IDs are listed in Appendix B, “Using Picture Comments
for Printing,” in this book.) This field is valid only if you specify
that comments be returned in a CommentSpec record. For pixel
maps and bitmaps, this field is set to 0.

commentHandle A handle to an array of CommentSpec records, described on
page 7-30. For pixel maps and bitmaps, this field is set to NIL.

C H A P T E R 7

Pictures

7-36 Pictures Reference

uniqueFonts The number of different fonts in the picture specified to the
GetPictInfo function, or the total number of different fonts in all
the pictures retrieved by the RetrievePictInfo function. For
bitmap fonts, a font is a complete set of glyphs in one size, typeface,
and style—for example, 12-point Geneva italic. For outline fonts, a
font is a complete set of glyphs in one typeface and style—for
example, Geneva italic.

This field is valid only if you specify that fonts be returned in a
FontSpec record, which is described on page 7-30. For pixel maps
and bitmaps, this field is set to 0.

fontHandle A handle to a list of FontSpec records, described on page 7-30. For
pixel maps and bitmaps, this field is set to NIL.

fontNamesHandle
A handle to the names of the fonts in the picture retrieved by the
GetPictInfo function or the pictures retrieved by the
RetrievePictInfo function. The offset to a particular name is
stored in the nameOffset field of the FontSpec record for that
font. A font name is a name, such as Geneva, given to one font
family to distinguish it from other font families.

When you are finished with this information, be sure to dispose of it. You can dispose of

Palette records by using the DisposePalette procedure (which is described in the

chapter “Palette Manager” in Inside Macintosh: Advanced Color Imaging). You can dispose

of ColorTable records by using the DisposeCTable procedure (described in the

chapter “Color QuickDraw” in this book). You can dispose of other allocations with the

DisposeHandle procedure (described in Inside Macintosh: Memory).

QuickDraw and Picture Utilities Routines

This section describes QuickDraw routines for creating, drawing, and disposing

of pictures, and it describes Picture Utilities routines for collecting information about

pictures, pixel maps, and bitmaps.

Creating and Disposing of Pictures

Use the OpenCPicture function to begin defining a picture; OpenCPicture collects

your subsequent drawing commands—which are described in the other chapters of this

book—in a Picture record. You can use the PicComment procedure to include picture

comments in your picture definition. To complete the collection of drawing and

picture comment commands that define your picture, use the ClosePicture

procedure. When you are finished using a picture not stored in a 'PICT' resource, use

the KillPicture procedure to release its memory. (To release the memory for a picture

stored in a 'PICT' resource, use the Resource Manager procedure ReleaseResource.)

C H A P T E R 7

Pictures

Pictures Reference 7-37

The OpenCPicture function works on all Macintosh computers running System 7.

Pictures created with the OpenCPicture function can be drawn on all versions of

Macintosh system software. The OpenPicture function, which was created for earlier

versions of system software, is described here for completeness.

OpenCPicture

To begin defining a picture in extended version 2 format, use the OpenCPicture

function.

FUNCTION OpenCPicture (newHeader: OpenCPicParams): PicHandle;

newHeader An OpenCPicParams record, which is defined as follows (see page 7-29
for a description of the OpenCPicParams data type):

TYPE OpenCPicParams =

RECORD

srcRect: Rect; {optimal bounding rectangle }

{ for displaying picture at }

{ resolution indicated in }

{ hRes, vRes fields}

hRes: Fixed; {best horizontal resolution; }

{ $00480000 specifies 72 dpi}

vRes: Fixed; {best vertical resolution; }

{ $00480000 specifies 72 dpi}

version: Integer; {set to -2}

reserved1: Integer; {reserved; set to 0}

reserved2: LongInt; {reserved; set to 0}

END;

DESCRIPTION

The OpenCPicture function returns a handle to a new Picture record (described on

page 7-27). Use the OpenCPicture function to begin defining a picture;

OpenCPicture collects your subsequent drawing commands in this record. When

defining a picture, you can use all other QuickDraw drawing routines described in this

book, with the exception of CopyMask, CopyDeepMask, SeedFill, SeedCFill,

CalcMask, and CalcCMask. (Nor can you use the PlotCIcon procedure, described in

Inside Macintosh: More Macintosh Toolbox.)

You can also use the PicComment procedure (described on page 7-40) to include picture

comments in your picture definition.

The OpenCPicture function creates pictures in the extended version 2 format. This

format permits your application to specify resolutions when creating images.

C H A P T E R 7

Pictures

7-38 Pictures Reference

Use the OpenCPicParams record you pass in the newHeader parameter to specify the

horizontal and vertical resolution for the picture, and specify an optimal bounding

rectangle for displaying the picture at this resolution. When you later call the

DrawPicture procedure (described on page 7-44) to play back the saved picture, you

supply a destination rectangle, and DrawPicture scales the picture so that it is

completely aligned with the destination rectangle. To display a picture at a resolution

other than that at which it was created, your application should compute an appropriate

destination rectangle by scaling its width and height by the following factor:

scale factor = destination resolution / source resolution

For example, if a picture was created at 300 dpi and you want to display it at 75 dpi, then

your application should compute the destination rectangle width and height as 1/4 of

those of the picture’s bounding rectangle.

The OpenCPicture function calls the HidePen procedure, so no drawing occurs on the

screen while the picture is open (unless you call the ShowPen procedure just after

OpenCPicture, or you called ShowPen previously without balancing it by a call to

HidePen).

Use the handle returned by OpenCPicture when referring to the picture in subsequent

routines, such as the DrawPicture procedure.

After defining the picture, close it by using the ClosePicture procedure, described on

page 7-42. To draw the picture, use the DrawPicture procedure, described on page 7-44.

After creating the picture, your application can use the GetPictInfo function

(described on page 7-47) to gather information about it. The PictInfo record (described

on page 7-32) returned by GetPictInfo returns the picture’s resolution and optimal

bounding rectangle.

SPECIAL CONSIDERATIONS

When creating a picture, you should generally use the ClosePicture procedure to

finish it before you open the Printing Manager with the PrOpen procedure. There are

two main reasons for this. First, you should allow the printing driver to use as much

memory as possible. Second, the Printing Manager creates its own type of graphics

port—one that replaces the standard QuickDraw drawing operations stored in the

grafProcs field of a CGrafPort or GrafPort record; to avoid unexpected results

when creating a picture, you should draw into a graphics port created with QuickDraw

instead of drawing into a printing port created by the Printing Manager.

After calling OpenCPicture, be sure to finish your picture definition by calling

ClosePicture before you call OpenCPicture again. You cannot nest calls to

OpenCPicture.

Always use the ClipRect procedure to specify a clipping region appropriate for your

picture before you call OpenCPicture. If you do not use ClipRect to specify a

clipping region, OpenCPicture uses the clipping region specified in the current

graphics port. If the clipping region is very large (as it is when a graphics port is

initialized) and you scale the picture when drawing it, the clipping region can become

invalid when DrawPicture scales the clipping region—in which case, your picture will

C H A P T E R 7

Pictures

Pictures Reference 7-39

not be drawn. On the other hand, if the graphics port specifies a small clipping region,

part of your drawing may be clipped when you draw it. Setting a clipping region equal

to the port rectangle of the current graphics port, as shown in Listing 7-1 on page 7-11,

always sets a valid clipping region.

The OpenCPicture function may move or purge memory.

SEE ALSO

The PrOpen procedure is described in the chapter “Printing Manager” in this book. The

ClipRect procedure is described in the chapter “Basic QuickDraw” in this book. The

ShowPen and HidePen procedures are described in the chapter “QuickDraw Drawing”

in this book.

Listing 7-1 on page 7-11 illustrates the use of the OpenCPicture function.

OpenPicture

The OpenPicture function, which was created for earlier versions of system

software, is described here for completeness. To create a picture, you should use the

OpenCPicture function, which allows you to specify resolutions for your pictures,

as explained in the previous routine description.

FUNCTION OpenPicture (picFrame: Rect): PicHandle;

picFrame The bounding rectangle for the picture. The DrawPicture procedure
uses this rectangle to scale the picture if you draw it into a destination
rectangle of a different size.

DESCRIPTION

The OpenPicture function returns a handle to a new Picture record (described on

page 7-27). You can use the OpenPicture function to begin defining a picture;

OpenPicture collects your subsequent drawing commands in this record. When

defining a picture, you can use all other QuickDraw drawing routines described in this

book, with the exception of CopyMask, CopyDeepMask, SeedFill, SeedCFill,

CalcMask, and CalcCMask. (Nor can you use the PlotCIcon procedure, described in

Inside Macintosh: More Macintosh Toolbox.) You can also use the PicComment procedure

(described on page 7-40) to include picture comments in your picture definition.

The OpenPicture function creates pictures in the version 2 format on computers with

Color QuickDraw when the current graphics port is a color graphics port. Pictures

created in this format support color drawing operations at 72 dpi. On computers

supporting only basic QuickDraw, or when the current graphics port is a basic graphics

port, this function creates pictures in version 1 format. Pictures created in version 1

format support only black-and-white drawing operations at 72 dpi.

C H A P T E R 7

Pictures

7-40 Pictures Reference

Use the handle returned by OpenPicture when referring to the picture in subsequent

routines, such as the DrawPicture procedure.

The OpenPicture function calls the HidePen procedure, so no drawing occurs on the

screen while the picture is open (unless you call the ShowPen procedure just after

OpenPicture or you called ShowPen previously without balancing it by a call to

HidePen).

After defining the picture, close it by using the ClosePicture procedure, described on

page 7-42. To draw the picture, use the DrawPicture procedure, described on page 7-44.

SPECIAL CONSIDERATIONS

The version 2 and version 1 picture formats support only 72-dpi resolution. The

OpenCPicture function creates pictures in the extended version 2 format. The extended

version 2 format, which is created by the OpenCPicture function on all Macintosh

computers running System 7, permits your application to specify additional resolutions

when creating images.

See the description of the OpenCPicture function for its list of special considerations,

all of which apply to OpenPicture.

Version 1 pictures are limited to 32 KB. You can determine the picture size while it’s

being formed by calling the Memory Manager function GetHandleSize.

PicComment

To insert a picture comment into a picture that you are defining or into your printing

code, use the PicComment procedure.

PROCEDURE PicComment (kind,dataSize: Integer;

dataHandle: Handle);

kind The type of comment. Because the vast majority of picture comments are
interpreted by printer drivers, the constants that you can supply in this
parameter—and values they represent—are listed in Appendix B, “Using
Picture Comments for Printing,” in this book.

dataSize Size of any additional data passed in the dataHandle parameter.
Data sizes for the various kinds of picture comments are listed in
Appendix B, “Using Picture Comments for Printing,” in this book. If no
additional data is used, specify 0 in this parameter.

dataHandle
A handle to additional data, if used. If no additional data is used, specify
NIL in this parameter.

C H A P T E R 7

Pictures

Pictures Reference 7-41

DESCRIPTION

When used after your application begins creating a picture with the OpenCPicture (or

OpenPicture) function, the PicComment procedure inserts the specified comment into

the Picture record. When sent to a printer driver after your application uses the

PrOpenPage procedure, PicComment passes the data or commands in the specified

comment directly to the printer.

Picture comments contain data or commands for special processing by output devices,

such as printers. For example, using the SetLineWidth comment, your application can

draw hairlines—which are not available with standard QuickDraw calls—on any

PostScript LaserWriter printer and on the QuickDraw LaserWriter SC printer.

Usually printer drivers process picture comments, but applications can also do so. For

your application to process picture comments, it must replace the StdComment

procedure pointed to by the commentProc field of the CQDProcs or QDProcs record,

which in turn is pointed to by the grafProcs field of a CGrafPort or GrafPort

record. The default StdComment procedure provided by QuickDraw does no comment

processing whatsoever. You can use the SetStdCProcs procedure to assist you in

changing the CQDProcs record, and you can use the SetStdProcs procedure to assist

you in changing the QDProcs record.

If you create and process your own picture comments, you should define comments so

that they contain information that identifies your application (to avoid using the same

comments as those used by Apple or by other third-party products). You should define

a comment as an ApplicationComment comment type with a kind value of 100. The

first 4 bytes of the data for the comment should specify your application’s signature. (See

the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox Essentials for

information about application signatures.) You can use the next 2 bytes to identify the

type of comment—that is, to specify a kind value to your own application.

Suppose your application signature were 'WAVE', and you wanted to use the value 128

to identify a kind value to your own application. You would supply values to the kind

and data parameters to PicComment as follows:

kind = 100; data = 'WAVE' [4 bytes] + 128 [2 bytes] + additional data [n bytes]

Your application can then parse the first 6 bytes of the comment to determine whether

and how to process the rest of the data in the comment. It is up to you to publish

information about your comments if you wish them to be understood and used by other

applications.

SPECIAL CONSIDERATIONS

These former picture comments are now obsolete: SetGrayLevel, ResourcePS,

PostScriptFile, and TextIsPostScript.

The PicComment procedure may move or purge memory.

C H A P T E R 7

Pictures

7-42 Pictures Reference

SEE ALSO

See Appendix B, “Using Picture Comments for Printing,” in this book for information

about using picture comments to print with features that are unavailable with

QuickDraw. See the chapter “QuickDraw Drawing” in this book for information about

the QDProcs record and the StdComment and SetStdProcs procedures. See the

chapter “Color QuickDraw” in this book for information about the CQDProcs record

and the SetStdCProcs procedure.

ClosePicture

To complete the collection of drawing commands and picture comments that define your

picture, use the ClosePicture procedure.

PROCEDURE ClosePicture;

DESCRIPTION

The ClosePicture procedure stops collecting drawing commands and picture

comments for the currently open picture. You should perform one and only one call to

ClosePicture for every call to the OpenCPicture (or OpenPicture) function.

The ClosePicture procedure calls the ShowPen procedure, balancing the call made by

OpenCPicture (or OpenPicture) to the HidePen procedure.

SEE ALSO

The ShowPen and HidePen procedures are described in the chapter “QuickDraw

Drawing” in this book.

Listing 7-1 on page 7-11 illustrates the use of the ClosePicture procedure.

KillPicture

To release the memory occupied by a picture not stored in a 'PICT' resource, use the

KillPicture procedure.

PROCEDURE KillPicture (myPicture: PicHandle);

myPicture A handle to the picture whose memory can be released.

C H A P T E R 7

Pictures

Pictures Reference 7-43

DESCRIPTION

The KillPicture procedure releases the memory occupied by the picture whose

handle you pass in the myPicture parameter. Use this only when you’re completely

finished with a picture.

SPECIAL CONSIDERATIONS

If you use the Window Manager procedure SetWindowPic to store a picture handle in

the window record, you can use the Window Manager procedure DisposeWindow or

CloseWindow to release the memory allocated to the picture; these procedures

automatically call KillPicture for the picture.

If the picture is stored in a 'PICT' resource, you must use the Resource Manager

procedure ReleaseResource instead of KillPicture. The Window

Manager procedures DisposeWindow and CloseWindow will not delete it; instead,

you must call ReleaseResource before calling DisposeWindow or CloseWindow.

The KillPicture procedure may move or purge memory.

SEE ALSO

The ReleaseResource procedure is described in the chapter “Resource Manager” in

Inside Macintosh: Macintosh Toolbox, and the SetWindowPic, DisposeWindow, and

CloseWindow procedures are described in the chapter “Window Manager,” in Inside
Macintosh: Macintosh Toolbox Essentials.

Drawing Pictures

To draw a picture, use the DrawPicture procedure. You must access a picture through

its handle. When creating pictures, the OpenCPicture and OpenPicture functions

(described beginning on page 7-37) return their handles. You can use the GetPicture

function to get a handle to a QuickDraw picture stored in a 'PICT' resource.

Note

To get a handle to a QuickDraw picture stored in a 'PICT' file, you
must use File Manager routines, as described in “Drawing a Picture
Stored in a 'PICT' File” beginning on page 7-13. To get a picture stored in
the scrap, use the Scrap Manager procedure GetScrap to get a handle
to its data and then coerce this handle to one of type PicHandle, as
shown in Listing 7-6 on page 7-17. ◆

C H A P T E R 7

Pictures

7-44 Pictures Reference

DrawPicture

To draw a picture on any type of output device, use the DrawPicture procedure.

PROCEDURE DrawPicture (myPicture: PicHandle; dstRect: Rect);

myPicture A handle to the picture to be drawn.

dstRect A destination rectangle, specified in coordinates local to the current
graphics port, in which to draw the picture. The DrawPicture
procedure shrinks or expands the picture as necessary to align the borders
of its bounding rectangle with the rectangle you specify in this parameter.
To display a picture at a resolution other than that at which it was created,
your application should compute an appropriate destination rectangle by
scaling its width and height by the following factor:

scale factor = destination resolution / source resolution

For example, if a picture was created at 300 dpi and you want to display it
at 75 dpi, then your application should compute the destination rectangle
width and height as 1/4 of those of the picture’s bounding rectangle. Your
application can use the GetPictInfo function (described on page 7-47)
to gather information about a picture. The PictInfo record (described
on page 7-32) returned by GetPictInfo returns the picture’s resolution
in its hRes and vRes fields. The sourceRect field contains the
bounding rectangle for displaying the image at its optimal resolution.

DESCRIPTION

Within the rectangle that you specify in the dstRect parameter, the DrawPicture

procedure draws the picture that you specify in the myPicture parameter.

The DrawPicture procedure passes any picture comments to the StdComment

procedure pointed to by the commentProc field of the CQDProcs or QDProcs record,

which in turn is pointed to by the grafProcs field of a CGrafPort or GrafPort

record. The default StdComment procedure provided by QuickDraw does no comment

processing whatsoever. If you want to process picture comments when drawing a

picture, you can use the SetStdCProcs procedure to assist you in changing the

CQDProcs record, and you can use the SetStdProcs procedure to assist you in

changing the QDProcs record.

SPECIAL CONSIDERATIONS

Always use the ClipRect procedure to specify a clipping region appropriate for your

picture before defining it with the OpenCPicture (or OpenPicture) function. If you

do not use ClipRect to specify a clipping region, OpenCPicture uses the clipping

region specified in the current graphics port. If the clipping region is very large (as it is

when a graphics port is initialized) and you want to scale the picture, the clipping region

C H A P T E R 7

Pictures

Pictures Reference 7-45

can become invalid when DrawPicture scales the clipping region—in which case, your

picture will not be drawn. On the other hand, if the graphics port specifies a small

clipping region, part of your drawing may be clipped when DrawPicture draws it.

Setting a clipping region equal to the port rectangle of the current graphics port, as

shown in Listing 7-1 on page 7-11, always sets a valid clipping region.

When it scales, DrawPicture changes the size of the font instead of scaling the bits.

However, the widths used by bitmap fonts are not always linear. For example, the

12-point width isn’t exactly 1/2 of the 24-point width. This can cause lines of text to

become slightly longer or shorter as the picture is scaled. The difference is often

insignificant, but if you are trying to draw a line of text that fits exactly into a box (a

spreadsheet cell, for example), the difference can become noticeable to the user—most

typically, at print time. The easiest way to avoid such problems is to specify a destination

rectangle that is the same size as the bounding rectangle for the picture. Otherwise, your

application may need to directly process the opcodes in the picture instead of using

DrawPicture.

You may also have disappointing results if the fonts contained in an image are not

available on the user’s system. Before displaying a picture, your application may want

to use the Picture Utilities to determine what fonts are contained in the picture, and then

use Font Manager routines to determine whether the fonts are available on the user’s

system. If they are not, you can use Dialog Manager routines to display an alert box

warning the user of display problems.

If there is insufficient memory to draw a picture in Color QuickDraw, the QDError

function (described in the chapter “Color QuickDraw” in this book) returns the result

code noMemForPictPlaybackErr.

The DrawPicture procedure may move or purge memory.

SEE ALSO

Listing 7-1 on page 7-11 illustrates how to use DrawPicture after creating a picture

while your application is running; Listing 7-2 on page 7-13 illustrates how to use

DrawPicture after reading in a picture stored in a 'PICT' file; Listing 7-6 on page 7-17

illustrates how to use DrawPicture after reading in a picture stored in the scrap; and

Listing 7-8 on page 7-20 illustrates how to use DrawPicture after reading in a picture

stored in a 'PICT' resource.

See the chapter “Font Manager” in Inside Macintosh: Text for information about Font

Manager routines; see the chapter “Dialog Manager” in Inside Macintosh: Macintosh
Toolbox Essentials for information about Dialog Manager routines.

C H A P T E R 7

Pictures

7-46 Pictures Reference

GetPicture

Use the GetPicture function to get a handle to a picture stored in a 'PICT' resource.

FUNCTION GetPicture (picID: Integer): PicHandle;

picID The resource ID for a 'PICT' resource.

DESCRIPTION

The GetPicture function returns a handle to the picture stored in the 'PICT' resource

with the ID that you specify in the picID parameter. You can pass this handle to the

DrawPicture procedure (described on page 7-44) to draw the picture stored in the

resource.

The GetPicture function calls the Resource Manager procedure GetResource as

follows:

GetResource('PICT',picID)

If the resource can’t be read, GetPicture returns NIL.

SPECIAL CONSIDERATIONS

To release the memory occupied by a picture stored in a 'PICT' resource, use the

Resource Manager procedure ReleaseResource.

The GetPicture function may move or purge memory.

SEE ALSO

The GetResource and ReleaseResource procedures are described in the chapter

“Resource Manager” in Inside Macintosh: More Macintosh Toolbox. The 'PICT' resource is

described on page 7-67.

Collecting Picture Information

You can use the Picture Utilities routines described in this section to gather extensive

information about pictures and to gather color information about pixel maps and

bitmaps. On an 8-bit indexed device, for example, you might want your application to

determine the 256 most-used colors in a picture composed of millions of colors. Your

application can then use the Palette Manager (as described in Inside Macintosh: Advanced
Color Imaging) to make these colors available for the window in which your application

needs to draw the picture.

C H A P T E R 7

Pictures

Pictures Reference 7-47

You use the GetPictInfo function to gather information about a single picture,

and you use the GetPixMapInfo function to gather color information about a single

pixel map or bitmap. Each of these functions returns color and resolution information in

a PictInfo record. A PictInfo record for a picture also contains additional

information, such as the resolution of the picture, and information about the fonts and

comments contained in the picture.

You can also survey multiple pictures, pixel maps, and bitmaps for this information. Use

the NewPictInfo function to begin collecting pictures, pixel maps, and bitmaps for

your survey. You also use NewPictInfo to specify how you would like the color,

comment, and font information for the survey returned to you.

To add the information for a picture to your survey, use the RecordPictInfo

function. To add the information for a pixel map or a bitmap to your survey, use the

RecordPixMapInfo function. The RetrievePictInfo function collects the

information about the pictures, pixel maps, and bitmaps that you have added to the

survey. The RetrievePictInfo function returns this information in a PictInfo

record.

When you are finished with this information, use the DisposePictInfo function to

dispose of the private data structures allocated by the NewPictInfo function.

Note

The Picture Utilities also collect information from black-and-white
pictures and bitmaps, and they are supported in System 7 even by
computers running only basic QuickDraw. However, when collecting
color information on a computer running only basic QuickDraw, the
Picture Utilities return NIL instead of a handle to a Palette or
ColorTable record. ◆

GetPictInfo

Use the GetPictInfo function to gather information about a single picture.

FUNCTION GetPictInfo (thePictHandle: PicHandle;

 VAR thePictInfo: PictInfo; verb: Integer;

 colorsRequested: Integer;

 colorPickMethod: Integer;

 version: Integer): OSErr;

thePictHandle
A handle to a picture.

thePictInfo
A pointer to a PictInfo record, which will hold information about the
picture. The PictInfo record is described on page 7-32.

C H A P T E R 7

Pictures

7-48 Pictures Reference

verb A value indicating what type of information you want GetPictInfo to
return in the PictInfo record. You can use any or all of the following
constants or the sum of the integers they represent:

CONST

returnColorTable = 1; {return a ColorTable record}

returnPalette = 2; {return a Palette record}

recordComments = 4; {return comment information}

recordFontInfo = 8; {return font information}

suppressBlackAndWhite

= 16; {don't include black and }

{ white with returned colors}

Because the Palette Manager adds black and white when creating a
Palette record, you can specify the number of colors you want minus 2
in the colorsRequested parameter and specify the
suppressBlackAndWhite constant in the verb parameter when
gathering colors destined for a Palette record or a screen.

colorsRequested
From 1 to 256, the number of colors you want in the ColorTable or
Palette record returned via the PictInfo record. If you are not
requesting colors (that is, if you pass the recordComments or
recordFontInfo constant in the verb parameter), this function does
not return colors, in which case you may instead pass 0 here.

colorPickMethod
The method by which colors are selected for the ColorTable or
Palette record returned via the PictInfo record. You can use one of
the following constants or the integer it represents:

CONST

systemMethod = 0; {let Picture Utilities choose }

{ the method (currently they }

{ always choose popularMethod)}

popularMethod = 1; {return most frequently used }

{ colors}

medianMethod = 2; {return a weighted distribution }

{ of colors}

You can also create your own color-picking method in a resource file of
type 'cpmt' and pass its resource ID in the colorPickMethod
parameter. The resource ID must be greater than 127.

version Always set this parameter to 0.

C H A P T E R 7

Pictures

Pictures Reference 7-49

DESCRIPTION

In the PictInfo record to which the parameter thePictInfo points, the

GetPictInfo function returns information about the picture you specify in the

thePictHandle parameter. Initially, all of the fields in a new PictInfo record are set

to NIL. Relevant fields are set to appropriate values depending on the information you

request using the GetPictInfo function.

Use the verb parameter to specify whether you want color information (in a

ColorTable record, a Palette record, or both), whether you want picture comment

information, and whether you want font information. If you want color information, be

sure to use the colorPickMethod parameter to specify the method by which to select

colors.

The Picture Utilities provide two color-picking methods: one (specified by the

popularMethod constant) that gives you the most frequently used colors and one

(specified by the medianMethod constant) that gives you the widest range of colors.

Each has advantages in different situations. For example, suppose the picture of a forest

image contains 400 colors, of which 300 are greens, 80 are browns, and the rest are a

scattering of golden sunlight effects. If you ask for the 250 most used colors, you will

probably receive all greens. If you ask for a range of 250 colors, you will receive an

assortment stretching from the greens and golds to the browns, including colors in

between that might not actually appear in the image. If you specify the systemMethod

constant, the Picture Utilities choose the method; currently they always choose

popularMethod. You can also supply a color-picking method of your own.

If your application uses more than one color-picking method, it should present the user

with a choice of which method to use.

When you are finished with the information in the PictInfo record, be sure to dispose

of it. Use the Memory Manager procedure DisposeHandle to dispose of the

PictInfo, CommentSpec, and FontSpec records. Dispose of the Palette record by

using the DisposePalette procedure. Dispose of the ColorTable record by using the

DisposeCTable procedure.

SPECIAL CONSIDERATIONS

When you ask for color information, GetPictInfo takes into account only the version 2

and extended version 2 picture opcodes RGBFgCol, RGBBkCol, BkPixPat, PnPixPat,

FillPixPat, and HiliteColor (as well as pixel map or bitmap data). Each occurrence

of these opcodes is treated as 1 pixel, regardless of the number and sizes of the objects

drawn with that color. If you need an accurate set of colors from a complex picture,

create an image of the picture in an offscreen pixel map, and then call the

GetPixMapInfo function (described on page 7-50) to obtain color information about

that pixel map.

The GetPictInfo function returns a bit depth of 1 on QuickTime-compressed 'PICT'

files. However, when QuickTime is installed, QuickTime decompresses and displays the

image correctly.

The GetPictInfo function may move or purge memory.

C H A P T E R 7

Pictures

7-50 Pictures Reference

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the GetPictInfo function are

RESULT CODES

SEE ALSO

The PictInfo record is described on page 7-32, the CommentSpec record is described

on page 7-30, and the FontSpec record is described on page 7-30. The ColorTable

record is described in the chapter “Color QuickDraw” in this book; the Palette record

is described in the chapter “Palette Manager” in Inside Macintosh: Advanced Color Imaging.

See “Application-Defined Routines” beginning on page 7-61 for more information about

creating your own color-picking method for the colorPickMethod parameter.

The DisposePalette procedure is described in the chapter “Palette Manager” in Inside
Macintosh: Advanced Color Imaging. The DisposeCTable procedure is described in the

chapter “Color QuickDraw” in this book. The DisposeHandle procedure is described

in the chapter “Memory Manager” in Inside Macintosh: Memory.

Listing 7-12 on page 7-25 illustrates the use of the GetPictInfo function.

GetPixMapInfo

Use the GetPixMapInfo function to gather color information about a single pixel map

or bitmap.

FUNCTION GetPixMapInfo (thePixMapHandle: PixMapHandle;

VAR thePictInfo: PictInfo; verb: Integer;

colorsRequested: Integer;

colorPickMethod: Integer;

version: Integer): OSErr;

thePixMapHandle
A handle to a pixel map or bitmap.

Trap macro Selector

_Pack15 $0800

pictInfoVersionErr –11000 Version number not 0
pictInfoVerbErr –11002 Invalid verb combination specified
cantLoadPickMethodErr –11003 Custom pick method not in resource chain
colorsRequestedErr –11004 Number out of range or greater than that

passed to NewPictInfo
pictureDataErr –11005 Invalid picture data

C H A P T E R 7

Pictures

Pictures Reference 7-51

thePictInfo
A pointer to a PictInfo record, which will hold information about a
pixel map or bitmap. The PictInfo record is described on page 7-32.

verb A value indicating whether you want color information returned in a
ColorTable record, a Palette record, or both. You can also request
that black and white not be included among the returned colors. You can
use any or all of the following constants or the sum of the integers they
represent:

CONST

returnColorTable = 1; {return a ColorTable record}

returnPalette = 2; {return a Palette record}

suppressBlackAndWhite

= 16; {don't include black and }

{ white with returned colors}

Because the Palette Manager adds black and white when creating a
Palette record, you can specify the number of colors you want minus 2
in the colorsRequested parameter and specify the constant
suppressBlackAndWhite in the verb parameter when gathering
colors destined for a Palette record or a screen.

colorsRequested
From 1 to 256, the number of colors you want in the ColorTable or
Palette record returned via the PictInfo record.

colorPickMethod
The method by which colors are selected for the ColorTable or
Palette record returned via the PictInfo record. You can use one of
the following constants or the integer it represents:

CONST

systemMethod = 0; {let Picture Utilities choose }

{ the method (currently they }

{ always choose popularMethod)}

popularMethod = 1; {return most frequently used }

{ colors}

medianMethod = 2; {return a weighted distribution }

{ of colors}

You can also create your own color-picking method in a resource file of
type 'cpmt' and pass its resource ID in the colorPickMethod
parameter. The resource ID must be greater than 127.

version Always set this parameter to 0.

C H A P T E R 7

Pictures

7-52 Pictures Reference

DESCRIPTION

For the pixel map (or bitmap) whose handle you pass in the thePixMapHandle

parameter, the GetPixMapInfo function returns color information in the PictInfo

record that you point to in the parameter thePictInfo. Initially, all of the fields in a

new PictInfo record are set to NIL. Relevant fields are set to appropriate values

depending on the information you request using the GetPixMapInfo function.

Use the verb parameter to specify whether you want color information returned in a

ColorTable record, a Palette record, or both, and use the colorPickMethod

parameter to specify the method by which to select colors.

The Picture Utilities provide two color-picking methods: one (specified by the

popularMethod constant) that gives you the most frequently used colors and one

(specified by the medianMethod constant) that gives you the widest range of colors. If

you specify the systemMethod constant, the Picture Utilities choose the method;

currently they always choose popularMethod. You can also supply a color-picking

method of your own.

When you are finished with the information in the PictInfo record, be sure to dispose

of it. Use the Memory Manager procedure DisposeHandle to dispose of the PictInfo

record. Dispose of the Palette record by using the DisposePalette procedure.

Dispose of the ColorTable record by using the DisposeCTable procedure.

SPECIAL CONSIDERATIONS

The GetPixMapInfo function may move or purge memory.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the GetPixMapInfo function are

RESULT CODES

SEE ALSO

See “Application-Defined Routines” beginning on page 7-61 for more information about

creating your own color-picking method for the colorPickMethod parameter. The

PictInfo record is described on page 7-32; the PixMapHandle data type and the

ColorTable record are described in the chapter “Color QuickDraw” in this book; the

Palette record is described in Inside Macintosh: Advanced Color Imaging.

Trap macro Selector

_Pack15 $0801

pictInfoVersionErr –11000 Version number not 0
pictInfoVerbErr –11002 Invalid verb combination specified
cantLoadPickMethodErr –11003 Custom pick method not in resource chain
colorsRequestedErr –11004 Number out of range or greater than that

passed to NewPictInfo

C H A P T E R 7

Pictures

Pictures Reference 7-53

The DisposePalette procedure is described in Inside Macintosh: Advanced Color
Imaging. The DisposeCTable procedure is described in the chapter “Color

QuickDraw” in this book. The DisposeHandle procedure is described in the chapter

“Memory Manager” in Inside Macintosh: Memory.

NewPictInfo

You can survey multiple pictures for such information as colors, picture comments, and

fonts, and you can survey multiple pixel maps and bitmaps for color information. Use

the NewPictInfo function to begin collecting pictures, pixel maps, and bitmaps for

your survey.

FUNCTION NewPictInfo (VAR thePictInfoID: PictInfoID;

verb: Integer; colorsRequested: Integer;

colorPickMethod: Integer;

version: Integer): OSErr;

thePictInfoID
A unique value that denotes your collection of pictures, pixel maps, or
bitmaps.

verb A value indicating what type of information you want the
RetrievePictInfo function (described on page 7-58) to return in a
PictInfo record (described on page 7-32). When collecting information
about pictures, you can use any or all of the following constants or the
sum of the integers they represent:

CONST

returnColorTable = 1; {return a ColorTable record}

returnPalette = 2; {return a Palette record}

recordComments = 4; {return comment information}

recordFontInfo = 8; {return font information}

suppressBlackAndWhite

= 16; {don't include black and }

{ white with returned colors}

The constants recordComments and recordFontInfo and the values
they represent have no effect when gathering information about the pixel
maps and bitmaps included in your survey.

Because the Palette Manager adds black and white when creating a
palette, you can specify the number of colors you want minus 2 in the
colorsRequested parameter and specify the constant
suppressBlackAndWhite in the verb parameter when gathering
colors destined for a Palette record or a screen.

C H A P T E R 7

Pictures

7-54 Pictures Reference

colorsRequested
From 1 to 256, the number of colors you want included in the
ColorTable or Palette record returned by the RetrievePictInfo
function via a PictInfo record.

colorPickMethod
The method by which colors are selected for the ColorTable or
Palette record included in the PictInfo record returned by the
RetrievePictInfo function. You can use one of the following
constants or the integer it represents:

CONST

systemMethod = 0; {let Picture Utilities choose }

{ the method (currently they }

{ always choose popularMethod)}

popularMethod = 1; {return most frequently used }

{ colors}

medianMethod = 2; {return a weighted distribution }

{ of colors}

You can also create your own color-picking method in a resource file of
type 'cpmt' and pass its resource ID in the colorPickMethod
parameter. The resource ID must be greater than 127.

version Always set this parameter to 0.

DESCRIPTION

In the thePictInfoID parameter, the NewPictInfo function returns a unique ID

number for use when surveying multiple pictures, pixel maps, and bitmaps for

information.

To add the information for a picture to your survey, use the RecordPictInfo function,

which is described next. To add the information for a pixel map or a bitmap to your

survey, use the RecordPixMapInfo function, which is described on page 7-57. For each

of these functions, you identify the survey with the ID number returned by

NewPictInfo.

Use the RetrievePictInfo function (described on page 7-58) to return information

about the pictures, pixel maps, and bitmaps in the survey. Again, you identify the survey

with the ID number returned by NewPictInfo. The RetrievePictInfo function

returns your requested information in a PictInfo record.

C H A P T E R 7

Pictures

Pictures Reference 7-55

Use the verb parameter for NewPictInfo to specify whether you want to gather

comment or font information for the pictures in the survey. If you want to gather color

information, use the verb parameter for NewPictInfo to specify whether you want

this information in a ColorTable record, a Palette record, or both. The PictInfo

record returned by the RetrievePictInfo function will then include a handle to a

ColorTable record or a Palette record, or handles to both. If you want color

information, be sure to use the colorPickMethod parameter to specify the method by

which to select colors.

The Picture Utilities provide two color-picking methods: one (specified by the

popularMethod constant) that gives you the most frequently used colors and one

(specified by the medianMethod constant) that gives you the widest range of colors. If

you specify the systemMethod constant, the Picture Utilities choose the method;

currently they always choose popularMethod. You can also supply a color-picking

method of your own.

SPECIAL CONSIDERATIONS

The NewPictInfo function may move or purge memory.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the NewPictInfo function are

RESULT CODES

SEE ALSO

The PictInfo record is described on page 7-32, the CommentSpec record is described

on page 7-30, and the FontSpec record is described on page 7-30. The ColorTable

record is described in the chapter “Color QuickDraw” in this book; the Palette record

is described in Inside Macintosh: Advanced Color Imaging. See “Application-Defined

Routines” beginning on page 7-61 for more information about creating your own

color-picking method for the colorPickMethod parameter.

Trap macro Selector

_Pack15 $0602

pictInfoVersionErr –11000 Version number not 0
pictInfoVerbErr –11002 Invalid verb combination specified
cantLoadPickMethodErr –11003 Custom pick method not in resource chain
colorsRequestedErr –11004 Number out of range or greater than that

passed to NewPictInfo

C H A P T E R 7

Pictures

7-56 Pictures Reference

RecordPictInfo

To add a picture to an informational survey of multiple pictures, use the

RecordPictInfo function.

FUNCTION RecordPictInfo (thePictInfoID: PictInfoID;

thePictHandle: PicHandle): OSErr;

thePictInfoID
The ID number—returned by the NewPictInfo function—that
identifies the survey to which you are adding the picture. The
NewPictInfo function is described on page 7-53.

thePictHandle
A handle to the picture being added to the survey.

DESCRIPTION

The RecordPictInfo function adds the picture you specify in the

parameter thePictHandle to the survey of pictures identified by the parameter

thePictInfoID. Use RecordPictInfo repeatedly to add additional pictures to your

survey.

After you have collected all of the pictures you need, use the RetrievePictInfo

function, described on page 7-58, to return information about pictures in the survey.

SPECIAL CONSIDERATIONS

When you ask for color information, RecordPictInfo takes into account only the

version 2 and extended version picture opcodes RGBFgCol, RGBBkCol, BkPixPat,

PnPixPat, FillPixPat, and HiliteColor. Each occurrence of these opcodes is

treated as 1 pixel, regardless of the number and sizes of the objects drawn with that

color. If you need an accurate set of colors from a complex picture, create an image of the

picture in an offscreen pixel map, and then call the GetPixMapInfo function (described

on page 7-50) to obtain color information about that pixel map.

The RecordPictInfo function may move or purge memory.

C H A P T E R 7

Pictures

Pictures Reference 7-57

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the RecordPictInfo function are

RESULT CODES

RecordPixMapInfo

To add a pixel map or bitmap to an informational survey of multiple pixel maps and

bitmaps, use the RecordPictInfo function.

FUNCTION RecordPixMapInfo (thePictInfoID: PictInfoID;

 thePixMapHandle: PixMapHandle): OSErr;

thePictInfoID
The ID number—returned by the NewPictInfo function—that
identifies the survey to which you are adding the pixel map or bitmap.
The NewPictInfo function is described on page 7-53.

thePixMapHandle
A handle to a pixel map (or bitmap) to be added to the survey.

DESCRIPTION

The RecordPixMapInfo function adds the pixel map or bitmap you specify

in the parameter thePixMapHandle to the survey identified by the parameter

thePictInfoID. Use RecordPictInfo repeatedly to add additional pixel maps

and bitmaps to your survey.

After you have collected all of the images you need, use the RetrievePictInfo

function, described on page 7-58, to return information about all the images in the survey.

Trap macro Selector

_Pack15 $0403

pictInfoIDErr –11001 Invalid picture information ID
pictureDataErr –11005 Invalid picture data

C H A P T E R 7

Pictures

7-58 Pictures Reference

SPECIAL CONSIDERATIONS

The RecordPixMapInfo function may move or purge memory.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the RecordPixMapInfo function are

RESULT CODES

RetrievePictInfo

Use the RetrievePictInfo function to return information about all the pictures, pixel

maps, and bitmaps included in a survey.

FUNCTION RetrievePictInfo (thePictInfoID: PictInfoID;

 VAR thePictInfo: PictInfo;

 colorsRequested: Integer): OSErr;

thePictInfoID
The ID number—returned by the NewPictInfo function—that
identifies the survey of pictures, pixel maps, and bitmaps. The
NewPictInfo function is described on page 7-53.

thePictInfo
A pointer to the PictInfo record that holds information about the
pictures or images in the survey. The PictInfo record is described on
page 7-32.

colorsRequested
From 1 to 256, the number of colors you want returned in the
ColorTable or Palette record included in the PictInfo record.

Trap macro Selector

_Pack15 $0404

pictInfoIDErr –11001 Invalid picture information ID
pictureDataErr –11005 Invalid picture data

C H A P T E R 7

Pictures

Pictures Reference 7-59

DESCRIPTION

In a PictInfo record that you point to in the parameter thePictInfo, the

RetrievePictInfo function returns information about all of the pictures and images

collected in the survey that you specify in the parameter thePictInfoID.

After using the NewPictInfo function to create a new survey, and then using

RecordPictInfo to add pictures to your survey and RecordPixMapInfo to add pixel

maps and bitmaps to your survey, you can call RetrievePictInfo.

When you are finished with the information in the PictInfo record, be sure to dispose

of it. You can dispose of the Palette record by using the DisposePalette procedure.

You can dispose of the ColorTable record by using the DisposeCTable

procedure. You can dispose of other allocations with the DisposeHandle procedure.

You should also use the DisposePictInfo function (described next) to dispose of the

private data structures created by the NewPictInfo function.

SPECIAL CONSIDERATIONS

The RetrievePictInfo function may move or purge memory.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the RetrievePictInfo function are

RESULT CODES

SEE ALSO

The DisposePalette procedure is described in Inside Macintosh: Advanced Color
Imaging. The DisposeCTable procedure is described in the chapter “Color

QuickDraw” in this book. The DisposeHandle procedure is described in the chapter

“Memory Manager” in Inside Macintosh: Memory.

Trap macro Selector

_Pack15 $0505

pictInfoIDErr –11001 Invalid picture information ID
colorsRequestedErr –11004 Number out of range or greater than that

passed to NewPictInfo

C H A P T E R 7

Pictures

7-60 Pictures Reference

DisposePictInfo

When you are finished gathering information from a survey of pictures, pixel maps, or

bitmaps, use the DisposePictInfo function to dispose of the private data structures

allocated by the NewPictInfo function. The DisposePictInfo function is also

available as the DisposPictInfo function.

FUNCTION DisposePictInfo (thePictInfoID: PictInfoID): OSErr;

thePictInfoID
The unique identifier returned by NewPictInfo.

DESCRIPTION

The DisposePictInfo function disposes of the private data structures allocated by the

NewPictInfo function, which is described on page 7-53.

The DisposePictInfo function does not dispose of any of the handles returned

to you in a PictInfo record by the RetrievePictInfo function, which is described

on page 7-58. Instead, you can dispose of a Palette record by using the

DisposePalette procedure. You can dispose of a ColorTable record by using

the DisposeCTable procedure. You can dispose of other allocations with the

DisposeHandle procedure.

SPECIAL CONSIDERATIONS

The DisposePictInfo function may move or purge memory.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DisposePictInfo function are

RESULT CODE

SEE ALSO

The DisposePalette procedure is described in Inside Macintosh: Advanced Color
Imaging. The DisposeCTable procedure is described in the chapter “Color

QuickDraw” in this book. The DisposeHandle procedure is described in the chapter

“Memory Manager” in Inside Macintosh: Memory.

Trap macro Selector

_Pack15 $0206

pictInfoIDErr –11001 Invalid picture information ID

C H A P T E R 7

Pictures

Pictures Reference 7-61

Application-Defined Routines

As described in “Collecting Picture Information” beginning on page 7-46, your

application can use the GetPictInfo, GetPixMapInfo, and NewPictInfo functions

to gather information about pictures, pixel maps, and bitmaps. Each of these functions

can gather up to 256 colors in ColorTable and Palette records. In the

colorPickMethod parameter to these functions, you specify how they should select

which colors to gather. These Picture Utilities functions provide two color-picking

methods: the first selects the most frequently used colors, and the second selects a

weighted distribution of the existing colors.

You can also create your own color-picking method. You must compile it as a resource of

type 'cpmt' and write its entry point in assembly language. To use this color-picking

method ('cpmt') resource, pass its resource ID (which must be greater than 127) in the

colorPickMethod parameter to these Picture Utilities functions. These functions call

your color-picking method’s entry point and pass one of four possible selectors in

register D0. These functions pass their parameters on the stack. As shown in Table 7-1,

each selector requires your color-picking method to call a different routine, which should

return its results in register D0.

Your color-picking method ('cpmt') resource should include a routine that specifies its

color bank (that is, the structure into which all the colors of a picture, pixel map, or

bitmap are gathered) and allocates whatever data your color-picking method needs. This

routine is explained next as a Pascal function declared as MyInitPickMethod.

Your MyInitPickMethod function can let the Picture Utilities generate a color bank

consisting of a histogram (that is, frequency counts of each color) to a resolution of 5 bits

per color. Or, your MyInitPickMethod function can specify that your application has

its own custom color bank—for example, a histogram to a resolution of 8 bits per color.

If you create your own custom color bank, your 'cpmt' resource should include a

routine that gathers and stores colors; this routine is described on page 7-64 as a Pascal

function declared as MyRecordColors.

For the number of colors your application requests using the Picture Utilities, your

'cpmt' resource should include a routine that determines which colors to select from

the color bank and then fills an array of ColorSpec records with those colors; this

routine is described on page 7-65 as a Pascal function declared as MyCalcColorTable.

The Picture Utilities function that your application initially called then returns these

Table 7-1 Routine selectors for an application-defined color-picking method

D0 value Routine to call

0 MyInitPickMethod

1 MyRecordColors

2 MyCalcColorTable

3 MyDisposeColorPickMethod

C H A P T E R 7

Pictures

7-62 Pictures Reference

colors in a Palette record or ColorTable record, as specified by your application

when it first called the Picture Utilities function.

Your 'cpmt' resource should include a routine that releases the memory allocated

by your MyInitPickMethod routine. The routine that releases memory is described on

page 7-67 as a Pascal function declared as MyDisposeColorPickMethod.

If your routines return an error, that error is passed back to the GetPictInfo,

GetPixMapInfo, or NewPictInfo function, which in turn passes the error to your

application as a function result.

MyInitPickMethod

Your color-picking method ('cpmt') resource should include a routine that specifies its

color bank and allocates whatever data your color-picking method needs. Here is how

you would declare this routine if it were a Pascal function named MyInitPickMethod:

FUNCTION MyInitPickMethod (colorsRequested: Integer;

 VAR dataRef: LongInt;

 VAR colorBankType: Integer): OSErr;

colorsRequested
The number of colors requested by your application to be gathered for
examination in a ColorTable or Palette record.

dataRef A handle to any data needed by your color-picking method; that is, if
your application allocates and uses additional data, it should return a
handle to it in this parameter.

colorBankType
The type of color bank your color-picking method uses. Your
MyInitPickMethod routine should return one of three valid color bank
types, which it can represent with one of these constants:

CONST

colorBankIsCustom = -1; {gathers colors into a }

{ custom color bank}

colorBankIsExactAnd555 = 0; {gathers exact colors }

{ if there are less }

{ than 256 unique }

{ colors in picture; }

{ otherwise gathers }

{ colors for picture }

{ in a 5-5-5 histogram}

colorBankIs555 = 1; {gathers colors into a }

 { 5-5-5 histogram}

C H A P T E R 7

Pictures

Pictures Reference 7-63

Return the colorBankIs555 constant in this parameter if you want to
let the Picture Utilities gather the colors for a picture or a pixel map into a
5-5-5 histogram. When you return the colorBankIs555 constant, the
Picture Utilities call your MyCalcColorTable routine with a pointer to
the color bank (that is, to the 5-5-5 histogram). Your MyCalcColorTable
routine (described on page 7-65) selects whatever colors it needs from this
color bank. Then the Picture Utilities function called by your application
returns these colors in a Palette record, a ColorTable record, or both,
as requested by your application.

Return the ColorBankIsExactAnd555 constant in this parameter to
make the Picture Utilities return exact colors if there are less than 256
unique colors in the picture; otherwise, the Picture Utilities gather the
colors for the picture in a 5-5-5 histogram, just as they do when you
return the colorBankIs555 constant. If the picture or pixel map has
fewer colors than your application requests when it calls a Picture
Utilities function, the Picture Utilities function returns all of the colors
contained in the color bank. If the picture or pixel map contains more
colors than your application requests, the Picture Utilities call your
MyCalcColorTable routine to select which colors to return.

Return the colorBankIsCustom constant in this parameter if you want
to implement your own color bank for storing the colors in a picture or a
pixel map. For example, because the 5-5-5 histogram that the Picture
Utilities provide gathers colors to a resolution of 5 bits per color, your
application may want to create a histogram with a resolution of 8 bits per
color. When you return the colorBankIsCustom constant, the Picture
Utilities call your MyRecordColors routine (explained in the next
routine description) to create this color bank. The Picture Utilities also call
your MyCalcColorTable routine to select colors from this color bank.

DESCRIPTION

Your MyInitPickMethod routine should allocate whatever data your color-picking

method needs and store a handle to your data in the location pointed to by the dataRef

parameter. In the colorBankType parameter, your MyInitPickMethod routine must

also return the type of color bank your color-picking method uses for color storage. If

your MyInitPickMethod routine generates any error, it should return the error as its

function result.

The 5-5-5 histogram that the Picture Utilities provide if you return the

ColorBankIs555 or ColorBankIsExactAnd555 constant in the colorBankType

parameter is like a reversed cSpecArray record, which is an array of ColorSpec

records. (The cSpecArray and ColorSpec records are described in the chapter “Color

QuickDraw” in this book.) This 5-5-5 histogram is an array of 32,768 integers, where the

index into the array is the color: 5 bits of red, followed by 5 bits of green, followed by 5

bits of blue. Each entry in the array is the number of colors in the picture that are

approximated by the index color for that entry.

C H A P T E R 7

Pictures

7-64 Pictures Reference

For example, suppose there were three instances of the following color in the pixel map:

This color would be represented by index % 0 11011-01111-01011 (in hexadecimal,

$6DEB), and the value in the histogram at this index would be 3, because there are three

instances of this color.

MyRecordColors

When you return the colorBankIsCustom constant in the colorBankType parameter

to your MyInitPickMethod function (described in the preceding section), your

color-picking method ('cpmt') resource must include a routine that creates this color

bank; for example, your application may want to create a histogram with a resolution of

8 bits per color. Here is how you would declare this routine if it were a Pascal function

named MyRecordColors:

FUNCTION MyRecordColors (dataRef: LongInt;

colorsArray: RGBColorArray;

colorCount: LongInt;

VAR uniqueColors: LongInt): OSErr;

dataRef A handle to any data your method needs. Your application initially
creates this handle using the MyInitPickMethod routine (explained in
the preceding section).

colorsArray
An array of RGBColor records. (RGBColor records are described in the
chapter “Color QuickDraw” in this book.) Your MyRecordColors
routine should store the color information for this array of RGBColor
records in a data structure of type RGBColorArray. You should define
the RGBColorArray data type as follows:

TYPE RGBColorArray = ARRAY[0..0] OF RGBColor;

colorCount
The number of colors in the array specified in the colorsArray
parameter.

Red = %1101 1010 1010 1110

Green = %0111 1010 1011 0001

Blue = %0101 1011 0110 1010

C H A P T E R 7

Pictures

Pictures Reference 7-65

uniqueColors
Upon input: the number of unique colors already added to the array in
the colorsArray parameter. (The Picture Utilities functions call your
MyRecordColors routine once for every color in the picture, pixel map,
or bitmap.) Your MyRecordColors routine must calculate the number of
unique colors (to the resolution of the color bank) that are added by this
call. Your MyRecordColors routine should add this amount to the value
passed upon input in this parameter and then return the sum in this
parameter.

DESCRIPTION

Your MyRecordColors routine should store each color encountered in a picture or pixel

into its own color bank. The Picture Utilities call MyRecordColors only if your

MyInitPickMethod routine returns the constant colorBankIsCustom in the

colorBankType parameter. The Picture Utilities functions call MyRecordColors for

all the colors in the picture, pixel map, or bitmap. If your MyRecordColors routine

generates any error, it should return the error as its function result.

MyCalcColorTable

Your color-picking method ('cpmt') resource should include a routine that selects as

many colors as are requested by your application from the color bank for a picture or

pixel map and then fills these colors into an array of ColorSpec records.

Here is how you would declare this routine if it were a Pascal function named

MyCalcColorTable:

FUNCTION MyCalcColorTable (dataRef: LongInt;

colorsRequested: Integer;

colorBankPtr: Ptr;

VAR resultPtr: CSpecArray): OSErr;

dataRef A handle to any data your method needs. Your application initially
creates this handle using the MyInitPickMethod routine (explained on
page 7-62).

colorsRequested
The number of colors requested by your application to be gathered for
examination in a ColorTable or Palette record.

C H A P T E R 7

Pictures

7-66 Pictures Reference

colorBankPtr
If your MyInitPickMethod routine (described on page 7-62) returned
either the colorBankIsExactAnd555 or colorBankIs555 constant,
then this parameter contains a pointer to the 5-5-5 histogram that
describes all of the colors in the picture, pixel map, or bitmap being
examined. (The format of the 5-5-5 histogram is explained in the routine
description for the MyInitPickMethod routine.) Your
MyCalcColorTable routine should examine these colors and then,
using its own criterion for selecting the colors, fill in an array
of ColorSpec records with the number of colors specified in the
colorsRequested parameter.

If your MyInitPickMethod routine returned the colorBankIsCustom
constant, then the value passed in this parameter is invalid. In this case,
your MyCalcColorTable routine should use the custom color bank
that your application created (as explained in the routine description for
the MyRecordColors routine on page 7-64) for filling in an
array of ColorSpec records with the number of colors specified in the
colorsRequested parameter.

Your MyCalcColorTable function should return a pointer to this array
of ColorSpec records in the next parameter.

resultPtr A pointer to the array of ColorSpec records to be filled with the number
of colors specified in the colorsRequested parameter. The Picture
Utilities function that your application initially called places these colors
in a Palette record or ColorTable record, as specified by your
application.

DESCRIPTION

Selecting from the color bank created for the picture, bitmap, or pixel map being

examined, your MyCalcColorTable routine should fill an array of ColorSpec records

with the number of colors requested in the colorsRequested parameter and return

this array in the resultPtr parameter. If your MyCalcColorTable routine generates

any error, it should return the error as its function result.

If more colors are requested than the picture contains, fill the remaining entries with

black (0000 0000 0000).

The colorBankPtr parameter is of type Ptr because the data stored in the color bank

is of the type specified by your MyInitPickMethod routine (described on page 7-62).

Thus, if you specified colorBankIs555 in the colorBankType parameter, the color

bank would be an array of integers. However, if the Picture Utilities support other data

types in the future, the colorBankPtr parameter could point to completely different

data types.

SPECIAL CONSIDERATIONS

Always coerce the value passed in the colorBankPtr parameter to a pointer to an

integer. In the future you may need to coerce this value to a pointer of the type you

specify in your MyInitPickMethod function.

C H A P T E R 7

Pictures

Pictures Reference 7-67

MyDisposeColorPickMethod

Your 'cpmt' resource should include a routine that releases the memory

allocated by your MyInitPickMethod routine (which is described on

page 7-62). Here is how you would declare this routine if it were a Pascal

function named MyDisposeColorPickMethod:

FUNCTION MyDisposeColorPickMethod (dataRef: LongInt): OSErr;

dataRef A handle to any data your method needs. Your application initially
creates this handle using the MyInitPickMethod routine.

DESCRIPTION

Your MyDisposeColorPickMethod routine should release any memory that you

allocated in your MyInitPickMethod routine. If your MyDisposeColorPickMethod

routine generates any error, it should return the error as its function result.

Resources

This section describes the picture ('PICT') resource and the color-picking method

('cpmt') resource. You can use the 'PICT' resource to save pictures in the resource

fork of your application or document files. You can assemble your own color-picking

method for use by the Picture Utilities in a 'cpmt' resource.

The Picture Resource

A picture ('PICT') resource contains QuickDraw drawing instructions that can be

played back using the DrawPicture procedure.

You may find it useful to store pictures in the resource fork of your application or

document file. For example, when the user chooses the About command in the Apple

menu for your application, you might wish to display a window containing your

company’s logo. Or, if yours is a page-layout application, you might want to store all the

images created by the user for a document as resources in the document file.

You can use high-level tools like the ResEdit resource editor, available from APDA, to

create and store images as 'PICT' resources for distribution with your files.

To save a picture in a 'PICT' resource while your application is running, you should

use Resource Manager routines, such as FSpOpenResFile (to open your application’s

resource fork), ChangedResource (to change an existing 'PICT' resource),

AddResource (to add a new 'PICT' resource), WriteResource (to write the data to

the resource), and CloseResFile and ReleaseResource (to conclude saving the

resource). These routines are described in the chapter “Resource Manager” in Inside
Macintosh: More Macintosh Toolbox.

C H A P T E R 7

Pictures

7-68 Pictures Reference

All 'PICT' resources must be marked purgeable, and they must have resource IDs

greater than 127.

If you examine the compiled version of a 'PICT' resource, as represented in Figure 7-4,

you find that it contains the following elements:

■ The size of the resource—if the resource contains a picture created in the version 1
format. Because version 2 and extended version 2 pictures can be much larger than
the 32 KB limit imposed by the size of this element, you should use the Resource
Manager function MaxSizeResource (described in Inside Macintosh: More Macintosh
Toolbox) to determine the size of a picture in version 2 and extended version 2 format.

■ The bounding rectangle for the picture. The DrawPicture procedure uses this
rectangle to scale the picture when you draw it into a destination rectangle of a
different size.

■ An array of picture opcodes. A picture opcode is a number that the DrawPicture
procedure uses to determine what object to draw or what mode to change for
subsequent drawing. For debugging purposes, picture opcodes are listed in Appendix
A at the back of this book. Your application generally should not read or write this
picture data directly. Instead, you should use the OpenCPicture (or OpenPicture),
ClosePicture, and DrawPicture routines to process these opcodes.

Figure 7-4 Structure of a compiled picture ('PICT') resource

To retrieve a 'PICT' resource, specify its resource ID to the GetPicture function,

described on page 7-46, which returns a handle to the picture. Listing 7-8 on page 7-20

illustrates an application-defined routine that retrieves and draws a picture stored as a

resource.

Appendix A, “Picture Opcodes,” shows examples of disassembled picture resources.

The Color-Picking Method Resource

The resource type for an assembled color-picking routine is 'cpmt'. It must have a

resource ID greater than 127. The resource data is the assembled code of the routine. See

“Application-Defined Routines” beginning on page 7-61 for information about creating a

color-picking method resource.

C H A P T E R 7

Pictures

Summary of Pictures and the Picture Utilities 7-69

Summary of Pictures and the Picture Utilities

Pascal Summary

Constants

CONST

{color-picking methods}

systemMethod = 0; {let Picture Utilities choose the method (currently }

{ they always choose popularMethod)}

popularMethod = 1; {return most frequently used colors}

medianMethod = 2; {return a weighted distribution of colors}

{picture information to be returned by Picture Utilities}

returnColorTable = 1; {return a ColorTable record}

returnPalette = 2; {return a Palette record}

recordComments = 4; {return comment information}

recordFontInfo = 8; {return font information}

suppressBlackAndWhite = 16; {don't include black and }

{ white with returned colors}

{color bank types}

colorBankIsCustom = -1; {gathers colors into a custom color bank}

colorBankIsExactAnd555 = 0; {gathers exact colors if there are less }

{ than 256 unique colors in picture; }

{ otherwise gathers colors for picture }

{ in a 5-5-5 histogram}

colorBankIs555 = 1; {gathers colors in a 5-5-5 histogram}

Data Types

TYPE

PicPtr = ^Picture;

PicHandle = ^PicPtr;

Picture =

RECORD {picture record}

picSize: Integer; {for a version 1 picture: its size}

C H A P T E R 7

Pictures

7-70 Summary of Pictures and the Picture Utilities

picFrame: Rect; {bounding rectangle for the picture}

{variable amount of picture data in the form of opcodes}

END;

OpenCPicParams =

RECORD

srcRect: Rect; {optimal bounding rectangle for displaying }

{ picture at resolution indicated in hRes, }

{ vRes fields}

hRes: Fixed; {best horizontal resolution; }

{ $00480000 specifies 72 dpi}

vRes: Fixed; {best vertical resolution; }

{ $00480000 specifies 72 dpi}

version: Integer; {set to -2}

reserved1: Integer; {reserved; set to 0}

reserved2: LongInt; {reserved; set to 0}

END;

CommentSpecHandle = ^CommentSpecPtr;

CommentSpecPtr = ^CommentSpec;

CommentSpec = {comment specification record}

RECORD

count: Integer; {number of times this type of comment }

{ occurs in the picture or survey}

ID: Integer; {value identifying this type of comment}

END;

FontSpecHandle = ^FontSpecPtr;

FontSpecPtr = ^FontSpec;

FontSpec = {font specification record}

RECORD

pictFontID: Integer; {font ID as stored in the picture}

sysFontID: Integer; {font family ID}

size: ARRAY[0..3] OF LongInt;

{each bit set from 1 to 127 indicates a }

{ point size at that value; if bit 0 is }

{ set, then a size larger than 127 }

{ points is found}

style: Integer; {styles used for this font family}

nameOffset: LongInt; {offset to font name stored in the }

{ data structure indicated by the }

{ fontNamesHandle field of the PictInfo }

{ record}

END;

C H A P T E R 7

Pictures

Summary of Pictures and the Picture Utilities 7-71

PictInfoID = LongInt;

PictInfoHandle = ^PictInfoPtr;

PictInfoPtr = ^PictInfo;

PictInfo = {picture information record}

RECORD

version: Integer; {Picture Utilities version number}

uniqueColors: LongInt; {total colors in survey}

thePalette: PaletteHandle; {handle to a Palette record--NIL }

{ for a bitmap in a basic }

{ graphics port}

theColorTable: CTabHandle; {handle to a ColorTable record-- }

{ NIL for a bitmap in a basic }

{ graphics port}

hRes: Fixed; {best horizontal resolution (dpi)}

vRes: Fixed; {best vertical resolution (dpi)}

depth: Integer; {greatest pixel depth}

sourceRect: Rect; {optimal bounding rectangle for }

{ picture for display at }

{ resolution specified in hRes }

{ and vRes fields}

textCount: LongInt; {number of text strings in }

{ picture(s)}

lineCount: LongInt; {number of lines in picture(s)}

rectCount: LongInt; {number of rectangles in }

{ picture(s)}

rRectCount: LongInt; {number of rounded rectangles in }

{ picture(s)}

ovalCount: LongInt; {number of ovals in picture(s)}

arcCount: LongInt; {number of arcs and wedges in }

{ picture(s)}

polyCount: LongInt; {number of polygons in picture(s)}

regionCount: LongInt; {number of regions in picture(s)}

bitMapCount: LongInt; {number of bitmaps}

pixMapCount: LongInt; {number of pixel maps}

commentCount: LongInt; {number of comments in picture(s)}

uniqueComments: LongInt; {number of different comments }

{ (by ID) in picture(s)}

commentHandle: CommentSpecHandle;

{handle to array of CommentSpec }

{ records for picture(s)}

uniqueFonts: LongInt; {number of fonts in picture(s)}

fontHandle: FontSpecHandle; {handle to an array of FontSpec }

{ records for picture(s)}

C H A P T E R 7

Pictures

7-72 Summary of Pictures and the Picture Utilities

fontNamesHandle: Handle; {handle to list of font names for }

{ picture(s)}

reserved1: LongInt;

reserved2: LongInt;

END;

Routines

Creating and Disposing of Pictures

FUNCTION OpenCPicture (newHeader: OpenCPicParams): PicHandle;

FUNCTION OpenPicture (picFrame: Rect): PicHandle;

PROCEDURE PicComment (kind,dataSize: Integer; dataHandle: Handle);

PROCEDURE ClosePicture;

PROCEDURE KillPicture (myPicture: PicHandle);

Drawing Pictures

PROCEDURE DrawPicture (myPicture: PicHandle; dstRect: Rect);

FUNCTION GetPicture (picID: Integer): PicHandle;

Collecting Picture Information

/* DisposePictInfo is also spelled as DisposPictInfo */

FUNCTION GetPictInfo (thePictHandle: PicHandle;
VAR thePictInfo: PictInfo; verb: Integer;
colorsRequested: Integer;
colorPickMethod: Integer;
version: Integer): OSErr;

FUNCTION GetPixMapInfo (thePixMapHandle: PixMapHandle;
VAR thePictInfo: PictInfo; verb: Integer;
colorsRequested: Integer;
colorPickMethod: Integer;
version: Integer): OSErr;

FUNCTION NewPictInfo (VAR thePictInfoID: PictInfoID; verb: Integer;
colorsRequested: Integer;
colorPickMethod: Integer;
version: Integer): OSErr;

FUNCTION RecordPictInfo (thePictInfoID: PictInfoID;
thePictHandle: PicHandle): OSErr;

C H A P T E R 7

Pictures

Summary of Pictures and the Picture Utilities 7-73

FUNCTION RecordPixMapInfo (thePictInfoID: PictInfoID;
thePixMapHandle: PixMapHandle): OSErr;

FUNCTION RetrievePictInfo (thePictInfoID: PictInfoID;
VAR thePictInfo: PictInfo;
colorsRequested: Integer): OSErr;

FUNCTION DisposePictInfo (thePictInfoID: PictInfoID): OSErr;

Application-Defined Routines

FUNCTION MyInitPickMethod (colorsRequested: Integer;
VAR dataRef: LongInt;
VAR colorBankType: Integer): OSErr;

FUNCTION MyRecordColors (dataRef: LongInt; colorsArray: RGBColorArray;
colorCount: LongInt;
VAR uniqueColors: LongInt): OSErr;

FUNCTION MyCalcColorTable (dataRef: LongInt; colorsRequested: Integer;
colorBankPtr: Ptr;
VAR resultPtr: CSpecArray): OSErr;

FUNCTION MyDisposeColorPickMethod
(dataRef: LongInt): OSErr;

C Summary

Constants

/* color-picking methods */

#define systemMethod 0 /* let Picture Utilities choose the method

(currently they always choose popularMethod) */

#define popularMethod 1 /* return most frequently used colors */

#define medianMethod 2 /* return a weighted distribution of colors */

/* picture information to be returned by Picture Utilities */

#define returnColorTable ((short) 0x0001) /* return a ColorTable record */

#define returnPalette ((short) 0x0002) /* return a Palette record */

#define recordComments ((short) 0x0004) /* return comment information */

#define recordFontInfo ((short) 0x0008) /* return font information */

#define suppressBlackAndWhite

((short) 0x0010) /* don't include black and

white with returned colors */

C H A P T E R 7

Pictures

7-74 Summary of Pictures and the Picture Utilities

/* color bank types */

#define ColorBankIsCustom -1 /* gathers colors into a custom

color bank */

#define ColorBankIsExactAnd555 0 /* gathers exact colors if there are

less than 256 unique colors in

picture; otherwise gathers colors

for picture in a 5-5-5 histogram */

#define ColorBankIs555 1 /* gathers colors in a 5-5-5

histogram */

Data Types

struct Picture {

short picSize; /* for a version 1 picture: its size */

Rect picFrame; /* bounding rectangle for the picture */

/* variable amount of picture data in the form of opcodes */

};

typedef struct Picture Picture;

typedef Picture *PicPtr, **PicHandle;

struct OpenCPicParams {

Rect srcRect; /* optimal bounding rectangle for displaying picture at

resolution indicated in hRes, vRes fields */

Fixed hRes; /* best horizontal resolution; $00480000 specifies

72 dpi */

Fixed vRes; /* best vertical resolution; $00480000 specifies

72 dpi */

short version; /* set to -2 */

short reserved1; /* reserved; set to 0 */

long reserved2; /* reserved; set to 0 */

};

struct CommentSpec {

short count; /* number of times this type of comment occurs in

the picture or survey */

short ID; /* value identifying this type of comment */

};

typedef struct CommentSpec CommentSpec;

typedef CommentSpec *CommentSpecPtr, **CommentSpecHandle;

C H A P T E R 7

Pictures

Summary of Pictures and the Picture Utilities 7-75

struct FontSpec { /* font specification record */

short pictFontID; /* font ID as stored in the picture */

short sysFontID; /* font family ID */

long size[4]; /* each bit set from 1 to 127 indicates a point

size at that value; if bit 0 is set, then a size

larger than 127 is found */

short style; /* styles used for this font family */

long nameOffset; /* offset to font name stored in the data structure

indicated by the fontNamesHandle field of the

PictInfo record */

};

typedef struct FontSpec FontSpec;

typedef FontSpec *FontSpecPtr, **FontSpecHandle;

struct PictInfo {

short version; /* Picture Utilities version number */

long uniqueColors; /* total colors in survey */

PaletteHandle thePalette; /* handle to a Palette record--NIL for

a bitmap in a basic graphics port */

CTabHandle theColorTable; /* handle to a ColorTable record--NIL for

a bitmap in a basic graphics port */

Fixed hRes; /* best horizontal resolution (dpi)} */

Fixed vRes; /* best vertical resolution (dpi) */

short depth; /* greatest pixel depth */

Rect sourceRect; /* optimal bounding rectangle for

picture for display at resolution

specified in hRes and vRes fields */

long textCount; /* number of text strings in

picture(s) */

long lineCount; /* number of lines in picture(s) */

long rectCount; /* number of rectangles in picture(s) */

long rRectCount; /* number of rounded rectangles in

picture(s) */

long ovalCount; /* number of ovals in picture(s) */

long arcCount; /* number of arcs and wedges in

picture(s) */

long polyCount; /* number of polygons in picture(s) */

long regionCount; /* number of regions in picture(s) */

long bitMapCount; /* number of bitmaps */

long pixMapCount; /* number of pixel maps */

long commentCount; /* number of comments in picture(s) */

long uniqueComments;

/* number of different comments (by ID)

in picture(s) */

C H A P T E R 7

Pictures

7-76 Summary of Pictures and the Picture Utilities

CommentSpecHandle commentHandle; /* handle to an array of CommentSpec

structures for picture(s) */

long uniqueFonts; /* number of fonts in picture(s) */

FontSpecHandle fontHandle; /* handle to an array of FontSpec

structures for picture(s) */

Handle fontNamesHandle;

/* handle to list of font names for

picture(s) */

long reserved1;

long reserved2;

};

typedef struct PictInfo PictInfo;

typedef PictInfo *PictInfoPtr,**PictInfoHandle;

typedef long PictInfoID;

Functions

Creating and Disposing of Pictures

pascal PicHandle OpenCPicture
(const OpenCPicParams *newHeader);

pascal PicHandle OpenPicture
(const Rect *picFrame);

pascal void PicComment (short kind, short dataSize, Handle dataHandle);

pascal void ClosePicture (void);

pascal void KillPicture (PicHandle myPicture);

Drawing Pictures

pascal void DrawPicture (PicHandle myPicture, const Rect *dstRect);

pascal PicHandle GetPicture (Integer picID);

C H A P T E R 7

Pictures

Summary of Pictures and the Picture Utilities 7-77

Collecting Picture Information

pascal OSErr GetPictInfo (PicHandle thePictHandle,
PictInfo *thePictInfo, short verb,
short colorsRequested, short colorPickMethod,
short version);

pascal OSErr GetPixMapInfo (PixMapHandle thePixMapHandle,
pictInfo *thePictInfo, short verb,
short colorsRequested, short colorPickMethod,
short version);

pascal OSErr NewPictInfo (PictInfoID *thePictInfoID, short verb,
short colorsRequested, short colorPickMethod,
short version);

pascal OSErr RecordPictInfo (PictInfoID thePictInfoID,
PicHandle thePictHandle);

pascal OSErr RecordPixMapInfo
(PictInfoID thePictInfoID,
PixMapHandle thePixMapHandle);

pascal OSErr RetrievePictInfo
(PictInfoID thePictInfoID,
PictInfo *thePictInfo, short colorsRequested);

pascal OSErr DisposePictInfo
(PictInfoID thePictInfoID);

Application-Defined Functions

pascal OSErr MyInitPickMethod
(short colorsRequested, long *dataRef,
short *colorBankType);

pascal OSErr MyRecordColors (long dataRef, RGBColorArray colorsArray,
long colorCount, long *uniqueColors);

pascal OSErr MyCalcColorTable
(long dataRef, short colorsRequested,
Ptr colorBankPtr, CSpecArray *resultPtr);

pascal OSErr MyDisposeColorPickMethod
(long dataRef);

C H A P T E R 7

Pictures

7-78 Summary of Pictures and the Picture Utilities

Assembly-Language Summary

Data Structures

Picture Data Structure

OpenCPicParams Data Structure

CommentSpec Data Structure

FontSpec Data Structure

0 picSize word for a version 1 picture: its size
2 picFrame 8 bytes bounding rectangle for the picture

10 picData variable variable amount of picture data

0 srcRect 8 bytes optimal bounding rectangle for displaying picture at hRes, vRes
8 hRes long best horizontal resolution

12 vRes long best vertical resolution
16 version word always set to –2
18 reserved1 word reserved; set to 0
20 reserved2 long reserved; set to 0

0 count long number of times this type of comment occurs in picture or survey
4 ID long value identifying this type of comment

0 pictFontID word font ID as stored in the picture
2 sysFontID word font family ID
4 size 8 bytes each bit set from 1 to 127 indicates a point size at that value; if bit 0

is set, then a size larger than 127 points is found
12 style word styles used for this font family
14 nameOffset long offset to font name stored in the data structure indicated by the

fontNamesHandle field of the PictInfo record

C H A P T E R 7

Pictures

Summary of Pictures and the Picture Utilities 7-79

PictInfo Data Structure

0 version word Picture Utilities version number
2 uniqueColors long total number of colors in survey
6 thePalette long handle to a Palette record—NIL for a bitmap in a basic

graphics port
10 theColorTable long handle to a ColorTable record—NIL for a bitmap in a

basic graphics port
14 hRes long best horizontal resolution (dpi)
18 vRes long best vertical resolution (dpi)
22 depth word greatest pixel depth
24 sourceRect 8 bytes optimal bounding rectangle for picture for display at

resolution specified in hRes and vRes fields
32 textCount long number of text strings in picture(s)
36 lineCount long number of lines in picture(s)
40 rectCount long number of rectangles in picture(s)
44 rRectCount long number of rounded rectangles in picture(s)
48 ovalCount long number of ovals in picture(s)
52 arcCount long number of arcs and wedges in picture(s)
56 polyCount long number of polygons in picture(s)
60 regionCount long number of regions in picture(s)
64 bitMapCount long number of bitmaps
68 pixMapCount long number of pixel maps
72 commentCount long number of comments in picture(s)
76 uniqueComments long number of different comments (by ID) in picture(s)
80 commentHandle long handle to an array of CommentSpec records for picture(s)
84 uniqueFonts long number of fonts in picture(s)
88 fontHandle long handle to an array of FontSpec records for picture(s)
92 fontNamesHandle long handle to list of font names for picture(s)
96 reserved1 long reserved

100 reserved2 long reserved

C H A P T E R 7

Pictures

7-80 Summary of Pictures and the Picture Utilities

Trap Macros

Trap Macros Requiring Routine Selectors

_Pack15

Result Codes

Selector Routine

$0206 DisposePictInfo

$0403 RecordPictInfo

$0404 RecordPixMapInfo

$0505 RetrievePictInfo

$0602 NewPictInfo

$0800 GetPictInfo

$0801 GetPixMapInfo

pictInfoVersionErr –11000 Version number not 0
pictInfoIDErr –11001 Invalid picture information ID
pictInfoVerbErr –11002 Invalid verb combination specified
cantLoadPickMethodErr –11003 Custom pick method not in resource chain
colorsRequestedErr –11004 Number out of range or greater than that passed to

NewPictInfo
pictureDataErr –11005 Invalid picture data

Contents 8-1

C H A P T E R 8

Contents

Cursor Utilities

About the Cursor 8-3

Using the Cursor Utilities 8-5

Initializing the Cursor 8-6

Changing the Appearance of the Cursor 8-7

Creating an Animated Cursor 8-13

Cursor Utilities Reference 8-16

Data Structures 8-16

Routines 8-21

Initializing Cursors 8-21

Changing Black-and-White Cursors 8-24

Changing Color Cursors 8-25

Hiding and Showing Cursors 8-28

Displaying Animated Cursors 8-31

Resources 8-33

The Cursor Resource 8-33

The Color Cursor Resource 8-34

The Animated Cursor Resource 8-36

Summary of Cursor Utilities 8-38

Pascal Summary 8-38

Constants 8-38

Data Types 8-38

Routines 8-39

C Summary 8-40

Constants 8-40

Data Types 8-41

Functions 8-42

Assembly-Language Summary 8-43

Data Structures 8-43

Global Variables 8-43

C H A P T E R 8

About the Cursor 8-3

Cursor Utilities

This chapter describes the utilities that your application uses to draw and manipulate

the cursor on the screen. You should read this chapter to find out how to implement

cursors in your application. For example, you should change the arrow cursor to an

I-beam cursor when it’s over text and to an animated cursor when a medium-length

process is under way.

Cursors are defined in resources; the routines in this chapter automatically call the

Resource Manager as necessary. For more information about resources, see the chapter

“Resource Manager” in Inside Macintosh: More Macintosh Toolbox. Color cursors are

defined in resources as well, though they use Color QuickDraw. For information about

Color QuickDraw, see the chapter “Color QuickDraw” in this book.

This chapter describes how to

■ create and display black-and-white and color cursors

■ change the cursor’s shape over different areas on the screen

■ display an animated cursor

About the Cursor

A cursor is a 256-pixel, black-and-white image in a 16-by-16 pixel square usually defined

by an application in a cursor ('CURS') resource. The cursor is an integral part of the

Macintosh user interface. The user manipulates the cursor with the mouse to select

objects or areas on the screen. (It appears only on the screen and never in an offscreen

graphics port.) The user moves the cursor across the screen by moving the mouse. Most

actions take place only when the user positions the cursor over an object on the screen,

then clicks (presses and releases the mouse button). For example, a user might point at a

document icon created by your application and click to select it, then choose the Open

command from the File menu by pointing at it with the mouse button depressed and

then releasing the mouse button.

You use a cursor in the content area of your application’s windows to allow the user to

select all or part of the content. Your application also uses the cursor in the scroll bar area

of its windows to adjust the position of the document’s contents in the window area. You

can change the shape of the cursor to indicate that a user is over a certain kind of

content, such as text, or to provide feedback about the status of the computer system.

Note

Some Macintosh user manuals call the cursor a pointer because it points
to a location on the screen. To avoid confusion with other meanings of
pointer, Inside Macintosh uses the alternate term cursor. ◆

C H A P T E R 8

Cursor Utilities

8-4 About the Cursor

Basic QuickDraw supplies a predefined cursor in the global variable named arrow; this

is the standard arrow cursor.

One point in the cursor’s image is designated as the hot spot, which in turn points to a

location on the screen. The hot spot is the portion of the pointer that must be positioned

over a screen object before mouse clicks can have an effect on that object. For example,

when the user presses the mouse button, the Event Manager function WaitNextEvent

reports the location of the cursor’s hot spot in global coordinates. Figure 8-1 illustrates

three cursors and their hot spot points.

Figure 8-1 Hot spots in cursors

The hot spot is a point (not a bit) in the bit image for the cursor. Imagine the rectangle

with corners (0,0) and (16,16) containing the cursor’s bit image, as in each of the

examples in Figure 8-1; each hot spot is defined in the local coordinate systems of these

rectangles. For the arrow cursor in this figure, local coordinates (1,1) designate the hot

spot. A hot spot of (8,8) is in the center of the crosshairs cursor in Figure 8-1. Notice that
the hot spot for the pointing hand cursor has a horizontal coordinate of 16 and a vertical

coordinate of 9.

Whenever the user moves the mouse, the low-level interrupt-driven mouse routines

move the cursor to a new location on the screen. Your application doesn’t need to do

anything to move the cursor.

Your application should change the cursor shape depending on where the user positions

it on the screen. For example, when the cursor is in your application’s menu bar, the

cursor should usually have an arrow shape. When the user moves the cursor over a text

document, your application should change the cursor’s shape to an I-beam, which

indicates where the insertion point will move if the user clicks. When it’s over graphic

objects, the cursor may have different shapes depending on the type of graphic and the

operation that the user is attempting to complete. You should change the cursor shape

only to provide information to the user. In other words, don’t change its shape randomly.

C H A P T E R 8

Cursor Utilities

Using the Cursor Utilities 8-5

In general, you should always make the cursor visible in your application. To maintain a

stable and consistent environment, the user should have access to the cursor. There are a

few cases when the cursor may not be visible. For example, in an application where the

user is entering text, the insertion point should blink and the cursor should not be

visible. If the cursor and the insertion point were both visible, it might confuse the user

about where the input would appear. Or, if the user is viewing a slide show in a

presentation software application, the cursor need not be visible. However, whenever

the user needs access to the cursor, a simple move of the mouse should make the cursor

visible again.

When the cursor is used for choosing and selecting, it should remain black. You may

want to display a color cursor when the user is drawing or typing in color. The cursor

shouldn’t contain more than one color at a time, with the exception of a multicolored

paintbrush cursor. It’s hard for the eye to distinguish small areas of color. Make sure that

the hot spot can be seen when it’s placed on a background of a similar color. This can be

accomplished by changing the color of the cursor or by adding a one-pixel outline in a

contrasting color.

When your application is performing an operation that will take at least a couple of

seconds, and more time than a user might expect, you need to provide feedback to the

user that the operation is in progress. If the operation will last a second or two (a short

operation), change the cursor to the wristwatch cursor. If the operation takes several

seconds (a medium-length operation) and the user can do nothing in your application

but stop the operation, wait until it is completed, or switch to another application, you

need to display an animated cursor. This lets the user know that the computer system

hasn’t crashed—it’s just busy. If the operation will take longer than several seconds (a

lengthy operation), your application should display a status indicator to show the user

the estimated total time and the elapsing time of the operation.

For more information about displaying cursors and status indicators in your application,

see Macintosh Human Interface Guidelines.

Using the Cursor Utilities

This section describes how you can

■ create cursors

■ change the shape of the cursor

■ animate a cursor to indicate that a medium-length process is taking place

C H A P T E R 8

Cursor Utilities

8-6 Using the Cursor Utilities

To implement cursors, you need to

■ define black-and-white cursors as 'CURS' resources in the resource file of your
application

■ define color cursors in 'crsr' resources—if you want to display color cursors—in
the resource file of your application

■ define 'acur' resources—if you want to display animated cursors—in the resource
file of your application

■ initialize the Cursor Utilities by using the InitCursor and InitCursorCtl
procedures when your application starts up

■ use the SetCursor or SetCCursor procedure to change the cursor shape as
necessary

■ animate the cursor by using the SpinCursor or RotateCursor procedure

You use 'CURS' resources to create black-and-white cursors for display on

black-and-white and color screens. You use 'crsr' resources to create color cursors

for display on systems supporting Color QuickDraw. Each 'crsr' resource also

contains a black-and-white image that Color QuickDraw displays on black-and-white

screens.

Before using the routines that handle color cursors—namely, the GetCCursor,

SetCCursor, and DisposeCCursor routines—you must test for the existence of Color

QuickDraw by using the Gestalt function with the GestaltQuickDrawVersion

selector. If the value returned in the response parameter is equal to or greater than the

value of the constant gestalt32BitQD, then the system supports Color QuickDraw.

Both basic and Color QuickDraw support all other routines described in this chapter.

Initializing the Cursor
When your application starts up, the Finder sets the cursor to a wristwatch; this

indicates that an operation is in progress. When your application nears completion of its

initialization tasks, it should call the InitCursor procedure to change the cursor from a

wristwatch to an arrow, as shown in the application-defined procedure DoInit in

Listing 8-1.

Listing 8-1 Initializing the Cursor Utilities

PROCEDURE DoInit;

BEGIN

DoSetUpHeap; {perform Memory Manager initialization here}

InitGraf(@thePort);{initialize basic QuickDraw}

InitFonts; {initialize Font Manager}

InitWindows; {initialize Window Manager & other Toolbox }

 { managers here}

 {perform all other initializations here}

C H A P T E R 8

Cursor Utilities

Using the Cursor Utilities 8-7

InitCursor; {set cursor to an arrow instead of a }

 { wristwatch}

InitCursorCtl(NIL);{load resources for animated cursor with }

 { resource ID 0}

END; {of DoInit}

If your application uses an animated cursor to indicate that an operation of medium

length is under way, it should also call the InitCursorCtl procedure to load its

'acur' resource and associated 'CURS' resources, as illustrated in Listing 8-1.

Changing the Appearance of the Cursor
Whenever the user moves the mouse, the mouse driver, the Event Manager, and your

application are responsible for providing feedback to the user. The mouse driver

performs low-level functions, such as continually polling the mouse for its location and

status and maintaining the current location of the mouse in a global variable. Whenever

the user moves the mouse, a low-level interrupt routine of the mouse driver moves the

cursor displayed on the screen and aligns the hot spot of the cursor with the new mouse

location. This section describes how to use the GetCursor and SetCursor routines to

change the appearance of a black-and-white cursor when it is in different areas of the

screen. (To change the cursor to a color cursor, your application must use the

GetCCursor function, described on page 8-26, and the SetCCursor procedure,

described on page 8-26.)

Your application is responsible for setting the initial appearance of the cursor, for

restoring the cursor after the Event Manager function WaitNextEvent returns, and for

changing the appearance of the cursor as appropriate for your application. For example,

most applications set the cursor to the I-beam when the cursor is inside a text-editing

area of a document, and they change the cursor to an arrow when the cursor is inside a

scroll bar of a document. Your application can achieve this effect by requesting that the

Event Manager report mouse-moved events if the user moves the cursor out of a region

you specify in the mouseRgn parameter to the WaitNextEvent function.

WaitNextEvent is described in the chapter “Event Manager” in Inside Macintosh:
Macintosh Toolbox Essentials.

The mouse driver and your application control the shape and appearance of the cursor.

A cursor can be any 256-pixel image, defined by a 16-by-16 pixel square. The mouse

driver displays the current cursor, which your application can change by using the

SetCursor or SetCCursor procedure.

C H A P T E R 8

Cursor Utilities

8-8 Using the Cursor Utilities

Figure 8-2 shows the standard arrow cursor. You initialize the cursor to the standard

arrow cursor when you use the InitCursor procedure, as shown in Listing 8-1. As

shown in Figure 8-2, the hot spot for the arrow cursor is at location (1,1).

Figure 8-2 The standard arrow cursor

Figure 8-3 shows four other common cursors that are available to your application: the

I-beam, crosshairs, plus sign, and wristwatch cursors.

Figure 8-3 The I-beam, crosshairs, plus sign, and wristwatch cursors

The I-beam, crosshairs, plus sign, and wristwatch cursors are defined as resources,

and your application can get a handle to any of these cursors by specifying their

corresponding resource IDs to the GetCursor function. These constants specify the

resource IDs for these common cursors:

CONST iBeamCursor = 1; {used in text editing}
crossCursor = 2; {often used for manipulating graphics}
plusCursor = 3; {often used for selecting fields in }

 { an array}

C H A P T E R 8

Cursor Utilities

Using the Cursor Utilities 8-9

watchCursor = 4; {used when a short operation is in }
{ progress}

After you use the GetCursor function to obtain a handle to one of these cursors or to

one defined by your own application in a 'CURS' resource, you can change the

appearance of the cursor by using the SetCursor procedure.

Your application usually needs to change the shape of the cursor as the user moves the

cursor to different areas within a document. Your application can use mouse-moved

events to help accomplish this. Your application also needs to adjust the cursor in

response to resume events. Most applications adjust the cursor once through the event

loop in response to almost all events.

You can request that the Event Manager report mouse-moved events whenever

the cursor is outside of a specified region that you pass as a parameter to

the WaitNextEvent function. (If you specify an empty region or a NIL handle to the

WaitNextEvent function, WaitNextEvent does not report mouse-moved events.)

If you specify a nonempty region in the mouseRgn parameter to the WaitNextEvent

function, WaitNextEvent returns a mouse-moved event whenever the cursor is outside

of that region. For example, Figure 8-4 shows a document window. Your application

might define two regions: a region that encloses the text area of the window (the I-beam

region), and a region that defines the scroll bars and all other areas outside the text area

(the arrow region). If your application has specified the I-beam region to

WaitNextEvent, the mouse driver continues to display the I-beam cursor until the user

moves the cursor out of the region.

Figure 8-4 A window and its arrow and I-beam regions

C H A P T E R 8

Cursor Utilities

8-10 Using the Cursor Utilities

When the user moves the cursor out of the I-beam region, WaitNextEvent reports a

mouse-moved event. Your application can then change the I-beam cursor to the arrow

cursor and change the mouseRgn parameter to the area defined by the scroll bars and

all other areas outside of the I-beam region. The cursor remains an arrow until the user

moves the cursor out of the arrow region, at which point your application receives a

mouse-moved event.

Figure 8-5 shows how an application might change the cursor from the I-beam cursor to

the arrow cursor after receiving a mouse-moved event.

Figure 8-5 Changing the cursor from the I-beam cursor to the arrow cursor

Note that your application should recalculate the mouseRgn parameter when it receives

a mouse-moved event; otherwise, it will continue to receive mouse-moved events as

long as the cursor position is outside the original region.

Listing 8-2 shows an application-defined routine called MyAdjustCursor. After

receiving any event other than a high-level event, the application’s event loop (described

in the chapter “Event Manager” in Inside Macintosh: Macintosh Toolbox Essentials) calls

MyAdjustCursor to adjust the cursor.

Listing 8-2 Changing the cursor

PROCEDURE MyAdjustCursor (mouse: Point; VAR region: RgnHandle);

VAR

window: WindowPtr;

arrowRgn: RgnHandle;

iBeamRgn: RgnHandle;

iBeamRect: Rect;

myData: MyDocRecHnd;

windowType: Integer;

BEGIN

window := FrontWindow;

{Determine the type of window--document, modeless, etc.}

C H A P T E R 8

Cursor Utilities

Using the Cursor Utilities 8-11

windowType := MyGetWindowType(window);

CASE windowType OF

kMyDocWindow:

BEGIN

{initialize regions for arrow and I-beam}

arrowRgn := NewRgn;

ibeamRgn := NewRgn;

{set arrow region to large region at first}

SetRectRgn(arrowRgn, -32768, -32768, 32766, 32766);

{calculate I-beam region}

{first get the document's TextEdit view rectangle}

myData := MyDocRecHnd(GetWRefCon(window));

iBeamRect := myData^^.editRec^^.viewRect;

SetPort(window);

WITH iBeamRect DO

BEGIN

LocalToGlobal(topLeft);

LocalToGlobal(botRight);

END;

RectRgn(iBeamRgn, iBeamRect);

WITH window^.portBits.bounds DO

SetOrigin(-left, -top);

{intersect I-beam region with window's visible region}

SectRgn(iBeamRgn, window^.visRgn, iBeamRgn);

SetOrigin(0,0);

{calculate arrow region by subtracting I-beam region}

DiffRgn(arrowRgn, iBeamRgn, arrowRgn);

{change the cursor and region parameter as necessary}

IF PtInRgn(mouse, iBeamRgn) THEN {cursor is in I-beam rgn}

BEGIN

SetCursor(GetCursor(iBeamCursor)^^); {set to I-beam}

CopyRgn(iBeamRgn, region); {update the region param}

END;

{update cursor if in arrow region}

IF PtInRgn(mouse, arrowRgn) THEN {cursor is in arrow rgn}

BEGIN

SetCursor(arrow); {set cursor to the arrow}

CopyRgn(arrowRgn, region); {update the region param}

END;

DisposeRgn(iBeamRgn);

DisposeRgn(arrowRgn);

END; {of kMyDocWindow}

C H A P T E R 8

Cursor Utilities

8-12 Using the Cursor Utilities

kMyGlobalChangesID:

MyCalcCursorRgnForModelessDialogBox(window, region);

kNil:

BEGIN

MySetRegionNoWindows(kNil, region);

SetCursor(arrow);

END;

END; {of CASE}

END;

The MyAdjustCursor procedure sets the cursor appropriately, according to whether a

document window or modeless dialog box is active.

For a document window, MyAdjustCursor defines two regions, specified by the

arrowRgn and iBeamRgn variables. If the cursor is inside the region described by

the arrowRgn variable, MyAdjustCursor sets the cursor to the arrow cursor and

returns the region described by arrowRgn. Similarly, if the cursor is inside the region

described by the iBeamRgn variable, MyAdjustCursor sets the cursor to the I-beam

cursor and returns the region described by iBeamRgn.

The MyAdjustCursor procedure calculates the two regions by first setting the arrow

region to the largest possible region. It then sets the I-beam region to the region

described by the document’s TextEdit view rectangle. This region typically corresponds

to the content area of the window minus the scroll bars. (If your application doesn’t use

TextEdit for its document window, then set this region as appropriate to your

application.) The MyAdjustCursor routine adjusts the I-beam region so that it includes

only the part of the content area that is in the window’s visible region (for example, to

take into account any floating windows that might be over the window). The code in this

listing sets the arrow region to include the entire screen except for the region occupied

by the I-beam region. (TextEdit is described in Inside Macintosh: Text.)

The MyAdjustCursor procedure then determines which region the cursor is in and sets

the cursor and region parameter appropriately.

For modeless dialog boxes, MyAdjustCursor calls its own routine to appropriately

adjust the cursor for the modeless dialog box. The MyAdjustCursor procedure also

appropriately adjusts the cursor if no windows are currently open.

Your application should normally hide the cursor when the user is typing. You can

remove the cursor image from the screen by using either the HideCursor or

Hide_Cursor procedure. You can hide the cursor temporarily by using the

ObscureCursor procedure, or you can hide the cursor in a given rectangle by using the

ShieldCursor procedure. To display a hidden cursor, use the ShowCursor or

Show_Cursor procedure. Note that you do not need to explicitly show the cursor after

C H A P T E R 8

Cursor Utilities

Using the Cursor Utilities 8-13

your application uses the ObscureCursor procedure; instead, the cursor automatically

reappears when the user moves the mouse again. These procedures are described in

“Hiding and Showing Cursors” beginning on page 8-28.

Creating an Animated Cursor
Your application should display an animated cursor when performing a medium-length

operation that might cause the user to think that the computer has stopped working. To

create an animated cursor, you should

■ create a series of 'CURS' resources that make up the “frames” of the animation

■ create an 'acur' resource with a resource ID of 0

■ pass the value NIL to the InitCursorCtl procedure once in your program code to
load these resources

■ use either the RotateCursor or SpinCursor procedure when your application is
busy with its task

Note

An alternate, but more code-intensive, method of creating and
displaying an animated cursor is shown in the chapter “Vertical Retrace
Manager” in Inside Macintosh: Processes. ◆

Typically, an animated cursor uses four to seven frames. For example, the seven 'CURS'

resources in Figure 8-6 constitute the seven frames of a globe cursor that spins. To create

these resources, your application typically uses a high-level utility such as ResEdit,

which is available from APDA.

Figure 8-6 The 'CURS' resources for an animated globe cursor

To collect and order your 'CURS' frames into a single animation, you must create an

'acur' resource. This resource specifies the IDs of the 'CURS' resources and the

sequence for displaying them in your animation. If your application uses only one

spinning cursor, give your 'acur' resource a resource ID of 0.

C H A P T E R 8

Cursor Utilities

8-14 Using the Cursor Utilities

Figure 8-7 shows how the 'CURS' resources for the spinning globe cursor are specified

in an 'acur' resource using ResEdit.

Figure 8-7 An 'acur' resource for an animated cursor

To load the 'acur' resource and its associated 'CURS' resources, use the

InitCursorCtl procedure once prior to calling the RotateCursor or SpinCursor

procedure. If you pass NIL to InitCursorCtl, then it automatically loads the 'acur'

resource that has an ID of 0 in your application’s resource file. If you wish to use

multiple animated cursors, you must create multiple 'acur' resources—that is, one for

each series of 'CURS' resources. Prior to displaying one of your animated cursors with

RotateCursor or SpinCursor, you must call the Resource Manager function

GetResource to return a handle to its 'acur' resource. Your application must coerce

that handle to one of type acurHandle, and then pass this handle to the

InitCursorCtl procedure. See the chapter “Resource Manager” in Inside Macintosh:
More Macintosh Toolbox for more information about GetResource.

When you call RotateCursor or SpinCursor, one frame—that is, one 'CURS'

resource—is displayed. When you pass a positive value to the procedure the next time

you call it, the next frame specified in the 'acur' resource is displayed. A negative

value passed to either procedure displays the previous frame listed in the 'acur'

resource. The distinction between RotateCursor and SpinCursor is that your

application maintains an index for changing the cursor when calling RotateCursor,

but your application does not maintain an index for changing the cursor when calling

SpinCursor; instead, your application must determine the proper interval for

calling SpinCursor.

C H A P T E R 8

Cursor Utilities

Using the Cursor Utilities 8-15

Listing 8-3 shows an application-defined routine called MyRotateCursor. When the

application calling MyRotateCursor starts on a medium-length operation and needs to

indicate to the user that the operation is in progress, the application sets its global

variable gDone to FALSE and repeatedly calls MyRotateCursor until the operation is

complete and gDone becomes TRUE.

Listing 8-3 Animating a cursor with the RotateCursor procedure

PROCEDURE MyRotateCursor;

BEGIN

IF NOT gDone THEN

BEGIN

RotateCursor(TickCount);

END;

END;

Listing 8-3 uses the Event Manager function TickCount to maintain an index for

RotateCursor to use when displaying the frames for an animated cursor. (A tick is

approximately 1/60 of a second; TickCount returns the number of ticks since the

computer started up.) When the value passed as a parameter to RotateCursor is a

multiple of 32, then RotateCursor displays the next frame in the animation.

Listing 8-4 shows an application-defined routine called MySpinCursor. As you see

in Listing 8-4, the application does not maintain an index for displaying the frames for

an animated cursor. Instead, every time SpinCursor is called, the next frame in the

animation is displayed.

Listing 8-4 Animating a cursor with the SpinCursor procedure

PROCEDURE MySpinCursor;

BEGIN

IF NOT gDone THEN

SpinCursor(0);

END;

If the operation takes less than a second or two, your application can simply use the

SetCursor procedure to display the cursor with the resource ID represented by the

watchCursor constant. If the operation will take longer than several seconds (a lengthy

operation), your application should display a status indicator in a dialog box to show the

user the estimated total time and the elapsing time of the operation. See the chapter

“Dialog Manager” in Inside Macintosh: Macintosh Toolbox Essentials for information about

creating and displaying dialog boxes.

C H A P T E R 8

Cursor Utilities

8-16 Cursor Utilities Reference

Cursor Utilities Reference

This section describes the data structures, routines, and resources that are specific to

cursors. “Data Structures” shows the Pascal data structures for the Bits16 array and

the Cursor, CCrsr, Cursors, and Acur records. “Routines” describes the routines for

initializing cursors, managing black-and-white cursors, managing color cursors, hiding

and showing cursors, and displaying animated cursors. “Resources” describes the cursor

resource, the color cursor resource, and the animated cursor resource. The constants that

represent values for the standard cursors are listed in “Summary of Cursor Utilities.”

Data Structures

Your application typically does not create the data structures described in this section.

Although you can create a Cursor record and its associated Bits16 array in your

program code, it is usually easier to create a black-and-white cursor in a cursor resource,

which is described on page 8-33. Similarly, you can create a CCrsr record in your

program code, but it is usually easier to create a color cursor in a color cursor resource,

which is described on page 8-34. The Cursors data type contains the standard cursors

you can display. Finally, you usually list animated cursors in an animated cursor

resource, which is described on page 8-36, instead of creating them in an Acur record.

Bits16

The Bits16 array is used by the Cursor record to hold a black-and-white, 16-by-16

pixel square image.

Bits16 = ARRAY[0..15] OF Integer;

Cursor

Your application typically does not create Cursor records, which are data structures of

type Cursor. Although you can create a Cursor record and its associated Bits16 array

in your program code, it is usually easier to create a black-and-white cursor in a cursor

resource, which is described on page 8-33.

C H A P T E R 8

Cursor Utilities

Cursor Utilities Reference 8-17

A cursor is a 256-pixel, black-and-white image in a 16-by-16 pixel square usually

defined by an application in a cursor ('CURS') resource. When your application uses

the GetCursor function (described on page 8-24) to get a cursor from a 'CURS'

resource, GetCursor uses the Resource Manager to load the resource into memory as a

Cursor record. Your application can then display the color cursor by using the

SetCursor procedure, which is described on page 8-25.

A Cursor record is defined as follows:

TYPE CursPtr = ^Cursor;

CursHandle = ^CursPtr;

Cursor =

RECORD

data: Bits16; {cursor image}

mask: Bits16; {cursor mask}

hotSpot: Point; {point aligned with mouse}

END;

Field descriptions

data Cursor image data, which must begin on a word boundary. The
Bits16 data type for this field is described in the preceding section.

mask The cursor’s mask, whose effects are shown in Table 8-1.
QuickDraw uses the mask to crop the cursor’s outline into a
background color or pattern. QuickDraw then draws the cursor into
this shape. The Bits16 data type for this field is described in the
preceding section.

hotSpot A point in the image that aligns with the mouse location.This field
aligns a point (not a bit) in the image with the mouse location on the
screen. Whenever the user moves the mouse, the low-level
interrupt-driven mouse routines move the cursor. When the user
clicks, the Event Manager function WaitNextEvent reports the
location of the cursor’s hot spot in global coordinates.

The cursor appears on the screen as a 16-by-16 pixel square. The appearance of each bit

of the square is determined by the corresponding bits in the data and mask and, if the

mask bit is 0, by the pixel under the cursor, as shown in Table 8-1.

Table 8-1 Cursor appearance

Data Mask Resulting pixel on screen

0 1 White

1 1 Black

0 0 Same as pixel under cursor

1 0 Inverse of pixel under cursor

C H A P T E R 8

Cursor Utilities

8-18 Cursor Utilities Reference

Notice that if all mask bits are 0, the cursor is completely transparent, in that the image

under the cursor can still be viewed. Pixels under the white part of the cursor appear

unchanged; under the black part of the cursor, black pixels show through as white.

Basic QuickDraw supplies a predefined cursor in the global variable named arrow; this

is the standard arrow cursor.

CCrsr

Your application typically does not create CCrsr records, which are data structures of

type CCrsr. Although you can create a CCrsr record, it is usually easier to create a color

cursor in a color cursor resource, which is described on page 8-34.

A color cursor is a 256-pixel color image in a 16-by-16 pixel square usually defined in a

color cursor ('crsr') resource. When your application uses the GetCCursor function

(described on page 8-26) to get a color cursor from a 'crsr' resource, GetCCursor

uses the Resource Manager to load the resource into memory as a CCrsr record. Your

application can then display the color cursor by using the SetCCursor procedure,

which is described on page 8-26.

The CCrsr record is substantially different from the Cursor record described in the

preceding section; the fields crsr1Data, crsrMask, and crsrHotSpot in the CCrsr

record are the only ones that have counterparts in the Cursor record. A CCrsr record is

defined as follows:

TYPE CCrsrHandle = ^CCrsrPtr;

CCrsrPtr = ^CCrsr;

CCrsr =

RECORD

crsrType: Integer; {type of cursor}

crsrMap: PixMapHandle; {the cursor's PixMap record}

crsrData: Handle; {cursor's data}

crsrXData: Handle; {expanded cursor data}

crsrXValid: Integer; {depth of expanded data}

crsrXHandle: Handle; {reserved for future use}

crsr1Data: Bits16; {1-bit cursor}

crsrMask: Bits16; {cursor's mask}

crsrHotSpot: Point; {cursor's hot spot}

crsrXTable: LongInt; {private}

crsrID: LongInt; {ctSeed for expanded cursor}

END;

C H A P T E R 8

Cursor Utilities

Cursor Utilities Reference 8-19

Field descriptions

crsrType The type of cursor. Possible values are $8000 for a black-and-white
cursor and $8001 for a color cursor.

crsrMap A handle to the PixMap record defining the cursor’s characteristics.
PixMap records are described in the chapter “Color QuickDraw” in
this book.

crsrData A handle to the cursor’s pixel data.

crsrXData A handle to the expanded pixel image used internally by Color
QuickDraw.

crsrXValid The depth of the expanded cursor image. If you change the cursor’s
data or color table, you should set this field to 0 to cause the cursor
to be re-expanded. You should never set it to any other values.

crsrXHandle Reserved for future use.

crsr1Data A 16-by-16 pixel image with a pixel depth of 1 to be displayed when
the cursor is on screens with pixel depths of 1 or 2 bits.

crsrMask The cursor’s mask data. QuickDraw uses the mask to crop the
cursor’s outline into a background color or pattern. QuickDraw
then draws the cursor into this shape. The same 1-bit mask is used
with images specified by the crsrData and crsr1Data fields.

crsrHotSpot The cursor’s hot spot.

crsrXTable Reserved for future use.

crsrID The color table seed for the cursor.

The first four fields of the CCrsr record are similar to the first four fields of the PixPat

record, and are used in the same manner by Color QuickDraw. See the chapter “Color

QuickDraw” in this book for information about PixPat records.

The display of a cursor involves a relationship between a mask, stored in the crsrMask

field with the same format used for 1-bit cursor masks, and an image. There are two

possible sources for a color cursor’s image. When the cursor is on a screen whose depth

is 1 or 2 bits per pixel, the image for the cursor is taken from the crsr1Data field, which

contains bitmap cursor data (similar to the bitmap in a 'CURS' resource).

When the screen depth is greater than 2 bits per pixel, the crsrMap field and the

crsrData field define the image. The pixels within the mask replace the destination

pixels. Color QuickDraw transfers the pixels outside the mask into the destination pixels

using the XOR Boolean transfer mode. Therefore, if pixels outside the mask are white,

the destination pixels aren’t changed. If pixels outside the mask are all black, the

destination pixels are inverted. All other values outside of the mask cause unpredictable

results. See the discussion of Boolean transfer modes in the chapter “Color QuickDraw”

in this book for more information about the XOR Boolean transfer mode.

To work properly, a color cursor’s image should contain white pixels (R = G = B = $FFFF)

for the transparent part of the image, and black pixels (R = G = B = $0000) for the part of

the image to be inverted, in addition to the other colors in the cursor’s image. Thus, to

define a cursor that contains two colors, it’s necessary to use a 2-bit cursor image (that is,

a four-color image).

C H A P T E R 8

Cursor Utilities

8-20 Cursor Utilities Reference

If your application changes the value of your color cursor data or its color table, it should

set the crsrXValid field to 0 to indicate that the color cursor’s data needs to be

re-expanded, and it should assign a new unique value to the crsrID field (unique

values can be obtained using the Color Manager function GetCTSeed, which is

described in Inside Macintosh: Advanced Color Imaging. Then your application should call

SetCCursor to display the changed color cursor.

Cursors

When passing a value to the Show_Cursor procedure (described on page 8-30), you can

use the Cursors data type to represent the kind of cursor to show. The Cursors data

type is defined as follows:

 TYPE Cursors = {values to pass to Show_Cursor}

(HIDDEN_CURSOR, {the current cursor}

 I_BEAM_CURSOR, {the I-beam cursor; to select text}

 CROSS_CURSOR, {the crosshairs cursor; to draw }

{ graphics}

 PLUS_CURSOR, {the plus sign cursor; to select }

{ cells}

 WATCH_CURSOR, {the wristwatch cursor; to }

{ indicate a short operation in }

{ progress}

 ARROW_CURSOR); {the standard cursor}

Acur

Your application typically does not create Acur records, which are data structures of

type Acur. Although you can create an Acur record, which specifies the 'CURS'

resources to use in an animated cursor sequence, it is usually easier to create an

animated cursor ('acur') resource, which is described on page 8-36.

When your application uses the InitCursorCtl procedure (described on page 8-22),

the Resource Manager loads an animated cursor resource into memory as an Acur

record, which in turn is used by the RotateCursor procedure or SpinCursor

procedure (both described on page 8-32) when sequencing through 'CURS' resources.

C H A P T E R 8

Cursor Utilities

Cursor Utilities Reference 8-21

An Acur resource is defined as follows:

TYPE acurPtr = ^Acur;

acurHandle = ^acurPtr;

Acur =

RECORD

n: Integer; {number of cursors ("frames")}

index: Integer; {reserved}

frame1: Integer; {'CURS' resource ID for frame #1}

fill1: Integer; {reserved}

frame2: Integer; {'CURS' resource ID for frame #2}

fill2: Integer; {reserved}

frameN: Integer; {'CURS' resource ID for frame #N}

fillN: Integer; {reserved}

END;

Field descriptions

n The number of frames in the animated cursor.

index Used by basic QuickDraw to create the animation.

frame1 The resource ID of the cursor ('CURS') resource for the first frame
sequence of the animation. The cursor resource is described on
page 8-33.

fill1 Reserved.

frame2 The resource ID of the cursor resource for the next frame in the
sequence of the animation.

fill2 Reserved.

frameN The resource ID of the cursor resource for the last frame used in the
sequence of the animation.

fillN Reserved.

Routines

This section describes the routines you use to initialize the cursor, manage a

black-and-white cursor, manage a color cursor, hide and show the cursor, and display an

animated cursor.

Initializing Cursors

When your application starts up, the Finder sets the cursor to a wristwatch; this

indicates that a short operation is in progress. When your application nears completion

of its initialization tasks, it should call the InitCursor procedure to change the cursor

from a wristwatch to an arrow.

C H A P T E R 8

Cursor Utilities

8-22 Cursor Utilities Reference

If your application uses an animated cursor to indicate that an operation of medium

length is under way, it should also call the InitCursorCtl procedure to load its

'acur' resource and associated 'CURS' resources.

InitCursor

You use the InitCursor procedure to set the current cursor to the standard arrow and

make it visible.

PROCEDURE InitCursor;

DESCRIPTION

The InitCursor procedure sets the current cursor to the standard arrow and sets the

cursor level to 0, making the cursor visible. (A value of –1 makes the cursor invisible.)

The cursor level keeps track of the number of times the cursor has been hidden to

compensate for nested calls to the HideCursor and ShowCursor procedures.

SEE ALSO

For a description of the HideCursor procedure, see page 8-28. For a description of the

ShowCursor procedure, see page 8-30. Listing 8-1 on page 8-6 illustrates how to use the

InitCursor procedure.

InitCursorCtl

To load the resources necessary for displaying an animated cursor, use the

InitCursorCtl procedure.

PROCEDURE InitCursorCtl (newCursors: UNIV acurHandle);

newCursors
A handle to an Acur record (described on page 8-20) that specifies the
cursor resources you want to use in your animation. If you specify NIL in
this parameter, InitCursorCtl loads the animated cursor resource
(described on page 8-36) with resource ID 0—as well as the cursor
resources (described on page 8-33) specified therein—from your
application’s resource file.

C H A P T E R 8

Cursor Utilities

Cursor Utilities Reference 8-23

DESCRIPTION

The InitCursorCtl procedure loads the cursor resources for an animated cursor

sequence into memory. Your application should call the InitCursorCtl procedure

once prior to calling the RotateCursor procedure (described on page 8-32) or the

SpinCursor procedure (described on page 8-32).

If your application passes NIL in the newCursors parameter, InitCursorCtl loads

the 'acur' resource with resource ID 0, as well as the 'CURS' resources whose resource

IDs are specified in the 'acur' resource. If any of the resources cannot be loaded, the

cursor does not change when you call RotateCursor or SpinCursor. Otherwise, the

RotateCursor procedure and the SpinCursor procedure display in sequence the

cursors specified in these resources.

If your application does not pass NIL in the newCursors parameter, it must pass a

handle to an Acur record. Your application can use the Resource Manager function

GetResource to obtain a handle to an 'acur' resource, which your application should

then coerce to a handle of type acurHandle when passing it to InitCursorCtl.

If your application calls the RotateCursor or SpinCursor procedure without

calling InitCursorCtl, RotateCursor and SpinCursor automatically call

InitCursorCtl. However, since you won’t know the state of memory, any memory

allocated by the Resource Manager for animating cursors may load into an undesirable

location, possibly causing fragmentation. Calling the InitCursorCtl procedure

during your initialization process has the advantage of causing the memory allocation

when you can control its location. For information on using the InitCursorCtl

procedure during your initialization process, see “Initializing the Cursor” on page 8-6.

SPECIAL CONSIDERATION

If you want to use multiple 'acur' resources repeatedly during the execution of your

application, be aware that the InitCursorCtl procedure changes each frameN and

fillN integer pair within the Acur record in memory to a handle to the corresponding

'CURS' resource, which is also in memory. Thus, if the newCursors parameter is not

NIL when your application calls the InitCursorCtl procedure, your application must

guarantee that newCursors always points to a fresh copy of an 'acur' resource.

SEE ALSO

Listing 8-1 on page 8-6 illustrates how to initialize an animated cursor by using the

InitCursorCtl procedure. Listing 8-3 on page 8-15 shows how to animate the cursor

with the RotateCursor procedure, and Listing 8-4 on page 8-15 shows how to animate

the cursor with the SpinCursor procedure.

C H A P T E R 8

Cursor Utilities

8-24 Cursor Utilities Reference

Changing Black-and-White Cursors

When you use the InitCursor procedure described on page 8-22, the cursor changes

from a wristwatch to an arrow. You can change the cursor to another shape by using

the GetCursor function to load another cursor into memory and then using the

SetCursor procedure to display it on the screen.

GetCursor

You use the GetCursor function to load a cursor resource (described on page 8-33) into

memory. You can then display the cursor specified in this resource by calling the

SetCursor procedure (described in the next section).

FUNCTION GetCursor (cursorID: Integer): CursHandle;

cursorID The resource ID for the cursor you want to display. You can supply one of
these constants to get a handle to one of the standard cursors:

CONST

iBeamCursor = 1; {to select text}

crossCursor = 2; {to draw graphics}

plusCursor = 3; {to select cells}

watchCursor = 4; {to indicate a short operation }

{ in progress}

DESCRIPTION

The GetCursor function returns a handle to a Cursor record (described on page 8-16)

for the cursor with the resource ID that you specify in the cursorID parameter. If the

resource can’t be read into memory, GetCursor returns NIL.

To get a handle to a color cursor, use the GetCCursor function, which is described on

page 8-26.

SEE ALSO

Listing 8-2 on page 8-10 illustrates how to use the GetCursor and SetCursor routines

to change the cursor’s shape.

C H A P T E R 8

Cursor Utilities

Cursor Utilities Reference 8-25

SetCursor

After using the GetCursor function to return a handle to a cursor as described in the

preceding section, you can use the SetCursor procedure to make that cursor the

current cursor.

PROCEDURE SetCursor (crsr: Cursor);

crsr A Cursor record, as described on page 8-16.

DESCRIPTION

The SetCursor procedure displays the cursor you specify in the crsr parameter. If the

cursor is hidden, it remains hidden and attain its new appearance only when it’s

uncovered. If the cursor is already visible, it changes to the new appearance immediately.

You need to use the InitCursor procedure (described on page 8-22) to initialize the

standard arrow cursor and make it visible on the screen before you can call SetCursor

to change the cursor’s appearance.

To display a color cursor, you must use the SetCCursor procedure, which is described

on page 8-26.

SEE ALSO

Listing 8-2 on page 8-10 illustrates how to use the GetCursor and SetCursor routines

to change the cursor’s shape.

Changing Color Cursors

This section describes how to create and display color cursors on the screen. It might be

useful to display a color cursor when the user is drawing or typing in color. For example,

the insertion point could appear in the color that is being used. Except for multicolored

paintbrush cursors, the cursor shouldn’t contain more than one color at once because it’s

hard for the eye to distinguish small areas of color.

To display a color cursor, you load the cursor resource into memory using the

GetCCursor function. Then you specify the cursor to display on the screen using

the SetCCursor procedure. Use the DisposeCCursor procedure to release the

memory used by the color cursor. Although you should never need to do so (because

Color QuickDraw handles this), the AllocCursor procedure reallocates cursor memory.

C H A P T E R 8

Cursor Utilities

8-26 Cursor Utilities Reference

GetCCursor

You use the GetCCursor function to load a color cursor resource into memory.

FUNCTION GetCCursor (crsrID: Integer): CCrsrHandle;

crsrID The resource ID of the cursor that you want to display.

DESCRIPTION

The GetCCursor function creates a new CCrsr record and initializes it using the

information in the 'crsr' resource with the specified ID. The GetCCursor function

returns a handle to the new CCrsr record. You can then display this cursor on the screen

by calling SetCCursor. If a resource with the specified ID isn’t found, then this function

returns a NIL handle.

Since the GetCCursor function creates a new CCrsr record each time it is called, your

application shouldn’t call the GetCCursor function before each call to the SetCCursor

procedure (unlike the way GetCursor and SetCursor are normally used). The

GetCCursor function doesn’t dispose of or detach the resource, so resources of type

'crsr' should typically be purgeable. You should call the DisposeCCursor procedure

(described on page 8-27) when you are finished using the color cursor created with

GetCCursor.

SEE ALSO

For a description of the 'crsr' resource format, see page 8-34. For a description of the

CCrsr record, see page 8-18. For a description of the SetCCursor procedure, see the

next section.

SetCCursor

You use the SetCCursor procedure to specify a color cursor for display on the screen.

PROCEDURE SetCCursor (cCrsr: CCrsrHandle);

cCrsr A handle to the color cursor to be displayed.

C H A P T E R 8

Cursor Utilities

Cursor Utilities Reference 8-27

DESCRIPTION

The SetCCursor procedure allows your application to set a color cursor for display

on the screen. At the time the cursor is set, it’s expanded to the current screen depth so

that it can be drawn rapidly. You must call GetCCursor before you call SetCCursor;

however, you can make several subsequent calls to SetCCursor once GetCCursor

creates the CCrsr record.

If your application has changed the cursor’s data or its color table, it must also invalidate

the crsrXValid and crsrID fields of the CCrsr record before calling SetCCursor.

DisposeCCursor

You use the DisposeCCursor procedure to dispose of all records allocated by the

GetCCursor function. The DisposeCCursor procedure is also available as the

DisposCCursor procedure.

PROCEDURE DisposeCCursor (cCrsr: CCrsrHandle);

cCrsr A handle to the color cursor to be disposed of.

DESCRIPTION

The DisposeCCursor procedure disposes of memory allocated by the GetCCursor

function. You should use DisposeCCursor for each call to the GetCCursor function

(described on page 8-26).

AllocCursor

Although you typically won’t need to, you can use the AllocCursor procedure to

reallocate cursor memory.

PROCEDURE AllocCursor;

DESCRIPTION

Under normal circumstances, you should never need to use this procedure, since Color

QuickDraw handles reallocation of cursor memory.

C H A P T E R 8

Cursor Utilities

8-28 Cursor Utilities Reference

Hiding and Showing Cursors

You can remove the cursor image from the screen by using either the HideCursor or

Hide_Cursor procedure. You can hide the cursor temporarily by using the

ObscureCursor procedure, or you can hide the cursor in a given rectangle by using the

ShieldCursor procedure. Your application should hide the cursor when the user is

typing, for example. To display a cursor hidden by the HideCursor, Hide_Cursor, or

ObscureCursor procedure, use the ShowCursor or Show_Cursor procedure. (When

you use ObscureCursor to hide the cursor, the cursor is redisplayed automatically the

next time the user moves the mouse.)

HideCursor

You can use the HideCursor procedure to remove the cursor from the screen.

PROCEDURE HideCursor;

DESCRIPTION

The HideCursor procedure removes the cursor from the screen, restores the bits under

the cursor image, and decrements the cursor level (which InitCursor initialized to 0).

You might want to use HideCursor when the user is using the keyboard to create

content in one of your application’s windows. Every call to HideCursor should be

balanced by a subsequent call to the ShowCursor procedure, which is described on

page 8-30.

Hide_Cursor

You can use the Hide_Cursor procedure to hide the cursor if it is visible on the screen.

The Hide_Cursor procedure is functionally the same as the HideCursor procedure

described in the preceding section.

PROCEDURE Hide_Cursor;

DESCRIPTION

The Hide_Cursor procedure calls the HideCursor procedure to remove the cursor’s

image from the screen and decrements the cursor level by 1. Every call to Hide_Cursor

should be balanced by a subsequent call to the Show_Cursor procedure, which is

described on page 8-30. Before using Hide_Cursor, you must use the InitCursorCtl

procedure, which is described on page 8-22.

C H A P T E R 8

Cursor Utilities

Cursor Utilities Reference 8-29

ObscureCursor

You use the ObscureCursor procedure to hide the cursor until the next time the user

moves the mouse.

PROCEDURE ObscureCursor;

DESCRIPTION

The ObscureCursor procedure temporarily hides the cursor; the cursor is redisplayed

the next time the user moves the mouse. Your application normally calls

ObscureCursor when the user begins to type. Unlike HideCursor (which is described

on page 8-28), ObscureCursor has no effect on the cursor level and must not be

balanced by a call to ShowCursor.

ShieldCursor

You can use the ShieldCursor procedure to hide the cursor in a rectangle.

PROCEDURE ShieldCursor (shieldRect: Rect; offsetPt: Point);

shieldRect
A rectangle in which the cursor is hidden whenever the cursor intersects
the rectangle. The rectangle may be specified in global or local
coordinates. If you are using global coordinates, pass (0,0) in the
offsetPt parameter. If you are using the local coordinates of a graphics
port, pass the coordinates for the upper-left corner of the graphics port’s
boundary rectangle in the offsetPt parameter.

offsetPt A point value for the offset of the rectangle. Like the basic QuickDraw
procedure LocalToGlobal, the ShieldCursor procedure offsets the
coordinates of the rectangle by the coordinates of this point.

DESCRIPTION

If the cursor and the given rectangle intersect, ShieldCursor hides the cursor. If they

don’t intersect, the cursor remains visible while the mouse isn’t moving, but is hidden

when the mouse moves. This procedure may be useful when using a feature such as

QuickTime to display content in a specified rectangle. When a QuickTime movie is

animating, the cursor should not be visible in front of the movie.

The ShieldCursor procedure decrements the cursor level and should be balanced by a

call to the ShowCursor procedure, which is described in the next section.

C H A P T E R 8

Cursor Utilities

8-30 Cursor Utilities Reference

ShowCursor

You use the ShowCursor procedure to display a cursor hidden by the HideCursor or

ShieldCursor procedure.

PROCEDURE ShowCursor;

DESCRIPTION

The ShowCursor procedure increments the cursor level, which may have been

decremented by the HideCursor or ShieldCursor procedure, and displays the cursor

on the screen when the level is 0. A call to the ShowCursor procedure should balance

each previous call to the HideCursor or ShieldCursor procedure. The level isn’t

incremented beyond 0, so extra calls to ShowCursor have no effect.

Low-level interrupt-driven routines link the cursor with the mouse position, so that if

the cursor level is 0 (visible), the cursor automatically follows the mouse.

If the cursor has been changed with the SetCursor procedure while hidden,

ShowCursor displays the new cursor.

SEE ALSO

For a description of the HideCursor procedure, see page 8-28. The ShieldCursor

procedure is described on page 8-29, and the SetCursor procedure is described on

page 8-25.

Show_Cursor

You use the Show_Cursor procedure to display the cursor on the screen if you have

used the Hide_Cursor procedure (described on page 8-28) to remove the cursor from

the screen.

PROCEDURE Show_Cursor (cursorKind: Cursors);

cursorKind
The kind of cursor to show. To specify one of the standard cursors, you
can use one of these values defined by the Cursors data type.

 TYPE Cursors = {values to pass Show_Cursor}

(HIDDEN_CURSOR, {the current cursor}

 I_BEAM_CURSOR, {the I-beam cursor; to select text}

 CROSS_CURSOR, {the crosshairs cursor; to draw }

{ graphics}

 PLUS_CURSOR, {the plus sign cursor; to select }

{ cells}

C H A P T E R 8

Cursor Utilities

Cursor Utilities Reference 8-31

 WATCH_CURSOR, {the wristwatch cursor; to }

{ indicate a short operation in }

{ progress}

 ARROW_CURSOR); {the standard cursor}

DESCRIPTION

The Show_Cursor procedure increments the cursor level, which may have been

decremented by the Hide_Cursor procedure, and displays the specified cursor on the

screen only if the level becomes 0 (it is never incremented beyond 0). You can specify one

of the standard cursors or the current cursor by passing one of the previously listed

values in the cursorKind parameter. If you specify one of the standard cursors, the

Show_Cursor procedure calls the SetCursor procedure for the specified cursor prior

to calling ShowCursor. If you specify HIDDEN_CURSOR, this procedure just calls

ShowCursor. Before using Show_Cursor, you must use the InitCursorCtl

procedure, which is described on page 8-22.

SPECIAL CONSIDERATIONS

The value ARROW_CURSOR works correctly only if the basic QuickDraw global variables

have been set up by using the InitGraf procedure, which is described in the chapter

“Basic QuickDraw” in this book.

SEE ALSO

Figure 8-3 on page 8-8 illustrates the cursors represented by the Cursors data type.

Displaying Animated Cursors

This section describes how to display an animated cursor using the RotateCursor

procedure or the SpinCursor procedure. You use an animated cursor when your

application performs a medium-length operation that might cause the user to think that

the computer has quit working. The two procedures are similar, but you must maintain a

counter with the RotateCursor procedure.

You need to call the InitCursorCtl procedure to load your cursor resources before

using the routines described in this section. For information about using the

InitCursorCtl procedure, see page 8-22.

C H A P T E R 8

Cursor Utilities

8-32 Cursor Utilities Reference

RotateCursor

You can use the RotateCursor procedure to display an animated cursor when your

application performs a medium-length operation that might cause the user to think that

the computer has quit working.

PROCEDURE RotateCursor (counter: LongInt);

counter An incrementing or decrementing index maintained by your application.
When the index is a multiple of 32, the next cursor frame is used in the
animation. A positive counter moves forward through the cursor frames,
and a negative counter moves backward through the cursor frames.

DESCRIPTION

The RotateCursor procedure animates whatever sequence of cursors you set up by

using the InitCursorCtl procedure. If the value of counter is a multiple of 32, the

RotateCursor procedure calls the SetCursor procedure to set the cursor to the

next cursor frame. RotateCursor does not show the cursor if it is currently hidden. If

the cursor is hidden, you can show it by making a call to ShowCursor or Show_Cursor

(both described on page 8-30).

SEE ALSO

For an example of using the RotateCursor procedure, see Listing 8-3 on page 8-15.

SpinCursor

You can use the SpinCursor procedure to display an animated cursor when your

application performs a medium-length operation that might cause the user to think that

the computer has quit working.

PROCEDURE SpinCursor (increment: Integer);

increment A value that determines the sequencing direction of the cursor. A
positive increment moves forward through the cursor frames, and a
negative increment moves backward through the cursor frames. A 0 value
for the increment resets the counter to 0 and steps to the next cursor frame.

C H A P T E R 8

Cursor Utilities

Cursor Utilities Reference 8-33

DESCRIPTION

The SpinCursor procedure is similar to the RotateCursor procedure except that,

instead of passing a counter, you pass a value that indicates which direction to spin the

cursor. Your application is responsible for determining the proper intervals at which to

call SpinCursor. Your application specifies the increment to be counted, either positive

or negative, and SpinCursor adds the increment to its counter. The sign of the

increment, not the sign of the accumulated value of the SpinCursor counter,

determines the cursor’s direction of spin.

SEE ALSO

For an example of using the SpinCursor procedure, see Listing 8-4 on page 8-15.

Resources

This section describes the cursor ('CURS') resource, the color cursor ('crsr') resource,

and the animated cursor ('acur') resource. Your application can use a 'CURS' resource

to create a black-and-white cursor other than the standard cursors or a 'crsr'

resource to create a color cursor to display on color screens. Your application can use an

'acur' resource to create an animated cursor to display when a medium-length

operation is taking place. These resource types should be marked as purgeable. See the

discussion of the pointing device in Macintosh Human Interface Guidelines for more

information on when to use different types of cursors in your application; see also the

discussion of color in the same book.

The Cursor Resource

You can use a cursor resource to define a cursor to display in your application. A cursor

resource is a resource of type 'CURS'. All cursor resources must be marked purgeable

and must have resource IDs greater than 128. You use the GetCursor function

(described on page 8-24) to obtain a cursor stored in a 'CURS' resource. QuickDraw

reads the requested resource, copies it, and then alters the copy before passing it to your

application.

This section describes the structure of this resource after it has been compiled by the Rez

resource compiler, available from APDA. However, you typically use a high-level utility

such as the ResEdit application to create 'CURS' resources. You can then use the DeRez

decompiler to convert your 'CURS' resources into Rez input when necessary.

C H A P T E R 8

Cursor Utilities

8-34 Cursor Utilities Reference

The compiled output format for a 'CURS' resource is illustrated in Figure 8-8.

Figure 8-8 Format of a compiled cursor ('CURS') resource

The compiled version of a 'CURS' resource contains the following elements:

■ Data. A bitmap for the cursor.

■ Mask. A bitmap for the cursor’s mask. QuickDraw uses the mask to crop the cursor’s
outline into a background color or pattern. QuickDraw then draws the cursor into this
shape.

■ Hot spot. The cursor’s hot spot.

The Color Cursor Resource

You can use a color cursor resource to define a colored cursor to display in your

application. A color cursor resource is a resource of type 'crsr'. All color cursor

resources must be marked purgeable and must have resource IDs greater than 128. You

use the GetCCursor function (described on page 8-26) to obtain a color cursor stored in

a 'crsr' resource. Color QuickDraw reads the requested resource, copies it, and then

alters the copy before passing it to the application. Each time you call GetCCursor, you

get a new copy of the cursor. This means that you should call GetCCursor only once for

a color cursor, even if you call the SetCCursor procedure many times.

This section describes the structure of this resource after it has been compiled by the Rez

resource compiler, available from APDA. However, you typically use a high-level utility

such as the ResEdit application to create 'crsr' resources. You can then use the DeRez

decompiler to convert your 'crsr' resources into Rez input when necessary.

The compiled output format for a 'crsr' resource is illustrated in Figure 8-9.

C H A P T E R 8

Cursor Utilities

Cursor Utilities Reference 8-35

Figure 8-9 Format of a compiled color cursor ('crsr') resource

C H A P T E R 8

Cursor Utilities

8-36 Cursor Utilities Reference

The compiled version of a 'crsr' resource contains the following elements:

■ Type of cursor. A value of $8001 identifies this as a color cursor. A value of $8000
identifies this as a black-and-white cursor.

■ Offset to PixMap record. This offset is from the beginning of the resource data.

■ Offset to pixel data. This offset is from the beginning of the resource data.

■ Expanded cursor data. This expanded pixel image is used internally by Color
QuickDraw.

■ Expanded data depth. This is the pixel depth of the expanded cursor image.

■ Reserved. The Resource Manager uses this element for storage.

■ Cursor data. This field contains a 16-by-16 pixel 1-bit image to be displayed when
the cursor is on 1-bit or 2-bit screens.

■ Cursor mask. A bitmap for the cursor’s mask. QuickDraw uses the mask to crop
the cursor’s outline into a background color or pattern. QuickDraw then draws the
cursor into this shape.

■ Hot spot. The cursor’s hot spot.

■ Table ID. This contains an offset to the color table data from the beginning of the
resource data.

■ Cursor ID. This contains the cursor’s resource ID.

■ Pixel map. This pixel map describes the image when drawing the color cursor.
The pixel map contains an offset to the color table data from the beginning of the
resource.

■ Bounds. The boundary rectangle of the cursor.

■ Pixel size. The number of pixels per bit in the cursor.

■ Pixel data. The data for the cursor.

■ Color table. A color table containing the color information for the cursor’s pixel map.

The Animated Cursor Resource

You can use an animated cursor resource to define a set of frames for an animated cursor

to display in your application. An animated cursor resource is a resource of type 'acur'.

If you pass NIL to InitCursorCtl (described on page 8-22), it automatically loads the

'acur' resource that has an ID of 0 in your application’s resource file. If you wish to use

multiple 'acur' resources, you must give them resources IDs greater than 128, and you

must use the Resource Manager function GetResource to obtain handles to them.

You must then coerce their handles to type acurHandle, which you pass to

InitCursorCtl. You use the SpinCursor or RotateCursor procedure to animate

the cursors stored in an 'acur' resource.

C H A P T E R 8

Cursor Utilities

Cursor Utilities Reference 8-37

This section describes the structure of this resource after it has been compiled by the Rez

resource compiler, available from APDA. However, you typically use a high-level tool

such as the ResEdit application to create 'acur' resources. You can then use the DeRez

decompiler to convert your 'acur' resources into Rez input when necessary.

The compiled output format for an 'acur' resource is illustrated in Figure 8-10.

Figure 8-10 Format of a compiled animated cursor ('acur') resource

The compiled version of an 'acur' resource contains the following elements:

■ Number of cursors. The number of frames used to animate the cursor.

■ Next frame to show. Reserved.

■ Resource ID of the cursor resource that defines the first frame of the animation.

■ Reserved.

■ Resource ID of the cursor resource that defines the last frame of the animation.

■ Reserved.

C H A P T E R 8

Cursor Utilities

8-38 Summary of Cursor Utilities

Summary of Cursor Utilities

Pascal Summary

Constants

CONST

iBeamCursor = 1; {used in text editing}

crossCursor = 2; {often used for manipulating graphics}

plusCursor = 3; {often used for selecting fields in an array}

watchCursor = 4; {used to mean a short operation is in progress}

Data Types

TYPE Bits16 = ARRAY[0..15] OF Integer;

CursPtr = ^Cursor;

CursHandle = ^CursPtr;

Cursor =

RECORD

data: Bits16; {cursor image}

mask: Bits16; {cursor mask}

hotSpot: Point; {point aligned with mouse}

END;

CCrsrPtr = ^CCrsr;

CCrsrHandle = ^CCrsrPtr;

CCrsr =

RECORD

crsrType: Integer; {type of cursor}

crsrMap: PixMapHandle; {the cursor's PixMap record}

crsrData: Handle; {cursor's data}

crsrXData: Handle; {expanded cursor data}

crsrXValid: Integer; {depth of expanded data (0 if none)}

crsrXHandle:Handle; {future use}

C H A P T E R 8

Cursor Utilities

Summary of Cursor Utilities 8-39

crsr1Data: Bits16; {1-bit cursor}

crsrMask: Bits16; {cursor's mask}

crsrHotSpot: Point; {cursor's hot spot}

crsrXTable: LongInt; {private}

crsrID: LongInt; {ctSeed for expanded cursor}

END;

Cursors = {values to pass to Show_Cursor}

(HIDDEN_CURSOR, {the current cursor}

 I_BEAM_CURSOR, {the I-beam cursor; to select text}

 CROSS_CURSOR, {the crosshairs cursor; to draw graphics}

 PLUS_CURSOR, {the plus sign cursor; to select cells}

 WATCH_CURSOR, {the wristwatch cursor; to indicate a }

{ short operation in progress}

 ARROW_CURSOR); {the standard cursor}

acurPtr = ^Acur;

acurHandle = ^acurPtr;

Acur =

RECORD

n: Integer; {number of cursors ("frames")}

index: Integer; {reserved}

frame1: Integer; {'CURS' resource ID for frame #1}

fill1: Integer; {reserved}

frame2: Integer; {'CURS' resource ID for frame #2}

fill2: Integer; {reserved}

frameN: Integer; {'CURS' resource ID for frame #N}

fillN: Integer; {reserved}

END;

Routines

Initializing Cursors

PROCEDURE InitCursor;

PROCEDURE InitCursorCtl (newCursors: UNIV acurHandle);

Changing Black-and-White Cursors

FUNCTION GetCursor (cursorID: Integer): CursHandle;

PROCEDURE SetCursor (crsr: Cursor);

C H A P T E R 8

Cursor Utilities

8-40 Summary of Cursor Utilities

Changing Color Cursors

{DisposeCCursor is also spelled as DisposCCursor}

FUNCTION GetCCursor (cursorID: Integer): CCursHandle;

PROCEDURE SetCCursor (cCrsr: CCrsrHandle);

PROCEDURE DisposeCCursor (cCrsr: CCrsrHandle);

PROCEDURE AllocCursor;

Hiding and Showing Cursors

PROCEDURE HideCursor;

PROCEDURE Hide_Cursor;

PROCEDURE ObscureCursor;

PROCEDURE ShieldCursor (shieldRect: Rect; offsetPt: Point);

PROCEDURE ShowCursor;

PROCEDURE Show_Cursor (cursorKind: Cursors);

Displaying Animated Cursors

PROCEDURE RotateCursor (counter: LongInt);

PROCEDURE SpinCursor (increment: Integer);

C Summary

Constants

enum {

iBeamCursor = 1, /* used in text editing */

crossCursor = 2, /* often used for manipulating graphics */

plusCursor = 3, /* often used for selecting fields in an array */

watchCursor = 4 /* used to mean a short operation is in progress */

};

enum { /* values to pass to Show_Cursor */

HIDDEN_CURSOR, /* the current cursor */

I_BEAM_CURSOR, /* the I-beam cursor; to select tect */

CROSS_CURSOR, /* the crosshairs cursor; to draw graphics */

PLUS_CURSOR, /* the plus sign cursor; to select cells */

C H A P T E R 8

Cursor Utilities

Summary of Cursor Utilities 8-41

WATCH_CURSOR, /* the wristwatch cursor; to indicate a short

 operation in progress */

ARROW_CURSOR /* the standard cursor */

};

typedef unsigned char Cursors;

Data Types

typedef short Bits16[16];

struct Cursor {

Bits16 data; /* cursor image */

Bits16 mask; /* cursor mask */

Point hotSpot; /* point aligned with mouse */

};

typedef struct Cursor Cursor;

typedef Cursor *CursPtr, **CursHandle;

struct CCrsr {

 short crsrType; /* type of cursor */

PixMapHandle crsrMap; /* the cursor's PixMap record */

 Handle crsrData; /* cursor's data */

 Handle crsrXData; /* expanded cursor data */

 short crsrXValid; /* depth of expanded data (0 if none) */

 Handle crsrXHandle; /* future use */

 Bits16 crsr1Data; /* 1-bit cursor */

 Bits16 crsrMask; /* cursor's mask */

 Point crsrHotSpot; /* cursor's hot spot */

 long crsrXTable; /* private */

 long crsrID; /* ctSeed for expanded cursor */

};

typedef struct CCrsr CCrsr;

typedef CCrsr *CCrsrPtr, **CCrsrHandle;

struct Acur {

short n; /* number of cursors ("frames of film") */

short index; /* reserved */

short frame1; /* 'CURS' resource ID for frame #1 */

short fill1; /* reserved */

short frame2; /* 'CURS' resource ID for frame #2 */

C H A P T E R 8

Cursor Utilities

8-42 Summary of Cursor Utilities

short fill2; /* reserved */

short frameN; /* 'CURS' resource ID for frame #N */

short fillN; /* reserved */

};

typedef struct Acur acur,*acurPtr,**acurHandle;

Functions

Initializing Cursors

pascal void InitCursor (void);

pascal void InitCursorCtl (acurHandle newCursors);

Changing Black-and-White Cursors

pascal CursHandle GetCursor (short cursorID);

pascal void SetCursor (const Cursor *crsr);

Changing Color Cursors

/* DisposeCCursor is also spelled as DisposCCursor */

pascal CCrsrHandle GetCCursor

(short crsrID);

pascal void SetCCursor (CCrsrHandle cCrsr);

pascal void DisposeCCursor (CCrsrHandle cCrsr);

pascal void AllocCursor (void);

Hiding and Showing Cursors

pascal void HideCursor (void);

pascal void Hide_Cursor (void);

pascal void ObscureCursor (void);

pascal void ShieldCursor (const Rect *shieldRect, Point offsetPt);

pascal void ShowCursor (void);

pascal void Show_Cursor (Cursors cursorKind);

C H A P T E R 8

Cursor Utilities

Summary of Cursor Utilities 8-43

Displaying Animated Cursors

pascal void RotateCursor (long counter);

pascal void SpinCursor (short increment);

Assembly-Language Summary

Data Structures

Cursor Data Structure

Color Cursor Data Structure

Global Variables

0 data 32 bytes cursor image
32 mask 32 bytes cursor mask
64 hotSpot long point aligned with mouse

0 crsrType word type of cursor
2 crsrMap long the cursor’s PixMap record
6 crsrData long cursor’s data

10 crsrXData long expanded cursor data
14 crsrXValid word depth of expanded data (0 if none)
16 crsrXHandle long handle for future use
20 crsr1Data 16 words 1-bit data
52 crsrMask 16 words 1-bit mask
84 crsrHotSpot long hot spot for cursor
88 crsrXTable long table ID for expanded data
92 crsrID long ID for cursor
96 crsrRec long size of cursor save area

arrow The standard arrow cursor.

Contents 9-1

C H A P T E R 9

Contents

Printing Manager

About the Printing Manager 9-3

The Printing Graphics Port 9-4

Getting Printing Preferences From the User 9-5

QuickDraw and PostScript Printer Drivers 9-8

Page and Paper Rectangles 9-10

Printer Resolution 9-11

The TPrint Record and the Printing Loop 9-11

Print Status Dialog Boxes 9-13

Using the Printing Manager 9-15

Creating and Using a TPrint Record 9-17

Printing a Document 9-18

Printing From the Finder 9-25

Providing Names of Documents Being Printed 9-27

Printing Hints 9-27

Getting and Setting Printer Information 9-28

Determining and Setting the Resolution of the Current Printer 9-30

Determining Page Orientation 9-32

Enhancing Draft-Quality Printing 9-33

Altering the Style or Job Dialog Box 9-35

Writing an Idle Procedure 9-38

Handling Printing Errors 9-41

Printing Manager Reference 9-43

Data Structures 9-44

Printing Manager Routines 9-57

Opening and Closing the Printing Manager 9-57

Initializing and Validating TPrint Records 9-58

Displaying and Customizing the Print Dialog Boxes 9-61

Printing a Document 9-66

Optimizing Printing 9-72

C H A P T E R 9

9-2 Contents

Handling Printing Errors 9-75

Low-Level Routines 9-78

Application-Defined Routines 9-84

Summary of the Printing Manager 9-87

Pascal Summary 9-87

Constants 9-87

Data Types 9-88

Printing Manager Routines 9-92

Application-Defined Routines 9-93

C Summary 9-94

Constants 9-94

Data Types 9-95

Printing Manager Functions 9-99

Application-Defined Functions 9-101

Assembly-Language Summary 9-101

Data Structures 9-101

Trap Macros 9-103

Global Variable 9-103

Result Codes 9-104

C H A P T E R 9

About the Printing Manager 9-3

Printing Manager

This chapter describes how your application can use the Printing Manager to perform

QuickDraw-based printing on a printer connected to a Macintosh computer. The

Printing Manager works with the printer driver for the currently selected printer so that

your application can draw an image on a printer just as it draws an image on a screen.

This allows your application to use the same QuickDraw routines for printing as for

screen display.

You should read this chapter if your application allows the user to print. If you want to

print with features—such as rotated text and hairlines—that are not supported by

QuickDraw, you should read Appendix B, “Using Picture Comments for Printing.”

Before reading this chapter, you should be familiar with QuickDraw’s drawing routines

and the GrafPort and CGrafPort data types, as described in the chapters “Basic

QuickDraw,” “QuickDraw Drawing,” and “Color QuickDraw” in this book. You may

also need to refer to Inside Macintosh: Text for information about printing text from

non-Roman script systems.

About the Printing Manager

The Printing Manager is a collection of system software routines that your application

can use to print from the Macintosh computer to any type of connected printer. The

Printing Manager is available on all Macintosh computers. When printing, your

application calls the same Printing Manager routines regardless of the type of printer

selected by the user.

When you print a document using the Printing Manager, the Printing Manager uses a

printer driver to do the actual printing. A printer driver does any necessary translation

of QuickDraw drawing routines and—when requested by your application—sends the

translated instructions and data to the printer. Printer drivers are stored in printer
resource files, which are located in the Extensions folder inside the System Folder. Each

type of printer has its own printer driver. One printer driver can communicate with

several printers of the same type; for example, the LaserWriter printer driver can work

with multiple LaserWriter printers on a network.

The current printer is the printer that the user last selected from the Chooser. It is the

printer driver for the current printer that actually implements the routines defined by

the Printing Manager. Every Printing Manager routine you call determines the current

printer from a resource in the System file and then dispatches your call to the printer

driver for that printer.

To print a document, your application uses the PrOpen procedure to open the driver for

the current printer. Your application then uses the PrOpenDoc function to open a

printing graphics port, which is a data structure of type TPrPort; it consists of a

QuickDraw graphics port (either a GrafPort or CGrafPort record) plus additional

information. For each page in a document, your application uses the PrOpenPage

procedure to open the page. Your application then uses QuickDraw routines to draw

onto the page.

C H A P T E R 9

Printing Manager

9-4 About the Printing Manager

Ideally, your application should be device-independent, so that when it prints a

document, it doesn’t rely on the presence of any one printer feature. In general, there are

two types of printer drivers: those for QuickDraw printers and those for PostScript

printers. QuickDraw printer drivers render images using QuickDraw and then send the

rendered images to the printer as bitmaps or pixel maps. PostScript printer drivers

convert QuickDraw operations into equivalent PostScript operations, as necessary. The

driver sends the converted PostScript drawing operations to the printer, which renders

the images by interpreting these operations.

For most applications, sending QuickDraw’s picture-drawing routines to the printer

driver is sufficient: the driver either uses QuickDraw or converts the drawing routines to

PostScript. For some applications, such as page-layout programs, this may not be

sufficient; such applications may rely on printer drivers to provide several features that

are not available, or are difficult to achieve, using QuickDraw.

If your application requires these features (such as rotated text and dashed lines), you

may want to create two versions of your drawing code: one that uses picture comments

to take advantage of these features on capable printers, and another that provides

QuickDraw-based approximations of these features. Created with the QuickDraw

procedure PicComment, picture comments are data or commands used for

special processing by output devices, such as printer drivers. Picture comments may be

included in the code an application sends to a printer driver, or stored in the definition of

a picture. For more information, see Appendix B, “Using Picture Comments for

Printing,” in this book.

For information about how the PostScript language works and the specifics of PostScript

commands, see the PostScript Language Reference Manual, second edition, published by

Addison-Wesley.

The Printing Graphics Port
You use the PrOpenDoc function to open a document for printing. The PrOpenDoc

function in turn opens a printing graphics port and returns a pointer to a TPrPort

record, which defines the printing graphics port.

TYPE

TPPrPort = ^TPrPort;

TPrPort = {printing graphics port record}

RECORD

gPort: GrafPort; {graphics port for printing}

gProcs: QDProcs; {procedures for printing in the }

{ graphics port}

{more fields for internal use}

END;

C H A P T E R 9

Printing Manager

About the Printing Manager 9-5

The graphics port in the gPort field is either a CGrafPort or GrafPort record,

depending on whether the current printer supports color and grayscale and whether

Color QuickDraw is available on the computer. If you need to determine the type of

graphics port, you can check the high bit in the rowBytes field of the record contained

in the gPort field; if this bit is set, the printing graphics port is based on a CGrafPort

record.

You print text and graphics by drawing into a printing graphics port using QuickDraw

drawing routines, just as if you were drawing on the screen. The printer driver installs

its own versions of QuickDraw’s low-level drawing routines in the gProcs field of the

TPrPort record. Your calls to high-level QuickDraw routines then drive the printer

instead of drawing on the screen.

As you draw each page of a document into the printing graphics port, the printer driver

translates the calls to QuickDraw routines into the equivalent instructions for the printer.

The printer itself does nothing except draw the document on a page, exactly as the

printer driver directs it.

Before ever printing a document, however, your application must obtain various

printing preferences from the user—usually when the user chooses the Page Setup

or Print command from the File menu.

Getting Printing Preferences From the User
If it’s likely that a user will want to print the data created with your application, you

should support the Page Setup command and the Print command in the File menu.

Figure 9-1 shows a typical File menu that includes the Page Setup and Print commands.

(See the chapter “Menu Manager” in Inside Macintosh: Macintosh Toolbox Essentials for

detailed information about setting up a File menu with these commands.)

Figure 9-1 A standard File menu for an application

C H A P T E R 9

Printing Manager

9-6 About the Printing Manager

In response to the Page Setup command, your application should display the current

printer’s style dialog box, which allows the user to specify the printing options—such

as the paper size and the printing orientation—that your application needs for

formatting the document in the frontmost window. In response to the Print command,

your application should display the current printer’s job dialog box, which solicits from

the user printing information—such as the number of copies to print, the print quality,

and the range of pages to print—for the document in the frontmost window. Each

printer driver defines its own style dialog box and job dialog box. Your application can

also provide other printing options in these dialog boxes when appropriate.

A TPrint record contains the information about the user’s choices made with the style

and job dialog boxes. When the user saves a document, your application should save the

TPrint record associated with that document. This allows your application to resume

using any style preferences that the user has selected for printing that document. While

only the information the user specifies through the style dialog box should be preserved

each time the user prints the document, you can save the entire TPrint record when

you save the document. The information supplied by the user in the job dialog box

should pertain to the document only while the document prints; you should not reuse

this information if the user prints the document again.

The values that the user specifies through the style dialog box apply only to the printing

of the document in the active—that is, frontmost—window. In general, the user should

have to specify these preferences only once per document, although the user can choose

to change these settings at any time. Figure 9-2 shows the StyleWriter printer driver’s

style dialog box, displayed by an application in response to the Page Setup command.

Figure 9-2 The style dialog box for a StyleWriter printer

C H A P T E R 9

Printing Manager

About the Printing Manager 9-7

Figure 9-3 shows the style dialog box for a LaserWriter printer. Because each printer

resource file defines its own style dialog box, a style dialog box for one printer may differ

slightly from that of another printer (as you can see by comparing Figure 9-2 with

Figure 9-3).

Figure 9-3 The style dialog box for a LaserWriter printer

You use the PrStlDialog function to display the style dialog box defined by the

resource file of the current printer. The PrStlDialog function handles all user

interaction in the items defined by the printer driver until the user clicks the OK or

Cancel button. You must call the PrOpen procedure prior to calling PrStlDialog

because the current printer driver must be open for your application to successfully call

PrStlDialog.

Figure 9-4 shows an example of a job dialog box. Your application should print the

document in the active window if the user clicks the Print button.

Figure 9-4 The job dialog box for a StyleWriter printer

C H A P T E R 9

Printing Manager

9-8 About the Printing Manager

Figure 9-5 shows a job dialog box for a LaserWriter printer.

Figure 9-5 The job dialog box for a LaserWriter printer

Your application uses the PrJobDialog function to display the job dialog box defined

by the resource file of the current printer. The PrJobDialog function handles all user

interaction in the items defined by the printer driver until the user clicks the Print or

Cancel button.

Your application can customize the style dialog box and the job dialog box to ask for

additional information. (Figure 9-12 on page 9-35 shows a print job dialog box that

includes two extra checkboxes.) If you customize the style or job dialog box, you must

provide a function that handles events, such as clicks, in any items that you add to the

dialog box, and you should provide an event filter function to handle events not handled

by the Dialog Manager in a modal dialog box.

QuickDraw and PostScript Printer Drivers
There are two main types of printer drivers for Macintosh computers: QuickDraw

printer drivers and PostScript printer drivers.

Using QuickDraw drawing operations, QuickDraw printer drivers render images on

the Macintosh computer and then send the rendered images to the printer in the form of

bitmaps or pixel maps. The printer might be a dot-matrix printer, an ink jet printer, a

laser printer, or a plotter.

QuickDraw printers are not required to have any intelligent rendering capabilities.

Instead, they simply accept instructions from printer drivers to place dots on the page in

specific places. A QuickDraw printer driver captures in a temporary disk file (called a

spool file)—or in memory—the images of an entire page, translates the pixels into

dot-placement instructions, and sends these instructions to the printer.

Note
The internal format of spool files is private to the printer drivers and
may vary from one printer driver to another. You should not attempt to
determine or manipulate the format of these files. ◆

C H A P T E R 9

Printing Manager

About the Printing Manager 9-9

QuickDraw printers are relatively inexpensive to produce because they don’t require

sophisticated rendering capabilities—instead, they rely on the rendering capabilities of

the Macintosh computer. However, QuickDraw printers are also relatively slow. Over 7

million pixels are required to render an 8-by-10-inch image at 300 dpi. Many QuickDraw

printers use some form of data compression to improve their performance. For the

ImageWriter printer, for example, the printer driver instructs the printer only where to

place ink; the printer driver assumes that the rest of the page should remain untouched.

Nevertheless, nearly 900 KB is required to render a full-page image at 1 bit per pixel. A

color printer that uses 8 bits per pixel requires eight times as much data. Such large

memory requirements may require the driver to process the image in horizontal strips,

or bands, which further impairs printing speed.

PostScript printer drivers, on the other hand, convert QuickDraw drawing operations

into equivalent PostScript drawing operations, as necessary. PostScript printers have

their own rendering capabilities. Instead of rendering an entire page on the Macintosh

computer and sending all the pixels to the printer, PostScript printer drivers typically

send drawing commands directly to the printer, which itself renders images on the page.

Many of Apple’s LaserWriter printers use the PostScript page-description language to

render images in this way, thereby off-loading image processing from the computer. This

gives PostScript printers a speed advantage over QuickDraw printers.

QuickDraw printer drivers must capture an entire page before sending any of it to the

printer, but PostScript printer drivers may be able to send commands as soon as they are

generated to printers. This can result in faster printing, but it doesn’t allow the printer

driver to examine entire pages for their use of color, fonts, or other resources that the

printer needs to have specially processed. Therefore, some PostScript printer drivers

may capture page images in a spool file so that the driver can analyze the pages before

sending them to the printer.

Some printer drivers allow users to specify background printing, which allows the user

to work with an application while documents are printing. These printer drivers, which

can be either QuickDraw or PostScript, send printing data to a spool file in the

PrintMonitor Documents folder inside the System Folder. Do not confuse the different

uses of these various spool files. With background printing, print files are spooled to disk

to allow the user to work with an application while documents are printing; many

printer drivers support background printing regardless of their other capabilities.

Some printer drivers create spool files while processing a page image—this, however,

does not allow the user to work with the application while the document is printing.

IMPORTANT

There is no reliable manner in which you can determine whether a
printer driver creates a spool file—whether for processing of a page
image or for background printing. With the exception of using the
PrPicFile procedure, described on page 9-71, your print loop
should not base any of its actions on whether a printer driver creates
a spool file. ▲

C H A P T E R 9

Printing Manager

9-10 About the Printing Manager

Page and Paper Rectangles
When printing a document, you should consider these two aspects of the layout of the

page:

■ the physical size of the paper

■ the area on the paper that the printer can use to format the document, which is
usually smaller than the physical sheet of paper to account for margins or the
mechanical limitations of the printer

The page rectangle represents the boundaries of the printable area on a page. Its

upper-left corner always has the coordinates (0,0). The coordinates of the lower-right

corner give the maximum page height and width attainable on the given printer; these

coordinates are specified by the units used to express the resolution of the printing

graphics port. For example, the lower-right corner of a page rectangle used by the

PostScript LaserWriter printer driver for an 8.5-by-11-inch U.S. letter page is (730,552) at

72 dpi.

The paper rectangle gives the physical paper size, defined in the same coordinate system

as the page rectangle. Thus, the upper-left coordinates of the paper rectangle are

typically negative, and its lower-right coordinates are greater than those of the page

rectangle. Figure 9-6 shows the relationship of these two rectangles.

Figure 9-6 Page and paper rectangles

Your application should always use the page rectangle sizes provided by the printer

driver and should not attempt to change them or add new ones. If your application

offers page sizes other than those provided by the printer driver for the current printer,

you risk compatibility problems.

C H A P T E R 9

Printing Manager

About the Printing Manager 9-11

When formatting a page for printing, remember to use the page rectangle size that the

user has chosen to format the document. (See “The TPrint Record and the Printing

Loop” on page 9-11 for more information about where to find the user’s choices for

formatting the document.)

Printer Resolution
Resolution refers to the degree of detail at which a device such as a printer or a screen

can display an image. Resolution is usually specified in dots per inch, or dpi, in the x and

y directions. The higher the value, the finer the detail of the image.

A printer driver supports either discrete or variable resolution. If a printer driver

supports discrete resolution, an application can choose from only a limited number of

resolutions that are predefined by the printer driver. For example, the ImageWriter

printer driver supports four discrete resolutions: 72 by 72 dpi, 144 by 144 dpi, 80 by

72 dpi, and 160 by 144 dpi.

If a printer driver supports variable resolution, an application can define any resolution

within a range bounded by maximum and minimum values defined by the printer

driver. LaserWriter printer drivers support variable resolution within a range from 25

dpi to 1500 dpi in both the x and y directions.

To print, your application does not need to check the resolutions available or set the

resolution. However, if your application does factor in possible resolutions, it can obtain

the best quality output from a printer by choosing equal resolutions for the x and y

directions. For information on how to determine the available resolution or resolutions

for the currently selected printer, see “Determining and Setting the Resolution of the

Current Printer” on page 9-30.

The TPrint Record and the Printing Loop
To print a document, you need to create a print record. The TPrint record is a data

structure of type TPrint, and it contains fields that specify the Printing Manager

version, information about the printer (such as its resolution in dpi), and the dimensions

of the paper rectangle. Most Printing Manager routines require that you provide a

handle to a TPrint record as a parameter.

Your application allocates the memory for a TPrint record (using the Memory Manager

function NewHandle, for example) and then initializes the new TPrint record using the

PrintDefault procedure. (Your application can also validate an existing TPrint

record by using the PrValidate function.) When the user chooses the Print command,

your application passes a handle to a TPrint record to the PrJobDialog or

PrDlgMain function to display a job dialog box to the user; the function alters the

TPrint record according to the user’s responses.

When the user chooses the Page Setup command, your application passes a handle to a

TPrint record to the PrStlDialog or PrDlgMain function to display a style dialog

box to the user; the function alters the TPrint record according to the user’s responses.

C H A P T E R 9

Printing Manager

9-12 About the Printing Manager

The TPrint record contains several other records, as illustrated in Figure 9-7. The

TPrInfo record, which is a data structure of type TPrInfo, gives you the information

needed for page composition, including the vertical and horizontal resolutions of the

printer in dpi and the boundaries of the page rectangle. The TPrJob record, which is a

data structure of type TPrJob, gives you information about a particular print job—for

instance, the first and last pages to be printed, the number of copies, and the method of

printing that the Printing Manager will use.

Figure 9-7 A TPrint record

C H A P T E R 9

Printing Manager

About the Printing Manager 9-13

The PrJobDialog, PrStlDialog, and PrDlgMain functions alter the appropriate

fields of the TPrint record. In particular, the PrJobDialog function alters the

prJob field (which contains a TPrJob record), and the PrStlDialog function alters

the prInfo field (which contains a TPrInfo record). The PrDlgMain function alters

either field, depending on whether you use the function to display a job or a style dialog

box.

▲ W A R N I N G

Your application should not directly change the user-supplied data in
the TPrint record; it should use the PrStlDialog and PrJobDialog
functions or the PrDlgMain function to allow the user to specify
printing options that the printer driver then translates to the appropriate
fields in the TPrint record. The only fields you may need to set directly
are those containing optional information in the TPrJob record (for
example, the pIdleProc field, which contains a pointer to an idle
procedure). Attempting to set other values directly in the TPrint record
can produce unexpected results. ▲

Your program code should contain a printing loop that handles your printing needs,

including presenting the job dialog box and determining the range of pages to be

printed. An example of a printing loop is shown in Listing 9-2 on page 9-20; the structure

of a TPrint record is defined in detail on page 9-44.

Print Status Dialog Boxes
Because the user must wait for a document to print (that is, the application must draw

the data in the printing graphics port and the data must be sent either to the printer or to

a spool file before the user can continue working), many printer drivers display a print

status dialog box informing the user that the printing process is under way. As shown in

Figure 9-8, the print status dialog box usually provides information about the document

being printed and indicates the current status of the printing operation.

Figure 9-8 The print status dialog box for a LaserWriter printer driver printing in the
background

A user should always be able to cancel printing by pressing Command-period. To

determine whether the user has canceled printing, the printer driver runs an idle
procedure whenever it directs output to the printer or to a spool file. The idle procedure

takes no parameters and returns no result; the printer driver runs it periodically.

C H A P T E R 9

Printing Manager

9-14 About the Printing Manager

Not all printer drivers, however, display print status dialog boxes. As you can see in

Figure 9-8, the print status dialog box for the LaserWriter printer driver (as well as status

dialog boxes for many other printer drivers) doesn’t inform the user how to cancel the

printing operation. Your application can display its own status dialog box that informs

the user about the status of the printing operation and how to cancel printing. If the

printer driver displays its own print status dialog box, your application’s print status

dialog box may appear in an inactive window. Figure 9-9 shows an example of an

application’s print status dialog box that appears in addition to the print status dialog

box displayed by the LaserWriter printer driver.

Figure 9-9 A status dialog box with the LaserWriter printer driver’s print status dialog box

Note
Your application cannot prevent a printer driver from displaying its own
status dialog box, and your application cannot determine where on the
screen a printer driver will display its status dialog box. ◆

If your application uses its own print status dialog box, your application should display

it just before printing. Your print status dialog box should indicate that the user can press

Command-period to cancel printing; your status dialog box may also provide a button

that lets the user cancel printing. Your status dialog box should also give information

about the document being printed and indicate the current status of the printing

operation.

The TPrJob record contained in the TPrint record contains a pointer to an idle

procedure in the pIdleProc field. If this field contains the value NIL, then the printer

driver uses its default idle procedure. The default idle procedure checks for

Command-period keyboard events and sets the iPrAbort error code if one occurs, so

that your application can cancel the print job at the user’s request. However, the default

idle procedure does not display any dialog boxes. It is up to the printer driver or your

application to display a print status dialog box.

C H A P T E R 9

Printing Manager

Using the Printing Manager 9-15

To handle update information in your status dialog box during the printing operation,

you should install your own idle procedure in the pIdleProc field. Your idle procedure

should also check whether the user has pressed Command-period, in which case your

application should stop its printing operation. If your status dialog box contains a button

to cancel the printing operation, your idle procedure should also check for clicks in the

button and respond accordingly.

IMPORTANT

In your status dialog box, do not include an option to pause the printing
process. Pausing may cause timeout problems when printing to a printer
on a network. Communication between the Macintosh computer and the
printer must be maintained to prevent a job or a wait timeout. If there is
no communication for a period of time (over two minutes, for example,
for the PostScript LaserWriter printer), the printer times out and the
print job terminates. Because there is no reliable method for determining
the type of printer, you should be aware of the possibility of a printer on
a network timing out for a user who wants to pause printing for over
two minutes. ▲

If you do not supply your own idle procedure, you can determine whether the user has

canceled printing by calling the PrError function after each call to a Printing Manager

routine. The PrError function returns the result code iPrAbort when the user cancels

printing.

See the chapter “Dialog Manager” in Inside Macintosh: Macintosh Toolbox Essentials for

information about creating and displaying dialog boxes. For information about creating

an idle procedure, see “Writing an Idle Procedure” on page 9-38.

Using the Printing Manager

The Printing Manager defines routines that give your application device-independent

control over the printing process. You can use these routines to print documents, to

display and alter the print dialog boxes, and to handle printing errors.

To use the Printing Manager, you must first initialize QuickDraw, the Font Manager, the

Window Manager, the Menu Manager, TextEdit, and the Dialog Manager. The first

Printing Manager routine to call, when you are ready to print, is PrOpen; the last routine

to call is PrClose.

All of the Printing Manager routines described in this chapter are available on both basic

QuickDraw and Color QuickDraw systems using system software version 4.1 or later.

However, not all printer drivers support all features provided by the PrGeneral

procedure. (When you call the PrGeneral procedure, described in “Getting and Setting

Printer Information” beginning on page 9-28, it in turn calls the current printer driver to

get or set the desired information.) After calling PrGeneral and passing it a particular

opcode, you should call the PrError function and test whether it returns the

opNotImpl result code, which indicates that the printer driver does not support that

particular opcode.

C H A P T E R 9

Printing Manager

9-16 Using the Printing Manager

All printable documents must have a TPrint record. Each TPrint record contains

information about page size, number of copies requested, and the range of pages the

user wants printed. Although only the information the user specifies through the style

dialog box should be preserved each time the user prints the document, you can save the

entire TPrint record when you save the document. The next time the user opens the

document, you can retrieve the user’s preferences as saved in the TPrint record and

then use the PrValidate function to validate the fields of the TPrint record.

To print a user’s document, you must first create or validate a TPrint record for the

document. You can use the PrintDefault procedure to initialize the values in a

TPrint record. You can use the PrValidate function to check that an existing TPrint

record is compatible with the current printer and its driver. Your application should

include a printing loop that handles printing and checks for printing errors at every step.

You should never assume the type of printer that has been selected; your application

should always be able to print to any type of printer. However, for some special features

that are not supported by QuickDraw (notably rotated text and graphics, dashed lines,

and hairlines), you may want to create two versions of your drawing code: one that uses

picture comments to take advantage of the features, and another that provides

QuickDraw-based implementations of these features. Using picture comments, your

application can instruct printer drivers to perform operations that QuickDraw does not

support. For more information, see Appendix B, “Using Picture Comments for Printing,”

in this book.

The rest of this section describes how you can

■ create and use a TPrint record

■ structure your printing loop to print a document

■ use the PrGeneral procedure to determine printer characteristics

■ alter the style and job dialog boxes

■ write an idle procedure that runs during printing

■ handle printing errors

Be aware that the burden of maintaining backward compatibility with early

Apple printer models—as well as maintaining compatibility with over a hundred

existing printer drivers—requires extra care on your part. When the Printing Manager

was initially designed, it was intended to support ImageWriter printers directly attached

to Macintosh computers with only a single floppy disk and 128 KB of RAM. Later, the

Printing Manager was implemented on PostScript LaserWriter printer drivers for more

powerful Macintosh computers sharing LaserWriter printers on networks. Since then,

the Printing Manager has been implemented on a substantial—and unanticipated—

number of additional Apple and third-party printer drivers, each in its own, slightly

unique way. When you use Printing Manager routines and data structures, you should

be especially wary of and defensive about possible error conditions. Because Apple has

little control over the manner in which third parties support the Printing Manager in

their printer drivers, you should test your application’s printing code on as many

printers as possible.

C H A P T E R 9

Printing Manager

Using the Printing Manager 9-17

Creating and Using a TPrint Record
To print a document, you need a valid TPrint record that is formatted for the current

versions of the Printing Manager and the printer driver.

To create a new TPrint record, you must first create a handle to it with a Memory

Manager function such as NewHandle or NewHandleClear. You then must use the

PrintDefault procedure to set the fields of the record to the default values for the

current printer driver, as illustrated in the following code fragment.

VAR

prRecHdl: THPrint;

{allocate handle to a TPrint record}

prRecHdl := THPrint(NewHandleClear(SizeOf(TPrint)));

IF prRecHdl <> NIL THEN

PrintDefault(prRecHdl) {sets appropriate default values }

 { for current printer driver}

ELSE

; {handle error here}

You can also use an existing TPrint record (for instance, one saved with a document).

If you use an existing TPrint record, be sure to call the PrValidate function before

using the TPrint record to make sure it’s valid for the current version of the Printing

Manager and for the current printer driver.

Listing 9-1 shows an application-defined routine that reads a TPrint record that the

application has saved as a resource of type 'SPRC' with the document. (The Resource

Manager routines CurResFile, UseResFile, Get1Resource, and DetachResource

that are shown in this listing are described in the chapter “Resource Manager” in Inside
Macintosh: More Macintosh Toolbox.)

Listing 9-1 Reading a document’s TPrint record

FUNCTION MyGetPrintRecordForThisDoc (refNum: Integer;

 VAR prRecHdl: THPrint;

 VAR prRecChanged: Boolean):

 OSErr;

VAR

saveResFile: Integer;

BEGIN

saveResFile := CurResFile; {save the resource file for the document}

UseResFile(refNum);

prRecHdl := THPrint(Get1Resource('SPRC', kDocPrintRec));

IF prRecHdl <> NIL THEN

C H A P T E R 9

Printing Manager

9-18 Using the Printing Manager

BEGIN

DetachResource(Handle(prRecHdl));

prRecChanged := PrValidate(prRecHdl); {validate TPrint record}

MyGetPrintRecordForThisDoc := PrError;

END

ELSE

MyGetPrintRecordForThisDoc := kNILHandlePrintErr;

UseResFile(saveResFile);

END;

You should save the TPrint record when the user saves the document. By doing

this, you can save any preferences that the user has selected for printing that document,

such as orientation of the page or page size. See the chapter “Resource Manager” in

Inside Macintosh: More Macintosh Toolbox for information about saving data such as

TPrint records in resources.

Every printer driver uses the fields of the TPrint record differently. To maintain

compatibility with the Printing Manager, you should follow these guidelines:

■ Do not test for the contents of undocumented fields.

■ Do not set fields in the TPrint record directly.

■ Use the print dialog boxes provided by the printer drivers or, if you want to
customize these dialog boxes, alter them only as recommended in “Altering the Style
or Job Dialog Box” on page 9-35.

Printing a Document
When writing an application, the code you provide that handles printing is referred to as

the printing loop. A printing loop calls all the Printing Manager routines necessary to

print a document. In general, a printing loop must do the following tasks:

■ It must unload unused code segments to ensure that you have as much memory as
possible in which to print.

■ It must open the Printing Manager and the current printer driver by using the
PrOpen procedure.

■ It must set up a valid TPrint record for the document (using any values the user
previously specified through the style dialog box) by using the PrintDefault
procedure or the PrValidate function. (When the user is printing from the Finder, it
is best not to display the style dialog box, but rather to use saved or default settings
for the document.)

C H A P T E R 9

Printing Manager

Using the Printing Manager 9-19

■ It must display the job dialog box as appropriate by using the PrJobDialog function
or, for a customized job dialog box, the PrDlgMain function. (When the user is
printing from the Finder, display the job dialog box only once, and then use the
PrJobMerge procedure to apply the information from this dialog box to any other
documents selected by the user.)

■ It must determine the number of pages required to print the requested range of pages
by examining the fields of the TPrint record. (Depending on the page rectangle of
the current printer, the amount of data you can fit on a physical page of paper may
differ from that displayed on the screen, although it is usually the same.)

■ It must determine the number of copies to print by examining the TPrint record.

■ It may display a status dialog box indicating to the user the status of the current
printing operation by using the Dialog Manager function GetNewDialog (described
in the chapter “Dialog Manager” in Inside Macintosh: Macintosh Toolbox Essentials).

■ If it displays a status dialog box, it must install an idle procedure in the pIdleProc
field of the TPrJob record (which is contained in the TPrint record) to update
information in the status dialog box and to check whether the user wants to cancel the
operation. (The default idle procedure also performs this check, but if you update
information in your status dialog box you must provide your own idle procedure.)

■ It must print the requested range of pages for each requested copy by

■ using the PrOpenDoc function to open a printing graphics port if the current page
number is the first page or a multiple of the value represented by the constant
iPFMaxPgs

■ opening a page for printing by using the PrOpenPage procedure

■ printing the page by drawing into the printing graphics port with the QuickDraw
routines described in the rest of this book

■ closing the page by using the PrClosePage procedure

■ using the PrCloseDoc procedure to close the printing graphics port and begin
printing the requested range of pages

■ checking whether the printer driver is using deferred printing and, if so, using the
PrPicFile procedure to send the spool file to the printer

■ Finally, the printing loop must close the Printing Manager by using the PrClose
procedure.

C H A P T E R 9

Printing Manager

9-20 Using the Printing Manager

Listing 9-2 shows an extremely broad example of a printing loop—the code does not

optimize for the type of printer being used or for the material being printed (text,

graphics, or a mixture of both). However, this sample routine, called MyPrintLoop,

does cover the major aspects of a printing loop: how to balance calls to the open and

close routines, how to determine page count, and how to provide support for documents

exceeding the maximum page length specified by the constant iPFMaxPgs.

Listing 9-2 A sample printing loop

PROCEDURE MyPrintLoop(docToPrint: MyDocRecHnd; displayJob: Boolean);

VAR

copies, numberOfCopies: Integer;

firstPage, lastPage: Integer;

pageNumber, numberOfPages: Integer;

doPrint, changed: Boolean;

oldPort: GrafPtr;

theStatus: TPrStatus;

printError: Integer;

BEGIN

GetPort(oldPort);

MyUnLoadTheWorld; {swap out those segments of code not needed to print}

PrOpen; {open Printing Manager and the current printer driver}

IF (PrError = noErr) THEN

BEGIN

gPrintResFile := CurResFile; {save the current resource file}

gPrintRec := docToPrint^^.docPrintRecHdl; {set to this doc's print rec}

changed := PrValidate(gPrintRec); {verify TPrint record}

IF (PrError = noErr) THEN

BEGIN

{determine the number of pages required to print the document}

numberOfPages := MyDetermineNumOfPages(gPrintRec^^.prInfo.rPage);

{display job dialog box if requested, else use previous settings}

IF displayJob THEN

doPrint := PrJobDialog(gPrintRec)

ELSE

doPrint := MyDoJobMerge(gPrintRec);

IF doPrint THEN

BEGIN

numberOfCopies := gPrintRec^^.prJob.iCopies;

firstPage := gPrintRec^^.prJob.iFstPage;{save first page number}

lastPage := gPrintRec^^.prJob.iLstPage; {save last page number}

gPrintRec^^.prJob.iFstPage := 1; {reset to 1}

gPrintRec^^.prJob.iLstPage := iPrPgMax; {reset to maximum}

C H A P T E R 9

Printing Manager

Using the Printing Manager 9-21

 IF (numberOfPages < lastPage) THEN

lastPage := numberOfPages; {to prevent printing past last }

{ page}

{display a "Print Status" dialog box (optional)-- }

{ first, deactivate front window}

MyDoActivateFrontWindow(FALSE, oldPort);

gPrintStatusDlg := GetNewDialog(kPrintStatus, NIL, Pointer(-1));

{set up dialog items (insert name of document being printed)}

MySetUpDBoxItems(docToPrint);

ShowWindow(gPrintStatusDlg); {display the dialog box}

{set up idle procedure (for later use)}

gPrintRec^^.prJob.pIdleProc := @MyDoPrintIdle;

{print the requested number of copies}

FOR copies := 1 TO numberOfCopies DO

BEGIN

UseResFile(gPrintResFile);{restore driver's resource file}

{print the requested range of pages of the document}

FOR pageNumber := firstPage TO lastPage DO

BEGIN

{check current page number against iPFMaxPgs}

IF (pageNumber - firstPage) MOD iPFMaxPgs = 0 THEN

BEGIN

IF pageNumber <> firstPage THEN

{if max size of spool file has been reached (and this }

{ isn't the first page), then close the document, }

{ initiate printing, then reopen the document}

BEGIN

PrCloseDoc(gPrinterPort);

{next line tests for deferred printing}

IF (gPrintRec^^.prJob.bJDocLoop = bSpoolLoop)

AND (PrError = noErr) THEN

PrPicFile(gPrintRec, NIL, NIL, NIL, theStatus);

END;

{if this is the first page or a multiple of iPFMaxPgs, }

{ then open the document for printing}

gPrinterPort := PrOpenDoc(gPrintRec, NIL, NIL);

END; {of check current page number}

IF (PrError = noErr) THEN

BEGIN {print a page}

PrOpenPage(gPrinterPort, NIL);

IF (PrError = noErr) THEN

{draw (print) a page in the printable area for the }

{ current printer (indicated by the rPage field)}

C H A P T E R 9

Printing Manager

9-22 Using the Printing Manager

MyDrawStuff (gPrintRec^^.prInfo.rPage, docToPrint,

 GrafPtr(gPrinterPort), pageNumber);

PrClosePage(gPrinterPort);

END; {of print a page}

END; {of print the requested range of pages}

PrCloseDoc(gPrinterPort);

IF (gPrintRec^^.prJob.bJDocLoop = bSpoolLoop) AND

(PrError = noErr) THEN

PrPicFile(gPrintRec, NIL, NIL, NIL, theStatus);

END;

END;

END;

END;

printError := PrError;

PrClose;

IF (printError <> noErr) THEN

DoError(ePrint, printError);

DisposeDialog(gPrintStatusDlg);

SetPort(oldPort);

MyDoActivateFrontWindow(TRUE, oldPort); {activate window}

END;

The MyPrintLoop procedure starts by getting a pointer to the current graphics port.

Then it calls an application-defined routine, MyUnloadTheWorld, that swaps out code

segments not required during printing. Then it opens the Printing Manager and the

current printer driver and its resource file by calling PrOpen.

The MyPrintLoop procedure saves the current resource file (after calling PrOpen, the

current resource file is the driver’s resource file) so that, if its idle procedure changes the

resource chain in any way, it can restore the current resource file before returning; thus

the driver does not lose access to its resources. The MyPrintLoop procedure then

uses the PrValidate function to change any values in the TPrint record associated

with the document to match those specified by the current printer driver; these values

can be changed later by the printer driver as a result of your application’s use of the

PrStlDialog and PrJobDialog functions. (Your application passes a handle to a

TPrint record to the PrStlDialog and PrJobDialog functions, and these

procedures modify the TPrint record according to the user’s interaction with the style

and job dialog boxes.) The MyPrintLoop procedure calls PrValidate rather than

PrintDefault to preserve any values that the user might have previously set through

the style dialog box.

C H A P T E R 9

Printing Manager

Using the Printing Manager 9-23

To print a document, you must divide the data into sections that fit within the page

rectangle dimensions stored in the rPage field of the TPrJob record, which is contained

in the TPrint record. (This information is stored in the rPage field when you call the

PrintDefault, PrValidate, or PrStlDialog routine.) The application-defined

function MyDetermineNumOfPages is specific to the application, because the way the

application divides up the data depends on the type of text and graphics in the

document. The MyDetermineNumOfPages function determines the number of pages

required to print the document by comparing the size of the document with the

printable area for the current printer, which is specified by the value in the rPage field

of the TPrJob record in the TPrint record.

After determining the number of pages required to print the document, MyPrintLoop

displays the job dialog box if the calling routine requested it to do so. If the user prints

multiple documents at once, the calling routine sets the displayJob parameter to TRUE

for the first document and FALSE for subsequent documents. This allows the user to

specify values in the job dialog box only once when printing multiple documents. It also

provides an application with the ability to print documents in the background (for

example, as the result of responding to the Apple event Print Documents) without

requiring the application to display the job dialog box.

The user’s responses in the job dialog box provide such information as the number of

copies and the page numbers of the first and last pages requested. The MyPrintLoop

procedure stores these values in the local variables firstPage and lastPage. It then

resets the value of the first page in the TPrJob record as 1 and resets the value of the last

page to the value represented by the constant iPrPgMax.

The MyPrintLoop procedure compares the values of the number of pages in the

document with the last page the user requested and changes the last page number as

necessary. For example, if the user asks to print page 50 of a two-page document,

MyPrintLoop resets the value of the last page to 2.

At this point, MyPrintLoop is about to begin the process of sending the pages off to be

printed. So it displays its own status dialog box to inform the user of the current status of

the printing operation. If your status dialog box provides a button or reports on the

progress of the printing operation, you need to handle events in the dialog box by

providing an idle procedure. Your idle procedure should update the items in your status

dialog box to show the current progress of the printing operation, and it should

determine whether the user has canceled the printing operation. The printer driver calls

the idle procedure periodically during the printing process. For more information on idle

procedures, see “Writing an Idle Procedure” on page 9-38.

After installing its idle procedure, the MyPrintLoop procedure then begins the printing

operation by performing a number of steps for each requested copy. First, MyPrintLoop

restores the current resource file to the printer driver’s resource file.

C H A P T E R 9

Printing Manager

9-24 Using the Printing Manager

MyPrintLoop then begins the process of printing each page. The maximum number of

pages that can be printed at a time is represented by the constant iPFMaxPgs. If the file

is larger than the value represented by iPFMaxPgs, your application can print the

number of pages represented by iPFMaxPgs and then begin the printing loop again

with the next section of the document. In this way, you can print any number of pages.

Next, MyPrintLoop opens a page for printing and draws the page in the printing

graphics port with the application-defined MyDrawStuff procedure, the details of

which are specific to the application. The parameters to MyDrawStuff are the size of the

page rectangle, the document containing the data to print, the printing graphics port in

which to draw, and the page number to be printed. This allows the application to use the

same code to print a page of a document as it uses to draw the same page on screen.

When MyPrintLoop is finished printing (or has printed a multiple of the value

represented by the constant iPFMaxPgs), it closes the printing graphics port for the

document. By testing for the bSpoolLoop constant in the bJDocLoop field of the

TPrJob record, MyPrintLoop determines whether a printer driver is using deferred

printing; if so, MyPrintLoop calls the PrPicFile procedure, which sends the spool file

to the printer.

Some QuickDraw printer drivers (in particular, those for the ImageWriter and

ImageWriter LQ printers) provide two methods of printing documents: deferred and

draft-quality. Typically, the printer driver uses deferred printing when a user chooses

Best in the job dialog box, and it uses draft-quality printing when the user chooses Draft.

Deferred printing was designed to allow ImageWriter printers to spool a page image to

disk when printing under the low memory conditions of the original 128 KB Macintosh

computer. With deferred printing, a printer driver records each page of the document’s

printed image in a structure similar to a QuickDraw picture, which the driver writes to a

spool file. For compatibility with printer drivers that still support deferred printing, use

the PrPicFile procedure to instruct these printer drivers to turn the QuickDraw

pictures into bit images and send them to the printer. (Draft-quality printing, on the

other hand, is a method by which a printer driver converts into drawing operations calls

only to QuickDraw’s text-drawing routines. The printer driver sends these routines

directly to the printer instead of using deferred printing to capture the entire image for a

page in a spool file.)

Note

Do not confuse background printing with deferred printing. While
printer drivers supporting background printing also create spool files,
you do not need to use the PrPicFile procedure to send these spool
files to the printer. In fact, there is no reliable way for you to determine
whether a printer driver is using a spool file for background printing. ◆

C H A P T E R 9

Printing Manager

Using the Printing Manager 9-25

The MyPrintLoop procedure concludes by closing the Printing Manager, reporting any

Printing Manager errors, and resetting the current graphics port to the original port.

In your printing loop, you should balance all calls to Printing Manager open routines to

the equivalent Printing Manager close routines. This is extremely important, even if you

stop printing because of an error. Failure to call the matching close routines can cause the

Printing Manager to perform incorrectly.

Note that MyPrintLoop calls PrError after each Printing Manager routine. If an error

is found, the loop calls a close routine (PrClose, PrClosePage, or PrCloseDoc) for

any Printing Manager open routines (PrOpen, PrClosePage, or PrOpenDoc) before

informing the user of the error. You should use this approach in your own application to

make sure the Printing Manager closes properly and all temporary memory is released.

▲ W A R N I N G

Some applications use a method of printing that prints out each page of
a spooled document as a separate print job in order to avoid running out
of disk space while spooling the document. You should not use this
method, known as “spool a page, print a page.” It is appropriate only
for a printer directly connected to the user’s computer (that is, not to a
network) and therefore creates device dependence—and also it’s
extremely slow. If the printer is a remote or shared device (such as a
LaserWriter printer connected by an AppleTalk network), another
application could print a document between the pages of your user’s
document. At worst, if both applications printing to the shared printer
use the “spool a page, print a page” method, the printed documents
could end up interleaved. The pages for one of the documents could be
out of order, even when printed by itself on a shared, network printer. ▲

Printing From the Finder

Typically, users print documents that are open on the screen one at a time while the

application that created the document is running. Alternatively, users can print one or

more documents from the Finder. To print documents from the Finder, the user selects

one or more document icons and chooses the Print command from the File menu. When

the Print command is chosen, the Finder starts up the application and passes it an Apple

event—the Print Documents event—indicating that the documents are to be printed

rather than opened on the screen.

As explained in Inside Macintosh: Interapplication Communication, your application should

support the required Apple events, which include the Print Documents event. In

response to a Print Documents event, your application should do the following:

1. Your application should not open windows for the documents.

2. For style information, your application should use saved or default settings instead of
displaying the style dialog box to ask this information from the user.

C H A P T E R 9

Printing Manager

9-26 Using the Printing Manager

3. Your application should use the PrJobDialog function (described on page 9-62) or
the PrDlgMain function (described on page 9-63) to display the job dialog box only
once. When the user clicks the OK button in the job dialog box, you can then use the
PrJobMerge procedure (described on page 9-66) to apply the information specified
by the user to all of the documents selected from the Finder.

For example, if the user has selected three documents to print, you can display the job
dialog box only once and then apply the same information supplied by the user to all
three documents. Figure 9-10 shows a situation where, through the job dialog box, the
user has specified the number of copies and the range of pages to print. In this
example, the application applies this job information to the TPrint record of the
three documents by calling PrJobMerge. Note that PrJobMerge preserves the fields
of the TPrint record that are specific to each document (that is, the fields that are set
by the user through the style dialog box).

4. Your application should remain open until the Finder sends your application a Quit
event. If appropriate, the Finder sends your application this Apple event immediately
after sending it the Print Documents event.

Figure 9-10 How the PrJobMerge procedure works

See Inside Macintosh: Interapplication Communication for more information about how to

handle the Print Documents and Quit events.

C H A P T E R 9

Printing Manager

Using the Printing Manager 9-27

Providing Names of Documents Being Printed

Some printer drivers (usually those for printers such as LaserWriter printers that are

shared among many users) provide the names of the users who are printing and the

documents that are being printed to others interested in using the printer. Providing the

names of users and documents is a courtesy to other users sharing the printer on a

network. The printer driver gets the name of the document being printed from the title

of the frontmost window on the user’s screen. The PrOpenDoc and PrValidate

functions call the Window Manager procedure FrontWindow to get the document’s

name.

Printer drivers can’t get a document name if your application doesn’t display windows

while printing. For example, applications should not open windows for their documents

when the user prints from the Finder. If there is no front window, or if the window’s title

is empty, the printer driver sets the document name to “Unspecified” or “Untitled.”

You can ensure that the document name is available by displaying a printing status

dialog box and setting the window’s title to the document’s name. If the dialog box is

one that doesn’t have a title bar (like that of type dBoxProc), this title is not displayed

but the current printer driver can still use the title as the document’s name. If you don’t

want to put up a visible window, you can create a tiny window (for instance, type

plainDBox) and hide it behind the menu bar by giving it the global coordinates of

(1,1,2,2). See the chapter “Window Manager” in Inside Macintosh: Macintosh Toolbox
Essentials for information about the dBoxProc and plainDBox window types.

Note

Do not set the document name in the TPrint record directly. Not all
printer drivers support this field, and Apple does not guarantee that
internal fields of the Printing Manager’s data structures will remain the
same. ◆

Printing Hints

QuickDraw is the primary means you use to print, and in general you can

use QuickDraw in the printing graphics port exactly as you would for a screen’s

graphics port. There are a few things to note when drawing to the printing graphics port:

■ Don’t depend on values in a printing graphics port remaining identical from page to
page. With each new page, you usually get reinitialized font information and other
characteristics for the printing graphics port.

■ Don’t make calls that don’t do anything on the printer. For example, QuickDraw erase
routines such as EraseRect are quite time-consuming and normally aren’t needed
on the printer. An erase routine takes time because every bit (90,000 bits per square
inch on a 300 dpi LaserWriter) has to be cleared. Paper does not need to be erased the
way the screen does. Also avoid using the TextBox procedure, which makes calls to
the EraseRect procedure. You might want to use a different method of displaying
text (for example, DrawString or DrawText) or write your own version of
TextBox. See the chapter “QuickDraw Text” in Inside Macintosh: Text.

C H A P T E R 9

Printing Manager

9-28 Using the Printing Manager

■ Don’t use clipping to select text to be printed. There are a number of subtle differences
between how text appears on the screen and how it appears on the printer; you can’t
count on knowing the exact dimensions of the rectangle occupied by the text.

■ Don’t use fixed-width fonts to align columns. Because spacing is adjusted on the
printer, you should explicitly move the pen to where you want it.

■ Don’t use the outline font style to create white text on a black background.

■ Avoid changing fonts frequently.

■ Because of the way rectangle intersections are determined, you slow printing
substantially if your clipping region falls outside of the rectangle given by the rPage
field of the TPrInfo record of the TPrint record.

Getting and Setting Printer Information
You can determine the resolution of the printer, set the resolution you want, find out if

the user has selected landscape printing, or force enhanced draft-quality printing by

using the PrGeneral procedure. You call the PrGeneral procedure with one of five

opcodes: getRslDataOp, setRslOp, getRotnOp, draftBitsOp, or

noDraftBitsOp. These opcodes have data structures associated with them.

When you call the PrGeneral procedure, it in turn calls the current printer driver to get

or set the desired information. Not all printer drivers support all features provided by

the PrGeneral procedure, however, so your application can’t depend on its use.

Listing 9-3 shows an application-defined routine, DoIsPrGeneralThere, that checks

whether the current printer driver supports the PrGeneral procedure. First,

DoIsPrGeneralThere sets the opcode field of the TGetRotnBlk record to the

getRotnOp opcode—the opcode used to determine whether the user has chosen

landscape orientation. Then DoIsPrGeneralThere passes the address of the

TGetRotnBlk record to the PrGeneral procedure. It then calls PrError to get any

errors that result from calling PrGeneral. If the error is resNotFound, the printer

driver does not support PrGeneral.

C H A P T E R 9

Printing Manager

Using the Printing Manager 9-29

Listing 9-3 Checking whether the current printer driver supports the PrGeneral procedure

FUNCTION DoIsPrGeneralThere: Boolean;

VAR

getRotRec: TGetRotnBlk;

myPrintErr: OSErr;

BEGIN

myPrintErr := 0;

getRotRec.iOpCode := getRotnOp; {set the opcode}

getRotRec.hPrint := gMyPrRecHdl; {TPrint record this operation applies to}

PrGeneral(@getRotRec);

myPrintErr := PrError;

PrSetError(noErr);

IF (myPrintErr = resNotFound) THEN {the current driver doesn't support }

DoIsPrGeneralThere := FALSE; { PrGeneral}

ELSE

DoIsPrGeneralThere := TRUE; {current driver supports PrGeneral}

END;

After determining that the current printer driver supports PrGeneral, you can use

PrGeneral to

■ determine and set the resolution of the current printer

■ determine the current page orientation

■ force enhanced draft-quality printing

As an alternative to testing for PrGeneral, your application can call PrGeneral and

then test whether PrError error returns the opNotImpl result code, which indicates

that the printer driver either does not support PrGeneral or does not support that

particular opcode.

These operations are discussed in the following sections.

C H A P T E R 9

Printing Manager

9-30 Using the Printing Manager

Determining and Setting the Resolution of the Current Printer

Some printer drivers support only one of the two possible kinds of resolution: discrete or

variable. You can use the PrGeneral procedure to determine the kind of resolution

supported by the current printer and then use the highest resolution desired by your

application or the user.

Each printer has its own imaging capabilities. When you call PrGeneral with the value

getRslDataOp in the iOpCode field of the TGetRslBlk record, PrGeneral returns

the resolutions that the printer supports. Figure 9-11 shows TGetRslBlk records

(described on page 9-53) returned by the drivers for a 300-dpi LaserWriter PostScript

printer and a QuickDraw ImageWriter printer. Because it supports variable resolutions,

the TGetRslBlk record for the LaserWriter driver specifies minimum and maximum

resolutions in the x and y directions. Because it uses discrete resolutions, the

TGetRslBlk record for the ImageWriter driver specifies no minimum or maximum

resolutions in the x and y directions, but instead specifies the four discrete resolutions it

supports.

Figure 9-11 Sample resolutions for a PostScript printer and a QuickDraw printer

C H A P T E R 9

Printing Manager

Using the Printing Manager 9-31

A TPrint record contains the x and y resolutions that the printer uses in printing the

data associated with the TPrint record. For each TPrint record you use, you can either

use the default values or you can specify the particular imaging resolution that you want

to use. To do this, you can call PrGeneral, specifying the value setRslOp in the

iOpCode field and specifying the x and y resolutions in the iXRsl and iYRsl fields of

the TSetRslBlk record (which is described on page 9-54). The PrGeneral procedure

returns the noErr result code if it has updated the TPrint record with this new

resolution, or it returns the noSuchRsl result code if the current printer doesn’t support

this resolution.

Listing 9-4 illustrates how to use the PrGeneral procedure to determine the possible

resolutions for the current printer and then set a TPrint record to the desired resolution.

Listing 9-4 Using the getRslDataOp and setRslOp opcodes with the PrGeneral procedure

FUNCTION DoSetMaxResolution (thePrRecHdl: THPrint): Integer;

VAR

maxDPI: Integer;

resIndex: Integer;

getResRec: TGetRslBlk;

setResRec: TSetRslBlk;

BEGIN

maxDPI := 0;

getResRec.iOpCode := getRslDataOp;{get printer resolution info}

PrGeneral(@getResRec);

IF (getResRec.iError = noErr) AND (PrError = noErr) THEN

BEGIN

{the TGetRslBlk record contains an array of possible resolutions-- }

{ so loop through each resolution range record looking for }

{ the highest resolution available where x and y are equal}

FOR resIndex := 1 TO (getResRec.iRslRecCnt) DO

BEGIN

IF (getResRec.rgRslRec[resIndex].iXRsl =

 getResRec.rgRslRec[resIndex].iYRsl) AND

(getResRec.rgRslRec[resIndex].iXRsl > maxDPI) THEN

maxDPI := getResRec.rgRslRec[resIndex].iYRsl;

END;

{set the resolution to the maximum supported resolution}

IF maxDPI <> 0 THEN

BEGIN

WITH setResRec DO

BEGIN

iOpCode := setRslOp;

hPrint := thePrRecHdl;

C H A P T E R 9

Printing Manager

9-32 Using the Printing Manager

iXRsl := maxDPI;

iYRsl := maxDPI;

END;

PrGeneral(@setResRec);

END; {end of maxDPI <> 0}

IF (setResRec.iError = noErr) AND (PrError = noErr) AND

(maxDPI <> 0) THEN

DoSetMaxResolution := maxDPI;

END

ELSE

DoSetMaxResolution := 0;

END;

You can reset the original resolutions by calling the PrGeneral procedure with the

setRslOp opcode a second time. To do so, you should save the values contained in the

iVRes and iHRes fields of the TPrInfo record before making the first call to

PrGeneral. You can also reset the original resolutions by calling the PrintDefault

procedure with the TPrint record, which sets all of the fields of the TPrint record to

the default values of the current printer resource file. However, if you use

PrintDefault you lose all of the user’s selections from the last style dialog box. (You

may want to reset the original resolution because that may be the printer’s best

resolution, though not its highest.)

Based on the information you get with a call to PrGeneral using the getRslDataOp

opcode, you may decide to change the resolution with a call to PrGeneral using the

setRslOp opcode. If so, the printer driver may need to change the appearance of the

style and job dialog boxes by disabling some items. Therefore, you should determine and

set the resolution before you use the PrStlDialog and PrJobDialog functions (or the

PrDlgMain function) to present the print dialog boxes to the user.

Note that the style dialog boxes for some printers, such as the StyleWriter, may offer the

user a choice of printing in Best or Normal modes, which sets the printing at 360 or

180 dpi, respectively. Your application has no control over this setting. The printer driver

converts your drawing accordingly.

Determining Page Orientation

At times it can be useful for your application to determine which page orientation the

user selects in the style dialog box. For instance, if an image fits on a page only if it is

printed in landscape orientation (the prInfo field of the TPrint record defines a

smaller horizontal value for the paper rectangle than for the image rectangle) and the

user has not selected landscape orientation, your application can remind the user to

select this orientation before printing. Otherwise, the user gets a clipped image.

If you call the PrGeneral procedure with the getRotnOp opcode in the TGetRotnBlk

record (described on page 9-56), the printer driver returns in the fLandscape field of

this record a Boolean variable that indicates whether or not the TPrint record specifies

C H A P T E R 9

Printing Manager

Using the Printing Manager 9-33

landscape orientation. The user selects the type of orientation through the style dialog

box, and the printer driver updates the fields of the TPrint record accordingly.

Listing 9-5 shows an application-defined function, DoIsLandscapeModeSet, that

returns a Boolean value indicating whether the user has selected landscape orientation

for the current document.

Listing 9-5 Using the getRotnOp opcode with the PrGeneral procedure to determine page
orientation

FUNCTION DoIsLandscapeModeSet (thePrRecHdl: THPrint): Boolean;

VAR

getRotRec: TGetRotnBlk;

BEGIN

getRotRec.iOpCode := getRotnOp; {set opcode}

getRotRec.hPrint := thePrRecHdl; {specify TPrint record}

PrGeneral(@getRotRec); {get landscape orientation}

IF (getRotRec.iError = noErr) AND (PrError = noErr) AND

getRotRec.fLandscape THEN

DoIsLandscapeModeSet := TRUE

ELSE

DoIsLandscapeModeSet := FALSE;

END;

Enhancing Draft-Quality Printing

When the user selects faster, draft-quality printing from a job dialog box from some

printer drivers, the printer driver handles the printing operation appropriately.

However, you can force users to use an enhanced form of draft-quality printing on

ImageWriter printers (as well as on other printers that may support enhanced

draft-quality printing) by calling the PrGeneral procedure, specifying the

draftBitsOp opcode in a TDftBitsBlk record (described on page 9-55), and

specifying the TPrint record for the operation. If your application produces only text,

bitmaps, or pixel maps, this can increase performance and save disk space, because the

printer driver prints the document immediately, rather than spooling it to disk as with

deferred printing. The draftBitsOp opcode has no effect if the printer driver does not

support draft-quality printing or does not support deferred printing. If the driver does

not support the draftBitsOp opcode, the PrGeneral procedure returns the

opNotImpl result code.

With draft-quality printing, a printer driver like the ImageWriter printer driver converts

into drawing operations calls only to QuickDraw’s text-drawing routines. The printer

driver sends these text-drawing routines directly to the printer instead of using deferred

printing to capture the entire image for a page in a spool file. Draft-quality printing

produces quick, low-quality drafts of text documents that are printed straight down the

page, from top to bottom and left to right.

C H A P T E R 9

Printing Manager

9-34 Using the Printing Manager

Using the PrGeneral procedure, it’s possible to produce enhanced draft-quality

printing on some printers—such as ImageWriter printers. Normally,

draft-quality printing renders output consisting only of text. However,

enhanced draft-quality printing prints the bitmaps and pixel maps that your

application draws using the CopyBits procedure (described in the chapter

“QuickDraw Drawing” in this book) without using deferred printing to write to and

read from a spool file.

Because it’s supported by so few printer drivers, and because it offers little in the way of

extra capability, enhanced draft-quality printing has limited usefulness.

To use enhanced draft-quality printing, call PrGeneral with the draftBitsOp opcode

before using the PrStlDialog and PrJobDialog functions or the PrDlgMain

function to present the style dialog box and job dialog box to the user. The use of the

draftBitsOp opcode may cause items in the print dialog boxes to become inactive.

For the ImageWriter printer driver, for example, the use of the draftBitsOp opcode

makes the landscape icon in the style dialog box and the Best and Faster options in the

job dialog box inactive.

IMPORTANT

If you call PrGeneral with the draftBitsOp opcode after using the
PrJobDialog or PrDlgMain function, and if the user chooses draft
printing from the job dialog box, the ImageWriter printer does not print
any bitmaps or pixel maps contained in the document. ▲

Listing 9-6 illustrates how to implement enhanced draft-quality printing.

Listing 9-6 Using the draftBitsOp opcode with the PrGeneral procedure for enhanced
draft-quality printing

FUNCTION DoDraftBits (thePrRecHdl: THPrint): Boolean;

VAR

draftBitsBlk: TDftBitsBlk;

BEGIN

draftBitsBlk.iOpCode := draftBitsOp;{set the opcode}

draftBitsBlk.hPrint := thePrRecHdl; {specify the TPrint record}

PrGeneral(@draftBitsBlk); {use enhanced draft quality}

IF (draftBitsBlk.iError = noErr) AND (PrError = noErr) THEN

DoDraftBits := TRUE {this TPrint record specifies }

{ enhanced draft printing}

ELSE

DoDraftBits := FALSE; {this TPrint record does not }

{ specify enhanced draft printing}

END;

C H A P T E R 9

Printing Manager

Using the Printing Manager 9-35

You should keep one additional point in mind when using the draftBitsOp opcode:

all of the data that is printed must be sorted along the y axis, because reverse paper

motion is not possible on the ImageWriter printer when printing in draft-quality mode.

This means that you cannot print two objects side by side; that is, the top boundary of an

object cannot be higher than the bottom boundary of the previous object. To get around

this restriction, you should sort your objects before print time.

You can call PrGeneral with the noDraftBitsOp opcode to use regular draft-quality

printing again. If you call PrGeneral with noDraftBitsOp without first calling

draftBitsOp, the procedure does nothing. As with the draftBitsOp opcode, you

should call PrGeneral with the noDraftBitsOp opcode before you present the style

and job dialog boxes to the user.

Altering the Style or Job Dialog Box
Each printer resource file includes definitions of the standard style and job dialog boxes

that are specific to the type of printer managed by its printer driver. The PrStlDialog

and PrJobDialog functions display the style and job dialog boxes defined by the

resource file of the current printer.

For example, the standard style and job dialog boxes for the LaserWriter printer driver

are shown in Figure 9-3 on page 9-7 and Figure 9-5 on page 9-8, respectively. The

standard dialog boxes provided by the StyleWriter printer driver are shown in Figure 9-2

on page 9-6 and Figure 9-4 on page 9-7. Each dialog box has options that the user can set.

If you want to use the standard style or job dialog box provided by the printer driver for

the current printer, call the PrStlDialog function or the PrJobDialog function.

You may wish to add some additional options to these dialog boxes so that the user can

customize the printing process even further. For example, Figure 9-12 illustrates a print

job dialog box with two additional checkboxes: Print Selection Only and Skip Blank

Pages.

Figure 9-12 A print job dialog box with additional checkboxes

C H A P T E R 9

Printing Manager

9-36 Using the Printing Manager

You must follow these guidelines if you alter the style or job dialog boxes:

■ Add additional options below the standard ones in the dialog box and don’t change
the standard ones—that is, don’t delete, rearrange, or add new items in the existing
list.

■ Don’t count on an item retaining its current position on the screen or in the dialog
item list.

■ Don’t use more than half the smallest screen height for your items. (The smallest
screen height is the 9-inch Macintosh Classic screen.) Printer drivers are allowed to
expand the items in the standard dialog boxes to fill the top half of a 9-inch screen.

■ If you want to add a lot of items to the dialog boxes, be aware this may confuse users.
You should consider having your own separate dialog box in addition to the existing
style and job dialog boxes.

You can customize a style or job dialog box by undertaking the following steps:

■ Use the PrOpen procedure to open the Printing Manager.

■ Use the PrStlInit or PrJobInit function to initialize a TPrDlg record. This
record, described on page 9-50, contains the information needed to set up the style or
job dialog box.

■ Define an initialization routine that appends items to the printer driver’s style or job
dialog box. Your initialization routine should

■ use the Dialog Manager procedure AppendDITL to add items to the dialog box
whose TPrDlg record you initialized with PrStlInit or PrJobInit

■ install two functions in the TPrDlg record: one—in the pFltrProc field—for
handling events (such as update events for background applications) that the
Dialog Manager doesn’t handle in a modal dialog box, and another—in the
pItemProc field—for handling events in the items added to the dialog box (for
example, when the user clicks a checkbox that your application adds)

■ return a pointer to the TPrDlg record

■ Pass the address of your initialization routine to the PrDlgMain function to display
the dialog box.

■ Respond to the dialog box as appropriate.

■ Use the PrClose procedure when you are finished using the Printing Manager.

The event filter function pointed to in the pFltrProc field of the TPrDlg record

extends the Dialog Manager’s ability to handle events. When your application displays

the style or job dialog box, you can use an event filter function to handle events that the

Dialog Manager doesn’t handle for modal dialog boxes. The chapter “Dialog Manager”

in Inside Macintosh: Macintosh Toolbox Essentials describes how to write an event filter

function for the Dialog Manager.

C H A P T E R 9

Printing Manager

Using the Printing Manager 9-37

The routine you supply in the pItemProc field of the TPrDlg record should handle

events in the items you add to the dialog box. Sometimes called a dialog hook, this routine

typically responds to clicks in the radio buttons or checkboxes that you add to the

dialog box.

Listing 9-7 shows an application-defined routine called DoPrintDialog that specifies

its own initialization function, called MyPrDialogAppend.

Listing 9-7 Installing an initialization function to alter the print job dialog box

FUNCTION DoPrintDialog: OSErr; {display print job dialog box}

BEGIN

PrOpen; {open the Printing Manager}

gPrintRec := THPrint(NewHandle(sizeof(TPrint)));{create a TPrint record}

PrintDefault(gPrintRec); {use default values for the TPrint record}

gPrJobDialogBox := PrJobInit(gPrintRec); {get a pointer to the }

{ invisible job dialog box}

{use PrDlgMain to display the altered job dialog box}

IF (PrDlgMain(gPrintRec, @MyPrDialogAppend)) THEN

MyPrintDoc;

PrClose; {close the Printing Manager}

END;

The application-defined routine MyPrDialogAppend is shown in Listing 9-8. It uses

the Resource Manager function GetResource to get a handle to an item list ('DITL')

resource containing the two extra checkboxes shown in Figure 9-12 on page 9-35. Using

the Dialog Manager procedure AppendDITL, MyPrDialogAppend appends the items

in this item list resource to the print job dialog box. Then MyPrDialogAppend

installs the application’s event filter function for modal dialog boxes. Finally,

MyPrDialogAppend installs it own routine, called HandleMyAppendedItems, to

handle clicks in the two newly installed checkboxes.

Listing 9-8 Adding items to a print job dialog box

FUNCTION MyPrDialogAppend (hPrint: THPrint): TPPrDlg;

VAR

 MyAppendDITLH: Handle;

BEGIN

IF gDITLAppended = FALSE THEN

 BEGIN

{first, get item list resource containing checkboxes}

 MyAppendDITLH := GetResource('DITL', kPrintingCheckBoxes);

C H A P T E R 9

Printing Manager

9-38 Using the Printing Manager

{next, append this item list resource to job dialog box}

 AppendDITL(DialogPtr(gPrJobDialogBox), MyAppendDITLH,

 appendDITLBottom);

 gDITLAppended := TRUE;

 END;

gFltrItemProc := LongInt(gPrJobDialogBox^.pFltrProc);

{put an event filter function (to handle events that Dialog }

{ Manager doesn't handle in modal dialog boxes) }

{ in the pFltrProc field of the TPrDlg record}

gPrJobDialogBox^.pFltrProc := ProcPtr(@MyEventFilter);

gPrItemProc := LongInt(gPrJobDialogBox^.pItemProc);

{put a dialog hook to handle clicks in appended items }

{ in the pItemProc field of the TPrDlg record}

gPrJobDialogBox^.pItemProc := ProcPtr(@HandleMyAppendedItems);

MyPrDialogAppend := gPrJobDialogBox;

END;

See the chapter “Dialog Manager” in Inside Macintosh: Macintosh Toolbox Essentials for

information about item list resources, event filter functions for modal dialog boxes, and

the AppendDITL procedure. See the chapter “Resource Manager” in Inside Macintosh:
More Macintosh Toolbox for information about the GetResource function.

Writing an Idle Procedure
The printer driver for the current printer periodically calls an idle procedure while it

sends a document to the printer. The TPrJob record contained in the TPrint record

contains a pointer to an idle procedure in the pIdleProc field. If this field contains the

value NIL, then the printer driver uses the Printing Manager’s default idle procedure.

The default idle procedure checks for Command-period keyboard events and sets the

iPrAbort error code if one occurs, so that your application can cancel the print job at

the user’s request. However, the default idle procedure does not display a print status

dialog box. It is up to the printer driver or your application to display a print

status dialog box.

Most printer drivers display their own status dialog boxes. However, your application

can display its own status dialog box that reports the current status of the printing

operation to the user. If it does, your status dialog box should allow the user to press

Command-period to cancel the printing operation, and it may also provide a button

allowing the user to cancel the printing operation. To handle update events in your

status dialog box, Command-period keyboard events, and clicks in your Cancel button

(if you provide one), you should provide your own idle procedure. (See Figure 9-9 on

page 9-14 for an example of an application-defined status dialog box.)

C H A P T E R 9

Printing Manager

Using the Printing Manager 9-39

Here are several guidelines you must follow when writing your own idle procedure.

■ If you designate an idle procedure, you must set the pIdleProc field of the TPrJob
record after presenting the style and job dialog boxes, validating the TPrint record,
and initializing the fields in the TPrint record (because the routines that perform
these operations may reset the pIdleProc field to NIL). The TPrJob record is
described on page 9-47.

■ You must install your idle procedure in the TPrint record before calling the
PrOpenDoc function. Otherwise, some printer drivers do not give the idle procedure
any time to run.

■ Do not attempt any printing from within the idle procedure, because the Printing
Manager is not reentrant.

■ Do not reference global variables unless you set up your own A5 world (as described
in Inside Macintosh: Processes).

■ If you use a modal dialog box to display printing status information, you must call the
Event Manager function WaitNextEvent (described in the chapter “Event Manager”
in Inside Macintosh: Macintosh Toolbox Essentials) to capture mouse events or the
Command-period keyboard event that signals that the user wants to cancel printing.
Do not call the WaitNextEvent function unless you display a modal dialog box.

■ So that your application doesn’t draw into a printing port, don’t call the QuickDraw
OpenPicture function or the DrawPicture procedure from your idle procedure
without changing the current graphics port.

■ Upon entry to the idle procedure, you must save the printing graphics port, and you
must restore it upon exit if you draw anything within the idle procedure. If you don’t
save and restore the printing graphics port, upon return the printer driver draws into
the graphics port of your dialog box instead of its own printing graphics port. To
save the printer’s printing graphics port, call the GetPort procedure when entering
the idle procedure. Before you exit, call the SetPort procedure to set the port back
to the printer driver’s printing graphics port. (The GetPort and SetPort
procedures are described in the chapter “Basic QuickDraw” in this book.)

■ If your idle procedure changes the resource chain, you should save the reference
number of the printer driver’s resource file by calling the CurResFile function at the
beginning of your idle procedure. (Any routine that changes the value of the global
variable TopMapHdl, such as the OpenResFile function or the UseResFile
procedure, changes the resource chain. Some printer drivers assume the resource
chain does not change, and you may get an error if you change it.) When you exit
from the idle procedure, restore the resource chain using the UseResFile procedure.
If you are not changing the resource chain, you do not need to save the resource chain.
(The CurResFile, OpenResFile, and UseResFile routines are described in the
chapter “Resource Manager” in Inside Macintosh: More Macintosh Toolbox.)

■ Avoid calling the PrError function within the idle procedure. Errors that occur while
it is executing are usually temporary and serve only as internal flags for
communication within the printer driver, not for the application. If you absolutely
must call PrError within your idle procedure and an error occurs, do not cancel
printing. Wait until the last called printing procedure returns and then check to see if
the error still remains.

C H A P T E R 9

Printing Manager

9-40 Using the Printing Manager

Listing 9-9 shows an application-defined idle procedure.

Listing 9-9 An idle procedure

PROCEDURE MyDoPrintIdle;

VAR

oldPort: GrafPtr;

cursorRgn: RgnHandle;

event: EventRecord;

gotEvent: Boolean;

itemHIt: Integer;

handled, canceled: Boolean;

BEGIN

GetPort(oldPort);

SetPort(gPrintStatusDlg);

cursorRgn := NIL;

gotEvent := WaitNextEvent(everyEvent, event, 15, cursorRgn);

IF gotEvent THEN

BEGIN

handled := MyStatusHandleEvent(gPrintStatusDlg, event,

itemHit);

canceled := MyUserDidCancel;

IF canceled THEN

itemHit := kStopButton;

handled := MyDoHandleHitsInStatusDBox(itemHit);

END;

MyUpdateStatusInformation(canceled); {update status }

 { information in dialog box}

SetPort(oldPort);

END;

The application displays a modal dialog box for its status dialog box, and then installs

MyDoPrintIdle, which calls the Event Manager function WaitNextEvent to capture

events while the modal dialog box is displayed.

The MyDoPrintIdle procedure first saves the current graphics port (so that it can later

restore it) and then sets the current port to the graphics port of the status dialog box.

Your idle procedure should save, set, and restore the graphics port in this manner to

avoid accidentally drawing in the printing graphics port.

C H A P T E R 9

Printing Manager

Using the Printing Manager 9-41

The MyDoPrintIdle procedure then calls WaitNextEvent to get the current event

and then calls its own routine to handle the event. (For example, the

MyStatusHandleEvent function handles update and activate events.) By calling

WaitNextEvent, MyDoPrintIdle gives background applications a chance to handle

update events in their windows while the application in this example displays a modal

dialog box. (The Dialog Manager does not give background applications a chance to

handle update events in their windows when a modal dialog box is displayed.)

MyDoPrintIdle then calls another application-defined procedure to determine

whether the user wishes to cancel the printing operation. The MyUserDidCancel

function scans the event queue for keyboard events and mouse events. If it finds a

Command-period keyboard event, it returns TRUE. The MyUserDidCancel function

also returns TRUE if it finds mouse events indicating that the user clicked the Stop

Printing button (that is, it uses the Dialog Manager function FindDialogItem to

determine whether the mouse location specified in a mouse event is in the Stop

Printing button). If the user clicks the Stop Printing button, MyUserDidCancel

highlights the button appropriately.

To handle hits in the status dialog box, the MyDoHandleHitsInStatusDBox function

simply checks the item number passed to it. For the Stop Printing button,

MyDoHandleHitsInStatusDBox calls PrSetError, specifying the error code

iPrAbort. For all other items, MyDoHandleHitsInStatusDBox sets the cursor to a

spinning wristwatch cursor.

Finally, the MyDoPrintIdle procedure updates the items in the status dialog box that

report status to the user.

Handling Printing Errors
You should always check for error conditions while printing by calling the PrError

function. Errors returned may include AppleTalk and Operating System errors in

addition to Printing Manager errors.

Note

Don’t call PrError from within your idle procedure. See “Writing an
Idle Procedure” on page 9-38 for more information. ◆

If you determine that an error has occurred after the completion of a printing routine,

stop printing. Call the close routine that matches any open routine you have called. For

example, if you call PrOpenDoc and receive an error, skip to the next call to

PrCloseDoc; if you call PrOpenPage and get an error, skip to the next calls

to PrClosePage and PrCloseDoc. Remember that, if you have called some open

routine, you must call the corresponding close routine to ensure that the printer driver

closes properly and that all temporary memory allocations are released and returned to

the heap.

C H A P T E R 9

Printing Manager

9-42 Using the Printing Manager

If you are using the PrError function and the PrGeneral procedure (described in

“Getting and Setting Printer Information” beginning on page 9-28), be prepared to

receive the following errors: noSuchRsl, opNotImpl, and resNotFound. In all three

cases, your application should be prepared to continue to print without using the

features of that particular opcode.

The noSuchRsl error means that the currently selected printer does not support the

requested resolution. The opNotImpl error means that the currently selected printer

does not support the particular PrGeneral opcode that you selected. The

resNotFound error means the current printer driver does not support the PrGeneral

procedure at all. This lack of support should not be a problem for your application, but

you need to be prepared to deal with this error. If you receive a resNotFound result

code from PrError, clear the error with a call to PrSetError with a value of noErr as

the parameter; otherwise, PrError might still contain this error the next time you check

it, which would prevent your application from printing.

Do not display any alert or dialog boxes to report an error until the end of the printing

loop. Once at the end, check for the error again; if there is no error, assume that the

printing completed normally. If the error is still present, then you can alert the user. This

technique is important for two reasons.

■ First, if you display a dialog box in the middle of the printing loop, it could cause
errors that might terminate an otherwise normal printing operation. For example, if
the printer is connected to an AppleTalk network, the connection might be terminated
abnormally because the printer driver would be unable to respond to AppleTalk
requests received from the printer while the dialog box was waiting for input from the
user. If the printer does not hear from the Macintosh Operating System within a short
period of time (anywhere from 30 seconds to 2 minutes, depending on the driver), it
assumes that the Macintosh computer is no longer connected to the printer and times
out. The timeout results in a prematurely broken connection, causing another error, to
which the application must respond.

■ Second, the printer driver may have already displayed its own dialog box in response
to an error. In this instance, the printer driver posts an error to let the application
know that something went wrong and it should cancel printing. For example, when a
LaserWriter printer driver detects that the user has canceled printing, the driver posts
an error to let the application know that it needs to cancel printing. Because the driver
has already taken care of the error by displaying a dialog box, the error is reset to 0
before the printing loop is complete. The application should check for the error again
at the end of the printing loop, and, if appropriate, the application can then display a
dialog box.

C H A P T E R 9

Printing Manager

Printing Manager Reference 9-43

Printing Manager Reference

This section describes the data structures and routines defined by the Printing Manager.

When you print a document using the Printing Manager, the Printing Manager uses a

printer driver to do the actual printing. A printer driver does any necessary translation

of QuickDraw drawing routines and—when requested by your application—sends the

translated instructions and data to the printer. It is the printer driver for the current

printer that actually implements the routines defined by the Printing Manager. Every

Printing Manager routine you call determines the current printer from a resource in the

System file and then dispatches your call to the printer driver for that printer.

“Data Structures” shows the Pascal data structures defined by the Printing Manager.

“Printing Manager Routines” describes the routines you can use to open and close the

Printing Manager, display a print dialog box, print a document, and handle printing

errors. “Application-Defined Routines” describes how you can provide your own idle

procedure that handles events in a dialog box reporting the status of the print job, and

how you can provide an initialization function that appends items to a print dialog box.

IMPORTANT

The burden of maintaining backward compatibility with early Apple
printer models—as well as maintaining compatibility with over a
hundred existing printer drivers—requires extra care on your part.
When the Printing Manager was initially designed, it was intended to
support ImageWriter printers directly attached to Macintosh computers
with only a single floppy disk and 128 KB of RAM. Later, the Printing
Manager was implemented on PostScript LaserWriter printer drivers for
more powerful Macintosh computers sharing LaserWriter printers on
networks. Since then, the Printing Manager has been implemented on a
substantial—and unanticipated—number of additional Apple and
third-party printer drivers, each in its own, slightly unique way. When
you use Printing Manager routines and data structures, you should be
especially wary of and defensive about possible error conditions.
Because Apple has little control over the manner in which third parties
support the Printing Manager in their printer drivers, you should test
your application’s printing code on as many printers as possible. ▲

C H A P T E R 9

Printing Manager

9-44 Printing Manager Reference

Data Structures

This section shows the Pascal data structures defined by the Printing Manager.

You must create or ensure a valid TPrint record for every document before you

can print it. This record specifies printer characteristics and the characteristics of a

particular print job.

Contained in every TPrint record is a TPrInfo record, which specifies the vertical and

horizontal resolutions, of the current printer and describes the page rectangle. A TPrJob

record, which contains information about a particular print job—such as the range of

pages to print, the number of copies, and a pointer to an idle procedure—is also

contained in a TPrint record. A TPrStl record, which is also contained in a TPrint

record, contains the device number of the current printer and the feed type to be used

when printing the document.

The PrPicFile procedure returns printing status information in a record of data type

TPrStatus. (You call the PrPicFile procedure for a printer using deferred printing.)

The TPrDlg record contains information necessary when altering the default style or job

dialog box.

The TPrPort record describes a printing graphics port—the environment into which

your application draws in order to print.

You use the TGnlData, TGetRslBlk, TSetRslBlk, TDftBitsBlk, and TGetRotnBlk

records in conjunction with the PrGeneral procedure.

In almost all cases, printer drivers use the reserved fields in these data structures for

device-dependent information. You should not rely on the availability or accuracy of this

information when printing from your application.

TPrint

You must supply a record of data type TPrint for a document before it can be printed.

(See “Creating and Using a TPrint Record” beginning on page 9-17 for information about

how to supply a TPrint record for a document.)

In addition to other fields, the TPrint record includes three fields (prInfo, prStl, and

prJob) that are defined by the TPrInfo record (described on page 9-46), the TPrStl

record (described on page 9-48), and the TPrJob record (described on page 9-47). The

TPrint record and the records within it contain information such as that needed by

your application for printing a document.

C H A P T E R 9

Printing Manager

Printing Manager Reference 9-45

TYPE

TPPrint = ^TPrint; {pointer to a TPrint record}

THPrint = ^TPPrint; {handle to a TPrint record}

TPrint =

RECORD

iPrVersion: Integer; {reserved}

prInfo: TPrInfo; {resolution of device & page rectangle}

rPaper: Rect; {paper rectangle}

prStl: TPrStl; {printer driver number & feed type}

prInfoPT: TPrInfo; {reserved}

prXInfo: TPrXInfo;{reserved}

prJob: TPrJob; {printing information from the job }

{ dialog box}

printX: ARRAY[1..19] OF Integer;

END;

Field descriptions

iPrVersion Reserved. To determine the version of the printer driver that
initialized this TPrint record, use the PrDrvrVers function,
which is described on page 9-79.

prInfo The information needed for page composition, contained in a
TPrInfo record. See page 9-46 for a description of this record.

rPaper The paper rectangle. This rectangle encompasses the page rectangle,
which is specified by the rPage field of the TPrInfo record.

prStl The printer’s device number and the feed type, contained in a
TPrStl record. See page 9-48 for a description of this record.

prInfoPT Reserved.

prXInfo Reserved.

prJob Information about this particular print job, contained in a TPrJob
record. You use the PrJobDialog function to display the job dialog
box. After the user closes the job dialog box, the PrJobDialog
function updates the fields of the TPrJob record according to the
user’s choices. See page 9-47 for a description of this record.

printX Reserved.

If you try to use a TPrint record that’s invalid for the current version of the Printing

Manager or for the current printer, the printer driver corrects the record by setting its

fields to default values.

C H A P T E R 9

Printing Manager

9-46 Printing Manager Reference

Your application should not directly change the user-supplied data in the TPrint

record; your application should use the PrStlDialog function and the

PrJobDialog function (described on page 9-61 and page 9-62, respectively) or

the PrDlgMain function (described on page 9-63) to allow the user to specify printing

options, which the printer driver then translates to the appropriate fields in the TPrint

record. The only fields you may need to set directly are those containing optional

information in the TPrJob record (for example, the pIdleProc field, which contains a

pointer to an idle procedure). Attempting to set other values directly in the TPrint

record can produce unexpected results.

TPrInfo

The record defined by the data type TPrInfo contains printer information. The prInfo

field of the TPrint record (described in the preceding section) contains a TPrInfo

record, which in turn contains the vertical and horizontal resolutions of the printer and

the coordinates of the page rectangle.

TYPE TPrInfo = {printer information record}

RECORD

iDev: Integer; {reserved}

iVRes: Integer; {vertical resolution of printer, in dpi}

iHRes: Integer; {horizontal resolution of printer, in dpi}

rPage: Rect; {the page rectangle}

END;

Field descriptions

iDev Reserved.

iVRes The printer’s vertical resolution in dots per inch. The default value
is 72, unless you have previously set the value for this record by
calling the PrGeneral procedure with the setRslOp opcode
(described in “Determining and Setting the Resolution of the
Current Printer” on page 9-30).

iHRes The printer’s horizontal resolution in dots per inch. The default
value is 72, unless you have previously set the value for this record
by calling the PrGeneral procedure with the setRslOp opcode.

rPage The page rectangle. As illustrated in Figure 9-6 on page 9-10, this
rectangle is inside the paper rectangle, which is specified by the
rPaper field of the TPrint record, described on page 9-44. You use
the PrStlDialog function (described on page 9-61) to display the
style dialog box. After the user closes the style dialog box, the
PrStlDialog function updates the rPage field according to the
user’s choices.

C H A P T E R 9

Printing Manager

Printing Manager Reference 9-47

TPrJob

The record defined by the data type TPrJob contains information about the print

job. The prJob field of the TPrint record (described on page 9-44) contains a TPrJob

record. You can set the contents of this record as a result of calling the PrJobDialog

function (described on page 9-62) or the PrJobInit function (described on page 9-65),

or by calling the PrintDefault procedure or PrValidate function (described on

page 9-59 and page 9-60, respectively).

TYPE TPrJob = {print job record}

RECORD

iFstPage: Integer; {first page of page range}

iLstPage: Integer; {last page of page range}

iCopies: Integer; {number of copies}

bJDocLoop: SignedByte; {printing method: draft or deferred}

fFromUsr: Boolean; {reserved}

pIdleProc: PrIdleProcPtr;

{pointer to an idle procedure}

pFileName: StringPtr; {spool filename: NIL for default}

iFileVol: Integer; {spool file volume; set to 0 }

{ initially}

bFileVers: SignedByte; {spool file version; set to 0 }

{ initially}

bJobX: SignedByte; {reserved}

END;

Field descriptions

iFstPage The page number of the first page to print.

iLstPage The page number of the last page to print.

iCopies The number of copies requested, which is also the number of times
your application should send the document to the printer. However,
some PostScript printer drivers handle multiple copies internally
and set this value to 1.

bJDocLoop The printing method, as indicated by one of these constants:

CONST bDraftLoop = 0; {draft-quality printing}

bSpoolLoop = 1; {deferred printing}

See the description of the PrPicFile procedure on page 9-71 on
how to send a print job to the printer when this field contains the
bSpoolLoop constant.

fFromUsr Reserved.

C H A P T E R 9

Printing Manager

9-48 Printing Manager Reference

pIdleProc A pointer to the idle procedure (described in “Writing an Idle
Procedure” on page 9-38) for this printing operation. A value of NIL
specifies the default idle procedure.

pFileName The name of the spool file (normally “Print File”) for deferred
printing. This field is maintained by the printer driver, and your
application should not change or rely on its value.

iFileVol The volume reference number of the spool file. This field is
maintained by the printer driver, and your application should not
change or rely on its value.

bFileVers The version number of the spool file, initialized to 0.

bJobX Reserved.

TPrStl

The prStl field of the TPrint record (described on page 9-44) contains a TPrStl

record, which in turn contains the device number of the current printer and the feed type

currently selected (either paper cassette or manual). All other fields are reserved.

TYPE TPrStl = {printing style record}

RECORD

wDev: Integer; {device number of printer}

iPageV: Integer; {reserved}

iPageH: Integer; {reserved}

bPort: SignedByte; {reserved}

feed: TFeed; {feed type}

END;

Field descriptions

wDev The device number of the current printer (in the high-order byte of
this field). The low-order byte of this field is reserved.

iPageV Reserved.

iPageH Reserved.

bPort Reserved.

feed The feed type currently selected. The possible values are defined by
the TFeed data type:

TYPE TFeed =

(feedCut,feedFanfold,feedMechCut,feedOther);

C H A P T E R 9

Printing Manager

Printing Manager Reference 9-49

TPrStatus

The PrPicFile procedure (described on page 9-71) returns printing status information

in a record of data type TPrStatus. (You call the PrPicFile procedure for a printer

using deferred printing.)

TYPE TPrStatus = {printing status record}

RECORD

iTotPages: Integer; {total pages in print file}

iCurPage: Integer; {current page number}

iTotCopies: Integer; {total copies requested}

iCurCopy: Integer; {current copy number}

iTotBands: Integer; {reserved}

iCurBand: Integer; {reserved}

fPgDirty: Boolean; {TRUE if current page has been }

{ written to}

fImaging: Boolean; {reserved}

hPrint: THPrint; {handle to the active TPrint record}

pPrPort: TPPrPort; {pointer to the active printing }

{ port}

hPic: PicHandle; {handle to the active picture}

END;

Field descriptions

iTotPages The total number of pages being printed. This is the value of the
iLstPage field minus the value of the iFstPage field, which are
both in the TPrJob record (described on page 9-47).

iCurPage The sequence number of the page currently being printed. For
example, if the user prints pages 10 through 15 of a 20-page
document, the value of the iCurPage field for page 10 is 1.

iTotCopies The total number of copies requested. This value may be different
from the value of the iCopies field in the TPrJob record.

iCurCopy The number of the current copy being printed.

iTotBands Reserved.

iCurBand Reserved.

fPgDirty A flag indicating whether the printer has begun printing the current
page. Set to TRUE if there has been any imaging on the current page.

fImaging A flag indicating whether the printer driver is in the middle of an
imaging call.

hPrint A handle to the current TPrint record (described on page 9-44).

pPrPort A pointer to the TPrPort record for the current printing graphics
port (described on page 9-51).

hPic A handle to the active picture. This is used by the printer driver;
your application should not alter it.

C H A P T E R 9

Printing Manager

9-50 Printing Manager Reference

TPrDlg

The TPrDlg record contains information necessary when altering the default style or job

dialog box for the current printer driver. The PrStlInit function (described on

page 9-64) returns a TPrDlg record with information for a style dialog box; the

PrJobInit function (described on page 9-65) returns a TPrDlg record with information

for a job dialog box.

TYPE

TPPrDlg = TPrDlg;

TPrDlg = {print dialog box record}

RECORD

Dlg: DialogRecord; {a dialog record}

pFltrProc: {pointer to event filter}

ModalFilterProcPtr;

pItemProc: PItemProcPtr; {pointer to item-handling }

{ procedure}

hPrintUsr: THPrint; {handle to a TPrint record}

fDoIt: Boolean; {TRUE means user clicked OK}

fDone: Boolean; {TRUE means user clicked }

{ OK or Cancel}

lUser1: LongInt; {storage for your application}

lUser2: LongInt; {storage for your application}

lUser3: LongInt; {storage for your application}

lUser4: LongInt; {storage for your application}

END;

Field descriptions

Dlg A dialog record that represents either the style or job dialog box.
This record is described in the chapter “Dialog Manager” in Inside
Macintosh: Macintosh Toolbox Essentials.

pFltrProc A pointer to an event filter function that handles events the Dialog
Manager does not respond to (such as disk-inserted events and
update events for background applications) in a modal dialog box.
Event filter functions for modal dialog boxes are described in the
chapter “Dialog Manager” in Inside Macintosh: Macintosh Toolbox
Essentials.

pItemProc A pointer to a routine (sometimes called a dialog hook) that responds
to events in those items—such as checkboxes and radio buttons—
that your application has added to the dialog box. See the chapter
“Dialog Manager” in Inside Macintosh: Macintosh Toolbox Essentials
for information about responding to events in dialog boxes.

C H A P T E R 9

Printing Manager

Printing Manager Reference 9-51

hPrintUsr A handle to a TPrint record (described on page 9-44) for a
document.

fDoIt A Boolean value indicating whether the user has confirmed the
dialog box. A value of TRUE means the user has confirmed it by
clicking the OK button.

fDone A Boolean value indicating whether the user’s interaction is
completed. A value of TRUE means the user has clicked either the
OK or Cancel button.

lUser1 In this field and the following fields, your application can store any
kind of data you wish for the dialog box.

lUser2 Available for your application’s use.

lUser3 Available for your application’s use.

lUser4 Available for your application’s use.

Figure 9-3 on page 9-7 shows a style dialog box. Figure 9-5 on page 9-8 shows a job

dialog box. You can find information on how to customize a dialog box in “Altering the

Style or Job Dialog Box” beginning on page 9-35.

TPrPort

The record of the data type TPrPort contains a graphics port and a pointer to a

QDProcs record.

TYPE TPrPort = {printing graphics port}

RECORD

gPort: GrafPort; {graphics port for printing}

gProcs: QDProcs; {procedures for printing }

{ in the graphics port}

lGParam1: LongInt; {reserved}

lGParam2: LongInt; {reserved}

lGParam3: LongInt; {reserved}

lGParam4: LongInt; {reserved}

fOurPtr: Boolean; {reserved}

fOurBits: Boolean; {reserved}

END;

Field descriptions

gPort Either a CGrafPort or GrafPort record, depending on whether
the current printer supports color or grayscale and depending on
whether Color QuickDraw is available. If you need to determine the
type of graphics port, you can check the high bit in the rowBytes
field of the record contained in the gPort field; if this bit is set, the
printing graphics port is based on a CGrafPort record.

C H A P T E R 9

Printing Manager

9-52 Printing Manager Reference

gProcs A QDProcs record that contains pointers to routines that the printer
driver may have designated to take the place of QuickDraw
routines. See the chapter “Basic QuickDraw” in this book for more
information about the QDProcs record.

lGParam1 Reserved.

lGParam2 Reserved.

lGParam3 Reserved.

lGParam4 Reserved.

fOurPtr Reserved.

fOurBits Reserved.

TGnlData

The record of data type TGnlData is the basic record used by the PrGeneral procedure

(described beginning on page 9-72). Although no opcode of PrGeneral uses the

TGnlData record, all other records created for PrGeneral are based on this record.

TYPE TGnlData =

RECORD

iOpCode: Integer; {opcode passed to PrGeneral}

iError: Integer; {result code returned by PrGeneral}

lReserved: LongInt; {more fields here depending on opcode}

END;

Field descriptions

iOpCode The opcode that is passed to PrGeneral to obtain the requested
feature. There are five possible opcodes; you can use the following
constants or the values they represent to specify one of these
opcodes

CONST {opcodes used with PrGeneral}

 getRslDataOp = 4; {get resolutions for the }

{ current printer}

 setRslOp = 5; {set resolutions for a }

{ TPrint record}

 draftBitsOp = 6; {force enhanced draft- }

{ quality printing}

 noDraftBitsOp = 7; {cancel enhanced draft- }

{ quality printing}

 getRotnOp = 8; {get page orientation of }

{ a TPrint record}

iError The result code returned by PrGeneral.

C H A P T E R 9

Printing Manager

Printing Manager Reference 9-53

lReserved Reserved. Additional fields may follow this field, depending on the
opcode used. See the descriptions of the TGetRslBlk (in the next
section), TSetRslBlk (on page 9-54), TDftBitsBlk (on
page 9-55), and TGetRotnBlk (on page 9-56) records.

TGetRslBlk

You pass a record defined by the data type TGetRslBlk to the PrGeneral procedure

when you use the getRslDataOp opcode. When the PrGeneral procedure completes,

the TGetRslBlk record contains the resolutions available on the current printing

device. For information on how to use the TGetRslBlk record with the PrGeneral

procedure, see “Determining and Setting the Resolution of the Current Printer” on

page 9-30.

TYPE TGetRslBlk = {get-resolution record}

RECORD

iOpCode: Integer; {the getRslDataOp opcode}

iError: Integer; {result code returned by PrGeneral}

lReserved: LongInt; {reserved}

iRgType: Integer; {printer driver version number}

xRslRg: TRslRg; {x-direction resolution range}

yRslRg: TRslRg; {y-direction resolution range}

iRslRecCnt: Integer; {number of resolution records}

rgRslRec: {array of resolution records}

ARRAY[1..27] OF TRslRec;

END;

Field descriptions

iOpCode The opcode getRslDataOp.

iError The result code returned by PrGeneral.

lReserved Reserved.

iRgType The version number returned by the printer driver.

xRslRg The resolution range supported for the x direction. This field
contains a record defined by the data type TRslRg:

TYPE TRslRg =

RECORD

iMin: Integer; {minimum resolution supported}

iMax: Integer; {maximum resolution supported}

END;

If the current printer does not support variable resolution, the
values in the iMin and iMax fields are 0.

C H A P T E R 9

Printing Manager

9-54 Printing Manager Reference

yRslRg The resolution range supported for the y direction. This field
contains a record defined by the data type TRslRg, which is shown
in the preceding description for the xRslRg field. If the current
printer does not support variable resolution, the values in the iMin
and iMax fields are 0.

iRslRecCnt The number of TRslRec records used by a particular printer driver
(up to 27) if it supports discrete resolution. If it supports variable
resolution, this field contains 0. The TRslRec record is described
next.

rgRslRec An array of records defined by the TRslRec data type, each
specifying a discrete resolution at which the current printer can
print an image. A printer driver may contain up to 27 separate
TRslRec records.

TYPE TRslRec =

RECORD

iXRsl: Integer; {discrete resolution, }

{ x direction}

iYRsl: Integer; {discrete resolution, }

{ y direction}

END;

TSetRslBlk

You pass a record defined by the data type TSetRslBlk to the PrGeneral procedure

when you use the setRslOp opcode. You use this record to specify the resolutions that

you want to use when printing the data associated with a TPrint record. For

information on how to use the TSetRslBlk record with the PrGeneral procedure, see

“Determining and Setting the Resolution of the Current Printer” beginning on page 9-30.

TYPE TSetRslBlk = {set-resolution record}

RECORD

iOpCode: Integer; {the setRslOp opcode}

iError: Integer; {result code returned by PrGeneral}

lReserved: LongInt; {reserved}

hPrint: THPrint; {handle to the current TPrint record}

iXRsl: Integer; {x-direction resolution you want}

iYRsl: Integer; {y-direction resolution you want}

END;

Field descriptions

iOpCode The opcode setRslOp.

iError The result code returned by PrGeneral.

lReserved Reserved.

C H A P T E R 9

Printing Manager

Printing Manager Reference 9-55

hPrint A handle to a TPrint record, which is described on page 9-44. Your
application should have already created this TPrint record and
passed it to the PrintDefault or PrValidate routine to make
sure that all of the information in the TPrint record is valid.

iXRsl The resolution in the x direction that you want the printer to use
when printing the data associated with the TPrint record specified
in the hPrint field.

iYRsl The resolution in the y direction that you want the printer to use
when printing the data associated with the TPrint record specified
in the hPrint field.

After calling PrGeneral with the setRslOp opcode, you can determine whether the

request was successful by examining the iError field of the TSetRslBlk record. If the

iError field returns noErr, the Printing Manager updated the TPrint record with the

specified resolution, which the printer uses when printing the data associated with this

TPrint record. If the iError field returns noSuchRsl, the current printer doesn’t

support the requested resolution, and the printer driver does not change the setting in

the TPrint record.

TDftBitsBlk

You pass a record defined by the data type TDftBitsBlk to the PrGeneral procedure

when you use the draftBitsOp or noDraftBitsOp opcode. For information on how

to use the TDftBitsBlk record with the PrGeneral procedure, see “Enhancing

Draft-Quality Printing” on page 9-33.

TYPE TDftBitsBlk = {draft bits record}

RECORD

iOpCode: Integer; {draftBitsOp or noDraftBitsOp opcode}

iError: Integer; {result code returned by PrGeneral}

lReserved: LongInt; {reserved}

hPrint: THPrint; {handle to the current TPrint record}

END;

Field descriptions

iOpCode Either the draftBitsOp or noDraftBitsOp opcode.

iError The result code returned by the PrGeneral procedure.

lReserved Reserved.

hPrint A handle to a TPrint record, which is described on page 9-44. Your
application should have already created this TPrint record and
passed it to the PrintDefault or PrValidate routine to make
sure that all of the information in the TPrint record is valid. The
PrintDefault and PrValidate routines are described on
page 9-59 and page 9-60, respectively.

C H A P T E R 9

Printing Manager

9-56 Printing Manager Reference

TGetRotnBlk

You pass a record defined by the data type TGetRotnBlk to the PrGeneral procedure

when you use the getRotnOp opcode. PrGeneral returns it with a Boolean variable

that tells you whether the user has selected landscape orientation. For information on

how to use the TGetRotnBlk record with the PrGeneral procedure, see “Determining

Page Orientation” on page 9-32.

TYPE TGetRotnBlk = {page orientation record}

RECORD

iOpCode: Integer; {the getRotnOp opcode}

iError: Integer; {result code returned by PrGeneral}

lReserved: LongInt; {reserved}

hPrint: THPrint; {handle to current TPrint record}

fLandscape: Boolean; {TRUE if user selected landscape }

{ printing}

bXtra: SignedByte; {reserved}

END;

Field descriptions

iOpCode The opcode getRotnOp.

iError The result code returned by the PrGeneral procedure.

lReserved Reserved.

hPrint A handle to a TPrint record, which is described on page 9-44. Your
application should have already created this TPrint record and
passed it through the PrintDefault or PrValidate routine to
make sure that all of the information in the TPrint record is valid.
The PrintDefault and PrValidate routines are described on
page 9-59 and page 9-60, respectively.

fLandscape A Boolean value that determines whether the user has selected
landscape orientation in the style dialog box. A value of TRUE
indicates the user has selected landscape orientation.

bXtra Reserved.

C H A P T E R 9

Printing Manager

Printing Manager Reference 9-57

Printing Manager Routines

This section describes the routines you use to open and close the current printer driver,

produce or alter a style or job dialog box, print a document, and handle printing errors.

Opening and Closing the Printing Manager

You must always use the PrOpen procedure to open the current printer driver before

attempting to print, and you must use the PrClose procedure to close the current

printer driver when printing is finished.

PrOpen

Use the PrOpen procedure to prepare the current printer driver for use.

PROCEDURE PrOpen;

DESCRIPTION

The PrOpen procedure opens the Printing Manager and the current printer driver.

SPECIAL CONSIDERATIONS

You must always use the PrOpen procedure before using any other Printing Manager

routines, and you must balance every call to PrOpen with a call to PrClose, which is

described in the next section.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PrOpen procedure are

SEE ALSO

For an example of the use of PrOpen, see Listing 9-2 on page 9-20.

Trap macro Selector

_PrGlue $C8000000

C H A P T E R 9

Printing Manager

9-58 Printing Manager Reference

PrClose

When you are finished using Printing Manager routines, use the PrClose procedure to

close the Printing Manager and release the memory it occupies.

PROCEDURE PrClose;

DESCRIPTION

The PrClose procedure is the call that balances a call to the PrOpen procedure.

SPECIAL CONSIDERATIONS

If you have opened the printer driver with the PrOpen procedure, do not call the

PrDrvrClose procedure (described on page 9-80) to close it. Similarly, do not close the

printer driver with PrClose if you opened it with the PrDrvrOpen procedure

(described on page 9-79).

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PrClose procedure are

SEE ALSO

For an example of the use of PrClose, see Listing 9-2 beginning on page 9-20.

Initializing and Validating TPrint Records

You must set the fields of the TPrint record to the values for the current printer driver

or, if a TPrint record already exists, you must verify that the information in the TPrint

record is correct. The PrintDefault procedure fills in a TPrint record with the

default values for the current printer.

If the TPrint record is not valid for the current printer driver, the document does not

print. The PrValidate function ensures that the TPrint record is compatible with the

current version of the printer driver for the current printer. These functions may change

the coordinates of the page rectangle or any other value in the TPrint record; you

should not assume any values will remain the same.

Trap macro Selector

_PrGlue $D0000000

C H A P T E R 9

Printing Manager

Printing Manager Reference 9-59

PrintDefault

When you create a TPrint record, you use the PrintDefault procedure to initialize

the fields of the TPrint record according to the current printer’s default values for

resolution, number of copies, and so on.

PROCEDURE PrintDefault (hPrint: THPrint);

hPrint A handle to a TPrint record (described on page 9-44), which may be a
new record or an existing one from a document.

DESCRIPTION

The default values for the current printer are stored in the printer driver’s resource

file. The PrintDefault procedure puts these values in the TPrint record, replacing

the ones that may already be there. The PrintDefault procedure calls the

PrValidate function (described in the next section) to ensure that the TPrint record is

compatible with the current version of the printer driver.

SPECIAL CONSIDERATIONS

You should never call PrintDefault between the pages of a document.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PrintDefault procedure are

SEE ALSO

See “The TPrint Record and the Printing Loop” on page 9-11 and see page 9-44 for

information on the TPrint record. For an example of the use of PrintDefault, see

Listing 9-7 on page 9-37.

Trap macro Selector

_PrGlue $20040480

C H A P T E R 9

Printing Manager

9-60 Printing Manager Reference

PrValidate

When you have a TPrint record, whether an existing one from the current document or

a new one you have just created, you can use the PrValidate function to ensure that

the contents of the specified TPrint record are compatible with the current version

of the printer driver for the current printer.

FUNCTION PrValidate (hPrint: THPrint): Boolean;

hPrint A handle to a TPrint record, which may be a new record or an existing
one from a document.

DESCRIPTION

If the TPrint record is valid, the PrValidate function returns FALSE, meaning there is

no change. If the record is invalid, the function returns TRUE and the Printing Manager

adjusts the record with the default values stored in the printer resource file for the

current printer.

The PrValidate function also makes sure that all the information in the TPrint record

is internally self-consistent and updates the TPrint record as necessary. These changes

do not affect the function’s Boolean result.

If you have just created a TPrint record by using the PrintDefault procedure, you

do not need to call PrValidate. The PrintDefault procedure does this automatically.

SPECIAL CONSIDERATIONS

You should never call PrValidate between the pages of a document. This restriction

holds as well for the PrStlDialog and PrJobDialog functions (described on

page 9-61 and page 9-62, respectively) and the PrintDefault procedure (described

on page 9-59), which call PrValidate.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PrValidate function are

SEE ALSO

For examples of the use of PrValidate, see Listing 9-1 on page 9-17 and Listing 9-2 on

page 9-20.

Trap macro Selector

_PrGlue $52040498

C H A P T E R 9

Printing Manager

Printing Manager Reference 9-61

Displaying and Customizing the Print Dialog Boxes

The style and job dialog boxes allow the user to tell your application how to print the

document: its page orientation, number of copies, page range, and so on. The

PrStlDialog and PrJobDialog functions display the standard style and job dialog

boxes as provided by the resource file of the current printer driver. The PrDlgMain

function, along with the PrStlInit and PrJobInit functions, allows you to

customize the current printer driver’s style and job dialog boxes.

The PrJobMerge procedure allows you to use one job dialog box for several print jobs,

such as when the user prints several documents from the Finder.

PrStlDialog

You can use the PrStlDialog function to display the style dialog box provided by the

resource file for the current printer driver.

FUNCTION PrStlDialog (hPrint: THPrint): Boolean;

hPrint A handle to a TPrint record (described on page 9-44), which may be a
new record or an existing one from a document.

DESCRIPTION

The PrStlDialog function gets the initial settings to display in the style dialog box

from the TPrint record specified in the hPrint parameter. The user specifies the page

dimensions and other information needed for page setup through the style dialog box.

Your application should display this dialog box when the user chooses Page Setup from

the File menu.

If the user confirms the dialog box, the PrStlDialog function returns TRUE. The

PrStlDialog function saves the results of the dialog box in the specified TPrint

record and calls the PrValidate function (described on page 9-60). Otherwise, the

TPrint record is left unchanged and the function returns FALSE.

SPECIAL CONSIDERATIONS

You should never call PrStlDialog between the pages of a document.

You must call the PrOpen procedure (described on page 9-57) prior to calling

PrStlDialog, and you must call the PrClose procedure (described on page 9-58)

afterward, because the current printer driver must be open in order for your application

to successfully call PrStlDialog.

C H A P T E R 9

Printing Manager

9-62 Printing Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PrStlDialog function are

SEE ALSO

See Figure 9-3 on page 9-7 for an example of a style dialog box. For more information on

the use of a style dialog box, see “Getting Printing Preferences From the User” beginning

on page 9-5. For information on how to customize a style dialog box, see “Altering the

Style or Job Dialog Box” beginning on page 9-35.

PrJobDialog

You can use the PrJobDialog function to display the job dialog box provided by the

resource file for the current printer driver.

FUNCTION PrJobDialog (hPrint: THPrint): Boolean;

hPrint A handle to a TPrint record (described on page 9-44), which may be a
new record or an existing one from a document.

DESCRIPTION

The PrJobDialog function gets the initial settings to display in the job dialog box

from the TPrint record specified in the hPrint parameter. The user specifies the print

quality, the range of pages to print, and other information in the job dialog box. Your

application should display this dialog box when the user chooses Print from the File

menu.

If the user confirms the dialog box, the PrJobDialog function updates both the

TPrint record and the printer driver resource file and calls the PrValidate function,

and the PrJobDialog function returns TRUE. Even if the function returns FALSE, the

PrJobDialog function may have updated the TPrint record.

SPECIAL CONSIDERATIONS

You should proceed with the requested printing operation only if the PrJobDialog

function returns TRUE. You should never call PrJobDialog between the pages of a

document.

Trap macro Selector

_PrGlue $2A040484

C H A P T E R 9

Printing Manager

Printing Manager Reference 9-63

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PrJobDialog function are

SEE ALSO

See Figure 9-5 on page 9-8 for an example of a job dialog box. For more information on

the use of a job dialog box, see “Getting Printing Preferences From the User” beginning

on page 9-5. For information on how to customize a job dialog box, see “Altering the

Style or Job Dialog Box” beginning on page 9-35.

PrDlgMain

To display a customized style or job dialog box for the current printer driver, use the

PrDlgMain function.

FUNCTION PrDlgMain (hPrint: THPrint; pDlgInit: PDlgInitProcPtr):

 Boolean;

hPrint A handle to a TPrint record (described on page 9-44), which may be a
new record or an existing one from a document.

pDlgInit A pointer to your own initialization procedure or a pointer to one of the
default initialization functions (PrStlInit, which is described in the
next section, or PrJobInit, which is described on page 9-65).

DESCRIPTION

You use the PrDlgMain function to display a style or job dialog box that your

application has altered. (If you use the standard style and job dialog boxes, you do not

need to call PrDlgMain; instead, you can simply call the PrStlDialog or

PrJobDialog function, described on page 9-61 and page 9-62, respectively.)

If you want to customize a style or job dialog box, first call PrStlInit, which is

described in the next section, or PrJobInit, which is described on page 9-65, to get a

pointer to the TPrDlg record (described on page 9-50) for that dialog box. The

PrStlInit function returns a pointer to the TPrDlg record for the style dialog box of

the current printer driver; the PrJobInit function returns a pointer to the TPrDlg

record of the job dialog box for the current printer driver. You should supply the

TPrDlg record for your customized dialog box with a function that handles events that

the Dialog Manager doesn’t handle, and with another function that handles events in the

items you add to the dialog box.

When PrDlgMain returns TRUE, you should proceed with the requested printing

operation.

Trap macro Selector

_PrGlue $32040488

C H A P T E R 9

Printing Manager

9-64 Printing Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PrDlgMain function are

SEE ALSO

For more information about customizing style or job dialog boxes, see “Altering the Style

or Job Dialog Box” beginning on page 9-35.

PrStlInit

To initialize a TPrDlg record for a customized style dialog box, use the PrStlInit

function.

FUNCTION PrStlInit (hPrint: THPrint): TPPrDlg;

hPrint A handle to a TPrint record (described on page 9-44), which may be a
new record or an existing one from a document.

DESCRIPTION

The PrStlInit function returns a pointer to a TPrDlg record (described on page 9-50)

for the style dialog box defined in the resource file for the current printer driver. As

described in “Altering the Style or Job Dialog Box” beginning on page 9-35, you can then

alter the dialog box by adding your own items. You must use the PrDlgMain function

(described on page 9-63) to display the dialog box.

You need to use PrStlInit only if you are customizing the default style dialog box

provided by the printer driver. To initialize and display the default style dialog box, use

the PrStlDialog function, which is described on page 9-61.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PrStlInit function are

Trap macro Selector

_PrGlue $4A040894

Trap macro Selector

_PrGlue $3C04040C

C H A P T E R 9

Printing Manager

Printing Manager Reference 9-65

PrJobInit

To initialize a TPrDlg record for a customized job dialog box, use the PrJobInit

function.

FUNCTION PrJobInit (hPrint: THPrint): TPPrDlg;

hPrint A handle to a TPrint record (described on page 9-44), which may be a
new record or an existing one from a document.

DESCRIPTION

The PrJobInit function returns a pointer to a TPrDlg record (described on page 9-50)

for the job dialog box defined in the resource file for the current printer driver. As

described in “Altering the Style or Job Dialog Box” beginning on page 9-35, you can then

alter the dialog box by adding your own items. You must use the PrDlgMain function

(described on page 9-63) to display the dialog box.

You need to use PrJobInit only if you are customizing the job dialog box provided by

the printer driver. To initialize and display the default job dialog box, use the

PrJobDialog function, which is described on page 9-62.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PrJobInit function are

SEE ALSO

Listing 9-7 on page 9-37 illustrates how to use PrJobInit when customizing the job

dialog box.

Trap macro Selector

_PrGlue $44040410

C H A P T E R 9

Printing Manager

9-66 Printing Manager Reference

PrJobMerge

You can use the PrJobMerge procedure to apply the same information previously

specified by the user through the job dialog box to several TPrint records. This is useful

when the user prints from the Finder. The PrJobMerge procedure allows you to solicit

information from the user just once and then use this information to print several

documents.

PROCEDURE PrJobMerge (hPrintSrc: THPrint; hPrintDst: THPrint);

hPrintSrc A handle to a TPrint record (described on page 9-44) as previously
returned by the PrJobDialog function (described on page 9-62).

hPrintDst A handle to a TPrint record for another document.

DESCRIPTION

The PrJobMerge procedure first calls the PrValidate function (described on

page 9-60) for both TPrint records referenced by the hPrintSrc and hPrintDst

parameters. It then copies all of the information previously set as a result of a job dialog

box from the TPrint record in the hPrintSrc parameter to the TPrint record in the

hPrintDst parameter while preserving the values set by the style dialog box for that

TPrint record (for instance, landscape orientation). Finally, the PrJobMerge procedure

makes sure that all the fields of the TPrint record named by the hPrintDst parameter

are internally self-consistent. You must call PrJobMerge for each document the user

wants to print.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PrJobMerge procedure are

Printing a Document

In addition to using the PrOpen and PrClose procedures (described on page 9-57 and

page 9-58, respectively) to open and close the current printer driver, you must open

a printing graphics port for a document and open each page of the document before

printing the page. You must close each page after printing it, and you must close

the printing graphics port after printing the last page of the document. The PrOpenDoc

function and PrCloseDoc procedure open and close the printing graphics port for the

document, and the PrOpenPage and PrClosePage procedures open and close the

current page.

You must use the PrPicFile procedure to complete printing for a driver using deferred

printing.

Trap macro Selector

_PrGlue $5804089C

C H A P T E R 9

Printing Manager

Printing Manager Reference 9-67

PrOpenDoc

Use the PrOpenDoc function to initialize a printing graphics port for use in printing a

document.

FUNCTION PrOpenDoc (hPrint: THPrint; pPrPort: TPPrPort;

 pIOBuf: Ptr): TPPrPort;

hPrint A handle to a TPrint record (described on page 9-44), which may be a
new record or an existing one from a document. You should call the
PrintDefault procedure (described on page 9-59) or the PrValidate
function (described on page 9-60) for this TPrint record before calling
PrOpenDoc.

pPrPort A pointer to a printing graphics port. If you set this parameter to NIL,
PrOpenDoc allocates a new printing graphics port in the heap.

pIOBuf A pointer to an area of memory to be used as an input and output buffer.
If you set this parameter to NIL, PrOpenDoc uses the volume buffer for
the deferred spool file’s volume. If you allocate your own buffer, it must
be exactly 522 bytes.

DESCRIPTION

The PrOpenDoc function initializes and returns a pointer to a printing graphics port for

use in printing a document. (The TPrPort record that defines a printing graphics port is

described on page 9-51.) The PrOpenDoc function also sets the current graphics port to

the printing graphics port.

Because both the printing graphics port and input and output buffer are nonrelocatable

objects, you may want to allocate them yourself using the pPrPort and pIOBuf

parameters (to avoid fragmenting the heap).

SPECIAL CONSIDERATIONS

You must balance a call to PrOpenDoc with a call to the PrCloseDoc procedure, which

is described in the next section.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PrOpenDoc function are

SEE ALSO

For an example of the use of PrOpenDoc, see Listing 9-2 beginning on page 9-20. For a

description of the PrValidate function and PrintDefault procedure, see page 9-60

and page 9-59, respectively.

Trap macro Selector

_PrGlue $04000C00

C H A P T E R 9

Printing Manager

9-68 Printing Manager Reference

PrCloseDoc

Use the PrCloseDoc procedure to close a printing graphics port previously opened

with the PrOpenDoc procedure.

PROCEDURE PrCloseDoc (pPrPort: TPPrPort);

pPrPort A pointer to a printing graphics port. (The TPrPort record that defines a
printing graphics port is described on page 9-51.)

DESCRIPTION

The PrCloseDoc procedure closes the current printing graphics port. You typically

use PrCloseDoc after sending the last page of a document to the printer with the

PrClosePage procedure (described on page 9-70).

When you use PrCloseDoc to close a printing graphics port, printer drivers respond in

a manner appropriate for the printers they control. Many drivers, including the

LaserWriter driver, start a print job after your application calls PrCloseDoc.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PrCloseDoc procedure are

SPECIAL CONSIDERATIONS

For deferred printing on an ImageWriter printer, call the PrError function (described

on page 9-75) to find out whether spooling succeeded before using PrCloseDoc. If

spooling succeeded, call the PrPicFile procedure (described on page 9-71).

SEE ALSO

For an example of the use of PrCloseDoc, see Listing 9-2 beginning on page 9-20.

Trap macro Selector

_PrGlue $08000484

C H A P T E R 9

Printing Manager

Printing Manager Reference 9-69

PrOpenPage

Use the PrOpenPage procedure to begin to print a new page.

PROCEDURE PrOpenPage (pPrPort: TPPrPort; pPageFrame: TPRect);

pPrPort A pointer to a printing graphics port. (The TPrPort record that defines a
printing graphics port is described on page 9-51.)

pPageFrame
For deferred printing, a pointer to a rectangle to be used as the
QuickDraw picture frame for this page. To print the page with no scaling,
specify NIL to use the rectangle in the rPage field of the TPrInfo record
as the picture frame.

DESCRIPTION

The PrOpenPage procedure sets up the printing graphics port to print a new page. After

calling PrOpenPage, your application should draw the data for that page and then call

the PrClosePage procedure, which is described in the next section.

The page is printed only if it falls within the page range stored in the TPrJob record

contained in the TPrint record supplied to the PrOpenDoc function (described on

page 9-67).

If the user has chosen deferred printing for a printer driver that supports deferred

printing, the driver uses the QuickDraw procedure DrawPicture to scale the rectangle

named in the pPageFrame parameter so that it coincides with the rectangle specified in

the rPage field of the TPrInfo record (which is contained in the TPrint record

supplied to the PrOpenDoc function). Unless you want the printout to be scaled, you

should set the pPageFrame parameter to NIL—this uses the rectangle in the rPage

field as the picture frame, so that the page is printed with no scaling.

SPECIAL CONSIDERATIONS

You must balance every call to PrOpenPage with a call to PrClosePage.

The printing graphics port is completely reinitialized by PrOpenPage. Therefore, you

must set graphics port features such as the font family and font size for every page that

you draw after you call this procedure.

Don’t call the QuickDraw function OpenPicture while a page is open (after a call to

PrOpenPage but before calling PrClosePage). You can, however, call the

DrawPicture procedure at any time.

C H A P T E R 9

Printing Manager

9-70 Printing Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PrOpenPage procedure are

SEE ALSO

For an example of the use of PrOpenPage, see Listing 9-2 beginning on page 9-20. The

QuickDraw routines OpenPicture and DrawPicture are described in the chapter

“Pictures” in this book.

PrClosePage

Use the PrClosePage procedure to finish the printing of the current page.

PROCEDURE PrClosePage (pPrPort: TPPrPort);

pPrPort A pointer to a printing graphics port. (The TPrPort record that defines a
printing graphics port is described on page 9-51.)

DESCRIPTION

The PrClosePage procedure records that you are finished printing the current

page. The printer driver can then do whatever it requires (such as releasing temporary

memory) to avoid communication difficulties or other problems that may cause the

user’s computer to crash.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PrClosePage procedure are

SEE ALSO

For an example of the use of PrClosePage, see Listing 9-2 beginning on page 9-20.

Trap macro Selector

_PrGlue $10000808

Trap macro Selector

_PrGlue $1800040C

C H A P T E R 9

Printing Manager

Printing Manager Reference 9-71

PrPicFile

Use the PrPicFile procedure to complete deferred printing.

PROCEDURE PrPicFile (hPrint: THPrint; pPrPort: TPPrPort;

 pIOBuf: Ptr; pDevBuf: Ptr;

 VAR prStatus: TPrStatus);

hPrint A handle to a TPrint record (described on page 9-44) for a document.

pPrPort A pointer to the printing graphics port. (The TPrPort record that
defines a printing graphics port is described on page 9-51.) If this
parameter is NIL, the PrPicFile procedure allocates a new printing
graphics port in a heap.

pIOBuf A pointer to an area of memory to be used as an input/output buffer. This
parameter should be NIL to use the volume buffer for the spool file’s
volume. If you allocate your own buffer, it must be exactly 522 bytes.

pDevBuf A pointer to a device-dependent buffer. This parameter should be NIL so
that PrPicFile allocates a buffer in a heap.

prStatus A TPrStatus record that PrPicFile uses to report on the current page
number, current copy, or current file being spooled. You can then display
this information to the user. The TPrStatus record is described on
page 9-49.

DESCRIPTION

The PrPicFile procedure sends a file spooled for deferred printing to the printer.

You can determine whether a user has chosen deferred printing by testing for the

bSpoolLoop constant in the bJDocLoop field of the TPrJob record contained in the

TPrint record specified in the hPrint parameter. If the bJDocLoop field contains the

value represented by the bSpoolLoop constant, call the PrPicFile procedure, which

sends the spool file to the printer.

Your application should normally call PrPicFile after the PrCloseDoc procedure

(described on page 9-68).

SPECIAL CONSIDERATIONS

Do not pass, in the pPrPort parameter, a pointer to the same printing graphics port you

received from the PrOpenDoc function (described on page 9-67). If that port was

allocated by PrOpenDoc itself (that is, if the pPrPort parameter to PrOpenDoc was

NIL), then PrCloseDoc will already have disposed of the port, making your pointer to

it invalid. Of course, if you earlier provided your own storage in PrOpenDoc, there’s no

reason you can’t use the same storage again for PrPicFile.

C H A P T E R 9

Printing Manager

9-72 Printing Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PrPicFile procedure are

SEE ALSO

For an example of the use of PrPicFile, see Listing 9-2 beginning on page 9-20.

Optimizing Printing

The PrGeneral procedure helps you achieve the highest possible resolution on the

current printer, verify page orientation, and force enhanced draft-quality printing for

printer drivers supporting these options. To select which action you want, pass one of

four records to PrGeneral and, in a field of that record, you supply the opcode that

specifies the action you require. These records are TGetRslBlk (described on

page 9-53), TSetRslBlk (described on page 9-54), TGetRotnBlk (described

on page 9-56), and TDftBitsBlk (described on page 9-55). All of these records are

based on the TGnlData record (described on page 9-52), so the first three fields of each

are identical.

PrGeneral

Use the PrGeneral procedure to achieve the highest possible resolution on the current

printer, verify page orientation, and allow enhanced draft-quality printing.

PROCEDURE PrGeneral (pData: Ptr);

pData A pointer to one of these four records, depending on your purpose for
calling PrGeneral:

A TGetRslBlk record (described on page 9-53) for determining
resolutions of the current printer. You set the getRslDataOp opcode in
the iOpCode field of this record.

A TSetRslBlk record (described on page 9-54) for setting the resolution
of a TPrint record. In the fields of this record, you specify the setRslOp
opcode, a handle to a TPrint record (described on page 9-44), and the
new resolutions for the x and y directions.

A TGetRotnBlk record (described on page 9-56) when determining
whether to print in landscape orientation. You specify the getRotnOp
opcode and a handle to a TPrint record in the fields of this record.

A TDftBitsBlk record (described on page 9-55) to use or cancel
enhanced draft-quality printing. You specify in the fields of this record
either the draftBitsOp or noDraftBitsOp opcode and a handle to a
TPrint record.

Trap macro Selector

_PrGlue $60051480

C H A P T E R 9

Printing Manager

Printing Manager Reference 9-73

DESCRIPTION

To select which action you want the PrGeneral procedure to undertake, you pass an

opcode in the iOpCode field of the record that the pData parameter points to.

Use the PrGeneral procedure with the value getRslDataOp in the iOpCode field of a

TGetRslBlk record when you want to determine the resolutions supported by the

current printer driver. The PrGeneral procedure returns information about the

resolutions that the printer driver supports in the xRslRg, yRslRg, iRslRecCnt, and

rgRslRec fields of the TGetRslBlk record.

Use the PrGeneral procedure with the value setRslOp in the iOpCode field of the

TSetRslBlk record when you want to set the resolution of a TPrint record. When

called with the setRslOp opcode, PrGeneral sets the fields relating to x and y

resolution in the specified TPrint record according to the values of the iXRsl and

iYRsl fields of the TSetRslBlk record.

Use the PrGeneral procedure with the value getRotnOp in the iOpCode field of the

TGetRotnBlk record when you want to determine whether a TPrint record specifies

landscape orientation. The PrGeneral procedure returns in the fLandscape field of

this record a Boolean value indicating whether the TPrint record specifies landscape

orientation. When the user chooses landscape orientation from the style dialog box, the

PrStlDialog function (described on page 9-61) modifies the TPrint record

accordingly.

Use the PrGeneral procedure with the value draftBitsOp in the iOpCode field of

the TDftBitsBlk record when you want to use enhanced draft-quality printing.

Typically, you use enhanced draft-quality printing when you want to print bitmaps as

well as text in a draft-quality printout on an ImageWriter printer. Use the

noDraftBitsOp opcode to cancel the use of enhanced draft-quality printing.

If you want to force enhanced draft-quality printing, you should call PrGeneral with

the draftBitsOp opcode before displaying the print dialog boxes to the user. Use

of the draftBitsOp opcode may cause the printer driver to make some items in its

print dialog boxes inactive; for example, the ImageWriter printer driver makes the

landscape icon in the style dialog box (landscape printing is not available for

draft-quality printing) and the Best and Faster buttons in the job dialog box inactive.

The PrGeneral procedure returns error information in the iError field of each of

these records. You should check the value in the iError field after each use of

PrGeneral. You should also use the PrError function (which returns the result code

left by the last Printing Manager routine) after checking the iError field, to be sure that

no additional errors were generated. If PrError returns the result code resNotFound

after you call PrGeneral, then the current printer driver doesn’t support PrGeneral.

You should clear the error by calling the PrSetError procedure and passing noErr

in its parameter; otherwise, PrError might still contain this error the next time you

check it. (The PrError function and the PrSetError procedure are described on

page 9-75 and page 9-78, respectively.)

C H A P T E R 9

Printing Manager

9-74 Printing Manager Reference

SPECIAL CONSIDERATIONS

If you call PrGeneral with the draftBitsOp opcode after using the PrJobDialog or

PrDlgMain function, and if the user chooses draft printing from the job dialog box, the

ImageWriter does not print any bitmaps or pixel maps contained in the document.

Enhanced draft-quality printing is of limited usefulness, as described in “Enhancing

Draft-Quality Printing” on page 9-33.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PrGeneral procedure are

RESULT CODES

SEE ALSO

See Listing 9-4 on page 9-31 for an example of how to use the getRslDataOp opcode to

determine what printer resolutions are available for the current printer. The same listing

shows an example of how to use the setRslOp opcode to set the resolution for the

current printer.

See Listing 9-5 on page 9-33 for an example of using the getRotnOp opcode to

determine if the user has selected landscape orientation.

See “Enhancing Draft-Quality Printing” on page 9-33 for more information on using the

draftBitsOp and noDraftBitsOp opcodes to force the use of or to cancel the use of

enhanced draft-quality printing.

Trap macro Selector

_PrGlue $70070480

opNotImpl 2 Printer driver does not support this opcode
noSuchRsl 1 Requested resolution not supported by the currently selected

printer
noErr 0 No error

C H A P T E R 9

Printing Manager

Printing Manager Reference 9-75

Handling Printing Errors

The PrError function returns the result code reported by the last Printing Manager

routine. The PrSetError procedure lets you set the value of the current Printing

Manager error.

PrError

You can use the PrError function to get the result code returned by the last Printing

Manager routine.

FUNCTION PrError: Integer;

DESCRIPTION

The PrError function returns the error reported by the last Printing Manager routine. If

an error that does not belong to the Printing Manager occurs during the printing process,

the Printing Manager puts it into low memory, where it can be retrieved with a call to

PrError. The Printing Manager then terminates the printing loop if necessary. If you

encounter an error in the middle of a printing loop, do not end printing abruptly; call the

close routines for any open routines you have already made and let the Printing

Manager terminate properly.

Do not display any alert or dialog boxes to report an error until the end of the printing

loop. Once at the end, check for the error again; if there is no error, assume that printing

completed normally. If the error is still present, then you can alert the user.

The most common error encountered is PAPNoPrinter, which is usually generated if

no printer is selected. Since this error is so common, it is a good idea to create and

display an alert box asking the user to select a printer from the Chooser when this error

is encountered.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PrError function are

Trap macro Selector

_PrGlue $BA000000

C H A P T E R 9

Printing Manager

9-76 Printing Manager Reference

RESULT CODES

The following result codes are specific to the LaserWriter 8 printer driver:

iPrAbort 128 Application or user requested cancel
opNotImpl 2 Requested PrGeneral opcode not implemented in the

current printer driver
noSuchRsl 1 Resolution requested with the PrGeneral procedure is not

supported
noErr 0 No error
iPrSavPFil –1 Problem saving print file
controlErr –17 Unimplemented control instructions; the Device Manager

returns this result code
iIOAbort –27 I/O error
iMemFullErr –108 There is not enough room in the heap zone
resNotFound –192 The current printer driver does not support PrGeneral

(described on page 9-72); you should clear this error with a
call to PrSetError (described in the next section) with a
parameter value of 0; otherwise, PrError might still
contain this error the next time you check it

PAPNoCCBs –4096 There are no free connect
control blocks (CCBs) available

PAPBadRefnum –4097 Bad connection reference
number

PAPActive –4098 The request is already active
PAPTooBig –4099 The write request is too big
PAPConnClosed –4100 The connection is closed
PAPNoPrinter –4101 The printer is not found, is

closed, or is not selected
–8131 Printer not responding

manualFeedTOErr –8132 A timeout occurred (that is, no
communication has occurred
with the printer for two
minutes); this is usually caused
by an extremely long imaging
time or a dropped connection

generalPSErr –8133 A PostScript error occurred
during transmission of data to
the printer; this is most often
caused by a bug in the
application-supplied
PostScript code

zoomRangeErr –8160 The print image enlarged
by the user with the Page
Setup dialog box overflows the
available page resolution

errBadFontKeyType –8976 Font found in printer is not
Type 1, TrueType, or
bitmapped font

errPSStateUnderflow –8977 PostScript stack underflow
while restoring graphics state

errNoPattern –8978 The pixel pattern could not be
found and could not be built

errBadConverterID –8979 The 'PDEF' converter doesn’t
exist

C H A P T E R 9

Printing Manager

Printing Manager Reference 9-77

SEE ALSO

See “Handling Printing Errors” on page 9-41 for more information on using

PrError. See the chapter “Dialog Manager” in Inside Macintosh: Macintosh Toolbox
Essentials for information about displaying alert and dialog boxes.

errNoPagesSpooled –8980 Application called PrOpenDoc
and PrCloseDoc without
calling PrOpenPage and
PrClosePage in between

errNullColorInfo –8981 The getColor function called
with null GetColorInfo
handle

errPSFileNameNull –8982 The filename pointer for the
spool file is null

errSpoolFolderIsAFile –8983 The spool folder is a file
instead of a folder

errBadConverterIndex –8984 When saving a spool file
to disk, the value
fileTypeIndex had no
matching entry in the driver

errDidNotDownloadFont –8985 A PostScript outline could not
be found for a PostScript font,
and there is no associated
'sfnt' resource

errBitmapFontMissing –8986 Unable to build bitmap for font
errPSFileName –8987 PostScript file isn’t named
errCouldNotMakeNumberedFilename –8989 Could not make a unique

filename for the spool file
errBadSpoolFileVersion –8990 Bad version number in header

of spool file
errNoProcSetRes –8991 The resource describing

needed procedure sets is
unavailable for the PostScript
prolog

errInLineTimeout –8993 The printer is not responding
errUnknownPSLevel –8994 The PostScript level has an

unknown value
errFontNotFound –8995 Font query reply didn’t match

any fonts in list of PostScript
names

errSizeListBad –8996 The size list contained an entry
that could not be reconciled
with the typeface list

errFaceListBad –8997 Entry could not be found in
typeface list

errNotAKey –8998 Key for desired font number
and style could not be found in
font table

C H A P T E R 9

Printing Manager

9-78 Printing Manager Reference

PrSetError

You can use the PrSetError procedure to set the value of the current printing error.

PROCEDURE PrSetError (iErr: Integer);

iErr The result to set as the current printing error.

DESCRIPTION

The PrSetError procedure stores the specified value into the global variable

PrintErr, where the Printing Manager keeps its result code. You can use PrSetError

to cancel a printing operation.

ASSEMBLY-LANGUAGE INFORMATION

You should not directly access the location of the global variable PrintErr; instead you

should use the PrError function or PrSetError procedure to get the value of this

variable.

The trap macro and routine selector for the PrSetError procedure are

Low-Level Routines

Low-level routines are available for use when printing on some ImageWriter printers.

(The ImageWriter LQ driver does not support these routines.) However, Apple strongly

discourages you from using these routines—with the exception of the PrDrvrVers

function. The others are documented here only for completeness.

Instead of using the low-level routines, you should use the high-level routines of the

Printing Manager. Low-level routines are not guaranteed to work in precisely the same

manner in future versions of the system software. Low-level routines are primarily

suited for functions such as text streaming (the process of receiving data from a source

and printing it immediately, without any intermediate formatting). In addition, if you

use the low-level routines and the user prints a document on a LaserWriter printer, the

LaserWriter printer driver translates all calls to low-level routines to the matching

high-level routines, so your application does not gain a speed advantage.

▲ W A R N I N G

Apple strongly discourages you from using these routines. If you do, do
not mix high-level routines and low-level routines after opening the
printer driver. The only exception to this is that you may use the
PrDrvrVers function (described next) with the high-level routines. ▲

Trap macro Selector

_PrGlue $C0000200

C H A P T E R 9

Printing Manager

Printing Manager Reference 9-79

PrDrvrVers

You can use the PrDrvrVers function to determine the version of the printer driver for

the current printer.

FUNCTION PrDrvrVers: Integer;

DESCRIPTION

The PrDrvrVers function returns the version number of the printer driver for the

current printer. This is the only low-level printing function you may call from the

high-level interface.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PrDrvrVers function are

PrDrvrOpen

You can use the PrDrvrOpen procedure to open the current printer driver.

PROCEDURE PrDrvrOpen;

DESCRIPTION

The PrDrvrOpen procedure opens the printer driver, reading it into memory if

necessary.

SPECIAL CONSIDERATIONS

Use the PrDrvrOpen procedure with the PrDrvrClose procedure (described in the

next section). Do not mix these procedures with the PrOpen and PrClose procedures

(described on page 9-57 and page 9-58, respectively).

Apple strongly discourages you from using this routine.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PrDrvrOpen procedure are

Trap macro Selector

_PrGlue $9A000000

Trap macro Selector

_PrGlue $80000000

C H A P T E R 9

Printing Manager

9-80 Printing Manager Reference

PrDrvrClose

You can use the PrDrvrClose procedure to close the printer driver.

PROCEDURE PrDrvrClose;

DESCRIPTION

The PrDrvrClose procedure closes the printer driver, releasing the memory it occupies.

SPECIAL CONSIDERATIONS

Use the PrDrvrClose procedure with the PrDrvrOpen procedure (described in the

previous section). Do not mix these procedures with the PrOpen and PrClose

procedures (described on page 9-57 and page 9-58, respectively).

Apple strongly discourages you from using this routine.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PrDrvrClose procedure are

PrDrvrDCE

You can use the PrDrvrDCE function to get a handle to the current printer driver’s

device control entry (DCE).

FUNCTION PrDrvrDCE: Handle;

DESCRIPTION

The PrDrvrDCE function returns a handle to the current printer driver’s DCE. A printer

driver’s DCE contains specific information about that printer driver. You can also get a

handle to the driver’s DCE by calling the Device Manager function GetDCtlEntry.

Trap macro Selector

_PrGlue $88000000

C H A P T E R 9

Printing Manager

Printing Manager Reference 9-81

SPECIAL CONSIDERATIONS

Apple strongly discourages you from using this routine.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PrDrvrDCE function are

SEE ALSO

For more information about DCEs and how the Device Manager uses them, see Inside
Macintosh: Devices.

PrCtlCall

You can use the PrCtlCall procedure to send various requests to the current printer

driver.

PROCEDURE PrCtlCall (iWhichCtl: Integer; lParam1: LongInt;

lParam2: LongInt; lParam3: LongInt);

iWhichCtl A value that indicates the operation to perform. You can use these
constants in this parameter:

 CONST

iPrBitsCtl = 4; {print a bitmap object}

iPrIOCtl = 5; {perform text streaming}

iPrEvtCtl = 6; {print object specified in }

{ lParam1 parameter}

iPrDevCtl = 7; {device control command}

lParam1 The use of this parameter varies according to the value in the iWhichCtl
parameter. See the following paragraphs for this information.

lParam2 The use of this parameter varies according to the value in the iWhichCtl
parameter. See the following paragraphs for this information.

lParam3 The use of this parameter varies according to the value in the iWhichCtl
parameter. See the following paragraphs for this information.

Trap macro Selector

_PrGlue $94000000

C H A P T E R 9

Printing Manager

9-82 Printing Manager Reference

DESCRIPTION

The PrCtlCall procedure performs the operation indicated by the iWhichCtl

parameter. Depending on the operation, PrCtlCall may also use information in the

lParam1, lParam2, and lParam3 parameters. The PrCtlCall procedure calls the

printer driver’s control routine. Instead of sending the low-level calls to the printer

driver, the PrCtlCall procedure converts the call into its high-level equivalent before

execution.

You can use the PrCtlCall procedure with the iPrBitsCtl control constant

when you want to print bitmaps. In this case, you should supply the parameters to

PrCtlCall with the following information:

iWhichCtl The constant iPrBitsCtl. This constant allows you to send all or part of
a QuickDraw bitmap directly to the printer.

lParam1 A pointer to the QuickDraw bitmap to print.

lParam2 A pointer to the rectangle you want to print.

lParam3 The type of resolution used to print the bitmap. The LaserWriter printer
driver ignores this flag. This parameter can have one of the following
values:

You can use the PrCtlCall procedure with the iPrIOCtl control constant when you

want text streaming in your application. (Text streaming is useful for fast printing of text

when speed is more important than visual fidelity or formatting. It makes no use of

QuickDraw.) In this case, you should supply the parameters to PrCtlCall with the

following information:

iWhichCtl The constant iPrIOCtl. This constant causes text streaming to occur.

lParam1 A pointer to the beginning of the text.

lParam2 The number of bytes to transfer. The high-order word must be 0.

lParam3 This should be 0.

You can use the PrCtlCall procedure with the iPrEvtCtl control constant for

printing the screen or the frontmost window on most ImageWriter printers. (The

LaserWriter printer driver does not support this call.) In this case, you should supply the

parameters to PrCtlCall with the following information:

iWhichCtl The constant iPrEvtCtl. This constant prints the object you have
selected using the lParam1 parameter.

lParam1 This parameter selects the object to be printed. If this value is $00000000,
you want to print the screen. If this value is $00010000, you want to print
the frontmost window.

Constant Value Description

lScreenBits $00000000 The resolution is 80 by 72 dpi

lPaintBits $00000001 The resolution is 72 by 72 dpi

lHiScreenBits $00000002 The resolution is 160 by 144 dpi

lHiPaintBits $00000003 The resolution is 144 by 144 dpi

C H A P T E R 9

Printing Manager

Printing Manager Reference 9-83

lParam2 This should be NIL.

lParam3 This should be NIL.

You can use the PrCtlCall procedure with the iPrDevCtl control constant for

controlling the printer device. In this case, you should supply the parameters to

PrCtlCall with the following information:

iWhichCtl The constant iPrDevCtl.

lParam1 The action you want to take. The values possible for this parameter are
listed in Table 9-1.

lParam2 This should be NIL.

lParam3 This should be NIL.

Table 9-1 Values for the lParam1 parameter when using the iPrDevCtl control constant

Constant Value Description

lPrDocOpen $00010000 Opens the document. This is similar to the
high-level routine PrOpenDoc and should be
followed with a call to PrCtlCall with the
iPrDetl control call and an lParam1 value
of lPrDocClose.

lPrReset $00010000 Reserved.

lPrPageClose $00020000 Closes the page. This is similar to the high-level
routine PrClosePage and should follow a call to
PrCtlCall with the iPrDevCtl control call and
an lParam1 value of lPrPageOpen.

lPrPageEnd $00020000 Same as lPrPageClose.

lPrLineFeed $00030000 Paper advance.

lPrLFStd $0003FFFF Carriage return with line feed. The ImageWriter
printer driver causes a carriage return plus a paper
feed of one-sixth of an inch. The LaserWriter printer
driver moves the pen location down the page.

lPrPageOpen $00040000 Opens the page for printing. This is similar to the
high-level routine PrOpenPage and should be
followed with a call to PrCtlCall with the
iPrDevCtl control call and an lParam1 value
of lPrPageClose.

lPrDocClose $00050000 Closes the document. This is similar to the
high-level routine PrCloseDoc and should follow
a call to PrCtlCall with the iPrDevCtl control
call and an lParam1 value of lPrDocOpen.

C H A P T E R 9

Printing Manager

9-84 Printing Manager Reference

SPECIAL CONSIDERATIONS

Apple strongly discourages you from using this routine.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PrCtlCall procedure are

Application-Defined Routines

The printer driver for the current printer periodically calls an idle procedure while

sending a document to the printer. You can provide your own idle procedure (here

called MyDoPrintIdle) that handles events in a dialog box reporting the status of the

print job.

If you add items—such as checkboxes and radio buttons—to the default style or job

dialog box, your application uses the PrDlgMain function to display the dialog box. In

one of the parameters to PrDlgMain, you pass the address of an initialization function

(here called MyPrDialogAppend) that you use to append items to your dialog box.

If you append items to the style or job dialog boxes, you need to provide a function

(sometimes called a dialog hook) to handle events in these items. You should also provide

an event filter function to handle events that the Dialog Manager doesn’t handle—such

as update events in background windows—in modal dialog boxes. For a description of

how to handle events in dialog boxes and how to write an event filter function for modal

dialog boxes, see the chapter “Dialog Manager” in Inside Macintosh: Macintosh Toolbox
Essentials.

Trap macro Selector

_PrGlue $A0000E00

C H A P T E R 9

Printing Manager

Printing Manager Reference 9-85

MyDoPrintIdle

The printer driver for the current printer periodically calls an idle procedure while

sending a document to the printer. The Printing Manager’s default idle procedure allows

the user to cancel printing. This procedure polls the keyboard and sets the iPrAbort

result code if the user presses Command-period to cancel the print job. However, the

default idle procedure does not display a print status dialog box. It is up to the printer

driver or your application to display a print status dialog box.

Most printer drivers display their own status dialog boxes. However, your application

can display its own status dialog box that reports the current status of the printing

operation to the user. If it does, your status dialog box should allow the user to press

Command-period to cancel the printing operation, and it may also provide a button

allowing the user to cancel the printing operation. To handle update events in your

status dialog box, Command-period keyboard events, and clicks in your Cancel button

(if you provide one), you should provide your own idle procedure.

PROCEDURE MyDoPrintIdle;

DESCRIPTION

As described in “Writing an Idle Procedure” beginning on page 9-38, you install your

idle procedure in the pIdleProc field of the TPrint record. The printer driver runs

your idle procedure periodically. It stops running once the entire document has been

sent to the printer and does not run while the printer actually prints. The idle procedure

takes no parameters and returns no result.

SEE ALSO

See Figure 9-9 on page 9-14 for an example of an application-defined status dialog box.

Listing 9-9 on page 9-40 illustrates an idle procedure. See “Writing an Idle Procedure”

beginning on page 9-38 for complete information about providing your own idle

procedure.

C H A P T E R 9

Printing Manager

9-86 Printing Manager Reference

MyPrDialogAppend

If you customize a style or job dialog box, your application uses the PrDlgMain

function to display the dialog box. In one of the parameters to PrDlgMain, you pass the

address of an initialization function that you use to append items—such as checkboxes

and radio buttons—to the dialog box. Here is how might declare your initialization

function if you were to name it MyPrDialogAppend:

FUNCTION MyPrDialogAppend (hPrint: THPrint): TPPrDlg;

hPrint A handle to a TPrint record (described on page 9-44).

DESCRIPTION

Your MyPrDialogAppend function should use the Dialog Manager procedure

AppendDITL to add items to the style or job dialog box for the document whose

TPrint record is passed in the hPrint parameter. As its function result, your function

should return a pointer to the TPrDlg record (described on page 9-50) for the

customized style or job dialog box.

You can use the PrStlInit or PrJobInit function (described on page 9-64 and

page 9-65, respectively) to get an initialized TPrDlg record for the current printer.

Your MyPrDialogAppend function should install pointers to two functions in the

TPrDlg record for this dialog box. Put a pointer to one function in the pFltrProc field;

this function should handle events (such as update events in background applications

and disk-inserted events) that the Dialog Manager doesn’t handle in a modal dialog box.

Put a pointer to the second function in the pItemProc field; this function should handle

events, such as mouse clicks, in the items added to the dialog box.

SEE ALSO

Listing 9-8 on page 9-37 shows an example of the MyPrDialogAppend function;

Listing 9-7 on page 9-37 shows how to pass the address of this function to the

PrDlgMain function. See the chapter “Dialog Manager” in Inside Macintosh: Macintosh
Toolbox Essentials for information about the AppendDITL procedure and about handling

events in dialog boxes.

C H A P T E R 9

Printing Manager

Summary of the Printing Manager 9-87

Summary of the Printing Manager

Pascal Summary

Constants

CONST

iPrPgFst = 1; {page range constant--first page}

iPrRelease = 3; {current version number of the printer driver}

iPrPgFract = 120; {page scale factor}

iPFMaxPgs = 128; {maximum pages in spool file}

iPrPgMax = 9999; {page range constant--last page}

{PrCtlCall constants for the iWhichCtl parameter}

iPrBitsCtl = 4; {print a bitmap object}

iPrIOCtl = 5; {perform text streaming}

iPrEvtCtl = 6; {print object specified in lParam1 parameter}

iPrDevCtl = 7; {device control command}

{constants used with iPrBitsCtl (in the lParam1 parameter of PrCtlCall)}

lScreenBits = $00000000; {resolution is 80 x 72 dpi}

lPaintBits = $00000001; {resolution is 72 x 72 dpi}

lHiScreenBits = $00000002; {resolution is 160 x 144 dpi}

lHiPaintBits = $00000003; {resolution is 144 x 144 dpi}

{constants used with iPrEvtCtl (in the lParam3 parameter of PrCtlCall)}

lPrEvtAll = $0002FFFD; {the entire screen}

lPrEvtTop = $0001FFFD; {the frontmost window}

{constants used with iPrDevCtl (in the lParam1 parameter of PrCtlCall)}

lPrReset = $00010000; {reserved}

lPrLineFeed = $00030000; {paper advance}

lPrLFStd = $0003FFFF; {carriage return with line feed}

lPrLFSixth = $0003FFFF; {used for low-level call for ImageWriter}

lPrPageEnd = $00020000; {end page}

lPrDocOpen = $00010000; {open document for printing}

lPrPageOpen = $00040000; {open page for printing}

lPrPageClose = $00020000; {close page for printing}

C H A P T E R 9

Printing Manager

9-88 Summary of the Printing Manager

lPrDocClose = $00050000; {close document for printing}

bDraftLoop = 0; {draft-quality printing}

bSpoolLoop = 1; {deferred printing}

bUser1Loop = 2; {reserved}

bUser2Loop = 3; {reserved}

iPrSavPFil = -1; {problem saving print file}

iPrAbort = $0080; {the user pressed Command-period}

iFMgrCtl = 8; {File Mgr's dialog-hook proc's control number}

pPrGlobals = $00000944; {PrVars low memory area}

iPrDrvrRef = -3; {reference number of printer driver}

{opcodes used with PrGeneral}

getRslDataOp = 4; {get resolutions for the current printer}

setRslOp = 5; {set resolutions for a TPrint record}

draftBitsOp = 6; {force enhanced draft-quality printing}

noDraftBitsOp = 7; {cancel enhanced draft-quality printing}

getRotnOp = 8; {get page orientation of a TPrint record}

{result codes from PrGeneral}

noSuchRsl = 1; {resolution not supported}

Data Types

TYPE

TPPrint = ^TPrint; {pointer to a TPrint record}

THPrint = ^TPPrint; {handle to a TPrint record}

TPrint = {print record}

RECORD

iPrVersion: Integer; {reserved}

prInfo: TPrInfo; {resolution of device & page rectangle}

rPaper: Rect; {paper rectangle}

prStl: TPrStl; {printer driver number & feed type}

prInfoPT: TPrInfo; {reserved}

prXInfo: TPrXInfo; {reserved}

prJob: TPrJob; {information from the job dialog box}

printX: ARRAY[1..19] OF Integer;

{reserved}

END;

C H A P T E R 9

Printing Manager

Summary of the Printing Manager 9-89

TPPrInfo = ^TPrInfo;

TPrInfo = {printer information record}

RECORD

iDev: Integer; {reserved}

iVRes: Integer; {vertical resolution of printer, in dpi}

iHRes: Integer; {horizontal resolution of printer, in dpi}

rPage: Rect; {the page rectangle}

END;

TPPrJob = ^TPrJob;

TPrJob = {print job record}

RECORD

iFstPage: Integer; {first page of page range}

iLstPage: Integer; {last page of page range}

iCopies: Integer; {number of copies}

bJDocLoop: SignedByte; {printing method: draft or deferred}

fFromUsr: Boolean; {reserved}

pIdleProc: PrIdleProcPtr; {pointer to an idle procedure}

pFileName: StringPtr; {spool filename: NIL for default}

iFileVol: Integer; {spool file volume; set to 0 initially}

bFileVers: SignedByte; {spool file version; set to 0 initially}

bJobX: SignedByte; {reserved}

END;

TPPrStl = ^TPrStl;

TPrStl = {printing style record}

RECORD

wDev: Integer; {device number of printer}

iPageV: Integer; {reserved}

iPageH: Integer; {reserved}

bPort: SignedByte; {reserved}

feed: TFeed; {feed type}

END;

TPPrStatus = ^TPrStatus;

TPrStatus = {printing status record}

RECORD

iTotPages: Integer; {total pages in print file}

iCurPage: Integer; {current page number}

iTotCopies: Integer; {total copies requested}

iCurCopy: Integer; {current copy number}

iTotBands: Integer; {reserved}

iCurBand: Integer; {reserved}

fPgDirty: Boolean; {TRUE if current page has been written to}

C H A P T E R 9

Printing Manager

9-90 Summary of the Printing Manager

fImaging: Boolean; {reserved}

hPrint: THPrint; {handle to the active TPrint record}

pPrPort: TPPrPort; {pointer to the active printing graphics port}

hPic: PicHandle; {handle to the active picture}

END;

TPPrDlg = ^TPrDlg;

TPrDlg = {print dialog box record}

RECORD

Dlg: DialogRecord; {a dialog record}

pFltrProc: ModalFilterProcPtr; {pointer to event filter}

pItemProc: PItemProcPtr; {pointer to item-handling function}

hPrintUsr: THPrint; {handle to a TPrint record}

fDoIt: Boolean; {TRUE means user clicked OK}

fDone: Boolean; {TRUE means user clicked OK or Cancel}

lUser1: LongInt; {storage for your application}

lUser2: LongInt; {storage for your application}

lUser3: LongInt; {storage for your application}

lUser4: LongInt; {storage for your application}

END;

TPPrPort = ^TPrPort;

TPrPort = {printing graphics port record}

RECORD

gPort: GrafPort; {graphics port for printing}

gProcs: QDProcs; {procedures for printing in the graphics port}

lGParam1: LongInt; {reserved}

lGParam2: LongInt; {reserved}

lGParam3: LongInt; {reserved}

lGParam4: LongInt; {reserved}

fOurPtr: Boolean; {reserved}

fOurBits: Boolean; {reserved}

END;

TFeed = (feedCut,feedFanfold,feedMechCut,feedOther);

TScan = (scanTB,scanBT,scanLR,scanRL);

TPRect = ^Rect;

PrIdleProcPtr = ProcPtr;

PItemProcPtr = ProcPtr;

C H A P T E R 9

Printing Manager

Summary of the Printing Manager 9-91

PDlgInitProcPtr = ProcPtr;

{records used by PrGeneral}

TGnlData =

RECORD

iOpCode: Integer; {opcode passed to PrGeneral}

iError: Integer; {result code returned by PrGeneral}

lReserved: LongInt; {more fields here depending on opcode}

END;

TGetRslBlk = {get-resolution record}

RECORD

iOpCode: Integer; {the getRslDataOp opcode}

iError: Integer; {result code returned by PrGeneral}

lReserved: LongInt; {reserved}

iRgType: Integer; {printer driver version number}

xRslRg: TRslRg; {x-direction resolution range}

yRslRg: TRslRg; {y-direction resolution range}

iRslRecCnt: Integer; {number of resolution records}

rgRslRec: ARRAY[1..27] OF TRslRec;

{array of resolution records}

END;

TRslRg =

RECORD

iMin: Integer; {minimum resolution supported}

iMax: Integer; {maximum resolution supported}

END;

TRslRec =

RECORD

iXRsl: Integer; {discrete resolution, x direction}

iYRsl: Integer; {discrete resolution, y direction}

END;

TSetRslBlk = {set-resolution record}

RECORD

iOpCode: Integer; {the setRslOp opcode}

iError: Integer; {result code returned by PrGeneral}

lReserved: LongInt; {reserved}

hPrint: THPrint; {handle to the current TPrint record}

iXRsl: Integer; {x-direction resolution you want}

iYRsl: Integer; {y-direction resolution you want}

END;

C H A P T E R 9

Printing Manager

9-92 Summary of the Printing Manager

TDftBitsBlk = {draft bits record}

RECORD

iOpCode: Integer; {draftBitsOp or noDraftBitsOp opcode}

iError: Integer; {result code returned by PrGeneral}

lReserved: LongInt; {reserved}

hPrint: THPrint; {handle to the current TPrint record}

END;

TGetRotnBlk = {page orientation record}

RECORD

iOpCode: Integer; {the getRotnOp opcode}

iError: Integer; {result code returned by PrGeneral}

lReserved: LongInt; {reserved}

hPrint: THPrint; {handle to current TPrint record}

fLandscape: Boolean; {TRUE if user selected landscape printing}

bXtra: SignedByte; {reserved}

END;

Printing Manager Routines

Opening and Closing the Printing Manager

PROCEDURE PrOpen;

PROCEDURE PrClose;

Initializing and Validating TPrint Records

PROCEDURE PrintDefault (hPrint: THPrint);

FUNCTION PrValidate (hPrint: THPrint): Boolean;

Displaying and Customizing the Print Dialog Boxes

FUNCTION PrStlDialog (hPrint: THPrint): Boolean;

FUNCTION PrJobDialog (hPrint: THPrint): Boolean;

FUNCTION PrDlgMain (hPrint: THPrint; pDlgInit: PDlgInitProcPtr):
Boolean;

FUNCTION PrStlInit (hPrint: THPrint): TPPrDlg;

FUNCTION PrJobInit (hPrint: THPrint): TPPrDlg;

PROCEDURE PrJobMerge (hPrintSrc: THPrint; hPrintDst: THPrint);

C H A P T E R 9

Printing Manager

Summary of the Printing Manager 9-93

Printing a Document

FUNCTION PrOpenDoc (hPrint: THPrint; pPrPort: TPPrPort;
pIOBuf: Ptr): TPPrPort;

PROCEDURE PrCloseDoc (pPrPort: TPPrPort);

PROCEDURE PrOpenPage (pPrPort: TPPrPort; pPageFrame: TPRect);

PROCEDURE PrClosePage (pPrPort: TPPrPort);

PROCEDURE PrPicFile (hPrint: THPrint; pPrPort: TPPrPort;
pIOBuf: Ptr; pDevBuf: Ptr;
VAR prStatus: TPrStatus);

Optimizing Printing

PROCEDURE PrGeneral (pData: Ptr);

Handling Printing Errors

FUNCTION PrError : Integer;

PROCEDURE PrSetError (iErr: Integer);

Low-Level Routines

FUNCTION PrDrvrVers : Integer;

PROCEDURE PrDrvrOpen;

PROCEDURE PrDrvrClose;

FUNCTION PrDrvrDCE : Handle;

PROCEDURE PrCtlCall (iWhichCtl: Integer; lParam1: LongInt;
lParam2: LongInt; lParam3: LongInt);

Application-Defined Routines

PROCEDURE MyDoPrintIdle;

FUNCTION MyPrDialogAppend (hPrint: THPrint): TPPrDlg;

C H A P T E R 9

Printing Manager

9-94 Summary of the Printing Manager

C Summary

Constants

enum {

iPrPgFst = 1, /* page range constant--first page */

iPrRelease = 3, /* current version number of the printer driver */

iPrPgFract = 120, /* page scale factor */

iPFMaxPgs = 128, /* maximum pages in spool file */

iPrPgMax = 9999, /* page range constant--last page */

/* PrCtlCall constants for the iWhichCtl parameter */

iPrBitsCtl = 4, /* print a bitmap object */

iPrIOCtl = 5, /* perform text streaming */

iPrEvtCtl = 6, /* print object specified in lParam1 parameter */

iPrDevCtl = 7, /* device control command */

/* constants used with iPrBitsCtl (in the lParam1 parameter

of PrCtlCall) */

lScreenBits = 0, /* resolution is 80 x 72 dpi */

lPaintBits = 1, /* resolution is 72 x 72 dpi */

lHiScreenBits = 0x00000002, /* resolution is 160 x 144 dpi */

lHiPaintBits = 0x00000003, /* resolution is 144 x 144 dpi */

/* constants used with iPrEvtCtl (in the lParam3 parameter

of PrCtlCall) */

lPrEvtAll = 0x0002FFFD, /* the entire screen */

lPrEvtTop = 0x0001FFFD, /* the frontmost window */

/* constants used with iPrDevCtl (in the lParam1 parameter

of PrCtlCall) */

lPrReset = 0x00010000, /* reserved */

lPrLineFeed = 0x00030000, /* paper advance */

lPrLFStd = 0x0003FFFF, /* carriage return with line feed */

lPrLFSixth = 0x0003FFFF, /* used for low-level call for

ImageWriter */

lPrPageEnd = 0x00020000, /* end page */

lPrDocOpen = 0x00010000, /* open document for printing */

lPrPageOpen = 0x00040000, /* open page for printing */

lPrPageClose = 0x00020000, /* close page for printing */

lPrDocClose = 0x00050000, /* close document for printing */

C H A P T E R 9

Printing Manager

Summary of the Printing Manager 9-95

bDraftLoop = 0, /* draft-quality printing */

bSpoolLoop = 1, /* deferred printing */

bUser1Loop = 2, /* reserved */

bUser2Loop = 3, /* reserved */

iPrSavPFil = -1, /* problem saving print file */

iPrAbort = 0x0080, /* the user pressed Command-period */

iFMgrCtl = 8, /* File Mgr's dialog-hook proc's control

number */

pPrGlobals = 0x00000944, /* PrVars low memory area */

iPrDrvrRef = -3, /* reference number of printer driver */

/* opcodes used with PrGeneral */

getRslDataOp = 4, /* get resolutions for the current printer */

setRslOp = 5, /* set resolutions for a TPrint record */

draftBitsOp = 6, /* force enhanced draft-quality printing */

noDraftBitsOp = 7, /* cancel enhanced draft-quality printing */

getRotnOp = 8, /* get page orientation of a TPrint record */

/* result code from PrGeneral */

noSuchRsl = 1, /* resolution not supported */

};

Data Types

struct TPrint { /* print record */

short iPrVersion; /* reserved */

TPrInfo prInfo; /* resolution of device & page rectangle */

Rect rPaper; /* paper rectangle */

TPrStl prStl; /* printer driver number & feed type */

TPrInfo prInfoPT; /* reserved */

TPrXInfo prXInfo; /* reserved */

TPrJob prJob; /* information from the job dialog box */

short printX[19]; /* reserved */

};

typedef struct TPrint TPrint;

typedef TPrint *TPPrint, **THPrint;

struct TPrInfo { /* printer information record */

short iDev; /* reserved */

short iVRes; /* vertical resolution of printer, in dpi */

C H A P T E R 9

Printing Manager

9-96 Summary of the Printing Manager

short iHRes; /* horizontal resolution of printer, in dpi */

Rect rPage; /* the page rectangle */

};

typedef struct TPrInfo TPrInfo;

typedef TPrInfo *TPPrInfo;

struct TPrJob { /* print job record */

short iFstPage; /* first page of page range */

short iLstPage; /* last page of page range */

short iCopies; /* number of copies */

char bJDocLoop; /* printing method: draft or deferred */

Boolean fFromUsr; /* reserved */

PrIdleProcPtr

pIdleProc; /* pointer to an idle procedure */

StringPtr

pFileName; /* spool filename: NIL for default */

short iFileVol; /* spool file volume; set to 0 initially */

char bFileVers; /* spool file version; set to 0 initially */

char bJobX; /* reserved */

};

typedef struct TPrJob TPrJob;

typedef TPrJob *TPPrJob;

struct TPrStl { /* printing style record */

short wDev; /* device number of printer */

short iPageV; /* reserved */

short iPageH; /* reserved */

char bPort; /* reserved */

TFeed feed; /* feed type */

};

typedef struct TPrStl TPrStl;

typedef TPrStl *TPPrStl;

struct TPrStatus { /* printing status record */

short iTotPages; /* total pages in print file */

short iCurPage; /* current page number */

short iTotCopies; /* total copies requested */

short iCurCopy; /* current copy number */

short iTotBands; /* reserved */

short iCurBand; /* reserved */

Boolean fPgDirty; /* TRUE if current page has been written to */

Boolean fImaging; /* reserved */

THPrint hPrint; /* handle to the active TPrint record */

C H A P T E R 9

Printing Manager

Summary of the Printing Manager 9-97

TPPrPort pPrPort; /* pointer to the active printing graphics port */

PicHandle hPic; /* handle to the active picture */

};

typedef struct TPrStatus TPrStatus;

typedef TPrStatus *TPPrStatus;

struct TPrDlg { /* print dialog box record */

DialogRecord Dlg; /* a dialog record */

ModalFilterProcPtr

pFltrProc; /* pointer to event filter */

PItemProcPtr pItemProc; /* pointer to item-handling function */

THPrint hPrintUsr; /* handle to a TPrint record */

Boolean fDoIt; /* TRUE means user clicked OK */

Boolean fDone; /* TRUE means user clicked OK or Cancel */

long lUser1; /* storage for your application */

long lUser2; /* storage for your application */

long lUser3; /* storage for your application */

long lUser4; /* storage for your application */

};

typedef struct TPrDlg TPrDlg;

typedef TPrDlg *TPPrDlg;

typedef pascal TPPrDlg (*PDlgInitProcPtr)(THPrint hPrint);

truct TPrPort { /* printing graphics port record */

GrafPort gPort; /* graphics port for printing */

QDProcs gProcs; /* procedures for printing in the graphics port */

long lGParam1; /* reserved */

long lGParam2; /* reserved */

long lGParam3; /* reserved */

long lGParam4; /* reserved */

Boolean fOurPtr; /* reserved */

Boolean fOurBits; /* reserved */

};

typedef struct TPrPort TPrPort;

typedef TPrPort *TPPrPort;

enum {feedCut,feedFanfold,feedMechCut,feedOther};

typedef unsigned char TFeed;

enum {scanTB,scanBT,scanLR,scanRL};

typedef unsigned char TScan;

typedef Rect *TPRect;

C H A P T E R 9

Printing Manager

9-98 Summary of the Printing Manager

typedef pascal void (*PrIdleProcPtr)(void);

typedef pascal void (*PItemProcPtr)(DialogPtr theDialog, short item);

/* structures used by PrGeneral */

struct TGnlData {

short iOpCode; /* opcode passed to PrGeneral */

short iError; /* result code returned by PrGeneral */

long lReserved; /* more fields here depending on call */

};

typedef struct TGnlData TGnlData;

struct TGetRslBlk { /* get-resolution record */

short iOpCode; /* the getRslDataOp opcode */

short iError; /* result code returned by PrGeneral */

long lReserved; /* reserved */

short iRgType; /* printer driver version number */

TRslRg xRslRg; /* x-direction resolution range */

TRslRg yRslRg; /* y-direction resolution range */

short iRslRecCnt; /* number of resolution records */

TRslRec rgRslRec[27]; /* array of resolution records */

};

typedef struct TGetRslBlk TGetRslBlk;

struct TRslRg {

short iMin; /* minimum resolution supported */

short iMax; /* maximum resolution supported */

};

typedef struct TRslRg TRslRg;

struct TRslRec {

short iXRsl; /* discrete resolution, x direction */

short iYRsl; /* discrete resolution, y direction */

};

typedef struct TRslRec TRslRec;

C H A P T E R 9

Printing Manager

Summary of the Printing Manager 9-99

struct TSetRslBlk { /* set-resolution record */

short iOpCode; /* the setRslOp opcode */

short iError; /* result code returned by PrGeneral */

long lReserved; /* reserved */

THPrint hPrint; /* handle to the current TPrint record */

short iXRsl; /* x-direction resolution you want */

short iYRsl; /* y-direction resolution you want */

};

typedef struct TSetRslBlk TSetRslBlk;

struct TDftBitsBlk { /* draft bits record */

short iOpCode; /* draftBitsOp or noDraftBitsOp opcode */

short iError; /* result code returned by PrGeneral */

long lReserved; /* reserved */

THPrint hPrint; /* handle to the current TPrint record */

};

typedef struct TDftBitsBlk TDftBitsBlk;

struct TGetRotnBlk { /* page orientation record */

short iOpCode; /* the getRotnOp opcode */

short iError; /* result code returned by PrGeneral */

long lReserved; /* reserved */

THPrint hPrint; /* handle to current TPrint record */

Boolean fLandscape; /* TRUE if user selected landscape printing */

char bXtra; /* reserved */

};

typedef struct TGetRotnBlk TGetRotnBlk;

Printing Manager Functions

Opening and Closing the Printing Manager

pascal void PrOpen (void);

pascal void PrClose (void);

Initializing and Validating TPrint Records

pascal void PrintDefault (THPrint hPrint);

pascal Boolean PrValidate (THPrint hPrint);

C H A P T E R 9

Printing Manager

9-100 Summary of the Printing Manager

Displaying and Customizing the Print Dialog Boxes

pascal Boolean PrStlDialog (THPrint hPrint);

pascal Boolean PrJobDialog (THPrint hPrint);

pascal Boolean PrDlgMain (THPrint hPrint, PDlgInitProcPtr pDlgInit);

pascal TPPrDlg PrStlInit (THPrint hPrint);

pascal TPPrDlg PrJobInit (THPrint hPrint);

pascal void PrJobMerge (THPrint hPrintSrc, THPrint hPrintDst);

Printing a Document

pascal TPPrPort PrOpenDoc (THPrint hPrint, TPPrPort pPrPort, Ptr pIOBuf);

pascal void PrCloseDoc (TPPrPort pPrPort);

pascal void PrOpenPage (TPPrPort pPrPort, TPRect pPageFrame);

pascal void PrClosePage (TPPrPort pPrPort);

pascal void PrPicFile (THPrint hPrint, TPPrPort pPrPort, Ptr pIOBuf,
Ptr pDevBuf, TPrStatus *prStatus);

Optimizing Printing

pascal void PrGeneral (Ptr pData);

Handling Printing Errors

pascal short PrError (void);

pascal void PrSetError (short iErr);

Low-Level Functions

pascal short PrDrvrVers (void);

pascal void PrDrvrOpen (void);

pascal void PrDrvrClose (void);

pascal Handle PrDrvrDCE (void);

pascal void PrCtlCall (short iWhichCtl, long lParam1,
long lParam2, long lParam3);

C H A P T E R 9

Printing Manager

Summary of the Printing Manager 9-101

Application-Defined Functions

pascal void MyDoPrintIdle (void);

pascal TPPrDlg MyPrDialogAppend
(THPrint hPrint);

Assembly-Language Summary

Data Structures

TPrint Data Structure

TPrInfo Data Structure

TPrJob Data Structure

0 iPrVersion word printer driver version that initialized this record
2 prInfo 14 bytes TPrInfo data structure with resolution of device and page

rectangle
16 rPaper 8 bytes paper rectangle
24 prStl 8 bytes TPrStl data structure with printer driver number and feed type
32 prInfoPT 14 bytes TPrInfo data structure; reserved
46 prXInfo 16 bytes TPrXInfo data structure; reserved
62 prJob 20 bytes TPrJob data structure with printing information from the job

dialog box
82 printX 40 bytes reserved

0 iDev 6 bytes first word is reserved; second word contains vertical resolution of printer,
in dpi; third word contains horizontal resolution of printer, in dpi

6 rPage 8 bytes the page rectangle

0 iFstPage word first page of page range
2 iLstPage word last page of page range
4 iCopies word number of copies
6 bJDocLoop 1 byte printing method: draft or deferred
7 fFromApp 1 byte reserved
8 pIdleProc long pointer to an idle procedure

12 pFileName long spool filename: NIL for default
16 iFileVol word spool file volume: set to 0 initially
18 bFileVers 1 byte spool file version: set to 0 initially

C H A P T E R 9

Printing Manager

9-102 Summary of the Printing Manager

TPrStl Data Structure

TPrStatus Data Structure

TPrDlg Data Structure

TPrPort Data Structure

0 wDev word device number of the current printer (in the high-order byte of this field);
the low-order byte of this field is reserved

2 iPageV word reserved
4 iPageH word reserved
7 feed 1 byte paper feed type

0 iTotPages word total pages in print file
2 iCurPage word current page number
4 iTotCopies word total copies requested
6 iCurCopy word current copy number
8 iTotBands word reserved

10 iCurBand word reserved
12 fPgDirty 1 byte TRUE if current page has been written to
13 fImaging 1 byte reserved
14 hPrint long handle to the active TPrint data structure
18 pPrPort long pointer to the active printing graphics port
22 hPic long handle to the active picture

0 dlg 168 bytes a dialog record
168 pFltrProc long pointer to event filter
172 pItemProc long pointer to item-handling function
176 hPrintUsr long handle to TPrint data structure
180 fDoIt 1 byte TRUE means user clicked OK
181 fDone 1 byte TRUE means user clicked OK or Cancel
182 lUser1 long storage for your application
186 lUser2 long storage for your application
190 lUser3 long storage for your application
194 lUser4 long storage for your application

0 gPort 178 bytes graphics port and procedures for printing

C H A P T E R 9

Printing Manager

Summary of the Printing Manager 9-103

Trap Macros

Trap Macros Requiring Routine Selectors

_PrGlue

Global Variable

Selector Routine

$C8000000 PrOpen

$D0000000 PrClose

$20040480 PrintDefault

$52040498 PrValidate

$2A040484 PrStlDialog

$32040488 PrJobDialog

$4A040894 PrDlgMain

$3C04040C PrStlInit

$44040410 PrJobInit

$5804089C PrJobMerge

$04000C00 PrOpenDoc

$08000484 PrCloseDoc

$10000808 PrOpenPage

$1800040C PrClosePage

$60051480 PrPicFile

$BA000000 PrError

$C0000200 PrSetError

$70070480 PrGeneral

$94000000 PrDrvrDCE

$9A000000 PrDrvrVers

$80000000 PrDrvrOpen

$88000000 PrDrvrClose

$A0000E00 PrCtlCall

PrintErr Printing error.

C H A P T E R 9

Printing Manager

9-104 Summary of the Printing Manager

Result Codes
iPrAbort 128 Application or user requested cancel
opNotImpl 2 Requested PrGeneral opcode not

implemented in the current printer driver
noSuchRsl 1 Resolution requested with the PrGeneral

procedure is not supported
noErr 0 No error
iPrSavPFil –1 Problem saving print file
controlErr –17 Unimplemented control instructions; the

Device Manager returns this result code
iIOAbort –27 I/O error
iMemFullErr –108 There is not enough room in the heap zone
resNotFound –192 The current printer driver does not support

PrGeneral; you should clear this error with
a call to PrSetError with a parameter value
of 0; otherwise, PrError might still contain
this error next time you check it

PAPNoCCBs –4096 There are no free connect control blocks
(CCBs) available

PAPBadRefnum –4097 Bad connection reference number
PAPActive –4098 The request is already active
PAPTooBig –4099 The write request is too big
PAPConnClosed –4100 The connection is closed
PAPNoPrinter –4101 The printer is not found, is closed, or is not

selected
–8131 Printer not responding

manualFeedTOErr –8132 A timeout occurred (that is, no
communication has occurred with the printer
for two minutes); this is usually caused by an
extremely long imaging time or a dropped
connection

generalPSErr –8133 A PostScript error occurred during
transmission of data to the printer; this is
most often caused by a bug in the
application-supplied PostScript code

zoomRangeErr –8160 The print image enlarged by the user with
the Page Setup dialog box overflows the
available page resolution

errBadFontKeyType –8976 Font found in printer is not Type 1, TrueType,
or bitmapped font

errPSStateUnderflow –8977 PostScript stack underflow while restoring
graphics state

errNoPattern –8978 The pixel pattern could not be found and
could not be built

errBadConverterID –8979 The 'PDEF' converter doesn’t exist
errNoPagesSpooled –8980 Application called PrOpenDoc and

PrCloseDoc without calling PrOpenPage
and PrClosePage in between

errNullColorInfo –8981 The getColor function called with null
GetColorInfo handle

errPSFileNameNull –8982 The filename pointer for the spool file is null
errSpoolFolderIsAFile –8983 The spool folder is a file instead of a folder

C H A P T E R 9

Printing Manager

Summary of the Printing Manager 9-105

errBadConverterIndex –8984 When saving a spool file to disk, the value
fileTypeIndex field had no matching entry
in the driver

errDidNotDownloadFont –8985 A PostScript outline could not be found for a
PostScript font, and there is no associated
'sfnt' resource

errBitmapFontMissing –8986 Unable to build bitmap for font
errPSFileName –8987 PostScript file isn’t named
errCouldNotMakeNumberedFilename –8989 Could not make a unique filename for the

spool file
errBadSpoolFileVersion –8990 Bad version number in header of spool file
errNoProcSetRes –8991 The resource describing needed procedure

sets is unavailable for the PostScript prolog
errInLineTimeout –8993 The printer is not responding
errUnknownPSLevel –8994 The PostScript level has an unknown value
errFontNotFound –8995 Font query reply didn’t match any fonts in list

of PostScript names
errSizeListBad –8996 The size list contained an entry that could not

be reconciled with the typeface list
errFaceListBad –8997 Entry could not be found in typeface list
errNotAKey –8998 Key for desired font number and style could

not be found in font table

Appendixes

Contents A-1

A P P E N D I X A

Contents

Picture Opcodes

Version and Header Opcodes A-3

Picture Opcode Data Types A-4

Opcodes in Pictures A-5

A Sample Extended Version 2 Picture A-22

A Sample Version 2 Picture A-24

A Sample Version 1 Picture A-25

A P P E N D I X A

Version and Header Opcodes A-3

Picture Opcodes

This appendix describes picture opcodes, which are numbers used by the DrawPicture

procedure to determine what object to draw or what mode to change for subsequent

drawing. Your application generally should not read or write picture opcodes directly

but should instead use QuickDraw routines (described in the chapter “Pictures” in this

book) for generating and processing the opcodes. Picture opcodes are listed here for your

application’s debugging purposes.

The Picture record (described in the chapter “Pictures”) begins with a picSize field

and a picFrame field, followed by a variable amount of picture definition data in the

form of opcodes. The first opcode in any picture must be the version opcode, followed

by the version number of the picture.

Version and Header Opcodes

In a picture created in extended version 2 or version 2 format, the first opcode is the

2-byte VersionOp opcode: $0011. This is followed by the 2-byte Version opcode:

$02FF. With system software version 4.1 or later, the Version opcode identifies the

picture as an extended version 2 or a version 2 picture, and all subsequent opcodes are

read as words (which are word-aligned within the picture). In versions of system

software that precede version 4.1, the $02 is read as the version number, then the $FF is

read and interpreted as the end-of-picture opcode—for this reason, DrawPicture on a

pre-4.1 system terminates without drawing any part of an extended version 2 or version

2 picture.

The 2-byte HeaderOp opcode ($0C00) follows the Version opcode in an extended

version 2 or version 2 format picture. The next 24 bytes contain header information. The

value of the 2-byte version opcode that follows the HeaderOp opcode indicates

whether the picture is an extended version 2 picture or a version 2 picture: the Version

opcode has a value of –2 for an extended version 2 picture and a value of –1 for a version

2 picture. The rest of the header for an extended version 2 picture contains resolution

information; the rest of the header for a version 2 picture specifies a fixed-point

bounding box.

Opcodes that perform drawing commands follow the header information.

The OpEndPic opcode ($00FF) signals the end of the picture for an extended version 2

picture or a version 2 picture.

For an example of the version and header opcodes in a decompiled extended version 2

picture, see Listing A-5 on page A-23. For an example of the version and header opcodes

in a decompiled version 2 picture, see Listing A-6 on page A-24.

In a version 1 picture, the VersionOp opcode has a value of $11, which is followed by a

value of $01. For a version 1 picture, QuickDraw parses the remaining drawing opcodes

1 byte at a time; there is no header information in a version 1 picture. An end-of-picture

byte ($FF) after the last opcode or data byte in the file signals the end of the picture.

For an example of the version opcodes in a disassembled version 1 picture, see

Listing A-7 on page A-25.

A P P E N D I X A

Picture Opcodes

A-4 Picture Opcode Data Types

Picture Opcode Data Types

The picture opcodes use the data types that are summarized in Table A-1.

In addition, some picture opcode types, such as BkPixPat, may use the PixMap,

ColorTable, and PixData data types, which makes the length of these opcodes quite

variable. The PixMap record and ColorTable record are described in the chapter

“Color QuickDraw” in this book. The following pseudocode describes the PixData data

type:

PixData: {pseudocode describing the PixData data type}

IF rowBytes < 8 THEN

data is unpacked;

data size = rowBytes*(bounds.bottom-bounds.top);

IF rowBytes >= 8 THEN

data is packed;

image contains (bounds.bottom-bounds.top) packed scanlines;

Table A-1 Data types for picture opcodes

Data type Size

–128..127 1 byte (signed)

0..255 1 byte

Fixed 4 bytes

Integer 2 bytes

Long 4 bytes

Mode 2 bytes

Opcode 2 bytes

Pattern 8 bytes

Point 4 bytes

Poly 10+ bytes

Rect 8 bytes (top, left, bottom, right: integer)

Rgn 10+ bytes

RowBytes 2 bytes (always an even quantity)

A P P E N D I X A

Picture Opcodes

Opcodes in Pictures A-5

packed scanlines are produced by the PackBits routine;

each scanline consists of [byteCount] [data];

IF rowBytes > 250 THEN

byteCount is a word;

ELSE

byteCount is a byte.

END;

Opcodes in Pictures

Pictures created with the OpenPicture function in a color graphics port use the picture

opcodes of the version 2 format. Pictures created with the OpenCPicture function use

the opcodes of the extended version 2 format. The inclusion of resolution information

in the header differentiates the extended version 2 format from the version 2 picture

format. The extended version 2 and version 2 formats share the same opcodes, which are

listed in Table A-2. The length of the data that follows each 2-byte opcode is listed in this

table.

Pictures created with the OpenPicture function in a basic graphics port use the

opcodes of the version 1 format, which are listed in Table A-3 on page A-18.

The unused opcodes found throughout Table A-2 and Table A-3 are reserved for Apple

use. If these opcodes are encountered in pictures, they and their reserved data bytes can

simply be skipped. By default, QuickDraw reads and then ignores these opcodes.

Because opcodes must be word-aligned in version 2 and extended version 2 pictures, a

byte of 0 (zero) data is added after odd-size data.

Note

For opcodes $0100–$7FFF, the amount of data for
opcode $nnXX = 2 times nn bytes. ◆

Table A-2 Opcodes for extended version 2 and version 2 pictures

Opcode Name Description
Size (in bytes) of
additional data

$0000 NOP No operation 0

$0001 Clip Clipping region Region size

$0002 BkPat Background pattern 8

$0003 TxFont Font number for text (Integer) 2

$0004 TxFace Text’s font style (0..255) 1

$0005 TxMode Source mode (Integer) 2

continued

A P P E N D I X A

Picture Opcodes

A-6 Opcodes in Pictures

$0006 SpExtra Extra space (Fixed) 4

$0007 PnSize Pen size (Point) 4

$0008 PnMode Pen mode (Integer) 2

$0009 PnPat Pen pattern 8

$000A FillPat Fill pattern 8

$000B OvSize Oval size (Point) 4

$000C Origin dh, dv (Integer) 4

$000D TxSize Text size (Integer) 2

$000E FgColor Foreground color (Long) 4

$000F BkColor Background color (Long) 4

$0010 TxRatio Numerator (Point), denominator
(Point)

8

$0011 VersionOp Version (0..255) 1

$0012 BkPixPat Background pixel pattern Variable; see
Listing A-1 on
page A-17

$0013 PnPixPat Pen pixel pattern Variable; see
Listing A-1 on
page A-17

$0014 FillPixPat Fill pixel pattern Variable; see
Listing A-1 on
page A-17

$0015 PnLocHFrac Fractional pen position (Integer—
low word of Fixed); if value is not
0.5, pen position is always set to the
picture before each text-drawing
operation.

2

$0016 ChExtra Added width for nonspace
characters (Integer)

2

$0017 Reserved for Apple use Not determined

$0018 Reserved for Apple use Not determined

$0019 Reserved for Apple use Not determined

$001A RGBFgCol Foreground color (RGBColor) 6

$001B RGBBkCol Background color (RGBColor) 6

Table A-2 Opcodes for extended version 2 and version 2 pictures (continued)

Opcode Name Description
Size (in bytes) of
additional data

A P P E N D I X A

Picture Opcodes

Opcodes in Pictures A-7

$001C HiliteMode Highlight mode flag: no data; this
opcode is sent before a drawing
operation that uses the highlight
mode

0

$001D HiliteColor Highlight color (RGBColor) 6

$001E DefHilite Use default highlight color; no data;
set highlight to default (from low
memory)

0

$001F OpColor Opcolor (RGBColor) 6

$0020 Line pnLoc (Point), newPt (Point) 8

$0021 LineFrom newPt (Point) 4

$0022 ShortLine pnLoc (Point), dh (–128..127),
dv (–128..127)

6

$0023 ShortLineFrom dh (–128..127), dv (–128..127) 2

$0024 Reserved for Apple use Data length (Integer), data 2 + data length

$0025 Reserved for Apple use Data length (Integer), data 2 + data length

$0026 Reserved for Apple use Data length (Integer), data 2 + data length

$0027 Reserved for Apple use Data length (Integer), data 2 + data length

$0028 LongText txLoc (Point), count (0..255),
text

5 + text

$0029 DHText dh (0..255), count (0..255), text 2 + text

$002A DVText dv (0..255), count (0..255), text 2 + text

$002B DHDVText dh (0..255), dv (0..255), count
(0..255), text

3 + text

$002C fontName Data length (Integer), old font
ID (Integer), name length
(0..255), font name*

5 + name length

$002D lineJustify Operand data length (Integer),
intercharacter spacing (Fixed), total
extra space for justification (Fixed)†

10

$002E glyphState Data length (word), followed by
these 1-byte Boolean values: outline
preferred, preserve glyph, fractional
widths, scaling disabled

8

continued

Table A-2 Opcodes for extended version 2 and version 2 pictures (continued)

Opcode Name Description
Size (in bytes) of
additional data

A P P E N D I X A

Picture Opcodes

A-8 Opcodes in Pictures

$002F Reserved for Apple use Data length (Integer), data 2 + data length

$0030 frameRect Rectangle (Rect) 8

$0031 paintRect Rectangle (Rect) 8

$0032 eraseRect Rectangle (Rect) 8

$0033 invertRect Rectangle (Rect) 8

$0034 fillRect Rectangle (Rect) 8

$0035 Reserved for Apple use 8 bytes of data 8

$0036 Reserved for Apple use 8 bytes of data 8

$0037 Reserved for Apple use 8 bytes of data 8

$0038 frameSameRect Rectangle (Rect) 0

$0039 paintSameRect Rectangle (Rect) 0

$003A eraseSameRect Rectangle (Rect) 0

$003B invertSameRect Rectangle (Rect) 0

$003C fillSameRect Rectangle (Rect) 0

$003D Reserved for Apple use 0

$003E Reserved for Apple use 0

$003F Reserved for Apple use 0

$0040 frameRRect Rectangle (Rect)‡ 8

$0041 paintRRect Rectangle (Rect)‡ 8

$0042 eraseRRect Rectangle (Rect)‡ 8

$0043 invertRRect Rectangle (Rect)‡ 8

$0044 fillRRect Rectangle (Rect)‡ 8

$0045 Reserved for Apple use 8 bytes of data 8

$0046 Reserved for Apple use 8 bytes of data 8

$0047 Reserved for Apple use 8 bytes of data 8

$0048 frameSameRRect Rectangle (Rect) 0

$0049 paintSameRRect Rectangle (Rect) 0

$004A eraseSameRRect Rectangle (Rect) 0

$004B invertSameRRect Rectangle (Rect) 0

$004C fillSameRRect Rectangle (Rect) 0

Table A-2 Opcodes for extended version 2 and version 2 pictures (continued)

Opcode Name Description
Size (in bytes) of
additional data

A P P E N D I X A

Picture Opcodes

Opcodes in Pictures A-9

$004D Reserved for Apple use 0

$004E Reserved for Apple use 0

$004F Reserved for Apple use 0

$0050 frameOval Rectangle (Rect) 8

$0051 paintOval Rectangle (Rect) 8

$0052 eraseOval Rectangle (Rect) 8

$0053 invertOval Rectangle (Rect) 8

$0054 fillOval Rectangle (Rect) 8

$0055 Reserved for Apple use 8 bytes of data 8

$0056 Reserved for Apple use 8 bytes of data 8

$0057 Reserved for Apple use 8 bytes of data 8

$0058 frameSameOval Rectangle (Rect) 0

$0059 paintSameOval Rectangle (Rect) 0

$005A eraseSameOval Rectangle (Rect) 0

$005B invertSameOval Rectangle (Rect) 0

$005C fillSameOval Rectangle (Rect) 0

$005D Reserved for Apple use 0

$005E Reserved for Apple use 0

$005F Reserved for Apple use 0

$0060 frameArc Rectangle (Rect), startAngle,
arcAngle

12

$0061 paintArc Rectangle (Rect), startAngle,
arcAngle

12

$0062 eraseArc Rectangle (Rect), startAngle,
arcAngle

12

$0063 invertArc Rectangle (Rect), startAngle,
arcAngle

12

$0064 fillArc Rectangle (Rect), startAngle,
arcAngle

12

$0065 Reserved for Apple use 12 bytes of data 12

$0066 Reserved for Apple use 12 bytes of data 12

continued

Table A-2 Opcodes for extended version 2 and version 2 pictures (continued)

Opcode Name Description
Size (in bytes) of
additional data

A P P E N D I X A

Picture Opcodes

A-10 Opcodes in Pictures

$0067 Reserved for Apple use 12 bytes of data 12

$0068 frameSameArc Rectangle (Rect) 4

$0069 paintSameArc Rectangle (Rect) 4

$006A eraseSameArc Rectangle (Rect) 4

$006B invertSameArc Rectangle (Rect) 4

$006C fillSameArc Rectangle (Rect) 4

$006D Reserved for Apple use 4 bytes of data 4

$006E Reserved for Apple use 4 bytes of data 4

$006F Reserved for Apple use 4 bytes of data 4

$0070 framePoly Polygon (Poly) Polygon size

$0071 paintPoly Polygon (Poly) Polygon size

$0072 erasePoly Polygon (Poly) Polygon size

$0073 invertPoly Polygon (Poly) Polygon size

$0074 fillPoly Polygon (Poly) Polygon size

$0075 Reserved for Apple use Polygon (Poly) Polygon size

$0076 Reserved for Apple use Polygon (Poly) Polygon size

$0077 Reserved for Apple use Polygon (Poly) Polygon size

$0078 frameSamePoly (Not yet implemented) 0

$0079 paintSamePoly (Not yet implemented) 0

$007A eraseSamePoly (Not yet implemented) 0

$007B invertSamePoly (Not yet implemented) 0

$007C fillSamePoly (Not yet implemented) 0

$007D Reserved for Apple use 0

$007E Reserved for Apple use 0

$007F Reserved for Apple use 0

$0080 frameRgn Region (Rgn) Region size

$0081 paintRgn Region (Rgn) Region size

$0082 eraseRgn Region (Rgn) Region size

$0083 invertRgn Region (Rgn) Region size

Table A-2 Opcodes for extended version 2 and version 2 pictures (continued)

Opcode Name Description
Size (in bytes) of
additional data

A P P E N D I X A

Picture Opcodes

Opcodes in Pictures A-11

$0084 fillRgn Region (Rgn) Region size

$0085 Reserved for Apple use Region (Rgn) Region size

$0086 Reserved for Apple use Region (Rgn) Region size

$0087 Reserved for Apple use Region (Rgn) Region size

$0088 frameSameRgn (Not yet implemented) 0

$0089 paintSameRgn (Not yet implemented) 0

$008A eraseSameRgn (Not yet implemented) 0

$008B invertSameRgn (Not yet implemented) 0

$008C fillSameRgn (Not yet implemented) 0

$008D Reserved for Apple use 0

$008E Reserved for Apple use 0

$008F Reserved for Apple use 0

$0090 BitsRect CopyBits with clipped rectangle Variable§¶; see
Listing A-2 on
page A-17

$0091 BitsRgn CopyBits with clipped region Variable§¶; see
Listing A-3 on
page A-18

$0092 Reserved for Apple use Data length (Integer), data 2 + data length

$0093 Reserved for Apple use Data length (Integer), data 2 + data length

$0094 Reserved for Apple use Data length (Integer), data 2 + data length

$0095 Reserved for Apple use Data length (Integer), data 2 + data length

$0096 Reserved for Apple use Data length (Integer), data 2 + data length

$0097 Reserved for Apple use Data length (Integer), data 2 + data length

$0098 PackBitsRect Packed CopyBits with clipped
rectangle

Variable§; see
Listing A-2 on
page A-17

$0099 PackBitsRgn Packed CopyBits with clipped
rectangle

Variable§; see
Listing A-3 on
page A-18

$009A DirectBitsRect PixMap, srcRect, dstRect, mode
(Integer), PixData

Variable

continued

Table A-2 Opcodes for extended version 2 and version 2 pictures (continued)

Opcode Name Description
Size (in bytes) of
additional data

A P P E N D I X A

Picture Opcodes

A-12 Opcodes in Pictures

$009B DirectBitsRgn PixMap, srcRect, dstRect,
mode (Integer), maskRgn,
PixData

Variable

$009C Reserved for Apple use Data length (Integer), data 2 + data length

$009D Reserved for Apple use Data length (Integer), data 2 + data length

$009E Reserved for Apple use Data length (Integer), data 2 + data length

$009F Reserved for Apple use Data length (Integer), data 2 + data length

$00A0 ShortComment Kind (Integer) 2

$00A1 LongComment Kind (Integer), size (Integer),
data

4 + data

$00A2 Reserved for Apple use Data length (Integer), data 2 + data length

. . . .

. . . .

. . . .

$00AF Reserved for Apple use Data length (Integer), data 2 + data length

$00B0 Reserved for Apple use 0

. . . .

. . . .

. . . .

$00CF Reserved for Apple use 0

$00D0 Reserved for Apple use Data length (Long), data 4 + data length

. . . .

. . . .

. . . .

$00FE Reserved for Apple use Data length (Long), data 4 + data length

$00FF OpEndPic End of picture 2

$0100 Reserved for Apple use 2 bytes of data 2

. . . .

. . . .

. . . .

Table A-2 Opcodes for extended version 2 and version 2 pictures (continued)

Opcode Name Description
Size (in bytes) of
additional data

A P P E N D I X A

Picture Opcodes

Opcodes in Pictures A-13

$01FF Reserved for Apple use 2 bytes of data 2

$0200 Reserved for Apple use 4 bytes of data 4

$02FF Version Version number of picture 2

. . . .

. . . .

. . . .

$0BFF Reserved for Apple use 22 bytes of data 22

$0C00 HeaderOp For extended version 2: version
(Integer), reserved (Integer),
hRes, vRes (Fixed), srcRect,
reserved (Long);
for version 2: opcode

24

$0C01 Reserved for Apple use 24 bytes of data 24

. . . .

. . . .

. . . .

$7F00 Reserved for Apple use 254 bytes of data 254

. . . .

. . . .

. . . .

$7FFF Reserved for Apple use 254 bytes of data 254

$8000 Reserved for Apple use 0

. . . .

. . . .

. . . .

$80FF Reserved for Apple use 0

$8100 Reserved for Apple use Data length (Long), data 4 + data length

. . . .

. . . .

. . . .

continued

Table A-2 Opcodes for extended version 2 and version 2 pictures (continued)

Opcode Name Description
Size (in bytes) of
additional data

A P P E N D I X A

Picture Opcodes

A-14 Opcodes in Pictures

Opcodes $009A (DirectBitsRect) and $009B (DirectBitsRgn) define direct-pixel

pictures, with pixel maps containing three components that directly specify RGB colors.

These opcodes allow your application to cut, paste, and store images with up to 32 bits

of color information per pixel.

The DirectBitsRect and DirectBitsRgn opcodes store the baseAddr field of the

PixMap record in a version 2 picture. For compatibility with existing systems, the

baseAddr field is set to $000000FF. Black-and-white video devices can display pixel

maps that are in pictures. On systems without direct-pixel support, opcodes $009A and

$009B read a word from the picture and then skip a word of data. The next opcode

* The font name information begins with a word containing the field’s data length, followed by a
word containing the old font ID, a byte containing the length of the font name, and then the
font name itself.

You can extract font names, IDs, and other information from a picture by using the routines
described in the chapter “Pictures” in this book.

† For opcode $002D (lineJustify), the line justification information contains the line-layout
state of the Script Manager so that it can be restored when the picture is played back. It begins
with a word containing the field’s data length, which should always be 8 bytes. The operands
are two fixed-point values, describing the Script Manager’s extra character width value and the
total extra width that was added to the style run (each StdText call) to perform justification.

For example, if the intercharacter spacing were 1 pixel and the total extra width added were 10
pixels, the following hexadecimal bytes would be generated for the picture:

2D 00 08 00 01 00 00 00 0A 00 00

In this example, the $002D opcode is followed by the length word, 00 08, and then the integer
part of the intercharacter spacing, 00 01, its fractional part, 00 00, and then the integer part of
the total extra spacing, 00 0A, and its fractional part, 00 00.

‡ For opcodes $0040–$0044: rounded rectangles use the setting of the OvSize point (refer to
opcode $000B).

§ Four opcodes ($0090, $0091, $0098, $0099) are modifications of version 1 opcodes. The first
word following the opcode is rowBytes. If the high bit of rowBytes is set, then it is a pixel
map containing multiple bits per pixel; if it is not set, it is a bitmap containing 1 bit per pixel. In
general, the difference between version 2 and version 1 formats is that the pixel map replaces
the bitmap, a color table has been added, and pixData replaces bitData.

¶ For opcodes $0090 (BitsRect) and $0091 (BitsRgn), the data is unpacked. These opcodes can
be used only when rowBytes is less than 8.

$8200 CompressedQuickTime Data length (Long), data (private to
QuickTime)

4 + data length

$8201 UncompressedQuickTime Data length (Long), data (private to
QuickTime)

4 + data length

$FFFF Reserved for Apple use Data length (Long), data 4 + data length

Table A-2 Opcodes for extended version 2 and version 2 pictures (continued)

Opcode Name Description
Size (in bytes) of
additional data

A P P E N D I X A

Picture Opcodes

Opcodes in Pictures A-15

retrieved from the picture is $00FF, which terminates picture playback. (Note that if you

play back a picture on a machine without direct-pixel support, it terminates picture

parsing.)

The DirectBitsRect opcode is followed by this structure:

pixMap: PixMap;

srcRect: Rect; {source rectangle}

dstRect: Rect; {destination rectangle}

mode: Mode; {transfer mode}

pixData:

The DirectBitsRgn opcode is followed by this structure:

pixMap: PixMap;

srcRect: Rect; {source rectangle}

dstRect: Rect; {destination rectangle}

mode: Mode; {transfer mode}

maskRgn: Region; {region for masking}

pixData:

In a picture, the packType field of a PixMap record specifies the manner in which the

pixel data was compressed. To facilitate banding of images when memory is short, all

data compression is done on a scan-line basis. The following pseudocode describes the

pixel data:

PixData:

IF packType = 1 (unpacked) OR rowbytes < 8 THEN

data is unpacked;

data size = rowBytes * (bounds.bottom - bounds.top);

IF packType = 2 (drop pad byte) THEN

the high-order pad byte of a 32-bit direct pixel is

dropped;

data size = (3/4) * rowBytes *

(bounds.bottom - bounds.top);

IF packType > 2 (packed) THEN

image contains (bounds.bottom - bounds.top) packed

scan lines;

each scan line consists of [byteCount] [data];

IF rowBytes > 250 THEN

byteCount is a word

ELSE

it is a byte

A P P E N D I X A

Picture Opcodes

A-16 Opcodes in Pictures

Here are the currently defined packing types:

For future compatibility, other packType values skip scan-line data and draw nothing.

Since QuickDraw assumes that pixel map data in memory is unpacked regardless of the

packType field value, you can use packType to tell the picture-recording mechanism

what packing technique to use on that data. A packType value of 0 in memory indicates

that the default packing scheme should be used. (Using the default packing scheme is

recommended.) Currently, the default packType value for a pixelSize value of 16 is

type 3; for a pixelSize value of 32, it is type 4. Regardless of the setting of packType

at the time of picture recording, the packType value actually used to save the image is

recorded in the picture.

Since each scan line of packed data is preceded by a byte count, packSize is not used

and must be 0 for future compatibility.

When the pixel type is direct, cmpCount * cmpSize is less than or equal to

pixelSize. For storing 24-bit data in a 32-bit pixel, set cmpSize to 8 and cmpCount

to 3. If you set cmpCount to 4, then the high byte is compressed by packing scheme 4

and stored in the picture.

The OpenCPicture function lets your application create a version 2 format picture and

include rectangle and resolution information, which is stored in the version 2 picture

header. The OpenCPicture function is described in the chapter “Pictures.”

The HeaderOp information is passed to the OpenCPicture function as an

OpenCPicParams record, which is described in the chapter “Pictures” in this book.

Packing type Meaning

0 Use default packing

1 Use no packing

2 Remove pad byte—supported only for 32-bit pixels
(24-bit data)

3 Run length encoding by pixelSize chunks, one scan line
at a time—supported only for 16-bit pixels

4 Run length encoding one component at a time, one scan
line at a time, red component first—supported only for
32-bit pixels (24-bit data)

A P P E N D I X A

Picture Opcodes

Opcodes in Pictures A-17

The pseudocode in Listing A-1 illustrates the data for the BkPixPat, PnPixPat, and

FillPixPat opcodes.

Listing A-1 Data for the BkPixPat, PnPixPat, and FillPixPat opcodes

IF patType = ditherPat

THEN

PatType: word; {pattern type = 2}

Pat1Data: Pattern; {old pattern data}

RGB: RGBColor; {desired RGB for pattern}

ELSE

PatType: word; {pattern type = 1}

Pat1Data: Pattern; {old pattern data}

PixMap: PixMap;

ColorTable: ColorTable;

PixData: PixData;

END;

The pseudocode in Listing A-2 illustrates the data is stored in the BitsRect and

PackBitsRect opcodes.

Listing A-2 Data for the BitsRect and PackBitsRect opcodes

PixMap: PixMap; {pixel map}

ColorTable: ColorTable; {ColorTable record}

srcRect: Rect; {source rectangle}

dstRect: Rect; {destination rectangle}

mode: Word; {transfer mode (may include }

{ new transfer modes)}

PixData: PixData;

A P P E N D I X A

Picture Opcodes

A-18 Opcodes in Pictures

The pseudocode in Listing A-3 illustrates the data is stored in the BitsRgn and

PackBitsRgn opcodes.

Listing A-3 Data for the BitsRgn and PackBitsRgn opcodes

pixMap: PixMap;

colorTable: ColorTable;

srcRect: Rect; {source rectangle}

dstRect: Rect; {destination rectangle}

mode: Word; {transfer mode (may }

{ include new modes)}

maskRgn: Rgn; {region for masking}

pixData: PixData;

Pictures created with the OpenPicture function in a basic graphics port use the

opcodes of the version 1 format, as listed in Table A-3. This size of data that follows

each opcode is also listed in this table. Version 1 pictures are limited to 32 KB.

Table A-3 Opcodes for version 1 pictures

Opcode Name Description
Size (in bytes) of
additional data

$00 NOP No operation 0

$01 ClipRgn Clipping region Region size

$02 BkPat Background pattern 8

$03 TxFont Font number for text (Integer) 2

$04 TxFace Text’s font style (0..255) 1

$05 TxMode Source mode (Integer) 2

$06 SpExtra Extra space (Fixed) 4

$07 PnSize Pen size (Point) 4

$08 PnMode Pen mode (Integer) 2

$09 PnPat Pen pattern 8

$0A FillPat Fill pattern 8

$0B OvSize Oval size (Point) 4

$0C Origin dh (Integer), dv (Integer) 4

$0D TxSize Text size (Integer) 2

$0E FgColor Foreground color (Long) 4

$0F BkColor Background color (Long) 4

A P P E N D I X A

Picture Opcodes

Opcodes in Pictures A-19

$10 TxRatio Numerator (Point), denominator
(Point)

8

$11 picVersion Version (0..255) 1

$20 Line pnLoc (Point), newPt (Point) 8

$21 LineFrom newPt (Point) 4

$22 ShortLine pnLoc (Point), dh (–128..127),
dv (–128..127)

6

$23 ShortLineFrom dh (–128..127), dv (–128..127) 2

$28 LongText txLoc (Point), count (0..255), text 5 + text

$29 DHText dh (0..255), count (0..255), text 2 + text

$2A DVText dv (0..255), count (0..255), text 2 + text

$2B DHDVText dh (0..255), dv (0..255), count
(0..255), text

3 + text

$30 frameRect Rectangle (Rect) 8

$31 paintRect Rectangle (Rect) 8

$32 eraseRect Rectangle (Rect) 8

$33 invertRect Rectangle (Rect) 8

$34 fillRect Rectangle (Rect) 8

$38 frameSameRect Rectangle (Rect) 0

$39 paintSameRect Rectangle (Rect) 0

$3A eraseSameRect Rectangle (Rect) 0

$3B invertSameRect Rectangle (Rect) 0

$3C fillSameRect Rectangle (Rect) 0

$40 frameRRect Rectangle (Rect)* 8

$41 paintRRect Rectangle (Rect)* 8

$42 eraseRRect Rectangle (Rect)* 8

$43 invertRRect Rectangle (Rect)* 8

$44 fillRRect Rectangle (Rect)* 8

$48 frameSameRRect Rectangle (Rect) 0

$49 paintSameRRect Rectangle (Rect) 0

$4A eraseSameRRect Rectangle (Rect) 0

continued

Table A-3 Opcodes for version 1 pictures (continued)

Opcode Name Description
Size (in bytes) of
additional data

A P P E N D I X A

Picture Opcodes

A-20 Opcodes in Pictures

$4B invertSameRRect Rectangle (Rect) 0

$4C fillSameRRect Rectangle (Rect) 0

$50 frameOval Rectangle (Rect) 8

$51 paintOval Rectangle (Rect) 8

$52 eraseOval Rectangle (Rect) 8

$53 invertOval Rectangle (Rect) 8

$54 fillOval Rectangle (Rect) 8

$58 frameSameOval Rectangle (Rect) 0

$59 paintSameOval Rectangle (Rect) 0

$5A eraseSameOval Rectangle (Rect) 0

$5B invertSameOval Rectangle (Rect) 0

$5C fillSameOval Rectangle (Rect) 0

$60 frameArc Rectangle (Rect), startAngle,
arcAngle

12

$61 paintArc Rectangle (Rect), startAngle,
arcAngle

12

$62 eraseArc Rectangle (Rect), startAngle,
arcAngle

12

$63 invertArc Rectangle (Rect), startAngle,
arcAngle

12

$64 fillArc Rectangle (Rect), startAngle,
arcAngle

12

$68 frameSameArc Rectangle (Rect) 4

$69 paintSameArc Rectangle (Rect) 4

$6A eraseSameArc Rectangle (Rect) 4

$6B invertSameArc Rectangle (Rect) 4

$6C fillSameArc Rectangle (Rect) 4

$70 framePoly Polygon (Poly) Polygon size

$71 paintPoly Polygon (Poly) Polygon size

$72 erasePoly Polygon (Poly) Polygon size

$73 invertPoly Polygon (Poly) Polygon size

$74 fillPoly Polygon (Poly) Polygon size

$78 frameSamePoly (Not yet implemented) 0

Table A-3 Opcodes for version 1 pictures (continued)

Opcode Name Description
Size (in bytes) of
additional data

A P P E N D I X A

Picture Opcodes

Opcodes in Pictures A-21

* For opcodes $40–$44: rounded rectangles use the setting of the OvSize point (refer to
opcode $0B).

† In general, the difference between version 2 and version 1 formats is that the pixel map
replaces the bitmap, a color table has been added, and pixData replaces bitData.

‡ For opcodes $90 (BitsRect) and $91 (BitsRgn), the data is unpacked. These opcodes can
only be used when rowBytes is less than 8.

$79 paintSamePoly (Not yet implemented) 0

$7A eraseSamePoly (Not yet implemented) 0

$7B invertSamePoly (Not yet implemented) 0

$7C fillSamePoly (Not yet implemented) 0

$80 frameRgn Region (Rgn) Region size

$81 paintRgn Region (Rgn) Region size

$82 eraseRgn Region (Rgn) Region size

$83 invertRgn Region (Rgn) Region size

$84 fillRgn Region (Rgn) Region size

$88 frameSameRgn (Not yet implemented) 0

$89 paintSameRgn (Not yet implemented) 0

$8A eraseSameRgn (Not yet implemented) 0

$8B invertSameRgn (Not yet implemented) 0

$8C fillSameRgn (Not yet implemented) 0

$90 BitsRect CopyBits with clipped rectangle Variable†‡; see
Listing A-2 on
page A-17

$91 BitsRgn CopyBits with clipped region Variable†‡; see
Listing A-3 on
page A-18

$98 PackBitsRect Packed CopyBits with clipped
rectangle

Variable†; see
Listing A-2 on
page A-17

$99 PackBitsRgn Packed CopyBits with clipped
rectangle

Variable†; see
Listing A-3 on
page A-18

$A0 ShortComment Kind (Integer) 2

$A1 LongComment Kind (Integer), size (Integer), data 4 + data

$FF EndOfPicture End of picture 0

Table A-3 Opcodes for version 1 pictures (continued)

Opcode Name Description
Size (in bytes) of
additional data

A P P E N D I X A

Picture Opcodes

A-22 A Sample Extended Version 2 Picture

A Sample Extended Version 2 Picture

The chapter “Pictures” in this book describes how to use the OpenCPicture function to

create and display extended version 2 pictures. Listing A-4 illustrates how to use

OpenCPicture.

Listing A-4 Creating and drawing an extended version 2 picture

FUNCTION MyCreateAndDrawPict(pFrame: Rect): PicHandle;

VAR

myOpenCPicParams: OpenCPicParams;

myPic: PicHandle;

trianglePoly: PolyHandle;

BEGIN

WITH myOpenCPicParams DO BEGIN

srcRect := pFrame;

hRes := gHRes; {$00480000 for 72 dpi}

vRes := gVRes; {$00480000 for 72 dpi}

version := - 2; {always set this field to -2}

reserved1 := 0; {this field is unused}

reserved2 := 0; {this field is unused}

END;

myPic := OpenCPicture(myOpenCPicParams); {start creating the picture}

ClipRect(pFrame); {always set a valid clip region}

FillRect(pFrame,dkGray); {create a dark gray rectangle for background}

FillOval(pFrame,ltGray); {overlay the rectangle with a light gray oval}

trianglePoly := OpenPoly; {start creating a triangle}

WITH pFrame DO BEGIN

MoveTo(left,bottom);

LineTo((right - left) DIV 2,top);

LineTo(right,bottom);

LineTo(left,bottom);

END;

ClosePoly; {finish the triangle}

PaintPoly(trianglePoly); {paint the triangle}

KillPoly(trianglePoly); {dispose of the memory for the triangle}

ClosePicture; {finish the picture}

DrawPicture(myPic,pFrame); {draw the picture}

MyCreateAndDrawPict := myPic;

END;

A P P E N D I X A

Picture Opcodes

A Sample Extended Version 2 Picture A-23

Figure A-1 shows the picture created by Listing A-4.

Figure A-1 A picture

The QuickDraw drawing commands issued between OpenCPicture and the

ClosePicture procedure in Listing A-4 are saved in memory as a Picture record

containing a picSize field, a picFrame field, and an array of picture opcodes; an

application can also save this information in a resource of type 'PICT'. The

DrawPicture procedure reads these opcodes when drawing the picture.

For debugging purposes, you might find it helpful to examine the opcodes for a picture.

Listing A-5 shows the extended version 2 picture in Figure A-1 after it is saved in a

'PICT' resource and then decompiled with the DeRez decompiler.

Listing A-5 A decompiled extended version 2 picture

data 'PICT' (128) {

$"0078" /* picture size; don't use this value for picture size */

$"0000 0000 006C 00A8" /* bounding rectangle of picture at 72 dpi */

$"0011" /* VersionOp opcode; always $0011 for extended version 2 */

$"02FF" /* Version opcode; always $02FF for extended version 2 */

$"0C00" /* HeaderOp opcode; always $0C00 for extended version 2 */

/* next 24 bytes contain header information */

$"FFFE" /* version; always -2 for extended version 2 */

$"0000" /* reserved */

$"0048 0000" /* best horizontal resolution: 72 dpi */

$"0048 0000" /* best vertical resolution: 72 dpi */

$"0002 0002 006E 00AA" /* optimal source rectangle for 72 dpi horizontal

and 72 dpi vertical resolutions */

$"0000" /* reserved */

$"001E" /* DefHilite opcode to use default hilite color */

$"0001" /* Clip opcode to define clipping region for picture */

$"000A" /* region size */

$"0002 0002 006E 00AA" /* bounding rectangle for clipping region */

$"000A" /* FillPat opcode; fill pattern specified in next 8 bytes */

A P P E N D I X A

Picture Opcodes

A-24 A Sample Version 2 Picture

$"77DD 77DD 77DD 77DD" /* fill pattern */

$"0034" /* fillRect opcode; rectangle specified in next 8 bytes */

$"0002 0002 006E 00AA" /* rectangle to fill */

$"000A" /* FillPat opcode; fill pattern specified in next 8 bytes */

$"8822 8822 8822 8822" /* fill pattern */

$"005C" /* fillSameOval opcode */

$"0008" /* PnMode opcode */

$ "0008" /* pen mode data */

$"0071" /* paintPoly opcode */

$"001A" /* size of polygon */

$"0002 0002 006E 00AA" /* bounding rectangle for polygon */

$"006E 0002 0002 0054 006E 00AA 006E 0002" /* polygon points */

$"00FF" /* OpEndPic opcode; end of picture */

}

A Sample Version 2 Picture

The chapter “Pictures” in this book describes how to use the OpenPicture function,

which creates version 2 pictures in color graphics ports. Figure A-1 on page A-23 shows

a picture created with the OpenCPicture function using the code in Listing A-4 on

page A-22. If the OpenPicture function were used instead of OpenCPicture, the

same picture would be drawn, but the picture would use picture opcodes for the

version 2 format instead of the extended version 2 format. The major difference between

formats lies in the header information after the HeaderOp opcode.

Listing A-6 shows what happens when the picture in Figure A-1 is created in version 2

format, saved in a 'PICT' resource, and then decompiled with the DeRez decompiler.

Listing A-6 A decompiled version 2 picture

data 'PICT' (129) {

$"0078" /* picture size; don't use this value for picture size */

$"0002 0002 006E 00AA" /* bounding rectangle of picture */

$"0011" /* VersionOp opcode; always $0011 for version 2 */

$"02FF" /* Version opcode; always $02FF for version 2 */

$"0C00" /* HeaderOp opcode; always $0C00 for version 2 */

/* next 24 bytes contain header information */

$"FFFF FFFF" /* version; always -1 (long) for version 2 */

$"0002 0000 0002 0000 00AA 0000 006E 0000" /* fixed-point bounding

rectangle for picture */

$"0000 0000" /* reserved */

$"001E" /* DefHilite opcode to use default hilite color */

A P P E N D I X A

Picture Opcodes

A Sample Version 1 Picture A-25

$"0001" /* Clip opcode to define clipping region for picture */

$"000A" /* region size */

$"0002 0002 006E 00AA" /* bounding rectangle for clipping region */

$"000A" /* FillPat opcode; fill pattern specifed in next 8 bytes */

$"77DD 77DD 77DD 77DD" /* fill pattern */

$"0034" /* fillRect opcode; rectangle specified in next 8 bytes */

$"0002 0002 006E 00AA" /* rectangle to fill */

$"000A" /* FillPat opcode; fill pattern specified in next 8 bytes */

$"8822 8822 8822 8822" /* fill pattern */

$"005C" /* fillSameOval opcode */

$"0008" /* PnMode opcode */

$ "0008" /* pen mode data */

$"0071" /* paintPoly opcode */

$"001A" /* size of polygon */

$"0002 0002 006E 00AA" /* bounding rectangle for polygon */

$"006E 0002 0002 0054 006E 00AA 006E 0002" /* polygon points */

$"00FF" /* OpEndPic opcode; end of picture */

}

A Sample Version 1 Picture

Pictures created by the OpenPicture function on computers without Color QuickDraw,

or when the current graphics port is a basic graphics port, are created in version 1

format. The code in Listing A-7 shows what happens when the picture in Figure A-1 on

page A-23 is created in version 1 format, saved in a 'PICT' resource, and then

decompiled with the DeRez decompiler.

Listing A-7 A decompiled version 1 picture

data 'PICT' (130) {

$"004F" /* picture size; this value is reliable for version 1 pictures */

$"0002 0002 006E 00AA" /* bounding rectangle of picture */

$"11" /* picVersion opcode for version 1 */

$"01" /* version number 1 */

$"01" /* ClipRgn opcode to define clipping region for picture */

$"000A" /* region size */

$"0002 0002 006E 00AA" /* bounding rectangle for region */

$"0A" /* FillPat opcode; fill pattern specified in next 8 bytes */

$"77DD 77DD 77DD 77DD" /* fill pattern */

$"34" /* fillRect opcode; rectangle specified in next 8 bytes */

$"0002 0002 006E 00AA" /* rectangle to fill */

A P P E N D I X A

Picture Opcodes

A-26 A Sample Version 1 Picture

$"0A" /* FillPat opcode; fill pattern specified in next 8 bytes */

$"8822 8822 8822 8822" /* fill pattern */

$"5C" /* fillSameOval opcode */

$"71" /* paintPoly opcode */

$"001A" /* size of polygon */

$"0002 0002 006E 00AA" /* bounding rectangle for polygon */

$"006E 0002 0002 0054 006E 00AA 006E 0002" /* polygon points */

$"FF" /* EndOfPicture opcode; end of picture */

}

Contents B-1

A P P E N D I X B

Using Picture Comments for

Contents

Printing

About Picture Comments B-3

Maintaining Device Independence B-8

Synchronizing QuickDraw and PostScript Printer Drivers B-10

Using Text Picture Comments B-11

Disabling and Reenabling Line Layout B-11

Delimiting Strings B-16

Rotating Text B-17

Using Graphics Picture Comments B-22

Drawing Polygons B-23

Rotating Graphics B-29

Using Line-Drawing Picture Comments B-33

Drawing Dashed Lines B-33

Using Fractional Line Widths B-35

Using PostScript Picture Comments B-38

Calling PostScript Routines Directly B-38

Optimizing PostScript Printing B-39

Picture Comments to Avoid B-40

Including Constants and Data Types for Picture Comments B-42

A P P E N D I X B

About Picture Comments B-3

Using Picture Comments for Printing

This appendix describes the picture comments predefined by Apple Computer, Inc., for

its PostScript printers and several of its QuickDraw printers (including the LaserWriter

SC, ImageWriter LQ, and StyleWriter printers). This appendix introduces you to the use

of picture comments for printing with features that are unavailable with QuickDraw

alone.

For most applications, sending QuickDraw’s picture-drawing routines to the printer

driver is sufficient: the driver either uses QuickDraw or converts QuickDraw routines

to PostScript code. See the chapter “Printing Manager” in this book for information

about QuickDraw-based printing. For some applications, such as page-layout programs,

QuickDraw-based printing may not be sufficient; such applications may rely on printer

drivers—such as PostScript printer drivers—to provide features that are not available, or

are difficult to achieve, using QuickDraw.

For PostScript printers, one solution is for your application to send PostScript code

directly to the printer driver, but this approach requires you to know the PostScript

language as well as QuickDraw. If your application requires features (such as rotated

text and dashed lines) that are unavailable with QuickDraw, you may instead want to

use picture comments to take advantage of these features on capable printers. Created

with the QuickDraw procedure PicComment, picture comments are data or commands

for special processing by output devices such as printer drivers. The PicComment

procedure is introduced in the chapter “Pictures” in this book and is expanded upon in

this appendix.

IMPORTANT

The picture comments supported by Apple printer drivers are described
on page B-7. However, it is impossible to determine which picture
comments are supported by the current printer driver. ▲

About Picture Comments

Within the drawing code sent to a printer driver after your application uses the

PrOpenPage procedure, your application can specify picture comments by using the

QuickDraw PicComment procedure. The PicComment procedure allows your

application to pass data or commands directly to an output device.

PROCEDURE PicComment (kind: Integer; dataSize: Integer;

 dataHandle: Handle);

The kind parameter specifies the kind of picture comment, and the dataSize

parameter specifies the size of the data referred to by the dataHandle parameter. (For

some picture comments, the values passed in the dataSize and dataHandle

parameters should be 0 and NIL, respectively.)

A P P E N D I X B

Using Picture Comments for Printing

B-4 About Picture Comments

You typically use a picture comment to give your application and an output device

additional control over the rendering of images. A number of picture comments have

been given special definitions by various printer drivers. When a printer driver

encounters one of these comments, it interprets the comment as an appropriate drawing

operation. A PostScript printer driver, for example, may convert a picture comment into

PostScript code.

By including picture comments in your code that draws into a printing graphics port,

your application can rotate text and graphics, smooth polygons, draw hairlines, create

dashed lines, and pass PostScript code directly to the printer driver. (For information

about the PostScript language, see the PostScript Language Reference Manual, second

edition, published by Addison-Wesley.)

Picture comments were initially designed to allow applications to share data in the form

of QuickDraw pictures (as described in the chapter “Pictures” in this book). With the

advent of the PostScript LaserWriter printer, the use of picture comments was extended

to allow applications to more easily take advantage of various PostScript features

unavailable with QuickDraw.

However, you do not need to create a QuickDraw picture to use picture comments for

printing. When your application calls the Printing Manager procedure PrOpenPage,

the printer driver collects your drawing operations after they are handled by the

low-level drawing routines contained in the QDProcs record for the printing graphics

port. As explained in the chapter “QuickDraw Drawing” in this book, the default

low-level procedure specified by QuickDraw in the commentProc field of the QDProcs

record is the StdComment procedure, which simply ignores picture comments.

However, a printer driver can replace the StdComment procedure with its own routine

for handling picture comments.

▲ W A R N I N G

As described in the chapter “Pictures” in this book, do not call the
OpenCPicture or OpenPicture function between calls to
PrOpenPage and PrClosePage. ▲

When you use the PicComment procedure after calling PrOpenPage and before calling

PrClosePage, the printer driver either ignores the picture comment passed to

PicComment or collects the results of its drawing operations, depending on whether the

printer driver has installed its own low-level drawing routine that handles the picture

comment.

Although the PicComment procedure is available on all Macintosh computers, the

availability of the drawing operations that you can implement with picture comments

depends on the driver for the current printer. The inability to determine which picture

comments are supported by the current printer driver means that if you use

picture comments to perform drawing operations not supported by QuickDraw, you

must also provide for printing on QuickDraw-only printers.

A P P E N D I X B

Using Picture Comments for Printing

About Picture Comments B-5

This requires your application to maintain separate code branches: for example, one that

takes advantage of the picture comment handling of a PostScript printer driver, and

another for a printer driver that supports only QuickDraw. Furthermore, you must hide

the code that takes advantage of PostScript printer drivers from QuickDraw-based

drivers, and you must hide from PostScript drivers the code that uses QuickDraw-based

approximations of these drawing operations. Your application’s printed output will

necessarily differ depending on the driver for the current printer.

Table B-1 lists picture comments defined for various printer drivers produced by Apple

and used by third-party producers of various other printer drivers. For each picture

comment, this table shows the name of the picture comment that you specify in the kind

parameter of the PicComment procedure, the value represented by the name, the value

for the dataSize parameter, and the value for the dataHandle parameter. (Be sure to

dispose of the memory you allocate for any handle you pass in the dataHandle

parameter.) Keep in mind that it is impossible to determine which picture comments are

supported by the driver of the current printer.

Table B-1 Names, values, and data sizes for picture comments

Name Value Data size Data handle Description

Text picture comments

TextBegin 150 6 TTxtPicRec Begin text
function

TextEnd 151 0 NIL End text function

StringBegin 152 0 NIL Begin string
delimitation

StringEnd 153 0 NIL End string
delimitation

TextCenter 154 8 TCenterRec Offset to center of
rotation for text

LineLayoutOff 155 0 NIL Turn printer
driver’s line
layout off

LineLayoutOn 156 0 NIL Turn printer
driver’s line
layout on

ClientLineLayout 157 16 TClientLLRec Customize line
layout error
distribution

continued

A P P E N D I X B

Using Picture Comments for Printing

B-6 About Picture Comments

Graphics picture comments

PolyBegin 160 0 NIL Begin special
polygon

PolyEnd 161 0 NIL End special
polygon

PolyIgnore 163 0 NIL Ignore following
polygon data

PolySmooth 164 1 TPolyVerbRec Close, fill, frame

PolyClose 165 0 NIL Smooth the curve
between
endpoints

RotateBegin 200 8 TRotationRec Begin rotated port

RotateEnd 201 0 NIL End rotation

RotateCenter 202 8 TCenterRec Offset to center of
rotation

Line-drawing picture comments

DashedLine 180 Size of a
TDashedLineRec
record

TDashedLineRec Draw following
lines as dashed

DashedStop 181 0 NIL End dashed lines

SetLineWidth 182 4 TLineWidthHdl Set fractional line
widths

PostScript picture comments

PostScriptBegin 190 0 NIL Set driver state to
PostScript

PostScriptEnd 191 0 NIL Restore
QuickDraw state

PostScriptHandle 192 Length of
PostScript data

Handle PostScript data
referenced in
handle

PostScriptFile 193 Length of
PostScript data

Handle Filename
referenced in
handle

TextIsPostScript 194 0 NIL QuickDraw text is
sent as PostScript

ResourcePS 195 8 Resource type,
resource ID, index

PostScript data in
a resource file

PSBeginNoSave 196 0 NIL Set driver state to
PostScript

Table B-1 Names, values, and data sizes for picture comments (continued)

Name Value Data size Data handle Description

A P P E N D I X B

Using Picture Comments for Printing

About Picture Comments B-7

All PostScript LaserWriter drivers support the picture comments listed in Table B-1.

Some third-party QuickDraw printer drivers support the TextBegin, TextCenter,

and TextEnd picture comments.

The QuickDraw LaserWriter SC driver supports the LineLayoutOff, LineLayoutOn,

and SetLineWidth picture comments.

The QuickDraw ImageWriter LQ driver and versions prior to 7.2 of the QuickDraw

StyleWriter driver support the LineLayoutOff and LineLayoutOn picture comments.

The QuickDraw Personal LaserWriter LS driver and versions later than 7.2 of the

QuickDraw StyleWriter driver support no picture comments at all.

The SetGrayLevel picture comment is now obsolete. The PostScriptFile,

TextIsPostScript, FormsPrinting, EndFormsPrinting, ClientLineLayout,

PSBeginNoSave, and ResourcePS picture comments have limited use and are no

longer recommended.

See Inside Macintosh: Advanced Color Imaging for information about the picture comments

used by the ColorSync Utilities.

Forms-printing picture comments

FormsPrinting 210 0 NIL Don’t clear print
buffer after each
page

EndFormsPrinting 211 0 NIL End forms
printing after
PrClosePage

ColorSync picture comments

CMBeginProfile 220 0 NIL Begin ColorSync
profile

CMEndProfile 221 0 NIL End ColorSync
profile

CMEnableMatching 222 0 NIL Begin ColorSync
color matching

CMDisableMatching 223 0 NIL End ColorSync
color matching

Table B-1 Names, values, and data sizes for picture comments (continued)

Name Value Data size Data handle Description

A P P E N D I X B

Using Picture Comments for Printing

B-8 Maintaining Device Independence

Maintaining Device Independence

Whenever printing, you should use both QuickDraw and non-QuickDraw

representations of an image, so that the current printer driver can render the best

possible picture. If you send an image described with picture comments to a QuickDraw

printer driver that does not support those picture comments, the driver ignores the

comments and subsequently does not print your image; if you send only a QuickDraw

image to a printer driver that supports picture comments, the driver may not render its

best possible image.

Printer drivers that support TextBegin, TextCenter, and TextEnd are expected to

ignore calls to the CopyBits, CopyMask, and CopyDeepMask procedures that fall

between the TextBegin and TextEnd picture comments. Between the TextBegin and

TextEnd picture comments, you can use CopyBits to draw a bitmap representation of

rotated text on QuickDraw printers; this bitmap is not used if the TextBegin and

TextEnd picture comments are supported, but it is used if TextBegin and TextEnd

are not supported. This is illustrated in Listing B-4 on page B-21.

When your application draws polygons on a PostScript printer, you can use PolyBegin,

PolySmooth, and PolyEnd picture comments to draw smoothed polygons; QuickDraw

printer drivers ignore these comments. To make a PostScript printer driver ignore your

QuickDraw representation of the polygons, you can use the PolyIgnore picture

comment, as illustrated in Listing B-6 on page B-27.

A technique for maintaining two sets of drawing codes, described in “Rotating

Graphics” beginning on page B-29 and “Drawing Dashed Lines” beginning on

page B-33, makes use of a “magic pen” visible only to PostScript drivers. Graphics

comments for drawing dashed lines and for rotating graphics require the use of the

PenMode procedure to set the pattern mode to a value of 23. Normally this value is

undefined, but it is handled specially by PostScript printer drivers (all QuickDraw

drivers ignore it). Your application can use this pattern mode to draw objects in a picture,

and if the picture is printed on a QuickDraw printer, these objects are not visible.

To maintain device independence when you send routines to a PostScript printer driver,

you can “hide” QuickDraw routines between the PostScriptBegin and

PostScriptEnd picture comments. The PostScriptBegin comment is recognized

only by PostScript printer drivers. When a PostScript driver receives the

PostScriptBegin comment, it tells the PostScript printer to save the current state

of the printer and to disable all low-level standard QuickDraw drawing procedures.

Thus, the QuickDraw representation of the graphic is ignored by PostScript printer

drivers.

A P P E N D I X B

Using Picture Comments for Printing

Maintaining Device Independence B-9

Table B-2 lists the QuickDraw low-level procedures and the affected high-level drawing

routines that are disabled by the PostScriptBegin picture comment.

To mark the end of a sequence of hidden QuickDraw drawing routines and to reenable

QuickDraw drawing routines, you can use the picture comment PostScriptEnd.

The PostScriptEnd comment is recognized only by PostScript printer drivers. When a

PostScript driver receives the PostScriptEnd comment, it tells the PostScript printer

driver to restore the previous state of the printer driver and to enable QuickDraw

drawing operations.

For a LaserWriter PostScript printer driver, QuickDraw routines that draw text, lines,

and shapes and copy bitmaps or pixel maps have no effect when placed between the

PostScriptBegin and PostScriptEnd picture comments. Instead, the driver expects

to receive imaging instructions in subsequent picture comments. On the other hand, a

QuickDraw printer driver ignores the PostScriptBegin and PostScriptEnd picture

comments.

Only PostScript printer drivers should support the DashedLine, DashedStop,

RotateBegin, RotateCenter, and RotateEnd picture comments. Therefore, you can

use the PostScriptBegin and PostScriptEnd picture comments to hide your

QuickDraw implementations of these comments from the printer driver. Listing B-7 on

page B-31 illustrates how to use PostScriptBegin and PostScriptEnd when

rotating graphics on PostScript printers; Listing B-9 on page B-34 illustrates how to use

PostScriptBegin and PostScriptEnd when drawing dashed lines on PostScript

printers.

Table B-2 Low-level QuickDraw routines disabled by the PostScriptBegin comment

Low-level routine Examples of affected high-level QuickDraw routines

StdText QuickDraw text-drawing routines (as described in the chapter
“QuickDraw Text” in Inside Macintosh: Text)

StdLine MoveTo, Move, LineTo, Line

StdRect FrameRect, PaintRect, FillRect, EraseRect, InvertRect

StdRRect FrameRoundRect, PaintRoundRect, FillRoundRect,
EraseRoundRect, InvertRoundRect

StdOval FrameOval, PaintOval, FillOval, EraseOval, InvertOval

StdArc FrameArc, PaintArc, FillArc, EraseArc, InvertArc

StdPoly FramePoly, PaintPoly, FillPoly, ErasePoly, InvertPoly

StdRgn FrameRgn, PaintRgn

StdBits CopyBits, CopyMask, CopyDeepMask

A P P E N D I X B

Using Picture Comments for Printing

B-10 Synchronizing QuickDraw and PostScript Printer Drivers

Synchronizing QuickDraw and PostScript Printer Drivers

QuickDraw instructions such as those generated by the Move, MoveTo, PenPat, and

PenSize routines change the state of the current graphics port without going through

the standard low-level routines pointed to in the QDProcs record for the current

graphics port. A printer driver takes these changes into account only at the time it

executes an actual drawing instruction. The printer driver uses the routines specified in

the QDProcs record at execution time and responds only to those instructions handled

by the routines in the QDProcs record. Therefore, you should flush the state of the

printing graphics port explicitly by calling any routine that goes through the

QDProcs.lineProc field, as shown in Listing B-1, before inserting code using picture

comments for a PostScript driver. The use of the application-defined routine

MyFlushGrafPortState shown here is further illustrated in Listing B-8 on page B-32.

Listing B-1 Synchronizing QuickDraw and the PostScript driver

PROCEDURE MyFlushGrafPortState;

VAR

penInfo: PenState;

BEGIN

GetPenState(penInfo); {save pen size}

PenSize(0,0); {make it invisible}

MoveTo(-3200,-3200); {move the pen way off the page in }

{ case the printer driver draws a dot }

{ even with a pen size of (0,0)}

Line(0,0); {go through QDProcs.lineProc}

{next, restore pen size}

PenSize(penInfo.pnSize.h, penInfo.pnSize.v);

END;

A P P E N D I X B

Using Picture Comments for Printing

Using Text Picture Comments B-11

A PostScript printer driver separates the PostScript code generated for text-drawing

instructions (which usually involves font queries and, sometimes, font downloading)

from the picture comments intended for PostScript devices. In certain cases, this results

in apparently nonsequential execution of drawing instructions and may affect clipping

regions or have side effects on the drawing operations you include in picture comments.

To synchronize the sequence of QuickDraw routines with the generation of PostScript

code, you need to flush the buffer maintained by the PostScript driver. You can do this

by using the PostScriptBegin picture comment followed immediately by the

PostScriptEnd picture comment. This causes all PostScript code, generated either by

the application or by the printer driver, to be sent to the printer. Listing B-2 shows an

application-defined procedure that does this. The use of the application-defined routine

MyFlushPostScriptState shown here is further illustrated in Listing B-4 on

page B-21.

Listing B-2 Flushing the buffer for a PostScript printer driver

PROCEDURE MyFlushPostScriptState;

BEGIN

 PicComment(PostScriptBegin, 0, NIL);

 PicComment(PostScriptEnd, 0, NIL);

END;

Using Text Picture Comments

The text picture comments listed in Table B-1 on page B-5 allow you to disable the

printer driver’s line layout capabilities (as described in the next section), construct lines

of text out of disparate strings (as described in “Delimiting Strings” on page B-16), and

rotate text on the page (as described in “Rotating Text” on page B-17).

For information on drawing text, see Inside Macintosh: Text.

Disabling and Reenabling Line Layout
When your application draws text into a printing graphics port, the printer driver may

do a lot of extra work depending on the current printer; the printer driver may have to

scale and smooth fonts, remap characters, and substitute one font used onscreen for

another that exists on the printer (this last action is called font substitution).

After it selects the appropriate font, the printer driver matches the width of the printed

line with the width of the screen line. If the driver has to perform font substitution, the

two lines may be very different. For example, if your application draws a document with

the Geneva bitmapped font (instead of the Geneva TrueType font), a PostScript printer

A P P E N D I X B

Using Picture Comments for Printing

B-12 Using Text Picture Comments

driver could substitute the Helvetica® font for Geneva in the PostScript code it

generates. Since Helvetica is a different font, it has different metrics. A rather

exaggerated example of the effects of font substitution can be found in Figure B-1.

Figure B-1 The line layout error between a bitmapped font and a PostScript font

For the typical user, the appearance of Helvetica on the printed page is not that much

different from the appearance of Geneva on the screen. However, the width of the lines

using the two fonts is different; this difference is called the line layout error. The line of

text using the bitmapped screen font is much wider than the line of text using the

PostScript printer font. (Depending on the font used in the document or substituted on

the printer, you might also run into cases where the screen width is narrower than the

printed width.)

Note
There are no line layout problems with TrueType fonts, unless one font
has the same name as—but a different character width from—a
printer-resident PostScript font. ◆

To distribute the layout error, a printer driver must effectively increase or decrease the

width of each glyph in the line. A glyph is the distinct representation of a character in a

form that a screen or printer can display. A glyph may represent one character (the

lowercase a), more than one character (the fi ligature, two characters but one glyph), or a

nonprinting character (the space character). When using Roman scripts, most lines of

text contain some number of space character glyphs. Printer drivers take advantage of

this fact and normally apply most of the layout error to space glyphs (known as the

major glyphs) and the rest of the error to the other glyphs in the string (known as the

minor glyphs).

A P P E N D I X B

Using Picture Comments for Printing

Using Text Picture Comments B-13

In Figure B-2, the i, s, and a characters are examples of minor glyphs, where s and a are

separated by the major glyph (the space character).

Figure B-2 Major and minor glyphs

The amount of error applied to the major glyph is known as the major error, and the

amount applied to the other glyphs is the minor error.

In Figure B-3, the printer driver corrects most of the difference between the line widths

by expanding the width of the space glyphs in the string.

Figure B-3 Distributing layout error to the major glyphs

A P P E N D I X B

Using Picture Comments for Printing

B-14 Using Text Picture Comments

However, if the printer driver expands only the width of the spaces, the line has a

strange appearance. To balance the changes made to the space glyphs, the driver’s line

layout routines increase the space between each glyph in the string by a small amount.

After the line is laid out in this way, the printed string should be almost exactly as wide

as the string that was displayed on the screen. As shown in Figure B-4, the space

between the uppercase T and the lowercase h in the word This has been increased, but

only slightly; most of the error has been applied to the spaces. By default, most drivers

apply about 80 percent of the total line layout error to the major glyphs and the other 20

percent to the minor glyphs. When using a script system that does not use the space

glyph to delimit words, the layout error is distributed evenly across all characters in the

line.

Figure B-4 Distributing layout error among major and minor glyphs

A printer driver’s line layout routines are device-dependent. Since different devices have

different resident fonts, the layout error can be quite large. For this reason, you should

not assume that if you have the correct output on one type of laser printer you will have

the correct output on all devices or with all fonts.

Although the printer driver can compute the placement of a line of text on the page so

that it closely approximates the placement of the line on the screen, there are times when

adjusting the line of text by adding space can have an adverse effect on the line layout

that your application has already done.

You can disable the line layout routines of the current printer driver and give your

application more control over placement of the glyphs on the page by using the

LineLayoutOff picture comment. You may want to use this picture comment if your

application prints monospaced, tab-formatted text; draws notes or other music symbols

using glyphs from a music font; or renders mathematical equations or formulas. For

example, if your application displays musical notation, the notes should stay where your

application placed them, because small shifts in position can cause the music to be

misread.

A P P E N D I X B

Using Picture Comments for Printing

Using Text Picture Comments B-15

The LineLayoutOff picture comment instructs the printer driver to make no

adjustments to the text being sent. Your application is then responsible for identically

matching the appearance of text displayed on the screen to the printer. If the current

printer driver does not support these comments, it ignores them and places the text on

the page as well as it can.

You can reenable the printer driver’s line layout routines with the LineLayoutOn

picture comment (however, some printer drivers support only the LineLayoutOff

comment). Although general line layout is disabled, some small shifts in glyph position

may still occur. These shifts are usually not a problem, but, if they are, you should use

the PrGeneral procedure with the getRslDataOp and setRslOp opcodes (described

in the chapter “Printing Manager” in this book) to draw text at the resolution of the

current printer.

IMPORTANT

Setting the FractEnable global variable (described in the chapter
“Font Manager” in Inside Macintosh: Text) to TRUE does not have
precisely the same effect as using the LineLayoutOff picture
comment. You should explicitly use the LineLayoutOff
picture comment rather than the SetFractEnable procedure. ▲

Figure B-5 compares the results of an application using the LineLayoutOff picture

comment and the LineLayoutOn picture comment. In the first example, the text is

printed exactly as it is rendered on the printer, with a much smaller width. In the second

example, the printer driver’s line layout routines make the screen and printer lines the

same length.

Figure B-5 Using the LineLayoutOff and LineLayoutOn picture comments

A P P E N D I X B

Using Picture Comments for Printing

B-16 Using Text Picture Comments

In computing the required line layout adjustments, the PostScript LaserWriter driver

proceeds as follows:

1. It collects text processed by the routine pointed to in the textProc field of the
printing graphics port’s QDProcs record, and assembles the text into a logically
contiguous line. This includes text moved vertically away from the baseline to take
care of diacritical marks or exponents in the text. The accumulation of text stops when
the PostScript LaserWriter driver detects that the pen position has moved horizontally
since the conclusion of the previous text-drawing instruction, or when the driver
encounters picture comments such as TextBegin, TextEnd, StringBegin, and
StringEnd.

2. It determines the width of the accumulated logical line of text, both on the screen and
on the printer, and distributes the line layout error among the interword and
intercharacter spacing of the printed output.

The LineLayoutOff picture comment disables only the second step (distribution of the

line layout error); the algorithm of accumulating text into a logically contiguous piece is

not affected. Otherwise, if the character widths of the printer font are different from

those of the screen font, and if the text contains diacritical marks or exponents, the

diacritical marks and exponents would often be misplaced.

If you want precise control over the placement of different text strings within a line, you

must override the heuristic line accumulation algorithm of the PostScript LaserWriter

driver (described in the first step). A good way to override this algorithm is to use the

StringBegin and StringEnd picture comments to mark individual strings as

logically independent text entities; this prevents the PostScript LaserWriter driver from

assembling the strings into one logically contiguous line of text. The StringBegin and

StringEnd picture comments are described in the next section; Listing B-3 on page B-17

illustrates how to completely disable line layout by using the LineLayoutOff and

StringBegin picture comments.

Delimiting Strings
You may want to draw a particular text string in pieces instead of a whole. For example,

to draw kerned glyphs, you can draw the first part of the string—up to the point where

kerning occurs—using the DrawText procedure, and you can then adjust the pen and

draw the kerned glyph using the DrawChar procedure. (The DrawText and DrawChar

procedures are described in the chapter “QuickDraw Text” in Inside Macintosh: Text.) You

can also draw a single string that contains different fonts, styles, or sizes—if you call

DrawText each time the typeface or font style changes. To identify the beginning of a

single string that will be drawn using multiple calls to a QuickDraw text-drawing

routine, you can use the StringBegin picture comment. Use the StringEnd picture

comment to mark its end.

A P P E N D I X B

Using Picture Comments for Printing

Using Text Picture Comments B-17

You can use the StringBegin and StringEnd picture comments if your application

needs complete control over glyph placement on a page. If your application uses

text-editing boxes for individual strings, it can use these picture comments to treat each

string as a separate piece of text and place all glyphs into one text-editing box.

Listing B-3 uses the StringBegin and StringEnd picture comments. Use the

LineLayoutOff picture comment (described in the preceding section) in conjunction

with the StringBegin comment to turn line layout completely off.

Listing B-3 Disabling line layout by using the LineLayoutOff and StringBegin picture
comments

PROCEDURE MyStringReconDemo (x: XArray; y: Integer);

BEGIN

PicComment(LineLayoutOff,0,NIL);

PicComment(StringBegin,0,NIL);

{position each character of the word 'Test' using }

{ MoveTo and DrawChar}

MoveTo(x[1],y); DrawChar('T');

MoveTo(x[2],y); DrawChar('e');

MoveTo(x[3],y); DrawChar('s');

MoveTo(x[4],y); DrawChar('t');

{reenable the printer driver's line layout routines}

PicComment(StringEnd,0,NIL);

PicComment(LineLayoutOn,0,NIL);

END;

Rotating Text
You can use picture comments to rotate text on PostScript devices and on any

QuickDraw-based drivers that support text rotation. (This is not the kind of rotation

associated with landscape and portrait orientation of the printer paper as selected by the

user through the style dialog box. This rotation occurs in reference to the current

QuickDraw graphics port only.) The picture comments to rotate text are TextBegin,

TextCenter, and TextEnd.

If you use picture comments to rotate text, you should also generate a

device-independent representation, such as a bitmapped version of the text, to be used

on QuickDraw devices that don’t support these picture comments. Printer drivers that

support TextBegin, TextCenter, and TextEnd are expected to ignore calls to the

CopyBits, CopyMask, and CopyDeepMask procedures (as well as QuickDraw clipping

regions) between the TextBegin and TextEnd picture comments. In this way, you can

use CopyBits to draw a bitmap representation of rotated text on QuickDraw printers;

the bitmap is not used if the TextBegin and TextEnd picture comments are supported,

but it is used if TextBegin and TextEnd are not supported.

A P P E N D I X B

Using Picture Comments for Printing

B-18 Using Text Picture Comments

Some versions of 2-byte Kanji systems print Kanji glyphs by calling the CopyBits

procedure instead of calling standard text-drawing routines. You cannot use the text

rotation picture comments with these fonts. Instead, use the picture comments described

in “Rotating Graphics” beginning on page B-29.

To use picture comments to rotate text, you begin by specifying the amount of rotation as

a parameter to the TextBegin comment. Next, you pass the center of rotation in

the TextCenter comment. The printer driver rotates any text drawn between the

TextCenter and TextEnd comments.

The TextBegin picture comment allows your application to specify left, right, center, or

full justification; horizontal or vertical flipping; and degrees of rotation. The possible

types of alignment are shown in Figure B-6.

Figure B-6 Variations in text alignment

A P P E N D I X B

Using Picture Comments for Printing

Using Text Picture Comments B-19

When you specify the TextBegin picture comment in the kind parameter of the

PicComment procedure, you also specify a TTxtPicHdl handle (a handle to a

TTxtPicRec record) in the dataHandle parameter. Here is how you should declare

these as Pascal data types in your application:

TYPE

TTxtPicHdl = ^TTxtPicPtr;

TTxtPicPtr = ^TTxtPicRec;

TTxtPicRec =

PACKED RECORD

tJus: Byte; {justification of text}

tFlip: Byte; {horizontal or vertical flipping}

tAngle: Integer; {0..360 degrees clockwise rotation }

{ in integer format}

tLine: Byte; {reserved}

tCmnt: Byte; {reserved}

tAngleFixed: Fixed; {0..360 degrees clockwise rotation }

{ in fixed-number format}

END;

You supply the tJus field with one of these constants to specify the alignment setting of

the text:

CONST

tJusNone = 0; {no alignment}

tJusLeft = 1; {flush left}

tJusCenter = 2; {centered}

tJusRight = 3; {flush right}

tJusFull = 4; {full justification}

Setting the tJus field to left, right, or centered tells the printer driver to maintain only

the left, right, or center point of the line (respectively), preventing the driver from

recalculating the interword spacing. A value of tJusFull specifies that both endpoints

of the line must be maintained, so the driver recalculates interword spacing instead of

rejustifying text.

You supply the tFlip field with one of these constants to specify the horizontal or

vertical flipping of text about the center point (which, in turn, is specified with the

TextCenter picture comment):

CONST

tFlipNone = 0; {no flip of text}

tFlipHorizontal = 1; {horizontal flip of text}

tFlipVertical = 2; {vertical flip of text}

A P P E N D I X B

Using Picture Comments for Printing

B-20 Using Text Picture Comments

You supply the tAngle field with an integer to specify the number of degrees by which

the printer driver should rotate the text.

The tLine and tCmnt fields are reserved.

You supply the tAngleFixed field with a fixed-point number to specify the number of

degrees by which the printer driver should rotate the text.

In a TTxtPicRec record, you can provide the degrees of rotation both as an integer (in

the tAngle field) and as a fixed-point number (in the tAngleFixed field). You should

always specify the rotation in both fields, even for drivers that support only integral

rotation. The driver determines which field to use based on the size of the handle passed

to PicComment. If you do not define the tAngleFixed field in the TTxtPicRec

record, the printer driver automatically uses the tAngle field.

To rotate an object, a printer driver needs information concerning the center of rotation.

Immediately after a TextBegin comment, the driver expects the TextCenter picture

comment specifying the offset to the center of rotation for any text enclosed within the

text picture comments. The driver stores this offset and adds it to the location of the

first text-drawing routine after it receives the TextCenter picture comment. This allows

you to send multiple runs of text to be rotated with different centers of rotation, while

using only one set of TextBegin and TextEnd picture comments. The printer driver

expects the string locations to be in the coordinate system of the current graphics port.

The printer driver rotates the entire graphics port to draw the text, so it can draw several

strings with one TextBegin picture comment and one TextCenter picture comment.

You should always include as much text as possible in a single TextBegin picture

comment so that the driver makes the fewest number of rotations.

The printer driver can draw nontextual objects within the bounds of the text rotation

comments, but it must restore the printing graphics port to its original state to draw the

object, and then rotate the printing graphics port again to draw the next string of text.

You must send another TextCenter comment before each new rotation.

When you specify the TextCenter (or RotateCenter) picture comment in the

kind parameter of the PicComment procedure, you also supply in the dataHandle

parameter a TCenterHdl handle, which is a handle to a TCenterRec record. You can

use this record to specify the center of rotation for text or (as described in “Rotating

Graphics” beginning on page B-29) for graphics. Here is how you should declare these as

Pascal data types in your application:

TYPE

TCenterHdl = ^TCenterPtr;

TCenterPtr = ^TCenterRec;

TCenterRec =

RECORD

y: Fixed; {vertical offset from current pen location}

x: Fixed; {horizontal offset from current pen location}

END;

A P P E N D I X B

Using Picture Comments for Printing

Using Text Picture Comments B-21

You use the y field to specify the vertical offset along the y-axis from the current pen

location to the center of rotation.

You use the x field to specify the horizontal offset along the x-axis from the current pen

location to the center of rotation.

The application-defined routine MyDrawXString, shown in Listing B-4, rotates the

strings by the degrees specified in the rot parameter. The rotation occurs around the

current point, offset by the value passed in the ctr parameter. The strings are justified

and flipped according to the just and flip parameters. If the printer driver supports

the TextBegin, TextCenter, and TextEnd picture comments, the printer driver

rotates the text at device resolution; otherwise, an application-defined procedure is

called to generate a bitmap of the rotated and flipped text, using CopyBits to draw the

text in the printing graphics port. The pen position is preserved. (Listing B-8 on

page B-32 illustrates how to use the TCenterRec record to rotate graphics.)

Listing B-4 Displaying rotated text using picture comments

PROCEDURE MyDrawXString(s: Str255; ctr: Point;

 just, flip: Integer; rot: Fixed);

VAR

hT: TTxtPicHdl;

hC: TCenterHdl;

zeroRect: Rect;

pt: Point;

oldClip: RgnHandle;

BEGIN

GetPen(pt); {to preserve the pen position}

hT := TTxtPicHdl(NewHandle(SizeOf(TTxtPicRec)));

hC := TCenterHdl(NewHandle(SizeOf(TCenterRec)));

WITH hT^^ DO

BEGIN

tJus := just;

tFlip := flip;

tAngle := - FixRound(rot); {counterclockwise}

tLine := 0; {reserved}

tCmnt := 0; {used internally by the printer driver}

tAngleFixed := - rot;

END;

hC^^.y := Long2Fix(ctr.v);

hC^^.x := Long2Fix(ctr.h);

MyFlushPostScriptState; {see Listing B-2 on page B-11}

PicComment(TextBegin,SizeOf(TTxtPicRec),Handle(hT));

PicComment(TextCenter,SizeOf(TCenterRec),Handle(hC));

{graphics state now has rotated/flipped coordinates}

A P P E N D I X B

Using Picture Comments for Printing

B-22 Using Graphics Picture Comments

oldClip := NewRgn;

GetClip(oldClip);

SetRect(zeroRect,0,0,0,0);

ClipRect(zeroRect); {hides this DrawString from }

DrawString(s); { QuickDraw in the rotated }

{ environment}

ClipRect(oldClip^^.rgnBBox);

{now the "fallback" bitmap representation}

MyQDStringRotation(s, ctr, just, flip, rot);

PicComment(TextEnd, 0, NIL);

{set environment back to the original state}

DisposeHandle(Handle(hT));

DisposeHandle(Handle(hC));

MoveTo(pt.h, pt.v); {restore the pen position}

END;

Because the PostScript LaserWriter driver buffers generated PostScript code, and because

the driver ignores clipping regions between the TextBegin and TextEnd picture

comments, clipping regions for drawing instructions that precede TextBegin may be

affected. Therefore, MyDrawXString uses the application-defined routine

MyFlushPostScriptState (shown in Listing B-2 on page B-11) immediately before

using the TextBegin picture comment.

Using Graphics Picture Comments

Graphics picture comments, listed in Table B-1 on page B-5, provide your application

with the ability to render smoothed polygons (as described in the next section) and to

rotate graphics (as described in “Rotating Graphics” on page B-29).

In general, you cannot use one set of graphics picture comments (for instance, the

polygon-drawing picture comments) with another (graphics rotation comments). When

using these two types of comments, you should simply rotate the points of the polygon

before drawing.

The graphics comments for drawing dashed lines and for rotating graphics require the

use of the PenMode procedure (described in the chapter “QuickDraw Drawing” in this

book) to set the pattern mode to a value of 23. Normally this value is undefined, but it is

handled specially by PostScript printer drivers, which treat it like the srcCopy Boolean

transfer mode (described in the chapters “QuickDraw Drawing” and “Color

QuickDraw”). All QuickDraw drivers ignore this pattern mode. Your application can use

this pattern mode to draw objects in a picture and, if the picture is printed on a

QuickDraw printer, these objects are not visible.

A P P E N D I X B

Using Picture Comments for Printing

Using Graphics Picture Comments B-23

Drawing Polygons
By using picture comments, you can draw high-resolution polygons on PostScript

printing devices. PostScript supports four types of polygons: open, framed, filled, and

smoothed. (QuickDraw supports all of these types except smoothed.)

Figure B-7 shows these four types of polygons.

Figure B-7 Types of polygons

Type Description

Open A polygon whose endpoints do not join. This type of polygon cannot be
filled.

Framed A closed polygon that is not filled. Framed and filled polygons are
exclusive to one another.

Filled A closed polygon whose interior is entirely covered with a pattern.

Smoothed A polygon (open, framed, or filled) whose edges have been rounded.

A P P E N D I X B

Using Picture Comments for Printing

B-24 Using Graphics Picture Comments

To draw polygons, perform the following steps:

1. Use the PolyBegin picture comment to alert the PostScript driver that you are
drawing a polygon.

2. Optionally, you can use the PolyClose picture comment to use “closed” smoothing
between the first and last vertices of the polygon.

3. Use the PolySmooth picture comment to tell the PostScript driver to draw a Bézier
curve.

4. Use the GetClip procedure to save the current clipping region; then use the
ClipRect procedure to hide your polygon’s drawing commands from QuickDraw.

5. Draw your polygon. The PostScript driver renders it smoothly.

6. Use the SetClip procedure to restore the previous clipping region.

7. Use the PolyIgnore picture comment to make the printer driver ignore the
line-drawing commands for your QuickDraw representation of the polygon.

8. Draw your QuickDraw representation of the polygon.

9. Use the PolyEnd picture comment.

The PolyBegin and PolyEnd picture comments surround the polygon description.

Note that the printer driver draws the polygon at the location of the pen when it receives

the PolyBegin picture comment, so you must set the pen’s location before using the

PolyBegin picture comment. For polygons that are smoothed, you must set the pen

size to 0 after the PolyBegin picture comment to prevent the unsmoothed polygon

from being drawn on printers that do not support the polygon comments.

All QuickDraw routines called between PolyBegin and PolyEnd that are processed

by the low-level StdLine routine are part of the polygon—that is, the endpoints of each

of the lines become vertices of the polygons.

You should use the PolyClose, PolySmooth, and PolyIgnore picture comments

between the PolyBegin and PolyEnd picture comments.

The PolyClose comment specifies that the printer driver should treat all vertices of the

polygon in the same manner; in particular, this affects the shape of the smooth curve

between the polygon’s first and last vertices, which might otherwise be distinguishable

as separate points. The PolyClose comment, however, does not automatically close the

polygon as the PostScript operator closepath does.

A P P E N D I X B

Using Picture Comments for Printing

Using Graphics Picture Comments B-25

To render high-resolution B-splines when PostScript is available, use the PolySmooth

picture comment, which directs the PostScript printer driver to interpret the polygon

vertices as control nodes for a quadratic Bézier spline. PostScript has a direct facility for

cubic B-splines, and the PostScript printer driver translates the quadratic B-spline nodes

into the appropriate nodes for a cubic B-spline that will emulate the original quadratic.

This allows you to use this PostScript feature without having to call PostScript routines

directly.

Note

PostScript Level 1 has some problems with very large polygons that
have more than 1500 points. For this reason, you may want to avoid
doubling the points on large smoothed polygons, even though a greater
number of points might aid in making the polygon smoother. ◆

When you use the PolySmooth picture comment, pass a TPolyVerbHdl handle, which

is a handle to a TPolyVerbRec record, in the dataHandle parameter of the

PicComment procedure. You use a TPolyVerbRec record to tell the printer driver to

interpret the polygon vertices as control nodes for a quadratic Bézier spline. Here is how

you should declare these as Pascal data structures in your application:

Type

TPolyVerbHdl = ^TPolyVerbPtr;

TPolyVerbPtr = ^TPolyVerbRec;

TPolyVerbRec =

PACKED RECORD

f7,f6,f5,f4,f3: Boolean; {reserved; set to 0}

fPolyClose: Boolean; {TRUE is same as PolyClose }

{ picture comment}

fPolyFill: Boolean; {TRUE means fill polygon}

fPolyframe: Boolean; {TRUE means frame polygon}

END;

The f7, f6, f5, f4, and f3 fields are reserved bits; you should set them to 0.

Setting the fPolyClose field to 1 achieves the same result as the PolyClose picture

comment. The PolyClose comment specifies that the printer driver should treat all

vertices of the polygon in the same manner; in particular, this affects the shape of the

smooth curve between the polygon’s first and last vertices, which might otherwise be

distinguishable as separate points. The PolyClose comment does not automatically

close the polygon as the PostScript operator closepath does.

A P P E N D I X B

Using Picture Comments for Printing

B-26 Using Graphics Picture Comments

Set the fPolyFill field to 1 if you want the printer driver to fill the polygon, or set it

to 0 if not.

Set the fPolyFrame field to 1 if you want the printer driver to frame the polygon, or set

it to 0 if not.

In Listing B-5, the polygon coordinates are defined through arrays of points, initialized

using an application-defined procedure, MyDefineVertices. The procedure

MyDefineVertices specifies the points for two polygons. The array referenced

through the parameter p defines the points used for the PostScript representation of the

polygon. The array referenced through the parameter q defines the points used for the

QuickDraw representation of the polygon.

Listing B-5 Creating polygons

PROCEDURE MyDefineVertices(VAR p,q: PointArrayPtr);

CONST

cx = 280; {x coordinate for center point}

cy = 280; {y coordinate for center point}

r0 = 200; {radius}

kN = 4; {number of vertices for PostScript}

kM = 6; {number of vertices for QuickDraw approximation}

BEGIN

{the array p^ contains the control points for the Bézier curve}

SetPt(p^[0],cx + r0,cy);

SetPt(p^[1],cx,cy + r0);

SetPt(p^[2],cx - r0,cy);

SetPt(p^[3],cx,cy - r0);

p^[4] := p^[0];

{q^ contains the points for a QuickDraw approximation of the curve}

q^[0] := p^[0];

SetPt(q^[1],cx,cy + round(0.7 * (p^[1].v - cy)));

SetPt(q^[2],(p^[1].h + p^[2].h) DIV 2,

(p^[1].v + p^[2].v) DIV 2);

SetPt(q^[3],cx + round(0.8 * (p^[2].h - cx)),cy);

SetPt(q^[4],q^[2].h,cy + cy - q^[2].v);

SetPt(q^[5],q^[1].h,cy + cy - q^[1].v);

q^[6] := q^[0];

END;

A P P E N D I X B

Using Picture Comments for Printing

Using Graphics Picture Comments B-27

Use the PolyIgnore comment before drawing your QuickDraw version of the polygon;

between PolyIgnore and PolyEnd, drivers that support these two comments ignore

all QuickDraw routines processed through the low-level procedure StdLine. You can

enclose the application-defined procedure MyPolygonDemo, shown in Listing B-6,

between OpenPicture and ClosePicture calls to create a picture containing both

QuickDraw and PostScript representations of the polygon. Alternatively, you can call

MyPolygonDemo when drawing directly into a printing graphics port.

Listing B-6 Drawing polygons

PROCEDURE MyPolygonDemo;

VAR

p, q: PointArrayPtr;

aPolyVerbH: TPolyVerbHdl;

i: Integer;

clipRgn, polyRgn: RgnHandle;

zeroRect: Rect;

BEGIN

p := PointArrayPtr(NewPtr(SizeOf(Point) * (kN + 1)));

q := PointArrayPtr(NewPtr(SizeOf(Point) * (kM + 1)));

IF (p = NIL) OR (q = NIL) THEN DoErr(kMemError);

MyDefineVertices(p,q);

PenNormal; {first show the standard QuickDraw polygon}

MoveTo(p^[0].h,p^[0].v);

FOR i := 1 TO kN DO

LineTo(p^[i].h,p^[i].v);

PenSize(2,2); {now show the same polygon "smoothed"}

PenPat(gray);

{first, the PostScript representation, clipped from QuickDraw}

aPolyVerbH:=

TPolyVerbHdl(NewHandle(SizeOf(TPolyVerbRec)));

IF aPolyVerbH<> NIL THEN

WITH aPolyRecH^^ DO

BEGIN

fPolyFrame := TRUE;

fPolyFill := FALSE;

fPolyClose := FALSE;

A P P E N D I X B

Using Picture Comments for Printing

B-28 Using Graphics Picture Comments

{compare with the result for TRUE!}

f3 := FALSE;

f4 := FALSE;

f5 := FALSE;

f6 := FALSE;

f7 := FALSE;

END;

MoveTo(p^[0].h,p^[0].v);

PicComment(PolyBegin,0,NIL);

{picComment(PolyClose,0,NIL); only if }

{ fPolyClose = TRUE, above!}

PicComment(PolySmooth,SizeOf(TPolyVerbRec),

Handle(aPolyVerbH));

clipRgn := NewRgn;

GetClip(clipRgn);

ClipRect(zeroRect);

FOR i := 1 TO kN DO

LineTo(p^[i].h,p^[i].v);

{next, the QuickDraw approximation of the smoothed }

{ polygon, invisible for PostScript because of PolyIgnore}

SetClip(clipRgn);

PicComment(PolyIgnore,0,NIL);

polyRgn := NewRgn;

OpenRgn;

MoveTo(q^[0].h,q^[0].v);

FOR i := 1 TO kM DO

LineTo(q^[i].h,q^[i].v);

CloseRgn(polyRgn);

FrameRgn(polyRgn); {or FillRgn, if fPolyFill above is TRUE}

PicComment(PolyEnd,0,NIL);

DisposeHandle(Handle(aPolyVerbH));

DisposeRgn(polyRgn);

DisposePtr(Ptr(p));

DisposePtr(Ptr(q));

END;

A P P E N D I X B

Using Picture Comments for Printing

Using Graphics Picture Comments B-29

The two versions of the drawn polygon are shown in Figure B-8.

Figure B-8 QuickDraw and PostScript polygons

Note that you do not need to open a region, collect the line segments in the region, and

draw the polygon through the FrameRgn procedure (described in the chapter

“QuickDraw Drawing” in this book). This method is demonstrated in Listing B-6 only to

prepare you for situations where you want to fill the polygon with a pattern. You cannot

open a polygon and use the FillPoly procedure (also described in the chapter

“QuickDraw Drawing” in this book), because the PostScript driver “owns” the polygon

concept at this point and captures—and ignores—all line drawing between the

PolyIgnore and PolyEnd comments. Regions do not interfere with polygons,

however, and they can be used to paint or fill the polygonal shape.

Rotating Graphics
You can rotate QuickDraw objects on PostScript printers. The printer driver rotates the

entire PostScript coordinate space before drawing the objects, which then appear rotated.

All objects that you want to rotate must be contained between the RotateBegin and

RotateEnd picture comments.

You specify the center of rotation with the RotateCenter picture comment. Unlike text

rotation, where you pass the TextBegin picture comment first and then the

RotateCenter picture comment, you must pass the offset (which is relative to the

center of rotation) with the RotateCenter picture comment before you use the

RotateBegin picture comment. When you specify the RotateCenter picture

comment in the kind parameter of the PicComment procedure, you also supply in the

dataHandle parameter a TCenterHdl handle, which is a handle to a TCenterRec

record. You can use this record to specify the center of rotation for graphics or text. See

“Rotating Text” beginning on page B-17 for a description of the fields of a TCenterRec

record.

A P P E N D I X B

Using Picture Comments for Printing

B-30 Using Graphics Picture Comments

When you specify the RotateBegin picture comment in the kind parameter of the

PicComment procedure, you also supply in the dataHandle parameter a

TRotationHdl handle, which is a handle to a TRotationRec record. You use

a TRotationRec record to specify the rotation of a graphic. Here’s how you should

declare these as Pascal data structures:

TYPE

TRotationHdl = ^TRotationPtr;

TRotationPtr = ^TRotationRec;

TRotationRec =

RECORD

rFlip: Integer; {horizontal/vertical flipping}

rAngle: Integer; {0..360 clockwise rotation in }

{ integer format}

rAngleFixed: Fixed; {0..360 clockwise rotation in }

{ fixed-number format}

END;

You use the rFlip field to specify whether to flip the graphic horizontally or vertically

in addition to rotating it. Here are the possible values for this field:

You supply the rAngleFixed field with a fixed-point number to specify the number of

degrees by which the printer driver should rotate the graphic.

You can provide the degrees of rotation both as an integer (in the rAngle field) and as a

fixed-point number (in the rAngleFixed field). You should always specify the rotation

in both fields, even for drivers that support only integral rotation.

Once you set up the rotation with the RotateCenter and RotateBegin picture

comments, you draw the graphics objects you want to rotate. Before drawing the objects,

use the PenMode procedure to set the pattern mode to a value of 23, which represents a

special pattern mode for PostScript printer drivers. You should draw the QuickDraw

image, using the CopyBits procedure, inside its own pair of PostScriptBegin and

PostScriptEnd comments so that the QuickDraw representation will not show up

on PostScript devices. (You should also use the PrGeneral procedure with the

getRslDataOp opcode, described in the chapter “Printing Manager” in this book, to

determine and use the maximum printer resolution.)

In Listing B-7, the application-defined procedure MyRotateDemo rotates the same image

for both QuickDraw and PostScript printers.

Value Description

0 No coordinate flip

1 Horizontal coordinate flip

2 Vertical coordinate flip

A P P E N D I X B

Using Picture Comments for Printing

Using Graphics Picture Comments B-31

Listing B-7 Using picture comments to rotate graphics

PROCEDURE MyRotateDemo;

CONST

angle = 30;

VAR

spinRect: Rect;

delta: Point;

BEGIN

SetRect(spinRect,100,100,300,200);

WITH spinRect DO SetPt(delta,(right - left) DIV 2,

 (bottom - top) DIV 2);

PenSize(2,2);

PenPat(ltGray);

FrameRect(spinRect); {show the unrotated square}

PenNormal;

MyPSRotatedRect(spinRect,delta,angle);

{QuickDraw equivalent of the rotated object, hidden from the PostScript }

{ driver because of PostScriptBegin and PostScriptEnd}

PicComment(PostScriptBegin, 0, NIL);

MyQDRotatedRect(spinRect, delta, angle);

PicComment(PostScriptEnd, 0, NIL);

END;

The application-defined procedure MyQDRotatedRect rotates the four points of the

rectangle by an angle around the center and draws the rotated rectangle. To include this

QuickDraw representation of the rotated objects (in case the RotateCenter and

RotateBegin picture comments are not supported), the code in Listing B-7 assumes

that only PostScript drivers implement these comments. The only way to hide from the

driver the application-defined procedure that provides a QuickDraw representation of

the rotated objects is to surround it by PostScriptBegin and PostScriptEnd

comments.

To hide from QuickDraw the graphics rotation for a PostScript printer, Listing B-8 uses

pattern mode 23.

A P P E N D I X B

Using Picture Comments for Printing

B-32 Using Graphics Picture Comments

Listing B-8 Using the RotateCenter, RotateBegin, and RotateEnd picture comments

PROCEDURE MyPSRotatedRect(r: Rect; offset: Point; angle: Integer);

{does the rectangle rotation for the PostScript LaserWriter driver}

{uses the RotateCenter, RotateBegin, and RotateEnd picture comments, }

{ and the "magic" pattern mode 23 to hide the drawing from QuickDraw}

CONST

magicPen = 23;

VAR

rInfo: TRotationHdl;

rCenter: TCenterHdl;

oldPenMode: Integer;

BEGIN

rInfo := TRotationHdl(NewHandle(SizeOf(TRotationRec)));

rCenter := TCenterHdl(NewHandle(SizeOf(TCenterRec)));

IF (rInfo = NIL) OR (rCenter = NIL)

THEN DebugStr('NewHandle failed');

WITH rInfo^^ DO

BEGIN

rFlip := 0;

rAngle := - angle;

rAngleFixed := BitShift(LongInt(rAngle),16);

END;

WITH rCenter^^ DO

BEGIN

x := Long2Fix(offset.h);

y := Long2Fix(offset.v);

END;

MoveTo(r.left,r.top);

MyFlushGrafPortState; {see Listing B-1 on page B-10}

PicComment(RotateCenter,SizeOf(TCenterRec),Handle(rCenter));

PicComment(RotateBegin,SizeOf(TRotationRec),Handle(rInfo));

oldPenMode := thePort^.pnMode;

PenMode(magicPen);

FrameRect(r);

PenMode(oldPenMode);

PicComment(RotateEnd,0,NIL);

DisposeHandle(Handle(rInfo));

DisposeHandle(Handle(rCenter));

END;

A P P E N D I X B

Using Picture Comments for Printing

Using Line-Drawing Picture Comments B-33

Using Line-Drawing Picture Comments

Line-drawing picture comments, listed in Table B-1 on page B-5, provide your

application with the ability to draw dashed lines (as described in the next section) and to

display fractional line widths (as described in “Using Fractional Line Widths” on

page B-35).

Drawing Dashed Lines
Your application may use dashed lines frequently, particularly if it is a spreadsheet or

accounting application. You can use the DashedLine picture comment to draw dashed

lines on capable printers without drawing each individual dash. You use the

DashedStop picture comment to tell the printer driver when you are finished sending

dashed line information.

When you use the DashedLine comment, the printer driver draws the indicated lines

or rectangles. You should pass a handle to a TDashedLineRec record in the

dataHandle parameter of the PicComment procedure. You use a TDashedLineRec

record to specify how the dashed line should look. Here is how you should declare these

as Pascal data structures:

TYPE

TDashedLineHdl = ^TDashedLinePtr;

TDashedLinePtr = ^TDashedLineRec;

TDashedLineRec =

PACKED RECORD

offset: SignedByte; {offset}

centered: SignedByte; {reserved; set to 0}

intervals: ARRAY[0..0] OF SignedByte;

{points for drawing and not }

{ drawing dashes}

END;

Use the offset field to specify an offset as with the PostScript setdash operator.

The centered field is reserved and should be set to 0. Your application must center the

dashed lines.

In the intervals field, specify an array of dash intervals describing the number of

points drawn for a dash and the number of points not drawn between them.

You must provide both a QuickDraw and a picture comment version of the dashed line.

The code in Listing B-9 uses the PostScriptBegin and PostScriptEnd picture

comments to hide QuickDraw code from PostScript, and it uses pattern mode 23 to

render PostScript drawing invisible in QuickDraw.

A P P E N D I X B

Using Picture Comments for Printing

B-34 Using Line-Drawing Picture Comments

Listing B-9 Using the DashedLine picture comment

PROCEDURE DashDemo;

CONST

magicPen = 23;

cx = 280; {center along x-axis}

cy = 280; {center along y-axis}

r0 = 200; {radius}

VAR

dashHdl: TDashedLineHdl;

i: Integer;

a, rad: Extended;

BEGIN

PenSize(2,2);

{First the PostScript picture comment version. Pattern mode }

{ 23 makes the line drawing invisible to QuickDraw.}

PenMode(magicPen);

dashHdl := TDashedLineHdl(NewHandle(SizeOf(TDashedLineRec)));

IF dashHdl <> NIL THEN

WITH dashHdl^^ DO

BEGIN

offset := 4; {just for fun}

centered := 0; {currently ignored--set to 0}

intervals[0] := 2; {number of interval specs}

intervals[1] := 4; {this means 4 points on ...}

intervals[2] := 6; {... and 6 points off}

PicComment(DashedLine, SizeOf(TDashedLineRec),

Handle(dashHdl));

END;

rad := 3.14159 / 180; {conversion degrees -> radians}

FOR i := 0 TO 9 DO

BEGIN {draw some dashed lines}

a := i * 20 * rad;

MoveTo(cx, cy);

Line(round(r0 * cos(a)), - round(r0 * sin(a)));

END;

PicComment(DashedStop, 0, NIL); {that's enough!}

DisposeHandle(Handle(dashHdl));

PenMode(srcOr); {no magic any more}

{Now, the QuickDraw version. The PostScript driver must }

{ ignore it, so enclose it between PostScriptBegin and }

{ PostScriptEnd comments.}

PicComment(PostScriptBegin, 0, NIL);

PenSize(2,2);

A P P E N D I X B

Using Picture Comments for Printing

Using Line-Drawing Picture Comments B-35

FOR i := 0 TO 9 DO

BEGIN

MoveTo(cx,cy);

MyDashedQDLine(round(r0 * cos(i * 20 * rad)),

 - round(r0 * sin(i * 20 * rad)), dashHdl);

END;

PicComment(PostScriptEnd, 0, NIL);

END;

Using Fractional Line Widths
Your application may need lines as thin as possible or thinner than the screen can

display, especially if it is a desktop publishing, spreadsheet, or design application. You

can draw hairlines (lines that are less than 1/72 of an inch wide) with printer drivers

that support the SetLineWidth picture comment. Your application passes the printer

driver a scaling factor (such as 1/4) that the driver applies to the pen size when

rendering the picture.

QuickDraw and the PostScript language define 1 point to be 1/72 of an inch, so there are

exactly 72 points per inch on the Macintosh screen. The resolution of a PostScript device

such as the 300-dpi LaserWriter printer is about four times that of the screen, so the

driver can render lines that are approximately 1/4 of a point thick, which is about 1/288

of an inch.

When you specify the SetLineWidth picture comment in the kind parameter of the

PicComment procedure, you also specify a TLineWidthHdl handle (a handle to a data

structure of type TLineWidth) in the dataHandle parameter. The TLineWidth

data structure is defined by the Point data type. Here is how you should declare these

as Pascal data types in your application:

TLineWidthHdl = ^TLineWidthPtr;

TLineWidthPtr = ^TLineWidth;

TLineWidth = Point; {v = numerator, h = denominator}

Use the vertical coordinate of the point as the numerator and the horizontal coordinate

as the denominator of the scaling factor: the driver multiplies the horizontal and vertical

components of the pen by the scaling factor to obtain the new pen width. For example, if

you have a pen size of (1,2) and your SetLineWidth picture comment uses 2 for the

horizontal and 7 for the vertical, the pen size will then be (7/2) × 1 pixel wide and

(7/2) × 2 pixels high.

In Figure B-9, the original pen size is 1 point. The first scaling factor is 5.0 or (5,1), which

gives the pen a width of 5 points. The second scaling factor, applied to the new pen

width, is 0.2 or (1,5), which gives the pen a width of 1 point again.

A P P E N D I X B

Using Picture Comments for Printing

B-36 Using Line-Drawing Picture Comments

Figure B-9 Changing the pen width using the SetLineWidth picture comment

The SetLineWidth picture comment is implemented by all PostScript LaserWriter

printer drivers and by some QuickDraw printer drivers. However, not all

QuickDraw printer drivers support SetLineWidth, and there is no backup solution for

cases where it is not supported. Among QuickDraw printer drivers that do support

SetLineWidth, some drivers emulate PostScript printer drivers, while others—such as

the QuickDraw LaserWriter SC driver—implement SetLineWidth differently.

The difference between the implementations of the SetLineWidth comment by the

PostScript LaserWriter driver and the QuickDraw LaserWriter SC driver is apparent as

soon as SetLineWidth is used a second time. The PostScript driver keeps an internal

line-scaling factor, which is initialized to 1.0 when a job is started. Each number passed

through SetLineWidth is multiplied by the current internal scaling factor to get the

effective scaling factor for the pen size. The LaserWriter SC driver, on the other hand,

replaces its current scaling factor for the pen size by the new value passed through

SetLineWidth.

To support both implementations, you must always use an additional SetLineWidth

picture comment to reset the PostScript driver line width to 1.0 before scaling to a new

value width, as illustrated by the following lines of code:

PicComment(SetLineWidth, SizeOf(TLineWidth), Handle(1/oldLineWidth));

PicComment(SetLineWidth, SizeOf(TLineWidth), Handle(newLineWidth));

For example, suppose your application set the line width to 0.25, and now it needs a line

width of 0.5. The following two SetLineWidth comments have the desired effect on all

PostScript and QuickDraw drivers that implement the SetLineWidth comment.

Current line width,
PS driver

Current line width,
QD driver

Value passed
along with

SetLineWidth
New line width,

PS driver
New line width,

QD driver

0.25 0.25 4/1 1.0 4.0

1.0 4.0 1/2 0.5 0.5

A P P E N D I X B

Using Picture Comments for Printing

Using Line-Drawing Picture Comments B-37

The sample code in Listing B-10 gives the expected results on PostScript LaserWriter and

QuickDraw printer drivers that implement the SetLineWidth comment.

Listing B-10 Using the SetLineWidth picture comment

PROCEDURE MySetNewLineWidth(oldWidth,newWidth: TLineWidth);

VAR

tempWidthH: TLineWidthHdl;

BEGIN

tempWidthH := TLineWidthHdl(NewHandle(SizeOf(TLineWidth)));

tempWidthH^^.v := oldWidth.h;

tempWidthH^^.h := oldWidth.v;

PicComment(SetLineWidth, SizeOf(TLineWidth), Handle(tempWidthH));

tempWidthH^^ := newWidth;

PicComment(SetLineWidth, SizeOf(TLineWidth), Handle(tempWidthH));

DisposeHandle(Handle(tempWidthH));

END;

PROCEDURE MyLineWidthDemo;

CONST

y0 = 50; {top left of demo}

x0 = 50;

d0 = 440; {length of horizontal lines}

e0 = 5; {distance between lines}

kN = 5; {number of lines}

VAR

oldWidth,newWidth: TLineWidth;

i,j,y: Integer;

BEGIN

PenNormal;

y := y0;

SetPt(oldWidth,1,1); {initial line width = 1.0}

FOR i := 1 TO 5 DO

BEGIN

SetPt(newWidth,4,i);

{want to set it to i/4 = 0.25, 0.50, 0.75 ...}

SetNewLineWidth(oldWidth,newWidth);

MoveTo(x0, y);

Line(d0, 0);

y := y + e0;

oldWidth := newWidth;

END;

END;

A P P E N D I X B

Using Picture Comments for Printing

B-38 Using PostScript Picture Comments

Using PostScript Picture Comments

You can access the PostScript language directly using the PostScriptHandle picture

comment, and so bypass QuickDraw entirely. When you send PostScript code directly to

the printer driver, it sends your code directly to the printer with no preprocessing and no

error checking.

Note

These picture comments affect the state of the PostScript drawing
environment and can have such effects as printing blank pages. Also,
many PostScript printer drivers do not use the same version of
PostScript and produce different outputs with the same commands; you
should test your code on as many PostScript printers as possible. In all
cases, use the PostScript picture comments with extreme caution. ◆

Calling PostScript Routines Directly
Your application can tell the printer driver to disable all QuickDraw drawing routines by

using the PostScriptBegin picture comment. The driver uses the PostScript save

and restore operators to preserve the state of the PostScript interpreter. When the

driver receives the PostScriptEnd picture comment, it reenables QuickDraw drawing

routines.

You send PostScript code to the driver via the PostScriptHandle picture comment by

including a handle to the PostScript code in the dataHandle parameter of the

PicComment procedure. The driver performs no preprocessing or error checking on this

code. The handle contains text with no length byte or word; use the dataSize

parameter to convey the length of the PostScript code. (As with all picture comments,

the handle you pass belongs to you, and you must dispose of it when you’re finished

with it.) You indicate the end of the PostScript commands with a carriage return

(ASCII $0D). You must use PostScriptBegin and PostScriptEnd around any

PostScriptHandle comments; otherwise, the PostScript driver will not properly save

and restore the PostScript drawing environment.

Listing B-11 gives an example of an application-defined procedure called

DoPostScriptLine. The procedure is used to transmit a string of PostScript code

through the PostScriptHandle picture comment to the PostScript printer driver.

DoPostScriptLine should be called only between PostScriptBegin

and PostScriptEnd picture comments, as shown in the application-defined procedure

DoPostScriptComments.

A P P E N D I X B

Using Picture Comments for Printing

Using PostScript Picture Comments B-39

Listing B-11 Sending PostScript code directly to the printer

PROCEDURE DoPostScriptLine(s: Str255);

VAR

h: Handle;

BEGIN

h := NewHandle(256);

IF h = NIL THEN DebugStr('NewHandle failed');

BlockMove(@s[1], h^, Length(s));

PicComment(PostScriptHandle, Length(s), h);

h^^ := 13;

PicComment(PostScriptHandle, 1, h); {add a carriage return}

DisposeHandle(h);

END;

PROCEDURE DoPostScriptComments;

BEGIN

{first, the simple example}

PicComment(PostScriptBegin,0,NIL);

DoPostScriptLine('100 100 moveto 0 100 rlineto 100 0 rlineto ');

DoPostScriptLine('0 -100 rlineto -100 0 rlineto');

DoPostScriptLine('stroke');

MoveTo(30,30);

DrawString('This text does not appear on PostScript printers.');

PicComment(PostScriptEnd,0,NIL);

END;

Optimizing PostScript Printing
Although your printing code should be device-independent, you can optimize it for a

PostScript printer. However, you cannot be sure that the current printer is a PostScript

printer, so you may need to create two versions of the same drawing code: one for a

PostScript printer and one for a QuickDraw printer, as described previously in this

appendix.

For printing to a PostScript printer, you’ll need to observe the following limitations:

■ Regions aren’t supported; try to simulate them with polygons or bitmaps.

■ Clipping regions should be limited to rectangles. PostScript clips nonsquare patterns
to squares.

■ The Invert data type, part of the QuickDraw GrafVerb data type, is not supported
by the PostScript LaserWriter printer driver.

■ The PostScript LaserWriter driver does not support all Boolean transfer modes. It
supports the srcCopy, srcOr, srcBic, notSrcCopy, and notSrcBic modes for

A P P E N D I X B

Using Picture Comments for Printing

B-40 Picture Comments to Avoid

bitmaps and text. For all other objects drawn with QuickDraw, the PostScript
LaserWriter driver supports only the srcCopy mode.

■ There can be a small difference in glyph widths between fonts rendered on the screen
and on the printer. Only the endpoints of text strings are the same.

■ Only PostScript Level 2 supports color patterns that use colors other than red, green,
blue, cyan, yellow, magenta, white, and black.

■ The printer may print some large patterns at half size or smaller sizes, depending on
its resolution.

■ Polygons and smoothed polygons that result in the creation of paths larger than the
limit of the PostScript printer (typically 1500 or 3000, depending on the version of
PostScript) result in a PostScript error.

Although the PostScript LaserWriter printer is relatively fast, there are some techniques

an application can use to ensure its maximum performance.

■ Printing patterns takes time, because the bitmap for the pattern has to be built. The
black-and-white patterns, and some of the gray patterns, have been optimized to use
the PostScript grayscales.

■ Use the TextBegin picture comment for text alignment. In the cases of flush left,
flush right, or centered alignment, only the left, right, or center points are accurate,
respectively; in the case of fully justified text, both the left and right endpoints are
accurate.

■ If you want to position each glyph independently, use the LineLayoutOff and
StringBegin picture comments. If you are trying to position glyphs and the driver
is trying to position glyphs too, there is conflict, and printing takes much longer than
necessary.

For more information on the PostScript language, see the PostScript Language Reference
Manual, second edition, available from Addison-Wesley.

Picture Comments to Avoid

The SetGrayLevel picture comment is now obsolete. The PostScriptFile,

TextIsPostScript, FormsPrinting, EndFormsPrinting, ClientLineLayout,

PSBeginNoSave, and ResourcePS picture comments have limited use and are not

recommended. This section describes the shortcomings of these picture comments.

The SetGrayLevel picture comment was designed to provide access to the PostScript

setgray operator while drawing with QuickDraw in black-and-white mode. For most

drawing operations, however, the printer driver sets the gray level to match the

foreground color for the printing graphics port, and the effect of the SetGrayLevel

picture comment is often unpredictable. If direct access to the PostScript setgray

operator seems desirable, it is preferable to send the instruction with the

PostScriptHandle picture comment.

The TextIsPostScript picture comment interprets all the text manipulated with

QuickDraw text-drawing routines (namely, DrawChar, DrawString, DrawText, and

A P P E N D I X B

Using Picture Comments for Printing

Picture Comments to Avoid B-41

anything else that calls the StdText low-level procedure) as PostScript code. There is no

good reason to use this picture comment, but there is one important reason not to use it:

printer drivers that do not support the TextIsPostScript picture comment will print

the PostScript text instead of interpreting it. If you need to transmit PostScript code

directly to a printer that understands it, use the PostScriptHandle comment and

include a QuickDraw representation for all other printer drivers.

The ResourcePS picture comment loads PostScript code from a resource file. The

resource file is expected to be open at the time that you use ResourcePS. Under

background printing, there are no guarantees the resource file will still be open when the

Printing Manager needs it. If you want to keep PostScript code in a resource file, it is

easy to write a routine that loads the resources and sends their contents using the

PostScriptHandle picture comment.

The PostScriptFile picture comment loads PostScript code from a file; as with the

ResourcePS comment, there are no guarantees the file will be open when the Printing

Manager needs it during background printing. If you want to keep PostScript code in a

file, it is easy to write a routine that loads the file and its contents using the

PostScriptHandle picture comment.

As with the PostScriptBegin picture comment, the PSBeginNoSave picture

comment allows applications to change the state of a PostScript printer driver. Some

applications do not want to restore the previous state of the PostScript interpreter after

sending PostScript code; the PSBeginNoSave comment was intended for situations

where applications do not want to preserve the printer state. However, the

PSBeginNoSave picture comment allows applications to interfere with the LaserWriter

8.0 printer driver, and the driver, by calling the PostScript operator grestore, can

interfere with the application. The use of PSBeginNoSave can lead to incorrect clipping,

incorrect colors, and PostScript language errors and should therefore be avoided.

By default, most drivers apply about 80 percent of the total line layout error to the

major glyphs (the space character) and the other 20 percent to the minor glyphs (all other

glyphs). (When using a script system that does not use the space glyph to delimit words,

the layout error is distributed evenly across all characters in the font.) The

ClientLineLayout picture comment allows applications to redefine the major glyph,

and the percentages of the line layout error assigned to the major and minor glyphs. The

ClientLineLayout picture comment is rather subtle and very specific to the

PostScript LaserWriter driver. Only very ambitious page layout applications might be

interested in this functionality, however; their designers should instead aim at a more

general scheme of line layout control that does not rely upon this very driver-specific

picture comment.

Intended for printing forms on PostScript LaserWriter printers, the FormsPrinting

picture comment directs the PostScript LaserWriter driver not to clear its page buffer

after printing a page. The EndFormsPrinting picture comment directs the PostScript

LaserWriter driver to clear its page buffer after printing a page. When a page is

completed, applications must erase the areas that need to be updated and draw the new

information. The graphics that make up the form are drawn only once per page, which

may improve performance. However, you need to write a separate printing loop for the

PostScript LaserWriter driver if you want to use this comment.

A P P E N D I X B

Using Picture Comments for Printing

B-42 Including Constants and Data Types for Picture Comments

Including Constants and Data Types for Picture Comments

For the picture comments described in this appendix, neither QuickDraw nor the

Printing Manager includes constant definitions or data type declarations; instead, you

must include these in your own build files. Listed here are the constants and data types

for picture comments that have been predefined for printer drivers from Apple

Computer, Inc.

{PicComments.p}

CONST

{values for picture comments}

TextBegin = 150;

TextEnd = 151;

StringBegin = 152;

StringEnd = 153;

TextCenter = 154;

LineLayoutOff = 155;

LineLayoutOn = 156;

ClientLineLayout = 157; {considered to be of limited usefulness}

PolyBegin = 160;

PolyEnd = 161;

PolyIgnore = 163;

PolySmooth = 164;

PolyClose = 165;

DashedLine = 180;

DashedStop = 181;

SetLineWidth = 182;

PostScriptBegin = 190;

PostScriptEnd = 191;

PostScriptHandle = 192;

PostScriptFile = 193; {considered to be of limited usefulness}

TextIsPostScript = 194; {considered to be of limited usefulness}

ResourcePS = 195; {considered to be of limited usefulness}

PSBeginNoSave = 196; {dangerous to use with LaserWriter 8.0}

SetGrayLevel = 197; {this comment now obsolete}

RotateBegin = 200;

RotateEnd = 201;

RotateCenter = 202;

{values for the tJus field of the TTxtPicRec record}

tJusNone = 0;

tJusLeft = 1;

tJusCenter = 2;

A P P E N D I X B

Using Picture Comments for Printing

Including Constants and Data Types for Picture Comments B-43

tJusRight = 3;

tJusFull = 4;

{values for the tFlip field of the TTxtPicRec record}

tFlipNone = 0;

tFlipHorizontal = 1;

tFlipVertical = 2;

TYPE

TTxtPicHdl = ^TTxtPicPtr;

TTxtPicPtr = ^TTxtPicRec;

TTxtPicRec = PACKED RECORD

tJus: Byte; {justification for line layout of text}

tFlip: Byte; {horizontal or vertical flipping}

tAngle: Integer; {0..360 degrees clockwise rotation }

{ in integer format}

tLine: Byte; {reserved}

tCmnt: Byte; {reserved}

tAngleFixed: Byte; {0..360 degrees clockwise rotation in }

{ fixed-number format}

END;

TRotationHdl = ^TRotationPtr;

TRotationPtr = ^TRotationRec;

TRotationRec = RECORD

rFlip: Integer; {horizontal/vertical flipping}

rAngle: Integer; {0..360 degrees clockwise rotation }

{ in integer format}

rAngleFixed: Fixed; {0..360 degrees clockwise rotation in }

{ fixed-number format}

END;

TCenterHdl = ^TCenterPtr;

TCenterPtr = ^TCenterRec;

TCenterRec = RECORD

y: Fixed; {vertical offset from current pen location}

x: Fixed; {horizontal offset from current pen location}

END;

TPolyVerbHdl = ^TPolyVerbPtr;

TPolyVerbPtr = ^TPolyVerbRec;

A P P E N D I X B

Using Picture Comments for Printing

B-44 Including Constants and Data Types for Picture Comments

TPolyVerbRec = PACKED RECORD

f7, f6, f5, f4, f3: Boolean; {reserved; set to 0}

fPolyClose: Boolean; {TRUE is same as PolyClose }

{ picture comment}

fPolyFill: Boolean; {TRUE means fill polygon}

fPolyFrame: Boolean; {TRUE means frame polygon}

END;

TDashedLineHdl = ^TDashedLinePtr;

TDashedLinePtr = ^TDashedLineRec;

TDashedLineRec = PACKED RECORD

offset: SignedByte; {offset into pattern for first dash}

centered: SignedByte; {reserved; set to 0}

intervals: ARRAY[0..5] OF SignedByte;

{points for drawing and not drawing dashes}

TLineWidthHdl = ^TLineWidthPtr;

TLineWidthPtr = ^TLineWidth;

TLineWidth = Point; {v = numerator, h = denominator}

END;

GL-1

arc A portion of the circumference of an oval,
not including the bounding radii or any part of
the oval’s interior.

arithmetic transfer mode A specification for
how QuickDraw should draw or copy color
images into a bitmap or pixel map. Arithmetic
modes perform add, subtract, and blend
operations on the red, green, and blue
component values of RGB colors.

background color The color of the pixels
wherever no drawing has taken place. By default,
the background color is white.

background pattern The pattern displayed in a
graphics port when an area is erased or when
pixels are scrolled out of it.

background printing A feature supported by
some printer drivers that allows the user to work
with an application while documents are
printing. These printer drivers send printing data
to a spool file in the PrintMonitor Documents
folder inside the System Folder.

basic graphics port The drawing environment
provided by basic QuickDraw. A basic graphics
port is defined by a data structure of type
GrafPort and contains the information that
basic QuickDraw uses to create and manipulate
onscreen either black-and-white images or color
images that employ the eight-color system.

basic QuickDraw The set of QuickDraw
routines that you use to create and manipulate
graphics information in a graphics port. All
Macintosh computers have basic QuickDraw
routines in ROM. See also Color QuickDraw.

bit image A collection of bits in memory that
forms a grid—that is, a rectangular pattern of
bits. The bit image is pointed to in the baseAddr
field of a BitMap record. Compare pixel image.

bitmap A data structure of type BitMap that
represents the positions and states of a
corresponding set of pixels, which can be either

black and white or the eight predefined colors
provided by basic QuickDraw. A bitmap is
contained within a basic graphics port. See also
pixel map.

bit pattern An 8-by-8 pixel image drawn by
default in black and white, although any two
colors can be used on a color screen. A bit pattern
can be repeated indefinitely to form a repeating
design (such as stripes) when drawing lines and
shapes or when filling areas on the screen. See
also pixel pattern.

Boolean transfer mode A specification of
which Boolean operation QuickDraw should
perform when drawing or copying an image into
a bitmap or pixel map. Boolean transfer modes
that draw patterns are called pattern modes;
Boolean transfer modes that copy images or
draw text are called source modes. Compare
arithmetic transfer mode.

boundary rectangle A rectangle (by default, the
entire main screen) that links the local coordinate
system of a graphics port to QuickDraw’s global
coordinate system and defines the area of the
pixel image or bit image into which QuickDraw
can draw. The boundary rectangle is stored in
either the pixel map or the bitmap.

bounding rectangle A rectangle used to define
other shapes, such as ovals and rounded
rectangles. The lines of bounding rectangles
completely enclose the shapes they bound; in
other words, no pixels from these shapes lie
outside the infinitely thin lines of the bounding
rectangles.

clipping region A region to which an
application can limit drawing. The initial
clipping region of a graphics port is an arbitrarily
large rectangle: one that covers the entire
QuickDraw coordinate plane. An application can
set the clipping region to any arbitrary region, to
aid in drawing inside the graphics port.

CLUT See color lookup table.

Glossary

G L O S S A R Y

GL-2

color bank A structure into which all the colors
of a picture, pixel map, or bitmap are gathered by
the Picture Utilities or by your application for
later selection. The Picture Utilities generate a
color bank consisting of a histogram to a
resolution of 5 bits per color.

color graphics port The sophisticated color
drawing environment provided by Color
QuickDraw. A color graphics port is defined by a
data structure of type CGrafPort and contains
the information that Color QuickDraw uses to
create and manipulate grayscale and color
images onscreen.

colorize To use the CopyBits procedure to
copy colors into black-and-white images.

color lookup table (CLUT) A data structure
that maps color indexes specified with
QuickDraw into actual color values. Color
lookup tables are internal to certain types of
graphics devices. Compare color table.

Color Manager A set of system software
routines that supply color-selection support for
Color QuickDraw. Most applications never need
to call the Color Manager directly.

Color Picker Utilities A set of system software
routines that enable your application to solicit
color choices from users. The Color Picker
Utilities also provide routines that allow your
application to convert colors between those
specified in RGBColor records as used by Color
QuickDraw and those used in other color
models, such as the CMYK model used by most
color printers.

Color QuickDraw The set of QuickDraw
routines that you use to create and manipulate
graphics information in a color graphics port.
You can use Color QuickDraw to create a color
image and then display it on any type of screen—
black and white, color, or grayscale. Most Color
QuickDraw routines are in ROM on Macintosh
computers that use an MC68020 or faster
processor. See also basic QuickDraw.

ColorSync Utilities A set of system software
routines and algorithms that assist you in
matching colors between screens and input and
output devices such as scanners and printers.

color table A collection of colors available for a
pixel image on indexed devices. Color tables are
specified by either ColorTable records or
'clut' resource types. The Color Manager
stores a color table for the currently available
colors in the graphics device’s CLUT. Compare
color lookup table.

current device The graphics device on which
drawing is actually taking place. A handle to its
GDevice record is stored in the global variable
TheGDevice.

current printer The printer that the user last
selected from the Chooser.

cursor A 256-bit image defined by a 16-by-16
bit square. The mouse driver displays the cursor
on the screen and maps the movement of the
mouse to relative locations on the screen as the
user moves the mouse. The cursor follows the
movement of the mouse or shows where the
user’s next action will take place. The cursor can
be an arrow, an I-beam, a crossbar, a wristwatch,
or another appropriate image. Called the pointer
in Macintosh user documentation. See also
insertion point.

Cursor Utilities A collection of system software
routines for creating and using cursors, including
color and animated cursors.

data fork The part of a file that contains data
accessed using the File Manager. This data
usually corresponds to data entered by the user.
Compare resource fork.

deferred printing A method of printing
whereby some printer drivers record each page
of a document’s printed image in a structure
similar to a QuickDraw picture, which the driver
writes to a spool file. An application must use the
PrPicFile procedure to send the spool file to
the printer. Deferred printing is also known as
spool printing. Compare draft-quality printing.

device list A linked list containing the
GDevice records for a user’s computer system.
The global variable DeviceList holds a handle
to the first record in the list.

direct colors Up to 16 million colors that have a
direct correlation between a value placed in a
graphics device and the color displayed onscreen.

G L O S S A R Y

GL-3

direct device A plug-in video card, a video
interface built into a Macintosh computer, or an
offscreen graphics world that supports up to 16
million colors having a direct correlation between
a value placed in the device and the color
displayed onscreen. Compare indexed device.

direct pixel A pixel displayed on a direct
device. Direct pixels can have pixel values of 16
or 32 bits.

discrete resolution A printing resolution that
has been predefined by a printer driver. A printer
supporting discrete resolution prints only a
limited number of such resolutions. Compare
variable resolution.

dithering A technique for mixing existing
colors together to create the illusion of a
third color that may be unavailable on a
particular device.

dpi Dots per inch in the x and y directions;
used to measure the resolution of a screen or
printer. The higher the value, the finer the detail
of the image.

draft-quality printing The method by which
printer drivers convert into drawing operations
calls only to QuickDraw’s text-drawing routines.
The printer driver sends these routines
directly to the printer instead of using deferred
printing to capture the entire image for a page in
a spool file. Draft-quality printing, which is
supported on the ImageWriter printer driver,
produces quick, low-quality drafts of text
documents that are printed straight down the
page, from top to bottom and left to right.
Compare enhanced draft-quality printing.

eight-color system The eight predefined colors
provided by basic QuickDraw for display on
color screens and color printers.

enhanced draft-quality printing The method
by which some printer drivers print bitmaps,
pixel maps, and text without writing to or
reading from a spool file. The ImageWriter
printer driver, for example, supports enhanced
draft-quality printing. Compare deferred
printing, draft-quality printing.

erase To draw both the outline of a shape and
its interior with the background pattern for the
current graphics port. The background pattern is
typically solid white on a black-and-white screen
or a solid background color on a color screen.
Making the shape blend into the background
pattern of the graphics port effectively erases the
shape.

extended version 2 picture format The format
for all pictures created with the OpenCPicture
function. Available on all Macintosh computers
running System 7, this format allows applications
to specify resolutions when creating images.

fill To draw both the outline of a shape and its
interior with any pattern you specify. The
procedure transfers the pattern with the
patCopy pattern mode, which directly copies
your requested pattern into the shape.

font substitution Substitution of a screen font
for a printer font by a printer driver. PostScript
printer drivers may substitute PostScript printer
fonts for bitmapped screen fonts.

foreground color The color of the “ink” used
for bit patterns and for the graphics pen when
drawing. By default, the foreground color is
black.

frame To draw the outline of a shape (such as a
rectangle) using the size, pattern, and pattern
mode of the graphics pen for the current graphics
port. The interior of the shape is unaffected,
allowing previously existing pixels in the image
to show through.

GDevice record A data structure of
type GDevice that holds information about the
physical characteristics of a video device or
offscreen graphics world, including a pixel map
that describes the pixel depth for that video
device or offscreen graphics world, information
about whether the video device or offscreen
graphics world supports indexed or direct colors,
and—for indexed devices—specifications for the
colors that are currently available for the video
device or offscreen graphics world. System
software allocates and initializes one GDevice
record for each installed video device and stores
the record in the system’s device list.

G L O S S A R Y

GL-4

global coordinate system The coordinate
system that represents all potential QuickDraw
drawing space. The origin of the global
coordinate system—that is, the point (0,0)—is at
the upper-left corner of the main screen.
Compare local coordinate system.

glyph The distinct representation of a character
in a form that a screen or printer can display.
A glyph may represent one character (the
lowercase a), more than one character (the fi
ligature, two characters but one glyph), or a
nonprinting character (the space character).

graphics device Anything into which
QuickDraw can draw. There are three types of
graphics devices: video devices (such as plug-in
video cards and built-in video interfaces) that
control screens, offscreen graphics worlds (which
allow your application to build complex images
off the screen before displaying them), and
printing graphics ports. For a video device or an
offscreen graphics world, Color QuickDraw
stores state information in a GDevice record.

graphics pen A metaphorical device for
performing drawing operations onscreen. Your
application can set this pen to different sizes,
patterns, and colors.

graphics port A drawing environment, defined
by a GrafPort record (basic graphics port) or
CGrafPort record (color graphics port), that
contains all the information QuickDraw needs to
transmit drawing operations from bits in
memory to onscreen pixels.

gray region The region that represents all
available desktop area—that is, a collection of
rounded rectangles representing the display
areas of all screens available to a computer.

hairlines Printed lines that are less than 1/72 of
an inch wide.

highlighting A QuickDraw capability that
displays background bits or pixels in a distinctive
visual way, such as inverting them.

high-quality printing Printing that produces
documents using all of the fonts and formatting
that the user has included.

histogram A color bank composed of
frequency counts of each color within a picture,
pixel map, or bitmap at a particular resolution.

hot spot The portion of the cursor that must be
positioned over a screen object before mouse
clicks can have an effect on that object.
Designated as a point (not a bit) in the image of
the cursor. The mouse driver uses the hot spot to
align the cursor with the mouse location.

idle procedure A routine that handles events
and updates information while system software
completes a task. For example, applications
displaying a print status dialog box while
a printer driver directs output to a printer
typically use an idle procedure that checks for
user-generated events indicating that the user
wishes to cancel the printing.

imaging The construction and display of
graphical information. Such graphical
information can consist of shapes, pictures, and
text and can be displayed on output devices such
as screens and printers.

indexed colors A set of up to 256 colors
contained in a video data interface called a color
lookup table (or, more commonly, a CLUT).
Video devices and offscreen graphics worlds that
use indexed colors support pixels of 1-bit, 2-bit,
4-bit, or 8-bit depths.

indexed device A plug-in video card, a video
interface built into a Macintosh computer, or an
offscreen graphics world that supports up to 256
colors in a color lookup table. Indexed devices
support pixels of 1-bit, 2-bit, 4-bit, or 8-bit depths.
Compare direct device.

indexed pixel A pixel displayed on an indexed
device. Indexed pixels can have pixel values of 1,
2, 4, or 8 bits.

insertion point The position where text will be
inserted, usually marked by a blinking vertical
bar.

inverse table A special data structure arranged
by the Color Manager in such a manner that,
given an arbitrary RGB color, the Color Manager
can very rapidly look up its pixel value.

G L O S S A R Y

GL-5

invert To reverse the colors of all pixels within
a shape. On a black-and-white screen, this
changes all the black pixels in the shape to white
and all the white pixels to black. Inverting
operates on color pixels in color graphics ports,
but the results are predictable only with direct
pixels.

job dialog box A dialog box—usually
displayed by an application in response to the
user choosing the Print command—that solicits
printing information from the user, such as the
number of copies to print, the print quality, and
the range of pages to print.

line A graphic image defined by two points:
the current location of the graphics pen and its
destination. The graphics pen, which can draw
with different patterns, hangs below and to the
right of the defining points.

line layout error The difference between the
width of the printed line and the width of the
screen line after the printer driver has performed
font substitution. Certain printer drivers
compensate for this by distributing the error to
major glyphs and minor glyphs.

local coordinate system The coordinate system
defined by the port rectangle of a graphics port.
When the Window Manager creates a window, it
places the origin of the local coordinate system at
the upper-left corner of the window’s port
rectangle. Compare global coordinate system.

luminance The intensity of light in a color.
Color QuickDraw uses a color’s luminance to
convert the color to an appropriate grayscale
color.

main screen In a drawing environment with
multiple screens, the screen with the menu bar.
QuickDraw maps the (0,0) origin point of the
coordinate plane to the main screen’s upper-left
corner, and other screens are positioned adjacent
to it. Compare startup screen.

major error The amount of line layout error
that a printer driver applies to the space glyph.

major glyph On a printed page, a space glyph,
to which printer drivers apply most of the line
layout error. Compare minor glyph.

minor error The amount of line layout error
that a printer driver applies to nonspace glyphs.

minor glyph On a printed page, a nonspace
glyph, to which printer drivers apply the line
layout error that remains after applying most of
the error to major glyphs.

offscreen graphics world A sophisticated
environment for preparing complex color or
black-and-white images before displaying them
on the screen. An offscreen graphics world is
defined in a private data structure referred to by
a pointer of type GWorldPtr.

opcode A value passed to a routine, such as the
DrawPicture or PrGeneral procedure, that
determines how the routine should operate.

oval A circular or elliptical shape defined by
the bounding rectangle that encloses it. The oval
is completely enclosed within the infinitely thin
lines of its bounding rectangle, and never
includes any pixels lying outside the bounding
rectangle. If the bounding rectangle is square
(that is, has equal width and height), then the
oval is a circle.

page rectangle The rectangle marking the
boundaries of the printable area on a page. The
upper-left corner of the page rectangle always
has the coordinates (0,0). The coordinates of the
lower-right corner give the maximum page
height and width attainable on the given printer;
these coordinates are specified by the units used
to express the resolution of the printing graphics
port. For example, the lower-right corner of a
page rectangle used by the PostScript
LaserWriter printer driver for an 8.5-by-11-inch
U.S. letter page is (730,552) at 72 dpi.

G L O S S A R Y

GL-6

paint To draw the outline of a shape and its
interior with the pattern of the graphics pen,
using the pattern mode of the graphics pen.

Palette Manager A set of system software
routines that allows your application to specify
the colors that it needs on a window-by-window
basis. The Palette Manager makes the colors
available (within application-determined ranges)
in a graceful manner.

paper rectangle The rectangle that describes
the size of a piece of paper on which a page is
printed. This rectangle is defined in the same
coordinate system as the page rectangle. Thus,
the upper-left coordinates of the paper rectangle
are typically negative and its lower-right
coordinates are greater than those of the page
rectangle.

pattern An image that can be repeated
indefinitely to form a repeating design when
drawing lines and shapes or when filling areas
on the screen. See also bit pattern, pixel pattern.

pattern mode A specification of which Boolean
operation QuickDraw should perform when
drawing patterns into bitmaps or pixel maps. See
also source mode.

pen See graphics pen.

picture A saved sequence of QuickDraw
drawing commands (and, optionally, picture
comments) that your application can play back
later with the DrawPicture procedure; also, the
image resulting from these commands.

picture comment A command or data used for
special processing by output devices, such as
printer drivers. Picture comments are usually
stored in the definition of a picture or are
included in the code an application sends to a
printer driver.

picture opcode A number that the
DrawPicture procedure uses to determine what
object to draw or what mode to change for
subsequent drawing.

Picture Utilities A set of system software
routines for extracting information—such as
pixel depth and colors—in pictures and pixel
maps.

pixel Short for picture element, the smallest dot
that QuickDraw can draw; also, the visual
representation of that dot on the screen. On a
black-and-white screen, each single-color
phosphor dot is a pixel that represents a bit in
memory—white if the bit is 0, black if it’s 1. On a
color screen, three phosphor dots (red, green, and
blue) compose each color pixel, which represents
up to 48 bits in memory. On a grayscale screen, a
white phosphor dot whose intensity can vary is a
pixel that usually represents 1, 2, 4, or 8 bits in
memory.

pixel depth The number of bits per pixel in a
pixel image. Pixels on indexed devices can be 1,
2, 4, or 8 bits deep. (A pixel image that is 1 bit
deep is equivalent to a bit image.) Pixels on direct
devices can be 16 or 32 bits deep.

pixel image A collection of pixels in memory
that forms a grid—a rectangular pattern of pixels.
The pixel image is pointed to in the baseAddr
field of a PixMap record. Compare bit image.

pixel map A data structure of type PixMap that
represents the positions and states of a
corresponding set of color pixels. A handle to a
pixel map is contained within a color graphics
port. See also bitmap.

pixel pattern An image that can be repeated
indefinitely to form a repeating design (such as
stripes) or tone (such as gray) when drawing
lines and shapes or when filling areas on the
screen. A pixel pattern can use color at any pixel
depth and can be of any width and height that’s
a power of 2. See also bit pattern.

pixel value A number used by system software
and a graphics device to represent a color. The
translation from the color that an application
specifies in an RGBColor record to a pixel value
is performed at the time the application draws
the color. The process differs for indexed and
direct devices.

point The intersection of a horizontal grid line
and vertical grid line on the coordinate plane,
defined by a horizontal and a vertical coordinate.

G L O S S A R Y

GL-7

polygon A graphic shape defined by any
sequence of points representing the polygon’s
vertices, connected by straight lines from one
point to the next.

port rectangle An entry in a graphics port that
represents the area of the graphics port available
for drawing—ordinarily, the content region of a
window.

PostScript printer driver A printer driver that
converts each QuickDraw drawing operation
into the equivalent PostScript drawing operation.
The driver sends the converted drawing
operations to the printer—typically, a laser
printer. The printer interprets the PostScript
drawing operations and renders the image,
thereby off-loading image processing from the
computer.

printer driver A device driver that translates
QuickDraw drawing routines and sends the
translated instructions and data to the current
printer.

printer resource file A file containing all the
resources needed to run the Printing Manager
with a particular printer.

printing graphics port The printing
environment defined by a TPrPort record,
which contains a QuickDraw graphics port
(either a GrafPort or CGrafPort record) plus
additional information used by the printer
driver and system software. An application
prints text and graphics by drawing into
a printing graphics port using QuickDraw
drawing routines, just as if drawing on the screen.

printing loop Application-supplied code that
handles printing needs, such as presenting the
job dialog box and determining the range of
pages to be printed.

Printing Manager A collection of system
software routines that your application can use to
print from the Macintosh computer to any type
of connected printer.

QuickDraw A collection of system software
routines that performs graphics operations on the
user’s screen. See also basic QuickDraw and
Color QuickDraw.

QuickDraw GX A collection of graphics,
typography, and printing routines that provide
provides applications with sophisticated color
publishing capabilities. QuickDraw GX
augments the capabilities of QuickDraw.

QuickDraw printer driver A printer driver that
renders images on the Macintosh computer and
then sends the rendered images in the form of
bitmaps or pixel maps to the printer, which
might be a dot-matrix printer, an ink jet printer, a
laser printer, or a plotter.

rectangle (1) A mathematical entity defined
either by its four boundaries (upper, left, lower,
and right) or by two points (the upper-left and
lower-right corners). Rectangles are used to
define active areas on the screen, to assign
coordinate systems to graphical entities, and to
specify the locations and sizes for various
graphical operations. (2) A rectangular shape
drawn onscreen with a QuickDraw procedure
such as FrameRect or PaintRect.

region An arbitrary area or set of areas on the
QuickDraw coordinate plane. The outline of a
region should be one or more closed loops.

resolution The degree of detail at which a
device such as a printer or a screen can display
an image. Resolution is usually specified in dots
per inch, or dpi, in the x and y directions. The
higher the value, the finer the detail of the image.

resource fork The part of a file that contains the
files’ resources, which contain data accessed
using the Resource Manager. This data usually
corresponds to data—such as menu, icon, and
control definitions—created by the developer, but
it may also include data created by the user while
the application is running. Compare data fork.

RGBColor record A data structure of type
RGBColor used to specify a color by its red,
green, and blue components, with each
component defined as a 16-bit integer. Color
QuickDraw compares such a 48-bit value with
the colors actually available on a screen’s video
device at execution time and chooses the closest
match.

G L O S S A R Y

GL-8

RGB color value A value that indicates the red,
green, and blue components of a color. An RGB
color value is specified in an RGBColor record.

rounded rectangle A rectangle with rounded
corners. The figure is defined by a bounding
rectangle and the width and height of the ovals
forming the corners. The corner width and corner
height are limited to the width and height of the
bounding rectangle itself; if they are set larger,
the rounded rectangle becomes an oval.

scrap The storage area maintained by the Scrap
Manager to hold the last data cut or copied by
the user. The scrap can reside either in memory
or on disk.

source mode A specification of which Boolean
operation QuickDraw should perform when
copying images or text into bitmaps or pixel
maps. See also pattern mode.

spool file A temporary disk file used by an
application to store data; generally used to save
memory.

spool printing See deferred printing.

standard state The size and location that an
application deems the most convenient for a
window.

startup screen The screen on which the “happy
Macintosh” icon appears. By default, the menu
bar appears on the startup screen. Compare main
screen.

style dialog box A dialog box—usually
displayed by an application in response to the
user choosing the Page Setup command—
allowing the user to specify printing options
(such as the paper size and the printing
orientation) that an application needs to format
the document.

TPrint record A data structure of
type TPrint. A TPrint record contains fields
that specify the Printing Manager version,
information about the printer (such as its
resolution in dpi), and the dimensions of the
paper rectangle.

TPrJob record A data structure of
type TPrJob. The TPrJob job record contains
information about a particular print job; for

instance, the first and last pages to be printed, the
number of copies, and the printing method
(either draft-quality or deferred).

transfer mode A specification, either Boolean
or arithmetic, of how QuickDraw should draw or
copy images into a bitmap or pixel map. See
arithmetic transfer mode and Boolean transfer
mode.

user state The size and location that the user
has established for a window.

variable resolution Any printing resolution
within a range bounded by maximum and
minimum values. Compare discrete resolution.

video device A piece of hardware, such as a
plug-in video card or a built-in video interface,
that controls a screen.

visible region The part of a window’s graphics
port that’s actually visible on the screen—that is,
the part that’s not covered by other windows.

wedge A pie-shaped segment of an oval,
bounded by a pair of radii joining at the oval’s
center.

window origin The upper-left corner of
a window. Usually specified with a vertical
coordinate of 0 and a horizontal coordinate of 0,
the window origin is the upper-left corner of the
port rectangle of a graphics port and is expressed
in coordinates local to the graphics port.

IN-1

Index

Numerals

0..255 data type A-4
–128..127 data type A-4

A

Acur data type 8-20 to 8-21
'acur' resource type 8-13, 8-14, 8-36 to 8-37
addMax arithmetic transfer mode 4-39, 4-40
addOver arithmetic transfer mode 4-38, 4-40
addPin arithmetic transfer mode 4-38, 4-40, 4-78
AddPt procedure 2-52
adMin arithmetic transfer mode 4-39, 4-40
alignPix flag 6-13, 6-15, 6-25
allDevices flag 5-30
allInit flag 5-17, 5-23, 5-31, 5-36
AllocCursor procedure 8-27
AllowPurgePixels procedure 6-34 to 6-35
angles, calculating 3-57
animated cursor resources 8-13, 8-14, 8-36 to 8-37
animated cursors

creating 8-13 to 8-15, 8-31 to 8-33
data type for 8-20 to 8-21
resource type for 8-36 to 8-37
user interface guidelines for 8-5, 8-13, 8-15

AppendDITL procedure 9-38
Apple events 9-25 to 9-26
arcs. See also wedges

defined 1-14
drawing 3-26, 3-71 to 3-77
framing 3-72 to 3-73
low-level routine for drawing 3-134

arithmetic transfer modes 4-38 to 4-41, 4-78
arrow cursor 8-8, 8-9 to 8-12
arrow global variable 2-36, 8-18
arrow region 8-9 to 8-12

B

BackColor procedure 3-14, 3-124
background colors 3-124, 4-72 to 4-73, 4-80
background patterns

in basic graphics ports 2-32
changing 3-48 to 3-49, 4-68 to 4-69

in color graphics ports 4-51
defined 3-7

background printing 9-9
BackPat procedure 3-48 to 3-49
BackPixPat procedure 4-68 to 4-69
basic graphics ports. See also color graphics ports;

offscreen graphics worlds; printing graphics
ports

bitmaps in 2-32
bit patterns in 2-13, 2-32
boundary rectangles in 2-32
clipping regions 2-12 to 2-13, 2-32, 2-47 to 2-49
closing 2-38, 2-40 to 2-41
color pictures in 7-6 to 7-7
colors in 2-14, 2-35, 3-14 to 3-15, 3-122 to 3-125
compared with color graphics ports 4-5 to 4-9
copying images between 3-32 to 3-35, 3-112 to 3-122
copying images from offscreen graphics worlds 6-9

to 6-11
creating 2-16 to 2-17, 2-37 to 2-40
data type for 2-30 to 2-35
defined 1-4
drawing areas in 2-11 to 2-13
getting 2-18, 2-41 to 2-42, 6-8, 6-28
opening 2-38 to 2-39
pattern stretching in 2-35
pen locations in 2-33
pen modes in 2-33
pen patterns in 2-33
pen sizes in 2-33
pen visibility in 2-33
port rectangles in 2-32
restoring 2-18, 2-42, 6-8, 6-29
saving 2-18, 2-41 to 2-42, 6-8, 6-28
setting 2-18, 2-42, 6-8, 6-29
text in 2-33 to 2-34
visible regions 2-32

basic QuickDraw
application-defined routines for 5-35 to 5-37
bit patterns in 1-11
customizations of 3-35 to 3-36, 3-129
data structures in 2-26 to 2-35, 3-36 to 3-40, 5-15 to

5-18, 6-12 to 6-15, 7-27 to 7-29, 8-16 to 8-18, 8-20
to 8-21

drawing with 1-10 to 1-17, 3-3 to 3-141
graphics ports in 1-5
initializing 2-16, 2-36 to 2-37
printing with. See Printing Manager

I N D E X

IN-2

basic QuickDraw (continued)
resources in 3-140 to 3-141, 5-37, 7-67 to 7-68, 8-33 to

8-34, 8-36 to 8-37
routines in 2-36 to 2-54, 3-41 to 3-139, 5-19 to 5-25,

6-16 to 6-39, 7-36 to 7-46, 8-22, 8-24 to 8-31, 8-32
to 8-33

testing for availability 2-15
Bézier splines B-25
BitClr procedure 4-42
bit images

in bitmaps 2-9 to 2-11, 2-29
as pixel images in offscreen graphics worlds 6-9

BitMap data type 2-29 to 2-30. See also bitmaps
bitmaps

in basic graphics ports 2-9 to 2-11, 2-32
bit images in 2-9 to 2-11, 2-29
boundary rectangles for 2-10 to 2-11, 2-30
copying images between 3-32 to 3-35, 3-112 to 3-122
data type for 2-29 to 2-30
defined 1-5
fill operations in 3-108 to 3-112
local coordinate systems for 2-11
low-level routine for copying images between 3-136
as pixel maps in offscreen graphics worlds 6-3, 6-8

to 6-9
pixels in 2-11

BitMapToRegion function 2-49 to 2-50
bit patterns

background 3-6, 3-48 to 3-49
in basic graphics ports 2-13, 2-32
in color graphics ports 4-23 to 4-24, 4-58 to 4-59,

4-68, 4-69, 4-13
data type for 3-40
defined 1-11
filling with 3-6
framing and painting with 3-6
of graphics pens in basic graphics ports 2-33
predefined 3-6 to 3-8
resources for 3-140 to 3-141
routines for retrieving 3-126 to 3-128

Bits16 data type 8-16
BitsRect opcode A-11, A-21
BitsRgn opcode A-11, A-21
BkColor opcode A-6, A-18
BkPat opcode A-5, A-18
BkPixPat opcode A-6
black-and-white QuickDraw. See basic QuickDraw
black global variable 2-36, 3-7
blend arithmetic transfer mode 4-38, 4-40, 4-78
Boolean transfer modes 3-8 to 3-11, 4-32 to 4-38
boundary rectangles

in basic graphics ports 2-32
in bitmaps 2-10 to 2-11, 2-30
defined 1-7

bounding rectangles 3-11
burstDevice flag 5-17, 5-23, 5-31, 5-36

C

CalcCMask procedure 4-83 to 4-84
CalcMask procedure 3-111 to 3-112
CCrsr data type 8-18 to 8-20
CGrafPort data type 4-48 to 4-54. See also color

graphics ports
CGrafPort records

background pattern for 4-51
clipping regions 2-12 to 2-13, 2-47 to 2-49, 4-51
closing 4-67
compared with GrafPort records 4-8 to 4-9
copying images between 3-112 to 3-122
copying images from offscreen graphics worlds 6-9

to 6-11
creating 4-20 to 4-21, 4-63 to 4-66
disposing of 4-21, 4-63, 4-67
getting 2-18, 2-41 to 2-42, 6-8, 6-28
opening 4-63 to 4-66
pattern stretching in 4-53
pen locations in 4-52
pen modes in 4-52
pen patterns in 4-52
pen sizes in 4-52
pen visibility in 4-52
pixel maps in 4-50
port rectangles in 4-51
in printing graphics ports 9-51
restoring 2-18, 2-42, 6-8, 6-29
saving 2-18, 2-41 to 2-42, 6-8, 6-28
setting 2-18, 2-42, 6-8, 6-29
text in 4-53
visible regions 4-51

ChExtra opcode A-6
'cicn' resource type 4-105 to 4-106
classic QuickDraw. See basic QuickDraw
ClientLineLayout picture comment B-5, B-41
Clip opcode A-5, A-18
clipping regions 2-12 to 2-13, 2-32, 2-47 to 2-49, 4-51
clipPix flag 6-14, 6-15, 6-24, 6-25
ClipRect procedure 2-49, 3-29, 7-12
CloseCPort procedure 4-67
ClosePicture procedure 7-11, 7-42
ClosePoly procedure 3-79
ClosePort procedure 2-40 to 2-41
CloseRgn procedure 3-28, 3-89
CloseWindow procedure 7-20
CLUT. See color lookup tables
'clut' resource type 4-104 to 4-105
CMBeginProfile picture comment B-7

I N D E X

IN-3

CMDisableMatching picture comment B-7
CMEnableMatching picture comment B-7
CMEndProfile picture comment B-7
'cmpt' resource type 7-68
color banks 7-33, 7-61 to 7-66
ColorBit procedure 3-124 to 3-125
color cursor resources 8-34 to 8-36
color cursors

data structure for 8-18 to 8-20
displaying 8-25 to 8-27
resource for 8-34 to 8-36
user interface guidelines for 8-5

color graphics ports. See also basic graphics ports;
offscreen graphics worlds; printing graphics
ports

background pattern for 4-51
clipping regions 2-12 to 2-13, 2-47 to 2-49, 4-51
closing 4-67
compared with basic graphic ports 4-5 to 4-9
copying images between 3-112 to 3-122, 4-26 to 4-32
copying images from offscreen graphics worlds 6-9

to 6-11
creating 4-20 to 4-21, 4-63 to 4-66
data type for 4-48 to 4-54
defined 1-5
disposing of 4-21, 4-63, 4-67
getting 2-18, 2-41 to 2-42, 6-8, 6-28
opening 4-63 to 4-66
pattern stretching in 4-53
pen locations in 4-52
pen modes in 4-52
pen patterns in 4-52
pen sizes in 4-52
pen visibility in 4-52
pixel maps in 4-50
port rectangles in 4-51
restoring 2-18, 2-42, 6-8, 6-29
saving 2-18, 2-41 to 2-42, 6-8, 6-28
setting 2-18, 2-42, 6-8, 6-29
text in 4-53
visible regions 4-51

color icon resources 4-105 to 4-106
color lookup tables (CLUTs)

and the Color Manager 1-24
and the Palette Manager 1-20
in video devices 1-19 to 1-20

Color Manager 1-29
direct colors, handling 1-25
indexed colors, handling 1-24

Color Picker Utilities 1-29
color-picking method resources 7-68
Color QuickDraw. See also global coordinate systems;

local coordinate systems; shapes
application-defined routines for 4-101 to 4-102, 5-35

to 5-37

checking for, when zooming windows 5-10
customizations of 3-129, 4-96 to 4-97
data structures in 4-45 to 4-62, 5-15 to 5-18, 6-12 to

6-15, 7-27 to 7-29, 8-18 to 8-20
direct colors, handling 1-25, 4-15 to 4-17
drawing with 1-10 to 1-17, 4-21 to 4-44, 4-70 to 4-79
graphics ports in 1-5
indexed colors, handling 1-24, 4-13 to 4-14
initializing 4-19
multiple graphics device support in 1-21 to 1-23
pixel patterns in 1-11
printing with. See Printing Manager
resources in 4-102 to 4-106, 5-37, 7-67 to 7-68, 8-34 to

8-36
routines in 4-63 to 4-97, 5-19 to 5-25, 6-16 to 6-39,

8-25 to 8-27
testing for availability 4-18
32-bit 1-4
user interface guidelines for 4-44
versions of 1-4

colors
application-defined picking method 7-61 to 7-67
in basic graphics ports 2-14, 2-35, 3-14 to 3-15
in color graphics ports 4-67 to 4-105
determining 4-79 to 4-81, 7-26
on grayscale devices 4-17
intermediate 4-81

color search functions 4-101 to 4-102
ColorSpec data type 4-55 to 4-56
ColorSync Utilities 1-29
ColorTable data type 4-56 to 4-57. See also color tables
color table resources 4-104 to 4-105
color tables. See also color lookup tables

creating 4-92 to 4-93, 4-104 to 4-105
data type for 4-56 to 4-57
default 4-93
defined 4-11 to 4-12
disposing of 4-93
modifying 4-97 to 4-98
resource type for 4-104 to 4-105

CommentSpec data type 7-30
content areas of windows. See port rectangles
coordinate planes 1-6 to 1-10. See also global

coordinate systems; local coordinate systems
copies, to print 9-19
CopyBits procedure 3-32 to 3-34, 3-112 to 3-118, 4-26

to 4-28, 6-6, 6-9
CopyDeepMask procedure 3-120 to 3-122, 4-30 to 4-32,

6-10
CopyMask procedure 3-119 to 3-120, 4-28 to 4-30, 6-10

to 6-11
CopyPixMap procedure 4-86
CopyPixPat procedure 4-90
CopyRgn procedure 3-90 to 3-91, 8-11
CQDProcs data type 4-60 to 4-61

I N D E X

IN-4

crosshairs cursor 8-8 to 8-9
'crsr' resource type 8-34 to 8-36
cSpecArray data type 4-55 to 4-56
CTabChanged procedure 4-97 to 4-98
current device

defined 5-4
determining 5-26
setting 5-24

current printer
defined 9-3
device number of 9-48
feed type of 9-48

Cursor data type 8-16 to 8-18
cursor resources 8-13 to 8-14, 8-33 to 8-34
cursors

animating 8-13 to 8-15, 8-31 to 8-33
arrow 8-8, 8-9 to 8-12
changing 8-7 to 8-13, 8-26 to 8-27
color 8-18 to 8-20, 8-25 to 8-27, 8-34 to 8-36
crosshairs 8-8 to 8-9
data types for 8-16 to 8-21
defined 8-3 to 8-4
getting from resources 8-24, 8-26
hiding 8-28 to 8-29
hot spots for 8-19
I-beam 8-8 to 8-12
initializing 8-6 to 8-7, 8-21 to 8-23
obscuring 8-29
plus sign 8-8 to 8-9
resources for 8-33 to 8-37
setting the appearance of 8-7
shielding behind rectangles 8-29
showing, after hiding 8-30 to 8-31
user interface guidelines for 8-4 to 8-5
wristwatch 8-8 to 8-9

Cursors data type 8-20
Cursor Utilities 8-3 to 8-43

data structures in 8-16 to 8-21
resources for 8-33 to 8-37
routines in 8-21 to 8-33

'CURS' resource type 8-13 to 8-14, 8-33 to 8-34

D

DashedLine picture comment B-6, B-9, B-33 to B-35
dashed lines B-33 to B-35
DashedStop picture comment B-6, B-9, B-34
data forks 7-7
DCE (device control entry), for printer drivers 9-80 to

9-81
deferred printing 9-24, 9-71 to 9-72
DefHilite opcode A-7
DeltaPoint function 2-53

destination rectangles, for the DrawPicture
procedure 7-18 to 7-19

device control entry, for printer drivers 9-80 to 9-81
DeviceList global variable 5-4
device lists

defined 5-4
getting first device in 5-26 to 5-27

DeviceLoopFlags data type 5-18 to 5-19
DeviceLoop procedure 5-8 to 5-9, 5-29 to 5-30
DHDVText opcode A-7, A-19
DHText opcode A-7, A-19
dialog boxes, for printing. See also job dialog boxes;

print status dialog boxes; style dialog boxes
altering 9-35 to 9-38, 9-63 to 9-66, 9-86
data structure for 9-50 to 9-51
displaying 9-13 to 9-15, 9-61 to 9-64

dialog hooks 9-37, 9-38
Dialog Manager

and Printing Manager 9-5 to 9-8, 9-35 to 9-38
and QuickDraw 4-6

diameters of curvature 1-14
DiffRgn procedure 3-96, 8-11
DirectBitsRect opcode A-11
DirectBitsRgn opcode A-12
direct colors 1-19, 1-20, 1-25
direct devices

defined 4-5
pixel values for 4-15 to 4-17

discrete resolution 9-11, 9-30 to 9-32
DisposCCursor procedure. See DisposeCCursor

procedure
DisposCTable procedure. See DisposeCTable

procedure
DisposeCCursor procedure 8-27
DisposeCTable procedure 4-93
DisposeGDevice procedure 5-25
DisposeGWorld procedure 6-6, 6-26 to 6-27
DisposePictInfo function 7-60
DisposePixMap procedure 4-87
DisposePixPat procedure 4-25, 4-91
DisposeRgn procedure 3-28, 3-90
DisposeScreenBuffer procedure 6-27
DisposeWindow procedure 7-13, 7-20
DisposPictInfo function. See DisposePictInfo

function
DisposPixMap procedure. See DisposePixMap

procedure
DisposPixPat procedure. See DisposePixPat

procedure
ditherCopy mode 4-37
dithering 4-37 to 4-38
ditherPix flag 6-14, 6-15, 6-24, 6-25
dkGray global variable 2-36, 3-7 to 3-8
documents

names for, when printing 9-27

I N D E X

IN-5

printing 9-18 to 9-26, 9-66 to 9-72
dontMatchSeeds flag 5-30
draftBitsOp opcode 9-33 to 9-35, 9-52, 9-55
draft-quality printing 9-24, 9-55. See also enhanced

draft-quality printing
DrawPicture procedure 7-12, 7-18 to 7-19, 7-44 to 7-45
DVText opcode A-7, A-19

E

eight-color system 3-14 to 3-15, 3-122 to 3-125
EmptyRect function 3-58
EmptyRgn function 3-99
EndFormsPrinting picture comment B-7, B-41
EndofPicture opcode A-21
enhanced draft-quality printing 9-33 to 9-35, 9-55, 9-73
EqualPt function 2-54
EqualRect function 3-58
EqualRgn function 3-98
eraseArc opcode A-9, A-20
EraseArc procedure 3-76
eraseOval opcode A-9, A-20
EraseOval procedure 3-70
erasePoly opcode A-10, A-20
ErasePoly procedure 3-84
eraseRect opcode A-8, A-19
EraseRect procedure 3-61 to 3-62, 4-35, 5-10, 6-11
eraseRgn opcode A-10, A-21
EraseRgn procedure 3-102 to 3-103
EraseRoundRect procedure 3-66 to 3-67
eraseRRect opcode A-8, A-19
eraseSameArc opcode A-10, A-20
eraseSameOval opcode A-9, A-20
eraseSamePoly opcode A-10, A-21
eraseSameRect opcode A-8, A-19
eraseSameRgn opcode A-11, A-21
eraseSameRRect opcode A-8, A-19
erasing shapes 3-12
error handling

for Color QuickDraw routines 4-94 to 4-95
for printing 9-41 to 9-42, 9-73, 9-75 to 9-78

event filter functions 9-36, 9-38
ext32Device flag 5-17, 5-23, 5-31, 5-36
extended version 2 format 7-5 to 7-6, 7-37 to 7-39, A-3,

A-5 to A-14, A-23 to A-24

F

feed types 9-48
FgColor opcode A-6, A-18
File menu

Page Setup command 9-5 to 9-7
Print command 9-5 to 9-6, 9-7 to 9-8

fillArc opcode A-9, A-20
FillArc procedure 3-75
FillCArc procedure 4-76
FillCOval procedure 4-75
FillCPoly procedure 4-76 to 4-77
FillCRect procedure 4-25, 4-74
FillCRgn procedure 4-77
FillCRoundRect procedure 4-74 to 4-75
filling shapes 3-12, 3-108 to 3-112
fillOval opcode A-9, A-20
FillOval procedure 3-69 to 3-70
FillPat opcode A-6
fill patterns

in basic graphics ports 2-32
in color graphics ports 4-74 to 4-77

FillPixPat opcode A-6
fillPoly opcode A-10, A-20
FillPoly procedure 3-30, 3-83 to 3-84
fillRect opcode A-8, A-19
FillRect procedure 3-23 to 3-24, 3-60 to 3-61, 4-22
fillRgn opcode A-11, A-21
FillRgn procedure 3-28, 3-102
FillRoundRect procedure 3-65 to 3-66
fillRRect opcode A-8, A-19
fills

calculating black-and-white 3-108 to 3-112
calculating color 4-82 to 4-84

fillSameArc opcode A-10, A-20
fillSameOval opcode A-9, A-20
fillSamePoly opcode A-10, A-21
fillSameRect opcode A-8, A-19
fillSameRgn opcode A-11, A-21
fillSameRRect opcode A-8, A-20
FindControl function 2-19
Finder, printing from 9-25 to 9-26, 9-66
Fixed data type A-4
fontName opcode A-7
FontSpec data type 7-30 to 7-32
font substitution B-11 to B-14
ForeColor procedure 3-14, 3-123
foreground colors 3-123, 3-124 to 3-125, 4-21 to 4-23,

4-70 to 4-71, 4-79

I N D E X

IN-6

formats for pictures
extended version 2 7-5 to 7-6, 7-37 to 7-39, A-3, A-5

to A-14, A-23 to A-24
version 1 7-5 to 7-6, A-3 to A-4, A-5, A-18 to A-21,

A-25 to A-26
version 2 7-5 to 7-6, 7-39, A-3, A-5 to A-16, A-24 to

A-25
FormsPrinting picture comment B-7, B-41
FractEnable global variable B-15
frameArc opcode A-9, A-20
FrameArc procedure 3-26, 3-72 to 3-73
frameOval opcode A-9, A-20
FrameOval procedure 3-25, 3-68
framePoly opcode A-10, A-20
FramePoly procedure 3-81 to 3-82
frameRect opcode A-8, A-19
FrameRect procedure 3-22 to 3-23, 3-59
frameRgn opcode A-10, A-21
FrameRgn procedure 3-100 to 3-101
FrameRoundRect procedure 3-64
frameRRect opcode A-8, A-19
frameSameArc opcode A-10, A-20
frameSameOval opcode A-9, A-20
frameSamePoly opcode A-10, A-20
frameSameRect opcode A-8, A-19
frameSameRgn opcode A-11, A-21
frameSameRRect opcode A-8, A-19
framing shapes 3-12
FSpOpenDF function 7-14

G

gdDevType flag 5-17, 5-23, 5-31, 5-33, 5-34, 5-36
GDeviceChanged procedure 4-100
GDevice data type 5-15 to 5-18. See also graphics

devices
GDevice records. See also graphics devices

creating 5-20 to 5-23
disposing of 5-25
getting available 5-25 to 5-28
with greatest pixel depth 5-27 to 5-28
modifying 4-100
for multiple devices 1-21 to 1-23
setting attributes for 5-22 to 5-23
setting for current device 5-24

gestaltQuickDrawFeatures selector 4-19
gestaltQuickDrawVersion selector 4-18
GetBackColor procedure 4-80
GetCCursor function 8-26
GetClip procedure 2-47, 3-29
GetCPixel procedure 4-80 to 4-81
GetCTable function 4-92 to 4-93
GetCursor function 8-11, 8-24

GetDeviceList function 5-11, 5-26 to 5-27
GetForeColor procedure 4-79
GetGDevice function 5-26
GetGray function 4-81
GetGWorldDevice function 6-30
GetGWorldPixMap function 6-6, 6-31 to 6-32
GetGWorld procedure 6-6, 6-28
GetIndPattern procedure 3-127 to 3-128
GetMainDevice function 5-11, 5-27
GetMaxDevice function 5-27 to 5-28
GetNewCWindow function 2-16 to 2-17, 4-20
GetNewWindow function 2-16 to 2-17, 4-20
GetNextDevice function 5-11, 5-28
GetPattern function 3-126 to 3-127
GetPen procedure 3-43
GetPenState procedure 3-43
GetPictInfo function 7-25, 7-47 to 7-50
GetPicture function 7-46
GetPixBaseAddr function 6-38 to 6-39
GetPixel function 2-54 to 2-55
GetPixelsState function 6-36 to 6-37
GetPixMapInfo function 7-50 to 7-52
GetPixPat function 4-25, 4-88
GetPort procedure 2-18, 2-41 to 2-42
getRotnOp opcode 9-32 to 9-33, 9-52, 9-56
getRslDataOp opcode 9-30 to 9-32, 9-53 to 9-54
GetWindowPic function 7-13
global coordinate systems

converting to local coordinate systems 2-19, 2-51
defined 1-6 to 1-10
across multiple screens 1-21

GlobalToLocal procedure 2-19, 2-51
global variables
arrow 2-36, 8-18
black 2-36, 3-7
DeviceList 5-4
dkGray 2-36, 3-7 to 3-8
FractEnable B-15
gray 2-36, 3-7
HiliteRGB 4-42
ltGray 2-36, 3-7
MainDevice 5-27
PrintErr 9-78
QDColors 4-71
randSeed 2-36
screenBits 2-36
ScrHRes 5-32
ScrVRes 5-32
TheGDevice 5-4
thePort 2-36
TopMapHdl 9-39
white 2-36, 3-7

glyphs B-12
GrafPort data type 2-30 to 2-35. See also basic

graphics ports

I N D E X

IN-7

GrafPort records
bitmaps in 2-32
bit patterns in 2-13, 2-32
boundary rectangles in 2-32
clipping regions 2-12 to 2-13, 2-32, 2-47 to 2-49
closing 2-38, 2-40 to 2-41
and color pictures 7-6 to 7-7
colors in 2-14, 2-35, 3-14 to 3-15, 3-122 to 3-125
compared with CGrafPort records 4-8 to 4-9
copying images between 3-32 to 3-35, 3-112 to 3-122
copying images from offscreen graphics worlds 6-9

to 6-11
creating 2-16 to 2-17, 2-37 to 2-40
drawing areas in 2-11 to 2-13
getting 2-18, 2-41 to 2-42, 6-8, 6-28
opening 2-38 to 2-39
pattern stretching in 2-35
pen locations in 2-33
pen modes in 2-33
pen patterns in 2-33
pen sizes in 2-33
pen visibility in 2-33
port rectangles in 2-32
in printing graphics ports 9-51
restoring 2-18, 2-42, 6-8, 6-29
saving 2-18, 2-41 to 2-42, 6-8, 6-28
setting 2-18, 2-42, 6-8, 6-29
text in 2-33 to 2-34
visible regions 2-32

GrafVars data type 4-62
GrafVerb data type 3-132
graphics device records. See GDevice records
graphics devices 5-3 to 5-44. See also GDevice records

application-defined routine for 5-35 to 5-37
data structures in 5-15 to 5-18
defined 5-3
determining characteristics of 5-8 to 5-9, 5-29 to 5-32
getting handles to 5-25 to 5-28
with greatest pixel depth 5-27 to 5-28
initialization 1-22 to 1-23
optimizing images for 5-8 to 5-13, 5-29 to 5-30, 5-35

to 5-37
resource for 5-37
routines for 5-19 to 5-25
testing for availability 5-8

graphics pens
attributes of 1-11, 2-33, 3-4 to 3-5, 4-52
bit patterns for 3-20 to 3-21, 3-43, 3-48 to 3-49
colors for 3-123, 4-21 to 4-26, 4-67 to 4-68, 4-70 to 4-71
defined 1-5
drawing with 1-10 to 1-17
in graphics ports 2-13
initial values 3-48
invisible state 3-42
locations of 3-43

moving 3-17, 3-18 to 3-19, 3-50 to 3-51
pattern modes 3-43 to 3-48
pixel patterns for 4-67 to 4-68
routines for managing 3-41 to 3-48
sizes of 3-19 to 3-20, 3-43 to 3-44, 3-48
visible state 3-42

graphics port records. See CGrafPort records;
GrafPort records; TPrPort records

graphics ports. See also basic graphics ports; color
graphics ports; offscreen graphics worlds;
printing graphics ports

background patterns in 2-32
clipping regions 2-12 to 2-13, 2-47 to 2-49
copying images between 3-32 to 3-35, 3-112 to 3-122
creating 1-7 to 1-8
data types for 2-30 to 2-35, 4-48 to 4-54, 9-51 to 9-52
defined 1-4
drawing areas in 2-11 to 2-13
fill patterns in 2-32
getting 2-18, 2-41 to 2-42
graphics pens in 2-13
local coordinate systems in 2-13
modifying 4-99 to 4-100
patterns in 2-13
port rectangles in 2-11
printing in 9-4 to 9-5, 9-15 to 9-35, 9-66 to 9-74, B-3

to B-42
restoring 2-18, 2-42, 6-8, 6-27 to 6-29
saving 2-18, 2-41 to 2-42, 6-8, 6-27 to 6-29
setting 2-18, 2-42, 6-8, 6-27 to 6-29
text in 2-13
visible regions 2-11
as windows 1-7 to 1-8

gray global variable 2-36, 3-7
grayscale devices, colors on 4-17
gwFlagErr flag 6-14
GWorld. See offscreen graphics worlds
GWorldFlags data type 6-13 to 6-15
GWorldPtr data type 6-12

H

hairlines B-35 to B-37
HasDepth function 5-13, 5-33 to 5-34
header information A-3
HeaderOp opcode A-3, A-13
Hide_Cursor procedure 8-28
HideCursor procedure 8-28
HidePen procedure 3-42
highlighting 4-41 to 4-44, 4-78 to 4-79
HiliteColor opcode A-7
HiliteColor procedure 4-78 to 4-79
hilite mode 4-44

I N D E X

IN-8

HiliteMode opcode A-7
HiliteRGB global variable 4-42
histograms 7-61, 7-63 to 7-64
hot spots 8-4, 8-19

I

I-beam cursor 8-9 to 8-12
I-beam region 8-9 to 8-12
idle procedures 9-13 to 9-15, 9-21, 9-38 to 9-41, 9-85
images

copying 3-112 to 3-122, 4-26 to 4-32, 6-9 to 6-11
scrolling 2-20 to 2-26, 2-43 to 2-44

ImageWriter LQ printers B-7
imaging, defined 1-3
indexed colors 1-19 to 1-20, 1-24 to 1-25
indexed devices

defined 4-5
pixel values for 4-13 to 4-14

InitCPort procedure 4-66
InitCursorCtl procedure 8-7, 8-22 to 8-23
InitCursor procedure 8-7, 8-22
InitGDevice procedure 5-21 to 5-22
InitGraf procedure 2-36 to 2-37
initialization, of graphics system 1-22 to 1-23
InitPort procedure 2-39 to 2-40
InsetRect procedure 3-54
InsetRgn procedure 3-93 to 3-94
Integer data type A-4
inverse tables, defined 5-5
invertArc opcode A-9, A-20
InvertArc procedure 3-77
inverting shapes 3-13
invertOval opcode A-9, A-20
InvertOval procedure 3-71
invertPoly opcode A-10, A-20
InvertPoly procedure 3-85
invertRect opcode A-8, A-19
InvertRect procedure 3-62
invertRgn opcode A-10, A-21
InvertRgn procedure 3-103 to 3-104
InvertRoundRect procedure 3-67 to 3-68
invertRRect opcode A-8, A-19
invertSameArc opcode A-10, A-20
invertSameOval opcode A-9, A-20
invertSamePoly opcode A-10, A-21
invertSameRect opcode A-8, A-19
invertSameRgn opcode A-11, A-21
invertSameRRect opcode A-8, A-20

J

job dialog boxes
altering 9-35 to 9-38, 9-63 to 9-64, 9-65, 9-86
defined 9-6
displaying 9-62 to 9-63
for LaserWriter printers 9-8
for multiple documents 9-26, 9-66
for StyleWriter printers 9-7 to 9-8

K

keepLocal flag 6-13, 6-14, 6-18, 6-20, 6-24
KillPicture procedure 7-13, 7-42 to 7-43
KillPoly procedure 3-30, 3-80 to 3-81

L

landscape printing 9-32 to 9-33, 9-34, 9-56, 9-73
LaserWriter printers 9-7, 9-76, B-7
LaserWriter SC printers B-7
LineFrom opcode A-7, A-19
lineJustify opcode A-7
line layout, disabling and enabling B-11 to B-17
line layout error B-12 to B-16
LineLayoutOff picture comment B-5, B-15 to B-16,

B-17
LineLayoutOn picture comment B-5, B-15, B-17
Line opcode A-7, A-19
Line procedure 3-18 to 3-19, 3-51 to 3-52
lines

defined 1-12
defining 3-11 to 3-12
drawing 3-17 to 3-21, 3-49 to 3-52
low-level routine for drawing 3-132
printing, with picture comments B-33 to B-37

LineTo procedure 3-17 to 3-18, 3-51
local coordinate systems

for bitmaps 2-11
converting to global coordinate systems 2-19, 2-52
defined 1-7 to 1-10
in graphics ports 2-13

LocalToGlobal procedure 2-52
LockPixels function 6-6, 6-32 to 6-33
LongComment opcode A-12, A-21
Long data type A-4
LongText opcode A-7, A-19
ltGray global variable 2-36, 3-7
luminance 4-17

I N D E X

IN-9

M

magic pen B-8. See also pattern modes
MainDevice global variable 5-27
main screen

defined 1-21
determining 5-27

mainScreen flag 5-17, 5-23, 5-31, 5-36
major error B-13 to B-14
major glyphs B-12 to B-14
MakeRGBPat procedure 4-90 to 4-91
mapPix flag 6-13, 6-15, 6-25
MapPoly procedure 3-108
MapPt procedure 3-106
MapRect procedure 3-106 to 3-107
MapRgn procedure 3-107
MatchRec data type 4-57
minor error B-13 to B-14
minor glyphs B-12 to B-14
–128..127 data type A-4
Mode data type A-4
mouse region 8-9 to 8-12
MovePortTo procedure 2-46 to 2-47
Move procedure 3-18 to 3-19, 3-50 to 3-51
MoveTo procedure 3-17 to 3-18, 3-50
multiple graphics devices 1-21 to 1-23
MyCalcColorTable function 7-65 to 7-66
MyColorSearch function 4-101 to 4-102
MyDisposeColorPickMethod function 7-67
MyDoPrintIdle procedure 9-85
MyDrawingProc procedure 5-36 to 5-37
MyInitPickMethod function 7-62 to 7-64
MyPrDialogAppend function 9-86
MyRecordColors function 7-64 to 7-65

N

newDepth flag 6-13, 6-15, 6-25
NewGDevice function 5-20 to 5-21
NewGWorld function 6-5 to 6-7, 6-16 to 6-21
NewPictInfo function 7-53 to 7-55
NewPixMap function 4-85 to 4-86
NewPixPat function 4-88 to 4-89
NewRgn function 3-28, 3-87
newRowBytes flag 6-13, 6-15, 6-25
NewScreenBuffer function 6-21 to 6-22
NewTempScreenBuffer function 6-22 to 6-23
noDraftBitsOp opcode 9-52, 9-55
noDriver flag 5-17, 5-23, 5-31, 5-36
noNewDevice flag 6-13, 6-14, 6-18, 6-20, 6-30
NOP opcode A-5, A-18
NoPurgePixels procedure 6-35
notPatBic pattern mode 3-9 to 3-10, 3-45

notPatCopy pattern mode 3-9 to 3-10, 3-45
notPatOr pattern mode 3-9 to 3-10, 3-45
notPatXor pattern mode 3-9 to 3-10, 3-45
notSrcBic source mode 3-9 to 3-10, 3-114, 3-116
notSrcCopy source mode 3-9 to 3-10, 3-114, 3-115,

4-33, 4-34
notSrcOr source mode 3-9 to 3-10, 3-114, 3-115, 4-33,

4-34
notSrcXor source mode 3-9 to 3-10, 3-114, 3-116, 4-33

O

ObscureCursor procedure 8-29
offscreen graphics worlds 6-3 to 6-46

copying images from 6-9 to 6-11
creating 6-5 to 6-7, 6-16 to 6-23
data structures in 6-12 to 6-15
defined 6-3
disposing of 6-26 to 6-27
drawing into 6-8 to 6-9
restoring 6-8, 6-27 to 6-29
routines for 6-16 to 6-39
saving 6-8, 6-27 to 6-29
setting 6-8, 6-27 to 6-29
testing for availability 6-5
updating 6-9, 6-23 to 6-26

OffsetPoly procedure 3-80
OffsetRect procedure 3-53 to 3-54
OffsetRgn procedure 3-93
Opcode data type A-4
opcodes 7-6

for pictures A-3 to A-26
for the PrGeneral procedure 9-52, 9-72 to 9-74

OpColor opcode A-7
OpColor procedure 4-78
OpenCPicParams records 7-29
OpenCPicture function 7-11, 7-37 to 7-39
OpenCPort procedure 4-64 to 4-65
OpEndPic opcode A-3, A-12
OpenPicture function 7-39 to 7-40
OpenPoly function 3-30, 3-78 to 3-79
OpenPort procedure 2-38 to 2-39
OpenRgn procedure 3-28, 3-87 to 3-88
original Color QuickDraw. See Color QuickDraw
Origin opcode A-6, A-18
origins. See window origins
ovals

defined 1-13
drawing 3-25, 3-68 to 3-71
erasing 3-70
filling

with bit patterns 3-69 to 3-70
with pixel patterns 4-75

I N D E X

IN-10

ovals (continued)
framing 3-68
inverting 3-71
painting 3-69
and rounded rectangles 1-14

OvSize opcode A-6, A-18

P

PackBitsRect opcode A-11, A-21
PackBitsRgn opcode A-11, A-21
page rectangles 9-10 to 9-11, 9-46
pages

determining number to print 9-19, 9-23
orientation of 9-32 to 9-33
printable area for 9-10 to 9-11
printing 9-19 to 9-24, 9-69 to 9-70

Page Setup command (File menu) 9-5 to 9-7
paintArc opcode A-9, A-20
PaintArc procedure 3-26, 3-73 to 3-74
painting shapes 3-12
paintOval opcode A-9, A-20
PaintOval procedure 3-69
paintPoly opcode A-10, A-20
PaintPoly procedure 3-82 to 3-83
paintRect opcode A-8, A-19
PaintRect procedure 3-23 to 3-24, 3-60, 4-22, 4-25
paintRgn opcode A-10, A-21
PaintRgn procedure 3-101
PaintRoundRect procedure 3-64 to 3-65
paintRRect opcode A-8, A-19
paintSameArc opcode A-10, A-20
paintSameOval opcode A-9, A-20
paintSamePoly opcode A-10, A-21
paintSameRect opcode A-8, A-19
paintSameRgn opcode A-11, A-21
paintSameRRect opcode A-8, A-19
Palette Manager 1-20, 1-29
paper rectangles 9-10
'PAT#' resource type 3-127 to 3-128, 3-141
patBic pattern mode 3-9 to 3-10, 3-45
patCopy pattern mode 3-9 to 3-10, 3-45
patOr pattern mode 3-9 to 3-10, 3-45
'PAT ' resource type 3-126 to 3-127, 3-140
Pattern data type 3-40, A-4. See also bit patterns
pattern list resources 3-127 to 3-128, 3-141
pattern modes 3-8 to 3-11, 4-33

changing 3-45 to 3-46
“magic,” for PostScript printers B-22, B-30 to B-32,

B-34
pattern resources 3-126 to 3-127, 3-140
patterns. See also bit patterns; pixel patterns

background, in basic graphics ports 2-32

background, in color graphics ports 4-68 to 4-69
in basic graphics ports 2-13, 2-32
changing 3-47 to 3-49, 4-68 to 4-69
data types for 3-40, 4-58 to 4-60
defined 1-11
fill, in basic graphics ports 2-32
fill, in color graphics ports 4-74 to 4-77
of graphics pens in basic graphics ports 2-33
of graphics pens in color graphics ports 4-67 to 4-68
resources for 3-140 to 3-141, 4-103
stretching for printer output 2-35, 4-53

patXor pattern mode 3-9 to 3-10, 3-45
PenMode procedure 3-45 to 3-46, B-22, B-30 to B-32,

B-34
pen modes. See pattern modes
PenNormal procedure 3-48
PenPat procedure 3-20 to 3-21, 3-47
PenPixPat procedure 4-67 to 4-68
pens. See graphics pens
PenSize procedure 3-19 to 3-20, 3-44
pen state 3-37 to 3-38
PenState data type 3-37 to 3-38
Personal LaserWriter LS printers B-7
PicComment procedure 7-40 to 7-42, B-3 to B-41
'PICT' file type 7-7, 7-13 to 7-16, 7-21 to 7-23
PictInfo data type 7-32 to 7-36
'PICT' resource type 7-7, 7-20, 7-46, 7-67 to 7-68
'PICT' scrap format 7-7 to 7-8, 7-17, 7-22
picture comments 7-40 to 7-42, B-3 to B-44

defined 7-6
delimiting text strings with B-16 to B-17
device independence and printing B-8 to B-9
disabling and enabling line layout with B-11 to B-17
graphics rotation with B-29 to B-32
inserting into pictures or printing code 7-40 to 7-42
limited or obsolete B-40 to B-41
low-level routine for processing 3-137
matching colors with B-7
printing dashed lines with B-33 to B-35
printing graphics with B-6, B-22 to B-32
printing hairlines with B-35 to B-37
printing polygons with B-23 to B-29
printing ruled lines with B-6, B-33 to B-37
printing text with B-5, B-11 to B-22
sending PostScript printing code with B-6, B-38 to

B-40
synchronizing between QuickDraw and PostScript

printer drivers B-10 to B-11
text rotation with B-17 to B-22

Picture data type 7-27 to 7-28. See also pictures
picture opcodes A-3 to A-26
picture resources 7-7, 7-20, 7-46, 7-67 to 7-68
pictures

collecting information from 7-24 to 7-26, 7-46 to
7-50, 7-53 to 7-57, 7-58 to 7-60

I N D E X

IN-11

color, in basic graphics ports 7-6 to 7-7
creating 7-10 to 7-13, 7-37 to 7-42
data type for 7-27 to 7-28
defined 1-16, 7-4
destination rectangles for 7-18 to 7-19
disposing of 7-13, 7-20, 7-42 to 7-43
drawing 7-10 to 7-20, 7-43 to 7-45
extended version 2 format 7-5 to 7-6, 7-37 to 7-39,

A-3, A-5 to A-14, A-23 to A-24
low-level routines for 3-138 to 3-139
opcodes for 7-6
opening 7-13 to 7-20
in 'PICT' files 7-7, 7-13 to 7-16, 7-21 to 7-23
in 'PICT' resources 7-7, 7-20, 7-22, 7-46
reading from a resource file 7-46
resolutions for 7-11, 7-19
saving 7-21 to 7-23
in the scrap 7-7 to 7-8, 7-17, 7-22
version 1 format 7-5 to 7-6, A-3 to A-4, A-5, A-18 to

A-21, A-25 to A-26
version 2 format 7-5 to 7-6, 7-39, A-3, A-5 to A-16,

A-24 to A-25
and the Window Manager 7-13

Picture Utilities
application-defined routines for 7-61 to 7-67
data structures in 7-30 to 7-36
defined 7-8
gathering information with 7-24 to 7-26
routines in 7-46 to 7-60
testing for availability 7-10

picVersion opcode A-19
PixData data type A-4, A-15
pixel depths

default color tables for 4-93
defined 4-10
determining 5-8 to 5-13, 5-29 to 5-30, 5-33 to 5-34
setting 5-13, 5-34 to 5-35

pixel images
addresses of, for offscreen graphics worlds 6-38 to

6-39
defined 4-10 to 4-12
getting states of, for offscreen graphics worlds 6-36

to 6-37
locking, for offscreen graphics worlds 6-32 to 6-33
in pixel maps 4-10 to 4-12
purgeable, for offscreen graphics worlds 6-34 to 6-35
setting states, for offscreen graphics worlds 6-37 to

6-38
unlocking, for offscreen graphics worlds 6-33 to 6-34
unpurgeable, for offscreen graphics worlds 6-35
whether in 32-bit mode, for offscreen graphics

worlds 6-39
pixel maps

copying images between 3-112 to 3-122, 4-26 to 4-32
creating 4-85 to 4-86

data type for 4-46 to 4-48
defined 1-5, 4-9
disposing of 4-87
gathering color information from 7-50 to 7-55, 7-57

to 7-60
low-level routine for copying images between 3-136
obtaining, for offscreen graphics worlds 6-31 to 6-32
pixel images in 4-10 to 4-12
setting 4-86 to 4-87

pixel pattern resources 4-24 to 4-25, 4-103
pixel patterns

background 4-68 to 4-69
creating 4-88 to 4-91, 4-103
data type for 4-58 to 4-60
defined 1-11, 4-12 to 4-13
disposing of 4-91
filling with 4-23 to 4-26, 4-74 to 4-77
framing and painting with 4-23 to 4-26
of graphics pens 4-23 to 4-26, 4-67 to 4-68
modifying 4-98 to 4-99
resources for 4-24 to 4-25, 4-103

pixels
in bitmaps 2-11
colors for

in basic QuickDraw eight-color system 3-14 to
3-15, 3-122 to 3-125

in Color QuickDraw 4-4 to 4-5, 4-10 to 4-11, 4-13
to 4-17, 4-21 to 4-44

copying between bitmaps 3-32 to 3-35, 3-112 to 3-122
copying between pixel maps 3-32 to 3-35, 3-112 to

3-122, 4-26 to 4-32
copying from offscreen graphics worlds 3-112 to

3-122, 6-9 to 6-11
defined 1-4
depths of. See pixel depths
patterns for. See bit patterns, pixel patterns
relationship to points 1-9
scrolling 2-20 to 2-26, 2-43 to 2-44
values for. See pixel values
whether black or white 2-54 to 2-55
whether in rectangles 3-56
whether in regions 3-97

pixelsLocked flag 6-13, 6-15, 6-36, 6-37
pixelsPurgeable flag 6-13, 6-14, 6-36, 6-37
pixel values

defined 4-11
for direct devices 4-15 to 4-17
for indexed devices 4-13 to 4-14
as RGB colors 4-13 to 4-17

PixMap32Bit function 6-39
PixMap data type 4-46 to 4-48. See also pixel maps
PixMap records

copying images between 3-112 to 3-122
creating 4-85 to 4-86
disposing of 4-87

I N D E X

IN-12

PixMap records (continued)
low-level routine for copying images between 3-136
obtaining, for offscreen graphics worlds 6-31 to 6-32
pixel images in 4-10 to 4-12
setting 4-86 to 4-87

PixPatChanged procedure 4-98 to 4-99
PixPat data type 4-58 to 4-60. See also pixel patterns
PixPatHandle data type 4-58
pixPurge flag 6-13, 6-14, 6-18, 6-19
plus sign cursor 8-8 to 8-9
PnLocHFrac opcode A-6
PnMode opcode A-6, A-18
PnPat opcode A-6, A-18
PnPixPat opcode A-6
PnSize opcode A-6, A-18
Point data type 2-27, A-4. See also points
points

adding coordinates of 2-52
assigning coordinates to 2-54
changing between global and local 2-19, 2-51 to 2-52
comparing coordinates of 2-54
coordinates for 2-4 to 2-5
data type for 2-27
defined 1-9 to 1-10
mapping between rectangles 3-106
rectangles around 3-56
relationship to pixels 1-9
routines for managing 2-51 to 2-54, 3-104 to 3-106
subtracting coordinates of 2-53
used for defining rectangles 2-5 to 2-6
whether in rectangles 3-56
whether in regions 3-97

PolyBegin picture comment B-6, B-24, B-28
PolyClose picture comment B-6, B-24
Poly data type A-4
PolyEnd picture comment B-6, B-24
Polygon data type 3-37. See also polygons
polygons

closing 3-79
creating 3-78 to 3-79
data type for 3-37
defined 1-15
defining 3-30
disposing of 3-80 to 3-81
drawing 3-81 to 3-85
erasing 3-84
filling

with bit patterns 3-83 to 3-84
with pixel patterns 4-76 to 4-77

framing 3-81 to 3-82
inverting 3-85
low-level routine for drawing 3-135
mapping and scaling 3-108
moving 3-80
painting 3-82 to 3-83

routines for managing 3-78 to 3-85, 3-108
smoothed, on PostScript printers B-23 to B-29

PolyIgnore picture comment B-6, B-24, B-27 to B-28
PolySmooth picture comment B-6, B-24 to B-28
PortChanged procedure 4-99 to 4-100
port rectangles

in basic graphics ports 2-32
changing positions of 2-46 to 2-47
changing sizes of 2-46
changing window origins of 2-23 to 2-26, 2-45 to 2-46
in color graphics ports 4-51
defined 1-7
in graphics ports 2-11
scrolling pixels in 2-20 to 2-26, 2-43 to 2-44

PortSize procedure 2-46
PostScriptBegin picture comment B-8 to B-9, B-31,

B-34
PostScriptEnd picture comment B-9, B-31, B-35
PostScriptFile picture comment B-6, B-41
PostScriptHandle picture comment B-6, B-38 to B-39
PostScript language, use in printing B-3 to B-44
PostScript LaserWriter printers 9-76, B-7
PostScript printer drivers 9-9
'ppat' resource type 4-24 to 4-25, 4-103
PrCloseDoc procedure 9-21, 9-22, 9-68
PrClosePage procedure 9-22, 9-70
PrClose procedure 9-22, 9-37, 9-58
PrCtlCall procedure 9-81 to 9-84
PrDlgMain function 9-37, 9-63 to 9-64
PrDrvrClose procedure 9-80
PrDrvrDCE function 9-80 to 9-81
PrDrvrOpen procedure 9-79
PrDrvrVers function 9-79
PrError function 9-18, 9-21, 9-41 to 9-42, 9-75 to 9-77
PrGeneral procedure 9-28 to 9-35, 9-42, 9-72 to 9-74
Print command (File menu) 9-5 to 9-6, 9-7 to 9-8
PrintDefault procedure 9-37, 9-59
print dialog boxes. See also job dialog boxes; print

status dialog boxes; style dialog boxes
altering 9-35 to 9-38, 9-63 to 9-65, 9-86
data structure for 9-50 to 9-51
displaying 9-61 to 9-64
for multiple documents 9-26, 9-66

print dialog box record. See TPrDlg data type
printer drivers

closing 9-58, 9-80
defined 9-3
determining versions of 9-79
device control entry for 9-80 to 9-81
dialog boxes for 9-5 to 9-8, 9-13 to 9-14
line layout capabilities of B-11 to B-17
opening 9-57, 9-79
picture comments supported by B-7
PostScript 9-9
QuickDraw 9-8 to 9-9

I N D E X

IN-13

resolutions for 9-11, 9-30 to 9-32
printer resource files 9-3
PrintErr global variable 9-78
printers

current, device numbers of 9-48
current, feed types of 9-48
ImageWriter LQ B-7
information in TprInfo records for 9-46
LaserWriter 9-7 to 9-8, 9-76, B-7
LaserWriter SC B-7
Personal LaserWriter LS B-7
PostScript LaserWriter 9-76, B-7
StyleWriter 9-6 to 9-8, B-7

print information record. See TPrInfo data type
printing

area for 9-10 to 9-11
canceling 9-14, 9-38 to 9-41, 9-85
deferred 9-24, 9-71 to 9-72
determining number of copies 9-19
determining number of pages 9-19, 9-23
dialog boxes for 9-5 to 9-8, 9-13 to 9-15, 9-50 to 9-51,

9-61 to 9-66
documents 9-18 to 9-26, 9-66 to 9-72
draft-quality 9-24, 9-55
enhanced draft-quality 9-33 to 9-35, 9-55, 9-73
error handling for 9-73, 9-75 to 9-78
from the Finder 9-25 to 9-26, 9-66
graphics ports for. See printing graphics ports
landscape, disabled 9-34
multiple documents 9-25 to 9-26, 9-66
with non-QuickDraw features B-3 to B-44
optimizing 9-72 to 9-74
picture comments for B-3 to B-44
resolutions for 9-30 to 9-32, 9-53 to 9-55
status 9-13 to 9-15, 9-49
user interface guidelines for 9-5 to 9-8, 9-13 to 9-15
whether landscape 9-32 to 9-33, 9-56, 9-73

printing graphics ports
closing 9-68
creating 9-19, 9-67
data type for 9-51 to 9-52
defined 9-3 to 9-5
drawing into 9-19 to 9-24, 9-69 to 9-70
opening 9-19, 9-67

printing loops 9-18 to 9-25
Printing Manager 1-26 to 1-28, 9-3 to 9-105

application-defined routines for 9-84 to 9-86
data structures in 9-44 to 9-56
and Dialog Manager 9-5 to 9-8, 9-35 to 9-38
initializing 9-15, 9-57
low-level routines in 9-78 to 9-84
and QuickDraw 9-3 to 9-5
routines in 9-57 to 9-84
testing for availability 9-15
user interface guidelines for 9-5 to 9-8, 9-13 to 9-15

printing status information. See TPrStatus data type
printing style record. See TPrStl data type
print job record. See TPrJob data type
print record. See TPrint records
print status dialog boxes 9-13 to 9-15, 9-38 to 9-41
PrJobDialog function 9-20, 9-62 to 9-63
PrJobInit function 9-37, 9-65
PrJobMerge procedure 9-26, 9-66
PrOpenDoc function 9-21, 9-67
PrOpenPage procedure 9-21, 9-69 to 9-70, B-4
PrOpen procedure 9-20, 9-57
PrPicFile procedure 9-21, 9-71 to 9-72
PrSetError procedure 9-78
PrStlDialog function 9-61 to 9-62
PrStlInit function 9-64
PrValidate function 9-18, 9-20, 9-60
PSBeginNoSave picture comment B-6, B-41
Pt2Rect procedure 3-56
PtInRect function 3-56
PtInRgn function 3-97, 8-11
PtToAngle procedure 3-57

Q

QDColor global variable 4-71
QDDone function 3-125 to 3-126
QDError function 3-28, 3-30, 3-34, 4-94 to 4-95, 7-20
QDProcs data type 3-39 to 3-40
QDProcs record B-4
QuickDraw 1-3 to 1-29. See also basic QuickDraw;

Color QuickDraw; global coordinate systems;
local coordinate systems; shapes

compatibility between versions 1-4
customizations of 3-35 to 3-36, 3-129, 4-96 to 4-97
and Dialog Manager 4-6
drawing with 1-10 to 1-17
historical development 1-4
initializing 2-36 to 2-37
low-level drawing routines 3-129 to 3-139
mathematical foundations of 2-4 to 2-7
multiple graphics device support in 1-21 to 1-23
picture comments supported by printer drivers

for B-7
printer drivers 9-8 to 9-9
and Printing Manager 9-3 to 9-5
printing with. See Printing Manager
text 1-3
versions of 1-4
and the Window Manager 1-7 to 1-8

I N D E X

IN-14

R

ramInit flag 5-17, 5-23, 5-31, 5-36
randSeed global variable 2-36
reallocPix flag 6-14, 6-15, 6-25
RecordPictInfo function 7-56 to 7-57
RecordPixMapInfo function 7-57 to 7-58
rectangles. See also boundary rectangles; bounding

rectangles; port rectangles
coordinates for 2-5 to 2-6
creating 3-53
data type for 2-27 to 2-28
defined 1-12 to 1-13
defining 3-22 to 3-23, 3-24
drawing 3-22 to 3-24, 3-58 to 3-62
emptiness of 3-58
equality of 3-58
erasing 3-61 to 3-62
expanding 3-54
filling

with bit patterns 3-23 to 3-24, 3-60 to 3-61
with pixel patterns 4-74

framing 3-22 to 3-23, 3-59
intersections of 3-55
inverting 3-62
low-level routine for drawing 3-132
mapping and scaling 3-106 to 3-107
moving 3-53 to 3-54
painting 3-23 to 3-24, 3-60
pixels in 3-56
and regions 3-91 to 3-92, 3-98
routines for managing 3-52 to 3-62, 3-104 to 3-108
scaling factors for 3-104 to 3-105
shrinking 3-54
smallest around two points 3-56
unions of 3-55
used to define other shapes 3-11

Rect data type 2-27 to 2-28, A-4. See also rectangles
RectInRgn function 3-98
RectRgn procedure 3-92, 8-11
Region data type 2-28 to 2-29. See also regions
regions

arrow 8-9 to 8-12
copying 3-90 to 3-91
creating 3-87 to 3-89
data type for 2-28 to 2-29
defined 1-16
defining 3-27 to 3-30
disposing of 3-90
drawing 3-100 to 3-104
emptiness of 3-91, 3-99
equality of 3-98
erasing 3-102 to 3-103
expanding 3-93 to 3-94

filling
with bit patterns 3-102
with pixel patterns 4-77

framing 3-100 to 3-101
I-beam 8-9 to 8-12
intersections of 3-94 to 3-95, 3-96 to 3-97
inverting 3-103 to 3-104
low-level routine for drawing 3-135 to 3-136
mapping and scaling 3-107
mouse 8-9 to 8-12
moving 3-93
painting 3-101
pixels in 3-97
and rectangles 3-91 to 3-92, 3-98
routines for managing 3-85 to 3-104, 3-107
shrinking 3-93 to 3-94
subtracting 3-96
unions of 3-95, 3-96 to 3-97

resolutions
discrete 9-11
for pictures 7-11, 7-19
for printers 9-11, 9-30 to 9-32, 9-46, 9-53 to 9-55, 9-73
for screens 5-32
variable 9-11

resource forks 7-7
ResourcePS picture comment B-6, B-41
resources

animated cursor 8-13, 8-14, 8-36 to 8-37
color cursor 8-34 to 8-36
color icon 4-105 to 4-106
color-picking method 7-68
color table 4-104 to 4-105
cursor 8-13 to 8-14, 8-33 to 8-34
pattern 3-140
pattern list 3-141
picture 7-7, 7-20, 7-46, 7-67 to 7-68
pixel pattern 4-24 to 4-25, 4-103
screen 5-37

resource types
'acur' 8-13, 8-14, 8-36 to 8-37
'cicn' 4-105 to 4-106
'clut' 4-104 to 4-105
'cmpt' 7-68
'crsr' 8-34 to 8-36
'CURS' 8-13 to 8-14, 8-33 to 8-34
'PAT ' 3-140
'PAT#' 3-141
'PICT' 7-7, 7-20, 7-46, 7-67 to 7-68
'ppat' 4-24 to 4-25, 4-103
'scrn' 5-37

RetrievePictInfo function 7-58 to 7-59
RGBBackColor procedure 4-72 to 4-73
RGBBkCol opcode A-6
RGBColorArray data type 7-64
RGBColor data type 4-55. See also RGB colors

I N D E X

IN-15

RGBColor records 1-19, 4-13 to 4-17
RGB colors 1-19

data type for 4-55
defined 4-4 to 4-5
as pixel values 4-13 to 4-17

RGBFgCol opcode A-6
RGBForeColor procedure 4-22, 4-70 to 4-71
Rgn data type A-4
RotateBegin picture comment B-6, B-9, B-29 to B-32
RotateCenter picture comment B-6, B-9, B-32
RotateCursor procedure 8-15, 8-32
RotateEnd picture comment B-6, B-9, B-29, B-32
rounded rectangles

defined 1-14
drawing 3-63 to 3-68
erasing 3-66 to 3-67
filling

with bit patterns 3-65 to 3-66
with pixel patterns 4-74 to 4-75

framing 3-64
inverting 3-67 to 3-68
low-level routine for drawing 3-133
painting 3-64 to 3-65

RowBytes data type A-4
ruled lines, printing B-33 to B-37

S

sample routines
DashDemo B-34
DoControlClick 2-19
DoGraphicsScroll 2-22
DoInit 8-6
DoIsLandscapeModeSet 9-33
DoNew 2-17, 4-20
DoPostScriptLine B-39
DoPrintDialog 9-37
DoSavePICTAsCmd 7-21
DoUpdate 5-8
DoZoomWindow 5-10 to 5-12
DrawInPort 2-18
HiliteDemonstration 4-43
MyAdjustCursor 8-10
MyAdjustDestRect 7-18
MyCopyBlackAndRedMasks 6-10
MyCreateAndDrawPict 7-11, A-22
MyDefineVertices B-26
MyDoPrintIdle 9-40
MyDrawArcAndPaintWedge 3-26
MyDrawDumbbell 3-28
MyDrawFilePicture 7-13
MyDrawLines 3-18
MyDrawOvals 3-25

MyDrawRects 3-23
MyDrawResPICT 7-20
MyDrawTriangle 3-30
MyDrawXString B-21
MyFileGetPic 7-16
MyFilePutPic 7-23
MyFillClipRegion 3-29
MyFlushGrafPortState B-10
MyFlushPostScriptState B-11
MyGetPICTProfileCount 7-25
MyGetPrintRecordForThisDoc 9-17
MyIsColorPort 7-16
MyLineWidthDemo B-37
MyPaintAndFillColorRects 4-22
MyPaintAndFillRects 3-24
MyPaintPixelPatternRects 4-25
MyPaintRectsThruGWorld 6-5
MyPastePict 7-17
MyPolygonDemo B-27
MyPrDialogAppend 9-37
MyPrintLoop 9-20
MyRepatternPens 3-21
MyReplaceGetPic 7-15
MyReplacePutPic 7-22
MyResizePens 3-20
MyRotateCursor 8-15
MySetHiliteMode 4-42
MySetNewLineWidth B-37
MyShrinkImages 3-33
MySpinCursor 8-15
MyStringReconDemo B-17
MyTrivialDrawingProc 5-9

ScalePt procedure 3-104 to 3-105
scrap

defined 7-7
pictures in 7-7 to 7-8, 7-17, 7-22

screenActive flag 5-17, 5-23, 5-31, 5-36
screenBits global variable 2-36
screenDevice flag 5-17, 5-23, 5-31, 5-36
screen resources 5-37
ScreenRes procedure 5-32
screens

determining characteristics of 5-29 to 5-32
with greatest pixel depth 5-27 to 5-28
optimizing images for 5-8 to 5-13, 5-29 to 5-30, 5-35

to 5-37
resolution of 5-32

ScrHRes global variable 5-32
'scrn' resource type 5-37
scrolling pixels 2-20 to 2-26, 2-43 to 2-44
ScrollRect procedure 2-21 to 2-23, 2-43 to 2-44
ScrVRes global variable 5-32
SectRect function 3-55, 5-11
SectRgn procedure 3-94 to 3-95, 8-11
SeedCFill procedure 4-82 to 4-83

I N D E X

IN-16

SeedFill procedure 3-109 to 3-110
SetCCursor procedure 8-26 to 8-27
SetClip procedure 2-48, 3-29
SetCPixel procedure 4-73
SetCursor procedure 8-11, 8-25
SetDepth function 5-13, 5-34 to 5-35
SetDeviceAttribute procedure 5-22 to 5-23
SetEmptyRgn procedure 3-91
SetFractEnable procedure B-15
SetGDevice procedure 5-24
SetGrayLevel picture comment B-40
SetGWorld procedure 6-6, 6-29
SetLineWidth picture comment B-6, B-35 to B-37
SetOrigin procedure 2-45 to 2-46, 8-11
SetPenState procedure 3-43 to 3-44
SetPixelsState procedure 6-37 to 6-38
SetPortBits procedure 2-50
SetPortPix procedure 4-86 to 4-87
SetPort procedure 2-18, 2-42
SetPt procedure 2-54
SetRect procedure 3-23, 3-25, 3-53, 5-11
SetRectRgn procedure 3-91 to 3-92
setRslOp opcode 9-30 to 9-32, 9-52, 9-54 to 9-55
SetStdCProcs procedure 4-96 to 4-97, 7-15, 7-23
SetStdProcs procedure 3-130
SetWindowPic procedure 7-13, 7-20
shapes. See also arcs; lines; ovals; pictures; polygons;

rectangles; regions; rounded rectangles; wedges
calculations and manipulations 3-31 to 3-32
creating 1-10 to 1-17
defined 1-10 to 1-17
defining 3-11 to 3-12
drawing, erasing, and inverting 3-12 to 3-13
erasing 1-17
filling 1-17, 3-108 to 3-112
framing 1-17
painting 1-17

ShieldCursor procedure 8-29
ShortComment opcode A-12, A-21
ShortLineFrom opcode A-7, A-19
ShortLine opcode A-7, A-19
Show_Cursor procedure 8-30 to 8-31
ShowCursor procedure 8-30
ShowPen procedure 3-42
singleDevices flag 5-30
source modes 3-8 to 3-11, 4-32 to 4-37
SpExtra opcode A-6, A-18
SpinCursor procedure 8-15, 8-32 to 8-33
spool files 9-8, 9-9, 9-25
srcBic source mode 3-9 to 3-10, 3-114, 3-115, 4-33,

4-34, 4-41
srcCopy source mode 3-9 to 3-10, 3-114, 3-115, 4-33,

4-41

srcOr source mode 3-9 to 3-10, 3-114 to 3-115, 4-33 to
4-34, 4-41

srcXor source mode 3-9 to 3-10, 3-114, 3-115, 4-33, 4-41
StandardGetFile procedure 7-14
standard state of a window 5-10
startup screen 1-23
status, of printing 9-13 to 9-15, 9-38 to 9-41, 9-49
StdArc procedure 3-134
StdBits procedure 3-136
StdComment procedure 3-137, B-4
StdGetPic procedure 3-138 to 3-139
StdLine procedure 3-132, B-24, B-27
StdOval procedure 3-133 to 3-134
StdPoly procedure 3-135
StdPutPic procedure 3-139, 7-14
StdRect procedure 3-132
StdRgn procedure 3-135 to 3-136
StdRRect procedure 3-133
StdText procedure 3-131
StdTxtMeas function 3-138
stretchPix flag 6-14, 6-15, 6-24, 6-25
StringBegin picture comment B-5, B-17
StringEnd picture comment B-5, B-17
style dialog boxes

altering 9-35 to 9-38, 9-63 to 9-64, 9-86
defined 9-6
displaying 9-61 to 9-62
for LaserWriter printers 9-7
for StyleWriter printers 9-6 to 9-7

StyleWriter printers 9-6 to 9-8, B-7
subOver arithmetic transfer mode 4-39, 4-40
subPin arithmetic transfer mode 4-39, 4-40, 4-78
SubPt procedure 2-53
System 7 1-4

T

TCenterRec data type B-20 to B-21, B-29
TDashedLineRec data type B-33
TDftBitsBlk data type 9-33 to 9-35, 9-55
TestDeviceAttribute function 5-11, 5-31 to 5-32
text. See also text strings

in basic graphics ports 2-33 to 2-34
in color graphics ports 4-53
in graphics ports 2-13
low-level routine for drawing 3-131
low-level routine for measuring width 3-138

TextBegin picture comment B-5, B-17 to B-20, B-21
TextCenter picture comment B-5, B-17 to B-18, B-19

to B-21
TextEnd picture comment B-5, B-17 to B-18, B-22
TextIsPostScript picture comment B-6, B-41
text streaming 9-82

I N D E X

IN-17

text strings
delimiting with picture comments B-16 to B-17
rotating with picture comments B-17 to B-22

TFeed data type 9-48
TGetRotnBlk data type 9-32 to 9-33, 9-56
TGetRslBlk data type 9-30 to 9-31, 9-53 to 9-54
TGnlData data type 9-52 to 9-53
TheGDevice global variable 5-4
thePat opcode A-18
thePort global variable 2-36
32-bit Color QuickDraw. See Color QuickDraw
TLineWidth data type B-35
TopMapHdl global variable 9-39
TPolyVerbRec data type B-25 to B-26
TPrDlg data type 9-50 to 9-51
TPrInfo data type 9-46
TPrint data type 9-38 to 9-39, 9-44 to 9-46
TPrint records

creating 9-17
defined 9-11 to 9-13
initializing 9-59
saving and reading 9-17 to 9-18
validating 9-60

TPrJob data type 9-38 to 9-39, 9-47 to 9-48
TPrPort data type 9-51 to 9-52
TPrPort records

closing 9-68
creating 9-19, 9-67
drawing into 9-24, 9-69 to 9-70
opening 9-19, 9-67

TPrStatus data type 9-49
TPrStl data type 9-48
transfer modes. See arithmetic transfer modes; Boolean

transfer modes; pattern modes; source modes
transparent mode 4-39, 4-40
TRotationRec data type B-30
TRslRec data type 9-54
TRslRg data type 9-53
TSetRslBlk data type 9-31, 9-54 to 9-55
TTxtPicRecord data type B-19 to B-20
TxFace opcode A-5, A-18
TxFont opcode A-5, A-18
TxMode opcode A-5, A-18
TxRatio opcode A-6, A-19
TxSize opcode A-6, A-18

U

UnionRect procedure 3-55
UnionRgn procedure 3-95
UnlockPixels procedure 6-6, 6-33 to 6-34
UpdateGWorld function 6-9, 6-23 to 6-26

user interface guidelines
for animated cursors 8-5, 8-13, 8-15
for color cursors 8-5
for cursors 8-4 to 8-5
for highlighting 4-44
for Printing Manager 9-13 to 9-15
for style and job dialog boxes 9-5 to 9-8

user state of a window 5-9
useTempMem flag 6-13, 6-14, 6-18, 6-20

V

variable resolution 9-11, 9-30 to 9-32
version 1 format 7-5 to 7-6, A-3 to A-4, A-5, A-18 to

A-21, A-25 to A-26
version 2 format 7-5 to 7-6, 7-39, A-3, A-5 to A-16, A-24

to A-25
Version opcode A-6, A-13
video devices 1-19 to 1-20, 1-22 to 1-25, 5-3 to 5-37
visible regions 2-11

in basic graphics ports 2-32
in color graphics ports 4-51

W

wedges. See also arcs
defined 1-14
drawing 3-26, 3-71 to 3-77
erasing 3-76
filling

with bit patterns 3-75
with pixel patterns 4-76

inverting 3-77
low-level routine for drawing 3-134
painting 3-73 to 3-74

white global variable 2-36, 3-7
Window Manager

and pictures 7-13
and QuickDraw 1-7 to 1-8

window origins
changing 2-23 to 2-26, 2-45 to 2-46
defined 2-20

windows
as graphics ports 1-7 to 1-8
scrolling through 2-20 to 2-26, 2-43 to 2-44
standard state 5-10
updating 2-24
user state 5-9
zooming 5-9 to 5-12

wristwatch cursor 8-8 to 8-9

I N D E X

IN-18

X, Y

XorRgn procedure 3-96 to 3-97

Z

0..255 data type A-4
zooming windows 5-9 to 5-12
ZoomWindow procedure 5-10, 5-12

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages were created on an Apple
LaserWriter Pro printer. Final page
negatives were output directly from text
files on an Optrotech SPrint 220
imagesetter. Line art was created
using Adobe™ Illustrator and
Adobe Photoshop. PostScript™, the
page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Apple Courier.

LEAD WRITER

Tony Francis

WRITERS

Tony Francis, Lori Kaplan,
Sharon Everson, Rob Dearborn,
Dianne Patterson, Ulla Hald

DEVELOPMENTAL EDITOR

Sue Factor

ART DIRECTOR

Bruce Lee

ILLUSTRATOR

Ruth Anderson

PRODUCTION EDITORS

Pat Christenson, Alan Morgenegg

Special thanks to Joseph Maurer,
Don Moccia

Acknowledgments to Waymen Askey,
Michael Conley, Matt Deatherage,
Lorraine Findlay, Dave Hersey,
Shannon Holland, Edgar Lee,
Tim Monroe, Konstantin Othmer,
John Wang

